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ABSTRACT  

  

Earthquake faulting and the dynamics of subducting lithosphere are among the 

frontiers of geophysics. Exploring the nature, cause, and implications of geophysical 

phenomena requires multidisciplinary investigations focused at a range of spatial scales. 

Within this dissertation, I present studies of micro-scale processes using observational 

seismology and experimental mineral physics to provide important constraints on models 

for a range of large-scale geophysical phenomena within the crust and mantle.  

The Great Basin (GB) in the western U.S. is part of the diffuse North American-

Pacific plate boundary. The interior of the GB occasionally produces large earthquakes, 

yet the current distribution of regional seismic networks poorly samples it. The 

EarthScope USArray Transportable Array provides unprecedented station density and 

data quality for the central GB. I use this dataset to develop an earthquake catalog for the 

region that is complete to M 1.5. The catalog contains small-magnitude seismicity 

throughout the interior of the GB. The spatial distribution of earthquakes is consistent 

with recent regional geodetic studies, confirming that the interior of the GB is actively 

deforming everywhere and all the time. Additionally, improved event detection 

thresholds reveal that swarms of temporally-clustered repeating earthquakes occur 

throughout the GB. The swarms are not associated with active volcanism or other swarm 

triggering mechanisms, and therefore, may represent a common fault behavior.  

Enstatite (Mg,Fe)SiO3 is the second most abundant mineral within subducting 

lithosphere. Previous studies suggest that metastable enstatite within subducting slabs 

may persist to the base of the mantle transition zone (MTZ) before transforming to high-

pressure polymorphs. The metastable persistence of enstatite has been proposed as a 
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potential cause for both deep-focus earthquakes and the stagnation of slabs at the base of 

the MTZ. I show that natural Al- and Fe-bearing enstatite reacts more readily than 

previous studies and by multiple transformation mechanisms at conditions as low as 

1200°C and 18 GPa. Metastable enstatite is thus unlikely to survive to the base of the 

MTZ. Additionally, coherent growth of akimotoite and other high-pressure phases along 

polysynthetic twin boundaries provides a mechanism for the inheritance of 

crystallographic preferred orientation from previously deformed enstatite-bearing rocks 

within subducting slabs. 
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 CHAPTER 1 

DISSERTATION INTRODUCTION 

1.1 Introduction 

Earthquake faulting and the dynamics of subducting lithosphere are among the 

frontiers of geophysics. Exploring the nature, cause, and implications of geophysical 

phenomena requires multidisciplinary investigations focused at a range of spatial and 

temporal scales. For example, studies of microscopic-scale mineral and rock physics can 

provide key constraints for models of continental-scale tectonophysics or global-scale 

mantle dynamics. Moreover, models describing large-scale geophysical phenomena may 

represent an oversimplification or inaccurate representation of the dynamic Earth system 

if they do not account for certain micro-scale geophysical processes. In this dissertation, I 

use observational seismology and experimental mineral physics to show that an 

understanding of small-scale geophysical processes (e.g., microseismicity within the 

crust, or metastable phase transformations within subducting lithosphere) is essential for 

refining models of larger-scale geophysical phenomena observed within the Earth.  

In Chapter 2, I apply observational seismology to explore the nature of faulting 

and deformation within the Great Basin (GB) in the western United States (US). The 

USArray Transportable Array (TA) continuously recorded seismic data for two years 

across most of the continental US. Using TA data, I have developed a small-magnitude 

(M < 2.0) seismicity catalog that is consistent with recent geodetic data for the region, 

showing that the GB is deforming everywhere and all the time. I also use these data to 

identify repeating, temporally-related small-magnitude earthquake sequences (swarms) 

throughout the study region. These results suggest that earthquake swarms may be a 
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common fault behavior (i.e., Peng and Gomberg 2010) that occurs independent of 

tectonic environment. By using a range of geophysical data to examine potential causes 

for these earthquake swarms, I suggest that pore fluid pressure variation due to external 

geophysical phenomena (i.e., local transient deformation events or subsurface fluid 

migration) as the most likely cause of earthquake swarms within the study region.  

Within Chapters 3 and 4, I apply experimental mineral physics to constrain 

models for the behavior of subducting lithosphere within the mantle transition zone 

(MTZ). Enstatite is the second most abundant mineral within subducting oceanic 

lithosphere; however, previous studies have shown that enstatite is slow to transform to 

high-pressure phases at lower temperatures such as those expected within the interior of 

subducting slabs. This has led to the interpretation that metastable enstatite can survive to 

the base of the MTZ and impact phenomena such as deep focus earthquakes (Hogrefe et 

al., 1994) and the stagnation of slabs at the base of the MTZ (van Mierlo et al., 2013; 

Agrusta et al., 2014; King et al., 2015). Using a multi-anvil apparatus, I performed a 

series of experiments at high pressure and temperature to better understand how single 

crystals of natural enstatite (Mg,Fe)SiO3 behave at MTZ conditions.  

Within Chapter 3, I report that single crystals of natural Al- and Fe-bearing 

enstatite are much more reactive than powdered end-member MgSiO3, and 

intracrystalline transformation mechanisms within natural enstatite are likely to 

accelerate transformation of enstatite to high-pressure phases within the mantle. Thus, 

metastable enstatite may not survive to the base of the transitions zone, and it is unlikely 

to be a contributing factor for the both formation of deep-focus earthquakes and the 

stagnation of slabs at the base of the MTZ.  
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In Chapter 4, I examine growth of high-pressure phases along polysynthetic twin 

boundaries within partially transformed natural enstatite crystals. These results have 

implications for slab rheology, the causes of deep focus earthquakes, and interpretations 

of seismically observed crystallographic preferred orientation within slabs at the base of 

the MTZ.  

More detailed summaries of the research presented in Chapters 2, 3 and 4 are 

provided below. 

 

1.2 Earthquake Swarms and Small-Magnitude Seismicity as Constraints for Faulting and 

Deformation within the Great Basin 

An accurate characterization of small-magnitude (< M 2.0) seismicity improves 

our understanding of tectonic processes and helps to constrain mechanisms of faulting 

within slowly deforming regions. The interior of the GB occasionally produces large 

earthquakes, yet the current distribution of regional seismic networks poorly samples the 

region. Within Chapter 2, I use data recorded by the EarthScope USArray Transportable 

Array and an improved event detection methodology to produce an earthquake catalog 

for the GB that is complete to M 1.5, has earthquakes as small as local magnitude (ML) -

0.1, and contains 2,158 events from January 2006 through April 2009. I utilize multiple 

techniques to remove anthropogenic seismicity from all catalogs within the study area 

from 2004 through 2012. The resulting improved earthquake catalog reveals diffuse 

small-magnitude seismicity across the region, and supports a model of continued Basin 

and Range deformation within the interior of the GB. I also identify 49 clusters of 

seismicity including 10 earthquake swarms scattered throughout the region and conclude 
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that swarms are a faulting behavior common in diffusely extending crust. I explore a 

range of possible triggering mechanisms and suggest that perturbations in pore fluid 

pressure from either (1) local transient deformation events or (2) subsurface fluid 

migration are the most likely mechanisms for the generation of earthquake swarms within 

the GB. 

 

1.3 Metastable High-Pressure Reactions in Enstatite: Implications for Slab Dynamics 

and Deep Earthquakes 

Pure MgSiO3 enstatite is much slower to react than olivine in kinetic 

transformation experiments. This has led to the interpretation that metastable enstatite 

will persist to much greater mantle depths within a cold subducting slab than metastable 

olivine. Within Chapter 3, I use data from a series of multi-anvil experiments to examine 

high-pressure reactivity for natural Al- and Fe- bearing enstatite. Natural enstatite 

transforms to high-pressure polymorphs at lower pressures and temperatures than 

synthetic end member MgSiO3, and recovered experimental samples contain abundant 

intracrystalline transformation. These results show that natural Al- and Fe-bearing 

enstatite is more reactive than previously thought, and polymorphic reactions are strongly 

favored over eutectioid-type decomposition reactions. Increased reactivity of enstatite in 

the mantle would decrease the depth to which metastable enstatite can survive within 

subducting lithosphere. Therefore, the deepest earthquakes must be caused by a 

mechanism other than transformational faulting of metastable enstatite, and metastable 

enstatite may not have a major impact on slab buoyancy and stagnation at the base of 

mantle transition zone. 
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1.4 Intracrystalline Transformation of High-Clinoenstatite at Mantle Transition 

Conditions: Implications for Rates, Crystallographic Preferred Orientations and Deep 

Focus Earthquakes 

Within the mantle, orthoenstatite (OEN) with space group Pbca transforms to a 

monoclinic structure of either C2/c or P21/c (HCEN or HCEN2, respectively) depending 

on composition and pressure-temperature conditions. The transformation of orthoenstatite 

to the clinopyroxene structure produces polysynthetic twinning along (100)cEn, which 

may have significant impact on transformation rates, rheology, and grain size within 

pyroxene-rich portions of the mantle such as subducting lithosphere. In a series of multi-

anvil experiments performed on untwinned single crystals of natural San Carlos enstatite, 

abundant polysynthetic twins occur within the enstatite core of all samples recovered 

from high-pressures. These experiments show that (100)cEn twin boundaries serve as 

nucleation sites for intracrystalline transformation of high-pressure phases. If active 

within the mantle, these transformation mechanisms will significantly reduce the depth to 

which metastable enstatite can persist within cold subducting lithosphere. Growth of 

high-pressure phases along twin planes also produces aligned regions of reduced grain 

sizes parallel along (100)cEn that, when coupled with weakness from existing twin planes, 

may provide a shear instabilities sufficient to support deep focus earthquakes. 

Additionally, a sample transformed at 21 GPa and 1400°C contains topotaxial growth of 

akimotoite, wadsleyite, and stishovite along (100)cEn, suggesting that transformation 

along the twin planes may provide a means for the inheritance of crystallographic 

preferred orientation from previously deformed enstatite-bearing rocks. 



6 

CHAPTER 2 

EARTHQUAKE SWARMS AND SMALL-MAGNITUDE SEISMICITY AS 

CONSTRAINTS FOR FAULTING AND DEFORMATION WITHIN THE GREAT 

BASIN 

2.1 Introduction 

2.1.1 Earthquake Swarms 

 Clusters of earthquakes that are spatially and temporally related are an important 

product of earthquake catalogs. Earthquake clusters are typically classified as being either 

a mainshock-aftershock (MS/AS) sequences or earthquake swarms. MS/AS sequences 

are clusters in which the largest event is at the beginning and is followed by aftershocks 

whose magnitudes and occurrence rates are described by Omori’s aftershock law (Utsu et 

al., 1995). These failure mechanisms are ubiquitous, as MS/AS sequences are common in 

all tectonic settings. Earthquake swarms are defined as localized bursts of small-

magnitude earthquakes that last for a period of days to months and do not contain a larger 

mainshock (Vidale and Shearer, 2006). Earthquake swarms have been identified in a 

range of tectonic settings, including subduction zones (Holtkamp and Brudzinski, 2011), 

transform faults (Lohman and McGuire 2009), ocean ridges (McGuire et al., 2005), 

regions of ongoing or recent volcanic activity (Segall 2010; Shelly et al., 2013), and 

geothermal fields (Fischer et al., 2014). Within intraplate regions, swarms are commonly 

associated with volcanism or geothermal activity (Špičák 2000); however, improved 

seismic observation capabilities within many slowly deforming regions have led to the 

detection of intraplate swarms within Arizona (Lockridge et al., 2012), South America 
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(Holdtkamp et al., 2011), and Canada (Ma and Eaton 2009) that do not appear to be 

associated with volcanic or geothermal activity. 

 Earthquake swarms can be triggered by a range of transient geophysical processes 

within the crust, including fault creep (Lohman and McGuire 2007; Holtkamp and 

Brudzinski, 2011; Vidale and Shearer, 2006), magma injection (Hill 1977; Smith et al., 

2004), and migration of subsurface fluids (Yamashita et al., 2009; Shelly et al., 2013; 

Fischer et al., 2014). External forces acting upon a fault surface near failure can also 

trigger swarm activity. For example, dynamic triggering from teleseismic surface waves 

(Boese et al., 2014), above-average rainfall (Hainzl et al., 2006), and seasonal snow 

loading (Braunmiller et al., 2014) have been suggested as sources of increased stress. 

Anthropogenic triggering of earthquake swarms has been summarized Ellsworth (2013) 

and is associated with reservoir impoundment (Simpson et al., 1986), geothermal power 

generation (Brodsky and Lajoie 2013), and oil and gas production (Frohlich et al., 2011; 

Rubinstein and Babaie Mahani 2015; Eaton and Rubinstein 2015).  

 The physical mechanism causing earthquakes during a swarm sequence has been 

attributed to either (1) transient aseismic slip along a fault that loads neighboring regions 

of the fault that are more strongly coupled (Segall et al., 2006; Ozawa et al., 2007; 

Lohman and McGuire 2007; Llenos et al., 2009; Lengliné et al., 2012), or (2) variations 

in pore pressure along the fault surface or in the containing volume due to migration or 

injection of fluids (Parotidis et al., 2003; Kurz et al., 2004). These mechanisms may be 

part of a continuum of fault behavior, which has been documented in both subduction 

zones (Peng and Gomberg 2010; Lay et al., 2012) and fluid injection experiments 

(Guglielmi et al., 2015). Tectonic triggering of seismic swarms from aseismic creep has 
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only been identified at plate boundaries. This may be because plate boundaries contain 

dense seismic and geodetic monitoring networks that allow for the contemporaneous 

detection of both small-magnitude earthquakes and transient aseismic slip. Therefore, an 

improved ability to detect small-magnitude earthquakes and aseismic events is important 

for the determination of mechanisms responsible for intraplate earthquake swarms that do 

not appear to be associated with volcanic or anthropogenic activity.  

 

2.1.2 Seismotectonic Setting of the Great Basin 

  The northern Basin and Range province (hereafter, the Great Basin or GB) is an 

approximately 800 km wide region of active extension on the edge of the diffuse Pacific-

North American plate boundary. Approximately 25% of transtensional deformation 

associated with the plate boundary is accommodated within the GB (Wernicke et al., 

2008); including as much as 5% of the total deformation occurring along the eastern edge 

of the GB at the Wasatch Fault Zone (Kreemer et al., 2010). Recent crustal extension has 

been focused at the western and eastern edges of the GB, leading previous studies to 

conclude that the interior of the GB behaves as a rigid microplate (Bennett et al., 2003; 

Hammond and Thatcher, 2004; Kreemer et al., 2010; Porter et al., 2014). However, 

observations of transient deformation events across the study region (Davis et al., 2006; 

Wernicke and Davis 2010; Chamoli et al., 2014), active deformation across the central 

GB (Hammond et al., 2014), and the 2008 MW 5.9 Wells, Nevada earthquake indicate 

that the interior of the GB continues to deform at low but measureable rates. 

 Seismicity within the GB is concentrated within two N-S bands (Figure 2.1). The 

Intermountain Seismic Belt (ISB) follows the Wasatch Fault Zone along the eastern  
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Figure 2.1. Historical seismicity and seismometers within the GB. Black dots are 

historical earthquakes from the ANSS catalog with M > 3.0 (1931-2013). White shapes 

are seismometers associated with the Nevada Seismic Network (squares), and Utah 

Seismograph Network (circles). Regional tectonic features include the Intermountain 

Seismic Belt (ISB), Central Nevada Seismic Belt (CNSB); Walker Lane Fault System 

(WLFS); and Colorado Plateau (CP). Dashed white box highlights the study area for this 

project.  

 

margin of the GB. While no large historical earthquakes have been recorded within the 

ISB, large Holocene earthquakes have been identified in the region (e.g., Friedrich et al., 

2003). The Central Nevada Seismic Belt (CNSB) includes several earthquakes M 6.5 or 

larger within the last 100 years, and may represent the latest in a series of longitudinal 

seismicity belts that migrate across the GB at ~100-year timescales (Bell et al., 2004). 

However, small-magnitude seismicity (M < 2.0) has not been studied within the interior 

of the region, and locations and focal mechanisms for most earthquakes (M < 4.0) within 

the GB are typically imprecise because the majority of the region is 100s of km from the 
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nearest seismometers (Figure 2.1). Earthquakes within the GB are recorded by stations 

associated with the Utah Seismograph Network (UU) along the eastern margin and 

stations in the Nevada Seismic Network (NN) along the southwest margin of the region. 

Each network independently identifies, locates, and determines magnitudes for these 

events and reports to the Advanced National Seismic System (ANSS) catalog, the 

authoritative catalog for historical earthquake data in the GB.  

 The EarthScope USArray Transportable Array (TA) is a network of high-quality 

broadband seismographs that were temporarily deployed within the GB from January 

2006 to April 2009 (Astiz et al., 2014). Seismic data recorded by the TA provides the 

first opportunity to comprehensively characterize small-magnitude seismicity within the 

interior of the GB. The USArray Array Network Facility (ANF) performs real-time 

earthquake detection and location using data from TA stations across the US. Given the 

large and diverse areas covered by the TA, it is not feasible for the ANF to focus on the 

detection of small-magnitude earthquakes (< ML 2.0) and eliminate man-made seismic 

sources (mines, quarries, ordnance testing, etc.) from their event catalog (Astiz et al., 

2014). Therefore, additional processing of TA data is necessary to detect the smallest 

events possible given the ~70 km spacing of TA stations (e.g., Lockridge et al., 2012; 

Holland 2012) and to remove any human-generated seismicity. 

 In this study, we use USArray TA data and apply improved earthquake detection 

methods to generate a small-magnitude seismicity catalog for the GB from January 2006 

to April 2009. This high-quality dataset provides the first opportunity to examine spatial 

and temporal distributions of small-magnitude seismicity within the central GB which 

historically has not been well-sampled by seismometers. We use the improved earthquake 
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catalog to identify a diffuse distribution of seismicity throughout the central GB, which is 

additional evidence that the entire region continues to experience extension associated 

with the Pacific-North America plate boundary. We also identify and characterize 49 

small-magnitude earthquake swarms and clusters which are scattered throughout the GB 

and do not appear to be associated with volcanic, geothermal, or anthropogenic sources, 

implying that they are a commonly occurring seismicity behavior. We examine potential 

causes of two areas of temporally associated earthquake clusters within the study region 

and explore potential triggering mechanisms that could produce contemporaneous 

increases in seismicity rates along multiple parallel range-bounding faults.  

 

2.2 Data and Methods 

 The USArray ANF provided waveform and seismometer station data for this 

study that was formatted for analysis using the Antelope Environmental Data Collection 

Software suite (http://www.brtt.com). Historical earthquake data for this study was 

collected from the ANSS Composite Earthquake Catalog at 

http://www.ncedc.org/cnss/catalog-search.html (last accessed April 2013). Preliminary 

event data recorded by the EarthScope USArray Transportable Array 

(http://earthscope.org/usarray) were obtained from the EarthScope ANF website 

http://anf.ucsd.edu/tools/events/download.php (last accessed August 2012). Volcanic 

ages are from NAVDAT database (North American Volcanic Database, 

http://www.navdat.org/). Quaternary fault data were obtained from the 

USGS Quaternary Fault and Fold Database for the United States at 

http://earthquake.usgs.gov/hazards/qfaults (last accessed April 2013). 
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 To generate an improved earthquake catalog for the GB, we used continuous, 

three-component data from 160 EarthScope USArray Transportable Array broadband 

seismometer stations that occupied the region from January 2006 through April 2009 

(Figure 2.2). We processed waveform data using the Antelope Environmental Data 

Collection Software suite (hereafter referred to as Antelope) and applied methods 

described in Lockridge et al. (2012) to detect seismicity near the minimum level 

achievable given the approximate 70 km spacing of TA stations across the region. We 

merged our small-magnitude seismicity catalog with existing ANF and ANSS catalogs to 

generate a single comprehensive catalog for the study region from 2004 to 2013. 

 

2.2.1 Development of Raw Event Catalog 

 We selected a study region bound by coordinates 111°W to 118.5°W and 38.5°N 

to 41.5°N to (1) include portions of the GB in which geodetic stations were concurrently 

recording surface displacements while USArray TA stations were installed, and (2) focus 

on regions within the interior GB that have historically been poorly sampled by 

seismometers (Figure 2.1). To generate a catalog of small-magnitude events, we used 

Antelope’s algorithms for automatic body wave arrival detection (dbdetect), detection 

association (dbgrassoc), and hypocenter location (dbgenloc) (Pavlis et al., 2004; see 

Lockridge et al., 2012). The functions dbdetect and dbgrassoc utilize the same 

methodology as the real-time orbdetect and orbassoc functions that are used to generate 

the ANF earthquake catalog (Astiz et al., 2014).  

 Ddetect computes short-term average (STA) and long-term average (LTA) 

amplitudes for specified stations or channels over a series of time steps, and flags  
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Figure 2.2. Seismicity within the central GB from 2004 to 2013 from the catalog 

produced in this study. Note the increased density of earthquakes (black circles, sized by 

magnitude) within eastern and northern Nevada compared to the historical catalog 

(Figure 2.1) White triangles are TA stations. Blue regions with black hatching areas are 

the 13 regions of events removed during pre-processing, including the region of the 2008 

M5.9 Wells, Nevada earthquake sequence (white star). Locations of Skyline Mine (S) and 

Deer Creek/Crandall Canyon coal mines (D) within the Wasatch Plateau-Book Cliffs coal 

mining region (white polygon; Arabasz et al., 2005) are shown in the eastern portion of 

study area. Vertical black dashed lined mark a seismicity gap within the study region 

between -113°E and -114.5°E. 

 

potential P- or S-wave arrivals as instances in which the STA/LTA ratio exceeds a 

threshold amount. Dbgrassoc then searches for associated detections that meet a required 

criteria, such as a minimum number of stations, maximum time interval between first and 

last arrival, and maximum station distance from the associated event origin, etc. Once the 

association criteria are met for a given set of arrivals, dbgenloc uses an iterative least 

squares inversion to search over a predefined spatial grid for origin times and hypocenter 

locations that best match the observed P- and S-wave arrivals at each station. Detections 

Event 1 

Event 2 
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that fail to meet the association criteria or are associated with hypocenters located outside 

of the study region are ignored by the dbgrassoc algorithm. Hypocenter locations and 

origin times for automatically detected events are computed assuming the 2-D IASP91 

velocity model (Kennett and Engdahl, 1991). Dbgenloc computes hypocentral errors by 

assigning weights to each arrival based on residual time and a default or manually 

provided uncertainty value. 

 When using an automatic event detection algorithm to generate an earthquake 

catalog, increasing sensitivity to detect smaller earthquakes also increases the number of 

false associations included in catalog. These false events are easily recognized while 

reviewing waveform data because the highest amplitude signal was not typically found 

on the stations nearest to the event origin. Spurious events greatly increase data 

processing time and may contaminate earthquake catalogs. Therefore, we altered dbdetect 

and dbgrassoc parameter values according to methods described in Lockridge et al.,  

 (2012) to detect the smallest possible earthquakes while minimizing unwanted 

detections. Key Antelope parameters used in this study are shown in Table 2.1.  

 To test the effectiveness of our automatic detection parameters, we developed a 

series of test catalogs using varying dbdetect and dbgrassoc parameters. These catalogs 

were compared to the ANF earthquake catalog of events associated with a MW 5.9 

earthquake that occurred on February 21, 2008 near Wells, Nevada. The ANF catalog 

identifies 106 total events located within our study region from 00:00:00 to 23:59:59 

UTC February 21, 2008, all of which are associated with the Wells, Nevada earthquake 

and aftershock sequence. By comparison, our final and most effective test run produces 

an earthquake catalog of 209 unique events for the same sample time and area. Of these  
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Table 2.1. Antelope Parameters Used for Automatic Detection of Earthquakes 

Parameter File 

ttgrid 

Nodes/Degree East 25 

Nodes/Degree West 25 

Depth interval 5 km 

  

dbdetect 

S:N Threshold 3.5 

STA Time Window 1.0 sec 

LTA Time Window 10.0 sec 

  

dbgrassoc 

Association Window 20 sec 

Time Step 10 sec 

Minimum Stations 4 

Max Station Distance  1.5° 

*Additional information on Antelope parameter files can be found at www.brtt.com or 

within Lockridge et al. (2012). 

 

209 unique events, 195 are earthquakes and aftershocks associated with the Wells, 

Nevada event, seven are mine/quarry blasts, six are false detections, and one is an 

earthquake occurring within the western portion of the study area that the ANF catalog 

did not previously identify. Our automatic detection algorithm is unable to detect 10 of 

the 106 earthquakes in the ANF catalog. Our review of waveform data for these events 

reveals that seven of the 10 were not detected because they were associated with multiple 

event clusters that had been manually located by ANF technicians. In these cases, event 

clustering either (1) precluded P-wave detection by elevating the LTA values from 

neighboring events, or (2) placed the omitted event within the same association time 

window as another event. The three remaining events identified by ANF but missed by 

our automatic detection algorithm have P-wave arrivals that were flagged by dbdetect, 

but not associated by dbgrassoc. Two of these events were detected within in previous 

tests using different association processing time windows, which suggests that the events 
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were excluded because their arrivals were split between two separate time-step windows. 

Based on these results, we conclude that our modified event detection and association 

parameters are successfully calibrated to detect more events and smaller magnitude 

seismicity than the parameters used to generate the ANF catalog. 

 We combine our raw, automatically generated event catalog with the ANF 

earthquake catalog by merging Antelope databases for the two catalogs. This step has two 

important benefits. First, it allows us to compare our raw event list against the ANF 

catalog while processing and confirm that our automatic detection algorithm is correctly 

detecting events across the entire study region for the duration of the study period. 

Second, it decreases catalog processing time by allowing us to avoid reprocessing events 

already reviewed by ANF technicians. Therefore, our event catalog primarily contains 

small-magnitude events that are below the detection threshold of ANF algorithms.  

 

2.2.2 Preliminary Identification and Removal of Non-Tectonic Events 

 Non-tectonic events are an unavoidable and typically undesirable component of 

automatically generated seismicity catalogs. There are numerous active mine and quarry 

sites within the GB (Bon and Wakefield, 2008; Davis and Hess, 2009). To reduce catalog 

processing time, we use the earthquake catalog generated by ANF and Google Earth 

satellite imagery to identify mines that performed frequent seismically detectable blasting 

within the GB during the study period. We find 12 regions where surficial scarring from 

mining activity was spatially correlated with dense clusters of seismicity recorded by the 

TA. Additionally, a strong increase in events in their catalog during February 2008 shows 

that the February 21, 2008 MW 5.9 earthquake near Wells, Nevada and its aftershocks are 
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well documented in the ANF catalog (see Astiz et al., 2014). Therefore, we consider the 

detection and location of the aftershock sequence associated with this event to be beyond 

the scope of this study.  

To avoid detecting and processing seismic events within these areas, we select 

approximate latitude and longitude bounds for the 13 regions of unwanted seismicity 

(Figure 2.2; Table 2.2) and eliminate all events within these areas from our automatically 

generated catalog. This step results in a 65% decrease (24% from the MW 5.9 Wells 

earthquake sequence, 41% from the 12 identified mine areas) in the number of 

automatically detected events within our raw catalog. While we expect that some tectonic 

events are lost by the addition of this step, the large reduction in time spent manually 

reviewing waveforms is considered to be a worthwhile tradeoff.  

 Potential mining, quarrying and ordnance testing blasts not associated as one of 

the 13 excluded regions may also be detected using waveform character. These events are 

characterized by emergent P-wave arrivals for all stations, an absence of clear S-wave 

arrivals, codas exceeding 25 seconds on stations within 1° of event hypocenter, and/or a 

large amount of low-frequency signal (Stump et al., 2002; Lockridge et al., 2012). If an 

event matches these criteria, we review Google Earth satellite imagery and remove any 

events with clear evidence of small mining operations, quarries, or ordnance testing 

activities in the vicinity of the epicenter (Table 2.3). Events with waveforms similar to 

other non-tectonic events but not located near any known mines, weapons testing ranges, 

or visibly scarred areas are retained as part of our catalog. Additional steps to further 

identify and remove human-generated seismic events from our catalog are described in 

the Results section.  
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Table 2.2. 13 Areas with events removed from raw catalog during pre-processing 
Minimum 

Latitude 

(N) 

Maximum 

Latitude 

(N) 

Minimum 

Longitude 

(E) 

Maximum 

Longitude 

(E) 

# Events 

Removed 
Designation* 

38.62 38.75 -117.16 -117.00 215 Round Mountain Mine 

38.92 39.01 -112.97 -112.85 60 Cricket Mountain Quarry 

39.20 39.33 -115.11 -114.92 605 Robinson Mine 

39.49 39.59 -116.04 -115.89 71 Ruby Hill Mine 

39.89 39.99 -115.64 -115.45 80 Bald Mountain Mine 

40.18 40.35 -116.80 -116.62 630 Cortez Pipeline Mine 

40.23 40.33 -118.19 -118.12 44 Coeur Rochester Mine 

40.45 40.63 -112.32 -112.03 3891 Bingham Mine 

40.47 40.86 -117.36 -117.05 964 
Phoenix/Trenton Canyon/ 

Marigold/Lone Tree Mines 

40.55 40.61 -118.28 -118.19 40 Florida Canyon Mine 

40.70 41.06 -116.50 -116.13 2204 Storm/Miekle/Carlin Mines 

40.98 41.37 -115.06 -114.62 5450 M5.9 Wells, NV Sequence 

41.13 41.33 -117.30 -117.07 523 Turquoise Ridge/Twin Creeks 

*Designations listed according to Bon and Wakefield (2008) for Utah operations and 

Davis and Hess (2009) for Nevada. 

 

Table 2.3. Localities of ignored seismicity related to observable mine/quarry activity 

Latitude 

(N) 

Longitude 

(E) 
Designation* 

38.70 -117.09 Elburz Pit 

38.75 -117.97 Unknown 

39.56 -112.19 Leamington Cement 

40.01 -111.81 Keigley Quarry 

40.46 -111.92 Unknown 

40.51 -112.48 Roudabush #1 

40.63 -112.28 Unknown 

40.73 -111.77 Parleys Canyon Rock Quarry 

40.81 -111.91 Beck Street 2 

40.82 -117.21 Cinder Cone Pit 

40.82 -114.25 Pilot Peak Quarry 

40.90 -117.75 MIN-AD Mine 

41.06 -111.54 Devils Slide Quarry 

41.34 -112.03 Unknown 

41.41 -115.99 CEMEX Paiute Pit 

41.54 -114.95 Big Ledge Mine 

*Designations listed according to Bon and Wakefield (2008)  

for Utah operations and Davis and Hess (2009) for Nevada. 

2.2.3 Earthquake Hypocenter Relocation, Errors, and Magnitudes 
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 After the removal of false detections and anthropogenic seismicity as described 

above, we process the remaining events in our catalog. Event catalogs generated using 

Antelope’s automatic detection algorithm contain approximate P-wave arrival times with 

a default uncertainty value set for each arrival. Therefore, it is necessary to manually 

review waveform data for each event, adjust P-wave arrivals on vertical components, add 

S-wave arrivals on horizontal components, and adjust arrival uncertainties before 

relocating each event. For each earthquake, we review waveform data using a 1 Hz high-

pass filter and modify phase arrivals and uncertainties prior to hypocenter recalculation. 

We deviate from methods used by Lockridge et al. (2012) and use Antelope’s dblocsat2 

(LocSAT) location program (Bratt and Bache, 1988; Bratt and Nagy, 1991) and the 

IASP91 global 1-D velocity model (Kennett and Engdahl, 1991) for event relocation 

instead of a local, empirically determined 1-D velocity model. The ANF uses the LocSAT 

location program and the IASP91 velocity model to locate earthquakes because they are 

more generally applicable to the wide range of recorded seismicity and crustal structures 

encountered by the TA as it moves across the United States (Astiz et al., 2014). We use 

LocSAT and IASP91 to locate events in an effort to maintain consistency with the ANF 

catalog, for which our catalog of events is a supplement. Additionally, we consider the 

IASP91 velocity model to be adequate for hypocenter locations because the 35 km Moho 

depth in the model (Kennett and Engdahl, 1991) is consistent with the Moho depths (30-

35 km) determined from receiver function analyses (Gilbert and Sheehan, 2004; Lowry 

and Pérez-Gussinyé 2011; Gilbert 2012) and seismic imaging studies in the GB 

(Holbrook, 1990; Catchings and Mooney, 1991; Holbrook et al., 1991).  
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 A number of different sources can contribute to errors in hypocentral locations of 

earthquakes. We consider station clock errors to be insignificant for our dataset because 

TA stations use timing data from attached GPS receivers, which limit clock errors to a 

few milliseconds or less. Phase picking errors are subjective and are assigned by the 

technician for each arrival based on the signal-to-noise ratio and amplitude of each phase 

arrival. Average phase picking errors for events located in this study are 0.22 s for P 

arrivals and 0.31 s for S arrivals. Antelope specifies maximum epicentral error by 

computing the major horizontal components of the confidence ellipse, and depth error is 

given as the maximum absolute value of the four principal axes of the confidence ellipse 

projected in the z direction. Our small-magnitude event catalog has a median epicentral 

error of 3.6 km and a median depth error of 5.9 km.  

 Relatively large hypocentral errors in this study may be attributed to (1) 3-D 

variations in crustal structure within the GB that are not well represented by the 1-D 

IASP91 velocity model, or (2) conservative arrival time uncertainty picks during our 

relocation process for small-magnitude events. However, it is most likely that large 

hypocenter error values are systematic magnitude-dependent mislocation errors (Billings 

et al., 1994), which are a direct byproduct of our goal to capture the smallest seismic 

events possible while ignoring larger events in existing catalogs. The accuracy of 

hypocenter locations is greatly improved by the use of additional station or phase arrivals. 

The small-magnitude catalog generated as part of this study used an average of 10 

arrivals to locate each event. By comparison, data obtained from the ANF’s archived 

monthly databases (http://anf.ucsd.edu/tools/events/download.php) shows that the ANF 

catalog for the study region was generated using an average of 28 arrivals per event. 
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 After relocating event hypocenters, we use Antelope’s mlrichter function to 

calculate Richter local magnitude (ML) (Kanamori 1983). As the standard magnitude 

calculation method used for all events in the ANF catalog (Astiz et al., 2014), mlrichter 

finds the station with the largest three-component peak amplitude and applies an 

empirical scaling factor to assign magnitude based on assumed attenuation at the station’s 

distance from the event epicenter (Richter 1958). Approximately 3% of events in our 

catalog return a null value for magnitude using this method. These events have few P and 

S arrival picks and low signal-to-noise ratios and are thus assumed to be among the 

smallest events within our catalog (M < 0.0). 

 To create a comprehensive catalog for the study region, we join the final 

reprocessed event catalog generated as part of this study with the ANF and ANSS 

earthquake catalogs. Many events were listed within multiple event catalogs. Therefore, 

we eliminate duplicate events based on a set criteria. First, ANSS origins are given 

authority over origins from the TA-based catalogs in cases where the ANSS event has an 

azimuthal station gap smaller than 180°. For duplicate events where the ANSS origin had 

an azimuthal gap greater than 180°, authority was determined on a case by case basis by 

comparing TA station coverage with ANSS network coverage at the time of the event. In 

total, we remove 387 duplicate ANSS events and 37 duplicate ANF events from the 

comprehensive catalogs. We also remove 790 duplicate events from the catalog generated 

as part of this study. These events are mostly within the footprint either the UU or NN 

seismometer networks and were too small to be detected using ANF methods.  

 We note that earthquake magnitudes provided to the ANSS by UU and NN 

networks are Richter local magnitude (ML), body wave magnitude (mb), or coda 



22 

magnitude (mc). Therefore, in this study we use a generic magnitude (M) when referring 

to a range of magnitudes in this study.  

 We increase temporal coverage of our dataset to include all events in the ANSS 

catalog from 2004 to 2013 (Figure 2.2; Appendix A). This expanded temporal range was 

included to (1) facilitate a comparison of the current study with concurrently recorded 

geodetic data within the region and (2) to increase our ability to identify spatial and 

temporal trends of earthquake clusters within the study region. It should be noted that the 

completeness threshold of earthquake catalogs varies depending on the aperture and 

density of available seismic stations. Therefore, the ability of the expanded catalog to 

detect and accurately locate small-magnitude seismicity varies depending on the locations 

of regional seismometers prior to 2006 and again after the TA left the region in April of 

2009.  

 

2.2.4 Daytime/Nighttime Analysis of Event Clusters 

 The use of waveform character and satellite imagery to distinguish earthquakes 

from non-tectonic events may not effectively remove all human-generated seismicity 

from a regional earthquake catalog. Variations in seismic source type, locations relative 

to seismic network, station density, and local seismic structure may make it difficult to 

discern a mine explosion from an earthquake in some regions. Moreover, underground 

mining activity may be difficult to detect using satellite imagery. Therefore, we employ a 

statistical approach to further identify and remove unwanted human-generated seismic 

events from our earthquake catalog. Using an event density analysis to search for spatial 

event clusters within the study area, we find 70 clusters within the study region for which 
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10 or more earthquakes are located within a 4 km radius. Several of these clusters are 

located within areas of underground coal mining activity identified by Arabasz et al. 

(2005) or within areas where evidence of explosions are not clearly visible in satellite 

imagery. 

 Identifying event clusters with excessively high ratios of daytime/nighttime event 

occurrence has been successfully used to remove human-generated events from 

seismicity catalogs (e.g., Wiemer and Baer, 2000; Gulia 2010). We examine 

daytime/nighttime distribution of events for two clusters within the Wasatch Plateau-

Book Cliffs coal-mining region (Figure 2.2), where nearly all events are inferred to be 

mining-related (Arabasz et al., 2005). For the largest cluster in our catalog, a clear bias 

toward daytime hours is visible in the data (Figure 2.3a) confirming that the majority of 

events related to operations at Deer Creek/Crandall Canyon mines. However, another 

cluster displays no temporal trends in event origin times despite being located within the 

mining region identified in Arabasz et al. (2005) in the area of Skyline Mine (Figure 

2.3b). Further, in a typical MS/AS sequence that follows Omori’s Law, the majority of 

events will occur within the first few hours after the mainshock. If the mainshock and 

most aftershocks occur during local daytime hours, a strict removal of clusters with high 

daytime/nighttime event ratios could possibly remove tectonic earthquake sequences 

from our catalog (Figure 2.3c). Therefore, in addition to a daytime/nighttime event 

analysis, we compare the location of each cluster to maps of active mines within Nevada 

and Utah (Davis and Hess, 2009; Bon and Wakefield, 2008).  

 Using these methods, we are able to confirm and remove 21 clusters of human-

generated events (Table 2.4) from our catalog, thereby reducing the number of total  



24 

 
 

Figure 2.3. Histograms showing daytime/nighttime event distribution for three event 

clusters. (a) Largest cluster in catalog includes 3189 total events related to underground 

mining operations Deer Creek/Crandall Canyon coal mines in western Utah (Figure 2). 

Note the large number of local daytime events relative to events between midnight and 7 

AM. (b) Cluster of events with a low daytime-nighttime ratio in the vicinity of 

underground coal mining operations at Skyline Mine in western Utah (Figure 2). (c) 

Earthquake cluster centered at 40.64° N and -111.59°E containing a MS/AS sequence 

with the majority of events occurring during daylight hours. 

 
Event 1 

Event 2 
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Table 2.4. Human-generated seismicity confirmed by daytime/nighttime analysis   

Latitude 

(N) 

Longitude 

(E) 
Designation* 

39.00 -111.37 SUFCO Coal Mine 

39.32 -111.17 Deer Creek Coal Mine 

39.42 -111.09 Bear Canyon Coal Mine 

39.43 -111.21 Crandall Canyon/Deer Creek Mines 

39.50 -111.10 Hiawatha Coal Mine 

39.56 -112.19 Leamington Cement (limestone) Quarry 

39.68 -111.20 Skyline Coal Mine 

39.87 -118.39 Craters (Fallon Air Force Range?) 

40.26 -111.87 Pelican Point Limestone Mine 

40.39 -111.95 Clinton/Allred/Lehi Peck Quarries 

40.45 -111.36 Daniels Canyon Pit 

40.46 -113.31 

Wendover Range/Dugway Proving 

Grounds 

40.46 -111.96 South Farm Quarry 

40.51 -118.24 Standard Mine 

40.63 -111.35 Unknown Quarry Site 

40.70 -111.41 Brown's Canyon Quarry 

40.73 -111.77 Parleys Canyon Rock Quarry 

40.83 -111.91 UDOT Beck Street Quarry 

41.04 -111.66 Round Valley Rock (Limestone) 

41.15 -112.88 Hill Airforce Range 

41.34 -112.01 Unknown Quarry Site 

*Designations listed according to Bon and Wakefield (2008) for Utah  

operations and Davis and Hess (2009) for Nevada. 

 

events within our study area by 55%. We assume that the remaining 49 clusters within 

our final event catalog represent natural earthquake activity and have thus they are 

included in our final catalog. These 49 earthquake clusters comprise 62% of the 4614 

total earthquakes within our final catalog (Figure 2.4).  
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Figure 2.4. Earthquake clusters with 10 or more events within a 4 km radius from 2004 to 

2013. Solid circles are earthquake swarms; dashed circles are clusters active during the 

entire study period; unlabeled clusters are MS/AS sequences. Red solid circle (A) in 

southwest corner of the study region is an area of increased earthquake and swarm 

activity in 2012. Red arrow (B) indicates area of temporally related seismicity clusters 

within the central GB during 2007, with peak periods of activity for each cluster given in 

month/year format. Quaternary faults (grey lines; see Data and Resources section), areas 

of recent volcanism (triangles; see Data and Resources section), and 2008 M5.9 Wells, 

Nevada MS/AS sequence (white star) also depicted. 

 

2.3 Results 

2.3.1 Statistical Analysis of Earthquake Catalog 

 The magnitude of completeness (Mc) is the lowest magnitude at which 100% of 

the earthquakes are apparently detected for a given sample time and region. There are 

both catalog and network-based methods for determining Mc, which are summarized by 

Mignan and Woessner (2012). Here, we determine Mc by applying the maximum 

curvature method (Weimer and Wyss, 2000) and a successive check of goodness of fit of 
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the Gutenberg-Richter relation (Gutenberg and Richter, 1944) to the cumulative 

frequency-magnitude distribution (FMD) of our earthquake catalog (Figure 2.5a).  

 (1)  log
10

 N = a - bM 

Here, N is the cumulative number of earthquake having a magnitude larger than M, and a 

and b are constants. We calculate and b-value for our dataset by applying a least squares 

fit to the FMD. To reduce the impact of heterogeneities in station spacing and density, we 

use only events that occurred while TA stations were located within the study region 

from January 2006 through April 2009. For this subset of our catalog, a Mc of 1.5 and a 

b-value of 0.90±0.02 represent the best statistical fit for the data with an R2 value of 

0.9987 (Table 2.3; Figure 2.5a). This statistical result is confirmed by a qualitative 

analysis of the data, as an Mc of 1.5 marks the location of a clear break in the linear trend 

at the lower end of the cumulative frequency-magnitude plot and is also the peak value of 

earthquake frequency on the incremental frequency-magnitude curve (Figure 2.5a).  

 

Table 2.5. Earthquake Catalogs in the Great Basin (January 2006 through April 2009).   

Entire Study Area 

Catalog # Events MC b Stations Duplicate Events 

ANSS 1211 1.5† 0.90±0.02† UU, NN 387 

ANF 360 TA 37 

ASU 587 TA 790 
      

Central Great Basin (-113°E to -117°E) 

Catalog # Events MC b Stations  

ANSS 280 2.1 0.68±0.03 UU, NN  

TA* 671 1.5 0.90±0.04 TA   

*TA catalog includes events from both the ANF catalog and the catalog 

produced as part of this study(ASU) 
†Completeness magnitude (MC) and b-values determined for combined  

ANSS, ANF, and ASU catalogs. 
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Figure 2.5. Frequency-magnitude distributions (FMD) for three separate subsets of our 

final seismicity catalog with all events occurring from January 2006 through April 2009. 

Triangles represent the total number of earthquakes for each magnitude; squares 

represent the cumulative number of earthquakes for a given magnitude and larger. (a) 

FMD of events within the ANSS, ANF, and current study catalogs across the entire study 

region. (b)  FMD of events within the ANSS catalog between a longitude range of -113°E 

to -117°E. (c) FMD of events within the ANF and current study catalogs between a 

longitude range of -113°E to -117°E. 
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 The Mc and b-values for any earthquake catalog change as a function of space and 

time due to variations in station density and distribution or the use of differing magnitude 

scales (Wiemer and Wyss, 2000; Zuniga and Wyss 1995). In this study, TA coverage was 

complete within the study region for only a short time between July 2007 and April 2008 

with stations being regularly added and removed to the network over the duration of the 

deployment. Additionally, the 2006 to 2009 dataset used for FMD analysis above 

includes events located using the UU and NV stations at the margins of the study area. 

This results in increased detection capabilities for small events along the eastern and 

southwestern margins of the study area and decreased detection of small events in the 

central GB.  

 To determine whether regional networks along the boundaries of the study region 

impacted event detection, we create subsets of each earthquake catalog containing only 

events located outside of the footprints of both the UU and NV--between longitudes  

-113°E and -117.5°E within the central GB (Figure 2.1). The ANSS catalog of events 

from 2004 to 2013 for this area is complete to Mc 2.1 with a b-value of 0.68±0.06 (Figure 

2.5b). For comparison, we create a subset of all combined catalogs from 2006 to 2009 

that contained only events between -113°E and -117.5°E. This sub-catalog has a Mc of 

1.5 and a b-value of 0.90±0.05 (Figure 2.5c).  

 

2.3.2 Depth Distribution of Earthquakes within the Great Basin 

 The majority of seismicity within our catalog (~95%) occurs within the upper 15 

km of the crust, which is consistent with focal depths reported previously by Doser and 

Smith (1989). We search for areas containing multiple events within the middle to lower 
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portion of the crust by performing an inverse distance weighting interpolation (Watson 

and Philip, 1985) of hypocentral depths across the study region. For this analysis, we use 

a variable search radius and sample the eight nearest earthquakes to determine the 

average depth of seismicity for a given point in the study area. In general, the deepest 

earthquakes within the catalog occur as isolated events that are likely to have poorly 

constrained depths due to poor station coverage or small event magnitude. However, we 

identify five localities in which six to eight events within a 10 km radius have 

hypocentral depths between 15 and 27 km (Figure 2.6). 

 

 
 

Figure 2.6. Depth distribution of seismicity (black dots) within the study area during the 

TA deployment from 2004 through 2012. Blue dashed circles highlight five areas in 

which six to eight events with hypocenters >15 km are observed. Star represents location 

of 2008 M5.9 Wells, Nevada earthquake sequence. 
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2.3.3 Earthquake Swarms, Mainshock/Aftershock Sequences, and Spatial Clusters  

 Our event catalog contains 49 earthquake clusters containing 10 or more events 

within a 4 km radius. These clusters account for 49% of all seismicity within our 2004 to 

2013 catalog. We classify these clusters into one of three groups: MS/AS sequences, 

earthquake swarms, and spatially grouped events with no obvious temporal trends in 

seismic activity. For each cluster, we determine the period of peak seismic activity and 

plot event magnitude distribution and cumulative moment release (M0) versus time since 

the beginning of cluster activity. To determine moment release, we first converted the ML 

values determined during processing to moment magnitude (Mw), and then converted Mw 

to M0 using the empirical relationships described by Hanks and Kanamori (1979) and 

Lay and Wallace (1995): 

 (2)  Mw = [(1.5ML + 16.0) / 1.5] - 10.73 

 (3)  log M0 = 1.5ML + 16.0 

For a typical MS/AS sequence, the largest magnitude event occurs first (or near 

the beginning of the sequence if there are foreshocks) and is followed by aftershocks that 

decrease in magnitude and frequency with time; therefore, a plot of cumulative 

magnitude as a function of time will be discontinuous (Figure 2.7a). We define an 

earthquake swarm as a sequence of seismicity that is temporally focused within a period 

of weeks to months with no predominant large magnitude earthquake at the beginning of 

the sequence. Thus, a swarm is characterized by a scattered distribution of event 

magnitudes as a function of time and a roughly linear trend to the cumulative magnitude 

plot (Figure 2.7b). The remaining clusters are best classified as spatial clusters that were 

consistent activity throughout the 2004 to 2013 study period but had no clear temporal 



32 

changes in seismicity rate. Using these criteria, we identify 10 swarm-like sequences, 19 

clusters of MS/AS activity, and 20 clusters that were continuously active but did not have 

any obvious temporal grouping of events between 2004 and 2013 (Table 2.6). The three 

types of clusters classified above are strongly correlated with Quaternary faults and 

spatially scattered among the seismotectonic regions within the study area and are within 

the study area (Figure 2.4). 

 

 
 

Figure 2.7. (a) Plot of cumulative seismic moment versus time for a MS/AS sequence (M 

2.8 mainshock) beginning on 20 April 2008 and centered at 39.97°N and -111.89°E in the 

eastern portion of the study within the Intermountain Seismic Belt. Discontinuous 

moment-time curve is typical of MS/AS sequences. (b) Plot of cumulative seismic 

moment versus time for an earthquake swarm beginning on 6 August 2007 and centered 

at 40.52°N and -116.26°E in the central portion of the Great Basin. Roughly linear 

moment-time curve is characteristic for earthquake swarms.   

(b) 
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Table 2.6. Spatial clusters of 10+ earthquakes within a 4 km radius 

Latitude 

(N) 

Longitude 

(E) 
Type Region 

Total 

Events 
Peak Activity  

Max 

Mag 

40.56 -111.27 swarm ISB 11 12/2011-10/2012 0.9 

39.32 -111.55 swarm ISB 17 4/26/2004 2.3 

40.80 -111.78 swarm ISB 29 11/2004 2.2 

39.93 -111.82 swarm ISB 69 6-8/2011 3.3 

39.97 -111.89 swarm ISB 70 4/2008; 8/2008 2.8 

39.04 -114.85 swarm Central GB 34 5/2007-8/2007 2.5 

40.53 -115.99 swarm Central GB 19 7/2007 2.3 

40.52 -116.26 swarm Central GB 19 8/2007 2.1 

38.65 -118.40 swarm CNSB/WLFS 13 1/2012 1.3 

41.21 -118.49 swarm Northwest GB 11 12/2006-1/2007 2.1 

39.83 -111.11 MS/AS ISB 22 11/2010 2.3 

40.50 -111.35 MS/AS ISB 76 All 2.8 

39.48 -111.49 MS/AS ISB 57 11/14-16/2005 3.1 

40.58 -111.51 MS/AS ISB 11 4/2009 2.8 

38.75 -111.56 MS/AS ISB 30 2/2004 & 6/2004 2.6 

40.88 -111.57 MS/AS ISB 40 All 3.0 

38.87 -111.93 MS/AS ISB 13 11/19/2010 3.0 

39.66 -111.93 MS/AS ISB 118 3/2004 3.3 

38.78 -112.09 MS/AS ISB 18 7/2005 3.7 

41.47 -112.14 MS/AS ISB 44 All 2.4 

39.34 -112.18 MS/AS ISB 15 9/01/2005 2.4 

38.51 -112.21 MS/AS ISB 41 5/2007 2.9 

41.43 -112.58 MS/AS ISB 17 1-2/2006 2.2 

38.58 -112.70 MS/AS ISB 17 7-9/2005 3.5 

40.64 -116.78 MS/AS Central GB 30 9/2007 3.6 

38.78 -117.95 MS/AS CNSB/WLFS 46 All; 3-10/2012 3.3 

38.52 -118.15 MS/AS CNSB/WLFS 49 9/2008; 3/2009; 2012 3.3 

40.21 -118.25 MS/AS CNSB/West GB 43 11/2006 3.7 

39.35 -118.46 MS/AS CNSB/WLFS 29 All 2.9 

40.34 -111.43 cluster ISB 20 All 2.1 

39.02 -111.47 cluster ISB 52 All 3.7 

40.64 -111.59 cluster ISB 46 All 2.8 

40.73 -111.60 cluster ISB 25 All 2.2 

41.29 -111.69 cluster ISB 83 All 2.5 

41.44 -111.72 cluster ISB 47 All 2.6 

39.15 -111.93 cluster ISB 14 All 3.3 

39.34 -111.95 cluster ISB 171 All 2.9 

39.54 -112.01 cluster ISB 70 All 2.9 

40.73 -112.05 cluster ISB 41 All 2.9 
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Table 2.6. (Cont.) Spatial clusters of 10+ earthquakes within a 4 km radius 

Latitude 

(N) 

Longitude 

(E) 
Type Region 

Total 

Events 
Peak Activity  

Max 

Mag 

38.68 -112.16 cluster ISB 29 All 2.2 

38.62 -112.23 cluster ISB 15 All 2.9 

41.46 -112.39 cluster ISB 16 All 1.4 

38.70 -112.54 cluster ISB 96 All 3.1 

39.57 -115.80 cluster Central GB 30 7/2006 - 5/2008 2.8 

39.98 -117.85 cluster CNSB 29 All 3.4 

39.08 -118.10 cluster CNSB 98 All 3.6 

39.34 -118.10 cluster CNSB 21 All 2.9 

38.62 -118.21 cluster CNSB/WLFS 14 7/2010 4.2 

38.54 -118.39 cluster CNSB/WLFS 338 All; 7-9/2012 4.3 

 

In addition to the M5.9 Wells, Nevada event sequence, MS/AS sequences occur 

within the eastern portion of the study area along the ISB, in the western and southwest 

portions of the study area in association with the CNSB and Walker Lane Fault Zone 

(WLFZ), and within the central GB. The mainshocks for these sequences range from M 

2.2 to 3.7 and were followed by decays in event magnitude and frequency over time. Of 

the 110 M 3.0 or larger events our final catalog, 30 occurred during the TA deployment 

from January 2006 to April 2009. Therefore, our ability to identify additional MS/AS 

sequences and clusters prior to 2006 and after April 2009 is impacted by a Mc of 2.5 for 

the interior of the GB within the ANSS catalog. 

 Clusters of consistent seismic activity were focused along the ISB and WLFZ 

(Table 2.6). These clusters are generally characterized by high event counts and random 

magnitude distributions throughout the entire study period; although, several include 

MS/AS sequences or earthquake swarms.  For example, five separate earthquake clusters 

within a 30 km radius in the southwest corner of the study area (area “A”, Figure 2.4) 

were continuously active with occasional events M 3.0 or larger over the duration of the 
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study period. In 2012, each of these clusters produced MS/AS sequences or earthquake 

swarms with transient increases in seismicity rate. There is no discernible temporal 

pattern or spatial migration associated with these earthquake swarms aside from the entire 

region being more seismically active in 2012.  

 Earthquake swarms occur across the entire study region, four out of 10 swarms 

are located within the central or northwestern GB, away from the CNSB, WLFZ, and ISB 

(Appendix B). Swarms do not appear to be associated with regions of recent (< 8 Ma) 

volcanism (Figure 2.4), and none are located in the vicinity of known oil and natural gas 

wells, wastewater injection wells, or geothermal power plants (Figure 2.8). Swarms in 

this study are dominated by small-magnitude earthquakes with the largest event in the 

sequence ranging from ML 0.9 to 3.3. Periods of increased seismic activity associated 

with the swarms ranged from eight hours to 10 months, and the number of events within 

these sequences ranged from 6 to 66 (Appendix B). In addition to the periods of increased 

seismicity that defined each swarm, scattered small-magnitude events often occurred 

before and/or following the swarms. In several cases, an earthquake with a larger 

magnitude than any event in the swarm sequence occurred following a multiple year gap 

in seismic inactivity. 

 An apparent westward migration of earthquake cluster activity occurred within 

the central portion of the study area between July and September of 2007 (area “B”, 

Figure 2.4). The sequence begins with the eastern and central earthquake swarms in July 

and August, respectively, and culminates in a MS/AS sequence initiated by a ML 3.6 

earthquake on 13 September 2007. The eastern swarm is centered at 40.53°N and -

115.99°E and consists of 17 earthquakes that occurred during a six day period starting at 
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01:38:10 UTC on 12 July 2007. The central swarm is located at 40.52°N and -116.26°E 

(approximately 24 km west of the eastern swarm) and consists of 11 earthquakes that 

occurred during 26-hour period beginning at 08:39:52 UTC on 6 August 2007. The 

western MS/AS sequence is centered at 40.64°N and -116.79°E, approximately 45 km 

WNW of the central swarm and 68 km WNW of the eastern swarm. All three clusters in 

the sequence are located adjacent to mapped north-south trending Quaternary faults 

(Figure 2.4) and are surrounded by more isolated background seismicity primarily 

recorded during the deployment of TA stations in the area.  

 

 
 

Figure 2.8. Earthquake clusters with 10 or more events within a 4 km radius from 2004 to 

2013. Solid black circles are earthquake swarms; dashed black circles are clusters active 

during the entire study period; unlabeled clusters are MS/AS sequences. Bolt symbols are 

geothermal power plants from the National Renewable Energy Laboratory (NREL) 

database (https://maps.nrel.gov/geothermal-prospector/), and grey circles are oil and gas 

production and injection wells within the study area. Utah well data is from Utah 

Automated Geographic Reference Center (AGRC; http://gis.utah.gov/) and Nevada well 

data was provided by the Nevada Bureau of Mines and Geology (NBMG; 

http://www.nbmg.unr.edu/). 
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2.4 Discussion 

2.4.1 Distribution of Small-Magnitude Seismicity within the Great Basin 

 The number and density of events in any seismicity catalog is strongly dependent 

upon the distribution of seismometers used to detect events. Despite having individual 

station installations that lasted from 18 to 24 months, the TA provides the first 

opportunity to synoptically and uniformly characterize small-magnitude seismicity within 

regions of the central GB that have not been previously sampled with this sensitivity. The 

improved density and spatial coverage of the TA reveals diffuse small-magnitude seismic 

activity across the entire study region, with areas of lower earthquake density between 

longitudes -114.5°E and -113°E (Figure 2.2). The distribution of seismicity is consistent 

with the findings of Hammond et al. (2014) who reported active strain accumulation 

across the entire GB and lower strain rates between -115° and -113° longitude. This 

geographic correlation suggests that active tectonic strain accumulation and seismic strain 

release are coupled and may be controlled by larger-scale tectonic features within the 

region, such as a rigid crustal block along the Nevada-Utah border.  

 The occurrence of the 2008 M5.9 Wells, Nevada earthquake within the northern 

GB and diffuse seismicity discovered throughout the majority of the GB as part of this 

study highlight the need for improved seismic monitoring within the central GB. While 

the deployment of TA stations within the study region improved the detection threshold 

of small-magnitude events, the two-year occupation of the TA stations in the region is 

insufficient to fully characterize seismic hazard considering deformation rates of 0.6 mm 

yr-1 across the interior of the GB (Hammond et al., 2014). Additionally, a thorough 

statistical analysis of the combined ANSS and TA-based catalog used in this study is 
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hindered by variable station coverage and density with time and differing earthquake 

location and magnitude determination methods between catalogs. Despite these 

limitations, we determine that the presence of TA stations within the study region 

improved detection thresholds from Mc 2.1 using only regional network stations to Mc 

1.5. The addition of just three permanent stations within northern and eastern Nevada 

would greatly improve small-magnitude event detection and location across the interior 

of the GB and would allow for an improved and more meaningful analysis of seismicity 

within the region in the future.  

 

2.4.2 Mechanisms for Producing Earthquake Swarms within the Great Basin  

 Earthquake swarms and clusters within the study area are predominately located 

away from regions of recent (< 8 Ma) volcanic activity, with the lone exception being a 

cluster located within the Lunar Craters volcanic field (Figure 2.4). Seismic activity 

associated with dike intrusions or pore pressure diffusion events is typically swarm-like 

with notable changes in background seismicity rates (Hill 1977; Špičák 2000; Smith et 

al., 2004). The Lunar Craters cluster is within the general trend of seismicity associated 

with the ISB. It is consistently active throughout the study period with no clear temporal 

bursts of seismicity that could be associated with transient magma injection events. 

Additionally, the cluster has a similar temporal event distribution as other clusters within 

the ISB. While a magmatic origin for this cluster cannot be ruled out, it is more likely 

that this seismicity cluster is similar to others along mapped Quaternary faults within the 

ISB and occurs as a result of ongoing tectonic deformation within the region (Figure 2.4). 



39 

 The GB has a number of geothermal fields that are currently being used for 

geothermal power generation (Figure 2.8). Even non-pressure stimulated geothermal 

power plants have been shown to induce seismicity within regions of low seismic hazard 

(Brodsky and Lajoie 2013; Megies and Wassermann 2014). Two earthquake clusters are 

located adjacent to geothermal power plants within the study region. The Cove Fort 

geothermal power facility is within the Lunar Craters volcanic field (Figures 2.4 & 2.8). 

This plant began power production in 2013 and could not have triggered seismic events 

during the period of study. The Dixie Valley Terra Gen geothermal plant began operation 

in 1988 and is located within the trend of the CNSB. We review the historical ANSS 

catalog from 1931 to 2013 and find that the 56 events in the area of this cluster have each 

occurred since 1991. More detailed seismic monitoring at the Dixie Valley Terra Gen 

geothermal power plant is necessary to determine whether seismicity in this area is 

induced by geothermal power production or if it is more general background seismic 

activity associated with the CNSB. 

 Small to moderate earthquakes can be caused by the injection of fluids into the 

subsurface during wastewater injection and production of oil and natural gas (e.g., 

Ellsworth 2013). We examine well records from the Nevada Bureau of Mines and 

Geology and the Utah Automated Geographic Reference Center for evidence of potential 

anthropogenic triggering of earthquakes in relation to injection wells or oil and gas 

production wells. Only one well in the northeast corner of the study area is located near 

one of the 49 clusters identified in this study (Figure 2.8). This well was drilled in 2012 

and all of the seismicity in this sequence occurred in 2010 or earlier. Therefore, none of 
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the seismicity clusters in this study were caused by oil and gas production or injection 

well activity. 

 Small-magnitude earthquake swarms occurred within portions of central and 

northwestern GB that are isolated from the more active ISB and CNSB. A similar 

widespread distribution of swarms and clusters was also observed within southern 

California (Vidale and Shearer, 2006), Arizona (Lockridge et al., 2012), and South 

America (Holtkamp et al., 2011). This suggests that earthquake sequences that deviate 

from Omori’s aftershock law are a common faulting behavior regardless of tectonic 

environment. 

 Several of the continuously active clusters within this study contain temporal 

bursts of seismicity related to MS/AS sequences or earthquake swarms. A continuum of 

fault behavior has been reported within subduction zones, with an upper locked 

seismogenic zone near the upper portions of the fault and a lower portion of the fault 

being dominated by aseismic slip and non-volcanic tremor or swarms (Peng and 

Gomberg 2010; Lay et al., 2012). Swarms in this model consist of repeating earthquakes 

along an area of the fault surface that is strongly coupled and continually loaded by 

aseismic creep along neighboring areas of the fault (Nadeau et al., 1995). Within 

intraplate environments, such fault behavior would represent a gradual change from 

brittle seismic failure to ductile aseismic slip behavior at mid-crustal depths. Seismicity 

within the GB is mostly limited to the upper 15 km (Doser and Smith, 1989); therefore, if 

swarms are associated with a transition from brittle to ductile fault behavior, their 

hypocentral depths should be focused around 15 km. The small magnitude of events in 

this study and the 70 km spacing of TA stations resulted in poorly constrained focal 
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depths in our seismicity catalog; however, focal depths that we do determine for 

earthquake swarms are scattered throughout the upper crust. A systematic search for non-

volcanic tremor or low-frequency earthquakes at TA stations nearest to selected swarms 

would further constrain whether a continuum of fault behavior occurs within continental 

interiors. While this type of analysis is beyond the scope of this study, the absence of a 

clear focal depth dependency for earthquake swarms and clusters within this study 

suggests that swarms are not limited to a zone of transition from brittle to ductile 

deformation within the crust.  

 Another mechanism for the cause of earthquake swarms and clustering is a 

variation in pore fluid pressure related to active geophysical process within the crust 

(Kurz et al., 2004). These changes in pore fluid pressure can be caused by dynamic stress 

triggering (Boese et al., 2014), diffusion of rainfall into fault systems (Hainzl et al., 

2006), and increased loading from seasonal snow pack (Braunmiller et al., 2014). We 

manually reviewed waveforms for each event located as part of this study. While some 

scattered events may have been triggered by surface waves from teleseismic events, none 

of the earthquake clusters in this study appear to have been dynamically triggered. 

Additionally, diffusion from unusually large rain events would result in focused swarm 

activity in the upper few km of the crust (Hainzl et al., 2006), and swarms within in the 

study region have focal depths scattered throughout the entire upper crust. Finally, the 

peak periods of activity for swarm-like earthquake clusters are scattered throughout the 

calendar year and the Great Basin as a whole generally receives very little snowfall. 

Therefore, none of these mechanisms of pore pressure variation appear to be responsible 

for earthquake swarms and clusters within this study.   
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2.4.3 Constraining Models of Active Deformation within the Great Basin  

 Geodetic studies have reported transient deformation events within the GB 

(Wernicke and Davis, 2010; Chamoli et al., 2014). One model to explain these events is 

aseismic creep along a series of low-angle normal faults at the base of the seismogenic 

zone within the mid- to upper-crust (Chamoli et al., 2014). This model is consistent with 

the Basin and Range block faulting model in which listric range-bounding normal faults 

root into a mid-crustal detachment fault (Spencer and Reynolds, 1989). A M 3.0 

earthquake with a stress drop of 60 to 100 bar slips about 1 cm at depth over a radius of 

100 to 120 m (Lockridge et al., 2012; Segall 2010); therefore, small-magnitude events 

associated with earthquake swarms or clusters will not generate enough surface 

displacement (<10-5 m) to be detectable above background noise levels in future geodetic 

and remote sensing studies. However, a transient pulse of aseismic creep along a mid-

crustal detachment could load nearby range-bounding faults and possibly induce swarm-

like activity within the interior of the GB. This mechanism could trigger a single 

earthquake swarm or cluster if the deformation event were highly localized, or it may 

also induce increased seismicity rates on multiple faults if associated with a larger-scale 

detachment surface.  

 We identify two areas in which clusters of seismic activity were temporally 

related (Figure 2.4). The first area consists of five separate earthquake swarms that were 

all active during 2012 and were located within a 30 km radius in the southwest corner of 

the study region. These swarms were each part of earthquake clusters within the WLFZ 

that were continuously active during the entire study period. There is no evidence of 

migration or other spatiotemporal trends associated with the peak periods of seismicity 
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for the 2012 swarms. The second area contains three earthquake clusters within the 

central GB. The seismic activity for these clusters began at the eastern swarm in July 

2007 and concluded approximately 63 days later with a MS/AS sequence located 68 km 

to the west (Figure 2.4). Both of these sequences span several parallel sets of range 

bounding Quaternary faults (Figure 2.4); therefore, if the associated clusters are triggered 

by the same mechanism then it must be capable of impacting the entire spatial extent of 

these areas. If triggered by an aseismic transient displacement event along a 30 to 70 km 

long low-angle detachment fault within the mid-crust, it may be possible for future 

geophysical studies to identify such a feature. A recent study by Hammond et al. (2014) 

did not identify any transient signals within the central GB during the study period; 

however, the study did not utilize the Plate Boundary Observatory (PBO) geodetic 

stations nearest to the events. Our areas of temporally correlated seismicity are located 

entirely within the broad triangular sub-networks used in their strain analysis. We suggest 

that future studies use remote sensing data (geodesy, InSAR, etc.) to explore whether 

increased seismicity rates in these two regions were triggered by or associated with 

transient aseismic surface deformation events.   

 A sub-horizontal megadetachment at Moho depths (30-35 km) has been proposed 

as a model for GB extension (Wernicke et al., 2008). The megadetachment model 

suggests that region-wide transient deformation events within geodetic data may be 

accompanied by deep crustal seismicity within the GB (Wernicke et al., 2008). Wernicke 

and Davis (2010) report a transient deformation event in mid-2006 with decreasing 

westward velocities for stations in western portion of the study area. The 

megadetachment model also suggests that magmatic intrusions at the base of the Moho 
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(i.e., Smith et al., 2004) may accompany basin-wide transient deformation events 

(Wernicke et al., 2008). Our TA-based earthquake catalog contains no clusters of small-

magnitude seismicity in association with the 2006 event, and we see no evidence of 

widespread deep crustal seismicity within the GB. However, our period of study was 

limited and future studies should continue to monitor the region for evidence of 

seismicity clusters in the deep crust. 

 The earthquake catalog generated as part of this study contains five localities in 

which six to eight mid- to lower-crustal earthquakes (hypocenter depths between 15 and 

27 km) occur within a 10 km radius (Figure 2.6). These zones of mid- to lower-crustal 

earthquakes are not characterized by spatiotemporal clustering or swarm-like behavior as 

would be expected in association with a magma injection event similar to Smith et al. 

(2004). One potential explanation is that these zones of events with deeper focal depths 

are artifacts of local variations of in crustal velocity structure. However, there are very 

few upper crustal events located within the zones of deeper events. It is more likely that 

they represent scattered seismicity within regions with a depressed brittle-ductile 

transition. Future studies should examine focal plane solutions for events within these 

zones of mid- to lower-crustal seismicity to determine if they are associated with low 

angle normal faulting. Focal mechanisms consistent with reverse faulting would support 

magma injection within these areas and would be consistent with the megadetachment 

model of GB extension (Smith et al., 2004; Wernicke et al., 2008). Focal mechanisms 

that become increasingly sub-horizontal at mid-crustal depths would be consistent with 

ongoing detachment faulting within the GB (Chamoli et al., 2014). 
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2.5 Conclusions 

 We use USArray TA data and improved earthquake detection parameters to 

produce an earthquake catalog that is complete to Mc 1.5 for the GB from January 2006 

to April 2009. Increasing the earthquake detection threshold within the interior of the GB 

allowed us to identify diffuse seismic activity across the entire region, with the exception 

of an apparently rigid crustal block between longitudes -114.5°E and -113° E. 

Widespread seismicity and active deformation across the majority of the GB (Chamoli et 

al., 2014; Hammond et al., 2014) dispels the model of the GB behaving as a rigid 

microplate with deformation and seismicity only focused at the western and eastern 

margins. This suggests that extension within the interior of the GB is ongoing and not 

limited to the more seismically active margins.  

 An improved earthquake detection threshold has facilitated the identification of 

earthquake swarms and continuously active earthquake clusters within the GB. We utilize 

multiple methods for the removal of human-generated seismic events from our catalogs 

to ensure that all spatial clusters of seismicity within the study area are tectonic in origin. 

Clusters of spatially correlated earthquakes are not focused within regions of recent (< 8 

Ma) volcanism nor triggered by anthropogenic activity within the GB. Clusters, swarms 

and MS/AS sequences are distributed throughout the study region, which suggests that 

earthquake swarms and clusters are a general mechanism of fault behavior regardless of 

seismotectonic setting.  

 Our earthquake catalog contains two areas in which earthquake clusters are 

temporally associated. Within the central GB, three earthquake clusters within a region 

approximately 70 km wide were active between July and September 2007. Additionally, 
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five separate earthquake swarms were concentrated within a 30 km radius in the 

southwest corner of the study area in 2012. We eliminate volcanism, anthropogenic 

activity, dynamic stress triggering, and environmental influences such as rain and snow 

as potential causes for these sequences. We conclude that pore fluid pressure variation 

due to external geophysical phenomena such as local transient deformation events or 

subsurface fluid migration is the most reasonable interpretation for the cause of 

temporally correlated increases in seismicity rates within clusters along different range-

bounding faults. To further constrain potential triggers for these areas and other clusters 

within our dataset, we recommend a detailed study of GPS, InSAR, and borehole 

strainmeter data within the study area. Additionally, swarms and clusters in this study 

area provide an excellent opportunity to use a waveform matching algorithm to search for 

evidence of non-volcanic tremor or low-frequency earthquakes (Peng and Gomberg 

2010) to determine whether this type of fault behavior occurs within intracontinental 

environments.  
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CHAPTER 3 

METASTABLE HIGH-PRESSURE REACTIONS IN NATURAL ENSTATITE: 

IMPLICATIONS FOR SLAB DYNAMICS AND DEEP EARTHQUAKES  

3.1 Introduction 

Enstatite (Mg,Fe)SiO3 is estimated to comprise 18-25% of subducting lithosphere 

(Ringwood 1982; Irifune and Ringwood 1993). At equilibrium conditions, enstatite will 

completely dissolve into majoritic garnet by approximately 460 km depth (Akaogi and 

Akimoto, 1977; Irifune and Ringwood, 1987; Ringwood 1991). However, this diffusion-

controlled reaction is one of the slowest processes in the mantle and is kinetically limited 

within the cold interior of subducting slabs (Nishi et al., 2008; van Meirlo et al., 2013). 

Additionally, slow chemical diffusion within the interior of cold slabs is expected to 

hinder the isochemical transformation of enstatite to wadsleyite plus stishovite and favor 

direct polymorphic transformation to akimotoite (Hogrefe et al., 1994). Kinetic inhibition 

of diffusion dependent equilibrium reactions in the (Mg,Fe)SiO3 system have led to the 

interpretation that metastable enstatite can survive to the base of the mantle transition 

zone (MTZ) within subducting lithosphere (Hogrefe et al., 1994).  

The persistence of metastable minerals into the MTZ may have significant 

implications for dynamics and rheology of subducting slabs. For example, the low 

relative density of metastable minerals may reduce subduction rates (Bina et al., 2001; 

Tetzlaff and Schmelling, 2009), and metastable enstatite has been recently discussed as a 

cause for stagnation of subducting slabs at the base of the MTZ (Nishi et al., 2013; van 

Mierlo et al., 2013; Agrusta et al., 2014; King et al., 2015). Additionally, rapid 

transformation of metastable olivine to ringwoodite has been associated with a 
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mechanism for the nucleation of deep focus earthquakes (Sung and Burns 1976; Green 

and Burnley, 1989), which can occur to depths of approximately 690 km (Kirby et al., 

1996; Frohlich 2006). However, recent studies suggest that metastable olivine is unlikely 

to survive below 550 km within even the coldest and fastest slabs because transformation 

rates in olivine are greatly increased by both intracrystalline nucleation within coarse-

grained olivine (Kerschhofer et al., 2000; Mosenfelder et al., 2001) and by small amounts 

of hydrogen within natural olivine grains (Kubo et al., 1998; Diedrich et al., 2009; Du 

Frane et al., 2013). Therefore, transformational faulting during the reaction of metastable 

enstatite to akimotoite has been suggested as a potential cause of the deepest recorded 

earthquakes (Hogrefe et al., 1994; Kirby et al., 1996; Frohlich 2006; Houston 2007) as 

well as the increase in global seismicity observed below 550 km (Persh and Houston, 

2004).  

Despite its potential importance to processes occurring within the mantle, to date 

there have been few experimental studies on the mechanisms and kinetics of polymorphic 

transformations in enstatite. Experimental studies investigating the nature of high-

pressure phase transformations are commonly performed using hot-pressed, synthetically 

produced crystals. While these experiments provide idealized models for the kinetic 

behavior of end-member compositions, they do not account for the inclusion of minor 

elements (Al, OH, etc.) and other defects (inclusions, dislocations, etc.) that are common 

in natural samples. These factors can have a significant impact on the kinetics and 

mechanisms of phase transformation within the earth. For example, inclusion of <75 

ppmw H2O greatly increases transformation rates in olivine (Du Frane et al., 2013), and 

stacking faults in olivine can provide nucleation sites for topotaxial intracrystalline 
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growth of high-pressure polymorphs (Kerschhofer et al., 1996; Dupas-Bruzek et al., 

1998). Additionally, rates for the transformation of olivine to wadsleyite been shown to 

increase with Fe content (Perrillat et al., 2013). 

 In this study, we perform a series of single crystal multi-anvil experiments to 

explore how natural compositions will impact high-pressure phase transformations in 

enstatite at high pressure and temperature. While we expect that experimentation with 

larger (~1 mm) natural crystals with potential defects will yield more complicated results, 

they are likely to provide a more accurate representation of processes occurring within 

natural systems at depth. Our results show that that nominally anhydrous Al- and Fe-

bearing natural enstatite is more reactive than synthetic MgSiO3, and we report the first 

experimental observations of intracrystalline transformation of enstatite to high-pressure 

polymorphs akimotoite, majorite and bridgmanite. We describe grain boundary and 

intracrystalline transformation of enstatite to multiple metastable high-pressure 

polymorphs, and we discuss the implications of these results on the metastability of 

enstatite within subducting slabs. 

 

3.2 Experimental and Analytical Methodology 

 We investigate the behavior of enstatite at MTZ conditions by performing 

experiments using natural orthoenstatite (Pbca) crystals extracted from peridotite 

xenoliths collected at San Carlos, Arizona (Figure 3.1). Enstatite grains from 

disaggregated San Carlos xenoliths were sieved to include only crystals with a diameter 

range between 800 and 1000 μm. To simplify analysis of grain boundary nucleation and 

growth, candidate grains were rounded into spheroids using a Bond-type air mill 
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composed of 240 grit silicon carbide powder suspended within a marine epoxy matrix 

(Figure 3.2). We machine disks of grinding powder and epoxy to specifications similar to 

Nitkiewicz and Sterner (1988) and connected the mill to a filtered shop air line to grind 

sieved enstatite crystals into spheroids with a diameter of 600 to 800 μm. Enstatite 

spheroids produced in the air mill were typically prolate and elongated along the c-axis 

due to prominent {210} cleavage planes in orthopyroxene. We analyzed spheroids using 

a binocular optical microscope and selected samples that had the highest sphericity and 

were free of obvious fractures or inclusions. Selected enstatite spheroids were then placed 

in ethanol and ultrasonicated to remove any potential debris remaining from the ball 

milling process. Once cleaned, a single rounded enstatite grain was placed into a sterile 

container and left in a furnace at 100°C overnight to remove any potential volatiles. 

 We performed high-pressure phase transformation experiments using a 1100-ton 

multi-anvil press at Arizona State University, a COMPRESS 10/5 multi-anvil assembly 

(Figure 3.3a; Leinenweber et al., 2012), and custom designed silver (Ag) capsules. We 

used Ag capsules to minimize thermal gradients, chemical interaction between the sample 

and capsule, and hydrogen gain or loss during experiments (Diedrich et al., 2009; Du 

Frane et al., 2013). Custom Ag capsules were machined without the use of cutting oil to 

eliminate potential surface contamination. They were drilled using a carbide ball-end mill 

to produce a rounded bottom to the sample chamber, according to specifications in Figure 

3.3b. We used a rounded sample chamber and introduced oil-free Ag cuttings between 

the enstatite grain and Ag capsule lid to reduce void space within the capsule chamber. 

These steps mitigate the risk of enstatite grains parting or cleaving during initial 

compression. 
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Figure 3.1. Peridotite xenoliths in basanite from Perodot Mesa within the San Carlos 

Apache Reservation in eastern, Arizona. Perodotite is composed of olivine, 

orthopyroxene, clinopyroxene and spinel. 
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Figure 3.2. Specifications for a Bond-type air mill used to shape raw enstatite crystals 

into spheroidal shape. Modified from Nitkiewicz and Sterner (1988). 
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Figure 3.3. (a) Cross sectional diagram of the 10/5 multi-anvil cell assembly used for 

experiments in this study (Leinenweber et al., 2012). The sample is represented as green 

ellipse within Ag capsule. Figure not to scale. (b) Schematics for custom silver capsule 

designed for this study. Rounded bottom of capsule chamber produced using a 0.8 mm 

carbide ball end mill. 
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Prior to loading samples into the multi-anvil press, all assembly parts (Figure 

3.3a) including the Ag capsule, Ag lid, and Ag cuttings were heated in a vacuum oven to 

800°C for 10 minutes. This step removes any potential volatile contamination that may 

remain from machining or handling of assembly parts and anneals the Ag components to 

reverse effects of work hardening during machining and allows for a more efficient 

pressure sealing of the capsule. Once the sample and 10/5 assembly parts were cleaned, 

they were then placed into a desiccator until ready to be loaded into the multi-anvil press. 

Samples were loaded into the Ag capsule in random orientations; although, samples that 

were more prolate were loaded into the Ag capsule with the longer c-axis near vertical 

within the sample chamber.  

 We compressed experimental samples in this study to 5000 or 6640 psi oil 

pressure using the 17" diameter ram on the 1100 ton multi-anvil press. Pressure, as a 

function of press force, was calibrated from in situ experiments at the Advanced Photon 

Source at Argonne National Laboratory by Diedrich et al. (2009). At experimental 

temperatures of 1200°C to 1400°C, oil pressures are equivalent to 18.5 GPa and 21 GPa 

with errors estimated to be approximately ±0.5 GPa (Figure 3.4; Leinenweber et al., 

2012). Once the desired pressure conditions were achieved, the furnace was heated at a 

rate of 100°C per minute to 1200, 1300 or 1400°C using a type-c thermocouple. The 

pressure effect of electromotive force on the thermocouple was not corrected; however, 

based on fluctuations in temperature readings we estimate a temperature precision of +/- 

10°C for our experiments. Samples were held at the target temperature for 30 to 365 

minutes and then rapidly quenched by cutting power to the furnace. Following a slow 

decompression, the Ag capsule containing the partially transformed enstatite sample was 
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extracted from the 10/5 assembly components and then encased within an epoxy resin 

disk to protect the sample during thin-section preparation. 

 
 

Figure 3.4. Pressure calibration curves for 1100-ton multi-anvil press at Arizona State 

University using the COMPRESS 10/5 multi-anvil assembly at (a) 1200°C and (b) 

1400°C. Experiments in this study were performed at 5000 psi and 6640 psi oil pressure, 

which is equal to approximately 18.5 and 21 GPa. 
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 We double polish the epoxy resin disk, Ag capsule, and recovered sample to 

thicknesses between 40-60 μm for microscopic analysis. In addition to being very brittle 

and prone to fracture, enstatite has two cleavage planes {210} that intersect at nearly 

right angles parallel to the c-axis. While polishing, we regularly inspect samples using 

both stereoscopic and petrographic microscopes to ensure that (1) interesting 

transformation features were not lost while polishing, (2) the polished section was at the 

maximum diameter for the sample, and (3) the enstatite was not being cleaved, parted, or 

otherwise damaged. In the event that interesting features were observed during thinning 

of the sample, their presence was noted and imaged using a petrographic microscope 

prior to continued thinning and polishing. Several recovered samples were highly cleaved 

or fractured while polishing, which limited analysis of the final thin section. In these 

cases, images taken mid-polish are the only data collected for damaged portions of 

samples. In addition to the six recovered experimental samples, we mounted 20 enstatite 

spheroids within two epoxy disks and prepared them as thin sections to fully characterize 

our starting material.  

 The reacted and unreacted enstatite grains were analyzed using a range of 

microscopic and spectroscopic techniques. Reflected and transmitted light microscopy 

was performed using an Olympus BX50 petrographic microscope. Raman spectroscopy 

was performed at the LeRoy Eyring Center for Solid State Science (LE-CSS) at Arizona 

State University using a Coherent Sapphire SF laser with a wavelength of 532 nm and a 

1200 gr/mm diffraction grating. The laser has a spatial resolution of approximately 1 μm 

and was focused onto the sample using an 100X objective with a focal length of 0.2 mm. 

We sampled low pressure phases using a laser power of 12 mW; however, we generally 
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lowered laser power to 1.3 to 6 mW and increased sample collection times to 100s of 

seconds when sampling unstable high-pressure phases in recovered experimental 

samples.  

Scanning electron microscopy (SEM) was performed using an FEI XL30 

Environmental SEM with a Field Emission Gun (FEG) system at the LE-CSSS. To 

prevent charging, the samples were coated with a carbon film using an evaporation 

carbon coater. Samples were investigated primarily using backscatter electron (BSE) 

imaging. Imaging was performed using an acceleration voltage of 15 to 20 kV, spot size 

of 5.0, and working distance of 10 mm. At these settings, the instrument has a beam 

current of approximately 2.26 to 2.39 nA and a probe diameter of approximately 5 to 6 

nm. Energy dispersive X-ray spectroscopy (EDS) was used for chemical analyses of 

starting material and high-pressure phases using an EDAX SiLi detector. Absorption and 

fluorescence effects for this system are corrected using a ZAF model. Process times for 

EDS analyses varied but were generally 4 to 10 μs to allow for at least 600 counts per 

second and a dead time of approximately 30%. Collection times for EDS analyses ranged 

from 10 seconds to over one minute, depending on the stability of the resulting spectra. 

 Transmission electron microscopy (TEM) was performed at the LE-CSSS using 

an FEI CM200-FEG. To image beam-sensitive microstructures within our starting 

material, we prepared TEM samples using two separate techniques; (1) a focused-ion 

beam (FIB) lift-out technique with an FEI Nova200 NanoLab using an acceleration 

voltage of 30 keV and beam current of 0.1 to 20 nA, and (2) sample thinning using a 

Gatan dimple grinder and a Gatan Precision Ion Milling System (PIPS) with an Ar ion 

beam angle of 7° from the surface and an accelerating voltage of 6 keV. We investigated 
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microstructures using diffraction contrast and high-resolution TEM imaging techniques. 

Mineral structures were identified with selected area electron diffraction (SAED). We 

performed chemical analysis on TEM samples by EDS using an EDAX SiLi detector, 

with quantitative data processing performed using the Emispec Vision system and 

theoretical K-factors. 

 

3.3 Characterization of Starting Material 

 We used EDS on the FE-SEM to analyze chemical compositions of starting 

material as well as the enstatite cores of recovered experimental samples. Within 

recovered samples, we only selected interior enstatite regions that were at least 5 μm 

from high-pressure phases to avoid potential effects of chemical diffusion on our 

measurements. Based on EDS analyses, the average composition of starting material used 

in this study is (Ca0.05, Cr0.03, Fe0.19, Mg1.66, Al0.07)(Al0.08, Si1.92)O6 with an Mg/(Mg+Fe) 

ratio of 0.90 and 3.7 wt% Al2O3 (Table 3.1). This is in good agreement with previous 

studies that report Mg/(Mg+Fe) ratios of 0.93 to 0.89 and 3-5 wt% Al2O3 for San Carlos 

orthopyroxene (Frey and Prinz, 1978; Reynard et al., 2010; Zhang et al., 2012, 2014). 

Previous measurements of H2O content in San Carlos enstatite range from 53 to 83 ppm 

based on Fourier transform infrared spectroscopy (FTIR) analyses performed by Li et al. 

(2008). This is considerably lower than values of 160-500 ppm H2O measured for typical 

mantle-derived orthopyroxenes (Bell and Rossman, 1992; Grant et al., 2001; Li et al., 

2008). Therefore, we consider San Carlos enstatite to be relatively low in H2O for a 

natural enstatite within the mantle. 
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Table 3.1. Results from EDS analyses of San Carlos enstatite starting material and 

pyroxene cores of experimentally recovered samples. 

Formula 

Units* 

Starting 

Material 
  

Pyroxene Core 

 Sample BB1241 
Pyroxene Core           

Sample BB1110 
Average 

Si 1.91 1.91  1.93 1.89 1.95 1.91 1.92 1.91  1.95 1.93  1.92 

Fe 0.17 0.16  0.20 0.20 0.20 0.18 0.20 0.18  0.18 0.20  0.19 

Mg 1.67 1.68  1.69 1.66 1.64 1.62 1.70 1.62  1.67 1.66  1.66 

Al 0.18 0.17  0.10 0.18 0.11 0.19 0.11 0.19  0.14 0.16  0.15 

Ca 0.04 0.04  0.05 0.05 0.06 0.05 0.05 0.05  0.04 0.05  0.05 

Cr 0.02 0.02  0.04 0.03 0.03 0.03 0.03 0.03  0.00† 0.00†  0.03 

Total 3.99 3.99  4.00 4.01 3.98 3.98 4.01 3.98  3.98 3.99  3.99 

Fe/Fe+Mg 0.09 0.09  0.11 0.11 0.11 0.10 0.11 0.10  0.10 0.11  0.10 

* Results given in formula units assuming pyroxene formula with 6 oxygens. 
† Content of Cr not analyzed for sample BB1110. 

 

3.4 Experimental Results 

3.4.1 Nano-Fluid Inclusions within San Carlos Enstatite 

Of the 20 San Carlos enstatite spheroids prepared as a control group for starting 

material used in this study, 14 (70%) contain abundant, but very small, rod-shaped 

inclusions (Figure 3.5). Due to the small size of the nano-inclusions, we were unable to 

identify them during a pre-screening of candidate San Carlos enstatite starting material. 

Based on the abundance of rod-shaped nano-inclusions within our starting material 

supply, there is a 0.07% chance that we were able to select six enstatite crystals that were 

each inclusion free. Therefore, we assume that any of our starting material could have 

contained nano-inclusions when loaded into the multi-anvil capsule. 

Nano-inclusions are typically 0.3 to 0.5 μm by 20 to 40 μm with a single 2 to 8 

μm long rod at the center (Figure 3.5a,b); however, they can also occur as series of 

intermittently spaced rods along a linear feature that extends throughout the entire sample 

(Figure 3.5c). Nano-inclusions are oriented parallel to extinction within the enstatite host  
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Figure 3.5. Nano-inclusions within San Carlos enstatite starting material. Optical 

micrographs in (a) transmitted and (b) reflected light. (c) SEM backscattered electron 

image of inclusion within starting material. (d, e) Brightfield TEM image of inclusions 

within starting material. Inset in (d) is electron diffraction pattern viewed down [001]En 

showing crystallographic orientation of principal axes within the enstatite host crystal. 

Note that inclusion morphology is a negative crystal with facets parallel to {100}, {010} 

and {110}. Material around the inner edge of the void is Pt, Ga, and Cu from the FIB 

milling process, with Cu form Cu grid, Pt from the Pt strap and Ga from milling with a 

Ga beam. 
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crystal in plane-polarized light images, and they are also parallel {210} cleavage planes. 

An orientation parallel to both cleavage and extinction within orthopyroxene can only be 

possible if rods are oriented along [001]En. The mineralogy of these inclusions could not  

be determined using optical microscopy because their fine-scale structure is beyond the 

diffraction limit for visible light. The nano-inclusions are brighter than host enstatite in 

reflected light microscopy; therefore, they may be a highly reflective phase such as an 

oxide or sulfide, a fluid or vapor phase, or a void. Nano-inclusions have a lower contrast 

than enstatite in SEM BSE images, indicating that they have a lower atomic mass (Z) 

than host enstatite. We sampled the linear features and the rod-shaped cores of nano-

inclusions using single spot EDS analyses on the SEM, and neither provided significant 

contribution to EDS spectra. This suggests that they are either too small to contribute 

significantly to the X-ray signal, or they are not chemically distinct from the host 

enstatite.  

To analyze nano-inclusions using TEM, we cut a FIB section perpendicular to the 

long axis of the central rod of an inclusion. The FIB section contained a 300 nm by 150 

nm void in the location where we expected to find the inclusion. This indicates that the 

nano-inclusions are composed of a material that is too soft to survive the FIB cutting 

process. The void shape is a negative crystal of the host enstatite with walls parallel to 

{100}En, {010}En, and {210}En, confirming that inclusion morphology is 

crystallographically controlled by the enstatite host (Figure 3.5d,e). We prepared a 

second sample for TEM analysis using an Ar ion mill. While thinning the sample, in situ 

optical microscopy showed that the nano-inclusions were preferential sites for milling. 

The targeted inclusions were milled completely away when the sample was thin enough 
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for TEM analysis. After completing the ion milling process, we examined the sample 

with TEM and found only enstatite.  

We collected Raman spectra from nano-inclusions that were at or very near the 

polished surface of starting material samples. In most cases, nano-inclusions were not 

Raman active because they were either (1) too small to contribute significantly to the 

spectra, or (2) too thin to be able to accurately targeted with the laser. However, spectra 

from several nano-inclusions at the surface of the samples include Raman peaks 

consistent with spectra of the epoxy that was used for the preparation of sample thin 

sections (Figure 3.6). All of the samples used in this study were rinsed with distilled 

water to remove dust and polishing debris from the surface prior to analysis, and no 

epoxy spectra were identified in any other spectra collected as part of this study. 

Therefore, it is possible that the Raman spectra collected while attempting to sample 

nano-inclusions within our starting material were instead sampling epoxy debris that had 

collected within voids during sample polishing. These voids may have been left behind 

after polishing into nm-scale fluid or vapor inclusions within our starting material. 

 
 

Figure 3.6. Raman spectra showing that an inclusions within San Carlos enstatite (top) 

contain epoxy used to prepare thin sections (bottom). Peaks associated with San Carlos 

enstatite have been subtracted from the spectrum of the inclusion.  
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3.4.2 Metastable High-Pressure Polymorphic Reactions 

We examine recovered experimental samples using optical microscopy, SEM, and 

Raman spectroscopy to identify high-pressure phases. Samples transformed at 21 GPa 

were within the akimotoite stability field, yet metastable majorite and bridgmanite occur 

in addition to akimotoite within these samples (Table 3.2, Figure 3.7). Samples 

transformed at 18.5 GPa were within the wadsleyite plus stishovite and ringwoodite plus 

stishovite stability fields; however, Raman spectroscopy of these samples indicate the 

presence of only MgSiO3 polymorphs. Additionally, a comparison EDS data shows that 

pyroxene cores and high-pressure phases have the same Si content among all phases. The 

common occurrence of metastable (Mg,Fe)SiO3 polymorphs in all samples and the 

absence of decomposition reactions at spatial scales above those detectable using Raman 

spectroscopy and EDS suggests that metastable polymorphic reactions are favored over 

thermodynamically stable decomposition reactions within our experiments. 

 

Table 3.2. Pressure-temperature-time conditions for multi-anvil experiments and high-

pressure phases confirmed using Raman spectroscopy.  

Sample ID P (GPa) T (°C)  t (min) 
High-Pressure Phases 

(Rim) (Intracrystalline) 

BB1166 18.5 1200 365 aki aki* 

BB1158 18.5 1400 60 aki,maj aki, maj 

BB1062 21 1200 220 aki, maj aki, maj 

BB1241 21 1300 90 aki, maj, brd aki, maj, brd 

BB1244 21 1300 300 aki, brd aki, brd 

BB1110 21 1400 30 aki, maj, brd aki, maj, brd 

* Akimotoite occurs near rim and may be associated with grain boundary nucleation. 
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Figure 3.7. Phase diagram for end-member MgSiO3 composition computed using 

PERPLEX software (Connolly 2009) with thermodynamic models and parameterization 

from (Stixrude and Lithgow-Bertelloni 2011). Black lines are equilibrium boundaries for 

MgSiO3 system with phases (β=wadsleyite; γ=ringwoodite; st=stishovite; 

aki=akimotoite; maj=majorite; brd=bridgmanite; HCEN=high-clinoenstatite). Solid black 

circles represent experiments performed as part of this study with error in pressure 

indicated for each. White polygons represent transformation experiments in which 

Hogrefe et al. (1994) observed no transformation (squares), complete transformation to 

akimotoite (diamonds), and minor transformation of to wadsleyite plus stishovite 

(triangle) using end-member MgSiO3. 

 

3.4.3 High-Pressure Phases within Reaction Rims 

Within solid-state transformation experiments, reactions occur as a result of 

heterogeneous nucleation along grain boundaries (Rubie and Ross, 1994). As 

transformation progresses, a polycrystalline reaction rim of incoherent high-pressure 

phases grows towards the interior of the host grain. Within our experiments, 

polycrystalline reaction rims of high-pressure phases occur in all samples. The 

occurrence and associations of high-pressure phases within reaction rims vary depending 

on experimental conditions (Table 3.2). At 18.5 GPa and 1200°C (BB1166), the reaction 
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rim consists entirely of akimotoite. At 18.5 GPa and 1400°C (BB1158), Raman 

spectroscopy shows that the reaction rim is primarily majorite; however, portions of the 

extreme outer margin of the rim contain both akimotoite and majorite (Figure 3.8). At 21 

GPa and 1200°C (BB1062), the polycrystalline reaction rim is primarily akimotoite; 

however, some regions within the reaction rim contain weak Raman peaks at 595 cm-1 

and 930 cm-1 indicating the presence of lesser amounts of majorite. Zones of majorite 

within the reaction rim of this sample are not clearly distinguishable from areas of 

akimotoite in BSE or optical images.  

 

 
 

Figure 3.8. Optical micrograph of the reaction rim in sample BB1158 (18.5 GPa, 1400°C) 

using cross polarized transmitted light with condenser lens inserted. Outer edge of sample 

rim is akimotoite (aki) with characteristic Raman peak at 799 cm-1. Dominant phase 

within the reaction rim is majorite, confirmed by Raman peaks at 595 cm-1 and 930 cm-1. 
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The samples transformed at 21 GPa and 1300 to 1400°C have a more complex 

phase assemblage within their reaction rims. The outermost rim in these samples is a 

mixture of fine-grained akimotoite and bridgmanite, while the interior of the rims 

contains majorite, akimotoite, or a mixture of both majorite and akimotoite (Figure 3.9). 

Within reaction rims, bridgmanite is always associated with akimotoite and appears as a 

bright phase in BSE images. Akimotoite occurs in isolation towards the interior of the 

reaction rim in these samples and is distinguished from other high-pressure phases in 

BSE images by its dark contrast. The thickness of the bridgmanite and akimotoite zone  

 

 
 

Figure 3.9. Backscatter electron image of high-pressure phases within reaction rim of 

sample BB1110 transformed at 21 GPa and 1400°C. Inset shows Raman spectra for 

selected points within the rim and core of the sample. Bright phase at the edge of the rim 

is bridgmanite (brd), identified by broad Raman peaks at 732 cm-1 and 897 cm-1. 

Akimotoite (aki) is dark phase at outer portion of rim, identified by a strong Raman peak 

at 799 cm-1. Majorite (maj) is at neutral contrast with enstatite (en) core and is identified 

by peaks at 595 cm-1 and 930 cm-1 
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within the outer portion of reaction rims is strongly temperature dependent, as it is only 2 

to 5 µm thick in each of the experiments transformed at 21 GPa and 1300°C but is up to 

25 µm thick within sample BB1110 (21 GPa, 1400°C). We were unable to identify 

bridgmanite with TEM. This is probably because bridgmanite is highly unstable at 

ambient pressures and is easily vitrified during FIB-section preparation and TEM 

analysis. While Raman spectra of the phase did not contain lower modes typical of 

bridgmanite, data from our samples contain broad peaks at 732 cm-1 and 897 cm-1 that are 

consistent with published spectra of MgSiO3 perovskite (Bolfan-Cassanova et al., 2003).  

We used EDS to investigate chemical variations within the outer portion of the 

reaction rim within the sample transformed at 21 GPa and 1400°C. Relative atomic 

percentages of cations within each sampled phase were normalized to satisfy charge 

balance in the (A,B)2Si2O6 pyroxene formula (Table 3.3). EDS spectra from the brighter 

high-contrast phase shows four compositional variants, including a phase that is nearly 

isochemical with starting material except for slightly elevated Fe levels (Type 1), a high 

Mg phase with low Fe and Al (Type 2), a phase with high Fe and Al and low Mg (Type 

3), and a phase with low Si and high Fe, Mg, and Ca (Type 4). The EDS data from the 

darker low-contrast phase between bright spots has two compositional variants, a phase 

with the same composition as starting material (Type A) and a phase with low Fe and 

high Mg (Type B). Therefore, at high temperatures, phase transformations within the 

outer portion of the reaction rims are more complex than simple isochemical polymorphic 

reactions. 

We performed TEM analyses on a FIB section extracted from the outer portion of 

the reaction rim in Sample BB1110 (21 GPa, 1400°C). Based on electron diffraction data,  
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Table 3.3. EDS analyses of bright phase and dark phase within the outer portion of the 

reaction rim in Sample BB1110 (21 GPa, 1400°C).  
Formula 

Units* 
Starting 

Material 

   Bright Phase†     Dark Phase† 

 Type 1 Type 2 Type 3 Type 4  Type A Type B 

Si 1.94  1.93 1.95 1.95 1.84  1.93 1.93 

Fe 0.19  0.22 0.11 0.25 0.26  0.20 0.11 

Mg 1.66  1.65 1.75 1.54 1.75  1.66 1.79 

Al 0.15  0.16 0.12 0.18 0.15  0.14 0.14 

Ca 0.04  0.04 0.05 0.04 0.08  0.06 0.03 

Total 3.98  4.00 3.99 3.96 4.08  3.99 4.00 

Fe/Fe+Mg 0.10  0.12 0.06 0.14 0.13  0.11 0.06 

* Results given in formula units assuming pyroxene formula with 6 oxygens. 
† All values are averages from spectra sampled within the outer 25 µm of reaction rim where both 

akimotoite and bridgmanite are present. 

 

akimotoite is the only crystalline phase within this FIB section and the remainder of the 

sample is composed of amorphous phases. We performed EDS analyses on the FIB 

section and identified three distinct compositions for amorphous material, including (1) 

grains with similar compositions as our starting material, (2) a calcium rich grain 

containing elemental proportions consistent with CaSiO3, and (3) an amorphous SiO2 

phase. The formation of amorphous SiO2 and CaSiO3 phases is an indication that long-

range diffusion and elemental partitioning occured during the nucleation and growth of 

high-pressure phases in samples transformed at the highest pressures and temperatures. 

 

3.4.4 Intracrystalline Growth of High-Pressure Phases 

Each of our experiments produced growth of high-pressure (Mg,Fe)SiO3 

polymorphs within the interior of the samples. Intracrystalline transformation features 

have multiple morphologies and crystallographic orientations relative to the pyroxene 

host, which suggests that each type of feature has a different nucleation and growth 

mechanism. A detailed analysis of these mechanisms is beyond the scope of this study. 
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Here we document the occurrence and associations of (Mg,Fe)SiO3 polymorphs within 

sample interiors.  

Sample BB1166 (18.5 GPa and 1200°C) became heavily fractured and damaged 

during polishing. Optical micrographs were taken during the polishing process to 

document features before they were damaged. A 30 by 40 µm intracrystalline growth 

composed of akimotoite was clearly visible within this sample in optical microscopy 

(Figure 3.10). This feature was only 20 to 30 µm from the reaction rim and there are 

other regions where the akimotoite extends 30 µm into the interior of the sample; 

therefore, it is unclear whether the growth feature is associated with irregular growth of a 

reaction rim or whether it represents akimotoite growth via an intracrystalline nucleation 

mechanism. The intracrystalline feature was not preserved in the final thin section of  

\  

 

Figure 3.10. Mosaic of high resolution reflected light micrographs of sample BB1166 

(18.5 GPa, 1200°C) taken during sample thinning and thin section preparation. Images 

were taken to document features that would be destroyed by further thin section 

preparation. Dark features on the surface are pits, fractures, and debris from sample 

polishing. Inset contains Raman spectra of (1) akimotoite (aki) reaction rim with 

characteristic aki peak at 799 cm-1, (2) intracrystalline growth feature, and (3) enstatite 

core.  
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sample BB1166 due to either continued removal of material during thinning or additional 

fracturing, and the final polished thin section of this sample contained no other 

intracrystalline growth features. 

Within the sample BB1158 (18.5 GPa, 1400°C), a 10 µm-wide plane of 

polycrystalline akimotoite has a near vertical intersection with the sample thin section. 

Similar features are also present in BB1110 (21 GPa, 1400°C) and are possibly caused by 

grain boundary nucleation of akimotoite along a preexisting cleavage surface or some 

other planar feature within the sample that was present prior to sample heating. Sample 

BB1158 also contains intracrystalline growth of majorite that occurs as either (1) 10 to 15 

µm tusk-shaped features that extend radially from the reaction rim towards the core of the 

sample or (2) irregular areas of majorite growth that occur along fractures within the 

enstatite core.  

Within sample BB1062 (21 GPa, 1200°C), intracrystalline growth of akimotoite 

occurs along elongated features that are generally less than 1 µm to 5 µm in width. 

Larger features up to 15 µm or more in length have Raman spectra with low intensity 

peaks that are consistent with majorite. There are several areas within the sample where 

intracrystalline growth is significantly larger and more nodular in shape than the other 

elongated features. These areas appear to be locations where several larger strands have 

grown together, and Raman spectra for these features have higher intensity majorite 

peaks. 

Samples transformed at 21 GPa and 1300°C to 1400°C contain bridgmanite 

lamellae that are up to 2 µm wide (Figure 3.11). The bridgmanite lamellae can occur in  
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Figure 3.11. Top: Backscatter electron image of intracrystalline growth features within 

BB1241 (21 GPa, 1300°C). Numbered circles represent areas sampled by Raman 

spectroscopy (bottom) and are color coded by dominant high-pressure phases. 

Akimotoite (aki) is blue; majorite (maj) is green, and bridgmanite (brd) is red. 
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isolation from other high-pressure phases; however, they most commonly occur at the 

ends of 5 to 10 µm wide bands of akimotoite or nodular-shaped regions of majorite and 

akimotoite that are approximately 30 to 50 µm in diameter. This suggests that the 

bridgmanite may be the first to form, providing nucleation sites for other high-pressure 

phases within the interior of the host pyroxene grain. Intracrystalline majorite within 21 

GPa samples is always associated with akimotoite and occurs only within larger nodular 

intracrystalline growth features. For sample BB1244 (21 GPa, 1300°C), we selected a 

more ellipsoidal grain to have a better idea of crystallographic orientation in optical thin 

section. The prolate ellipsoid was loaded into the capsule chamber with the longer c axis 

along the capsule rotation axis. We produced a thin section roughly parallel to (001)En by 

polishing a cross section of the recovered capsule perpendicular to the capsule axis.  

Carful observation during thin section preparation allowed for the identification of 

rod-shaped intracrystalline growth features that were nearly vertical within the sample 

(Figure 3.12). These features are semi-rounded in optical thin section, approximately 5 to 

10 µm in diameter and, based on Raman spectra, are entirely composed of akimotoite. 

Focusing and defocusing the akimotoite rods in optical microscopy shows that they 

project down into the sample thin section along the same plunge as the linear intersection 

of cleavage planes within the pyroxene host; therefore, the rods are parallel to [001]En. 

Similar semi-rounded intracrystalline growth features approximately 5 to 10 µm in 

diameter are within thin sections of each sample transformed at 21 GPa and 1300°C to 

1400°C; however, these samples were not pre-oriented within the capsule and 

crystallographic relation of these features to their respective enstatite hosts has not been 

determined. 
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Figure 3.12. (a) Photomicrograph taken under incandescent light while thinning sample 

BB1241 (21 GPa, 1300°C). Rods of akimotoite project down into the partially thinned 

sample. (b) Transmitted light photomicrograph displaying pyroxene cleavage planes 

(dark lines) and intracrystalline growth (dark spots). (c) Raman spectrum taken from 

semi-rounded cross section of akimotoite rods within final polished thin section. 

 

3.5 Discussion 

3.5.1 Metastable Polymorphic Reactions in Natural Enstatite  

As subducting oceanic lithosphere enters the MTZ, the interior of the slab can be 

as much as 900°C to 1000°C colder than the surrounding mantle (Kirby et at., 1996; 

Collier et al., 2001). These low temperatures can inhibit transformation of enstatite to 

equilibrium phase assemblages of wadsleyite and ringwoodite plus stishovite and will 

favor direct transformation of enstatite to metastable high-pressure polymorphs (Hogrefe 

et al., 1994; Tomioka 2007). To better understand metastable reactions within each of our 

recovered experimental samples, we created a phase diagram that displays both 

equilibrium phase boundaries within the MgSiO3 system and metastable phase 

boundaries between enstatite and each of its high-pressure polymorphs (Figure 3.13). The  
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Figure 3.13. Phase diagram for end-member MgSiO3 composition computed using 

Perple_X software (PERPLEX 2015) with thermodynamic models and parameterization 

from Stixrude and Lithgow-Bertelloni (2011). Dashed grey lines are equilibrium 

boundaries for high-pressure phases within the MgSiO3 system: wadsleyite (β), 

ringwoodite (γ), stishovite (st), akimotoite (aki), majorite (maj) bridgmanite (brd), and 

high-clinoenstatite (HCEN). Colored solid lines are metastable boundaries for each high-

pressure MgSiO3 polymorph relative to HCEN. Colored circles correspond to high-

pressure phases present within experiments performed as part of this study (blue=aki; 

green=maj; red=brd). Dashed red line (a) is experimentally constrained kinetic boundary 

for metastable brd-HCEN boundary.  

 

metastable phase boundaries in Figure 3.13 represents conditions where the Gibbs free 

energy between enstatite and each high-pressure polymorph are equal. Within our 

recovered experimental samples, transformation of enstatite to a specific metastable high-

pressure polymorph occurs only at pressure and temperature conditions where that 

polymorph is metastable relative to the enstatite starting material (Figure 3.13). In other 

words, enstatite may transform to any metastable high-pressure polymorph, provided that 
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it requires less energy to grow that polymorph than it does to maintain enstatite starting 

material at high pressures and temperatures. For example, the presence of akimotoite 

within all samples is consistent with each of the six experiments being performed at 

conditions where akimotoite is thermodynamically stable relative to high-clinoenstatite. 

Additionally, all experiments except BB1166 (18.5 GPa, 1200°C) were performed above 

the metastable enstatite-majorite boundary, and BB1166 is the only sample in this study 

that does not contain majorite. Finally, experiments at 21 GPa were performed at 

conditions in which bridgmanite is stable relative to enstatite, and bridgmanite was 

detected using Raman spectroscopy in all 21 GPa samples except for BB1062 (1200°C). 

The absence of bridgmanite at 1200°C suggests that a kinetic barrier may exist for the 

enstatite-bridgmanite reaction between 1200°C and 1300°C (Figure 3.13).  

The growth of multiple metastable phases within many samples suggests that 

kinetic factors control which phase will nucleate when more than one (Mg,Fe)SiO3 

polymorph is stable relative to enstatite starting material. For example, within the interior 

of samples transformed at 21 GPa and 1300°C to 1400°C, bridgmanite lamellae occur (1) 

in isolation with no other high-pressure phases present, (2) extending out from 5 to 10 

µm wide bands of akimotoite, or (3) extending from nodular-shaped areas of majorite and 

akimotoite that are approximately 30 to 50 µm in size (Figure 3.11). While the nucleation 

mechanism for the growth of bridgmanite lamellae is unclear, it appears that 

heterogeneous nucleation of akimotoite occurs along grain boundaries of bridgmanite 

lamellae. The absence of a bridgmanite core within the akimotoite bands indicates that 

the bridgmanite was kinetically easier to nucleate initially, but was later replaced by more 

thermodynamically stable akimotoite. A similar process may be responsible for 
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intracrystalline growth of majorite; although, details of this reaction were not examined 

as part of this study.  

 

3.5.2 Increased Reactivity of Natural Enstatite Relative to Pure-MgSiO3 

Our samples of San Carlos enstatite transform to high-pressure polymorphs much 

more readily than experiments by Hogrefe et al. (1994), who observed transformation of 

pure-MgSiO3 enstatite to akimotoite only above 21 GPa and reported no transformation 

of enstatite after 30 hours at 1500°C and 20 GPa (Figure 3.5). An increased threshold for 

observable reactions in enstatite can be caused by several notable differences in 

experimental design between the current study and Hogrefe et al. (1994). The previous 

study used a powdered mixture of end member MgSiO3 enstatite and Mg2SiO4 forsterite, 

and samples were annealed to create an equilibrium microstructure within starting 

material. In the present study, we use single crystals of natural Al- and Fe-bearing 

enstatite to simulate a complex chemistry, larger grain sizes, and the presence of defects 

expected for natural crystals within the mantle. The potential for each of these differences 

to increase the threshold for reactions in natural enstatite is discussed below.  

 To explore effects of the addition of Al and Fe on the metastable boundaries, we 

modeled phase diagrams in which 10 mol% Al and Fe were separately added to the 

MgSiO3 system (Figure 3.14). The addition of 10 mol% Al and Fe is significantly more 

than 3-5 mol% Al and 5-7 mol% Fe measured for our starting material using EDS (Table 

3.1). The addition of 10 mol% Al decreases the pressure of the high-clinoenstatite to 

majorite metastable boundary, and the addition of 10% Fe increases the pressure of the 

high-clinoenstatite to majorite metastable boundary. The addition of 10% Al and 10% Fe  
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Figure 3.14. Phase diagram containing metastable boundaries for MgSiO3 polymorphs 

relative to high-clinoenstatite (HCEN). Three lines plotted for each metastable boundary 

are for end-member MgSiO3 composition (black), MgSiO3 with 10 mol% Al added to the 

system (blue), and MgSiO3 with 10 mol% Fe added to system (red). Solid black circles 

represent experiments performed as part of this study. Phase boundaries were computed 

using Perple_X software (Connolly 2009) with thermodynamic model and 

parameterization from Stixrude and Lithgow-Bertelloni (2011). 

 

appeared to have little effect on the metastable boundaries between high-clinoenstatite 

and both akimotoite and bridgmanite. Based on these calculations, the net effects of 

compositional variations in our starting material from pure MgSiO3 enstatite do not 

appear to be a significant control on phase stability.  

Mantle-derived orthopyroxenes typically contain between 160-500 ppm H2O 

(Bell and Rossman, 1992; Grant et al., 2001; Li et al., 2008). Previous studies have 

shown that as little as 75 ppm H2O can greatly increase transformation rates within 

olivine (DuFrane et al., 2013). Therefore, it is possible that increased reactivity within 
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our experiments (relative to previous results using anhydrous MgSiO3 enstatite) is due to 

the inclusion of nominal amounts of H2O within natural San Carlos enstatite. However, at 

80 ppm H2O, San Carlos enstatite represents a lower limit for water content of 

orthopyroxene in the mantle (Li et al., 2008). If the nominal H2O content of San Carlos 

enstatite starting material is the primary reason for the increased reactivity in our 

experiments compared to previous studies using pure synthetic MgSiO3 starting material, 

then our experimental results are more representative of processes occurring within 

subducting oceanic lithosphere. Future studies should characterize the impact of nominal 

amounts of H2O on the kinetics of phase transformations in enstatite by performing a 

series of experiments using starting material with varying amounts of H2O (i.e. Diedrich 

et al., 2009; Du Frane et al., 2013).  

 

3.5.3. Kinetic Controls on Polymorphic Transformation within Reaction Rims  

A polycrystalline reaction rim of high-pressure phases was produced along the 

outer margin of the enstatite host grain in all of the experiments performed as part of this 

study. Samples transformed at 18.5 GPa were in either the wadsleyite plus stishovite 

stability field or the ringwoodite plus stishovite stability field; however, these samples 

contain no detectible eutectoid-type reactions to silica and olivine polymorphs. At 21 

GPa, the only indication of eutectoid-type reactions was a single nm-scale amorphous 

SiO2 grain detected during TEM analysis of the reaction rim within the sample 

transformed at 1400°C. Hogrefe et al. (1994) reported minor transformation of pure-

MgSiO3 enstatite to wadsleyite at 1550°C and 19 GPa. The sluggishness of eutectoid-

type reactions within enstatite has been attributed to difficulty of long-range diffusion of 
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Mg and Si that is required for simultaneous growth of Mg2SiO4 and SiO2 product phases 

(Hogrefe et al., 1994). The scarcity of Mg2SiO4 and SiO2 polymorphs within our 

experiments suggests that a kinetic barrier also exists for the reaction of natural enstatite 

to wadsleyite or ringwoodite plus stishovite. Therefore, metastable polymorphic reactions 

are expected to dominate within natural enstatite at temperatures where diffusion-

controlled processes are limited. 

Reaction rims in all three samples transformed at 21 GPa and 1300°C to 1400°C 

contain a multi-phase assemblage of akimotoite and amorphous bridgmanite (Figure 3.9). 

This akimotoite-bridgmanite zone occurs only in the outer portions of the reaction rims, 

and the interior of each rim is composed of akimotoite or majorite. Solid-state 

transformation experiments using single crystals of olivine have shown that the large 

volume decreases associated with high-pressure polymorphic reactions cause elastic 

strain energy to build up between reaction rims and untransformed cores (Liu et al., 1998; 

Mosenfelder et al., 2000; Morris 2002). The thickness of the bridgmanite plus akimotoite 

zone within the outer rims of both 21 GPa and 1300°C samples ranges from 2 to 5 µm 

despite experiment durations differing by 3.5 hours (Table 3.1). If the large volume 

change associated with enstatite to bridgmanite and akimotoite reactions accumulated 

elastic strain within the outer rim of these samples, any experiment run at the same set of 

pressure and temperature conditions would have transformation rates drop to zero at the 

same time resulting in uniform final rim thicknesses. Therefore, within the 21 GPa and 

1300°C samples, a similar width of the akimotoite-bridgmanite zone for different run 

durations indicates that growth of this phase assemblage is likely to have been slowed by 

the buildup of elastic strain from the volume change in these reactions.  
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3.5.4 Fluid Inclusions as a Catalyst for Polymorphic Reactions 

Nano-scale rod-shaped inclusions are present within 70% of the untransformed 

San Carlos enstatite crystals analyzed in this study. These nano-scale inclusions are 

oriented along [001]En have a negative crystal form that is crystallographically controlled 

by the enstatite host (Figure 3.5). They are not Raman inactive, do not survive FIB or ion 

milling processes, have a low Z in BSE imaging, and a high contrast in reflected light 

microscopy. Based on negative crystal form of the inclusions, we conclude that the nano-

inclusions within San Carlos enstatite formed as fluid inclusions during the growth of the 

host crystals. 

Since 70% of the San Carlos enstatite starting material we characterized contained 

nano-fluid inclusions, there is a 0.07% chance that we selected six inclusion-free San 

Carlos enstatite samples from our starting material supply. Thus we assume that any of 

our samples may have contained nano-fluid inclusions prior to being loaded into the 

multi-anvil apparatus. However, no nano-fluid inclusions are present within the 

untransformed enstatite cores of recovered experimental samples. Because a fluid or gas 

filled inclusion would not survive under experimental conditions used in this study, it is 

likely that any nano-fluid inclusions were resorbed into the enstatite host grain during 

compression and heating during the multi-anvil experiments. 

Resorbed nano-fluid inclusions within starting material may enhance growth of 

high-pressure phases within the interior of enstatite grains in several ways. First, the 

closing of a fluid inclusion could result in the development of stacking faults or other 

structural defects within natural enstatite grains. In previous studies using olivine, 

stacking faults have been shown to serve as heterogeneous nucleation sites for high-
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pressure phases (Kerschhofer et al., 1996; Dupas-Bruzek et al., 1998). Second, fluid 

inclusions provide areas of elevated H2O or CO2 content that produce pathways of high 

diffusivity (Carter et al., 2015). Nano-fluid inclusions within enstatite could result in a 

zone of high diffusivity along [001]En, generating rod-shaped growths of high-pressure 

phases within the interior of enstatite crystals. Experimental samples transformed at 21 

GPa contain rods of polycrystalline akimotoite parallel to [001]En (Figure 3.12). These 

results suggest that nan-fluid inclusions were present within host enstatite grains prior to 

experimentation and they contributed to intracrystalline nucleation and growth of 

akimotoite along [001]En. 

Each experimental sample within this study contains intracrystalline growth of 

high-pressure (Mg,Fe)SiO3 polymorphs. While nano-fluid inclusions within our starting 

material are likely to have resulted in polycrystalline akimotoite rods parallel to [001]En, 

crystallographic orientations of bridgmanite lamellae and other multi-phase 

intracrystalline growth features are not consistent with nucleation along [001]En. This is 

an indication that multiple intracrystalline nucleation mechanisms occurred within our 

experimental samples, some of which do not appear to be dependent upon the presence of 

inclusions within the starting material. Future studies should fully explore the range of 

intracrystalline transformation mechanism active within natural San Carlos enstatite. 

 

3.5.5 Implications for Enstatite within the Mantle 

Within our experiments, direct transformation of natural Al- and Fe-bearing 

enstatite to high-pressure polymorphs occurs at conditions as low as 18.5 GPa and 

1200°C. This is much lower than 21 GPa and 1550°C observed in experiments using end 
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member MgSiO3 (Hogrefe et al., 1994). While kinetic factors may inhibit transformation 

of enstatite to akimotoite in colder slabs, we are unable to constrain the lower limit of 

kinetic boundaries for observable reactions in the transformation of natural enstatite to 

akimotoite because our lowest pressure and temperature experiments contain akimotoite. 

Future solid-state high-pressure experiments are necessary to further constrain pressure 

and temperature limits of observable reaction for each of the three MgSiO3 polymorphs. 

At low temperatures within subducting slabs, kinetic factors inhibit both (1) the 

dissolution of pyroxene into majorite garnet and (2) the breakdown of enstatite into 

Mg2SiO4 and SiO2 phases (Hogrefe et al., 1994; Nishi et al., 2008). Recent studies 

suggest that limited diffusion of pyroxene components within subducting slabs enables 

enstatite to remain metastable to the base of the MTZ, with significant implications for 

buoyancy and stagnation of slabs (Nishi et al., 2013; Agrusta et al., 2014; Van Mierlo et 

al., 2014; King et al., 2015). The metastable boundaries for MgSiO3 polymorphs show 

that as temperature decreases, majorite becomes increasingly unstable relative to 

akimotoite and bridgmanite at MTZ conditions (Figure 3.13). Therefore, direct 

transformation of metastable enstatite to metastable akimotoite is the most energetically 

favorable polymorphic reaction within cold subducting lithosphere. This reaction will 

occur at shallower depths and lower temperatures than the enstatite to majorite reaction 

that is currently used in thermo-kinetic subduction models. Further studies on the reaction 

rates of the enstatite-akimotoite transformation are necessary to provide quantitative 

kinetic data to constrain future thermo-kinetic and geodynamic models involving 

metastable enstatite. 
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The rapid transformation of metastable olivine has been suggested as a potential 

nucleation mechanism for deep focus earthquakes (Kirby et al., 1996; Frohlich 2006; 

Houston 2007). However, intracrystalline transformation mechanisms (Kerschhofer et al., 

2000; Mosenfelder et al., 2001) and the presence of nominal amounts of H2O (Diedrich et 

al., 2009; Du Frane et al,. 2013) within olivine enhance transformation rates and limit the 

metastable olivine wedge to a maximum depth of 550 km. Transformational faulting 

caused by the metastable transformation of enstatite to akimotoite has been proposed as a 

potential cause for the deepest earthquakes (Kirby et al., 1996; Frohlich 2006; Houston 

2007), and enstatite is thought to remain metastable to greater depths than olivine due to 

the limited reactivity in experiments using end member MgSiO3 (Hogrefe et al., 1994). 

Our results show that natural San Carlos enstatite produces abundant intracrystalline 

growth of high-pressure phases. If intracrystalline nucleation within enstatite is active in 

subducting slabs, then transformation of metastable enstatite to high-pressure phases is 

likely to be complete a much shallower depths than previously estimated. Additionally, 

natural enstatite grains contain crystallographic defects and trace amounts of H2O that 

can enhance nucleation and growth rates. Our experiments show that a combination of 

these factors will increase reactivity in natural enstatite relative to annealed synthetic 

MgSiO3. Therefore, the maximum depth of metastable enstatite within subducting slabs 

is likely to be much shallower than previous studies suggest, and transformational 

faulting of enstatite to akimotoite is unlikely to be the cause of the deepest earthquakes 

within the MTZ. 
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3.6 Conclusions 

 Metastable enstatite is thought to survive to greater depths within cold interior of 

subducting slabs than metastable olivine. This interpretation is based on kinetic data 

showing that the diffusion controlled reactions of enstatite to majorite garnet and enstatite 

to wadsleyite or ringwoodite plus stishovite will be inhibited within the cold interior of 

subducting slabs (Hogrefe et al., 1994; Nishi et al., 2008; Van Mierlo et al., 2013). We 

show that direct polymorphic transformation of enstatite to akimotoite is the preferred 

polymorphic reaction within solid-state transformation experiments using natural San 

Carlos enstatite. Additionally, metastable polymorphic reactions occur more readily in 

natural samples than in end-member MgSiO3. The H2O content of San Carlos enstatite 

represents a minimum of the range for mantle-derived orthopyroxenes; therefore, we 

expect that greater concentrations of H2O within enstatite in subducting slabs would 

further increase transformation rates. Our experiments resulted in abundant 

intracrystalline transformation of high-pressure phases. If present within subducting 

slabs, these additional nucleation sites will increase bulk transformation rates of enstatite 

within the mantle. Therefore, given the low H2O content of our starting material, the 

presence of abundant intracrystalline transformation of high-pressure phases, and an 

increased range of observable reactions our samples, it is likely that metastable natural 

enstatite within the cold interior of subducting slabs will transform to high-pressure 

phases at much shallower depths than previously thought.  

These findings have important implications for the behavior of subducting slabs 

within the MTZ. If natural enstatite is more reactive within the interior of cold subducting 

slabs than previous studies indicate, then transformational faulting caused by rapid 
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transformation of metastable enstatite to akimotoite is less likely to cause the deepest 

recorded earthquakes. Additionally, enhanced reactivity of natural enstatite will have 

significant effects on thermo-kinetic and geodynamic models of the behavior of 

subducting slabs within the MTZ. Future studies examining the effects of negative 

density contrast and buoyancy caused by metastable enstatite should account for these 

results to refine models of slab behavior, such as the stagnation of slabs at the base of 

MTZ. 
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CHAPTER 4 

INTRACRYSTALLINE TRANSFORMATION OF HIGH-CLINOENSTATITE AT 

MANTLE TRANSITION ZONE CONDITIONS: IMPLICATIONS FOR RATES, 

CRYSTALLOGRAPHIC PREFERRED ORIENTATIONS AND DEEP FOCUS 

EARTHQUAKES 

4.1. Introduction 

Enstatite (Mg,Fe)SiO3 is one of the most abundant minerals in the upper mantle, 

and it is estimated to comprise 18-25% of subducting lithosphere (Ringwood 1982; 

Irifune and Ringwood 1993; Hogrefe et al., 1994). At ambient mantle conditions, 

enstatite will react into majoritic garnet via solid solution by approximately 460 km depth 

(Akaogi and Akimoto 1977; Irifune and Ringwood 1987; Ringwood 1991). However, 

this diffusion-controlled reaction is one of the slowest processes in the mantle and is 

kinetically limited within the cold interior of subducting slabs (Nishi et al., 2008; van 

Meirlo et al., 2013). Additionally, slow chemical diffusion within the interior of cold 

slabs is expected to hinder the isochemical transformation of enstatite to wadsleyite plus 

stishovite and favor the polymorphic transformation to akimotoite (ilmenite structure) 

(Hogrefe et al., 1994). Kinetic inhibition of diffusion-dependent equilibrium reactions in 

the (Mg,Fe)SiO3 system have led to the interpretation that over-pressured metastable 

enstatite can survive to the base of the mantle transition zone (MTZ) (Hogrefe et al., 

1994). 

To study the behavior of metastable enstatite within the MTZ, it is first necessary 

to understand phase relations within the (Mg,Fe)SiO3 system at upper mantle conditions. 

(Mg,Fe)SiO3 that crystallizes from melt is typically orthoenstatite (OEN) with space 
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group Pbca. Depending on composition and pressure-temperature path, descending OEN 

within subducting slabs will transform to a monoclinic structure of either a C2/c or P21/c 

space group (HCEN or HCEN2, respectively) between 7 and 16 GPa (Angel et al., 1992; 

Shinmei et al., 1999; Ulmer and Stalder 2001; Zhang et al., 2012, 2013). The 

transformation of ortho- to clinoenstatite has been shown to cause polysynthetic twinning 

parallel to (100) (Buseck and Iijima 1975; Milke et al., 2007). Stacking disorder has also 

been reported along the (100) plane of FeSiO3 during ortho- to clinoferrosilite transitions 

at 4.2 GPa (Hugh-Jones et al., 1996), and within the Tenham meteorite which showed a 

streaking of diffraction spots parallel to a* (Tomioka and Fujino 1999). 

Planar defects within crystals may impact rheology and phase transformations 

within subducting slabs. For example, within experiments applying varying orientations 

of maximum compressive stress to polysynthetically twinned TiAl crystals, the resulting 

shear deformation is preferentially aligned parallel to pre-existing twin boundaries 

(Fujiwara et al., 1990). Additionally, stacking faults within single crystals of olivine can 

serve as heterogeneous nucleation sites for coherent intracrystalline growth of high-

pressure phases (Kerschhofer et al, 1996; Dupas-Bruzek et al., 1998). A reduction of 

grain size from intracrystalline transformation may promote rheological weakening 

within the slab (Kerschhofer et al., 2000), thus providing potential pre-existing zones of 

weakness necessary for the cascading shear failure model of deep focus earthquakes 

(Karato et al., 2001; Chen and Wen, 2015). 

Within pyroxenes, topotaxial growth of akimotoite within clinoenstatite grains has 

been reported in shock-melt veins within the Tenham L6 chondrite (Tomioka and Fujino 

1997, 1999), and a shear-induced mechanism for topotaxial transformation of 
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clinopyroxene to ilmenite structure was observed using analog FeGeO3 systems (Hattori 

et al., 2001). These findings led to the proposal of a diffusionless, shear-induced 

mechanism for the topotaxial transformation of metastable clinoenstatite to akimotoite 

(Tomioka 2007). In this mechanism, stacking faults along (100)cEn adjust close-packed 

oxygen layers from cubic to hexagonal close-packed arrangement and a series of four 

partial dislocations result in topotaxial transformation of enstatite to akimotoite with 

(100)cEn || (001)aki and [011]cEn || [110]aki (Tomioka 2007).  

Mechanisms for the transformation of metastable clinoenstatite to akimotoite may 

be related to several large-scale geophysical observations within the MTZ. First, 

transformational faulting during the reaction of metastable clinoenstatite to akimotoite 

has been suggested as a potential cause of the deepest recorded earthquakes (Hogrefe et 

al., 1994; Kirby et al., 1996; Frohlich 2006; Tomioka 2007), as well as the increase in 

global seismicity observed below 550 km (Persh and Houston 2004). When included in 

thermo-kinetic models of slab behavior, intracrystalline transformation mechanisms 

increase bulk transformation rates and thus reduce the depths to which metastable phases 

can survive within subducting lithosphere (Mosenfelder et al., 2001). Second, it is 

possible for minerals within the mantle to inherit crystallographic preferred orientation 

(CPO) from lower pressure phases (Dobson et al., 2013). Akimotoite is the most 

seismically anisotropic mineral within the MTZ (Zhou et al., 2014) and CPO within 

akimotoite may be seismically detectable (Shiraishi et al., 2008). Topotaxial growth of 

akimotoite from metastable clinoenstatite would provide a mechanism for the inheritance 

of CPO from previously deformed clinoenstatite, which would limit the effectiveness of 

seismic anisotropy as an indicator of slab flow and deformation at the base of the MTZ. 
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Despite its potential importance to processes occurring within subducting slabs 

within the MTZ, to date there have been no experimental studies on the mechanisms and 

kinetics of these reactions using natural, single crystals of enstatite. In a contemporaneous 

study, we report that natural enstatite is much more reactive than pure MgSiO3 within 

solid-state transformation experiments (Chapter 3). In this study, we perform a series of 

multi-anvil experiments using single crystals of natural San Carlos enstatite to explore 

transformation mechanisms within the (Mg,Fe)SiO3 system at MTZ conditions. 

Polysynthetic twinning of clinoenstatite is present within all recovered experimental 

samples and (100)cEn twin boundaries appear to serve as nucleation sites for both coherent 

and incoherent growth of multiple high-pressure phases. We suggest that growth of high-

pressure phases along polysynthetic twin boundaries within clinoenstatite favors a 

cascading failure of shear instabilities (Karato et al., 2001; Chen and Wen, 2015) rather 

than transformational faulting of enstatite (Hogrefe et al., 1994; Kirby et al., 1996; 

Frohlich 2006; Tomioka 2007) for the generation of deep-focus earthquakes. 

Additionally, topotaxial relationships in high-pressure reactions from clinoenstatite may 

provide a means for the inheritance of CPO in the lower MTZ. 

 

4.2 Experimental and Analytical Methodology 

 We investigate the behavior of natural enstatite at MTZ conditions by performing 

a series of high-pressure experiments using natural Al- and Fe-bearing San Carlos 

orthoenstatite (Pbca) as starting material. Experimentation using larger (~1mm) natural 

crystals is likely to provide a more accurate representation of processes occurring within 

subducting slabs as they pass through the MTZ. Crystals from San Carlos xenoliths have 
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been used as starting material for kinetic experiments in the (Mg,Fe)2SiO4 system 

(Kerschhofer et al., 1996, 1998, 2000; Liu et al., 1998; Mosenfelder et al., 2000; Diedrich 

et al., 2009; Du Frane et al., 2013) because they contain very little H2O (> 4 ppm for 

olivine; see Li et al., 2008), and they have similar compositions as lherzolite within 

subducting lithosphere. San Carlos orthopyroxene has a composition of (Ca0.05, Cr0.03, 

Fe0.19, Mg1.66, Al0.07)(Al0.08, Si1.92)O6 with an Mg/(Mg+Fe) ratio of 0.93 to 0.89, 3-5 wt% 

Al2O3 (Table 3.1; Frey and Prinz, 1978; Reynard et al., 2010; Zhang et al., 2012, 2014), 

and 53 to 83 ppm H2O (Li et al., 2008). Experiments were performed using the 1100-ton 

multi-anvil press at Arizona State University, the COMPRESS 10/5 multi-anvil assembly 

(Figure 3.3a; Leinenweber et al., 2012), and custom designed silver (Ag) capsules (Figure 

3.3b). We compressed experimental samples to 18.5 GPa and 21 GPa and heated samples 

to 1200, 1300 or 1400°C at a rate of 100°C per minute. The reader is referred to Chapter 

3 for additional details about sample preparation, capsule and assembly design, 

experimental errors, and sample recovery.  

 Recovered experimental samples were analyzed by optical microscopy, Raman 

spectroscopy, scanning electron microscopy (SEM), and transmission electron 

microscopy (TEM) at Arizona State University in the LeRoy Eyring Center for Solid 

State Science (LE-CSS). Raman spectroscopy was performed using a Coherent Sapphire 

SF laser with a wavelength of 532 nm and a 1200 gr/mm diffraction grating. The laser 

has a spatial sampling resolution of approximately 1 μm and was focused onto the sample 

using an 100X objective with a focal length of 0.2 mm. We sampled low pressure phases 

using a laser power of 12 mW; however, we generally lowered laser power to 1.3 to 6 
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mW and increased sample collection times to 100s of seconds when sampling unstable 

high-pressure phases in recovered experimental samples.  

Scanning electron microscopy (SEM) was performed using an FEI XL30 

Environmental SEM with a Field Emission Gun (FEG) system at the LE-CSSS. To 

prevent charging, a carbon film was applied to samples using an evaporation carbon 

coater. Samples were investigated primarily using backscatter electron (BSE) imaging. 

Imaging was performed using an acceleration voltage of 15 to 20 kV, spot size of 5.0, 

and working distance of 10 mm. At these settings, the instrument has a beam current of 

approximately 2.26 to 2.39 nA and a probe diameter of approximately 5 to 6 nm. Energy 

dispersive X-ray spectroscopy (EDS) was used for chemical analyses of starting material 

and high-pressure phases using an EDAX SiLi detector. Absorption and fluorescence 

effects for this system are corrected using a ZAF model. Process times for EDS analyses 

varied but were generally 4 to 10 μs to allow for at least 600 counts per second and a 

dead time of approximately 30%. Collection times for EDS analyses ranged from 10 

seconds to over one minute, depending on the stability of the resulting spectra. 

 Transmission electron microscopy (TEM) was performed at the LE-CSSS using 

an FEI CM200-FEG. To image beam-sensitive microstructures within our starting 

material, we prepared TEM samples using two separate techniques; (1) a focused-ion 

beam (FIB) lift-out technique with an FEI Nova200 NanoLab using an acceleration 

voltage of 30 keV and beam current of 0.1 to 20 nA, and (2) sample thinning using a 

Gatan dimple grinder and a Gatan Precision Ion Milling System (PIPS) with an Ar ion 

beam angle of 7° and an accelerating voltage of 6 keV. We investigated microstructures 

using diffraction contrast and high-resolution TEM imaging techniques. Mineral 
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structures were identified with selected area electron diffraction (SAED). We performed 

chemical analysis on TEM samples by EDS using an EDAX SiLi detector, with 

quantitative data processing performed using the Emispec Vision system and theoretical 

K-factors 

 

4.3 Experimental Results 

4.3.1 Transformation of Pyroxene Cores 

We use Raman spectroscopy to distinguish OEN from LCEN and constrain the 

reaction sequence that occurred within the pyroxene core of experimental samples. LCEN 

(P21/c) is distinguished from OEN (Pbca) by the absence of Raman peaks at 83 cm-1 and 

443 cm-1, the addition of peaks at 115 cm-1 and 369 cm-1, and the shifting of the peak at 

237 cm-1 to 242 cm-1 (Ulmer and Stalder, 2001; Lin 2004; Reynard et al., 2008). The 

Raman data show that San Carlos enstaite starting material is OEN (Pbca), and recovered 

experimental samples are LCEN (P21/c) (Figure 4.1). This is corroborated by TEM 

analysis and selected area electron diffraction data for the pyroxene cores of recovered 

experimental samples. When viewed along the [010] zone axis, experimental samples 

have a β* angle that is approximately 71°, which is indicative of a clinopyroxene phase. 

The pattern viewed down zone [010] also contains h + k equals odd reflections, which is 

consistent with the primitive lattice of LCEN (P21/c). Therefore, we conclude that the 

pyroxene core within recovered exerimental samples is LCEN (P21/c) phase. 

Each recovered experimental sample contains abundant polysynthetic twinning 

that is not present within OEN starting material. The twinning is clearly discernable using 

optical microscopy with cross-polarized light (Figure 4.2a). The transformation of ortho- 
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to clinopyroxene results in a halving of the enstatite unit cell along the a* direction. The 

loss of symmetry from ortho- to clinopyroxene allows the product phase to have two 

potential orientations that are related by reflection symmetry along the (100) plane 

(Figure 4.2b). TEM analysis of FIB sections taken from the transformed pyroxene core of 

recovered experimental samples confirms that abundant clinoenstatite twins are related 

by reflection along the (100) plane (Figure 4.2c). Since these twinning domains are easily 

identified in optical microscopy, they provide a useful reference to compare 

crystallographic relationships between high-pressure transformation features and the 

pyroxene host.  

 
 

Figure 4.1. Raman spectra for six unoriented crystals of San Carlos orthoenstaite starting 

material (top) and unoriented experimentally transformed clinoenstaite cores (bottom). 

Vertical lines represent peaks that are not present in LCEN (83 cm-1, 443 cm-1), peaks 

that are not present in OEN but are present in LCEN (115 cm-1, 369 cm-1), and a peak that 

is shifted during the transformation of OEN to LCEN (237 to 242 cm-1).  
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Figure 4.2. (a) Cross-polarized transmitted light optical micrograph of transformed low-

clinoenstatite (LCEN) core within sample BB1158. (b) Schematic diagram of reflection 

twins along (100) within LCEN cores of recovered experimental samples. The twins 

occur when orthoenstatite (OEN) starting material (grey rectangle) halves its length along 

the a* direction during transformation to LCEN (black quadrilaterals) giving the product 

phase one of two orientation variants (A or B). (c) Transmission electron microscopy of 

twinned LCEN within sample BB1110. Electron diffraction (inset) viewed along 

[010]LCEN confirms a refection twin on (100)LCEN. Brightfield HRTEM image of sample 

BB1110 displaying repeated twin domains with alternating orinetations of (002)  lattice 

fringes. 
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4.3.2 Topotaxial Growth of High-Pressure Phases 

 Within the sample transformed at 21 GPa and 1400°C, akimotoite lamellae are 

present within clinoenstatite (cEn) core (Figure 4.3). We cut a FIB section of the area and 

determined the crystallographic relationship between the akimotoite lamellae and the 

clinoenstatite host using high resolution TEM imaging and selected area electron 

diffraction. Diffraction patterns of the lamellae and host are indexed as two clinoenstatite 

patterns viewed down the [011]cEn and [011]cEn zone axes and two akimotoite patterns 

viewed along [110]aki, and [110]aki. The patterns for each mineral are related by reflection 

twinning along the (100)cEn and (001)aki planes, and acEn
*  parallels caki

*  in all patterns 

(Figure 4.3b). Twining is ubiquitous within the cEn host material of recovered samples; 

however, lamellae are most commonly slabs of untwinned akimotoite. High resolution 

transmission electorn micrographs show that akimotote forms as tabular lamellae that 

grow out from cEn twin boundaries (Figure 4.3c). 

In several locations, wadsleyite and stishovite grains up to 20 by 100 nm occur 

along the interface between twinned akimotoite and cEn. Electron diffraction patterns 

viewed down zones [101]wds and [101]st show that cEn, akimotite, wadsleyite, and 

stishovite each share topotaxial relationships with one another, with vectors [101̅]
wds

*
, 

[010]
st

*
, acEn

* , and caki
*  all in parallel (Figure 4.3d). These vectors are perpendicular to the 

close packed oxygen layers for each mineral; therefore, close packed oxygen layers in 

cEn and each product phase are parallel and possibly continuous (Figure 4.4). The 

orientations and morphology of high-pressure product phases are consistent with coherent 

nucleation and growth along the (100)cEn twin boundaries.  
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Figure 4.3. (a) FESEM BSE micrograph of akimotoite (aki) lamellae within clinoenstiate 

(cEn) core of sample BB1110 (21 GPa, 1400°C). Area of FIB section for TEM analysis 

outlined in white. (b) Transmission electron micrograph of alternating aki and cEn 

lamellae. Selected area electron diffraction pattern (inset to b) shows twins of both cEn 

and aki viewed down zone axes [011]cEn, [011]cEn, [110]aki, and [110]aki with acEn
*  parallel 

to caki
* . (c) Coherent nucleation of aki lamellae along a continuous, preexisting twin 

boundary within cEn host. Voids along aki lamellae form by differential expansion of 

during sample quench. (d) Transmision electron micrograph showing growth of 

wadsleyite (wds) and stishovite (st) along twin boundaries within akimotoite. Inset 

electron diffraction patterns show topotaxial relationships for all four phases, with 

[101̅]
wds

*
 and [010]

st

*
 parallel to acEn

*  and caki
* . Diffraction patterns are viewed down 

[101]wds, [101]st, and the same zone axes of cEn and aki as in (b).  
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Figure 4.4. Ball and stick crystal models illustrating the preservation of close-packed 

oxygen (red spheres) layers during topotaxial transformation of clinoenstatite (cEn) to 

akimotoite (aki), wadsleyite (wds), and stishovite (st). Models viewed down zone axes 

[011]cEn, [110]aki, [101]wds, and [101]st, which are the same as the diffraction patterns in 

Figure 4.3. Parallel planes of close packed oxygen layers are (100)cEn, (001)aki, (101̅)wds, 

and (010)st. Preservation of cation layers in cations Mg (green spheres) and Si (blue 

spheres) also occur in these orientations. 
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4.3.3 Direct Transformation of Enstatite to Bridgmanite 

(Mg,Fe)SiO3 polymorphs bridgmanite, akimotoite and majorite are all stable 

relative to HCEN starting material above 20 GPa and 800°C (Figure 3.13). Each of our 

recovered experimental samples transformed at 21 GPa and 1300°C to 1400°C contains a 

high-contrast phase in reflected light microscopy and SEM BSE images (Figure 4.5a). 

This phase occurs (1) as lamellae within the pyroxene core and (2) as part of a 

polycrystalline mixture with akimotoite at the outer edge of grain boundary reaction rims. 

Raman spectra of the phase contains characteristic broad peaks at 732 cm-1 and 897 cm-1, 

which is consistent with published spectra of MgSiO3 perovskite (Bolfan-Cassanova et 

al., 2003); however, lower modes typical for bridgmanite were not present (Figure 4.5b). 

Additionally, electron diffraction patterns collected during TEM analysis (Figure 4.5c) 

show that the high-contrast lamellae is amorphous, and EDS data confirms that the phase 

is compositionally identical to the untransformed enstatite core. Based on its beam 

sensitivity, chemical composition, and Raman data, we conclude that the bright high-

pressure phase is vitrified bridgmanite. 

When viewed using transmitted light microscopy, the lamellae are oriented 

parallel to (100)cEn twin boundaries. The lamellae can occur in isolation from other high-

pressure phases, but they are most commonly located at the ends of 5 to 10 µm wide, 

linear-trending bands of akimotoite (Figure 4.5a) or at the fringes of nodular-shaped 

majorite and akimotoite growth that are approximately 30 to 50 µm in size (Figure 3.11). 

To further analyze high-resolution structure and composition of these lamellae, we 

extracted a FIB section of a lamellae within Sample BB1110 (21 GPa, 1400°C). 
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Brightfield TEM images show that the interface between the lamellae and the cEn host is 

sub-parallel to (100)cEn twin boundaries (Figure 4.5c).  

 

 
 

Figure 4.5. (a) FESEM BSE micrograph of amorphous bridgmanite (brd) lamellae 

extending from akimotoite (aki) inclusions in the clinoenstiate (cEn) core of sample 

BB1110 (21 GPa, 1400°C). Area of FIB section for TEM analysis outlined in black. (b) 

Raman spectra for sample points E1-E4 show characteristic 799 cm-1 peak for akimotoite 

and broad amorphous bridgmanite peaks at peaks at 732 cm-1 and 897 cm-1. (c) 

Transmission electron micrograph of amorphous bridgmanite lamellae that is sub-parallel 

to (100) twin planes in cEn. Selected area electron diffraction pattern (inset to c) shows 

amorphous phase with diffuse rings of diffraction intensity associated with reflections 

from randomly oriented crystalline material. High pressure phases occur within the 

lamellae and at the interface between lamellae and host cEn. (d) Aki and wadsleyite 

(wds) grains at the margin of interface between the amorphous lamellae and cEn.  
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4.3.4 Lamellae as Nucleation Sites for High-Pressure Crystallites 

In addition to topotaxial growth of high-pressure phases along (100)cEn, TEM data 

from the sample transformed at 21 GPa and 1300°C to 1400°C shows that lamellae can 

also provide nucleation sites for non-lamellar growth of high-pressure crystallites 10 nm 

to 1 µm in size. Crystallites occur (1) along the grain boundaries of bridmanite (Figure 

4.5c,d) or akimotoite lamellae (Figure 4.6a,b), (2) within the interior of akimotoite 

lamellae (Figure 4.6b), and (3) within the interior of amorphous bridgmanite lamellae 

(Figure 4.5c,d). Crystallites range in habit from anheadral to euhedral, and euhedral to 

subhedral grains appear to share a similar crystallographic orientation. While the 

crystallites were too small and beam sensitive to perform a detailed survey of their 

compositions and crystallographic orientations, d-spacings within several selected area 

electron diffraction patterns were consistent with akimotoite that shared no clear 

topotaxial relationship with neighboring crystals. Crystallites do not occur within the 

interior of the host enstatite grains, nor do they occur along enstatite-enstatite twin 

boundaries. This suggests that akimotoite crystallites via a secondary transformation 

mechanisms that first requres the presence of bridgmanite or akmotoite lamellae, such as 

incoherent nucleation on lamellae boundaries. 
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Figure 4.6. Transmission electron micrograph of high-pressure crystallites within sample 

BB1110 (21 GPa, 1400°C). Crystallites occur both along akimotote-akimotoite twin 

boundaries and within the interior of an akimotoite lamellae. 
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4.4 Discussion 

4.4.1 Pyroxene Transformation Sequence 

Magnesium-rich pyroxene undergoes a series of polymorphic reactions with 

increased pressure and temperature. The stabilility of these pyroxene phases relative to 

one another is dependent upon pressure-temperature path, composition, and kinetic 

factors. Raman spectroscopy shows that our San Carlos enstatite starting material is OEN 

(Pbca). During compression at room temperature, OEN (Pbca) transforms to HCEN2 

(P21/c) between 12 to 16 GPa (Lin 2004; Zhang et al., 2013). This reaction is a first order 

phase transformation, and HCEN2 reverts to OEN upon quench (Lin 2004; Zhang et al., 

2014). Because our experiments were compressed at room temperature to at least 18.5 

GPa, it is likely that the samples were transformed to HCEN2 during compression. 

However, Raman spectroscopy and TEM analyses show that the pyroxene cores of our 

recovered experimental samples are LCEN (P21/c). The high-pressure and -temperature 

HCEN (C2/c) structure transforms to the LCEN (P21/c) structure upon quench (Angel et 

al., 1992; Ulmer and Stalder, 2001); therefore, the presence of LCEN (P21/c) cores within 

recovered experimental samples is indirect evidence that our samples transformed to 

HCEN (C2/c) during heating and then transformed to LCEN (P21/c) upon pressure 

quench. Therefore, we infer a recation sequence of OEN-HCEN2-HCEN-LCEN for the 

pyroxene cores in our experimental samples. 

 

4.4.2 Mechanism for the Inheritance of Crystallographic Preferred Orientation 

Topotaxial growth of akimotoite lamellae occurred within the sample transformed 

at 21 GPa and 1400°C. Our experiments were performed at near hydrostatic conditions; 
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therefore, the only likely differential stresses within our samples are from potential 

defects present within natural San Carlos enstatite starting material. While the 

crystallographic relationship (100)cEn || (001)aki and [001]cEn || [010]aki preserves close 

packed oxygen layering of clinoenstatite in akimotoite (Figure 4.4), the sample contains 

no evidence of stacking faults or disorder along (100)cEn. Therefore, it is unlikely that it 

resulted from a martensitic-like shear transformation mechanism. Electron diffraction 

data show twinning within both cEn and akimotoite, indicating that akimotoite nucleated 

on both orientations of preexisting cEn twins. We conclude that the most likely 

transformation mechanism that produced topotaxial akimotoite lamellae was coherent 

heterogeneous nucleation along HCEN twin boundaries followed by coherent growth of 

akimotoite.  

Tomioka (2007) proposed a diffusionless shear mechanism for the cEn-akimotoite 

transformation that involves shearing of the oxygen sublattice of HCEN through the 

formation of (100) stacking faults. This mechanism was based on the topotaxial 

relationship (100)cEn || (001)aki and [001]cEn || [010]aki observed within the Tenham 

meteorite (Tomioka and Fujino 1997). The orientation observed in the current study, with 

(100)cEn || (001)aki and [011]cEn || [110]aki (Figure 4.6), is that same as that was proposed 

by Tomioka (2007). Although a diffusionless mechanism may be favorable within a 

subducting slab where temperatures are low and differential stress is high, in this study 

the topotaxial relationship was produced at low to moderate differential stress and high 

temperature. Further, the sample also contains topotaxial growth of wadsleyite and 

stishovite, which requires long range diffusion of cations. This indicates that the high- 
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Figure 4.7. Relationship between crytallographic orientations of clinoenstatite and 

akimotoite as proposed by Tomioka (2007) (black) and as observed in experimental 

samples from the current study (red). The hexagonal array of circles represents the close-

packed oxygen layers of clinoenstatite and akimotoite.  

 

pressure phases with a topotaxial relationship to enstatite can be formed without large 

differential stresses or shearing.  

Minerals within the mantle may inherit CPO from lower pressure phases such as 

olivine or pyroxene (Dobson et al., 2013). This is especially important for akimotoite 

because it is the most seismically anisotropic mineral within the MTZ (Zhou et al., 2013), 

and there is evidence for seismically detectable akimotoite CPO within the Tonga slab 

(Shiraishi et al., 2008). Nucleation of akimotoite on (100)cEn twin planes in clinoenstatite, 
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and topotaxial replacement indicates that it is possible for akimotoite to inherit a CPO 

from enstatite in a previously deformed rock. Further, the presence of topotaxial 

wadsleyite and stishovite within our sample suggests that these phases may also inherit 

CPO from enstatite. Therefore, we caution against interpreting future observations of 

seismic anisotropy as evidence for localized strain of akimotoite and other high-pressure 

phases within the lowermost MTZ, as CPO of high-pressure phases may have been 

inherited from previously deformed clinoenstatite within subduction zones in the upper 

mantle. 

 

4.4.3 Effects of Polysynthetic Twinning on Transformation 

The reaction sequence of OEN (Pbca) to HCEN2 (P21/c) to HCEN (C2/c) that 

occurrs during the compression and heating of our experimental samples is simlar to what 

is expected within the interior of cold subducting lithosphere. At low slab temperatures, 

kinetic factors inhibit diffusion-controlled reactions of enstatite to garnet (Nishi et al., 

2008; van Mierlo et al., 2013; King et al., 2015) and enstatite to wadsleyite or 

ringwoodite plus stishovite (Chapter 3; Hogrefe et al., 1994). This will allow the 

(Mg,Fe)SiO3 component of the slab to remain metastable as a pyroxene phase until 

pressures are sufficiently high for polymorphic transitions to akimotoite, majorite, or 

bridgmanite (Chapter 3). 

Metatsable enstatite within the cold interior of slabs is likely to be completely 

transformed to HCEN (C2/c) phase prior to the nucelation and growth of akimotoite, 

majorite, or bridgmanite. During isothermal experiments at 400°C using Fe and Al 

bearing OEN (Pbca), OEN remained stable until it was transformed to HCEN2 (P21/c) at 
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13 GPa (Zhang et al., 2014). While the stability of the HCEN2 (P21/c) phase relative to 

HCEN (C2/c) remains unclear at higher pressures and temperatures, P21/c to C2/c 

reaction is a displacive first-order phase transition (Ulmer and Stalder 2001) that requires 

much less activation energy than a reconstructive transformation of P21/c to high-

pressure polymorphs akimotoite, majorite, or bridgmanite.  

Planar defects such as twin boundaries are metastable structures that provide 

surfaces for enhanced heterogeneous nucleation of high-pressure phases. For example, 

heterogeneous nucleation of ringwoodite has been reported on stacking faults in olivine 

during transformation experiments using large olivine crystals (Kerschhofer et al., 1996, 

1998 Dupas-Bruzek et al., 1998) and within shocked meteorites (Chen et al., 2004; 

Greshake et al., 2013). In this study, experimental samples transformed at 21 GPa contain 

coherently intergrown akimotoite lamellae along (100)cEn (Figure 4.3) and amorphous 

bridgmanite lamellae sub-parallel to (100)cEn (Figure 4.5). The presence of positive and 

negative twins of topotaxial akimotoite within our samples confirms that the enstatite was 

twinned during the ortho- to clinopyroxene transition prior to the transformation to high-

pressure phases. Enstatite within the mantle should also contain abundant twin 

boundaries, which would greatly increase the density of nucleation sites for high-pressure 

phases such as akimotoite.  

Experiments transformed at 21 GPa and 1300°C to 1400°C contained high-

pressure crystallites that only occurred along well-developed akimotoite and amorphous 

bridgmanite lamellae. This suggests that the crystallites form via secondary 

transformation mechanisms that first requres the presence of bridgmanite or akmotoite 

lamellae. Moreover, bridgmanite lamellae within the interior of samples transformed at 
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21 GPa and 1300°C to 1400°C can occur either (1) in isolation from other high-pressure 

phases, or they can be associated with larger growth features containing more abundant 

akimotoite and majorite (Figure 4.5). While the nucleation mechanism for the amorphous 

bridgmanite lamellae is unclear, it is apparent that they provide nucleation sites for 

akimotoite and possibly majorite.  

Given the large (>1 mm) grain sizes within the mantle and the ubiquity and 

abundance of polysynthetic twins within recovered pyroxene cores in our experimental 

samples, nucleation and growth of high-pressure phases along twin boundaries is likely to 

be common within mantle enstatite. Intracrystalline nucleation of akimotoite or other 

phases on HCEN twin boundaries would therefore increase the overall rate of 

transformation by reducing growth distances. It is likely that the rate of enstatite 

transformation in subducting slabs will be largely controlled by the density of twin 

boundaries in clinoenstatite. 

 

4.4.4 Implications for the Cause of Deep-Focus Earthquakes 

Intracrystalline growth of high-pressure phases has been shown to occur within 

enstatite (Chapter 3) and olivine (Kerschhofer et al., 1996, 1998). Additionally, crystals 

formed via intracrystalline coherent mechanisms can provide new grain boundary sites 

for incoherent nucleation and interface controlled growth (Sharp and Rubie, 1995; 

Kerschhofer et al., 1998). Within this study, secondary growth of high-pressure phases 

occurred along the interface between clinoenstatite and both coherent akimotoite lamellae 

and amorphous bridgmanite lamellae. In the mantle, increased enstatite reactivity caused 

by heterogeneous nucleation on twin boundaries would reduce the depth to which 
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metastable enstatite could survive within the cold interior of a subducting slab, thus 

limiting the depth to which transformational faulting of enstatite could contribute to 

nucleation of deep-focus earthquakes. 

The (100)cEn twin boundaries could also impact on the grain size and rheology of 

subducting slabs, as both (1) mechanically weak planar defects in enstatite and (2) 

nucleation sites for intracrystalline transformation and grain size reduction. In 

experiments on polysynthetically twinned crystals, shear deformation is focused along 

planes parallel with twin boundaries when a wide range of maximum compressive stress 

orientations are applied to the sample (Fujiwara et al., 1990). Additionally, our 

experiments contain two separate reactions that produce lamellae along the (100)cEn twin 

plane. The reduction of grain size due to secondary growth of high-pressure phases along 

these lamellae could substantially weaken pyroxene-rich portions of the mantle. 

Therefore, shear instability along the (100)cEn twin boundaries coupled with reduced 

grain sizes from intracrystalline transformation will produce regions of pre-existing 

weakness within enstatite rich rock in subducting slabs. It is possible that these zones of 

weakness could trigger cascading failure of shear thermal instabilities, which is one of 

several hypothesis for the initiation of deep focus earthquakes (Karato et al., 2001; Chen 

and Wan 2015).  

 

4.5 Conclusions 

Solid-state transformation experiments using single crystals of natural San Carlos 

enstatite show that the ortho- to clinopyroxene transition produces abundant 

polysynthetic twinning along (100)cEn. The pressure and temperature conditions of the 
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ortho- to clinopyroxene transition vary depending on composition and pressure-

temperature path, and further studies are required to refine the stability fields for the 

various polymorphs of Mg-rich pyroxene. Regardless of the conditions under which the 

ortho- to clinopyroxene transformation occurs, the reaction is expected to produce 

polysynthetic twinning along (100)cEn for all (Mg,Fe)SiO3 clinopyroxene within the 

upper mantle. Our experiments show that (100)cEn twin boundaries can serve as 

nucleation sites for both coherent and incoherent growth of multiple high-pressure 

phases. The abundance and ubiquity of polysynthetic twining within our samples 

suggests that nucleation sites along the (100)cEn twin boundaries will outnumber potential 

grain boundary nucleation sites, and therefore, intracrystalline growth of high-pressure 

phases may be the dominant mechanism for transformation for Mg-rich pyroxenes within 

the mantle. If active within the mantle, intracrystalline transformation mechanisms would 

enhance transformation rates of metastable enstatite within subducting lithosphere, 

thereby decreasing the likelihood that transformational faulting of metastable enstatite 

causes the deepest earthquakes. 

The presence of the (100)cEn twins is also likely to have a significant impact on 

the physical properties of enstatite-rich portions of the mantle. Our experimental sample 

transformed at 21 GPa and 1400°C contained topotaxial growth of akimotoite, wadsleyite 

and stishovite parallel to the (100)cEn twins. It has been shown that minerals within the 

mantle can inherit CPOs from lower pressure phases (Dobson et al., 2013). Topotaxial 

replacement, either by heterogeneous nucleation on twin boundaries, as observed here, or 

by a shear mechanism, as proposed by Tomioka (2007), would transfer CPO in enstatite 

bearing subducting slabs into akimotoite and potentially other high-pressure phases. 
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Observed seismic anisotropy within subducting slabs in the lowermost transition zone 

may, therefore, represent inherited CPOs rather than CPOs formed by deformation in the 

MTZ.  

Polysynthetic twinning in clinoenstatite can influence the rheology of subducting 

slabs in two ways. First, the twin boundaries themselves are planar defects that may 

weaken the crystal and allow for shear instability along (100)cEn (Fujiwara et al., 1990). 

Second, our experiments show that lamellae of akimotoite or bridgmanite can grow 

parallel to (100)cEn, and these lamellae can serve as nucleation sites for secondary growth 

of nano-scale high-pressure phases. If active within the MTZ, these transformation 

mechanisms will result in a grain size reduction that is concentrated along (100)cEn 

planes. When considered together, shear instability from polysynthetic twin boundaries 

and grain size reduction along (100)cEn may provide weak zones necessary to result in a 

cascading shear failure similar to what has been proposed for the cause of deep focus 

earthquakes (Karato et al., 2001; Chen and Wen 2015). Further experimental studies are 

necessary to determine whether polysynthetic twins and grain size reduction along 

(100)cEn can provide enough instability to produce seismogenic failure in pyroxene-rich 

portions of subducting slabs. 
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CHAPTER 5 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 

5.1 Summary 

Much of what we know about the Earth is described by models that are 

continually refined through observational, experimental, and theoretical research. The 

strength of these models is dependent upon an accurate understanding of the underlying 

small-scale phenomena that drive the modeled larger-scale process. Within this 

dissertation, I show that observational seismology and experimental mineral physics can 

provide important constraints on models for a range of large-scale geophysical 

phenomena within the crust and mantle.  

 

5.2 Conclusions from Observational Seismology 

Within Chapter 2, I use the temporal and spatial distribution of small-magnitude 

earthquakes (M < 2.0) to constrain models of the tectonophysics of the diffuse North 

American-Pacific plate boundary. For the period of study, diffuse seismic activity 

occurred across the Great Basin (GB) with the exception of a rigid crustal block between 

longitudes -114.5°E and -113° E. Widespread seismicity and active deformation within 

the interior of the GB (Chamoli et al., 2014; Hammond et al., 2014) dispels the model of 

the GB behaving as a rigid microplate and suggests that Basin and Range extension 

continues within the interior of the GB. 

An improved detection threshold for small-magnitude earthquakes within the GB 

reveals a complex range of fault behavior within the region. Earthquake clusters, swarms 

and mainshock-aftershock sequences occur throughout the GB, which suggests that 
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swarms and clusters are a general mechanism of diffuse deformation throughout the 

interior of the GB. In several cases, earthquake clusters appear to be temporally 

associated despite being located along separate range-bounding faults. By using a variety 

of geophysical data to eliminate potential causes for these earthquake sequences, I 

suggest that pore fluid pressure variation due to external geophysical phenomena (i.e., 

local transient deformation events or subsurface fluid migration) is the most likely cause 

of temporally correlated increases in seismicity rates within the study region.  

To further constrain potential triggers for localized temporal seismicity rate 

increases, future studies should perform detailed analysis of geodetic data (InSAR, 

geodesy, borehole strainmeters, etc.) within the area of a specific swarm or cluster. 

Additionally, swarms and clusters in this study area provide an excellent opportunity to 

use a waveform matching algorithm to search for evidence of non-volcanic tremor or 

low-frequency earthquakes (e.g., Peng and Gomberg 2010) to determine whether this 

type of fault behavior is limited to plate boundaries or if it occurs elsewhere within 

intracontinental environments. Further, the EarthScope USArray Transportable Array 

provides an unprecedented opportunity to more accurately characterize the distribution of 

small-magnitude earthquakes across the continental U.S. Using the methodology 

described in Chapter 2 would greatly increase the earthquake detection threshold for 

many regions with low seismicity and historically poor seismometer coverage. Future 

studies should examine whether earthquake swarms and clusters are present within these 

regions of historically lower seismicity rates. If present in all seismotectonic 

environments, closer examination of the mechanisms that cause small-magnitude 
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earthquake swarms could improve process models of fault slip (e.g. Peng and Gomberg 

2010)  

5.3 Conclusions from Experimental Mineral Physics 

Within Chapters 3 and 4, I use results from a series of high pressure and 

temperature experiments to constrain models for the dynamics and rheology of 

subducting oceanic lithosphere within the mantle transition zone (MTZ). For these 

experiments, I explore the mechanisms and kinetics of high-pressure phase transitions 

within subducting slabs using single crystals of natural Al- and Fe-bearing enstatite 

(Mg,Fe)SiO3.  

In Chapter 3, I report that natural enstatite crystals are far more reactive than end-

member MgSiO3 (Hogrefe et al., 1994). This suggests that metastable natural enstatite 

within the cold interior of subducting slabs will transform to high-pressure phases at 

much shallower depths than previously thought. Therefore, transformational faulting 

caused by rapid transformation of enstatite to akimotoite is unlikely be responsible for the 

deepest recorded earthquakes. Furthermore, increased reactivity of natural enstatite will 

have significant effects on thermo-kinetic and geodynamic models of the behavior of 

subducting slabs within the MTZ. Future kinetic studies are necessary to empirically 

determine transformation rates for the enstatite-akimotoite reactions that are expected to 

dominate within the interior of subducting slabs. Kinetic rate data can then be applied to 

future thermo-kinetic models of slab behavior to better constrain the impact of metastable 

enstatite on models of buoyancy and the stagnation of slabs at the base of mantle 

transition zone. 
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Within Chapter 4, I examine the role of polysynthetic twinning on the nucleation 

and growth of high-pressure phases within natural enstatite. The abundance and ubiquity 

of polysynthetic twining within experimentally transformed clinoenstatite indicates that 

nucleation sites along the (100)cEn twin boundaries may be the preferred mechanism for 

the transformation of coarsely crystalline enstatite to within cold subducting slabs. This 

intracrystalline transformation mechanism should also be included in future models 

examining the transformation kinetics and dynamic behavior of subducting slabs. 

Topotaxial growth of akimotoite, wadsleyite, and stishovite along polysynthetic twin 

boundaries provides a mechanism for high-pressure phases to inherit a crystallographic 

preferred orientation (CPO) from enstatite in previously deformed mantle lithosphere. 

Thus, seismic anisotropy within subducting slabs in the lowermost transition zone may be 

inherited from a preexisting pyroxene CPO and not reflect the current state of stress within 

the slab. Finally, planar defects and grain size reduction along (100)cEn, may provide the 

pre-existing weak zones necessary to result in a cascading shear failure similar to what 

has been proposed for the cause of deep focus earthquakes (Karato et al., 2001; Chen and 

Wen, 2015). Further experimental studies are necessary to determine whether 

polysynthetic twins and grain size reduction along (100)cEn can provide enough instability 

to produce seismogenic failure in pyroxene-rich mantle lithologies. 

The mechanisms and kinetics of high-pressure phase transformations in enstatite 

are not well understood. The results presented within this dissertation represent a 

preliminary study of transformation mechanisms and resulting microtextures within these 

first six (6) experiments performed on singe crystals of natural enstatite. Additional 

experimentation is necessary to obtain empirically-determined transformation rates for 
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both intracrystalline and grain boundary nucleation mechanisms in enstatite. While 

numerous transformation rate studies have been performed on olivine, none have been 

performed on enstatite to date. Future studies should measure intracrystalline and grain 

boundary growth rates as a function of time (e.g. Rubie and Ross, 1994; Deidrich et al., 

2009; Du Frane, et al., 2012) to obtain mechanism specific growth rates that can be 

applied to future thermo-kinetic models of subduction.  
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APPENDIX A  

GREAT BASIN SEISMICITY FROM 2004 TO 2013 

[Consult attached .kmz file using Google Earth for PC, Mac, or Linux. Data tables in .csv 

format can be viewed using any text editor on any operating system.] 

  



129 

The file referenced below is a comprehensive earthquake catalog for the Great 

Basin from 2004 to 2013. This catalog contains (1) the small-magnitude event catalog 

generated as part of this dissertation (ASU), (2) events from the catalog generated by the 

EarthScope Array Network Facility (ANF), and (3) events from the Advanced National 

Seismic System (ANSS) catalog. See Section 2.2 of this dissertation for additional 

information on citations and data sources for ANF and ANSS data. The full catalog can 

be downloaded as Google Earth KMZ file or as a comma-delimited .csv file from:  

 

http://activetectonics.asu.edu/e-quakes/GB_EQs_2004-2012.kmz 

http://activetectonics.asu.edu/e-quakes/GB_EQs_2004-2012.csv 

 

Description of column headings for earthquake data are as follows: yr=year; 

mo=month; day=day; hr=hour; min=minute; sec=second; lat=latitude; lon=longitude; 

dep=depth; mag=magnitude; magt=magnitude type; auth=source catalog; nsta=number of 

stations used for earthquake location; gap=maximum azimuthial gap between seismic 

stations used to locate event. 

 

 

  

http://activetectonics.asu.edu/e-quakes/GB_EQs_2004-2012.csv
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APPENDIX B  

GREAT BASIN EARTHQUAKE SWARMS FROM 2004 TO 2013 

  



131 

 This appendix contains additional data for the 10 earthquake swarms within the 

Great Basin from 2004 to 2013. Within some clusters in Table 2.6, earthquakes occurred 

within the same 4 km radius spatial area as earthquake swarms but were not temporally 

associated with the peak period of seismicity that defined an earthquake swarm. 

Therefore, data within Table 2.6 displays event counts and peak activity for all spatially-

associated events located within a 4 km radius (i.e. earthquake clusters), and some of 

these event clusters include periods of swarm-like seismic activity.  

Table A1 includes only event data for spatially and temporally associated 

earthquake swarm events.  

Figure A1 contains plots of (left) swarm events vs. time since the onset of swarm-

like seismic activity and (right) cumulative seismic moment release vs. time for each 

swarm. Letters in the top left of each plot correlate each plot with a specific earthquake 

swarm, as identified in the “Swarm ID” column of Table A1. 
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