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ABSTRACT 
   

Coccidioidomycosis (valley fever) is caused by inhalation of arthrospores from soil-

dwelling fungi, Coccidioides immitis and C. posadasii. This dimorphic fungus and disease are 

endemic to the southwestern United States, central valley in California and Mexico. The Genome 

of Coccidioidies has been sequenced but proteomic studies are absent. To address this gap in 

knowledge, we generated proteome of Spherulin (lysate of Spherule phase) using LC-MS/MS 

and identified over 1300 proteins. We also investigated lectin reactivity to spherules in human 

lung tissue based on the hypothesis that coccidioidal glycosylation is different from mammalian 

glycosylation, and therefore certain lectins would have differential binding properties to fungal 

glycoproteins. Lectin-based immunohistochemistry using formalin-fixed paraffin-embedded 

human lung tissue from human coccidioidomycosis patients demonstrated that Griffonia 

simplificonia lectin II (GSL II) and succinylated wheat germ agglutinin (sWGA) bound specifically 

to endospores and spherules in infected lungs, but not to adjacent human tissue. GSL II and 

sWGA-lectin affinity chromatography using Spherulin, followed by LC-MS/MS was used to isolate 

and identify 195 proteins that bind to GSL-II lectin and 224 proteins that bind to sWGA lectin. This 

is the first report that GSL II and sWGA lectins bind specifically to Coccidioides endospores and 

spherules in infected human tissues. Our list of proteins from spherulin (whole and GSL-II and 

sWGA binding fraction) may also serve as a Coccidioidal Rosetta-Stone generated from mass 

spectra to identify proteins from 3 different databases: The Broad Institutes Coccidioides 

Genomes project, RefSeq and SwissProt. This also serves as a viable avenue for proteomics 

based diagnostic test development for valley fever. Using lectin chromatography and LC MS/MS, 

we identified over 100 proteins in plasma of two patients and six proteins in urine of one patient. 

We also identified over eighty fungal proteins isolated from spherules from biopsied infected lung 

tissue. This, to the best of our knowledge, is the first such example of detecting coccidioidal 

proteins in patient blood and urine and provides a foundation for development of a proteomics 

based diagnostic test as opposed to presently available but unreliable serologic diagnostic tests 

reliant on an antibody response in the host. 
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CHAPTER 1 

INTRODUCTION 

 
 
 
 
Life cycle and epidemiology of Coccidioides species 

 

The two closely related species Coccidioides immitis and Coccidioides posadasii cause 

Coccidioidomycosis (Valley Fever), a respiratory illness acquired through inhalation of airborne 

arthroconidia (spores) of this fungus. The genus Coccidioides belongs to the order of 

Onygenaceae and is a member of the phylum Ascomycota.  

The first reports by Posadas of the fungus infecting humans dates back to the 1890s in 

parts of South America and Southwestern North America. Those reports described autopsies of 

patients who had numerous nodules on the lungs and other organs including liver, spleen, and 

skin. An attribute of this fungus is that it exists in two distinct morphological states depending on 

the growth conditions (Figure 1). In soil, it occurs in a filamentous mycelial stage and can 

fragment into nonsexual arthroconidia spores (2-5 µm).  Under drying conditions, the 

arthroconidia disarticulate and may be distributed via aerosols when the soil is disturbed 

(Nguyen,C. 2013).  After hyphal spores are inhaled into lungs, they transform into spherules (up 

to 120 µm in diameter). (Figure 1).    A spherule divides internally into endospores (2-4 µm) and 

eventually ruptures, each of which can become spherules and the cycle repeats. Endospores can 

enter the environment and undergo transformation into the saprophytic stage as mycelia once 

again (Tsang,C.A. 2010; Goto,M. 2007; Fisher,F.S. 2007). 

Coccidioides is endemic in desert soils in the southwestern United States, including the 

California central valley and also certain parts of northern Mexico, Central and South America 

(Figure 2) (Brown,J. 2013). From 1998-2011, the number of reported cases in Arizona surged 

from 1,474 to 16,467, which represents an increase in incidence of 16% each year (Centers for 

Disease Control and Prevention (CDC) 2013). An estimated 150,000 valley fever infections occur 

annually in the United States.  The highest number of coccidioidomycosis cases are reported in 
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Arizona and California.  In 2012, over 17,000 cases were reported in the U.S., about 75% of 

which were reported in Arizona and 25% of which were reported in California (Sunenshine,R.H. 

2007; Hector,R.F. 2011; Centers for Disease Control and Prevention (CDC) 2013).  

There is a wide spectrum of clinical illness associated with valley fever and although most 

cases are self-limiting and do not require medical intervention, disseminated disease can occur in 

some cases (about 1 %) sometimes leading to death (Galgiani,J.N. 2005). Acute pulmonary 

coccidioidomycosis is notable for substantial morbidity, lost productivity and overall low quality of 

life. A 2007 survey conducted by Arizona Department of Health Services showed that patients 

experienced a median of 120 days of illness, 14 days of missed work, 9 days of missed school 

and 47 days of missed activities of daily living. Cases of coccidioidomycosis are shown to have a 

significant impact on the healthcare system as well. The Arizona Department of Health Services 

reported that hospitalization costs for valley fever in 2012 were more than $100 million (for 1700 

hospital admissions). 

 

Clinical presentation and diagnosis in humans  

Approximately 60% of infected individuals do not need/seek medical attention and remain 

asymptomatic, while disease severity in the remaining 40% ranges from mild flu-like respiratory 

symptoms to severe extra-pulmonary life-threatening disease(Ampel,N.M. 2010). Among patients 

in endemic areas with community-acquired pneumonia (CAP), an estimated 15-29% have acute 

coccidioidal infection (Chang,D.C. 2008; Kim,M.M. 2009). Approximately 5% of the infected 

individuals have dermal hypersensitivity (erythema nodosum or erythema multiforme). 

Coccidioidomycosis may last a few weeks to several months and patients commonly complain of 

fever, fatigue, night sweats, cough, chest pain, dyspnea, headache and skin rash. Severity of 

disease correlates with multiple risk factors, such as age, gender, ethnicity, occupation and 

immune status. Higher incidence of valley fever is reported in certain ethnic groups, including 

African-Americans and Filipinos.  Individuals working in occupations that involve high exposure to 

dust, such as agricultural or construction workers, are also at increased risk  There is a higher 
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incidence of disease in males as compared to females and those over 65 years in age (Brown,J. 

2013). Immunocompromised individuals such as those with HIV/AIDS or ones taking 

immunosuppressive drugs are at a greater risk of developing a disseminated disease 

(Ampel,N.M. 2007).  Spherules in the lung expand in size as large as 100-200um and then 

rupture, releasing endospores, each of which can grow into another spherule. In about 1% cases, 

endospores can disseminate hematogenously, beyond the lung to other tissues and organs 

where they may grow and cause disseminated disease.  

 Necrotizing granulomata in the lung are the hallmark of the immune response to 

coccidioidomycosis. Lymphocyte clusters in the perigranulomatous region are predominantly B 

cells with interspersed CD4+ T lymphocytes and fewer CD8+ T lymphocytes (Ampel,N.M. 2007; 

Ampel,N.M. 2003).  Both suppressive and stimulatory cytokines such as Il-10 and interferon- are 

produced within coccidioidal granuloma. The human immune response during coccidioidomycosis 

involves the development of delayed-type hypersensitivity and cellular immunity (Ampel,N.M. 

2007). Cell-mediated immunity is protective in host and is mediated as dermal hypersensitity in 

form of erythema nodosum or erythema multiforme. These rashes resolve in a small amount of 

time. A skin test that measures a cellular response is the newly re-introduced Spherusol, It tests 

the ability of spherule-derived coccidioidin to induce delayed-type hypersensitivity in patients and 

is more than 98% accurate (Johnson,R. 2012).  Anticoccidioidal humoral antibody in an infected 

host is believed not to provide protection but indicate level of pathogenicity of the fungus 

(Saubolle,M.A. 2007). However, in patients with compromised immune systems and even in 

otherwise healthy individuals with no known immune suppression, immune responses to the 

fungus may be delayed or aberrant. Therefore, although detection of antibodies may be useful in 

diagnosis of the disease but absence of it does not rule out the possibility of an infection. 

 
Currently available diagnostic tests for coccidioidomycosis include culture, microscopy 

and serology. Coccidioides grows easily in culture and can be visualized in about 7 days but 

culturing the fungus is only as good as the clinical specimen. Microscopic detection of the fungal 

spherules and endospores can be done in fixed biopsied tissue with variety of stains such as 
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Grocott-methenamine-silver and hematoxylin-eosin .However, this diagnostic technique is not 

very sensitive and reliable (Saubolle,M.A. 2007; Pappagianis,D. 1990). Other forms of diagnosis 

include a chest X-ray, computed tomography (CT) and magnetic resonance imaging (MRI). Chest 

radiography aids in clinical diagnosis and following the progression or resolution of the disease. 

However, radiography findings are often non-specific and cannot alone reliably diagnose the 

Coccidioidomycosis. It can be challenging to differentiate coccidioidal lung nodules from other 

pulmonary nodules caused by lung cancer or tuberculosis by CT scans or MRI. Furthermore, in 

some patients with disseminated disease, radiographs may not show evidence of previous 

pulmonary disease (Chang,D.C. 2008; Ampel,N.M. 2003). 

Serology tests that detect antibodies to the fungus are the most commonly used. 

However, diagnosis is difficult even with a serological antibody-based blood test because the 

immune response to Coccidioides may be delayed or even non-existent in some individuals . 

Several serologic tests have been developed, including the tube precipitin (TP), complement 

fixation (CF), immunodiffusion tube precipitin (IDTP), immunodiffusion complement fixation 

(IDCF) and IgM/IgG ELISA immune assays (EIA) (Ampel,N.M. 2010). The tube precipitin (TP) 

and immunodiffusion tube precipitin (IDTP) assays utilize the TP antigen. These assays detect 

the presence of IgM (anti-TP) in bodily fluids and demonstrate positive results in early stages of 

illness (within 1-3 weeks after onset of symptoms). The complement fixation (CF) and 

immunodiffusion complement fixation (IDCF) assays utilize the CF antigen, which is a heat-labile 

chitinase. These assays detect the presence of IgG (anti-CF) in bodily fluids and typically 

demonstrate positive results in later stages of illness (2-3 weeks or more after onset of 

symptoms). Higher titers indicate severe forms of disease. ID assays are specific but early 

detection is still a major challenge. IgM and IgG enzyme immunoassays (EIAs) are also widely 

used for diagnosis although in some studies it has been deemed non-specific (Blair,J.E. 2013). 

All the above described serologic tests rely on the host immune response. Although antibodies 

are useful for diagnosis, cellular immunity against the fungus indicates a favorable prognosis, as 

the host mounts a granulomatous reaction around the spherules (Kirsch,E.J. 2012; Durkin,M. 
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2008).  Cellular immunity is considered protective for life unless the patient becomes 

immunosuppressed, a condition which increases the risk of re-activation or re-infection 

(Ampel,N.M. 2003; Ampel,N.M. 2001) .  During such prolonged periods between diagnosis and 

treatment, the likelihood of complications of disease increases. 

There is a dire need of diagnostic tests that provide a definitive and early diagnosis. 

Misdiagnosis has many implications. Symptoms of Coccidioidomycosis are commonly confused 

with that of pneumonia that is caused by bacterial or viral agents. For this reason, patients are 

routinely prescribed antibiotics. The patients, hence, receive unnecessary (usually multiple 

courses) anti-bacterial treatment that may cause disruption of normal flora leading to 

opportunistic infections such as Clostridium difficile.   Furthermore, multiple rounds of antibiotics 

contributes to development of drug resistance and patients also endure side effects of these 

drugs. In a study done in Arizona in 2007, it was found that patients exhibiting symptoms of 

coccidioidomycosis waited for more than a month before seeking medical care. On average, it 

took an additional five months, including three or more visits to a physician, before the patient 

was correctly diagnosed. More than 50% of these individuals sought care from an emergency 

room, 40% were admitted to a hospital for at least one night, and in 25%, disease necessitated 

ten or more visits to a physician (Tsang,C.A. 2010). During prolonged periods of non-diagnosis, 

additional tests, which can be both invasive and expensive, may be sought out by either the 

physician or the patient. Finally, delayed diagnosis may increase the likelihood of disease-related 

complications. With the importance of definitive, early diagnosis in mind, it is evident that a rapid, 

robust diagnostic test would help patients and their healthcare providers.  

 

Detection of disease biomarkers in Human plasma using Mass spectrometry 

The human plasma proteome holds the promise of revolution in disease diagnosis 

(Marimuthu,A. 2011; Nanjappa,V. 2014). Blood plasma is often the primary clinical specimen, and 

contains highly abundant proteins like albumin and immunoglobulins, moderate-to-low abundant 

proteins such as tissue proteins (leakage markers) as well as very low abundance proteins such 
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as cytokines. These proteins exist in a dynamic range of more than 10 orders of magnitude in 

concentration. The classical plasma proteins are highly abundant and are primarily secreted by 

intestines and liver and have an extended residence time in plasma while peptide (and protein) 

hormones and cytokines have a relatively shorter residence time and abundance in plasma 

(Valdivia,L. 2006; Anderson,N.L. 2002).  

At the high abundance end, albumin secreted by liver has a half-life of 21 days and is 

present at a concentration of 35-50 mg/ml. On the other hand, low abundant cytokines such as 

interleukin 6 are present in the range of 0-5 pg/ml. Tissue leakage proteins in plasma may imply 

serious pathology that can be detected in plasma. Cardiac myoglobin (Mb) is an example of such 

a protein clinically measured for diagnosis of cardiac infarction. Its concentration in plasma 

increases from 1-85 ng/ml to 20-1100ng/ml in patients.  

 More than half of the proteins (total of close to 10000 identified at present) in plasma fall 

in a molecular weight range of 80kDa to 10 kDa suggesting that they persist in plasma without 

rapid loss into urine. Urine serves as a subset of plasma and contains approximately 50ug/ml of 

protein/peptides from at least 75 proteins. It constitutes an impressive proteome and peptidome 

(Marimuthu,A. 2011). Urine proteome till date consists of 1823 proteins. Peptides below the 

kidney size cut off are collected in urine and provide a complementary picture of many events at 

the low mass range of the plasma proteome. Urine is also an easily collectable non-invasive 

clinical specimen. Both host and pathogen proteins may be broken down by proteases leaving 

peptide fragments behind that circulate in plasma and/or urine (Schiess,R. 2009; Richter,R. 

1999).  

 Tandem mass spectrometry coupled to liquid chromatography (LC-MS/MS) is a powerful 

analytical tool that allows identification of proteins in complex biomaterials like plasma and urine 

(Pisitkun,T. 2007). The first step is the proteolytic digestion of proteins using an enzyme like 

trypsin which hydrolyzes peptide bonds following lysine or arginine. These trypisnized samples 

are the subject to high pressure chromatography (HPLC) which stratifies the peptides according 

to hydrophobicity. This serves the purpose of spreading out the delivery time of the peptide to the 
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electrospray element of mass spectrometer which leads to identification of more peptides in a 

complex sample. The first MS spectrum is thus formed which consists of a readout of 

mass/charge (m/z) of the various peptides. The second MS spectrum is generated when peptides 

undergo another level of analysis initiated by targeted fragmentation of the selected “parent” 

peptide ion. This creates complementary b- and y type ions series of fragments. The b-ions 

contain the NH2 terminus through the cleavage site; the y-ions contain the COOH terminus 

through the cleavage site.  The difference in m/z between adjacent b- or y-series peaks is exactly 

the residue mass of the amino acid present in one fragment, but absent in the other. Thus the 

peptide sequences are determined which can be matched back to the database of choice 

organism. When multiple peptides are identified from a protein, the confidence of identification 

increases. However, even when a single peptide is identified from any given protein, other 

approaches such as target decoy analysis can further the confidence of identification (discussed 

in-depth in experimental procedures).  

LC-MS/MS is hence a great means of discovering unknown proteins in a sample like 

plasma. In general, a particular peptide ion may be only sporadically detected unless it is derived 

from one of the most abundant proteins in a given sample. To circumvent this problem, targeted 

proteomics (multiple reaction monitoring or MRM) can be used to identify specific peptides of 

interest on a complex sample. Furthermore, initial processing of sample before the proteolytic 

digestion (including stratification on SDS-PAGE) can be applied to attain the desired resolution in 

identification of proteins of interest in a complex sample (Pisitkun,T. 2007).  
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Figure 1. Life cycle of the dimorphic fungus Coccidioides. The fungus exists in a filamentous 
mycelial state in soil. When conditions of growth decline, asexual spores called arthroconidia are 
formed which can, upon inhalation, cause coccidioidomycosis in a variety of mammalian hosts. In 
the host, the fungus forms spherules which consist of multiple endospores. These endospores 
are released when spherules rupture and are dispersed in the lung tissue. These can also 
undergo transformation back into the saprophytic cycle. (Nguyen,C. 2013). 
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Figure 2. Epidemiology of Coccidioides. Coccidioides is endemic in the desert soils of 
southwestern part of the United States including California, Arizona and New Mexico as well as 
Mexico and Parts of Central America. Most cases are reported in Arizona and California 
(Nguyen,C. 2013).  
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  CHAPTER 2 

SPHERULIN PROTEOME AND LECTIN-BINDING GLYCOPROTEOME  

OF COCCIDIOIDES POSADASII 

 

Abstract 

Prior to our studies, there was no available proteomics data for the fungus, Coccidioides. From a 

preparation of Spherulin (parasitic phase protein lysate) we generated a proteome consisting of 

1390 protein entries. We also investigated the lectin binding glycoproteome subset of this 

proteome.  We hypothesized that coccidioidal glycosylation patterns may be different from that of 

mammals and that some lectins would selectively bind to fungal glycoproteins in a background of 

mixed human and fungal proteins. Using lectin-based immunohistochemistry on formalin-fixed 

paraffin-embedded (FFPE) human lung tissues, we demonstrated that N-acetylglucosamine 

(GlcNAc)-binding lectins Griffonia simplificonia lectin II (GSL-II) and succinylated wheat germ 

agglutinin (sWGA) bind to endospores and spherules (parasitic phase) in infected lungs, but not to 

adjacent human tissue. We then performed GSL-II and sWGA affinity chromatography followed by 

LC-MS/MS to identify lectin-binding glycoproteins from a coccidioidal spherule preparation 

(Spherulin). A total of 195 glycoproteins from Spherulin were bound to GSL-II whereas 224 

glycoproteins bound to sWGA, with an overlap of 145 glycoproteins between the two lectins. 

Coccidioidal proteome from Spherulin was generated using the putative sequences present in three 

Coccidioides databases:  RefSeq, SwissProt and The Broad Institute’s Coccidioides Genome 

project.  

 

Overview 

 

Fungi possess different glycosylation enzymes (glycosyltransferases and glycanases) than 

mammalian cells (Tsang,C.A. 2010; Goto,M. 2007).   Therefore, many of their glycan structures 

are different from mammalian glycans and can be used to differentiate between host from fungal 
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glycoproteins (Martin,K. 2007; Goto,M. 2007).  Although little is known about glycosylation in 

Coccidioides sp., Candida albicans as well as other fungi have been shown to have 

mannosyltransferases that are not present in mammalian cells (Mora-Montes,H.M. 2010).  We have 

taken advantage of the differences in fungal and mammalian glycosylation by identifying lectins 

that specifically bind to the Coccidioides spherule (parasitic phase) and not to host (human) 

proteins. 

 Lectins have remarkable specificity for various glycan structures and they are often used 

to capture glycoproteins for analysis. We focused on two lectins, GSL-II and sWGA, in this study. 

GSL-II is a dimeric glycoprotein that has a unique binding site for α- or β-linked GlcNAc residues 

on the nonreducing termini of oligosaccharides. sWGA is a succinylated derivative of WGA (derived 

from Triticum vulgaris), a dimeric protein with an affinity to N-Acetylglucosamine dimers and trimers. 

In this study, we demonstrate that GSL-II and sWGA lectins specifically bind to Coccidioides 

endospores and spherules in infected human tissues. We also studied Spherulin, spherule phase 

lysate of this fungus. Further, we performed lectin-affinity chromatography and LC-MS/MS to isolate 

and identify coccidioidal glycoproteins from Spherulin. 

Experimental Procedures 

Preparation of Spherulin 

Coccidioides posadasii (strain Silvera) spherule-phase cells were maintained in continuous 

culture at 40°C, 20% CO2, with continuous shaking at 120 RPM in modified Converse medium 

(Cox,R.A. 1987).  In brief, cultures were initiated by seeding flasks of Converse medium with ~ 1-5 

X 105 arthrospores/ml and at 3-4 day intervals the cells collected by centrifugation, washed in sterile 

distilled water and stored at 4 °C in 0.5% formalin in water.  Prior to fixing in formalin, the cells were 

checked by microscopy to ensure that the culture was mixed-phase spherules and endospores by 

morphology and for purity by culture on glucose-yeast extract agar plates.  The spent medium was 

supplemented to 0.5% formalin and stored at 4°C.  The spent medium contained antigens 

elaborated during cellular growth (Spherulin filtrate, SPH-F).  The SPH-F antigens were 

concentrated using a 10,000 MW ultrafiltration membrane.  The collected mixed-phase spherules 
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and endospores were processed to obtain the lysate antigen preparation (Spherulin lysate, SPH-

L).  To release the internal antigens, the fungal cells were processed in an ice-cooled Beadbeater 

using 0.5 mm glass beads for 5 minutes.  Cellular debris was removed by centrifugation (6,000 X 

g, 10 minutes) and the supernatant collected.  Both SPH-F and SPH-L were lyophilized and stored 

at -80 °C until use.     Spherulin L and F were combined in these studies and will be referred to as 

“Spherulin.” 

 

Spherulin analysis using LC-MS/MS 

 20 ug of Spherulin was suspended in SDS sample loading buffer (50mM Tris-HCl, pH 6.8, 

2% SDS, 10% glycerol, 1% 2-mercaptoethanol, 12.5mM EDTA and 0,02% bromphenol blue) and 

heated to 95°C. The proteins were then separated by 12% SDS-PAGE and stained with Bio-Safe 

Coomassie G-250 Stain. Each lane of the SDS-PAGE gel was cut into six equal size slices, placed 

in a 0.6-ml polypropylene tube, destained twice with 375 μl of 50% acetonitrile (ACN) in 40 mM 

NH4HCO3 and dehydrated with 100% ACN for 10 min. After removal of ACN by aspiration, the gel 

pieces were dried in a vacuum centrifuge at 60 °C for 30 min. Trypsin (250 ng; Sigma) in 20 μl of 

40 mM NH4HCO3 was added, and the samples were maintained at 4 °C for 15 min prior to the 

addition of 50 μl of 40 mM NH4HCO3. The digestion was allowed to proceed at 37°C overnight and 

was terminated by addition of 10 μl of 5% formic acid (FA). After further incubation at 37 °C for 30 

min and centrifugation for 1 min, each supernatant was transferred to a clean polypropylene tube. 

The extraction procedure was repeated using 40 μl of 0.5% FA, and the two extracts were 

combined. The resulting peptide mixtures were purified by solid phase extraction (C18 ZipTip) after 

sample loading in 0.05% heptafluorobutyric acid:5% FA (v/v) and elution with 4 μl of 50% ACN:1% 

FA (v/v) and 4 μl of 80% ACN:1% FA (v/v), respectively. The eluates were combined and dried by 

vacuum centrifugation and 6 μl of 0.1% FA (v/v) was added followed by sonication for 2 min. The 

sonicated samples were briefly centrifuged and 2 μl of the sample was subsequently analyzed by 

mass spectrometry as described below. 
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Lectin-based Immunohistochemistry (IHC) 

Formalin-fixed paraffin embedded (FFPE blocks) were obtained under a human subjects 

protocol approved by the Mayo Clinic Institutional Review Board.  IHC was performed using FFPE 

tissue blocks from seven patients with Valley Fever.  5µm tissue sections from seven patients who 

underwent either lobectomy, wedge resection or excisional biopsy from a skin lesion (wrist) were 

used for IHC.  Tissue sections on slides were blocked in Alkaline Phosphatase/Horseradish 

Peroxidase Block (SurModics, Cat# APHP-0111-01) for 15 minutes followed by Carbo-Free 

Blocking Solution (Vector Laboratories, Cat# SP-5040) for 1 hour.  Biotinylated lectins were 

obtained from Vector Laboratories (Cat# B-1215, B-1025S).   Preliminary experiments were 

performed to optimize the lowest concentration of lectin that showed positive staining, which was 

2ug/ml for both GSL-II and sWGA.  Biotinylated lectins bound to tissue sections were detected with 

streptavidin (SA) coupled to horseradish peroxidase (HRP) using Diaminobenzidine (DAB) as 

substrate. Sections were washed with 1X PBS (3 times for 5 minutes each) between blocking, 

incubation with lectin, detection with SA-HRP, and staining with DAB. Tissue was counterstained 

using hematoxylin (Santa Cruz Cat# SC-24973).  GSL-II and sWGA were inhibited with serial 

dilutions of chitin hydrolysate, a concentrated solution of GlcNAc (Vector Labs, Cat# SP-0090). 

Phaseous vulgaris erythrolectin (PVE), a lectin that binds Galβ4GlcNAcβ2Manα6, was used as a 

negative lectin control. 

 

Lectin-based Inhibition ELISA 

Spherulin was coated onto a 96-well flat-bottom ELISA plate at 1ug/ml in PBS for one hour 

at room temperature. Wells were blocked with 1% carbo-free BSA in PBS for an additional hour.  

Two-fold (starting from 1uM) dilutions of non-biotinylated sWGA and GSL-II were used to challenge 

the binding of biotinylated GSL-II and sWGA, respectively.  For instance, non-biotinylated sWGA 

was incubated with biotinylated GSL-II for 10 minutes prior to adding to the plate.  Non-biotinylated 

lectin dilutions started at 1 uM, and biotinylated lectins were held constant at 10nM.  The mixture 

was then added to the plate for one hour. PVE was used as a negative lectin control. Bound lectins 
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were detected with a 5000-fold dilution of SA-HRP (Thermo-Pierce, Cat # 21130) in PBS. Plates 

were washed three times with PBS containing 0.05% Tween-20 (PBST) between coating, blocking, 

incubation with lectin, detection with SA-HRP, and addition of 3, 3’, 5, 5’-Tetramethylbenzidine 

(TMB) (Becton-Dickinson, Cat# 555214).   1N H2SO4 was used to stop the HRP enzyme and the 

plate was read in a Molecular Diagnostics plate reader at 450nm using SoftmaxPro software.  

Percent of control was calculated using the following formula:  (O.D. biotinylated lectin in presence 

of non-biotinylated inhibitor) / (O.D. biotinylated lectin in the absence of inhibitor) x 100 = percent 

of control. 

 

 
 
Lectin Affinity Chromatography 

GSL-II and sWGA coupled to agarose beads were purchased from Vector Labs (Cat# 

AL1213 and AL1023S) and used to affinity-purify glycoproteins from Spherulin. 500 ug of Spherulin 

dissolved in PBS was applied to lectin-agarose columns (0.5ml bed volume). Spherulin starting 

material and column flow through were saved for subsequent SDS-PAGE analysis.  Ten bed 

volumes of PBS were used to wash the column of unbound lysate.  The last 200ul of PBS wash 

was saved for mass spec analysis to ensure that glycoproteins were not non-specifically washing 

off the column.  Then three bed volumes of “Glycoprotein Eluting Solution for GlcNAc Binding 

Lectins” (Vector Labs, Cat# ES5100) were used to elute glycoproteins bound to GSL-II and sWGA-

Agarose. The elutions were collected, and concentrated by ultrafiltration to 50ul using Amicon Ultra 

0.5ml 3 KDa cutoff centrifugal filters (Cat # UFC500396).  Protein content in the concentrated 

eluates were measured using the Micro BCA Protein Assay Kit (Thermo Pierce, Cat# 23235) 

according to the manufacturer’s directions.   

 

Deglycosylation 

Spherulin was deglycosylated using a PNGaseF kit according to the manufacturer’s 

instructions (New England Biolabs, Cat# P0704L). Briefly, 500ug of Spherulin was denatured using 
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10X glycoprotein denaturation buffer at 95°C for 5 minutes followed by 5 minutes on ice. For 

deglycosylation, 10X G7 Reaction Buffer, 10% NP40 and PNGase were added and allowed to 

incubate for 6 hours at 37°C. Deglycosylated Spherulin was applied to lectin bound agarose beads 

in columns (same as above) and eluates were analyzed by SDS-PAGE and digested with trypsin 

as described below. 

 

SDS-PAGE and in-gel trypsin digestion 

The SDS-PAGE gel bands are prepared for mass spectrometry analysis using the following 

procedures.  Colloidal blue stained gel bands were destained in 50% acetonitrile/50mM Tris pH 8.1 

until clear, and the proteins reduced with 50mM TCEP/50mM Tris pH8.1 at 55ºC for 30 minutes, 

followed with alkylation using 20mM iodoacetamide/50mM Tris pH 8.1  at room temperature for 30 

minutes in the dark. Proteins were digested in-situ  with 0.15ug trypsin (Promega Corporation, 

Madison WI) in 25 mM Tris pH 8.1 / 0.0002% Zwittergent 3-16, at 37C overnight, followed by 

peptide extraction with 2% trifluoroacetic acid and acetonitrile. The pooled extracts were 

concentrated and the proteins identified by nano-flow liquid chromatography electrospray tandem 

mass spectrometry (nanoLC-ESI-MS/MS) using a Thermo Scientific Q-Exactive Plus Mass 

Spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled to a Thermo Ultimate 3000 

RSLCnano HPLC system. 

 

Mass spectrometry 

Peptides present in each sample were loaded onto a 0.25uL bed OptiPak trap (Optimize 

Technologies, Oregon) custom-packed with 5um, 200A Magic C18 stationary phase. Loaded trap 

was washed for 4 minutes with an aqueous loading buffer of 0.2% FA and 0.05% TFA at 10uL/min. 

-packed 

with Agilent Poroshell 120S 2.7um EC-C18 stationary phase, using a Dionex UltiMate® 3000 RSLC 

liquid chromatography (LC) system (Thermo, San Jose, CA). Peptides were separated using a 400 

nL/min LC gradient comprised of 2%-40% B in 0-70 min. Mobile phase A was 2% acetonitrile (ACN) 
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in water with 0.2% FA and mobile phase B was ACN/isopropanol/water (80/10/10 by volume) with 

0.2% FA. Eluting peptides were analyzed using a QExactive Plus mass spectrometer (Thermo-

Fisher, Waltham, MA). The instrument was configured to operate in data-dependent mode by 

collecting MS1 data at 70,000 resolving power (measured at m/z 200) with an AGC value of 1E6 

over a m/z range of 360-2000, using lock masses from background polysiloxanes at m/z  371.10123 

and 446.12002. Precursors were fragmented with normalized collision energy (NCE) of 28, 

fragments measured at 17,500 resolving power and a fixed first mass of 140. Resulting tandem 

mass spectra (MS/MS) were collected on the top 20 precursor masses present in each MS1 using 

an AGC value of 1E5, max ion fill time of 50ms, and an isolation window of 1.5 Da. All raw data 

files were transcoded into mzML format using msConvert tool of the ProteoWizard library (PMID: 

18606607). 

 

Bioinformatics 

We compiled a composite protein sequence database to identify the Coccidioides proteins 

present in the lysate. This database contained Coccidioides proteomes obtained from the Broad 

Institute’s Coccidioides Genomes project (Neafsey,D.E. 2010; Sharpton,T.J. 2009), SwissProt and 

RefSeq. RefSeq human and bovine proteomes were added to this database to prevent 

misidentification of proteins originating from cell culture and other human contamination as 

Coccidioides proteins. Common contaminants (wool, cotton, etc.) were added to the database to 

account for sample handling artifacts. Reversed protein sequences were appended to the database 

to estimate protein and peptide identification false discovery rates (FDRs).  

MyriMatch (Tabb,D.L. 2007) (version 2.1.38) database search engine matched the 

MS/MS present in each data file against the composite protein sequence database. The software 

was configured to use 10ppm m/z tolerance for both precursors and fragments while performing 

peptide-spectrum matching. The software derived semitryptic peptides from the sequence 

database while looking for the following variable modifications: carbamidomethylation of cysteine 

(+57.023 Da.), oxidation of methionine (+15.994 Da.) and formation of n-terminal pyroglutamic 
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acid (-17.023 Da.). IDPicker (version 3.0.504) software filtered the peptide-spectrum matches at 

2% FDR. The software was configured to use an optimal combination of MVH, mzFidelity and 

XCorr scores for filtering. Protein identifications with at least two unique peptide identifications 

were considered to be present in the sample. Resulting proteins were clustered into groups of 

proteins that match the same set of peptides.  
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Figure 3. Workflow for generation of Spherulin proteome. To identify proteins present in 
Spherulin, in-gel trypsin digestion was done following the fractionation with SDS-PAGE.  For 
identifying the fraction of GSL-II and sWGA binding fraction of Spherulin, it was affinity purified on 
lectin columns and eluates were analyzed with LC-MS/MS.  
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Results 

Lectin-based IHC 

Lectin-based IHC with biotinylated GSL-II and sWGA was performed using FFPE lung 

tissue sections from six patients who underwent wedge resections for Coccidioidomycosis and one 

tissue section from the wrist of an infected patient.  Data from all seven patients is represented in 

Figure 4. Figure 5 shows GSL-II and sWGA reactivity to the spherules in one patient. Positive and 

specific binding of GSL-II and sWGA lectins was observed for Coccidioides spherules and 

endospores and not to adjacent lung tissue.  PVE lectin did not bind to spherules, but did bind to 

adjacent host tissue. To support lectin-like binding to spherules and endospores, reactivity of GSL-

II and sWGA was inhibited in a concentration-dependent manner with commercial solution of 

monomeric and oligomeric GlcNAc (100 mM).  A high concentration of GlcNAc (1:4 dilution; 25mM) 

was required to completely inhibit sWGA binding to the spherules while a relatively lower GlcNAc 

(1:400 dilution; 0.25mM) amount inhibited GSL-II binding suggesting that sWGA binding to 

spherules and endospores is stronger than GSL-II (Figure 5). When galactose (non-specific sugar) 

was used to inhibit the binding of these two lectins to the fungal spherules, a complete lack of 

inhibition was seen. 

 

Lectin-based inhibition ELISA 

We wanted to confirm our lectin-based IHC results and assess whether sWGA and GSL-

II compete for the same glycan structure. To accomplish this, we performed an inhibition ELISA 

using biotin-GSL-II and biotin-sWGA as detection agents.  As shown in Figure 6, sWGA inhibits 

binding of biotinylated GSL-II to Spherulin in a concentration dependent manner with a relative 

IC50 of 1.5 uM. In contrast, we were not able to reach 50% inhibition of 1nM biotinylated sWGA 

with GSL-II even at 20uM, suggesting higher avidity of sWGA for GlcNAc on coccidioidal 

glycoproteins than GSL-II.  PVE, a Galβ4GlcNAcβ2Manα6 binding lectin, did not inhibit either 

GSL-II or sWGA and served as a “control” lectin.  
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Figure 4. Lectin-based IHC micrographs of seven valley fever patients.  Biotinylated lectins 
were incubated with infected lung tissues from seven patients, as labeled in the picture and as 
stated in experimental procedures. Brown color indicates reactivity of lectin.  GSL-II and sWGA 
reacted positively and specifically to endospores and spherules, and not to the adjacent human 
lung tissue.  
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Figure 5. Lectin-based IHC micrographs of lectins.  Biotinylated lectins were incubated with 
infected lung tissues, as labeled in the image and as stated in experimental procedures. Brown 
color indicates reactivity of lectin.  Spherules are round structures with or without endospores 
inside.  Arrows indicate examples of spherules or groups of spherules.  GlcNAc-mediated 
inhibition of sWGA and GSL-II binding to spherules and endospores is shown at different 
dilutions. Galactose did not inhibit binding of either lectin to spherules. 
PVE did not bind the spherules but to the human lung tissue indicating non-specific binding.   
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Figure 6.  GSL-II and sWGA inhibition ELISAs.  Two-fold dilutions of non-biotinylated sWGA 
and GSL-II lectins starting at 20uM were incubated in an ELISA plate coated with Spherulin for 20 
minutes.  Then biotinylated GSL-II or sWGA were added and incubated for one hour.  After 
washing the plate, streptavidin-HRP was added to detect biotinylated lectins that were not 
inhibited from binding to Spherulin.  After TMB substrate development the plate was read at 
450nm.  (O.D. biotinylated lectin in presence of non-biotinylated inhibitor) / (O.D. biotinylated 
lectin in the absence of inhibitor) x 100 = percent of control. 
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 Given the results from the IHC and ELISA using Spherulin as antigen, our first step in the 

proteomic analysis of Coccidioides was to identify the proteome of Spherulin.  Three different 

Coccidioides databases (SwissProt, RefSeq, and Broad Institute’s Coccidioides Genomes project 

(Neafsey,D.E. 2010; Schiess,R. 2009) were employed to search the MS/MS spectra derived from 

Spherulin.  A total of 1390 proteins were identified in Spherulin. A listing of the 10 most abundant 

coccidioidal proteins in Spherulin with high tryptic fragment coverage is shown in Table 1. All of 

these proteins have an effective FDR of 0.0%.  Eight of the top 10 identified proteins in Spherulin 

are metabolic enzymes important for fungal growth.  The second most abundant Spherulin protein 

identified is a “conserved hypothetical protein” (CPSG_03975) with a pentapeptide (PT) repeat 

sequence and has high homology with an exoprotein involved in adhesion. This finding indicates 

that CPSG_03975 is no longer “hypothetical” and is highly abundant during fungal growth in vitro. 

In total, 434 hypothetical proteins were identified, constituting 31% of the total proteins entries in 

the proteome of Spherulin.  

 Other highly abundant proteins found in Spherulin were 5-methyltetra-

hydropteroyltriglutamate-homocysteine methyltransferase (MET –E; CPSG_03208), Heat shock 

protein 90 (CPAG_06539), 3-isopropylmalate dehydrogenase (CPAG_08709), glucose-6-

phosphate isomerase (CPAG_05681), enolase (CPAG_04681) and fructose biphosphate 

aldolase (CPAG_09270). 
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Protein ID 

% sequence 
coverage 

Unique tryptic 
peptides identified 

from Spherulin 

5-methyltetrahydropteroyltriglutamate-homocysteine 
methyltransferase (CPSG_03208) 

 
89 

 
188 

conserved hypothetical protein (CPSG_03975)  
86 

 
89 

3-isopropylmalate dehydrogenase (CPAG_08709)  
91 

 
89 

malate dehydrogenase (CPAG_07192) 89 89 

heat shock protein 90 (CPAG_06539) 78 87 

enolase (CPAG_04681) 77 86 

fructose biphosphate aldolase (CPAG_09270) 79 78 

H538.4 glucose-6-phosphate isomerase 
(CPAG_05681) 

80 78 

malate synthase (CPAG_07630) 71 73 

fumarate reductase Osm1 (CPSG_05536) 83 70 

 
Table 1: Mass spectrometric identification of top 10 coccidioidal proteins in 
Spherulin.  The table lists the top 10 (with highest number of tryptic peptides) proteins 
identified in Spherulin. 
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SDS-PAGE of and identification of proteins from GSL-II and sWGA affinity purified Spherulin 

eluates  

Since GSL-II and sWGA lectins bind to spherules and endospores in infected human lung 

tissue sections, it was possible that the lectins simply bound to chitin since the principle 

component of chitin is GlcNAc.  However, it was also possible that GlcNAc structures are present 

on coccidioidal glycoproteins and accessible to the lectins. Therefore we employed lectin-affinity 

chromatography using Spherulin followed by SDS-PAGE to determine if there were any 

glycoproteins containing GlcNAc that bound to GSL-II and sWGA lectins.  After Spherulin was 

loaded onto GSL-II and sWGA columns, they were washed extensively and eluted with 

“Glycoprotein Eluting Solution”. The eluted material was dialyzed, concentrated and quantified as 

described in experimental procedures. Figures 7A and 7B show SDS-PAGE gels of Spherulin 

elution profiles from GSL-II and sWGA columns respectively.  Mass spectrometric analysis of the 

Wash 6 (Figure 7A and 7B) from GSL-II and sWGA columns did not reveal any coccidioidal 

proteins, indicating that the remaining material bound to the lectin columns was specific for lectin 

(data not shown).  

Our next goal was to learn the identities of lectin-binding glycoproteins in Spherulin.  To 

accomplish this goal we performed lectin affinity chromatography of Spherulin using both sWGA 

and GSL-II, and then identified the enriched glycoproteins using tandem mass spectrometry and 

analysis of MS/MS spectra.  We also wanted to determine if lectin chromatography enrichment 

would provide the identities of glycoproteins not identified in whole Spherulin. Searching spectra 

from tryptic peptides against the Coccidioides posadasii (strain Silviera) databases (The Broad 

Institute’s Coccidioides Genomes project, RefSeq and SwissProt) revealed that 195 coccidioidal 

glycoproteins bound to GSL-II (FDR of 1.11%), while 224 glycoproteins bound to sWGA (FDR of 

1.01%). A total of 145 fungal glycoproteins bound to both GSL-II and sWGA lectins (Figure 7C). 

The top 10 most abundant coccidioidal glycoproteins eluted from both GSL-II and sWGA lectin 



26 

 

columns (highest tryptic peptide coverage) are listed in Table 2. The table also lists the 

percentage peptide coverage for these proteins as well as the unique peptide count for each of 

the replicate runs from GSL-II and sWGA columns.  Many hypothetical proteins were also 

identified in the lectin affinity analysis (36 in GSL-II analysis and 54 in sWGA). A highly abundant 

hypothetical protein (CPSG_01012), different from the hypothetical protein identified in whole 

Spherulin (see below) bound to both the lectins. This hypothetical protein has 70% sequence 

similarity to a ribonuclear protein binding domain protein from Aspergillus and other fungi.  Other 

abundant glycoproteins in the lectin analysis included 5-methyltetrahydropteroyl-triglutamate-

homocysteine methyltransferase (CPSG_03208), malate dehydrogenase (CPAG_07192), 

glucose-6-phosphate isomerase (CPAG_05681, and complement fixation-chitinase 

(CPSG_08657). A complete list of proteins can be found in appendix A. The lectin-binding 

glycoproteome constitutes a subset of the proteome derived from Spherulin (Figure 8 and 10). 

   To further support that the binding of the lectins was due to GlcNAc structures on 

proteins, Spherulin was deglycosylated with PNGase F.  PNGase F cleaves glycans from 

proteins at asparagine residues (except when there is an α1-3 fucose on the core GlcNAc of the 

glycoprotein).  Deglycosylated Spherulin was run through both GSL-II and sWGA columns 

followed by SDS-PAGE and trypsin digested using the same methods as before. Mass 

spectrometry analysis of the PNGase-treated elutions from GSL-II and sWGA lectin columns 

demonstrated nearly complete loss of binding by deglycosylated coccidioidal glycoproteins to the 

lectin columns (Table 2 and Figure 9). This deglycosylation experiment suggests that the binding 

of coccidioidal glycoproteins is lectin-like and specific for GlcNAc. Once the glycoproteins were 

deglycosylated, they no longer bound to the lectin chromatography columns (eluate profile of 

deglycosylated Spherulin for sWGA and GSL-II affinity columns is shown in lanes 6 and 8 

respectively in Figure 9).  
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Figure 7.  SDS-PAGE from GSL-II (A) and sWGA (B) lectin columns. Lanes are labeled as 
indicated.  Spherulin was starting material prior to running the column.  Wash 1-6 for GSL-II and 
sWGA columns represent six 0.5ml PBS washes collected from the column (column bed volume 
was 0.2ml). The last lane in each gel represents elution of glycoproteins that bound to the lectin 
column using “Glycoprotein Eluting Solution” (Vector Labs). GSL-II and sWGA elution lanes (8A 
and 7B) were cut into slices and processed for trypsin digestion. 
Venn diagram (C). The diagram represents total and common proteins identified from GSL-II and 
sWGA lectin column eluates. 145 proteins bound both the lectins. A total of 195 proteins bound to 
GSL-II and 224 to sWGA. 
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Figure 8.  Venn Diagrams of GSL-II and sWGA replicates. Glycoproteins from Spherulin were 
isolated using GSL-II and sWGA affinity columns in three separate technical replicates (same 
experiment was conducted thrice). Eluates from each affinity chromatography run were analyzed 
on mass spectrometer. The Venn diagram shows the number of proteins identified in each 
replicate and also the common proteins among them. 
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Figure 9.  PNGase treatment of Spherulin abrogates the binding of GSL-II and sWGA lectins. 
SDS-PAGE lanes are numbered and labeled according to treatment.  Lanes 5 and 7 (black boxes) 
were cut into gel slices, treated with trypsin, and run on an Orbitrap QExactive mass spectrometer.  
Spectra were searched and analyzed using the Coccidioides posadasii (Silviera strain) as 
described in the experimental section. 
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.  
 

 

 
Protein ID 

Max % 
seq 

Cove- 
rage* 

Unique peptides in 
GSL-II  

 
 replicates 

 
 

1      2      3 

Unique 
peptides in 

sWGA   
 

replicates 
 
 

1      2      3 

Unique 
peptides 

identified in 
PNGase 
GSL-II   

 
replicates 
1        2 

Unique 
peptides 

identified in 
PNGase 
sWGA  

 
replicates 

1      2 

5-
methyltetrahy
dropteroyl-
triglutamate-
homocystein
e 
methyltransfe
rase 
(CPSG_0320
8) 

89 23 16 19 28 15 20 0 0 0 0 

malate 
dehydrogena
se 
(CPAG_0719
2) 

89 13 7 10 25 11 11 0 0 0 0 

fructose 
biphosphate 
aldolase 
(CPAG_0927
0) 

78 12 7 7 15 8 10 0 0 0 0 

enolase 
(CPAG_0468
1)  

77 13 9 9 9 8 10 0 0 1 0 

3-
isopropylmal
ate 
dehydrogena
se  
(CPAG_0870
9) 

91 13 6 7 12 8 9 0 0 0 0 

glucose-6-
phosphate 
isomerase 
(CPAG_0568
1) 

76 12 0 5 14 2 3 0 0 0 0 

aldehyde 
reductase 1 
(CPAG_0639
4) 

68 12 4 6 12 5 6 0 0 0 0 
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hypothetical 
protein 
(CPSG_0101
2) 

60 13 10 8 5 2 10 0 0 0 0 

heat shock 
protein 90 
(CPAG_0653
9) 

62 12 5 2 8 6 8 0 0 0 0 

complement 
fixation-
chitinase 
(CPSG_0865
7) 

75 10 5 4 20 8 9 0 0 0 0 

Table 2: Mass spectrometric identification of top 10 coccidioidal glycoproteins in 
Spherulin that bound to both GSL-II and sWGA lectins.  Numbers in each column represent 
technical replicates run on the mass spectrometer. CPAG and CPSG numbers denote the 
accession numbers.  For example, enolase (CPAG_04681) produced 13, 9, 9 tryptic peptides in 
each of 3 replicates from a GSL-II column chromatography that map back to C. posadasii 
enolase.  “PNGase GSL-II replicates” and “PNGase sWGA replicates” indicate that Spherulin was 
deglycosylated with PNGase prior to lectin affinity chromatography.  
*Maximum % sequence coverage from all replicates 
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Figure 10. Venn diagram of common proteins among Spherulin, GSL-II affinity purified 
Spherulin and sWGA affinity purified Spherulin.  145 proteins were common among all three 
conditions. We identified 1390 total proteins in Spherulin, 195 glycoproteins from Spherulin bound 
to GSL-II and 224 to sWGA.  All glycoproteins in the GSL-II fraction were subsets of whole 
Spherulin and sWGA. Proteins affinity purified on two lectin columns represent subsets of 
Spherulin proteome.  A complete list of proteins can be found in appendix A. 
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Conclusions 

This study is the first report of the proteome from Spherulin, an antigen preparation from 

Coccidioides posadasii, and a lectin-binding glycoprotein subset of Spherulin. We initially 

hypothesized that certain lectins could distinguish coccidioidal glycoproteins from human 

glycoproteins in infected human lungs.  This hypothesis is supported by data (Figure 4 and 5) 

showing that GlcNAc-binding lectins GSL-II and sWGA bound to spherules and endospores in 

lectin-based immunohistochemistry. Since it was possible that the reactivities of GSL-II and 

sWGA were due to a non-glycan binding interaction, we inhibited GSL-II and sWGA from binding 

to the Coccidioides fungus in infected lung tissue by pre-incubating the lectins with dilutions of 

GlcNAc (chitin hydrolysate), (Figure 5).  This experiment demonstrated concentration dependent 

inhibition of GSL-II and sWGA binding to spherules by oligo and monomeric GlcNAc in lung 

tissue.  It also confirmed that the interaction between the lectins and Coccidioides was “lectin-

like”.  

An inhibition ELISA using Spherulin as antigen showed that GSL-II and sWGA compete 

with each other and bind to the same or similar GlcNAc structures.  While sWGA inhibited the 

binding of biotin-GSL-II to Spherulin in a concentration-dependent manner, GSL-II did not inhibit 

biotin-sWGA from binding to Spherulin as strongly. In fact, we could not reach an IC50 at the 

tested concentrations.  Although we did not measure avidities of the lectins, they both have 2 

binding sites for GlcNAc. This result suggests that sWGA may have a higher avidity for GlcNAcs 

on coccidioidal glycoproteins than GSL-II. Further evidence for this is that a 1:400 (0.25mM) 

dilution of a GlcNAc solution inhibited binding of GSL-II to spherules and endospores, while a 1:4 

dilution (25mM) of the same GlcNAc solution was sufficient to inhibit the binding of sWGA to 

spherules and endospores in the IHC (Figure 5). 

Chitin is composed of repeating units of GlcNAc.  Therefore, it was possible that the 

lectins were binding chitin and not coccidioidal glycoproteins in IHC. To address this issue, we 

performed lectin affinity chromatography followed by SDS-PAGE (Figure 7). GSL-II and sWGA 

column elutions demonstrated the presence of proteins, suggesting again the presence of 
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GlcNAc on the glycan moiety of coccidioidal glycoproteins in Spherulin.  As a further proof that 

the lectins were binding to glycans, PNGase F was used to deglycosylate Spherulin prior to lectin 

affinity chromatography.  As shown in the SDS-PAGE in Figure 9 and mass spectrometry results 

in Table 2 (PNGase GSL-II and sWGA replicates), virtually no tryptic peptides were detected by 

mass spectrometry when Spherulin was deglycosylated. Taken together, these results strongly 

suggest that GSL-II and sWGA bind GlcNAc on coccidioidal glycoproteins, not just chitin.  The 

few peptides identified after PNGase treatment could have been due to O-linked glycans 

containing GlcNAc, as PNGase cleaves only N-linked glycans. 

The key to the success of any proteomics experiment is having a protein sequence 

database with validated sequence entries. Such a database did not exist for coccidioidal proteins. 

Hence, we constructed a composite database containing predicted proteins derived from the 

Coccidioides genome. These sequences were harvested from RefSeq, SwissProt and The Broad 

Institute’s Coccidioides Genome project (Broad, Institute). We chose this composite approach 

over picking one of the databases due to the complimentary nature of their sequence entries and 

sequence annotations. A composite database also allows us to conduct proteogenomic studies 

for novel gene finding (out of scope of this study). As more researchers conduct whole proteome 

studies of Spherulin, the field would likely advance towards a single validated Spherulin reference 

proteome. 

We investigated the proteome of Spherulin and subsequently examined the GSL-II and 

sWGA-binding glycoproteome. GSL-II and sWGA were found to be subsets of the Spherulin 

proteome (Figure 10).  Mass spectrometry analysis from GSL-II and sWGA affinity 

chromatography of Spherulin demonstrated that 145 coccidioidal proteins commonly bound to 

both GSL-II and sWGA lectins.  This was not surprising, as our inhibition experiments 

demonstrated that GSL-II and sWGA cross-inhibit in a Spherulin ELISA.  However, 50 

coccidioidal glycoproteins bound to GSL-II that did not bind to sWGA and 79 glycoproteins bound 

to sWGA that did not bind to GSL-II (Figure 7C).  This may suggest some degree of differential 

specificity between the two GlcNAc-binding lectins. Comparing the total number of glycoproteins, 
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more (244) bound to sWGA while only 195 bound to the GSL-II lectin.  These data corroborate 

our cross-inhibition data and support of the idea that sWGA has a higher avidity for GlcNAc 

(hence, more glycoproteins bound to the sWGA column) than GSL-II.  

We identified many hypothetical proteins (in whole Spherulin as well as in the lectin 

eluate fractions (Appendix A) indicating that these “hypothetical proteins” are indeed expressed. 

In fact, about 30% of the Spherulin proteome consisted of hypothetical proteins.  Further 

investigation of the hypothetical proteins by other researchers may evaluate the sequence 

similarity to known proteins and elucidate the functions and requirement of hypothetical proteins. 

 MET-E was found to be a highly abundant protein (see Table 2).  It is a zinc-binding 

vitamin B-12 independent enzyme involved in methionine biosynthesis. This enzyme is found in 

many other microorganisms and requires folate containing at least 3 glutamic acid residues for its 

activity. Heat shock protein 90 (CPAG_06539) is an ATP-binding protein with sequence similarity 

to other fungal HSP90s.  It has been suggested as a target for anti-fungal therapies (Burnie,J.P. 

2006). Other highly abundant proteins included cytosolic enzymes like 3-isopropylmalate 

dehydrogenase (leucine synthesis enzyme), glucose-6-phosphate isomerase, enolase and 

fructose biphosphate aldolase (glycolytic enzymes). We note that each of these proteins are 

metabolic enzymes (NCBI: protein database). 

Complement fixation-chitinase (CPSG_08657) was among the top 10 abundant proteins 

in both GSL-II and sWGA lectin pull downs of Spherulin. Chitinases hydrolyze chitin, an abundant 

polymer of GlcNAc, and play a key role in growth regulation and morphogenesis of the fungus. 

This protein is secreted in to the growth medium as well as localizes in the cytoplasm while 

retaining the signal peptide that binds to the endoplasmic reticulum (Yang,C. 1996). Complement 

fixation (CF) is a classical serologic test for diagnosis of valley fever based on the detection of the 

IgG generated against the CF antigen (complement fixation-chitinase) (Pappagianis,D. 1990).  

All of the glycoproteins identified by lectin affinity chromatography were subsets of the 

Spherulin proteome (Figure 10 and Appendix A).  One reason for this might be that mass 

spectrometry instrumentation has become sensitive and accurate enough to interrogate relatively 
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complex samples such that enrichment does little to reveal proteins not detected in the original 

sample. Mass spectrometry may detect multiple thousands of different proteins per run. However, 

mass spectrometric analysis of our Spherulin preparation identified only 1390 total proteins 

(including isoforms) which does not represent the entire Coccidioidal predicted proteome, which 

would include proteins necessary for growth of the fungus in the hyphal phase. The C. posadasii 

genome is 27 Mb and contains 10,355 annotated genes. However, the order (by % sequence 

coverage) and identities of the top ten lectin-binding glycoprotein fractions are different than the 

top ten proteins identified from whole Spherulin (Tables 1 and 2).  For example, malate 

dehydrogenase was the second most abundant glycoprotein identified (by spectra) after lectin 

affinity chromatography, but was the fifth most abundant glycoprotein identified in whole 

Spherulin.  Therefore, some enrichment did occur after lectin affinity chromatography. Lectin 

affinity chromatography may be more useful to enrich Coccidioidal proteins in other settings with 

when Coccidioides is present in a complex medium, however. 

Since many glycoproteins were identified from GSL-II and sWGA lectin affinity 

chromatography, it appears that GlcNAc is a common glycan structure on coccidioidal proteins. 

GlcNAc transferases are present in the genomic sequence of Coccidioides, but they have not yet 

been characterized. Preliminary analysis of the GSL-II and sWGA-binding Spherulin 

glycoproteome suggests that the most abundant proteins are enzymes involved in cellular growth 

and metabolism.  This study is the first to report the proteome of a Spherulin preparation and the 

GSL-II and sWGA lectin binding glycoproteome as a subset of Spherulin.  

Note- The IHC figures used in this dissertation were generated by Yasmynn Chowdhury. 

These are also a part of her honors thesis.   
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CHAPTER 3 

PROTEOMIC ANALYSIS OF COCCIDIOIDES INFECTED HUMAN LUNG TISSUE, URINE AND 
PLASMA WITH MASS SPECTROMETRY 
 
Abstract 

Human plasma is an exceptional pool of about 10,000 proteins. Urine constitutes a 

subset of approximately 1500 plasma proteins.  We previously established that using lectin 

affinity chromatography, we can isolate coccidioidal glycoproteins from Spherulin lysate.  We took 

this lectin enrichment strategy one step further by determining if our approach could enrich 

coccidioidal glycoproteins from human plasma and urine. Size exclusion ultrafiltration was used in 

conjunction with lectin chromatography to capture fungal proteins in these two kinds of samples 

prior to identification using mass spectrometry. Among hundreds of human proteins, we found 

over 100 proteins in circulation in two patients and 7 in a third patient. These were absent in three 

control plasma samples obtained from healthy donors in a non-endemic region. Similarly, in urine 

from a valley fever patient, five fungal proteins (identified by at least 2 tryptic fragments) were 

present. Using protein lysate isolated from formalin fixed and paraffin embedded infected lung 

tissue from a patient with lung nodules, we isolated eighty-seven fungal proteins among hundreds 

of human proteins. 
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Overview 
 

Human plasma contains over 10,000 proteins (the Plasma Proteome Database currently 

holds 10,546 entries) (Anderson,N.L. 2002). These proteins exist in a dynamic range of 10 orders 

of magnitude in concentration. Since blood flows through all organs in the body and contains 

many tissue leakage proteins, we hypothesized that patients with pulmonary coccidioidomycosis 

may have fungal proteins in circulation. We also hypothesized that smaller proteins and/or 

peptides that are products of proteolytic breakdown may be found in patient plasma. The highly 

abundant proteins (HAPs) in plasma including albumin, apolipoproteins, immunoglobulins etc., 

pose a challenge to isolation and identification of low abundance tissue leakage proteins 

(Anderson,N.L. 2002; Schiess,R. 2009). To circumvent this problem, we employed size exclusion 

ultrafiltration to remove HAP, many of which are high molecular weight proteins (Figure 11) prior 

to enrichment with sWGA lectin chromatography. In humans, a large majority of the secreted and 

cell surface human proteins that are shed into the bloodstream are known to be glycosylated 

(Schiess,R. 2009). It is well established that fungal proteins are also heavily glycosylated. We 

previously established the use of sWGA and GSL-II lectin chromatography as a means of 

isolating glycoproteins from Spherulin (fungal lysate). We choose to use sWGA lectin for 

enrichment of glycoproteins in plasma and urine to identify fungal proteins in plasma as well as 

urine. The distinct advantage of mass spectrometry is the ability to identify multiple peptides that 

map to multiple proteins. This study is the first step towards identifying fungal proteins in 

circulation in patients (Figure 11).  
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Figure 11. Experimental workflow for coccidiodiodomycosis patient analysis. Plasma urine 
samples collected from healthy and patient donors were analyzed using lectin affinity columns. 
These fraction of glycoproteins thus isolated were digested with trypsin and analyzed using LC-
MS/MS. The spectra obtained from this analysis were searched against three Coccidioides 
databases.  
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Experimental Procedures 
 
Collection of patient plasma, urine and FFPE lung tissue 
Plasma samples were collected from five valley fever patients. Control plasma was obtained from 

three healthy donors from non-endemic region (Rochester, MN).  The five patients were all 

positively diagnosed with coccidioidomycosis and the clinical information (in all details available 

from the attending physician) is listed below. 

Patient 1: Presented to Mayo clinic with fatigue, malaise, drenching sweats, non-productive 

cough, weight loss and dull headache. Left lower lobe of lung showed 2x2 cm nodule and other 

nodules < 4mm.  Diagnostic tests results as follows - CSF serology = 1:2 CF, EIA positive for 

both IgM and IgG, ID negative. 

Patient 2: Long term history of valley fever was reported. At the time of plasma collection for this 

study, leg lesion and urine cultures were positive for Coccidioides. Serology tests around time of 

sample collection also confirmed the diagnosis: CF test was positive with titer of 1:32, IgG 

positive by ID and EIA. The patient also suffered from rheumatoid arthritis and was on 

immunosuppressive agents (leflunomide and prednisone). 

Patient 3: Patient was diagnosed with peritoneal coccidioidomycosis. Diagnosis was confirmed 

with serology testing (CF titer at 1:64 at the time of sample collection). 

Patient 4: Patient presented to the clinic with a chronic cough and fatigue with low grade fever. 

Chest radiography confirmed diagnosis of coccidioidomycosis along with positive serology tests 

at the time of plasma sample collection (CF titer of 1:32, EIA was also confirmed positive). 

Patient 5: Patient was diagnosed with disseminated coccidioidomycosis with meningitis, miliary 

pneumonia, and dissemination to bone at the time of sample collection. 

Urine samples were collected from Patient 1 and a normal volunteer donor (control 

urine). Due to funding restraints, we were able to only evaluate lysate from one FFPE infected 

lung.  

 
Lectin affinity chromatography with plasma and urine 
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50ul of plasma was ultra-filtered with 30 kD filter (Millipore, USA) and filtrate was 

collected. Gravity packed sWGA lectin columns were made with 400 ul of slurry. The filtered 

plasma was diluted with 450ul of 1XPBS and allowed to bind to the lectin agarose beads for an 

hour at room temperature with end on end shaking. The column was then drained and washed 

with 5-bed volumes of 1X PBS. The glycoproteins were eluted using an N-acetlyglucosamine 

elution buffer (vector labs). The eluate was dialyzed and concentrated against 1X PBS using a 

3kD ultra filter. 

Five hundred microliters of urine was centrifuged at 10,000 rpm and supernatant was 

collected and filtered with 0.22um filter. It was then diluted with 1X PBS and applied to the sWGA 

lectin column as described above. 

 

FFPE protein lysate 

Ten 20 um thick sections were collected in a 1.5 ml eppendorf tube and deparaffinized by 

incubation in xylene at room temperature(Fisher Scientific, Pittsburgh , PA, USA). The 

deparaffinized tissue sections were then rehydrated with a graded series of ethanol solutions. 

The sections were then homogenized in the homogenization buffer (20mM Tris-HCL, pH 9; 2% 

(w/v) SDS) along with protease inhibitor. These sections were then heated at 100 degrees 

Celsius for 20 minutes and then maintained at 80 degrees for an additional 120 minutes in a 

shaking water bath. The tubes were sealed with parafilm to prevent any loss due to evaporation. 

After protein extraction, any insolubilized material was pelleted and supernatant was filtered 

through a 0.45 micron filter and quantified using a BCA assay. The protein lysate was then 

electrophoresed and analyzed with SDS-PAGE as described in the following section. 

 
SDS-PAGE and in-gel trypsin digestion 

The SDS-PAGE gel bands were prepared for mass spectrometry analysis using the 

following procedures.  Colloidal blue stained gel bands were destained in 50% acetonitrile/50mM 

Tris pH 8.1 until clear, and the proteins reduced with 50mM TCEP/50mM Tris pH8.1 at 55ºC for 30 

minutes, followed with alkylation using 20mM iodoacetamide/50mM Tris pH 8.1  at room 
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temperature for 30 minutes in the dark. Proteins were digested in-situ  with 0.15ug trypsin 

(Promega Corporation, Madison WI) in 25 mM Tris pH 8.1 / 0.0002% Zwittergent 3-16, at 37C 

overnight, followed by peptide extraction with 2% trifluoroacetic acid and acetonitrile. The pooled 

extracts were concentrated and the proteins identified by nano-flow liquid chromatography 

electrospray tandem mass spectrometry (nanoLC-ESI-MS/MS) using a Thermo Scientific Q-

Exactive Plus Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled to a 

Thermo Ultimate 3000 RSLCnano HPLC system. 

 

Mass spectrometry 

Tryptic peptides present in each sample were loaded onto a 0.25uL bed OptiPak trap 

(Optimize Technologies, Oregon) custom-packed with 5um, 200A Magic C18 stationary phase. 

Loaded trap was washed for 4 minutes with an aqueous loading buffer of 0.2% FA and 0.05% TFA 

onto a 35cmx100um PicoFrit column, 

self-packed with Agilent Poroshell 120S 2.7um EC-C18 stationary phase, using a Dionex UltiMate® 

3000 RSLC liquid chromatography (LC) system (Thermo, San Jose, CA). Peptides were separated 

using a 400 nL/min LC gradient comprised of 2%-40% B in 0-70 min. Mobile phase A was 2% 

acetonitrile (ACN) in water with 0.2% FA and mobile phase B was ACN/isopropanol/water (80/10/10 

by volume) with 0.2% FA. Eluting peptides were analyzed using a QExactive Plus mass 

spectrometer (Thermo-Fisher, Waltham, MA). The instrument was configured to operate in data-

dependent mode by collecting MS1 data at 70,000 resolving power (measured at m/z 200) with an 

AGC value of 1E6 over a m/z range of 360-2000, using lock masses from background polysiloxanes 

at m/z  371.10123 and 446.12002. Precursors were fragmented with normalized collision energy 

(NCE) of 28, fragments measured at 17,500 resolving power and a fixed first mass of 140. Resulting 

tandem mass spectra (MS/MS) were collected on the top 20 precursor masses present in each 

MS1 using an AGC value of 1E5, max ion fill time of 50ms, and an isolation window of 1.5 Da. All 

raw data files were transcoded into mzML format using msConvert tool of the ProteoWizard library 

(Kessner,D. 2008). 
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Bioinformatics 

We compiled a composite protein sequence database to identify the Coccidioides proteins 

present in the lysate. This database contained Coccidioides proteomes obtained from the Broad 

Institute’s Coccidioides Genomes project, SwissProt and RefSeq (Neafsey,D.E. 2010; 

Sharpton,T.J. 2009). RefSeq human and bovine proteomes were added to this database to prevent 

misidentification of proteins originating from cell culture and other human contamination as 

Coccidioides proteins. Common contaminants (wool, cotton, etc.) were added to the database to 

account for sample handling artifacts. Reversed protein sequences were appended to the database 

to estimate protein and peptide identification false discovery rates (FDRs).  

MyriMatch (version 2.1.38) database search engine matched the MS/MS present in each 

data file against the composite protein sequence database (Tabb,D.L. 2007). The software was 

configured to use 10ppm m/z tolerance for both precursors and fragments while performing 

peptide-spectrum matching. The software derived semitryptic peptides from the sequence 

database while looking for the following variable modifications: carbamidomethylation of cysteine 

(+57.023 Da.), oxidation of methionine (+15.994 Da.) and formation of n-terminal pyroglutamic 

acid (-17.023 Da.). IDPicker (version 3.0.504) software filtered the peptide-spectrum matches at 

2% FDR (Kessner,D. 2008; Ma,Z.Q. 2009). The software was configured to use an optimal 

combination of MVH, mzFidelity and XCorr scores for filtering. Protein identifications with at least 

two unique peptide identifications were considered to be present in the sample. Resulting 

proteins were clustered into groups of proteins that match the same set of peptides.  

 
 
Results 
 
Coccidioides proteins in patient plasma 
 

We used both GSL-II and sWGA in our initial experiments. After 30 kD ultrafiltration and 

sWGA lectin chromatography, we identified 150 proteins in Patient 1 with tryptic peptides equal to 

or greater than 1. Among these, for 125 proteins at least 2 peptides were identified (tryptic 
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fragments ranged from 2 to 26). Using sWGA affinity chromatography enrichment, 125 proteins 

were identified with 2 or more peptides and 24 with a single peptide (total 150 proteins). 

 Patient 2 also had circulating coccidioidal proteins. Using GSL-II affinity enrichment, we 

identified a total of 122 proteins and at least 2 peptides were identified from 64 proteins (peptide 

range was 1 to 17). On the other hand, enrichment of plasma glycoproteins with sWGA affinity 

enrichment, yielded a total of 137 proteins (peptide range of 1 to 27). Among these, 97 proteins 

were identified with at least 2 tryptic fragments. Table 3 lists the 10 most abundant proteins (with 

highest spectral counts) found in patient plasma. Patient 3 had only seven fungal proteins present 

in plasma which were identified by two or more tryptic fragments. Patient 4 and 5 had only two 

and three fungal proteins in circulation. In all five patient plasma, actin was identified. This highly 

conserved protein was the only protein common among all patients.  

 Among the 3 control plasma investigated with both GSL-II and sWGA chromatography, 

single peptides were identified from 6 coccidioidal proteins in 3 different ‘controls’ plasma 

samples collected from healthy donor. A protein identification can be made by the presence of a 

single tryptic fragment/peptide (‘one hit’ protein entries) but if the tryptic fragment is not unique to 

the sequence of that protein, the confidence in identification by mass spectrometry method like in 

this study is low. For instance, actin, a highly conserved protein was seen in all controls. Such 

single hits are considered false positive. Figure 12 shows the proteins identified in patient plasma 

by presence of at least two tryptic peptides.  

Although not a focus in this study, as expected, we identified the presence of many 

human proteins in patient as well as normal donor plasmas. A total of 56 human proteins were 

identified in plasma from patient donor 1 and 45 in patient donor 2. This was less than the 

number of human proteins identified in plasma from patient donors 3, 4 and 5 respectively 

(338,131 and 222). The total number, including human as well as fungal, proteins identified in all 

five patient plasma were comparable. In fact, the presence of fewer human and more fungal 

proteins in patient 1 and 2 suggest that there was a possible enrichment of fungal proteins with 

the use of lectin column. In our IHC experiments (chapter 2), lectins –GSL-II and sWGA bound 
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specifically to the fungal spherules (and not surrounding human tissue) which also supports this 

possibility of enrichment. For a complete list of proteins identified in plasma (patients and healthy 

donors), please see Appendix B.  

 

 
Coccidioides proteins in patient urine 
 
 A urine sample collected from valley fever patient donor (Patient 1) was enriched for 

glycoproteins using a sWGA lectin affinity column. The eluate was trypsin digested (in-gel 

digestion) to reveal presence of 10 coccidioidal proteins. Five proteins were identified by single 

unique peptides while two or more peptides were identified from three different proteins. Two 

proteins were identified by the presence of six and five tryptic fragments respectively. Among the 

total 10 proteins thus identified, four were also identified in a “control” urine sample obtained from 

a healthy donor. This included highly conserved proteins such as actin and ATP synthase. Three 

proteins were uniquely present in urine from Patient 1 (and absent in plasma). These proteins 

included ADP ribosylation factor, a GTP binding protein and ATP synthase beta subunit. 

As expected, we identified the presence of many human proteins in patient as well as 

normal donor urines.  Urine from healthy donor had over 400 non fungal proteins (including 

different isoforms) and patient urine had over 300 non-fungal proteins. These included different 

isoforms of proteins and each protein was identified by presence of one or more tryptic peptides. 
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Protein 

ID 

Spectral count Maximum % 
coverage 

Unique tryptic peptides identified 
from Spherulin 

5-methyltetrahydropteroyltriglutamate-
homocysteine methyltransferase 
(CPSG_03208) 

 
283 

53  
31 

malate dehydrogenase (CPAG_07192)  
162 

52  
13 

O-acetylhomoserine  
117 

39  
12 

enolase (CPAG_04681) 76 55 15 

vacuolar protease A 72 40 8 

peroxisomal matrix protein 71 64 7 

endochitinase 1 70 35 12 

superoxide dismutase 59 72 8 

heat shock 70 kDa protein 54 24 17 

formate dehydrogenase 51 31 9 

Table 3. Coccidioides proteins identified in patient (n=2) plasma using sWGA lectin 
chromatography and LC MS/MS. The table shows a partial list of fungal proteins identified in 
patient plasma (with high spectral and peptide counts) and were absent in any control plasma. 
Percentage sequence coverage signifies the extent of tryptic fragments identified from the protein 
sequence.  
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Figure 12. Venn diagram of coccidioidal proteins in patient plasma.  The venn diagram 
shows common coccidioidal proteins in patients’ plasma. Ninety one proteins and their isoforms 
were commonly present in plasma acquired from patient 1 and patient 2 (tryptic peptides ≥ 2).  
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Coccidioidal proteins in protein lysate of FFPE infected human lung 
 
 
 As described in materials and methods section, protein lysate was extracted from an 

archived FFPE infeted lung tissue. The lysate was then electrophoresed by SDS-PAGE and in-

gel trypsin digested. Mass spectromertic analysis provided evidence of 87 proteins in the lysate. 

The lung tissue was also stained with hemotoxylin and eosin and showed presence of spherules 

and endospores. Since we did not eliminate human proteins or enrich for coccidioidal proteins, 

many human proteins were also identified. All proteins extracted from infected lung were also 

present in the coccidiodin (lysate of mycelial state) (Table 4 and Appendex C). These included 

many metabolic proteins such as superoxide dismutase, malate dehydrogenase, complement 

fixation chitinase and 22 hypothetical proteins. Only one FFPE infected lung tissue was available 

at the time of study. 
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Protein ID 

complement fixation-chitinase CPSG_08657 

superoxide dismutase CPSG_07243 

exo-beta-1,3-glucanase Exg0 CPSG_02802 

alpha-mannosidase CPSG_02648 

beta-glucosidase CPSG_03385 

hypothetical protein CPSG_02027 

alkaline phosphatase CPSG_06408 

metalloprotease MEP1 CPSG_05583 

FAD-dependent oxygenase CPSG_05770 

endo-1,3-beta-glucanase CPSG_08500 

Table 4. Ten most abundant coccidioidal proteins identified in protein lysate obtained from 
FFPE human lung tissue. The table shows a partial list of fungal proteins identified in protein 
lysate of FFPE infected lung tissue. Please see appendix C for complete list of proteins. 
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Figure 13. Proteins in Coccidioides lysate versus lysate obtained from formalin fixed and 
paraffin embedded infected lung tissue.  The venn diagram shows the number of proteins 
identified in each lysate. Eighty seven fungal proteins identified from the infected lung lysate were 
a subset of ones identified in the mycelial lysate (CDN-L).  
 

.. 

  



51 

 

Conclusions 
 

A limitation in the development of an antigen based (as opposed to host immune 

response) diagnostic assay development is the absence of a Coccidioides proteome.  If the 

proteome of Coccidioides was thoroughly characterized, techniques such as next generation 

mass spectrometry would be helpful in diagnosis. To this end, we generated the proteome of 

Spherulin and the sWGA and GSL-II binding glycoproteome of spherulin (chapter 2). Following 

the development of a methodology of capturing and identifying fungal glycoproteins using lectin 

based affinity chromatography, we investigated plasma, urine and FFPE lung tissue lysate for the 

detection of Coccidioides glycoproteins using the same approach. As mentioned earlier, LC-

MS/MS combined with pre-sample processing provide an optimal means of discovering proteins 

in a complex sample such as plasma. This is important for preliminary investigative studies that 

are discovery-driven like the present study. The ability to observe a given peptide or protein 

cannot always be controlled in LC-MS/MS studies (Pisitkun,T. 2007). In general, a particular 

peptide ion may be only be sporadically detected unless it is derived from an abundant protein in 

the sample (or targeted in a MRM study). This problem is compounded by the fact that tissue 

leakage proteins (such as in this study) are present in seven degrees less in magnitude (low 

ng/ml) than most of the highly abundant proteins (HAPs) in human plasma such as albumin and 

immunoglobulins (5-18 mg/ml). Removal of HAPs is therefore desirable when looking at 

moderate and low abundant proteins and protein products in plasma. Use of ultrafiltration to 

exclude higher molecular weight proteins (which also happen to be high abundance) is one of the 

ways to reduce the complexity of plasma. However, presence of immune complexes is a known 

challenge in detection of antigenemia in plasma for many infections including coccidioidomycosis 

(Durkin,M. 2009). Coccidiodal proteins may be present in a complex with antibodies. Ultrafiltration 

removes the high abundance human proteins but this also risks the removal of fungal entities 

because antibodies themselves are larger than 150 kDa. Some of the methods to dissociate 

these complexes such as acid treatments and pretreatment of plasma with EDTA in presence of 

high heat may improve the chances of detecting coccidioidal proteins and protein products that 
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may form complexes with HAPs. In addition to size exclusion, the focus on the N-glycoproteome 

with use of lectin affinity enrichment, not only reduces the complexity further but also helps target 

an information-rich sub-proteome that may carry disease biomarkers.  

The greatest benefits for patients with coccidioidomycosis with use of a blood based 

antigen test would be early diagnosis to inform clinical management of the disease.  To fulfill this 

aim, the present study was initiated with patient plasma and urine. The process of development of 

a diagnostic test can be divided into many stages. This study constitutes an early stage of the 

process. The first step is to learn which proteins are present in the proteome.  Then one may 

conduct discovery-driven investigation and identify the presence of fungal proteins in biosample. 

A subsequent stage involves verification of the candidate proteins in biosamples from disease-

affected donors compared to healthy donors. The latter stages of the process involve the further 

validation of peptides that reproducibly appear in disease-affected donors and not in control 

donors.to test the diagnostic capability of the antigen based assay.  

In the present study, we have identified multiple fungal proteins recurring in five patients. 

We identified 91 proteins common in two patients’ plasma (Figure 12). Patients 3 and 4 had very 

few fungal proteins detectable in circulation. One possible reason for the difference in number if 

fungal proteins identified in the 5 patients may be that patients 3-5 had been taking anti-fungal 

agents for over 8 weeks and were reported to be responding to this therapy while patient 1 and 2 

were documented to have disseminated disease and were unresponsive to the anti-fungal 

therapy.  Antifungal therapy in responsive patients may have arrested growth of the fungus in the 

host.  We also identified 10 proteins in urine of Patient 1. Five proteins out of these 10 proteins 

were identified on bases of only a single unique peptide. Seven of these ten proteins were 

common in urine and plasma from patient 1. The most abundant proteins in patient plasma were 

also identified in Spherulin proteome analysis. These include many proteins involved in growth 

and metabolism such as enolase, malate dehydrogenase, and formate dehydrogenase. Heat 

shock protein 90 (hsp90) was also an abundant protein present in patient 1 and 2 plasma. This 

highly conserved protein is thought to be play a role in pathogenicity of some fungal species and 
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is expressed on the cell surface (Burnie,J.P. 2006). Endochitinase was also identified in both 

patients. Many common tryptic peptides were detected among patient 1 and 2 from abundant 

proteins such as MET-E and malate dehydrogenase.  

 Due to restraints in funding, we were not able to include more patient and control plasma 

and urine in the current study. It is important to investigate plasma and urine from more patients 

and also include controls plasma from endemic regions as well as plasma from patients suffering 

from community acquired pneumonia (CAP) without a valley fever diagnosis. With a statistically 

significant number of experimental and control plasmas, confidence in identifying the fungal 

proteins in circulation in patients may be improved.  

When we analyzed lysate from an infected FFPE lung tissue, over 80 fungal proteins 

were identified. Retrieving protein lysate from archived FFPE tissue poses several challenges but 

numerous studies have evaluated FFPE tissue lysate with varying degree of success (Maes,E. 

2013; Goto,M. 2007; Paulo,J.A. 2013; Sprung,R.W.,Jr 2009; Vincenti,D.C. 2013). For studying 

coccidioidal proteins derived from spherules in lungs, a technique such as laser capture 

microscope can be very valuable. With aid of a laser capture microscope, spherules can be 

micro-dissected from the adjacent human lung tissue and lysate from these collected spherules 

can be valuable in more comprehensive detection and identification of fungal proteins in spherule 

in lungs. A drastic decrease in the background of the human proteins (similar problem occurs in 

plasma and urine analysis) can prove to be a major advantage leading to identification of more 

fungal proteins. It would be ideal to obtain urine and plasma samples from a large set of patients 

and healthy donors.   Then one could learn which proteins in tissues find their way into circulation 

and which are exclusively present in tissues only. 

Following verification with more samples, next steps may include generation of antibodies 

against a set of most abundant and recurring fungal proteins that can be used in a targeted study.  

Since we have identified glycoproteins, there is a potential to investigate the roles of specific 

proteins and protein modifications in pathogenic ability (or dissemination) of this fungus.  For 
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development of a LC-MS/MS based test, a promising solution could be the development of 

approaches based on the multiple reaction monitoring (MRM) principle.   

Some studies have attempted to study antigenuria (antigen in urine) and antigenemia 

(antigen in blood) in valley fever (Durkin,M. 2009). However, lack of a successful and consistent 

multi-protein panel was a drawback of such studies (Champer,J. 2012). 
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS  

The incidence of Valley Fever is growing in the United States. Although a majority of 

infected individuals do not seek medical care, new regulations in reporting the incidence of this 

disease in patients who seek care and are diagnosed, has led to registering of more reported 

cases today as compared to two decades ago. Less than 5,000 cases were reported in 1995; by 

2011, this number had risen to more than 20,000 (Centers for Disease Control and Prevention 

(CDC) 2013; Centers for Disease Control and Prevention (CDC) 2013).  This number is similar to 

the number of reported Lyme disease cases throughout the USA. Additionally, the CDC estimates 

that some 150,000 valley fever cases go undiagnosed annually. As the population ages and 

migrates to the southwest to avoid harsh winter weather, many more people will be at risk of 

contracting valley fever.  There is an urgent need of reliable diagnosis and a therapy (or vaccine) 

that is currently absent for this disease. 

 With knowledge of the Coccidioides proteome, new antigen based diagnostic tests and 

possibly an anti-fungal therapy can be developed to combat this disease.  If the proteome of 

Coccidioides were thoroughly characterized, techniques such as next generation mass 

spectrometry could also be applied in diagnosis. To address this gap in knowledge, we generated 

a Spherulin proteome and sWGA and GSL-II binding glycoproteome of Spherulin (Chapter 

2).This proteome may serve as a valuable resource for researchers studying this organism and 

the disease that it causes. We used three different databases to identify a maximum possible 

number of total proteins. In future studies, combining or consolidating these different databases 

into a comprehensive one with all putative sequences will be important. In the proteome of this 

Spherule phase lysate, Spherulin, we noted that a majority of proteins are ones involved in 

growth and metabolism of this fungus. Due to funding restraints, we were unable to analyze all 

the available different antigenic fractions of this fungus. For example, it would be very interesting 

to study proteome of Coccidioidin (lysate of the mycelial stage of this dimorphic fungus) and 

identify any differences in the two morphological phases of this organism (Viriyakosol,S. 2013).  
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In next part of this study, we identified two lectins-GSL-II and sWGA which exhibit specific 

reactivity to spherules in infected FFPE lung tissues. To identify the proteins that bound to these 

lectins, we used lectin –chromatography followed by LC-MS/MS. This allowed us to identify a 

glycoproteome subset of spherulin proteome.  

Following the development of a methodology of enrichment and identification of fungal 

glycoproteins in Spherulin, we investigated plasma, urine and FFPE lung tissue lysate using the 

same approach. Although LC-MS/MS is a powerful tool for discovery of proteins, the extreme 

complexity of plasma presents a great challenge. For discovery-based preliminary investigative 

studies like the present study, use of LC-MS/MS enables sequence-based discovery of novel 

proteins in a complex sample and allows a comprehensive look at a given proteome. Some 

studies have indicated antigenemia or antigenuria in valley fever patients via the use of ELISA 

assays (Galgiani,J.N. 1991). However, positive indication of fungal proteins in circulation present 

only in a percentage of patients and no protein identifications (from blood) could be made. In the 

present study, over 100 proteins and their isoforms in plasma acquired from two valley fever 

patient donors were identified by LC-MS/MS. Analysis of three additional patient plasmas did not 

demonstrate similar results. Very few coccidioidal proteins were identified in plasma acquired 

from patients 3, 4 and 5. Actin was the only common protein in all patients.  Overall, our findings 

suggest that many coccidioidal proteins and peptides were in circulation in patient 1 and 2 while 

very few were present in patient 3, 4 and 5.  These results correlate with patient diagnosis and 

treatment status at the time of plasma collection. Patient 1 and 2 had disseminated form of the 

disease and were found to be unresponsive to the anti-fungal therapy administered to them while 

patients 3,4 and 5 had acute (pulmonary infection) form of disease and were responding to anti-

fungal agents that were prescribed at least 8 weeks prior to plasma collection.  The anti-fungal 

therapy in these patients may have led to an arrest in the growth of the fungus and concomitantly 

an absence of shedding of fungal proteins (peptides) in circulation. Resident dendritic cells and 

macrophages in lungs encounter inhaled arthroconidia and migrate to the lymph nodes where 

they present fungal antigens and activate lymphocytes. These lymphocytes including 
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macrophages, B cells and T cells migrate to the site of infection and form granulomata. 

Endospores from a burst spherule may gain access to the blood stream and disseminate to other 

non-pulmonary sites in the host. While in circulation, these fungal proteins likely undergo 

proteolytic degradation due to host serum proteases and immune attack. The presence of 

antifungal drugs may arrest the growth and possible dissemination and hence may influence the 

presence of detectable fungal protein products in circulation. The concentrations of these 

biomarkers (fungal protein products) in blood is unknown. A complete absence or a very low 

concentration of any possible fungal products in plasma of these three patients may explain the 

results of LC-MS/MS analysis (Marimuthu,A. 2011; Pisitkun,T. 2007; Schiess,R. 2009).  

 To develop and validate an assay to detect antigen in circulation in patients with valley 

fever, it is important to investigate plasma and urine from more patients than was investigated in 

this study and also include controls samples collected from donors in non-endemic regions as 

well as plasma from patients suffering from community acquired pneumonia (CAP) without a 

valley fever diagnosis. Since CAP caused by this fungal infection is frequently misdiagnosed and 

treated inappropriately with antibiotics because of absence of a reliable diagnostic test, it can be 

very valuable to study CAP patients (bacterial, viral and fungal origin) (Chang,D.C. 2008). Due to 

the expense of our mass spectrometric method (>$900 per sample), we were unable to study 

more patients. In future studies, a panel of a higher number of plasma and urine samples from 

patient donors, CAP patients and healthy donors should be studied. With a significant number of 

experimental and control samples, we can identify a set of coccidioidal proteins that circulate in 

the majority of patients. Ideally, plasma and urine should be collected from each of the patient 

and healthy donors. This will allow for elimination of false positives. It is worth noting that when 

MS spectra obtained from tryptic fragments is searched against any given database, it is common 

to identify highly conserved proteins such as actin, ATP synthase etc. in ‘control’ samples. In 

order to build a consistent panel of biomarkers (as in study of antigenemia in valley fever), it is 

important to run many biological (samples from various donors) and technical (multiple runs on 

MS with a given sample) replicates and identify proteins recurring in experimental groups and 
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absent in controls (Pisitkun,T. 2007). In this study we provide a preliminary listing of fungal 

proteins present in patient specimens (and absent in healthy donor bio specimen). However, due 

to lack of a greater number of different kinds of available bio-specimens (blood and urine) as well 

as lack of recruitment of additional donors (both patients and healthy individuals) for each kind of 

bio specimen, the presence of most abundant fungal proteins identified in circulation in patients 

remains to be confirmed with more MS runs.     

 In the materials analyzed using MS, the presence of a large number of glycosylated 

human proteins along with the fungal glycoproteins of interest in this study presents a big 

challenge.  Although use of lectin chromatography is a viable approach to isolate any fungal 

products in plasma, an initial reduction in human proteins is a necessary step to tackle this 

hurdle. In this study, size exclusion filtration and lectin chromatography was used.  An alternative 

to use of size exclusion is immunoaffinity depletion of highly abundant proteins (HAP) in plasma.  

Commercially available kits claim to deplete most abundant human proteins in plasma such as 

apolipoprotein, albumin, and immunoglobulins and reduce 85% of the plasma proteome burden in 

a sample and hence introduce the potential for identification of much smaller fraction consisting of 

disease biomarkers. However, many MS studies provide support for the fact that untargeted 

proteomic analyses using current LC-MS/MS platforms, even with immunodepletion, cannot be 

expected to efficiently discover low-abundance, disease-specific biomarkers in plasma (Tu,C. 

2010). There is also concern of depletion of non-targeted proteins by such immunodepletion 

columns. For instance, when using an immunodepletion kit for removing top six most abundant 

proteins in plasma, non-specific removal of other proteins (non-targeted) may occur. However, in 

this study we did not explore the use of immunodepletion because the currently available 

columns allow a scant amount of plasma that decreased the likelihood of detecting fungal 

proteins in circulation.  

 Removal of large majority of proteins from the samples (plasma or urine) poses a 

potential problem of inadvertently removing the peptide components as well (that may or may not 

be fungal). Peptides in plasma are known to associate with higher molecular weight proteins. If 
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this were the case with fungal peptides as well, there might be a loss in fungal peptide yield from 

plasma. It may be helpful to pre-treat plasma with EDTA to dissociate the immune complexes 

(Durkin,M. 2009). Plasma proteins undergo proteolytic degradation leading to presence of an 

impressive plasma peptidome. Hence, it may be interesting to study the peptidome (fungal) and 

determine if fungal peptides (uniquely derived only from Coccidioides protein sequence) can be 

identified in circulation. Some groups have attempted to study the human peptidome but there is 

much unexplored potential in this field (Tu,C. 2010; Richter,R. 1999). 

Another aspect of analysis of patient plasma and urine pertains to sample processing for 

MS analysis. In this study, protein samples were trypsin digested for analysis on LC-MS/MS. We 

used in-gel trypsin digestions for LC-MS/MS sample preparation.  This technique, though 

effective and sensitive, is very time consuming and expensive.  It takes approximately 3 days to 

perform the affinity enrichment on lectin columns, and 1-2 days to complete the mass 

spectrometry analysis, although multiple samples may be processed simultaneously.  This 

discovery-based approach is both too time consuming and expensive to be used as a clinical test.  

In-solution trypsin digestion may be an alternative approach to identifying the fungal peptides in 

patient plasma.  In-solution trypsin digests of lectin-enriched plasma fractions does not require 

SDS-PAGE, reducing processing time.  However, reduction in sensitivity (maximum total possible 

number of protein identifications made with LC-MS/MS) as compared to in-gel trypsin digestion is 

a major concern (Pisitkun,T. 2007).   

 The goal of this pilot study was to investigate if fungal proteins are circulating in patient 

plasma. The results indicate that fungal proteins are in fact present in circulation and can be 

detected. However, this was true only for patients with disseminated form of disease and also 

ineffective anti-fungal therapy. Following analysis of plasma from other patients and healthy 

donors, the next steps may include the identification of N-glycosylated peptides and glycosylation 

sites. To identify the glycosylation sites, PNGase F treatment (an enzyme that removes the N-

linked sugar moieties) can be used the presence of heavy (18O) water. This procedure would 

mark all N-linked glycosylated sites with heavy oxygen. This would help with differentiation of 
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deamidation (deglycosylation of a glycoprotein induces a mass change of 0.98 Da which is 

detected by MS) due to sample handling rather PNGase F treatment. The two isotypes of oxygen 

are differentially detected by LC-MS/MS. After confirmatory studies for the identification of the 

glycoproteins identified in this study, future studies may investigate the roles of specific proteins 

and protein modifications with respect to fungal virulence factors. For this purpose, deletion 

mutants can be generated and fungal growth in vitro can be studied. Coccidioides undergoes 

morphological change induced due to change in growth conditions and disruption of certain 

genes undoubtedly affect the transition of endosporulating stage to spherule phase. This 

knowledge may be valuable in developing therapy targeted towards disruption of spherule 

formation and thereby inhibiting fungal growth in vivo. We identified many proteinases in 

Spherulin (see Appendix A). A serine proteinase from Coccidioides cell wall is thought to be partly 

responsible for autolysis of the segmentation apparatus of mature spherules, a pivotal 

morphogenetic process for release of endospores and subsequent proliferation of the pathogen 

(Yuan,L. 1988).  

A majority of valley fever patients that visit a clinic at earlier stages of infection may 

present with CAP which is frequently misdiagnosed leading to unnecessary anti-bacterial 

treatments and a delay in treatment of this disease. With the protein identities made in this study, 

a diagnostic and possible a therapeutic approach can be developed. In addition to the proposed 

MS based diagnostic test, development of an EIA based assay is a viable option. With the 

knowledge of proteins (using MS data) present in patients at early stages Coccidioides infection, 

an antibody (against fungal proteins) based assay may be developed. Polyclonal antibodies (or 

monoclonal) generated in a rabbit or goat immunized against a preparation of Coccidioidin or 

Spherulin may be used to capture circulating fungal proteins in blood to facilitate early and 

definite diagnosis. By providing a timely diagnosis and proper management of the initial 

respiratory infection in patients, healthcare providers can improve patient care and the prognosis 

of this disease.   
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APPENDIX A  

COMPLETE LIST OF PROTEINS IDENTIFIED IN SPHERULIN  
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The complete list of protein can be accessed via an open source resource. 

 

MassIVE Link to Raw Data, mzID files and the FASTA Database 

Web Link 
https://massive.ucsd.edu/ProteoSAFe/status.jsp?task=03125bd6c85648488

be65c6210e3c855  

FTP Link ftp://MSV000079286@massive.ucsd.edu/  

Password Lake_Grys_Mayo 

 

Database Details 

Name  
20150522-Coccidioides-Broad-Sprot-RefSeq-20130621-RefSeq59-Human-

Bovine-Cntms.fasta  

 

Sequences Extracted From: Species Link 

  
Broad 
Institute 

Downloaded on 
05/22/2014 

Coccidioid
es 

http://www.broadinstitute.org/scientific-
community/science/projects/fungal-

genome-initiative/Coccidioides-
genomes  

  RefSeq 
Downloaded on 
05/22/2014 

Coccidioid
es http://www.ncbi.nlm.nih.gov/refseq/  

  SwissProt 
Downloaded on 
05/22/2014 

Coccidioid
es 

http://www.uniprot.org/uniprot/?query=r
eviewed%3Ayes  

  RefSeq 
Downloaded on 
06/21/2013 Human http://www.ncbi.nlm.nih.gov/refseq/  

  RefSeq 
Downloaded on 
05/22/2012 Bovine http://www.ncbi.nlm.nih.gov/refseq/  

Total Number of Sequences = 157600 

  

https://massive.ucsd.edu/ProteoSAFe/status.jsp?task=03125bd6c85648488be65c6210e3c855
https://massive.ucsd.edu/ProteoSAFe/status.jsp?task=03125bd6c85648488be65c6210e3c855
ftp://MSV000079286@massive.ucsd.edu/
http://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/coccidioides-genomes
http://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/coccidioides-genomes
http://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/coccidioides-genomes
http://www.broadinstitute.org/scientific-community/science/projects/fungal-genome-initiative/coccidioides-genomes
http://www.ncbi.nlm.nih.gov/refseq/
http://www.uniprot.org/uniprot/?query=reviewed%3Ayes
http://www.uniprot.org/uniprot/?query=reviewed%3Ayes
http://www.ncbi.nlm.nih.gov/refseq/
http://www.ncbi.nlm.nih.gov/refseq/
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APPENDIX B  

COMPLETE LIST OF PROTEINS IDENTIFIED IN PLASMA AND URINE  
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The complete list of proteins identified in plasma and urine can be accessed using a free 

software- IDpicker (Ma,Z.Q. 2009). 

The source code and binaries for the latest version of IDPicker are available from 

http://fenchurch.mc.vanderbilt.edu/. 

File can be accessed via the following link- 
https://drive.google.com/file/d/0BzqBZK5wIxiXMExUWHlyTGNzR2c/view?usp=sharing   

http://fenchurch.mc.vanderbilt.edu/
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APPENDIX C 

COMPLETE LIST OF PROTEINS IDENTIFIED IN PROTEIN LYSATE OF INFECTED LUNG 

TISSUE AND COCCIDIOIDIN LYSATE  
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Identified Proteins  
Present in 
CDN-L 

Present 
in lung 

| CPSG_08657 | Coccidioides posadasii Silveira 
complement fixation-chitinase (428 aa) yes yes 

| CPSG_07243 | Coccidioides posadasii Silveira 
superoxide dismutase (155 aa) yes yes 

| CPSG_02802 | Coccidioides posadasii Silveira 
exo-beta-1,3-glucanase Exg0 (889 aa) yes yes 

| CPSG_02648 | Coccidioides posadasii Silveira 
alpha-mannosidase (520 aa) yes yes 

| CPSG_03385 | Coccidioides posadasii Silveira 
beta-glucosidase (859 aa) yes yes 

| CPSG_02027 | Coccidioides posadasii Silveira 
hypothetical protein (147 aa) yes yes 

| CPSG_06408 | Coccidioides posadasii Silveira 
alkaline phosphatase (607 aa) yes yes 

| CPSG_05583 | Coccidioides posadasii Silveira 
metalloprotease MEP1 (277 aa) yes yes 

| CPSG_05770 | Coccidioides posadasii Silveira 
FAD-dependent oxygenase (515 aa) yes yes 

| CPSG_08500 | Coccidioides posadasii Silveira 
endo-1,3-beta-glucanase (885 aa) yes yes 

| CPSG_02111 | Coccidioides posadasii Silveira 
conserved hypothetical protein (285 aa) yes yes 

| CPSG_05610 | Coccidioides posadasii Silveira 
leucine aminopeptidase (369 aa) yes yes 

| CPSG_00196 | Coccidioides posadasii Silveira 
conserved hypothetical protein (497 aa) yes yes 

| CPSG_03152 | Coccidioides posadasii Silveira 
conserved hypothetical protein (391 aa) yes yes 

| CPSG_03850 | Coccidioides posadasii Silveira 
wall-associated proteinase (310 aa) yes yes 

| CPSG_08739 | Coccidioides posadasii Silveira 
alkaline protease (400 aa) yes yes 

| CPSG_07196 | Coccidioides posadasii Silveira 
aspartyl aminopeptidase (504 aa) yes yes 

| CPSG_05091 | Coccidioides posadasii Silveira 
sialidase (356 aa) yes yes 

| CPSG_06651 | Coccidioides posadasii Silveira 
conserved hypothetical protein (693 aa) yes yes 

| CPSG_01581 | Coccidioides posadasii Silveira 
iron/manganese superoxide dismutase (236 aa) yes yes 

| CPSG_07381 | Coccidioides posadasii Silveira 
rds1 (484 aa) yes yes 

| CPSG_07353 | Coccidioides posadasii Silveira 
secreted dipeptidyl peptidase (724 aa) yes yes 

| CPSG_01038 | Coccidioides posadasii Silveira 
beta-glucosidase (307 aa) yes yes 
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| CPSG_08872 | Coccidioides posadasii Silveira 
chitinase (353 aa) yes yes 

| CPSG_02766 | Coccidioides posadasii Silveira 
conserved hypothetical protein (197 aa) yes yes 

| CPSG_02828 | Coccidioides posadasii Silveira 
gamma-glutamyltranspeptidase (593 aa) yes yes 

| CPSG_01482 | Coccidioides posadasii Silveira 
copper amine oxidase (802 aa) yes yes 

| CPSG_08248 | Coccidioides posadasii Silveira 
acid trehalase (1074 aa) yes yes 

| CPSG_04449 | Coccidioides posadasii Silveira 
hypothetical protein (225 aa) yes yes 

| CPSG_07055 | Coccidioides posadasii Silveira 
carboxypeptidase (652 aa) yes yes 

| CPSG_08841 | Coccidioides posadasii Silveira 
peptidase (453 aa) yes yes 

| CPSG_04011 | Coccidioides posadasii Silveira 
DUF1237 domain-containing protein (551 aa) yes yes 

| CPSG_04082 | Coccidioides posadasii Silveira 
serine peptidase, family S28 (556 aa) yes yes 

| CPSG_04657 | Coccidioides posadasii Silveira 
conserved hypothetical protein (661 aa) yes yes 

| CPSG_03507 | Coccidioides posadasii Silveira 
glutaminase GtaA (857 aa) yes yes 

| CPSG_04717 | Coccidioides posadasii Silveira 
serine protease (401 aa) yes yes 

| CPSG_08888 | Coccidioides posadasii Silveira 
conserved hypothetical protein (504 aa) yes yes 

| CPSG_06612 | Coccidioides posadasii Silveira 
acetamidase (589 aa) yes yes 

| CPSG_09845 | Coccidioides posadasii Silveira 
non-hemolytic phospholipase C (708 aa) yes yes 

| CPSG_02656 | Coccidioides posadasii Silveira 
Ser/Thr protein phosphatase family (632 aa) yes yes 

| CPSG_07236 | Coccidioides posadasii Silveira 
serine protease (498 aa) yes yes 

| CPSG_00137 | Coccidioides posadasii Silveira 
carboxypeptidase (601 aa) yes yes 

| CPSG_07819 | Coccidioides posadasii Silveira 
conserved hypothetical protein (496 aa) yes yes 

| CPSG_09825 | Coccidioides posadasii Silveira 
conserved hypothetical protein (232 aa) yes yes 

| CPSG_04840 | Coccidioides posadasii Silveira 
acetylcholinesterase (581 aa) yes yes 

| CPSG_08492 | Coccidioides posadasii Silveira 
extracelular serine carboxypeptidase (544 aa) yes yes 

| CPSG_07483 | Coccidioides posadasii Silveira 
conserved hypothetical protein (453 aa) yes yes 

| CPSG_04742 | Coccidioides posadasii Silveira 
adenosylhomocysteinase (450 aa) yes yes 

| CPSG_08329 | Coccidioides posadasii Silveira 
aminopeptidase (890 aa) yes yes 
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| CPSG_08627 | Coccidioides posadasii Silveira 
conserved hypothetical protein (393 aa) yes yes 

| CPSG_04000 | Coccidioides posadasii Silveira 
endonuclease/exonuclease/phosphatase (291 aa) yes yes 

| CPSG_06347 | Coccidioides posadasii Silveira 
hypothetical protein (504 aa) yes yes 

| CPSG_09707 | Coccidioides posadasii Silveira 
chitosanase (242 aa) yes yes 

| CPSG_09885 | Coccidioides posadasii Silveira 
glucose-6-phosphate isomerase (554 aa) yes yes 

| CPSG_00906 | Coccidioides posadasii Silveira 
aminopeptidase (612 aa) yes yes 

| CPSG_03388 | Coccidioides posadasii Silveira 
tripeptidyl peptidase SED3 (600 aa) yes yes 

| CPSG_07314 | Coccidioides posadasii Silveira 
isochorismatase family hydrolase (196 aa) yes yes 

| CPSG_06733 | Coccidioides posadasii Silveira 
conserved hypothetical protein (165 aa) yes yes 

| CPSG_08913 | Coccidioides posadasii Silveira 
leucine aminopeptidase (504 aa) yes yes 

| CPSG_03208 | Coccidioides posadasii Silveira 5-
methyltetrahydropteroyltriglutamate-homocysteine 
methyltransferase (775 aa) yes yes 

| CPSG_09790 | Coccidioides posadasii Silveira 
ubiquitin (626 aa) yes yes 

| CPSG_06520 | Coccidioides posadasii Silveira 
conserved hypothetical protein (1228 aa) yes yes 

| CPSG_08790 | Coccidioides posadasii Silveira 
stress response protein Rds1 (456 aa) yes yes 

| CPSG_04302 | Coccidioides posadasii Silveira 
pyridine nucleotide-disulphide oxidoreductase (565 
aa) yes yes 

| CPSG_02467 | Coccidioides posadasii Silveira 
aldose 1-epimerase (433 aa) yes yes 

| CPSG_08295 | Coccidioides posadasii Silveira 
hypothetical protein (276 aa) yes yes 

| CPSG_07273 | Coccidioides posadasii Silveira 
conserved hypothetical protein (339 aa) yes yes 

| CPSG_06448 | Coccidioides posadasii Silveira 
hypothetical protein (217 aa) yes yes 

| CPSG_04321 | Coccidioides posadasii Silveira 3-
isopropylmalate dehydrogenase A (364 aa) yes yes 

| CPSG_08652 | Coccidioides posadasii Silveira 
actin (295 aa) yes yes 

| CPSG_08451 | Coccidioides posadasii Silveira 
alcohol dehydrogenase (349 aa) yes yes 

| CPSG_00066 | Coccidioides posadasii Silveira 
hypothetical protein (223 aa) yes yes 

| CPSG_04381 | Coccidioides posadasii Silveira 
glutamyl-tRNA(Gln) amidotransferase subunit A 
(484 aa) yes yes 

| CPSG_08488 | Coccidioides posadasii Silveira 
ribonuclease T2-like (412 aa) yes yes 
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| CPSG_04612 | Coccidioides posadasii Silveira 
extracellular elastinolytic metalloproteinase (640 
aa) yes yes 

| CPSG_09734 | Coccidioides posadasii Silveira 
beta-1,3-glucanosyltransferase (474 aa) yes yes 

| CPSG_01618 | Coccidioides posadasii Silveira 
glucoamylase (627 aa) yes yes 

| CPSG_06407 | Coccidioides posadasii Silveira 
cell wall glucanase (439 aa) yes yes 

| CPSG_02747 | Coccidioides posadasii Silveira 
autophagy protein Atg27 (312 aa) yes yes 

| CPSG_01885 | Coccidioides posadasii Silveira 
BYS1 domain-containing protein (155 aa) yes yes 

| CPSG_02334 | Coccidioides posadasii Silveira 
nuclear transport factor (124 aa) yes yes 

| CPSG_02925 | Coccidioides posadasii Silveira 
chaperonin (103 aa) yes yes 

| CPSG_09496 | Coccidioides posadasii Silveira 
endoglucanase (215 aa) yes yes 

| CPSG_02568 | Coccidioides posadasii Silveira 
histone H4 (104 aa) yes yes 

| CPSG_02793 | Coccidioides posadasii Silveira 
conserved hypothetical protein (234 aa) yes yes 

| CPSG_06794 | Coccidioides posadasii Silveira 
nicotinate-nucleotide pyrophosphorylase (315 aa) yes yes 

| CPSG_04555 | Coccidioides posadasii Silveira 2-
methylcitrate dehydratase (552 aa) yes yes 

| CPSG_08186 | Coccidioides posadasii Silveira 
conserved hypothetical protein (322 aa) yes yes 

| CPSG_01960 | Coccidioides posadasii Silveira 
lactoylglutathione lyase (323 aa) yes no 

| CPSG_05793 | Coccidioides posadasii Silveira 
formamidase (414 aa) yes no 

| CPSG_00803 | Coccidioides posadasii Silveira 
conserved hypothetical protein (593 aa) yes no 

| CPSG_05792 | Coccidioides posadasii Silveira 
peptidyl-prolyl cis-trans isomerase (374 aa) yes no 

| CPSG_08956 | Coccidioides posadasii Silveira 
conserved hypothetical protein (664 aa) yes no 

| CPSG_06865 | Coccidioides posadasii Silveira 
conserved hypothetical protein (285 aa) yes no 

| CPSG_09956 | Coccidioides posadasii Silveira 
beta-1,3-glucanosyltransferase (529 aa) yes no 

| CPSG_00512 | Coccidioides posadasii Silveira 
conserved hypothetical protein (539 aa) yes no 

| CPSG_03061 | Coccidioides posadasii Silveira 
dipeptidyl peptidase (708 aa) yes no 

| CPSG_08830 | Coccidioides posadasii Silveira 
tyrosinase (412 aa) yes No 

| CPSG_00188 | Coccidioides posadasii Silveira 
dipeptidyl aminopeptidase (918 aa) yes no 

| CPSG_00354 | Coccidioides posadasii Silveira 
hsp70-like protein (651 aa) yes no 
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| CPSG_00752 | Coccidioides posadasii Silveira 
conserved hypothetical protein (822 aa) yes no 

| CPSG_05591 | Coccidioides posadasii Silveira 
conserved hypothetical protein (752 aa) yes no 

| CPSG_04907 | Coccidioides posadasii Silveira 
1,3-b-glucanosyltransferase (448 aa) yes no 

| CPSG_09883 | Coccidioides posadasii Silveira 
conserved hypothetical protein (758 aa) yes no 

| CPSG_08837 | Coccidioides posadasii Silveira 
enolase (408 aa) yes no 

| CPSG_05811 | Coccidioides posadasii Silveira 
alkaline serine protease (398 aa) yes no 

| CPSG_05817 | Coccidioides posadasii Silveira 
YjgH family protein (165 aa) yes no 

| CPSG_08319 | Coccidioides posadasii Silveira 
lysophospholipase (630 aa) yes no 

| CPSG_01055 | Coccidioides posadasii Silveira 
conserved hypothetical protein (249 aa) yes no 

| CPSG_07165 | Coccidioides posadasii Silveira 
conserved hypothetical protein (193 aa) yes no 

| CPSG_03569 | Coccidioides posadasii Silveira 
elongation factor 1-alpha (461 aa) yes no 

| CPSG_07164 | Coccidioides posadasii Silveira 
conserved hypothetical protein (319 aa) yes no 

| CPSG_06252 | Coccidioides posadasii Silveira 
carboxypeptidase (536 aa) yes no 

| CPSG_08693 | Coccidioides posadasii Silveira 
cytochrome c peroxidase (319 aa) yes no 

| CPSG_03642 | Coccidioides posadasii Silveira 
conserved hypothetical protein (399 aa) yes no 

| CPSG_00802 | Coccidioides posadasii Silveira 
ATP synthase subunit beta (522 aa) yes no 

| CPSG_08245 | Coccidioides posadasii Silveira 
Ser/Thr protein phosphatase family (604 aa) yes no 

| CPSG_08571 | Coccidioides posadasii Silveira 
conserved hypothetical protein (306 aa) yes no 

| CPSG_06381 | Coccidioides posadasii Silveira 
14-3-3 family protein ArtA (266 aa) yes no 


