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ABSTRACT

In disordered soft matter system, amorphous and crystalline components might be

coexisted. The interaction between the two distinct structures and the correlation

within the crystalline components are crucial to the macroscopic property of the such

material. The spider dragline silk biopolymer, is one of such soft matter material

that exhibits exceptional mechanical strength though its mass density is considerably

small compare to structural metal. Through wide-angle X-ray scattering (WAXS),

the research community learned that the silk fiber is mainly composed of amorphous

backbone and β-sheet nano-crystals. However, the morphology of the crystalline sys-

tem within the fiber is still not clear. Therefore, a combination of small-angle X-ray

scattering experiments and stochastic simulation is designed here to reveal the nano-

crystalline ordering in spider silk biopolymer. In addition, several density functional

theory (DFT) calculations were performed to help understanding the interaction be-

tween amorphous backbone and the crystalline β-sheets.

By taking advantage of the prior information obtained from WAXS, a rather crude

nano-crystalline model was initialized for further numerical reconstruction. Using

Markov-Chain stochastic method, a hundreds of nanometer size β-sheet distribution

model was reconstructed from experimental SAXS data, including silk fiber sam-

pled from Latrodectus hesperus, Nephila clavipes, Argiope aurantia and Araneus gem-

moides. The reconstruction method was implemented using MATLAB and C++

programming language and can be extended to study a broad range of disordered

material systems.
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Chapter 1

X-ray scattering and the correlation function

1.1 Introduction

X-ray scattering is the primary method to measure crystalline structure with atomic

level resolution. However, X-ray scattering is not limited to atomic level resolution

and it’s very versatile. Depending on the wavelength, X-ray can probe the system

ranging from 1 to 100 nm. For people with different systems in interest, one can

usually tune the wavelength of X-ray system and hence conduct X-ray scattering

experiment on this system. By utilizing analytical method, one can rebuild the crys-

talline structure from X-ray scattering pattern with high precision.

X-ray scattering has been used extensively to solve protein structure and the

technology has been pushed to the state of art level. The phase problem has been

partially overcome by the invention of several algorithm. Therefore X-ray scattering

is a very mature technique to resolve atomic level structure. At this resolution, people

use Wide-angle X-ray scattering (WAXS) to refer to X-ray scattering at high-q range

in reciprocal space.

For novel material such as biopolymer, one is usually interested in the morphology

of the functional units in the material, such as the nano-crystallites embedded into

the protein matrix. In this situation, small-angle X-ray scattering, which probe the

1



Figure 1.1: The Feynman diagrams of Compton Scattering. The left is s-channel
scattering and the right is t-channel scattering.

system on a much larger length scale and produces low-q scattering intensities, is the

best tool to study the system.

1.2 X-ray scattering by electrons

The interaction between X-ray photons and electrons is a fundamental scattering

process and it has a complete analytical description in quantum electrodynamics

(QED). The formal name to describe photon-electron scattering, or e−γ → e−γ, is

Compton scattering Peskin and Schroeder (1995).

The scattering process can be represented by Feynman diagrams as shown in

Fig.1.1 where it’s composed of two possible scatterings, the s-channel and the t-

channel.

Using ϵν(k) and ϵ∗µ(k′) to denote the polarization of the initial and final photons,

we can write down the S-matrix as

iM = ū(p′)(−ieγµ)ϵ∗µ(k′)
i(/p+ /k +m)
(p+ k)2 −m2 (−ieγν)ϵν(k)u(p) (1.1)

+ ū(p′)(−ieγν)ϵν(k)
i(/p− /k′ +m)
(p− k′)2 −m2 (−ieγµ)ϵ∗µ(k′)u(p) (1.2)

= −ie2ϵ∗µ(k′)ϵν(k)ū(p′)

γµ(/p+ /k +m)γν

(p+ k)2 −m2 +
γν(/p− /k′ +m)γµ

(p− k′)2 −m2

u(p) (1.3)

For electron and massless photon we have p2 = m2 and k2 = 0, and thus the

2



denominators of the propagators become

(p+ k)2 −m2 = 2p · k (1.4)

(p− k′)2 −m2 = −2p · k′ (1.5)

using Dirac algebra to simplify the numerators, we obtain the S-matrix of compton

scattering

iM = −ie2ϵ∗µ(k′)ϵν(k)ū(p′)
[
γµ/kγν + 2γµpν

2p · k
+ −γ

ν/k
′
γµ + 2γνpµ

−2p · k′

]
u(p) (1.6)

With equation 1.6, we can get the expression of scattering cross section by summing

over the initial and final electron and photon polarizations

1
4
∑

spins

|M |2 = e4

4
gµρgνσ · tr

{
(/p′ +m)

[
γµ/kγν + 2γµpν

2p · k
+ γν/k

′
γµ − 2γνpµ

2p · k′

]
(1.7)

· (/p+m)
[
γσ/kγρ + 2γρpσ

2p · k
+ γρ/k

′
γσ − 2γσpρ

2p · k′

] }
(1.8)

After taking traces, the equation simplifies to

1
4
∑

spins

|M |2 = 2e4

p · k′
p · k

+ p · k
p · k′

+ 2m2
(

1
p · k

− 1
p · k′

)
+m4

(
1
p · k

− 1
p · k′

)2

(1.9)

To further simplify the equation, consider the compton scattering in lab reference

frame, where the electron is initially at rest. The change of momentums and energy

is illustrated in Fig.1.2. The general cross-section formula is

dσ

dcosθ
= 1

2ω
1

2m
1

8π
(ω′)2

ωm
·

1
4
∑

spins

|M |2
 (1.10)

Using lab reference frame and substitute p · k = mω and p · k′ = mω′, the final

cross-section is

dσ

dcosθ
= πα2

m2

(
ω′

ω

)2 [
ω′

ω
+ ω

ω′
− sin2θ

]
(1.11)

3



Figure 1.2: Compton scattering in lab reference frame, where the electron is initially
at rest.

Figure 1.3: Compton scattering in center of mass frame.

where ω′ = ω
1+ ω

m
(1−cosθ) and this is the spin-averaged Klein-Nishina formula.

For high energy X-ray scattering, the equation 1.11 can be simplified in the center

of mass frame, as shown in Fig.1.3. The scattering cross section of high energy photon

is expressed as

dσ

dcosθ
= 2πα2

2m2 + s(1 + cosθ)
(1.12)

Integrate the formula over the solid angle, we obtain the total scattering cross section

σtotal = 2πα2

s
log

(
s

m2

)
(1.13)

4



where s = E2
com. The last two equations can be used to calculate angle-dependent

and total scattering cross-section of high energy X-ray.

The individual X-ray scattering event is governed by Compton scattering formula,

which can be hard to generalize to the scattering of an ensemble of electrons. For-

tunately, to express the scattering of a bulk system with a known electron density

distribution, we can use general X-ray scattering theory, which is closely related to

the Fourier transformation mathematically. This unique mathematical property en-

able us to effectively simulate the X-ray scattering of a bulk system. Next, we will

look at how to express the scattering of an arbitrary electron density analytically.

1.3 X-ray scattering of arbitrary system and two-point correlation

Given an arbitrary electron density distribution ρ(x), one can calculate the scattering

amplitude

A(q) =
∫
ρ(x)exp(−2πiq · x) · dx (1.14)

where ρ(x) can be continuous or discrete electron density distribution in 2 or 3 dimen-

sional geometry and q is the scattering vector or momentum transfer in reciprocal

space. The numerical value of q is calculated as q = 2 sin θ/λ. The scattering intensity

follows as

I(q) = |A|2 = A∗A (1.15)

5



The scattering intensity profile I(q) directly reflects the structural correlations on a

wide range of length-scale. We can see this by expanding the Eq.1.15

I(q) = A(q)∗A(q) (1.16)

=
∫
dx′ · exp(2πiq · x′)ρ(x′)

∫
dx · exp(−2πiq · x)ρ(x) (1.17)

=
∫ ∫

dx′dx · exp(−2πiq(x− x′))ρ(x′)ρ(x) (1.18)

=
∫
dr · exp(−2πiq · r)

∫
dx′ρ(x′)ρ(x′ + r) (1.19)

Substituting the equal time correlation function Sethna (2006)

Ct(r) = ⟨ρ((x, t)ρ((x + r, t)⟩ (1.20)

= 1
V

∫
dxρ(x)ρ(x + r) (1.21)

One can write the scattering intensity in terms of correlation function

I(q) = V
∫
dr · exp(−2πiq · r)C(r) (1.22)

= V C̃(q) (1.23)

where V is the volume of the isotropic, homogeneous system, C̃(q) is the Fourier

transform of the two-point correlation function C(r). Equation 1.22 has important

physical significance as it tells us that the scattering intensity profile is just a Fourier

transformation on the two-point correlation function of the system. Therefore any

fluctuations in the I(q) will be analytically related to the correlation characteristic

of the scattering centers in the material. In biopolymer, the scattering centers are

usually form by secondary structures in the macromolecules.

The correlation function is generally a up sloping curve with fluctuations. To

taking the density of states into account, one has to scale it properly. For a discrete

electron density distribution with point mass

ρ(x) =
∑

i

δ(x− xi) (1.24)

6



the two-point correlation function can be calculated as

C(r) = 1
N

∑
i=1

∑
j ̸=i

wiwj

⟨w⟩2
δ(r − rij) (1.25)

where wi is the weighting factor for the phase in interested. In a two-phase system,

it will be set to 1 for crystalline phase and 0 for amorphous backbone phase. The

correlation distance r runs through 0 to maximum length of the system and rij =

|xi − xj| will be calculated for each possible pair. On a length scale over 10 nm,

we could assume the system in biopolymer is isotropic and homogeneous with an

average density of ρ0, and therefore we can obtain the pair correlation function in 3

dimensional space at intermediate length scale (10 - 500 nm)

P (r) = 1
4πr2ρ0

1
N

∑
i=1

∑
j ̸=i

δ(r − rij) (1.26)

For 2 dimensional system, the density of state scales proportional to 2πrρ0 and the

corresponding pair correlation function reads as

P (r) = 1
2πrρ0

1
N

∑
i=1

∑
j ̸=i

δ(r − rij) (1.27)

1.4 Numerical simulation of X-ray scattering

From the definition of correlation function C(r), it’s obvious that if we know the elec-

tron density distribution ρ(r), then we can calculate the correlation function directly.

In practice, one can define arbitrary distribution in space using a 2 or 3 dimensional

matrix. For example, if we want to define a two-phase distribution in 2D space, then

we construct a N ×N matrix then initialize the matrix elements using the indicator

function

I(x) =


1, x ∈ Ω

0, x ∈ Ωc

(1.28)

7



where the matrix element at x = (i, j) where 0 ⩽ i, j ⩽ N equals to 1 if it resides in

the region Ω occupied by crystalline phase, and 0 otherwise.

Equation 1.24 describe the density distribution of point masses, which is not par-

ticularly useful for the study of real material. One can easily modify it to incorporate

mass spread and geometry. For a local density distribution ρs located on each mass

point, the total electron density distribution ρdt(x) can be represented by

ρdt(x) = ρ(x) ∗ ρs(x′) (1.29)

=
∫
dx′ · ρs(x′)

∑
i

δ(x′ − x + xi) (1.30)

=
∑

i

ρs(x− xi) (1.31)

where xi is coordinate of the ith scattering center in the system. To calculate the

scattering pattern of the desired electron density distribution in Eq.1.29, one use

Eq.1.15, which can be realized numerically by Fast Fourier transform (FFT).

Now the ρdt(x) effectively describe the density distribution in the entire simulation

region, with each scattering center has its unique shape ρs. However, in real numerical

experiment, one can only represent the density map by a matrix, which by nature is

discretized.

One can construct a continuous electron density map in 2-D plane or 3-D space

using a discrete grid represented by a matrix and then convolute the grid using the

continuous shape function of the elementary grid, which will be a square for 2-D

matrix, or a cubic for 3-D matrix. The discretized version of ρdt(x) is denoted as

ρd(x), and the shape of the elementary grid is denoted as ρe(x), then we form a

continuous density map

ρc(x) = ρd(x) ∗ ρe(x) (1.32)
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Figure 1.4: Illustration of the convolution. Constructing a continuous density dis-
tribution using a discrete matrix and the structure factor of the unit shape. Schmidt-
Rohr (2007)

Now the scattering pattern should be calculated from ρc(x)

I(q) = F [ρc(x)]2 (1.33)

= F [ρd(x)]2 ·F [ρe(x))]2 (1.34)

where we have used the Convolution Theorem. Eq.1.34 enables us to efficiently repre-

sent the electron density map in computer using a matrix, while preserves the ability

to calculated the scattering pattern from a real continuous distribution when needed.

To illustrate the convolution construction of continuous density distribution using

discrete matrix, we show a toy model in Fig.1.4. To represent a continuous block

shape density distribution, we need to construct a 1-D vector in computer, where

the ‘1’ element represent the existence of density at that location, and ‘0’ represents

vacuum. Such description using a vector or matrix (2-D) is discrete in nature. If

Fourier transformation is applied, the resulting spectrum will not be accurate. Hence

we need to convolute the discrete vector or matrix with the shape function of the ‘unit

cell’, which is a uniform distribution in 1-D and a square function in 2-D. According
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to convolution theorem 1.34, the resulting structure factor S(q) is the multiplication

between the FFT of vector/matrix |A(q)|2 and the structure factor of the ‘unit cell‘

(sin(qa/2)/(qa/2))2 for the case in Fig.1.4.

For a 2-D density distribution, suppose we store the desired density map in matrix

M(x, y), which is discrete in nature, then we can obtain the scattering structre factor

by calculating

S(q) = F [M(x, y)]2 ·
(
sin(kxa/2)
kxa/2

sin(kya/2)
kya/2

)2

(1.35)

where kx and ky denote the reciprocal space unit vector along x and y dimension,

and a is the length of the ‘unit cell’ in the density map. This formula can be easily

generalized to 3-D space.
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Chapter 2

Stochastic reconstruction with stimulated annealing

In this chapter we will discuss the basic concepts in stochastic process and Monte

Carlo simulation. The fist key concept is Brownian motion, which is the formal

description of the easy to apprehend idea of random walk. Then we will discuss the

Markov-chain Monte-Carlo simulation method used in Quantum Chemistry and the

implementation of the algorithm. This method form the ground of our stochastic

optimization procedure for analyzing the X-ray scattering data. Lastly, we need to

look at some important results in stochastic process and relate them to physical model

we use.

2.1 Random Walk and Metropolis Sampling

2.1.1 Random walk and Brownian motion

Random walk is a path in real or state space that take successive steps in random

directions. It’s a common phenomenon in statistical physics and biology: trajectories

of particles under collision, linked polymer morphology and pollen grains path in

water, which is endorsed a famous name of Brownian motion. Random walk has

several extraordinary properties. First, the morphology of random is self-similar

under the observations in different length scale, therefore the physical structure is

fractal. Second, the end point of the random walk is independent of the microscopic
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details and can be describe by equation of classical motion, especially the diffusion

equation. Both of these properties is crucial to understand the macroscopic behavior

of the system that exhibits randomness.

Classical examples of random walk are of similar characteristic and have been ex-

tensively studies, such as the Drunkard’s walk problem Sethna (2006). The random

walk process has been abstracted to form the concepts of Brownian motion, which

has a wide range of application in Physics, Chemistry and Economics. Therefore,

we introduce several definitions that are essential to describe the Brownian motion.

First is the definition of random variable from Chung and AitSahlia (2012).

Definition 2.1. Random Variable.

A numerically valued function X of ω with domain Ω:

ω ∈ Ω : ω → X(ω) (2.1)

is called a random variable on Ω.

The random variable r.v. is essentially a function that map a event or a subset of

events in the sample space Ω to a numerically value in the range of [0,1]. With the

definition of r.v., we can proceed to define the Brownian motion.

Definition 2.2. Brownian motion.

A family of random variables {X(t)}, indexed by the time variable t ranging over

[0,∞), is called the Brownian motion iff it satisfies the following conditions:

(i) X(0) = 0;

(ii) the increments X(si + ti) − X(si), over an arbitrary finite set of disjoint

intervals (si, si + ti), are independent random variables;

(iii) for each s ≥ 0, t ≥ 0, X(s+ t)−X(s) has the normal distribution N(0, t).
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2.1.2 Random Number Generation

Generating random number is the first step in stochastic simulation. One common

approach is to generate pseudorandom numbers Knuth (1981). Due to the advance

in CPU hardware design, now it’s possible to generate real random numbers sampled

from the thermal fluctuations on Intel CPU using their Digital Random Number

Generator (DRNG) API.

2.1.3 Markov chains

The random walk can be generalized to the Markov chains. The key property of

Markov chain is the so-called no-memory, which means the state transition probabil-

ities depend only on the current state of the system, not on how or when it got there.

The transition from state j to k follows the transition probability pkj, regardless the

path it took from the initial state to j

P (Xk ← Xj) = pkj (2.2)

with Xk at time stamp t and Xj at time stamp t + 1. The Xj state will transit to

another state for certain, so ∑N
k=1 pkj = 1.

Definition 2.3. Markov Chain.

A stochastic process {Xn, n ∈ N0} taking values in a countable set I is called a

homogeneous Markov Chain, or Markov chain with stationary transition probabilities,

iff equation 2.2 holds.

To describe multiple state transition during one time period, we can define the

probability-space density at time i as column vector,

p(i) =


p

(i)
1
...

p
(i)
N


13



p
(i)
k is the probability that system is in state Xk at time i. The transition from time

i to i+1 can be written in matrix notation

p(i+1) = Pp(i)

P is the N × N transition matrix. From initial state, after n steps walk, the state

distribution is

p(n) = Pnp(0)

which means the final state is independent of the ‘trail’ the system took during random

walk process. From

p(∗) = Pp(∗)

we can get the equilibrium state distribution p(∗).

2.1.4 Metropolis Algorithm

It’s been proved that a discrete dynamical system with a finite number of states can

converge to an equilibrium distribution p(∗) if it’s an ergodic(can reach every state

and is acyclic) Markov chain and meanwhile satisfy detailed balance Gardiner (2009)

PkjXj = PjkXk (2.3)

With equilibrium state distribution p(∗), we can find the acceptance probability A. If

each walk is based on uniform density, then the acceptance probability is

A(k ← j) = min

(
1, pk

pj

)
(2.4)

In real physical problem, the probability p can be Boltzmann distribution p(ξ) =

Z−1e−ξ/kBT , wave function ψ(r), or any density distribution we need. If the energy

landscape of the simulation space is not uniform, and probability of moving from state
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j to state k is Tkj given by the potential function, then the acceptance probability is

Metropolis et al. (1953)

A(k ← j) = min

(
1, Tjkpk

Tkjpj

)

and we can prove that the above choice satisfy detailed balance. The generalized form

of Metropolis acceptance probability can be written

A(y, x; ∆t) = min

(
1, G(x, y; ∆t)p(y)
G(y, x; ∆t)p(x)

)
(2.5)

The exact form of function G(x, y; ∆t) should be chosen according to potential land-

scape of the simulated system.

2.2 Diffusion Monte Carlo

2.2.1 Imaginary time Schrödinger equation

We simply consider a single particle move along the x-axis in potential V (x), the

wave function is ψ(x, t) which is governed by Schrödinger equation (use atomic unit,

m = 1, ℏ = 1)

i
ψ

t
= Ĥψ

the Hamiltonian is

Ĥ = − ∂2

∂x2 + V (x)

The potential goes infinite as x→∞, the particle would move in a finite space, then

wave function can be expended with eigenfunctions

ψ(x, t) =
∞∑

n=0
cnϕn(x)e−iEnt

If we shift the energy scale in form of V (x)→ V (x)− ET , and meanwhile introduce

the imaginary time Kosztin et al. (1996) τ = it, Schrödinger equation change to
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∂ψ

∂τ
= −D∇2ψ + (V (x)− ET )ψ (2.6)

where D = 1/2. Now wave function can be expended

ψ(x, t) =
∞∑

n=0
cnϕn(x)e−(En−ET )τ

after passing a long time, i.e. τ →∞, we have ψ(x, τ →∞) = c0ϕ0 if ET = E0.

2.2.2 Green function and short time approximation

The integral form of Eq.(1) isq

ψ(y, τ + ∆τ) =
∫
G(y, x; ∆τ)ψ(x, τ)dx

whereG(y, x) = ⟨y|(Ĥ−ET )|x⟩, and we can prove thatG(y, x) also satisfy Schrödinger

Equation. This function can be interpreted as imaginary time propagator, which also

is transition probability. As stated above, as long as we choose exact ground energy,

after long time the wave function would converge to the eigenfunction of ground state.

Split the green function into diffusion and branching part Hammond et al. (1994)

G = GdiffGB = e−T τe−(V−ET )τ

where we separate the kinetic and potential energy part in Hamiltonian. Because the

Green function satisfy Schrödinger equation, we can get the diffusion function

Gdiff (y, x; τ) = (4πDτ)−3N/2e−(y−x)2/4Dτ (2.7)

and branching function

GB(y, x; τ) = e−( 1
2 (V (x)+V (y))−ET )τ (2.8)
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If we divide the long time into small part, and each ∆τ would mean a single

diffusion monte carlo step in computer stimulation. We propose a trail move base on

the diffusion factor, use metropolis to accept/reject the move, if accepted calculate

the branching factor to delete or add walkers.

2.2.3 Importance sampling

Rather than using ψ(x) only, we will introduce a guiding function that based on

the available knowledge of ψ0(x), to construct a new distribution which also satisfy

Schrödinger equation

f(x, τ) = ψG(x, τ)ψ(x, τ)

This would also introduce a new ”quantum force” factor into the drifting process

F = 2∇ψG/ψG

With the guiding function, the walkers would be initialized more close to the ground

state distribution, and the local energy would also be more close to the trial energy

which was get from Variational methods by guiding wave function. Hence the fluctua-

tion of distribution f will be minimized. With importance sampling, the branching

part is modified to

GB(y, x; δτ) = e−( 1
2 (EL(x)+EL(y))−ET )δτ (2.9)

and the diffusion part is

Gdiff (y, x; δτ) = (4πDδτ)−3N/2e−(x−y−DδτF(y))2/4Dδτ (2.10)

To make sure the system would converge and go to equilibrium, Metropolis acceptance

probability is

A(y, x; δτ) = min

(
1, |ψG(y)|2G(x, y; δτ)
|ψG(x)|2G(y, x; δτ)

)
(2.11)

17



and such choice guarantee detailed balance. While the algorithm is Markovian and

ergodic, distribution f would converges to ψGψ0. To evaluate the ground energy,

we use Reference Energy ER to substitute local energy and update reference energy

after each complete diffusion process. From nth to (n + 1)th DMC, reference energy

is updated Hammond et al. (1994)

E
(n+1)
R = E

(n)
R + 1

δτ

(
1− Nn+1

Nn

)
(2.12)

where Nn is the number of walkers. After sufficient long time Kalos and Ceperley

(1979), the population of walkers don’t change(with small fluctuation), then the ref-

erence energy is steady and can be used to evaluate the ground energy. Besides the

diffusion methods, there are some refinements like Bessel Green’s function methods,

Domain Green’s function methods and Coulomb Green’s function methods.

2.2.4 DMC Algorithm

1. Initialize a number of N0 walkers according to the probability distribution of

guiding function |ψG|2. Initialize the reference energy ER with the local energy

EL from previous Variational monte carlo process.

2. Run a complete DMC

(a) For every ith walker in the ensemble, move it according to

yi = xi +DδτF + ran(Gaussian)

where the random number generater is based on Gaussian distribution with

zero mean and variance of 2Dδτ (Eq.(5))

(b) Compute the Metropolis acceptance probability

W (y, x) = |ψG(y)|2G(x, y; δτ)
|ψG(x)|2G(y, x; δτ)
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(c) Accept or reject the trail move according to Metropolis algorithm

A = min(1,W (y, x))

and record acceptance ratio

Accept = Accept+ 1
Nn

(d) Compute the branching function u = GB

(e) Add a number of BW = int(u+ ran(seed)) new walkers to the ensemble.

(f) Update reference energy ER according Eq.(7), and update time step

δτ = δτ · Accept

3. Repeat the above DMC walk for desired magnitude.

4. Collect data like EL when sufficient time have passed and the system’s fluctu-

ation is minimized.

2.3 Stimulated Annealing reconstruction

Stimulated annealing is inspired by the annealing process in the alloy forming process

and thus can be best understood in the statistical physics framework. Statistical

physics gives an analytical framework to describe the behavior and dynamics of an

ensemble system consisting of many particles. In the ensemble, each configuration,

taking the position ri of an atom for example, is weighted by the Boltzmann distri-

bution exp(−E(ri)/kBT ), where E(ri) is the energy of the configuration, kB is the

Boltzmann constant, and T is the temperature of the system.

So the final configuration of the system in question, whether is crystal or glass,

is not determined by the low limit of the temperature but the annealing process,
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Figure 2.1: The stimulate annealing optimization process. At high temperature,
the system has a finite probability of jumping out of the local minimum and thus
achieving lower final energy.

found from experiments Kirkpatrick et al. (1983). The process is first to melt the

material, then lowering the temperature slowly and spending a long time around

the crystallization point. If the process is fast, then the material will get out of

equilibrium state and forms glass, which is not in a globally stable ground state.

The stimulated annealing was developed from Metropolis-Hastings algorithm Metropo-

lis et al. (1953), which is essentially a Markov Chain Monte Carlo (MCMC) method,

as describe in previous section. In Metropolis’ framework, each step one atom will

be randomly moved and the change of the system energy ∆E, then the probability

of accepting the move is calculated by

P (∆E) = e
− ∆E

kBT (2.13)

Random number is then sampled from uniform distribution on [0, 1]. If it’s smaller

than P (∆E), the new configuration is accepted, otherwise it’s rejected.

For other ensemble system, the energy E is replaced by cost function of the system.

In SAXS simulation, it is defined as the Euclidean distance from simulated curve and
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experiment curve. The temperature T is now a psedudo physical parameter defined

by the user. As large T , the system has a high probability of accepting a move that

increase the system energy. As the annealing stage proceed, the temperature T is

slowly reduced to near zero, at which point the system is close to ‘freeze’ state and

the optimization is acting like a strict local search method. This annealing process

is illustrated in Fig.2.1 (source:google). As a rule of thumb, the initial temperature

can be set such that the acceptance ratio is around 0.5. In practice, one need to run

several trail tests to find it. The cooling rate is usually chosen to be exponentially

decreasing, such as Tn = 0.9nT0, where n is the number of stage. When there are

certain number of accepted move, the algorithm can move to next stage, thus reduce

the temperate by a predefined factor (0.9 in this example).

The final configuration of the system is in low energy state, but never was a true

optimal one. As pointed by Kirkpatrick et al. (1983), such system usually have many

degenerate lowest energy states. Even there exists a lower energy state, the difference

would be so small to make a practical impact. In addition, systems need stimulated

annealing solution are usually high dimensions. The high dimensionality causes the

ground state to be highly degenerated. However, this pose no real problem to the

statistical analysis. For the β-sheet crystal we studied here, the population in the

model is around 5000. As this population, the ground energy state would be highly

degenerated. In addition, we are looking the low-q range of structure factor, which

mean only the long range ordering the crystals will affect the simulated structure

factor curves. The resulting map for different trails all shows clustering effect and the

characteristics are similar in terms of cluster size, correlation length. After calculating

the pair distribution function, we will see that the correlation peaks are consistent

without large discrepancy. Thus we can safely conclude that the stimulated annealing

reachs a good ground state statistically.
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Chapter 3

Self-similarity and mass fractal nano-crystal network in spider silk

fiber

3.1 Introduction

Spider dragline silk fibers have excellent reversible extensibility and high tensile

strength. Römer and Scheibel (2008); Lewis (2006); Vollrath (2000) Extensive studies

on the molecular structure of spider silk have been performed over the years and it’s

widely believed that oriented anti-parallel β-sheet nano-crystals are the key contribu-

tor to spider silk’s excellent mechanical properties. Keten et al. (2010) The molecular

structure and chemical composition of spider silks have been studied by solid state

nuclear magnetic resonance spectroscopy and these studies have shown that a large

fraction of the amino acid sequences are poly-(Gly-Ala) and poly-Ala repeats, Jenkins

et al. (2013); Asakura et al. (2013); Hayashi et al. (1999); Xu and Lewis (1990) which

form rigid anti-parallel β-sheet nano-crystals through the periodic hydrogen bond

assemblies. Keten et al. (2010); Keten and Buehler (2008, 2010) The less ordered

amino acids are in the form of random-coil like helical secondary structures in which

the β-sheet nano-crystals are embedded. The elastic and random-coil like α- and 310-

helical structures are abundant and occupy a large volume of the fiber body, acting

as the interconnections among the rigid crystals. Holland et al. (2013) The crystal
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structure and physical size of individual β-sheet nano-crystal has also been resolved

by X-ray diffraction studies. Past WAXS studies, as well as this work, have confirmed

that typical β-sheet crystals have an orthorhombic unit cell with their physical sizes

ranging from 2 to 4 nm, when produced at the natural extrusion speed. Riekel and

Vollrath (2001); Sampath et al. (2012)

While the nano-scale dimensions of the β-sheet crystals have been well studied,

their hierarchical structures and relation to the macroscopic mechanical properties

are still not fully understood. Being the most rigid objects in the spider dragline

silk, the β-sheet crystals play a crucial role in determining its mechanical properties.

If we assume the β-sheet crystals to be the building blocks of the cylindrical-shape

fiber, then its physical size, inter-crystal distances and long-range packing pattern

will be the key parameters that define the macroscopic mechanical properties. For-

tunately, several microscopy studies have gained insight on the crystallite structures

of the spider silk fibers. Scanning electron microscopy (SEM) studies have shown

that the texture of ion-etched silk fiber’s is rather rough, as scattered crystalline-rich

regions about the size of 20 nm to 50 nm have been observed across the silk fib-

ril.Kitagawa and Kitayama (1997) Transmission electron microscopy (TEM) image

shows relatively large crystallites on the scale of 70 to 120 nm are embedded in the

amorphous matrix.Drummy et al. (2007); Trancik et al. (2001) To date, there is still

no consistent model to describe the hierarchical structure of these large crystalline

regions, as the dominant scattering centers, i.e. β-sheet crystals, only span several

nanometers in all three dimensions. By analyzing of the SAXS structure factor using

a stochastic reconstruction method, we provide evidence that the crystalline structure

of spider dragline silk fiber is mass fractal, accompanied by dense clustered packing of

the nano-crystals. The ‘large crystals’ that span up to 70 nm are composed of highly

oriented and closely interlinked β-sheet crystals.
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In addition, the strong ‘lamellar’ peaks observed in the low-q range of the structure

factors is a distinct feature to the spider silks, which separating them from other types

of fiber such as silkworm silk. This feature is a direct evidence of strong crystalline

ordering on the ten to several hundreds of nanometers range scale in spider silk. While

this feature is common in spider silks, we don’t observe similar pattern in silkworm

silk fiber, as shown Martel et. al. Martel et al. (2008). We will show that this

feature combining other characteristics of the structure factor will lead to clustered

nano-crystal morphology and mass fractal hierarchical structure in spider silk. The

exceptional mechanical property of spider silk fibers is built upon this hierarchical

structure and it makes spider silk fiber superior than other types of biopolymer fibers,

such as the silkworm silk fiber that doesn’t exhibit ‘lamellar‘ peaks in SAXS structure

factor.

3.2 X-ray experiments

Major ampullate dragline silks were collected by forced silking from living spiders

anesthetized with carbon monoxide. The silks were reeled at 2.0 ± 0.1 cm·s-1 and

were directly mounted across hollow cardboard holders driven by an electric motor.

At these silking speeds, β-sheet crystals are supposed to be extremely well oriented.

Du et al. (2006) The samples normally have 50 to 100 strands of fibers.

The X-ray experiment was carried out at Argonne National Laboratory Advanced

Photon Source BioCars 14-ID-B beam line optimized with a SAXS setup, as shown in

Fig.3.1. The incident beam energy was 9 KeV, corresponding to an X-ray wavelength

of 1.38 . The scattering data were collected on a Mar165, a 3072 by 3072 pixel

resolution CCD detector from Marresearch with a pixel size of 79 ţm. The detector

to sample distance is fixed at 180 mm throughout the experiment. The sample was

mounted to an xyz-translation goniometer head with helium gas chamber placed
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Figure 3.1: The detector is Mars165 CCD from Marresearch. The sample is loaded
onto a hollow card board holder in front of a helium cone, which is used to reduce
background noise signal.

Figure 3.2: A closeup view of the sample holder, which is mounted on the XYZ
goniometer head.
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between the CCD detector and the sample to help reduce the background signal

(Fig.3.2). The exposure time varied from 2 s to 6 s depending on the size of the silk

bundle. For each sample ten exposures were taken. Backgrounds were measured after

translating the silk bundle out of the X-ray beam.

The multiple X-ray exposures were averaged and background subtracted by using

software Fit2D. Hammersley et al. (1996) The integrated 1-D WAXS and SAXS profile

were obtained by using azimuthal integration functionality in Fit2D. The automatic

Gaussian peak fitting was performed using the lsqcurvefit optimization routine from

MATLAB.

3.3 Simulation

The transformation from electron density map to scattering intensity adopts the fast

Fourier transform (FFT) simulation method proposed by Klauss Schmidt-Rohr.Schmidt-

Rohr (2007) The electron density map ρ(r) was represented by an N × N matrix,

where N is usually chosen to be a power of 2, and then converted to a reciprocal space

scattering intensity I(q) by the transformation algorithm. For each sample, we ini-

tialized the silk structure such that it conforms to the crystal sizes calculated from the

WAXS data and maintained the closest approach distances, which is the d-spacing of

SAXS lamellar peak (Tab.1). The scattering centers, which are the β-sheet crystals

in this model, were represented by higher contrast rectangular shape sub-matrix and

are uniformly oriented to be parallel to the silk fiber axis. The orientation of the

crystals at >2.0 cm·s-1 can be approximated by perfect alignment with very small

error. van Beek et al. (2002); Du et al. (2006) A hard-shell exclusion geometry was

used to maintain the closest approach distance.

We imposed a model with a lamellar modulation by generating 60 nm wide crystal-

rich stripes separated by equal width empty spaces. The lamellar structure is essential
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to physically represent the silk fibrils fine structure within the silk fiber. Kitagawa

and Kitayama (1997); Du et al. (2006) The initial crystalline map was then fed to

the stimulated annealing reconstruction routine. The reconstruction was proceeded

by generating a electron density map such that the calculated structure factor Ŝ(q)

matches the experimental S(q) with acceptable error tolerance. This was achieved by

minimizing the pseudo-energy

Epseudo =
∑

q

|S(q)− Ŝ(q)|2 (3.1)

which measures the distance from simulated structure factor to the experimental

value McGreevy and Pusztai (1988); Kaplow et al. (1968); Jiao et al. (2009). The

optimization was realized by the stimulated annealing algorithm where each random

walk is accepted or rejected by a probability of Kirkpatrick et al. (1983); Lenstra

(2003); Rubinstein and Colby (2003)

P (s′ ← s) = min(1, exp(−∆Es′←s

kBT
)) (3.2)

where s and s′ are the states before and after one random walk, ∆Es′←s is the change

of pseudo-energy after accepted state transition, kB is the Boltzmann constant, T is

the imaginary stimulated annealing temperature.
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Figure 3.3: The scattering image of L. hesperus (Black Widow) major ampullate
(dragline) silk.

3.4 WAXS results

We first performed a series of WAXS experiments on different species of spider silk

samples to study the crystalline structure of the β-sheet unit. WAXS profile were

analyzed by Fit2D software and the scattering pattern were integrated to obtain the

WAXS pattern, as shown on Fig.3.4. From observing the WAXS pattern, we found

that the micro-structure of β-sheets in different silk samples are very similar in terms

of spot pattern and d-spacing. After obtaining the WAXS statistics, as shown in

Table.3.1, we can say that the differences among the β-sheets are minimal and the

different mechanical properties exhibited by these samples can’t be explained by the

β-sheet itself along. Therefore we conducted SAXS experiments subsequently on the

same set of silk fiber samples.
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Figure 3.4: The 1-D profiles are obtained by azimuthal integrations. The integration
region is chosen such that the dominant (120) and (200) reflections are completely
enclosed. The 1-D WAXS structure factors were processed by multi-Gaussian curve
fitting. The initial parameters were estimated from visual inspection and then sup-
plied to MATLAB script for curve fitting. The routine used in the fitting procedure
is lsqcurvefit.

Fig.3.6 shows the WAXS and azimuthal integrated SAXS profile of L. hesperus

(Black Widow) dragline silk fiber. The diffraction pattern is divided into two distinct

regions: the center small-angle region (q<1.3 nm-1) and the outer wide-angle region.

As shown in Fig.1a, the diffraction spots have been assigned with Miller indices from

which we have calculated the unit cell parameters basing on an orthorhombic unit

cell model. Sampath et al. (2012). As shown in Fig.3.3, the WAXS scattering image

of sample Black Widow has been properly labeled with Miller indices.
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possibly caused more disorder in Beta- sheet structure. Thus the diffraction from
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Figure 3.6: (a) WAXS pattern of L. hesperus (Black Widow) major ampullate
(dragline) silk. The wide-angle diffraction spots have been assigned with Miller in-
dices, from which the unit cell parameters have been calculated using an orthorhombic
crystal model. Gaussian peak fitting was applied to the wedge shaped region (white
line) and the Scherrer equation was used to determine the average nano-crystallite
dimensions. The center region (q<1.3 nm-1) corresponds to the SAXS scattering
pattern. (b-d) Samples of N. clavipes, A. aurantia and A. gemmoides show similar
wide-angle scattering patterns. (e) Azimuthal integration of scattering intensity from
L. hesperus dragline silk fibers. The lamellar peak is located at q=0.82± 0.01 nm-1.
The inset shows the SAXS structure factor S(q) on log-log scale, where the ‘matrix
knee’ represents the intermediate length scale (1 nm to 200 nm) and exhibits linearity
with a slope of 2.16.
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To retrieve the crystal sizes from X-ray data, we integrated the wedge shape

equatorial region containing reflections (200) and (120) (Fig.3.6a), and then applied

a 1-D Gaussian peak fitting procedure [see Fig.S1]. The full maximum at half width

(FMHW) of the fitted Gaussian peaks are evaluated using the Scherrer equation

Patterson (1939)

τ = Kλ

β cos θ
(3.3)

where K = 0.9, λ = 1.38 , β is the FWHM of fitted peak and θ is the Bragg angle, to

calculate the nano-crystal physical dimension τ . The orthorhombic unit cell and crys-

tal sizes are summarized in Table.3.1. The crystal size in all three dimensions (a, b,

c) shows very small variations for the four species of dragline silk examined here. The

crystal sizes have a narrow distribution, namely from 19.6 to 21.3 for that calculated

from (200) reflection and from 22.7 to 26.4 for the (120) reflection. Although different

species of dragline silk shows significant differences in alanine content and mechanical

properties, Jenkins et al. (2013) their building blocks are surprisingly similar in terms

of physical appearance. Fig.1e shows the small-angle scattering profile of L. hesperus

(Black Widow) major ampullate (dragline) silk fibers, where the characteristic lamel-

lar peak is located at 0.82 nm-1. The characteristic correlation peaks between 0.5 and

1.2 nm-1 have been observed frequently in polymer and copolymer materials. Yarusso

and Cooper (1983) The correlation peaks manifest certain long-range ordering of the

crystalline phases and such ordered state is crucial to the functional behavior of the

material, such as water channels morphology observed in nafion polymers. Schmidt-

Rohr and Chen (2008) Therefore, we propose that it’s the intermediate length-scale

morphology of the β-sheet crystals that determines the macroscopic properties such

as mechanical strength, elasticity and thermal conductivity.
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3.5 SAXS results

Since β-sheet crystals are identified as the only kind of strong scattering centers

in spider dragline silks, it’s natural to assume β-sheet crystals as the origin of the

SAXS lamellar peaks. The packing pattern of the crystals has unique intermediate-

range ordering, which leads to the appearance of strong lamellar peaks in the q < 1

nm-1 range of the SAXS structure factor. Schmidt-Rohr (2007); Pedersen (1994)

For strong correlation peaks to appear, it’s important that the scattering centers

maintain a closest approach distance RCA between each pair, as has been discussed by

Yarusso and Copper. Yarusso and Cooper (1983) In real space, the closest approach

distance RCA limits the average spacing between each adjacent pair of scattering

centers that reside in the amorphous backbone of biopolymer. Reflected in reciprocal

space, the combination of closest approach distance and long range ordering will

generate correlation peak in the small-angle scattering regime. For different species

of spider dragline silks examined here, all of them exhibit correlation peaks in the

range of 0.6 to 0.9 nm-1. This indicates that the β-sheet crystals are not adjacent to

each other statistically, but rather maintain an average closest distance among them,

which can be quantified by the characteristic of SAXS lamellar peak. The SAXS signal

exhibits an elliptical streak, elongated along the meridian direction. This indicates

that the β-sheet nano-crystals have a rectangular shape with long axis parallel with

fiber axis, as illustrated by Fig.3.7 in supplementary material. Combining these

information, we constructed a 2-dimensional electron density map in which the beta-

sheet crystals are initialized with constrained orthorhombic geometry. The d-spacings

of the lamellar peaks were taken as the average inter-crystal distance in constructing

the initial model. This in turns determines the density of the β-sheet crystals in each

silk species. The linear correlation between the lamellar peak position and alanine
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Figure 3.7: (Left) Cubic crystal geometry. (Right) Rectangular crystal geometry
with long edge parallel with fiber axis. The elongated crystal shape is consistent with
the SAXS pattern observed in spider dragline silk sample. The graphs were scaled to
have the same unit length in 2D space.

content further strengthens this assumption.

Past solid state NMR experiments have shown that the fraction of alanine con-

tent, which primarily occur in the β-sheets, vary significantly among different species.

Jenkins et al. (2013); Creager et al. (2010) By comparing the data from x-ray scatter-

ing and NMR, we have found the alanine content to be linearly correlated to lamellar

peak’s position in q-space, as shown in Fig.3.8. With a relatively small inter-crystal

distance, such as 83.2 and 77.1 measured from N. clavipes and L. hesperus respec-

tively, we find that the β-sheet crystals are more densely packed and thus leading to a

higher fraction of beta-sheet crystals than the other two samples, namely A. aurantia

and A. gemmoides (Fig.3.14).

The experimental and numerically simulated SAXS structure factors S(q) are

shown in Fig.3.9a. The lamellar peaks are present in all fiber samples and they range

from 0.6 to 0.9 nm-1 with variations in the peak intensity. The lamellar peaks of A.

aurantia and A. gemmoides are relatively close in q-space with a minuscule difference

∆q=0.01 nm-1, while L. hesperus and N. clavipes are slightly further apart with a
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Figure 3.8: Alanine in spider silks is shown to primarily occur in β-sheet nano-
crystals and an increase in alanine content in the spider silk protein is a contributing
factor to increased crystallinity associated with the nanoscale clusters which give
rise to the lamellar peaks. The alanine content data was previously retrieved from
solid-state nuclear magnetic resonance experiments.

difference of ∆q=0.05 nm-1. The structure factor curves are very well reconstructed

across the entire collected q-range by the stimulated annealing reconstruction method.

The lower bound of the S(q) is limited by the detector coverage on 14-ID-B beam

line (Argonne National Laboratory, APS) while the upper bound is cut at q=1.2

nm-1, beyond which point the structure factor S(q) begins to exhibit WAXS feature.

Fig.3.9b shows the pair correlation functions P (r) calculated from the reconstructed

electron density maps. The inter-molecular β-sheet pair correlation function P (r) Lei

et al. (2009); Proffen and Billinge (1999) is defined as,

P (r) = 1
2πrρ0

1
N

∑
i=1

∑
j ̸=i

wiwj

⟨w⟩2
δ(r − rij) (3.4)

where 2πrρ0 is the density of states in the 2D isotropic, homogeneous system,

wi is the weighting factor for the corresponding scattering center, and N is the β-
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Figure 3.9: (a) The numerically simulated structure factor S(q) ( ) fits the exper-
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0.61 nm-1 with errors of approximately ±0.01nm-1. The low-q region of the structure
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correlation peaks observed on the P (r) curves in the range of 7 to 40 nm.
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sheet crystal population. The intermediate range crystalline ordering is reflected as

the multiple correlation peaks observed on the P (r) curves in the range of 7 to 40

nm. The first correlation peaks appear near 6 nm and these peaks arise from the

dominant closest pair-pair interaction of the β-sheet crystals. The second peaks are

in the range of 7 to 10 nm, which arise from the intra-cluster interaction. As shown

in Fig.3.9b, the second peaks is shifting right top-down, which follows the density

and inter-crystal spacing constrain, though the exclusion region was reduced during

the stochastic reconstruction to allow higher mobility (Fig.3.11). The intensity and

sharpness of the lamellar peak reflects strength of pair correlations directly. While

the A. gemmoides and N. clavipes have the stronger lamellar peak (Fig.3.9a), they

also exhibit more correlation peaks in the > 10 nm range of their P (r) function. This

indicates that a larger fraction of the β-sheets are in long range ordered state for

these two silk species.

While the geometry of scattering centers play an important role in determining

the shape of SAXS pattern, we tested and visualized the SAXS pattern from differ-

ent basic geometries. Fig.3.7 shows the comparison between cubic shape geometry

and elongated rectangular geometry. The elongated shape results an elliptical streak

pattern in the center SAXS region, which is more consistent with the experimental

SAXS pattern observed from spider dragline silk samples. In this elementary model,

the long edge of the rectangular crystal is parallel to the imaginary fiber axis, thus in-

dicating that the actual beta-sheet crystals are arranged in this biased configuration.

With a single crystal configured in the elementary model, we can already observe the

presence of a weak lamellar peak on both meridian and equatorial direction. Intu-

itively, the strong meridian lamellar peaks observed from SAXS experiments result

from the phase-dependent superposition of a large population of beta-sheet crystals in

the dragline silk fibers, therefore rendering the Monte Carlo reconstruction simulation
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Figure 3.10: The location of SAXS lamellar peak depend on the average size of the
nano-crystal. Each curve is calculated from randomly generated nano-crystals with
similar size.

a necessary step to retrieve crucial structural information from the SAXS data.

In addition, the average size the β-sheet crystals do affect the position of the

SAXS peaks in q-space. As shown in Fig.3.10, we conducted a series simulation with

increasing average size of the β-sheet crystals. The crystal sizes range from 6 nm to

16 nm. As the size increases, the plateau part of the curve shift to low-q range. Note

that for this simulation, all the crystals were initialized randomly and there was no

stimulated annealing optimization followed. So the curve here doesn’t resemble the

ones from SAXS data.

Fig.3.12 shows the evolution of the stimulated structure factor and the pair-

correlation function calculated from the reconstructed crystalline model. The cor-

relation function shows no feature in the early stage of the reconstruction, mainly
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a b

Figure 3.11: The black rectangles are beta-sheet crystals. The light shade circular
region is the exclusion region used in building initial model. The exclusion region
during stimulated annealing reconstruction process is reduced (darker shade circu-
lar region) to allow higher mobility of random walk, thus significantly improves the
efficiency of the algorithm.

due to the randomized landscape of the crystals and the relatively small population,

which varies between 4000 to 7000. As the structure factor converges to the experi-

mental value, the correlation peaks gradually build up, notably for the peaks at 10,

21, 31 and 42 nm, indicated by the dashed line on Fig.3.12b. This dynamic proves

that one can reconstruct the pair correlation function through reciprocal-space recon-

struction and it supports the belief that the SAXS lamellar peaks, i.e. the correlation

peaks between the q range of 0.6 to 0.8 nm-1, arise from the intermediate length scale

ordering of the β-sheet crystals.
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Figure 3.12: (a) From bottom to top, as the stimulated annealing temperature T
drops, the calculated structure factor ( ) converges to the experimental structure
factor ( ), reducing the pseudo-energy E as defined in Eq.??eq:engy. (b) Initially at
E = 0.4256, the P (r) function is absent from any correlation peak. As the stimulated
annealing algorithm proceeded, the model build up intermediate range crystalline
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nm on the top curve (E = 0.0021) . The correlation function P (r) is sampled from a
model contains 4721 β-sheet crystals.
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The coarse-grained electron density maps are shown in Fig.3.13(a-c) for sampleA.

gemmoides. The electron density maps for the other samples are shown in Fig.3.14.

The lighter area indicates the presence of a higher density of β-sheet crystals in that

region whereas the darker area represents the amorphous backbone, which represents

diffuse X-ray scattering. The β-sheet crystal distributions are initialized with a lamel-

lar modulation when building the initial model. The modulation, which typically has

a strip size of Nlamellar = 128 equaling to a physical size of 30 - 50 nm, is designated to

represent the micro-fibril structure observed from both SEM Kitagawa and Kitayama

(1997) and AFM experiments. Du et al. (2006) The existence of the parallel lamellar

nano-fibrils could explain the discrepancy between the spider silks’ axial and radial

sound velocities reported by Koski et. al. Koski et al. (2013) Along the axial direction

of fiber, these parallel lamellar fibrils contain a high density of β-sheet crystals with

crystalline ordering up to 30 nm, which can be observed on Fig.3.13b. The highly or-

dered and continuous lamellar backbones act like phonon highways and thus support

fast propagation of both longitudinal and transversal acoustic waves in the spider

dragline silks, as observed in the recent Brillouin scattering measurements. Koski

et al. (2013) On the other hand, due to the modulation of the lamellar structure,

the crystalline ordering vanishes and the β-sheet crystal structure has a zero-density

discontinuity along the radial direction. Consequently, the scattering of phonons is

stronger and the measured velocities of the acoustic wave are much lower than that

along the axial direction.

The other prominent structural feature is the clustered packing of the β-sheet crys-

tals. During the reconstruction process, β-sheet crystals self assemble to form high

density crystalline-rich islands. The clustering effect exist in all length scales exam-

ined here and the cluster sizes change from 30 nm in Fig.3.13c to 50 nm in Fig.3.13b,

and to 100 nm in Fig.3.13a, increasing exponentially in accordance with coarse grain-
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Figure 3.14: The density of the crystals is determined by the average inter-crystal
spacing, which is calculated from the location of lamellar peaks in the SAXS structure
factors. All maps show clustering of the beta-sheet crystals, which result from the
power-law and the lamellar peak observed in SAXS structure factor.
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ing. The reconstructed electron density map shows remarkable self-similarity property

and is scale invariance statistically. The formation of these clusters is driven by both

the characteristic of the matrix knees and the presence of the lamellar peaks. The

SAXS structure factor has power law relation with respect to the scattering vector q

S(q) ∝ q−r (3.5)

and −r is the slope of the matrix knee in the log-log plot of S(q) (Fig.3.6e). The

parameter r is the fractal dimension in system exhibiting self-similarity. Pedersen

(1994); Teixeira (1988); Martin and Hurd (1987) For the silk fibers examined in this

study, the r is between 2.16 and 2.68, which means the crystalline structure has a

mass fractal (2 < r < 3) Schaefer (1989); Stanley (1984) Crystal clustering is the

dominant form of mass fractal and therefore the clustering effect can be observed at

drastically different length scales. Now looking back at the pair correlation function

(Fig.3.9b), the correlation peaks beyond 10 nm scale should arise from the inter-

cluster interaction. No matter how strong the lamellar peak is, the mass fractal

accompanied by clustering is an universal property in spider dragline silk, manifested

by the power law of structure factor and the reconstructed electron density map (see

Fig.3.14).

The mass fractal property is significant to the mechanical strength of spider silks.

The nano-crystal clusters coming with different sizes are the basic functional mechani-

cal units in spider silk fiber, as illustrated by Fig.3.13d. More importantly, these units

are interlinked by random-coil like helical secondary structures, forming self-similar

and robust crystalline network at different length scales. When the silk experiencing

an external force, the largest cluster of the size 100 nm will deform to respond to

the external kick. Then the deformation is propagated down to the smaller clusters

which will deform in response. The force-induced deformation is propagated down
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in this manner all the way to the β-sheets level, causing an exponentially increasing

number of mechanical perturbations as the length scale shrinks. This scheme is highly

consistent with the model proposed by Zhou & Zhang Zhou and Zhang (2005), which

effectively explained the exponential force-extension property of spider silks.Becker

et al. (2003) For the questions imposed by the large crystalline regions observed in

the SEM and TEM images, we suggest that these 20 - 50 nm granules are not single

crystal structures but rather high crystallinity regions, which contains densely packed

and strongly interconnected β-sheet crystals of the sizes ranging only from 2 to 4 nm.

3.6 Conclusion

A combined WAXS and SAXS study of spider dragline silk fibers is presented and

interpreted here. The analytical results show that the intermediate length scale or-

dering directly leads to the lamellar peaks observed in SAXS. The power law observed

in SAXS structure factor indicates that the β-Sheet nano-crystallites in spider silks

are mass fractal. The reconstructed electron density maps provide a direct visual-

ization of the clustering and self-similarity effect in the crystalline structure. The

axial lamellar backbone structure observed in the electron density maps helps to ex-

plain the large discrepancy between the axial and radial sound velocity in spider silks

measured by Brillouin spectroscopy.Koski et al. (2013) The mass fractal and nano-

crystal clustering property is fundamental to understand the exceptional mechanical

performance of spider silks. In practice, it would be challenging to synthesize such

complicate yet elegant nano structure, but we beleive it’s achievable through molec-

ular self-assembly and thermal dynamic control. This study provides useful data and

insightful analysis to guide future engineering of high performance silk.
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Chapter 4

Extract inter-molecular structure factor through numerical

optimization

4.1 Introduction

Total X-ray scattering experiments on molecular liquids and amorphous solids mea-

sure a structure factor containing contributions from overlapping intra-molecular and

inter-molecular interactions. The total X-ray scattering structure factor of a molec-

ular liquid can be written as Narten and Levy (1971):

S(q) = 1
N

∑N
i,j=k

∑m
α,β=1 fi,α(q)fj,β(q) sin(q·rαβ)

q·rαβ

(∑m
α=1 fα(q))2 (4.1)

For molecular liquids, we can separate equation 4.1 into the contributions arising

from intramolecular and intermolecular (molecule-molecule interactions) scattering

as follows Narten (1977); Narten and Habenschuss (1984):

S(q) = Sintra(q) + Sinter(q) (4.2)

A multi-parameter data fitting is required to separate out the intra-molecular

scattering contribution from the measured x-ray structure factor, S(q). This has

previously been achieved by iterative methods for simple molecules containing only a

few atoms i.e. <10 Narten and Habenschuss (1984). The problem lies in extending

this fitting process to approximate the intra-molecular scattering from larger, high
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molecular weight molecules that contain several tens of atoms and retain a structural

conformation that is chemically realistic. For a molecule with n atoms, the maximum

dimension of the model fitting problem is n(n+ 1)
2

. The multiple fitting parameters

are related to the structural conformation of the molecule, which is defined by an x-

ray weighted average distribution of atom-atom distances and their root-mean-square

vibrational amplitudes.

The solution is based on the Sine Fourier transform relation between the structure

factor and the atom atom pair distribution function. XISF (X-ray Intermolecular

Structure Factor) calculates the intra-molecular scattering for a series of atom-atom

pairs, based on the atomic positions of a single molecule (from a given crystal structure

or calculation) using a zeroth order Bessel function j0

Sintra(q) =
∑

α

∑
β ̸=α{fα(q) · fβ(q) · j0(rαβ · q) · exp(−1

2 l
2
αβq

2)}
(∑α fα(q))2 (4.3)

where fα and fβ are x-ray form factors for atom types α and β respectively Waas-

maier and Kirfel (1995), and lαβ is the root-mean-square value of atom-atom distance

rαβ Narten (1972); Nasr et al. (1999). Since the x-ray scattering structure factor is

dominated by intra-molecular interactions of the heavier elements (with higher Z),

the weakly scattering hydrogen atoms are neglected in the multi-dimensional fitting.

This approximation greatly reduces the number of interactions. The values for the

root mean square deviations lab are obtained by fitting the medium-to-high q ranges,

which were empirically found to work best for values of q>4 −1) of the structure factor

S(q) using a trust-region optimization Nocedal and Wright (2006) routine lsqcurvefit

and constraining the peak positions and widths to be physically reasonable Benmore

et al. (2013). For large molecules, the minimum q of intramolelcuar S(q) fitting pro-

cedure can be set to lower value but the result should be carefully examined to avoid

potential overlap with intermolecular interactions. The q-dependent atomic form fac-
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tors are taken from Waasmaier & Kirfel (1995). Based on this model the calculated

intra-molecular structure factor is subtracted from the total scattering data across

the entire q-range to yield the inter-molecular structure factor.

The uniqueness of modeling any structure factor based on diffuse scattering data

alone represents a known problem, and has been discussed at length for similar fitting

methods McGreevy (2001); Soper (2007). The same difficulties apply here. Namely,

two quite structurally different models may fit the diffraction data equally well. The

procedure will however enable some models to be ruled out. A distinct advantage with

our program is the knowledge of the intra-molecular shape from other methods can be

easily incorporated. We have previously applied this procedure with prior knowledge

of the molecular conformation based on NMR spectroscopy Benmore et al. (2013);

Weber et al. (2013) which goes a long way to addressing this issue.

4.2 Optimization methods

The optimization problem involves an objective function that depends on some vari-

ables

min
x

f(x) (4.4)

where x ∈ Rn is a real vector with n ⩾ 1 elements and f is a smooth function on

R. The iterative line search algorithm can solve this problem, though may have may

restrictions and imperfections. The Gradient Decent method, for example, will move

along its gradient pk = −∇fk/ ∥∇fk∥ for each step, therefore the algorithm update

the variable x according to

xk+1 = xk + α · pk (4.5)

where α is the step length. This method is also called steepest decent because the

move direction is always orthogonal to the contours of the objective function. The
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Figure 4.1: The trust region construction Nocedal and Wright (2006). Two possible
choices of trust regions are shown here.

advantage of gradient decent is that second derivatives are not needed. However the

algorithm will be slow on difficult objective functions, such as poorly scaled function.

The primary method we use for structure factor optimization is trust region. In

this method, information is gathered on f and then is used to construct a model

function mk whose behavior near the current point xk is similar to the actual function.

In addition, the algorithm restrict the search for the minimum of approximation

function mk to a region around xk. The problem can be formulated as

min
p

mk(xk + p) subject to ∥p∥2 ⩽ ∆k (4.6)

where ∆k is the radius of the trust region and the model function mk is defined to ba

a quadratic function

mk(xk + p) = fk + pT∇fk + 1
2
pTBkp (4.7)
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Figure 4.2: Calculated intramolecular structure factor of liquid methanol. The
fitting range is from 4 to 16 −1).

The search direction p doesn’t necessarily need to match the gradient and xk + p

should fall inside the trust region, as illustrated in Fig.4.1. The ∇fk is used here to

ensure that model function agrees with the true objective function to the first order.

The matrix Bk is usually an approximation to the Hessian ∇2fk in practice.

4.3 Results

Fig.4.2 shows the calculated intramolecular structure factor of liquid methanol based

on the experimental X-ray data taken from Narten and Habenschuss (1984). The

best fitted rms- deviation of C-O bond (1.437 Å) is 0.069 Å, which matches Narten’s

estimation of 0.064 Å with 8% discrepancy. The difference is due to the use of

molecular form factors in Narten’s work and the chosen optimization algorithm used

in XISF. For a sanity check, we have plotted the atomic structure factors for set of

atoms using the XISF C++ code 4.4.

To demonstrate the programs ability to separate out the intra and inter-molecular

contributions to S(q) test the program’s ability and potentially differentiate between
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different molecular structures, we supplied the program with two different intra-

molecular conformations of the Probucol molecule. In Fig.4.3, the intermolecular

S(q)’s are shown as the red curves, for both Probucol form I and form II (inset).

The q range of 4.5 −1) to 16 −1) was chosen to calculate the intramolecular structure

factor S(q). The bent conformation provides a superior fit (notably around q=8 to

14 −1) and has been shown by NMR to be the dominant molecular shape adopted in

the glass Weber et al. (2013). However, it should be pointed out that differentiating

structures with similar intermolecular S(q) curves is likely to be problematic.

We have utilized XISF to study the glass transition in amorphous drugs, as show in

Fig.4.5 Benmore et al. (2013). The X-ray structure factors and chemical structures for

glassy carbamazepine, cinnazirine, miconazole, clotrimazole, and probucol are shown

in Figure 2. The X-ray curves represent the average of several measurements taken on

different samples. Most of the molecules studied here contained 30-60 atoms, allowing

for some variation in the fitting parameters ∆r2αβ. However, the largest molecule

is probucol with m=83 distinct atoms in the molecule, corresponding to 3403 total

interactions. Of the total 83 atoms in probucol, 48 are hydrogen atoms, which scatter

X-rays weakly, reducing the number of dominant intermolecular interactions to 595,

allowing reasonable q-space data fitting to be achieved. Both the measured and calcu-

lated curves were then Fourier transformed over the same momentum transfer range

using the same Lorch modification function Lorch (1969) to give the intramolecular

DX
intra(r) and intermolecular DX

inter(r) differential pair distribution functions. The dif-

ferential distribution D(r) is defined using the Hannon-Howells-Soper nomenclature

as Egelstaff et al. (1971); Walford and Dore (1977); Keen (2001)

D(r) = 4πρr[G(r)− 1] (4.8)

= 2ρ
π

∫ qmax

qmin

q[SX(q)− 1]sin(q · r)dq (4.9)
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Figure 4.3: Bent (left) and linear (right), fitted to the same q-weighted experimen-
tal x-ray data. The extracted intermolecular S(q)’s are shown as red curves. The
molecular conformations with representative rms-deviations of the atoms are shown
as inserts. The electron density maps (bird view along b-axis) calculated from the
extracted rms-deviations are shown for bent form crystal (left, space group P21/c)
and linear form crystal (right, space group P21).
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Figure 4.4: Atomic form factors calculated by C++ code using MATLAB MEX
API.

where G(r) is the total pair distribution funtion, which oscillates about 1 at high

r. The D(r) function removes the bulk density to emphasize the ordered structural

peaks and dips, especially at higher r.

These functions have been shown multiplied by r in Fig.4.6 to highlight the

medium-range interactions in the samples. Given the variability in accurately fit-

ting ∆r2αβ, any small oscillations in rDX
inter(r) should be treated with some caution.

However, significant peak shifts and large oscillations can be reasonably be consid-

ered as real effects in the glassy states. The resulting intermolecular pair distribution

functions revealed broad nearest and next-nearest neighbor molecule-molecule corre-

lations.
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Figure 4.5: (Left) The measured total X-ray structure factors for glassy drugs (solid
lines). With the high X-ray flux and detector sensitivity used, Bragg peaks would be
clearly observed if more than 1% crystalline materials were present in the sample. The
absence of any Bragg peaks confirms the amorphous nature of the drugs produced
by melting acoustically levitated samples. The dotted lines represent the calculated
intra-molecular curves Sintra(Q) based on the crystal structures. (Right) Typical
molecular structures of the drugs studied taken from the crystal structures.

4.4 Software environment

The program is primarily written in MATLAB programming language with core

cost function written in C++. The program employs MATLAB-C++ (MEX) pro-

gramming paradigm to achieve fast computation of cost function. We provide a

pre-compiled binary for Windows 64-bit operating system. The software depends

on 64-bit Visual C++ redistributable and Matlab Compiler Runtime which can

be downloaded free of charge. The source code is hosted on Github repository

https://github.com/xrayapp/XISF, with the input data stored under the folder named

55



Figure 4.6: The measured total X-ray differential pair distribution function multi-
plied by r to highlight the medium-range interactions rDX(r) (solid lines) compared
with the intramolecular curves rDX

intra(r) calculated from the crystal structures (dot-
ted lines, these curves represent the Fourier transforms of the dotted lines in Fig.4.5).
The difference between the solid and dotted lines corresponds to the intermolecular
pair distribution function rDX

inter(r) (dashed line below). The peaks corresponding
to the marked arrows are discussed in the text.
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Figure 4.7: The GUI interface of XISF. Here is a trail output on drug sample
Carbamazapine.

input. The website has a README guide on how to execute the program in MAT-

LAB.

The basic system requirement is identical to MATLAB, which can be viewed on

official website. For XISF, the memory required at run time depends on the input

data size, and it generally scales as O(n2)where n is the number of (non-hydrogen)

atoms in the molecule. For the test case Probucol (35 non-hydrogen atoms), XISF

takes up to 1.0 GB memory on Windows 8.1 64-bit OS.

XISF has a GUI designed to be easy to use and informative. Fig.4.7 and Fig.4.8

shows the output of an optimization trail on drug sample Carbamazapine. The pro-

gram will show the fitted intramolecular structure factor and extracted intermolecular

curve, along with the initial and final distribution of the r.m.s values. The program

offers two optimization method, the local search and global search, both are based
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Figure 4.8: The console interface of XISF. Here is a trail output on drug sample
Carbamazapine.

on trust region method. In the future, we will implemented stochastic stimulated an-

nealing optimization, which usually offer better fitting accuracy for difficult objective

function, though the runtime will be much longer.

4.5 Program specification

The program takes the q-weighted experimental structure factor as the first input,

and a file containing the molecule coordinates as the second one. The calculated q-

weighted intermolecular structure factor will be automatically saved in ASCII format.

The program is designed for X-ray scattering data of molecular liquids and amorphous

solids, and has been tested on the amorphous drugs probucol, cinnazirine, carba-

mazepine, miconazole nitrate and clotrimazole (Benmore et al., 2013). On a 3.4GHz

Intel based Windows 8.1 64-bit machine, the runtime of carbamazepine (18 atoms)

is around 10 minutes, and the runtime of probucol (35 atoms) is about 1 hours, all
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measured with fitting accuracy of 10−4 using single-thread version of the program.

XISF has about 1200 lines of code total, with half of them written in C++.
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Chapter 5

Density functional theory study of the secondary structures in spider

silk fibers

5.1 Introduction

Spider dragline silk produced from the major ampullate gland is one of the toughest

biopolymers known. Lewis (2006) It is comprised almost entirely of two proteins, ma-

jor ampullate spidroin 1 and 2 (MaSp1 and MaSp2). Xu and Lewis (1990); Hinman

and Lewis (1992) The unique mechanical properties of spider silk are thought to orig-

inate from the secondary and tertiary structure of these silk proteins. The structure

of spider silk proteins within the fiber has been studied extensively with a number of

techniques including X-ray diffraction (XRD), solid-state nuclear magnetic resonance

(NMR), infrared (IR) and Raman spectroscopy. This combination of structural char-

acterization techniques has illustrated that poly(Ala) and poly(Gly-Ala) repeat units

form nano-crystalline β-sheet structures while, the Gly-Gly-X and Gly-Pro-Gly-X-X

motifs take on disordered 310-helical Kümmerlen et al. (1996) and elastin-like type II

β-turn structures respectively.

At the core of the secondary and tertiary structure of proteins is hydrogen-

bonding. These hydrogen-bonding interactions can either occur within a given pro-

tein strand (intra-strand) or between strands (inter-strand). Solution-state NMR has
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played a critical role in understanding hydrogen-bonding distances for proteins in

aqueous solutions from amide proton chemical shifts. Proton (1H) combined rotation

with multiple pulse spectroscopy (CRAMPS) solid-state NMR techniques have been

used for decades to improve resolution and determine hydrogen-bond strengths from

the proton chemical shifts of small molecules. Recently, the advent of very fast (35-40

kHz) and ultra-fast (Z60 kHz) magic angle spinning (MAS) NMR probes has allowed

improved proton resolution in rigid solids by averaging the strong 1H-1H dipolar in-

teractions with rapid MAS rates particularly when applied at high magnetic fields

(Z600 MHz). Very fast and ultra-fast MAS proton NMR has been used to charac-

terize hydrogen-bonding in benzoxazine dimers, pharmaceutical solids, and phospho-

nic acids. The experimental results from fast and ultra-fast MAS proton NMR has

been used with theoretical chemical shift calculations to determine hydrogen-bonding

lengths from the amide proton chemical shift for silk-like model peptides.

In the present contribution, we characterize the hydrogen-bonding interactions in

Nephila clavipes spider dragline silk (major ampullate silk fibers) with two-dimensional

(2D) 1H-13C HETCOR solid-state NMR at a very fast MAS rate of 40 kHz. The

greater chemical shift dispersion in the 13C dimension of the 2D 1H-13C HETCOR

MAS experiment is necessary to assess the hydrogen-bonding for individual amino

acid residues. The projection in the 1H dimension illustrates the typical resolution

in a one-dimensional 1H experiment of spider silk with 40 kHz MAS where distinct

amide chemical shifts are not resolved (see Fig. 1). The 2D 1H-13C HETCOR MAS

experiment can be used to extract the amide proton chemical shift in an amino acid

specific manner by slicing through the 13C dimension and comparisons can be made

to DFT proton chemical shift calculations to determine the hydrogen-bond strength

for Gly and Ala in β-sheet and 310-helical structures.
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5.2 DFT Proton Chemical Shift Calculations

Proton NMR chemical shift calculations were performed using B3LYP and the 6-

31++G(2d,2p) basis set in Gaussian09 similar to previously described approaches.

Yamauchi et al. (2000); Blanchard et al. (2012) The Gly-Gly β-sheet model (Fig.

S2, a) was built manually in GaussView 5. First, a single strand was constructed

followed by geometry optimization in Gaussian 09 using the GIAO method with

the above stated basis set. Stability was checked with the same basis set following

geometry optimization. Based on the optimized single strand structure, the Gly-Gly

β-sheet model with inter-strand hydrogen- bonding was constructed by duplicating

the single strand model. For the β-sheet hydrogen-bonding trend, the inter-strand

NH-OC hydrogen-bond length was varied from 1.7 to 2.7 and the corresponding

NMR chemical shifts were calculated. The calculated chemical shift was calibrated
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with the TMS proton magnetic shielding that is built into the Gaussian 09 database.

The 310-helix and α-helix models were obtained from the Lorieau Research Group

website in the Department of Chemistry at The University of Illinois at Chicago.

These helical models were generated with the Hydrogen-Bond Database Grishaev

et al. (2004) and XPLOR-NIH. Original helix structures were truncated to smaller

helical models. Optimization and stability check were carried out in a similar fashion

to the β-sheet model discussed above. For the inter-helix calculation, two small 310-
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helical strands measuring approximately two repeat units were constructed with one

inter-helix hydrogen-bond (Fig. 2S, b). This inter-strand hydrogen-bond is similar

to that first observed by Crick and Rich in the 310-helical structure of polyglycine

II. CRICK and RICH (1955) The NH-OC length was varied from 1.7 to 2.3 and

corresponding NMR chemical shifts were calculated. For the 310-helix (Fig. 2S, c)

and α-helix (Fig. 2S, d) intra-bond calculation, larger structures with approximately

five repeat units were used. A two-stage geometry optimization was carried out

with HF 3-21G and B3LYP 6-31G++ basis sets. NMR chemical shift calculations

were then carried out as described above. The NH-OC intra-strand hydrogen-bond

lengths varied between 2.0 to 2.4 for the 310-helix and α-helix depending on the

environment. This variability is believed to occur because of the intrinsically different

hydrogen-bonding sites in the two helical conformations. The amide N-H bond length

remained very close to the theoretical value of 1.00 and varied by less than 0.3% for

all structures following geometry optimization.

To illustrate the amide proton chemical shift trend as a function of hydrogen-bond

distance, the calculated proton amide chemical shift data was fit to an equation of

the form

δNH = ad−3 + b (5.1)

where δNH is the amide proton chemical shift and d is the hydrogen-bond distance.

The calculated amide proton chemical shift data is included in Fig. 3 along with the

fits and follow the expected trend.

The backbone Hα chemical shifts are known to depend on conformation and were

also tabulated from the DFT proton chemical shifts calculations for the different struc-

tures. The average Hα proton chemical shift was 4.7, 4.1 and 3.7 ppm for the β-sheet,

310-helix and α-helix secondary structures. This is in agreement with experimentally
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determined H chemical shifts for various solid polypeptides with 1H combined ro-

tation and multiple pulse spectroscopy (CRAMPS) NMR where α-helical structures

gave 3.9-4.0 ppm shifts while, β-sheet forms were 5.1-5.5 ppm. Interestingly, results

from our calculations indicate that it may be possible to distinguish between the 310

and α-helix since nearly all the Hα shifts for the 310-helix were centered at 4.1 ppm

with essentially no deviation and the α-helix ranged from 3.4-3.8 ppm with an average

of 3.7 ppm.

5.3 DFT and NMR analysis

The 2D 1H-13C HETCOR MAS NMR spectrum of 13C-labeled Nephila clavipes

spider dragline silk is shown in Fig. 1. The assignment of the 13C resonances is

based on our previous 2D 13C homonuclear through-bond and through space solid-

state NMR correlation experiments. Holland et al. (2008a,b) The data was collected

with a 1 ms CP contact time. At this intermediate contact time length, all protons

within a given amino acid are observed for Ala and Gly thus, Ha, Hb and amide

proton chemical shifts can be extracted for a given amino acid.

In order to extract the proton chemical shifts for Ala and Gly, slices were extracted

from the 2D 1H-13C HETCOR MAS spectra at specific 13C chemical shifts. The

Ala Cb resonance has been shown in previous studies to be heterogeneous with a

minimum of two-components at 17.4 and 21.0 ppm that can be assigned to Ala

present in disordered 310-helical and ordered β-sheet structures, respectively. The

Ala in 310-helical structures have been ascribed to Ala located in the repitive Gly-

Gly-X motif while, the Ala in β-sheet structures are located in the poly(Ala) and

flanking poly(Gly-Ala) motifs in the primary amino acid sequence. Creager et al.

(2010) Interestingly, the 1H spectrum for these two Ala environments display differing

Ha and amide proton chemical shifts (see Fig. 2a and b). For the Ala Ha, the observed
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proton chemical shifts are 4.2 and 5.1 ppm for the slices extracted at a 13C chemical

shift of 17.4 and 21.0 ppm, respectively. These observed proton Ha chemical shifts

agree with previous conformational studies on polypeptides where helical structures

had shifts of 3.9-4.0 ppm while, β-sheet conformations had 5.1-5.5 ppm shifts. Shoji

et al. (1996) These results also agree with our DFT calculated Ha chemical shifts

for various conformations (see ESI†). In addition, the DFT calculations indicate an

average Ha chemical shift of 4.1 ppm for the model 310-helix and a smaller average

Ha shift of 3.7 ppm for the a-helix. This indicates that the Ha shift can potentially

be used to distinguish different helices with the helix observed in spider silk more

closely matching the 310-helix compared to the a-helix. The 1H spectrum for Gly

was extracted at the Gly Ca chemical shift and shown in Fig. 2c. The observed Ha

has two components that could represent two distinct conformational environments

however, the more likely explanation is that the two Ha protons are diastereotopic as

is observed for crystalline glycine.

Two amide NH proton environments are observed for both Ala and Gly in spider

silk (see Fig. 2a-c). For Ala, there are two environments that can be extracted from

the two Cb components. The 310-helical component (Fig. 2b) has a broad amide

NH proton resonance positioned at 8.2 ppm and the component (Fig. 2a) has a

sharper resonance at 9.0 ppm. The Gly 1H slice extracted at 43.3 ppm in the 13C

dimension is asymmetric with two components at 8.2 and 9.0 ppm. Thus, both Ala

and Gly exhibit two distinct amide NH environments. It is known that the amide

NH shift can be dependent on both the backbone conformation and the hydrogen-

bonding distance. Kimura et al. (1998, 2000) In order to discern the two contributions

to the chemical shift, a series of DFT proton NMR chemical shift calculations were

conducted on poly(Gly) model systems in , 310-helical and a-helical conformations.

The calculated amide proton chemical trends for the various secondary structures
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were fit to extract the equations 5.3 for determining hydrogen-bond lengths in and

helical conformations, where δNH is the amide 1H chemical shift and d is the NH-OC

hydrogen-bond distance (see Fig. 3). The trend is very close to previously report

trends in model peptides and the helical trend is on average shifted to lower ppm. If

one uses the y-intercept as a measure of the impact of secondary structure, there is

a 0.6 ppm lower amide shift for helical structures. This is in reasonable agreement

with the experimentally determined 0.2-0.6 ppm lower average amide proton chemical

shifts determined for helical structures compared to with protein solution-state NMR.

δNH = 26.8d−3 + 4.7, β − sheet (5.2)

δNH = 25.3d−3 + 4.1, helix (5.3)
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The amide proton chemical shift as a function of hydrogen-bond length can be used

to determine the hydrogen-bond strength for Ala and Gly in and 310-helical structures

for spider dragline silk. From equation 5.3 it is determined that the hydrogen-bond

length is 1.84 and 1.83 for the two structures, respectively. Upon first inspection,

the smaller amide chemical shifts observed for the 310-helical structures would indi-

cate weaker hydrogen-bonding however, when the impact of secondary structure is

accounted for the hydrogen-bond strength is identical for both environments. The

hydrogen-bond strength is also notably stronger for spider silk compared to alanine

tripeptide silk mimics. In addition, the strong hydrogen bonding is consistent with

inter-strand hydrogen-bonding as weaker hydrogen-bonds would be expected for intra-

strand hydrogen-bonds.

The combination of 1H-13C HETCOR solid-state NMR with fast MAS and DFT

proton chemical shift calculations have been used to determine the hydrogen-bonding

strength for and 310-helical structures in spider silk. The hydrogen-bond strength was

found to be identical for both structures and quite strong compared to model silk pep-

tide mimics. The strong hydrogen-bonding is indicative of inter-strand interactions

and provide some of the first evidence for inter-molecular interactions in spider silk.

The hydrogen-bonding trends reported here should be useful for researchers deter-

mining hydrogen-bond strength in both and helical conformations from amide proton

chemical shifts.

5.4 13C NMR calculation

While we successfully established the non-linear relation between h-bond length and
1H chemical shift, we are curious to see if such relationship exists for 13C. We used

both Quantum Espresso and Gaussian 09 to test on alanine gas phase model. For

Quantum Espresso, the gas phase and crystalline phase of alanine were tested. The
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model is shown in Fig.5.1 and Fig.5.2 respectively. To construct gas phase model

with plane-wave based DFT package, one need to construct a relatively large unit

cell which contains only one gas molecule. The gas molecules is still periodic on the

lattice but the nearest distance between molecules is large enough to approximate gas

phase interaction.

For 13C model, the simulated electron density is different from the actual molecule

environment where the atoms are located. This is mainly due to the complex elec-

tronic orbitals in carbon atom. As a result, the chemical shift calculated from DFT

is vastly different from the actual experimental data that use TMS as the baseline.

The method to compare calculation from different trails is to establish linear correla-

tion between them, as shown in fig.5.3. Cross-comparison between different trails is

difficult because the linear fitting parameters will change for every new calculation.

The calculated chemical shifts (from Gaussian 09) are shown in Fig.5.4 with the

experimental values showed side by side. The three secondary structures explored

here are 310 helix, α-helix and β-sheet. For each structure, the DFT result and

experimental value follows near perfect linear correlation, such as the one shown

in Fig.5.3. However, the coefficients are slightly different. Since the difference of

experimental chemical shift is also quite small, therefore we can’t use one set of linear

coefficient to convert the DFT result for all structures. In addition, we see that the

chemical shift of α-C in 310 helix and α-helix are 138.58 and 138.59 ppm respectively,

almost in-distinguishable. For future work, we will continue to explore the capability

of the DFT method and try to distinguish the helical structures with the simulated

NMR result.
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Figure 5.1: The gas phase model for alanine molecule. For each unit cell, only one
alanine molecule is included. The resulting structure will be used to approximate gas
phase of the substance.

Figure 5.2: The crystalline phase model for alanine. The unit cell is orthorhombic.
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Figure 5.3: The linear correlation between calculated alanine model and the exper-
imental values. The y-axis is the experimental value, and the x-axis is the calculated
chemical shift from Quantum Espresso.
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Figure 5.4: The 13C chemical shift calculated for three different secondary struc-
tures.

73



REFERENCES

Asakura, T., Y. Suzuki, Y. Nakazawa, G. P. Holland and J. L. Yarger, “Elucidating
silk structure using solid-state nmr”, Soft Matter 9, 11440–11450 (2013).

Becker, N., E. Oroudjev, S. Mutz, J. P. Cleveland, P. K. Hansma, C. Y. Hayashi,
D. E. Makarov and H. G. Hansma, “Molecular nanosprings in spider capture-silk
threads”, Nat Mater 2, 4, 278–283 (2003).

Benmore, C. J., J. K. R. Weber, A. N. Tailor, B. R. Cherry, J. L. Yarger, Q. Mou,
W. Weber, J. Neuefeind and S. R. Byrn, “Structural characterization and aging of
glassy pharmaceuticals made using acoustic levitation”, Journal of Pharmaceutical
Sciences 102, 4, 1290–1300 (2013).

Blanchard, J. W., T. L. Groy, J. L. Yarger and G. P. Holland, “Investigating hydrogen-
bonded phosphonic acids with proton ultrafast mas nmr and dft calculations”, The
Journal of Physical Chemistry C 116, 35, 18824–18830 (2012).

Chung, K. L. and F. AitSahlia, Elementary probability theory: with stochastic pro-
cesses and an introduction to mathematical finance (Springer Science & Business
Media, 2012).

Creager, M. S., J. E. Jenkins, L. A. Thagard-Yeaman, A. E. Brooks, J. A. Jones,
R. V. Lewis, G. P. Holland and J. L. Yarger, “Solid-state nmr comparison of various
spiders’ dragline silk fiber”, Biomacromolecules 11, 8, 2039–2043 (2010).

CRICK, F. H. C. and A. RICH, “Structure of polyglycine ii”, Nature 176, 4486,
780–781 (1955).

Drummy, L. F., B. L. Farmer and R. R. Naik, “Correlation of the [small beta]-sheet
crystal size in silk fibers with the protein amino acid sequence”, Soft Matter 3,
877–882 (2007).

Du, N., X. Y. Liu, J. Narayanan, L. Li, M. L. M. Lim and D. Li, “Design of superior
spider silk: From nanostructure to mechanical properties”, Biophysical Journal 91,
12, 4528 – 4535 (2006).

Egelstaff, P., D. Page and J. Powles, “Orientational correlations in molecular liquids
by neutron scattering carbon tetrachloride and germanium tetrabromide”, Molec-
ular Physics 20, 5, 881–894 (1971).

Gardiner, C., Stochastic Methods, A Handbook for the Natural and Social Sciences,
vol. 13 of Springer Series in Synergetics (Springer, 2009), 4th edn.

Grishaev, A., and A. Bax, “An empirical backbone−backbone hydrogen-bonding po-
tential in proteins and its applications to nmr structure refinement and validation”,
Journal of the American Chemical Society 126, 23, 7281–7292, pMID: 15186165
(2004).

74



Hammersley, A. P., S. O. Svensson, M. Hanfland, A. N. Fitch and D. Hausermann,
“Two-dimensional detector software: From real detector to idealised image or two-
theta scan”, High Pressure Research 14, 4-6, 235–248 (1996).

Hammond, B., W. Lester and P. Reynolds, Monte Carlo Methods in Ab Initio Quan-
tum Chemistry (World Scientific, 1994).

Hayashi, C. Y., N. H. Shipley and R. V. Lewis, “Hypotheses that correlate the se-
quence, structure, and mechanical properties of spider silk proteins”, International
Journal of Biological Macromolecules 24, 2–3, 271 – 275 (1999).

Hinman, M. B. and R. V. Lewis, “Isolation of a clone encoding a second dragline silk
fibroin. nephila clavipes dragline silk is a two-protein fiber.”, Journal of Biological
Chemistry 267, 27, 19320–4 (1992).

Holland, G. P., M. S. Creager, J. E. Jenkins, R. V. Lewis and J. L. Yarger, “Deter-
mining secondary structure in spider dragline silk by carbon−carbon correlation
solid-state nmr spectroscopy”, Journal of the American Chemical Society 130, 30,
9871–9877, pMID: 18593157 (2008a).

Holland, G. P., J. E. Jenkins, M. S. Creager, R. V. Lewis and J. L. Yarger, “Quanti-
fying the fraction of glycine and alanine in [small beta]-sheet and helical conforma-
tions in spider dragline silk using solid-state nmr”, Chem. Commun. pp. 5568–5570
(2008b).

Holland, G. P., Q. Mou and J. L. Yarger, “Determining hydrogen-bond interactions
in spider silk with 1h-13c hetcor fast mas solid-state nmr and dft proton chemical
shift calculations”, Chem. Commun. 49, 6680–6682 (2013).

Jenkins, J. E., S. Sampath, E. Butler, J. Kim, R. W. Henning, G. P. Holland and J. L.
Yarger, “Characterizing the secondary protein structure of black widow dragline silk
using solid-state nmr and x-ray diffraction”, Biomacromolecules 14, 10, 3472–3483
(2013).

Jiao, Y., F. H. Stillinger and S. Torquato, “A superior descriptor of random textures
and its predictive capacity”, Proceedings of the National Academy of Sciences 106,
42, 17634–17639 (2009).

Kalos, M. and D. Ceperley, Monte Carlo Methods in Statistical Physics (Springer,
1979).

Kaplow, R., T. A. Rowe and B. L. Averbach, “Atomic arrangement in vitreous sele-
nium”, Phys. Rev. 168, 1068–1079 (1968).

Keen, D. A., “A comparison of various commonly used correlation functions for de-
scribing total scattering”, Journal of applied crystallography 34, 2, 172–177 (2001).

Keten, S. and M. J. Buehler, “Asymptotic strength limit of hydrogen-bond assemblies
in proteins at vanishing pulling rates”, Phys. Rev. Lett. 100, 198301 (2008).

75



Keten, S. and M. J. Buehler, “Nanostructure and molecular mechanics of spider
dragline silk protein assemblies”, Journal of the Royal Society Interface 7, 53,
1709–1721 (2010).

Keten, S., Z. Xu, B. Ihle and M. J. Buehler, “Nanoconfinement controls stiffness,
strength and mechanical toughness of [beta]-sheet crystals in silk”, Nat Mater 9,
4, 359–367 (2010).

Kimura, H., S. Kishi, A. Shoji, H. Sugisawa, and K. Deguchi, “Characteristic 1h
chemical shifts of silk fibroins determined by 1h cramps nmr”, Macromolecules 33,
26, 9682–9687 (2000).

Kimura, H., T. Ozaki, H. Sugisawa, K. Deguchi, and A. Shoji, “Conformational study
of solid polypeptides by 1h combined rotation and multiple pulse spectroscopy nmr.
2. amide proton chemical shift”, Macromolecules 31, 21, 7398–7403 (1998).

Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi, “Optimization by simulated anneal-
ing”, Science 220, 4598, 671–680 (1983).

Kitagawa, M. and T. Kitayama, “Mechanical properties of dragline and capture
thread for the spider nephila clavata”, Journal of Materials Science 32, 8, 2005–2012
(1997).

Knuth, D., Seminumerical Algorithms, The Art of Computer Programming, vol. 2
(Addison-Wesley, 1981), 2nd edn.

Koski, K. J., P. Akhenblit, K. McKiernan and J. L. Yarger, “Non-invasive determi-
nation of the complete elastic moduli of spider silks”, Nat Mater 12, 3, 262–267
(2013).

Kosztin, I., B. Faber and K. Schulten, “Introduction to the diffusion monte carlo
method”, American Journal of Physics 64, 5, 633–644 (1996).

Kümmerlen, J., J. D. van Beek, F. Vollrath, and B. H. Meier, “Local structure in
spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic
resonance”, Macromolecules 29, 8, 2920–2928 (1996).

Lei, M., A. M. R. de Graff, M. F. Thorpe, S. A. Wells and A. Sartbaeva, “Uncovering
the intrinsic geometry from the atomic pair distribution function of nanomaterials”,
Phys. Rev. B 80, 024118 (2009).

Lenstra, J. K., Local search in combinatorial optimization (Princeton University Press,
2003).

Lewis, R. V., “Spider silk: Ancient ideas for new biomaterials”, Chemical Reviews
106, 9, 3762–3774 (2006).

Lorch, E., “Neutron diffraction by germania, silica and radiation-damaged silica
glasses”, Journal of Physics C: Solid State Physics 2, 2, 229 (1969).

76



Martel, A., M. Burghammer, R. J. Davies, E. D. Cola, C. Vendrely and C. Riekel,
“Silk fiber assembly studied by synchrotron radiation saxs/waxs and raman spec-
troscopy”, Journal of the American Chemical Society 130, 50, 17070–17074, pMID:
19053481 (2008).

Martin, J. E. and A. J. Hurd, “Scattering from fractals”, Journal of Applied Crystal-
lography 20, 2, 61–78 (1987).

McGreevy, R. L., “Reverse monte carlo modelling”, Journal of Physics: Condensed
Matter 13, 46, R877 (2001).

McGreevy, R. L. and L. Pusztai, “Reverse monte carlo simulation: A new technique
for the determination of disordered structures”, Molecular Simulation 1, 6, 359–367
(1988).

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, The
Journal of Chemical Physics 21, 6, 1087–1092 (1953).

Narten, A. H., “Diffraction pattern and structure of noncrystalline bef2 and sio2 at
25c”, The Journal of Chemical Physics 56, 5, 1905–1909 (1972).

Narten, A. H., “X-ray diffraction pattern and models of liquid benzene”, The Journal
of Chemical Physics 67, 5, 2102–2108 (1977).

Narten, A. H. and A. Habenschuss, “Hydrogen bonding in liquid methanol and
ethanol determined by x-ray diffraction”, The Journal of Chemical Physics 80,
7, 3387–3391 (1984).

Narten, A. H. and H. A. Levy, “Liquid water: Molecular correlation functions from
x-ray diffraction”, The Journal of Chemical Physics 55, 5, 2263–2269 (1971).

Nasr, S., M.-C. Bellissent-Funel and R. Cortes, “X-ray and neutron scattering stud-
ies of liquid formic acid dcood at various temperatures and under pressure”, The
Journal of Chemical Physics 110, 22, 10945–10952 (1999).

Nocedal, J. and S. Wright, “Numerical optimization, series in operations research and
financial engineering”, Springer, New York, USA (2006).

Patterson, A. L., “The scherrer formula for x-ray particle size determination”, Phys.
Rev. 56, 978–982 (1939).

Pedersen, J. S., “Determination of size distribution from small-angle scattering data
for systems with effective hard-sphere interactions”, Journal of Applied Crystallog-
raphy 27, 4, 595–608 (1994).

Peskin, M. E. and D. V. Schroeder, An introduction to quantum field theory (West-
view, 1995).

Proffen, T. and S. J. L. Billinge, “PDFFIT, a program for full profile structural refine-
ment of the atomic pair distribution function”, Journal of Applied Crystallography
32, 3, 572–575 (1999).

77



Riekel, C. and F. Vollrath, “Spider silk fibre extrusion: combined wide- and small-
angle x-ray microdiffraction experiments”, International Journal of Biological
Macromolecules 29, 3, 203 – 210 (2001).

Römer, L. and T. Scheibel, “The elaborate structure of spider silk: Structure and
function of a natural high performance fiber”, Prion 2, 4, 154–161 (2008).

Rubinstein, M. and R. H. Colby (Oxford University Press, 2003).

Sampath, S., T. Isdebski, J. E. Jenkins, J. V. Ayon, R. W. Henning, J. P. R. O.
Orgel, O. Antipoa and J. L. Yarger, “X-ray diffraction study of nanocrystalline
and amorphous structure within major and minor ampullate dragline spider silks”,
Soft Matter 8, 6713–6722 (2012).

Schaefer, D. W., “Polymers, fractals, and ceramic materials”, Science 243, 4894, pp.
1023–1027 (1989).

Schmidt-Rohr, K., “Simulation of small-angle scattering curves by numerical Fourier
transformation”, Journal of Applied Crystallography 40, 1, 16–25 (2007).

Schmidt-Rohr, K. and Q. Chen, “Parallel cylindrical water nanochannels in nafion
fuel-cell membranes”, Nat Mater 7, 1, 75–83 (2008).

Sethna, J. P., Entropy, Order Parameters, and Complexity (Oxford University Press,
2006).

Shoji, A., H. Kimura, T. Ozaki, H. Sugisawa, and K. Deguchi, “Conformational study
of solid polypeptides by 1h combined rotation and multiple pulse spectroscopy
nmr”, Journal of the American Chemical Society 118, 32, 7604–7607 (1996).

Soper, A. K., “On the uniqueness of structure extracted from diffraction experiments
on liquids and glasses”, Journal of Physics: Condensed Matter 19, 41, 415108
(2007).

Stanley, H., “Application of fractal concepts to polymer statistics and to anomalous
transport in randomly porous media”, Journal of Statistical Physics 36, 5-6, 843–
860 (1984).

Teixeira, J., “Small-angle scattering by fractal systems”, Journal of Applied Crystal-
lography 21, 6, 781–785 (1988).

Trancik, J. E., J. T. Czernuszka, C. Merriman and C. Viney, “A simple method for
orienting silk and other flexible fibres in transmission electron microscopy speci-
mens”, Journal of Microscopy 203, 3, 235–238 (2001).

van Beek, J. D., S. Hess, F. Vollrath and B. H. Meier, “The molecular structure of
spider dragline silk: Folding and orientation of the protein backbone”, Proceedings
of the National Academy of Sciences 99, 16, 10266–10271 (2002).

Vollrath, F., “Strength and structure of spiders’ silks”, Reviews in Molecular Biotech-
nology 74, 2, 67 – 83 (2000).

78



Waasmaier, D. and A. Kirfel, “New analytical scattering-factor functions for free
atoms and ions”, Acta Crystallographica Section A 51, 3, 416–431 (1995).

Walford, G. and J. Dore, “Neutron-diffraction studies of the structure of water: Ii.
temperature variation effects for heavy water”, Molecular Physics 34, 1, 21–32
(1977).

Weber, J., C. Benmore, A. Tailor, S. Tumber, J. Neuefeind, B. Cherry, J. Yarger,
Q. Mou, W. Weber and S. Byrn, “A neutron-x-ray, {NMR} and calorimetric study
of glassy probucol synthesized using containerless techniques”, Chemical Physics
424, 0, 89 – 92, neutron Scattering Highlights on Water and Biological Systems
(2013).

Xu, M. and R. V. Lewis, “Structure of a protein superfiber: spider dragline silk.”,
Proceedings of the National Academy of Sciences 87, 18, 7120–7124 (1990).

Yamauchi, K., S. Kuroki, K. Fujii and I. Ando, “The amide proton {NMR} chemical
shift and hydrogen-bonded structure of peptides and polypeptides in the solid state
as studied by high-frequency solid-state 1h {NMR}”, Chemical Physics Letters 324,
5–6, 435 – 439 (2000).

Yarusso, D. J. and S. L. Cooper, “Microstructure of ionomers: interpretation of small-
angle x-ray scattering data”, Macromolecules 16, 12, 1871–1880 (1983).

Zhou, H. and Y. Zhang, “Hierarchical chain model of spider capture silk elasticity”,
Phys. Rev. Lett. 94, 028104 (2005).

79



Appendix A

The SAXS reconstruction code
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The Stimulated Annealing function
function [engyf] = mc_move(nx, xsed1, xsed2)

global mtx_xtal occ_bkb
global xtal_pos xtal_sidex xtal_sidey xtal_bkbexcl scl
global n_acpt kT t_acpt egyf
engyf = egyf;
divx = 16;
divy = 16;

pos1x = xtal_pos(xsed1,1);
pos1y = xtal_pos(xsed1,2);
dx = ceil((2*rand(1)−1)/2*nx/divx); %dx > dy
dy = ceil((2*rand(1)−1)/2*nx/divy); %rand between −0.5 +0.5

pos1x_new = modnozero(double(pos1x+dx),nx);
pos1y_new = modnozero(double(pos1y+dy),nx);

lmtx = xtal_sidex(xsed1); %sidex = half of actual side length
lmty = xtal_sidey(xsed1);

pos2x = xtal_pos(xsed2,1);
pos2y = xtal_pos(xsed2,2);
dx = ceil((2*rand−1)/2*nx/divx); %dx > dy
dy = ceil((2*rand−1)/2*nx/divy); %rand between −0.5 +0.5

pos2x_new = modnozero(double(pos2x+dx),nx);
pos2y_new = modnozero(double(pos2y+dy),nx);

lmtxp = xtal_sidex(xsed2); %sidex = half of actual side length
lmtyp = xtal_sidey(xsed2);

r = sqrt(double((pos1x_new−pos2x_new)^2+(pos1y_new−pos2y_new)^2));

if (occ_bkb(pos1x_new, pos1y_new) == 0) && (occ_bkb(pos2x_new, pos2y_new) == 0) .../
&& (occ_bkb(modnozero(pos1x_new−lmtx,nx),modnozero(pos1y_new−lmty,nx)) == 0) .../
&& (occ_bkb(modnozero(pos1x_new+lmtx,nx),modnozero(pos1y_new+lmty,nx)) == 0) .../
&& (occ_bkb(modnozero(pos1x_new−lmtx,nx),modnozero(pos1y_new+lmty,nx)) == 0) .../
&& (occ_bkb(modnozero(pos1x_new+lmtx,nx),modnozero(pos1y_new−lmty,nx)) == 0) .../
&& (occ_bkb(modnozero(pos2x_new+lmtxp,nx),modnozero(pos2y_new−lmtyp,nx)) == 0) .../
&& (occ_bkb(modnozero(pos2x_new+lmtxp,nx),modnozero(pos2y_new+lmtyp,nx)) == 0) .../
&& (occ_bkb(modnozero(pos2x_new−lmtxp,nx),modnozero(pos2y_new−lmtyp,nx)) == 0) .../
&& (occ_bkb(modnozero(pos2x_new−lmtxp,nx),modnozero(pos2y_new+lmtyp,nx)) == 0) .../
&& (r > 2.5*max(lmtx,lmtxp))

ttxtal_mtx = mtx_xtal; %temp matrix to hold structure

for k =−lmty:lmty %paint crystal1
kyplusk=modnozero(pos1y_new+k,nx);
for j =−lmtx:lmtx
jxplusj = modnozero(pos1x_new+j,nx);
ttxtal_mtx(jxplusj,kyplusk)=0;
end
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end

for j =−lmtx:lmtx %unpaint crystal1
jxplusj = modnozero(pos1x+j,nx);
for k =−lmty:lmty
kyplusk=modnozero(pos1y+k,nx);
ttxtal_mtx(jxplusj,kyplusk)=1;
end
end

for j =−lmtxp:lmtxp %paint crystal2
jxplusj = modnozero(pos2x_new+j,nx);
for k =−lmtyp:lmtyp
kyplusk=modnozero(pos2y_new+k,nx);
ttxtal_mtx(jxplusj,kyplusk)=0;
end
end

for j =−lmtxp:lmtxp %unpaint crystal2
jxplusj = modnozero(pos2x+j,nx);
for k =−lmtyp:lmtyp
kyplusk=modnozero(pos2y+k,nx);
ttxtal_mtx(jxplusj,kyplusk)=1;
end
end

% MCMC
eng_i = egyf;
eng_f = post_p_test(ttxtal_mtx, scl, 1.85);

% rto = eng_f/eng_i; %Q(x−>x') is symetrical
% acpt = min(1,1/rto); %acpt < 1 if the move increase energy
% a_slot(modnozero(kk,200)) = rto;

dE = eng_f−eng_i;
p_accpt = exp(−dE/kT);

p_test = rand;

if p_test < p_accpt
engyf = eng_f;
n_acpt = n_acpt + 1;
t_acpt = t_acpt + 1;
mtx_xtal = ttxtal_mtx;

exlcu1x = xtal_bkbexcl(xsed1,1);
exlcu1y = xtal_bkbexcl(xsed1,2);
exlcu2x = xtal_bkbexcl(xsed2,1);
exlcu2y = xtal_bkbexcl(xsed2,2);

for j =−exlcu1x:exlcu1x %unpaint crystal1 exclu
jxplusj = modnozero(pos1x+j,nx);
for k =−exlcu1y:exlcu1y
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kyplusk=modnozero(pos1y+k,nx);
occ_bkb(jxplusj,kyplusk)=occ_bkb(jxplusj,kyplusk)−1;
end
end

for j =−exlcu1x:exlcu1x %paint crystal1 exclu
jxplusj = modnozero(pos1x_new+j,nx);
for k =−exlcu1y:exlcu1y
kyplusk=modnozero(pos1y_new+k,nx);
occ_bkb(jxplusj,kyplusk)=occ_bkb(jxplusj,kyplusk)+1;
end
end

for j =−exlcu2x:exlcu2x %unpaint crystal1 exclu
jxplusj = modnozero(pos2x+j,nx);
for k =−exlcu2y:exlcu2y
kyplusk=modnozero(pos2y+k,nx);
occ_bkb(jxplusj,kyplusk)=occ_bkb(jxplusj,kyplusk)−1;
end
end

for j =−exlcu2x:exlcu2x %paint crystal1 exclu
jxplusj = modnozero(pos2x_new+j,nx);
for k =−exlcu2y:exlcu2y
kyplusk=modnozero(pos2y_new+k,nx);
occ_bkb(jxplusj,kyplusk)=occ_bkb(jxplusj,kyplusk)+1;
end
end

xtal_pos(xsed1,1) = pos1x_new;
xtal_pos(xsed1,2) = pos1y_new;
xtal_pos(xsed2,1) = pos2x_new;
xtal_pos(xsed2,2) = pos2y_new;
end
end

end

The FFT transfomation function

function [In, Iq] = SAXSrodcylformfac(rho)
% take density map rho as imput
global nx

nxf = nx;
% can be smaller than in SAXSpreprodcyl, to speed up calculation
nxfd2=nxf/2;
iqcent=nxfd2+1;

Ampl=fft2(rho);
Ampl=fftshift(Ampl); %center of grid (nxd2+1) is at q=0
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% ................. I(q)=|A(q)|^2 .....................
Iq=abs(Ampl).^2;

iq1=(1:nx)−iqcent;
%elementary square
q1ad2=pi*iq1/nx+0.00000001; % q1*a/2 = iq1c*2pi/(nx*a) *a/2
formf=(sin(q1ad2)./q1ad2).^2;

Iscatt = zeros(nxf,1);

iqmin=iqcent−nxfd2;
iqmax=iqcent+nxfd2−1;

parfor iq1=iqmin:iqmax %
temp1 = zeros(nxf,1);
%temp2 = zeros(nxf,1);
formx = formf(iq1);
for iq2=iqmin:iqmax %
formy = formf(iq2);
for iq3=iqcent:iqcent %thin sheet along q3

qabs=sqrt((iq1−iqcent)^2+(iq2−iqcent)^2)+1; % +1: prevent Iscatt(iqabs=0)
iqabs=round(qabs);
ishar=qabs−iqabs;

share=abs(ishar); % how much to share
isignshare=sign(ishar); % +1 if q > iq; 0 if exactly on

addI=Iq(iq1,iq2)*formx*formy; %sincsqr: effect of elementary square

temp1(iqabs)=addI*(1−share);
temp1(iqabs+isignshare)=addI*share; % 0 if exactly on
end
end
Iscatt = Iscatt + temp1;
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% calculate I(q)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Isum=0;
parfor iq=2:nxfd2
Isum=Isum+Iscatt(iq);
In(iq−1)=Iscatt(iq)/(iq−1)̂ 2; %iq=0 really q=0
%In2D(iq−1)=Iscatt(iq)/(iq−1); %in−plane averaging
end
end

The function that calculates RDF from the crystal population.
function [pdf] = rdf(xtal_pos)

n = length(xtal_pos);
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nmax = int16(ceil(sqrt(2*(2048−1)^2)));

pdf = zeros(nmax,1);

for i = 1:(n−1)
for j = i+1 : n

r_ix = double(xtal_pos(i,1));
r_iy = double(xtal_pos(i,2));
r_jx = double(xtal_pos(j,1));
r_jy = double(xtal_pos(j,2));

r_ij = sqrt((r_ix−r_jx)^2+(r_iy−r_jy)^2);

if r_ij < 2
disp(sprintf('r=(%d, %d), id=(%d, %d)', r_ix, r_iy, i, j));
end
irabs = round(r_ij);
ishar = r_ij− irabs;
shar = abs(ishar);
isignshar = sign(ishar);

pdf(irabs+1) = pdf(irabs+1) + (1− shar);
pdf(irabs+isignshar+1) = pdf(irabs+isignshar+1) + shar;

end
end

end
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Appendix B

Structure factor calculation code
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C++ code that calculates the structure factor equation 4.3.
#include "mex.h"
#include <matrix.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <omp.h>

// nx is r, nxq is xdata, strlN is atom_lst length respectively, nyf is atomff
↪→ population

static mwSize nx, nxq, strlN, nxf, nyf;

inline void clear(double *lst) {
for (int i=0; i<nxq; i++) {
lst[i] = 0;
}
}

inline void J(double *reslt, double r, double *xdata) {
for (int i=0; i<nxq; i++) {
double t1;
t1 = r*xdata[i];
reslt[i] = sin(t1)/t1;
}
}

inline void addconst(double *reslt, double *x, const double y) {
for (int i=0; i<nxq; i++) {
reslt[i] = x[i]+y;
}
}

inline void dotp(double *reslt, double *x, double *y) {
for (int i=0; i<nxq; i++) {
reslt[i] = x[i]*y[i];
}
}

inline void vtime(double *reslt, double x, double *y) {
for (int i=0; i<nxq; i++) {
reslt[i] = x*y[i];
}
}

inline void add(double *reslt, double *x, double *y) {
for (int i=0; i<nxq; i++) {
reslt[i] = x[i]+y[i];
}
}

inline void expX(double *reslt, const double pre, const double x, double *xdata) {
// calculate pre*exp(x*xdata.^2)
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dotp(reslt, xdata, xdata); //reslt hold xdata.^2
for (int i=0; i<nxq; i++) {
reslt[i] = pre*exp(x*reslt[i]);
}
}

//nxf should be 11, formfactor elements for each atom, nyf should be 10: the current
↪→ list length

void F(double *reslt, char *a, double *xdata, const double *formf, char**atomff_idx) {
int flag = 0;
int i, k;
double *fct, *tmp, *tmp1, *xsq;
fct = (double *)mxMalloc(nxf*sizeof(double));

tmp = (double *)mxMalloc(nxq*sizeof(double)); //hold tmp vector of xdata size
tmp1 = (double *)mxMalloc(nxq*sizeof(double));
xsq = (double *)mxMalloc(nxq*sizeof(double));

clear(tmp);
clear(tmp1);
clear(xsq);

for (k=0; k<nyf; ++k) {
if (strcmp(a, atomff_idx[k]) == 0) {
//mexPrintf("found atom %s\n", a);
for (i=11; i−−;) { //subsitute 11 with nxf if nxf is not 11 anymore (list

↪→ change)
fct[i] = formf[k*11 + i];
}
flag = 1;
}
}
if (flag == 0)
mexErrMsgIdAndTxt( "MATLAB:sqfactor:F",
"Can't find atom in the form factor list.");

//mxAssert(flag, "mxAssert:F atom not found in form factor list, please update the
↪→ list manually.");

vtime(xsq, 0.0795775, xdata); //s = q/(4*pi)

expX(tmp, fct[0],−fct[1], xsq);
add(tmp1, tmp1, tmp);
expX(tmp, fct[2],−fct[3], xsq);
add(tmp1, tmp1, tmp);
expX(tmp, fct[4],−fct[5], xsq);
add(tmp1, tmp1, tmp);
expX(tmp, fct[6],−fct[7], xsq);
add(tmp1, tmp1, tmp);
expX(tmp, fct[8],−fct[9], xsq);
add(tmp1, tmp1, tmp);
clear(reslt);
addconst(reslt, tmp1, fct[10]);
mxFree(fct);
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mxFree(tmp);
mxFree(tmp1);
mxFree(xsq);
}

void sqfactor(double *x, double *xdata, double *res, const double *r, const double *
↪→ formf, char **atom_lst, char **atomff_idx, char **plst1, char **plst2) {

double *f1, *f2, *ft, *tmp1, *norm, *v_private;
f1 = (double *)mxMalloc(nxq*sizeof(double));
f2 = (double *)mxMalloc(nxq*sizeof(double));
ft = (double *)mxMalloc(nxq*sizeof(double));
//zero vectors
tmp1 = (double *)mxMalloc(nxq*sizeof(double));
norm = (double *)mxMalloc(nxq*sizeof(double));

clear(tmp1);
clear(norm);

//extract string name of atom pair
//fc = fc + f(a1,xdata).*f(a2,xdata).*J(r(k)*xdata).*exp(−0.5*x(k)^2*xdata.^2);
#pragma omp parallel
{
const int nthreads = omp_get_num_threads();
const int ithread = omp_get_thread_num();
#pragma omp master
{
v_private = (double *)mxMalloc(nthreads*nxq*sizeof(double));
for(int i=0; i<(nxq*nthreads); i++)
v_private[i] = 0;
}
#pragma omp for
for (int i=0; i<nx; i++) {
F(f1, plst1[i], xdata, formf, atomff_idx);
F(f2, plst2[i], xdata, formf, atomff_idx);
dotp(ft, f1, f2); //f hold f1*f2
J(f1, r[i], xdata); //f1 hold J(r.*xdata)
expX(f2, 1.0, −0.5*x[i]*x[i], xdata); //f2 hold exp(...)
dotp(f1, f1, f2); //f1 hold J()*exp()
dotp(f2, ft, f1); //f2 hold f1()*f2()*J()*exp()
for (int k=0; k<nxq; k++) {
v_private[ithread*nxq+k] += f2[k];
}
}
for (int i=0; i<nthreads; i++) {
for (int k=0; k<nxq; k++) {
tmp1[k] += v_private[i*nxq+k];
}
}
for (int i=0; i<strlN; i++) {
F(f1, atom_lst[i], xdata, formf, atomff_idx); //f1 hold f()
add(norm, norm, f1);
}
dotp(ft, norm, norm); //ft = norm.^2
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#pragma omp for
for (int i=0; i<nxq; i++) {
double t = tmp1[i];
tmp1[i] = t/ft[i]; //tmp1 hold f./normf the normalized
}
#pragma omp for
for (int i=0; i<nxq; i++) {
double m1, m2;
res[i] = x[nx]*tmp1[i] + x[nx+1]/xdata[i];
}
} //pragma omp parallel
mxFree(f1);
mxFree(f2);
mxFree(ft);
mxFree(tmp1);
mxFree(norm);
mxFree(v_private);
}

void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{

//load all required global parameters
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mxArray *array_r;
mxArray *matx_formf;
const char *rname = "r";
const char *ffname = "formf";
const char *atype = "atom_type";
const char *affindex = "atomff_index";
const char *pname1 = "pinfo1";
const char *pname2 = "pinfo2";

//2D char matrix hold global variable
int status;
char **atom_lst, **atomff_idx;
char **plst1, **plst2;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// load global r
array_r = mexGetVariable("global", rname);
nx = mxGetM(array_r); //r length
const double *r = mxGetPr(array_r);

// load global formf matrix
matx_formf = mexGetVariable("global", ffname); //should be 11x10 matrix, after

↪→ reading should be 10x11(original size)

nxf = mxGetM(matx_formf); //x is col order, vertical
nyf = mxGetN(matx_formf); //y is row order, horizontal

const double *formf = mxGetPr(matx_formf); //formf is row−major order now
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//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// load atom_lst
mxArray *atom_idx;
char *buf;

atom_idx = mexGetVariable("global", atype);
buf = mxArrayToString(atom_idx);
strlN = mxGetN(atom_idx); //atom list length, atom population
mwSize strsN = mxGetM(atom_idx);

atom_lst = (char**)mxMalloc(strlN*sizeof(char*));
for (int i=0; i<strlN; ++i) {
atom_lst[i] = (char *)mxMalloc((strsN+1)*sizeof(char));
}
for (int i=0; i<strlN; ++i) {
int j=2*i;
strncpy(atom_lst[i], buf+j, 2);
atom_lst[i][strsN] = '\0';
//mexPrintf("%s", atom_lst[i]);
}

// load atomff_index
mxArray *atom_idx1;
char *buf1;

atom_idx1 = mexGetVariable("global", affindex);
buf1 = mxArrayToString(atom_idx1);
mwSize strlN1 = mxGetN(atom_idx1);
mwSize strsN1 = mxGetM(atom_idx1);
atomff_idx = (char**)mxMalloc(strlN1*sizeof(char*));
for (int i=0; i<strlN1; ++i) {
atomff_idx[i] = (char *)mxMalloc((strsN1+1)*sizeof(char));
}
for (int i=0; i<strlN1; ++i) {
int j=2*i;
strncpy(atomff_idx[i], buf1+j, 2);
atomff_idx[i][strsN1] = '\0';
//mexPrintf("%s", atomff_idx[i]);
}

// load pinfo1
mxArray *atom_idx2;
char *buf2;

atom_idx2 = mexGetVariable("global", pname1);
buf2 = mxArrayToString(atom_idx2);
mwSize strlN2 = mxGetN(atom_idx2);
mwSize strsN2 = mxGetM(atom_idx2);
plst1 = (char**)mxMalloc(strlN2*sizeof(char*));
for (int i=0; i<strlN2; ++i) {
plst1[i] = (char *)mxMalloc((strsN2+1)*sizeof(char));
}

91



for (int i=0; i<strlN2; ++i) {
int j=2*i;
strncpy(plst1[i], buf2+j, 2);
plst1[i][strsN2] = '\0';
//mexPrintf("%s", plst1[i]);
}

// load pinfo2, use the same buffer parameters, since they are same size
atom_idx2 = mexGetVariable("global", pname2);
buf2 = mxArrayToString(atom_idx2);
strlN2 = mxGetN(atom_idx2);
strsN2 = mxGetM(atom_idx2);
plst2 = (char**)mxMalloc(strlN2*sizeof(char*));
for (int i=0; i<strlN2; ++i) {
plst2[i] = (char *)mxMalloc((strsN2+1)*sizeof(char));
}
for (int i=0; i<strlN2; ++i) {
int j=2*i;
strncpy(plst2[i], buf2+j, 2);
plst2[i][strsN2] = '\0';
//mexPrintf("%s", plst2[i]);
}

//load all required local input parameters
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
double *x;
double *xdata;
double *res;
nxq = mxGetM(prhs[1]); //xdata length;

x = mxGetPr(prhs[0]);
xdata = mxGetPr(prhs[1]);

plhs[0] = mxCreateDoubleMatrix(nxq, 1, mxREAL);
res = mxGetPr(plhs[0]);
//call working function
sqfactor(x, xdata, res, r, formf, atom_lst, atomff_idx, plst1, plst2);

// clean mxArray
mxDestroyArray(array_r);
mxDestroyArray(atom_idx);
mxDestroyArray(atom_idx1);
mxDestroyArray(atom_idx2);
mxDestroyArray(matx_formf);

// free dynamically allocated memory
for (int i=0; i< strlN; ++i) {
mxFree(atom_lst[i]);
}
mxFree(atom_lst);
for (int i=0; i< strlN1; ++i) {
mxFree(atomff_idx[i]);
}
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mxFree(atomff_idx);
for (int i=0; i< strlN2; ++i) {
mxFree(plst1[i]);
}
mxFree(plst1);
for (int i=0; i< strlN2; ++i) {
mxFree(plst2[i]);
}
mxFree(plst2);
}
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