
Toward Monitoring, Assessing, and Confining

Mobile Applications in Modern Mobile Platforms

by

Yiming Jing

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2015 by the
Graduate Supervisory Committee:

Gail-Joon Ahn, Chair
Adam Doupé

Dijiang Huang
Yanchao Zhang

ARIZONA STATE UNIVERSITY

December 2015

ABSTRACT

Smartphones are pervasive nowadays. They are supported by mobile platforms that

allow users to download and run feature-rich mobile applications (apps). While mobile

apps help users conveniently process personal data on mobile devices, they also pose

security and privacy threats and put user’s data at risk. Even though modern mobile

platforms such as Android have integrated security mechanisms to protect users, most

mechanisms do not easily adapt to user’s security requirements and rapidly evolving

threats. They either fail to provide sufficient intelligence for a user to make informed

security decisions, or require great sophistication to configure the mechanisms for

enforcing security decisions. These limitations lead to a situation where users are

disadvantageous against emerging malware on modern mobile platforms. To remedy

this situation, I propose automated and systematic approaches to address three secu-

rity management tasks: monitoring, assessment, and confinement of mobile apps. In

particular, monitoring apps helps a user observe and record apps’ runtime behaviors

as controlled under security mechanisms. Automated assessment distills intelligence

from the observed behaviors and the security configurations of security mechanisms.

The distilled intelligence further fuels enhanced confinement mechanisms that flexi-

bly and accurately shape apps’ behaviors. To demonstrate the feasibility of my ap-

proaches, I design and implement a suite of proof-of-concept prototypes that support

the three tasks respectively.

i

Dedicated to my family

ii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Dr. Gail-Joon Ahn

for his insights, patience, enthusiasm, and knowledge that navigate me through the

academic world. He constantly encourages me with his invaluable visions and I could

not finish this degree without the support and understanding from him. I also thank

my dissertation commmittee members, Dr. Adam Doupe, Dr. Dijiang Huang, and

Dr. Yanchao Zhang for their unselfish assistance and guidance during the preparation

of my dissertation proposal and this dissertation.

This dissertation would not be possible without the current and past members of

the Laboratory of Security Engineering for Future Computing (SEFCOM), in par-

ticular, Dr. Hongxin Hu, Dr. Ziming Zhao, Ruoyu Wu, Michael Mabey, Carlos

Rubio, Jeong-Jin Seo, Wonkyu Han, Jeremy Whitaker, Marthony Taguinod, Justin

Paglierani, Michael Sanchez, Yeganeh Safaeisemnani, and Bernard Ngabonziza. It

has been my pleasure to work with them and their help and insights help me through

the journey as a doctoral student.

Many thanks to my colleagues and friends outside SEFCOM: Yetian Xia, Huijun

Wu, Bing Li, Lingjun Li, Lei Liu, Qiang Zhang, Xiang Zhang, Ruozhou Yu, Xiaowen

Gong, Jingchao Sun, Yang Cao, and Mengyuan Zhang. I would not survive the Ph.D.

grind without their encouragement and support. Last but not the least, I would like

to thank my parents Jing Jing and Min Yang. None of my achievement would have

been possible without their moral support and warm encouragements that enabled

me to surpass the hard times in the past five years.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Thesis Statement . 3

1.2 Previous Publications . 4

2 BACKGROUND . 6

2.1 Android Fundamentals . 6

2.2 Inter-Application Communication in Android . 7

2.2.1 Intent-based Inter-Component Communication 7

2.2.2 Binder IPC . 9

2.2.3 Linux IPC . 10

2.3 Prominent Threats . 11

2.3.1 Attacks Bypassing the Sandbox . 11

2.3.2 Attacks Bypassing Permissions . 11

3 MONITORING AND CONFINEMENT: ATTACKS 13

3.1 Problem Statement . 13

3.2 A Proactive and Automated Approach to Generate Heuristics 15

3.2.1 Sandbox Analyzer. 16

3.2.2 Artifact Retriever . 18

3.2.3 Heuristic Extractor . 19

3.2.4 Heuristic Selector . 21

3.3 Finding Detection Heuristics . 22

3.3.1 Experimental Setup and Findings . 22

iv

CHAPTER Page

3.3.2 Characterizing Detection Heuristics . 25

3.4 Measuring Detection Heuristics . 28

3.4.1 Experimental Setup . 29

3.4.2 Results and Empirical Analysis . 30

3.4.3 Case Study: A9 . 34

3.5 Discussion . 36

3.5.1 Countermeasures . 36

3.5.2 Limitations . 38

3.6 Related Work . 39

3.7 Summary . 40

4 MONITORING AND CONFINEMENT: DEFENSE 41

4.1 Problem Statement . 41

4.2 A Multi-layered Approach to Protect Android . 43

4.2.1 Reference Monitor for ICC. 45

4.2.2 Reference Monitor for Binder IPC . 46

4.2.3 Reference Monitor for Linux IPC. 48

4.2.4 Multi-layer Policy Modules . 49

4.2.5 Decision Manager . 52

4.3 Evaluation . 54

4.3.1 Experimental Setup . 54

4.3.2 Coverage . 55

4.3.3 Case Studies . 56

4.3.4 Performance . 62

4.4 Discussion . 62

v

CHAPTER Page

4.5 Related Work . 64

4.6 Summary . 67

5 RISK-DRIVEN ASSESSMENT . 68

5.1 Problem Statement . 68

5.2 Risk Assessment of Android Applications . 70

5.2.1 Application Intelligence Aggregator . 72

5.2.2 Baseline Learner . 77

5.2.3 Risk Meter . 82

5.3 Automated Risk Mitigation . 84

5.3.1 Selecting Reference Applications . 85

5.3.2 Estimating Risk Budgets . 87

5.3.3 Generating and Enforcing Decisions . 88

5.4 Implementation and Evaluation . 89

5.4.1 Implementation and Experimental Setup 89

5.4.2 Empirical Results . 90

5.4.3 Case Studies . 94

5.4.4 System Usability . 97

5.4.5 System Overhead . 99

5.5 Discussion . 100

5.6 Related Work . 101

5.7 Summary . 103

6 FLOW-DRIVEN ASSESSMENT . 104

6.1 Problem Statement . 104

6.2 Intent Space Analysis: Model . 107

vi

CHAPTER Page

6.2.1 Overview . 108

6.2.2 Intent Space . 109

6.2.3 Intent Space Algebra . 110

6.2.4 Transfer Function . 112

6.3 Intent Space Analysis: System . 113

6.3.1 System Workflows . 113

6.3.2 Transfer Functions for AOSP Security Extensions 115

6.4 Evaluation . 123

6.4.1 Implementation . 123

6.4.2 Experimental Setup . 125

6.4.3 Graph Overview . 125

6.4.4 Experiments . 126

6.4.5 System Throughput . 132

6.5 Discussion . 133

6.6 Related Work . 135

6.7 Summary . 136

7 CONCLUDING REMARKS. 137

7.1 Contributions . 137

REFERENCES . 138

vii

LIST OF TABLES

Table Page

3.1 Discovered Detection Heuristics . 25

3.2 Top 10 File, API, and Property Heuristics . 30

3.3 Evaluated Emulators and Real Devices . 31

3.4 Evaluation Results of the 30 Heuristics . 32

4.1 Implemented Hooks in OSMon . 49

4.2 Components in TripleMon Policies . 51

4.3 Applications Assumed to be Benign and Trusted by General Users 55

4.4 System Services Protected by TripleMon . 56

4.5 Root Exploits and Countermeasures with TripleMon 59

4.6 Performance Overhead Compared to Related Work 62

4.7 Memory Overhead . 63

5.1 Demographics of the Participants . 91

5.2 Applications Assumed to be Trusted in the User Study 91

5.3 Risk Composition by Permission Groups of Applications in Case Studies 96

5.4 Revoked Permissions of Applications in Case Studies 98

5.5 Usability Evaluation Results . 99

5.6 Microbenchmark Results . 99

6.1 Evaluated Android Devices/OSs and Generated Reachability Graphs . . 124

6.2 Apps Ranked by PageRank . 124

6.3 Reachability of a Zero-Permission App . 128

6.4 System Throughput . 130

viii

LIST OF FIGURES

Figure Page

1.1 Problem Space of Mobile Platform Security . 3

2.1 Examples of Android Inter-Process Communication 8

3.1 Proposed Heuristic Generation Framework . 16

4.1 Proposed Multi-layer Security Framework for Android 44

4.2 ICCMon Workflow . 46

4.3 BinderMon Workflow. 47

4.4 OSMon Workflow . 49

4.5 ZergRush Fails to Exploit Vold. 60

5.1 Proposed Risk Assessment Framework . 73

5.2 SOM Representation of 13 Categories . 77

5.3 An Example of Specifying Relevancy for Permission Groups 79

5.4 An Example of Selecting Reference Applications from Close Categories 86

5.5 Security Requirements . 92

5.6 Average Cumulative Risk Scores Measured by the Participants’ Risk

Assessment Baselines . 94

6.1 (a) The intent space shrinks as it passes security extensions, modeled

here by the T1, T2, T3. (b) Composing transfer functions to model

app-to-app transformation. 109

6.2 IntentScope System Workflow. 113

6.3 Experimental Results . 131

ix

Chapter 1

INTRODUCTION

Modern mobile platforms, such as Apple iOS and Google Android, have evolved sig-

nificantly to support a computing paradigm that is different from those supported

by desktop platforms. Today’s mobile devices are always connected to the Internet

thanks to the prevalence of 3G/4G cellular networks. Meanwhile, they generate local

contexts derived from a collection of sensors such as microphones, cameras, GPS re-

ceivers, gyroscopes, and accelerometers. Mobile apps digest the contexts and provide

persistent and personalized services to users. Application stores, as an integral part

of modern mobile platforms, provide central and trusted app distribution channels

through which users can discover and purchase apps. The possibilities enabled by

modern mobile platforms lead to an explosive growth of feature-rich apps that stores

and processes user’s sensitive information.

As mobile devices are rich of sensitive data, they also become an appealing target

for adversaries. Android malware has increased by 600% to a total of more than

6M pieces from 2013 to 2014 [16]. These malware steals almost everything stored

on mobile devices, including photos, messages, browsing histories, banking accounts,

and two-factor authentication tokens. There is even evidence showing that recent

Android malware is “mutating and getting smarter” [16]. In 2013, Sophos reported

sophisticated malware strains that employ heavy obfuscation, encryption, and poly-

morphism techniques to resist detection and analysis. The security community also

reported malware samples that are able to detect the presence of emulators and hide

themselves from emulator-based screening tools deployed at application stores [47, 57].

1

To protect users against adversaries, modern mobile platforms implement sand-

boxes and permissions. A sandbox enforces a fixed set of default rules and isolates an

app’s data and code in a unique and small protection domain, so that the app’s capa-

bilities are confined and minimized to accessing its own files and security-insensitive

APIs. However, apps inevitably communicate with other apps and the mobile OS.

Therefore, a user can explicitly grant permissions to an app so that the app can ac-

cess resources outside its own sandbox. The concept of permission is widely adopted

in modern mobile platforms. For example, iOS uses the name “entitlements,” and

Windows Phone uses “requirements.”

The problem of these security mechanisms is that they rely on the user to evaluate

the security and privacy implications of apps, but are too complex for users to take

actions. Before installing an app, a user only sees the app’s meta information, such

as the description of the app and/or a list of permissions requested by the app. Note

that it is the app’s developers who specify such meta information; and they may lie

or hide their true purpose. Even after installing the app, the user only see the app’s

interface and limited visual hints from the mobile OS, while the background behaviors

of the app are invisible. As a result, it remains a crushing burden for users to assess

an app and to tame the app to do only what the user expects it to do. The burden

comes from both the sophistication required to understand the internals of mobile OSs

and the consistent attention required to address rapidly evolving apps and threats.

Moreover, apps do not run by themselves; an app’s behaviors are also shaped by its

communication from and to other apps, which further stacks up the complexities in

taming apps. And failing to address inter-application communication could lead to

data leaks and privilege escalation attacks. In summary, the limitations of existing

security mechanisms in modern mobile platforms render users disadvantageous with

respect to protecting themselves against rogue apps.

2

System

Services

Hardware

Abstraction Layer

Applications

Application

Stores

Hardware

Users Assessment

ConfinementMonitoring

Figure 1.1: Problem Space of Mobile Platform Security

1.1 Thesis Statement

The security situation on modern mobile platforms is dire. While the adversaries

are getting smarter, the users expect to regain control of the mobile devices and they

demand more power to inspect and tame apps. The discoveries and observations made

during our studies of modern mobile platforms inform the following thesis statement:

Modern mobile platforms need systematic and automated approaches to

monitor, assess, and confine the behaviors of mobile applications.

In this dissertation, we focus on the Android platform because it is one of the

most representative modern mobile platforms and it provides the necessary openness

of documentation and platform source code that facilitate our analysis, modifications,

and experiments. Figure 1.1 depicts the problem space of Android system security

and where monitoring, assessment, and confinement fit in the space. Specifically, we

propose to monitoring apps interactions with other apps and the mobile OS to acquire

the intelligence about apps’ actual purpose. We further propose assessment mecha-

nisms to help users better digest the collected intelligence, make informed security

decisions and, verify the effectiveness of the decisions. Finally we propose confine-

3

ment mechanisms to flexibly enforce the security decisions. The three tasks constitute

a security management lifecycle that can be applied continuously and iteratively to

address emerging threats and rapidly evolving mobile apps.

Evidence of each task can be found in our subsequent studies. In our first study,

we attempt to understand the limitations of the current monitoring and confinement

mechanisms and exploit these limitations for attacks. In particular, we systemati-

cally generate a set of heuristics that allow malware to evade emulator-based dynamic

analysis. Based on the discovered limitations, our second study proposes enhanced

monitoring and confinement mechanisms. We propose a suite of three comprehensive

reference monitors that mediate app-to-app and app-to-OS communication at three

respective layers of Android. Our third study implements an automated risk assess-

ment framework. It evaluates each individual app’s security risk with an automati-

cally generated risk assessment baseline derived from a user’s security requirements

and the user’s trusted apps’ runtime behaviors. The final study goes beyond individ-

ual apps and assesses inter-application communication. We propose a generic intent

space model and an automated policy checker to assess intent-based inter-application

communication that is controlled by multiple incompatible security mechanisms.

1.2 Previous Publications

This dissertation incorporates materials from my previous conference and jour-

nal papers. The concepts and techniques of attacking the loopholes of the existing

monitoring and confinement mechanisms in Chapter 3 were discussed in the following

conference paper:

• Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu, Morpheus: Auto-

matically generating heuristics to detect android emulators. In Proceedings of

the 30th Annual Computer Security Applications Conference (ACSAC), 2014.

4

The system for comprehensively monitoring and confining app’s runtime behav-

iors in Chapter 4 was discussed in the following journal paper that is currently in

submission.

• Yiming Jing, Gail-Joon Ahn, and Hongxin Hu, TripleMon: A multi-layer se-

curity framework for mediating inter-process communication on android. In

submission to Journal of Computers and Security, Elsevier, 2015.

The ideas of a risk assessment framework for individual apps and a holistic policy

checking framework for inter-application communication were discussed in two confer-

ence papers, a journal paper, and a conference paper that is currently in submission.

• Yiming Jing, Gail-Joon Ahn, and Hongxin Hu, Model-based conformance test-

ing for android. In Proceeding of the 7th International Workshop on Security

(IWSEC), Springer, 2012.

• Yiming Jing, Gail-Joon Ahn, Ziming Zhao, and Hongxin Hu, RiskMon: Contin-

uous and automated risk assessment of mobile applications. In Proceedings of

the 4th ACM Conference on Data and Application Security and Privacy (CO-

DASPY), ACM, 2014. (Best Paper Award)

• Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu, Towards auto-

mated risk assessment and mitigation of mobile applications. In IEEE Trans-

actions on Dependable and Secure Computing, IEEE, 2015.

• Yiming Jing, Adam Doupé, Gail-Joon Ahn, Checking Intent-based Communi-

cation in Android with Intent Space Analysis. In submission to the 6th ACM

Conference on Data and Application Security and Privacy, 2016.

5

Chapter 2

BACKGROUND

This chapter gives a brief introduction about the Android platform that facilitates

understanding of the remaining chapters.

2.1 Android Fundamentals

Android is a mobile platform that consists of a monolithic Linux kernel and a

loosely-coupled middleware layer. An app can use functionalities provided by both

the middleware and Linux. The basic building blocks of Android apps are compo-

nents. Android defines four types of components to address different requirements

and scenarios 1 .

• Activities are components that provide graphic user interfaces (GUI). The An-

droid GUI is implemented as a stack of activities starting one after another,

where each activity is typically presented as a window on the screen.

• Services are components that run in the background for long-running opera-

tions. They expose remote procedure call (RPC) interfaces to be called by

other apps.

• Broadcast Receivers are components that asynchronously receive broadcasts sent

from other components.

• Content Providers are components that provide public data interfaces to other

components. A content provider supports common database operations such as

query, insert, update and delete.

1http://developer.android.com/guide/components/index.html

6

http://developer.android.com/guide/components/index.html

A component can be exported to other apps. Each exported component of an app

is an entry point for intents through which the other apps or the Android system can

send intents. Typically, an app exports its components to other apps by statically

declaring the exports in the app’s manifest. However, an app can also dynamically

create and export components in its code. Two system services, PackageManagerSer-

vice (PMS) and ActivityManagerService (AMS), maintain the information about each

installed app’s components regardless of how the components are exported—either

statically or dynamically.

2.2 Inter-Application Communication in Android

The sandbox in Android mediates apps’ accesses on resources and isolates an

app’s data and code execution from other apps. It disallows an app to directly access

the data outside its sandbox. Instead, it allows the app to send data requests to

other apps and system services through inter-process communication (IPC) channels.

In this section, we briefly describe the major types of Android IPC mechanisms.

Figure 2.1 shows the examples of these IPC channels in Android. On the top of the

figure we show the data owned by apps and system services. The sandboxed apps

and system services are listed in the middle. The arrows demonstrate data requests

sent by apps via IPC mechanisms. Next, we describe the IPC mechanisms and their

corresponding examples in the figure.

2.2.1 Intent-based Inter-Component Communication

Intent play a leading role in connecting the components of apps. An app creates an

intent and sets its embedded attributes. The intent is then processed by the Android

system and the security extensions, which automatically resolve an intent’s recipients

based on the following intent attributes:

7

Binder

App_C

VM

App_B
VM

App_E
VM

Application Private Storage
/data/data/

app_C

Uid=10003

/data/data/

app_B
Uid=10002

Uid=

10002

Uid=

10003

Uid=

10005

Media

Server

Uid=

1006

Android

Application

Framework

Activity

Manager

Proxy

Android

Application

Framework

Activity

Manager

Proxy

Android

Application

Framework

Camera

Manager

Proxy

Local

Socket

System Server

Activity

Manager

Service

Uid=1000

Mount

Service

App_A
VM

Uid=

10001

Android

Application

Framework

Mount

Service

Proxy

Vold

Uid= 0

/data/data/

app_A
Uid=10001

/data/data/app_E

Uid=10005

Netlink

Socket

App_D
(with GingerBreak)

Uid = 10004

Execute:

service call

media.camera

Mounted volumes

/mnt

Uid=0

Camera

/dev/video0

Uid=1006

Camera

Service

Figure 2.1: Examples of Android Inter-Process Communication

• Component name: This attribute explicitly specifies the expected recipient

of the intent.

• Action: This attribute describes the general action to be taken by a recipient

component, such as PICK, VIEW, EDIT, or SHARE.

• Scheme: This attribute describes the protocol that serves the data, such as

http, mailto, or tel.

• Authority: This attribute describes the location of the data, such as www.google.com

or paypal.

• Type: This attribute describes the MIME type of the data, such as audio/ogg,

video/*, or */*. Note that wildcards are allowed.

• Category: This attribute provides additional information about the data. For

example, a category BROWSABLE implies the data that can be opened in a web

browser, such as a link to an image.

Two types of intents exist in Android. Explicit intents specify the component name

only. Android delivers an explicit intent directly to its specified component regardless

of the presence of any other attributes. Implicit intents specify the attributes other

8

than component name. Thus, an implicit intent’s recipients are implicit and must be

resolved at intent-sending time; Android must search the registered components to

resolve the recipient components.

Out of all the existing security extensions that control intents, four security ex-

tensions are part of the Android Open Source Project (AOSP) and ship with almost

every recent Android device. Intent filters assigned on an app’s component specify

the implicit intents that the component can receive. Each filter corresponds to only

one component, while a component can have multiple filters. An intent filter describes

its accepted intents with the same attributes as those of implicit intents. Permissions

further constrain an app from receiving explicit and implicit intents. Specifically, a

permission assigned on a component requires the component to only receive intents

from the apps that hold the same permission. Protected broadcasts are a set of special

implicit intents reserved by the Android framework and system apps; they cannot be

sent from any third-party apps. In addition, IntentFirewall enables policy-driven

access control over both types of intents. It denies specific apps from sending certain

intents as specified in its policy, which can be defined by users or enterprise IT. Over-

all, an intent is processed by one security extension after another before it reaches

any recipient component. As shown in Figure 2.1, App B and App C utilize ICC

to communicate with each other. The arrows show that App B sends an intent to

App C via AMS.

2.2.2 Binder IPC

Although the sandbox prevents an app from directly accessing anything outside

its sandbox, it allows the app to interact with system services via Android APIs which

are implemented based on an IPC framework called Binder. Binder includes proxies

implemented as parts of the app framework, stubs implemented as parts of system

9

services, and a kernel module to manage Binder IPC transactions. The kernel module

identifies IPC transactions with the user IDs and process IDs of sender and recipient

processes as well as a command code that specifies the action to be performed by the

receipt process.

A typical Binder IPC channel is established with 6 steps: (1) an app invokes

the proxy that encapsulates the destination system service’s Binder IPC handle, a

command code, and optional data in a parcel; (2) Binder resolves the destination using

the IPC handle; (3) Binder delivers the parcel and invokes the stub in the destination

system service; (5) the stub unpacks the parcel, takes the action as instructed by

the command code, and sends results back to the proxy via Binder; and (6) the app

receives the results. As depicted in Figure 2.1, App E can use the camera via the

CameraManagerProxy of the app framework. As of this writing, Binder IPC is solely

controlled by a kernel-based Mandatory Access Control (MAC) implementation called

SEAndroid [109].

2.2.3 Linux IPC

Traditional Linux IPC is still available in Android. Examples include local sock-

ets, Unix-domain sockets, and Netlink sockets. In a broader sense, Linux IPC also

includes communication via signals and files. System services may use Linux IPC to

communicate with other services and the kernel. Note that apps may also use Linux

IPC, which allows them to bypass the Android middleware. Recent attacks [124, 125]

have demonstrated the feasibility of exploiting such IPC channels. Figure 2.1 shows

that MountService communicates with Volume Daemon (vold) through a local socket.

In addition, vold exposes a Netlink socket to receive events (e.g., unplugging storage

media) from the kernel. Similar to Binder IPC, Linux IPC mechanisms are mediated

by SEAndroid [109].

10

2.3 Prominent Threats

Android includes a monolithic Linux kernel and a loosely-coupled middleware

layer. Due to the mixed nature of this platform, Android not only inherits security

issues rooted in the Linux kernel, but also faces unique security problems introduced

by the middleware.

2.3.1 Attacks Bypassing the Sandbox

Before Android 4.2, the Android sandbox is based the discretionary access control

(DAC) provided in Linux kernels by default. Files that are set globally accessible

render the DAC-based sandbox useless. For example, a vulnerability in Skype ex-

poses the user’s profile and messages to every installed app [7]. Similarly, a file that

stores the list of installed apps is mistakenly set globally readable in early Android

versions [68].

Linux kernel vulnerabilities also make it possible to bypass the sandbox [1, 2, 6,

8, 9, 12]. These exploits (also known as “jailbreaks”) allow an app to escalate their

privilege to root privileges. Recent reports have shown cases of root-capable apps

that download additional malware [14] and replace system binaries [13]. Indeed, the

occurrence of such exploits is quite high [126], and almost every popular Android

device had a publicly available exploit for at least 74% of the device’s lifetime [59].

2.3.2 Attacks Bypassing Permissions

As apps may unintentionally expose private components, ICC can be abused for

unauthorized intent receipt and intent spoofing [42]. For example, a malicious app

can sniff, modify, and replace messages sent by a benign app. Moreover, Lineberry et

al. show that a zero-permission app may upload without the INTERNET permission by

11

sending an intent to the Browser app [5]. Several similar zero-permission attacks have

been discovered as well, such as making phone calls [56] and setting an alarm [60].

A coarse-grained permission covers multiple capabilities for accessing resources

with different sensitivity levels. For example, READ PHONE STATE allows an app to

access both the phone’s state (e.g., if there is an incoming call) and unique device

identifiers [51]. The former is trivial but the latter introduces potential privacy risks.

For apps that utilize the phone’s state only, holding unnecessary capabilities such

as reading the identifiers violates the security principle of least privilege. In addi-

tion, permissions are indivisible and irrevocable. A user has no way to control each

individual capability covered by a single permission.

Finally, some sensitive APIs are not well-protected. For example, the RingerMode

setting of AudioService is not protected by any permission, allowing any app to silence

the phone without the user’s consent. Felt et al. point out that only 6.45% of all API

methods in Android are protected by at least one permission [58].

12

Chapter 3

MONITORING AND CONFINEMENT: ATTACKS

This work analyzes the limitations of existing security mechanisms in Android and

attempts to exploit the limitations. We found that apps are over-privileged despite

being confined. The excessive privileges allow an app to sense the presence of Android

emulators and thus make it possible to evade emulator-based dynamic analysis. In this

work, we propose a systematical approach to exploit these privileges and to discover

heuristics to detect Android emulators. Our approach and preliminary results are

published in [80].

3.1 Problem Statement

The rise of mobile computing should partially give credit to application stores such

as Apple AppStore and Google Play. With these services, users enjoy a centralized and

trusted source for browsing and purchasing apps. Unfortunately, such advantages also

make application stores an appealing place for distributing malicious mobile apps. To

infect more unsuspecting users, adversaries would attempt to publish their malware

in application stores without being detected. To effectively mitigate such attempts,

the application stores have deployed emulator-based dynamic analysis, which vets

runtime behaviors of apps on a large scale.

However, a flaw of emulator-based dynamic analysis lies in the discrepancies be-

tween emulators and real devices. Such discrepancies, if observable by apps, may

lead to detection heuristics (a.k.a., “red pills”) that indicate the fabricated reality of

Android emulators. Taking advantage of these heuristics, Android malware can build

split personalities and circumvent dynamic analysis. For example, a malicious app

13

could stay dormant or exhibit legitimate behaviors. Furthermore, this app can use

dynamic external code loading to evade both static and dynamic analysis, because it

only downloads the malicious payload when it is in a real device. Alternatively, it can

perform reconnaissance within the emulator and phone home to facilitate generation

of up-to-date detection heuristics for future attacks. Indeed, the security community

has already discovered Android malware samples that use such heuristics to evade

dynamic analysis.

Due to the peculiarities of Android, we argue that Android malware would be

reluctant to reuse previous PC emulator detection heuristics. First, Android mal-

ware faces a unified runtime environment whose underlying implementation details

(e.g., hardware differences) are concealed by the Android middleware and APIs. At

the same time, Android malware has been deprived of many capabilities that allow

accessing low-level system artifacts by the Android application sandbox. In addi-

tion, Android malware would prefer detection heuristics implemented with Java code

rather than native code. As native code is used by only a small fraction of benign An-

droid apps but most malicious root exploits [128], native code would draw attention

of analysis tools, breaking a detection heuristic’s basic purpose of evading analysis.

The detection heuristics found in newly discovered malware samples seem to be

in line with our argument. They allow an app to detect emulators without bypassing

the application sandbox and without the assistance of native code. For example, a

popular detection heuristic involves an Android API getDeviceId that returns the

IMEI of an Android device. This heuristic calls getDeviceId and tests whether

“000000000000000” is a substring of the returned value of getDeviceId. It can

be implemented with only two lines of Java code and thus leaves relatively small

footprints. Despite that researchers have discovered similar detection heuristics and

evaluated their effectiveness against Android SDK emulators, the magnitude and

14

accuracy of such heuristics remain unknown, which results in an impediment to the

development of comprehensive countermeasures.

Regrettably, all known detection heuristics that target Android emulators are

discovered piece by piece in an ad-hoc fashion. For example, some heuristics are

discovered through dissecting malware samples [47, 57]. Such a reactive approach

cannot predict unknown heuristics. Other known heuristics are derived from manual

analysis on specific components of Android emulators [88, 112]. Even though this

approach is proactive, manual analysis inevitably cannot address the multitude of

components in Android emulators.

3.2 A Proactive and Automated Approach to Generate Heuristics

In our threat model, we assume emulators that run Android with default config-

urations. We also assume the presence of passive anti-detection techniques, which

do not proactively instrument the application to suppress the execution of detection

heuristics. This is also the common setup of the existing deployed emulator-based

dynamic analysis systems.

In addition, we assume a malicious Android application that does not bypass the

application sandbox or carry any native code. Meanwhile, we allow this application

to request any Android permission. granted. In other words, this application’s ca-

pabilities are no more than those of the benign applications in application stores.

Afterwards, it applies detection heuristics that check the presence or contents of cer-

tain artifacts. Based on the result, it determines where it is running.

As the app is properly confined, it cannot exploit the artifacts that it cannot

observe from within the application sandbox. Here we define observable artifacts as

artifacts (e.g., files, APIs) whose presence can be probed or whose contents can be

read by any Android application in its sandbox. For example, suppose a file is not

15

Sandbox Analysis

Sandbox

Analyzer

Artifact Retrieval Heuristic Extraction

Heuristic

Extractor

Heuristic Selection

E-Pool

D-Pool

Heuristic

Selector
Artifact

Retriever

Sources of

Observable

Artifacts

Security

Attributes of

Objects

Observable

Artifacts in

Emulators

Observable

Artifacts in

Real Devices

Candidate

Detection

Heuristics

Ranked

Detection

Heuristics

SELinux

Policy

Figure 3.1: Proposed Heuristic Generation Framework

readable but its parent directory is listable, this file is still an observable artifact.

Leveraging this observation, the key of this work is to retrieve and analyze observable

artifacts and verify whether they can be used to indicate emulators.

As depicted in Figure 3.1, our framework would consist of four components. The

sandbox analyzer analyzes the default configurations of the Android application sand-

box to identify sources of observable artifacts. For respective sources, the artifact

retriever enumerates observable artifacts and retrieves their contents. The retrieved

observable artifacts are uploaded to two pools for both emulators and real devices,

respectively. The heuristic extractor then analyzes the pools by finding the artifacts

or substrings of their contents that appear in most emulators but a small fraction

of real devices, and vice versa. These artifacts and substrings constitute candidate

detection heuristics. Finally, the heuristic selector ranks the candidates.

3.2.1 Sandbox Analyzer

Applications’ accesses on artifacts are regulated by the Android application sand-

box, which is based on discretionary and mandatory access control (DAC and MAC).

The Linux kernel provides DAC, which grants accesses by checking permissions of

objects. Security-Enhanced Linux (SELinux) adds MAC over DAC starting from An-

droid 4.3. SELinux grants accesses by checking domains of subjects (e.g., untrusted app),

16

types of objects (e.g., wallpaper files), and SELinux permissions (e.g., open, read,

ioctl, recv msg) 1 .

To identify sources of observable artifacts, we need to access all the objects in the

Android OS. However, it is infeasible to do so in off-the-shelf Android devices due to

the application sandbox and lack of root privileges. Instead, we propose the sand-

box analyzer that analyzes the reference SELinux policy in Android and the security

attributes (e.g., owners, permissions, xattr) of objects in rooted reference Android

devices (e.g., Nexus devices). Specifically, we attempt to identify the objects whose

security attributes expose themselves to third-party applications. Given that third-

party applications are automatically assigned into the untrusted app domain during

installation, we simulate DAC and MAC checks to identify the following objects:

(1) objects that are world-readable or under world-listable directories; and (2) ob-

jects that are accessible by untrusted app using read-like SELinux permissions (e.g.,

read, recv msg, ioctl). From such objects, we then distill the sources of observable

artifacts based on their owners and SELinux types, along with proper methods to

retrieve them. For example, /dev/binder has the SELinux type binder device. Its

SELinux type indicates that it belongs to the Binder IPC subsystem that allows an

application to access remote artifacts in system services. Such artifacts would require

Binder-specific methods to retrieve. As variations in the hierarchy of objects across

different Android versions are insignificant, the sources of observable artifacts derived

from the reference inputs should be applicable in emulators and real devices.

We stress that the sandbox analyzer is much more conservative compared with the

current Android application sandbox. SELinux in Android 4.3 is configured to permit

every access. Even in Android 4.4, SELinux only protects several critical system

1We ignore users, roles, and security levels for brevity because they are rarely used in the context
of Android.

17

daemons and does not confine third-party applications (i.e., untrusted apps). With

that said, the true amount of observable artifacts in current Android devices could

be much larger. However, considering the possibility that SELinux may extend its

coverage in the upcoming versions of Android, we choose to be conservative for the

future effectiveness of our detection heuristics.

3.2.2 Artifact Retriever

The artifact retriever is essentially a probe application. It requests all the avail-

able Android permissions to maximize its capabilities within the confinement of the

application sandbox. Based on the identified sources of observable artifacts, we im-

plement the corresponding methods in the artifact retriever to automatically retrieve

the observable artifacts as well as their contents.

To address the various sources of observable artifacts, we propose three founda-

tion modules in the artifact retriever: a directory walker, a Java function caller, and

a Binder IPC caller. They are tailored to the peculiarity of Android and can be

easily adapted and combined. Specifically, the directory walker traverses file-like ar-

tifacts. The Java function caller enumerates and manipulates both public and hidden

Android APIs. The Binder IPC caller directly triggers remote system services (e.g.,

TelephonyManagerService) with dynamically constructed Binder IPC messages.

We launch the artifact retriever into both Android emulators and real devices. It

probes the surrounding observable artifacts with its carried modules. It technically

captures the first 1KB of each artifact’s contents if readable. Upon explicit errors

(e.g., denied access), it records the error messages as the retrieved contents. Upon

implicit errors (e.g., blocking read), it uses a timeout to ensure that it does not

hang there infinitely. We note that, the artifact retriever must upload artifacts to

the correct pool according to where the artifacts are observed. For example, artifacts

18

collected from emulators should never go into D-Pool. This is critical for the heuristic

extractor to work effectively, because arbitrary noises could make the problem of

heuristic generation NP-hard [86].

3.2.3 Heuristic Extractor

The inputs of the heuristic extractor are two pools, namely E-Pool and D-Pool,

which contain instances of observed emulators and real devices, respectively. Each

instance is a collection of key-value pairs that map retrieved artifacts to their contents.

A key (artifact) occurs in an instance once at most, although it can occur in multiple

instances. And a value (content) can be null if the artifact retriever fails to read

the contents. Next, we describe two categories of detection heuristics that generate

decisions based on the artifacts and their contents, respectively.

We start from a category of heuristics that make decisions based on the presence

of artifacts. First, we attempt to discover the artifacts that are exclusively used

by emulators, such as emulator-specific hardware, software, and configurations. As

we use their presence to imply emulators, we refer to them as Type E artifacts.

Furthermore, we also look for the artifacts that appear in most real devices, which

become our Type D artifacts.

We propose two metrics, COVE(a) and COVD(a) to denote the fractions of in-

stances in E-Pool or D-Pool that contain artifact a, i.e., COVE(a) = |Ea|
|E|

, and

COVD(a) = |Da|
|D|

. Intuitively, our heuristics should at least perform better than a

50/50 guess. Thus, we choose Type E and Type D artifacts from all the artifacts in

both pools according to their values of COVE(a) and COVD(a) as follows:

• Type E artifacts: COVE > 50%, COVD < 50%

• Type D artifacts: COVE < 50%, COVD > 50%

19

However, there are plenty of artifacts that are prevalent in both emulators and

real devices. For example, Android APIs would have both COVE and COVD larger

than 50%. Inspired by Hamsa [86], we propose a category of detection heuristics

whose decisions are based on tokens, where token is a contiguous byte subsequence in

the contents of an artifact. Similar to what we introduce for artifact-based heuristics,

we attempt to find Type E and Type D tokens.

Specifically, for an artifact a and its retrieved contents in E-Pool, we extract a

set of tokens by computing common substrings among the contents. We then extract

another set of tokens for D-Pool. Combining these two sets of tokens as a token set

T , we compute COVE(a, t) and COVD(a, t), which are the fractions of instances in E-

Pool and D-Pool whose contents of artifact a contain token t, i.e., COVE(a, t) = |Ea,t|
|E|

and COVD(t) = |Da,t|
|D|

. Based on the values of COVE(a, t) and COVD(a, t), we select

two type of tokens as our content-based heuristics as follows:

• Type E tokens: COVE > 50%, COVD < 50%

• Type D tokens: COVE < 50%, COVD > 50%

There are various algorithms that effectively compute common substrings. We

opt for a suffix array in our heuristic extractor. Constructing a suffix array runs in

O(nlogn) time in worst case scenario and consumes 5n bytes of memory, where n is

the total size of the contents of an artifact in a pool. Extracting tokens from the

constructed suffix array can be implemented using a binary search. Furthermore, as

we prefer longer tokens in the context of generating detection heuristics, we add one

more step to prune tokens that are substrings of the other tokens as long as they

share the same COVE and COVD.

The output of the heuristic extractor is a set of Type E and Type D heuristics.

Each heuristic is represented as a 3-tuple (artifact, token, type). token can be null

20

for artifact-based heuristics. type implies the decision to be made once the observed

artifact/token matches the artifact/token specified in the heuristic. The matched

Type E heuristics indicate emulators and the unmatched ones indicate real devices.

Conversely, Type D heuristics imply the opposite decision.

3.2.4 Heuristic Selector

We propose the heuristic selector to rank the candidate detection heuristics gen-

erated by the heuristic extractor. In general, we reduce the problem of ranking the

candidates to the problem of feature selection in supervised learning. E-Pool and

D-Pool comprise a training set consisted of instances that are correctly labeled with

“emulator” or “real device.” Furthermore, we have extracted a set of detection heuris-

tics that can be considered as binary features. Now we need to select the relevant

and non-redundant detection heuristics that would best classify future observations.

We propose to use a random forest [74], which is an ensemble learning method

that leverages a multitude of decision trees for classification. Each individual decision

tree covers a random subset of the features and is trained with a random subset of

training samples. Afterwards, the random forest fits the training set by letting each

decision tree predict its unseen samples and evaluate the errors. During this process,

an importance score for each feature is measured based on how significant the error

rate would change if the feature is removed from the decision trees.

We use this importance score as a metric to rank the candidate heuristics. On one

hand, relevant heuristics that contribute much to classification naturally get higher

importance scores. On the other hand, redundant heuristics that exploit the same

artifact/token as other heuristics are assigned zero or lower importance scores. As

such, the final output of the heuristic selector is a set of relevant and non-redundant

21

detection heuristics as sorted by their importance scores derived from the random

forest.

As the number of detection heuristics is much larger than the number of instances

in the pools, the random forest may suffer from over-fitting, which overestimates the

importance level of some heuristics. To suppress over-fitting, we choose to increase

the number of decision trees in the random forest. As more trees are added, its

tendency to over-fit generally decreases as no single feature can affect every decision

tree.

3.3 Finding Detection Heuristics

We ran our experiments with Morpheus against QEMU-based Android SDK em-

ulators [17], VirtualBox-based Genymotion emulators [19], and real devices. In this

section, we elaborate our experiments that lead to the findings of 10,632 detection

heuristics. We then characterize the heuristics according to the underlying discrep-

ancies that they exploit.

3.3.1 Experimental Setup and Findings

To understand the observable artifacts in the reference Android devices, we adopted

an instance of the SDK emulator and a Galaxy Nexus phone that both run Android

4.4. We traversed their mounted file systems to obtain the security attributes of

objects. We then acquired a copy of the default SELinux policy from the Android

Open Source Project (AOSP). Using these as inputs, the sandbox analyzer identified

33 sources of observable artifacts. However, retrieving all of them requires plenty of

domain-specific knowledge for tasks such as enumerating artifacts and constructing

valid inputs. In this work, we only retrieved 3 sources that could possibly lead to

discrepancies and cover a sufficient number of observable artifacts.

22

Procfs and Sysfs: Procfs and sysfs are both pseudo file systems that expose

kernel objects to userspace programs. Specifically, procfs presents system informa-

tion, such as loaded kernel modules, mounted filesystems, and network stacks. Sysfs

exports hardware information such as connected block devices, buses, and power

states. Our implementation of the artifact retriever traversed these two file systems

mounted at /proc and /sys. In particular, we slightly adapted the directory walker

to handle looped symbolic links that are prevalent in procfs and sysfs.

Android APIs: A large number public and hidden APIs are exposed by Android

system services. For example, TelephonyManagerService exposes APIs that return

unique device identifiers to applications. Actually, the APIs are implemented with

the underlying Binder IPC framework, which handles the IPC between applications

and system services through a Binder device node located at /dev/binder.

To probe APIs behind Binder, we implemented two approaches in the artifact

retriever. We used the reflection-based Java function caller to enumerate and call

APIs. We also adapted the Binder IPC caller to construct and send IPC messages

to the remote system services. The returned Java objects and Binder IPC messages

were converted into byte sequences as the retrieved artifacts’ contents. For Java

objects that are not of Java primitive types, we leveraged their toString method to

acquire more information about them. In this chapter, we are particularly interested

in Android APIs that do not have any input parameters. According to [102], such

APIs are more likely to be “sources that return non-constant values into application

code.” As a result, we covered approximately 15% of the 1,326 APIs exposed by

Android system services.

Android System Properties: Similar to the Windows registry, Android in-

cludes a subsystem that centrally stores system configurations and status. This sub-

system, usually dubbed as “property system,” has been extensively used by Android

23

system services. For example, a system property ro.kernel.qemu is read by the

Android debugging bridge daemon (adbd) to determine the presence of emulators.

System properties also cover meta information about the hardware, such as device

models and manufacturers. Despite that SELinux in Android protects system prop-

erties, we inspected the implementation of the property system and found that the

security check is only in the function property set(), meaning that SELinux does

not prevent reading system properties at all. Moreover, applications are allowed to

read /dev/ properties , which is the interface to system properties. Therefore,

system properties are observable by every installed application. To retrieve system

properties, we adapted the artifact retriever to call a binary executable located at

/system/bin/getprop. It enumerates system properties so that the Java function

caller can read the contents of each property. We note that this executable is only for

the artifact retriever. It is not required by the detection heuristics that read system

properties.

Afterward, we ran the adapted artifact retriever against 16 instances of QEMU-

based SDK emulators, 11 instances of VirtualBox-based Genymotion emulators, and

25 real devices. The SDK emulators covered three CPU architectures, namely ARM,

x86, and MIPS. The Genymotion emulators covered x86, which is the only architec-

ture they support. Both emulator types covered Android versions from 2.3 to 4.4. The

real devices covered four manufacturers (Samsung, HTC, Motorola, and LGE), three

ARM SoC families (Qualcomm Snapdragon, Texas Instruments OMAP, and Nvidia

Tegra), and Android versions from 2.1 to 4.4. In particular, the real devices were bor-

rowed from the participants we recruited through university mailing lists under the

study protocol reviewed by our institution’s IRB. Anecdotally, it took approximately

5-20 minutes for the artifact retriever to retrieve and upload the observable artifacts

on each device.

24

Table 3.1: Discovered Detection Heuristics

Pools
Detection Heuristics

File API Property Total

D-Pool + E-Pool 2,121 81 82 2,284

D-Pool + EQ-Pool 2,961 163 132 3,256

D-Pool + EV -Pool 4,782 150 160 5,092

Total 9,864 394 374 10,632

The retrieved artifacts contributed to four pools for QEMU-based emulators (EQ-

Pool), VirtualBox-based emulators (EV -Pool), all the emulators (E-Pool), and real

devices (D-Pool). We then fed these pools to the heuristic extractor and the heuristic

selector. The heuristic selector ranked the candidate heuristics with 10,000 decision

trees and pruned the heuristics with zero importance scores. Table 3.1 shows a break-

down of the discovered 10,632 detection heuristics. In the remainder of this chapter,

we will respectively refer to these three categories of heuristics as file heuristics, API

heuristics, and property heuristics, in the interest of brevity.

3.3.2 Characterizing Detection Heuristics

Next, we characterize the discovered heuristics based on the discrepancies they

exploit. We first discuss the common detection heuristics that exploit the discrepan-

cies shared by both QEMU-based and VirtualBox-based emulators. We then discuss

the heuristics that leverage the QEMU-specific or VirtualBox-specific discrepancies,

respectively. Our discussion does not aim to be exhaustive, instead we attempt to

convey the scope of discrepancies in Android emulators. Considering that an at-

tacker can possibly use this section as hints to craft detection heuristics, we suggest

provisional but deployable countermeasures in Section 3.5.

25

Common Detection Heuristics

Network. These detection heuristics exploit the discrepancies in network interfaces,

Netfilter modules, and kernel modules. For example, we found that all the emulators

exclusively use eth0, whereas the real devices use wlan0 and rmnet. The emulators

also miss several IPv6-specific interfaces. In addition, the network interfaces in the

emulators are not tetherable, because the emulators are missing the Remote Network

Driver Interface (RNDIS) drivers that enable tethering. Netfilter is another source of

discrepancies. The real devices include Netfilter modules for several network protocols

that are rarely used in the context of mobile devices. Finally, Android introduces a

kernel module to track data usage of installed applications. This module does not

exist in the emulators.

Power management. This type of heuristics focuses on the power management

subsystem. For example, the emulators lack the voltage and current regulators. The

emulated CPU does not support frequency scaling. Another heuristic lies in the

prevalence of multi-core CPUs in real devices. All the emulators only have a single

core, whereas 75% of the real devices have at least two cores.

Audio. A handy feature of Android is headset detection, which allows the

audio output to automatically switch between speakers and headsets. This feature is

supported by GPIO/I2C buses. Notably, the emulators do not emulate these buses,

while 95.6% of the real devices in our experiments have them. Furthermore, the

differences in the implementation of audio subsystems between the emulators and

real devices result in disparate audio drivers.

USB. Recently, USB On-The-Go (OTG) has been widely adopted in popular

Android phones and tablets. It allows mobile devices to act as hosts and control USB

peripherals. Intuitively, the mobile devices have to pre-install corresponding drivers of

26

USB peripherals. As a result, we found that the real devices in our experiments carry

drivers for Apple Magic Mouse, joysticks, and external displays. On the contrary, the

emulators do not have such drivers and do not support USB OTG.

Radio. The software-emulated radio can lead to detection heuristics as well. For

instance, the name of the baseband in all the emulators is “unknown.” Moreover, the

emulators use a default reference implementation of the radio interface layer (RIL),

while the real devices typically use customized ones with different names. Similarly,

the phone numbers, voicemail numbers, device serial numbers of the emulators are

also constants and can be fingerprinted.

Software components and configurations. Despite that most of the discov-

ered detection heuristics are related to hardware, we also identified several heuristics

that exploit certain software components and their configurations. For example, the

emulators use unique input methods and search interfaces. Regarding configurations,

a prominent example is the key that signs the Android OS. The emulators use test

keys while the real devices use release keys.

QEMU Detection Heuristics

QEMU. We found various observable artifacts that are part of QEMU. For example,

we found a device node that accelerates the virtual graphics. In addition, there are

several system properties set by QEMU and read by Android system services. An

example is a property that stores the pixel density of virtual screens.

Goldfish virtual hardware. Most existing QEMU-based Android emulators

are built upon a virtual hardware platform called “Goldfish.” This platform introduces

a set of virtual hardware for QEMU to run Android as its guest operating system.

For instance, this set of virtual hardware includes a framebuffer, an audio device,

27

and a battery. They are a must for QEMU-based emulators but never appear in real

Android devices.

Bluetooth, NFC, and vibrator. The current QEMU-based emulators do not

support these hardware. Their corresponding Android APIs return null if called from

within the emulators. In particular, the driver of the vibrator is based on a Linux

driver model called timed output, which is also missing from the emulators.

VirtualBox Detection Heuristics

VirtualBox. Similar to QEMU-based emulators, we also found plenty of VirtualBox-

specific artifacts. For example, we found 4 kernel modules that belong to VirtualBox

Guest Additions. As stated in VirtualBox’s documentation, these modules “optimize

the guest operating system for better performance and usability.” However, their

presence also indicates VirtualBox.

PC hardware. As we have discussed, QEMU-based emulators lack support for

some popular hardware, such as Bluetooth and NFC. On the contrary, VirtualBox-

based emulators support many types of hardware that Android does not need. We

found hundreds of artifacts that indicate PC hardware and obviously should not

appear in mobile operating systems. For example, we found artifacts related to ACPI,

CPU fans, thermal sensors, CD-ROM drives, AC97 audio codecs, and PCI Express.

3.4 Measuring Detection Heuristics

As we have demonstrated the magnitude of the detection heuristic for Android

emulators, we further measure their accuracies. To this end, we assembled a group

of the top-ranked detection heuristics which are ranked by the heuristic selector. We

then tested them against emulator-based malware analysis tools and real devices.

28

In this section, we describe our experiments along with an empirical study on the

average accuracies.

3.4.1 Experimental Setup

As the generated common detection heuristics were already ranked by the heuristic

selector, we selected the top 10 heuristics out of the File, API, and Property detection

heuristics, respectively. Table 3.2 lists the artifacts, tokens, and types of the 30

selected detection heuristics.

We created a synthetic application to simulate the Android malware as we de-

scribed in the threat model. Specifically, this application integrated the 30 heuristics

with a heuristic matching engine based on Java’s substring searching methods. It gen-

erated its decision using a majority vote among the 30 heuristics. In other words, an

Android device is recognized as an emulator if more than half of the detection heuris-

tics indicate so. Furthermore, it only needed four permissions: READ PHONE STATE,

ACCESS NETWORK STATE, ACCESS WIFI STATE, and INTERNET, which are also frequently

requested by benign applications in Google Play [127].

We ran this application in 9 emulator-based malware analysis tools and 128 dis-

tinct real devices. As shown in Table 3.3, the malware analysis tools covered two

versions of an offline tool called DroidBox and 7 online services. Among the online

services, 4 are derived from previous research work and 3 are security products. The

128 real devices were from AppThwack, TestObject, and Baidu MTC, all of which are

online services that automatically test applications in real phones and tablets. Note

that we did not run our artifact retriever on them due to their limited device minutes

and bandwidth quota.

29

Table 3.2: Top 10 File, API, and Property Heuristics

Artifact Token Type

F1 /proc/misc “network throughput” E

F2 /proc/ioports “0ff\0:” E

F3 /proc/uid stat D

F4 /sys/devices/virtual/misc/cpu dma latency/uevent “MINOR=5” E

F5 /sys/devices/virtual/ppp D

F6 /sys/devices/virtual/switch D

F7 /sys/module/alarm/parameters D

F8
/sys/devices/system/cpu/

cpu0/cpufreq
D

F9 /sys/devices/virtual/misc/android adb D

F10 /proc/sys/net/ipv4/tcp syncookies E

A1 isTetheringSupported() “false” E

A2 getAuthenticatorTypes() “AuthenticatorDescription {type=com.g}” D

A3 getSystemSharedLibraryNames() “com.g” D

A4 getGlobalSearchActivity() “.android.quicksearchbox/com.android.quicksearchbox” E

A5 getWebSearchActivity() “.android.quicksearchbox/com.android.quicksearchbox” E

D

A7 getTetherableUsbRegexs() “rndis” D

A8 getEnabledInputMethodList() “.android.inputmethod.latin/.” E

A9 getDeviceId() via Binder “\0\0\03” D

A10 getTetherableIfaces() “wlan0” D

P1 qemu.hw.mainkeys E

P2 ro.build.description “release-keys” D

P3 ro.build.fingerprint “:user/release-keys” D

P4 net.eth0.dns1 E

P5 rild.libpath “/system/lib/libreference-ril.so” E

P6 ro.radio.use-ppp E

P7 gsm.version.baseband D

P8 ro.build.tags “release-key” D

P9 ro.build.display.id “test-” E

P10 init.svc.console E

3.4.2 Results and Empirical Analysis

We deem emulators as positive and real devices as negative. Given the measured

true positives (TP), false negatives (FN), false positives (FP), and true negatives

(TN), we attempt to evaluate the detection heuristics with three metrics, namely

sensitivity, specificity, and accuracy. For example, a Type E detection heuristic is

30

Table 3.3: Evaluated Emulators and Real Devices

Emulators

(9)

DroidBox [10] 2.3 and 4.1, Andrubis [11], CopperDroid [105],

SandDroid [20], TraceDroid [21], Qihu 360, NVISO ApkScan, ForeSafe

Real Devices

(128)

Samsung, HTC, LGE, Huawei, Motorola, Sony Ericsson, Lenovo, ZTE

Hisense, Asus, Acer, OPPO, BBK, Meizu, Gionee, DOOV, YuLong, Haier, AMOI

sensitive if it matches all the emulator instances. And, it is specific if it does not

match any non-emulator instances, i.e., real devices. Simply put, we compute the

values of the three metrics as follows:

• Sensitivity = TP/(TP + FN);

• Specificity = TN/(FP + TN); and

• Accuracy = (TP + TN)/(TP + FN + FP + TN).

Table 3.4 demonstrates the measured accuracies of the 30 detection heuristics. We

next present our empirical analysis on the average accuracies from three aspects.

File, API, and Property Heuristics

97.8%File heuristics
62.9%API heuristics

A
cc

u
ra

cy

89.5%Property heuristics

0% 20% 40% 60% 80% 100%

We first inspected the average accuracies of the heuristics according to the cate-

gories of their exploited observable artifacts. As shown in the above bar chart and

Table 3.4, the file heuristics enjoyed both high sensitivities and specificities with an

average accuracy of 97.8%. The API heuristics, despite of their acceptable sensi-

tivities, suffered from significantly low specificities. For example, A2, A9, and A10

performed no better than 50/50 guesses as their accuracies were less than 50%. The

property heuristics performed fairly good with an average accuracy of 89.5%.

31

Table 3.4: Evaluation Results of the 30 Heuristics
TP FN FP TN Sens.(%) Spec.(%) Acc.(%)

F1 9 0 2 126 100.0 98.4 98.5

F2 9 0 0 128 100.0 100.0 100.0

F3 9 0 7 121 100.0 94.5 94.9

F4 9 0 4 124 100.0 96.9 97.1

F5 9 0 1 127 100.0 99.2 99.3

F6 9 0 1 127 100.0 99.2 99.3

F7 9 0 7 121 100.0 94.5 94.9

F8 9 0 0 128 100.0 100.0 100.0

F9 9 0 0 128 100.0 100.0 100.0

F10 9 0 8 120 100.0 93.8 94.2

TP FN FP TN Sens.(%) Spec.(%) Acc.(%)

A1 9 0 3 125 100.0 97.7 97.8

A2 7 2 82 46 77.8 35.9 38.7

A3 5 4 24 104 55.6 81.3 79.6

A4 7 2 48 80 77.8 62.5 63.5

A5 7 2 45 83 77.8 64.8 65.7

A6 9 0 37 91 100.0 71.1 73.0

A7 9 0 64 64 100.0 50.0 53.3

A8 9 0 37 91 90.0 71.1 72.5

A9 6 3 72 56 66.7 43.8 45.3

A10 9 0 82 46 100.0 35.9 40.1

TP FN FP TN Sens.(%) Spec.(%) Acc.(%)

P1 8 1 2 126 88.9 98.4 97.8

P2 8 1 17 111 88.9 86.7 86.9

P3 8 1 21 107 88.9 83.6 83.9

P4 9 0 5 123 100.0 96.1 96.4

P5 9 0 2 126 100.0 98.4 98.5

P6 9 0 11 117 100.0 91.4 92.0

P7 9 0 14 114 100.0 89.1 89.8

P8 8 1 10 118 88.9 92.2 92.0

P9 8 1 0 128 88.9 100.0 99.3

P10 9 0 20 108 100.0 84.4 85.4

One possible explanation for the API heuristics’ low accuracies is that the An-

droid APIs are designed to provide some sort of hardware/software abstraction. An

evidence is the Android Compatibility Program 2 , which precisely defines the be-

haviors of Android APIs to ensure that Android applications run in “a consistent

and standard environment.” To build such an environment, the APIs that reveal

the underlying details are not necessary, and they are subject to be removed or dep-

recated. However, we argue that this environment also requires a well-configured

application sandbox to prevent applications from bypassing the APIs. Unfortunately,

our discovered file and property heuristics imply that the current sandbox should be

reinforced.

2https://source.android.com/compatibility

32

https://source.android.com/compatibility

Type E and Type D Heuristics

89.9%Type E heuristics

A
cc

u
ra

cy

79.4%Type D heuristics

0% 20% 40% 60% 80% 100%

We investigated the differences between the Type E and Type D heuristics. As

we have discussed in Section 3.2.3, Type E and Type D detection heuristics respec-

tively indicate emulators and real devices. In our experiments, the Type E heuristics

outperformed the Type D ones.

We note that almost all of the heuristics in Table 3.4 with low specificities are

of Type D. We believe that it is due to the diversified and fragmented nature of

real devices. Type D heuristics expect the artifacts/tokens that are prevalent in real

devices. However, device manufacturers inevitably customize devices and change ar-

tifacts, which makes it harder to find the artifacts that exist in every real device. On

the contrary, emulators are much more unified in terms of customizations, which is

possibly due to the difficulty in modifying and maintaining software-emulated hard-

ware.

Artifact-based and Content-based Heuristics

95.3%Artifact-based heuristics

A
cc

u
ra

cy

77.0%Content-based heuristics

0% 20% 40% 60% 80% 100%

Finally, we compared the artifact-based and content-based heuristics. The bar

chart shows that the artifact-based heuristics had an average accuracy of 95.3%. The

content-based heuristics fell behind with 77.0%. However, we stress that F1, F4, and

33

P9 are also content-based heuristics and their accuracies were among the top of the

30 heuristics.

In addition to the factors of abstraction and customization that we discussed

earlier, a possible explanation is that content-based heuristics are more subtle and

vulnerable to intended or unintended changes. Content-based heuristics exploit arti-

facts’ contents (e.g., configurations), which are subject to change in a rapidly evolving

system like Android. On the contrary, artifact-based heuristics rely on the presence

of certain artifacts. Compared with the contents, the artifacts (e.g., kernel modules)

are relatively consistent in emulators and real devices, because developers are usually

reluctant to remove them as to avoid unexpected problems.

3.4.3 Case Study: A9

Finally, we present a case study on heuristic A9 because it involves an Android

API getDeviceId, which has been popular among the known detection heuristics.

A9 exploits the same API but in a slightly different way. Specifically, it looks for

a token “\0\0\03” in the Binder IPC message returned from the implementation

of getDeviceId in TelephonyManagerService. In other words, A9 uses the IMEIs

whose first character is “3” to indicate real devices. However, it turned out that A9

had a sensitivity of 66.7% and an unbearable specificity of 43.8%. We investigated

the evaluated emulators and real devices to find out how they reacted to A9. The

investigation led us to flaws in an existing anti-detection technique and improvements

for A9.

A9 vs DroidBox 4.1

As we discussed in Section 3.3.1, our implementation of the artifact retriever employs

a Java function caller and a Binder IPC caller to probe Android APIs. When we

34

tested A9 against DroidBox 4.1, we found that these two callers returned disparate

values, namely “357242043237511” and “000000000000000.” We note that both

callers should return the same value, because the application-side Binder proxies

of Android APIs are not supposed to modify the IPC messages returned by the

underlying Binder stubs in system services.

We inspected DroidBox’s source code and found that DroidBox rewrites the Binder

proxy of getDeviceId to return a dummy IMEI without involving the Binder stubs.

Although such a countermeasure could neutralize the detection heuristics that call

getDeviceId in a normal way, it is not effective against the Binder IPC caller, which

bypasses the countermeasure and reads the actual full-zero IMEI. Therefore, we be-

lieve that the countermeasure implemented in DroidBox 4.1 is not complete. We

note that ApkScan demonstrated the same issue, implying that ApkScan might have

integrated DroidBox 4.1 for its dynamic analysis.

However, A9 was not effective against DroidBox 2.3. We found that DroidBox 2.3

opts for a similar countermeasure but implements it in the service-side Binder stub.

In such a case, bypassing the stub and observing the actual IMEI would require root

privileges, i.e., the actual IMEI is not observable. Therefore, such a countermeasure

is effective and the dummy IMEI would appear realistic.

A9 vs Non-U.S. Devices

A9 assumes that an Android device whose IMEI starts with “3” is a real device,

otherwise it is an emulator. We checked the IMEIs of the 128 real devices and found

that this assumption is incorrect.

According to IMEI Allocation and Approval Guidelines [28], the first digit of

an IMEI is part of Reporting Body Identifier (RBI), which identifies the GSMA-

approved authority that issues the IMEI. Typically, IMEIs of mobile devices are

35

issued by the authorities in the same area where the devices are sold. For example,

IMEIs of the devices sold in the U.S. are issued by the British Approvals Board

for Telecommunications (BABT) and thus start with BABT’s code “35.” Similarly,

IMEIs of the devices sold in China start with “86.” We note that about half of the

128 evaluated real devices were from Baidu MTC that uses Android phones sold in

China. Given that A9 was based on the devices in the U.S., A9 naturally got a low

specificity, and it could be improved with wild cards that match multiple RBIs.

The lesson of A9 indeed illustrates the future of the armed race between emulator

detection and anti-detection. First, Android malware could check the semantics of

the observed artifacts. For example, the dummy IMEI in DroidBox 4.1 is invalid

and could be noticed by a sophisticated adversary. Second, emulator-based malware

analysis tools should consider the observability of actual artifacts and the semantics

of dummy artifacts to be less distinguishable.

3.5 Discussion

The evaluation results imply an imminent threat that Android malware may

thwart existing emulator-based dynamic analysis systems. In this section, we sug-

gest the potential countermeasures and discuss the limitations of our work.

3.5.1 Countermeasures

Provisional countermeasures. We suggest the methods that detect the usage

of detection heuristics in Android malware as provisional countermeasures. Although

they do not prevent Android malware from detecting Android emulators, they can

raise alarms for analysts and thus thwart the malware’s original purpose of evading

analysis. For example, dynamic analysis systems could monitor accesses on files

and properties seldom used by benign applications. API heuristics are much more

36

stealthy because benign applications also frequently use them. In such a case, we

suggest static data-flow analysis to locate branches that involve detection heuristics

and lead to disparate code blocks.

Short-term countermeasures. Next, we discuss the countermeasures that

allow an emulator to appear “realistic” to Android malware. First, we suggest a

comprehensive deployment of dummy artifacts. Some existing works can be adapted

to facilitate such countermeasures. For example, AirBag [118] supports a decoupled

and isolated runtime environment based on OS-level virtualization. ASM [72] provides

programmable interfaces that interpose Android APIs and return dummy values to

applications. These works, if combined and extended, can enable a “brain in a vat”

setup where an application runs in an emulator but gets dummy and valid data

originated from real devices. Second, we suggest denying accesses on unnecessary

observable artifacts with strict DAC and MAC policies. For example, artifacts in sysfs

exploited by our file heuristics seem unnecessary for general Android applications.

However, the usability impact of denying accesses still needs further verification.

Long-term countermeasures. The ideal countermeasure is to fix all the

discrepancies in Android emulators. Although Garfinkel et al. [63] concludes its in-

feasibility in 2007 due to the inherent hardness of creating indistinguishable software-

emulated hardware, hardware-assisted virtualization techniques (e.g., Intel VT-x and

VT-d) have evolved significantly to allow PC emulators to virtualize real hardware.

Currently, ARM CPUs have integrated necessary virtualization extensions. Mean-

while, commodity ARM hypervisors are also in active development. We envision

emerging Android emulators equipped with virtualized CPUs, sensors, and radios in

the near future.

37

3.5.2 Limitations

Despite the robustness of Morpheus, the quality of the discovered detection heuris-

tics is limited by the small number of real devices used in finding detection heuristics

(Section 3.3). In general, Morpheus works like supervised learning, and its perfor-

mance inevitably depends on the quality of the “training set,” i.e., the emulators and

real devices observed by the artifact retriever. We note that the artifact retriever

needs approximately 20 minutes to collect the artifacts on a single device. Unfortu-

nately, online services like AppThwack (Section 3.4) do not allow the artifact retriever

to run for such a long time or upload large bulks of data. As for future work, we plan

to reach out to mobile carriers and device vendors to collect observable artifacts from

more real devices.

Although Morpheus discovered more than 10,000 heuristics, we stress that they

were derived only from 3 out of 33 sources of observable artifacts. To better un-

derstand the scope of detection heuristics for effective countermeasures, the artifact

retriever could be enhanced to address more sources of artifacts as well as sophisti-

cated usages of them. Examples include extended modules of the artifact retriever

that can handle callbacks or construct valid input parameters for Android APIs.

Our heuristic generator produces relatively rigid heuristics, such as A9 that does

not match multiple RBIs. This can be improved with more sophisticated and flexible

heuristics. For example, a token-sequence heuristic matches an ordered set of tokens

in the contents of an artifact. Moreover, a näıve Bayes heuristic enables probabilis-

tic matching by aggregating the empirical probabilities of multiple artifact/token

heuristics with the Bayes’ law, assuming that the occurrences of artifacts/tokens are

independent.

38

Considering that users may need to specify their preferences for selecting heuris-

tics, the flexibility of the heuristic selector could be improved. For example, users

may prefer sensitive heuristics with respect to prioritizing countermeasures. Unlike

PC malware that might have incentives for infecting VMs, Android malware must

evade emulators so they need sensitive heuristics to guarantee low false negatives.

As our future work, we plan to extend the heuristic selector to support user-defined

scoring functions.

3.6 Related Work

Behavior-based detection heuristics. Researchers have proposed several

heuristics that exploit discrepancies in runtime behaviors rather than artifacts. For

instance, a piece of specially crafted native code can identify QEMU-based emula-

tors due to the discrepancies in QEMU’s caching behaviors [88, 100, 107]. Low video

frame rate indicates emulators because of the performance drawbacks in the SDK em-

ulator’s graphics rendering engine [112]. However, these heuristics are not evaluated

against VirtualBox-based emulators and real devices. Thus, their sensitivities and

specificities require further investigation. In addition, these heuristics do not return

a decision until a sufficient number of events are observed, which tends to increase

their footprints and attract analysis. Along these lines, Morpheus addresses artifact-

based and content-based detection heuristics. More importantly, Morpheus generates

detection heuristics automatically and systematically.

Dynamic analysis frameworks. Researchers have built several dynamic anal-

ysis frameworks to vet the runtime behaviors of Android malware. TaintDroid [52]

tracks information flows that leak sensitive data to the Internet. VetDroid [123]

further reveals information flows that involve permissions. AppIntent [122] helps

determine if an information flow is user-intended. In particular, DroidScope [121]

39

analyzes applications from outside emulators using virtual machine introspection.

Some of these tools have been integrated into automated malware analysis systems

such as DroidBox [10], Andrubis [11], CopperDroid [105], SandDroid [20], and Trace-

Droid [21]. They are vulnerable to be evaded using the detection heuristics in this

work as long as they are deployed in Android emulators.

3.7 Summary

Recent Android malware demonstrates the capabilities of detecting Android em-

ulators using detection heuristics. To convey the severity of this problem, we have

presented Morpheus, a system that automatically and systematically generates de-

tection heuristics. Morpheus analyzes artifacts observable by Android applications

and discovers exploitable discrepancies in Android emulators. Moreover, we have

described a proof-of-concept implementation of Morpheus, along with extensive ex-

periments and findings.

40

Chapter 4

MONITORING AND CONFINEMENT: DEFENSE

Based on the lessons we learned from the work discussed in the previous chapter, we

propose comprehensive monitoring and confinement mechanisms that can be flexibly

configured to reveal and to stop Android apps’ attempts to abuse their privileges.

4.1 Problem Statement

Given the diversified attacks, it is imperative to remedy Android’s default secu-

rity mechanisms to provide better security guarantees. Recently, a wide spectrum

of security extensions has been proposed to implement enhanced MAC in Android.

Depending on how they implement MAC, we can divide them into two categories:

MAC in the Android system, and MAC in the apps.

The effectiveness of MAC implemented in operating systems has been well proved

by security frameworks such as SELinux. Such MAC implementations require patch-

ing and/or recompiling the system. In recent years, plenty of security frameworks [30,

36, 37, 44, 95, 109, 129] follow this approach to (1) add kernel MAC for reinforcing

application sandboxes; and/or (2) add middleware MAC to remedy the shortcomings

of permissions. The kernel MAC implementations reuse or extend previous Linux

MAC frameworks such as SELinux and TOMOYO Linux. The middleware MAC

implementations are usually tailored to the problems they attempt to address. In

particular, FlaskDroid [37] is the first security extension that attempts to address

diverse security requirements with a generic security framework. However, generic

MAC implementations come with a cost of relatively large code base and difficulties

in maintainability. For example, FlaskDroid includes 12 Userspace Object Managers

41

(USOM). Each USOM must be re-evaluated and patched once new Android versions

are released. And it remains a question whether the 12 USOMs can completely cover

all the attack vectors. Android Security Framework (ASF) [30] attempts to address

the limitations of FlaskDroid with loadable security modules and a comprehensive set

of security APIs. Despite that the loadable modules could reduce the work required

to instantiate different security models, the security APIs themselves that are scat-

tered in various Android system services still suffer from deployment and maintenance

issues.

To address the deployment issues of system-centric MAC implementations, application-

centric approaches [45, 46, 77, 104, 119] have been proposed. These security frame-

works, which are also known as inlined reference monitors, rewrite apps by instru-

menting apps’ byte code or native code and thus do not require any changes to the

underlying Android system. Despite their significant improvement in deployment, a

recent study [69] shows that application-centric MAC implementations are subtle and

they could be bypassed or subverted, because the instrumented code runs within the

same process as that of the confined app. Apparently, an app is able to modify itself

to remove or suppress the instrumented code.

In this chapter, we will re-explore the problem of designing and implementing a

practical MAC framework for Android. We propose a multi-layer security framework

called TripleMon. Unlike previous work, TripleMon opts for a system-centric and

IPC-oriented approach. Specifically, TripleMon extends the IPC subsystem of An-

droid to mediate various types of IPC channels that can be used by Android apps to

access resources outside their sandboxes. While supporting complete mediation and

tamperproofness, TripleMon also enables users to flexibly control the capabilities of

apps in a fine-grained manner.

42

4.2 A Multi-layered Approach to Protect Android

Mandatory access control is a type of access control by which the operating system

confines the abilities of subjects to access certain objects based on a centralized secu-

rity policy. An effective MAC implementation, no matter whether it is system-centric

or application-centric, should fulfill at least the following design goals:

G1 Complete mediation. We should implement mechanisms that completely

mediate access vectors that could be used by a subject in the system, so that the

subject cannot bypass our mechanisms.

G2 Tamper proof. We should prevent attackers from undermining our secu-

rity mechanisms. This includes protecting the integrity of the security mechanisms

themselves as well as protecting security policies.

Towards a practical MAC implementation, we further propose the additional de-

sign goals:

G3 Generic and flexible. We should be able to dynamically re-configure the

security mechanisms using flexible security policies.

G4 Unified policy scheme. Composing and managing security policies could be

tedious and error-prone for system administrators. To reduce the workload of policy

management, we expect the security policy to use a unified scheme for different types

of subjects, objects, and operations.

G5 Easy maintenance. The maintenance of the code should be simple across

different OS versions. In particular, it should require little work to re-evaluate the

effectiveness of the MAC implementation against newer OS versions.

To achieve these goals, we propose TripleMon, which is a multi-layer and policy-

agnostic MAC implementation. Figure 4.1 depicts the proposed architecture of Triple-

Mon, which consists of a set of reference monitors and a decision manager. TripleMon

43

Android

Middleware

Linux

Kernel

Linux

Userspace

Applications

Application B Application C

BinderMon

ICCMon

OSMon

Android

Application

Framework

Android

System

Services

App-App�flow App-Service flow App-OS flow

Reference Monitors

New modules Extended Modules Original Modules

Decision

Manager Policy DB

Filesystems

Processes

Files

LinuxIPC

Application�A Application D

Figure 4.1: Proposed Multi-layer Security Framework for Android

opts to a multi-layer design because Android itself is composed of three layers: apps,

middleware, and Linux. Each layer has its respective access control semantics and

thus requires a dedicated reference monitor.

TripleMon’s reference monitors use a different design compared with FlaskDroid.

FlaskDroid achieves G3 by placing enforcement hooks in various Android system

services, such as ActivityManager, SensorManager, and TelephonyManager. However,

it is hard to justify the completeness (G1) of such an approach, because it is infeasible

and futile to hook every function in more than 50 system services in Android. And

maintaining various hooks here and there is also difficult in a fast evolving operating

system like Android (G5). To address this issue, we are inspired by SELinux which

uses few hooks that are actually “choke points” of sensitive operations. In particular,

we identify the boundaries of IPC channels as our choke points because Android apps

must use IPC to access sensitive resources outside their sandboxes. Furthermore,

Android IPC mechanisms are part of the core libraries and they have not been changed

remarkably compared to the system services that FlaskDroid depends on. Therefore,

mediating ICC, Binder IPC, and Linux IPC channels allows TripleMon to minimize

44

the cost of G5 while satisfying G1 and G3. Moreover, the reference monitors at

lower layers (OSMon) can protect the integrity of reference monitors at higher layers

(BinderMon and ICCMon).

TripleMon also includes a decision manager to address the semantic gaps among

reference monitors. Semantic gaps arise when a resource corresponds to multiple

objects at different layers. For example, an app can take a picture using (1) the

camera app; (2) the system service that controls the camera; or (3) the device node

of the camera (/dev/video0). Suppose we are to revoke an app’s capabilities of taking

pictures, the decision manager can issue decisions for all the reference monitors to

block accesses at all layers. In addition, the decision manager also follows a unified

policy scheme and resolves inconsistencies once conflicting access control decisions

are generated for the same object. The unified policy scheme also makes it easier to

analyze security policies at different layers to evaluate the system-wide assurance.

4.2.1 Reference Monitor for ICC

We propose ICCMon to handle ICC requests. We choose ActivityManagerService

as the choke point for ICCMon because ActivityManagerService is the single system

service responsible for establishing and shutting down ICC channels.

Figure 4.2 depicts the workflow of ICCMon. Specifically, ICCMon labels compo-

nents with the UIDs of their corresponding app processes, and labels intents with

their meta-information including action, category, and data URI. To ensure com-

plete mediation, we analyze the call graph of ActivityManagerService and identify

4 functions that can capture all ICC requests, including startActivityLocked(),

startServiceLocked(), getContentProvider() and deliverToRegistered

BroadcastReceiversLocked(). From the names of these functions we can notice

that they handle ICC channels to activities, services, broadcast receivers, and con-

45

1

Applications

Application B

ActivityStack

Services, Broadcast Receivers,

Content Providers
Activities

2'

Android

Middleware
2

Application A

Android

Application

Framework

ActivityManager

ActivityManager

Proxy

3

Activity

Manager

Service

Figure 4.2: ICCMon Workflow

tent providers, respectively. These hooks placed just before ActivityManagerService

is about to establish an ICC channel, which is similar to how hooks are placed in Linux

Security Modules. Using these hooks, ICCMon enforces security decisions acquired

from the decision manager. ICCMon returns control to ActivityManagerService if an

ICC request is accepted. Otherwise, ICCMon generates a security exception for the

caller app to shut down the ICC channel.

4.2.2 Reference Monitor for Binder IPC

Android APIs are implemented based on Binder IPC. The mappings between An-

droid APIs and Binder IPC transactions are specified in the AIDL 1 files provided

with the source code of Android. For example, Binder IPC requests on whose des-

tination is a system service called iphonesubinfo and whose command code is 1

correspond to an API getDeviceID. Therefore, we can infer the semantics of any

Binder IPC request by checking corresponding Android API that it can be mapped

to.

1Android Interface Definition Language

46

1

Applications

Application

Linux

Userspace

Android

Application

Framework

Android

Middleware

LibBinder

Android

Services

Proxy

2 3

4

1'
Service

Filesystems

Processes

Files

LinuxIPC

Figure 4.3: BinderMon Workflow

To identify choke points of Binder IPC, we analyze the entire Binder IPC subsys-

tem and we choose to place the enforcement hooks in LibBinder (/system/lib/libbinder.so),

because it is the dynamic library linked to all the system services. As long as Lib-

Binder and the system services are not compromised, BinderMon can intercept all

the Binder IPC requests sent to the system services.

BinderMon mediates Binder IPC before the permission framework is consulted.

Therefore, it enables dynamic permission revocation without affecting the existing

permission framework. Furthermore, BinderMon offers finer granularities at the API

level, whereas the granularity of the Android permission framework is a set of permis-

sions where each permission maps to multiple APIs. Moreover, BinderMon protects

1,448 public and private Android APIs implemented by more than 70 system services,

while FlaskDroid only protects 136 APIs in 12 system services.

A detailed workflow of BinderMon is shown in Figure 4.3. To make an API call,

an app sends an Binder IPC request using the proxy of the API’s corresponding

remote system service (Step 1). Alternatively, this app can send a request without

involving the proxy (Step 1’). BinderMon intercepts both types of requests and

47

queries the decision manager with the caller app’s UID, the callee service’s name, and

the command code which indicates the API to be called. If the request is allowed,

BinderMon returns control to LibBinder. Otherwise, BinderMon shuts down the IPC

channel and returns an error code PERMISSION DENIED to the caller app.

4.2.3 Reference Monitor for Linux IPC

The default Android app sandbox is flawed. Although Android apps are expected

to use Android APIs to access system resources, they still possess capabilities to

bypass APIs and access sensitive Linux IPC channels that general Android apps

should not necessarily use. However, ICCMon and BinderMon cannot revoke all of

these unnecessary capabilities. Therefore, we propose a kernelspace reference monitor,

OSMon, to mediate Linux IPC channels and enforce the principle of least privilege

for Android apps.

Figure 4.4 depicts the workflow of OSMon. Similar to SELinux [110] and TO-

MOYO Linux [70], we identify choke points as the hooks defined by Linux Security

Module (LSM) [117]. However, OSMon only use the hooks are are specific to the

Linux IPC mechanisms. Table 4.1 shows the proposed 23 hooks which cover ob-

jects like inodes, file systems, tasks, local sockets, Unix-domain sockets, and Netlink

sockets. These hooks can be enabled or disabled individually in the kernel configu-

ration file. In addition, OSMon plays as the trusted computing base (TCB) of the

entire TripleMon framework. It protects all the userspace components of Triple-

Mon, including ICCMon, BinderMon, the decision manager, and the policy database.

Moreover, OSMon protects itself against root exploits by depriving untrusted apps’

capabilities to access IPC channels that may subvert OSMon.

48

Android

Middleware

Linux

Kernel

Linux

Userspace

Applications

Application A

Linux Security

Module

Files Processes Linux IPC

Inode hooks
Task

hooks

Netlink hooks and

System V IPC hooks

1'

2 2' 2"

Android Services1

Filesystems

Filesystem

hooks 2"’

Figure 4.4: OSMon Workflow

Table 4.1: Implemented Hooks in OSMon

Hook category Hook name

Local socket socket create, socket connect, socket bind, socket send

Unix-domain socket ud connect, ud send

Netlink socket netlink send, netlink recv

Task task create, task setuid, task setgid, task kill

File

inode create, inode rename, inode mkdir, inode rmdir,

inode link, inode symlink, inode unlink, inode setattr,

dentry open

File System sb mount, sb unmount

4.2.4 Multi-layer Policy Modules

Our unified policy scheme for TripleMon is defined as follows:

Definition 1 (Target). A target is a 3-tuple < Subject, Resource, Action >, where

• Subject is a set of entities to which the authorization is granted;

• Resource is a set of entities to which accesses need to be mediated; and

• Action is a set of actions being authorized or forbidden.

49

Definition 2 (Access Control Policy). An access control policy is a 3-tuple

{Target, Condition, Effect}, where

• Target decides whether an access request is applicable to the policy. The target

specification is defined in Definition 1;

• Condition specifies restrictions on the attributes in the target and refines the

applicability of the policy; and

• Effect ∈ {accept, deny} is the authorization effect of the policy.

To evaluate an access request over access control policies, if the request satisfies

both the target and condition of a policy, the response is sent with the decision

specified by the effect element in the policy. Otherwise, the response yields “deny”.

We next describe three kinds of TripleMon policy: ICC policy, Binder policy

and OS policy in detail. Table 4.2 summarizes the major components contained in

three kinds of TripleMon policies.

ICC Policy

ICC policies regulate the intent-based IPC between applications. Thus, application

group, application, and component comprise the subject and resource of an ICC

policy. Actions correspond to the APIs that initiate ICC to four types of components,

namely activities, services, broadcast receivers and content providers. Condition is

defined as the attributes used in intents. Table 4.2 illustrates the elements of ICC

policy.

For example, an adversary who does not possess the INTERNET permission may

still access the Internet by sending an intent with action ACTION VIEW and the url

to the Browser application. We can mitigate such a privilege escalation attack by

50

Table 4.2: Components in TripleMon Policies

ICC Policy Binder Policy OS Policy

Target

Subject

Application Group Application Group Application Group

Application Application Application

Component System

File

Resource

Application Group Service Linux IPC channel

Application Process

Component File

Filesystem

Action

startActivity Call Linux IPC

bindService Task

sendBoradcast Inode

accessContentProvider Filesystem

Condition

Action Service cmd code System call’s name

Category Parameters

Data

Effect
Accept Accept Accept

Deny Deny Deny

specifying and enforcing an ICC policy to prevent the adversary from sending such

an intent to the Browser application.

Binder Policy

Binder policies specify the behaviors of Binder IPC channels between applications

and system services. Thus, application group and application comprise the subject,

and system service comprises the resource. Action has only one instance, call. And

condition specifies the command code of the command to be executed by the remote

services, as shown in Table 4.2.

For instance, as we discussed previously, the permission READ PHONE STATE allows

an application to access resources such as the unique device IDs and the phone’s

51

state. We can set a Binder policy to revoke an application’s privilege of accessing

the device IDs but keep an access privilege to the phone’s state without reinstalling

the application. Compared with the default permission framework which treats the

capabilities for a permission as an indivisible block, our approach obviously enables

a more fine-grained and revocable access control.

OS Policy

OS policies mediate Linux IPC channels. In an OS policy, as illustrated in Table 4.2,

subject consists of application group, application, system and file. Resource consists

of file, filesystem, process and Linux IPC channel. Action has four types: inode,

filesystem, task, and Linux IPC. These actions correspond to different categories of

operations on Linux IPC channels. Condition specifies the name of the exact oper-

ation and optional parameters.

As we mentioned earlier, GingerBreak is a root exploit that attacks a system

service called Vold by sending forged and malformed Netlink messages. Such an ex-

ploit can be easily prevented by defining an OS policy that disables applications from

sending Netlink messages. Indeed, Android applications are currently not strictly pro-

hibited from using some operating system features. Malicious applications may take

advantage of these features to launch attacks. Thus, we need to define corresponding

OS policies to prevent applications from abusing these features.

4.2.5 Decision Manager

The decision manager is the policy decision point of TripleMon where IPC

requests are evaluated against authorization policies. It centrally issues access control

decisions for each reference monitor, manages security policies, and resolves conflicts

among reference monitors.

52

Communication with Reference Monitors

As the only policy decision point in TripleMon, the decision manager runs in a

dedicated process and communicates with the reference monitors via a local socket

interface. The communication follows the policy scheme we defined in Section 4.2.4.

Indeed, this interface needs special attention because it can subvert TripleMon or

cause denial of service if exploited. To protect this interface, OSMon enforces a set of

top-priority policy rules to only allow the decision manager to write into the interface.

Policy Management

The decision manager parses a JSON-like plaintext policy file that follows the pol-

icy scheme defined in Section 4.2.4. The policy file is stored in an internal read-

only filesystem. In addition, OSMon enforces rules to disallow access on the policy

database from any process except the decision manager.

The decision manager maintains two tracks of security policies, namely slow track

and fast track. The slow track is enforced by OSMon only. This track defines the com-

mon and least privileges of general installed applications. The fast track is enforced by

ICCMon and BinderMon. This track expects more frequent policy updates because

ICCMon and BinderMon are required to meet per-application security requirements.

Specifically, ICCMon or BinderMon always consults the decision manager to acquire

decisions generated based on the latest fast track policy. On the contrary, OSMon

caches a copy of the slow track policy in the kernel and makes decisions by itself.

It only consults the decision manager to get the latest slow track policy when it

initializes itself.

53

Decision Reconciliation

Decision reconciliation is necessary to resolve conflicts when multiple reference moni-

tors are involved to mediate accesses on the same resource. For example, an adversary

attempts to access the camera via ICC and Binder IPC, expecting that there would be

a capability leak somewhere. Suppose a strategy, deny-overrides, is applied. The

decision manager ensures that ICCMon and BinderMon both deny the requests to ac-

cess the camera if there is any applicable ICC or Binder policy that evaluates to deny.

More flexible strategies[85], such as first-applicable and strong-consensus, can

be adopted to resolve the decision inconsistencies.

4.3 Evaluation

In this section we evaluate TripleMon in terms of its coverage, effectiveness and

performance overheads. Our experiments were performed on a Galaxy Nexus running

Android 4.2.2 and Linux kernel 3.0.31.

4.3.1 Experimental Setup

Similar to other policy-driven MAC implementations, TripleMon requires a

good security policy to be effective. In TripleMon, we opt to semi-automatically

and iteratively derive policy rules from applications’ runtime behaviors. We first

configured TripleMon into a permissive mode where it only logs IPC requests. We

then executed a set of benign applications and a set of malicious applications. By

comparing the observed IPC requests, we identified the IPC requests to be allowed

or denied in our security policy.

For the set of benign applications, we handpicked 10 applications (Table 4.3) from

Google Play’s top charts. These applications are from renowned developers and under

different application categories. We assumed that these applications are trusted by

54

Table 4.3: Applications Assumed to be Benign and Trusted by General Users

Application Category

AmazonMobile Shopping

BejeweledBlitz Game

ChaseMobile Finance

Dictionary.com Books & Reference

Dropbox Productivity

Google+ Social

GooglePlayMovies&TV Media & Video

Hangouts(replacesTalk) Communication

MoviesbyFlixster Entertainment

Yelp Travel & Local

general users and we used them to outline the general expected runtime behaviors

of Android applications. The malicious applications were 1,260 malware samples

from the Android Malware Genome Project. We fuzzed each application through 5

iterations with randomized touch inputs and system events.

4.3.2 Coverage

The generated policy demonstrated the coverage of system resources protected

by TripleMon. Compared to one of closely related work FlaskDroid [37], Triple-

Mon provides the same level of protection on ICC channels and much more protec-

tion on Binder IPC channels. Table 4.4 shows the system services that appeared in

TripleMon’s security policy but cannot be protected by FlaskDroid. For example,

AccountManager needs enhanced protection because it is a centralized registry of a

user’s online accounts.

In terms of Linux IPC channels, TripleMon provides relatively less coverage

compared to FlaskDroid whose kernel MAC is built upon SELinux. Indeed, Triple-

55

Table 4.4: System Services Protected by TripleMon

Service Example APIs

AccountManager getAccounts, getPassword, peekAuthToken, invalidateAuthToken

AlarmManager setTimeZone

BackupManager setBackupEnabled, setAutoRestore

Bluetooth createBond, isDiscovering, getUuids, getScanMode

ConnectivityManager getActiveNetworkInfo, getProxy, tether, startUsingNetworkFeature

EmailService searchMessages, loadAttachment, sendMeetingResponse

NFCManager setForegroundDispatch, setNdefPushCallback

SipService open, close, createSession, setRegistrationListener

VibrationService vibrate, vibratePattern

WifiManager setFrequencyBand, getWifiApConfiguratin, getScanResults

Mon only implements a subset of hooks used by SELinux. However we note that

OSMon follows a policy schema that is consistent with BinderMon and ICCMon. And

a consistent policy schema is necessary for efficient policy management. Compared to

FlaskDroid that is more likely putting two incompatible reference monitors together,

TripleMon’s three reference monitors augment each other and behave as a single

reference monitor.

4.3.3 Case Studies

To further validate the effectiveness of TripleMon, we tested TripleMon

against real malware samples and synthetic applications that implement the attacks

that we discussed in Chapter 2.

ICCMon vs Information Stealing Malware

To test ICCMon, we selected a malware strain called Gone60 (short for “gone in sixty

seconds”). Gone6- accesses the Contact applications via ICC channels and uploads

56

user’s contacts to remote servers. In our experiments, we put the malware samples

into an application group designated for testing suspicious applications. Then, we

applied the following ICC policies to revoke this application group’s capabilities to

access user’s contacts. The experiments on 9 Gone60 samples demonstrated that

TripleMon successfully denied the accesses on the contacts.

1 " ICCPolicy_Gone60 ": {

2 "type" : "ICC"

3 " target ": {

4 " subject " : [" GROUP_suspicious "],

5 " resource " : [" com. android . contacts "],

6 " action " : [" ContentProvider ", " Activity "]

7 },

8 " condition " : ["*"] ,

9 " effect " : "deny" }

BinderMon vs Coarse-grained Permissions

Next, we validated BinderMon by partially revoking the capabilities covered by

a permission called READ PHONE STATE for privacy purposes. READ PHONE STATE is a

commonly abused permission because it allows applications to call an API getDeviceID

and read the unique device identifier which could facilitate user tracking. However,

simply revoking this permission could break applications because this permission also

covers APIs other than getDeviceID. To protect user’s privacy, we employed the fol-

lowing Binder policies to revoke an application’s capability to call getDeviceID with-

out affecting the other APIs. In our experiments on 20 randomly selected malware

samples that use getDeviceId, BinderMon denied every request to getDeviceID.

We further verified the results by inspecting the files and network traces. And we

discovered that no information related to device ID was leaked.

57

1 " BinderPolicy_CapabilityRevoking ": {

2 "type" : " BINDER "

3 " target ": {

4 " subject " : [" GROUP_suspicious "],

5 " resource " : [" iphonesubinfo "],

6 " action " : [" Call "]

7 },

8 " condition " : [" cmd =1"] ,

9 " effect " : "deny" }

OSMon vs Root Exploits

In Table 4.5, we show a list of known root exploits [126], vulnerabilities, and pro-

grams attacked by the exploits. We also show the hooks of TripleMon used

to prevent corresponding exploits from gaining root privileges. Denying setuid is

a straightforward countermeasure and can prevent all of exploits from escalating

their privileges. We also employed alternative hooks to protect the target of ex-

ploits. For example, Exploid sends malformed Netlink messages to the kernel via

/proc/sys/kernel/hotplug. We can mitigate this exploit by revoking its capabili-

ties to use Netlink, and/or use /proc/sys/kernel. In addition, most exploits attempt

to remount system as read-write to retain their root privileges even after the reboot.

Thus, the filesystem hooks of TripleMon are helpful to neutralize such attempts.

In our experiments, we tested two exploits, GingerBreak and ZergRush, which

have been used by recent malicious applications [8, 9]. GingerBreak and ZergRush

attack Vold’s Netlink socket and local socket, respectively. Therefore, we defined the

following policies to prevent unauthorized apps from accessing these sensitive sockets

exposed by Vold.

58

Table 4.5: Root Exploits and Countermeasures with TripleMon

Root Exploit Vulnerable Program OSMon Hooks

Asroot [2] kernel localsocket, setuid

Exploid [1] init netlink, setuid, inode

Zimperlich [4] zygote task create, setuid

RAtC [3] adbd task create, setuid

KillingInTheNameOf [6] ashmem setuid

Psneuter [6] ashmem setuid

GingerBreak [8] vold netlink, setuid

ZergRush [9] libsysutils localsocket, setuid

Mempodipper [12] kernel inode, setuid

1 " OSPolicy_Gingerbreak ": {

2 "type" : "OS"

3 " target ": {

4 " subject " : [" GROUP_suspicious "],

5 " resource " : [" vold "],

6 " action " : [" netlink "]},

7 " condition " : [" cmd= netlink_send "],

8 " effect " : "deny" }

1 " OSPolicy_ZergRush ": {

2 "type" : "OS"

3 " target ": {

4 " subject " : [" GROUP_suspicious "],

5 " resource " : [" vold "],

6 " action " : [" localsocket "]},

7 " condition " : [" cmd= socket_connect "],

8 " effect " : "deny" }

59

Figure 4.5: ZergRush Fails to Exploit Vold

We tested the exploits using (1) samples of GingerMaster, and (2) the shell of

Android Debugging Bridge (ADB). Our experimental results showed that OSMon

can successfully intercept and prevent such exploits. Figure 4.5 depicts that ZergRush

failed because OSMon denied its attempt to crash vold.

We further examined a list of known root exploits 2 . We analyzed their ex-

ploited vulnerabilities and source code to verify the feasibility of mitigating them

with TripleMon. In general, we found that most exploits take advantage of certain

system resources that general applications would not write into, such as /data/data/

recovery/log and /dev/graphics/fb0. Indeed, Android applications are expected

to access system resources (e.g., device nodes) indirectly via Android APIs. There-

fore, OSMon is able to revoke the unnecessary capabilities and prevent such exploits.

Note that OSMon does not prevent exploits that use the necessary capabilities of

applications. For example, libperf event exploits the kernel using a crafted system

call [15].

2https://github.com/droidsec/droidsec.github.io/wiki/Vuln-Exploit-List

60

https://github.com/droidsec/droidsec.github.io/wiki/Vuln-Exploit-List

Decision Reconciliation

Next we evaluated how the decision managers helped coordinate the reference mon-

itors. An Android application may read/write the SMS storage with a two-step

method: acquiring a handle to the SMS database via ICC, and then accessing the

database file.

We defined a policy set to mediate applications’ accesses on SMS. The policy

rules in the same policy set protect the same resource (SMS) that corresponds to the

objects at multiple layers. As each access involves multiple steps, we define a policy for

each step. The decisions made by two policies were aggregated, and the final decision

was then made by leveraging the deny-overrides strategy. Our experimental results

showed that the access was finally denied because the second policy evaluated to deny

which overrode the first policy.

1 PolicySet_SMS_ReadWrite : {

2 " SMS_ReadWrite_1 ": {

3 "type" : "ICC",

4 " target ": {

5 " subject " : [" GROUP_suspicious "],

6 " resource " : [" com. android . providers . telephony "],

7 " action " : [" ContentProvider "]},

8 " condition " : [" URI=sms /*"] ,

9 " effect " : " accept "},

10 " SMS_ReadWrite_2 ": {

11 "type" : "OS",

12 " target ": {

13 " subject " : [" GROUP_suspicious "],

14 " resource " : ["/ data/data/com. android . providers .

telephony / mmssms .db"],

15 " action " : [" file "]},

61

Table 4.6: Performance Overhead Compared to Related Work

µ in ms σ in ms

ICCMon 0.132 1.060

BinderMon 2.392 4.653

FlaskDroid [37] 0.452 4.887

XManDroid [35] 0.532 2.150

TrustDroid [36] 0.170 1.910

16 " condition " : [" cmd= dentry_open "],

17 " effect " : "deny "}

18 }

4.3.4 Performance

Our implementation of TripleMon imposes imperceptible runtime overhead.

Table 4.6 presents the mean execution time µ and the standard decision σ for per-

forming a policy check. ICCMon has its counterparts in the three closely related

MAC implementations and it incurs less runtime overhead. BinderMon is a unique

component in our design and its performance is incomparable to the related imple-

mentations. We did not evaluate OSMon because it is implemented as a standard

Linux security module, and the runtime overhead of such modules has been well stud-

ied in the related kernel MAC implementations such as SEAndroid and TOMOYO

Linux. In addition, the average footprint of TripleMon is negligible compared to

the sizes of existing components, as shown in Table 4.7.

4.4 Discussion

The policy generation process using benign and malicious applications is limited

by the fact that dynamic random fuzzy testing fundamentally fails to reveal all pos-

62

Table 4.7: Memory Overhead

File Original (KB) TripleMon (KB) Overhead (KB)

Services.jar 1155.00 1157.82 2.82

LibBinder 1766.54 1782.02 15.48

Kernel (boot.img) 4571.14 4587.52 16.38

Decision manager N/A 13.71 13.71

sible execution paths. Recent work [64] shows that the coverage can be lower than

40%. Thus, the policy still has a lot of space to improve. For the malware samples

used in our evaluation, we observed that their malicious payloads usually executed

immediately after the applications started. Therefore, fuzzy testing over a large num-

ber of malware samples is helpful for understanding common malicious behaviors to

be denied in our policy.

In TripleMon, we manually and statically analyze the Andorid IPC subsystem

to identify choke points, i.e., places for inserting authorization hooks. We believe

that an automated approach should be explored to comprehensively and system-

atically identify potential missing choke points. For example, we could introduce

dynamic information flow tracking to identify various points that “forward” informa-

tion flows between different domains. A similar approach has been proposed in [89] to

specifically address client-server software. Such approaches could facility the design

of reference monitors that can provide better assurance towards complete mediation.

The current implementation of TripleMon is a proof-of-concept prototype so

usability analysis and improvement would be another area to be explored. Despite

that TripleMon opts for a simple format of policy scheme with relatively rich ex-

pressiveness to ease the burden of policy management, it would be helpful to have

user-friendly utilities for creating, maintaining and synchronizing policies. We have

63

implemented a simple web-based management interface for TripleMon. We will

continue improving its usability in our future work.

4.5 Related Work

Android security mechanisms have attracted significant attention in recent years.

A large number of research projects have been conducted for designing and imple-

menting security extensions on Android to tackle a variety of specific attacks.

FlaskDroid [37] is a two-layer MAC framework that provides flexible and fine-

grained mandatory access control on both Android’s middleware and kernel layers. It

bears the most similarity with our framework. While FlaskDroid and TripleMon

both opt for a multi-layer architecture to address the respective semantics of each

layer, TripleMon utilizes the peculiarities of Android IPC to be generic and effi-

cient. Specifically, TripleMon’s middleware MAC interposes the Binder IPC and

ICC channels between applications and system services. This design choice allows

TripleMon to enforce system-wide access control polices without modifying sys-

tem services. FlaskDroid’s exemplary implementation provides 12 User Space Object

Managers to monitor 40 APIs while TripleMon covers 1,448 public and hidden

APIs.

Smalley et al. [109] proposed SEAndroid that extends SELinux as kernel-level

MAC and adopts a set of middleware extensions to support middleware MAC. Unlike

TripleMon, SEAndroid middleware MAC is only responsible for passing middle-

ware contexts to kernel MAC. The underlying kernel MAC, despite that it has lim-

ited semantics of other layers, makes decisions for events occurred at the middleware

layer. This situation limits SEAndroid middleware MAC in mitigating corresponding

attacks in a fine-grained and accurate manner. In contrast, TripleMon provides ref-

64

erence monitoring at different layers to tackle their respective semantics and employs

decision reconciliation to address the possible inconsistencies among them.

XManDroid [35] and TrustDroid [36] both are multi-layer security frameworks

that adopt TOMOYO Linux as the underlying kernel MAC and a set of middleware

extensions for middlware MAC. Their middlware MAC implementations are tailored

to their specific problems: XManDroid [35] attempts to mitigate privilege escalation

attacks and TrustDroid [36] establishs an isolated domain for business applications.

Along these lines, TripleMon is a generic security framework and can adjust to

different threat models and security requirements with user-specified access control

policies.

QUIRE [48] enables provenance in Android IPC by propagating verifiable signa-

tures along IPC chains. The signature provides context of the sender application

so that a recipient can authenticate the origin of the data they received indirectly.

However QUIRE requires that applications must be modified to support QUIRE-style

IPC, which is infeasible for most applications whose source code is not available to

general users. In contract to QUIRE, TripleMon works with unmodified applica-

tions to maintain the compatibility of existing applications.

IPC Inspection [60] is a security framework for tackling permission re-delegation

attacks. IPC Inspection reduces the privileges of a recipient application to the inter-

section of permissions of applications along the IPC chain. However, automatically

restricting permissions for collaborative applications is not a decent solution in some

cases and may lead to usability loss. Our work employs a policy-based approach and

users can specify a group of her trusted applications which can collaborate with each

other without restrictions.

TISSA [129] is a policy-driven security extension that protects user’s private data.

TISSA implements a privacy mode where access to private data can be dynamically

65

and independently controlled. TISSA puts hooks in several privacy-related system

services, such as LocationManagerService and TelephonyManagerService. The hooks

redirect control flows to a centralized decision maker. Compared to TISSA, Triple-

Mon provides broader coverage of user’s data by mediating most IPC channels used

by Android applications.

Several recent work addressed fine-grained and context-aware ICC mediation.

SAINT [94] is a policy-driven framework that enforces semantically rich policies on

ICC at runtime and during installation. Apex [91] provides a similar solution where

users can specify runtime constraints for applications. CRePe [44] enables context-

aware ICC where environmental constraints such as location and time can be consid-

ered for policy enforcement. Although these extensions are not sufficient to cover all

existing attacks discussed in Chapter 2 they demonstrate the necessity and value of

flexible and fine-grained access control in ICC. Inspired by their work, TripleMon

includes a dedicated sub-monitor that addresses the attacks at this layer.

TripleMon requires modifying the Android platform. Although an automated

installation kit can reduce the deployment overhead, it cannot entirely eliminate it.

Recent research [46, 77, 108, 119] proposed inlined reference monitors by placing hooks

inside applications instead of TripleMon’s system-centric approach. For example,

Aurasium [119] inserts native bootstrapping code into compiled Android applications

so as to interpose Libc and mediate Linux system calls. However, such reference

monitors are prone to be subverted because they run with the same privileges as

the code they are attempting to confine. And Hao et al. [69] demonstrates several

potential attacks which may render such reference monitors ineffective or infeasible.

66

4.6 Summary

In this chapter, we have presented the design and implementation of a multi-layer

security framework, TripleMon, that provides flexible and fine-grained access con-

trol on Android. TripleMon could mediate multiple Android IPC channels (namely,

ICC, Binder IPC and Linux IPC) to prevent prominent attacks that could bypass

the existing Android security mechanisms. TripleMon monitors and determines

the suspicious behaviors of applications that would lead to appropriate policies for

mitigating the attacks. Our experiments showed the common behaviors of Android

malware in the wild, and demonstrated the effectiveness and practicality of our ap-

proach. The performance measurements also showed that our system has produced

only a manageable performance overhead.

67

Chapter 5

RISK-DRIVEN ASSESSMENT

Helping users understand security and privacy risks of apps is still an ongoing

challenge for modern mobile platforms. In this chapter, we propose an risk-driven

assessment approach to cope with such a challenge and present a continuous and auto-

mated risk assessment framework called RiskMon that uses machine-learned ranking

to assess risks incurred by users’ installed apps. The preliminary results are published

[78, 79].

5.1 Problem Statement

Primarily, Android relies on permissions to help users understand the security

and privacy risks of apps. An app must request permissions to be allowed to access

sensitive resources. In other words, it is mandatory for Android apps to present

its expected behaviors to users. Even though permissions outline the resources that

an app attempts to access, they do not provide fine-grained information about how

such resources will be used. Suppose a user installs an app and allows it to access

her location information. It is hard for her to determine whether the app accesses

her locations on her demand or periodically without asking for her explicit consent.

Therefore, it is imperative to continuously monitor the installed apps so that a user

could be informed when rogue apps abuse her sensitive information. Previous work

has proposed real-time monitoring to reveal potential misbehaviors of third-party

apps [52, 76, 103, 121]. While these techniques partially provide valuable insights

into a user’s installed apps, it is still critical to answer the following challenge: are

the behaviors in mobile apps necessarily inappropriate?

68

To answer this question, it is an end-user’s responsibility to conduct risk assess-

ment and make decisions based on her disposition and perception. Risk assessment is

not a trivial task because it requires the user to digest diverse contextual and techni-

cal information. In addition, the user needs to apprehend expected behaviors of apps

under different contexts prior to addressing her risk assessment baseline. However, it

is impractical for the normal users to distill such a baseline. Instead, it is essential

to develop an automated approach to continuously monitor apps and effectively alert

users upon security and privacy violations.

Previous research concerning apps’ behaviors specifies a set of risk assessment

heuristics tailored to their specific problems. For example, TaintDroid [52] considers

a case in which sensitive data is transmitted over the network. DroidRanger [128] and

RiskRanker [67] assume that dynamically loaded code is a potential sign of malware.

While these techniques provide valuable insights about runtime behaviors of mobile

apps, they do not justify the appropriateness of the revealed behaviors. We argue

that meta information can provide the necessary operational contexts that justify

runtime behaviors for risk assessment. For example, a location-based app has good

reasons to upload a user’s locations for discovering nearby restaurants. In contrast, it

does not make sense for a video player to use the locations and such behaviors should

be considered as more risky.

Finally, we need to consider how users participate in risk assessment. Different

users would have disparate security requirements. Thus, we should allow users to

specify their preferences in terms of accessing their own sensitive information. More-

over, normal users do not possess the necessary technical knowledge for assessing apps’

runtime behaviors and interpret numerical risk scores. Therefore, it is imperative to

automate risk assessment in a way that requires less sophistication and intervention.

69

5.2 Risk Assessment of Android Applications

In this section, we describe our proposed risk assessment framework, called Risk-

Mon, that lowers the required intervention and sophistication in risk assessment of

mobile apps. IT risk assessment guidelines, such as NIST SP 800-30 [111] and CERT

OCTAVE [26], provide a foundation for the development of effective risk management

processes. They illustrate comprehensive methodologies that enable organizations to

understand, assess and address their information risks. While these guidelines deal

with the infrastructure and organizational risks by security experts, our framework

attempts to adapt and automate the sophisticated risk assessment tasks for general

users.

An underlying assumption of RiskMon is that a user’s trusted applications could

define her expected appropriate behaviors. Recent empirical analysis showed that

applications of similar categories normally request a similar set of permissions [34],

implying similar core functionalities. Hence, each of the user’s trusted applications

can be used as a reference point of appropriate behaviors for applications of simi-

lar categories. For example, Netflix application is under “Entertainment” category,

and Pandora’s Internet Radio application is under “Music & Audio” category. Even

though they are not in the same category, each application similarly uses one of core

functionalities such as the streaming service of personalized media contents from re-

mote servers. If a user trusts Netflix application, it implicitly affirms that Pandora

application may also incur commensurate risks caused by Netflix application. Thus,

using Netflix application as a reference point, the deviation or “distance” of runtime

behaviors between Netflix and Pandora applications indicates Pandora’s additional

inherent risks.

We now summarize the design goals as follows:

70

Continuous and fine-grained behavior monitoring: Applications access sensitive

resources by calling APIs to communicate with each other and system services. To

ensure continuous monitoring on API calls, RiskMon interposes Binder IPC on a

user’s device. The risks incurred by API calls are determined by the caller, the callee,

and the data. To capture such information, RiskMon opts for a fine-grained scheme

to capture various intelligence about applications. This provides a well-founded base

for measuring the “distance” between two API calls in the space of runtime behaviors.

Simplified security requirement communication: It is a challenging task for users

to specify security requirements for security tools. To tackle this problem, RiskMon

adopts a simple heuristic that allows users to communicate security requirements

through their coarse expectations. Although this reduces the burden on the user, we

cannot entirely eliminate it. We note that acquiring a user’s expectations is necessary

since each user has diverse preferences on the same application. For instance, all users

of Facebook application may have disparate expectations for controlling their location

and camera utilities.

Intuitive risk representation: The way in which risk is presented significantly

influences a user’s perception and decision upon risky applications. A counterexample

would be standalone risk scores, such as a risk indicator saying “Facebook incurs

90 units of risk” without proper explanation. As Peng et al. noted in [99], “it is

more effective to present comparative risk information”. Inspired by their approach,

RiskMon presents a ranking of applications so that a user can compare the potential

loss of using an application with other applications. In addition, the user can view

the risk composition of an application for supporting evidences.

Iterative risk management: Risk assessment is an ongoing iterative process. As

applications get upgraded and bring more functionalities, they introduce new risks

that should be measured. To this end, the risk assessment baseline should evolve to

71

continuously monitor installed applications and update the risk assessment baseline

periodically. Moreover, users need to provide their feedbacks to RiskMon by adding

or revising their security requirements.

Figure 5.1 depicts the proposed architecture of RiskMon. RiskMon consists of

three components: an app intelligence aggregator, a baseline learner, and a risk meter.

The application intelligence aggregator compiles a dataset from API traces collected

on a user’s device and meta information crawled from application markets. API traces

cover an application’s interactions with other parts of the system via API calls and

callbacks. To complement API traces with contextual information, RiskMon uses

meta information on application markets such as ratings, number of downloads and

category which provide a quantitative representation of applications’ reputation and

intended core functionalities. The baseline learner combines a user’s coarse expecta-

tions and aggregated intelligence of her trusted applications to generate a training

set. Afterwards, the baseline learner applies a machine-learned ranking algorithm to

learn a risk assessment baseline. Then the risk meter measures how much an ap-

plication’s behaviors deviate from the baseline. Using the deviation to provide risk

information, the risk meter ranks a user’s installed applications by their cumulative

risks and presents the ranking to the user intuitively.

5.2.1 Application Intelligence Aggregator

This component aggregates intelligences about a user’s installed applications, in-

cluding their runtime behaviors and contextual information. As RiskMon monitors

runtime behaviors by interposing Binder IPC, we propose a set of features for API

traces tailored to the peculiarity of Binder. Also, we seek contextual information from

application markets and propose corresponding features to represent and characterize

them. The proposed features build a space of application intelligences and enables

72

Binder

Transactions

RiskMon

Meta

Information

Baseline

Learner

Security

Requirements

Android Applications

GooglePlay Device User

Application Intelligence

Aggregator

Risk

Meter

Figure 5.1: Proposed Risk Assessment Framework

subsequent baseline generation and risk measurement. Unless explicitly specified, all

features are normalized to [0,1] so that each of them contributes proportionally.

Features for API Traces

Android applications frequently use APIs to interact with system services. Consider-

ing that using most APIs does not require any permission, we assume that resources

protected by at least one permission are a user’s assets.

We are interested in runtime behaviors, i.e. Binder transactions, that are used by

APIs to reach the assets. However, APIs do not carry information about Binder trans-

actions. To bridge this gap, we adopt existing work [29, 58] to provide mappings from

permissions to APIs. Meanwhile, we analyzed the interface definitions of Android

system services and core libraries to generate a mapping from APIs to Binder trans-

actions. As a result, we extracted 1,003 permission-protected APIs, of which each

corresponds to a type of Binder transactions. Each type of Binder transaction is iden-

73

tified by the corresponding system service, direction of control flow, and a command

code unique to the service. For example, an API named requestLocationUpdate is

identified as Binder IPC transaction (LocationManager, callback, 1).

We attempt to represent a Binder transaction with its internal properties and con-

tents. For a specific Binder transaction between an application and a system service,

we are interested in its type so as to identify the corresponding asset. Also we need to

know the direction of control flow for determining who initiates the transaction. As

users trust the system services more than applications, RiskMon should differenti-

ate Binder transactions initiated by applications and system services. Thus, internal

properties are represented with the following features:

• Type of Binder transaction: 1,003 boolean features as a bit array, where

one bit is set to 1 for the corresponding transaction type and others are 0; and

• Direction of control flow: another boolean feature: 0 for transactions ini-

tiated from applications (API calls), 1 for transactions initiated from system

services (API callbacks).

Note that we use 1,003 boolean features to represent the type of Binder transactions

instead of using one integer value. This is because Binder transactions are indepen-

dent from each other, and the Binder command codes are simply nominal values. By

using the array of 1,003 boolean values, the distances between any two Binder trans-

action types are set to the same value, which is important for our learning algorithm

(Section 8).

In terms of contents, parcels in Binder transactions are unstructured and highly

optimized, and it is hard to restore the original data objects without implementation

details of the sender and recipient. Therefore, we use length as one representative

feature of parcel. A motivating example is accesses on contacts. From the length of

74

a parcel we can infer whether an application is reading a single entry or dumping the

entire contacts database. Thus, we propose the following two features for parcels:

• Length of received parcel: length of the parcel received by an application

in bytes; and

• Length of sent parcel: length of the parcel sent by an application in bytes.

Features for Meta Information

Although meta information on application markets cannot describe applications’ run-

time behaviors, it is still viable to use such information as contextual properties that

capture users’ and developers’ opinions and complement runtime behavior informa-

tion.

In terms of representing the opinions of users, we use the following features in

correspondence with their counterparts of meta information on application markets:

• Number of installs: a range of total number of installs since the first release

1 . We use logarithmic value of the lower bound, i.e., log(1+lower bound of

#installs);

• Number of reviews: a number of reviews written by unique users. We use

the logarithmic value, i.e. log(1+#reviews); and

• Rating score: a number indicating the user-rated quality of the application

ranged from 1.0 to 5.0.

These three features capture an application’s popularity and reputation. The first

two features are similar to number of views and comments in online social networks.

Recent studies [116] demonstrated that online social networks and crowd-sourcing

1Number of installs is specified with exponentially increasing ranges: 1+, 5+, . . . , 1K+, 5K+,
. . . , 1M+, 5M+.

75

systems expose a long-tailed distribution. Therefore, we assume they follow the same

distribution and use the logarithmic values.

We emphasize that we do not attempt to extract risk signals from these features.

Instead, we adopt these features to capture the underlying patterns of a user’s trusted

applications as specified by the user and apply the patterns for the subsequent risk

assessment.

Next, we propose a feature to capture the developer’s opinion:

• Category: a tuple of two numerical values normalized to [-0.5, 0.5].

Google Play uses an application’s category to describe its core functionalities (e.g.

“Communication”). As of this writing, Google Play provides 27 category types. We

choose Self-Organizing Map (SOM) to give a 2-dimension representation of categories.

Barrera et al. [34] demonstrated that SOM can produce a 2-dimensional, discretized

representation of permissions requested by different categories of Android applica-

tions. Categories in which applications request similar permissions are clustered to-

gether. Therefore we use the x and y coordinates in the map to represent categories.

Figure 5.2 depicts the coordinates of 13 categories as an example. It is clear to see

that some categories bear underlying similarities, such as “Entertainment”, “Media

and Video” and “Music and Audio” in the center of the figure 2 .

Clearly an unscrupulous developer can claim an irrelevant category to disguise

an application’s intended core functionalities. However, a user can easily notice the

inconsistencies and remove such applications. In addition, falsifying an application’s

meta information violates the terms of application market’s developer policies and

may lead to immediate takedown.

2For more details on SOM, please refer to [34].

76

Figure 5.2: SOM Representation of 13 Categories

Finally, based on the scheme defined by these features, the application intelligence

aggregator generates a dataset consisted of feature vectors extracted from API traces

and meta information of each installed application.

5.2.2 Baseline Learner

The baseline learner is the core module of RiskMon. It takes two types of inputs,

which are a user’s expectations and feature vectors extracted by the application in-

telligence aggregator. Then the baseline learner generates a risk assessment baseline

which is represented as a predictive model.

Acquiring Security Requirements

It is challenging for most users to express their security requirements accurately. We

aim to find an approach that could be mostly acceptable by users. Krosnick and

Alwin’s dual path model [84] demonstrated that a satisficing user would rely on

salient cues to make a decision. Based on this model we develop a simple heuristic:

77

For a specific application, accesses on resources that are more irrelevant

of a user’s expected core functionalities incur more risks.

This heuristic captures a user’s expectations as security requirements by risk aver-

sion, which implies the reluctance of a user to use a functionality with an unknown

marginal utility [101]. For example, a user may consider that, microphone is necessary

to a VoIP application such as Skype. But location seems not because she does not

understand the underlying correlation between disclosing her location and making a

phone call. Thus, microphone is more relevant and less risky than location in her

perception.

Base on this, the risk learner asks a user to specify a relevancy level for each per-

mission group requested by her trusted applications. We choose permission groups to

represent resources because it is much easier for general users to learn 20+ permis-

sion groups than 140+ permissions. And recent usability studies demonstrated the

ineffectiveness of permissions due to limited comprehension [43, 62]. Although users

tend to overestimate the scope and risk of permission groups, they are more intuitive

and reduce warning fatigue [62].

The process for users to communicate their security requirements with RiskMon

is similar to a short questionnaire. Each permission group requested by a user’s

trusted applications corresponds to a five-point Likert item. The user specifies the

level of relevancy on a symmetric bipolar scale, namely relevant, probably relevant,

neutral, probably irrelevant or irrelevant. Figure 5.3 shows an example of relevancy

of permission groups for Facebook and Skype. Permission groups are represented by

self-descriptive icons, which are identical to those shown in Android Settings. CAMERA

preceding LOCATION for Facebook is possibly due to the user’s preference to photo

sharing compared to check-ins.

78

Relevant Irrelevant

High riskLow risk Neutral

ContactsCamera Phone Calls

Location Microphone Network

Facebook

Skype

1 2 3 4 5

Figure 5.3: An Example of Specifying Relevancy for Permission Groups

Note that the relevancy levels specified by users are subjective. With that said,

users’ biased perception of applications and resources may affect their specified rel-

evancy levels. From our user study, a user told us that PHONE CALLS is relevant to

Google Maps because he tapped a phone number shown in Google Map and then the

dialer appeared. Although the dialer rather than Google Map has the capability to

make phone calls, the baseline learner considers it as the security requirements for

inter-application communication.

We next formalize the problem of acquiring security requirements. PG = {pg1, pg2, · · · , pgm}

is a set of permission groups available in a mobile operating system. A = {a1, a2, · · · , an}

is a set of a user’s installed applications. TA is a set of a user’s trusted and installed

applications and TA ⊆ A. RequestedPG : A → 2P G is a function that maps an

application to its requested permission groups. A user’s security requirement Req is

a mapping Req : TA× PG→ R. R = {1, 2, 3, 4, 5} is a set of relevancy levels, where

a larger value indicates higher relevancy and less risk and vice versa.

79

Compiling Training Set

Next we describe how the baseline learner compiles a training set from the aggregated

application intelligences and user-specified relevancy levels. For brevity, we apply the

relevancy levels onto the feature vectors generated by the application intelligence

aggregator to generate a set of vectors annotated with relevancy levels.

To bridge the gap between permission groups and feature vectors, we extract

mappings of permission groups and permissions from the source code of Android.

Meanwhile, existing work has provided mappings between permissions and APIs [29,

58]. Therefore, we can assign the relevancy level on feature vectors because each

vector represents an API call or callback.

We formalize the problem of compiling a training set as follows. Algorithm 8

illustrates the process to compile the training set T .

• X is a space of features as defined by the scheme discussed in Section 5.2.1, X

= {~x1, ~x2, · · · , ~xl}, X ∈ R
i, where i denotes the number of features;

• DS = {Da1, Da2, · · · , Dam} is a collection of sets of feature vectors, where

Daj ⊆ X and Daj corresponds to an application aj;

• Apd : A × PG → DS is a function that maps an application and one of its

requested permission groups to a set of feature vectors; and

• T = {(~x1, r1), (~x2, r2), · · · , (~xn, rn)} is a training set consisted of annotated vec-

tors, rk ∈ R, ~xk ∈ X.

Generating Risk Assessment Baseline

Ranking Support Vector Machine (RSVM) [71, 81] is a pair-wise ranking method.

Generally it utilizes a regular Support Vector Machine (SVM) solver to classify the

order of pairs of objects. Next we explain how we apply RSVM to learn a risk

assessment baseline.

80

Algorithm 1: Compiling Training Set

Data: DS, TA, Req

Result: T

1 T ← ∅;

2 for a ∈ TA do

3 pg ← RequestedPG(a); r ← Req(a, pg); D ← Apd(a, pg);

4 for ~x ∈ D do

5 add (~x, r) to T;

6 end

7 end

8 return T

We assume that a set of ranking functions f ∈ F exists and satisfies the following:

~xi ≺ ~xj ⇐⇒ f(~xi) < f(~xj), (5.1)

where ≺ denotes a preferential relationship of risks.

In the simplest form of RSVM, we assume that f is a linear function:

f~w(~x) = 〈~w, ~x〉, (5.2)

where ~w is a weight vector, and 〈·, ·〉 denotes inner product.

Combing (5.1) and (5.2), we have the following:

~xi ≺ ~xj ⇐⇒ 〈~w, ~xi − ~xj〉 < 0, (5.3)

Note that ~xi − ~xj is a new vector that expresses the relation ~xi ≺ ~xj between ~xi

and ~xj. Given the training set T , we create a new training set T ′ by assigning either

a positive label z = +1 or a negative label z = −1 to each pair (~xi, ~xj).

81

(~xi, ~xj) : zi,j =















+1 if ri > rj

−1 if ri < rj

∀(~xi, ri), (~xj, rj) ∈ T

(5.4)

In order to select a ranking function f that fits the training set T ′, we construct

the SVM model to solve the following quadratic optimization problem:

minimize
~w

1

2
~w · ~w + C

∑

ξi,j

subject to ∀(~xi, ~xj) ∈ T ′ : zi,j〈~w, ~xi − ~xj〉 ≥ 1− ξi,j

∀i∀j : ξi,j > 0

(5.5)

Denoting ~w∗ as the weight vector generated by solving (5.5), we define the risk

scoring function f~w∗ , for assigning risk scores to the feature vectors in the application

intelligence dataset:

f~w∗ = 〈~w∗, ~x〉 (5.6)

For any ~x ∈ X, the risk scoring function measures its projection onto ~w∗, or the

distance to a hyperplane whose normal vector is ~w∗. Thus, the hyperplane is indeed

the risk assessment baseline.

5.2.3 Risk Meter

Risk meter measures the risks incurred by each installed application including

those are trusted by the user. Note that (5.6) gives a signed distance. We use

the absolute value to represent the deviation and risk. The risks incurred by an

application ai are the cumulative risks of its runtime behaviors:

∑

~x∈Dai

|f~w∗(~x)| (5.7)

Another goal of the risk meter is to provide supporting evidences to end-users. To

this end, it presents the measured risks at three levels of granularities.

82

Application: In the simplest form, the risk meter presents a ranking of installed

applications by their risks as a bar chart. The X axis indicates the applications and

the Y axis indicates the risks. A user can trust an application if it is less risky than

her trusted ones. In contrast, an application that is significantly risky can also draw a

user’s attention. Note that the risk meter does not provide any technical explanation

at this level.

Permission group: The ranking of applications may seem unconvincing some-

times for users. In such a case, the risk meter can provide risk composition by permis-

sion groups which is represented as a pie chart. The pie chart intuitively reveals the

proportion of the risks incurred by the core functionalities of an application. As users

have basic knowledge of permission groups when they specify security requirements,

they should be able to interpret the risk composition correctly.

API calls and callbacks: The evidences presented at this level are intended for

experienced security analysts who are familiar with the security mechanisms under

the hood of Android. This is the raw data generated by the risk scoring function.

An analyst can inspect values of features to reconstruct the semantic view of runtime

behaviors.

Moreover, RiskMon allows a user to establish and revise her security require-

ments iteratively. RiskMon may generate biased or unconvincing evidences as a

user may not have clear and accurate security requirements at the very beginning of

using RiskMon. Thus, a user can provide her feedback by adjusting her security

requirements and/or adding more trusted applications. RiskMon also periodically

updates the security assessment baseline for observed new runtime behaviors. All of

these enable RiskMon to approximate an optimum risk assessment baseline to help

users make better decisions.

83

5.3 Automated Risk Mitigation

Based on the proposed risk assessment framework, we move one step further to

address risk mitigation. Specifically, we propose an automated decision process that

assists users to conveniently identify and revoke risky permissions from installed ap-

plications.

A typical permission framework, just like common access control systems, involves

decision processes that grant and revoke permissions. While permission granting

has been widely adopted in modern mobile platforms, permission revocation has

not received a commensurate popularity. For example, iOS users could not deny

accesses to their personal information until iOS 6. Google introduced App Ops as

an experimental privacy control framework in Android 4.3, but later disabled its

management interface in Android 4.4.2 [49].

Permission revocation is necessary because it enables complete and flexible control

over granted capabilities. To this end, recent work has proposed enhanced middleware

mandatory access control (MMAC) frameworks to support rule-driven permission

revocation on Android [35, 38, 91, 109, 129]. An obvious limitation of such frameworks

lies in the definition and maintenance of the rules [54], which place non-negligible

burden on general users. To say the least, it remains an open question whether users

can accurately cherry-pick the risky permissions that should indeed be revoked.

Intuitively, RiskMon could provide the necessary evidences to support a permis-

sion revocation decision process. However, Android by default only allows users to

mitigate unnecessary risks is removing risky applications. Such an arbitrary approach

may disrupt user experiences. For example, grey applications (e.g., ad-supported

games) are likely to request excessive permissions for harvesting user information.

Revoking all the granted permissions (i.e., removing application) seems unnecessary

84

because some permissions are not major sources of risks and they may support func-

tionalities that a user needs. Our goal is to selectively revoke risky permissions

and mitigate future risks to a user’s expected level. Therefore, those grey applica-

tions might still retain necessary functionalities and users could stay protected from

privacy-infringing code.

We identify three key challenges in bridging the gap between risk assessment and

risk mitigation: (1) selecting reference applications; (2) estimating risk budgets;

and (3) enforcing decisions with minimal user intervention. Reference applications

implicitly provide a user’s expected runtime behaviors and upper bounds of acceptable

risks. Risk budgets quantitatively determine decision thresholds that line up with the

user’s risk mitigation strategies. Moreover, we need to minimize user intervention in

decision enforcement, because general users would be incapable and reluctant to create

and manage security policies. We next describe how we address these challenges.

5.3.1 Selecting Reference Applications

As we previously assumed, a user’s trusted applications define her expected ap-

propriate behaviors for similar applications. To select a set of reference applications

for a target application, we prefer trusted applications that are under the same or

close categories because their core functionalities tend to be similar. Therefore, we

assign coordinates to all the installed applications according to their categories in

the category SOM. Then, we select the reference applications by computing a set of

k-nearest trusted applications based on their Euclidean distances.

The best choice of k depends on the category SOM and the number of the trusted

applications. Here we adopt a conservative approach to avoid over-generalization that

could lead to over-estimation of risk budgets. First, we start from k ≤ ⌊log2|AT |⌋.

Meanwhile, we need to filter this set by removing applications that are not close

85

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Game

Shopping

Finance

News

Books

Productivity

Social

Media

Communication

Entertainment

Music

Tools

Travel

R = 0.652

r = R / 2

Figure 5.4: An Example of Selecting Reference Applications from Close Categories

enough to the target application. To quantitatively define “close”, we compute the

smallest enclosing circle of the category SOM and its radius R, and choose R/2

as the threshold of close categories. In summary, a target application a’s reference

application set ARa is the intersection of the following sets:

1. ⌊log2|AT |⌋-nearest trusted applications; and

2. the trust applications whose Euclidean distance from a is no larger than r,

where r = R/2.

Figure 5.4 demonstrates an example of selecting reference applications for a social

application. The result is no more than ⌊log2|AT |⌋ applications under the “Social”,

“Communication”, and/or “Entertainment” categories.

Automated risk mitigation is also limited by the same problem of insufficient

trusted applications as automated risk assessment. ARa could be empty because AT

does not cover sufficient categories. In such a case, reselecting reference applications

is scheduled after a user adds trusted applications and improves coverage.

86

5.3.2 Estimating Risk Budgets

Risk budgets define decision thresholds used in our automated decision process.

Our goal is to derive a risk budget for each permission of a target application from

its reference applications.

We next formalize the problem of estimating risk budgets for a target application

a as follows:

• P = {p1, p2, · · · , pn} is a set of permissions available in a mobile operating

system;

• UsedP : A→ 2P is a function that maps an application to a set of permissions

whose usage patterns have been observed by RiskMon;

• PAR : P×A→ R is a function that maps a granted permission of an application

to its measured risk score; and

• BIa =
⋃

ta∈ARa
UsedP (ta) is a set of permissions that are the budget items for

an application a.

We then introduce the following budget estimation functions to support different

risk mitigation strategies, where p ∈ UsedP (a), a ∈ A, a /∈ AT , ARa ⊂ AT :

Stricta(p) =















min
ta∈ARa

PAR(p, ta) if p ∈ BIa

0 if p /∈ BIa

Averagea(p) =















avg
ta∈ARa

PAR(p, ta) if p ∈ BIa

0 if p /∈ BIa

Relaxeda(p) =



















max
ta∈ARa

PAR(p, ta) if p ∈ BIa

avg
ta∈AT

PAR(p, ta) if p /∈ BIa

(5.8)

87

The strict function prefers the most privacy-preserving practices of the reference

applications. The average function attempts to reduce the risks below the average

practices. For the permissions not among the budget items, the strict and average

functions both opt for a zero tolerance strategy. In contrast, the relaxed function

allows such permissions but their incurred risks should not exceed the average of all

the trusted applications.

5.3.3 Generating and Enforcing Decisions

To generate a decision for a permission p of an application a, we compute its

cumulative risks as Riska(p) and apply a user-specified budget estimation function,

for example:

Decision(a, p) =















Keep if Riska(p) ≤ Stricta(p)

Revoke if Riska(p) > Stricta(p)
(5.9)

Note that an important criterion of our decision process is revoking by observed be-

haviors 3 .

Managing security policies for complex information systems has been a challenging

task. It is even harder for dynamic systems such as the Android middleware, whose

security policies have to confine various applications that rapidly update themselves.

Enforcing security decisions for such systems would be unrealistic for general users

because it consumes much user attention and leads to habituation [61]. This partially

implies why Android community has been careful with integrating user-oriented and

generic permission revocation [49].

We introduce automated policy generation to address this challenge. Specifically,

automated permission revocation and policy generation are activated after (1) a user

3Intuitively, dormant permissions do not incur any risks so we choose not to revoke them because
we have no observed evidence to prove that such permissions will be abused.

88

installs or updates a new application; (2) a user updates her risk assessment baseline;

or (3) a pre-defined time period. Note that we do not attempt to implement our

own policy enforcement mechanisms. Instead, our framework could be easily adapted

to support new middleware MAC frameworks with an intuitive policy translation

module.

5.4 Implementation and Evaluation

In this section we first discuss a proof-of-concept implementation of RiskMon.

Then, we present the results of our online user study followed by two case studies.

We conclude our evaluation with the usability and performance of our system.

5.4.1 Implementation and Experimental Setup

We implemented a proof-of-concept prototype of RiskMon on the Android mobile

platform. In terms of continuous monitoring, we implemented a reference monitor

for Binder IPC by placing hooks inside the Binder userspace library. The hooks tap

into Binder transactions and log the parcels with zlog 4 which is a high-performance

logging library. In addition, we implemented automated risk assessment based on

SVMLight 5 and its built-in Gaussian radial basis function kernel.

We designed and conducted a user study to evaluate the practicality and usability

of RiskMon. We hand-picked 10 applications (Table 5.2) that were mostly down-

loaded from Google Play in their respective categories. We assumed that all the

participants trust them. Then we used participants’ security requirements for the 10

applications and their application intelligences to generate the baselines. We also ran-

domly selected 4 target applications from the Top Charts of Google Play to calculate

4https://github.com/HardySimpson/zlog

5http://svmlight.joachims.org/

89

https://github.com/HardySimpson/zlog
http://svmlight.joachims.org/

their risks based on the generated baselines, including: a) CNN App for Android

Phones (abbreviated as CNN); b) MXPlayer; c) Pandora Internet Radio (abbreviated

as Pandora); and d) Walmart. For both trusted (10) and target (4) applications,

we collected their one-day runtime behaviors on a Samsung Galaxy Nexus phone.

In addition, we developed a web-based system that acquires a participant’s security

requirements, feeds them to RiskMon and presents the results calculated by Risk-

Mon to the participant. A participant was first presented with a tutorial page that

explains how to specify relevancy levels as her security requirements. Then she was

required to set relevance levels for each permission group requested by each trusted

application after reading the application’s descriptions on Google Play. Afterwards,

RiskMon generated a risk assessment baseline for the participant based on her in-

puts and runtime behaviors of the 10 trusted applications. Then RiskMon applied

the baseline on each of the 14 applications, and displayed a bar chart that illustrates

a ranking of 14 applications by their measured cumulative risks. Finally, an exit sur-

vey was presented to collect the participant’s perceived usability of RiskMon. Our

study protocol was reviewed by our institution’s IRB. And we recruited participants

through university mailing lists and Amazon MTurk. 33 users participated in the

study and Table 5.1 lists the demographics of them.

5.4.2 Empirical Results

Security Requirements

From our user study shown in Table 5.2, we highlight the results of Chase Mobile

and Dropbox because they both request some ambiguous permission groups that are

hard to justify for users. Figure 5.5 demonstrates the average relevancy levels set by

90

Table 5.1: Demographics of the Participants

Category # of users

Gender
Male 29 (87.9%)

Female 4 (12.1%)

Age

18-24 15 (45.5%)

25-34 16 (48.5%)

35-54 2 (6.1%)

Education

Graduated high school or equivalent 3 (9.1%)

Some college, no degree 6 (18.2%)

Associate degree 1 (3.0%)

Bachelor’s degree 11 (33.3%)

Post-graduate degree 12 (36.4%)

Table 5.2: Applications Assumed to be Trusted in the User Study

Application Category

AmazonMobile Shopping

BejeweledBlitz Game

ChaseMobile Finance

Dictionary.com Books & Reference

Dropbox Productivity

Google+ Social

GooglePlayMovies&TV Media & Video

Hangouts(replacesTalk) Communication

MoviesbyFlixster Entertainment

Yelp Travel & Local

91

(a) Chase Mobile

(b) Dropbox

Figure 5.5: Average Relevancy Levels Specified by the Participants for Chase Mobile
and Dropbox

the participants for each permission group requested by Chase Mobile and Dropbox.

The error bars indicate the standard deviation.

Chase Mobile is a banking application with functionalities like depositing a check

by taking a picture and locating nearest branches. Apparently NETWORK is more

relevant than others as participants agree that Chase Mobile needs to access the

Internet. Even though Chase Mobile uses LOCATION to find nearby bank branches

and CAMERA to deposit checks, both LOCATION and CAMERA have lower relevancy levels

than NETWORK. We believe it is because some participants do not have the experiences

of using such functionalities, but the averages are still higher than neutral. We can

92

also observe that SOCIAL INFO falls below “neutral”, showing participants’ concerns

of why Chase Mobile uses such information.

Dropbox is an online file storage and synchronization service. From its results, we

identified an interesting permission group, APP INFO, whose description in Android’s

official document is: group of permissions that are related to the other applications

installed on the system. This authoritative description does not provide any cue of

negative impacts, which leads to user confusion as we can see that APP INFO has

the largest standard deviation. STORAGE, SYNC SETTINGS and ACCOUNTS are all above

“probably relevant” possibly due to their self-descriptive names that are semantically

close to Dropbox’s core functionalities.

Moreover, we noticed that the participants tend to set higher relevancy levels

for self-descriptive permission groups, while they tend to be conservative for other

permission groups. We note that this does not affect RiskMon in acquiring a user’s

security requirements, because RiskMon captures the precedence of one permission

group over another. Thus, the least relevant permission group (e.g. SOCIAL INFO

of Chase Mobile) always gets the highest risk scores for both trusted and distrusted

applications.

Application Risk Ranking

Figure 5.6 illustrates the ranking of 14 applications by their average cumulative risk

scores as measured by 33 risk assessment baselines generated for the participants. We

can see that MXPlayer (2.55) and Walmart (12.72) fall within the trusted applica-

tions, while CNN (54.15) and Pandora (69.22) are ranked with highest risk scores.

Note that both Pandora and CNN are renowned applications developed by well-

trained developers. Seemingly, they should use sensitive information appropriately.

Hence, we verified them by manually dissecting their API traces. We found that

93

Figure 5.6: Average Cumulative Risk Scores Measured by the Participants’ Risk
Assessment Baselines

they both stayed in the background and attempted to keep connected to remote

servers. To this end, they kept polling ConnectivityManager for a fine-grained state

of the current network connection. This is an unexpected practice for both privacy

and performance perspectives and the official Android documents suggest developers

register CONNECTIVITY CHANGE broadcasts 6 to get connectivity updates accordingly

instead of polling. On the contrary, Hangouts incurred almost imperceptible amount

of risks, although it has similar requirements for connectivity. Therefore, RiskMon

showed that even popular applications might use sensitive information in a way that

incurs potential risks for users.

5.4.3 Case Studies

In this section we evaluate the effectiveness of our approach. Note that there is

no ground truth of user’s expected appropriate behaviors. Thus, we opt for two case

studies on two applications, SogouInput and PPS.TV. We specified the relevancy

levels for 10 trusted applications and generated a risk assessment baseline. Then, we

verified their identified risk composition with manual analysis.

SogouInput is an input method based on the pinyin method of romanization,

and PPS.TV is a video streaming application similar to its counterparts such as

6http://developer.android.com/training/monitoring-device-state/connectivity-
monitoring.html

94

http://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html
http://developer.android.com/training/monitoring-device-state/connectivity-monitoring.html

Hulu and Netflix. Both of them are feature-rich, free and have accumulated over

5,000,000 installs on Google Play. We note that PPS.TV and SogouInput request 22

and 29 permissions, respectively. The numbers of requested permissions make them

suspicious over-privileged or privacy-infringing applications.

The measured cumulative risk scores are 179.0 for SogouInput and 366.9 for

PPS.TV. Table 5.3 demonstrates the risk composition of SogouInput and PPS.TV by

their requested permission groups. First, the unusually large portion of PHONE CALLS

indicates significant use of capabilities related to making phone calls and reading

unique identifiers. We verified the corresponding API traces and revealed that it

attempted to read a user’s subscriber ID and device ID. Second and more notably,

SOCIAL INFO contributed 4.02% of the total risks incurred by SogouInput. We veri-

fied the corresponding API traces and found that SogouInput accessed the Contacts

app and received a parcel of 384 bytes. Usually an Android application queries the

contact application and receives only the entries a user picks, which is several bytes

long. On the contrary, SogouInput attempted to dump the whole contacts data repos-

itory. Similar to SogouInput, PPS.TV utilized permissions related to PHONE CALL. In

addition to reading a user’s device ID and subscriber ID, it also registered a callback

to receive events of call states. We note that this allows PPS.TV to read the number

of incoming calls.

The results leave much room for imagination: how come an input method and a

video streaming application need capabilities related to PHONE CALLS, LOCATION and

SOCIAL INFO? Possibly users get personalized services by disclosing these information.

However it comes with a price of privacy. RiskMon highlights the risks so that users

can weigh the benefit and relevant cost by themselves.

95

Table 5.3: Risk Composition by Permission Groups of Applications in Case Studies

Application Permission Group Risk Score

SogouInput

LOCATION 5.6 (3.13%)

NETWORK 104.4 (58.29%)

PHONE CALLS 61.8 (34.56%)

SOCIAL INFO 7.2 (4.02%)

Total: 179.0 (100%)

PPS.TV

LOCATION 26.0 (7.09%)

NETWORK 108.3 (29.52%)

PHONE CALLS 232.6 (63.40%)

Total: 366.9 (100%)

Automated Risk Mitigation

Based on the measured risks of the 6 applications, we further applied our automated

risk mitigation approach. In particular, we used Figure 5.2 to guide our selection of

reference applications out of 10 trusted applications. Therefore, r = R/2 = 0.326 as

shown in Figure 5.4 and k was no more than 3. Afterwards, we chose the average

budget estimation function to reduce the incurred risks of the applications that are

below the average level of their respective reference applications. Table 5.4 shows the

revoked permissions and risk reduction of the assessed applications. In this table, we

have denoted the specific reason for each revoked permission. “(O)” indicates that

the revoked permission was used by one or more reference applications but exceeded

the threshold set by the budget estimation function. “(N)” means that the permission

was not used by any of the reference applications. Such permissions were also revoked

in our case studies due to the average function’s zero tolerance strategy.

The revoked permissions are lined up with the results as shown in Table 5.3. In

particular, READ CONTACTS and VIBRATE were revoked from SogouInput because they

96

were used but not among the risk budget items. In contrast, none of permissions

related to LOCATION was revoked, implying that SogouInput used LOCATION in a

reasonable and conservative manner. 4 out of 5 revoked permissions of PPS.TV were

mitigated due to over-budget, demonstrating its notable tendency of abusing a user’s

information. Overall, these applications were confined to behave like their respective

reference trusted applications.

We enforced the generated decisions through AppOps, and the revoked permis-

sions did not break the core functionalities. However, we can not guarantee that

permission revocation does not significantly impair an application’s usability, for two

reasons. First, our framework does not directly enforce decisions. Graceful enforce-

ment of decisions by access control frameworks is still an open question that is be-

yond the scope of this chapter. Second, risky permissions are not always excessive.

Obviously, core functionalities would break if their abused permissions are revoked.

applications instead of using our granular permission revocation mechanism.

The results of the case studies leave room for further analysis. How come an input

method and a video streaming application need capabilities related to PHONE CALLS,

LOCATION and SOCIAL INFO? Why does Walmart need to continuously access users’

location? Possibly users could get personalized services through disclosing private

information. However, it comes with a price. RiskMon is a necessary step towards

highlighting and mitigating the excessive risks.

5.4.4 System Usability

The criteria for usability were split into three areas: likeability, simplicity and

risk perception. Likeability is a measure of a user’s basic opinion towards automated

risk assessment. This identifies whether users would like to accept the proposed

mechanism. Simplicity is a measure of how intuitive the concepts and procedures

97

Table 5.4: Revoked Permissions of Applications in Case Studies

Application

Revoked Permissions

Risk Reduction(O): Over budget

(N): Not in budget

SogouInput

ACCESS NETWORK STATE (O)

169.5 (94.7%)
READ PHONE STATE (O)

READ CONTACTS (N)

VIBRATE (N)

PPS.TV

ACCESS LOCATION (O)

367.0 (99.8%)

ACCESS NETWORK STATE (O)

ACCESS WIFI STATE (O)

CHANGE WIFI STATE (N)

READ PHONE STATE (O)

Pandora ACCESS NETWORK STATE (O) 130.3 (98.5%)

CNN

ACCESS LOCATION (N)

128.5 (100.0%)ACCESS NETWORK STATE (O)

WAKE LOCK (N)

Walmart
ACCESS LOCATION (O)

56.6 (100.0%)
ACCESS NETWORK STATE (O)

MXPlayer 0.0 (0.0%)

are, which is useful in evaluating the burden placed on users. Risk perception is

a measure of a user’s perceived awareness of risks through risk assessment, which

evaluates how users interpret the risks as presented by RiskMon.

After using RiskMon, an exit survey was presented to collect users’ perceived

usability of RiskMon. In the survey we asked users questions on likeability (e.g.

“indicate how much you like using your trusted apps to set a baseline”), simplicity

(e.g. “do you agree that RiskMon requires less mental efforts in risk assessment”),

and risk perception (e.g. “do you feel the increased awareness of the risks of your

installed applications”). Questions were measured with a five-point Likert scale. A

98

Table 5.5: Usability Evaluation Results

Metric Average Lower bound on 95% confidence interval

Likeability 0.811 0.797

Simplicity 0.674 0.645

Risk perception 0.758 0.751

Table 5.6: Microbenchmark Results

Benchmark Average (s) Standard Deviation (s)

Feature extraction 8.27 0.07

Baseline generation (10 apps) 289.56 235.88

Risk measurement (per app) 0.55 0.17

higher score indicates a positive opinion or agreement, while a lower score indicates

a negative one or disagreement. Then scores were adjusted to [0,1] for numerical

analysis.

We analyzed a 95% confidence interval for users’ answers. Specifically we are

interested in determining the average user’s minimum positive opinions. Hence, we

looked at the lower bound of the confidence interval. Table 5.5 shows that an average

user asserts 79.7% positively on likeability, 64.5% on simplicity and 75.1% on risk

perception. The results show usability of RiskMon with the above-average feedback.

5.4.5 System Overhead

To understand the performance overhead of RiskMon, we performed several

microbenchmarks. The experiments were performed on a Samsung Galaxy Nexus

phone with a 1.2GHz dual-core ARM CPU. The phone runs Android v4.2.2 and

RiskMon built on the same version. Table 5.6 shows the average results.

Feature extraction: The application intelligence aggregator extracted feature

vectors from the raw API traces of 33,368,458 IPC transactions generated by 14 ap-

99

plications in one day. We measured the CPU-time used by parsing the API traces and

generating the feature vectors. The average time is 8.27 seconds, which is acceptable

on a resource-constrained mobile device.

Baseline generation: We ran baseline generation based on the input acquired

in the online user study. The processing time varies for different participants, while

the average time is approximately 289.56 seconds due to the computation complexity

of the radial basis function kernel of SVMLight.

Risk measurement: Applying the risk assessment baseline is much faster than

baseline generation. We measured the time taken to apply a risk assessment base-

line on 14 applications. The average time per application is 0.55 seconds, which is

imperceptible and demonstrates the feasibility of repeated risk assessment.

Finally, we anecdotally observed that it took 5-10 minutes for the participants

to set relevancy levels for 10 applications. This usability overhead is acceptable

compared to the lifetime of a risk assessment baseline.

5.5 Discussion

To capture actual risks incurred by applications used by a user, RiskMon fun-

damentally requires running them on the user’s device. We note that 48.5% of the

respondents in our user study claimed that they often test drive applications on their

devices. RiskMon itself does not detect or prevent sensitive data from leaving users’

devices. We would recommend users use on-device isolation mechanisms (e.g. Sam-

sung KNOX 7) or data shadowing (e.g. [76]). However, it is far from perfect for

running untrusted applications on trusted operating systems.

RiskMon requires users to specify security requirements through permission

groups. While most of the frequently requested permission groups are self-descriptive

7http://www.samsung.com/global/business/mobile/solution/security/samsung-knox

100

http://www.samsung.com/global/business/mobile/solution/security/samsung-knox

(e.g. LOCATION and CAMERA), some are ambiguous (e.g. APP INFO) and contain low-

level APIs only known to developers. Although we identify permission groups as an

appropriate trade-off between granularity and usability, we admit that permission

groups are still a partial artifact in representing sensitive resources for users. Note

that we choose permission groups only to demonstrate the feasibility of our approach

of security requirement communication. As our future work, we plan to develop a sys-

tematic and intuitive taxonomy of sensitive resources on mobile devices to facilitate

more effective requirement communication. Moreover, generating a risk assessment

baseline is a compute-intensive task that does not quite fit resource-constrained mo-

bile devices. Thus, we plan to offload such a task to trusted third-parties or users’

public or private clouds in the future.

Regarding our current implementation of RiskMon, it does not address: (1) in-

teractions between third-party applications; and (2) interactions that do not utilize

Binder. This indeed illustrates potential attack vectors that can bypass RiskMon.

Unauthorized accesses on resources of third-party applications [42] might be possible

because such resources are not protected by system permissions. Also, two or more

malicious applications can collude via local sockets or covert channels and evade the

Binder-centric reference monitor in RiskMon. For our future work, we will extend

our framework to maximize the coverage of attack vectors in our approach.

5.6 Related Work

Analysis of meta information: Meta information available on application

markets provides general descriptions of applications. Recent work has proposed

techniques to distill risk signals from them. Kirin [56] provides a conservative certifi-

cation technique that enforces policies to mitigate applications with risky permission

combinations at install time. Sarma et al. [106] propose to analyze permissions along-

101

side with application categories in two large application datasets. Peng et al. [99] use

probabilistic generative models to generate risk scoring schemes that assign compar-

ative risk scores on applications based on their requested permissions. In addition to

analysis on permissions, Chia et al. [41] and Chen et al. [40] performed large-scale

studies on application popularity, user ratings and external community ratings. In

particular, Pandita et al. proposed WHYPER [97] which automatically infers an ap-

plication’s necessary permissions from its description in natural languages. However,

meta information does not accurately describe the actual behaviors of applications.

RiskMon uses meta information to provide contextual information so as to comple-

ment the analysis on the runtime behaviors for risk assessment.

Static and dynamic analysis: Analysis on execution semantics of applica-

tions, such as static analysis of code and dynamic analysis of runtime behaviors, can

reveal how applications use sensitive information. Stowaway [58] extracts API calls

from a compiled Android application and reveals its least privilege set of permis-

sions. Enck et al. [55] developed a decompiler to uncover usage of phone identifiers

and locations. Pegasus [39] checks temporal properties of API calls and detects API

calls made without explicit user consent. TaintDroid [52] uses dynamic information

flow tracking to detect sensitive data leaking to the network. Regarding malware

analysis, DroidRanger [128] and RiskRanker [67] are systematic and comprehensive

approaches that combine both static and dynamic analysis to detect dangerous be-

haviors. DroidScope [121] reconstructs semantic views to collect detailed execution

traces of applications. These work focuses on fundamental challenges for assessing

actual risks incurred by applications. However, they do not provide a baseline to

capture the appropriate behaviors under diverse contexts of different applications.

Thus, their approaches are more intended for security analysts rather than end users.

102

Mandatory access control frameworks: RiskMon includes a lightweight

reference monitor for Binder IPC. While it monitors IPC transactions for risk assess-

ment, several frameworks mediate IPC channels as part of their approaches to support

enhanced mandatory access control (MAC). SEAndroid [109] brings SELinux kernel-

level MAC to Android. It adds new hooks in the Binder device driver to address

Binder IPC. Quire [48] provides IPC provenance by propagating verifiable signatures

along IPC chains so as to mitigate confused deputy attacks. Aurasium [119] uses libc

interposition to efficiently monitor IPC transactions without modifying the Android

platform. FlaskDroid [38] provides flexible MAC on multiple layers, which is tailored

the peculiarity of the Android system. Along these lines, RiskMon captures Binder

transactions with a fine-grained scheme to facilitate risk assessment on applications’

runtime behaviors.

5.7 Summary

In this chapter, we have presented RiskMon that continuously and automatically

measures risks incurred by a user’s installed applications. RiskMon has leveraged

machine-learned ranking to generate a risk assessment baseline from a user’s coarse

expectations and runtime behaviors of her trusted applications. Also we have de-

scribed a proof-of-concept implementation of RiskMon, along with the extensive

evaluation results of our approach.

103

Chapter 6

FLOW-DRIVEN ASSESSMENT

As we have discussed our approach to assess individual apps, we argue that it

is equally important to assess the inter-application information flows. In this sec-

tion, we propose an approach to systematically check intent-based inter-application

communication among installed Android apps.

6.1 Problem Statement

Modern mobile operating systems have shifted into a security architecture that is

fundamentally different from those of traditional desktop OSs. Mobile applications

(commonly referred to as apps) run as unique security principles; they are isolated

in their respective sandboxes and receive few privileges. In addition, the mobile OSs

support inter-application communication that enables interoperability among apps

so that multiple apps can collaborate to accomplish complex tasks. For example,

an email client exports a picture file to a photo editor; the photo editor modifies

the picture and posts it online through a social network client. Inter-application

communication respects the Unix philosophy of “do one thing and do it well” and

promotes modular design in apps.

A type of messaging objects called intents build a major and sophisticated inter-

application communication mechanism in Android [42]. Intents are flexible as they

can carry simple data and even inter-process communication primitives (e.g. Binder [23]

and file descriptors [24]). Moreover, the intent attributes are rich with Android

middleware semantics, which naturally facilitate access control decisions [37, 95].

Intent-based inter-application communication has received much research attention.

104

In general, two aspects are covered: previously unknown security limitations of in-

tents [35, 42, 48, 60, 87] and generic policy-driven security extensions that remedy the

limitations [30, 35–37, 73, 90, 91, 93, 95, 109, 129]. However, there is an overlooked

gap between configuring generic security extensions and securing a specific Android

device. Every app, every device, and every user are different. A policy analyst needs

insights into the policies before she can accurately define how the apps in her device

communicate through intents in her intended ways. To bridge the gap, we seek a

systematic approach for a policy analyst to conveniently acquire such insights.

Defining and verifying the policy for each individual security extension that con-

trols intent-based communication is a complex task for a policy analyst. The recent

emerging security requirements, such as “bring your own device” (BYOD), call for

fine-grained and precise policies. For example, a single mobile device may host a doc-

tor’s personal apps and the apps of several clinics. The doctor and the clinics would

require that the deployed security policies accurately enforce the boundaries between

the apps of the respective stakeholders. Meanwhile, mitigating existing threats related

to intents such as communication hijacking [42], confused deputy attacks [35, 60], and

accidental data disclosure [90] requires the that policies are tailored to the peculiari-

ties of each threat and each vulnerable app.

However, unlike the other inter-application communication mechanisms in An-

droid, which are usually controlled by a single security extension, intent-based com-

munication is mediated by multiple security extensions. While multiple security ex-

tensions promote the flexibility of controlling intent-based communication, they also

introduce new challenges in definition and verification of their policies.

C-1: Incompatible policies. The security extensions define their own incompatible

schemas and semantics. For example, FlaskDroid [37] inherits SELinux’s policy se-

mantics of type enforcement. Saint [95] uses an XACML-like schema customized by

105

the authors. IntentFirewall’s policy is unique and unlike the other security extensions,

however it specifies a critical set of tests on intent attributes. As far as we know, no

existing policy checker can work with every extension’s policy. Therefore, checking

such incompatible policies remain a manual process that requires a policy analyst to

master the details of every security extension.

C-2: Distributed policies. The security extensions store policies in distributed loca-

tions. For example, IntentFirewall stores its policy in an XML file, and intent filters

are stored in internal data structures inside AMS and PMS. In addition, each exten-

sion tends to make the policy exclusively accessible to itself. In other words, each

security extension makes its decision by itself and is not aware of the other secu-

rity extensions. Consequently, no security extension possesses a holistic view of the

reachability among installed apps as controlled by all the security extensions.

C-3: Dynamic policies. The security extensions may allow apps to specify and mod-

ify policies at run-time. For example, app-defined intent filters and permissions are

prevalent in Android. Recent security extensions that implement decentralized in-

formation flow control (DIFC) also encourage apps to participate in policy manage-

ment [90]. Thus, the policies continuously change as a user installs, removes, or

upgrades the apps on her device. This requires proactive verification to guarantee

that the dynamically changing policies comply with the security requirements.

To address the challenges in checking intent-base communication, we seek to build:

a) a general policy checker that easily adapts to the policy schema of any security

extension that controls intents; b) a holistic policy checker that aggregates the policies

into a holistic and verifiable view; and c) a proactive policy checker that automatically

acquires the live states of security extensions as snapshots of dynamic policies. With

the policy checker, we attempt to systematically answer the following two questions

regardless of specific security extensions, apps, or devices: a) what intents can an

106

app send to a specific app; and b) what intents can an app receive from a specific

app. Meanwhile, we expect the checker to be mostly automated so as to reduce the

burden on policy analysts.

Suppose we have a mission-critical app that signs sensitive treatment plans. Find-

ing out which apps can send intents to this signer app assists a policy analyst to deter-

mine the domain of authorized apps and to rule out untrusted apps that may exploit

the signer’s potential vulnerabilities (e.g. capability leaks [66]). Similarly, finding out

the signer’s reachable apps is necessary for preventing accidental disclosure [90] or

deliberate data theft where a user shares the treatment plans with untrusted apps

such as a cloud storage client. In addition, knowing exactly what intents an app

can send and receive enables fine-grained policies and furthers the notion of domain

isolation. For example, a domain can be defined as a set of apps, a set of incoming

intents, and a set of outgoing intents. According to Chin et al. [42], two domains that

do not share incoming intents are safe from intent eavesdropping attacks; two do-

mains that do not share outgoing intents are safe from spoofing attacks. Pushing the

level of domain granularity from apps to intents also pushes the level of detail beyond

the comprehension of a human analyst. Our policy checker implements automated

analysis to verify that the system-wide intent-based communication is configured as

intended.

6.2 Intent Space Analysis: Model

We believe that creating the right abstraction model is the first step toward check-

ing intent-based communication. In this section, we elaborate the intent space model

that lays the foundation for intent space analysis.

107

6.2.1 Overview

We observe a few common characteristics after analyzing the existing security ex-

tensions that mediate intent-based communication. First, all the security extensions

implement policy-driven mandatory access control. Second, these security extensions

allow or deny an intent if the values of the intent’s attributes match their policies.

Third, they are cascaded in a chain; one security extension allows an intent by passing

it to the next security extension. Based on these observations, we find that intent-

based communication is analogous to a computer network: each app is an endpoint,

an intent is a packet, and the security extensions behave like a chain of routers whose

rules specify how they forward intents based on their “header” attributes. Inspired

by packet header space analysis [83], we propose to model each security extension’s

inputs or outputs as a geometric intent space over intent attributes; and further we

model each security extension’s intent forwarding functionalities as a transfer func-

tion.

Figure 6.1 demonstrates a motivating example where App A sends intents to

App B. For simplicity of the example, we consider only actions and categories, and

we represent the actions on the x-axis and the categories on the y-axis. The initial

space of App A is full in both dimensions because an app can create arbitrary intents

before the intents are processed by any security extension. And because the security

extensions only forward the intents that match certain actions or categories specified

in their policies, the space gradually shrinks as the transformations T1, T2, and T3 are

applied to the initial space (Figure 6.1 (a)). The remaining space at App B indicates

the intents that App A can send to reach App B. And if no space remains, App A

cannot communicate with App B through intents. One step further, we combine the

transfer functions into a composite transfer function that describes app-to-app space

108

A B
Security

Extension

T1() T2() T3()

A B

T3(T2(T1()))

���

���

Security
Extension

Security
Extension

Figure 6.1: (a) The intent space shrinks as it passes security extensions, modeled
here by the T1, T2, T3. (b) Composing transfer functions to model app-to-app trans-
formation.

transformation as illustrated in Figure 6.1 (b). This composite function captures all

the security extensions. Thus, it describes the holistic intent forwarding state that

we need for checking intent-based communication.

6.2.2 Intent Space

Formally, an intent space is a K-dimensional space of regular languages defined

as I = {.∗}K , where “.*” is the regular language that describes all words. The

K dimensions correspond to K intent attributes, which are selected by the policy

analyst based on her requirements. A policy analyst can set a smaller K if the

security extensions to be analyzed do not inspect every intent attribute. An intent

i maps to a point in the space, such as: {action: SEND,category: DEFAULT} 1 for

K = 2. Multiple intents map to a subspace defined as a hypercube or a union of

multiple hypercubes. A hypercube is represented with exactly K regular languages

at K dimensions, such as {action: SEND|SEND MULTI, category: ε (the empty string

1For clarity in this example we annotate the dimensions with the attributes.

109

language)}. Any hypercube with fewer than K dimensions or undefined dimensions

is invalid and considered as an empty space ∅ in the subsequent computations.

6.2.3 Intent Space Algebra

Algorithms that check intent-based communication between two apps must deter-

mine whether an app’s allowed outgoing intents overlap with the other apps’ allowed

incoming intents. To this end, we define the basic set operations on I: intersection,

union, complementation, and difference. Note that a point in I can be considered as

a special hypercube whose regular languages contain only one word; and a subspace

is a union of multiple hypercubes. We therefore define set operations for hypercubes

and carry over the operations to other intent space objects. Throughout the rest of

this chapter, we overload the term intent space to refer to all types of intent space

objects including points, hypercubes, subspaces, as well as the entire intent space.

Intersection. The intersection of two intent spaces is computed by intersecting

the regular languages at each dimension. Formally, given two intent spaces i, j ⊂ I

and their dimension set D = {d1, d2, . . . , dk}, their intersection i∩ j is {d1 : regexi
1
∩

regexj
1, . . . , dk : regexi

k ∩ regexj
k}. For example, {A[12], C1} ∩ {ε, C1} is equivalent

to {A[12], C1} and {A[12], C1} ∩ {A3, C1} is equivalent to {∅, C1}. Note that {∅,

C1} is missing a dimension and thus is considered as an empty space ∅.

Union. A union of intent spaces may not be simplified to a single intent space.

For example, the union of two intent spaces {A1|A2, C1} and {A3, .*} cannot be

represented by any single hypercube and we simply represent the union as {A1|A2,

C1} ∪ {A3, .*}. We can simplify the result if the intent spaces are on the same

hyperplane. For example, {A1|A2, C1} ∪ {A3, C1} is equivalent to {A[1-3], C1}.

Complementation. The complement of an intent space i is the union of all the

intent spaces that do not intersect with i. Recall that the intersection of two intent

110

spaces is an empty space if the intersection is missing any of the K dimensions. We

compute i’s complement i with Algorithm 8, which finds all non-intersecting intent

spaces by replacing the regular language at one dimension with its complement if

the language is not .* and setting .* at the other dimensions. For example, the

complement of {ε} is {.*} and the complement of {A1, C1} is {A1, .*} ∪ {.*, C1}.

Algorithm 2: Computing an intent space’s complement

Data: i

Result: i

1 i′ ← ∅;

2 for dimension di ∈ D do

3 L← regular language at di;

4 if L 6= .∗ then

5 i′ ← i′ ∪ {d1 : .∗, . . . , di : L, . . . , dk : .∗};

6 end

7 end

8 return i′

Difference: The difference (or subtraction) is computed with intersection and

complementation, i.e., i−j = i∩j. For example, {A1|A2, .*} - {A2, .*} is equivalent

to {A1|A2, .*} ∩ {A2, .*}, which is {A1, .*}. A slightly more complicated example

which reuses the complement of {A1, C1} is shown below:

{A1|A2, C1|C2} − {A1, C1}

= {A1|A2, C1|C2} ∩ {A1, C1}

= {A1|A2, C1|C2} ∩ ({A1, .*} ∪ {.*, C1})

= {A2, C1|C2} ∪ {A1|A2, C2}

111

6.2.4 Transfer Function

For convenience of analysis, we assume that all security extensions deny by de-

fault. For those security extensions that accept by default, it is trivial to reduce

them into deny-by-default extensions with a least-priority rule that accepts every-

thing. Therefore, apps cannot communicate if the security extensions specify no rule.

Conversely, the rules of a security extension that allow/deny some intents from one

app to another app essentially specify how the security extension forwards or drops

intents from the source app to the destination app. As we represent intents as an

intent space, we model a security extension’s intent forwarding and dropping func-

tionality as intent space transformation and represent a security extension with a

transfer function. Given that the space of all apps is A, a transfer function T is

formally defined as:

T : (a, i)→ 2A×I , a ∈ A, i ⊂ I

To aggregate multiple transfer functions into a holistic view, we iteratively apply

each (a, i) tuple of the output of a transfer function to the input of the next transfer

function and build a composite transfer function.

A transfer function captures the transformation that a security extension performs

on A, I, or both. Suppose we are to model a simple security extension that works

like a Layer-2 network switch: it only supports coarse-grained control over which app

can send intents to another app regardless of intent attributes. Such an extension

can be modeled as a transfer function that transforms only on A. IntentFirewall

denies an app from sending a specific intent regardless of the intent’s destination

apps. It therefore can be modeled as a transfer function that only transforms on I.

112

Intent
Firewall

Intent
Filters

Intent
Firewall

Implicit Intents

Explicit Intents

Permissions

A B

C

D

E

F

A
p
p
s

A
p
p
s

Policies Transfer Functions Holistic Reachability Graph

Protected
Broadcasts

Permissions

Figure 6.2: IntentScope System Workflow.

We elaborate more details about how we model security extensions for intent space

analysis in the subsequent section.

6.3 Intent Space Analysis: System

In this section, we describe our policy analysis framework IntentScope which

supports intent space analysis. To demonstrate its generality, we also discuss how

IntentScope works with the AOSP security extensions and their policies. We em-

phasize that IntentScope is not limited to only the discussed security extensions

in this chapter.

6.3.1 System Workflows

Figure 6.2 depicts the workflow of IntentScope. In general, IntentScope

starts from acquiring the policies of security extensions, then creates transfer func-

tions, and converts the composite transfer function into a holistic reachability graph

for subsequent analysis.

Acquiring Policies

The policy of a security extension is often referred to as a dedicated file stored in the

filesystem. In this work, we opt for a more general definition of policy and propose to

acquire all the states and configurations of security extensions so long as they specify

113

how the intents are forwarded. To this end, we create a privileged watchdog app for

IntentScope that proactively observes policy changes and automatically takes a

snapshot of the policies. The implementation of the watchdog app is largely specific

to the analyzed security extensions. For example, intent filters are registered by apps

and maintained by AMS and PMS. The watchdog app may acquire the registered

intents filters on an Android device by dumping the internal states of AMS and PMS

after an app registers/unregisters any intent filter.

Creating Transfer Functions

Next, we map the acquired policies onto transfer functions. Given that a security

extension makes decisions based on its loaded policy and implemented policy in-

terpretation logic, a transfer function that models the intent forwarding state must

capture both. While the policy can be automatically retrieved by IntentScope’s

watchdog app, the policy interpretation logic still requires manual effort to model.

IntentScope requires a policy analyst or the security extension’s authors to define

a transfer function for its policy interpretation logic and to create a policy parser

that instantiates the corresponding transfer function. Note that this logic construc-

tion overhead is only performed once as the defined transfer functions can be reused

and the parsers can automatically instantiate transfer functions. We elaborate our

transfer functions for the AOSP security extensions in Section 6.3.2.

Building a Holistic Reachability Graph

To facilitate analysis and visualization, we propose to convert the composite transfer

function into a directed graph that represents inter-application reachability. Formally,

a holistic reachability graph is denoted as G = (V, E), where V is a set of vertices that

correspond to the installed apps and E is a set of edges that correspond to the intent

114

spaces that an app can send to reach another app. Constructing such a reachability

graph is straight forward. Each app maps to a vertex in the graph. For each app,

we apply the composite transfer function on its initial intent space (e.g., {.∗}K) and

add a directed edge if any non-empty intent space remains at the destination app.

We assign the remaining intent spaces on the edges as their weights, which allows

IntentScope to support flexible queries and graph pruning as a policy analyst adds

constraints on the graph.

6.3.2 Transfer Functions for AOSP Security Extensions

Intent filters, IntentFirewall, protected broadcasts, and permissions are the inte-

gral parts of AOSP and therefore widely deployed in COTS Android devices. They

also serve as reference implementations for other security extensions. For example,

Apex [91] and CRePe [44] extend the permissions; and SEAndroid controls intents

with a slightly modified IntentFirewall [25]. Based on these observations, we believe

that the AOSP security extensions are a good starting point to demonstrate that

IntentScope is general, because it can effectively work with their policies. In the

remainder of this section, we share our experiences of modeling these security exten-

sions for intent space analysis. Although we are not the first to formally model them,

we provide the most accurate models by covering a complete set of intent attributes

and undocumented logic in the security extensions. Unless stated otherwise, the con-

tents in this section are based on our manual analysis of the kitkat-release branch

in AOSP.

As shown on the left side of Figure 6.2, two chains of security extensions control

implicit and explicit intents. We define two intent spaces: (1) II as a six-dimensional

implicit intent space over five intent attributes action, category, scheme, authority,

type and one additional attribute permission; and (2) IE as a two-dimensional ex-

115

plicit intent space over component name and permission. Note that the permission

of an intent is inherited from the app that created the intent. The chain for implicit

intents consists of four security extensions: protected broadcasts, IntentFirewall, in-

tent filters, and permissions; and we define their transfer functions over II as T I
P B,

T I
IF W , T I

IF , and T I
P ERM . The chain for explicit intents includes two security exten-

sions: IntentFirewall and permissions; and we define their transfer functions over IE

as T E
IF W and T E

P ERM .

Intent Filters: T I
IF

An intent filter specifies the implicit intents that it allows to be forwarded to the

next security extension. Therefore, an intent filter’s output is the intersection of

the input intent space and the intent filter’s corresponding intent space. Suppose

a component dst.c in an app dst has an intent filter filter that describes an intent

space idst.c
filter. Then, an intent filter transforms (src, i) to (dst, i∩ idst.c

filter). Note that the

transformation is performed on both A and I. Given the installed apps on a device

as a set A, we combine their registered intent filters and define TIF as follows:

T I
IF (m, i) = {(n, i ∩ in.c

filter)|i ∩ in.c
filter 6= ∅,

∀c is a component of n,∀n ∈ A, n 6= m,

i, in.c
filter ⊂ II}

Next we explain how we map an intent filter to its intent space ifilter. In general,

an intent filter accepts an intent if the intent’s attributes pass a series of tests on

the intent filter’s attributes. Therefore, we reduce the problem of modeling an intent

filter to constructing a set of regular languages which consists of the words that pass

each respective test.

Action Test: An intent passes the action test if the intent’s action matches any

action in the intent filter. Therefore, we map the one or more actions of an intent filter

116

onto a regular expression that concatenates the escaped action strings and separates

them with the vertical bar character |, such as VIEW|EDIT. There are two corner cases

in this test. First, zero action in a filter fails the test. Second, zero action in an implicit

intent also fails the test. We capture both cases with a regular expression [], which

denotes an empty language whose intersection with any language is empty. Note that

the Android documentation is incorrect with respect to the second corner case: “if

an intent does not specify an action, it will pass the test as long as the filter contains

at least one action”. The reason is that queryIntent() in the IntentResolver class

eventually denies such intents even though matchAction() in the IntentFilter class

allows. Our experiments also confirm this behavior. Interested readers are referred

to the source code 2 for more details.

Scheme Test: An intent passes the scheme test if the intent’s scheme matches

any scheme in the filter. Therefore, the regular expression here is constructed in the

same way as the action test, e.g., http|gopher. This test also has unique cases. First,

an intent filter without any scheme still matches three schemes: content, file, or an

empty string. We represent them with a regular expression file|content|, where

the last | matches the empty string. Second, an intent without any scheme passes

the scheme test only if the intent filter does not specify any scheme. We consider

such intents as intent spaces whose scheme is an empty string.

Authority Test: This test is dependent on the scheme test. If the intent filter

does not specify any scheme, this test automatically passes regardless of the authority.

This test also passes if the filter does not specify any authority. Thus, we use .* to

match any authority in these two cases. An intent without any authority passes the

test only if the filter has no authority. We represent such intents with an empty

2https://goo.gl/A1auU5 and https://goo.gl/cdzxg8

117

https://goo.gl/A1auU5
https://goo.gl/cdzxg8

string at the authority dimension. Otherwise, an intent passes the authority test if

its authority matches any authority in the filter.

Type Test: An intent passes the type test if the intent’s MIME type matches

any type in the filter. The challenge here is the wildcard character * in MIME type

strings. For example, * and */* match any type; and audio/* matches any subtype

of audio. To maintain the semantics of the wildcard character, we convert * and */*

to .*. The slash character / is a special character in regular expressions so we escape

it as \/. For example, audio\/.*|video\/mp4 represents every audio subtype and a

single video type. Moreover, an intent filter that has no type accepts only the intents

that have no type. Therefore, zero type in either the intent or the filter maps to an

empty string.

Category Test: Unlike the other attributes, an intent can include more than one

category. An intent passes the category test if every category in the intent matches

a category in the filter, i.e., the intent’s category set is the subset of the filter’s

category set. To capture this logic, we construct a regular language for an intent

filter’s categories with three steps: (1) escape the category strings; (2) concatenate

the escaped strings and separate them with |; and (3) surround the concatenated

string with (and)*. For example, the subsets of an intent filter’s category set

{DEFAULT, LAUNCHER, BROWSABLE} are represented with a single regular expression

(DEFAULT|LAUNCHER|BROWSABLE)*. This expression also matches zero category and

duplicate categories specified in an intent. The other corner cases are similar to those

of the type test. No specification of category in an intent or a filter maps to an empty

string. An intent filter with no category accepts only the intents with no category.

Intent filters do not transform on the permission dimension. The regular language

at the permission dimension of all ifilter intent spaces is .*.

118

IntentFirewall: T I
IF W and T E

IF W

IntentFirewall is a policy-driven MAC framework that block apps from sending spe-

cific intents. The policy files, located at /data/system/ifw/*.xml, specify a list of

firewall filters (fwfilters for short) that describe the implicit or explicit intents to be

blocked for a specific sender app. We model IntentFirewall as a transformation over

II or IE that subtracts the intent space of each fwfilter from the input intent space.

Suppose a fwfilter that blocks an app src is represented with an intent space isrc
fwfilter.

T I
IF W and T E

IF W are defined in the same way as follows:

T I
IF W (a, i) = {(a, i−

⋃

ia
fwfilter)|i−

⋃

ia
fwfilter 6= ∅,

∀fwfilter that blocks the sender app a,

i, ia
fwfilter ⊂ II}

T E
IF W (a, i) = {(a, i−

⋃

ia
fwfilter)|i−

⋃

ia
fwfilter 6= ∅,

∀fwfilter that blocks the sender app a,

i, ia
fwfilter ⊂ IE}

Next we explain how we construct the intent space ifwfilter for a fwfilter over the

implicit intent space II and the explicit intent space IE, respectively. In general, we

construct ifwfilter according to IntentFirewall’s two-phase intent attribute matching

process.

If a fwfilter is for implicit intents, IntentFirewall first considers the fwfilter as

an intent filter and tests the intent attributes with the same tests as we discussed

in Section 6.3.2. We skip modeling this phase for brevity. In the second phase,

IntentFirewall tests the intent attributes with common string tests, such as isEqual,

isStartsWith, isContained, and matchRegex. Therefore, we model these tests with

their equivalent regular expressions. For example, isStartsWith=abc maps to a

119

regular expression abc.*; isContained=def maps to a regular expression .*def.*.

The tests can be aggregated by computing the intersection of the regular expressions.

For example, two tests isEqual=abc and isStartsWith=ab map to abc.

For a fwfilter that filters explicit intents, we also construct its intent space in two

phases. In the first phase, IntentFirewall checks if an explicit intent’s component

name matches the one specified in the fwfilter. Thus, we simply copy the fwfilter’s

escaped component name to the corresponding dimension in ifwfilter. There are two

corner cases to be handled. An explicit intent with no component name is dropped

immediately because it resolves to nowhere. A fwfilter with no component name does

not block any explicit intent. We model the former case with a regular expression []

and model the latter case with a regular expression .*. In the second phase, Intent

Firewall tests the intent’s component name with the identical string tests so we do

not rephrase how we model them. Finally, both T I
IF W and T E

IF W do not transform

an intent space at the permission dimension because IntentFirewall does not inspect

permissions.

Note that IntentFirewall is a relatively new security extension in AOSP with no

official documentation and limited comments in the code. At first we referred to the

unofficial documentation maintained by Yagemann [120] to define the transfer func-

tions. However, we found unexplained behaviors of IntentFirewall when we tested

IntentFirewall’s sample policies, which led us to the discovery of the overlooked sec-

ond matching phase. In order to obtain an accurate and comprehensive model, we

manually derived the transfer functions presented in this section from IntentFirewall’s

source code 3 .

3https://goo.gl/e4zzxL

120

https://goo.gl/e4zzxL

Permissions: T I
P ERM and T E

P ERM

Permissions constrain an app’s capability to receive intents from other apps. Suppose

an app has a sensitive component that only accepts the intents from authorized

apps. Then, the app can define a permission and assign it to the component, which

requires the component’s callers to hold the exact same permission. If we treat

intents as if they inherit the permissions of their creator/sender apps, a permission’s

role is to forward only the intents that have matching permissions. Therefore, a

permission’s output is the intersection of the input intent space and the permission’s

own intent space. Note that permissions do not transform on A because the other

security extensions have already resolved the destination app/component. Suppose

a component dst.c is protected by a permission p described by an intent space idst.c
c.p .

The transformation is defined as (dst.c, i)→ (dst.c, i ∩ idst.c
c.p).

We define T I
P ERM and T E

P ERM as follows:

T I
P ERM(a, i) = {(a.c, i ∩ ia.c

c.p)|i ∩ ia.c
c.p 6= ∅,

∀c is a component of a,

c is protected by c.p,

i, ia.c
c.p ⊂ II}

T E
P ERM(a, i) = {(a.c, i ∩ ia.c

c.p)|i ∩ ia.c
c.p 6= ∅,

∀c is a component of a,

c is protected by c.p

i, ia.c
c.p ⊂ IE}

Mapping a permission to an intent space ip is straight-forward. The regular language

at the permission dimension of ip is the escaped permission string. A special case

is that a content provider may have separate permissions for reading and writing.

Similar to the action test in intent filters, we model this case with a regular expression

121

perm r|perm w, based on the fact that an app with either the read or write permission

can access the content provider. The regular languages at the other dimensions are

.*, leaving the intent space unchanged at these dimensions.

Protected Broadcasts: T I
P B

Protected broadcasts are a set of implicit intents with special actions that only the

apps whose UIDs are SYSTEM, BLUETOOTH, PHONE, or SHELL can send. The other

apps are prevented from sending such intents. Similar to IntentFirewall, we model

protected broadcasts as a space transformation that subtracts the intent spaces of

protected broadcasts from the input intent space if the input app is not a system-

app. Suppose each protected broadcast maps to an intent space iprotected. Then, we

define the transfer function for protected broadcasts as follows:

T I
P B(a, i) =















(a, i) if a is an allowed app

(a, i−
⋃

iprotected) otherwise

i, iprotected ⊂ II

A list of actions used by protected broadcasts is available in the Android SDK

4 . Thus, we build an intent space iprotected for each action by assigning the escaped

action string into the action dimension of the space. The other dimensions do not

involve space transformation and remain with a regular expression .*.

Composite Transfer Function

As we have defined the transfer function for each individual security extension, we

combine them together to build the composite transfer function. The composite

function covers two chains of transfer functions for the implicit and explicit intent

4ANDROID_SDK_ROOT/platforms/android-19/data/broadcast_actions.txt

122

ANDROID_SDK_ROOT/platforms/android-19/data/broadcast_actions.txt

space, respectively. To build each chain of transfer functions, we start from integrating

the transfer functions of those security extensions that restrict an app from sending

intents. Then, the transfer functions of the security extensions that restrict an app

from receiving intents follow. For the transfer functions defined in this section, their

composite transfer function T is defined as:

T (a, i) =































T I
P ERM(T I

IF (T I
IF W (T I

P B(a, i)))) if i ⊂ II

T E
P ERM(T E

IF W (a, i)) if i ⊂ IE

6.4 Evaluation

In this section, we first discuss a prototype implementation of IntentScope. We

then present the experiments in which we apply IntentScope to check intent-based

communication mediated by the AOSP security extensions installed in commodity

Android devices and customized Android OSs. We conclude with an evaluation of

the throughput of our system.

6.4.1 Implementation

IntentScope includes an implementation of the intent space model, a watchdog

app that acquires the policies of the AOSP security extensions that control intents, a

set of policy parsers that build and compose transfer functions, and a graph builder

that converts the composite transfer function into the holistic reachability graph.

The intent space model is built on Augeas Libfa [18], a native library that sup-

ports accurate and fast operations on regular expressions. In particular, we opt for

Hopcroft’s DFA minimization algorithm [75] to minimize regular expressions. This

algorithm runs in O(nlogn) time in the worst case, where n is the number of states of

a regular expression’s equivalent DFA. The watchdog app runs as a privileged system

123

Table 6.1: Evaluated Android Devices/OSs and Generated Reachability Graphs

Device OS |V|
|EI| Global Clustering Standard

|EE| Coefficient Deviation

1 Samsung Galaxy Note II Customized Android 311
880,456 0.986 0.007

979,993 0.994 0.006

2

LGE Nexus 4

Stock Android 108
155,369 0.971 0.014

138,651 0.990 0.009

3 MIUI v5 104
99,170 0.979 0.013

118,707 0.991 0.009

4 CyanogenMod 11 M12 85
38,606 0.974 0.015

47,458 0.989 0.011

Table 6.2: Apps Ranked by PageRank
Highest in GI Lowest in GI Highest in GE Lowest in GE

1

com.viber.voip com.android.proxyhandler com.android.contacts com.sec.enterprise.permissions

com.android.contacts com.monotype.android.font.cooljazz com.android.phone com.samsung.android.mdm

com.android.settings com.sec.android.provider.badge com.android.settings com.samung.android.sdk.spenv10

2

com.google.android.apps.plus com.android.dreams.basic com.google.android.setupwizard com.android.dreams.basic

com.android.settings com.android.providers.userdictionary com.google.android.apps.plus com.android.wallpaper

com.google.android.apps.gms com.android.vpndialogs com.android.settings com.google.android.apps.docs.editors.slides

3

com.android.mms com.android.pacprocessor com.android.email cm.android.printspooler

com.android.contacts com.android.sharedstoragebackup com.android.mms com.android.nfc

com.android.settings com.miui.providers.weather com.android.settings com.android.noisefield

4

com.android.gallery3d com.android.nfc com.android.contacts com.android.nfc

com.android.email com.android.backupconfirm com.android.email com.android.incallui

com.android.contacts com.android.sharedstoragebackup com.android.settings com.android.printspooler

app. It dumps the internal states of PMS and AMS to acquire a comprehensive list

of intent filters and permissions, regardless of whether they are statically declared in

apps’ manifest or dynamically registered in app’s code. The watchdog app also fetches

the relevant files where IntentFirewall and protected broadcasts store their policies.

While IntentScope does not seek to be a realtime checker, policy re-acquisition

occurs periodically and after app installs/uninstalls. As the operations over intent

spaces are both computation and memory intensive, the parsers and graph builder

run on a PC rather than on the mobile device where the watchdog app runs.

124

6.4.2 Experimental Setup

We evaluated IntentScope on two Android devices and four Android-based OSs,

as shown in Table 6.1. The Galaxy Note ran Samsung’s deeply customized Android

(4.4.2), which pre-installed a large number of Samsung’s apps. In addition, we loaded

it with the top 50 apps from a list [22] of most downloaded Android apps in the

Google Play marketplace. The Nexus 4 ran three OSs, including stock Android (5.0),

MIUI (4.4.2), and CyanogenMod (4.4.4). We kept them as they were and did not

install additional apps. In particular, the first two OSs pre-installed a few proprietary

Google-branded apps. MIUI and CyanogenMod did not include these apps due to

licensing restrictions.

For each OS, we started each installed app and kept it in the foreground for at least

30 seconds. We assume that the apps had requested AMS and PMS to dynamically

register any intent filters or permissions. Then we applied IntentScope to generate

a reachability graph G and two subgraphs GI and GE that respectively represent the

holistic forwarding state of implicit and explicit intents. Each vertex represents an

app identified by its package name rather than UID 5 . Parallel edges are allowed and

prevalent in the graphs to capture the multiple entry points of an app.

6.4.3 Graph Overview

Table 6.1 lists the number of vertices, the number of edges (including parallel

edges), and the global clustering coefficient (measured without parallel edges) of each

GI and GE. A global clustering coefficient is a measure of the degree to which vertices

in a graph tend to cluster together, defined as:

5Apps with the same UID are considered as separate apps but share the permissions of one
another [33].

125

Cglobal =
3× number of triangles

number of connected triples of vertices

We opted for this measure to get a general idea about how freely the installed apps

on a mobile OS are allowed to communicate with one another. As the clustering

coefficient of a clique is 1, the measured values of CG indicate that the vertices in

all the graphs are densely connected, which is in line with our observation that most

apps have at least one component (the main activity) exposed to other apps. The

large number of edges also imply the complexities of managing fine-grained policies

for intent-based communication.

Given the large number of apps/vertices and edges, prioritizing the apps that

expose larger attack surfaces is critical for efficiency in policy management. Therefore,

we propose to identify such apps with PageRank [96]. The underlying intuition is

that such apps are more likely to be accessed by other apps and thus have more

incoming edges, and the apps that have direct incoming edges from such apps are

also likely to be attacked. Table 6.2 lists the apps in the four mobile OSs with the

highest and lowest rankings. Most of the listed apps are in line with intuition, such as

com.android.settings and com.android.email. Here we discuss two apps which

are displayed in bold in Table 6.2. The app com.google.android.setupwizard is

highly ranked because it exports 69 components that can be accessed with explicit

intents. The app com.viber.voip is highly ranked because of its 94 intent filters

that expose the components to implicit intents.

6.4.4 Experiments

IntentScope answers the questions: what intents can an app send and receive?

Given the holistic reachability graph generated by IntentScope, checking what in-

tents an app can send is equivalent to checking the vertex’s outgoing edges as well

126

as the intent spaces assigned on them. Conversely, checking what intents an app

can receive is equivalent to checking the incoming edges. In addition, IntentScope

supports flexible queries backed by regular expressions. Next we elaborate four ex-

periments in which we leverage the insights provided by IntentScope to identify

potential vulnerabilities due to errors in security policies of the AOSP security exten-

sions.

Zero Permission 6= Zero Privilege

Enforcing least privilege is a common practice in mobile security. While recent

work [44, 91, 115] attempts to control and minimize the set of an app’s granted

permissions, we are interested in another question: what can an app do if it has no

permissions. In this experiment, we created and installed such a zero-permission app.

We then checked what components this app can reach with its allowed intents. This

experiment helps a policy analyst reveal the exposed components that could possibly

be exploited by even a zero-permission app. If any sensitive components are exposed,

the details of the allowed intents that reach these components provide the necessary

knowledge for a policy analyst to create precise policies that protect them.

We find that zero permission does not necessarily mean zero privilege as users

might expect. Table 6.3 shows the number of the zero-permission app’s reachable apps

(i.e. out-neighbors) and its local clustering coefficient. A local clustering coefficient

measures the degree to which a vertex and its neighbors tend to cluster:

Clocal(v) =
number of edges among v′s neighbors

number of possible edges among v′s neighbors

The flexible queries supported by IntentScope also allow a policy analyst to

pinpoint the intents that have interesting semantics. In the Galaxy Note, we found

that this zero-permission app can send implicit intents that contain an interesting

127

Table 6.3: Reachability of a Zero-Permission App

1 2 3 4

#Outgoing edges 2,767 3,072 1,443 1,280 955 1,142 454 557

#Reachable apps 241 263 77 92 79 90 62 72

Loal clustering coefficient 0.943 0.968 0.905 0.960 0.927 0.968 0.914 0.961

scheme called android secret code. For example, one of the reachable apps is

com.sec.android.app.wlantest, which accepts intents with an action android.

provider.Telephony.SECRET CODE, an authority of 526, and a scheme of android

secret code. Another reachable app com.wssyncmldm is a sensitive app that can

silently download and install apps. Therefore, an app with no permissions could ex-

ploit a vulnerability in this app in order to download and install apps, thus escalating

the privilege of the zero-permission app without exploiting the underlying OS. Due

to time constraints, we did not discover any exploitable vulnerabilities. Yet a recent

attack [98] demonstrates the feasibility of taking over an app with a malformed intent.

Fine-grained Domain Isolation

Chin et al. [42] presents a limitation of intent-based communication. Suppose a

malicious app Mallory attempts to attack a legitimate and sensitive app Alice and

existing policies prevent their direct communication. The limitation allows Mallory

to eavesdrop the intents from Alice to Bob and allows Mallory to send spoofed intents

to Alice. This situation calls for a fine-grained domain isolation model that not only

considers apps but also includes intents. IntentScope is useful in this scenario

because it provides insights about intents.

Specifically, two apps are not isolated with respect to eavesdropping attacks if

they share in-neighbors and incoming intents in the reachability graph. They are

not isolated with respect to spoofing attacks if they share out-neighbors and outgoing

128

intents. Based on this observation, IntentScope guarantees intent isolation between

two apps if: (1) the apps are not neighbors of each other; and (2) the intent spaces of

their incoming edges from common in-neighbors do not intersect; and (3) the intent

spaces of their outgoing edges to common out-neighbors do not intersect.

As a case study, we checked the intent isolation between two apps in the Galaxy

Note: com.android.externalstorage and com.fmm.dm. The former is an Android

system app. The latter is believed to be bloatware as reported on several online fo-

rums. Figure 6.3(a) depicts their 8 common in-neighbors. IntentScope reported

that the intent spaces do not intersect, which implies that no app steals any intent

from the other. However, these two apps share 242 common out-neighbors and the in-

tersection of the intent spaces is not empty. Therefore, these apps are still susceptible

to spoofing attacks.

Enumerating Multi-app Workflows

In modern mobile operating systems, it is common for a user to orchestrate multiple

apps for a large and user-defined task. For example, a user may streamline a workflow

of downloading, viewing, editing, and sending a picture with a chain of apps. Under

the hood of Android, a multi-app workflow is implemented as a calling sequence

of intents. While controlling such workflows has been well covered by Nadkarni and

Enck [90], enumerating possible workflows would facilitate defining appropriate policy

for Aquifer [90] and similar access control systems.

In this experiment, we applied IntentScope to enumerate the workflows in

MIUI that match the aforementioned example. Specifically, we started from an app

com.android.providers.downloads, which manages downloaded files. We then per-

formed a breath-first search on the reachability graph for a sequence of implicit intents

as follows:

129

1. action=android.intent.action.VIEW, scheme=content,

category=android.intent.category.BROWSABLE;

2. action=android.intent.action.EDIT, type=image/*;

3. action=android.intent.action.SEND, type=image/*.

Figure 6.3(b) shows the matching workflows that start from the cyan node. The

grey nodes are the first hop; the purple nodes in the middle are the second hop. Note

that the purple nodes also serve as the first hop because the photo editors can also

handle the VIEW action. The yellow nodes represent the last hop where data may

leave a mobile device via emails, Bluetooth, or MMS messages.

Table 6.4: System Throughput

|EI| Avg. Time (s) StdDev (s) # edges/sec |EE| Avg. Time (s) StdDev (s) # edges/sec

1 800,456 302.05 5.73 2,915 979,993 115.57 2.02 8,454

2 155,369 70.08 3.02 2,217 138,651 21.59 0.74 6,422

3 99,170 38.69 0.92 2,563 118,707 16.92 1.02 7,014

4 38,606 15.63 1.00 2,469 47,458 6.77 0.45 7,013

Average 2,541 7,225

Discovering Permission Re-Delegation Paths

An unprivileged app without permissions can delegate a privileged app with the

permissions to perform sensitive tasks [60]. Existing research [35, 60] detects and

mitigates permission re-delegation between two apps at runtime when they commu-

nicate. While mitigation at runtime is one solution, we expect to enable a policy

analyst to be aware of potential permission re-delegation paths before apps may ex-

ecute. Meanwhile, the intents used along re-delegation paths provide semantics for

the policy analyst to make informed decisions and take precise actions against the

privileged apps that could be abused.

130

com.sec.android.AutoPreconfig

com.android.phone

com.sec.android.app.DataCreate

com.sec.android.Preconfig

com.sec.dsm.phone

com.samsung.sec.android.application.csc

com.android.providers.telephony

com.android.stk

(a) Common In-neighbors of Two Target Apps

com.jeejen.family

com.android.fileexplorer

com.android.email

com.android.contacts

com.android.providers.downloads com.miui.notes

com.android.bluetooth
com.miui.player

com.tencent.mm

com.android.mms

(b) Workflows for Processing a Picture

(4)

(5)

(6)

(4)

(5)

(*)

(6)

(3)

(3)

(2)

(2)

(1)

(1)

com.antivirus

com.pandora.android

com.tencent.mm

com.surpax.ledflashlight.panel

com.shazam.androidme.pou.app

com.viber.voip

com.vlingo.midas

(c) Potentially Colluding Apps (k=3)

Figure 6.3: Experimental Results

We propose to use connected subgraphs to represent permission re-delegation paths

in a reachability graph. A subgraph is connected if every pair of its vertices has a path

that consists of only the vertices in the subgraph. This is analogous to the situation

where multiple apps collude but cannot relay their communication via other apps.

We define the problem of discovering re-delegation paths as follows: given a set of

critical permissions denoted as CP , find all the connected subgraphs of k vertices

that satisfy:

131

• Each app (vertex) holds at least one permission but not all the permissions in

CP .

• The union of the apps’ permissions is a superset of CP .

The best algorithm we found to generate connected subgraphs of k vertices is

ConSubG(G, k) [82], whose worst-case time complexity is exponential in k. The

performance of this algorithm is generally acceptable because we rarely encounter

cases where more than five apps collude.

We targeted the 50 third-party apps installed on the Galaxy Note and set k = 3.

The critical permission set included three permissions: BLUETOOTH ADMIN, NFC, and

FLASHLIGHT, all of which are for accessing hardware devices that may significantly

affect battery life. Figure 6.3(c) demonstrates 6 groups of apps (triangles) that can

possibly collude to cover the critical permissions. In particular, the two apps in the

center respectively hold FLASHLIGHT and NFC, while the surrounding six apps hold

BLUETOOTH ADMIN.

Even though the discovered eight apps are mostly downloaded and seem to be

trusted by general users, they may carry third-party libraries or vulnerable compo-

nents that are exploitable by other apps. In other words, they may not deliberately

collude, but could be exploited by other apps to acquire privileges. The analysis

discussed in this experiment can be combined with the other analyses (e.g. zero-

permission apps) to further generate knowledge for a policy analyst to take precau-

tions before real exploits occur.

6.4.5 System Throughput

To understand the performance of IntentScope, we performed a microbench-

mark to evaluate the number of edges that IntentScope can check in a second.

Given that checking an edge is done by testing whether the intersection of the edge’s

132

intent space and a given intent space is empty, this benchmark also implies the

throughput of IntentScope in terms of processing intent spaces. In the bench-

mark, we used the following two intent spaces to evaluate the throughput of implicit

intents and explicit intents, respectively. Note that the intersection of an implicit

intent space and an explicit intent space is always empty and thus not evaluated.

• iI : action=android\.intent\.action\.EDIT,

category=android\.intent\.category\.DEFAULT,

scheme=http, authority=\d+, type=mpeg,

permission=.*;

• iE: component=com\.sec\..*, permission=.*.

We performed the benchmark in a Xen VM running Ubuntu 14.04 with Intel Xeon

E5620 2.4GHz and 8GB of RAM. Only one core was used during the benchmark.

Table 6.4 shows the average results of 10 runs. It took approximately 5 minutes to

check the customized Android OS of the Galaxy Note loaded with 311 apps, and less

than 1 minute to check the others. In general, the processing time is proportional to

the number of edges. As shown in Table 6.4, IntentScope processed 2,541 implicit

intent spaces and 7,225 explicit intent spaces in a second. While explicit intent spaces

were almost three times faster than implicit intent spaces, we note that an explicit

intent spaces has only two dimensions and an implicit intent space has six dimensions.

6.5 Discussion

Policy analysis and app analysis. In terms of providing insights for configuring

security extensions, our intent space based policy analysis complements existing static

and dynamic app analysis. We make this argument based on the fact that an app’s

runtime behaviors on a specific mobile device are shaped by (1) the app whose code

133

specifies its executional semantics; and (2) the security extensions whose policies

specify how the app’s specific behaviors are restricted. While we admit that app

analysis is indispensable, we also note the alarming trend of malware thwarting app

analysis. For example, code obfuscation and encryption hide an app’s true semantics

from static analysis. “Split personalities” in apps [32, 80] make malware appear

innocent by detecting and evading dynamic analysis tools. To get an upper hand

against adversaries, we would need policy analysis to orchestrate security extensions

for an additional line of defense.

Generality of intent space analysis. While we presented intent space analysis

for checking intent-based communication, the underlying methodology is beyond the

scope of intents and generally applicable to other security extensions. A promising

target is SE Android [109], which controls almost every inter-application communi-

cation mechanism other than intent-based communication. Specifically, it checks an

attribute called security context when an app requests to access files, sockets and so

on. Given that security contexts and intent attributes are essentially access control la-

bels [50], we foresee that our intent space analysis can be extended to a “context space

analysis” for SE Android. For our future work, we will extend our framework to rea-

son about SE Android policies and further maximize the coverage of inter-application

communication.

Usability of the holistic reachability graph. As we focused on developing

the intent space model and implementing a prototype of IntentScope, usability of

the reachability graph was not the primary goal. While the current graph already

supports network analysis and flexible queries as shown in the evaluation, we believe

that the usability of the graph has a lot of space to improve and indeed this is an

exciting area to explore. For example, the proper visualization can assist a security

analyst in understanding the inter-application communication and in ultimately de-

134

veloping a robust security policy. Parallel processing on the graph can be introduced

to further speed up queries.

6.6 Related Work

Static and dynamic app analysis. App-oriented analysis provides insights for

a policy analyst to create appropriate security policies. ComDroid [42] and CHEX [87]

statically vet apps for the components that are vulnerable to intent-based attacks.

Woodpecker [66] employs an inter-procedural static analysis to discover similar vul-

nerabilities but specific to stock apps created by device vendors. Epicc [92], Aman-

Droid [114], FlowDroid [27], and DroidSafe [65] statically discover information flows

that potentially leak sensitive data. Beyond static analysis, dynamic runtime solu-

tions reveal how apps communicate through intents in real time. IPC Inspection [60]

automatically reduces an intent sender’s effective permissions to mitigate unautho-

rized privilege escalations. QUIRE [48] provides provenance of intents so that a callee

can track down the original caller. XManDroid [35] maintains a system-centric call

graph for the intents that have been sent and received. TaintDroid [53] and Vet-

Droid [123] track sensitive data shared among apps, regardless of how the data is

shared though intents or other inter-application communication mechanisms. Along

these lines, our intent space analysis assists policy analysts by systematically analyz-

ing how security extensions confine apps’ behaviors.

Experimental security extensions for Android: Besides intent filters, per-

missions, and IntentFirewall covered in this work, previous research has proposed a

series of experimental security extensions for Android. Saint [95] and TISSA [129]

support policy-driven access control for intents. CRePe [44] and APEX [91] enable

context-aware and fine-grained permissions. FlaskDroid [37] and SE Android [109]

are generic and flexible MAC systems that provide comprehensive protection on both

135

Android’s middleware and kernel layers. Aquifer [90] enforces distributed information

flow control over intent-based UI workflows. Boxify [31] and DeepDroid [113] enforce

security policies on unmodified stock Android. Android Security Module (ASM) [73]

and Android Security Framework (ASF) [30] provide programmable interfaces that

promote the creation of customized security extensions. IntentScope facilitates

defining and verifying security policies for these security extensions. It is especially

useful for ASM and ASF that may host security extensions from multiple stakehold-

ers.

6.7 Summary

In this chapter, we have presented intent space analysis for intent-based commu-

nication. Intent space analysis is based on an intent space model and a systematic

policy checking framework called IntentScope. The intent space model maps a se-

curity extension’s functionality of forwarding intents as transformation on a geometric

space. Based on the intent space model, IntentScope acquires the live states of

multiple security extensions and further derives a holistic view that supports formal

verification. Also we have described a prototype implementation, along with extensive

evaluation results of our approach.

136

Chapter 7

CONCLUDING REMARKS

7.1 Contributions

Mobile apps may pose security and privacy threats to users. However, existing

defensive approaches largely rely on users to evaluate the security implications of

apps, but they are too complex for users to take actions. To remedy this situation,

we propose to empower users with insights and mechanisms that help them monitor,

assess, and confine apps. Toward this direction, we have demonstrated an automated

framework for systematically discovering heuristics that enable Android malware to

detect the presence of Android emulators. The results imply that some sensitive

information assets are overlooked by existing security mechanisms. As a solution,

we have proposed a multi-layer security framework that comprehensively and flexibly

monitors and confines apps. Based on this framework, we propose a risk management

framework that enables automated risk assessment and mitigation. We also propose a

holistic assessment framework to check intent-based inter-application communication

to discover potential data leakage and app collusion.

137

REFERENCES

[1] “CVE-2009-1185: Exploid exploit for Android”, http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2009-1185 (2009).

[2] “CVE-2009-2692: Asroot exploit for Android”, http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2009-2692 (2009).

[3] “Droid2”, http://c-skills.blogspot.com/2010/08/droid2.html (2009).

[4] “Zimperlich sources”, http://c-skills.blogspot.com/2011/02/
zimperlich-sources.html (2009).

[5] “Defcon 18: These are not the permissions you’re looking for”, http://goo.
gl/sxHyV (2010).

[6] “CVE-2011-1149: KillingInTheNameOf exploit for Android”, http://web.
nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1149 (2011).

[7] “CVE-2011-1717: Skype stores sensitive user data in files that have weak
permissions”, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2011-1717 (2011).

[8] “CVE-2011-1823: GingerBreak exploit for Android”, http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2011-1823 (2011).

[9] “CVE-2011-3874: ZergRush exploit for Android”, http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2011-3874 (2011).

[10] “Droidbox: An android application sandbox for dynamic analysis”, https://
code.google.com/p/droidbox/, accessed: May 2014 (2011).

[11] “Andrubis: A tool for analyzing unknown android applications”, http://blog.
iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-
android-applications-2/, accessed: May 2014 (2012).

[12] “CVE-2012-0056: Mempodipper exploit for Android”, http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2012-0056 (2012).

[13] “Security alert: New android malware – dkfbootkit – moves towards the first
android bootkit”, http://www.csc.ncsu.edu/faculty/jiang/DKFBootKit/
(2012).

[14] “Security alert: New rootsmart android malware utilizes the gingerbreak root
exploit”, http://www.csc.ncsu.edu/faculty/jiang/RootSmart/ (2012).

[15] “CVE-2013-2094: Libperf event exploit for Android”, https://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2013-2094 (2013).

138

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2692
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2692
http://c-skills.blogspot.com/2010/08/droid2.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://goo.gl/sxHyV
http://goo.gl/sxHyV
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1149
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1149
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1717
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1717
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1823
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1823
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3874
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3874
https://code.google.com/p/droidbox/
https://code.google.com/p/droidbox/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0056
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0056
http://www.csc.ncsu.edu/faculty/jiang/DKFBootKit/
http://www.csc.ncsu.edu/faculty/jiang/RootSmart/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2094
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-2094

[16] “Sophos security threat report 2014 - smarter, shadier, stealthier malware”,
https://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-
security-threat-report-2014.pdf (2013).

[17] “Android developers - using the emulator”, http://developer.android.com/
tools/devices/emulator.html, accessed: May 2014 (2014).

[18] “Finite automata”, http://augeas.net/libfa/, accessed: 06/2015 (2014).

[19] “Genymotion, the fastest android emulator for app testing and presentation”,
http://genymotion.com, accessed: May 2014 (2014).

[20] “Sanddroid - an apk analysis sandbox”, http://sanddroid.xjtu.edu.cn/, ac-
cessed: May 2014 (2014).

[21] “Tracedroid - dynamic android app analysis (by vu amsterdam)”, http://
tracedroid.few.vu.nl/, accessed: May 2014 (2014).

[22] “Wikipedia: List of most downloaded android applications”, http://en.
wikipedia.org/wiki/List_of_most_downloaded_Android_applications,
accessed: 06/2015 (2014).

[23] “Bound services - android developers”, http://developer.android.com/
guide/components/bound-services.html, accessed: 06/2015 (2015).

[24] “Requesting a shared file - android developers”, http://developer.
android.com/training/secure-file-sharing/request-file.html, ac-
cessed: 06/2015 (2015).

[25] “Selinux wiki”, http://selinuxproject.org/page/NB_SEforAndroid_1, ac-
cessed: 06/2015 (2015).

[26] Alberts, C., A. Dorofee, J. Stevens and C. Woody, “Introduction to the octave
approach”, Pittsburgh, PA, CMU (2003).

[27] Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau and P. McDaniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps”, in “ACM SIG-
PLAN Notices”, vol. 49, pp. 259–269 (2014).

[28] Association, G. et al., “Imei allocation and approval guidelines”, vol. 10 (2010).

[29] Au, K. W. Y., Y. F. Zhou, Z. Huang and D. Lie, “Pscout: analyzing the android
permission specification”, in “Proceedings of the ACM conference on Computer
and communications security”, pp. 217–228 (ACM, 2012).

[30] Backes, M., S. Bugiel, S. Gerling and P. von Styp-Rekowsky, “Android Security
Framework: Extensible multi-layered access control on Android”, in “Proceed-
ings of the Annual Computer Security Applications Conference”, (ACM, 2014).

139

https://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-security-threat-report-2014.pdf
http://developer.android.com/tools/devices/emulator.html
http://developer.android.com/tools/devices/emulator.html
http://augeas.net/libfa/
http://genymotion.com
http://sanddroid.xjtu.edu.cn/
http://tracedroid.few.vu.nl/
http://tracedroid.few.vu.nl/
http://en.wikipedia.org/wiki/List_of_most_downloaded_Android_applications
http://en.wikipedia.org/wiki/List_of_most_downloaded_Android_applications
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/training/secure-file-sharing/request-file.html
http://developer.android.com/training/secure-file-sharing/request-file.html
http://selinuxproject.org/page/NB_SEforAndroid_1

[31] Backes, M., S. Bugiel, C. Hammer, O. Schranz and P. von Styp-Rekowsky,
“Boxify: Full-fledged app sandboxing for stock android”, in “Proceedings of the
USENIX Security Symposium”, (2015).

[32] Balzarotti, D., M. Cova, C. Karlberger, C. Kruegel, E. Kirda and G. Vigna, “Ef-
ficient detection of split personalities in malware”, in “Proceedings of Network
and Distributed System Security Symposium”, (2010).

[33] Barrera, D., J. Clark, D. McCarney and P. van Oorschot, “Understanding and
improving app installation security mechanisms through empirical analysis of
android”, (2012).

[34] Barrera, D., H. G. Kayacik, P. C. van Oorschot and A. Somayaji, “A method-
ology for empirical analysis of permission-based security models and its appli-
cation to android”, in “Proceedings of the 17th ACM conference on Computer
and communications security”, pp. 73–84 (ACM, 2010).

[35] Bugiel, S., L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi and B. Shastry,
“Towards taming privilege-escalation attacks on android”, in “Proceedings of
the Symposium on Network and Distributed System Security”, (2012).

[36] Bugiel, S., L. Davi, A. Dmitrienko, S. Heuser, A. Sadeghi and B. Shastry,
“Practical and lightweight domain isolation on android”, in “Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile
devices”, pp. 51–62 (ACM, 2011).

[37] Bugiel, S., S. Heuser and A.-R. Sadeghi, “Flexible and fine-grained mandatory
access control on Android for diverse security and privacy policies”, in “Pro-
ceedings of the USENIX Security Symposium”, (USENIX, 2013).

[38] Bugiel, S., S. Heuser and A.-R. Sadeghi, “Flexible and fine-grained mandatory
access control on android for diverse security and privacy policies”, in “Pro-
ceedings of the USENIX Security Symposium. USENIX”, (2013).

[39] Chen, K. Z., N. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. Magrino,
E. Wu, M. Rinard and D. Song, “Contextual policy enforcement in android
applications with permission event graphs”, (2013).

[40] Chen, Y., H. Xu, Y. Zhou and S. Zhu, “Is this app safe for children?: a compari-
son study of maturity ratings on android and ios applications”, in “Proceedings
of the international conference on World Wide Web”, pp. 201–212 (International
World Wide Web Conferences Steering Committee, 2013).

[41] Chia, P. H., Y. Yamamoto and N. Asokan, “Is this app safe?: a large scale study
on application permissions and risk signals”, in “Proceedings of the international
conference on World Wide Web”, pp. 311–320 (ACM, 2012).

[42] Chin, E., A. Felt, K. Greenwood and D. Wagner, “Analyzing inter-application
communication in android”, in “Proceedings of the 9th international conference
on Mobile systems, applications, and services”, pp. 239–252 (ACM, 2011).

140

[43] Chin, E., A. P. Felt, V. Sekar and D. Wagner, “Measuring user confidence in
smartphone security and privacy”, in “Proceedings of the Eighth Symposium
on Usable Privacy and Security”, (ACM, 2012).

[44] Conti, M., V. Nguyen and B. Crispo, “Crepe: Context-related policy enforce-
ment for android”, Information Security pp. 331–345 (2011).

[45] Davis, B. and H. Chen, “Retroskeleton: Retrofitting android apps”, in “Pro-
ceeding of the 11th annual international conference on Mobile systems, appli-
cations, and services”, pp. 181–192 (ACM, 2013).

[46] Davis, B., B. Sanders, A. Khodaverdian and H. Chen, “I-arm-droid: A rewrit-
ing framework for in-app reference monitors for android applications”, Mobile
Security Technologies (2012).

[47] Dharmdasani, H., “Android.hehe: Malware now disconnects phone
calls”, http://www.fireeye.com/blog/technical/2014/01/android-hehe-
malware-now-disconnects-phone-calls.html, accessed: May 2014 (2014).

[48] Dietz, M., S. Shekhar, Y. Pisetsky, A. Shu and D. Wallach, “Quire: Lightweight
provenance for smart phone operating systems”, in “Proceedings of the USENIX
Security Symposium”, (2011).

[49] Eckersley, P., “Google removes vital privacy feature from android, claiming its
release was accidental”, https://www.eff.org/deeplinks/2013/12/google-
removes-vital-privacy-features-android-shortly-after-adding-them,
accessed: 02/2014 (2013).

[50] Efstathopoulos, P., M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazieres, F. Kaashoek and R. Morris, “Labels and event processes in the
asbestos operating system”, in “ACM SIGOPS Operating Systems Review”,
vol. 39, pp. 17–30 (ACM, 2005).

[51] Enck, W., “Defending users against smartphone apps: Techniques and future
directions”, Information Systems Security pp. 49–70 (2011).

[52] Enck, W., P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel and A. N.
Sheth, “Taintdroid: an information-flow tracking system for realtime privacy
monitoring on smartphones”, in “Proceedings of the USENIX conference on
Operating systems design and implementation”, pp. 1–6 (USENIX, 2010).

[53] Enck, W., P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel and A. N. Sheth, “Taintdroid: an information-flow tracking sys-
tem for realtime privacy monitoring on smartphones”, ACM Transactions on
Computer Systems (TOCS) 32, 2, 5 (2014).

[54] Enck, W., D. Octeau, P. McDaniel and S. Chaudhuri, “A study of android
application security”, in “Proceedings of the USENIX conference on Security”,
(USENIX Association, 2011).

141

http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
https://www.eff.org/deeplinks/2013/12/google-removes-vital-privacy-features-android-shortly-after-adding-them
https://www.eff.org/deeplinks/2013/12/google-removes-vital-privacy-features-android-shortly-after-adding-them

[55] Enck, W., D. Octeau, P. McDaniel and S. Chaudhuri, “A study of android
application security”, in “Proceedings of the 20th USENIX conference on Se-
curity”, SEC’11, pp. 21–21 (USENIX Association, Berkeley, CA, USA, 2011),
URL http://dl.acm.org/citation.cfm?id=2028067.2028088.

[56] Enck, W., M. Ongtang and P. McDaniel, “On lightweight mobile phone appli-
cation certification”, in “Proceedings of the ACM Conference on Computer and
Communications Security”, pp. 235–245 (ACM, 2009).

[57] F-Secure, “Trojan:android/pincer.a”, http://www.f-secure.com/weblog/
archives/00002538.html, accessed: May 2014 (2013).

[58] Felt, A., E. Chin, S. Hanna, D. Song and D. Wagner, “Android permissions
demystified”, in “Proceedings of the ACM Conference on Computer and Com-
munications Security”, pp. 627–638 (ACM, 2011).

[59] Felt, A., M. Finifter, E. Chin, S. Hanna and D. Wagner, “A survey of mobile
malware in the wild”, in “Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices”, pp. 3–14 (ACM, 2011).

[60] Felt, A., H. Wang, A. Moshchuk, S. Hanna and E. Chin, “Permission re-
delegation: Attacks and defenses”, (2011).

[61] Felt, A. P., S. Egelman, M. Finifter, D. Akhawe, D. Wagner et al., “How to ask
for permission”, in “Proceddings of the USENIX Workshop on Hot Topics in
Security”, (2012).

[62] Felt, A. P., E. Ha, S. Egelman, A. Haney, E. Chin and D. Wagner, “Android
permissions: User attention, comprehension, and behavior”, in “Proceedings of
the Eighth Symposium on Usable Privacy and Security”, p. 3 (ACM, 2012).

[63] Garfinkel, T., K. Adams, A. Warfield and J. Franklin, “Compatibility is not
transparency: Vmm detection myths and realities”, in “Proceedings of USENIX
Workshop on Hot Topics in Operating Systems”, (2007).

[64] Gilbert, P., B. Chun, L. Cox and J. Jung, “Automating privacy testing of
smartphone applications”, (2011).

[65] Gordon, M. I., D. Kim, J. Perkins, L. Gilham, N. Nguyen and M. Rinard,
“Information-flow analysis of android applications in droidsafe”, in “Proceedings
of the Symposium on Network and Distributed System Security”, (2015).

[66] Grace, M., Y. Zhou, Z. Wang and X. Jiang, “Systematic detection of capabil-
ity leaks in stock android smartphones”, in “Proceedings of the 19th Annual
Symposium on Network and Distributed System Security”, (2012).

[67] Grace, M., Y. Zhou, Q. Zhang, S. Zou and X. Jiang, “Riskranker: scalable and
accurate zero-day android malware detection”, in “Proceedings of the interna-
tional conference on Mobile systems, applications, and services”, pp. 281–294
(ACM, 2012).

142

http://dl.acm.org/citation.cfm?id=2028067.2028088
http://www.f-secure.com/weblog/archives/00002538.html
http://www.f-secure.com/weblog/archives/00002538.html

[68] Group, L. S., “Zero-permission android applications”, http://www.
leviathansecurity.com/blog/zero-permission-android-applications/
(2012).

[69] Hao, H., V. Singh and W. Du, “On the effectiveness of api-level access control
using bytecode rewriting in android”, in “Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security”, pp. 25–36
(ACM, 2013).

[70] Harada, T., T. Horie and K. Tanaka, “Task oriented management obviates your
onus on linux”, in “Linux Conference”, (2004).

[71] Herbrich, R., T. Graepel and K. Obermayer, “Large margin rank boundaries
for ordinal regression”, Advances in Neural Information Processing Systems pp.
115–132 (1999).

[72] Heuser, S., A. Nadkarni, W. Enck and A.-R. Sadeghi, “Asm: A programmable
interface for extending android security”, in “Proceedings of the USENIX Se-
curity Symposium”, (2014).

[73] Heuser, S., A. Nadkarni, W. Enck and A.-R. Sadeghi, “Asm: A programmable
interface for extending android security”, in “Proc. 23rd USENIX Security Sym-
posium (SEC’14)”, (2014).

[74] Ho, T. K., “The random subspace method for constructing decision forests”,
IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 8, 832–844
(1998).

[75] Hopcroft, J. E., Introduction to automata theory, languages, and computation
(Pearson Education, 1979).

[76] Hornyack, P., S. Han, J. Jung, S. Schechter and D. Wetherall, “These aren’t
the droids you’re looking for: retrofitting android to protect data from impe-
rious applications”, in “Proceedings of the ACM conference on Computer and
communications security”, pp. 639–652 (ACM, 2011).

[77] Jeon, J., K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster and
T. Millstein, “Dr. android and mr. hide: fine-grained permissions in android
applications”, in “Proceedings of the second ACM workshop on Security and
privacy in smartphones and mobile devices”, pp. 3–14 (ACM, 2012).

[78] Jing, Y., G.-J. Ahn, Z. Zhao and H. Hu, “Riskmon: continuous and automated
risk assessment of mobile applications”, in “Proceedings of the 4th ACM confer-
ence on Data and application security and privacy”, pp. 99–110 (ACM, 2014).

[79] Jing, Y., G.-J. Ahn, Z. Zhao and H. Hu, “Towards automated risk assessment
and mitigation of mobile application”, IEEE Transactions on Dependable and
Secure Computing PP (2014).

143

http://www.leviathansecurity.com/blog/zero-permission-android-applications/
http://www.leviathansecurity.com/blog/zero-permission-android-applications/

[80] Jing, Y., Z. Zhao, G.-J. Ahn and H. Hu, “Morpheus: automatically generating
heuristics to detect android emulators”, in “Proceedings of the 30th Annual
Computer Security Applications Conference”, pp. 216–225 (ACM, 2014).

[81] Joachims, T., “Optimizing search engines using clickthrough data”, in “Pro-
ceedings of the ACM international conference on Knowledge discovery and data
mining”, pp. 133–142 (ACM, 2002).

[82] Karakashian, S., “An Implementation of An Algorithm for Generating All Con-
nected Subgraphs of a Fixed Size”, Software (Version Oct2010), Constraint
Systems Laboratory, University of Nebraska-Lincoln, Lincoln, NE (2010).

[83] Kazemian, P., G. Varghese and N. McKeown, “Header space analysis: Static
checking for networks.”, in “NSDI”, pp. 113–126 (2012).

[84] Krosnick, J. A. and D. F. Alwin, “An evaluation of a cognitive theory of
response-order effects in survey measurement”, Public Opinion Quarterly 51,
2, 201–219 (1987).

[85] Li, N., Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo and D. Lin, “Ac-
cess control policy combining: theory meets practice”, in “Proceedings of the
14th ACM symposium on Access control models and technologies”, pp. 135–144
(ACM, 2009).

[86] Li, Z., M. Sanghi, Y. Chen, M.-Y. Kao and B. Chavez, “Hamsa: Fast signature
generation for zero-day polymorphic worms with provable attack resilience”,
in “Proceedings of the IEEE Symposium on Security and Privacy”, pp. 15–pp
(IEEE, 2006).

[87] Lu, L., Z. Li, Z. Wu, W. Lee and G. Jiang, “Chex: statically vetting android
apps for component hijacking vulnerabilities”, in “Proceedings of the 2012 ACM
conference on Computer and communications security”, pp. 229–240 (ACM,
2012).

[88] Matenaar, F. and P. Schulz, “Detecting android sandboxes”, http://dexlabs.
org/blog/btdetect, accessed: May 2014 (2012).

[89] Muthukumaran, D., T. Jaeger and V. Ganapathy, “Leveraing ’choice’ in autho-
rization hook placement”, in “19th ACM Conference on Computer and Com-
mumications Security”, (2012).

[90] Nadkarni, A. and W. Enck, “Preventing accidental data disclosure in modern
operating systems”, in “Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security”, pp. 1029–1042 (ACM, 2013).

[91] Nauman, M., S. Khan and X. Zhang, “Apex: Extending android permission
model and enforcement with user-defined runtime constraints”, in “Proceedings
of the 5th ACM Symposium on Information, Computer and Communications
Security”, pp. 328–332 (ACM, 2010).

144

http://dexlabs.org/blog/btdetect
http://dexlabs.org/blog/btdetect

[92] Octeau, D., P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein and
Y. Le Traon, “Effective inter-component communication mapping in android
with epicc: An essential step towards holistic security analysis”, in “Proceed-
ings of the 22nd USENIX Security Symposium”, (Citeseer, 2013).

[93] Ongtang, M., K. Butler and P. McDaniel, “Porscha: Policy oriented secure
content handling in android”, in “Proceedings of the Annual Computer Security
Applications Conference”, pp. 221–230 (ACM, 2010).

[94] Ongtang, M., S. McLaughlin, W. Enck and P. McDaniel, “Semantically rich
application-centric security in android”, in “Computer Security Applications
Conference, 2009. ACSAC’09. Annual”, pp. 340–349 (Ieee, 2009).

[95] Ongtang, M., S. McLaughlin, W. Enck and P. McDaniel, “Semantically rich
application-centric security in android”, Security and Communication Networks
5, 6, 658–673 (2012).

[96] Page, L., S. Brin, R. Motwani and T. Winograd, “The pagerank citation rank-
ing: Bringing order to the web.”, (1999).

[97] Pandita, R., X. Xiao, W. Yang, W. Enck and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications”, in “Proceedings of the
USENIX conference on Security symposium”, (USENIX Association, 2013).

[98] Peles, O. and R. Hay, “One class to rule them all: 0-day deserialization vul-
nerabilities in android”, in “9th USENIX Workshop on Offensive Technologies
(WOOT 15)”, (2015).

[99] Peng, H., C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru and
I. Molloy, “Using probabilistic generative models for ranking risks of android
apps”, in “Proceedings of the ACM conference on Computer and communica-
tions security”, pp. 241–252 (ACM, 2012).

[100] Petsas, T., G. Voyatzis, E. Athanasopoulos, M. Polychronakis and S. Ioannidis,
“Rage against the virtual machine: hindering dynamic analysis of android mal-
ware”, in “Proceedings of the European Workshop on System Security”, p. 5
(ACM, 2014).

[101] Rabin, M., “Risk aversion and expected-utility theory: A calibration theorem”,
Econometrica 68, 5, 1281–1292 (2000).

[102] Rasthofer, S., S. Arzt and E. Bodden, “A machine-learning approach for clas-
sifying and categorizing android sources and sinks”, in “Proceedings of the
Network and Distributed System Security Symposium”, (2014).

[103] Rastogi, V., Y. Chen and W. Enck, “Appsplayground: automatic security anal-
ysis of smartphone applications”, in “Proceedings of the ACM conference on
Data and application security and privacy”, pp. 209–220 (ACM, 2013).

145

[104] Reddy, N., J. Jeon, J. Vaughan, T. Millstein and J. Foster, “Application-centric
security policies on unmodified android”, UCLA Computer Science Department,
Tech. Rep 110017 (2011).

[105] Reina, A., A. Fattori and L. Cavallaro, “A system call-centric analysis and
stimulation technique to automatically reconstruct android malware behaviors”,
in “Proceedings of the European Workshop on System Security”, (2013).

[106] Sarma, B. P., N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru and I. Molloy, “An-
droid permissions: a perspective combining risks and benefits”, in “Proceedings
of the 17th ACM symposium on Access Control Models and Technologies”, pp.
13–22 (ACM, 2012).

[107] Schulz, P., “Android emulator detection by observing low-level caching behav-
ior”, https://bluebox.com/technical/android-emulator-detection-by-
observing-low-level-caching-behavior/, accessed: May 2014 (2013).

[108] Sheehan, P. J., B. Davis and H. Chen, “Rewriting an android app using ret-
roskeleton”, in “Proceeding of the 11th annual international conference on Mo-
bile systems, applications, and services”, pp. 483–484 (ACM, 2013).

[109] Smalley, S. and R. Craig, “Security enhanced (se) android: Bringing flexible mac
to android.”, in “Proceedings of the Symposium on Network and Distributed
System Security”, (2013).

[110] Smalley, S., C. Vance and W. Salamon, “Implementing selinux as a linux secu-
rity module”, NAI Labs Report 1, 43 (2001).

[111] Stoneburner, G., A. Goguen and A. Feringa, “Risk management guide for infor-
mation technology systems”, Nist special publication 800, 30, 800–30 (2002).

[112] Vidas, T. and N. Christin, “Evading android runtime analysis via sandbox
detection”, in “Proceedings of the ACM Symposium on Information, Computer
and Communications Security”, (ACM, 2014).

[113] Wang, X., K. Sun, Y. Wang and J. Jing, “Deepdroid: Dynamically enforcing
enterprise policy on android devices”, in “Proceedings of the Symposium on
Network and Distributed System Security”, (2015).

[114] Wei, F., S. Roy, X. Ou et al., “Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps”,
in “Proceedings of the ACM Conference on Computer and Communications
Security”, pp. 1329–1341 (ACM, 2014).

[115] Wijesekera, P., A. Baokar, A. Hosseini, S. Egelman, D. Wagner and
K. Beznosov, “Android permissions remystified: A field study on contextual
integrity”, in “Proceedings of the USENIX Security Symposium”, (USENIX
Association, 2015).

146

https://bluebox.com/technical/android-emulator-detection-by-observing-low-level-caching-behavior/
https://bluebox.com/technical/android-emulator-detection-by-observing-low-level-caching-behavior/

[116] Wilkinson, D. M., “Strong regularities in online peer production”, in “Proceed-
ings of the 9th ACM conference on Electronic commerce”, pp. 302–309 (ACM,
2008).

[117] Wright, C., C. Cowan, S. Smalley, J. Morris and G. Kroah-Hartman, “Linux se-
curity modules: General security support for the linux kernel”, in “Proceedings
of the 11th USENIX Security Symposium”, vol. 5 (San Francisco, CA, 2002).

[118] Wu, C., Y. Zhou, K. Patel, Z. Liang and X. Jiang, “Airbag: Boosting smart-
phone resistance to malware infection”, in “Proceedings of the Network and
Distributed System Security Symposium”, (2014).

[119] Xu, R., H. Säıdi and R. Anderson, “Aurasium: Practical policy enforcement for
android applications”, in “Proceedings of the USENIX Security Symposium”,
(2012).

[120] Yagemann, C., “Intent firewall”, http://www.cis.syr.edu/˜wedu/android/
IntentFirewall/index.html, accessed: 06/2015 (2014).

[121] Yan, L. K. and H. Yin, “Droidscope: seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis”, in “Proceedings of the
21st USENIX Security Symposium”, (2012).

[122] Yang, Z., M. Yang, Y. Zhang, G. Gu, P. Ning and X. S. Wang, “Appintent:
Analyzing sensitive data transmission in android for privacy leakage detection”,
in “Proceedings of the ACM conference on Computer and communications se-
curity”, pp. 1043–1054 (ACM, 2013).

[123] Zhang, Y., M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang and B. Zang,
“Vetting undesirable behaviors in android apps with permission use analysis”,
in “Proceedings of the ACM conference on Computer and communications se-
curity”, pp. 611–622 (ACM, 2013).

[124] Zhou, X., S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A. Gunter
and K. Nahrstedt, “Identity, location, disease and more: Inferring your secrets
from android public resources”, in “Proceedings of the ACM Conference on
Computer and Communications Security”, (2013).

[125] Zhou, X., Y. Lee, N. Zhang, M. Naveed and X. Wang, “The peril of fragmenta-
tion: Security hazards in android device driver customizations”, in “Proceedings
of the IEEE Symposium on Security and Privacy”, (IEEE, 2014).

[126] Zhou, Y. and X. Jiang, “Dissecting android malware: Characterization and
evolution”, in “Proceedings of the IEEE Symposium on Security and Privacy”,
pp. 95–109 (IEEE, 2012).

[127] Zhou, Y. and X. Jiang, “Dissecting android malware: Characterization and evo-
lution”, in “Proceedings of the 2012 IEEE Symposium on Security and Privacy”,
pp. 95–109 (IEEE, 2012).

147

http://www.cis.syr.edu/~wedu/android/IntentFirewall/index.html
http://www.cis.syr.edu/~wedu/android/IntentFirewall/index.html

[128] Zhou, Y., Z. Wang, W. Zhou and X. Jiang, “Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets”, in “Pro-
ceedings of the Network and Distributed System Security Symposium”, pp. 5–8
(2012).

[129] Zhou, Y., X. Zhang, X. Jiang and V. Freeh, “Taming information-stealing
smartphone applications (on android)”, Trust and Trustworthy Computing pp.
93–107 (2011).

148

