
Information Source Detection in Networks

by

Kai Zhu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2015 by the
Graduate Supervisory Committee:

Lei Ying, Chair
Ying-Cheng Lai

Huan Liu
Paulo Shakarian

ARIZONA STATE UNIVERSITY

December 2015

ABSTRACT

The purpose of information source detection problem (or called rumor source detec-

tion) is to identify the source of information diffusion in networks based on available

observations like the states of the nodes and the timestamps at which nodes adopted

the information (or called infected). The solution of the problem can be used to an-

swer a wide range of important questions in epidemiology, computer network security,

etc. This dissertation studies the fundamental theory and the design of efficient and

robust algorithms for the information source detection problem.

For tree networks, the maximum a posterior (MAP) estimator of the information

source is derived under the independent cascades (IC) model with a complete snapshot

and a Short-Fat Tree (SFT) algorithm is proposed for general networks based on the

MAP estimator. Furthermore, the following possibility and impossibility results are

established on the Erdos-Renyi (ER) random graph: (i) when the infection duration

< 2
3
tu, SFT identifies the source with probability one asymptotically, where tu =⌈

logn
log µ

⌉
+ 2 and µ is the average node degree, (ii) when the infection duration > tu,

the probability of identifying the source approaches zero asymptotically under any

algorithm; and (iii) when infection duration < tu, the breadth-first search (BFS) tree

starting from the source is a fat tree. Numerical experiments on tree networks, the ER

random graphs and real world networks show that the SFT algorithm outperforms

existing algorithms.

In practice, other than the nodes’ states, side information like partial timestamps

may also be available. Such information provides important insights of the diffusion

process. To utilize the partial timestamps, the information source detection problem

is formulated as a ranking problem on graphs and two ranking algorithms, cost-based

ranking (CR) and tree-based ranking (TR), are proposed. Extensive experimen-

tal evaluations of synthetic data of different diffusion models and real world data

i

demonstrate the effectiveness and robustness of CR and TR compared with existing

algorithms.

ii

To my parents and grandparents.

To my wife and best friend, Tu.

To my teachers and mentors.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor,

Prof. Lei Ying for his guidance, encouragements and patience. His profound intuition,

sharp thinking and deep insight have changed my way of tackling problems. It was

him who taught me how to write an academic paper by revising my draft line by

line. He has been a mentor, colleague and friend to me. I still vividly recall the day

when Prof. Ying first introduced the information source detection problem to me.

The effort to tackle this problem flourished into several academic papers and become

my dissertation. His guidance has made this a thoughtful and rewarding journey.

In addition, I would like to thank Prof. Ying-Cheng Lai, Prof. Huan Liu, and

Prof. Paulo Shakarian for serving on my committee and providing valuable insights

and suggestions.

I would like to thank all my collaborators, colleagues and friends: Francois Bac-

celli, Jun Chen, Zhen Chen, Sabarna Choudhuri, Yong Guan, Bruce Hajek, Xiaohan

Kang, Chong Li, Shihuan Liu, Xin Liu, Tien V Nguyen, Ming Ouyang, R Srikant,

Sundar Subramanian, Jian Tan, Weina Wang, Rui Wu, Xinzhou Wu, Yu Wu, Jiaming

Xu, Li Zhang, Zhengyu Zhang, Shan Zhou. It was a pleasure to have the privilege to

work with all these talented researchers.

Last but not the least, I would like to thank my wife and best friend, Tu Lu for her

understanding and love during the past five years. Her encouragement and support

was in the end what makes this dissertation possible. My parents and grandparents

receive my deepest gratitude for providing me the foundation upon everything.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation and Background . 1

1.2 Our Contribution . 4

1.3 Thesis Outline . 6

2 INFORMATION SOURCE DETECTIONS: TREES AND BEYOND. . . . 7

2.1 Model and Algorithm . 9

2.1.1 Model . 9

2.1.2 The Short-Fat Tree Algorithm . 11

2.2 Main Results . 15

2.2.1 Main Result 1 (The MAP Estimator on Tree Networks). 15

2.2.2 Main Result 2 (Detection with Probability One on the ER

Graph) . 16

2.2.3 Main Result 3 (The Fat Tree Result on the ER Graph) 17

2.2.4 Main Result 4 (The Impossibility Result on the ER Graph) . 18

2.3 Performance Evaluation . 20

2.3.1 Algorithms . 20

2.3.2 Evaluation Metrics . 21

2.3.3 Binomial Trees . 23

2.3.4 The ER Random Graph . 24

2.3.5 The Internet Autonomous System Network 25

2.3.6 Running Time vs Performance . 26

v

CHAPTER Page

3 INFORMATION SOURCE DETECTION WITH PARTIAL TIMES-

TAMPS . 27

3.1 A Ranking Approach for Source Localization . 30

3.1.1 Quadratic Cost and Sample Path Approach 32

3.2 EIF: A Greedy Algorithm . 34

3.3 Cost-Based and Tree-Based Ranking . 39

3.4 Experimental Evaluation . 41

3.4.1 Performance of EIF on a Small Network 41

3.4.2 Comparison with Other Algorithms . 42

3.4.3 The Impact of Timestamp Distribution . 46

3.4.4 The Impact of the Diffusion Model . 48

3.4.5 The Impact of Network Topology . 51

3.4.6 Weibo Data Evaluation . 52

3.5 Extensions . 55

3.6 Additional Experimental Evaluation . 56

3.6.1 Comparison to Lappas’ Algorithm (Lappas et al., 2010) 56

3.6.2 Scalability . 57

3.6.3 Normalized Rank . 58

4 CONCLUSIONS. 66

REFERENCES . 67

APPENDIX

A PROOFS OF CHAPTER 2 . 70

B PROOFS OF CHAPTER 3 . 121

vi

LIST OF TABLES

Table Page

3.1 The 10%-accuracy under Different Source Localization Algorithms with

50% Timestamps . 27

3.2 The Timestamps on the Spreading Tree in the 3rd Iteration 35

3.3 The Costs of the Modified Shortest Paths . 36

3.4 Statistics of Extracted Tweet Cascades . 53

3.5 10%-accuracy for Different Tweet Cascade Sizes . 54

3.6 Normalized Rank for Different Distributions and Sizes of Timestamps

on the IAS Network when η = 1 . 60

3.7 Normalized Rank for Different Distributions and Sizes of Timestamps

on the IAS Network when η = 10 . 60

3.8 Normalized Rank for Different Distributions and Sizes of Timestamps

on the IAS Network when η = 100 . 61

3.9 Normalized Rank for Different Distributions and Sizes of Timestamps

on the PG Network when η = 1 . 61

3.10 Normalized Rank for Different Distributions and Sizes of Timestamps

on the PG Network when η = 10 . 62

3.11 Normalized Rank for Different Distributions and Sizes of Timestamps

on the PG Network when η = 100 . 62

3.12 Normalized Rank for Different Distributions and Sizes of Timestamps

on the IAS Network under the IC Model . 63

3.13 Normalized Rank for Different Distributions and Sizes of Timestamps

on the IAS Network under the SpikeM Model . 63

3.14 Normalized Rank for Different Distributions and Sizes of Timestamps

on the PG Network under the IC Model . 64

vii

Table Page

3.15 Normalized Rank for Different Distributions and Sizes of Timestamps

on the PG Network under the SpikeM Model . 64

3.16 Normalized Rank as the Number of Removed Edges Increases in the

IAS Network . 65

3.17 Normalized Rank for Different Tweet Cascade Sizes on the Weibo Dataset 65

viii

LIST OF FIGURES

Figure Page

2.1 Summary of the Main Results . 8

2.2 An Example of the Short-Fat Tree Algorithm . 13

2.3 A Pictorial Example of Z tt (u) in BFS Tree T † . 17

2.4 Performance in the Binomial Trees . 21

2.5 Performance in the ER Random Graph . 22

2.6 Performance in the IAS Graph . 25

2.7 Detection Rate versus Running Time in the ER Random Graph 26

3.1 An Example Illustrating Available Information and a Spreading Tree . . 31

3.2 An Example for Illustrating Step 4 and Step 5 of EIF. 38

3.3 The Approximation Ratio of TR . 42

3.4 Comparison with Existing Algorithms with 50% Timestamps 45

3.5 The Impacts of the Distribution and Size of Timestamps 49

3.6 The Performance of CR, TR and GAU under Different Diffusion Models 50

3.7 The γ%-accuracy as the Number of Removed Edges Increases 51

3.8 Performance on Weibo Data . 52

3.9 An Example of Extensions with Direction Information 55

3.10 The Performance Comparison to the Lappas’ Algorithm 56

3.11 Execution Time in the IAS Network under the IC Model 57

A.1 A Pictorial Description of the Positions of Nodes a, u, w and ξ 75

A.2 A Pictorial Example of Z tt (u) in BFS Tree T † . 80

A.3 A Pictorial Example of Upper Bounds of H . 93

ix

Chapter 1

INTRODUCTION

1.1 Motivation and Background

Diffusion processes in networks refer to the spread of information throughout the

networks, and have been widely used to model many real-world phenomena such

as the outbreak of epidemics, the spreading of gossips over online social networks,

the spreading of computer virus over the Internet, and the adoption of innovations.

A large body of existing works on information diffusion focused on the influence

maximization problem (see e.g., (Kempe et al., 2003; Chen et al., 2010, 2009; Goyal

et al., 2011)) and inferring topological properties of information cascades (see e.g.,

(Gruhl et al., 2004; Sadikov et al., 2011; Myers et al., 2012)).

In this dissertation, we are interested in the reverse of the diffusion problem:

given a snapshot of the diffusion process, can we tell which node is the source of

the diffusion? This source detection problem has a wide range of applications. In

epidemiology, identifying patient zero can provide important information about the

disease. For example, in the Cholera outbreak in London in 1854 (Snow, 1854), the

spreading pattern of the Cholera suggested that the water pump located at the center

of the spreading was likely to be the source. Later, it was confirmed that the Cholera

indeed spreads via contaminated water. In online social networks, identifying the

source can reveal the user who started a rumor or the user who first announced certain

breaking news. For rumors, rumor source detection helps hold people accountable for

their online behaviors; and for news, the news source can be used to evaluate the

credibility of the news. While locating the information source has these important

1

applications in practice, the problem is difficult to solve, in particular, in complex

networks.

We call this problem information source detection problem. Informally speaking,

information source detection refers to the problem of identifying a node in the network

that provides the best explanation of the observed diffusion. (Shah and Zaman, 2011)

is one of the first papers that study the information source detection problem, in which

a new graph centrality called rumor centrality was proposed and proved to be the

maximum likelihood estimator (MLE) on regular trees under the susceptible-infected

(SI) model. In addition, the detection probability (the probability that the estimator

is the source) for regular trees was proved to be greater than zero and the detection

probability for geometric trees approaches one asymptotically as the increase of the

spreading time. Later, (Shah and Zaman, 2012) quantified the detection probability

of the rumor centrality on general random trees.

The rumor centrality has been further studied under different scenarios: 1) (Luo

et al., 2013) extended the rumor centrality to multiple sources and showed that the

detection probability goes to one as the number of infected nodes increases for geomet-

ric trees when there are at most two sources; 2) (Karamchandani and Franceschetti,

2013) proved a similar performance guarantee for the single source case when only

a subset of infected nodes are observed; 3) (Dong et al., 2013) studied the detection

probability when the prior knowledge of suspect nodes is available in the single source

detection problem for trees; 4) (Wang et al., 2014) analyzed the detection probabil-

ity of the rumor centrality for tree networks when there are multiple observations of

independent diffusion processes from the same source.

(Zhu and Ying, 2014a) proposed the sample path based approach for the single

source detection problem. Define the infection eccentricity of a node to be the max-

imum distance between the node and the infected nodes. (Zhu and Ying, 2014a)

2

proved that on tree networks, under the homogeneous susceptible-infected-recovered

(SIR) model, the root of the most likely sample path is a node with the minimum

infection eccentricity (a Jordan infection center), which is within a constant distance

to the actual source with a high probability. The approach has been extended to

several directions: 1) (Zhu and Ying, 2014b) extended the approach to the case with

partial observations and under the heterogeneous SIR model; 2) (Chen et al., 2014)

extended the analysis to multiple sources under the SIR model and proved that the

distance between the estimator and its closest actual source is bounded by a constant

with a high probability in tree networks; 3) (Luo and Tay, 2013a,b) proved that the

Jordan infection centers are the optimal sample path estimators under the SI model

(Luo and Tay, 2013a) and the susceptible-infected-susceptible (SIS) model (Luo and

Tay, 2013b) for tree networks, respectively.

Besides the rumor centrality and the Jordan infection center, several other heuris-

tic algorithms based on a single snapshot of the network have been proposed in the

literature: 1) (Lappas et al., 2010) studied a similar problem under the IC model

(Goldenberg et al., 2001) to minimize the l1 distance between the expected states

and observed states of the nodes. A dynamic programming algorithm was proposed

to solve the problem for tree networks and a Steiner tree heuristic was used for gen-

eral networks; 2) (Prakash et al., 2012) proposed an algorithm called NETSLEUTH

which ranks the nodes according to an eigen vector based metric under the SI model.

The algorithm was designed based on the Minimum Description Length principle; 3)

(Lokhov et al., 2014) proposed a dynamic message passing algorithm based on the

mean field approximation of the maximum likelihood estimation (MLE) of the source.

In addition, there exist several other algorithms which tackled the problem under

the assumption that a subset of the infection timestamps are known: 1) (Pinto et al.,

2012) solved the MLE problem with partial timestamps for tree networks and ex-

3

tended the algorithm to general networks using a BFS tree heuristic. The algorithm

is similar to CR in Chapter 3 in spirit, but uses the BFS tree as the spreading tree

from a given infected node. In the experiment evaluation on the Internet autonomous

systems network, not only the performance of the algorithm is worse than ours, the

gap also increases significantly as the amount of timestamps increases. We conjecture

this is because the spreading trees constructed by our Earliest-Infection-First algo-

rithm is far more accurate than the BFS trees; 2) (Agaskar and Lu, 2013) proposed

a simulation based Monte Carlo algorithm which utilizes the states of the sparsely

placed observers within a fixed time window. The approach, however, requires the

infection time distributions of all edges, which are difficult to obtain in practice; 3)

(Zejnilovic et al., 2013) obtained sufficient conditions on the number of timestamps

needed to locate the source correctly under the deterministic slotted SI models. The

model considered in this dissertation is probabilistic which is far more challenging

than deterministic ones.

Several related works also investigated similar problems: (1) detecting the first

adopter of an innovation based on game theory (Subramanian and Berry, 2012), in

which the maximum likelihood estimator is derived but the computational complex-

ity of finding the estimator is exponential in the number of nodes; (2) distinguish-

ing epidemic infection from random infection under the SI model (Milling et al.,

2012); (3) geospatial abduction which deals with reasoning certain locations in a

two-dimensional geographical area that can explain observed phenomena (Shakarian

et al., 2011; Shakarian and Subrahmanian, 2011).

1.2 Our Contribution

Despite significant efforts and successes over last few years, theoretical guarantees

of source localization algorithms were established only for tree networks due to the

4

complexity of the problem. In Chapter 2, we derive the MAP estimator of the source

for tree networks and propose a SFT algorithm for general networks based on the

MAP estimator. The algorithm selects the Jordan infection center (Zhu and Ying,

2014a) and breaks ties according the degree of boundary infected nodes. Loosely

speaking, the algorithm selects the node such that the BFS tree from it has the min-

imum depth but the maximum number of leaf nodes. On the ER random graph, we

establish the following possibility and impossibility results1: (i) when the infection

duration < logn
(1+α) log µ

for some α > 0.5, SFT identifies the source with probability 1

(w.p.1) asymptotically (as network size increases to infinity), where n is the network

size and µ is the average node degree; (ii) when the infection duration > d logn
log µ
e + 2,

the probability of identifying the source approaches zero asymptotically under any

algorithm; and (iii) when infection duration < logn
(1+α) log µ

for some α > 0, asymptot-

ically, at least 1 − δ fraction of the nodes on the BFS tree starting from the source

are leaf-nodes, where δ = 3
√

logn
µ

, i.e., the BFS tree starting from the actual source

is a fat tree. Numerical experiments on tree networks, the ER random graphs and

real world networks with different evaluation metrics show that the SFT algorithm

outperforms existing algorithms.

While Chapter 2 answered some fundamental questions about information source

detection in tree and non-tree networks. In practice, the problem is difficult to solve,

in particular, in complex networks. In addition, real world diffusion patterns are of

great diversity and some of them would be very different from the IC model. There-

fore, the next focus of this dissertation is to design an efficient algorithm which is

robust to diffusion models. In Chapter 3, we considered the case when timestamp

information are available and found that even partial timestamps, which are avail-

able in many practical scenarios, provide important insights about the location of

1The results hold under some other minor conditions, which will be presented in Section 2.2.

5

the source while most related literatures ignore the timestamp information. We use

a ranking-on-graphs approach to exploit the timestamp information where infected

nodes are ranked according to their likelihood of being the source. Two ranking

algorithms, cost-based ranking (CR) and tree-based ranking (TR), are proposed in

Chapter 3. Experimental evaluations with synthetic and real-world data show that

our algorithms significantly improve the ranking accuracy compared with existing

algorithms. Furthermore, we obtain the following observations from the experiments:

(1) locating the source in networks with small diameters and hub nodes is more dif-

ficult than in networks that are locally tree-like; and (2) both ranking algorithms

perform well under different diffusion models.

1.3 Thesis Outline

The rest of the dissertation is organized as follows. In Chapter 2, we propose the

SFT algorithms and present the theoretical performance guarantees of the algorithm

for tree and non-tree networks. Two ranking algorithms in the graphs which utilize

the partial timestamps are proposed in Chapter 3 along with extensive experiments

on both synthetic and real world datasets. We concludes the dissertation and discuss

future directions in Chapter 4. All the proofs are presented in the appendices.

6

Chapter 2

INFORMATION SOURCE DETECTIONS: TREES AND BEYOND

In this chapter, we first develop the SFT algorithm, and then present a com-

prehensive performance analysis of the algorithm under the IC model for both tree

networks and the ER random graph. To the best of our knowledge, SFT is the first

algorithm that has provable performance guarantees on both tree networks and the

ER random graph (Erdos and Renyi, 1959) (non-tree networks).

The fundamental possibility and impossibility results are summarized as follows.

1. For tree networks, we prove that the Jordan infection center with the maximum

weighted boundary node degree (WBND) is the MAP estimator of the source

under the heterogeneous IC model. Based on the derivation, we propose the

SFT algorithm which is applicable to both tree and general networks.

2. We analyze the performance of the SFT algorithm on the ER random graph.

Under some mild conditions on the average node degree, we establish the fol-

lowing three results:

(i) Assume the infection duration < logn
(1+α) log µ

for some α > 0.5, SFT identi-

fies the source with probability 1 (w.p.1) asymptotically (as network size

increases to infinity).

(ii) Assume the infection duration ≥
⌈

logn
log µ

⌉
+ 2, the probability of identifying

the source approaches zero asymptotically under any information source

detection algorithm, i.e., it is impossible to detect the source with non-zero

probability.

7

Nearly Perfect

 Detection

Fat Tree Diminished

Detection Rate

Figure 2.1: Summary of the main results. This figure summarizes the key results in

terms of t, the infection time, and µ, the average node degree. In the figure, q is

the lower bound on the infection probability; “fat tree” means that there are 1 − δ

fraction of nodes are boundary nodes on the BFS tree rooted at the source; and

tu =
⌈

logn
logµ

⌉
+ 2, which is the lower bound of the observation time (we proved that all

algorithms fail when t > tu.)

(iii) Assume the infection duration < logn
(1+α) log µ

for some α > 0, asymptotically,

at least 1 − δ fraction of the nodes on the BFS tree starting from the

source are leaf-nodes, where δ > 3
√

logn
µ

. This result does not provide any

guarantee on the probability of correctly localizing the source, but states

that the BFS tree starting from the true source is a “fat” tree, which

further justifies the SFT algorithm.

The results are summarized in Figure 2.1. We remark that results (i) and (iii)

are highly nontrivial because a subgraph of the ER random graph is a tree with

8

high probability only when the diameter is logn
2 log µ

, and (i) and (iii) deal with

subgraphs that are not trees. To the best of our knowledge, these are the first

theoretical results on information source detection on non-tree networks under

probabilistic diffusion models.

3. One drawback of the WBND tie-breaking is that it requires the infection prob-

abilities of all edges in the IC model. We simplify WBND to BND by using

the boundary node degree in SFT. As shown in Section 2.3, the performance of

BND tie-breaking is very close to WBND tie-breaking. We conducted extensive

simulations on trees, ER random graphs and real world networks. SFT outper-

forms existing algorithms by having a higher detection rate and being closer to

the actual source. We further evaluated the scalability of the algorithm by mea-

suring the running time. Our results demonstrate that SFT achieves a better

performance with a reasonably short execution time.

The rest of the chapter is organized as follows. In Section 2.1.1, we first introduce

the IC model and formulate a MAP problem for information source detection and

SFT will be presented in Section 2.1.2. Section 2.2 summarizes the main theoretical

results of the paper including the analysis on both tree networks and the ER random

graph. The simulation based performance evaluation will be presented in Section 2.3.

All the proofs are provided in the appendices.

2.1 Model and Algorithm

2.1.1 Model

Given an undirected graph g, denote by E(g) the set of edges in g and denote by

V(g) the set of nodes in g. We consider the IC model (Goldenberg et al., 2001) for

information diffusion and assume a time-slotted system. Each node has two possible

9

states: active (or called infected) and inactive (or called susceptible). At time slot

0, all nodes are inactive except the source. At the beginning of each time slot, an

active node attempts to activate its inactive neighbors. If an attempt is successful,

the corresponding node becomes active at next time slot; otherwise, the node remains

inactive. The weight of each edge represents the success probability of the attempt,

called the infection probability of the edge and each attempt is independent of others.

Each active node only attempts to activate each of its inactive neighbors once. Denote

by quv the infection probability of edge (u, v) and we assume quv = qvu throughout

the chapter since the graph is undirected. We assume that a complete snapshot

O = {I,H} of the network at time t (called the observation time) is given, where I

is the set of active nodes and H is the set of inactive nodes. Based on O, we want

to detect the source. We further assume the observation time t is unknown. The

problem can be formulated as a MAP problem as follows,

arg max
v∈V(g)

Pr(v|O).

where Pr(v|O) is the probability that v is the source given the snapshot O. The

infected nodes form a connected component under the IC model, called the infection

subgraph and denoted by gi. Since the source must be an infected node, the MAP

problem can be simplified to

arg max
v∈I

Pr(v|O),

and the search of the information source can be restricted to the infection subgraph.

We assume the observation time t, which itself is a random variable, is independent

of the source node.

10

2.1.2 The Short-Fat Tree Algorithm

In this section, we first present the SFT algorithm. We will show in Theorem 2

that the algorithm outputs the MAP estimator for tree networks, which motivates

the algorithm. The performance on the ER random graph is studied in Theorems 3

and 4.

We first introduce several necessary definitions. Denote by dguv the distance from

node u to node v in graph g, where the distance is the minimum number of hops

between two nodes. Define the infection eccentricity of an infected node to be the

maximum distance from the node to all infected nodes on the infection subgraph gi,

denote by e(v, I),

e(v, I) = max
u∈I

dgiuv.

Recall that the Jordan infection centers of a graph are the nodes with the minimum

infection eccentricity (Zhu and Ying, 2014a).

Consider a BFS tree Tv rooted at node v on the infection subgraph gi. Denote by

parv(u) the parent of node u in Tv. Define the set of boundary nodes of Tv to be

B(v, I) = {w ∈ I|dTvvw = e(v, I)},

which are the set of active nodes furthest away from node v in the infection subgraph.

The weighted boundary node degree (WBND) with respect to node v is defined

to be

∑
(u,w)∈F ′v

| log(1− quw)|, (2.1)

where

F ′v = {(u,w)|(u,w) ∈ E(g), w 6= parv(u), u ∈ B(v, I)}. (2.2)

11

The SFT algorithm, presented in Algorithm 1, identifies the source based on the

BFS trees on the infection subgraph. The algorithm is called the Short-Fat Tree

algorithm because (1) it first identifies the shortest BFS tree; and (2) the shortest

BFS tree that maximizes the WBND is then selected in tie-breaking, which is usually

the tree with a large number of leaf-nodes, i.e., a fat tree. The pseudo codes of the

algorithms are presented in Algorithm 1 and 2, which can be executed in a parallel

fashion.

A simple example is presented in Figure 2.2 to illustrate algorithm. Each node

has a unique node ID. The red nodes are infected and the white nodes are healthy.

For simplicity, we assume the weights of all edges equal to | log(0.5)|. The vector next

to each infected node records the distance from it to all infected nodes. Initially at

Iteration 0, each infected node only knows the distance to itself. For example, [0 ∗ ∗

∗] next to node 1 means that the distance from node 1 to itself is 0 and the distance

from node 1 to node 2 is unknown. At Iteration 1, each infected node broadcasts its

ID to its neighbors in next iteration. Upon receiving the node ID from node 1, node

2 updates its vector to [1 0 ∗ ∗], and broadcasts node 1’s ID to its neighbors. The

figure in the middle shows the updated vectors after all node ID exchanges occur at

Iteration 1. At Iteration 2, node 1 and 2 do not receive any new node IDs. Therefore,

node 1 and node 2 report themselves as the Jordan infection centers which are circled

with blue in Figure 2.2. The boundary nodes of the BFS tree rooted at node 1 are

2,3,4. The WBND of node 1 is 13| log(0.5)|. Similarly, the boundary nodes of the

BFS tree rooted at node 2 are 1,3,4 and the WBND is 9| log(0.5)|. Therefore, node 1

has a larger WBND and is chosen to be our estimator of the information source.

Remark: Note Equation (2.1) requires the infection probabilities of all edges in

the network which could be hard to obtain in practice. When the infection probabil-

ities are not available, we can assume each edge has the same infection probability q

12

1

2

3

4

5

6

7

8

9

10

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9][1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

1

2

3

4

5

6

7

8

9

10

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9][1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

1

2

3

4

5

6

7

8

9

10

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

[1 2 9][1 2 9]

[1 2 9]

[1 2 9]

[1 2 9]

Iteration 0 Iteration 1 Iteration 2

Figure 2.2: An example of the Short-Fat Tree algorithm

Algorithm 1: The Short-Fat Tree Algorithm

Input: I, g;
Output: v† (the estimator of information source)

1 Set subgraph gi to be a subgraph of g induced by node set I.
2 for v ∈ I do
3 Initialize an empty dictionary Dv associating with node v.
4 Set Dv[v] = 0.
5 end
6 Each node receives its own node ID at time slot 0.
7 Set time slot t = 1.
8 do
9 for v ∈ I do

10 if v received new node IDs in t− 1 time slot, where “new” IDs means
node v did not receive them before time slot t− 1 then

11 v broadcasts the new node IDs to its neighbors in gi.
12 end
13 end
14 for v ∈ I do
15 if v receives a new node ID u which is not in Dv. then
16 Set Dv[u] = t.
17 end
18 end
19 t = t+ 1.
20 while No node receives |I| distinct node IDs ;
21 Set S to be the set of nodes who receive |I| distinct node IDs.
22 for v ∈ S do
23 Compute WBND of Tv using Algorithm 2.
24 end
25 return v† ∈ S with the maximum WBND.

13

Algorithm 2: The WBND Algorithm

Input: v,Dv (Dictionary of distance from v to other nodes), g, I, t;
Output: WBND(v)

1 Set B to be empty.
2 for u in the keys of Dv do
3 if Dv[u] = t then
4 Add u to B.
5 end
6 end
7 Set x = 0;
8 for w ∈ B do
9 Find the neighbor u of w such that Dv[u] = t− 1.

10 Set x = x+
∑

y∈neighbors(w)
| log(1− qwy)| − | log(1− qwu)|.

11 end
12 return x.

and WBND becomes, ∑
u∈B(v,I)

deg(u)− |B(v, I)|

 | log(1− q)|,

where deg(u) is the degree of node u.

Define the boundary node degree (BND) of node v to be∑
u∈B(v,I)

deg(u)− |B(v, I)| (2.3)

which is only related to the degree of the boundary nodes and can be used to replace

WBND as the tie-breaking among the Jordan infection center in SFT when the infec-

tion probabilities are unknown. As shown in Section 2.3, the performance using BND

and WBND are similar. To differentiate the two algorithms, we call the algorithm

which uses WBND as wSFT and the one which uses BND as SFT. Next, we analyze

the complexity of the algorithm.

Theorem 1. The worst case computational complexity of the SFT algorithm is O(|I|deg(I))

where deg(I) is the total degree of nodes in I in graph g.

The detailed proof can be found in Appendix A.

14

2.2 Main Results

In this section, we summarize the main results of the chapter and present the

intuitions of the proofs.

2.2.1 Main Result 1 (The MAP Estimator on Tree Networks)

On tree networks, the Jordan infection center of the infection subgraph with the

maximum WBND is a MAP estimator.

Theorem 2. Consider a tree network. Assume the following conditions hold.

• The probability distribution of the observation time satisfies Pr(t) ≥ Pr(t + 1)

for all t.

• The source is uniformly and randomly selected, i.e., Pr(u) = Pr(v).

Denote by J the set of Jordan infection centers of the infection subgraph gi. We have

arg max
u∈J

∑
(v,w)∈F ′u

| log(1− qvw)| ⊂ arg max
u

Pr(u|O). (2.4)

where F ′u is defined in Equation (2.2).

The detailed proof can be found in Appendix A. The theorem has been proved in

two steps: 1) We show that one of the Jordan infection centers maximizes the posterior

probability on tree networks following similar arguments in (Zhu and Ying, 2014a).

In particular, for two neighboring nodes, we show the one with smaller infection

eccentricity has a larger posterior probability of being the source. Since there exists

a path from any node to a Jordan infection center on the infection subgraph, along

which the infection eccentricity strictly decreases, we conclude that a MAP estimator

of the source must be a Jordan infection center; 2) Consider the case where the tree

network has more than one (at most two according to (Harary, 1991)) Jordan infection

15

centers. When the observation time is larger than the infection eccentricity of the

Jordan infection center, the probability of having the observed infected subgraph

from any Jordan infection center is the same. When the observation time equals the

infection eccentricity, we prove that the probability for a Jordan infection center to

be the source is an increasing function of WBND of the BFS tree starting from it.

2.2.2 Main Result 2 (Detection with Probability One on the ER Graph)

Denote by n the number of nodes in the ER random graph and p the wiring

probability of the ER random graph. Let µ = np. Recall that t is the observation

time. We show that the Jordan infection center is the actual source in the ER random

graph with probability one asymptotically when t < logn
(1+α) log µ

, which implies that SFT

can locate the source w.p.1 asymptotically.

Theorem 3. If the following conditions hold, source s is the only Jordan infection

center on the infection subgraph with probability one asymptotically.

• µ > 3 log n.

• t ≤ logn
(1+α) log µ

, for some α ∈ (1
2
, 1).

We present a brief overview of the proof and the details can be found in Appendix

A. Note the infection eccentricity of the actual source is no larger than the observation

time t. We show in the proof that the infection eccentricity of an infected node other

than the source is larger than t. Consider the BFS tree T † rooted at the actual source

s. A node is said to be on level i if its distance to the source is i. Consider another

infected node s′. Denote by a(s′) the ancestor of s′ on level 1 of T †. As shown in

Figure 2.3, the yellow area shows the level t infected nodes on subtree T−su , which is

the subtree of T † rooted at node u, and the distance from s′ to a node in the yellow

area is larger than t if any path between the two nodes can only traverse the edges

16

on tree T †. If s′ has an infection eccentricity no larger than t, there must exist a path

from s′ to each node in the yellow area with length no larger than t. Such a path

must contain edges that are not in T † (we call these edges collision edges). We show

in the proof that the number of nodes that are within t hops from s′ via collision

edges are strictly less than the number of nodes in the yellow area. Therefore, the

infection eccentricity of s′ must be larger than t, which implies that s is the only

Jordan infection center.

Existing theoretical results in the literature on information source detection prob-

lems are only for tree networks. As shown in the proof of Theorem 3, the infection

subgraph of the ER random graph is not a tree when t > logn
2 log µ

. From the best of our

knowledge, this result is the first one on non-tree networks.

Figure 2.3: A pictorial example of Z tt (u) in BFS tree T †

2.2.3 Main Result 3 (The Fat Tree Result on the ER Graph)

Theorem 4. If the following conditions hold,

• µ > 9
δ2

log n.

• t ≤ logn
(1+α) log µ

, for some α ∈ (0, 1).

17

the leaf-nodes of the BFS tree starting from the actual source consists of at least 1− δ

fraction of the BFS tree asymptotically.

The detailed proof can be found in Appendix A. Consider the BFS tree from the

source s in graph g. The boundary nodes are the nodes at level t and all boundary

nodes must be infected at time t. If we ignore the presence of collision edges, the

number of infected nodes roughly increases by a factor of qµ at each level where

q = min(u,v)∈E(g) quv. Due to this exponential growth nature, the total number of

infected nodes is dominated by those infected at the last time slot. We show this

property holds with the presence of collision edges. Theorem 4 suggests that the BFS

tree rooted at the actual source is a “fat” tree and the BND of the actual source

is large. Hence, in the tie breaking, the SFT algorithm has a good chance to select

the actual source, which suggests that BND is a good tie breaking rule for the ER

random graph.

2.2.4 Main Result 4 (The Impossibility Result on the ER Graph)

We next present the threshold of t after which it is impossible for any algorithm to

find the actual source with a non-zero probability asymptotically. The result is based

on the analysis of the diameter of an ER random graph in Theorem 4.2 in (Draief and

Massouli, 2010). For clarity purpose, we rephrase that theorem with our notations in

the following lemma.

Lemma 5. If 24 log n < np <<
√
n, we have

lim
n→∞

Pr(Diameter(g) ≤ D + 2) = 1,

where D = d logn
lognp
e.

We remark that in (Draief and Massouli, 2010), the condition is log n << (n −

1)p <<
√
n. We explicitly calculated the lower bound according to the proof in (Draief

18

and Massouli, 2010). For the sake of completeness, we present the proof in Appendix

A.

Based on Lemma 5, we obtain the following impossibility result.

Theorem 6. If 24 log n < qµ <<
√
n and q > 0 is a constant,

lim
n→∞

Pr(I = V(g)) = 1

when the observation time

t ≥
⌈

log n

log µ+ log q

⌉
+ 2 , tu. (2.5)

In other words the entire network is infected. In such a case, asymptotically, the

probability of any node being the source is 1/n.

The process to generate the ER random graph and the process of the information

diffusion under the IC model can be viewed as a combined process. In this combined

process, an edge exits only when the edge exists in the ER random graph and is live

in the IC model. The detailed definition of the live edge could be found in Appendix

A. Loosely speaking, an edge (u, v) is said to be live if node v is infected by node

u under the IC model. When the observation time is larger than or equal to the

diameter of the coupled ER random graph, all nodes in the network are infected.

In such a case, the probability of a node being the source is 1/n as the source was

uniformly chosen. Based on Lemma 5, the diameter of the combine network is smaller

than d logn
log q+log µ

e+ 2 w.p.1 asymptotically.

Remark 1: We compare tu in Equation (2.5) and the upper bound in Theorem

3. Since q is a constant, the ratio between tu and the upper bound becomes 1
1+α

asymptotically. Since α can be arbitrarily close to 1
2
, the ratio becomes 2

3
. Therefore,

the Jordan infection center is the actual source when the observation time is in the

19

range of (0, 2
3
tu) and it is impossible to locate the source when the observation time

is (tu,∞).

Remark 2: We compare tu and the upper bound in Theorem 4 and asymptotically

the ratio between tu and the upper bound becomes 1
1+α

where α ∈ (0, 1). Since α can

be arbitrarily close to 0 and the ratio are close to 1 which means the BFS tree from

the source has large BND before it becomes impossible to locate the source. While

the theorem does not provide any guarantee on the detection rate, it justifies the

tie-breaking using BND and WBND.

2.3 Performance Evaluation

In this section, we compare the proposed algorithms with existing algorithms

on different networks such as tree networks, the ER random graphs and real world

networks.

2.3.1 Algorithms

Among all the existing algorithms discussed in Chapter 1, we choose the algo-

rithms which require only a single snapshot of the network but not the infection

probabilities which could be difficult to obtain in practice. We compared SFT and

wSFT with the algorithms summarized as follows.

• ECCE: Select the node with minimum infection eccentricity. Ties are breaking

randomly. Recall the definition of the infection eccentricity is the maximum

distance from the node to all infected nodes. (Zhu and Ying, 2014a) showed

that the optimal sample path estimator on tree networks is the Jordan infection

center of the graph under the SIR model.

20

Mean # of infected nodes

D
et

ec
tio

n
R

at
e

200 600 1000 1400 1800

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

SFT
wSFT
ECCE
RUM
NETSLEUTH

(a) Detection rate

Mean # of infected nodes

D
is

ta
nc

e
to

 th
e

so
ur

ce

200 600 1000 1400 1800

0
1

2
3

4
5

6
7

8
9 SFT

wSFT
ECCE
RUM
NETSLEUTH

(b) Distance to the source

γ

γ%
−

ac
cu

ra
cy

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SFT
wSFT
ECCE
RUM
NETSLEUTH

(c) γ%-accuracy

Figure 2.4: Performance in the binomial trees

• RUM: Select the node with maximum rumor centrality proposed in (Shah and

Zaman, 2011). The rumor centrality was proved to be the maximum likelihood

estimator on regular trees under the continuous time SI model in which the

infection time follows exponential distribution.

• NETSLEUTH: Select the node with maximum value in the eigenvector cor-

responding to the largest eigenvalue of a submatrix which is constructed from

the infected nodes based on the graph Laplacian matrix. The algorithm was

proposed in (Prakash et al., 2012).

Among the selected algorithms, only wSFT requires the infection probabilities. We

included wSFT to evaluate the importance of the knowledge of edge weights to our

algorithm. We will see that the performance of SFT is almost identical to wSFT, so

the infection probabilities are not important for our detection algorithm.

2.3.2 Evaluation Metrics

We evaluated the performance of the algorithms with three different metrics.

• Detection rate is the probability that the node identified by the algorithm is

21

Mean # of infected nodes

D
et

ec
tio

n
R

at
e

200 600 1000 1400 1800

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

SFT
wSFT
ECCE
RUM
NETSLEUTH

(a) Detection rate

Mean # of infected nodes

D
is

ta
nc

e
to

 th
e

so
ur

ce

200 600 1000 1400 1800

0
1

2
3

4
5

6
7

8 SFT
wSFT
ECCE
RUM
NETSLEUTH

(b) Distance to the source

γ

γ%
−

ac
cu

ra
cy

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SFT
wSFT
ECCE
RUM
NETSLEUTH

(c) γ%-accuracy

Figure 2.5: Performance in the ER random graph

the actual source. A desired goal of the information source detection is to have

a high detection rate.

• Distance is the number of hops from the source estimator to the actual source.

The distance is an often used metric for information source detection.

• γ%-accuracy is the probability with which the source is ranked among top γ

percent. Note that besides providing a source estimator, an information source

algorithm can also be used to rank the infected nodes according to their likeli-

hood to be the source. For example, SFT can rank the nodes in an ascendant

order according to their infection eccentricity and then breaks ties using BND.

Other algorithms can be used to rank nodes as well. γ%-accuracy is a less

ambitious alternation to the detection rate. When the detection rates of all

algorithms are low, it is useful to compare γ%-accuracy as a high γ%-accuracy

guarantee that the actual source is among the top ranked nodes with a high

probability.

22

2.3.3 Binomial Trees

In this section, we evaluate the algorithms on binomial trees. Denote by Bi(m,β)

the binomial distribution with m number of trials and each trial succeeds with prob-

ability β. A binomial tree is a tree where the number of children of each node follows

a binomial distribution Bi(m,β). In the experiments, we set m = 20 and β = 0.5.

We adopted the IC model where the infection probability of each edge is assigned

with a uniform distribution in (0.2, 0.5). The lower bound on the infection probabil-

ity is set to be 0.2 to prevent the diffusion process dies out quickly. We evaluated

the performance for different infection size x. Under a discrete infection model, it is

hard to obtain the diffusion snapshots with exact x infected nodes. Therefore, for

each infection size x, we generate the diffusion samples where the number of infected

nodes are in range [0.75x, 1.25x]. The source was chosen uniformly at random among

all nodes in the network. We varied x from 200 to 2000 with a step size 200. For each

infection size, we generate 400 diffusion samples.

Figure 2.4a shows the detection rates for different infection sizes. The detection

rates of ECCE, SFT and wSFT do not change for different infection sizes since the

structure of the binomial tree is simple. SFT, wSFT and ECCE have the highest

detection rate (more than 0.9) while the detection rate of RUM and NETSLEUTH

are much lower. The distance results are shown in Figure 2.4b. As expected, SFT,

wSFT and ECCE outperform RUM, which are all much better than NETSLEUTH.

Figure 2.4c shows the γ%-accuracy versus the rank percentage γ. We picked infection

size 1,000. As shown in Figure 2.4c, all three algorithms based on infection eccentricity

(ECCE, SFT, wSFT) have better performance than RUM and NETSLEUTH. Recall

that the node identified by wSFT is a MAP estimator of the actual source.

23

2.3.4 The ER Random Graph

In this section, we compared the performance of the algorithms on the ER random

graph. In the experiments, we generated the ER random graph with n = 5, 000 and

wiring probability p = 0.002. We again varied the infection network size from 200 to

2, 000. The infection probability of each edge is assigned with a uniform distribution

in (0.2, 0.5). We generated 400 diffusion samples.

Figure 2.5a shows the detection rate versus the infection size. The detection rate

decreases as the infection size increases. SFT and wSFT have higher detection rates

compared to other algorithms. Figure 2.5b shows the results on distance. As we

expected, SFT and wSFT outperform other algorithms when the infection size is less

than 1,600 nodes. As the size of the infected nodes increase, SFT and wSFT become

close to RUM in term of distance to the source. However, the detection rate of both

algorithms are still much higher than that of RUM. Another observation is that SFT

and wSFT have identical performance which indicates that the performance of SFT

is robust to edge weights.

Figure 2.5c shows the γ%-accuracy versus the rank percentage γ with 1000 infected

nodes. SFT and wSFT have similar or better performance compared to all other

algorithms.

Although the performance of ECCE and SFT algorithms are similar in tree net-

works, SFT outperforms ECCE significantly on the ER random graphs. The obser-

vation indicates that BND is an effective tie breaking rule and increases the detection

accuracy.

24

Mean # of infected nodes

D
et

ec
tio

n
R

at
e

200 600 1000 1400 1800

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

SFT
wSFT
ECCE
RUM
NETSLEUTH

(a) Detection rate

Mean # of infected nodes

D
is

ta
nc

e
to

 th
e

so
ur

ce

200 600 1000 1400 1800

0
1

2
3

4
5

6 SFT
wSFT
ECCE
RUM
NETSLEUTH

(b) Distance to the source

γ

γ%
−

ac
cu

ra
cy

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SFT
wSFT
ECCE
RUM
NETSLEUTH

(c) γ%-accuracy

Figure 2.6: Performance in the IAS graph

2.3.5 The Internet Autonomous System Network

The Internet autonomous systems (IAS) network1 is the Internet autonomous

system from Oregon route-views on March, 31st, 2001 with 10,670 nodes and 22,002

edges. The IAS network is a small world network. We adopted similar settings as in

Section 2.3.4.

The detection rates are shown in Figure 2.6a. The detection rate of ECCE is low

since the IAS graph is a small world network and there are multiple Jordan infection

centers due to the small diameter of the network. With the tie breaking rule BND, the

detection rate doubles in most cases which demonstrates the effectiveness of BND.

While the detection rate of SFT is only 10% when the infection size is 1,000, the

distance to the actual source is slightly more than one-hop away as shown in Figure

2.6b. In addition, the γ%-accuracy versus γ for 1,000 infection size is shown in Figure

2.5c. The 10%-accuracies of SFT and wSFT are close to 70% which are significantly

higher than that of other algorithms.

1Available at http://snap.stanford.edu/data/index.html

25

Average Running Time (seconds)

D
et

ec
tio

n
R

at
e

0 2 4 6 8 12 16 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 SFT
 wSFT
 ECCE

RUM

 NETSLEUTH

Figure 2.7: Detection rate versus running time in the ER random graph

2.3.6 Running Time vs Performance

In this section, we evaluated the scalability of the algorithms by comparing the

running time. The experiments were conducted on an Intel Core i5-3210M CPU with

four cores and 8G RAM with a Windows 7 Professional 64 bit system. All algorithms

were implemented with python 2.7. The ER random graphs with 5,000 nodes and

p = 0.002 edge generation probability were used in the experiments. The infection

probability of each edge is uniformly distributed over (0.2, 0.5). We generated 100

diffusion samples for the experiments. Figure 2.7 show the average running time

versus the detection rate. The infection size is chosen to be 1,000. SFT and wSFT

took 1.11 seconds and achieves 0.87 detection rate while NETSLEUTH took 0.62

seconds with 0 detection rate and RUM took 14.86 seconds with 0.7 detection rate.

The detection rate of SFT is much higher than NETSLEUTH and SFT is 14 times

faster than RUM.

26

Chapter 3

INFORMATION SOURCE DETECTION WITH PARTIAL TIMESTAMPS

The focus of this chapter is to develop source localization algorithms that utilize

partial timestamp information.

We remark that while the information source detection problem (or called ru-

mor source detection problem) has been studied recently under a number of different

models, most of them ignore timestamp information. As we will see from the experi-

mental evaluations, even limited timestamp information can significantly improve the

accuracy of information source detection. In this chapter, we assume that there is

only one information source in the network. We use a ranking-on-graphs approach to

exploit the timestamp information, and develop source localization algorithms that

perform well on different networks and under different diffusion models. The main

contributions of this chapter are summarized below.

(1) We formulate the source detection problem as a ranking problem on graphs, where

infected nodes are ranked according to their likelihood of being the source. Define

a spreading tree to include (i) a directed tree with all infected nodes and (ii)

the complete timestamps of contagion propagation (the detailed definition will be

CR TR GAU NETSLEUTH ECCE RUM

IAS 0.76 0.68 0.57 0.43 0.15 0.15

PG 0.98 0.99 0.98 0.43 0.43 0.39

Table 3.1: The 10%-accuracy under different source localization algorithms with 50%

timestamps

27

presented in Section 3.1). Given a spreading tree rooted at Node v, denoted by

Pv, we define a quadratic cost C(Pv) depending on the structure of the tree and

the timestamps. The cost of Node v is then defined to be

C(v) = min
Pv

C(Pv), (3.1)

i.e., the minimum cost among all spreading trees rooted at Node v. Based on the

costs and spreading trees, we propose two ranking methods:

(i) rank the infected nodes in an ascendent order according to C(v), called cost-

based ranking (CR), and

(ii) find the minimum cost spreading tree, i.e.,

P∗ = arg min
P
C(P),

and rank the infected nodes according to their timestamps on the minimum

cost spreading tree, called tree-based ranking (TR).

(2) The computational complexity of C(v) is very high due to the large number of

possible spreading trees. We prove that problem (3.1) is NP-hard by connecting

it to the longest-path problem (Garey and Johnson, 1979).

(3) We propose a greedy algorithm, named Earliest Infection First (EIF), to construct

a spreading tree to approximate the minimum cost spreading tree for a given root

Node v, denoted by P̃v. The greedy algorithm is designed based on the minimum

cost solution for line networks. EIF first sorts the infected nodes with observed

timestamps in an ascendent order of the timestamps, and then iteratively attaches

these nodes using a modified breadth-first search algorithm. In CR, the infected

nodes are then ranked based on C(P̃v); and in TR, the nodes are ranked based on

the complete timestamps of the spreading tree P̃∗ such that

P̃∗ = arg minC(P̃v).

28

We remark that for infected nodes with unknown infection time, EIF assigns the

infection timestamps during the construction of the spreading tree P̃v. The details

can be found in Section 3.2.

(4) We conducted extensive experimental evaluations using both synthetic data and

real-world social network data (Sina Weibo1). The performance metric is the

probability with which the source is ranked among top γ percent, named γ%-

accuracy. We have the following observations from the experimental results:

(i) Both CR and TR significantly outperform existing source detection algo-

rithms in both synthetic data and real-world data. Table 3.1 summarizes the

10%-accuracy in the Internet autonomous systems (IAS) network and the

power grid (PG) network. The readers could refer to Section 3.4.2 for the

abbreviations of other baseline algorithms.

(ii) Our results show that both TR and CR perform well under different diffusion

models and different distributions of timestamps.

(iii) Early timestamps are more valuable for locating the source than recent ones.

(iv) Network topology has a significant impact on the performance of source lo-

calization algorithms, including both ours and existing ones. For example,

the γ%-accuracy in the IAS network is lower than that in the PG network

(see Table 3.1 for the comparison). This suggests that the problem is more

difficult in networks with small diameters and hubs than in networks that are

locally tree-like.

(v) The performance in terms of normalized rank is also evaluated in Section

3.6.3.

1http://www.weibo.com/

29

3.1 A Ranking Approach for Source Localization

Ideally, the output of a source localization algorithm should be a single node,

which matches the source with a high probability. However, with limited timestamp

information, this goal is too ambitious, if not impossible, to achieve. From the best

of our knowledge, almost all evaluations using real-world networks show that the

detection rates of existing source localization algorithms are very low (Shah and

Zaman, 2011; Zhu and Ying, 2014a; Chen et al., 2014; Luo et al., 2013), where the

detection rate is the probability that the detected node is the source.

When the detection rate is low, instead of providing a single source estimator, a

better and more useful output of a source localization algorithm would be a node

ranking, where nodes are ordered according to their likelihood of being the source.

With such a ranking, further investigation can be conducted to locate the source.

The more accurate the ranking, the less amount of resources is needed in the further

investigation. Furthermore, the authority may only have the resources to search a

small portion of the entire network. Therefore, we also want the ranking is more

accurate at the top, called the accuracy at the top in (Boyd et al., 2012). In this

chapter, we will evaluate the γ% accuracy, which is the probability that the source is

ranked among the top γ percent and the normalized rank.

In this chapter, we assume the input of a source localization algorithm includes

the following information:

• A network g = (V(g), E(g)): The network is an unweighted and directed graph.

A Node v in the network represents a physical entity (such as a user of an online

social network, a human being, or a mobile device). A directed edge ω(v, u)

from Node v to Node u indicates that the contagion can be transmitted from

Node v to Node u.

30

04/14/2014 8:10 PM

04/14/2014 8:05 PM

04/14/2014 6:05 PM

04/14/2014 9:45 PM

(a) Available partial timestamps

8:10 PM

8:05 PM

6:05 PM

9:45 PM

4:45 PM

6:45 PM

8:33 PM

10:20 PM

7:42 PM

7:23 PM

8:26 PM

9:53 PM

8:54 PM

7:15 PM

7:27 PM

(b) A feasible and consistent spread-

ing tree

Figure 3.1: An example illustrating available information and a spreading tree

• A set of infected nodes I: An infected node is a node that involves in the dif-

fusion process, e.g., a twitter user who retweeted a specific tweet, a computer

infected by malware, etc. We assume I includes all infected nodes in the con-

tagion. So I forms a connected subgraph of g. In the case I includes only a

subset of infected nodes, our source localization algorithms rank the observed

infected nodes according to their likelihood of being the earliest infected node.

More discussion can be found in Section 3.5.

• Partial timestamps τ : τ is a |V(g)|-dimensional vector such that τv = ? if the

timestamp is missing and otherwise, τv is the time at which Node v was infected.

We remark that the time here is the normal clock time, not the relative time

with respect to the infection time of the source. Note that in most cases, the

infection time of the source is as difficult to know as the location of the source.

In addition, we assume the observed timestamps are exact without any error or

noise.

Figure 3.1a is a simple example showing the available information. The nodes in

orange are the infected nodes. The time next to a node is the associated timestamp.

31

We define a spreading tree P = (T, t) to be a directed tree T with a |T |-dimensional

vector t. The directed tree T specifies the sequence of infection and the vector t

specifies the time at which each infection occurs. We further require the time sequence

t of a spreading tree to be feasible such that the infection time of a node is larger than

its parent’s, and to be consistent with the partial timestamps τ such that tv = τv if

τv 6= ?. Figure 3.1b shows a spreading tree that is feasible and consistent with the

observation shown in Figure 3.1a. Note that, for simplicity, we omitted the date in

the figure by assuming all events occur on the same day. The timestamps in black

are the observed timestamps and the ones in blue are assigned by us. Denote by

F(I, τ) the set of spreading trees that are both feasible and consistent with the

partial timestamps.

3.1.1 Quadratic Cost and Sample Path Approach

Given a spreading tree P = (T, t) ∈ F(I, τ), we define the cost of the tree to be

C(P) =
∑

(v,w)∈T

(tw − tv − η)2, (3.2)

for some constant η > 0. This quadratic cost function is motivated by the following

model.

The model is a continuous time SI model. Each node has two possible states:

susceptible and infected. The infection propagates via edges. For each edge (v, w) ∈

T, assume that the time it takes for Node v to infect Node w follows a truncated

Gaussian distribution with mean η and variance σ2. Then given a spreading tree P ,

the probability density associated with time sequence t is

fP(t) =
∏

(v,w)∈T

1

Z
√

2πσ
exp

(
−(tw − tv − η)2

2σ2

)
, (3.3)

where Z is the normalization constant. Note each node can be only infected by its

32

parent when the spreading tree is given. Therefore, the log-likelihood is

log fP(t)

=− |E(T)| log(Z
√

2πσ)− 1

2σ2

∑
(v,w)∈T

(tw − tv − η)2,

where |E(T)| is the number of edges in the tree. Therefore, given a tree T, the log-

likelihood of time sequence t is inversely proportional to the quadratic cost defined

in (3.2). The lower the cost, the more likely the time sequence occurs. While the

quadratic cost is justified by the truncated Gaussian SI model, we remark that the

algorithms based on the quadratic cost can be used on any diffusion model. We will

evaluate the performance of the proposed algorithms under different diffusion models

and networks in Section 3.4.

Now given an infected node in the network, the cost of the node is defined to be

minimum cost among all spreading trees rooted at the node. Using Pv to denote a

spreading tree rooted at Node v, the cost of Node v is

C(v) = min
Pv∈F(I,τ)

C(Pv). (3.4)

After obtaining C(v) for each infected node v, the infected nodes can be ranked

according to either C(v) or the timestamps of the minimum cost spreading tree.

However, the calculation of C(v) in a general graph is NP-hard as shown in the

following theorem.

Theorem 7. Problem (3.4) is an NP-hard problem. �

Remark 1: This theorem is proved by showing that the longest-path problem

can be solved by solving (3.4). The detailed analysis is presented in the appendix.

Since computing the exact value of C(v) is difficult, we present a greedy algorithm in

the next section.

33

3.2 EIF: A Greedy Algorithm

In this section, we present a greedy algorithm, named Earliest-Infection-First

(EIF), to solve problem (3.4). Note that if a node’s observed infection time is larger

than some other node’s observed infection time, then it cannot be the source. So we

only need to compute cost C(v) for Node v such that τv = ? or τv = minu:τu 6=? τu.

Furthermore, when all infected nodes are known, we can restrict the network to the

subnetwork formed by the infected nodes to run the algorithm. We next present

the algorithm, together with a simple example in Figure 3.2 for illustration. In the

example, all edges are bidirectional, so the arrows are omitted, and the network in

Figure 3.2 is the subnetwork formed by all infected nodes.

Earliest-Infection-First (EIF)

1. Step 1: The algorithm first estimates η from τ using the average per-hop infection

time. Let dvw denote the length of the shortest path from Node v to Node w, then

η =

∑
τv 6=?,τw 6=?,v 6=w |τv − τw|∑

τv 6=?,τw 6=?,v 6=w dvw
.

Example: Given the timestamps shown in Figure 3.2, η = 36.94 minutes.

2. Step 2: Sort the infected nodes in an ascending order according to the observed

infection time τ . Let ι denote the ordered list such that ι1 is the node with the

earliest infection time.

Example: Consider the example in Figure 3.2. The ordered list is

ι = (6, 12, 13, 1).

3. Step 3: Construct the initial spreading tree T0 that includes the root node only

and set the cost to be zero.

34

Example: Assuming we want to compute the cost of Node 10 in Figure 3.2, we

first have T0 = {10} and C(10) = 0.

4. Step 4: At the kth iteration, Node ιk is added to the spreading tree Tk−1 using the

following steps.

Example: At the 3rd iteration, the current spreading tree is

10→ 6→ 7→ 8→ 12,

and the associated timestamps are given in Table 3.2. Note that these timestamps

are assigned by EIF except those observed ones. The details can be found in the

next step. In the 3rd iteration, Node 13 needs to be added to the spreading tree.

node ID 10 6 7 8 12

Timestamp 5:28 6:05 6:45 7:25 8:05

Table 3.2: The timestamps on the spreading tree in the 3rd iteration

(a) For each node m on the spreading tree Tk−1, identify a modified shortest path

from Node m to Node ιk. The modified shortest path is a path that has the

minimum number of hops among all paths from Node m to Node ιk, which

satisfy the following two conditions:

– it does not include any nodes on the spreading tree Tk−1, except node m;

– it does not include any nodes on list ι, except node ιk.

Example: The modified shortest path from Node 7 to Node 13 is

7→ 9→ 13.

There is no modified shortest path from Node 12 to Node 13 since all paths

from 12 to 13 go through Node 8 that is on the spreading tree T2.

35

(b) For the modified shortest path from Node m to Node ιk, the cost of the path

is defined to be

γm = d̃ιkm

(
tιk − tm
d̃ιkm

− η

)2

,

where d̃ιkm denotes the length of the modified shortest path from m to ιk.

From all nodes on the spreading tree Tk−1, select Node m∗ with the minimum

cost i.e.,

m∗ = arg min
m

γm.

Example: The costs of the modified shortest paths to the nodes on the

spreading tree

10→ 6→ 7→ 8→ 12

are shown in Table 3.3. Node 7 has the smallest cost.

node ID 10 6 7 8 12

cost 15,640.00 ∞ 61.83 147.03 ∞

Table 3.3: The costs of the modified shortest paths

(c) Construct a new spreading tree Tk by adding the modified shortest path from

m∗ to ιk. Assume Node v on the newly added path is hv hops from Node m∗,

the infection time of Node v is set to be

tv = tm∗ + (hv − 1)
tιk − tm∗
d̃m∗ιk

. (3.5)

The cost is updated to C(v) = C(v) + γm∗ .

Example: At the 3rd iteration, the timestamp of Node 9 is set to be 7:28

PM, and the cost is updated to C(10) = 89.92.

36

5. Step 5: For those infected nodes that have not been added to the spreading tree,

add these nodes by using a breadth-first search starting from the spreading tree T.

When a new node (say Node w) is added to the spreading tree during the breadth-

first search, the infection time of the node is set to be tparw + η, where parw is the

parent of Node w on the spreading tree. Note that the cost C(v) does not change

during this step because tw − tparw − η = 0.

Example: The final spreading tree and the associated timestamps are presented

in Figure 3.2.

Remark 2: The timestamps of nodes on a newly added path are assigned ac-

cording to Equation (3.5). This is because such an assignment is the minimum cost

assignment in a line network in which only the timestamps of two end nodes are

known.

Lemma 8. Consider a line network with n infected nodes. Assume the infection

times of Node 1 and Node n are known and the infection times of the rest nodes are

not. Furthermore, assume τ1 < τn. The quadratic cost defined in (3.4) is minimized

by setting

tk = τ1 + (k − 1)
τn − τ1

n− 1
(3.6)

for 1 < k < n. �

Note that under the assignment above, the infection time, τk+1 − τk, is the same

for all edges, which is due to the quadratic form of the cost function. The detailed

proof can be found in the appendix.

Remark 3: Note that in Step 4(a), we use the modified shortest path instead of

the conventional shortest path. The purpose is to avoid inconsistence when assigning

timestamps. For example, consider the 3rd iteration in Figure 3.2, and the paths

37

1st iteration of step 4: The blue edge

is the modified shortest path from node

 10 to node 6. After attaching node 6,

the infection time of node 10 is assi-

gned to 6:05PM -37 min = 5:28 PM.

The cost of the spreading tree after iter-

ation 1 is 0.

10

8:10 PM

8:05 PM

6:05 PM

9:45 PM

6

1
12

8

7

9

11
15

14

13

5

4

3

2

5:28 PM

2nd iteration of step 4: The path formed by

blue edges is the modified shortest path from

 node 6 to node 12. There is no modified short-

est path from node 10 to node 12. After attach-

ing node 12, the infection time of node 7 and 8

is assigned according to equation (5). The cost

of the spreading tree after iteration 2 is 28.09.

8

8:10 PM

8:05 PM

6:05 PM

9:45 PM

6

1
12

7

9

11
15

14

13

10

5

4

3

2

5:28 PM

6:45 PM

7:25 PM

3rd iteration of step 4: There are three possible

 modified shortest paths from the current sprea-

ding tree to node 13 (formed by the blue edges).

The associated costs are

Path 7-9-13 is added to the spreading tree and

the costof the spreading tree after iteration 3 is

89.92.

8:10 PM

8:05 PM

6:05 PM

9:45 PM

6

1
12

7

9

11
15

14

13

10

5

4

3

2

5:28 PM

8

6:45 PM

7:25 PM

7:28 PM

4th iteration of step 4: The costs of the

three modified shortest paths to node 1

 are listed below.

Path 7-4-5-1 is added to the spreading

tree and the cost of the spreading tree

after iteration 4 is 1,685.21.

8:10 PM

8:05 PM

6:05 PM

9:45 PM

6

1
12

7

9

11
15

14

13

10

5

4

3

2

5:28 PM

8

6:45 PM

7:25 PM

7:28 PM 7:45 PM

8:45 PM

Step 5: Expanding the spreading tree

using the breadth-first search to inclu-

de all infected nodes. The blue edges

are newly added edges. The cost of this

 spreading tree (i.e., the cost of node 10)

 is 1,685.21.

8:10 PM

8:05 PM

6:05 PM

9:45 PM

6

1
12

7

9

11
15

14

13

10

5

4

3

2

5:28 PM

8
7:25 PM

8:45 PM

6:45 PM

7:45 PM7:28 PM

10:22 PM

6:42 PM

9:19 PM

8:42 PM

8:02 PM

Figure 3.2: An example for illustrating Step 4 and Step 5 of EIF. The paths formed

by blue edges are modified shortest paths. The trees formed by red edges are the

spreading trees at the beginning of each iteration.

from Node 7 to Node 2. There are two conventional shortest paths: 7→ 4→ 5→ 1

and 7 → 8 → 5 → 1. If we select path 7 → 8 → 5 → 1 and assign the timestamps

according to (3.5), then the infection time of Node 8 is larger that of Node 7, which

contradicts the current timestamps of Node 7 and Node 8. Therefore, 7→ 8→ 5→ 1

should not be selected.

Remark 4: A key step of EIF is the construction of the modified shortest paths

38

from the nodes on Tk−1 to Node ιk. This can be done by constructing a modified

breadth-first search tree starting from Node ιk. In constructing the modified breadth-

first search tree, we first reverse the direction of all edges as we want to construct

paths from the nodes on Tk−1 to Node ιk. Then starting from Node ιk, nodes are added

in a breadth-first fashion. However, a branch of the tree terminates when the tree

meets a node on Tk−1 or Node ιl for l > k. After obtainng the modified breadth-first

search tree, if a leaf node is a node on Tk−1, say Node m, then the reversed path from

Node ιk to Node m on the modified breadth-first search tree is a modified shortest

path from Node m to Node ιk. If none of the leaf nodes is on Tk−1, then the cost of

adding ιk is claimed to be infinity. In Figure 3.2, the trees formed by the blue edges

are the modified breadth-first trees at each iteration.

The pseudo code of the EIF algorithm is presented in Algorithm 3.

3.3 Cost-Based and Tree-Based Ranking

Denote by T̃v the spreading tree constructed under EIF for Node v, and C̃(T̃v)

the corresponding cost computed by EIF. After constructing the spreading tree for

each infected node and obtaining the corresponding cost, the nodes are ranked using

the following two approaches.

Cost-Based Ranking (CR): Rank the infected nodes in an ascendent order ac-

cording to C̃(T̃v).

Tree-Based Ranking (TR): Denote by v∗ = arg minv C̃(T̃v). Rank the infected

nodes in an ascendent order according to the timestamps on T̃v∗ .

Theorem 9. The complexity of CR and TR is O(|ι||I||E(gi)|), where |ι| is the number

of infected nodes with observed timestamps, |I| is the number of infected nodes, and

|E(gi)| is the number of edges in the subgraph formed by the infected nodes. �

39

Algorithm 3: Earliest-Infection-First Algorithm

Input: τ , gi, v
†;

Output: C̃(T̃v†) (Cost of v†), T̃v† (Spreading tree associated with v†);
1 Set

η =

∑
τv 6=?,τw 6=?,v 6=w |τv − τw|∑

τv 6=?,τw 6=?,v 6=w dvw
.

2 Sort τ in an ascending order. Denote by ιi the ith node according to the order.

3 Set T0 to be a tree that includes only v† and set C̃ = 0.
4 Set N to be the length of τ .
5 for k = 1 to N do
6 for Node m in Tree Tk−1 do
7 Identify the modified shortest path Pmιk from m to ιk.
8 Compute

γm = |Pmιk |
(
tιk − tm
|Pmιk |

− η
)2

.

9 Select m∗ ∈ arg minm γm.
10 Set the infection time of Node v ∈ Pm∗ιk to be

tv = tm∗ + (hv − 1)
tιk − tm∗
d̃m∗ιk

where hv is the number of hops from m∗ to v on Pm∗ιk .
11 Add Pm∗ιk to Tk−1 to obtain Tk.

12 Set C̃ = C̃ + γm∗ .

13 Let Q be an empty queue and enqueue all nodes on TN .
14 while Q is not empty do
15 Dequeue Q. Let m be the dequeued node.
16 for All edges from m to v in GI do
17 if v is not in TN then
18 Add edge (m, v) to TN .
19 Set tv = tm + η.
20 Enqueue v to Q.

21 Set C̃(T̃v†) = C̃, T̃v† = TN
22 return C̃(T̃v†) and T̃v† .

40

The proof is presented in the appendix.

CR and TR algorithms can be implemented in a distributed fashion where C̃(T̃v)

could be computed parallelly for each node v.

3.4 Experimental Evaluation

In this section, we evaluate the performance of TR and CR using both synthetic

data and real-world data. While both ranking algorithms (TR and CR) were justified

by the sample path based approach based on the truncated Gaussian distribution,

one important contribution of the two algorithms is that they are parameter-free

and model-free and can be used for any diffusion model and network. In fact, the

objective of our design is the development of such a general algorithm. Of course, the

theoretical analysis can only be done for a specific model, but we conducted extensive

simulations for different diffusion models including the IC model and SpikeM model

and further under real social network data sets.

3.4.1 Performance of EIF on a Small Network

In the first set of simulations, we evaluated the performance of EIF of solving the

minimum cost of the feasible and consistent spreading trees. Given an observation I

and τ , denote by C∗ the minimum cost of the feasible and consistent spreading trees.

Then

C∗ = min
P∈F(I,τ)

C(P)

Denote by C̃∗ the minimum cost of the spreading trees obtained under EIF. We

evaluated the approximation ratio r = C̃∗

C∗
on a small network — the Florentine

families network (Breiger and Pattison, 1986) which has 15 nodes and 20 edges. Recall

that the minimum cost problem is NP-hard, so the approximation ratio is evaluated

over a small network only. To compute the actual minimum cost, we first enumerated

41

all possible spanning trees using the algorithm in (Char, 1968), and then computed the

minimum cost of each spanning tree by solving the quadratic programming problem.

In this experiment, we assumed the infection time of each edge follows a truncated

Gaussian distribution with η = 100 and σ = 100. We evaluated the approximation

ratio when the number of observed timestamps varied from 5 to 14. The results are

shown in Figure 3.3, where each data point is an average of 500 runs. The error bar

shows the mean ± standard deviations. Since the ratio can not be smaller than 1.0,

the error bar is cut off at 1.0. The approximation ratio is 2.24 with 5 timestamps, 1.5

with 8 timestamps and becomes 1.08 when 14 timestamps are given. This experiment

shows that EIF approximates the minimum cost solution reasonably well.

4 5 6 7 8 9 10 11 12 13 14 15
1

2

3

4

5

6

7

Number of Observed Timestamps

A
pp

ro
xi

m
at

io
n

R
at

io

Figure 3.3: The approximation ratio of TR (error bar shows mean ± standard devi-

ation)

3.4.2 Comparison with Other Algorithms

We first tested the algorithms using synthetic data on two real-world networks:

the IAS network and the power grid network (PG)2:

2Available at http://www-personal.umich.edu/~mejn/netdata/

42

• The IAS network is a network of the Internet autonomous systems inferred from

Oregon route-views on March, 31st, 2001. The network contains 10,670 nodes

and 22,002 edges in the network. IAS is a small world network.

• The PG network is a network of Western States Power Grid of United States.

The network contains 4,941 nodes and 6,594 edges. Compared to the IAS

network, the PG network is locally tree-like.

We first compare CR and TR with the following four existing source localization

algorithms.

• Rumor centrality (RUM): Rumor centrality was proposed in (Shah and Zaman,

2011), and is the maximum likelihood estimator on trees under the SI model.

RUM ranks the infected nodes in an ascendent order according to nodes’ rumor

centrality.

• Infection eccentricity (ECCE): The infection eccentricity of a node is the max-

imum distance from the node to any infected node in the graph, where the

distance is defined to be the length of the shortest path. The node with the

smallest infection eccentricity, named Jordan infection center, is the optimal

sample-path-based estimator on tree networks under the SIR model (Zhu and

Ying, 2014a). ECCE ranks the infected nodes in a descendent order according

to infection eccentricity.

• NETSLEUTH: NETSLEUTH was proposed in (Prakash et al., 2012). The

algorithm constructs a submatrix of the infected nodes based on the graph

Laplacian of the network and then ranks the infected nodes according to the

eigenvector corresponding to the largest eigenvalue of the submatrix.

43

• Gaussian heuristic (GAU): Gaussian heuristic is an algorithm proposed in (Pinto

et al., 2012), which utilizes partial timestamp information. The algorithm is

similar to CR in spirit, but uses the breadth-first search tree as the spreading

tree for each infected node.

In the four algorithms above, RUM, ECCE, and NETSLEUTH only use topological

information of the network, and do not exploit the timestamp information. GAU

utilizes partial timestamp information.

In this set of experiments, we assume the infection time of each infection follows

a truncated Gaussian distribution with η = {1, 10, 100} and σ = 100. In each sim-

ulation, a source node was chosen uniformly across node degree to avoid the bias

towards small degree nodes (In the IAS network, 3,720 out of the 10,670 nodes have

degree one). In particular, the nodes were grouped into M bins such that the nodes

in the mth bin (1 ≤ m ≤ M − 1) have degree m and the nodes in the M th bin have

degree ≥ M . In each simulation, we first randomly and uniformly picked a bin, and

then randomly and uniformly pick a node from the selected bin. We simulated the

diffusion process and terminated the process when having 200 infected nodes. For

the IAS network, we chose M = 20; and for the PG network, we chose M = 10.

Since there are less than 10 nodes with degree 21 and the total number of nodes with

degree larger than 20 is 205 in the IAS network. Therefore, we use 20 bins to make

sure there are enough nodes in each bins. On the other hand, the maximum degree

of the PG network is only 19, so we use 10 bins in the PG network.

We selected 50% infected nodes (100 nodes) and revealed their infection time.

The source node was always excluded from these 100 nodes so that the infection time

of the source node was always unknown. We repeated the simulation 500 times to

compute the average γ%-accuracy. Recall the γ%-accuracy is the probability with

which the source is ranked among top γ percent.

44

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM

(a) The IAS network with

η = 1

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM

(b) The IAS network with

η = 10

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM

(c) The IAS network with

η = 100

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM

(d) The PG network with

η = 1

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM

(e) The PG network with

η = 10

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM

(f) The PG network with

η = 100

Figure 3.4: Comparison with existing algorithms with 50% timestamps

The results on the IAS and PG networks are presented in Figure 3.4 where the

performance are consistent for different η values. Recall that RUM, ECCE and

NETLEUTH only use topological information.

• Observation 1: In both networks, CR and TR perform much better than the

other algorithms in the IAS network. In PG network, TR, CR and GAU have

similar performance which dominates other algorithms due to the utilization of

the timestamp information. In particular, in the IAS network, the 10%-accuracy

of CR is 0.76 while 10%-accuracy of GAU and NETSLEUTH is 0.57 and 0.43,

respectively when η = 100. In the PG network, the 10%-accuracy of TR is 0.99

while that of GAU and NETSLEUTH is 0.98 and 0.43, respectively.

45

• Observation 2: Most algorithms, except NETSLEUTH, have higher γ%-

accuracy in the PG network than in the IAS network. We conjecture that

it is because the IAS network has a small diameter and contains hub nodes

while the PG network is more tree-like.

• Observation 3: NETSLEUTH dominates ECCE and RUM in the IAS net-

work, but performs worse than ECCE and RUM in the PG network when

γ ≤ 10. Furthermore, while all other algorithms have higher γ-accuracy in

IAS than in PG, NETSLEUTH has lower γ-accuracy in IAS than in PG when

γ < 10. A similar phenomenon will be observed in a later simulation as well.

• Observation 4: CR performs better in the IAS network when γ ≥ 5 while TR

performs better in the PG network.

3.4.3 The Impact of Timestamp Distribution

In the previous set of simulations, the revealed timestamps were uniformly chosen

from all timestamps except the timestamp of the source, which was always excluded.

We call this unbiased distribution. In this set of experiments, we study the impact

of the distribution of the timestamps. We compared the unbiased distribution with

a distribution under which nodes with larger infection time are selected with higher

probability. In particular, we selected nodes iteratively. Let N k denote the set of

remaining infected nodes after selecting k nodes, then the probability that Node i is

selected in the next step is

p
(k)
i =

ti − ts∑
j∈N k(tj − ts)

,

where ts is the infection time of the source. We call this time biased distribution.

In this section, we evaluated the performance of our algorithms and GAU with dif-

ferent sizes of observed timestamps and different distributions of the observed times-

46

tamps. All the experiment setups are the same as in Section 3.4.2. We evaluate the

algorithms with η = {1, 10, 100} and the results of different number of timestamps

are shown in Figure 3.5.

Note that the performance of RUM, ECCE and NETSLEUTH are independent of

timestamp distribution and size, so we did not include these algorithms in the figures.

From the figure, we have the following observations:

• Observation 5: We varied the size of observed timestamps from 10% to 90%.

As we expected, the γ%-accuracy increases as the size increases under both CR

and TR. Interestingly, in the IAS network, the 10%-accuracy of GAU is worse

than TR and CR when more than 20% of the timestamps are observed. We

conjecture this is because in small world networks such as the IAS network, the

spreading tree is very different from the breadth-first search tree rooted at the

source. Since GAU always uses the breadth-first search trees regardless of the

size of timestamps, more timestamps do not result in a more accurate spreading

tree. The spreading tree constructed by EIF, on the other hand, depends on

the size of timestamps and is more accurate as the size of timestamps increases.

• Observation 6: In both networks, the time-biased distribution results in 5% to

15% reduction of the γ%-accuracy. This shows that earlier timestamps provide

more valuable information for locating the source. However, the trends and

relative performance of the three algorithms are similar to those in the unbiased

case.

• Observation 7: CR performs better in the IAS network when the timestamp

size is larger than 40%; and TR performs better in the PG network.

• Observation 8: The γ%-accuracy is much higher in the PG network than that

in the IAS network under both the unbiased distribution and time-biased distri-

47

bution. For example, with the time-biased distribution and 20% of timestamps,

the 10%-accuracy of TR is 0.87 in PG and is only 0.52 in IAS when η = 100.

This again confirms that the source localization problem is more difficult in

networks with small diameters and hub nodes.

3.4.4 The Impact of the Diffusion Model

In all previous experiments, we used the truncated Gaussian model for diffusion.

We now study the robustness of CR and TR to the diffusion models. We conducted the

experiments using the IC model (Kempe et al., 2003) and SpikeM model (Matsubara

et al., 2012) for diffusion. Both models are time slotted, so are very different from the

truncated Gaussian model. In the IC model, each infected node has only one chance

to infect each of its neighbors. If the infection failed, the node cannot make more

attempts. In the experiments, the infection probability along each edge is selected

with a uniform distribution over (0, 1). SpikeM model has been shown to match the

patterns of real-world information diffusion well. In the SpikeM model, infected nodes

become less infectious as time increases. Furthermore, the activity level of a user in

different time periods of a day varies to match the rise and fall patterns of information

diffusion in the real world. In our experiments, we used the parameter set C5 in Table

3 of (Matsubara et al., 2012) which was obtained based on MemeTracker dataset. The

results are shown in Figure 3.6, where in each figure, the size of timestamps varies

from 10% to 90%.

• Observation 9: Under both the IC and SpikeM models, the GAU algorithm

has a better performance when less than 20% timestamps are observed in the

IAS network. The performance of TR and CR dominate GAU when more than

20% timestamps are observed. For the PG network, the performances of TR

48

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(a) The IAS network with η = 1

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(b) The PG network with η = 1

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(c) The IAS network with η = 10

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(d) The PG network with η = 10

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(e) The IAS network with η = 100

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(f) The PG network with η = 100

Figure 3.5: The impacts of the distribution and size of timestamps

49

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(a) The IAS network under the IC model

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(b) The IAS network under the SpikeM

model

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(c) The PG network under the IC model

0 10 20 30 40 50 60 70 80 90 100

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Timestamp Size (%)

10
%

−
ac

cu
ra

cy

CR − unbiased
CR − time biased
TR − unbiased
TR − time biased
GAU − unbiased
GAU − time biased

(d) The PG network under the SpikeM

model

Figure 3.6: The performance of CR, TR and GAU under different diffusion models

and CR are better than GAU under the IC model, and the performance of TR

is better than GAU under the SpikeM model.

Remark 5: Another popular diffusion model is the Linear Threshold (LT) model

(Kempe et al., 2003). However, in the experiments, we found that it is difficult for a

single source to infect more than 150 nodes under the LT model. Therefore, we only

conducted experiments with the IC model.

50

3.4.5 The Impact of Network Topology

In the previous simulations, we have observed that locating the source in the PG

network is easier than in the IAS network. We conjecture that it is because the IAS

network is a small-world network while the PG network is more tree-like. To verify

this conjecture, we removed edges from the IAS network to observe the change of

γ%-accuracy as the number of removed edges increases. For each removed edge, we

randomly picked one edge and removed it if the network remains to be connected after

the edge is removed. We used the truncated Gaussian model and all other settings

are the same as those in Section 3.4.2. The results are shown in Figure 3.7.

0 1000 2000 3000 4000 5000 6000 7000 8000 90001000011000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Removed # edges

5%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM

Figure 3.7: The γ%-accuracy as the number of removed edges increases

• Observation 10: After removing 11,000 edges, the ratio of the number of edges

to the number of nodes is 11, 002/10, 670 = 1.03, so the network is tree-like. As

showed in Figure 3.7, the 5%-accuracy of all algorithms, except NETSLEUTH,

improves as the number of the removed edges increases, which confirms our con-

jecture. The 5%-accuracy of NETSLEUTH starts to decrease when the number

of removed edges is more than 6, 000. This is consistent with the observation we

51

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR − 10%
CR − 30%
TR − 10%
TR − 30%
GAU − 10%
GAU − 30%
NETSLEUTH
ECCE
RUM

(a) All tweets

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR − 10%
CR − 30%
TR − 10%
TR − 30%
GAU − 10%
GAU − 30%
NETSLEUTH
ECCE
RUM

(b) Resample by degree

Figure 3.8: Performance on Weibo data

had in Figure 3.4, in which the 5% accuracy of NETSLUETH in PG is worse

than that in IAS.

3.4.6 Weibo Data Evaluation

In this section, we evaluated the performance of our algorithms with real-world

network and real-world information spreading. The dataset is the Sina Weibo3 data,

provided by the WISE 2012 challenge4. Sina Weibo is the Chinese version of Twitter,

and the dataset includes a friendship graph and a set of tweets.

The friendship graph is a directed graph with 265,580,802 edges and 58,655,849

nodes. The tweet dataset includes 369,797,719 tweets. Each tweet includes the user

ID and post time of the tweet. If the tweet is a retweet of some tweet, it includes the

tweet ID of the original tweet, the user who post the original tweet, the post time of

the original tweet, and the retweet path of the tweet which is a sequence of user IDs.

For example, the retweet path a→ b→ c means that user b retweeted user a’s tweet,

and user c retweeted user b’s.

3http://www.weibo.com/

4http://www.wise2012.cs.ucy.ac.cy/challenge.html

52

Average Tweet cascade size (number of nodes) 332.19

Average diameter (longest shortest path) 6.86

Average out degree 3.60

Table 3.4: Statistics of extracted tweet cascades

We selected the tweets with more than 1,500 retweets. For each tweet, all users

who retweet the tweet are viewed as infected nodes and we extracted the subnetwork

induced by these users. We also added those edges on the retweet paths to the

subnetwork if they are not present in the friendship graph, by treating them as missing

edges in the friendship network. The user who posts the original tweet is regarded as

the source. If there does not exist a path from the source to an infected node along

which the post time is increasing, the node was removed from the subnetwork. In

addition, to make sure we have enough timestamps, we remove the samples with less

than 30% timestamps.

After the above preprocessing, we have 1,170 tweets with at least 30% observed

timestamps. Some statistics of the extracted tweet cascades are listed in Table 3.4.

Similar to Section 3.4.2 in the chapter, we grouped the tweets into five bins

according the degree of the source in the friendship graph. In the kth bin (for

k = 1, 2, 3, 4), the degree of the source is between 8000(k − 1) to 8000k − 1. In

the 5th bin, the degree of the source is at least 32, 000. The number of tweets in

the bins are [568 147 70 68 317]. From each bin, we draw 30 samples without

replacement. For completeness, we also evaluated the performance with all 1,170

tweets. The results are summarized in Figure 3.8. Figure 3.8a shows the performance

with all tweets samples and Figure 3.8b shows the performance if we resample the

tweets by the above degree bins. The observed timestamps are uniformly selected

53

Tweet cascade size [10,200) [200,400) [400,600) [600,800) [800,∞)

Number of samples 285 126 106 76 145

CR-30% 0.87 0.82 0.71 0.55 0.63

CR-10% 0.92 0.70 0.50 0.47 0.60

TR-30% 0.95 0.91 0.84 0.79 0.86

TR-10% 0.94 0.79 0.71 0.64 0.69

GAU-30% 0.93 0.73 0.55 0.47 0.57

GAU-10% 0.91 0.67 0.41 0.41 0.43

NETSLEUTH 0.92 0.76 0.58 0.55 0.55

ECCE 0.91 0.68 0.55 0.57 0.56

RUM 0.94 0.64 0.63 0.53 0.48

Table 3.5: 10%-accuracy for different tweet cascade sizes

from the available timestamps and the source node is excluded. We also investigate

the 10%−accuracy for different tweet cascade sizes. The results are shown in Table

3.5. The reason that the first tweet cascade size bin is [10, 200) is that the samples

with <10 nodes will always have zero 10%-accuracy.

• Observation 11: Figure 3.8 shows that CR and TR dominates GAU with both

10% and 30% of timestamps. In particular for the resample by degree case, TR

performs very well and dominates all other algorithms with a large margin. The

10%-accuracy of TR with 30% timestamps is around 0.64 while that of CR is

0.53 and that of NETSLEUTH is only 0.4.

• Observation 12: As shown in Table 3.5, for small cascade sizes, all methods

have similar accuracy. When the cascade size increases, the performance of

our TR algorithm with 30% timestamps dominates all other algorithms. In

particular, with same amount of timestamps, TR is much better than GAU

which again demonstrated the effectiveness of our algorithm.

Summary: From the synthetic data and real data evaluations, we have seen that

54

4

3
2

1

5

(a) The subnetwork before

modification

4

3
2

1

5

(b) The subnetwork after

including information 2 →

3

Figure 3.9: An example of extensions with direction information

both TR and CR perform better than existing algorithms, and are robust to diffusion

models and timestamp distributions. Furthermore, TR performs better than CR in

most cases. CR performs better than TR only in the IAS network when the sample

size is large (≥ 30% under the truncated Gaussian diffusion, ≥ 50% under the IC

model and ≥ 70% under the SpikeM model). More simulation results can be found

in Appendix 3.6.

3.5 Extensions

In some practical scenarios, we may have other side information than timestamps

such as who infected whom. This side information can be incorporated in the algo-

rithm by modifying the network g. Consider the example in Figure 3.9a. If we know

that Node 2 was infected by Node 3, then we can removed all incoming edges to Node

2, except 3→ 2, and the edge 2→ 3 to obtain a modified g as shown in Figure 3.9b.

We can then apply CR and TR on the modified graph to rank the observed infected

nodes.

55

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM
Lappas’

(a) γ%-accuracy in the IAS network

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Percentage (γ)

γ%
−

ac
cu

ra
cy

CR
TR
GAU
NETSLEUTH
ECCE
RUM
Lappas’

(b) γ%-accuracy in the PG network

Figure 3.10: The performance comparison to the Lappas’ algorithm

3.6 Additional Experimental Evaluation

In this section, we present additional experiments we conducted, including the

comparison to Lappas’ algorithm under the IC model, the evaluation of the algo-

rithms’ scalability and the evaluation using normalized rank.

3.6.1 Comparison to Lappas’ Algorithm (Lappas et al., 2010)

In this section, we evaluate the performance of the algorithm in (Lappas et al.,

2010) (Lappas’ algorithm). Lappas’ algorithm was developed for the IC model and

requires the infection probabilities of the IC model. Therefore, we only compared

the algorithm in (Lappas et al., 2010) on the IC model and the results are shown

in Figure 3.10. The experiments settings are the same as those in Section 3.4.2.

We assume 50% timestamps are observed for the TR, CR and GAU algorithms. As

shown in Figure 3.10, the γ%-accuracy of Lappas’ algorithm on the IAS network

is significantly smaller than the TR and CR algorithms when γ ≥ 10. In the PG

56

0 10 20 30 40 50 60 70 80 90100
0

0.1

0.2

0.3

0.4

0.5

0.6
 RUM

NETSLEUTH

ECCE

 GAU

TRCR

 Lappas’

Time (Seconds)

N
or

m
al

iz
ed

 R
an

k

(a) Normalized rank versus computation

time (50 % timestamps observed)

0 102030405060708090100
0

2

4

6

8

10

12

14

Timestamp Size (%)

T
im

e
(S

ec
on

ds
)

TRCR − unbiased
GAU − unbiased

(b) Timestamp size versus computation

time

Figure 3.11: Execution time in the IAS network under the IC model

network, the TR and CR algorithms dominates Lappas’ algorithm for all γ.

3.6.2 Scalability

We measured the execution time of the algorithms as shown in Figure 3.11. The

experiments are conducted on a Intel Core i5-3210M CPU with four cores and 8G

RAM with a Windows 7 Professional 64 bit system. All algorithms are implemented

with python 2.7. All the other settings are the same as those in Section 5.2 with

η = 100. As shown in Figure 3.11, CR and TR are more than six times faster than

GAU when 50% timestamps are observed. Although some other algorithms which

do not use timestamps are faster, their performances are worse than TR, CR and

GAU. Lappas’ algorithm is significantly slower than all the algorithms since Lappas’

algorithm is based on the full network while other algorithms are only based on the

network with infected nodes or the neighbors of the infected nodes. In addition, as

57

shown in Figure 3.11b, the mean and the standard deviation of the running time of

TR and CR are much smaller than those of GAU when the available timestamps are

more than 10%. Furthermore, the running time of TR and CR remains roughly the

same as the number of timestamps increases while the running time of GAU increases

significantlty initially and then decreases a little bit. The decrease is because when

more timestamps are observed, only the infected nodes with unobserved timestamps

and the node which has the earliest observed timestamps could be the source which

reduces the number of candidates hence the total running time.

3.6.3 Normalized Rank

In addition to the γ%-accuracy, we further evaluated the performance of the al-

gorithms using the normalized rank, which is defined to be the ratio between the

rank of the actual source and the total number of infected nodes. The observations

are similar to the γ%-accuracy except that CR performs better in the IAS network

than TR in most cases and TR performs better in the PG network. The difference

between GAU and TR & CR are smaller. The results show TR and CR not only

achieve much better “accuracy-at-the-top”, but also improve the normalized rank in

most cases. We next present a short summary for each set of simulations.

The Impact of Timestamp Distribution

Table 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 show the normalized rank for the truncated

Gaussian model for the IAS network and the PG network. The settings of the ex-

periments are same as those in Section 3.4.3. In the IAS network, the CR algorithm

yields the smallest normalized ranks and standard deviations when there are more

than 10% of timestamps are observed. In the PG network, TR yields the smallest

normalized ranks and standard deviations.

58

The Impact of the Diffusion Model

Table 3.12, 3.13, 3.14 and 3.15 show the normalized rank under the IC model and

SpikeM model. The settings are the same as that in Section 3.4.4. GAU has better

or similar performance as TR and CR when the fraction of observed timestamps is

small, but yields a larger normalized rank when the number of observed timestamps

increases.

The Impact of Network Topology

Table 3.16 shows the normalized rank when we remove the edges from the IAS net-

work. The settings are the same as that in Section 3.4.5 and CR dominates in this

case.

Weibo Data Evaluation

Table 3.17 shows the normalized rank for the Weibo data. The settings are the same

as that in Section 3.4.6. We observed that the CR algorithm with 30% timestamps

has the minimum normalized rank for all tweet cascades sizes.

59

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.29 ± 0.25 0.31 ± 0.29 0.25 ± 0.25 0.32 ± 0.24 0.36 ± 0.29 0.29 ± 0.25

20% 0.18 ± 0.18 0.23 ± 0.25 0.21 ± 0.21 0.22 ± 0.20 0.27 ± 0.26 0.25 ± 0.22

30% 0.14 ± 0.15 0.17 ± 0.20 0.18 ± 0.18 0.17 ± 0.17 0.21 ± 0.22 0.21 ± 0.19

40% 0.11 ± 0.13 0.14 ± 0.17 0.14 ± 0.16 0.13 ± 0.13 0.17 ± 0.18 0.18 ± 0.16

50% 0.07 ± 0.09 0.11 ± 0.14 0.13 ± 0.13 0.10 ± 0.11 0.13 ± 0.15 0.15 ± 0.14

60% 0.06 ± 0.07 0.08 ± 0.10 0.10 ± 0.10 0.07 ± 0.07 0.10 ± 0.12 0.13 ± 0.11

70% 0.04 ± 0.05 0.06 ± 0.08 0.07 ± 0.07 0.05 ± 0.05 0.07 ± 0.08 0.09 ± 0.08

80% 0.03 ± 0.03 0.04 ± 0.05 0.05 ± 0.05 0.03 ± 0.03 0.04 ± 0.05 0.06 ± 0.05

90% 0.02 ± 0.01 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 0.03 ± 0.02 0.04 ± 0.03

Table 3.6: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the IAS network when η = 1

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.27 ± 0.23 0.30 ± 0.28 0.26 ± 0.24 0.31 ± 0.24 0.34 ± 0.30 0.30 ± 0.26

20% 0.18 ± 0.18 0.23 ± 0.26 0.21 ± 0.22 0.21 ± 0.20 0.27 ± 0.25 0.26 ± 0.23

30% 0.14 ± 0.15 0.17 ± 0.20 0.19 ± 0.19 0.16 ± 0.16 0.21 ± 0.22 0.23 ± 0.20

40% 0.10 ± 0.12 0.13 ± 0.17 0.16 ± 0.16 0.13 ± 0.13 0.16 ± 0.18 0.19 ± 0.17

50% 0.08 ± 0.09 0.10 ± 0.14 0.13 ± 0.13 0.10 ± 0.10 0.13 ± 0.15 0.16 ± 0.13

60% 0.05 ± 0.06 0.07 ± 0.10 0.10 ± 0.10 0.07 ± 0.07 0.09 ± 0.10 0.13 ± 0.11

70% 0.04 ± 0.05 0.06 ± 0.08 0.08 ± 0.08 0.05 ± 0.06 0.07 ± 0.08 0.10 ± 0.08

80% 0.02 ± 0.02 0.04 ± 0.05 0.06 ± 0.05 0.04 ± 0.04 0.04 ± 0.05 0.07 ± 0.05

90% 0.02 ± 0.01 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 0.03 ± 0.02 0.04 ± 0.03

Table 3.7: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the IAS network when η = 10

60

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.29 ± 0.23 0.31 ± 0.29 0.24 ± 0.23 0.32 ± 0.24 0.35 ± 0.29 0.29 ± 0.25

20% 0.19 ± 0.18 0.22 ± 0.25 0.20 ± 0.20 0.22 ± 0.19 0.26 ± 0.25 0.25 ± 0.22

30% 0.14 ± 0.16 0.18 ± 0.21 0.17 ± 0.18 0.18 ± 0.16 0.21 ± 0.22 0.21 ± 0.19

40% 0.11 ± 0.11 0.13 ± 0.17 0.15 ± 0.16 0.13 ± 0.13 0.17 ± 0.18 0.17 ± 0.16

50% 0.08 ± 0.09 0.10 ± 0.13 0.12 ± 0.12 0.10 ± 0.10 0.14 ± 0.15 0.16 ± 0.13

60% 0.06 ± 0.07 0.08 ± 0.10 0.10 ± 0.10 0.07 ± 0.07 0.10 ± 0.11 0.12 ± 0.11

70% 0.04 ± 0.04 0.06 ± 0.07 0.08 ± 0.08 0.05 ± 0.05 0.07 ± 0.08 0.09 ± 0.08

80% 0.03 ± 0.03 0.04 ± 0.05 0.05 ± 0.05 0.04 ± 0.03 0.05 ± 0.05 0.06 ± 0.05

90% 0.02 ± 0.01 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 0.02 ± 0.02 0.04 ± 0.03

Table 3.8: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the IAS network when η = 100

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.17 ± 0.14 0.10 ± 0.12 0.12 ± 0.12 0.21 ± 0.16 0.17 ± 0.17 0.19 ± 0.16

20% 0.09 ± 0.09 0.06 ± 0.08 0.08 ± 0.10 0.14 ± 0.11 0.09 ± 0.10 0.14 ± 0.13

30% 0.06 ± 0.05 0.04 ± 0.04 0.06 ± 0.07 0.10 ± 0.08 0.06 ± 0.07 0.11 ± 0.11

40% 0.04 ± 0.04 0.03 ± 0.03 0.04 ± 0.04 0.07 ± 0.06 0.05 ± 0.05 0.08 ± 0.08

50% 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.04 0.06 ± 0.05 0.04 ± 0.04 0.06 ± 0.06

60% 0.02 ± 0.01 0.02 ± 0.02 0.02 ± 0.02 0.04 ± 0.04 0.03 ± 0.03 0.05 ± 0.05

70% 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 0.04 ± 0.04

80% 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.03

90% 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.02

Table 3.9: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the PG network when η = 1

61

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.16 ± 0.14 0.09 ± 0.11 0.12 ± 0.13 0.22 ± 0.17 0.14 ± 0.14 0.19 ± 0.16

20% 0.09 ± 0.09 0.05 ± 0.07 0.08 ± 0.09 0.14 ± 0.11 0.10 ± 0.11 0.14 ± 0.13

30% 0.06 ± 0.05 0.03 ± 0.04 0.05 ± 0.06 0.10 ± 0.08 0.07 ± 0.07 0.11 ± 0.11

40% 0.04 ± 0.03 0.03 ± 0.03 0.04 ± 0.04 0.08 ± 0.07 0.05 ± 0.05 0.08 ± 0.08

50% 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.04 0.05 ± 0.05 0.04 ± 0.04 0.07 ± 0.07

60% 0.02 ± 0.01 0.01 ± 0.01 0.03 ± 0.03 0.05 ± 0.04 0.03 ± 0.03 0.05 ± 0.05

70% 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.04 ± 0.03 0.03 ± 0.02 0.04 ± 0.04

80% 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.03

90% 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.02

Table 3.10: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the PG network when η = 10

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.15 ± 0.14 0.09 ± 0.11 0.10 ± 0.10 0.21 ± 0.15 0.14 ± 0.15 0.17 ± 0.15

20% 0.09 ± 0.09 0.05 ± 0.06 0.06 ± 0.07 0.14 ± 0.11 0.09 ± 0.09 0.12 ± 0.11

30% 0.05 ± 0.05 0.03 ± 0.04 0.04 ± 0.05 0.10 ± 0.08 0.06 ± 0.07 0.08 ± 0.08

40% 0.04 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.07 ± 0.06 0.04 ± 0.04 0.07 ± 0.06

50% 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.03 0.05 ± 0.04 0.04 ± 0.04 0.05 ± 0.05

60% 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.04 ± 0.03 0.03 ± 0.03 0.04 ± 0.04

70% 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.03

80% 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 0.03 ± 0.02

90% 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

Table 3.11: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the PG network when η = 100

62

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.33 ± 0.26 0.32 ± 0.29 0.18 ± 0.24 0.39 ± 0.27 0.39 ± 0.29 0.18 ± 0.22

20% 0.22 ± 0.23 0.22 ± 0.25 0.16 ± 0.20 0.28 ± 0.24 0.27 ± 0.26 0.16 ± 0.20

30% 0.16 ± 0.19 0.17 ± 0.21 0.16 ± 0.18 0.20 ± 0.20 0.21 ± 0.22 0.15 ± 0.18

40% 0.11 ± 0.15 0.12 ± 0.17 0.16 ± 0.16 0.16 ± 0.18 0.17 ± 0.19 0.14 ± 0.15

50% 0.08 ± 0.11 0.08 ± 0.13 0.13 ± 0.13 0.12 ± 0.14 0.12 ± 0.16 0.12 ± 0.13

60% 0.05 ± 0.08 0.06 ± 0.10 0.11 ± 0.10 0.08 ± 0.10 0.08 ± 0.12 0.10 ± 0.10

70% 0.04 ± 0.06 0.04 ± 0.07 0.08 ± 0.08 0.05 ± 0.07 0.05 ± 0.08 0.09 ± 0.08

80% 0.02 ± 0.04 0.02 ± 0.04 0.06 ± 0.05 0.03 ± 0.04 0.03 ± 0.05 0.06 ± 0.05

90% 0.01 ± 0.02 0.01 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.03

Table 3.12: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the IAS network under the IC model

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.35 ± 0.26 0.34 ± 0.29 0.27 ± 0.26 0.36 ± 0.27 0.36 ± 0.29 0.31 ± 0.26

20% 0.24 ± 0.22 0.26 ± 0.26 0.24 ± 0.23 0.29 ± 0.23 0.31 ± 0.27 0.25 ± 0.22

30% 0.20 ± 0.19 0.20 ± 0.23 0.21 ± 0.20 0.23 ± 0.20 0.24 ± 0.23 0.23 ± 0.20

40% 0.15 ± 0.16 0.17 ± 0.20 0.19 ± 0.17 0.18 ± 0.17 0.19 ± 0.19 0.19 ± 0.16

50% 0.13 ± 0.13 0.13 ± 0.16 0.17 ± 0.14 0.15 ± 0.14 0.15 ± 0.16 0.18 ± 0.14

60% 0.09 ± 0.10 0.09 ± 0.12 0.13 ± 0.11 0.11 ± 0.11 0.11 ± 0.12 0.14 ± 0.11

70% 0.07 ± 0.08 0.07 ± 0.09 0.10 ± 0.09 0.08 ± 0.08 0.08 ± 0.09 0.11 ± 0.09

80% 0.05 ± 0.05 0.05 ± 0.06 0.08 ± 0.06 0.06 ± 0.05 0.05 ± 0.06 0.07 ± 0.06

90% 0.03 ± 0.03 0.03 ± 0.03 0.04 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.05 ± 0.03

Table 3.13: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the IAS network under the SpikeM model

63

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.13 ± 0.13 0.10 ± 0.13 0.13 ± 0.14 0.19 ± 0.15 0.18 ± 0.18 0.22 ± 0.18

20% 0.07 ± 0.08 0.06 ± 0.09 0.09 ± 0.12 0.13 ± 0.11 0.12 ± 0.13 0.17 ± 0.15

30% 0.04 ± 0.04 0.04 ± 0.07 0.07 ± 0.08 0.09 ± 0.08 0.09 ± 0.11 0.13 ± 0.12

40% 0.03 ± 0.03 0.03 ± 0.07 0.05 ± 0.06 0.06 ± 0.05 0.06 ± 0.08 0.11 ± 0.10

50% 0.02 ± 0.02 0.02 ± 0.04 0.04 ± 0.05 0.05 ± 0.04 0.05 ± 0.07 0.10 ± 0.09

60% 0.01 ± 0.01 0.02 ± 0.03 0.04 ± 0.04 0.04 ± 0.03 0.04 ± 0.05 0.09 ± 0.08

70% 0.01 ± 0.01 0.01 ± 0.02 0.03 ± 0.03 0.03 ± 0.02 0.03 ± 0.04 0.07 ± 0.06

80% 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 0.02 ± 0.03 0.06 ± 0.04

90% 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.02

Table 3.14: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the PG network under the IC model

Timestamp Size CR TR GAU CR (Biased) TR (Biased) GAU (Biased)

10% 0.18 ± 0.15 0.10 ± 0.12 0.11 ± 0.11 0.24 ± 0.16 0.15 ± 0.15 0.17 ± 0.14

20% 0.10 ± 0.09 0.06 ± 0.07 0.06 ± 0.07 0.14 ± 0.10 0.09 ± 0.08 0.11 ± 0.10

30% 0.06 ± 0.06 0.03 ± 0.04 0.04 ± 0.04 0.10 ± 0.08 0.06 ± 0.06 0.07 ± 0.07

40% 0.04 ± 0.04 0.03 ± 0.02 0.03 ± 0.03 0.07 ± 0.05 0.04 ± 0.04 0.05 ± 0.05

50% 0.03 ± 0.03 0.02 ± 0.02 0.02 ± 0.02 0.05 ± 0.04 0.04 ± 0.03 0.04 ± 0.04

60% 0.02 ± 0.02 0.02 ± 0.01 0.02 ± 0.02 0.04 ± 0.03 0.03 ± 0.02 0.03 ± 0.03

70% 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.02

80% 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.02

90% 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

Table 3.15: Normalized rank (mean ± standard deviation) for different distributions

and sizes of timestamps on the PG network under the SpikeM model

64

Edges Removed CR TR GAU NETSLEUTH ECCE RUM

0 0.08 ± 0.09 0.10 ± 0.13 0.12 ± 0.12 0.31 ± 0.32 0.42 ± 0.30 0.53 ± 0.32

1000 0.08 ± 0.10 0.10 ± 0.13 0.13 ± 0.13 0.29 ± 0.31 0.41 ± 0.30 0.52 ± 0.33

2000 0.07 ± 0.09 0.11 ± 0.14 0.13 ± 0.13 0.30 ± 0.31 0.42 ± 0.29 0.54 ± 0.32

3000 0.07 ± 0.09 0.11 ± 0.14 0.13 ± 0.13 0.25 ± 0.30 0.42 ± 0.29 0.52 ± 0.33

4000 0.07 ± 0.08 0.09 ± 0.13 0.12 ± 0.12 0.26 ± 0.30 0.42 ± 0.30 0.49 ± 0.34

5000 0.07 ± 0.08 0.09 ± 0.12 0.12 ± 0.12 0.25 ± 0.29 0.39 ± 0.29 0.48 ± 0.33

6000 0.06 ± 0.08 0.08 ± 0.12 0.11 ± 0.12 0.21 ± 0.26 0.35 ± 0.29 0.41 ± 0.31

7000 0.06 ± 0.08 0.08 ± 0.12 0.12 ± 0.12 0.21 ± 0.27 0.34 ± 0.27 0.39 ± 0.31

8000 0.06 ± 0.08 0.07 ± 0.12 0.10 ± 0.11 0.21 ± 0.26 0.33 ± 0.28 0.38 ± 0.32

9000 0.06 ± 0.08 0.06 ± 0.11 0.10 ± 0.11 0.19 ± 0.25 0.32 ± 0.30 0.35 ± 0.32

10000 0.05 ± 0.06 0.05 ± 0.09 0.08 ± 0.10 0.18 ± 0.23 0.34 ± 0.29 0.32 ± 0.32

11000 0.05 ± 0.07 0.03 ± 0.07 0.07 ± 0.10 0.14 ± 0.21 0.33 ± 0.29 0.29 ± 0.35

Table 3.16: Normalized rank (mean ± standard deviation) as the number of removed

edges increases in the IAS network

Tweet cascade size [10,200) [200,400) [400,600) [600,800) [800,∞)

Number of samples 285 126 106 76 145

CR-30% 0.05 ± 0.05 0.04 ± 0.07 0.07 ± 0.08 0.10 ± 0.08 0.08 ± 0.08

CR-10% 0.21 ± 0.29 0.08 ± 0.10 0.12 ± 0.11 0.14 ± 0.12 0.10 ± 0.10

TR-30% 0.06 ± 0.11 0.08 ± 0.19 0.10 ± 0.19 0.17 ± 0.25 0.10 ± 0.17

TR-10% 0.23 ± 0.30 0.15 ± 0.24 0.21 ± 0.29 0.24 ± 0.30 0.23 ± 0.32

GAU-30% 0.06 ± 0.06 0.06 ± 0.08 0.11 ± 0.11 0.12 ± 0.10 0.12 ± 0.12

GAU-10% 0.06 ± 0.06 0.09 ± 0.11 0.14 ± 0.12 0.15 ± 0.11 0.14 ± 0.12

NETSLEUTH 0.36 ± 0.30 0.43 ± 0.35 0.37 ± 0.30 0.35 ± 0.28 0.36 ± 0.27

ECCE 0.06 ± 0.06 0.08 ± 0.10 0.11 ± 0.10 0.10 ± 0.10 0.11 ± 0.11

RUM 0.05 ± 0.05 0.09 ± 0.11 0.10 ± 0.11 0.11 ± 0.10 0.13 ± 0.11

Table 3.17: Normalized rank for different tweet cascade sizes (mean ± standard

deviation) on the Weibo dataset

65

Chapter 4

CONCLUSIONS

In this dissertation, we derived the MAP estimator of the information source on tree

networks under the IC model. The SFT algorithm for general networks has been

proposed based on the MAP estimator. We proved the SFT algorithm identifies the

information source with probability one asymptotically in the ER random graphs

when the observation time t ≤ 2
3
tu, which is the first theoretical guarantee on non-

tree networks to our best knowledge. We evaluated the performance of SFT on tree

networks, the ER random graphs and the IAS networks.

In addition, we proposed two ranking algorithms, CR and TR which utilize the

partial timestamps to improve the accuracy. Experimental evaluations on synthetic

and real world data demonstrated that CR and TR improved the ranking accuracy

significantly compared with existing algorithms under different diffusion models, and

perform well in the real-world dataset.

All the algorithms discussed in this dissertation assume a single diffusion source

and the set of infected nodes are known. The following directions are worthy explor-

ing: 1) It would be interesting to extend the definition of the Jordan infection center

to multiple sources and provide similar theoretical performance guarantees; 2) An effi-

cient and accurate algorithm which utilizes the partial timestamps to detect multiple

information sources is another interesting future work; 3) One major assumption of

the dissertation is that all the infected nodes are observed. Another possible future

work is to extend the SFT algorithm to incomplete observations and to understand

the performance of the algorithm with incomplete observations.

66

REFERENCES

Agaskar, A. and Y. M. Lu, “A fast monte carlo algorithm for source localization on
graphs”, in “SPIE Optical Engineering and Applications”, (2013).

Boyd, S., C. Cortes, M. Mohri and A. Radovanovic, “Accuracy at the top”, in “Ad-
vances in Neural Information Processing Systems”, pp. 962–970 (2012).

Boyd, S. and L. Vandenberghe, Convex Optimization (Cambridge Unversity Press,
New York, NY, 2004).

Breiger, R. L. and P. E. Pattison, “Cumulated social roles: The duality of persons
and their algebras”, Social Networks 8, 3, 215 – 256 (1986).

Char, J., “Generation of trees, two-trees, and storage of master forests”, IEEE Trans.
Circuit Theory 15, 3, 228–238 (1968).

Chen, W., C. Wang and Y. Wang, “Scalable influence maximization for prevalent
viral marketing in large-scale social networks”, in “Proc. Ann. ACM SIGKDD
Conf. Knowledge Discovery and Data Mining (KDD)”, pp. 1029–1038 (2010).

Chen, W., Y. Wang and S. Yang, “Efficient influence maximization in social net-
works”, in “Proc. Ann. ACM SIGKDD Conf. Knowledge Discovery and Data Min-
ing (KDD)”, pp. 199–208 (2009).

Chen, Z., K. Zhu and L. Ying, “Detecting multiple information sources in networks
under the SIR model”, in “Proc. IEEE Conf. Information Sciences and Systems
(CISS)”, (Princeton, NJ, 2014).

Dong, W., W. Zhang and C. W. Tan, “Rooting out the rumor culprit from suspects”,
in “Proc. IEEE Int. Symp. Information Theory (ISIT)”, pp. 2671–2675 (Istanbul,
Turkey, 2013).

Draief, M. and L. Massouli, Epidemics and rumours in complex networks (Cambridge
University Press, 2010).

Erdos, P. and A. Renyi, “On random graphs I”, Publ. Math. Debrecen 6, 290–297
(1959).

Garey, M. R. and D. S. Johnson, Computers and Intractibility: A guide to the theory
of NP-completeness (Macmillan Higher Education, 1979).

Goldenberg, J., B. Libai and E. Muller, “Talk of the network: A complex systems
look at the underlying process of word-of-mouth”, Marketing Letters 12, 3, 211–223
(2001).

Goyal, A., W. Lu and L. V. S. Lakshmanan, “Simpath: An efficient algorithm for
influence maximization under the linear threshold model”, in “IEEE Int. Conf.
Data Mining (ICDM)”, pp. 211–220 (IEEE Computer Society, 2011).

67

Gruhl, D., R. Guha, D. Liben-Nowell and A. Tomkins, “Information diffusion through
blogspace”, in “Proc. Int. Conf. World Wide Web (WWW)”, pp. 491–501 (New
York, NY, 2004).

Harary, F., Graph theory (Addison-Wesley, 1991).

Karamchandani, N. and M. Franceschetti, “Rumor source detection under probabilis-
tic sampling”, in “Proc. IEEE Int. Symp. Information Theory (ISIT)”, (Istanbul,
Turkey, 2013).

Kempe, D., J. Kleinberg and E. Tardos, “Maximizing the spread of influence through
a social network”, in “Proc. Ann. ACM SIGKDD Conf. Knowledge Discovery and
Data Mining (KDD)”, pp. 137–146 (Washington DC, 2003).

Lappas, T., E. Terzi, D. Gunopulos and H. Mannila, “Finding effectors in social
networks”, in “Proc. Ann. ACM SIGKDD Conf. Knowledge Discovery and Data
Mining (KDD)”, pp. 1059–1068 (2010).

Lokhov, A. Y., M. Mézard, H. Ohta and L. Zdeborová, “Inferring the origin of an
epidemic with a dynamic message-passing algorithm”, Phys. Rev. E 90, 012801
(2014).

Luo, W. and W. P. Tay, “Estimating infection sources in a network with incom-
plete observations”, in “Proc. IEEE Global Conference on Signal and Information
Processing (GlobalSIP)”, pp. 301–304 (Austin, TX, 2013a).

Luo, W. and W. P. Tay, “Finding an infection source under the SIS model”, in “Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP)”, (Vancouver,
BC, 2013b).

Luo, W., W. P. Tay and M. Leng, “Identifying infection sources and regions in large
networks”, IEEE Trans. Signal Process. 61, 2850–2865 (2013).

Matsubara, Y., Y. Sakurai, B. A. Prakash, L. Li and C. Faloutsos, “Rise and fall
patterns of information diffusion: model and implications”, in “Proc. Ann. ACM
SIGKDD Conf. Knowledge Discovery and Data Mining (KDD)”, pp. 6–14 (Beijing,
China, 2012).

Milling, C., C. Caramanis, S. Mannor and S. Shakkottai, “Network forensics: Random
infection vs spreading epidemic”, in “Proc. Ann. ACM SIGMETRICS Conf.”, pp.
223–234 (2012).

Mitzenmacher, M. and E. Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis (Cambridge University Press, Cambridge, 2005).

Myers, S. A., C. Zhu and J. Leskovec, “Information diffusion and external influence
in networks”, in “Proc. Ann. ACM SIGKDD Conf. Knowledge Discovery and Data
Mining (KDD)”, pp. 33–41 (Beijing, China, 2012).

Pinto, P. C., P. Thiran and M. Vetterli, “Locating the source of diffusion in large-scale
networks”, Phys. Rev. Lett. 109, 6, 068702 (2012).

68

Prakash, B. A., J. Vreeken and C. Faloutsos, “Spotting culprits in epidemics: How
many and which ones?”, in “IEEE Int. Conf. Data Mining (ICDM)”, pp. 11–20
(Brussels, Belgium, 2012).

Sadikov, E., M. Medina, J. Leskovec and H. Garcia-Molina, “Correcting for missing
data in information cascades”, in “Proc. of the Fourth ACM Int. Conf. on Web
Search and Data Mining”, pp. 55–64 (2011).

Shah, D. and T. Zaman, “Rumors in a network: Who’s the culprit?”, IEEE Trans.
Inf. Theory 57, 5163–5181 (2011).

Shah, D. and T. Zaman, “Rumor centrality: A universal source detector”, ACM
SIGMETRICS Performance Evaluation Review 40, 1, 199–210 (2012).

Shakarian, P. and V. S. Subrahmanian, Geospatial Abduction: Principles and Practice
(Springer, 2011).

Shakarian, P., V. S. Subrahmanian and M. L. Sapino, “GAPs: Geospatial abduction
problems”, ACM Trans. Intell. Syst. Technol. 3, 1, 1–27 (2011).

Snow, J., “The cholera near Golden-square, and at Deptford”, Medical Times and
Gazette (1854).

Subramanian, V. G. and R. Berry, “Spotting trendsetters: Inference for network
games”, in “Proc. Annu. Allerton Conf. Communication, Control and Computing”,
(2012).

Wang, Z., W. Dong, W. Zhang and C. W. Tan, “Rumor source detection with multiple
observations: fundamental limits and algorithms”, in “Proc. Ann. ACM SIGMET-
RICS Conf.”, (Austin, TX, 2014).

Zejnilovic, S., J. Gomes and B. Sinopoli, “Network observability and localization of
the source of diffusion based on a subset of nodes”, in “Proc. Annu. Allerton Conf.
Communication, Control and Computing”, (Monticello, IL, 2013).

Zhu, K. and L. Ying, “Information source detection in the SIR model: A sample path
based approach”, IEEE/ACM Trans. Netw. DOI: 10.1109/TNET.2014.2364972
(2014a).

Zhu, K. and L. Ying, “A robust information source estimator with sparse obser-
vations”, in “Proc. IEEE Int. Conf. Computer Communications (INFOCOM)”,
(Toronto, Canada, 2014b).

69

APPENDIX A

PROOFS OF CHAPTER 2

70

A.1 Proof of Theorem 1

Proof. We first analyze the computational complexity of the node ID broadcasting
phase of Algorithm 1. The running time of the algorithm is equal to the minimum
infection eccentricity and the number of messages each node receives/sends during
each time slot is bounded by its degree. To implement Algorithm 1, each node
maintains an array of integers of size |V(gi)| and an integer counter. We assign an
integer index to each infected node. The values of that integer array are the distances
from the node to the infected nodes. The integer counter records the number of
distinct indexes received. A message only contains the index of an infected node. At
each iteration, each node broadcasts the new indexes to its neighbors. When a node
receives a new message, it checks the specific index to see whether the index has been
received. If not, it updates the value at the corresponding location of the array with
the current iteration number, which equals to the distance from the current node to
the infected node with the received index. Otherwise, the message is discarded. Then,
the node increases the value of its integer counter by one and checks whether the value
is |V(gi)|. All operations mentioned above have constant complexity. Therefore, the
complexity of processing one message is O(1). Each edge is used to transmit at most
|V(gi)| messages in one direction. Hence there are at most 2|V(gi)||E(gi)| messages to
be handled. Therefore, the worse case complexity of the node ID broadcasting phase
of Algorithm 1 is O(|V(gi)||E(gi)|).

The complexity of Algorithm 2 is O(deg(I)) since the number of boundary nodes
is bounded by |I|. In addition, Algorithms 2 are called at most |S| times in Algorithm
1 and |S| ≤ |V(gi)|. Therefore, the complexity of Algorithm 1 is

O(|V(gi)||E(gi)|+ |V(gi)|deg(I))

Note V(gi) = I and |E(gi)| ≤ deg(I). The complexity becomes

O(|I|deg(I)).

A.2 Proof of Theorem 2

First, we prove the following lemma for neighboring nodes.
Lemma 10. Neighboring nodes inequality Consider nodes u, v on tree T̃ satis-
fying the following conditions:

• (u, v) ∈ E(T̃).

• The observation time follows a distribution such that Pr(t) ≥ Pr(t + 1) for all
t.

• The source is uniformly chosen among all nodes, i.e., Pr(u) = Pr(v).

• e(v, I) > e(u, I).

We have
Pr(v|O) ≤ Pr(u|O)

71

Proof. Consider nodes u, v on a tree T̃ where (u, v) ∈ E(T̃). Let tu, tv be the obser-
vation times associated with u, v. We will show that when e(v, I) > e(u, I),

Pr(O|v, tv = t+ 1) ≤ Pr(O|u, tu = t), (A.1)

where Pr(O|v, tv = t) is the probability of the snapshot O given v is the source and
the observation time is at time slot t. .

We adopt an equivalent view of the IC model called live edge model (Kempe
et al., 2003). In the IC model, after u becomes infected, it attempts to infect its
neighbor w with probability quw once. Therefore, we can assume that a biased coin
with parameter quw is flipped for edge (u,w) ∈ E(g) when u tries to infect w in the
IC model. Note that the probability of node w is infected by node u remains the
same whether the coin is flipped at the moment when node u attempts to infect w or
prior to the infection but is revealed for the attempt. Assume the coins of all edges
are flipped at the beginning of the infection process. When one node attempts to
infect one of its neighbors, we check the stored coin realization to determine whether
the infection succeeds. This process is called live edge model and it is equivalent to
the IC model since we only change the time of the coin flippings, so the probability
of an infection trace remains the same. In the live edge model, the infection process
consists of two steps. First, each edge (u,w) flips a biased coin with probability quw to
be a live edge prior to the infection starts. After all coin flippings, the graph formed
by live edges is called the live edge graph. In the second step, the infection spreads
over all live edges deterministically, starting from the source. We now analyze SFT
under the live-edge model.

Denote by T the set of all live edge graphs of T̃ , i.e.,

T = {T |E(T) ⊂ E(T̃),V(T) = V(T̃)}

Note there are no loops in T ∈ T since T is a subgraph of tree T̃ .
Denote by K(O, v, tv) the set of all live edge graphs on which the observation O

is feasible if the source is v and the observation time is tv. All infected nodes must
be within tv hops from the source and all the observed healthy nodes must be more
than tv hops away from the source in a feasible live edge graph. Formally, we have

K(O, v, tv) = {T ∈ T |∀w ∈ I, dTvw ≤ tv,∀w ∈ H, dTvw > tv}.

Pr(O|v, tv) equals to the probability a live edge graph is in set K(O, v, tv) due to
the equivalence between the IC model and the live-edge model. The probability of a
specific live edge graph is the product of edge live/dead probabilities.

Hence we have
Pr(O|v, tv) =

∑
T∈K(O,v,tv)

Pr(T),

To prove the lemma, we will prove the following claim,

K(O, v, tv = t+ 1) ⊂ K(O, u, tu = t).

To simplify notation, we next assume tu = tv − 1 = t ≥ e(u, I), and ignore t in the
equations. Note that we only consider tu ≥ e(u, I) because Pr(O|u, tu) = 0 otherwise.

72

Consider T ∈ K(O, v, tv). Denote by T−uv the tree rooted at v without the subtree
starting from u where (u, v) ∈ E(T). Note, if I ∩ T̃−vu = ∅, we have e(v, I) ≤ e(u, I
since all infected nodes are on T̃−uv which is contradict to the fact that e(v, I) >
e(u, I). Therefore, there exists w† ∈ I ∩ T̃−vu . If (v, u) 6∈ E(T), we have dT

vw† =∞ > tv
which is a contradiction to T ∈ K(O, v, tv). Hence, we have (v, u) ∈ E(T).

• Consider T̃−vu part.

– For any w ∈ T̃−vu ∩ I, we have

dTvw ≤ e(v, I) ≤ tv.

Since (v, u) ∈ E(g) and T have no loops, we have

dTuw = dTvw − 1 ≤ tv − 1 = tu.

– For any w ∈ T̃−vu ∩H, we have

dTvw > e(v, I) ≥ tv.

Since (v, u) ∈ E(g) and T has no loops, we have

dTuw = dTvw − 1 > tv − 1 = tu.

• Consider T̃−uv part.

– For any w ∈ T̃−uv ∩I, if dT̃vw ≥ e(u, I), we have dT̃uw = dT̃vw + 1 ≥ e(u, I) + 1
which contradicts the definition of infection eccentricity. Therefore, we
have

dT̃vw ≤ e(u, I)− 1.

There is only one path Pvw from v to w in tree T̃ . If Pvw 6⊂ E(T), v, w
are disconnected in T which contradicts the fact that dTvw ≤ tv. Hence
Pvw ⊂ E(T). In addition, we have (v, u) ⊂ E(T). Hence

dTuw = dTvw + 1 = dT̃vw + 1 ≤ e(u, I) ≤ tu.

– For any w ∈ T̃−uv ∩ H, there is only one path Pvw from v to w in tree T̃ .
If Pvw 6⊂ E(T), we have

dTuw =∞ > tu.

If Pvw ⊂ E(T),

dTuw = dT̃uw = dT̃vw + 1 = dTvw + 1 > tv + 1 > tu

where dTvw > tv because T ∈ K(O, v, tv).

73

As a summary, for any T ∈ K(O, v, tv), we have

∀w ∈ I, dTuw ≤ tu,∀w ∈ H, dTuw > tu

Therefore, T ∈ K(O, u, tu).
Hence, we proved

K(O, v, tv = t+ 1) ⊂ K(O, u, tu = t)

which implies

Pr(O|v, tv = t+ 1) =
∑

T∈K(O,v,tv=t+1)

Pr(T)

≤
∑

T∈K(O,u,tu=t)

Pr(T)

= Pr(O|u, tu = t).

Hence, we proved Inequality (A.1).
Denote by Pr(v) the probability that v is the source, Pr(t) the probability that

the observation time is t, and Pr(O|v, t) is the probability of snapshot O given v is
the source and t is the observation time. Since the observation time t is independent
of the source node, we obtain

Pr(v|O) =
1

Pr(O)
Pr(v,O)

=
1

Pr(O)

∑
t≥e(v,I)

Pr(v, t,O)

=
1

Pr(O)

∑
t≥e(v,I)

Pr(O|v, t) Pr(v, t)

=
Pr(v)

Pr(O)

∑
t≥e(v,I)

Pr(O|v, t) Pr(t)

≤(a)
Pr(v)

Pr(O)

∑
t≥e(v,I)

Pr(O|u, t− 1) Pr(t)

=(b)
Pr(u)

Pr(O)

∑
t≥e(u,I)

Pr(O|u, t) Pr(t+ 1)

≤(c)
Pr(u)

Pr(O)

∑
t≥e(u,I)

Pr(O|u, t) Pr(t)

= Pr(u|O)

(a) is due to Inequality (A.1), (b) is based on Pr(u) = Pr(v) and e(v, I) = e(u, I)+1,
and (c) is based on Pr(t) ≥ Pr(t+ 1).

74

Figure A.1: A pictorial description of the positions of nodes a, u, w and ξ.

Next, we present the essential lemma which is needed to prove Theorem 2.

Lemma 11. For any a ∈ V(T̃) which is not a Jordan infection center, there exists
a path from a to one Jordan infection center along which the infection eccentricity
strictly decreases.

Proof. We assume the tree has two Jordan infection centers: w and u, and assume
e(w, I) = e(u, I) = λ. The same argument works for the case where the tree has only
one Jordan infection center.

According to (Harary, 1991), there exist at most two Jordan centers. When the
network has two Jordan centers, the two must be neighbors. Therefore w and u must
be adjacent. We will show for any a ∈ V(T̃)\{w, u}, there exists a path from a to u
(or w) along which the infection eccentricity strictly decreases.

Step 1: First, it is easy to see from Figure A.1 that dγw ≤ λ − 1 ∀γ ∈ T̃−uw ∩ I.
We next show that there exists a node ξ such that the equality holds.

Suppose that dγw ≤ λ− 2 for any γ ∈ T̃−uw ∩ I, which implies

dγu ≤ λ− 1 ∀γ ∈ T̃−uw ∩ I.

Since w and u are both Jordan infection centers, we have ∀γ ∈ T̃−wu ∩ I,

dγw ≤ λ

dγu ≤ λ− 1.

In a summary, ∀γ ∈ I,
dγu ≤ λ− 1.

This contradicts the fact that e(w, I) = e(u, I) = λ. Therefore, there exists ξ ∈
T̃−uw ∩ I such that

dξw = λ− 1.

Step 2: Similarly, ∀γ ∈ T̃−wu ∩ I,

dγu ≤ λ− 1,

and there exists a node such that the equality holds.

75

Step 3: Next we consider a ∈ V(T̃)\{w, u}, and assume a ∈ T̃−wu and d(a, u) = β.
Then for any γ ∈ T̃−uw ∩ I, we have

daγ = dau + duw + dwγ
≤ β + 1 + λ− 1

= λ+ β,

and there exists ξ ∈ T̃−uw ∩ I such that the equality holds. On the other hand,
∀γ ∈ T̃−wu ∩ I.

daγ ≤ dau + duγ
≤ β + λ− 1.

Therefore, we conclude that
e(a, I) = λ+ β,

so the infection eccentricity decreases along the path from a to u.

Based on Lemma 11, there exists a path from any node to a Jordan infection
center in the tree network such that the infection eccentricity strictly decreases along
the path. By repeatedly applying Lemma 10, we conclude that a MAP estimator
must be a Jordan infection center.

Recall J is the set of Jordan infection centers. Next, we will show that the MAP
estimator , say node v, has the maximum

∑
(v,w)∈F ′u

| log(1− qvw)| among all nodes in
J .

Define an edge set

F = {(v, w)|(v, w) ∈ E(T̃), v ∈ I, w ∈ H}.

We call the edges in F the frontier edges since they are the edges between I and H.
Define another edge set

B = {(v, w)|(v, w) ∈ E(T̃), v, w ∈ I}.

The edges in B are the edges between infected nodes.
In addition, for any u ∈ J define

Fu(tu) = {(v, w)|(v, w) ∈ E(T̃), v ∈ I, w ∈ H, duw ≤ tu}.

Fu(tu) is set of edges which cannot be live edges when u is the source and tu is the
observation time.

For a complete observation, we have

Pr(O|u, tu) =
∏

(v,w)∈B

qvw
∏

(v,w)∈Fu(tu)

(1− qvw) (A.2)

76

Denote by e∗ the minimum infection eccentricity, i.e.,

∀v ∈ J , e(v, I) = e∗

Intuitively, when tu > e∗, none of frontier edges should be a live edge in a feasible live
edge graph to make sure healthy nodes are not infected. So when tu > e∗, we have

Fu(tu) = F .

Hence,

Pr(O|u, tu) =
∏

(v,w)∈B

qvw
∏

(v,w)∈F

(1− qvw) , C,

which is not a function of either tu or u. Substituting into Equation (A.2), we have

Pr(O|u, e∗) =
C∏

(v,w)∈F\Fu(e∗)(1− qvw)
(A.3)

Follow a similar procedure in Lemma 10, for an Jordan infection center u, we have

Pr(u|O) =
Pr(u)

Pr(O)

∑
t

Pr(O|u, t) Pr(t)

=
Pr(u)

Pr(O)

(
Pr(O|u, e∗) Pr(t = e∗) +

∑
t>e∗

Pr(O|u, t) Pr(t)

)
=

Pr(u)

Pr(O)
(Pr(O|u, e∗) Pr(t = e∗) + Pr(t > e∗)C)

Therefore,

arg max
u

Pr(u|O) (A.4)

= arg max
u∈J

Pr(u|O) (A.5)

= arg max
u∈J

Pr(u)

Pr(O)

(
Pr(O|u, e∗) Pr(t = e∗) + Pr(t > e∗)C

)
(A.6)

= arg max
u∈J

Pr(O|u, e∗) (A.7)

= arg min
u∈J

∏
(v,w)∈F\Fu(e∗)

(1− qvw). (A.8)

Note we have

F\Fu(e∗) = {(v, w)|(v, w) ∈ E(T̃), v ∈ I, w ∈ H, dvw > e∗}

Since e∗ is the minimum eccentricity and u is the Jordan infection center, we have
duv ≤ e∗ for all v ∈ I. Hence for all w ∈ H which have at least one edge to the
infected nodes, we have duw ≤ e∗ + 1. Therefore, we have

F\Fu(e∗) = {(v, w)|(v, w) ∈ E(T̃), v ∈ I, w ∈ H, dvw = e∗ + 1} = F ′u.

77

Based on equations A.7 and A.8, we conclude

arg min
u∈J

∏
(v,w)∈F ′u

(1− qvw) = arg max
u∈J

∑
(v,w)∈F ′u

| log(1− qvw)| = arg max
u

Pr(u|O).

Remark: Theorem 2 contains two important properties for the MAP estimator
on tree networks: 1) the MAP estimator is a Jordan infection center; 2) the Jordan
infection center with minimum

∏
(v,w)∈F ′u

(1− qvw) is the MAP estimator. The short-
fat tree algorithm is designed based on these properties, which identifies the Jordan
infection centers first and then selects the one with maximum

∑
(v,w)∈F ′u

| log(1−qvw)|.

A.3 Proof of Theorem 3

We first introduce and recall some necessary notations. Consider an ER random
graph g.
• Denote by s the actual source.

• A node v is said to locate on level k if dsv = k. Denote by Lk the set of nodes
from level 0 to level k and lk = |Lk|.

• The descendants of node v in a tree are all the nodes in the subtree rooted at
v and v is the ancestor of these nodes.

• The offsprings of a node on level k (say v) are the nodes which are on level k+1
and have edges to v. Denote by Φ(v) the offspring set of v and φ(v) = |Φ(v)|.

• Denote by p the wiring probability in the ER random graph.

• Denote by n the total number of nodes.

• Denote by µ = np.

• Recall that Bi(n, p) is the binomial distribution with n number of trials and
each trial succeeds with probability p.

• Denote by q the minimum infection probability of all the edges, i.e., q =
mine∈E(g) qe.

For simplicity, we use dvu = dgvu.
We first elaborate the construction of the BFS tree. Denote by vij the jth satu-

rated node on level i of the BFS tree from the source. v01 = s is the first node on
level zero. Denote by bi the number of nodes on level i of the BFS tree starting from
the source. We start with an empty graph T †. Initially, we add v01 to the tree. Start-
ing from v01, we explore all neighbors v11, v12, · · · , v1b1 of v01, mark v01 as saturated
and add the edges from v01 to v11, v12, · · · , v1b1 to T †. Then we explore all neigh-
bors v21, v22, · · · , v2r1 of v11 in the set V(g)\{v01, v11, · · · , v1b1}, mark v11 as saturated
and add the edges from v11 to v21, v22, · · · , v2r1 to T †. Then we explore all neighbors
v2r1+1, v2r1+2, · · · , v2r1+r2 of v12 in the set V(g)\{v01, v11, · · · , v1b1 , v21, v22, · · · , v2r1}
and add the corresponding edges. Only after all nodes on level i are saturated, we

78

explore nodes on level i+ 1. The exploration terminates after all nodes on level t− 1
are saturated. The resulting tree T † is the BFS tree.

We further introduce some notations for the BFS tree.

• Denote by Φ′(v) the set of offsprings of node v on T † and φ′(v) = |Φ′(v)|.

• Denote by gt the subgraph induced by all nodes within t hops from s on the
ER graph. The collision edges are the edges which are not in T † but in gt,
i.e., e ∈ E(gt)\E(T †). A node who is an end node of a collision edge is called
a collision node. Denote by Rk the set of collision edges whose end nodes are
within level k and Rk = |Rk|.

• Denote by Z ij(v) the set of nodes that are infected at time slot i, on level j

and the descendants of node v in the BFS tree T †. In addition, denote by
Zi
j(v) = |Z ij(v)|. We often use Z ij = Z ij(s) and Zi

j = Zi
j(s) for simplicity.

We first define the probability space of the problem. Define the sample space Ω
to be the set of live edge subgraphs of all ER graphs. The probability measure of
a live-edge graph is defined by edge generations. Edge (v, w) exists in a live edge
subgraph with probability pqvw.

To prove that s is the only Jordan infection center, we consider the following
asymptotically high probability events.

• Offsprings of each node. Define

E1 = {∀v ∈ Lt−1, φ
′(v) ∈ ((1− δ)µ, (1 + δ)µ)}.

E1, when occurs, provides upper and lower bounds for the number of offsprings
of each node in Lt−1.

• Collision edges. We define event E2 when the following upper bound on the
collision edges holds

Rj


= 0 if 0 < j ≤ bm−c,
≤ 8µ if bm−c < j < dm+e,
≤ 4[(1+δ)µ]2j+1

n
if dm+e ≤ j ≤ logn

(1+α) log µ
.

where m+ = logn
2 log[(1+δ)µ]

and m− = logn−2 log µ−log 8
2 log[(1+δ)µ]

. E2 provides the upper bounds

for collision edges at different levels. Note that a subgraph with diameter ≤ m−

is a tree with high probability since there is no collision edge.

• Infected nodes. Define

E3 = {Z1
1 ≥ (1− δ)2µq} ∩ {∀v ∈ Z1

1 ,∩ti=2Z
i
i(v) ≥ (1− δ)2µqZi−1

i−1(v)}.

Level 1 has at least (1−δ)2µq infected nodes and the number of nodes grows ex-
ponentially by each level with a factor of (1−δ)2µq. One immediate consequence
of event E3 is that

∀v ∈ Z1
1 , Z

t
t(v) ≥ [(1− δ)2µq]t−1,

i.e., there are at least [(1 − δ)2µq]t−1 infected descendants on level t in T † for
each infected node on level 1.

79

Based on Lemma 12, 13 and 14, for any ε > 0, with the union bound, we have
that when t ≤ logn

(1+α) log µ
and n is sufficiently large,

Pr(E1 ∩ E2 ∩ E3) ≥ Pr(E1)
(
1− Pr(Ē2|E1)− Pr(Ē3|E1)

)
≥ 1− ε

Next, we show that s is the only Jordan infection center when E1, E2, E3 occur.
For t ≤ bm−c, the nodes within t hops from the source form a tree because there is

no collision edge (due to event E2). When event E3 occurs, we have ∀v ∈ Z1
1 , Z

t
t(v) ≥

[(1 − δ)2µq]t−1 which means there exists at least one observed infected node on t
level for each subtree rooted on level 1. Consider infected node s′. Recall that a(s′)
is the ancestor of s′ on level 1 of T †. Consider node u ∈ Z1

1 such that u 6= a(s′) and

node w ∈ Z tt (u). We have dT
†

s′w = dT
†

s′s + dT
†

sw > t. Hence the infection eccentricity of
s′ is larger than t. Therefore, s is the only Jordan infection center. The positions of
s, s′, a(s′), u and w are illustrated in Figure 2.3.

Consider the case t > bm−c and an infected node s′ on level k ∈ [1, t]. In the rest
of the proof, we show that there exists node v ∈ I such that ds′v > t, which means
that s′ cannot be the Jordan infection center.

Figure A.2: A pictorial example of Z tt (u) in BFS tree T †

Consider node u ∈ Z1
1 , u 6= a(s′) (the existence of u is guaranteed since Z1

1 ≥
(1− δ)µq ≥ 2). For the convenience of the reader, we copied Figure 2.3 as Figure A.2
which shows the relative positions of s′, a(s′), u, and Z tt (u). The distance between a
node in Z tt (u) and s′ on the tree T † is k + t. Therefore, if s′ is the Jordan infection
center, there exists at least one collision node on the path between s′ and each node
in Z tt (u) to make the distance ≤ t.

Define H to be the total number of nodes each of which has the shortest path
to s′ within t hops and containing at least one collision node on gt. If H < Zt

t(u),
there exists a node v ∈ Z tt (u) such that ds′v > t. Therefore, s′ can not be the Jordan
infection center and the theorem is proved.

In the rest of the proof, we will show that H < Zt
t(u). We first have the lower

bound on Zt
t(u) according to E3,

Zt
t(u) ≥ [(1− δ)2µq]t−1 (A.9)

80

The upper bound of H is computed in Lemma 15.

H ≤ c[(1 + δ)µ]
3
4
t+ 1

2 + c[(1 + δ)µ](
5
4
−α

2
)t+2,

Since 1
2
< α < 1, we have α = 1

2
+ α′ where 0 < α′ < 1

2
is a constant. Based on

Lemma 15, we have

H

Zt
t(u)

≤ c[(1 + δ)µ]
3
4
t+ 1

2 + c[(1 + δ)µ](
5
4
−α

2
)t+2

[(1− δ)2µq]t−1

≤ c[(1 + δ)µ]
3
4
t+ 1

2

[(1− δ)2µq]t−1
+
c[(1 + δ)µ](

5
4
−α

2
)t+2

[(1− δ)2µq]t−1

=
c

µ

(
(1 + δ)

3
4

+ 1
2t

[(1− δ)2q]1−
1
tµ

1
4
− 5

2t

)t

+
c

µ

(
(1 + δ)

5
4
−α

2
+ 2
t

[(1− δ)2q]1−
1
tµ

α
2
− 1

4
− 4
t

)t

≤ c

µ

(
(1 + δ)

3
4

+ 1
2t

[(1− δ)2q]1−
1
tµ

1
4
− 4
t

)t

+
c

µ

(
(1 + δ)1−α

′
2

+ 2
t

[(1− δ)2q]1−
1
tµ

α′
2
− 4
t

)t

For t > 16/α′ we have

H

Zt
t(u)

≤ 2c

µ

(
(1 + δ)

[(1− δ)2q]µ
α′
4

)t

.

Since µ > 3 log n and δ, q, α′ are constants, we have

(1 + δ)

[(1− δ)2q]µ
α′
4

< 1

when

n > exp

(
1

2

(
(1 + δ)

(1− δ)2q

) 4
α′
)
.

Therefore, we have
H

Zt
t(u)

≤ 2c

µ
≤ ε′,

where ε′ ∈ (0, 1) is a constant and the inequality holds for sufficiently large n. There-
fore, there are at least (1 − ε′)Zt

t(u) nodes which cannot be reached from s′ on level
k with time t. Hence we have e(s′,O) > t,∀s′ 6= s.

A.3.1 Bounds on the Number of Offsprings of Each Node

Lemma 12. Assume the conditions in Theorem 3 hold, for any ε > 0, we have

Pr (E1) ≥ 1− ε

for sufficient large n.

81

Proof. Consider δ ∈ (0, 1). Since t ≤ logn
(1+α) log µ

, we have for sufficiently large n,

t∑
i=0

[(1 + δ)µ]i ≤ 2[(1 + δ)µ]t ≤ δ′n,

where δ′ ∈ (0, 1) is a constant which can be arbitrarily close to 0. This condition
shows that the t hop neighborhood of node s includes at most a constant fraction of
the total number of nodes.

Denote by E(V1,V2) the set of edges between node set V1 and V2. Recall that vij
is the jth nodes on level i to be explored in the BFS tree starting from the source
and bi is the number of nodes on level i.

Define the edge set from v01 to all other nodes in the ER graph to be

Ψ(v01) = E({v01},V(g)\{v01}),

which is the set of edges between v01 and all other nodes in the graph.
Define

Φ′(v01) = {v|(v, v01) ∈ Ψ(v01)}.
Define

Ψ(v01, v11) = E({v11},V(g)\(Φ′(v01) ∪ {v01})),
which is the set of edges from node v11 to all nodes that are not already included in
the BFS tree and

Φ′(v01, v11) = {v|(v, v11) ∈ Ψ(v01, v11)},
which is the set of offsprings of v11.

For simplicity, we use Ψ(vij) to denote

Ψ(v01, v11, · · · , v1b1 , · · · , vi1, · · · , vij).

and use Φ′(vij) to denote

Φ′(v01, v11, · · · , v1b1 , · · · , vi1, · · · , vij).

Iteratively, we define

Ψ(vij) , E({vij},V(g)\({v01} ∪ Φ′(v01) ∪ · · · ∪ Φ′(vij−1)))

and

Φ′(vij) , {v|(v, vij) ∈ Ψ(vij)}

which is the set of offsprings of node vij in the BFS tree from the source. Define
φ′(vij) = |Φ′(vij)| and ψ(vij) = |Ψ(vij)|.

Note that Ψ(vij) uniquely determines Φ′(vij) and vice versa. In addition, according
to the definition, Ψ(vij) for any i and j are pairwise disjoint.

Define
Λ(vij) = {Φ′(vij)|φ′(vij) ∈ (µ(1− δ), µ(1 + δ))}.

82

which is the set of Φ′(vij) which satisfies the given bounds on the number of offsprings.
Therefore, we have

Pr(E1)

= Pr (∀v ∈ Lt−1, φ
′(v) ∈ (µ(1− δ), µ(1 + δ)))

=
∑

Φ′(v01)∈Λ(v01)

Pr
(

Φ′(v01), φ′(v) ∈ (µ(1− δ), µ(1 + δ)),∀v ∈ Lt−1\{v01}
)

=
∑

Φ′(v01)∈Λ(v01)

Pr(Φ′(v01)) Pr
(
∀v ∈ Lt−1\{v01}, φ′(v) ∈ (µ(1− δ), µ(1 + δ))|Φ′(v01)

)
Given Φ′(v01), the order of the nodes to be explored during the construction of the
BFS tree on the next level is determined and we have

Pr (∀v ∈ Lt−1, φ
′(v) ∈ (µ(1− δ), µ(1 + δ)))

=
∑

Φ′(v01)∈Λ(v01)

∑
Φ′(v11)∈Λ(v11)

Pr(Φ′(v01),Φ′(v11))

× Pr
(
∀v ∈ Lt−1\{v01, v11}, φ′(v) ∈ (µ(1− δ), µ(1 + δ))|Φ′(v01),Φ′(v11)

)
Iteratively, we have

Pr (∀v ∈ Lt−1, φ
′(v) ∈ (µ(1− δ), µ(1 + δ))) (A.10)

=
∑

Φ′(v01)∈Λ(v01)

· · ·
∑

Φ′(vt−1bt−1−1)∈Λ(vt−1bt−1−1)

(A.11)

Pr(Φ′(v01), · · · ,Φ′(vt−1bt−1−1)) (A.12)

× Pr
(
φ′(vt−1bt−1) ∈ (µ(1− δ), µ(1 + δ)) (A.13)

|Φ′(v01), · · · ,Φ′(vt−1bt−1−1)
)

(A.14)

Next, we focus on the last term in Equation (A.14). Note, Ψ(vij) uniquely determines
Φ′(vij) and vice versa. Therefore,

Pr
(
φ′(vt−1bt−1) ∈ (µ(1− δ), µ(1 + δ))|Φ′(v01), · · · ,Φ′(vt−1bt−1−1)

)
(A.15)

= Pr
(
φ′(vt−1bt−1) ∈ (µ(1− δ), µ(1 + δ))|Ψ(v01), · · · ,Ψ(vt−1bt−1−1)

)
(A.16)

Since Ψ(vt−1bt−1) is disjoint with Ψ(v01), · · · ,Ψ(vt−1bt−1−1) and each edge is generated
independently in the ER graph. Therefore, conditioned on Ψ(v01), · · · ,Ψ(vt−1bt−1−1),
we have φ′(vt−1bt−1) follows

Bi(n−
t−2∑
i=0

bi∑
j=1

φ′(vij)−
bt−1−1∑
j=1

φ′(vt−1j)− 1, p).

83

Note, φ(v01), · · · , φ(vt−1bt−1−1) are in (µ(1−δ), µ(1+δ)) according to the condition
in Equation (A.11). Hence

t−2∑
i=0

bi∑
j=1

φ′(vij) +

bt−1−1∑
j=1

φ′(vt−1j) + 1 ≤
t∑
i=0

[µ(1 + δ))]i

Therefore, φ′(vt−1bt−1) stochastically dominates Bi(n−
∑t

i=0[µ(1 + δ))]i, p) and is
stochastically dominated by Bi(n, p) which implies

Pr
(
φ′(vt−1bt−1) ∈ (µ(1− δ), µ(1 + δ))|Φ′(v01), · · · ,Φ′(vt−1bt−1−1)

)
≥ 1− Pr

(
Bi

(
n−

t∑
i=0

[µ(1 + δ))]i, p

)
≤ (1− δ)µ

)
− Pr (Bi (n, p) ≥ µ(1 + δ))

Note
∑t

i=0[(1 + δ)µ]i ≤ δ′n. Therefore, we have

Pr
(
φ′(vt−1bt−1) ∈ (µ(1− δ), µ(1 + δ))|Φ′(v01), · · · ,Φ′(vt−1bt−1−1)

)
(A.17)

≥ 1− Pr (Bi ((1− δ′)n, p) ≤ (1− δ)µ)− Pr (Bi (n, p) ≥ µ(1 + δ)) (A.18)

By using the Chernoff bound in Lemma 19, we have

Pr (Bi ((1− δ′)n, p) ≤ µ(1− δ)) ≤ exp

(
−(δ − δ′)2µ

2(1− δ′)

)
,

and

Pr (Bi (n, p) ≥ µ(1 + δ)) ≤ exp

(
− δ2µ

2 + δ

)
Substitute into Inequality (A.18), we obtain

Pr
(
φ′(vt−1bt−1) ∈ (µ(1− δ), µ(1 + δ))|Φ′(v01), · · · ,Φ′(vt−1bt−1−1)

)
(A.19)

≥ 1− exp

(
−(δ − δ′)2µ

2(1− δ′)

)
− exp

(
− δ2µ

2 + δ

)
, ∆ (A.20)

84

Substitute Inequality (A.20) into Equation (A.14), we obtain

Pr (∀v ∈ Lt−1, φ
′(v) ∈ (µ(1− δ), µ(1 + δ))) (A.21)

≥
∑

Φ′(v01)∈Λ(v01)

· · ·
∑

Φ′(vt−1bt−1−1)∈Λ(vt−1bt−1−1)

(A.22)

Pr(Φ′(v01), · · · ,Φ′(vt−1bt−1−1))×∆ (A.23)

= ∆
∑

Φ′(v01)∈Λ(v01)

· · ·
∑

Φ′(vt−1bt−1−2)∈Λ(vt−1bt−1−2)

(A.24)

(∑
Φ′(vt−1bt−1−1)∈Λ(vt−1bt−1−1)

Pr(Φ′(v01), · · · ,Φ′(vt−1bt−1−1))
)

(A.25)

= ∆
∑

Φ′(v01)∈Λ(v01)

· · ·
∑

Φ′(vt−1bt−1−2)∈Λ(vt−1bt−1−2)

(A.26)

Pr(Φ′(v01), · · · ,Φ′(vt−1bt−1−2)) (A.27)

Pr
(
φ′(vt−1bt−1−1) ∈ (µ(1− δ), µ(1 + δ)) (A.28)

|Φ′(v01), · · · ,Φ′(vt−1bt−1−2)
)

(A.29)

= ∆2
∑

Φ′(v01)∈Λ(v01)

· · ·
∑

Φ′(vt−1bt−1−2)∈Λ(vt−1bt−1−2)

Pr(Φ′(v01), · · · ,Φ′(vt−1bt−1−2)) (A.30)

Applying Equation (A.30) iteratively, we have

Pr (∀v ∈ Lt−1, φ
′(v) ∈ (µ(1− δ), µ(1 + δ)))

≥∆
∑t−1
i=0 [(1+δ)µ]i

≥
(

1− exp

(
−(δ − δ′)2µ

2(1− δ′)

)
− exp

(
− δ2µ

2 + δ

))∑t−1
i=0 [(1+δ)µ]i

When δ′ → 0, we have
(δ − δ′)2µ

2(1− δ′)
→ δ2µ

2
>

δ2µ

2 + δ

85

Therefore, we can choose a sufficiently small δ′ such that

Pr (∀v ∈ Lt−1, φ
′(v) ∈ (µ(1− δ), µ(1 + δ)))

≥
(

1− 2 exp

(
− δ2µ

2 + δ

))∑t−1
i=0 [(1+δ)µ]i

≥
(

1− 2 exp

(
− δ2µ

2 + δ

))2[(1+δ)µ]t−1

≥(a) exp

(
−8[(1 + δ)µ]t−1 exp

(
− δ2µ

2 + δ

))
≥ exp

(
−8 exp

(
− δ2µ

2 + δ
+ (t− 1) log[(1 + δ)µ]

))
,

where (a) is based on Lemma 20 and holds when µ is sufficiently large (i.e., when n
is sufficiently large). To make the above bound greater than 1− ε, we need

t ≤
δ2µ
2+δ
− log 8 + log log

(
1

1−ε

)
log(1 + δ) + log µ

+ 1.

When µ > 2+δ
δ2

log n, we have

t ≤ log n

(1 + α) log µ

<
log n− log 8 + log log

(
1

1−ε

)
log(1 + δ) + log µ

+ 1.

for sufficiently large n.
Note 2+δ

δ2
→ 3 when δ → 1 which matches the condition that µ > 3 log n. There-

fore, we prove the lemma.

A.3.2 Bounds on the Number of Collision Edges

Next, we analyze the number of collision edges on different levels. We have the
following lemma.
Lemma 13. If the conditions in Theorem 3 hold, for any ε > 0,

Pr(E2|E1) ≥ 1− ε

for sufficiently large n.

86

Proof. We have

Pr(E2|E1) ≥ 1− Pr(Rbm−c 6= 0|E1)

−
dm+e−1∑
j=bm−c+1

Pr(Rj > 8µ|E1)

−
t∑

j=dm+e

Pr

(
Rj >

4[(1 + δ)µ]2j+1

n
|E1

)

• No collision edge at the first bm−c levels.

We will show that

Pr
(
Rbm−c 6= 0|E1

)
≤ 1− exp

(
− 1

µ

)
≤ 1

µ

when n is sufficiently large.

Conditioning on E1, we have Rj is stochastically dominated by Bi(l2j , p). Since

lj ≤ 2[(1 + δ)µ]j, Rj is stochastically dominated by Bi(4[(1 + δ)µ]2j, p). We have
for sufficiently large n,

Pr
(
Rj = 0

∣∣E1

)
≥ (1− p)(2[(1+δ)µ]j)

2

=
(

1− µ

n

)4[(1+δ)µ]2j

≥(a) exp
(
−8[(1 + δ)µ]2j

µ

n

)
≥(b) exp

(
− 1

µ

)
Inequality (a) is based on Lemma 20. To obtain Inequality (b), note

j ≤ m− =
log n− 2 log µ− log 8

2 log[(1 + δ)µ]
.

We have

8[(1 + δ)µ]2j
µ

n
≤ 1

µ

which explains (b).

• The number of collision edges at levels between bm−c+1 and dm+e−1.
We will show that

Pr (Rj > 8µ|E1) ≤ exp

(
−4

3
µ

)
when n is sufficiently large.

87

Conditioned on event E1, Rj is stochastically dominated by Bi(l2j , p). Since

lj ≤ 2[(1 + δ)µ]j, Rj is stochastically dominated by Bi(4[(1 + δ)µ]2j, p). Then

Pr

(
Rj ≤

4[(1 + δ)µ]2j+1

n

∣∣E1

)
≥ Pr

(
Bi(4[(1 + δ)µ]2j, p) ≤ 4[(1 + δ)µ]2j+1

n

)
≥ Pr

(
Bi(4[(1 + δ)µ]2j, p) ≤ (1 + δ)4[(1 + δ)µ]2jp

)
≥ 1− exp

(
− δ2

2 + δ
4[(1 + δ)µ]2j

µ

n

)
≥(a) 1− exp

(
− δ2

2 + δ
4µ

)
From j ≥ dm+e ≥ logn

2 log[(1+δ)µ]
, we obtain

n ≤ [(1 + δ)µ]2j. (A.31)

we obtain Inequality (a) by substituting Inequality (A.31).

• The number of collision edges at levels between dm+e and logn
(1+α) log µ

.

We will show

Pr

(
Rj >

4[(1 + δ)µ]2j+1

n

∣∣∣∣E1

)
≤ exp

(
− 4δ2

2 + δ
µ

)
when n is sufficiently large.

Let

δ′ =
2n

[(1 + δ)µ]2j
− 1

Since j ≤ m+ = logn
2 log[(1+δ)µ]

, we have n ≥ [(1 + δ)µ]2j. Hence

δ′ ≥ 1

Conditioned on event E1, Rj is stochastically dominated by Bi(4[(1 + δ)µ]2j, p).

88

Using the Chernoff bound in Lemma 19, we have,

Pr
(
Rj ≤ (1 + δ′)4[(1 + δ)µ]2jp

∣∣E1

)
≥ Pr

(
Bi(4[(1 + δ)µ]2j, p) ≤ (1 + δ′)4[(1 + δ)µ]2jp

)
≥ 1− exp

(
− δ′2

2 + δ′
4[(1 + δ)µ]2j

µ

n

)
≥ 1− exp

(
− δ′

2 + δ′
4(2n− [(1 + δ)µ]2j)

µ

n

)
≥(a) 1− exp

(
− δ′

2 + δ′
4µ

)
≥(b) 1− exp

(
−4

3
µ

)

Note (a) is due to n > [(1 + δ)µ]2j and (b) is due to δ′ ≥ 1. Note,

(1 + δ′)4[(1 + δ)µ]2jp

=

(
1 +

2n

[(1 + δ)µ]2j
− 1

)
4[(1 + δ)µ]2jp

=
2n

[(1 + δ)µ]2j
4[(1 + δ)µ]2j

µ

n

=8µ

Since m+ −m− < 2 we have

Pr(E2|E1) ≥1− 1

µ
− (m+ −m−) exp

(
−4

3
µ

)
−

t∑
j=dm+e

exp

(
− 4δ2

2 + δ
µ

)

≥1− 1

µ
− 2 exp

(
−4

3
µ

)
− t exp

(
− 4δ2

2 + δ
µ

)
Note we have µ ≥ 3 log n and t ≤ logn

(1+α) log µ
, therefore, for n sufficiently large, we

have
Pr(E2|E1) ≥ 1− ε.

A.3.3 Bounds on the Number of Infected Nodes

Lemma 14. Assume the conditions in Theorem 3 hold, for any ε > 0, we have

Pr (E3|E1) ≥ 1− ε

for sufficiently large n.

89

Proof. • We first show that for any ε > 0,

Pr(Z1
1 ≥ (1− δ)2µq|E1) ≥ 1− ε

for sufficient large n. Z1
1 is lower bounded by a binomial distribution Bi((1 −

δ)µ, q). Hence using Chernoff bound, we have

Pr(Z1
1 ≥ (1− δ)(1− δ)µq|E1) ≥ 1− exp

(
−δ

2

2
(1− δ)µq

)
Note µ→∞ while all other parameters are constants, for any ε > 0, we have

Pr(Z1
1 ≥ (1− δ)2µq|E1) ≥ 1− ε

• We show that for any ε > 0,

Pr
(
{∀v ∈ Z1

1 , Z
t
t(v) ≥ [(1− δ)2µq]t−1}|E1

)
≥ 1− ε

for sufficiently large n. Define

E4 = {(1− δ)2µq ≤ Z1
1 ≤ (1 + δ)µ}

Note when n is sufficiently large, the following holds

Pr(Z1
1 ≥ (1− δ)2µq|E1) ≥ 1− ε

4
.

When E1 occurs, we have Z1
1 ≤ (1 + δ)µ. Therefore, we have

Pr(E4|E1) ≥ 1− ε

4

Define

St2(v) = {(Z2
2 (v), · · · ,Z tt (v))|

∩ti=2 Z
i
i(v) ≥ (1− δ̃)(1− δ)µqZi−1

i−1(v).}

We have

Pr
(
∩ti=2Z

i
i(v) ≥ (1− δ̃)(1− δ)µqZi−1

i−1(v)|E4, E1

)
(A.32)

= Pr
(
Zt
t(v) ≥ (1− δ̃)(1− δ)µqZt−1

t−1(v), (A.33)

∩t−1
i=2 Z

i
i(v) ≥ (1− δ̃)(1− δ)µqZi−1

i−1(v)|E4, E1

)
(A.34)

=
∑

Z2
2 (v),··· ,Zt−1

t−1 (v)∈St−1
2 (v)

Pr
(
Zt
t(v) ≥ (A.35)

(1− δ̃)(1− δ)µqZt−1
t−1(v)|Z2

2 (v), · · · ,Z t−1
t−1 (v), E4, E1

)
(A.36)

× Pr(Z2
2 (v), · · · ,Z t−1

t−1 (v)|E4, E1) (A.37)

90

Conditioned on E1 and E4, we have Z1
1 6= 0. For any v ∈ Z1

1 , Z
i
i(v) stochastically

dominates Bi((1− δ)µZi−1
i−1(v), q) given Z i−1

i−1 (v). Therefore, denote by δ̃ ∈ (0, 1),
we have

Pr
(
Zt
t(v) ≥ (1− δ̃)(1− δ)µqZt−1

t−1(v)

|Z2
2 (v), · · · ,Z t−1

t−1 (v), E4, E1

)
≥Pr(Zt

t(v) ≥ (1− δ̃)(1− δ)µqZt−1
t−1(v)|Z t−1

t−1 (v), E4, E1)

≥1− exp

(
−
δ̃2(1− δ)µqZt−1

t−1(v)

2 + δ̃

)

≥ exp

(
−2 exp

(
−
δ̃2(1− δ)µqZt−1

t−1(v)

2 + δ̃

))
Since we have Z2

2 (v), · · · ,Z t−1
t−1 (v) ∈ St−1

2 (v), therefore,

Zt−1
t−1(v) ≥ [(1− δ̃)(1− δ)µq]t−2

Hence, we have

Pr
(
Zt
t(v) ≥ (1− δ̃)(1− δ)µqZt−1

t−1(v)

|Z2
2 (v), · · · ,Z t−1

t−1 (v), E4, E1

)
≥ exp

(
−2 exp

(
− δ̃

2(1− δ)µq[(1− δ̃)(1− δ)µq]t−2

2 + δ̃

))

≥ exp

(
−2 exp

(
− δ̃

2[(1− δ̃)(1− δ)µq]t−1

(2 + δ̃)(1− δ̃)

))
Substituting back to Equation (A.37), we obtain

Pr
(
∩ti=2Z

i
i(v) ≥ (1− δ̃)(1− δ)µqZi−1

i−1(v)|E4, E1

)
(A.38)

≥
∑

Z2
2 (v),··· ,Zt−1

t−1 (v)∈St−1
2 (v)

exp
(
− 2 exp

(
− δ̃2[(1− δ̃)(1− δ)µq]t−1

(2 + δ̃)(1− δ̃)
))

(A.39)

× Pr(Z2
2 (v), · · · ,Z t−1

t−1 (v)|E4, E1) (A.40)

= exp

(
−2 exp

(
− δ̃

2[(1− δ̃)(1− δ)µq]t−1

(2 + δ̃)(1− δ̃)

))
(A.41)

×
∑

Z2
2 (v),··· ,Zt−1

t−1 (v)∈St−1
2 (v)

Pr(Z2
2 (v), · · · ,Z t−1

t−1 (v)|E4, E1) (A.42)

= exp

(
−2 exp

(
− δ̃

2[(1− δ̃)(1− δ)µq]t−1

(2 + δ̃)(1− δ̃)

))
(A.43)

× Pr(∩t−1
i=2Z

i
i(v) ≥ (1− δ̃)(1− δ)µqZi−1

i−1(v)|E4, E1) (A.44)

91

Use Equation (A.44) iteratively on all levels, we obtain

Pr
(
∩ti=2Z

i
i(v) ≥ (1− δ̃)(1− δ)µqZi−1

i−1(v)|E4, E1

)
≥

t∏
i=2

exp

(
−2 exp

(
− δ̃

2[(1− δ̃)(1− δ)µq]i−1

(2 + δ̃)(1− δ̃)

))

= exp

(
−2

t∑
i=2

exp

(
− δ̃

2[(1− δ̃)(1− δ)µq]i−1

(2 + δ̃)(1− δ̃)

))

≥ exp

(
−2(t− 1) exp

(
− δ̃

2(1− δ)µq
2 + δ̃

))

≥1− 2(t− 1) exp

(
− δ̃

2(1− δ)µq
2 + δ̃

)

Using the union bound for all v ∈ Z1
1 , we have

Pr

(
∀v ∈ Z1

1 ,∩ti=2Z
i
i(v)

≥ (1− δ̃)(1− δ)µqZi−1
i−1(v)|E4, E1

)
≥1− 2(1 + δ)µt exp

(
− δ̃

2(1− δ)µq
2 + δ̃

)

Note t ≤ logn
(1+α) log µ

and µ > 3 log n. We have t ≤ log n ≤ µ, and

Pr

(
∀v ∈ Z1

1 ,∩ti=1Z
i
i(v)

≥ (1− δ̃)(1− δ)µqZi−1
i−1(v)|E4, E1

)
≥ 1− 2(1 + δ)µ2 exp

(
− δ̃

2(1− δ)µq
2 + δ̃

)
≥ 1− ε

2

for sufficiently large n.

Define
E5 = {∀v ∈ Z1

1 ,∩ti=2Z
i
i(v) ≥ (1− δ)2µqZi−1

i−1(v)}

92

We further have,

Pr (E5|E1) ≥ Pr (E5|E4, E1)

×Pr(E4|E1)

≥(1− ε

4
)(1− ε

4
)

≥1− ε

2
.

Choosing δ̃ = δ, we have

Pr
(
∀v ∈ Z1

1 ,∩ti=2Z
i
i(v) ≥ (1− δ)2µqZi−1

i−1(v)|E1

)
≥1− ε

2
.

Note E3 = E4 ∩ E5. We have

Pr(E3|E1) = Pr(E4 ∩ E5|E1)

≥ 1− Pr(Ē4|E1)− Pr(Ē5|E1)

≥ 1− ε.

where Ē4, Ē5 are the complement of event E4, E5.

Lemma 15. When E1 and E2 occurs, if bm−c < t ≤ logn
(1+α) log µ

, we have

H ≤ c[(1 + δ)µ]
3
4
t+ 1

2 + c[(1 + δ)µ](
5
4
−α

2
)t+2,

where c is a constant.

Figure A.3: A pictorial example of upper bounds of H

93

Proof. Define a collision removed breadth-first search tree to be a BFS tree on the
graph with all collision nodes removed. Denote by Uh(v) the set of nodes in the
collision removed BFS tree from node v with h hops in gt and Uh(v) = |Uh(v)|.
Denote by Ũh(v) the set of nodes that are within h hops from node v on gt. Recall
that a node v is said to locate on level j if dsv = j. Denote by Cj the set of collision
nodes on level j in gt. Therefore, we have

H ≤
∣∣∣∪tj=0 ∪v∈Cj Ũ t−ds′v(v)

∣∣∣ ,
where Ũ t−ds′v(v) is the set of nodes that can be reached from s′ within t hops via the
collision node v. Next, we will prove that

∪tj=0 ∪v∈Cj Ũ t−ds′v(v) = ∪tj=0 ∪v∈Cj U t−ds′v(v).

Since U t−ds′v(v) ⊂ Ũ t−ds′v(v), we have

∪tj=0 ∪v∈Cj Ũ t−ds′v(v) ⊇ ∪tj=0 ∪v∈Cj U t−ds′v(v).

We only need to show that

∪tj=0 ∪v∈Cj Ũ t−ds′v(v) ⊆ ∪tj=0 ∪v∈Cj U t−ds′v(v).

For any node w ∈ ∪tj=0 ∪v∈Cj Ũ t−ds′v(v), we consider the following cases.

• If w is a collision node, we have w ∈ U t−ds′w(w). Hence w ∈ ∪tj=0∪v∈CjU t−ds′v(v).

• If w is not a collision node, there exists v′ such that w ∈ Ũ t−ds′v′ (v′).

– If the shortest path from w to v′ does not contain any other collision nodes,
we have w ∈ U t−ds′v′ (v′).

– If the shortest path from w to v′ contains other collision nodes, denote by
u the collision node on that path which is the closest to node w. Therefore,
there is no collision node on the shortest path from node u to node w. We
have

duw = dwv′ − duv′
Note we have w ∈ Ũ t−ds′v′ (v′), therefore dwv′ ≤ t− ds′v′ . Hence, we have

duw = dwv′ − duv′ ≤ t− ds′v′ − duv′ ≤(a) t− ds′u,

where (a) is due to the triangle inequality. Therefore, we have

duw ≤ t− ds′u,

and the shortest path from node u to node w contains no collision nodes.
Hence,

w ∈ U t−ds′u(u)

94

As a summary, we proved

∪tj=0 ∪v∈Cj Ũ t−ds′v(v) = ∪tj=0 ∪v∈Cj U t−ds′v(v)

Now we can use the collision removed BFS tree to bound H since the branch of
collision nodes of traditional BFS tree are already counted in the collision removed
BFS tree rooted at these collision nodes. For example, consider the collision removed
BFS tree from node w in Figure A.3. We ignore the presence of node u since the
branch of node u are already considered in the collision removed BFS tree rooted at
node u.

Hence, we have

H ≤
∣∣∣∪tj=0 ∪v∈Cj Ũ t−ds′v(v)

∣∣∣
=
∣∣∪tj=0 ∪v∈Cj U t−ds′v(v)

∣∣
≤

t∑
j=0

∑
v∈Cj

U t−ds′v(v)

Since Uλ(u) is an increasing function of λ and ds′v ≥ |k− j| for node v on level j,
we have

H ≤
t∑

j=0

∑
v∈Cj

U t−|k−j|(v).

We next establish the lemma using the following steps.

• Step 1: Upper bound on U t−|k−j|(w). Denote by par(w) the parent of w on
the BFS tree from the source and denote by pari(w) the ith ancestor of w on the
BFS tree from the source. For example, v is the first ancestor of w (par(w) = v)
and par(v) is the second ancestor of w (par2(w) = par(v)) as shown in Figure
A.3. Denote by σh(v) the number of nodes in the collision removed BFS subtree
rooted in node v with height h without branch of par(v).

Consider node w in Figure A.3 and ignore the presence of the collision nodes.
Firstly, we remove the branch of the parent of w. The remaining nodes on the
tree are below the level of w. This is because the level of a node w′s neighbor
can differ from node w′s level by at most one and those neighbors that are at the
same or higher levels must be collision nodes. The height of the tree is no larger
than the total number of hops λ. On the other hand, the tree only contains
the nodes within t hops from the actual source s since the tree is based on the
infection subnetwork. Since w locates on level j, the height of the tree must be
no larger than t− j. Therefore, the maximum height of the tree is min(t− j, λ)
and denote by σmin(t−j,λ)(w) the total number of nodes in the tree as shown in
Figure A.3.

Next, we consider the branch of the parent of w (v = par(w)) in Figure A.3.
Note w has only one parent v (all other parents are collision nodes thus re-
moved). Since we considered the λ hops of the removed collision BFS tree

95

rooted at w and it takes one hop from w to v, the branch of node v in the
collision removed BFS tree is contained in Uλ−1(v).

Therefore, we have

Uλ(w) ≤σmin(t−j,λ)(w) + Uλ−1(v) (A.45)

=σmin(t−j,λ)(w) + Uλ−1(par(w)) (A.46)

Repeatedly using Equation (A.46), we have

Uλ(w) ≤
min(λ,j)∑
i=0

σmin(t−(j−i),λ−i)(pari(w)). (A.47)

Note the maximum number of hops upward is no larger than λ and the total
number of levels above w is no larger than j. Therefore, we only need to consider
min(λ, j) levels above w in Equation (A.47).

Intuitively, the upper bound on Uλ(w) is a collection of trees rooted at level
j − i with height min(t− (j − i), λ− i),∀i ≤ j. For example, in Figure A.3, the
blue area shows the tree rooted in level j with height min(t−j, λ) and the green
area shows in tree rooted in level j − 1 with height min(t − (j − 1), λ − 1). In
this example, we consider the removed collision BFS tree rooted at w. The blue
area is the collision removed BFS tree from w after further removing the branch
from v and the green area is the collision removed BFS tree from v by further
removing the branch from par(v). The height is no larger than t− (j − 1) since
node v locates on level j − 1 and we consider the t hop neighborhood of s. In
addition, the height is no larger than λ− 1 since it takes one hop from node w
to node v and the total number of possible hops from node w is λ.

According to E1, we have

σl(v) ≤
l∑

h=0

[(1 + δ)µ]h,∀v ∈ V(gt).

Hence,

Uλ(w) ≤
min(λ,j)∑
i=0

min(λ−i,t−(j−i))∑
h=0

[(1 + δ)µ]h. (A.48)

Consider λ ∈ (0, t) and j ∈ [1, t]. We obtain an upper bound on Uλ(w) by
analyzing different ranges of λ.

– λ < j. We have min(λ, j) = λ.

96

∗ λ < t− j. We have min(λ− i, t− (j − i)) = λ− i. Hence,

Uλ(w) ≤
λ∑
i=0

λ−i∑
h=0

[(1 + δ)µ]h (A.49)

≤
λ∑
i=0

2[(1 + δ)µ]λ−i (A.50)

≤4[(1 + δ)µ]λ. (A.51)

∗ λ ≥ t − j. When i ≤ λ−t+j
2

, we have λ − i > t − (j − i). Therefore,
min(λ− i, t− (j − i)) = t− (j − i). Hence,

Uλ(w) (A.52)

≤
bλ−t+j2 c∑
i=0

t−j+i∑
h=0

[(1 + δ)µ]h +
λ∑

i=dλ−t+j2 e

λ−i∑
h=0

[(1 + δ)µ]h (A.53)

≤
bλ−t+j2 c∑
i=0

2[(1 + δ)µ]t−j+i +
λ∑

i=dλ−t+j2 e
2[(1 + δ)µ]λ−i (A.54)

≤4[(1 + δ)µ]t−j+b
λ−t+j

2 c + 4[(1 + δ)µ]λ−d
λ−t+j

2 e (A.55)

≤4[(1 + δ)µ]t−j+
λ−t+j

2 + 4[(1 + δ)µ]λ−
λ−t+j

2 (A.56)

≤8[(1 + δ)µ]
λ+t−j

2 (A.57)

– λ ≥ j. We have min(λ, j) = j.

∗ λ < t− j. We have min(λ− i, t− (j − i)) = λ− i. Hence,

Uλ(w) ≤
j∑
i=0

λ−i∑
h=0

[(1 + δ)µ]h (A.58)

≤
j∑
i=0

2[(1 + δ)µ]λ−i (A.59)

≤4[(1 + δ)µ]j. (A.60)

97

∗ λ ≥ t− j. When i ≤ λ−t+j
2

, we have λ− i > t− (j − i). Hence,

Uλ(w) (A.61)

≤
bλ−t+j2 c∑
i=0

t−j+i∑
h=0

[(1 + δ)µ]h +

j∑
i=dλ−t+j2 e

λ−i∑
h=0

[(1 + δ)µ]h (A.62)

≤
bλ−t+j2 c∑
i=0

2[(1 + δ)µ]t−j+i +

j∑
i=dλ−t+j2 e

2[(1 + δ)µ]λ−i (A.63)

≤4[(1 + δ)µ]t−j+b
λ−t+j

2 c + 4[(1 + δ)µ]λ−d
λ−t+j

2 e (A.64)

≤4[(1 + δ)µ]t−j+
λ−t+j

2 + 4[(1 + δ)µ]λ−
λ−t+j

2 (A.65)

≤8[(1 + δ)µ]
λ+t−j

2 (A.66)

As a summary, we have

Uλ(w) ≤

{
4[(1 + δ)µ]min(λ,j). if λ < t− j
8[(1 + δ)µ]

λ+t−j
2 if λ ≥ t− j.

For simplicity, we define Uλ
j to be the upper bound on Uλ(w) for w on level j.

We have

Uλ
j =

{
4[(1 + δ)µ]min(λ,j). if λ < t− j
8[(1 + δ)µ]

λ+t−j
2 if λ ≥ t− j.

(A.67)

and Uλ(w) ≤ Uλ
j where the subscript means the level of the nodes and the

superscript means the number of hops.

Hence, we have

H ≤
t∑

j=0

∑
v∈Cj

U t−|k−j|(v) ≤
t∑

j=0

|Cj|U t−|k−j|
j

• Step 2: Upper bound on |Cj|. Recall that Cj is the set of collision nodes
on level j. Note one collision edge may connect two nodes on the same level or
connect one node on level j and one node on level j − 1. Therefore, we have

|Cj| ≤ 2Rj+1, ∀j ≤ t− 1

For j = t, since we only consider the t hop neighborhood of the actual source
s, we have

|Ct| ≤ 2Rt

98

Therefore, we have

H ≤ 2RtU
t−|k−t|
t +

t−1∑
j=0

2Rj+1U
t−|k−j|
j (A.68)

= 2RtU
k
t︸ ︷︷ ︸

(a)

+
t∑

j=1

2RjU
t−|k−(j−1)|
j−1︸ ︷︷ ︸

(b)

(A.69)

• Step 3 We analyze part (a) and part (b) in equation (A.69) separately.

– Step 3.a: Upper bound on part (a) in Equation (A.69)

Define

α′ =
α

2
+

1

4
.

and we have α′ ∈ (1/2, 3/4). Since t ≤ logn
(1+α) log µ

, α < 1 and δ < 1, we have

when n is sufficiently large,

t ≤ log n

(1 + α) log µ
(A.70)

t ≤ log n

(1 + α′) log[(1 + δ)µ]
(A.71)

[(1 + δ)µ](1+α′)t ≤ n, (A.72)

According to Equation (A.67), since k ≥ t− t = 0, we have

Uk
t = 8[(1 + δ)µ]

k+t−t
2 = 8[(1 + δ)µ]

k
2

Based on event E2, we have

2RtU
k
t ≤

64

n
[(1 + δ)µ]2t+1+ k

2

Since [(1 + δ)µ](1+α′)t ≤ n,

2RtU
k
t ≤ 64[(1 + δ)µ](1−α

′)t+1+ k
2

Since k ≤ t, we have

2RtU
k
t ≤ 64[(1 + δ)µ](

3
2
−α′)t+1 (A.73)

– Step 3.b: Upper bound on part (b) in Equation (A.69)

Based on event E3, we have

t∑
j=1

2RjU
t−|k−(j−1)|
j−1 =

t∑
j=bm−c+1

2RjU
t−|k−(j−1)|
j−1

99

Therefore, we only consider the cases when j ≥ bm−c + 1. We will show
that

t− |k − (j − 1)| ≥ t− (j − 1),

when j ≥ bm−c+ 1. As a consequence, we have

U
t−|k−(j−1)|
j−1 = 8[(1 + δ)µ]

t−|k−(j−1)|+t−(j−1)
2

= 8[(1 + δ)µ]t−
(j−1)+|k−(j−1)|

2

Based on t ≤ logn
(1+α) log µ

, we have

t

2
≤ log n

2(1 + α) log µ
(A.74)

≤ bm−c (A.75)

for sufficiently large n. Therefore, we have j − 1 ≥ bm−c > t
2
.

When j−1 ≤ k ≤ t, we have |k−(j−1)| ≤ t
2
≤ j−1. When 0 ≤ k < j−1,

we have |k − (j − 1)| = (j − 1)− k ≤ j − 1. We have

|k − (j − 1)| ≤ j − 1,∀k ∈ [0, t].

Hence,
t− |k − (j − 1)| ≥ t− (j − 1).

Therefore, for all the discussions in Step 3.b, based on Equation A.69, we
have

U
t−|k−(j−1)|
j−1 = 8[(1 + δ)µ]t−

(j−1)+|k−(j−1)|
2

Based on event E2, we have

t∑
j=1

2RjU
t−|k−(j−1)|
j−1

≤128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−
j−1+|k−(j−1)|

2

+
64

n

t∑
j=dm+e

[(1 + δ)µ]2j+1+t− j−1+|k−(j−1)|
2

100

Since [(1 + δ)µ](1+α′)t ≤ n,

t∑
j=1

2RjU
t−|k−(j−1)|
j−1

≤128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−
j−1+|k−(j−1)|

2

+ 64
t∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− j−1+|k−(j−1)|
2

Next, we discuss the upper bounds for different k values. We first show
several necessary inequalities. We have

m+ −m− =
2 log µ+ log 8

2 log[(1 + δ)µ]
≤ 1 +

log 8

2 log µ
< 2. (A.76)

Recall, we consider the case where t > bm−c. As shown in A.75, we have

bm−c ∈
[
t

2
, t

)
(A.77)

Hence, we have

dm+e ∈
[
t

2
, t+ 3

)
(A.78)

Then, we consider the following cases for different k values. Recall that k
is the level of node s′.

101

∗ k ≤ bm−c. We have

t∑
j=1

2RjU
t−|k−(j−1)|
j−1

≤128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−
j−1+|k−(j−1)|

2

+ 64
t∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− j−1+|k−(j−1)|
2

=128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−
j−1−(k−(j−1))

2

+ 64
t∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− j−1−(k−(j−1))
2

=128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−j+1+ k
2

+ 64
t∑

j=dm+e

[(1 + δ)µ]−α
′t+j+2+ k

2

≤256µ[(1 + δ)µ]t−bm
−c+ k

2

+ 128[(1 + δ)µ](1−α
′)t+2+ k

2

≤(a)256[(1 + δ)µ]
3
4
t + 128[(1 + δ)µ](

3
2
−α′)t+2

where (a) is due to k ≤ bm−c and t
2
≤ bm−c < t.

∗ bm−c+ 1 ≤ k ≤ dm+e − 2. In this case, we have

k ∈ [
t

2
+ 1, t+ 1),

102

according to Inequalties (A.78) and (A.77). Hence, we have

t∑
j=1

2RjU
t−|k−(j−1)|
j−1

≤128µ
k∑

j=bm−c+1

[(1 + δ)µ]t−
j−1+|k−(j−1)|

2

+ 128µ

dm+e−1∑
j=k+1

[(1 + δ)µ]t−
j−1+|k−(j−1)|

2

+ 64
t∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− j−1+|k−(j−1)|
2

=128µ
k∑

j=bm−c+1

[(1 + δ)µ]t−
j−1+(k−(j−1))

2

+ 128µ

dm+e−1∑
j=k+1

[(1 + δ)µ]t−
j−1−(k−(j−1))

2

+ 64
t∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− j−1−(k−(j−1))
2

=128µ
k∑

j=bm−c+1

[(1 + δ)µ]t−
k
2

+ 128µ

dm+e−1∑
j=k+1

[(1 + δ)µ]t−j+1+ k
2

+ 64
t∑

j=dm+e

[(1 + δ)µ]−α
′t+j+2+ k

2

≤(a)256µ[(1 + δ)µ]t−
k
2

+ 128[(1 + δ)µ](1−α
′)t+2+ k

2

≤256[(1 + δ)µ]
3
4
t+ 1

2 + 128[(1 + δ)µ](
3
2
−α′)t+2,

where (a) is due to m+−m− < 2 which we proved in Inequality (A.76)
and k ∈ [t

2
+ 1, t+ 1).

∗ k ≥ dm+e − 1. In this case, we have

k ∈ [
t

2
− 1, t],

103

according to Inequalties (A.78) and (A.77). Hence, we have

t∑
j=1

2RjU
t−|k−(j−1)|
j−1

≤128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−
j−1+|k−(j−1)|

2

+ 64
k∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− j−1+|k−(j−1)|
2

+ 64
t∑

j=k+1

[(1 + δ)µ]2j+1−α′t− j−1+|k−(j−1)|
2

=128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−
j−1+(k−(j−1))

2

+ 64
k∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− j−1+(k−(j−1))
2

+ 64
t∑

j=k+1

[(1 + δ)µ]2j+1−α′t− j−1−(k−(j−1))
2

=128µ

dm+e−1∑
j=bm−c+1

[(1 + δ)µ]t−
k
2

+ 64
k∑

j=dm+e

[(1 + δ)µ]2j+1−α′t− k
2

+ 64
t∑

j=k+1

[(1 + δ)µ]−α
′t+j+2+ k

2

≤(a)256µ[(1 + δ)µ]t−
k
2 + 128[(1 + δ)µ]

3k
2
−α′t+1

+ 128[(1 + δ)µ](1−α
′)t+2+ k

2

≤256[(1 + δ)µ]
3
4
t+ 1

2 + 128[(1 + δ)µ](
3
2
−α′)t+1

+ 128[(1 + δ)µ](
3
2
−α′)t+2

≤256[(1 + δ)µ]
3
4
t+ 1

2 + 256[(1 + δ)µ](
3
2
−α′)t+2

(a) is due to m+ −m− < 2 which we proved in Inequality A.76 and
k ∈ [t

2
− 1, t].

104

Therefore, we obtain a universal bound for different k.

t∑
j=1

2RjU
t−|k−(j−1)|
j−1 ≤ c′[(1 + δ)µ]

3
4
t+ 1

2 (A.79)

+ c′[(1 + δ)µ](
3
2
−α′)t+2, (A.80)

for all k ∈ [1, t], where c′ ≥ 256.

As a summary, based on Equations (A.69),(A.73) and (A.80)

H ≤ c[(1 + δ)µ]
3
4
t+ 1

2 + c[(1 + δ)µ](
3
2
−α′)t+2 (A.81)

= c[(1 + δ)µ]
3
4
t+ 1

2 + c[(1 + δ)µ](
5
4
−α

2
)t+2 (A.82)

for all k ∈ [1, t], where c ≥ 257.

A.4 Proof of Theorem 4

Proof. Similar to the proof of Theorem 3, we assume E1, E2 and E3 occur. The BND
one node can have is bounded by the number of all infected nodes. Therefore, the
upper bound on BND is the sum of degree of all infected nodes. The edges of one
infected node compose three parts: (1) the edge which infects the node; (2) the edges
between the node and its offsprings; (3) the collision edges attaching to the node.
Therefore, the total degree of all the infected nodes is upper bounded by

t∑
i=0

Z≤ti +
t∑
i=0

Z≤ti [(1 + δ)µ] + 2Rt+1

To use
∑t

i=0 Z
≤t
i [(1 + δ)µ] above as the upper bound on offsprings, we need to extend

E1 to the range of Lt. It is easy to check that

E ′1 = {∀v ∈ Lt, φ′(v) ∈ ((1− δ)µ, (1 + δ)µ)}.

happens with a high probability with the same proof of Lemma 12.
A lower bound on BND of the actual source is

Zt
t [(1− δ)µ]

105

according to E ′1. Therefore, we have

Zt
t [(1− δ)µ]∑t

i=0 Z
≤t
i +

∑t
i=0 Z

≤t
i [(1 + δ)µ] + 2Rt+1

(A.83)

=
(1− δ)µ∑t

i=0 Z
≤t
i

Ztt
(1 + (1 + δ)µ) + 2Rt+1

Ztt

(A.84)

≥(a)
(1− δ)µ

1+(1+δ)µ
1−ε′ + 2Rt+1

Ztt

. (A.85)

≥ (1− δ)
1
µ

+(1+δ)

1−ε′ + 2Rt+1

Zttµ

(A.86)

≥(b)
(1− δ)

δ′′+(1+δ)
1−ε′ + δ′

(A.87)

≥ 1− δ
1 + 1.1δ

, (A.88)

where inequality (a) holds due to Lemma 16, inequality (b) is based on Lemma 17
and δ′′, δ′, ε′ can be arbitrarily small when n→∞.

In the proof of Lemma 12, we need µ > 2+δ
δ2

log n. Hence, we have

Zt
t [(1− δ)µ]∑t

i=0 Z
≤t
i +

∑t
i=0 Z

≤t
i [(1 + δ)µ] + 2Rt+1

≥ 1− δ
1 + 1.1δ

when µ > 2+δ
δ2

log n.
Assume we want the ratio to be ≥ 1− x, we have

1− δ
1 + 1.1δ

= 1− x.

Therefore
δ =

x

2.1− 1.1x

Hence,
2 + δ

δ2
=

1.32x2 − 7.14x+ 8.82

x2

Therefore, when

µ >
9

x2
log n >

1.32x2 − 7.14x+ 8.82

x2
log n

we have the ratio ≥ 1− x.
Note, the condition that α > 1

2
is not used in the high probability result of

E1, E2, E3. Therefore, we only need α ∈ (0, 1) for this theorem. Therefore, the theo-
rem is proved.

106

Lemma 16. If the conditions in Theorem 4 hold and events E1, E2 and E3 occur,
we have given any ε > 0, for sufficiently large n, the following inequality holds

Zt
t∑t

i=0 Z
≤t
i

≥ 1− ε.

Proof. For any ε > 0, we use induction and assume that

Zm−1
m−1 ≥ (1− ε)

m−1∑
i=0

Z≤m−1
i

Consider time slot m, we have

Zm
m∑m

i=0 Z
≤m
i

=
Zm
m∑m

i=0 Z
≤m−1
i +

∑m
i=0 Z

m
i

=(a)
Zm
m∑m−1

i=0 Z≤m−1
i +

∑m−1
i=0 Zm

i + Zm
m

=
1∑m−1

i=0 Z≤m−1
i

Zm
m︸ ︷︷ ︸

A

+

∑m−1
i=0 Zm

i

Zm
m︸ ︷︷ ︸

B

+1

In (a) we use that Z≤m−1
m = 0 and Z≤mi = Z≤m−1

i + Zm
i .

Use induction assumption for part A, we have

Zm
m∑m

i=0 Z
≤m
i

≥ 1

Zm−1
m−1

(1−ε)Zmm
+

∑m−1
i=0 Zm

i

Zm
m︸ ︷︷ ︸

B

+1

(A.89)

Based on event E3, we have

Zm−1
m−1

Zm
m

≤ 1

(1− δ)2µq

and
Zm
m ≥ [(1− δ)2µq]m.

Next, we establish an upper bound on
∑m−1

i=0 Zm
i . Note

∑m−1
i=0 Zm

i represents the
number of nodes which are from level 0 to level m − 1 and are infected at time m.
Denote by C(V) the set of offsprings of node set V who are not collision nodes and
were infected by node V . Define C2(V) = C(C(V)). Recall the number of collsion
nodes from level 0 to level m − 1 is upper bounded by 2Rm. We establish an upper
bound as following

m−1∑
i=0

Zm
i ≤ 2Rm +

∣∣C (∪m−2
i=0 Zm−1

i

)∣∣ .
107

Similarly, we have ∣∣∪m−2
i=0 Zm−1

i

∣∣ ≤ 2Rm−1 +
∣∣C (∪m−3

i=0 Zm−2
i

)∣∣ .
Based on E1, we have

m−1∑
i=0

Zm
i ≤ 2Rm + 2Rm−1[(1 + δ)µ] +

∣∣C2
(
∪m−3
i=0 Zm−2

i

)∣∣
Repeating the step above, we have

m−1∑
i=0

Zm
i ≤

m∑
j=0

2Rj[(1 + δ)µ]m−j

Based on E2, we evaluate the upper bound for different values of m.

• 0 < m ≤ bm−c. We have
m−1∑
i=0

Zm
i = 0.

Hence,

Zm
m∑m

i=0 Z
≤m
i

≥ 1
Zm−1
m−1

(1−ε)Zmm
+ 1

≥ 1
1

(1−ε)(1−δ)2µq + 1

For any ε > 0, we have
1

(1− ε)(1− δ)2µq
≤ ε

for sufficiently large n.

Therefore, we have
Zm
m∑m

i=0 Z
≤m
i

≥ (1− ε).

• bm−c < m < dm+e. We have

m−1∑
i=0

Zm
i ≤

dm+e−1∑
j=bm−c+1

2Rj[(1 + δ)µ]m−j

≤(a)32µ[(1 + δ)µ]m−bm
−c−1

(a) is based on the fact that Rj ≤ 8µ and dm+e − bm−c ≤ 2.

108

Hence, we have ∑m−1
i=0 Zm

i

Zm
m

≤32µ[(1 + δ)µ]m−bm
−c−1

[(1− δ)2µq]m

≤32

µ

(1 + δ)m−bm
−c−1

(1− δ)2mqmµbm−c−1

=
32

µ

(
(1 + δ)1− bm

−c−1
m

(1− δ)2qµ
bm−c−1

m

)m

≤32

µ

 (1 + δ)
1− bm

−c−1

dm+e

(1− δ)2qµ
bm−c−1

dm+e

m

Note dm+e < bm−c+ 2. For sufficiently large n, we have

bm−c − 1

dm+e
≥ 1− 3

bm−c
≥ 1

2
.

Hence we have ∑m−1
i=0 Zm

i

Zm
m

≤ 32

µ

(
(1 + δ)

1
2

(1− δ)2qµ
1
2

)m

≤ ε

2

for sufficiently large n.

In addition, we have
1

(1− δ)2qµ
≤ ε

2

for sufficiently large n.

Zm
m∑m

i=0 Z
≤m
i

≥ 1
Zm−1
m−1

(1−ε)Zmm
+

∑m−1
i=0 Zmi
Zmm

+ 1
(A.90)

≥ 1
ε

2(1−ε) + ε
2

+ 1
≥ (1− ε). (A.91)

• dm+e ≤ m ≤ t. Define

α′ =
α

2
+

1

4
.

and we have α′ ∈ (1/4, 3/4). Follow the same argument in Equation (A.72), we
obtain that

[(1 + δ)µ](1+α′)t ≤ n. (A.92)

109

We have

m−1∑
i=0

Zm
i ≤

dm+e−1∑
j=bm−c+1

2Rj[(1 + δ)µ]m−j

+
m−1∑

j=dm+e

2Rj[(1 + δ)µ]m−j

≤32µ[(1 + δ)µ]m−bm
−c−1

+
8

n

m−1∑
j=dm+e

[(1 + δ)µ]m+j+1

≤32µ[(1 + δ)µ]m−bm
−c−1 +

16

n
[(1 + δ)µ]2m

≤32µ[(1 + δ)µ]m−bm
−c−1

+ 16[(1 + δ)µ]2m−(1+α′)t

The last inequality holds based on Inequality (A.92).

Hence, we have ∑m−1
i=0 Zm

i

Zm
m

≤ 32µ[(1 + δ)µ]m−bm
−c−1

[(1− δ)2qµ]m︸ ︷︷ ︸
(A)

+
16[(1 + δ)µ]2m−(1+α′)t

[(1− δ)2qµ]m︸ ︷︷ ︸
(B)

(A) has been handled in the previous case. For sufficiently large n we have
(A) ≤ ε

4
.

Next, we focus on (B). Since m ≤ t, for sufficiently large n, we have

m+ 1

t
≤ 1 +

α′

2
.

Hence, for sufficiently large n

16[(1 + δ)µ]2m−(1+α′)t

[(1− δ)2qµ]m

=
16

µ

(
(1 + δ)

2m
t
−1−α′

(1− δ)2m
t q

m
t

µ
m+1
t
−1−α′

)t

≤16

µ

(
(1 + δ)2−α′

(1− δ)2q
µ−α

′/2

)t
≤ ε

4
.

110

Hence, we have ∑m−1
i=0 Zm

i

Zm
m

≤ ε

2

Following the analysis in the previous case, we have

Zm
m∑m

i=0 Z
≤m
i

≥ 1− ε.

As a summary, we proved that

Zt
t∑t

i=0 Z
≤t
i

≥ 1− ε.

Lemma 17. If the conditions in Theorem 4 hold and events E1, E2 and E3 occur,
we have given any ε > 0, for sufficiently large n, the following inequality holds

2Rt+1

Zt
tµ
≤ ε (A.93)

Proof. Note the upper bound of Rt+1 can be obtained by a same proof of Lemma 13
and the conclusions are the same when we extend the range from t to t + 1. Based
on Lemma 14, we have

Zt
t ≥ [(1− δ)2µ]t.

When t < dm+e, Inequality A.93 trivially holds.
For t ≥ dm+e, we have

2Rt+1

Zt
tµ

(A.94)

≤8[(1 + δ)µ]2t+3

nµ[(1− δ)2µ]t
(A.95)

=
8(1 + δ)2t+3

(1− δ)2t

1

µαt−2
(A.96)

=
8

µ

(
1 + δ

(1− δ)2
× 1

µ
αt−3
2t+3

)2t+3

(A.97)

Note αt−3
2t+3

> 0 for sufficiently large t. Therefore, we have

2Rt+1

Zt
tµ
≤ ε.

For sufficiently large n.

111

A.5 Proof of Lemma 5

We present the proof of Theorem 4.2 from (Draief and Massouli, 2010) with some
minor changes to provide a more specific lower bound on µq. This proof is included
for the sake of completeness and is not a contribution of this dissertation.
Proof. Given some ε > 0, define

d±j =

{
(1± ε)jµj if j = 1, 2,

(1± ε)2(1± ε
µ
)j−2µj if j = 3, · · · , D′.

where D′ =
⌈

logn
2 log µ

⌉
. Define

Γi(u) = {v : dguv = i},

and
di(u) = |Γi(u)|.

We first prove the following lemma.

Lemma 18. Let ε > 0 be fixed. Define for all u ∈ {1, · · · , n} and all i = 1, · · · , D′,
the event Ei(u) by

Ei(u) = {d−i ≤ di(u) ≤ d+
i }.

Assumes that γl log n ≤ µ <<
√
n, for large enough n,we have

Pr(Ei(u)) ≥ 1−D′n−
γlε

2

2+ε , u ∈ {1, · · · , n}, i = 1, · · · , D′.

Proof. Let u ∈ {1, · · · , n} and i ∈ {1, · · · , D′} be fixed. Note that, conditional on
d1(u), · · · , di−1(u), di(u) admits a binomial distribution with parameters

L(di(u)|d1(u), · · · , di−1(u))

=Bi(n− 1− d1(u)− · · · − di−1(u), 1− (1− p)di−1(u))

where L(X|F) is the distribution of the random variable X conditional on the event
F . Denote by Ēi(u) the complement of Ei(u). It readily follows that

Pr(Ēi(u)|E1(u), · · · , Ei−1(u))

≤Pr(Bi(n, 1− (1− p)d
+
i−1) ≥ d+

i)

+ Pr(Bi(n− 1− d+
1 − · · · − d+

i−1, 1− (1− p)d
−
i−1) ≤ d−i).

112

Note that, for all j < D′, one has

d−j ≤ d+
j ≤ d+

D′−1

= (1 + ε)2

(
1 +

ε

µ

)D′−3

µD
′−1

=

(
µ(1 + ε)

µ+ ε

)2

(µ+ ε)D
′−1

≤
(
µ(1 + ε)

µ+ ε

)2

(µ+ ε)
logn
2 log µ

=

(
µ(1 + ε)

µ+ ε

)2

exp

(
log n

2

log(µ+ ε)

log µ

)
=

(
µ(1 + ε)

µ+ ε

)2

exp

(
log n

2

)
× exp

(
log n

2

(
log(µ+ ε)

log µ
− 1

))
=

(
µ(1 + ε)

µ+ ε

)2

exp

(
log n

2

)
× exp

(
log n

2

log(µ+ ε)− log µ

log µ

)
=

(
µ(1 + ε)

µ+ ε

)2

exp

(
log n

2

)
× exp

(
log n

2

log(1 + ε/µ)

log µ

)
Note log(1 + x) ≤ x for x ≥ 0. We have

≤
(
µ(1 + ε)

µ+ ε

)2√
n exp

(
log n

2

ε

µ log µ

)
≤ (1 + ε)3

√
n

Since µ ≥ γ1 log n, we have

≤
(
µ(1 + ε)

µ+ ε

)2√
n exp

(
1

2

ε

γl log µ

)
≤ (1 + ε)2

√
n exp

(
1

2

ε

γl log µ

)
For sufficiently large n, we have µ is sufficiently large and exp

(
1
2

ε
γl log µ

)
→ 1 as

n→∞. Hence, we have
= (1 + ε)2(1 + o(1))

√
n

113

Next, we compute the mean of Bi(n, 1− (1−p)d
+
i−1) and Bi(n−1−d+

1 −· · ·−d+
i−1, 1−

(1− p)d
−
i−1).

Since i − 1 ≤ D′ − 1, we have d+
i−1p = d+

i−1
µ
n
→ 0 as n → ∞. Based on Taylor

expansion, we have we have

(1− p)d
+
i−1 = 1− d+

i−1p+ o(d+
i−1p)

Hence,

n(1− (1− p)d
+
i−1)

=d+
i−1pn− o(d+

i−1pn) = (1− o(1))d+
i−1µ

Note

n− 1− d+
1 − · · · − d+

i−1 ≥ n−D′(1 + ε)2(1 + o(1))
√
n

≥n− (1 + ε)2(1 + o(1)) log n
√
n

Therefore

(n− 1− d+
1 − · · · − d+

i−1)(1− (1− p)d
−
i−1)

≥ (n− (1 + ε)2(1 + o(1) log n
√
n)(d−i−1p− o(d−i−1p))

= d−i−1pn− o(d−i−1pn)− d−i−1p(1 + ε)2(1 + o(1) log n
√
n

+ o(d−i−1p(1 + ε)2(1 + o(1) log n
√
n)

≥ (1− o(1))d−i−1µ

Using the Chernoff bound, we have

Pr
(

Bi(n, 1− (1− p)d
+
i−1) ≥ d+

i

)
≤ exp

(
− ξ2

2 + ξ
n
(

1− (1− p)d
+
i−1

))
where

(1 + ξ)n
(

1− (1− p)d
+
i−1

)
= d+

i

Therefore,

ξ =
d+
i

(1− o(1))d+
i−1µ

− 1 ≥

{
ε if j = 1, 2,
ε
µ

if j = 3, · · · , D′.

114

Therefore, when i = 1, 2 we have

Pr
(

Bi(n, 1− (1− p)d
+
i−1) ≥ d+

i

)
≤ exp

(
− ξ2

2 + ξ
(1− o(1))d+

i−1µ

)
≤ exp

(
− ξ2

2 + ξ
(1− o(1))µ

)
≤ exp

(
− ξ2

2 + ξ
(1− o(1))γl log n

)
≤ n−γl(1−o(1)) ε2

2+ε

when i > 2, we have

Pr
(

Bi(n, 1− (1− p)d
+
i−1) ≥ d+

i

)
≤ exp

(
− ξ2

2 + ξ
(1− o(1))d+

i−1µ

)

Note, since i > 2, we have d+
i−1 ≥ (1 + ε)2µ2. Hence, we have

≤ exp

(
− ξ2

2 + ξ
(1− o(1)(1 + ε)2µ3

)
≤ exp

(
−ε2(1− o(1))(1 + ε)µ

)
≤ n−ε

2(1+ε)(1−o(1)γl

Therefore, we have for all i ≤ D′,

Pr
(

Bi(n, 1− (1− p)d
+
i−1) ≥ d+

i

)
≤ n−γl(1−o(1)) ε2

2+ε

Similarly, using the Chernoff bound, we have

Pr(Bi(n− 1− d+
1 − · · · − d+

i−1, 1− (1− p)d
−
i−1) ≤ d−i)

≤ exp

(
−ξ
′2

2
(n− 1− d+

1 − · · · − d+
i−1)(1− (1− p)d

−
i−1)

)
where

(1− ξ′)(n− 1− d+
1 − · · · − d+

i−1)(1− (1− p)d
−
i−1) = d−i

Therefore,

ξ′ = 1− d−i
(1− o(1))d−i−1δ

≥

{
(1− δ)ε if j = 1, 2,

(1− δ) ε
µ

if j = 3, · · · , D′.

115

for any fixed δ ∈ (0, 1) when n is sufficiently large. Therefore, when i = 1, 2 we have

Pr(Bi(n− 1− d+
1 − · · · − d+

i−1, 1− (1− p)d
−
i−1)

≤ exp

(
−ξ
′2

2
(1− o(1)d−i−1µ

)
≤ exp

(
−ξ
′2

2
(1− o(1)µ

)
≤ exp

(
−ξ
′2

2
(1− o(1)γl log n

)
≤ n−γl(1−o(1))

(1−δ)2ε2
2

when i > 2, we have

Pr(Bi(n− 1− d+
1 − · · · − d+

i−1, 1− (1− p)d
−
i−1)

≤ exp

(
−ξ
′2

2
(1− o(1))d−i−1µ

)

Note, since i > 2, we have d−i−1 ≥ (1− ε)2µ2. Hence, we have

≤ exp

(
−ξ
′2

2
(1− o(1)(1− ε)2µ3

)
≤ exp

(
−1

2
(1− δ)2ε2(1− o(1))(1 + ε)µ

)
≤ n−

1
2

(1−δ)2ε2(1−o(1))(1+ε)γl

Therefore, we have for all i ≤ D′,

Pr(Bi(n− 1− d+
1 − · · · − d+

i−1, 1− (1− p)d
−
i−1)

≤ n−
γl(1−o(1))(1−δ)

2ε2

2

Next, using union bounds, we have

Pr(Ei(u))

≥ Pr(E1(u), · · · , Ei(u))

≥ Pr(E1(u), · · · , Ei−1(u))

− Pr(Ēi(u)|E1(u), · · · , Ei−1(u))

≥ 1−
i∑

j=1

Pr(Ēj(u)|E1(u), · · · , Ej−1(u))

≥ 1−D′n−
γl(1−o(1))(1−δ)

2ε2

2 −D′n−γl(1−o(1)) ε2

2+ε

≥ 1−D′n−
γlε

2

2+ε

for sufficiently large n.

116

Next, we consider the upper bound of the diameter.
For any arbitrary nodes u, v, note that

Pr(dguv > 2D′ + 1|Γ1(u), · · · ,ΓD′(u),Γ1(v), · · · ,ΓD′(v))

≤ (1− p)dD′ (u)dD′ (v)

Note if their D′ neighborhood has non-empty intersection, we have dguv ≤ 2D′. There-
fore, we obtain that

Pr(dguv > 2D′ + 1) ≤ Pr(ĒD′(u)) + Pr(ĒD′(v)) + (1− p)(d−
D′)

2

The last term is evaluated as follows:

(1− p)(d−
D′)

2

≤ exp(−p(d−D′)
2)

= exp

(
−p
(

(1− ε)2(1− ε

µ
)D
′−2µD

′
)2
)

= exp

−p(1− ε
1− ε

µ

)4

(µ− ε)2D′


≤ exp

−p(1− ε
1− ε

µ

)4

(µ− ε)logn/ log µ


= exp

−pn log(µ−ε)
log µ

(
1− ε
1− ε

µ

)4


= exp

−pn1+
log(1−ε/µ)

log µ

(
1− ε
1− ε

µ

)4


= exp

−µelogn
log(1−ε/µ)

log µ

(
1− ε
1− ε

µ

)4


≤ exp

(
−µ(1− ε

µ
)−2 (1− ε)4

)
≤ exp

(
−µ (1− ε)4)

≤ n−γl(1−ε)
4

Therefore, we have

Pr(dguv > 2D′ + 1) ≤ n−γl(1−ε)
4

+ 2D′n−
γlε

2

2+ε

117

Finally, we have

Pr(Diamter > 2D′ + 1) ≤
∑
u6=v

Pr(dguv > 2D′ + 1)

≤ n2 ×
(
n−γl(1−ε)

4

+ 2D′n−
γlε

2

2+ε

)
Therefore, we have

γl > max

(
2

(1− ε)4
,
2(2 + ε)

ε2

)
Note 2

(1−ε)4−
2(2+ε)
ε2

is a increasing function for ε(0, 1) and max
(

2
(1−ε)4 ,

2(2+ε)
ε2

)
≥ 23.35.

The optimal value is when ε = 0.459. Therefore, when

γl > 24.

we have

Pr(Diamter > 2D′ + 1) ≤
∑
u6=v

Pr(dguv > 2D′ + 1)

≤ n−δ2 + 2D′n−δ1

where δ1 and δ2 is fixed positive constant. Note D′ ≤ log n. We have

lim
n

Pr(Diamter > 2D′ + 1) = 0.

Note 2dx/2e ≤ dxe. Hence
2D′ + 1 ≤ D + 2

Hence, we have
lim
n

Pr(Diamter ≤ D + 2) = 1.

The theorem is proved.

A.6 Necessary Inequalities

We use the following Chernoff bounds.
Lemma 19. Let X1, X2, · · · , Xn be i.i.d Poisson trials such that Pr(Xi) = pi. Let
X =

∑n
i=1Xi and E(X) = µ. For any δ > 0, we have

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤ exp

(
− δ2µ

2 + δ

)
and for δ ∈ (0, 1)

Pr(X ≤ (1− δ)µ) ≤ exp

(
−δ

2µ

2

)

118

Proof. We only need to prove
(

eδ

(1+δ)1+δ

)µ
≤ exp

(
− δ2µ

2+δ

)
. All other bounds are proved

in (Mitzenmacher and Upfal, 2005). We need to show(
eδ

(1 + δ)1+δ

)µ
≤ exp

(
− δ2µ

2 + δ

)
µ (δ − (1 + δ) log(1 + δ)) ≤ − δ2µ

2 + δ

(2 + δ)δ − (1 + δ)(2 + δ) log(1 + δ) + δ2 ≤ 0

(2δ − (2 + δ) log(1 + δ))(1 + δ) ≤ 0

2δ − (2 + δ) log(1 + δ) ≤ 0

Denote by f(δ) = 2δ − (2 + δ) log(1 + δ). We have

f ′(δ) = 2− log(1 + δ)− 2 + δ

1 + δ
= 1− log(1 + δ)− 1

1 + δ

f ′′(δ) = − 1

1 + δ
+

1

(1 + δ)2
=

1

1 + δ
(

1

1 + δ
− 1) ≤ 0

Hence, f ′(δ) ≤ f ′(0) = 0. Therefore, we have

f(δ) ≤ f(0) = 0

Hence we prove the lemma.

We need the following bounds

Lemma 20. When x > 0, we have

1− x ≤ e−x

and when x ∈ (0, log 2
2

),

1− x ≥ e−2x.

Proof. Let f1(x) = 1− x− e−x. We have

f ′1(x) = −1 + e−x < 0

when x > 0. Hence, f1(x) ≤ f1(0) = 0. Therefore, we have 1− x ≤ e−x.
Let f2(x) = 1− x− e−2x. We have

f ′2(x) = −1 + 2e−2x.

When x < log 2
2
, we have f ′2(x) > 0. Therefore f2(x) ≥ f2(0) = 0. We have 1 − x ≥

e−2x.

We obtain the following bound using the similar proof procedures. ∀x > 0, 1− 1
x
≤

log(x) ≤ x− 1.

119

Lemma 21. For x ≥ 2 and integer n ≥ 0 we have

xn ≤
n∑
i=0

xi ≤ 2xn

Proof.

n∑
i=0

xn − 2xn =
xn+1 − 1

x− 1
− 2xn

=
xn+1 − 1− 2xn+1 + 2xn

x− 1

=
2xn − 1− xn+1

x− 1

=
xn(2− 1

xn
− x)

x− 1

≤
xn(2− 1

xn
− 2)

x− 1
≤ 0

Hence, we obtain the inequality in the lemma.

120

APPENDIX B

PROOFS OF CHAPTER 3

121

B.1 Proof of Lemma 8

Define xk,k−1 = tk − tk−1, so the cost C can be written as

C(x) =
n∑
k=2

(tk − tk−1 − η)2 =
n∑
k=2

(xk,k−1 − η)2.

The cost minimization problem can be written as

minC(x) =
∑n

k=2(xk,k−1 − η)2 (B.1)

subject to:
∑n

k=2 xk,k−1 = tn − t1 (B.2)

xk,k−1 ≥ 0. (B.3)

Note that C(x) is a convex function in x. By verifying the KKT condition (Boyd and
Vandenberghe, 2004), it can be shown that the optimal solution to the problem above
is xk,k−1 = τn−τ1

n−1
, which implies tk = τ1 + (k − 1) τn−τ1

n−1
.

B.2 Proof of Theorem 7

Assume all nodes in the network are infected nodes and the infection time of
two nodes (say Node v and Node w) are observed. Without loss of generality, assume
τv < τw. Furthermore, assume the graph is undirected (i.e., all edges are bidirectional)
and

|τv − τw| ≥ η(|I| − 1).

We will prove the theorem by showing that computing the cost of Node v is related
to the longest path problem between Nodes v and w.

To compute C(v), we consider those spreading trees rooted at Node v. Given a
spreading tree P = (T, t) rooted at Node v, denote by Q(v, w) the set of edges on
the path from Node v to Node w. The cost of the spreading tree can be written as

C(P) =
∑

(h,u)∈E(T)\Q(v,w)

(tu − th − η)2 (B.4)

+
∑

(h,u)∈Q(v,w)

(tu − th − η)2 (B.5)

Recall that only the infection time of Nodes v and w are known. Furthermore,
Nodes v and w will not both appear on a path in T\Q(v, w). Therefore, by choosing
τu − τh = η for each (h, u) ∈ E(T)\Q(v, w), we have

(B.4) = 0.

Next applying Lemma 8, we obtain that

(B.5) ≥ |Q(v, w)|
(
τw − τv
|Q(v, w)|

− η
)2

, (B.6)

where the equality is achieved by assigning the timestamps according to Lemma 8.

122

For fixed |τw − τv| and η, we have

∂(B.6)

∂|Q(v, w)|
= η2 −

(
τw − τv
|Q(v, w)|

)2

<(a) η
2 −

(
η(|I| − 1)

|Q(v, w)|

)2

<(b) η
2 −

(
η(|I| − 1)

(|I| − 1)

)2

= 0,

where inequality (a) holds because of the assumption τw − τv > η(|I| − 1) and in-
equality (b) is due to |Q(v, w)| ≤ |I|−1. So (B.6) is a decreasing function of |Q(v, w)|
(the length of the path).

Let φ denote the length of the longest path between v and w. Given the longest
path between v and w, we can construct a spreading tree P∗ by generating T ∗ using
the breadth-first search starting from the longest path and assigning timestamps t∗

as mentioned above. Then,

C(v) = C(P∗) = min
Pv∈L(I,τ)

C(Pv) = φ

(
τw − τv
φ

− η
)2

. (B.7)

Therefore, the algorithm that computes C(v) can be used to find the longest path
between Nodes v and w. Since the longest path problem is NP-hard (Garey and
Johnson, 1979), the calculation of C(v) must also be NP-hard.

B.3 Proof of Theorem 9

Note that the complexity of the modified breadth first search is O(|E(gi)|) since
each edge in the subgraph formed by the infected nodes only needs to be considered
once. We next analyze the complexity of EIF:
• Step 1: The complexity of computing the paths from an infected node to all

other infected nodes is O(|E(gi)|). Given |ι| infected nodes with timestamps, the
computational complexity of Step 1 is O(|ι||E(gi)|).

• Step 2: The complexity of sorting a list of size |ι| is O(|ι| log(|ι|)).

• Steps 3 and 4: To construct the spreading tree for a given node, |ι| infected
nodes need to be attached in Steps 3 and 4. Each attachment requires the
construction of a modified breadth-first tree, which has complexity O(|E(gi)|).
So the overall computational complexity of Steps 3 and 4 is O(|ι||E(gi)|).

• Step 5: The breadth-first search algorithm is needed to complete the spreading
tree, which has complexity O(|E(gi)|).

From the discussion above, we can conclude that the computational complexity of
constructing the spreading tree from a given node and calculating the associated
cost is O(|ι||E(gi)|). CR (or TR) repeats EIF for each infected node, with complex-
ity O(|ι||I||E(gi)|), and then sort the infected nodes, with complexity O(|I| log |I|).
Therefore, the overall complexity of CR (or TR) is O(|ι||I||E(gi)|).

123

