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 ABSTRACT 

 College weight gain and obesity are significant problems impacting our society, 

leading to a considerable number of comorbidities during and after college.  Gut 

microbiota are increasingly recognized for their role in obesity and weight gain.  

Currently, research exploring the gut microbiome and its associations with dietary intake 

and body mass index (BMI) is limited among this population.  Therefore, the purpose of 

this study was to assess associations between the gut microbiome, BMI, and dietary 

intake in a population of healthy college students living in two dorms at Arizona State 

University (n=90).  Cross-sectional analyses were undertaken including 24-hour dietary 

recalls and anthropometrics (height, weight and BMI).  High throughput Bacterial 16S 

rRNA gene sequencing of fecal samples was performed to quantify the gut microbiome 

and analyses were performed at phyla and family levels.  Within this population, the 

mean BMI was 24.4 ± 5.3 kg/m2 and mean caloric intake was 1684 ± 947 kcals/day.  

Bacterial community analysis revealed that there were four predominant phyla and 12 

predominant families accounting for 99.3% and 97.1% of overall microbial communities, 

respectively.  Results of this study suggested that a significant association occurred 

between one principal component (impacted most by 22 microbial genera primarily 

within Firmicutes) and BMI (R2=0.053, p=0.0301).  No significant correlations or group 

differences were observed when assessing the Firmicutes/Bacteroidetes ratio in relation 

to BMI or habitual dietary intake.  These results provide a basis for gut microbiome 

research in college populations.  Although, findings suggest that groups of microbial 

genera may be most influential in obesity, further longitudinal research is necessary to 

more accurately describe these associations over me.  Findings from future research may 
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be used to develop interventions to shift the gut microbiome to help moderate or prevent 

excess weight gain during this important life stage.          
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CHAPTER 1 

INTRODUCTION 

 

Obesity is a significant problem that is impacting our society, with 31.8% of 

youth/teens being classified as overweight or obese, leading to a considerable number of 

comorbidities, such as hypertension, dyslipidemia, type 2 diabetes, and heart disease.1-4  

Obesity is now viewed as the consequence of complex interactions between genetics, 

environment, socio-economic status, and diet, rather than simple imbalances in energy 

consumption.5  The prevalence of overweight children and childhood obesity has become 

a growing problem that continues into the college years.  The most significant change in 

weight occurs during the initial transition to college amongst college freshmen and 

students living in the dorms and can ultimately result in a transition from a healthy 

weight into overweight or obese categories.1,6-11   

During the freshman year of college, students are exposed to significant 

environmental and dietary changes.  This transitory period between adolescence and 

adulthood has been characterized as “emerging adulthood,” during which, health 

behaviors are thought to be driven by increased social development and susceptibility to 

peer influence.12,13  The impact that this period has on adult health makes the transition to 

college a unique time to study interrelationships between general health and weight 

outcomes; however, this time period is infrequently studied in obesity research.14  

Gut microbiota have become increasingly recognized for their crucial role in 

metabolic functioning and subsequent states of health and disease.2  Studying the 

dynamic relationship between weight and intestinal microbiota is important for 
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understanding the college weight gain phenomenon.  The current research connecting 

obesity and the gut microbiome demonstrates that, in obese populations, microbial 

diversity decreases as compared to that of lean individuals.15,16  The connection between 

the gut microbiome and obesity has been further strengthened by animal studies in which 

feces of diet-induced obese (DIO) mice were transplanted into germ-free lean mice.16,17  

The results of these studies demonstrated that mice receiving transplants from DIO mice 

experienced weight gain whereas those receiving transplants from lean donors did 

not.16,17  These relationships connecting the gut microbiome and obesity have been most 

predominantly characterized using two main phyla classifications that seem to be most 

evident in the gut: Firmicutes and Bacteroidetes.2,5,18   

The majority of research suggests that there is an increased 

Firmicutes/Bacteroidetes (F/B) ratio in obese patients as compared to healthy, lean 

individuals.2,5,18  Further obesity research demonstrates that, by placing obese adult 

patients on weight loss diets such as low-fat or low-carbohydrate diets, the F/B ratio can 

be returned to that of healthy, lean persons.18  Therefore, while the gut microbiota can 

help promote obesity through increases in Firmicutes, an individual may be able to alter 

this ratio to a healthier composition with lifestyle changes that increase Bacteroidetes 

abundance.2,5,18  Although the majority of research supports the findings of an increased 

F/B ratio in obese patients, there are studies of similar populations that report an increase 

in the opposite direction19 or find no correlation between weight and phyla 

proportions.20,21  As a whole, research in this area is still in its early stages and more work 

is needed to fully understand the connections between the microbiome and weight status. 
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Another factor that is shown to play a role in determining the gut microbial make-

up and its shifts during weight change is diet.  One study looked at the association 

between the gut microbiome and diet by looking at children in Europe that consumed a 

Western diet compared to children in Burkina Faso (a rural city in Africa) that consumed 

a Neolithic diet.22  The differences between the two diets were that the Western diet was 

high in sugar, animal fat, and calorie-dense foods whereas the Neolithic diet was low in 

fat and animal protein and rich in starch, fiber, and plant polysaccharides (predominantly 

vegetarian).22  This study found that the European children had lower overall microbial 

diversity and a high F/B ratio as compared to that of the African children who had a rich 

microbial diversity and a low F/B ratio.  African children also had a higher presence of 

short chain fatty acid (SCFA) producing microbes, which is believed to provide a 

protection against enteric pathogens.22  Other studies have aimed to assess how dietary 

changes influence the gut microbiome.  In a cross-sectional study of healthy, lean and 

obese individuals, gut microbiome data were taken at multiple time points with all the 

subjects consuming a controlled baseline diet, a 2400 kcal, and a 3400 kcal balanced diet 

(24% protein, 16% fat, and 60% carbohydrates).23  This incremental increase in total 

calories resulted in a greater F/B ratio and greater energy harvesting demonstrated by 

decreased energy loss in feces.23  In another study ten healthy adult male and female 

subjects were fed either a low fat/high fiber diet or a high fat/low fiber diet and the gut 

microbiome was assessed.  Similar to the study by De Filippo et.al., consuming a low 

fat/high fiber diet resulted in a low F/B ratio while the high fat/low fiber diet resulted in a 

gut profile with greater F/B ratio.24  Both studies demonstrated that changes in diet can 
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rapidly begin to alter the gut microbiome, although it is not clear whether these changes 

shift back with discontinuation of the diet.23,24                    

While diet has a large impact on the composition of the gut microbiome, 

microbiota of obese individuals have also been associated with greater energy harvesting 

from the diet which may contribute to increased fat/energy stores in the body.2,5  In the 

animal studies that transplanted feces from diet-induced obese (DIO) mice into germ-

free, lean mice, the transplant recipients also had greater fat deposition than those 

receiving transplants from lean donors.16,17  The greater fat deposition in this study was 

determined to be associated with the increased F/B ratio, thereby supporting the 

hypothesis that an obese microbiome is more efficient at energy harvesting.  Similar 

findings from human studies also support the hypothesis that Firmicutes is the key phyla 

responsible for increasing obesity through energy harvesting.2,5,18     

 While the current research has demonstrated some correlation between diet, 

weight status and the gut microbiome, healthy college freshmen have not yet been 

utilized as a specified population to explore these correlations further.  The present study 

will explore the connections between the gut microbiome, weight status and diet in health 

healthy college students living in the dorms.  Utilizing this population is crucial to 

understanding these relationships further as college freshmen and other students living in 

the dorms generally experience significant changes to their diet and weight status.14  

Lastly, results from this research will provide a basis for future longitudinal studies and 

interventions to understand the relationships between diet, weight status, and the gut 

microbiome in order to decrease the prevalence of college weight gain and impede the 

increasing obesity rate in young adults into adulthood.          
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Study Purpose 

The purpose of this cross-sectional observational analysis was to characterize the 

gut microbiome and identify relationships between body mass index (BMI), dietary 

intake, and the gut microbiome of healthy college students living in the dorms. 

 

Aims 

• Aim 1: To characterize the gut microbiome profiles of healthy college students 

living in the dorms. 

o Purpose: To determine the relative abundance of microbial taxa in feces 

from a diverse group of college students living in the dorms.      

• Aim 2: To investigate the association of BMI with the fecal microbiome 

composition in healthy college students living in the dorms. 

o Purpose: To compare the Firmicutes to Bacteroidetes (F/B) ratio of 

underweight, normal weight, overweight, and obese college students 

living in the dorms and assess associations between fecal microbiome 

communities at the genus level and BMI after using principal components 

analysis (PCA) to reduce the data. 

• Aim 3: To investigate the association of dietary intake with the fecal microbiome 

composition in healthy college students living in the dorms. 

o Purpose: To identify the dietary factors that correlate with the F/B ratio in 

healthy college students living in the dorms.     
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Definitions 

• Gut Microbiome (plural of gut microbiota) - The community of bacteria 

inhabiting the gut that work symbiotically with the body. 

• Gut Microbiota- The different bacteria inhabiting the gut that work 

symbiotically with the body. 

• Fecal Microbiota- The bacteria present in the feces that are considered 

representative of the gut microbiota. 

• Underweight- BMI<18.5 kg/m2 

• Normal weight- 18.5≤ BMI<25 kg/m2 

• Overweight- 25 kg/m2 ≤ BMI ≤ 29.9 kg/m2  

• Obese- BMI ≥ 30 kg/m2 

• Prebiotic- Specialized plant fibers, non-digestible for humans, that are 

used to nourish good bacteria in the gut. 

• Probiotics- Live bacteria often found in fermented dairy products that may 

improve digestive health. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

Introduction 

 Obesity is a significant problem that is impacting society, leading to a 

considerable number of comorbidities such as hypertension, dyslipidemia, type 2 

diabetes, heart disease, stroke, osteoarthritis, sleep apnea, and some cancers.1,2  

According to the Centers for Disease Control and Prevention, the prevalence of 

overweight and obesity among all demographic groups has continued to increase during 

the past three to four decades in the United States.9,25-28  This increase is best described as 

the result of complex interactions between genetics, environment, socio-economic status, 

and diet, rather than simple imbalances in energy consumption and expenditure.5 

Recent data suggest that the prevalence of obesity in 2011-2012 was 16.9% in 

youth (2-19 years old) and 34.9% in adults (20 years and older).  These percentages are 

not significantly different from the NHANES 2003-2004 data, thereby demonstrating that 

the increase in obesity has leveled off.4  In addition, NHANES data from 2011-2012 

suggests that the prevalence of overweight individuals between the age of 12-19 years 

was 14.9%.  This percentage is also not significantly different from the NHANES 2003-

2004 data, thereby demonstrating that the increased percentage of overweight individuals 

has leveled off.3,4  This age range includes the important transition from high school to 

college, a period that has been associated with weight gain.10,11 
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College Students 

 The transition from adolescence to adulthood (high school to college), is a time 

period that is filled with major behavioral, social, and lifestyle changes.14  As these 

individuals move away from home and become more independent they often engage in 

unhealthy eating, reduced physical activity, and inadequate sleep habits.1,7,8  In addition, 

college students face a large number of health problems such as the common cold, 

sexually transmitted diseases, development of chronic diseases, and alcohol abuse as they 

are exposed to new environmental and social pressures during this transition period.9,29,30  

These influential factors can have long term effects on weight and overall health such as 

remaining overweight/obese through adulthood, developing hypertension, Type II 

diabetes, heart disease, and other weight related comorbidities.9  Therefore, identifying 

determinants of weight gain and dietary choices in this population are crucial for 

informing health programs in college for the prevention of obesity later in life.1,6-8   

 

 

College Freshmen and Weight Issues 

 Many students entering college are exposed to the idea of the “freshmen 15” or 

the tendency for students to gain 15 pounds during their first year of college.1,7-11  While 

this myth is still presented by the popular press, a vast amount of research refutes this 

finding, reporting that weight gain during freshmen year accounts for only 2.5-6 pounds 

on average and that this excess weight is the result of increased fat mass.1,6-10  Findings 

from a study of 478 college students found that the greatest increase in weight occurred 

during freshman year, but that students continued to gain across the college years; men 

gained an average of 9 pounds while women gained an average of 7 pounds over a four 
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year college period.11  Ultimately, these changes in weight status can result in a transition 

from a healthy weight into overweight or obese categories.  In fact, it has been shown that 

the greatest increase in overweight and obesity is seen between the ages of 18-29 years, 

especially among those who reported having a college education.6,25  While the weight 

gain issue in college students is not quite as drastic as that presented by the “freshmen 

15” myth, there is still a pattern that has emerged suggesting that weight increases during 

freshmen year continue throughout college and may lead to overweight or obesity in 

adulthood.  This weight gain pattern makes this a crucial time period to identify 

contributing factors and reduce the risk for obesity and related comorbidities. 

 

College Students’ Dietary Intakes 

 One of the primary factors that may contribute to weight gain in college freshmen 

is the change in dietary intake as students begin to make their own food-related 

decisions.31,32  Such poor dietary choices may result in inadequate intakes that fail to 

meet dietary recommendations.32,33  Previous research has reported that college students 

consumed diets with fewer nutrients and greater fat, sugar, and sodium intakes.32,34,35  A 

number of studies have found that college diets are severely lacking in fruits, vegetables, 

dairy products, fiber, and healthy grains.31,32,36-38  

Despite having increases in calorically dense snack foods, multiple studies have 

found that total energy consumption actually decreases after students begin 

college.32,36,39-42  This decrease in total caloric intake also tends to correspond with a 

reduction in the variety of foods consumed and overall diet quality.32,36,39-42  In a study of 

54 female college freshmen followed during the first five months of college, an increase 
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in BMI was observed despite reductions in caloric intake; decreases in fruit, vegetable, 

meat, carbohydrate and dairy consumption; and increases in the proportion of calories 

from fat and alcohol.39  These results demonstrate that despite a decreased caloric intake, 

having a diet with less variety and a greater than recommended intake of calories from 

fat, weight gain remains prevalent in this high-risk population.  Mechanisms for this 

observed weight gain are not well defined and further research is needed to understand 

this phenomenon in a college setting.  

 

The Gut Microbiome 

 The human body is home to microbial communities consisting of a total number 

of microorganisms that significantly outnumbers the total number of human cells by ten-

fold.43-45  The majority of microbes in the human body reside in the gut and play a large 

role in nutrient utilization, immune / inflammatory responses, and overall intestinal 

health.43-47  The gut microbiome develops throughout life based on genetics, dietary 

intake and environmental exposures.48-50  Prior to birth, it was originally thought that the 

gut was completely sterile,48,51 but new research shows there is a placental microbiome 

that initiates gastrointestinal colonization prior to birth.52  Despite these findings, 

colonization of the gut in utero is minimal in comparison to microbial exposures that 

occur during and after birth.48-50   

The first stage of life is most crucial in the development of a healthy, diverse 

microbiome as it is the time when the microbiome is most fragile.51  Differing exposures 

throughout this period help determine how the gut is colonized such as mode of delivery, 

location of birth (home vs. hospital), and whether infants were formula or breast-fed 
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received antibiotics.46,48,51  As infants age throughout childhood and into adulthood, the 

gut microbiome reaches a state of greatest diversity and stability; however, established 

microbe communities during adulthood can be influenced by transient changes related to 

diet, weight status, and long-term antibiotic usage.46,51,53  These exposures throughout life 

play a significant role in the development of the gut microbiome and, in turn, determine 

its diversity and how it functions in relation to both health and disease.46,48,49,51,53,54             

 

The Gut Microbiome’s Role in Health and Disease 

 The gut microbiome has emerged as having an important, formerly 

underappreciated role, in human gut physiology.54,55  Functions of the gut microbiome 

include nutrient utilization, host immunity, and intestinal health which, depending on the 

prevalence of specific species, can impact health and influence disease 

risk.44,46,47,50,51,53,56-58  

        

Nutrient utilization. The gut microbiome plays a key role in nutrient utilization 

by hydrolyzing and fermenting nutrients, such as complex polysaccharides/fiber, that 

cannot otherwise be broken down by human enzymes.50,51,59-61  The breakdown of these 

nutrients by gut microbes increases the body’s ability to harvest and utilize these 

otherwise unavailable sources of energy from the diet.2,5,16,17,50,51,62-65  The wide variety of 

usable roducts that are produced from hydrolysis and fermentation of nutrients are not 

fully understood.  However, specific byproducts have been associated with benefits 

including improved intestinal health, as well as detriments, such as increased fat mass 

and obesity.16,50,63,65-68       
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 Hydrolysis of glycosides and glucuronides. In the human body, many 

polysaccharides cannot be fully digested by intestinal enzymes.  A couple of these 

polysaccharides are glycosides (organic substances predominantly found in plants that 

consist of one sugar molecule and one non-sugar molecule) and glucuronides (a specific 

type of glycoside derived from glucuronic acid that can combine with toxic organic 

compounds leading to excretion).69  Gut microbes can aid this process by hydrolyzing 

polysaccharides that contain glycosidic bonds resulting in the production of fermentable 

products and monosaccharides that can be absorbed by the body.50,51,59,61  Intestinal 

microbes can also scavenge compounds that are excreted from the intestinal mucosa to 

produce a usable energy source when dietary intake does not provide adequate 

energy.51,61  In both cases, the microbes in the gut are able to use glycoside hydrolysis in 

order to help the host (the human) produce and use energy more efficiently.   

In addition to providing usable substrate to microbes and human hosts for energy 

utilization, the ability of these microbes to hydrolyze plant glycosides and glucuronides 

has been a focus of modern medicine to formulate medications for timed release at 

specific intestinal locations.59,60,70  For instance, in a study performed in rabbits 

evaluating the laxatives senna and cascara, the glucose moiety of the aglycone 

component protected the product from becoming activated until it reaches the colon 

where microbes hydrolyzed the glycoside bond.59,70  Similarly, the process of glucuronide 

hydrolysis is important in enterohepatic circulation and was therefore taken into account 

when creating drugs such as morphine, chloramphenicol, and phenylphthalein.59,60  These 

specific medications require extensive enterohaptic circulation so they are retained in the 

body for an extended period of time, resulting in a prolonged therapeutic effect.59,60  
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Microbial hydrolysis of glycosides and glucuronides is only one way in which hosts 

benefit from these symbiotic relationships; the gut microbiota can also utilize other 

nondigestible compounds to produce usable products for the host. 

 

 Dietary fiber and production of short chain fatty acids (SCFAs). Complex 

carbohydrates, especially dietary fiber, have nondigestible components that are fermented 

by the gut microbiota in order to produce SCFAs, (fatty acids consisting of less than six 

carbons).44,50,62-64,66-68  While there are many SCFAs that are useful to the body, the most 

prevalent are butyrate, proprionate, and acetate.50,63,65-68  Butyrate is the preferred nutrient 

for colonocyte (epithelial cell in the colon) metabolism and development in order to 

promote healthy intestinal tissue.  Proprionate is transported to the liver to be used in 

gluconeogenesis and regulate cholesterol synthesis.  Acetate is an important energy 

source for peripheral tissues, such as the liver, where it is used for lipogenesis, 

cholesterol synthesis and is also the primary circulating SCFA in the blood.50,66,67  SCFAs 

absorbed in the colon provide up to 10% of the energy used by humans and are used 

more effectively in those who consume high levels of dietary fiber.50,71,72  While SCFAs 

are thought to provide an important source of energy, it has also been determined that 

excessive production of certain SCFAs may play a role in obesity.50,64,65,68 

Although the majority of the current literature agrees that excessive production of 

some SCFAs can play a role in obesity, the literature is contradictory as to which SCFAs 

and microbial genera are most influential.16,50,62,64,65,68  For instance, in an animal model 

where microbiota from lean and obese mice were transplanted into germ free mice, 

butyrate and acetate production was higher in the mice given the obese microbiota as 
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compared to the lean microbe recipients.16  Similarly, in a study of obese and normal 

weight children, butyrate and proprionate were produced in higher amounts in obese 

subjects and were associated with gut dysbiosis/decreased microbial diversity when 

compared to their normal weight counterparts.50,68  Another human study performed in 

obese and normal weight adults, determined that there was a greater concentration of 

SCFAs, specifically in proprionate, in the obese adults compared to their lean 

counterparts.65  These results are in line with the child study regarding proprionate, but 

the adult study did not report significant differences in butyrate production.50,65,68  

Conversely, a third human study in which lean microbiota was transplanted into obese 

patients demonstrated an increased microbial diversity with an overall increase in 

butyrate production provided by the lean microbiota.62  These results differ from other 

presented findings that demonstrated that butyrate production was associated with obesity 

and decreased microbial diversity.62,64,65,68  This discrepancy is suggestive of the complex 

interactions that occur in the gut in relation to SCFA production, microbial diversity, and 

obesity and bring to light the need to account for differences in subject populations as 

well as methodological approaches.  For instance, one study was carried out in children 

and did not involve any intervention, whereas the contrary findings were demonstrated in 

an adult population who underwent microbiome transplants.62,68  The fragility of the 

microbiome in children and the complexities surrounding a microbiome transplant in 

adults who previously had a stable microbiome demonstrate the difficulty in truly 

comparing these studies.16,46,51,53,62,68  In order to properly consider the role of SCFAs in 

obesity, further research is merited.    
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Energy harvesting.  Another key function performed by the gut microbiota is 

energy harvesting, in which the microbiota utilize undigested carbohydrates (plant 

polyssachrides) and some proteins to produce energy that can be stored and used by the 

host body.16,44,50  While the previous sections demonstrate similar concepts, this specific 

process takes nutrient utilization mechanisms one step further and focuses specifically on 

storing the energy produced by the gut microbiome.  The microbiota can accomplish this 

by collectively expressing larger numbers of glycogen hydrolases than human gut cells, 

which allows them to digest larger quantities of glycogen with greater efficiency.44,50,61  

While energy harvesting is a very useful process in helping humans extract the most 

energy from dietary sources, certain microbial profiles have been associated with overly 

efficient energy harvesting abilities, which are thought to be one of many contributors in 

obesity.2,5,15-17,44,50,61 

 

Inflammation.  As the functions of the gut microbiota continue to be explored, it 

has been determined that microbial diversity can also play a large role in preventing or 

promoting low-grade inflammation in obesity, Type 2 Diabetes, atherosclerosis, and 

other metabolic disorders.50,56,57,73-78  Chronic, systemic, low-grade inflammation seen in 

these disease states is possibly related to a condition known as metabolic 

endotoxemia.50,74,75,77,78  Metabolic endotoxemia is a condition in which there is an 

increase in the endotoxin, lipopolyssachride (LPS) (a pro-inflammatory antigen derived 

from the cell walls of gram negative bacteria), circulating in the blood as compared to the 

low levels of LPS found in the circulation of healthy dividuals.50,74,75,77,78   
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There have been multiple studies carried out manipulating diet as well as the gut 

microbiome composition in order to determine the association between the gut 

microbiota and the low-grade inflammation seen in these metabolic disorders.73-78  An 

animal study carried out in mice with a control group fed normal chow, a high fat (HF) 

fed group, and a HF-fed group plus prebiotic oligofructose (OFS) aimed to study the 

impact of LPS on inflammation and prevalence of fecal Bifidobacterium species.75  The 

HF fed group had a significant decrease in many commensal gut microbiota, including 

Bifidobacteria, and had prevalent endotoxemia, increased intestinal permeability, and 

inflammation as compared to the control group that maintained a healthy gut 

microbiome.75  The addition of OFS restored quantities of Bifidobacteria and resulted in 

lower endotoxin and inflammation levels equivalent to that of the control diet.75  Studies 

carried out in humans strengthen and further demonstrate the association between the gut 

microbiome and the promotion and prevention of metabolic endotoxemia,56,73,77,78 which 

plays a large role in the development of obesity and other metabolic disorders 

characterized by chronic, systemic, low-grade inflammation.50,56,57,73-78  For instance, in a 

study carried out in a population of 12 healthy males that were provided with high fat 

meals while measuring plasma endotoxin levels, it was determined that low-grade 

endotoxemia may contribute to post-parandial inflammation and could be another 

contributor to the development of atherosclerosis.77   

 

Immune response to gut pathogens.  Intestinal health is largely determined by 

the composition of the gut microbiome which assists in protecting against enteric 

pathogen colonization, mediating immune system responses, and allowing the growth and 
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colonization of beneficial bacteria.47,79-81  The adaptive (specific attack of foreign 

invaders following previous exposure) immune system responds to enteric pathogens by 

releasing immunoglobulin A (Sig A).  The commensal gut microbiome has the ability to 

remain fairly stable despite microbial exposures from dietary intake and the environment. 

Exposure to pathogenic bacteria can alter the composition of gut microbiota, thereby 

influencing immune responses.80-87  Innate immunity components (immunity present at 

birth that reacts quickly but lacks specificity) such as reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) are generally employed during infrequent inflammatory 

responses.  When the body senses a serious assault these components promote oxidative 

stress47,88,89 and antimicrobial peptides (AMP) are released.  AMP help eliminate 

infections by enteric pathogens, but can also harm the commensal gut microbiota.47,88-91  

For individuals that have inflammatory bowel disease (IBD), this immune response is 

greatly elevated, which plays a role in damaging the intestine.47,88,92  This demonstrates 

that, while immune responses are crucial in helping to prevent the colonization of 

unwanted pathogens, broad spectrum immune responses can be especially detrimental to 

the commensal bacteria. 

 

Antibiotics.  Antibiotics are used extensively in both clinical and agricultural 

settings to help treat and prevent infections.  The overexposure to antibiotics has led to 

pathogen antibiotic resistance as well as pathogen resistance to immune responses.85,93-96  

One example of this resistance is demonstrated by pathogenic E. coli strains that have 

developed a specific SigA binding antigen that interferes with the immune response, 

thereby allowing this pathogen to populate space that was originally competitively 
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occupied by the commensal bacteria.47,82,97  Overall, antibiotics, while useful in treating 

infections, have a significant effect on the composition of commensal gut microbiota 

which may persist long-term47,87; therefore, external efforts to restore the commensal gut 

microbiota may be extremely beneficial when targeting enteric pathogens. 

 

Probiotics and prebiotics.  Probiotics and prebiotics have been discussed as ways 

to help restore a healthy, commensal intestinal composition after antibiotic use and in 

relation to GI diseases such as IBD.47,96,98,99  Probiotics, which have shown promise as 

therapeutic treatments for IBD, have had mixed effects on health due to the difficulty in 

adhering to the intestinal lumen alongside commensal microbes.47,98,100  In fact, a recent 

study demonstrated that probiotic administration in healthy adults was undetectable in the 

feces in over half the population after two weeks and undetectable in essentially all 

individuals after 48 weeks.47,100  Prebiotics such as oligofructose may help provide 

nutrients to help the commensal bacteria recolonize after antibiotic use.  They can also be 

used alongside probiotics as a means to promote the colonization of the probiotic 

microbes.47,96,99  The combination of prebiotics and probiotics, known as synbiotics, may 

also be a promising way to restore commensal gut microbiota and maintain intestinal 

health.47,96,99,100 

The roles that immunity, antibiotics, probiotics, and prebiotics play in the 

prevention of enteric pathogen colonization and the restoration and maintenance of the 

commensal gut microbiota prove to be complex.  Broad immune responses to infections 

or improper immune functioning can lead to diseases such as IBD.  Similarly, excessive 

use of antibiotics can cause significant compositional changes in the gut microbiota from 
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which, the long term effects are less understood.  Further research is needed in order to 

determine how to maximize the positive effects and minimize the detrimental effects of 

these processes on the commensal gut microbiome and subsequent intestinal health.                             

 

Factors that Influence the Gut Microbiome 

 

 Non-modifiable factors.  Recently, research has begun to explore different 

factors that are associated with the gut microbiome.  The primary non-modifiable factors 

that have been a focus of recent research include genetics, intestinal diseases, 

ethnicity/race, and age.  The effect of host genetics on the gut microbiome has been 

studied in both humans (primarily twins)15,101-105 and mice103,106-110 and has demonstrated 

that there is at least some effect of the host genome on gut microbe communities.  

Additionally, there are studies that have related single host genes to differing gut 

microbiome profiles.104,105,109,110  Further research must still be carried out in order to 

determine what the specific profile differences are, ensure whether the differences are 

based on the expression of the studied gene, or to determine whether there are secondary 

disease state factors that are altering the microbiome instead.104,105,109,110  When focusing 

on intestinal diseases that are promoted by specific, non-modifiable genetic profiles, such 

as Crohn’s Disease (CD),111-113 Ulcerative Colitis (UC),112,114 Irritable Bowel Syndrome 

(IBS),115,116 and colon cancers,114,117-119 the research is fairly new, but suggests that 

microbial diversity is decreased with slight differences between these diseases.  Despite 

these findings, specific relationships have been inconsistent and require further research 

to determine the specific microbiome profiles related to each intestinal disease and the 
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roles they may play in disease-related symptoms to continue exploring whether the 

specific gene expressions or secondary disease factors are altering the microbiome.111-119 

 Ethnicity/race and age are two non-modifiable factors that had a smaller focus in 

the research thus far.  For instance, studies focusing on race/ethnicity in relation to the 

gut microbiome have ranged from comparing the gut microbiome of smaller ethnic 

groups within China120; Belgians with Japanese121; and both Hispanic and non-Hispanic 

African Americans, Native Americans, and Caucasians in the United States.122  These 

and other ethnic populations that have been explored suggest only minor racial and ethnic 

differences, although the characterizations of each ethnicity/race have only been defined 

in a single study or are inconsistent between studies.120,120-125  In order to verify and 

strengthen the findings of these studies, further studies need to be carried out between 

ethnicities/races that have already been explored and confounders such as lifestyle factors 

that can be tightly connected with race/ethnicity should also be considered in order to 

determine whether ethnicity/race is truly the cause of the differences.  The relationship 

between age and the microbiome has demonstrated a variety of inconsistent findings in 

relation to which microbial communities are most abundant in different age 

groups.124,126,127,127-133  Although differences in microbial composition are inconsistent, 

the majority of research suggests that microbial diversity and function increase rapidly 

throughout infancy, with more subtle shifts in abundance between childhood/adolescence 

and adulthood, and decreased diversity in the elderly.124,126,127,127-133  In order to verify 

and strengthen the findings of these studies, further studies need to be carried out 

between ethnicities/races that have already been explored while considering confounders, 

such as lifestyle factors, in order to determine whether ethnicity/race is truly the cause of 
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the differences in microbial profiles.  Additionally, based on the contradictions and 

minimal amount of research focused on age and the gut microbiome, further research 

must be carried out within and between age groups, especially the least studied age range 

of adolescences, in order to determine the general microbial profiles related to age groups 

so that health interventions can take these general profile abundances into considerations 

for optimum results. 

 

 Modifiable factors.  There are also modifiable factors that have become a recent 

focus of gut microbiome research and are of special importance as they can actively shift 

or promote certain gut microbiome profiles.  Modifiable factors that have been a focus of 

gut microbiome research include mode of birth, exercise, and diet.  Mode of birth 

provides the first microbial exposure other than the minimal exposure in utero.48-50,52  

Studies comparing vaginal and cesarean deliveries show conflicting results with some 

demonstrating no differences in bacterial richness and diversity and others demonstrating 

significantly lower diversity in infants delivered by cesarean section.134-140  Based on 

these findings, more research needs to be carried out to determine how such differences 

may influence health in later life. 

 Exercise and the gut microbiome has become an increased area of focus in recent 

years and is another modifiable factor.  Current research in mice with a range of exercise 

intensities has consistently demonstrated that exercise may alter the microbiome by 

increasing microbial diversity.141-145  Additionally, a recent human study has been carried 

out exploring this association further.146  This study recruited 40 male elite rugby players 

who performed intense physical activity and 46 healthy, male controls of similar size 
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(BMI).  The study demonstrated that the elite athletes had significantly more diverse gut 

microbiota compared to the controls, similar to the results seen in the previous mice 

studies.146  Further research is needed to study the moderating effects of diet and exercise, 

as well as the type of exercise, on gut microbial communities. 

 

 Diet and the gut microbiome. The link between dietary intake and obesity has 

prompted the study of possible connections with the microbiome.15,147,148  Results from 

studies focusing on the association between diet and the gut microbiome vary widely, but 

data suggest that certain dietary interventions can be associated with shifts in microbial 

proportions present in the colon.22-24,147-156  There are three studies that demonstrated 

some of the most significant findings, especially in relation to how the diet-gut 

microbiome association plays a role in obesity, through the use of dietary comparisons 

and dietary interventions.22-24   

The first study compared the gut microbiome of children in Europe (Eu) on a 

Western diet high in sugar, animal fat, and calorically-dense foods) and children in 

Burkina Faso (BF) on a Neolithic diet (low in fat and animal protein; rich in starch, fiber, 

and plant Polysaccharides).22  In order to compare changes in the gut microbiome, this 

study focused primarily on the ratio of Firmicutes to Bacteroidetes, the two most 

predominant microbial phyla found in the gut.2,5,18,20-22  The results of the study 

demonstrated that Eu children had lower overall microbial diversity and a high 

Firmicutes/Bacteroidetes ratio, whereas the BF children had a rich microbial diversity, 

lower Firmicutes/Bacteroidetes ratio, and higher prevalence of SCFA-producing 

microbes.22  Similar to findings that a Western diet has been associated with obesity,157  
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this study demonstrated that such a diet may promote a less healthy microbiome 

compared to diets of the BF children.   

Dietary interventions have been successfully implemented to alter the gut 

microbiome.23,24  One study of lean and obese healthy adults evaluated the influence of 

increased caloric consumption on gut microbial changes by incrementally increasing total 

calories, with consistent macronutrient distributions, until consumption reached 2400 and 

3400 kcals.23  The results of this study demonstrated that greater caloric consumption 

increased the Firmicutes/Bacteroidetes ratio as well as energy harvesting.23  Another 

study evaluating the effects of low fat-high fiber and high fat-low fiber diets on 

microbiota proportions found that the Firmicutes/Bacteroidetes ratio was low in subjects 

consuming a low fat-high fiber diet and high in subjects consuming a high fat-low fiber 

diet.24      

These three studies demonstrated that less healthy dietary components, e.g. high 

fat, low fiber, and very high caloric intake appear to be negatively associated with a 

healthy gut microbiome.22-24  There are additional studies that have been carried out 

focusing on other dietary patterns and components such as low carbohydrate diets, high 

protein diets, vegan diets, carnivorous diets, and diets including artificial 

sweeteners.147,148,151,153,155  These studies have demonstrated a wide variety of shifts in the 

gut microbiome, which strengthen the concept of diet playing a large role in the 

composition of the gut microbiome.  Although they have strengthened the general 

association between diet and the gut microbiome, the wide range of dietary components 

that have been researched and have resulted in varied shifts to the gut microbiome make 

it difficult to specify or draw conclusions on the health effects associated with these 
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microbiome changes.147,148,151,153,155  Therefore, further research needs to be carried out to 

reinforce the specific interactions between these additional dietary components and the 

gut microbiome and how the effected microbiomes are related to other health outcomes 

such as obesity.  Furthermore, the majority of the research in this area has not focused on 

the long term changes of the gut microbiome in relation to acute dietary changes and the 

role that this plays on obesity and weight status.22-24,147-156  Therefore these concepts need 

to be explored further to strengthen the ties between diet, the gut microbiome, and obesity 

or weight change.                 

 

Obesity and the Gut Microbiome 

Obesity was previously viewed as the result of simple imbalances in energy 

consumption, but more recently it has been considered as the consequence of complex 

interactions between genetics, environment, socio-economic status, and diet.2,5,65  In 

addition, gut microbiota have become increasingly recognized for their crucial role in 

metabolic functioning and subsequent states of health and disease.2  Microbiome data 

suggest that obese individuals have significantly different gut microbiomes than their 

lean counterparts.15-18,20-22,65  Data also suggest that gut microbial proportions may shift 

with weight changes.18,20,21  

Currently, it remains difficult to elucidate the full association between dietary 

intake and the gut microbiota.  For instance, it has been found that obese individuals have 

an overall less diverse microbiome than their lean counterparts.15,16,50,62,64,65,68  This was 

demonstrated in studies where the microbiome of diet induced obese (DIO) mice, was 

transplanted into germ-free lean mice, which resulted in weight gain as compared to those 
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who received transplants from lean mice.16,17  When analyzing the differences in the 

composition of the microbiome, decreased microbial diversity was a primary 

characteristic in the mice that received transplants from DIO mice.16,17  These results 

have also been seen indirectly in human studies focusing on diet and the gut microbiome, 

such as the Burkina Faso study, in which individuals consuming diets associated with 

obesity, such as a Western diet, had a significantly lower microbial diversity than those 

consuming Neolithic diets.22   

In addition to microbial diversity, obesity has also been associated with an altered 

composition of two major microbial phyla. The majority of current research demonstrates 

that obese individuals have an increase in the Firmicutes/Bacteroidetes ratio as compared 

to healthy, lean counterparts.2,5,18  For example, in a study comparing 12 obese 

individuals to lean controls, the obese individuals had a higher overall 

Firmicutes/Bacteroidetes ratio.  Furthermore, when the obese individuals were placed on 

a long term restricted, weight loss diet, their microbiome began to shift toward that of 

their lean counterparts as they lost weight.18  Some studies have contradicted this finding, 

demonstrating no association between the Firmicutes/Bacteroidetes ratio and weight20,21 

or observing a decrease in the Firmicutes/Bacteroidetes ratio.65  Other studies have 

identified differences at the genus and species level.  In one study, Bacteroides and 

Prevotella (two genus level classifications within the phyla Bacteroidetes) were lower in 

obese individuals, whereas Lactobacillus, Leuconostoc, and Pediococcus (three genus 

level classifications within the phyla Firmicutes) were higher in obese individuals prior to 

gastric bypass-induced weight loss.21  In another study, Roseburia (genus within the 

Firmicutes phyla) and Eubacterium rectale (species within the Firmicutes phyla) 
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increased with weight gain and decreased with weight loss.20  Based on these findings, it 

appears that, even if the microbiome is not influenced at the phylum level 

(Firmicutes/Bacteroidetes ratio), changes at specific genus levels still follow a similar 

pattern of increasing bacteria within the Firmicutes phyla and decreasing bacteria within 

the Bacteroidetes phyla.  Given these findings, the Firmicutes phyla should be a specific 

area of focus as the results most consistently suggest that increases in Firmicutes or 

specific bacteria within this phylum are associated with obesity or weight gain.2,5,18,20-22 

Recently studies have explored potential mechanisms for higher levels of 

Firmicutes with obesity/weight gain.2,5,16-18  While research on the gut microbiota and  the 

previously discussed mechanism of energy harvesting in relation to obesity is fairly new, 

the current research is fairly unanimous in stating that increased energy harvesting is 

associated with greater fat stores in obese subjects as compared to lean 

individuals.2,5,16,17,50  An example of this is demonstrated in animal studies in which 

intestinal microbiota from diet-induced obese mice were transplanted into lean germ-free 

mice.16,17  The results of this study demonstrated that there was greater total body fat 

deposition in the germ-free mice receiving transplants from the obese mice.16,17  These 

data suggested that the increased fat deposition was potentially associated with increases 

in Firmicutes.16,17  Human studies have also demonstrated that the proportion of 

Firmicutes is elevated in obese subjects, which may be associated with increased fat 

deposition.2,5,18  The current research strongly points toward an increase in Firmicutes in 

the gut microbiome being a primary cause of increased fat deposition and, in turn, 

playing a significant role in obesity.  More research must be done on a more specific 

genus level in order to identify specific bacteria within the phyla that are most 
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responsible for promoting increased fat deposition and to understand the discrepancies in 

the literature.     

 

Summary 

Obesity is an ever growing problem that has significant impacts on the health of our 

society. This disease not only reduces the quality of life but also leads to a wide range of 

comorbidities including hypertension, dyslipidemia, type 2 diabetes, heart disease, stroke, 

osteoarthritis, sleep apnea, and some cancers.1,2,9,25-28  The transition between adolescence 

and adulthood that occurs during college is a crucial time period during which children 

are influenced by a wide range of behavioral, environmental, and social factors. Poor 

health behaviors acquired during this time lead to weight gain and are often carried into 

adulthood.1,7-9,14,29,30  Therefore, this important period in life represents a crucial time for 

interventions to reduce the risk for obesity later in life. The gut microbiome has emerged 

as a key player in health functions including, nutrient utilization, immunity, and 

inflammation.44,46,47,50,51,53,56-58  While current evidence suggests the importance of the gut 

microbiome in health, its role in relation to dietary intake and obesity has yet to be 

evaluated in adolescents as they transition to college. 
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                                            CHAPTER 3 

METHODS 

 

Participants/Study Design 

 

Subject Selection and Recruitment 

 Subjects were considered eligible for this study if they were healthy college 

students living in the selected dorms, spoke English, and were at least 18 years old.  The 

study cohort was recruited from a larger study aiming to understand the impact of social 

networks on dietary intake, physical activity, and weight gain among Arizona State 

University students living in two representative dormitories. Subjects were excluded from 

the study if they had any history of eating disorders, malabsorption diseases, HIV 

infection, high blood pressure, diabetes, or were taking probiotics, antibiotics, or 

antifungals within the last two to three months. 

 A sample size of 90 subjects participated in this study.  Prior studies showing 

significant correlations between variables such as fiber, obesity, and F/B phyla ratios 

have had varying sample sizes.  For instance, a previous cross-sectional analysis of 30 

children found significant correlations between F/B phyla ratios and dietary fiber 

intake.22  Using a slightly larger sample size of 35, significant correlations between 

weight and the F/B phyla ratios (measured using the ratio of median log10cells in each 

phyla/g feces) were observed in obese patients.65  The proposed sample size was chosen 

based on the findings above and the expectation that, when exploring a new population, a 
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larger cohort would be needed to evaluate significant differences in dietary intake and 

BMI in relation to the gut microbiome. 

 

Study Design 

Data were collected at the time of recruitment and at up to two time points during 

a one week period.  Each subject was either provided with a fecal sample collection kit 

(Commode Specimen Collection Kit, Fisher Scientific, Anthem, AZ) for stool collection 

in the dormitory or directions to the School of Nutrition and Health Promotion clinical 

facility for on-site collection.  Subjects provided one fecal sample during the Fall 2014 or 

Spring 2015 semester.  Participants that preferred dorm ollections were asked to return 

their sample to the clinical lab or request that study staff pick up their sample.  All 

samples were delivered or picked up within 24 hours.  This study was approved by the 

Arizona State University Institutional Review Board (See Appendix A).  Figure 1 

summarizes the flow of the study. 
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Figure 1: Study design flow chart. *Compensation varied by semester to explore 

participants’ willingness to participate based on compensation for future studies. 

 

 

 

 

Sub Study: devilWASTE Study 

n=90 subjects 

Recruitment: 

• Sitting in courtyard of dorm (Fall) and attending scheduled dorm floor 
meetings (Spring) 

• Study mentioned as optional portion of parent study to potential 
participants and questions answered 

 

Consent/Screening Visit 0 

• Participants sign consent form in presence of study staff at dorm 

• Subjects screened inclusion/exclusion criteria 

• Subjects pass screening process provided with stool collection kit and 
collection organized 

 

Final Visit/Visit One 

• Stool sample collected by subject at dorm or ABC-1 clinic 

• Subjects call for sample pick-up (if at dorm)  

• Sample must be picked up and processed within 24 hours of collection 

• Sample picked up for processing 

• Subject receive $30 (Fall) or  $20 compensation (Spring)* 

Parent Study: Understand the impact of social networks on dietary intake 
and weight gain among Arizona State University students living in two 
representative dormitories: devilSPARC Study. Variables from parent study 
that were considered for the sub study: Demographic data, BMI, and dietary 
intake data. 

n= 221 subjects; 1 week of subject participation 
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Measures 

 

Demographic Data 

 Demographic data such as gender, age, and race/ethnicity were collected at entry 

into the parent study through a self-report, computer-based survey.  This information was 

used to determine the diversity of the participants. 

 

Body Mass Index 

 Height and weight were collected at entry into the parent study by trained 

personnel and BMI was calculated as (weight in kg)/ (height in m)2.  Height and weight 

were measured up to three times in order to obtain two values within 0.5 cm and 0.5 kg, 

respectively, which were then averaged.  Each subject was asked to remove their shoes 

and jackets, empty their pockets and ensure that their hair did not interfere with the 

measurement equipment.  Weight was assessed with a Seca scale and height was 

measured using a Stadiometer in order to assure consistent collection of anthropometric 

measures.  BMI values were separated into four categories based on the CDC cutoffs: 

BMI values <18.5 were considered underweight, BMI values greater than or equal to 18.5 

and less than 25 kg/m2 were considered normal weight, BMI values greater than or equal 

to 25 kg/m2 and less than or equal to 29.9 kg/m2 were considered overweight, and BMI 

values ≥30 kg/m2 were considered obese.158   
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Dietary Intake 

 Participants completed up to three ASA24 24-hour dietary recalls (including one 

weekend and/or one or more week days).  The mean daily nutrient intakes were 

calculated from a range of one to three dietary recalls per participant that fell within the 

caloric cutoffs (with a maximum of one weekend day and a range of zero to three week 

days) and were energy adjusted based on the mean caloric intake of the study 

population.159  This method adjusts for variation in intake and reduces confounding 

related to total energy intake.  The 24-hour dietary recalls were completed using the 

National Cancer Institute’s ASA24 24-hour automated dietary recall software.160  Mean 

intake for all major macronutrients and micronutrients were provided and compared to 

DRIs provided from the Institute of Medicine DRI Summary Table161 and DRI Estimated 

Average Requirement Table.162  The analyses involving dietary intake utilized total 

energy intake in kilocalories (kcals) and carbohydrate, protein, total fat, saturated fat, 

total fiber, and added sugar intake measured in grams (g).    

 

The Gut Microbiome- Fecal Samples  

 The Firmicutes/Bacteroidetes gut microbiome phyla ratio, as well as the overall 

gut microbiome characterization at the phyla, family, and genus levels were the primary 

dependent variables that were collected and utilized specifically for this study.  Fecal 

samples were collected and processed per the protocols outlined by the National Institutes 

of Health Human Microbiome Project (HMP) (commonfund.nih.gov/hmp/).  The specific 

instructions for both stool collection and the lab processing procedures are outlined in the 

Stool Specimen Collection Study Protocol Procedures for ASU’s School of Nutrition and 
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Health Promotion (SNHP) research facility (See Appendix D).  The supplies required for 

the patient stool sample collection were as follows: one Commode Specimen Collection 

System that included a sealable plastic collection container with tightly fitting, snap-on 

(leak resistant) lid and collection frame, one Ziploc bag, one small bag liner for collection 

bowl, one pair of latex or nitrile gloves, instant ice pack(s) and one small cooler for 

transport.  All samples were delivered to the clinical facility within 24 hours of 

collection. 

 Fecal microbial communities were assessed at the Biodesign Institute at Arizona 

State University in Tempe, AZ.  Microbial genomic DNA was extracted from fecal 

samples using the PowerSoil DNA isolation kit as described by the manufacturer (MoBio 

Laboratories Ltd, Carlsbad, CA).  The samples were homogenized using a beadbeater 

(BioSpec, Bartlesville, OK).  Bacterial 16S rRNA gene sequences from each sample were 

amplified in triplicate PCRs and performed in 96-well plates. Barcoded universal primers 

515F and 806R; http://www.earthmicrobiome.org/emp-standard-protocols/16s/,163 

containing Illumina adapter sequences which target the highly conserved V4 region were 

used to amplify the microbial sequences from individual samples. PCR reactions, 

amplicon cleaning and quantification were performed as outlined.163
  Equimolar ratios of 

amplicons from individual samples were pooled together before sequencing on the 

Illumina platform at Arizona State University’s DNASU Core Facility (Illumina MiSeq 

instrument, Illumina, Inc., San Diego, CA). 
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Statistical Analysis 

JMP and SPSS statistical software164,165 packages were used to carry out all 

analyses.  Prior to running analyses, all data were organized and cleaned by removing 

outliers (>3 SD from the mean) and participants who failed the screening process or 

dropped out prior to fecal sample collection.  All data were tested for normality using the 

Kolmogorov–Smirnov test (in lieu of a population size >50) and p>0.05 was considered 

normally distributed.  All data were considered significant at p<0.05.  Additional 

exclusions for data analyses included subjects not meeting the minimum number of diet 

recalls (at least one recall), and any subjects with recalls that were >5000 or <500 

kcals/day  (cutoffs to minimize under and over reporting) were excluded from analyses, 

as previously described.166-171  QIIME software 172 was used to clean raw Illumina 

microbial data by removing short and long sequences (truncated sequence should be > 75 

bases long), sequences with primer mismatches, uncorrectable barcodes and ambiguous 

bases.  A closed reference Greengenes database was used to pick operational taxonomic 

units (OTUs) and assign taxonomy.  

The fecal microbial data were expressed as mean + SD or median (interquartile 

range) of microbiota frequencies/proportions at the phyla level based on the normality on 

the data.  The BMI data were expressed both continuously and categorically 

(underweight, normal weight, overweight, and obese).  The diet data included total 

caloric intake (expressed as kcals), macronutrient intakes (carbohydrates, fat, saturated 

fat, and protein, sugar, dietary fiber), vitamin intakes (vitamins A, B6, B12, C, D, E, and 

K) and macromineral intakes (calcium, magnesium, phosphorus, potassium, and sodium).   
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 Principal components analyses (PCA) were used to reduce the dimensionality of 

the microbial data for regression analyses.  Assumptions required to run PCA included: 

1) normality of the variable data (the data was transformed if necessary to fit the 

normality assumption), 2) incomplete/missing data removed, and 3) outliers excluded 

from the final data set.  Once all assumptions were met, the PCA model was run and the 

data sets were reduced into components equal to the number of variables tested. 

Components explaining the variation among microbial data components were then 

organized from most to least variance explained.  PCA was performed with the genus 

level microbial data (part of Aim 2; run once with the genus level microbial data from all 

subjects and once with outliers removed).  

Multivariate and linear regression analyses were completed using eigenvectors for 

the PCA components.  Components that explained the greatest variation in microbial 

proportions were retained for these models.  Four a priori assumptions were required to 

run this model: 1) variables were normally distributed, 2) there was a linear relationship 

between independent and dependent variable(s), 3) error variance was the same across all 

levels of the independent variable, and 4) the independent variables were uncorrelated 

(collinearity).  Independent variables were transformed as necessary to ensure that model 

residuals were normally distributed. 

The Wilcoxon-Kruskal Wallis analysis was carried out with the F/B ratio and 

categorical BMI data (Aim 2).  Two a priori assumptions were required to run this non-

parametric model: 1) the samples were independent of one another and 2) there were two 

or more categorical groups.  This non-parametric test was used as the data were not 



 

   36 

normally distributed and there were four BMI category groups, from which the F/B ratios 

were compared to identify group differences. 

Spearman’s correlation analyses were carried out with the F/B ratio data and the 

continuous dietary intake data for energy intake (kcals), and the continuous energy 

adjusted data for carbohydrate (g), protein (g), total fat (g), saturated fat (g), dietary fiber 

(g), and added sugar (g) (aim 3).  Two a priori assumptions were required to run this non-

parametric model: 1) the samples were independent of one another and 2) the variables 

were continuous.  This non-parametric test was used as the data were not normally 

distributed and both variables were continuous. 
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CHAPTER 4 

DATA AND RESULTS 

 

Descriptive Characteristics 

 One hundred and twelve college students living in two Arizona State University 

dorms provided informed consent for this study.  After screening for eligibility criteria, 

10 participants were disqualified for not meeting one or more of the exclusion criteria, 

resulting in a sample size of 102 at enrollment.  Of these 102 enrolled participants, 12 

participants dropped out of the study, leaving 90 total participants who provided fecal 

samples and 75 participants who also provided eligible diet data.  A recruitment diagram 

is provided in Figure 2.   

Of the 90 college students who participated, 35.6% (n=32) of the students were 

recruited in the fall of 2014 from one dorm.  The remaining 64.4% (n=58) of 

participating students were from dorm two and recruited in the spring of 2015.  Subject 

characteristics are included in Table 1.  The participants were racially and ethnically 

diverse with the majority of participants self-identifying as either 

Hispanic/Latino/Spanish (31.1%, n=28), non-Hispanic, White (41.1%, n=37), non-

Hispanic, Black (7.8%, n=7) and non-Hispanic, Asian (10%, n=9).   
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 Figure 2. Participant recruitment diagram.  aAll subjects completing the fecal sample 

collection were included in subject characteristic data and analyses that did not involve 

dietary intake data.  bRationale for excluding participant data from analyses: 15 

participants did not have a minimum of one diet recall that fell within the 500-5000 kcal 

cutoffs. 
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Table 1.                Characteristics of study participants (n=90) 

Characteristic                                                                         Mean±s.d.a 

Gender, % (n)   
     Male 44.4 (40) 
     Female 54.4 (49) 
     Transgender 1.1 (1) 
    
Age, y 18.57 ± 0.77 
    
Race/Ethnicity, % (n)   
     Hispanic, Latino, or Spanish origin 31.1 (28) 
     White (Non-Hispanic) 41.1 (37) 
     Black/African American (Non-Hispanic) 7.8 (7) 
     American Indian/Alaskan Native 1.1 (1) 
     Asian 10 (9) 
     Mixed 8.9 (8) 
    

BMI, kg/m2   24.37 ± 5.31 

     Underweight, % (n) 5.6 (5) 

     Normal Weight, % (n) 57.8 (52) 

     Overweight, % (n) 23.3 (21) 

     Obese, % (n) 13.3 (12) 

Abbreviations: BMI, body mass index. aMean± standard deviation (s.d.) or as 
otherwise specified. 
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Dietary Intake 

 All nutrient intake values were energy-adjusted based on the mean caloric intake 

(1684 ± 947 kcals).  Mean daily dietary intake is provided in Table 2.  The average 

dietary intake of this group of students was fairly well balanced on a macronutrient level 

and fell within the DRI ranges for protein (20% of kcals) and carbohydrates (50% of 

kcals), although the average fat intake was much higher than the recommended range 

(40% of kcals).  Average dietary vitamin intake did not meet the DRI levels for vitamins 

A, D, E and C, but did meet the recommended intake for vitamins B6, B12, and K.  

Lastly, the average dietary mineral intake for these students did not meet the DRI for 

many minerals (including potassium, calcium, and magnesium), although they greatly 

exceeded the DRIs for both sodium and phosphorous.            
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Table 2.                                    Dietary nutrient intake (n=75) 

Nutrients 
Mean±S.D. or Median 

(IQR) 

DRI*b 

Range 

Energy Intake, kcals 1519 (947) N/Ac 
639-3720 

     

Macronutrientsa    
     Protein, g 76.6 (0.8) 10-35%d 74.6-80.8 
     Carbohydrate, g 188.0 (1.1) 45-65%d 

184.5-191.4 
     Added Sugar, g 78.6 (0.9) Limitedc 76.1-83.1 
     Total Fat, g 68.9±1.0 20-35%d 66.1-71.7 
     Saturated Fat, g 23.2 (1.2) Limitedc 21.1-26.9 
     Fiber, g 12.4 (1.3) 38; 25e 

10.8-15.7 
     

Vitaminsa    
     Vitamin C, mg 68.4(0.5) 90; 75e 67.6-76.6 
     Vitamin B6, mg 2.3 (0.3) 1.3 1.4-10.7 
     Vitamin B12, mcg 4.7 (0.9) 2.4 3.3-10.5 
     Vitamin K, mcg 101.0 (1.0) 120; 90e 100.4-105.7 
     Vitamin D, mcg 3.3 (1.2) 5 1.6-6.6 
     Vitamin A, mcg 325.8 (1.2) 900; 700e 

323.5-330.1 
     Vitamin E, mg 7.9 (0.2) 15 7.1-16.4 
     

Mineralsa    
     Calcium, mg 799.3±1.0 1000 796.4-802.2 
     Magnesium, mg 221.6 (1.1) 400; 310e 219.8-225.1 
     Phosphorous, mg 1130.8±1.0 700 1128.2-1134.0 
     Potassium, mg 1882.7±1.0 4700 1879.5-1885.0 

     Sodium, mg 2831.4 (1.2) 1500 2829.0-2834.7 
aAdjusted for energy intake. 
bDietary Reference Intakes reported as intake value per day. 
c General population DRI values have not been provided; kcals require individual 
calculations where sugar and saturated fat recommendations are to limit as much as 
possible with added sugars not exceeding 25% of total dietary intake 
dValues represented as Acceptable Macronutrient Distribution Ranges (AMDR) 
eValues represented as the requirements for adult males; requirements for adult females 
*DRIs provided from the Institute of Medicine DRI Summary Table161 and DRI 
Estimated Average Requirement Table.162  
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Fecal Microbiome 

 A diverse range of fecal microbes were observed with sequences from 20 phyla 

(Figure 3).  Phyla proportions varied by participant with the four most abundant being 

Bacteroidetes (57.2 ± 11.4%), Firmicutes (24.3 ± 9.9%), Proteobacteria (6.0± 3.9%), and 

microbes that have not yet been assigned a phyla classification (“unassigned,” 11.8 ± 

5.4%).  At the family level, 134 unique groups were identified with 12 families 

accounting for the greatest proportion (97.1%) of the community (Figure 4).  Almost half 

of these prominent families were from the phylum Firmicutes (Erysipelotrichaceae, 

Ruminococcaceae, Lachnospiraceae, Clostridiaceae and “unassigned” with proportions of 

2.0 ± 2.7%, 12.4 ± 8.2%, 6.9 ± 4.4%, 0.7 ± 0.6% and 1.2 ± 0.8%, respectively).  A total 

of four families were from the phylum Bacteroidetes (Rikenellaceae, Prevotellaceae, 

Porphyromonadaceae and Bacteroidaceae with proportions of 17.0 ± 11.6%, 1.2 ± 1.9%, 

10.5 ± 5.9% and 27.5 ± 13.4%, respectively).  Pasteurellaceae (0.7 ± 2.3%) and 

Alcaligenaceae (5.2 ± 3.1%) were from the phlyum Proteobacteria.  An additional 11.8 ± 

5.4% of the variation at the family level was explained by “unassigned” microbial 

groups.    
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Figure 3. Phyla level classification of the gut microbiome of college students living in the 

dorms.  *Each bar represents one participant (N=90). 
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Figure 4. Family level classification of the gut microbiome of college students living in 

the dorms. *Each bar represents one participant (N=90); the most abundant family 

classifications are presented in the legend with p__ representing phylum and f__ 

representing family level classifications. Only the most abundant families are represented 

in the legend (97.1% of the total community).      
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BMI and the Gut Microbiome 

Phyla level classifications by participant BMI category are visualized in Figure 5.  

The mean and standard deviations of the F/B ratio for each BMI category are represented 

in Figure 6 (Underweight: 0.4 ± 0.2, Normal: 0.5 ± 0.4, Overweight: 0.5 ± 0.2, and 

Obese: 0.4 ± 0.1).  No significant differences were observed in the F/B ratios when 

comparing BMI groups using the Wilcoxon-Kruskal Wallis test (mean BMI values by 

group; Underweight: 17.8 ± 0.6 kg/m2, Normal: 21.7 ± 1.7 kg/m2, Overweight: 26.7 ± 1.5 

kg/m2, and Obese: 34.6 ± 5.7 kg/m2; p=0.445). 
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Figure 5. Phyla level classification of the gut microbiome of healthy college students 

living in the dorms by BMI categories. Each bar represents one participant (N=90). Bars 

in the bracket section labeled 1 represent underweight BMI participants (BMI<18.5 

kg/m2; n=5), 2 is normal weight BMI participants (18.5<BMI<25 kg/m2; n=52), 3 is 

overweight BMI participants (25 kg/m2 < BMI < 29.9 kg/m2; n=21), and 4 is obese BMI 

participants (BMI > 30 kg/m2; n=12). 
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Figure 6. Mean±s.d. of Firmicutes/Bacteroidetes ratio by BMI category (N=90).  The 

number of participants contributing to each BMI category included: underweight BMI 

participants (BMI<18.5 kg/m2; n=5), normal weight BMI participants (18.5<BMI<25 

kg/m2; n=52), overweight BMI participants (25 kg/m2 < BMI < 29.9 kg/m2; n=21), and 

obese BMI participants (BMI > 30 kg/m2; n=12).     

At the genus level, 275 unique microbial groups were sequenced and identified.  

In a preliminary iteration of PCA, data from all 90 participants were used but as seen in 

Figure 7a, an outlier was identified. Removal of this participant from the PCA resulted in 

the identification of 12 principle components (PC) that explained approximately 30% of 

the variation in microbial community structure (Figure 7b).  Multivariate linear 

regression was used to screen for potential relationships between these 12 components 

and participant BMI.  Model results from this analysis were not significant (R2=0.12, 

p=0.5891), but PC12 appeared to have an association with BMI (p=0.0357).  Regression 

analysis of this component independently suggested that PC12 was significantly 

associated with BMI (R2=0.053, p=0.0301; Figure 8). 

A total of 261 microbial genera contributed to PC12 with 23 genera from 7 

different phyla having the greatest influence on this component (Table 3).  Negative 
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eigenvectors from these 23 genera were suggestive of microbial groups that may 

contribute to a higher BMI while positive eigenvectors were associated with microbial 

genera that may contribute to a lower BMI (Table 3). 
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Figure 7. Principal Components Analysis (PCA) of community composition by 

abundance of microbial genera. Panel A includes PCA of all 90 subjects and Panel B 

includes PCA results after removing one outlier (n=89).  Charts on the left represent the 

dimensionality of study subjects and charts on the right represent the genera 

distributions. In both panels, data are presented with axes for principal components one 

and two.     
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Figure 8. Principal component 12 (PC12) had a significant negative relationship with 

college student BMI (R2=0.053, p=0.0301).  
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Table 3.                Most influential microbial contributors to PC12 (n=89)                                   
Taxaa Eigenvectorb 
p_Firmicutes;c_Clostridia;o_Clostridiales;f_[Tissierellaceae];g_WAL_185
5D 

0.181 

p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Micrococcaceae;g
_Micrococcus 

0.170 

p_Proteobacteria;c_Alphaproteobacteria;o_Caulobacterales;f_Caulobactera
ceae;g_Brevundimonas 

0.170 

p_OP9;c_JS1;o_BA021;f_;g_Unassigned 0.154 

p_Firmicutes;c_Clostridia;o_Clostridiales;f_[Tissierellaceae];g_Finegoldia 0.146 

p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;
g_Collinsella 

0.134 

p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Streptococcaceae;g_Lactococcu
s 

0.128 

p_Firmicutes;c_Clostridia;o_Clostridiales;f_Peptostreptococcaceae;Other 0.128 

p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Comamonadac
eae;g_Unassigned 

0.122 

p_Proteobacteria;c_Gammaproteobacteria;o_Pasteurellales;f_Pasteurellacea
e;Other 

0.119 

p_Firmicutes;c_Bacilli;o_Bacillales;f_Bacillaceae;g_Bacillus 0.119 

p_Bacteroidetes;c_[Saprospirae];o_[Saprospirales];f_Chitinophagaceae;Oth
er 

0.113 

p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Megamonas 0.113 

p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;
g_Adlercreutzia 

0.109 

p_Firmicutes;c_Bacilli;Other;Other;Other 0.108 

p_Gemmatimonadetes;c_Gemm-3;o_;f__;g_Unassigned 0.102 

p_Proteobacteria;c_Betaproteobacteria;o_Rhodocyclales;f_Rhodocyclaceae
;g_Dechloromonas 

-0.100 

p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_
Unassigned 

-0.106 

p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;Other;Other -0.109 

p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovib
rionaceae;g_Unassigned 

-0.110 

p_Bacteroidetes;c_Cytophagia;o_Cytophagales;f_Cytophagaceae;g_Unassi
gned 

  -0.114 

p_Firmicutes;c_Clostridia;o_Clostridiales;f_[Tissierellaceae];g_Parvimonas -0.134 

p_Verrucomicrobia;c_Opitutae;o_[Cerasicoccales];f_[Cerasicoccaceae];g_
Unassigned 

-0.145 

Abbreviations: PC12, principal component 12.  
aThe taxa for the microbes of the 23 most prevalent genera from 7 phyla are represented; within each taxon, 
p_ represents the phylum, c_ represents the class, o_ represents the order, f_ represents the family, and g_ 
represents the genus. 
bCoefficients of the eigenvectors for each microbial genera; the most influential genera contributors were 
determined through PCA as coefficient values > 0.1 or < -0.1.    
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Diet and the Gut Microbiome 

 In order to determine if there was an association between dietary intake and the 

gut microbiome, correlation analyses were performed between the F/B phyla ratio and 

kcals, protein, carbohydrates, total fat, added sugar, and dietary fiber.  There were no 

significant correlations between the F/B phyla ratio and the intake of energy or 

macronutrients (p>0.05; Table 4). 

Table 4.             Spearman's correlations between nutrient intake and F/B ratio (n=75) 

aNutrient 

Correlation 

coefficient bP-value 

Energy Intake, kcals 0.122 0.296 
 
Carbohydrates, g 0.076 0.519 
Protein, g -0.078 0.506 
Total Fat, g 0.015 0.898 
 
Saturated Fat, g -0.07 0.548 
Added Sugar, g 0.036 0.767 
Dietary Fiber, g 0.017 0.883 
 aAll nutrients were energy-adjusted based on the average kcal intake of the subject 
population. 
bP-values were significant if p<0.05. 
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CHAPTER 5 

DISCUSSION 

 

 The purpose of this cross-sectional analysis was to characterize the gut 

microbiome and identify relationships between BMI, diet, and the gut microbiome of 

healthy college students living in the dorms.  To our knowledge, the current study was 

the first to characterize the gut microbiome of college students living in the dorms. 

Overall, this cohort of college students were normal weight (n=52), followed by 

overweight (n= 21), obese (n=12), and underweight (n=5).  At the phyla level using the 

F/B ratio, no associations were identified between BMI categories and the gut 

microbiome.  Further analyses of BMI were performed at the genus level following data 

reduction by PCA.  Predominant microbial groups that were identified were from four 

phyla and 12 families.  Analyses of gut microbiome data suggested that one group 

(principal component) of microbes was significantly associated with BMI at the genus 

level.  For example, Dechloromonas from the Proteobacteria phyla and Parvimonas from 

the Firmicutes phyla are examples of genus level microbes that may be associated with 

obesity from the identified principal component.  No associations were observed between 

dietary intake and the gut microbiota at the phyla level.  These findings provide insights 

into the metabolic importance of gut microbiota in weight-related outcomes among 

college students living in the dorms and establish a basis for future research to 

longitudinally explore relations between gut microbiota and BMI in this dynamic 

population.   
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Characterization of the Gut Microbiome of College Students 

 A diverse range of microbes from 20 phyla and 134 families were identified 

within this population.  Of this diverse range, four phyla and twelve families were 

identified as the most abundant for college students living in the dorm.  Although the gut 

microbiome of this population had not yet been characterized and the percent abundance 

varied by individual, Firmicutes and Bacteroidetes were consistently the most abundant 

phyla.  These findings of a diverse microbiome and identifying Firmicutes and 

Bacteroidetes as the most abundant phyla were consistent with the literature 

characterizing the gut microbiome of adults in a range of studies focusing on diet, weight, 

and age.2,5,18,2022,65,126,132  Due to these similarities in findings in the characterization of 

the gut microbiome in both populations, it is possible that certain findings in adult 

populations may be applicable to college students.  

 

Body Mass and Intestinal Microbe Genera of College Students 

PCA and regression analyses identified one principal component (PC12) of 

microbial genera that may be associated with BMI.  A total of 261 microbial genera 

contributed to PC12, but 23 genera from 7 different phyla were the most influential 

contributors to this group of microbes.  Of the 23 most influential genera, there were very 

few for which the functions have been identified.  Lactococcus, Parvimonas, and order 

level Clostridiales were also identified as important groups which have functions that 

may explain the association between PC12 and BMI.   

The genus Lactococcocus is known to ferment glucose into lactic acid.173,174  The 

positive eigenvalue associated with this microbe suggests that it may be more common 
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among students with lower BMIs.  The function of Lactococcus may help explain the 

associations with a lower BMI because, by performing glucose fermentation, it may 

decrease the amount of energy-yielding substrate available to the host through its 

utilization of anaerobic respiration producing lactic acid over aerobic respiration through 

the citric acid cycle.175 

The genus Parvimonas is known to have a pathogenic effect, especially in the GI 

tract as it has been associated with gingivitis and colon cancer.176,177  This genus had a 

negative eigenvalue and therefore may be associated with higher BMIs.  The pathogenic 

effects of Parvimonas may help explain the association with higher BMI because 

previous findings suggest that a greater presence of pathogenic microbes is associated 

with inflammation and higher BMI values.50,74,75,77,78 

Lastly, genera belonging to the order Clostridiales contributed both positively and 

negatively to PC12.  Clostridiales have been shown to have multiple functions at more 

specific classification levels including converting dietary components into toxic or 

carcinogenic compounds, providing a protective effect against the pathogen Escherichia 

coli, and fermenting indigestible polysaccharides, such as dietary fiber, as an energy 

source.178-180  This protective effect would explain the association with lower BMI values 

because chronic inflammation is often associated with obesity and, therefore, individuals 

with a lower BMI would likely have less inflammation.50,56,57,73-78  This variety of 

functions could explain why this order is present with both positive and negative 

eigenvalues as it is possible that the negative eigenvalue groups fall into the sub-category 

of Clostridiales that convert dietary components into toxic or carcinogenic components as 

well as the subcategory of Clostridiales that breakdown non-digestible fiber for energy 



 

   56 

utilization.  While exploring the functions of these microbes begins to explain the 

association between the gut microbiome on a genus level, the majority of literature 

explores the association between BMI and the gut microbiome at the phyla level. 

 

College Student Body Mass and Gut Microbiota at the Phylum Level 

No significant association between the F/B ratio and BMI categories was 

observed.  This finding is similar to a few previous investigations in adults that also 

demonstrated no significant association between the F/B ratio and BMI categories.20,21 

Despite these few findings, the majority of the research in both adults and mice points to 

a significant association between the F/B ratio and BMI, specifically, demonstrating an 

increase in the F/B ratio with an increased BMI,2,5,18 or, as one study demonstrated, a 

decrease in the F/B ratio with increased BMI.65     

There are multiple differences in design between the current study and the 

previous research that have demonstrated phyla levels associations, which could explain 

why the current study did not result in an association between the F/B ratio and BMI seen 

in the majority of the literature.  The difference between this analysis and previous 

studies which observed a difference in F/B ratios could be explained by the cross-

sectional design of the current study.  One study that found a difference compared 12 

obese individuals to lean controls and followed them for one year.  When the obese 

individuals were placed on a long-term restricted, weight loss diet, their microbiome 

began to shift toward that of their lean counterparts with an increased abundance of the 

Bacteroidetes phyla and a decreased abundance of the Firmicutes phyla as they lost 

weight.18  Also, based on the large inter-individual variation in this cohort, it may have 
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been more difficult to assess changes in the F/B ratio over time.  Lastly, larger 

differences in the gut microbiome are required in order to see significant differences at 

the phyla level as compared to the genus level, where smaller changes may be more 

visible.20,21  This could be an explanation as to why the only association observed was at 

the genus level and not at the phyla level. 

 

Habitual Dietary Intake and Gut Microbiota at the Phylum Level during College 

Analyses of dietary components suggested that no associations were present 

between energy, carbohydrate, protein, fat, dietary fiber, added sugar intakes and the F/B 

ratio.  The majority of research has demonstrated a significant association between the 

F/B ratio and dietary intake, but the majority of these studies had either compared the gut 

microbiome of two groups with significantly different diets22 or carried out interventions 

within a population where the diet was altered and changes were measured over 

time.23,24,147-149,151-156  For example, one study compared the gut microbiome of children 

in Europe (Eu) on a Western diet (high in sugar, animal fat, and calorically-dense foods) 

and children in Burkina Faso (BF) on a Neolithic diet (low in fat and animal protein; rich 

in starch, fiber, and plant polysaccharides).  The results of this study demonstrated that 

Eu children had lower overall microbial diversity and a high F/B ratio, whereas the BF 

children had a rich microbial diversity and a lower F/B ratio.22 

Similar to the Burkina Faso study, participants collected only one sample in the 

present study, while the majority of other studies in the literature that demonstrated an 

association between the F/B ratio and dietary intake were interventions and collected 

multiple samples.  One reason this research may not have demonstrated an association, 
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while the Burkina Faso study that used a similar design did, is because the participants 

were part of a unique population that were in the transition from adolescence to 

adulthood (high school to college), which is a time period that is filled with major 

behavioral, social, and lifestyle changes.14  As these participants are moving away from 

home and becoming more independent, one of the primary changes seen is their dietary 

intake.1,7,8  Therefore, unlike the Burkina Faso study, there was likely more noise among 

the college-student data in this study which limited the ability to see microbial 

differences.  Collection of a single sample during this transition to adulthood could also 

explain why an association was not observed between dietary intake and the F/B ratio.  

Therefore, collecting multiple fecal samples and repeating dietary recalls throughout 

freshmen year/time in the dorms could potentially elucidate an association between the 

F/B ratio and dietary changes. 

             

Strengths and Limitations 

Strengths of this study include that this was a novel area of research and, therefore, 

collecting cross-sectional data was useful in forming a basis of knowledge in regard to 

the gut microbiome and its association with weight and diet in this unique population.  In 

addition, this study suggests the feasibility of collecting samples in this population and 

suggests that longitudinal dietary interventions may be possible.  Limitations of this study 

include that a convenience sample of college students were recruited from only two 

dorms on the Arizona State University Tempe campus.  This may limit the 

generalizability of the data to students at other dorms or campuses.  Furthermore, the 

fecal microbiome, diet, and weight data were cross-sectional, thereby limiting our ability 
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to assess relationships or changes over time.  In addition, the use of 24-h dietary recalls 

for collecting consumption data, while being the gold standard for self-reported dietary 

intake data, may have introduced inaccuracies due to reporting bias.  The potential for 

reporting bias was made evident by the consistently low reported average caloric intakes 

by the participants completing the 24-h dietary recalls.  Lastly, each of the recruitment 

and sample collections occurred after fall and winter breaks so the participants’ recent 

exposure to familial dietary behaviors may have impacted the gut microbiome 

communities. 

 

Summary 

         This was the first study to characterize the gut microbiome and explore 

potential associations between BMI, dietary intake, and the gut microbiome in college 

students living in the dorms.  Findings demonstrated that there was a significant 

association at the genus level between BMI and the gut microbiome, but no significant 

associations at the phyla level between the gut microbiome and BMI or dietary intake.  

Continuing to expand the knowledge of these associations could play a part in 

understanding the role that gut microbiota play in the weight gain patterns commonly 

seen in this population.6,11,25  Exploring these associations could eventually be used to 

develop a means of moderating the weight gain pattern seen in this population of college 

students living in the dorms, which makes this a crucial time period to reduce the risk for 

obesity and related comorbidities later in life.   
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CHAPTER 6 

CONCLUSION 

 

Gut microbiota have become increasingly recognized for their crucial role in 

metabolic functioning and subsequent states of health and disease.2  Studying the 

dynamic relations between weight, diet, and the gut microbiome are important for 

understanding the high prevalence of college weight gain.  This study characterized the 

gut microbiome and assessed relationships between BMI, dietary intake, and the gut 

microbiome of healthy college students living in the dorms.  From this work, 12 

microbial families were most abundant in this population and a significant association 

was observed between BMI and 23 microbial genera.  However, contrary to the literature 

amongst other populations, the associations between the gut microbiome at the phyla 

level (F/B ratio) and both BMI and dietary intake were not significant. 

More research is necessary in order to further explore potential associations 

between the gut microbiome, BMI, and diet in college students living in the dorms.  For 

instance, because this study was cross-sectional, we were unable to capture changes in 

BMI, dietary intake, and gut microbiota that may have occurred as college students 

transitioned from home to dorm environments.  A longitudinal study design with a 

significantly larger population would be necessary in order to more accurately assess 

longitudinal changes in these outcome measures throughout this transitional life stage.  In 

addition to understanding longitudinal changes in the gut microbiome, pre- and probiotic 

interventions could be implemented as a possible means to moderate or prevent the shifts 

toward overweight/obesity that often begin during this important period of development.  
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CONSENT FORM 

 

Study Title: Intestinal bacteria profiling in relation to health behaviors and social 
connections among college-aged freshman males (devilWASTE Study) 

 
 

Principal Investigators: Corrie Whisner, PhD, Rosa Krajmalnik-Brown, PhD, Meredith 
Bruening, PhD 

 

 

Introduction 

You are being asked to take part in this study because you are a college-aged freshman 
male enrolled in the devilSPARC study. 
 
Purpose of Study: 

The purpose of the study is to learn more about intestinal bacteria and how your health 
behaviors during freshman year of college impact these bacteria. Bacteria occur naturally 
within and on your body. Most of these bacteria are not harmful to you and may play an 
important role in how you digest the food you eat. Bacteria in your intestine may be 
impacted by things other than diet, including your level of physical activity and social 
groups / friends. 
 
Description of Study Procedures: 

It is up to you to decide whether or not to participate in this study. If you decide to take 
part in this study, you will be asked to collect one fecal / stool sample while enrolled in 
the devilSPARC study. A stool collection kit that contains everything you will need to 
collect the sample will be provided to you by the study staff. You will have the option of 
collecting your sample in your dormitory bathroom or at the Nutrition and Health 
Promotion Clinical Research Lab on ASU’s downtown campus, ABC-1 building (425 
North 5th Street, Phoenix, AZ 85004-0698). This sample must be kept cold so you will be 
provided with a cooler and ice packs which must be returned with the sample within 24 
hours of collection. If you collect your sample in the dorms, you can drop the sample off 
at ABC-1 or call the research staff to pick it up from your residence hall. Samples 
collected in the clinical research facility will not require transport. 
 
Information about the bacterial that live in your gut will be compared to demographic, 
dietary, physical activity and social data collected in the devilSPARC study. 
 

Duration of the Study: 

Your active participation in the study will last 1 day (24 hours), during which you collect 
your sample and assure that it is received by study staff. 
 

Number of Subjects: 

Approximately 60 subjects will take part in this study. 
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Risks of Participation: 

There are no major risks associated with collecting stool samples; however, you may 
come into contact with the stool during collection. To reduce the risk of exposure to 
bacteria and other microbes that occur naturally in stool, you will be provided with 
special collection containers and gloves which will minimize your chance of direct 
contact with your sample. Additionally, you may experience some social or 
psychological discomfort as a result of collecting stool samples in your dormitory. To 
avoid any negative feelings related to collecting samples in the presence of your friends, 
you may collect your sample in the clinical research facility in ABC-1 (ASU downtown 
campus). 
 

Benefits of Participation: 

You might not benefit from being in this research study. A potential benefit to you from 
being in this study might be receiving a printout of results from this study. In order to 
receive results from the overall study, when they are available, you must notify the study 
staff of your interest. 
 

Costs: 
There will be no cost to you to participate in this study. However, if you travel to the 
ASU downtown campus, your gas, parking or transit costs will not be covered by the 
study. 
 

Payments: 
You will receive $30 in cash for participating in this study. 
 

Confidentiality of Records and Authorization to Use and Disclose Information for 

Research Purposes 
Arizona State University makes every effort to keep the information collected on you 
private. In order to do so, we will keep your health information and measurements in 
locked cabinets that will only be available to study personnel. To protect confidentiality, 
you will be given an identification number and data will be recorded in electronic format, 
on encrypted networks, accessible only on password protected computers that are kept in 
locked offices. 
 
If the results of this study are made public, information that identifies you will not be 
used. 
 

Contact Persons: 

For more information concerning this research or if you feel that your participation has 
resulted in any research related injury, emotional or physical discomfort please contact: 
Corrie Whisner in the School of Nutrition and Health Promotion at (602) 827-2261 or 
cwhisner@asu.edu. 
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This research has been reviewed and approved by the Arizona State University 
Bioscience IRB. You may talk to them at (480) 965-6788 or research.integrity@asu.edu 
if: 
 

• You wish to talk to someone other than the research staff about your rights as 
a research subject; 

• To voice concerns about the research; 
• To provide input concerning the research process; 
• In the event the study staff could not be reached. 

 
Voluntary Participation 

Taking part in this study is voluntary.  You are free not to take part or to withdraw at any 
time, for whatever reason.  No matter what decision you make, there will be no penalty or 
loss of benefit to which you are entitled.  In the event that you do withdraw from this 
study, the information you have already provided will be kept in a confidential manner. 
 
************************************************************************
******************** 
 
Subject Consent 

I have read (or have had it read to me) the contents of this consent form and have been 
encouraged to ask questions.  I have received answers to my questions.  I agree to 
participate in this study.  I have received (or will receive) a signed copy of this form for 
my records and future reference. 
 

   

Signature of participant  Date 

 
 

Printed name of participant 
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CONSENT FORM: devilSPARC 
 
INTRODUCTION: The purpose of this form is to provide you information about our study 
that may affect your decision to participate in this research, and to record the consent of 
those who agree to be involved in the study. 
 
RESEARCHERS: A graduate student under the direction of Professors Meg Bruening, 
PhD, MPH, RD and Corrie Whisner, PhD from the School of Nutrition and Health Promotion 
at Arizona State University has invited your participation in a research study. 
 
STUDY PURPOSE: The purpose of this study is to assess healthy eating and physical 
activity among college students. 
 
DESCRIPTION OF RESEARCH STUDY: If you decide to be a part of this study we will 
measure your height and weight. You will be asked to take a web-based survey and complete 
three 24 hour dietary recalls. Participation is voluntary and you can choose to skip any survey 
question at any time. We will ask you to provide contact information for a parent or guardian as 
we would like to send a separate survey on their eating and physical activity behaviors. We will 
link student and parent data through deidentified ID numbers. Additionally, the research team 
will have limited access to view your SunCard activity during the study week, including entrance 
and/or exit of ASU facilities. All data collected is confidential. The results are compiled as a 
group, not individually. Your decision to participate and your responses, should you choose 
to participate, will not affect your status at Arizona State University in any way.  If you agree 
to participate, your time spent participating will total around 2 hours.  
 
RISKS: You may feel uncomfortable providing personal information about yourself in the 
study questionnaires. However, as in any research, there is some possibility that you may be 
subject to risks that have not yet been identified.  
 
BENEFITS: There are no direct benefits to participation. However, indirect benefits of your 
participation will include helping the researcher to understand ways to promote nutrition 
and physical activity. These data will also add to the general scientific knowledge about 
college students contextual factors related to nutrition and physical activity behaviors among 
friendship networks over time. 
 
CONFIDENTIALITY: All information obtained in this study is strictly confidential. The 
results of this research study may be used in reports, presentations, and publications, but the 
researchers will not identify you. In order to maintain confidentiality of your records, Dr. 
Bruening will assure that your name will only appear on this consent form and will not be 
associated with any other information provided today. Study data will not be transmitted via 
the internet. Study data will be stored on a password protected server. To these extents, 
confidentiality is not absolute.  
 
WITHDRAWAL PRIVILEGE: Participation in this study is completely voluntary. It is ok 
for you to say no at any time. Even if you say yes now, you are free to say no later, and 
withdraw from the study at any time. 
 
COSTS AND PAYMENTS: You will receive a $30 incentive for completing this study 
including:  

1. web-based survey  _____(participant’s initials indicating 
understanding) 
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2. height and weight by staff  _____(participants initials indicating 
understanding) 

3. three 24 hour dietary recalls  _____(participants initials indicating 
understanding) 

 
All of the above items must be completed to receive the incentive. You can receive a t-shirt if 
you and you bring a suitemates/roommate or fellow dorm resident from your dorm to 
participate in the study. In addition, if 50% of the students under the direction of your 
Community Mentor complete the study your floor will receive support for a pizza party or an 
ice cream social. 
 
VOLUNTARY CONSENT/ASSENT: Any questions you have concerning the research 
study or your participation in the study, before or after your consent, will be answered by the 
researchers, Dr. Meg Bruening or Dr. Corrie Whisner at devilSPARC@asu.edu or 
602.827.2266.  
If you have questions about your rights as a subject/participant in this research, or if you feel 
you have been placed at risk, you can contact the Chair of the Human Subjects Institutional 
Review Board through the ASU Office of Research Integrity and Assurance, at 480.965.6788.   
 
This form explains the nature, demands, benefits and any risk of the project. By signing this 
form you agree knowingly to assume any risks involved.  Remember, your participation is 
voluntary.  You may choose not to participate or to withdraw your consent and discontinue 
participation at any time without penalty or loss of benefit.  In signing this consent form, you 
are not waiving any legal claims, rights, or remedies.  A copy of this consent form will be 
given to you.   
 
Your signature below indicates that you consent to participate in the above study. 
 
___________________________ _________________________
 ____________ 
Subject's Signature    Printed Name    Date 
 
 

You may be eligible for an addition section of the study! If interested, study staff 
can explain the below information. 

 
Purpose of Section: The purpose of this section of the study, the devilWASTE section, is to 
learn more about how your diet, friends and fitness level during freshman year impact the 
microbes that live in your intestine. Microbes occur naturally within and on your body. Most 
microbes are not harmful to you and may play an important role in how you digest the food 
you eat. You must be 18 to participate in this portion of the study.  
 
Description of Procedures: It is up to you to decide whether or not to participate in this 
part of the study. If you decide to take part in this section, you will be asked to collect one 
fecal / stool sample. A stool collection kit that contains everything you will need to collect the 
sample will be provided to you by the study staff. This sample must be kept cold and returned 
within 24 hours of collection. Information about the microbes that live in your gut will be 
compared to demographic, dietary, physical activity and social data collected in this study. 
Hormone changes can influence intestinal microbes; therefore, female participants will be 
asked to provide the first date of their last menstrual cycle at enrollment. 
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Risks and Benefits of Participation: There are no major risks associated with collecting 
stool samples; however, you may come into contact with the stool during collection. To 
reduce the risk of exposure to microbes that occur naturally in stool, you will be given special 
collection containers and gloves to minimize direct contact with the sample. 

You might not benefit from being in this research study. A potential benefit to you 
from being in this study might be receiving a printout of results from this study. In order to 
receive results from the overall study, when they are available, you must notify the study staff 
of your interest. 
 
Payments: You will receive $20 in cash for participating.  
 
Subject Consent:  I have read (or have had it read to me) the information about the 
devilWASTE section and have received answers to my questions.  I agree to participate in the 
devilWASTE section.  I have received (or will receive) a signed copy of this form for my 
records and future reference. 
 
___________________________ _________________________
 ____________ 
Subject's Signature    Printed Name    Date 
 

INVESTIGATOR’S STATEMENT: "I certify that I have explained to the above individual 
the nature and purpose, the potential benefits and possible risks associated with 
participation in this research study, have answered any questions that have been raised, and 
have witnessed the above signature. These elements of Informed Consent conform to the 
Assurance given by Arizona State University to the Office for Human Research Protections to 
protect the rights of human subjects. I have provided the subject/participant a copy of this 
signed consent document." 
 
Signature of Investigator______________________________________     
Date_____________ 
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APPENDIX C 

SCREENING FORM AND FEMALE PARTICIPANT DATA COLLECTION SHEET 
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Name / Subject ID: _________________________             Date: ____________           Staff 
Initials: ______ 

Screening Form 
 

Study Title: devilWASTE Study 
 

 

Inclusion Criteria:  
 
___ English-speaking male or female 
 
___ Enrolled in devilSPARC study 
 
___ Older than 18 years of age 
 
 
 
Exclusion Criteria:  
 
___ History of eating disorders 
 
___ History of malabsorption diseases,  
 
___ HIV infection 
 
___ High blood pressure 
 
___ Diabetes 
 
___ Taking probiotics, antibiotics and/or antifungals during the last 2-3 
months 
 
 
 
___ Eligible 
___ Not Eligible 
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Female Participant Data Collection SheetFemale Participant Data Collection SheetFemale Participant Data Collection SheetFemale Participant Data Collection Sheet    
 
Please circle the first date of your last menstrual period (If not 
shown, please write date on the line below): 

Date: ______________________________________ 
 
 
 
 

APPENDIX D 
STOOL COLLECTION AND PROCESSING SOP 
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APPENDIX D 

STOOL SPECIMEN COLLECTION STUDY PROTOCOL PROCEDURES AND 

DEVILWASTE STUDY STOOL COLLECTION INSTRUCTIONS 
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Standard Operating Procedures 
SNHP Research Facility 

 
Effective Date:  

 
SUBJECT: 

 
STOOL SPECIMEN 

COLLECTION STUDY 

PROTOCOL PROCEDURES 

Revised/Reviewed: 
 
9/25/14 

  
Purpose: 

The purpose of this Standard Operating Procedure is to provide guidelines for training laboratory 
personnel in instructing subjects to collect feces in the clinical facility or at home over a period of 
time and on processing fecal collections when returned to the lab. 
FECAL COLLECTION AND PROCESSING INSTRUCTIONS 

Supplies: 

• 1 Commode Specimen Collection System (e.g. Fisherbrand) that includes a sealable 
plastic collection container with tightly fitting, snap-on (leak resistant) lid and collection 
frame 

• 1 Ziploc bag 

• 1 small bag liner for collection bowl 

• 1 pair of latex or nitrile gloves 

• 1 instant ice pack 

• 1 Small cooler for transport 

Instructions to the patient: 
1. Raise the toilet seat. Place the stool collection frame on the back of the toilet bowl 

(Figure 1). All four corners of the collection frame should be supported by the toilet 
bowl. Place collection bowl in the center of frame (Figure 2) and lower the toilet seat 
back down. 
 
 
 
 

 
     Figure 1                Figure 2                                                                                                                        
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2. Open up the small scented bag liner. Place the open bag inside of the collection bowl so 
that the entire bottom of the bag lines the bottom of the bowl and the edges of the bag rise 
up and over the edges of the bowl. This will protect the surfaces of the collection bowl 
from getting stool on them and also allow you to close up the bag around your sample 
before snapping on the lid. 

3. Do NOT urinate into the collection container. Deposit your stool directly into the bag 
lining the collection bowl. 

4. After collection. Pull the edges of the bag liner up above the sample and twist the bag 
closed. You may put a LOOSE knot in the bag but do NOT tie it too tightly. After 
securing the bag, snap the plastic lid tightly onto the collection bowl. 

5. Place the closed container into the Ziploc bag and seal the bag (Figure 3).  

 
 
 
 
 
 
 

 

 

 

 

 

                               Figure 3 

 

6. Transfer the enclosed container into the cooler and dispose of the collection frame in the 
regular trash. 

7. Activate the instant ice pack by following the instructions on the pack (usually squeezing 
and shaking). Once the ice pack is cold, place it with the stool sample inside the cooler. 
Write the time (hrs:min AM/PM) of collection on the cooler label which also has your 
research participant ID on it. 

8. Transport the cooler and sample to ABC-1 on ASU’s downtown campus: 425 North 5th 
Street, Phoenix, AZ 85004 between 8:00 am and 5:00 pm. 

9. The sample must be delivered within 24 hours of the collection time noted on the cooler 
label. 
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STOOL COLLECTION PROCESSING 

 

1. Wear appropriate PPE to process fecal samples. This includes disposable gloves, lab coat 
and protective eye wear. 

2. In the lab, record the weight of the fecal collection container with sample inside and lid 
closed. 

3. Record the weight of the lid, collection container and sample bag inside the container and 
subtract these weights from the weight calculated in number 2; this is the weight of the 
fecal sample. 

4. Transfer the fecal sample to a sterile stomacher bag which will be used to homogenize 
the sample. 

5. Assuming that 1 ml of water has a mass of 1 g, add autoclaved, double-deionized water at 
two times the weight of the stool sample. (example: if stool weights 100 g then add 200 
ml of water to the sterile stomacher bag). 

6. Place the water and stool-filled stomacher bag into the stomacher, allowing 
approximately 6 inches of the bag to stick out above the top of the machine. 

7. Pinch the bag closed with the stomacher door while holding onto the top of the bag with 
one hand. Pull the door handle/lever down to lock the door in the closed position. 

8. Keep one hand on the bag while using the other hand to turn on the machine. 
Homogenize the sample for 2-3 minutes or longer until the sample has a homogeneous 
consistency (fecal slurry). 

9. Once homogenized, transfer up to 50 ml of the liquid sample from the bag into a 50 ml 
falcon tube. Leave about a centimeter at the top of the tube empty to allow space for 
expansion during freezing.  

10. Tightly seal the falcon tube and store in the freezer until time for analysis. 
11. Dump remaining fecal slurry into the toilet for disposal and place the used stomacher bag 

in with the bio-waste. 
12. Fecal collection containers can be disposed of in the regular trash. If feces is present on 

the container, place used bowl and lid in the bio-waste instead. 
13. Wash equipment used for the collection and processing in the following manner: 

a. Spray down the inside and outside surfaces of the stomacher and the toilet bowl 
with a 10% bleach solution and soak for 10 minutes. 

b. Use paper towels to wipe up the bleach solution and dry the equipment. 
14. Clean the processing area (e.g. counter space) with appropriate disinfectant as described 

in the Exposure Control Plan SOP. 
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devilWASTEdevilWASTEdevilWASTEdevilWASTE    Study: Stool Collection InstructionsStudy: Stool Collection InstructionsStudy: Stool Collection InstructionsStudy: Stool Collection Instructions    
Purpose:Purpose:Purpose:Purpose:    
The purpose of this Standard Operating Procedure is to provide guidelines for 
training laboratory personnel in instructing subjects to collect feces in the clinical 
facility or at home over a period of time and on processing fecal collections when 
returned to the lab. 
FECAL COLLECTION INSTRUCTIONSFECAL COLLECTION INSTRUCTIONSFECAL COLLECTION INSTRUCTIONSFECAL COLLECTION INSTRUCTIONS    
Supplies:Supplies:Supplies:Supplies:    

• 1 Commode Specimen Collection System (e.g. Fisherbrand) that includes a 

sealable plastic collection container with tightly fitting, snap-on (leak 

resistant) lid and collection frame 

• 1 Ziploc bag 

• 2 small bag liner for collection bowl (one is extra in case of hole or tear in bag) 

• 1 pair of latex or nitrile gloves 

• 1 instant ice pack 

• 1 rectangular freezer pack (must be placed in freezer 12 h in advance of 

sample collection) 

• 1 Small cooler for transport 

Instructions to the patient:Instructions to the patient:Instructions to the patient:Instructions to the patient:    
1. Place the rectangular freezer pack in the freezer 10-12 h prior to sample 

collection. 

 
2. Raise the toilet seat. Place the stool collection frame on the back of the toilet 

bowl (Figure 1). All four corners of the collection frame should be supported 

by the toilet bowl. Place collection bowl in the center of frame (Figure 2) and 

lower the toilet seat back down. 

 

 
 
 
 
 
 
 
 
           Figure 1Figure 1Figure 1Figure 1                                                    FFFFigure 2                                                                                           igure 2                                                                                           igure 2                                                                                           igure 2                                                                                           
    

3. Open up the small scented bag liner. Place the open bag inside of the 

collection bowl so that the entire bottom of the bag lines the bottom of the 

bowl and the edges of the bag rise up and over the edges of the bowl. This will 

protect the surfaces of the collection bowl from getting stool on them and also 

allow you to close up the bag around your sample before snapping on the lid. 
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4. Do NOTNOTNOTNOT urinate into the collection container. Deposit your stool directly into 

the bag lining the collection bowl. 

 

5. After collection. Pull the edges of the bag liner up above the sample and twist 

the bag closed. You may put a LOOSELOOSELOOSELOOSE knot in the bag but do NOTNOTNOTNOT tie it too 

tightly. After securing the bag, snap the plastic lid tightly onto the collection 

bowl. 

 

6. Place the closed container into the Ziploc bag and seal the bag (Figure 3).  

 
 
 
 
 
                                                                                                                                                    
    
    
    
    
    

                Figure 3Figure 3Figure 3Figure 3    
 

7. Place the frozen rectangular ice pack in the bottom of the cooler. Transfer the 

enclosed container into the cooler and dispose of the collection frame in the 

regular trash. 

 

8. Activate the instant ice pack by following the instructions on the pack 

(usually squeezing and shaking). Once the ice pack is cold, place it with the 

stool sample inside the cooler. Write the time (hrs:min AM/PM) of collection 

on the cooler label which also has your research participant ID on it. 

 

9. Transport the cooler and sample to the Biodesign Institute on ASU’s Tempe Biodesign Institute on ASU’s Tempe Biodesign Institute on ASU’s Tempe Biodesign Institute on ASU’s Tempe 

Campus at Campus at Campus at Campus at 727 E. Tyler Street, Tempe, AZ 85287727 E. Tyler Street, Tempe, AZ 85287727 E. Tyler Street, Tempe, AZ 85287727 E. Tyler Street, Tempe, AZ 85287----5001500150015001    (preferred)(preferred)(preferred)(preferred) or the 

ABC-1 Building on ASU’s downtown campus at 425 North 5th Street, 

Phoenix, AZ 85004 between 8:between 8:between 8:between 8:00 am and 5:00 pm00 am and 5:00 pm00 am and 5:00 pm00 am and 5:00 pm.    

    
You may also email or call us to have your sample picked up from your dorm 
using the following: cwhisner@asu.edu or 602-827-2261. Please include your 
contact information in messages so that we can coordinate the best time for 
pick-up of your sample. 
 

10. The sample must be delivered within 24 hours of the collection time noted on 

the cooler label. 


