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ABSTRACT 
 

Although models for describing longitudinal data have become increasingly 

sophisticated, the criticism of even foundational growth curve models remains 

challenging. The challenge arises from the need to disentangle data-model misfit at 

multiple and interrelated levels of analysis. Using posterior predictive model checking 

(PPMC)—a popular Bayesian framework for model criticism—the performance of 

several discrepancy functions was investigated in a Monte Carlo simulation study. The 

discrepancy functions of interest included two types of conditional concordance 

correlation (CCC) functions, two types of R2 functions, two types of standardized 

generalized dimensionality discrepancy (SGDDM) functions, the likelihood ratio (LR), 

and the likelihood ratio difference test (LRT). Key outcomes included effect sizes of the 

design factors on the realized values of discrepancy functions, distributions of posterior 

predictive p-values (PPP-values), and the proportion of extreme PPP-values. 

In terms of the realized values, the behavior of the CCC and R2 functions were 

generally consistent with prior research. However, as diagnostics, these functions were 

extremely conservative even when some aspect of the data was unaccounted for. In 

contrast, the conditional SGDDM (SGDDMC), LR, and LRT were generally sensitive to 

the underspecifications investigated in this work on all outcomes considered. Although 

the proportions of extreme PPP-values for these functions tended to increase in null 

situations for non-normal data, this behavior may have reflected the true misfit that 

resulted from the specification of normal prior distributions. Importantly, the LR and the 

SGDDMC to a greater extent exhibited some potential for untangling the sources of data-
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model misfit. Owing to connections of growth curve models to the more fundamental 

frameworks of multilevel modeling, structural equation models with a mean structure, 

and Bayesian hierarchical models, the results of the current work may have broader 

implications that warrant further research.  
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CHAPTER 1: Introduction 

 A common perspective among statisticians is that no statistical model should be 

regarded as ‘correct’. Rather, the application of a statistical model represents an attempt 

to capture the key underlying processes that give rise to observed data through a smaller 

set of model parameters. With theoretical considerations as the foundation, the strength of 

a statistical model grows to the extent that the hypothesized process yields predictions 

that approximate observed data. The weaknesses of a statistical model become evident to 

the extent that predictions are systematically and increasingly disparate from observed 

data. As a result, summarizing the weaknesses and strengths of a statistical model in 

relation to observed data is a critical step in any statistical modeling endeavor. 

 Longitudinal data structures are often encountered in a variety of disciplines in the 

natural and social sciences. Over the course of 60 years (Baker, 1954), statistical models 

for summarizing the fundamental processes that underlie longitudinal data have become 

increasingly sophisticated (e.g., Meredith & Tisak, 1990; Raudenbush & Bryk, 2002). 

Modern statistical models for longitudinal data, which are broadly referred to as growth 

curve modeling (GCM; see Bollen & Curran, 2006; Singer & Willet, 2003), allow for the 

simultaneous estimation of a population trajectory and individual variation around that 

trajectory. Growth curve models are also remarkably parsimonious in that very few 

parameters are required to arrive at a model that fits with the intuition that people start in 

different places and change at different rates. 

 The popularity of GCM among applied researchers is marked by extensive use in 

a variety of applied research settings; the popularity of GCM among methodologists is 

marked by the rate at which complexity is added to the already flexible framework. 
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Unfortunately, the widespread use and rate by which GCM has evolved has outpaced the 

understanding and research for critiquing even foundational models. This state of affairs 

has left applied researchers with little guidance for properly evaluating the strengths and 

weakness of growth curve models relative to observed data.  

Purpose of the Study 

 The criticism of growth curve models is a methodological challenge. The 

challenge is the result of the presence of variability at multiple and interrelated levels of 

analysis (Wu, West, & Taylor, 2009). At the first level of analysis, variability exists 

across measurement occasions within people (or some other entity, such as schools). At 

the second level of analysis, variability in growth exists between people. The variability 

may be characterized by differing rates of growth, differing functional forms of growth 

altogether, or perhaps some combination of both. In addition to these sources of variation, 

the question of whether the functional form of the average and person-specific 

trajectories resemble observed data remains open. These issues are more fully explored in 

Chapter 2. 

 In terms of assessing the strengths and weakness of a particular GCM to observed 

data, there is a critical need to identify or engineer fit functions that are suitable for 

disentangling the sources of data-model misfit at different levels of analysis. The purpose 

of this study was to explore the performance of a collection of discrepancy functions that 

have been purported or are hypothesized to have this capacity. Moreover, the 

performance of the selected discrepancy functions was assessed using posterior predictive 

model checking (PPMC; Gelman, Meng, & Stern, 1996), a popular Bayesian approach to 

model criticism. Drawing from the limited available research and theoretical 
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considerations, several factors hypothesized to impact the behavior of the discrepancy 

functions, and the success of model criticism, were manipulated in a Monte Carlo 

simulation study. With the details more fully explicated in Chapter 3, the underlying 

theme of all design decisions can be viewed as maintaining relevance to applied research 

that makes use of GCM.  

Couching the performance of the selected discrepancy functions within the PPMC 

framework is an important addition to the methodological literature for GCM for at least 

two reasons. First, the analytical characteristics for most of the selected discrepancy 

functions are currently unknown, rendering it difficult to understand how the functions 

perform in various null and non-null conditions. As a resampling procedure, PPMC 

serves to construct the reference distribution for which to compare the value(s) of the 

discrepancy functions computed for the observed data. Although this statement holds for 

non-Bayesian resampling techniques, such as the parametric bootstrap, PPMC uniquely 

incorporates the uncertainty of model parameters into the criticism of the model (Gelman 

et al., 1996; Levy, 2011). Second, inasmuch as there is a general scarcity of 

methodological research pertaining to the criticism of growth curve models, no such 

research has systematically investigated the utility of a Bayesian approach for assessing 

the strengths and weaknesses of GCM. This need is compounded by the sharp increase in 

the number of Bayesian applications in recent years (e.g., Rupp, Zumbo, & Dey, 2004).  
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CHAPTER 2: Literature Review 

Growth Curve Models 

Traditional approaches to modeling longitudinal data, such as the analysis of 

variance (ANOVA; Maxwell & Delaney, 2003) model for repeated measures, have 

emphasized the estimation of the population trajectory. The population trajectory can be 

viewed as the regression line that summarizes the relationship between the means of a 

repeatedly measured outcome and the passage of time. In effect, this model assumes that 

individuals are the same at the beginning of the study and change in the same way with 

the passage of time; discrepancies from this assumption are subsumed into the model as 

random errors in prediction.  

 Although estimating an overall growth trajectory for the population is informative 

in its own right, there are some key disadvantages to the traditional method for modeling 

longitudinal data. First, the assumption that the population trajectory is sufficient to 

describe the growth trajectories for all members of the population often falls counter to 

theory. It is generally more natural to view the starting points and rate of change as 

varying between individuals. Second, the between-individual variation in growth may be 

systematically related to other variables. To the applied researcher, it is often of interest 

to pursue predictors that account for variations in growth or use growth as a predictor of 

some distal outcome (Bollen & Curran, 2006; Singer & Willet, 2003); investigating such 

questions is impossible when the growth trajectory is assumed constant over individuals.  

 As mentioned above, GCM represents the modern approach for flexibly 

summarizing the key processes that underlie longitudinal data. With the capacity to 

simultaneously estimate a population trajectory and summarize the amount of between-
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person variation around that trajectory, GCM allows for models that more closely 

resemble theory, and perhaps more fundamentally, intuition about the processes that 

underlie real longitudinal data. Notably, the foundational GCM is a very flexible 

framework that can easily be extended to handle more complicated situations. For 

example, researchers can investigate the relationship between parallel growth processes 

(Cheong, MacKinnon, & Khoo, 2003; McArdle, 1989); model change for latent variables 

that are measured by multiple indicators (Duncan & Duncan, 1996; McArdle, 1988); or 

even explore whether there is group-level heterogeneity when group membership is 

unknown (Muthén & Shedden, 1999; Nagin, 1999). Although these extensions are 

interesting and highlight the flexibility of GCM, the matter of model criticism, which is 

the concern for this work, remains challenging for foundational growth curve models.  

The signature characteristics of the GCM approach include the concurrent 

estimation of an average (i.e., population) growth trajectory and between-person variation 

in growth around that average trajectory. Using fictitious data, Figure 1 depicts a GCM 

that allows for unique linear growth trajectories across five measurement occasions for 25 

individuals. The figure is structured such that scores on the outcome measure, which is 

shown on the vertical axis, are regressed on the passage of time, which is shown on the 

horizontal axis. The heavy solid line represents the average trajectory, and the dashed 

lines represent the trajectories that are specific to individuals. 



 6 

Sc
or

e 
on

 O
ut

co
m

e 

 
 Time 

Figure 1. Linear growth curve model with between-individual variation in the intercept 
and slope. 
 
 With Figure 1 as a visual heuristic, it is made apparent that the aspects of growth 

can be viewed as being distributed around the average trajectory. Although relatively 

simple, the example model captures the essential features of GCM that are germane to 

more complicated extensions. At the intercept (i.e., Time = 0), there is clear separation in 

the outcome between individuals. In terms of the rate of change, some individual 

trajectories are essentially parallel to the average trajectory while others are flatter or 

exhibit a greater incline than the average trajectory. In addition, the individual trajectories 

with intercepts below that of the average trajectory tend to be flatter than the individual 

trajectories with intercepts above the average trajectory. This suggests that the aspects of 

change at the level of the individual are correlated such that higher intercepts tend to 

exhibit faster linear change.  

 Parameterization of GCM. Growth curve models have been framed as special 

cases of multilevel modeling (MLM; e.g., Raudenbush & Bryk, 2002; Singer & Willett, 
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2003) and structural equation modeling (SEM; e.g., Kline, 2005). It has been widely 

acknowledged that once stripped of surface-level notation, the MLM and SEM 

frameworks are mathematically identical representations of GCM (MacCallum & Kim, 

2000; Preacher, Wichman, MacCallum, & Briggs, 2008; Rovine & Molenaar, 2000; 

Willett & Sayer, 1994). These frameworks for fitting growth curve models are described 

briefly here; additional details about these models and the connections between them can 

be reviewed in Appendix A. With respect to GCM, the fundamental difference between 

the MLM and SEM is a matter of philosophical orientation about the aspects of change. 

From the perspective of MLM, the scores on the repeatedly observed outcome are viewed 

as nested within individuals. In accounting for this hierarchical structure, the person level 

regression coefficients that model the variation in the observed data are in turn assumed 

to be random variables that vary between people. From the SEM perspective, the 

unobserved aspects of change are viewed as unmeasured variables that give rise to the 

observed data (Meredith & Tisak,1990). The basis of the SEM model for growth is a 

confirmatory factor analytic (CFA; Jöreskog, 1969) model with a mean structure (e.g., 

Bentler & Yuan, 2000; Jöreskog & Sörbom, 1985) among the latent variables with factor 

loadings (typically) fixed to integer values to specify the functional form of growth 

(Bollen & Curran, 2006).  

 The difference of philosophical orientation has bearing on approaches to 

estimation that in turn have practical consequences that may motivate the selection of one 

framework over the other. The core advantage of the MLM framework over SEM is the 

relative of ease of specifying models with more than two levels. Building off of the 

description above, a model with three levels may be needed if repeated measures are 
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nested within students who are in turn nested within schools. Specifying this model is 

likely to prove quite difficult if not impossible for most currently available software 

dedicated to the estimation of SEM models. The fundamental advantage of the SEM 

framework over MLM is a matter of flexibility. Excepting to the incorporation of 

additional levels of analysis, extensions to the standard GCM are easily accommodated 

and easily specified in the SEM framework. For example, it is relatively simple to specify 

models with simultaneous growth processes for different sets of repeatedly measured 

outcomes; estimate a growth process for latent outcomes that are not free of measurement 

error, as is assumed for observed outcomes; flexibly model the growth parameters as 

outcomes, predictors, or correlates with other observed or latent variables; and/or explore 

for the presence of mixtures of growth trajectories (e.g., Cheong et al., 2003; Duncan & 

Duncan, 1996; McArdle, 1988, 1999; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 

1997; MacCallum & Kim, 2000; Muthén & Shedden, 1999; Nagin, 1999). Specifying 

these models is impossible for most dedicated software packages for estimating 

multilevel models; key exceptions include software packages such as WinBUGS (Lunn, 

Spiegelhalter, Thomas, & Best, 2009), JAGS (Plummer, 2013), and STAN (Stan 

Development Team, 2015). 

 For the purposes of this work, the parameterization of GCM that follows is 

framed as a Bayesian hierarchical model (Gill, 2007; Raudenbush & Bryk, 2002). The 

motivation for this choice is two fold. First, the only distinction with respect to the nature 

of variables from the Bayesian perspective is that some variables are observed, and can 

be treated as random until known, while others variables are unobserved, and treated as 

random and unknown. All unobserved variables are assigned a prior distribution. The 
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implication is that all of the advantages of MLM and SEM are combined into a single 

framework. More specifically, the Bayesian hierarchical model, and currently available 

software for Bayesian estimation, can accommodate multiple levels of analysis (with no 

theoretical limit) without sacrificing the flexibility afforded by SEM.  

 The central goal of a Bayesian analysis is to blend observed data and any prior 

beliefs about model parameters to arrive at a posterior distribution. In terms of 

mathematical machinery, Bayes’ theorem is a mechanism for inverting probabilities (e.g., 

Gill, 2007). Consider the simple case in which there is inferential interest in some 

parameter θ given some observed data Y: 

𝑃 θ 𝐘 =  
𝑃 θ  × 𝑃(𝐘|θ)

𝑃(𝐘) . (1) 

The components of Bayes’ theorem include the posterior distribution of the model 

parameter, P(θ|Y); the prior distribution of the model parameter, P(θ); the probability of 

the data given the model parameter, P(Y|θ); and the marginal distribution of the data, 

P(Y). Notably, P(Y|θ) is equally thought of as the likelihood of the model parameter 

given the data, L(θ|Y). Bayes’ theorem makes it possible to direct inferences from the Y 

to θ, or alternatively from the θ to Y. From the classical perspective (i.e., frequentist), 

from which estimation routines for SEM and MLM are based in, the analytical goal is 

centered on finding a point estimate of the parameter that maximizes the probability of 

the observed data. In standard applications of Bayesian analyses, the analytical goal is to 

obtain the posterior distribution to support inferences about the unknown parameters 

given the observed data, as is presented above.  
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 The prior distribution for θ is specified as exhibiting some distributional form 

with parameters set by the analyst. In the case of Bayesian hierarchical models, which 

serve as the foundation for GCM from a Bayesian perspective, the parameters that govern 

the form of the prior distribution of θ are in turn conditional on some other unknown 

parameter, ψ. As an unknown parameter, ψ must also be assigned a prior distribution. 

This is formally characterized in Bayes’ theorem by specifying a prior for θ that is 

conditional on ψ, P(θ|ψ), and adding the prior distribution of P(ψ): 

𝑃 θ,ψ 𝐘 =  
𝑃 θ|ψ  × 𝑃 ψ  × 𝑃(𝐘|θ)

𝑃(𝐘) . (2) 

As noted by Gill (2007), the layering of prior distributions is theoretically unlimited. 

However, the number of layers is practically limited by the interpretational challenges 

that arise with each additional level. In addition to interpretational challenges, layers that 

are closer to the top of the hierarchy are more distant from, and are therefore less 

informed by Y (Goel, 1983; Titterington, Smith, & Makov, 1985).  
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Figure 2. Directed acyclic graph (DAG) of a growth curve model. 

Figure 2 depicts the Bayesian hierarchical model parameterization for GCM in the 

form of a directed acyclic graph (DAG). DAGs serve two broad purposes. First, DAGs 

serve as visual summary of the interrelationships among observed (the data and fixed 

parameters) and unobserved (unknown model parameters) variables. Second, DAGs 

structure the sources of dependence and conditional independence in the joint 
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distribution. The key features of DAGs include nodes, directed edges, and plates. Square 

nodes represent observed variables and any parameters that are directly specified by the 

analyst. Nodes shown as a circle represent unknown parameters for which a posterior 

distribution is to be obtained. The directed edges are shown as arrows that begin at one 

node, which is labeled a parent, and point to a different node, which is labeled a child of 

the node from which the edge originates. The graph is acyclic in that the flow of 

dependence can never trace back from children to parents, hence the unidirectional 

arrows. Plates indicate that the enclosed node(s) is (are) applicable to (i.e., subscripted 

by) some features of the data, such as the number of individuals or measurement 

occasions. 

 The underlying parametric form of the Bayesian hierarchical model for growth is 

a regression model in which scores on the outcome (yij) are regressed on the passage of 

time (Timeij): 

𝑦!" = 𝑏!! +  𝑏!! 𝑇𝑖𝑚𝑒!" +  𝑟!". (3) 

For the sake of simplicity, a GCM with a linear functional form is shown here. The model 

includes an intercept coefficient (denoted b0i), a slope coefficient (denoted b1i), and a 

residual score (denoted rij). The residual score is the difference between the observed 

score and the score implied by the model (denoted 𝑦!", such that 

𝑦!" =  𝑏!! +  𝑏!! 𝑇𝑖𝑚𝑒!" ) for a given individual i at a given measurement occasion j 

(where j = 1,2,…, J). In foundational growth curve models, the vector of residuals for a 

given individual (denoted ri) are assumed to arise from a multivariate distribution as 

follows: 
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𝐫!  ~ 𝑀𝑉𝑁 𝝁! =

0
0
0
0
0

,𝐑 =  

𝜎!!

0 𝜎!!

0 0 𝜎!!

0 0 0 𝜎!!

0 0 0 0 𝜎!!

. (4) 

This structure for the distribution of residual scores reflects an assumption that the 

residual scores (a) have mean of zero across measurement occasions, (b) are 

homoscedastic across measurement occasions, and (c) are uncorrelated for any two 

measurement occasions. In standard applications, the vector of means for residual scores 

(denoted µε) is fixed to zero and the variances, or in this case, a common variance for all 

measurement occasions is estimated. In the Bayesian framework, an inverse Wishart 

distribution is the typical choice of prior for a multivariate specification of (co)variances. 

As shown in the DAG, the residual scores are shown to arise from a univariate 

distribution with some fixed mean (typically µε = 0) and some residual variance, 𝜎!!. For 

the residual variance, which is an estimated parameter, the typical prior specification is 

an inverse gamma with shape parameters that are specified by the analyst, 

𝜎!! ~ 𝐼𝐺(𝛼! ,𝛽!).  

The potential for unique growth trajectories between people is reflected by 

subscripting the intercept and slope coefficients by i (where i = 1, 2,…, N). As unknown 

parameters, the person-specific intercept (b0i) and slope (b1i) in Equation 3 are assigned a 

multivariate normal prior distribution with some vector of unknown means (γ) and a 

covariance matrix with unknown elements (G): 

𝑏!!
𝑏!!

 ~ 𝑀𝑉𝑁 𝜸 =
𝛾!!
𝛾!" ,𝐆 = 𝜏!!

𝜏!" 𝜏!!
. (5) 
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As described above, the signature characteristic of GCM is the capacity to simultaneously 

estimate person-specific growth trajectories and the trajectory for the population. Since 

inferential interest also lies in the population trajectory, which is defined by γ, the 

hierarchical feature of the Bayesian GCM obtains by assigning prior distributions to the 

elements of γ. In standard applications, each element in γ is assumed to be univariately 

normally distributed with fixed values of the mean (suppose 0) and variance (suppose 1): 

𝛾!! ~ 𝑁(𝜇!!! = 0,𝜎!!!
! = 1) and 𝛾!" ~ 𝑁(𝜇!!" = 0,𝜎!!"

! = 1). (6) 

Notably, since the elements are unknown, the covariance matrix of the person-specific 

growth parameters (denoted G) is also assigned a prior distribution. Since the person-

specific growth parameters are (typically) assumed to exhibit multivariate normality, the 

prior distribution for G is typically an inverse Wishart distribution, G ~ IW(W, df), where 

W is some positive definite matrix and df represent the degrees of freedom (as mentioned 

above, an inverse Wishart could also be specified as the prior for the R matrix in the case 

of a multivariate specification of residual scores). 

 A Note on Language for GCM. Owing to the development of GCM from 

different frameworks, there is significant variability in the language for describing 

components of GCM models. In the parlance of MLM, the submodel for the data (i.e., 

Equation 3) is typically labeled the level-1 model; the submodel for the growth 

coefficients (i.e., Equation 5) is typically labeled the level-2 model. Unfortunately, 

indexing the levels of the hierarchy in MLM does not directly sync with the levels of the 

prior distributions in the Bayesian hierarchical model. In the SEM framework, the growth 

parameters are collectively referred to as the latent growth parameters; aside from the 

growth parameters, the remaining components are typically referenced using 
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conventional language associated with factor analysis (e.g., factor loadings, factor 

means). Unfortunately, the language of factor analysis carries little meaning with respect 

to the description of GCM provided above for Bayesian hierarchical models. 

 Wu, West, and Taylor (2009) employ a general nomenclature for referencing the 

components of growth curve models that is used throughout the remainder of this work. 

Using their terminology, the GCM is comprised of a mean structure and the overall 

covariance structure. The mean structure is further separated into the conditional mean 

structure and the marginal mean structure. The former represents the regression of 

observed scores on the passage of time for each person; Equation 3 defines this 

component of GCM. The latter represents the regression of sample means on the passage 

of time, averaged over people within measurement occasions; the equation for this model 

is akin to that shown in Equation 3 with the key exception that the average regression 

coefficients (i.e., 𝛾!!, 𝛾!") are substituted in for the person-level regression coefficients 

(i.e., b0i, b1i). The overall covariance structure is further separated into the within-subject 

matrix, which they denote as the R matrix (as was the case above), and the between-

subject matrix, which they denote as the G matrix (as was the case above). As described 

above, the R matrix includes the variances and covariances of the residual scores among 

the measurement occasions. The G matrix includes the variances and covariances among 

the person-specific estimates of the growth parameters.  

Posterior Predictive Model Checking 

PPMC is an extremely flexible framework for evaluating the statistical strengths 

and weakness of a given model. As evidenced and perhaps owing to the default use of 

PPMC when Bayesian estimation is employed in software packages such as Mplus 6 
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(Muthén & Muthén, 2010), PPMC is by far the most well-known Bayesian approach for 

model criticism. PPMC is conceptually viewed as a comprehensive framework that 

directly compares the observed data at hand to data that are consistent with a model for 

which the posterior distribution has been obtained. The section begins with a description 

of the procedural aspects of PPMC and concludes with discussion of some key 

advantages and disadvantages of PPMC.  

Obtaining the Posterior Distribution. The necessary ingredient for conducting a 

PPMC analysis is the posterior distribution. Let P(Ω|Y) and P(Ω) respectively represent 

the joint posterior and prior distributions of multiple model parameters; consistent with 

Equation 1, Y represents the observed data. Bayes’ theorem with multiple model 

parameters is given by: 

𝑃 𝛀 𝐘 =  
𝑃 𝛀 𝑃(𝐘|𝛀)

𝑃(𝐘) =  
𝑃 𝛀 𝑃(𝐘|𝛀)
𝑃 𝛀 𝑃(𝐘|𝛀)𝑑𝛀𝛀

. (7) 

The posterior distribution can be obtained analytically for simple situations. 

Unfortunately, the models that are often encountered in applied research settings, such as 

growth curve models, typically involve complex multivariate systems of variables. This 

implication is that the high dimensional integral in the denominator of Equation 7 quickly 

becomes computationally intractable (e.g., Gill, 2007; Rupp et al., 2004). A key 

realization was that all of the information necessary for obtaining the posterior 

distribution is contained in the prior distribution and the likelihood, and the role of the 

denominator is to ensure that the posterior is proper (e.g., Gill, 2007; Rupp et al., 2004). 

That is, the posterior distribution exhibits a proportional relationship to the product of the 

prior distribution and the likelihood: 
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𝑃 𝛀 𝐘 ∝  𝑃 𝛀 𝑃 𝐘 𝛀 . (8) 

This relationship is leveraged by computational routines to sample from the distribution 

of inferential interest many times over. In the limit the sample converges to the stationary 

distribution, which is in turn taken to be an approximation to the posterior distribution 

(Levy, 2006, 2009).    

 Markov chain Monte Carlo (MCMC; Brooks, 1998; Casella & George, 1992; 

Chib & Greenberg, 1995; Gelfand & Smith, 1990; Geman & Geman, 1984; Gilks, 

Richardson, & Spiegelhalter, 1996; Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, 

Teller & Teller, 1953) methods are the primary class of algorithms that are used to 

sample from what eventually becomes an empirical approximation to the true posterior 

distribution (Levy, 2006, 2009). As a simulation environment, MCMC can be viewed as 

a ‘divide-and-conquer’ strategy in that the end goal is to sample from the full space of the 

posterior distribution (in a finite amount of time). Once the analyst has deemed that the 

algorithm has converged to the stationary distribution and that the chains have been run 

sufficiently long, the MCMC chain is terminated, and after discarding all draws prior to 

convergence, the resulting collection of draws are labeled the posterior distribution. Since 

the features of the common MCMC samplers, like the one used in this work, have been 

rigorously defined elsewhere (e.g., Cowles, 2002), the details of MCMC algorithms are 

not described here. Moreover, the features of MCMC are beyond the scope of the current 

work. It is sufficient for this work to recognize the link between the role of MCMC for 

constructing the posterior distribution and PPMC.  
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 Posterior Predictive Distribution. The link between MCMC and a PPMC 

analysis is the construction of the posterior predictive distribution. With Bayes’ theorem 

as the machinery, the posterior predictive distribution is given by: 

𝑃 𝐘!"# 𝐘 = 𝑃(𝐘!"#|𝛀)𝑃(𝛀|𝐘)𝑑𝛀
𝛀

. (9) 

 Using the individual draws that comprise the posterior distribution, replicated datasets 

with the same dimensions as the observed data are generated to be consistent with the 

model at hand. For example, if the posterior distribution was empirically approximated 

based on R = 1,000 draws from an MCMC sampler, the posterior predictive distribution 

will in turn be empirically approximated by 1,000 replicated datasets generated by the 

model (i.e., one for each draw). The full collection of replicated datasets (denoted Yrep) 

represents an empirical sampling distribution under the model at hand (Gelman et al., 

1996; Levy, 2011; Sinharay, Johnson, & Stern, 2006). 

Conducting PPMC. The PPMC framework builds naturally off of the use of 

MCMC to build the posterior distribution. Figure 3 schematically depicts the general 

process of PPMC, with two possible pathways that are determined on the basis of the 

characteristics of the function to be computed. The literature on PPMC distinguishes 

between functions that depend only on the data, which are labeled test statistics (denoted 

T(Y)), and functions that depend on the data and the model parameters, which are labeled 

discrepancy measures (denoted D(Y, Ω)) (e.g., Gelman et al., 1996; Levy, 2011; 

Sinharay et al., 2006). Test statistics typically include functions used to summarize 

distributions such as measures of central tendency (e.g., mode, median, mean), variability 

(e.g., range, variance, standard deviation), shape (e.g., skew, kurtosis), or association 
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(e.g., covariance, correlation). In the PPMC framework, a test statistic is computed for 

each posterior predictive dataset and the observed data. The collection of values of the 

test statistic constitutes a reference distribution for which to locate the value of the test 

statistic associated with the observed data.  

 

Figure 3. Schematic of PPMC for (a) test statistics and (b) discrepancy measures. 

There is significantly greater variability in the form, logic, and intended use of 

discrepancy functions. However, the general logic of discrepancy functions is to compare 

the data at hand—either posterior predictive datasets or the observed data—to the model 

implications that are defined by the functions of model parameters. As was the case for 

test statistics, a discrepancy function is computed for each posterior predictive dataset, 

and in effect, forms an empirical reference distribution for the discrepancy function given 

the model. Unlike test statistics, the values of discrepancy functions rely on the model 

parameters. Since there exist a posterior distribution of model parameters, a distribution 
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of the discrepancy function is also constructed for the observed data. When critiquing a 

model or a particular feature of a model with a discrepancy function, the analysis 

involves comparing the posterior predictive values of the discrepancy function and the 

observed values of the discrepancy function that were computed using the same values of 

the model parameters.  

 For a given discrepancy function, the final step of a PPMC analysis is to compare 

the values computed using the observed data, which are labeled the realized value(s), to 

those computed using posterior predicted datasets, which are referred to as the posterior 

predicted values of the function(s). One approach that summarizes the comparison 

between realized and posterior predictive values is to compute the posterior predicted p-

value (PPP value; Gelman et al., 1996). Formally, PPP values for any function (denoted 

f), whether it is a test statistic or discrepancy measure, is described as: 

𝑃𝑃𝑃 = 𝑓 𝐘!"# ≥ 𝑓(𝐘) /𝑅. (10) 

The PPP value is conceptually akin to (and yet not the same as) an upper-tailed p-value 

rendered from a formal statistical test in the hypothesis-testing framework. PPP values 

that approach zero indicate that the model underpredicts the feature in question; PPP 

values that approach 0.5 suggests that the model is consistent with the observed data for 

the feature in question; and PPP values that approach one indicate that the model over-

predicts the feature in question. 



 21 

 

Figure 4. Example graphical representations and approximate PPP values for test 
statistics (the top row) and discrepancy measures (the bottom row) rendered from PPMC 
analysis.  
 

Another approach, which is often viewed as a key strength of PPMC, is the ability 

to construct attractive graphical displays of the results (e.g., Sinharay, 2005). Figure 4 

shows typical graphical displays for test statistics (top row) and discrepancy measures 

(bottom row). As described above, test statistics are functions that only depend on the 

data at hand. The realized value of the test statistics is shown as a solid vertical line; this 

line serves to locate the realized value of the test statistic within the reference 

distribution. The associated PPP value is the proportion of points to the right of the 

vertical line. In contrast to test statistics, the values of discrepancy measures also depend 

on the values of model parameters. This feature of discrepancy measures introduces 

variability into the values of the function computed for both the observed and posterior 
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predicted data; this yields a collection of values of the discrepancy measure for both the 

observed and posterior predicted data. Accordingly, graphical displays for discrepancy 

measures typically show the association between the realized values (i.e., those based on 

the observed data) and posterior predictive values. The diagonal line represents equality 

between the realized values and their posterior predictive counterpart; the PPP value is 

the proportion of points that fall above and to the left of the line. For both types of 

functions, the left column shows an over-prediction by the model (PPP values approach 

one), the middle column shows adequate model-fit (PPP values approach .50), and the 

right column shows an under-prediction by the model (PPP values approach 0).  

 Advantages of PPMC.  The PPMC framework offers two key advantages over 

other approaches to model criticism. The first advantage is flexibility. Within the PPMC 

framework, one can employ any function that is believed to be sensitive to targeted 

sources of data-model misfit (e.g., global fit, person fit, bivariate fit). This advantage is 

the result of empirically constructing the reference distribution rather than appealing to 

asymptotic arguments (Levy, 2006, 2011). The payoff is that one’s choice of functions is 

restricted to those that are believed to be informative about sources of misfit rather than 

to those with known asymptotic behavior (Jannsen, Tuerlinckx, Meulders, & De Boeck, 

2000). Moreover, among functions with known asymptotic behavior, situating these 

functions within the PPMC framework may prove useful when the regularity conditions 

for the asymptotic behavior to hold are violated.  

 Notably, the advantages just described also apply to parametric bootstrapping, a 

frequentist approach to model checking that involves the use of model-based resampling 

techniques to construct an empirical reference distribution (Kline, 2005). The underlying 
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process of the parametric bootstrap is similar to PPMC in that both are resampling 

techniques that involve comparing the values of a measure (whether it be a test statistic or 

discrepancy function) to a reference distribution that is constructed from data that are 

consistent with the model. A key difference between parametric boostrapping and PPMC 

comes to the choice of values that are used for generating data that are consistent with the 

model. The former relies on the use of point estimates of model parameters—which are 

usually obtained with the use of least squares or maximum likelihood approaches to 

estimation—to generate predictive data. In contrast, the latter relies on the complete 

posterior distribution to generate predictive data. The implication is that parametric 

bootstrapping underestimates the degree of uncertainty in the model parameters (Levy, 

2006; Meng, 1994). As recognized by Levy (2006, 2011), in using the full posterior 

distribution, PPMC seamlessly incorporates the uncertainty in the model parameters into 

the criticism of the model.  

 Disadvantages of PPMC. Although PPMC has an intuitive appeal and significant 

flexibility, the potential disadvantage of PPMC is the matter of implementation. To take 

full advantage of the flexibility of PPMC, it is usually necessary for the analyst to (a) 

obtain the posterior distribution using software or an independently written MCMC 

algorithm, (b) save the draws that comprise the posterior distribution, and then (c) import 

the draws into a software platform that allows the analyst to write a program to 

implement PPMC, which includes the manual coding of the test statistics and/or 

discrepancy functions. Although commercial software packages such as Mplus (Muthén 

& Muthén, 1998-2010) have recently implemented Bayesian estimation (i.e., MCMC) 
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and PPMC, the user is still required to use an external program to employ any function 

that is not produced by the software.  

 Summary of PPMC.  With the use of Bayesian analysis methods, the analyst is 

afforded remarkable flexibility to support the application of existing and innovative 

models to observed data (e.g., Crawford, 2014; Levy, 2006). With the use of PPMC, this 

flexibility is carried over into the process of model checking. The advantages of 

flexibility and the modeling of uncertainty overcome the limitations of alternative 

approaches to model criticism, namely null hypothesis significance testing and the 

parametric bootstrap. Notably, the matter of implementation difficulty is becoming less 

salient with improvements in software and to the extent that interest and knowledge in 

Bayesian analysis methods continues to grow. The advantages of PPMC described above 

are particularly salient for GCM owing to rate at which methods for model-based analysis 

of longitudinal data are evolving (Bollen & Curran, 2006; Preacher et al., 2008).  

Review of Data-Model Fit for Growth Curve Models 

 This section reviews the available methodological literature pertaining to model 

checking in the context of GCM. To mimic good practice with respect to model 

checking—which is most successful when discrepancy functions are selected or 

engineered to target particular sources of misfit—key sources of data-model misfit are 

described prior to reviewing the literature on the performance of discrepancy functions.  

 Sources of Data-Model Misfit. As briefly mentioned in the first chapter, the 

challenges of critiquing growth curve models is the result of disentangling sources of 

data-model misfit that are inherently intertwined. The key sources of misfit include the 
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marginal mean structure, conditional mean structure, the G matrix, and the R matrix (Wu 

et al., 2009). These sources of data-model misfit are described in turn below.  

 Marginal Mean Structure. The marginal mean structure is defined as the vector 

of model-implied means across people. The vector includes a model-implied mean for 

each measurement occasion, 𝐲 = 𝑦!,𝑦! ,… ,𝑦! . For a GCM with a linear functional 

form, the model-implied mean at a given measurement occasion is determined by the 

average coefficients, γ = (γ00, γ10), and the passage of time for a given individual, Timeij: 

y!" =  𝛾!! + 𝛾!" 𝑇𝑖𝑚𝑒!" . (11) 

The subscript i in Timeij can be dropped if the measurement schedule is identical across 

people. Discrepancies in the marginal mean structure become larger to the extent that the 

predicted means depart from the observed sample means.  

 Conditional Mean Structure. The conditional mean structure is the vector of 

model-implied scores for each person. The vector of model-implied scores includes the 

predicted scores (i.e., conditional means) for each measurement occasion, 𝐲! =

y!!, y!" ,… , y! . For a GCM with a linear functional form, the model-implied score at a 

given measurement occasion for a given person is determined by the person-specific 

coefficients, bi = (b0i, b1i), and the passage of time for that person, Timeij: 

y!" =  𝑏!! + 𝑏!! 𝑇𝑖𝑚𝑒!" . (12) 

The subscripting of time by i can be dropped if the measurement schedule is identical 

across people. Discrepancies in the conditional mean structure for a given person 

becomes larger to the extent that the predicted scores depart from the observed scores for 

that person.  
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 G Matrix (Between-Person Covariance Matrix). The elements of the G matrix 

include the variances and covariances among the person-specific growth parameters. 

Stated generally, the source of discrepancies is the typically the result of assuming an 

element is zero, whether the element is a variance or covariance, when it shouldn’t be.  

 R Matrix (Within-Person Covariance Matrix). The elements of the R matrix 

include the variances and covariances of the residual scores (see Equation 4). In standard 

applications of GCM, the residual variances (the diagonal elements of R) are assumed to 

be homogeneous across measurement occasions and the covariances (the off-diagonal 

elements of R) are assumed to be zero. If the residual variances are assumed 

homogeneous, data-model misfit may occur if the variance of residuals scores differs 

across measurement occasions. In terms of the covariances, failing to include a 

predictor—whether the predictor pertains to the passage of time, a covariate of the scores 

at each measurement occasion, or a characteristic of the person—has the potential to 

manifest as non-zero covariance values. This latter situation represents a failure to meet 

the assumption that the scores are conditionally independent given the model (described 

in greater detail below).  

 Dependencies among the Covariance Matrices.  Given estimates of between-

person (denoted 𝐆) covariance matrix, within-person (denoted 𝐑) covariance matrix, and 

the vector of scores that represent the passage of time for one person (denoted Ti), the 

model-implied overall covariance matrix Σ!  is given by: 

Σ! = 𝐓!𝐆𝐓!! + 𝐑 (13) 

such that:  
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𝐓! =  

1 𝑇𝑖𝑚𝑒!!
1 𝑇𝑖𝑚𝑒!"
⋮ ⋮
1 𝑇𝑖𝑚𝑒!"

. (14) 

When measurement schedules are identical across people, the subscript i can be dropped. 

Given that Ti typically remains unchanged, the interrelationship between G and R are of 

central interest here. The key to understanding the relationship is that G and R are part of 

the same system; imposing or removing restrictions on one has implications for the 

amount of variance in the other. Wu et al. (2009) consider a case in which the functional 

form is underspecified (e.g., fitting a linear GCM to data that are better described by a 

quadratic GCM). In this scenario, removing restrictions in the R matrix would serve to 

improve the fit of the model at the risk of underestimating variability in the G matrix and 

overestimating variability in the R matrix. Similarly, removing restrictions in the G 

matrix would serve to improve the fit of the model, but aside from introducing greater 

complexity to the growth process, this may be considered reasonable since it is generally 

better to reduce the amount of variability in the R matrix. This of course begs the 

question as to whether the improvement in fit is worth the added complexity. Verbeke 

and Molenbergh (2000) argued that more information is gained by removing restrictions 

on the G matrix before removing restrictions on the R matrix. Under these circumstances, 

if the G matrix is optimized (i.e., there are no restrictions on any element) for the 

functional form at hand and there still exists substantial variability in the R matrix, 

particularly among the covariances, then evidence of an underspecified functional form is 

obtained (Wu et al., 2009).  
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 Data-Model Fit for the Marginal Mean and Covariance Structure and the 

Impact on the Conditional Mean Structure. The agreement between observed scores and 

the conditional mean structure depends on the fit of the marginal mean structure and the 

covariance structure. That is, achieving solid fit for either one is not sufficient when taken 

alone in terms of ensuring fit of the conditional mean structure. Although unlikely, it is 

possible for the marginal mean structure to agree with the sample means while the 

conditional mean structure exhibits greater complexity than the marginal mean structure. 

For example, this can occur if the trajectory for each person exhibits a unique quadratic 

form that yields a linear trajectory when marginalized over (Wu et al., 2009; Wu & West, 

2013). A GCM with a linear functional form would yield adequate fit for marginal mean 

structure but fail to account for the variability of the quadratic effect between people.  

 Since poor fit in the conditional mean structure can be remedied by removing 

restrictions in the R matrix (holding the functional form as constant across people), close 

agreement between the observed and model implied covariance matrix is also not 

sufficient by itself. For the reasons given above in the description of the relationships 

among the covariance matrices, the need to restrict elements in the R matrix, particularly 

the elements off the diagonal, may be taken as evidence that the functional form is 

underspecified.  

 Other Factors That May Impact the Analysis of Data-Model Misfit. Wu et al. 

(2009) identify two additional factors that may have bearing on the success of the 

criticism of growth curve models. The first factor is the structure of time, which can 

broadly be characterized as balanced or unbalanced. The structure of time is balanced if 

all people have identical measurement schedules. The structure of time is unbalanced if 
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measurement schedules are (potentially) unique to each person. As discussed in greater 

detail below, the structure of time has less to do with the performance of discrepancy 

functions and more to do with whether a single value of the function can be computed.  

The second factor identified by Wu et al. (2009) is the matter of distributional 

assumptions. A popular assumption of GCM is that the observed scores for the collection 

of repeated measures, growth parameters, and the residual scores exhibit multivariate 

normality (though not necessarily jointly). Even in the case of categorical outcomes for 

the observed repeated measures, it is typically assumed that observed scores are the result 

of discretizing an underlying latent response distribution (see Wirth & Edwards, 2007 for 

a general description of latent response distributions in the context of factor analysis with 

categorical outcomes), which is typically assumed to be normally distributed. A 

substantial number of the common fit indices used in the SEM framework incorporate the 

maximum likelihood (mis)fit function, the use of which is asymptotically justified under 

multivariate normality. In the presence of non-normal data, functions that incorporate the 

maximum likelihood (mis)fit function have been shown to indicate poor fit often when 

the data generation and analysis models are consistent (Curran, West, & Finch, 1996; 

Satorra, 1992; Yu, 2002). Although the regression-type diagnostics developed for the 

criticism of MLM (described below) do not appeal to distributional assumptions, no 

research has investigated the impact of non-normality on these measures. 

 A third factor, which was not pertinent to the review given by Wu et al. (2009), is 

the impact of prior distribution specifications in the Bayesian analysis context. On the 

one hand, prior distributions may be specified to contribute little to no information for the 

construction of the posterior distribution. The specification of diffuse prior distributions is 
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common, particularly for complex multivariate systems for which the analyst is unlikely 

to have prior knowledge about the variables. On the other hand, prior distributions may 

be specified to meaningfully contribute to the construction of the posterior distribution. 

The specification of informative priors can be useful if they are centered near the “true 

values” of model parameters but may produce inaccurate results that overwhelm the 

information in the data, particularly when the sample size is small (Depaoli, 2010, 2012).  

 Review of Literature on Data-Model Fit Indices. This section reviews the 

existing literature on the performance of select discrepancy functions as applied to 

growth curve models. Attention was primarily (but not exclusively) given to discrepancy 

functions that make minimal assumptions about the data and can be applied regardless of 

the structure for time. This section is organized as follows. First, a rationale is provided 

for the exclusion of a class of measures that are collectively referred to as “fit indexes”, 

all of which are associated with (but not specific to usage within) the SEM framework at 

large. This is followed by a description of the discrepancy functions of interest for the 

current work. Consistent with the general theme of maintaining relevance to applied 

research, all of the discrepancy functions described in what immediately follows can be 

used for all types of growth curve models.  

 On the Exclusion of Fit Indexes. Although appearing in much of the existing 

methodological research pertaining to the criticism for growth curve models, a class of 

functions that are broadly referred to as fit indices are neither considered in this literature 

review nor the study (e.g., Liete & Stapleton, 2011; Liu, Rovine, & Molenaar, 2012; 

McMurray, 2010; West & Wu, 2010). These functions have a number of features in 

common. Many of them incorporate the maximum likelihood fit function, typically with 
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the use of some penalty factor that reduces the impact of sample size and/or penalizes 

model complexity. As a short list, common examples of these functions include the 

comparative fit index (CFI; Bentler, 1990), goodness-of-fit index (GFI; Jöreskog & 

Sörbom, 1984), root-mean-square error of approximation (RMSEA; Steiger & Lind, 

1980); standardized root-mean-square residual (SRMR; Jöreskog & Sörbom, 1981); and 

the Tucker-Lewis index (TLI; Tucker & Lewis, 1973). Given reliance on the maximum 

likelihood fit function, many of the fit functions invoke assumptions of multivariate 

normality. In addition, the interpretation of fit functions often involves some appeal to cut 

off values that indicate some categorical decision about adequacy of the model (e.g., 

good fit, adequate fit, poor fit). These features are often criticisms associated with the use 

fit functions. However, owing to the construction of an empirical reference distribution, 

situating fit functions in the PPMC framework obviates the need to appeal to asymptotic 

behavior or cut off values. 

 The issue with these functions that cannot be overcome with the use of PPMC is 

the inability to use these functions with data in which time is unstructured (e.g., Wu et al., 

2009; Wu & West, 2013). As seen in Equation 13, allowing for unique measurement 

schedules between people yields the potential for the model-implied covariance matrix to 

vary across individuals. The fit indices listed above, and many others like them, rely on 

the existence of a single covariance matrix that applies to the entire sample of data at 

hand, thereby limiting use to longitudinal designs in which the structure of time is 

balanced. Due to this limitation, fit indexes such as those listed above were not 

considered in the following literature review or the study. 
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  Conditional Concordance Correlations and R2 Measures. Recall that 

discrepancies in the conditional mean structure are captured by the difference between 

the observed and model-implied scores for individual i at a given measurement occasion j 

(i.e., the residual score, rij). Two measures that have shown promise include the 

conditional concordance correlation for the conditional mean structure (CCCC; Lin, 1989; 

Vonesh, 1992; Vonesh, Chinchilli, & Pu, 1996) and the conditional R2 (𝑅!!; Singer & 

Willett, 2003). The components of these measures include the vectors of observed 

(denoted yi) and model-implied scores (denoted 𝐲!, see Equation 12 for the definition of a 

particular predicted conditional mean score for a given i at measurement occasion j) for a 

given person i; the respective observed (denoted 𝑦!") and model-implied (denoted 𝑦!") 

grand means averaged over individuals and measurement occasions; and for the CCC 

measures only, the total number of observations (O = N × J assuming no data are 

missing). The CCCC is a measure of the agreement between the observed and model 

implied scores: 

𝐶𝐶𝐶!

= 1

−
𝐲! − 𝐲! ! 𝐲! − 𝐲!!

!!!

𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!
!!! +  𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!

!!! + 𝑂 𝑦!" − 𝑦!" ! , 

(15) 

and 𝑅!! is the squared correlation between the observed and model-implied scores: 

𝑅!! =
𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!

!!!
!

𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!
!!!  × 𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!

!!!
. (16) 

As noted by Wu and West (2013), the difference in metric between CCCC and 𝑅!! usually 

results in the values of the former being larger. The values become closer to the extent 

that there is greater agreement between the observed and model-implied scores; given 
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perfect agreement between the observed and model-implied scores, the values will both 

be one.  

  Analogous functions of the CCC and R2 measures have also been constructed to 

target the marginal mean structure. The structure of the marginal versions for these 

functions is obtained by replacing the vector of model-implied scores (denoted 𝐲!) with 

the vector of model-implied means (denoted 𝐲!; see Equation 11 for the definition of a 

particular predicted marginal mean score for a given i at measurement occasion j). After 

substituting the terms, the resulting conditional concordance correlation for the marginal 

means (CCCM) is in turn given by: 

𝐶𝐶𝐶!

= 1

−
𝐲! − 𝐲! ! 𝐲! − 𝐲!!

!!!

𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!
!!! +  𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!

!!! + 𝑂 𝑦!" − 𝑦!" ! , 

(17) 

and the marginal R2 (𝑅!! ) by: 

𝑅!! =
𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!

!!!
!

𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!
!!!  × 𝐲! − 𝑦!" ! 𝐲! − 𝑦!"!

!!!
. (18) 

The CCCM is the agreement between the observed scores and the marginal means; the 𝑅!!  

is the squared correlation between the observed scores and the marginal means. As was 

the case of the conditional versions of these measures, the CCCM will typically be larger 

than the 𝑅!! . Since the observed scores will be more closely related to the model-implied 

scores than to the model-implied means, the CCCM and 𝑅!!  will usually be smaller than 

the corresponding conditional versions.   

 A simulation study by Wu and West (2013) is the only simulation study to date 

that has assessed the performance of the CCC and R2 measures. In a factorial design, the 
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authors manipulated the strength of the average quadratic coefficient, the magnitude of 

the residual variance, and sample size. Since the reference distributions are not known, 

the authors submitted the values of the CCC and R2 measures to an ANOVA; the reported 

outcomes included the average values of the CCC and R2 measures and the strength of 

the effect size as measured by η2. In null conditions (the data analysis model matched the 

data generation model), the means of the CCC and R2 were affected by the magnitude of 

the residual variance but not other design factors. The effect was much stronger for the 

conditional measures (η2 = .98 for CCCC; η2 = .97 for 𝑅!!) than for the marginal measures 

(η2 = .38 for CCCM; η2 = .38 for 𝑅!! ). 

 The conditional versions of the measures performed as expected. When the 

functional form of the trajectory was underspecified, the CCCC and 𝑅!! were sensitive to 

the strength of the average quadratic effect. As expected by the authors, sensitivity to the 

underspecification of the functional form declined with increases in the magnitude of the 

residual variance. A surprising result was the minimal impact of the strength of the 

average quadratic effect on the means of the CCCM and 𝑅!!  when the only 

misspecification was in the marginal mean structure. The reported means of the measures 

were in fact identical across the levels of corresponding to the strength of the quadratic 

effect. Interestingly, when the data analysis model failed to account for the presence of a 

quadratic mean and a quadratic variance, the impact of the quadratic mean strength was 

evidenced for the CCCM and 𝑅!! . For both measures, it is the observed scores that are 

compared to the predicted means; this finding may reflect this construction of the 

measures.  
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 Likelihood Ratio Test. One of the byproducts of estimation is the raw value of the 

likelihood function (Singer & Willett, 2003). Under the assumption that the data from 

individual cases are independently and identically distributed, the raw value of the 

likelihood function given the parameters, L(Ω), is given by: 

𝐿 𝛀 =  𝑃 𝐲!|𝛀
!

!!!

. (19) 

To ease the computation of the overall model likelihood, the sum of the individual log 

likelihoods, LLi(Ω), is typically computed to form the overall model log likelihood, 

LLM(Ω): 

𝐿𝐿! 𝛀 =  𝐿𝐿! 𝛀 ,
!

!!!

 (20) 

such that: 

𝐿𝐿! 𝛀 = 𝑝! −
1
2 ln 𝛴! −

1
2 𝐲! −  𝐲! !𝛴!!! 𝐲! −  𝐲! , (21) 

where pi represents the number of observations provided by person i and the remaining 

terms retain the same meaning as described above. Notably, the version of the log 

likelihood shown in Equation 21 uses all of the information available in the observed data 

to estimate the model parameters (Bollen & Curran, 2006; Preacher et al., 2008). This 

version of the LL is appropriate for use in the presence of missing data, which the 

situation of varying measurement schedules across people is a special case of. For the 

case in which all data are observed and measurement schedules are invariant across 

people, the LLi(Ω) simplifies to (see Coffman & Millsap, 2006; Preacher et al., 2008): 

𝐿𝐿! 𝛀 = 𝑝 −
1
2 ln 𝛴 −

1
2 𝐲! −  𝐲 !𝛴!! 𝐲! −  𝐲 . (22) 
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Multiplying the individual log likelihoods by -2 (Equations 21 or 22, depending on the 

situation at hand) and summing across people yields the deviance statistic (e.g., Coffman 

& Millsap, 2006; Singer & Willett, 2003). The deviance statistic will be referenced in the 

current work as the -2LLM to reflect the foundation from which it is determined and to be 

consistent with how it is referenced throughout applied and methodological research. The 

diagnostic value of the -2LLM usually comes in the form of evaluating whether the 

removal of some restriction on a given model results in a meaningful improvement (in the 

statistical sense) in data-model fit: 

𝐿𝑅𝑇 = !2 𝐿𝐿!!−
!2 𝐿𝐿!! =

! 2 𝐿𝐿!! +  2 𝐿𝐿!!. (23) 

The difference between the -2 LL value for the more restricted model (MA) and the 

corresponding value with some restriction removed (MB) yields the likelihood ratio 

difference test (LRT). The LRT is a general tool for evaluating whether it’s statistically 

worthwhile to add complexity to the model. In the null hypothesis framework, the LRT is 

assumed distributed as a χ2 with degrees of freedom equal to the difference in the number 

of parameters between MB and MA.  

Notably, when testing variance components in the null hypothesis-testing 

framework, the LRT evaluates whether the variance(s) are significantly larger than zero, 

which is at the boundary of the parameter space. The implication is that the assumed χ2 

distribution does not hold. Rather, the correct distribution is a mixture of b + 1 χ2 

distributions where b is the number parameters on the boundary of the parameter space 

(Stoel, Galindo, & van den Wittenboer, 2006). When the distribution is not corrected, the 

LRT becomes more conservative to the extent that b increases (see Figures 2A through 

2D in Stoel et al., 2006). Having said that, there is very little loss in power when the 
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incorrect reference distribution is used when b = 1 (Stoel et al., 2006; Verbeke & 

Molenberghs, 2003). Moreover, these issues are obviated in the context of resampling 

approaches in which the reference distribution is constructed.  

A recent Monte Carlo study by Leite and Stapleton (2011) investigated the 

performance of the LRT for finding evidence of misspecifications in the shape of growth 

trajectories. In particular, the performance of the LRT was investigated when a linear 

growth model was incorrectly applied to data generated under various non-linear growth 

models (quadratic, plateau, piecewise) across different levels of sample size (100; 200; 

500; 1,000; 2,000) and severity of misspecification (low, moderate, high). Importantly, 

the severity of misspecification was manipulated for the marginal mean structure and the 

G matrix. When manipulating the severity of misspecification of the marginal mean 

structure, the G matrix was held constant. When manipulating the severity of 

misspecification of the G matrix, the marginal mean structure was held constant.  

 The authors did not pursue estimates of Type I error or power as an outcome. 

Instead, the actual values of fit indices for were submitted to a between-condition 

ANOVA; given excessive power due to the large number of replications, they reported 

their results as effect sizes (i.e., partial η2) for each main effect and interaction in the 

design of the ANOVA. They found that the LRT was impacted by sample size, the 

severity of the misspecification, and the interaction between these two factors. The nature 

of the interaction was such that the increase in the LRT associated with the change in 

misspecification severity was greater for larger sample sizes. Although this is actually an 

encouraging finding when the data analysis model actually does underspecify the 

underlying functional form, performance was not evaluated in null conditions. As a 
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result, it is difficult to gauge whether inferences about the performance of the LRT should 

be tempered by a tendency to increase with larger sample sizes.   

Liu et al. (2012) evaluated the performance of the LRT to select covariance 

structures generated from a GCM. The performance of the measures was investigated 

across four different covariance structures (compound symmetry, first-order 

autoregressive, first-order moving average, random-coefficients), two levels of sample 

size (20, 100), and magnitude of covariances (small, medium, large). The outcome in 

their study was the proportion of times the correct covariance structure was selected. The 

LRT was found to be superior to all other measures considered irrespective of sample 

size, magnitude of the covariance, and type of covariance structure. Although the 

covariance structures investigated by the authors are not considered here, the results of 

the simulation study highlight the strength of the LRT as a diagnostic tool for evaluating 

highly specific hypotheses despite its general formulation.   

Standardized Generalized Dimensionality Discrepancy Measure. As alluded to 

above, one way to detect whether a key process or variable has been omitted from a 

multivariate system is to evaluate the off-diagonal elements in the R matrix. This 

approach is popular in the context of measurement models such as confirmatory factor 

analysis (CFA; Kline, 2005), item response theory (IRT; Embretson & Reise; 2000), and 

latent class models (LCA; Collins & Lanza, 2010). Although the different measurement 

models vary with respect to assumptions about the nature of observed and latent 

variables, the common thread among them is to adequately specify the latent structure to 

render the off-diagonal elements of R to (essentially) zero (e.g., Levy, 2006). If this is 

achieved, the specified latent structure is deemed to have successfully achieved 
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conditional independence among the observables at hand1. As acknowledged by 

Crawford (2014), functions for evaluating the tenability of conditional independence can 

be constructed to be a measure of global fit, which involves the full collection of 

observables, or a measure of local fit, which involves a subset of the observables (Levy & 

Svetina, 2011). In the case of local fit, the subset can be viewed as collection of 

observables that measure something unique from the observables that are not in the 

subset; the subset must include at least two observables.  

One function that has been shown to be successful is the standardized generalized 

dimensionality discrepancy measure (SGDDM; Levy, Xu, Yel, & Svetina, 2015; see 

Levy & Svetina, 2011 for the unstandardized version, GDDM). The SGDDMC is an 

aggregation of conditional associations, specifically those elements in the off-diagonal of 

the R matrix. In the case of GCM, recall that variability exists (a) across measurement 

occasions within people and (b) between people in the magnitude and/or functional form 

of growth. The original form of the SGDDM (subscripted by C for the purposes of this 

																																																								
1	Technically, the evaluation of conditional independence as described represents an 

assessment of weak conditional independence (WCI). This form of conditional 

independence requires that all bivariate associations among residual scores be equal to 

zero; since higher order relationships may still be present, WCI is not sufficient for 

meeting the strong form of conditional independence (e.g., Ip, 2000; Levy, 2006; Stout, 

1987; Zhang & Stout, 1999a, 1999b).  WCI is generally deemed empirically sufficient in 

that the higher-order relationships required for SCI are unlikely if bivariate associations 

are not present (McDonald, 1994).	
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work) can be used to determine the portion of the R matrix that is due to 

underspecification across measurement occasions within people:  

𝑆𝐺𝐷𝐷𝑀! =

𝑦!" − 𝑦!" 𝑦!!! − 𝑦!!!!
!!!

𝑁

𝑦!" − 𝑦!"!
!!!

𝑁
𝑦!!! − 𝑦!!!!

!!!
𝑁

!!!!

𝐽(𝐽 − 1)/2 . 

(24) 

Each of the components retains the same meaning as described above. The marginal 

version of the SGDDM (labeled SGDDMM) obtains by replacing the model-implied score 

(denoted 𝑦!"; see Equation 12 for the definition of a particular predicted conditional mean 

score for a given i at measurement occasion j) by the model-implied mean (denoted 𝑦!"; 

see Equation 12 for the definition of a particular predicted marginal mean score for a 

given i at measurement occasion j) 

𝑆𝐺𝐷𝐷𝑀! =

𝑦!" − 𝑦!" 𝑦!!! − 𝑦!!!!
!!!

𝑁

𝑦!" − 𝑦!"!
!!!

𝑁
𝑦!!! − 𝑦!!!!

!!!
𝑁

!!!!

𝐽(𝐽 − 1)/2 . 

(25) 

The SGDDM discrepancy measures range from zero to one. Values closer to zero are 

indicative of close agreement between the observed associations and the associations 

implied by the model. The evidence in favor of data-model misfit grows to the extent that 

values approach one. To date, the SGDDMM has neither been used in applied research nor 

has it been systematically investigated in any methodological work, but it is included here 

as a method of to evaluate the marginal mean structure. In contrast, the SGDDMC has 

been used with success in applied psychometric research (e.g., Levy, Crawford, Fay, & 
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Poole, 2011; Rupp et al., 2012) and investigated methodologically (e.g., Crawford, 2014; 

Levy et al., 2015) in the context of psychometric models. Although the SGGDMC has 

exhibited a strong performance for different types of highly complex models, it remains 

an open question how it will perform in the context of GCM.   

What Impacts the Success of Data-Model Fit Analyses in GCM? 

 Having reviewed the available methodological literature, several factors emerge 

as salient to the success of data-model fit analyses for GCM. In the case of 

underspecifying the function form of the growth trajectory, it is clearly the case that the 

degree of underspecification matters. For example, if a GCM with linear function form is 

applied to data that exhibit a quadratic functional form, identifying the underspecification 

of the functional form becomes easier to the extent that the quadratic effect is large (Leite 

& Stapleton, 2011; Wu & West, 2010; Wu & West, 2013). A similar argument holds in 

the case of underspecifying the variability in the conditional mean structure.  For 

example, if a GCM with a quadratic functional form but no quadratic variance is applied 

to data in which the quadratic relationship with time varies over people, identifying the 

underspecification of the functional form becomes easier to the extent that the quadratic 

variance is large (Leite & Stapleton, 2011; Wu & West, 2013).  

 Another important feature is sample size. In the case of the correlation-based 

functions described above (i.e., CCC and R2 measures), sample size does not appear to 

affect the value of these measures holding all else constant (Wu & West, 2013). Although 

not investigated in the context of GCM, it is expected that the performance of the 

SGDDM functions would similarly be unaffected by sample size. In contrast to the 

correlation-based functions, likelihood-based functions are generally known to detect 



 42 

trivial data-model misfit to the extent that sample size is increased across modeling 

contexts (e.g., Bollen & Curran, 2006; Wu et al., 2009). In a hypothesis-testing 

framework, the impact is that likelihood-based functions become more likely to reject 

even trivial discrepancies between the model and the data (e.g., Millsap & Coffman, 

2006). When situated within a resampling framework in which the reference distribution 

is constructed, some research suggests that the impact of sample size is diminished and 

may even be irrelevant. As evidence of this claim, Nyland, Muthén, and Asparouhov 

(2007) showed that the performance of a parametrically bootstrapped version of the LRT 

was insensitive to sample size and consistently favored the data-generation model across 

a variety of models, including a growth mixture model (a model-based extension of GCM 

that extracts unobserved groups that may exhibit varying growth process; see Bauer & 

Curran, 2003; Muthén & Shedden, 1999; and Nagin, 1999 for a general description of 

these models).  

The magnitude of the residual variances has also been identified as a key factor 

that ubiquitously affects the performance of the CCC functions, R2 functions, and 

likelihood-based functions (Wu & West, 2013). This beckons the question of whether the 

magnitude of the residual variance would similarly have bearing on the values of the LRT 

and SGDDM functions. As it involves a comparison of model log likelihoods, it is 

difficult to predict how the magnitude of residual variances might impact the LRT. 

Although the individual log likelihood might be shifted upwards (indicating greater data-

model misfit), the behavior of the difference in the log likelihood (i.e., the LRT) may be 

quite different. As described above, the SGDDM functions target the off-diagonal 

elements of the R matrix (i.e., 𝑗 ≠ 𝑗!). In contrast, the CCC and R2 functions target the 
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diagonal elements of the R matrix. In cases of underspecification, residual variances (i.e., 

the diagonal elements of R) will be large since model-implied scores are discrepant from 

observed scores (or means in the case of the functions that target the fit marginal mean 

structure). Similarly, associations among residual scores will also be large owing to the 

presence of systematic discrepancies between the observed scores and data implied by the 

model. However, when the data analysis model matches the data generation model, the 

CCC and R2 functions may be more susceptible to suggesting underspecification of the 

functional form than the SGDDM measures to the extent that the repeatedly observed 

measures are unreliable (this was implied in the form of lower values with increasing 

values of the residual variance in Wu & West, 2013). Holding all else constant, unreliable 

measures will yield large residual variances (due to large errors in prediction) but lower 

covariation among residual scores (due to less overlap among the observed measures), 

even if the data analysis and generation models are matched.  

 One feature that has been identified as potentially important is the shape of the 

distribution for observed variables (Wu et al., 2009). All of the methodological studies 

described above involved the generation and analysis of growth curve models under the 

assumption that the data arise from a multivariate normal distribution. Notably, the CCC, 

R2, and SGDDM measures do not make the assumption that the observed data exhibit 

multivariate normality. Although this assumption is not made, the question of how these 

functions behave when the observed data are non-normal is an empirical one that has not 

yet been evaluated. Unlike the measures listed above, the likelihood-based LRT does rely 

on multivariate normality. However, it has been shown that it is the standard errors of 

model parameters rather than the estimates of model parameters that are impacted by 
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non-normal data (e.g., Min, 2008). Since the LRT is constructed in part from the 

estimates of model parameters, the question of how the LRT performs, particularly in a 

parametric resampling framework, is an empirical one that has not been evaluated.  

Summary 

 This chapter has summarized the core concepts and relevant literature that inform 

the design decisions of the current study. To date, the limited amount of methodological 

work pertaining to data-model fit for GCM is situated within the classical frequentist 

paradigm; no study to the author’s knowledge has pursued a fully Bayesian approach for 

conducting data-model fit analyses for growth curve models. As described in greater 

detail in the next chapter, the goal of the current work was to investigate the utility of the 

discrepancy functions described above to critique the fit of growth curve models using 

the popular Bayesian approach of PPMC. Notably, many of the functions described 

above do not have known reference distributions; this is a non-issue in the PPMC 

context, which serves as a mechanism for empirically constructing the appropriate 

reference distribution while also acknowledging the uncertainty in the model parameters.  
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CHAPTER 3: Methods 

Data Generation Model 

 The general GCM used to generate data allowed for person-specific intercept 

(b0i), slope (b1i), and quadratic (b2i) coefficients as follows: 

𝑦!" =  𝑏!! +  𝑏!! 𝑇𝑖𝑚𝑒! + 𝑏!! 𝑇𝑖𝑚𝑒!
! +  𝑟!" . (26) 

The person-specific regression coefficients were in turn simulated from a multivariate 

normal distribution with the mean vector (𝜸) defined by the mean regression coefficients 

(γ00 = intercept mean, γ10 = slope mean, γ20 = quadratic mean) and the G matrix as 

follows: 

𝑏!!
𝑏!!
𝑏!!

 ~ 𝑀𝑉𝑁 𝜸 =
𝛾!!
𝛾!"
𝛾!"

,𝐆 =  
𝜏!!
𝜏!" 𝜏!!
0 0 𝜏!!

. (27) 

The measurement schedule with J = 5 occasions was assumed identical across people 

(Timej) such that Time = 0, 1, 2, 3, 4. The variance of the residual scores were assumed 

homogeneous and uncorrelated across measurement occasions; in effect, the residuals 

scores were generated as follows: 

  𝐫!  ~ 𝑀𝑉𝑁

0
0
0
0
0

,𝐑 =  

𝜎!!

0 𝜎!!

0 0 𝜎!!

0 0 0 𝜎!!

0 0 0 0 𝜎!!

. (4, repeated) 

As dependent on the particular condition (which are described below), appropriate 

restrictions were placed on the generating model. Some conditions were generated to 

follow GCM with a quadratic functional form but no between-person variation in the 

strength of the quadratic effect. These conditions were obtained by fixing the quadratic 
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variance (τ22 in the G matrix) to zero. As a further restriction, some conditions were 

generated to follow GCM with a linear functional form. These conditions were obtained 

by fixing the quadratic mean (γ20 in the 𝜸 vector) and quadratic variance (τ22 in the G 

matrix) to zero.  

 A common practice in the design of Monte Carlo simulation studies is to specify 

particular values for model parameters and other features that facilitate the generation of 

data. This approach has the benefit of producing highly comparable independent trials. 

The drawback to this approach is that the results capitalize on the chance features of the 

particular values that are chosen. To minimize the impact of capitalizing on the whims of 

particular values, the values that governed the creation of data were drawn from random 

uniform distributions with minimum and maximum values. Although this choice reduces 

the comparability of independent trials within a condition somewhat, the advantage that 

is gained is a more general representation of the condition to applied research settings. 

Moreover, provided the boundaries of random uniform distributions that distinguish 

levels of the manipulated variables are sufficiently separated and yield qualitatively 

distinct levels of the manipulated variable, the principal effects of the manipulated 

variables on the outcome will still be observed.  

 Some features of the simulated model were consistent across conditions. The 

mean intercept (γ00) was drawn from a random uniform distribution with a minimum of 

nine and a maximum of 11. In applied research, the values of the intercept are dependent 

on the scale of the repeatedly measured outcome. Owing to the dependence of the 

intercept on the particular outcome, the choices above were arbitrarily selected. The mean 

slope (γ10) was specified as a percentage (minimum = 30%, maximum = 50%) of the 
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simulated value of the intercept. Values of the variances for the intercept and slope 

parameters were first specified on a standard deviation metric, such that 𝜏!! ~ U(3, 4), 

and then converted to a variance for the purposes of data generation; the standard 

deviation of the slope was in turn 30% to 50% of 𝜏!!. The correlation between the 

intercept and slope coefficients assumed a value between .25 ≤ ρ10 ≤ .35; the covariance 

necessary for simulating the person-specific regression parameters was in turn 

determined by τ10 = ρ10 × 𝜏!! × 𝜏!" . The remaining characteristics of the generated 

data were determined by the manipulated variables described below. Importantly, these 

values and those that follow were selected after reviewing examples in both applied 

research (e.g., Chou, Bentler, & Pentz, 1998; Shevlin & Millar, 2006; Mäkikangas, 

Bakkar, Aunola, & Demeraouti, 2010; You & Sharkey, 2009; Shaeffer, Petras, Ialongo, 

Poduska, & Kellam, 2003) and methodological research (e.g., Coffman & Millsap, 2006; 

Wu & West, 2010, 2013).  

Manipulated Variables 

 The design of the Monte Carlo study consisted of manipulating the following 

factors: sample size (3 levels); the strength of the quadratic mean (3 levels); magnitude of 

the quadratic variance (3 levels); magnitude of the residual variance (2 levels); and 

distribution shape (2 levels). These factors are described in turn below.  

 Sample Size. The three levels of sample size (Small: N ~ U(225, 275); Moderate: 

N ~ U(475, 525); Large: N ~ U(975, 1,025)) were in part selected to support comparisons 

to other methodological research pertaining to data-model fit for growth curve models 

(e.g., Liete & Stapleton, 2011; Wu & West, 2013). Although there is significant 
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variability in the range of sample sizes observed in applied research settings, many 

applications of GCM fall within the range of values used in this work.  

 Quadratic Mean Strength. As was the case for the mean linear effect (γ10), the 

values of the mean quadratic effect (γ20) were defined as some percentage of the drawn 

value of the intercept mean (γ00). For data generated to follow GCM with a linear 

functional form, the quadratic mean was fixed to zero (i.e., γ20 = 0). The remaining two 

levels were defined by random uniform distributions with some minimum and maximum 

percentage of the mean intercept (i.e., γ00). In conditions generated with a small quadratic 

mean, γ20 = U(-0.03 × γ00, -0.01 × γ00). For conditions with a large quadratic mean, γ20 = 

U(-0.13 × γ00, -0.10 × γ00). For both levels of the quadratic mean strength, the negative 

sign indicates that the rate of linear growth decelerates with the passage of time. For the 

current study, this means that the average rate of linear change decreases by the amount 

of the average quadratic effect with each unit increase in time.  

 Quadratic Variance. Figure 5 shows the lower and upper boundaries for each 

level of the quadratic variance manipulation. For each panel, the horizontal axis 

represents the passage of time, and the observed score on some outcome is shown on the 

left vertical axis. For reference, the leftmost column shows a GCM with a quadratic 

functional form with no variation between people in the functional form of growth. The 

panels to the right of reference figure are configured as a 2 × 2 matrix in which the rows 

represent the two levels of quadratic variance magnitude (small and large) and the 

columns represent the boundaries of the corresponding random uniform distributions. 
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Figure 5. Visual representation of the lower and upper bounds of the random uniform 
distributions that distinguish the levels of the small and large quadratic variance factor.  
  

Looking within a level of the quadratic variance, the goal was to specify values 

that produce similar patterns in the individual-level trajectories; this was to ensure some 

consistency among trials within conditions. Looking across levels (regardless of which 

boundary), the goal was to specify values of τ22 that clearly produce different patterns in 

the person-level trajectories. By setting a seed value, each of the figures exhibit exactly 

the same form excepting to the magnitude of τ22. In conditions with a small τ22, the values 

(in the standard deviation metric) ranged from 0.1 to 0.2. For conditions generated with a 

large τ22, the values (in the standard deviation metric) ranged from 0.5 to 0.6.  

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4
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Residual Variance. As was the case for determining the levels of the quadratic 

variance, graphical representations were pursued to determine reasonable intervals for the 

levels of the residual variance. Using the same general structure shown in Figure 5, 

Figure 6 shows the lower and upper boundaries for each level of the residual variance 

manipulation. In this case, the rows of the 2 × 2 matrix correspond to the levels of the 𝜎!!. 

The trajectories within panels were generated to exhibit the exact same structure (a linear 

GCM model) with the only difference between panels being the magnitude of 𝜎!!. In 

conditions with a small 𝜎!!, the values (in the standard deviation metric) ranged from 0.75 

to 1.25. For conditions generated with a large τ22, the values (in the standard deviation 

metric) ranged from 2.25 to 2.75.  
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Figure 6. Visual representation of the lower and upper bounds of the random uniform 
distributions that distinguish the small and large levels of the residual variance factor.  
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Distribution Shape. For the univariate case, Fleishman (1978) developed a 

procedure to generate non-normal univariate data with desired levels of skewness and 

kurtosis. Fleishman’s method involves applying a polynomial transformation to convert a 

normally distributed variable (denote it X) to a new variable (denote it U) with the desired 

skewness and kurtosis as follows: 

𝑈 = 𝑎 + 𝑏𝑋 + 𝑐𝑋! +  𝑑𝑋!, (28) 

such that the coefficients (a, b, c, d) represent the unknown values that are necessary to 

transform X to U. Vale and Maurelli (1983) extended Fleishman’s method to the bivariate 

case. Although the details of their method is beyond the intentions and scope of this 

work, the key idea is to apply Fleishman’s method for the univariate case shown in 

Equation 28 to obtain the coefficients to transform both variables in question. Then, 

given the original correlation between the variables, an intermediate correlation is 

computed for each pairing of applicable variables. The J × J matrix of intermediate 

correlations are in turn used to generate multivariate data with the desired skewness and 

kurtosis.  
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Figure 7. Comparison of density distributions that reflect the application of Vale and 
Maurelli’s (1983) method for generating non-normal data. The black line shows a 
variable prior to applying Vale and Maurelli’s method to generate non-normal data; the 
red line shows the same variable following the application of their method.  
 
 The levels for the distribution shape manipulation consisted of two levels: normal 

and non-normal. Conditions characterized by non-normally distributed data were 

moderately skewed in the positive direction (right-tailed) and moderately leptokurtic 

(peaked). The values of skew and kurtosis were independently drawn from a random 

uniform distribution with a minimum of 0.8 and a maximum of 1.2. After generating data 

to exhibit multivariate normality, the drawn values of skew and kurtosis were entered into 

an optimization routine to find the unknown values of the polynomial coefficients and 

convert the original data to be non-normally distributed. Figure 7 (shown above) reflects 

the success of the optimization routine for implementing Vale and Maurelli’s method 

(1983). The density distribution shown in black represents one variable prior to be 

transformed, and the distribution shown in red represents the same variable after applying 

the method. Excepting to the skew, kurtosis, and median (which was shifted towards the 



 53 

peak of the distribution), other features such as the means, standard deviations, and 

correlations remained identical after applying the routine.  

Summary of Data Generation. Table 1 summarizes the boundaries of the 

random uniform distributions that distinguish among the levels for each of the 

manipulated variables. If the levels of manipulated variables were fully crossed, the study 

would consist of 108 design cells. However, design cells representing combination of a 

null quadratic mean (i.e., γ20 = 0) and non-null quadratic variance (i.e., τ22 > 0) were 

omitted since this situation is not likely to be encountered in applied research settings. 

Excluding these conditions, the study consisted of 84 design cells that represent unique 

longitudinal data structures that approximate situations that may be encountered applied 

research settings (e.g., Chou et al., 1998; Shevlin & Mullar, 2006; Mäkikangas et al., 

2010; You & Sharkey, 2009; Shaeffer et al., 2003). Using R 3.1.1 (R Core Team, 2014), 

100 independent trials were simulated for each design cell. For each trial within a 

condition, the parameters that governed the generation of data were unique from all other 

trials but were based on the same combination of random uniform distributions 

corresponding to the levels of the manipulated variables that define that condition.  
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Table 1 

Minimum and Maximum Values of the Random Uniform Distributions for Each Level of 

the Manipulated Variables 

   Random Uniform 
Distribution 
Boundaries 

Manipulated Variable Level 
  

Minimum 
 

Maximum 

Sample Size 
Small  225 275 
Moderate  475 525 
Large  975 1,025 

Quadratic Mean Magnitude 
None  0 0 
Small  -(.03 × γ00) -(.01 × γ00) 
Large  -(.13 × γ00) -(.10 × γ00) 

Quadratic Standard Deviation 
(Variance) Magnitude 

None  0 0 

Small  .10 
(.01) 

.20 
(.04) 

Large  .50 
(.25) 

.60 
(.36) 

Residual Standard Deviation 
(Variance) Magnitude 

Small  .75 
(.56) 

1.25 
(1.56) 

Large  2.25 
(5.06) 

2.75 
(7.56) 

Distribution Shape 

Normal 
  Skew 
  Kurtosis 

 
 
0 
0 

 
0 
0 

Non-Normal 
  Skew 
  Kurtosis 

 
 

.8 

.8 

 
1.2 
1.2 

 

Data Analysis Models 

 For each of the 8,400 trials (i.e., 100 trials within each of the 84 conditions), the 

posterior distributions were constructed for three data analysis models. The likelihood of 
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the data at a given measurement occasion was characterized by a normal distribution with 

a common residual variance2 across measurement occasions: 

𝑦!"  ~ 𝑁(𝑦!" ,𝜎!! ). (29) 

such that: 

𝑦!" = 𝑏!! + 𝑏!! 𝑇𝑖𝑚𝑒!" + 𝑏!! 𝑇𝑖𝑚𝑒!"! . (30) 

As captured by integer values in which the first occasions represents the intercept (i.e., 

Time  = 0, 1, 2, 3, 4), measurement schedules were assumed equivalent across J = 5 

measurement occasions. A common residual variance (𝜎!!) was assumed across 

measurement occasions, and was assigned the following prior: 

𝜎!! ~ 𝐼𝐺(1,1).  (31) 

 With the mean of the intercept, slope, and quadratic terms as the mean vector and 

the G matrix as the covariance matrix, the prior distribution of the person-specific 

regression coefficients was specified by a multivariate normal distribution:  

𝑏!!
𝑏!!
𝑏!!

 ~ 𝑀𝑉𝑁 𝜸 =
𝛾!!
𝛾!"
𝛾!"

, 𝐆 =  
𝜏!!
𝜏!" 𝜏!!
0 0 𝜏!!

. (32) 

Each of the elements in 𝜸 were independently assigned a univariate normal prior: 

 

																																																								
2 The software package used for model-fitting parameterizes variability in the precision 

metric, which is simply the inverse of the variance. The choice to express the data 

analysis models in the variance metric represents an assumption that the precision is 

relatively unfamiliar metric. In the precision metric, the analogous prior distribution in 

the univariate (multivariate) case is a gamma (Wishart) distribution (Gill, 2007).   
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𝛾!! ~ 𝑁(0, 1) 

𝛾!" ~ 𝑁 0, 1  

𝛾!" ~ 𝑁(0, 1) 

(33) 

with the prior for the G matrix specified as an inverse Wishart distribution  

𝐆~ 𝐼𝑊
1 0 0
0 1 0
0 0 1

, 𝑣 = 𝐾 − 1  (34) 

where K is the number of elements in the marginal mean structure.   

As mentioned, three data analysis models were applied to each independent trial 

in all conditions. The first model (M1) reduces to a linear GCM by fixing the quadratic 

mean, 𝛾!" = 0, and quadratic variance to zero, 𝜏!! = 0. The second model (M2) included 

a non-zero quadratic mean but no quadratic variance, 𝜏!! = 0. The third model (M3) 

included both a quadratic mean, and a quadratic variance term, 𝜏!! > 0. When taken in 

sequence, M1, M2, and M3 can be viewed as natural steps of the model-building process 

often used when fitting growth curve models (assuming growth is in fact present and 

there are no covariates of interest). The posterior distribution of model parameters from 

all three data analysis models were obtained using JAGS 3.4.0 (Plummer, 2013) as 

interfaced through the rjags package in R 3.1.1 (R Core Team, 2014). 

 Estimation. A trial study was conducted to determine (a) the requisite number of 

burn-in iterations to consistently achieve convergence and (b) a sufficient thinning 

interval to consistently yield approximately independent draws from the posterior 

distribution. For each of the 84 conditions considered in this work, the posterior 

distribution was obtained for two independent trials under each of the three data analysis 

models. To determine (a) and (b) above, the following graphical representations were 
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examined for the marginal posterior distributions of all model parameters: the time series 

showing successive draws across MCMC iterations; the lagged autocorrelation; and the 

degree of overlap between the marginal posterior densities rendered from two chains. The 

results of the trial study suggested that 500 burn-in iterations were sufficient to achieve 

convergence with two chains for all model parameters associated with each of the data 

analysis models in all data generation conditions.  

Separate thinning intervals were required for different combinations of the data 

analysis and data generation models. The thinning interval was largely dependent on the 

magnitude of the residual variance such that conditions generated with a small residual 

variance (Minimum = 15, Median = 25, Maximum = 30) required a smaller interval than 

conditions generated with large residual variances (Minimum = 20, Median = 40, 

Maximum = 55). In all models, the posterior distributions were constructed from 300 

draws with 150 draws coming from each of two chains. Owing to differences in thinning 

intervals, the total number of iterations following burn-in ranged from 4,500 ( = 300 × 

15) to 16,500 ( = 300 × 55) iterations. All posterior draws were written to a file for post-

processing. 

The estimation of all trials was performed on an iMAC with a 3.2 quad-core Intel 

i5 processor with 8 GB of memory. The amount of time required for estimation was 

largely determined by sample size; the smaller sample size conditions required about 40 

minutes, and the larger sample size conditions required about 4 hours and 30 minutes. 

Although minimal, model complexity also contributed to estimation time. The total 

amount of time required to estimate all models for all trials was approximately 8.5 days.  
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Posterior Predictive Model Checking 

 Discrepancy Functions. Eight discrepancy functions that target different features 

of the growth curve models were investigated in the current work. The following 

indicates which discrepancy functions were used in the current work to target different 

sources of data-model misfit. 

 Overall Covariance Structure and Marginal Mean Structure. One function that 

is often used to simultaneously assess the data-model fit of the overall covariance and 

marginal mean structures is the maximum likelihood discrepancy function (FML; e.g., 

Bollen & Curran, 2006): 

𝐹!" = ln 𝚺 − ln 𝐒 + 𝑡𝑟 𝚺!!𝐒 − 𝐽 − 𝑦 − 𝑦 !𝚺!! 𝑦 − 𝑦 , (35) 

such that S is the overall covariance matrix for the sample and the other terms retain the 

same meaning as described above. The FML discrepancy function is in turn multiplied by 

N - 1 to yield the likelihood ratio (LR) statistic: 

 𝐿𝑅 = 𝑁 − 1 𝐹!!.  (36) 

 Due to its common use to critique many types of models, the LR was included 

owing to its use as a general-purpose function for assessing data-model fit (e.g., Schienes, 

Hoijtink, & Boomsma, 1999). Wu and West found (2013) that the values of the LR 

(represented as TML in their study) was sensitive to data-model misfit in the mean 

structure, and in particular, the marginal mean structure. Notably, the LR assumes a 

common covariance for the entire sample; in the case of varying measurement schedules, 

the LR cannot be computed (Bollen & Curran, 2006; Preacher et al., 2008; Wu et al., 

2009). Although this dependency on the time structure limits the utility of the LR statistic, 
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it warrants investigation in the current study as a balanced structure was used for the 

current work.   

 Absolute Fit of the Conditional Mean Structure. The conditional versions of the 

CCC and R2 measures were employed to assess the congruence between observed and 

model-implied scores (i.e., the conditional mean structure). These measures can be 

viewed as being reflective of the portion of variance along the diagonals of the R matrix 

that is due to differences between the observed and model-implied scores.  

 Absolute Fit of the Marginal Mean Structure. The marginal versions of the CCC 

and R2 measures were employed to assess the fit of the marginal mean structure. These 

measures can be viewed as being reflective of the portion of variance along the diagonals 

of the R matrix that is due to differences between the observed scores and the model-

implied means (i.e., the marginal mean structure). 

 Discrepancies in the Off-Diagonal Elements of the R Matrix. The conditional 

and marginal versions of the SGDDM measures are separated from the corresponding 

CCC and R2 discrepancy functions as they differ in logic. As described above, the 

SGDDM functions measure the amount of variance present in the off-diagonals of the R 

matrix. The conditional version of the SGDDM captures the portion of that variance that 

arises due to the unaccounted associations between the observed and model-implied 

scores (i.e., the conditional mean structure). The marginal version of the SGDDM 

captures the portion of the off-diagonal variance that arises due to the unaccounted for 

associations between the observed scores and model-implied means (i.e., the marginal 

mean structure).  
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 Likelihood Ratio Difference Test (LRT) for Relative Fit. The LRT is designed to 

evaluate the relative fit of two models (see Equations 19 – 23). Owing to the use of the 

entire posterior distribution for constructing the reference distribution, the evaluation of 

relative fit is not as straightforward as in frequentist-based frameworks such as null 

hypothesis significance testing (NHST) and parametric bootstrapping. In the NHST 

framework, two models are applied to the observed data; the likelihood for each model is 

in turn based on the same data and one set of model parameters (usually obtained via 

ordinary least squares or maximum likelihood estimation). The LRT is then computed and 

the observed value is compared to a critical χ2 with degrees of freedom equal to the 

difference in the number of parameters estimated between the models. The key difference 

for the parametric bootstrap is that reference distribution of the LRT is constructed. This 

is achieved by simulating some large number of datasets using the model parameters 

from the more restricted model. For each simulated dataset, the models being compared 

are fitted to each simulated dataset, and ultimately, yields likelihoods for the two models. 

This step in turn facilitates the computation of the LRT for each simulated dataset given 

data that are consistent with the restricted model. The observed value of the LRT is then 

located within the reference distribution to arrive at a decision about the suitability of the 

restricted model for the observed data. 

 Like the parametric bootstrap method, PPMC is a resampling technique for 

constructing reference distributions of test statistics and discrepancy functions. However, 

owing to the availability of the entire posterior distribution for the model parameters, 

arriving at an appropriate null distribution is more complicated than for the parametric 

bootstrap approach. Although there are number of approaches to constructing the 
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reference distribution, the following steps—which were used for the current work—

describe one way to do so within the PPMC framework.  

1. For a given observed dataset, construct the posterior distribution of model 

parameters under the more restricted model (MA) and the less restricted model 

(MB). For the purposes of this work, the posterior distributions were obtained via 

MCMC estimation. 

2. Using the posterior distribution for MA, generate R posterior predictive datasets 

that are consistent with MA.  

3. Using the observed data, and the respective posterior distributions of model 

parameters, compute the realized values of the -2 log likelihood (see Equation 22) 

for MA and MB. Compute the LRT as the difference between the -2 log likelihoods 

(see Equation 23). 

4. For each of R posterior predictive datasets (which were generated to follow MA in 

Step 2), compute the -2 log likelihoods using the posterior distribution of model 

parameters associated with MA and MB (see Equation 22). Compute the LRT as the 

difference between the -2 log likelihoods between MA and MB (see Equation 23). 

5. Compare the realized values of the LRT to the posterior predictive values. One 

way to compare these values is to compute the PPP-value of the LRT (see 

Equation 10). 

6. Given an a priori selected threshold (akin to the selection of α), determine 

whether the PPP-value is extreme. If the PPP-value is greater than the threshold, 

the more restricted (i.e., MA) model is favored; if the PPP-value is less than or 
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equal to the threshold, the added complexity of the less restricted model (i.e., MB) 

is favored. 

This series of steps is akin to the parametric bootstrap in that data are simulated from MA, 

the more restricted model. The key difference is that models MA and MB are not fit to the 

simulated datasets. Rather, in conjunction with data generated under the more restricted 

model, the posterior distributions of model parameters are used to compute the -2 log 

likelihood for each model.      

Data Analyses  

There were three outcomes of interest for the current work: the realized values, 

the distribution of PPP-values, and the proportion of extreme PPP-values. To date, 

simulation studies on the performance of discrepancy functions in the GCM context have 

focused more on the behavior of the actual values of discrepancy functions rather than on 

performance from a NHST (i.e., empirical Type I error rates and power) perspective (e.g., 

Liete & Stapleton, 2011; Wu & West, 2010; Wu & West, 2013). Accordingly, by 

evaluating the realized values, it is made possible to connect the results of the current 

work to prior research. The analysis of realized values involved fitting a series of 

factorial analysis of variance (ANOVA) models. The ANOVA models were applied 

separately to discrepancy functions for null and non-null situations. The null conditions 

consisted of fitting the model that matches the generating process; non-null conditions 

involved fitting a model that underspecifies a key feature of the generating process. The 

design of the ANOVA models consisted of all factors that were relevant to the data 

generation process. Irrespective of the relationship between the data generation and data 
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analysis models, each cell in the ANOVA design consisted of 30,000 observations (= 100 

trials × 300 realized values).  

 The second outcome of interest was the marginal distribution of PPP-values. The 

shape of the PPP-value distribution is hypothesized to depend on the relationship between 

the data and the model. Given alignment between the data generation and analysis 

models, PPP-values are expected to be uniform throughout the range of PPP-values (i.e., 

0 to 1), as this pattern reflects the inability to distinguish between the observed data and 

data that are consistent with model (Hjort, Dahl, & Steinbakk, 2006). In contrast, when 

the model fails to capture a key process underlying the observed data, PPP-values are 

expected to be concentrated near the appropriate boundary that reflects underspecification 

of the model. Accordingly, in cases of underspecification, the PPP-values for the CCC 

and R2 measures were expected to be close to one while PPP-values for the SGDDM 

functions and the LR were expected to cluster close to zero. These hypotheses were 

evaluated graphically. From the applied researcher’s perspective, the distribution of PPP-

values provides a very broad sense of the types of decisions that are likely to be made 

about a model in the absence of knowledge about underlying but unknown features about 

the data (e.g., quadratic strength, residual variance size).   

 The proportion of extreme PPP-values, which is closely related to the marginal 

posterior distributions of PPP-values, was the third outcome investigated in the current 

work. The inclusion of this outcome has two key advantages that derive from 

constructing the reference distribution. First, PPP-values involve comparing the realized 

values of discrepancy functions to values that could have been observed given the model 

(or model comparison) at hand (i.e., the posterior predictive values). Second, in a 
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simulation context, the proportion of extreme PPP-values are the Bayesian analogue of 

estimates of empirical Type I error rates (in null conditions) and power (in non-null 

conditions). The relationship between the manipulated variables and the proportion of 

extreme PPP-values were explored graphically.  

 Defining Extreme PPP-Values. In the case of the SGDDM functions (both 

conditional and marginal), the LR, and the LRT, larger values are indicative of greater 

data-model misfit, and accordingly, were deemed extreme if 5% or fewer of the posterior 

predictive values were smaller than the corresponding realized values. In contrast, 

smaller values of the CCC and R2 measures (both conditional and marginal) are 

indicative of a weak association between data and the model-implied values. 

Accordingly, the CCC and R2 measures were deemed extreme if 95% or more of the 

posterior predictive values were larger than the corresponding realized values. 
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CHAPTER 4: Results 

ANOVA Results for Realized Values of Measures of Absolute Fit 

 This section presents the results from the series of factorial ANOVA models for 

identifying relationships between the manipulated variables and the realized values of the 

seven discrepancy functions for assessing the model-fit in the absolute sense. In terms of 

organization, the various subsections represent some relationship between the data 

generation and data analysis models. The first subsection describes the results for the 

three situations in which the data generation and data analysis models were aligned. 

Then, the three subsections that follow present the results for cases in which the data 

analysis model fails to capture one or more features of the data generation model. 

Features of the ANOVA designs are also described in greater detail in the respective 

subsections. Owing to the large number of trials in each design cell, key attention was 

given to the effect sizes (as measured by partial η2) for each factor included in the design; 

complex relationships are presented graphically to facilitate interpretation.  

 Match Between Data Analysis and Data Generation Model. The collection of 

results presented in this subsection represent a match between the data generation and 

analysis models. Recall that the design of the simulation study resulted in three broad 

types of data generation models: a GCM with a linear functional form (M1), a GCM with 

a quadratic functional form that was equal in strength for all individuals (M2), and a 

GCM with a quadratic functional form that varied across individuals (M3). In what 

follows, the results for each of these models are described in turn. Owing to the similarity 

of the results, the description of patterns in the results follows the description of each 

design.  
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 Table 2 presents the effect sizes of each design factor on the realized values for 

each discrepancy function of absolute fit for data generated and analyzed as a GCM with 

a linear functional form. With the realized values associated with M1 as the outcome, the 

factors in the design included sample size (denoted N, 3 levels), the shape of the 

distribution (denoted DS, 2 levels), and reliability of the observed measures as captured 

by the size of the residual variance (denoted RV, 2 levels). These three factors were fully 

crossed to yield 12 design cells. 

Table 2 

Effect Sizes of Each Effect on the Realized Values for Discrepancy Functions of Absolute 

Fit for Data Generated and Analyzed as a Linear Growth Curve Model 

 Conditional Marginal  
Effect CCC R2 SGDDM CCC R2 SGDDM LR 
DS < .001 < .001 .044 < .001 < .001 .010 .057 
N < .001 .012 .194 < .001 < .001 < .001 .007 
RV .451 .456 < .001 .004 .005 .486 < .001 
N × DS < .001 < .001 .003 < .001 < .001 .003 .003 
N × RV .001 .001 < .001 < .001 < .001 .002 < .001 
RV × DS .007 .007 < .001 < .001 < .001 < .001 < .001 
N × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 .001 
Note. DS = distribution shape, N = sample size, RV = residual variance.  

 Table 3 shows the effect sizes of each design factor on the realized values for 

each discrepancy function of absolute fit for data generated and analyzed as a GCM that 

exhibits a quadratic functional form that holds across all individuals. In addition to all of 

the factors in the design relevant to the linear GCM, the strength of the quadratic effect 

(as operationalized by a more negative quadratic mean) was also included (denoted QM, 

2 levels). The outcome in the design was the realized values associated with M2. All 

factors were fully crossed to yield 24 design cells.  
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Table 3 
 
Effect Sizes of Each Effect on the Realized Values for Discrepancy Functions of Absolute 

Fit for Data Generated and Analyzed as a Growth Curve Model with a Quadratic 

Functional Form that Does Not Vary Over Individuals 

 Conditional Marginal  
Effect CCC R2 SGDDM CCC R2 SGDDM LR 
DS < .001 < .001 .036 < .001 < .001 .004 .046 
N < .001 .003 .096 < .001 .001 < .001 .002 
QM .002 .007 < .001 .184 .185 < .001 < .001 
RV .233 .255 < .001 .006 .010 .338 .001 
N × DS < .001 < .001 .005 < .001 < .001 < .001 .001 
N × QM < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × RV .021 .019 < .001 < .001 .002 < .001 < .001 
RV × DS < .001 < .001 < .001 < .001 < .001 < .001 .004 
N × QM × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 .002 
QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
Note. DS = distribution shape, N = sample size, QE = quadratic mean, RV = residual 

variance.  
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Table 4 
 
Effect Sizes of Each Effect on the Realized Values for Discrepancy Functions of Absolute 

Fit for Data Generated and Analyzed as a Growth Curve Model with a Quadratic 

Functional Form that Does Vary Over Individuals 

 Conditional Marginal  
Effect CCC R2 SGDDM CCC R2 SGDDM LR 
DS < .001 < .001 .005 < .001 < .001 .002 .007 
N < .001 .003 .062 < .001 < .001 < .001 .002 
QM .001 .004 < .001 .105 .110 < .001 < .001 
QV < .001 .001 .001 .014 .018 .057 .015 
RV .165 .175 < .001 .002 .003 .158 .001 
N × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV < .001 < .001 < .001 .001 .003 < .001 < .001 
QM × RV .014 .011 < .001 .001 .002 < .001 < .001 
QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QV × RV .007 .006 < .001 < .001 < .001 .007 < .001 
RV × DS .003 .003 < .001 < .001 < .001 < .001 < .001 
N × QM × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × RV .002 .001 < .001 < .001 < .001 < .001 < .001 
QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
Note. DS = distribution shape, N = sample size, QM = quadratic mean, QV = quadratic 
variance, RV = residual variance.  
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 Table 4 shows the effect sizes of design factor in the ANOVA on the realized 

values for each discrepancy function of absolute fit for data generated and analyzed as a 

GCM with a quadratic functional form that varies across all individuals. In addition to the 

factors in the design included all of those relevant to the design of the ANOVAs models 

for the linear and non-varying quadratic models, the size of the quadratic variance was 

also included (denoted QV, 2 levels). With the realized values associated with M3 as the 

outcome, all design factors were fully crossed to yield 48 design cells.  

 In general, when the data analysis model captured all aspects germane to the data 

generation model, the patterns of results for most of the discrepancy functions were 

similar irrespective of the model that was used to generate data. For instance, although 

the effect diminished with increased complexity of the data generation model, the 

average realized values for several discrepancy functions tended towards values that were 

indicative of greater discrepancies between the data and the model with increased 

residual variation. In the case of the CCCC and 𝑅!!, larger residual variances led to 

smaller realized values on average.  

 The realized values of the SGDDMC also exhibited a similar pattern of results 

across the types of growth curve models generated in this work. The shape of distribution 

for the observed outcomes and sample size exhibited main effects on the realized values 

of the SGDDMC. On average, the realized values of the SGDDMC (a) were larger when 

outcomes were positively skewed rather than normally distributed and (b) in that values 

became smaller with increased sample size.  

 The manipulated factors were generally not found to impact the average realized 

values for the LR, CCCM, and 𝑅!!  functions, particularly for the data generated to follow 
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a linear GCM. For the latter two functions, the key exception was the presence of the 

main effect associated with the strength of the quadratic relationship with time. 

Irrespective of whether the quadratic effect varied across individuals, the realized values 

of the CCCM and 𝑅!!  functions became larger with increased strength of the quadratic 

effect, on average.  

 For the three types of data-generation models, the realized values of the SGDDMM 

were most strongly impacted by the main effect of the residual variance; in the case of 

data generated with quadratic form that varies over individuals, the realized values were 

also impacted the size of the quadratic variance. The direction of both effects was such 

that such that larger values of the residual or quadratic variance were associated with 

smaller values of the realized values for the SGDDMM, on average. This pattern of results 

suggests that the data analysis model, which matches the data generation model in this 

case, tends to fit the data better, as represented by smaller realized values, with increasing 

values of the residual variance or quadratic variance, on average.  

 Underspecified Marginal Mean Structure. The results presented in this section 

pertain to the situation in which a GCM with a linear functional form was applied to data 

that exhibited a quadratic relationship with the passage of time. The quadratic effect was 

generated as equal across individuals. Although it is the case that failing to capture the 

quadratic effect would yield an underspecification for both the marginal and conditional 

mean structures, including a non-varying quadratic effect would adequately capture the 

generating process for both mean structures. Accordingly, the relationship between the 

data analysis and data generation models is foundationally an underspecification of the 

marginal mean structure.  
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 The design of the ANOVA included all features relevant to the generation of data 

that follow a GCM with a quadratic functional form but no quadratic variance component 

(i.e., M2). With the realized values associated with the linear GCM (i.e., M1) as the 

outcome, the factors in the model included sample size (3 levels), the strength of the 

quadratic effect (2 levels), the reliability of the measures as captured by the size of the 

residual variance (2 levels), and the shape of the distribution for the observed variables (2 

levels). All factors were fully crossed to yield 24 design cells.  

 Table 5 shows the effect sizes (as measured by partial η2) for each design factor 

on the realized values for each discrepancy functions designed for evaluating model fit in 

absolute terms. The CCC (both conditional and marginal), R2 (both conditional and 

marginal), SGDDMC, and LR were impacted by the main effect associated with the 

strength of the quadratic mean. For each of these functions, increasing the strength of the 

quadratic mean resulted in (a) smaller realized values of the CCC and R2 functions and 

(b) larger realized values of the SGDDMC and LR, on average. Substantively, the 

direction of this effect suggests that it becomes easier to detect underspecification of the 

marginal mean structure to the extent that the strength of the quadratic effect is increased. 

Notably, the impact of the quadratic strength on the realized values of the SGDDMC and 

LR was moderated by other factors. These interactive relationships are presented 

graphically below to facilitate interpretation. 

The residual variance main effect impacted the CCCC
 , 𝑅!!, and SGDDMM. 

Increased values of the residual variance were associated with smaller values for these 

functions, on average. In the case of the CCCC and 𝑅!!, the decreased values would be 

interpreted as a weaker correspondence between the data and model expectations. For the 



 72 

SGDDMM, decreased realized values would be interpreted as less unaccounted for 

conditional associations given the model.  

Table 5 
 
Effect Sizes of Each Effect on the Realized Values for Discrepancy Functions of Absolute 

Fit for Data Generated to Follow a Growth Curve Model with a Quadratic Functional 

Form that was Equal Across Individuals but Analyzed as a Linear Growth Curve Model 

 Conditional Marginal  
Effect CCC R2 SGDDM CCC R2 SGDDM LR 
DS < .001 < .001 .004 < .001 < .001 .004 < .001 
N < .001 .001 .009 < .001 .002 < .001 .030 
QM .246 .322 .722 .346 .313 < .001 .261 
RV .081 .117 .003 .006 .010 .338 .002 
N × DS < .001 < .001 .001 < .001 < .001 < .001 < .001 
N × QM < .001 < .001 .003 < .001 < .001 < .001 .621 
N × RV < .001 < .001 .001 < .001 < .001 < .001 .010 
QM × DS < .001 < .001 .003 < .001 < .001 < .001 < .001 
QM × RV .004 < .001 .398 .002 .004 < .001 .070 
RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × DS < .001 < .001 .002 < .001 < .001 < .001 .002 
N × QM × RV < .001 < .001 .002 < .001 < .001 < .001 .245 
N × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
Note. DS = distribution shape, N = sample size, QM = quadratic mean, RV = residual 
variance. 
  

Figure 8 shows the interaction between the strength of the quadratic effect and the 

residual variance size on the realized values of the SGDDMC. The average realized values 

of the SGDDMC (shown along the vertical axis) plotted against the levels associated with 

the size of the residual variance (shown along the horizontal axis). Within the levels 

associated with size of the residual variance, the results for small and large quadratic 
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effects (i.e., the value of quadratic mean) are represented by gray and black bars, 

respectively.  
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 Residual Variance Size 
Figure 8. Interaction effect between the quadratic mean strength and the size of the 
residual variance on the realized values of the SGDDMC when the data analysis model 
underspecifies the functional form of the marginal mean structure.  
 
  Looking within any one level of the residual variance size, the positive 

relationship between the strength of the quadratic effect and the realized values is seen. 

That is, the realized values of the SGDDMC associated with the application of a linear 

GCM to data that follow GCM with non-varying quadratic effect were more indicative of 

data-model misfit when the quadratic effect was large rather than small. Although this 
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pattern held across the levels of the residual variance, the effect associated with the 

quadratic strength was stronger for data with a small residual variance than for data 

generated with a large residual variance.  

 The realized values of the LR were impacted by an interaction between sample 

size, the strength of the quadratic effect, and the amount of residual variation. Figure 9 

was constructed to visualize the nature of the three-way interaction on the realized values 

of the LR. The figure includes two panels that represent the strength of the quadratic 

effect. Looking within panels, the average realized value of the LR (shown along the 

vertical axis) for each level of the residual variance size (gray and black bars represent 

the small and large residual variance conditions, respectively) is plotted against sample 

size (shown along the horizontal axis). For simplicity, the midpoints of the random 

uniform distributions for drawing values of sample size serve as the labels of sample size.   
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Figure 9. Interaction effect between sample size, the strength of the quadratic effect, and 
the size of the residual variance on the average realized values of the LR when the data 
analysis model underspecifies the functional form of the marginal mean structure.  
 

 With the sample size held constant, increasing the strength of the quadratic effect 

(looking across panels) resulted in larger values of the LR, on average. Moreover, holding 

the sample size constant, increasing the strength of the quadratic effect had a larger 

impact on the realized values of the LR for data generated with a small residual variance 
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than for data generated with a large residual variance. This two-way interaction between 

the strength of the quadratic mean and the size of the residual variance was intensified 

with increasing sample size, hence the three-way interactive effect of these variables on 

the realized values of the LR.  

 Underspecified Conditional Mean Structure. The results presented in this 

section are based on the situation in which a GCM with quadratic form that is equal 

across individuals was applied to data that follow a GCM with a quadratic form that 

varies across individuals. Accordingly, the results are based on the situation in which the 

data analysis model underspecifies the conditional mean structure of the data generation 

model. With the realized values associated with the non-varying quadratic GCM (i.e., 

M2) as the outcome, the ANOVA model included all factors relevant to the generation of 

data that follow GCM with quadratic functional form that varies across individuals. The 

factors in ANOVA design included sample size (3 levels), the strength of the quadratic 

effect (2 levels), the size of the quadratic variance (2 levels), the size of the residual 

variance (2 levels), and the shape of the distribution of the observed variables (2 levels). 

All factors were fully crossed to yield 48 design cells. Table 6 presents the effect size (as 

measured by partial η2) for each effect on the realized values.  
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Table 6 

Values of Partial η2 for each Effect on the Realized Values for Discrepancy Functions of 

Absolute Fit when the Conditional Mean Structure was Underspecified 

 Conditional Marginal  
Effect CCC R2 SGDDM CCC R2 SGDDM LR 
DS < .001 < .001 .004 < .001 < .001 .002 < .001 
N < .001 .003 .007 < .001 < .001 < .001 .001 
QM .002 .004 < .001 .106 .110 < .001 < .001 
QV .003 .002 .405 .014 .018 .057 .093 
RV .151 .165 .005 .002 .003 .158 < .001 
N × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV < .001 < .001 .005 < .001 < .001 < .001 .369 
N × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV < .001 < .001 < .001 .001 .003 < .001 < .001 
QM × RV .013 .011 < .001 .001 .002 < .001 < .001 
QV × DS < .001 < .001 .002 < .001 < .001 < .001 < .001 
QV × RV .007 .007 .166 < .001 < .001 .007 .031 
RV × DS .003 .003 < .001 < .001 < .001 < .001 < .001 
N × QM × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV < .001 < .001 .002 < .001 < .001 < .001 .005 
N × QM × RV < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 .008 
N × QV × RV < .001 < .001 < .001 < .001 < .001 < .001 .160 
N × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × RV .002 .001 < .001 < .001 < .001 < .001 < .001 
QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 .003 
N × QM × QV × RV < .001 < .001 .001 < .001 < .001 < .001 .003 
N × QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 .004 
QM × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 .002 
Note. DS = distribution shape, N = sample size, QM = quadratic mean strength, QV = 
quadratic variance, RV = residual variance.  
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 Excepting to the SGDDMC and the LR, interactive effects had little bearing on the 

variability of the realized values for the absolute discrepancy functions. The average 

realized values of the CCCC, 𝑅!!, and SGDDMM functions were impacted by the residual 

variance main effect. For each of these functions, decreasing the reliability of the 

observed measures (i.e., increasing the residual variance) resulted in smaller realized 

values, on average. To a lesser extent, the realized values of the SGDDMM were also 

influenced by the quadratic variance main effect such that higher realized values were 

observed with an increased quadratic variance, on average.  

 Although the realized values of the SGDDMC were impacted by the main effect 

associated with the quadratic variance, the influence was moderated by the amount of 

residual variation. Figure 10 displays the means of the SGDDMC for all combinations of 

these two factors. The structure of the graphic is generally identical to that described for 

Figure 8. The caveat is that the gray and black bars represent conditions generated with 

small and large between-person variation in the strength of the quadratic effect rather 

than representing the strength of the marginal quadratic effect.  
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 Residual Variance Size 
Figure 10. Interaction effect between the size of the quadratic variance and the size of the 
residual variance on the realized values of the SGDDMC when the data analysis model 
underspecifies the functional form of the conditional mean structure.  
 
  Looking within the levels of the residual variance factor, the difference in the 

heights of the bars indicates realized values of the SGDDMC were larger for data 

generated with greater between-person variation in the strength of the quadratic effect. 

Holding the degree of between-person variation constant (i.e., focusing on either the gray 

or black bar) and looking across the levels of the residual factor, it is clear that less 
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reliable outcomes (i.e., increasing residual variation) yield smaller realized average 

values of the SGDDMC. The source of the two-way interaction between the quadratic 

variance and the residual variance factors on the realized of the SGDDMC was the result 

of large quadratic variance conditions exhibiting a greater decline with increasing 

residual variation compared to data generated with a small quadratic variance.  

 Although a strong two-way interaction between sample size and the size of the 

quadratic variance influenced the realized values of the LR, it was in turn moderated by 

the size of the residual variance. Figure 11 displays the average realized values for each 

combination of these factors. Specifically, the average realized value (shown along the 

vertical axis) is plotted against sample size (shown as increasing along the horizontal 

axis) for each level of the residual variance size (small and large residual variance 

conditions represented by gray and black bars, respectively). The impact of increasing the 

size of the quadratic variance is seen looking across panels.  
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Figure 11. Interaction effect between sample size, the degree of between-person variation 
(i.e., quadratic variance), and the size of the residual variance on the average realized 
values of the LR when the data analysis model underspecifies the functional form of the 
conditional mean structure.  
 
 Irrespective of the size of the quadratic variance or sample size, the realized 

values of the LR became smaller with increased residual variation. Larger average values 

of the LR were observed with increasing sample size irrespective of the amount of 

residual variation or the amount of quadratic variation. Taken in combination, the impact 



 82 

of increasing the amount of residual variation was accentuated with increased sample 

size. This interplay between sample size and the size of the residual variance was in turn 

made larger with increased variation in the functional form of quadratic effect between 

individuals. 

Underspecified Marginal and Conditional Mean Structures. The results 

presented in this section are based on the situation in which a GCM with linear function 

form was applied to data that follow a GCM with a quadratic form that varies across 

individuals. Accordingly, the results are based on the situation in which the data analysis 

model underspecifies both the marginal and conditional mean structures of the data 

generation model. With the realized values associated with the linear GCM (i.e., M1) as 

the outcome, the ANOVA model included all factors relevant to the generation of data 

that follow GCM with between-person variation in the strength of the quadratic effect 

(i.e., M3). The factors in ANOVA design included sample size (3 levels), the strength of 

the quadratic effect (2 levels), the size of the quadratic variance (2 levels), the size of the 

residual variance (2 levels), and the shape of the distribution of the observed variables (2 

levels). All factors were fully crossed to yield 48 design cells. Table 7 presents the effect 

size (as measured by partial η2) for each effect on the realized values.  
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Table 7 
 
Values of Partial η2 for each Effect on the Realized Values for Discrepancy Functions of 

Absolute Fit when the Marginal and Conditional Mean Structures were Underspecified 

 Conditional Marginal  
Effect CCC R2 SGDDM CCC R2 SGDDM LR 
DS < .001 < .001 .002 < .001 < .001 .002 < .001 
N < .001 .001 .004 < .001 < .001 < .001 .019 
QM .165 .218 .497 .218 .195 < .001 .139 
QV < .001 < .001 .305 .013 .018 .057 .015 
RV .049 .070 .007 .002 .003 .158 .001 
N × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM < .001 < .001 .003 < .001 < .001 < .001 .443 
N × QV < .001 < .001 .003 < .001 < .001 < .001 .076 
N × RV < .001 < .001 < .001 < .001 < .001 < .001 .007 
QM × DS < .001 < .001 .002 < .001 < .001 < .001 < .001 
QM × QV .009 .014 .231 .005 .008 < .001 .007 
QM × RV .007 .002 .169 .002 .002 < .001 .028 
QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QV × RV .002 .003 .110 < .001 < .001 .007 .004 
RV × DS < .001 .001 < .001 < .001 < .001 < .001 < .001 
N × QM × DS < .001 < .001 < .001 < .001 < .001 < .001 .003 
N × QM × QV < .001 < .001 .003 < .001 < .001 < .001 .053 
N × QM × RV .002 .002 < .001 < .001 < .001 < .001 .140 
N × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QV × RV < .001 < .001 < .001 < .001 < .001 < .001 .025 
N × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × RV .002 < .001 .093 < .001 < .001 < .001 .002 
QM × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV × DS < .001 < .001 < .001 .001 < .001 < .001 .002 
N × QM × QV × RV .001 .001 .001 < .001 < .001 < .001 .024 
N × QM × RV × DS .002 .002 < .001 < .001 < .001 < .001 .001 
N × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
QM × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 < .001 
N × QM × QV × RV × DS < .001 < .001 < .001 < .001 < .001 < .001 .002 
Note. DS = distribution shape, N = sample size, QM = quadratic mean strength, RV = 
residual variance.  
 

Excepting to the SGDDMC and LR, interactive effects had little bearing on the 

behavior of the discrepancy functions when the marginal and conditional mean structures 

were both underspecified. Despite the presence of interactive effects, the patterns in the 
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realized values of the LR were similar to the situation in which only the marginal mean 

structure was underspecified, and accordingly, are not further discussed here. The CCC 

and R2 functions (both marginal and conditional) were impacted by the strength of the 

quadratic mean such that realized values became smaller (i.e., reflecting greater 

underspecification of the functional form), on average, with increasing strength of the 

quadratic effect. The average realized values of the CCCC, 𝑅!!, and SGDDMM functions 

were impacted and became smaller with increased residual variation. However, unlike the 

CCCC and 𝑅!!, decreasing realized values of the SGDDMM are indicative of better fit 

between the data and the model.   

 A three-way interaction involving the strength of the quadratic mean, size of the 

quadratic variance, and size of the residual variance influenced the realized values of the 

SGDDMC. Figure 12 displays the mean realized values of the SGDDMC for each 

combination of these three factors. Within panels, the mean realized values of the 

SGDDMC (shown along the vertical axis) for each level of the residual variance factor 

(gray and black bars represent the small and large residual variance conditions, 

respectively) are plotted against the strength of the quadratic mean (shown as increasing 

from left to right along the horizontal axis). The impact of increasing the size of the 

quadratic variance is seen moving from left to right across panels.  
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 Strength of the Quadratic Mean 
Figure 12. Interaction effect between strength of the quadratic mean, the size of the 
quadratic variance, and the size of the residual variance on the realized values of the 
SGDDMC when the data analysis model underspecifies the functional form of the 
marginal and conditional mean structures.   
 

Looking within panels, it is clear that increasing the strength of the quadratic 

mean resulted in larger realized values of the SGDDMC, on average, irrespective of the 

amount of residual variation in the observed measures or the size of the quadratic 

variance. Looking across panels, increasing the size of the quadratic variance resulted in 

an increased realized values of the SGDDMC, on average.  In combining these two 

factors, the realized values of the SGDDMC were (a) more strongly impacted by the 

strength of the quadratic mean when the quadratic variance was small and (b) more 
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strongly impacted by the size of the quadratic variance when the quadratic mean was 

small. Although these patterns generally held across the levels of the residual variance, 

increasing the size of the quadratic variance had a smaller impact in the presence of a 

large quadratic effect when the residual variance was large. 

Distribution of PPP-Values for Absolute Measures 

 For the purposes of the current work, evaluating the realized values allows for 

comparing and contrasting the results to prior research. However, the results of a PPMC 

analysis are often summarized by PPP-values, which are determined by comparing the 

realized and posterior predictive values of a discrepancy function. Using graphical 

representations, this section presents the marginal distributions of PPP-values for each of 

the discrepancy functions designed to evaluate absolute model fit. Key attention is given 

to the relationship between the behavior of the PPP-values across the different 

relationships between the data analysis and generation models.  

Figure 13 displays the marginal density of PPP-values for the conditional and 

marginal versions of the CCC, R2, and the SGDDMC for different relationships between 

the data generation and analysis models. Owing to the presence of particularly 

concentrated densities that rendered the shape of the PPP-values distributions for other 

functions unclear, the densities of PPP-values for the SGDDMM and LR are plotted 

separately in in Figures 14 and 15, respectively. Since it was necessary to separate the 

results for the functions, the description of results follows the presentation of each of 

these figures.  

Figure 13 consists of 20 panels organized into a 4 × 5 matrix. Each row represents 

one of the four possible relationships between the data generation and analysis models: 
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matched, underspecified functional form of the marginal mean structure, underspecified 

functional form of the conditional mean structure, and underspecified form of the 

marginal and conditional mean structures. The columns represent the six discrepancy 

functions of interest. The first three columns show the results for the conditional versions 

of the CCC, R2, and SGDDM; the last two columns show the results for the CCCM and 

𝑅!! . Looking within panels, the relative likelihood (i.e., density) of each PPP-value is 

shown, and accordingly, reflects the distribution of PPP-values.  

 
PPP-Value 

Figure 13. Plots of the marginal (i.e., over all manipulated factors) densities for the 
conditional and marginal versions of the CCC, R2, and SGDDMC discrepancy functions 
for different associations between the data generation and analysis models. 
  



 88 

 
PPP-Value 

Figure 14. Plots of the marginal (i.e., over all manipulated factors) densities for the 
SGDDMM discrepancy functions for different associations between the data generation 
and analysis models.  
 

Figures 14 and 15 display the densities of PPP-values for the SGDDMM and LR, 

respectively. These figures are organized into a 2 × 2 matrix such that each panel 

represents one of the four relationships between the data generation and analysis models. 

The top left panel displays the results for all situations in which the data generation and 

analysis models were aligned. All other panels show the results given some 

underspecification of the data analysis model in relationship to the process used to 

generate data.  
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PPP-Value 

Figure 15. Plots of the marginal (i.e., over all manipulated factors) densities for the LR 
discrepancy functions for different associations between the data generation and analysis 
models.   
 

Match Between Data Generation and Analysis Models. Focusing on the first 

row in Figure 13 and the upper left panels in Figures 14 and 15, which shows results for 

the situation in which the data generation and analysis models were aligned, it is desired 

for PPP-values to be uniformly distributed (Hjort & Dahl, 2006). Although the PPP 

values for the SGDDMC were unlikely to be higher than .75 in null situations, the 

distribution was quite uniform for smaller PPP-values.  

 In null situations, the mass of the distributions of PPP-values for the conditional 

CCC and R2 functions (first two columns in the top row of Figure 13), marginal CCC and 
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R2 functions (last two columns top row of Figure 13), and SGDDMM (upper left panel in 

Figure 14) were centered around 0.50. Although the distributions of PPP-values for these 

functions were not uniform, the location of the distributional mass indicates that these 

functions are quite unlikely to detect misspecification when the data generation and 

analysis models are in fact aligned. In contrast to the other measures of absolute fit, the 

mass of the PPP-values for the LR (upper left panel in Figure 15) is more concentrated at 

lower PPP-values. This finding suggests that the LR may exhibit a tendency to indicate 

model inadequacy when the analysis model is actually aligned with the process used to 

generate the data.  

 Underspecification of the Marginal Mean Structure. When the marginal mean 

structure was underspecified, the distributions of PPP-values of the CCCC and 𝑅!! (second 

row in the first two columns of Figure 13) were tightly centered around 0.50; this finding 

suggests that these functions are quite unlikely to detect underspecification of the 

marginal mean structure. In contrast, the masses of the distributions for the SGDDMC 

(second row in the third column of Figure 13), SGDDMM (upper right quadrant in Figure 

14), and LR (upper right quadrant in Figure 15) were clustered at the lower end of the 

PPP-scale. However, the tail of the distributions of PPP-values for the SGDDM functions 

was thicker than that of the LR, particularly the SGDDMM, which had a secondary mode. 

Further analyses revealed that the additional thickness in the tails of the SGDDM 

functions corresponded to the manipulation of the quadratic mean strength; the higher 

peak for the SGDDMM is associated with data generated with a stronger quadratic mean, 

and the tails are largely comprised of the PPP-values associated the conditions generated 

with a weaker quadratic mean. As evidenced by very distinctive peaks, a similar and 
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much stronger effect of increasing the quadratic mean was observed for the CCCM and 

𝑅!!  (second row in the last two columns of Figure 13) when the marginal mean structure 

was underspecified.   

 Underspecified Conditional Mean Structure.  Given the situation of an 

underspecified conditional mean structure, the mass of the distribution of PPP-values for 

the CCCC and 𝑅!! (third row in the first two columns of Figure 13) were centered around 

0.50. Although the distribution was less peaked than their respective conditional 

counterparts, the distributions of PPP-values of the CCCM and 𝑅!!  (third row in the last 

two columns of Figure 13) were similarly located. In stark contrast to the CCC and R2 

functions, the distributions of PPP-values for the SGDDMC (third column in the third row 

of Figure 13), SGDDMM (bottom left quadrant of Figure 14), and the LR (bottom left 

quadrant of Figure 15) were clustered at lower PPP-values, particularly those consistent 

with underspecification of the data analysis model.  

 Underspecified Marginal and Conditional Mean Structures. Excepting to the 

SGDDMM, the distributions of PPP-values when the conditional and marginal mean 

structures were underspecified are consistent with those described when only the latter 

mean structure was underspecified. In the case of the SGDDMM, the distribution of PPP-

values when either one of the mean structures was underspecified exhibited 

multimodality such that (a) the mass of the highest peak was closer to zero and (b) the 

mass of the smaller peak was closer to 0.50. This multimodality was no longer present in 

the distribution of PPP-values for the SGDDMM when both mean structures were 

underspecified. Rather, the distribution was more tightly clustered closer to PPP-values 
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of zero, and accordingly was quite sensitive to the joint underspecification of both mean 

structures.  

Proportion of Extreme PPP-Values for Measures of Absolute Fit 

As mentioned above, PPP-values summarize the results of a PPMC analysis for a 

given discrepancy function. In applied settings, a decision about the adequacy of the 

model is sometimes made on the basis of the PPP-value, which often involves appealing 

to some criterion that results in labeling the PPP-value as extreme or not extreme. Using 

the criterion described above for each discrepancy function, this section presents the 

proportion of extreme values across relevant design factors in both null and non-null 

situations. For null situations, the proportion of extreme PPP-values can be thought of as 

an empirical Type I error rate. For non-null situations, the proportion of extreme PPP-

values can be thought as an empirical estimate of power.  

Figures 16 to 21 display the proportions of extreme PPP-values for each of the 

discrepancy functions of absolute fit across the manipulated variables in the simulation 

design. The key difference across the figures is the relationship between the data 

generation and analysis models. Although some structural differences among the figures 

are dependent on the features that were used to generate data (explained in greater detail 

below), the within-panel structure is shared across the figures. For each figure, the 

within-panel structure is such that the proportion of extreme PPP-values is plotted against 

sample size. The three levels of sample size are represented by the midpoints of the 

respective random uniform distributions that were used to draw values.  

Each line within panels corresponds to one of the seven discrepancy functions of 

absolute fit. Blue, red, and green lines represent the CCC, R2, and SGDDM functions, 
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respectively. Solid and empty markers respectively represent the conditional and 

marginal versions of these functions. Finally, the black line represents the LR with empty 

markers. Owing to highly similar performances among discrepancy functions in some 

cases, a value was drawn from a random uniform distribution with a range of -0.035 to 

0.035 and added to the observed result. The pattern of results as they appear a below are 

consistent with the results without jittering and allow the lines for similarly performing 

functions to be distinguished. 

Match Between Data Analysis and Data Generation Model. Figures 16 

through 18 show the proportion of extreme PPP-values for the three situations in which 

the data generation and analysis models were aligned. From the NHST perspective, the 

results shown in this section are analogous to Type I error rates. Owing to the similarity 

of the results across the three types of data generation models for null situations, a 

summary of the key patterns follow the presentation of all results for the proportion of 

extreme PPP-values. Figure 16 displays the results for data generated to follow a linear 

GCM. The effect of increasing the amount of residual variation is seen moving from left 

to right. The results for normally distributed outcomes are shown in the first row; and the 

analogous results for non-normally distributed outcomes are shown in the second row.  
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Figure 16. Proportion of extreme PPP-values for data generated and analyzed as a growth 
curve model with a linear functional form. 
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Figure 17. Proportion of extreme PPP-values for data generated and analyzed as a growth 
curve model with a quadratic functional form that was equal across individuals.  
 

Figure 17 displays the proportion of PPP-values for all absolute measures of data-

model fit for data generated and analyzed by a GCM with quadratic functional form that 

did not vary across individuals. The effect of increasing residual variation is observed 

looking from left to right. The top (bottom) two rows show the results for data generated 

with normally distributed (non-normal) outcomes. Holding the shape of the distribution 
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constant (i.e., normal, non-normal), the impact of increasing the strength of the quadratic 

effect is observed looking down a column. 
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Figure 18. Proportion of extreme PPP-values for data generated and analyzed as a growth 
curve model with a quadratic functional form that varied across individuals.  
 
 Figure 18 show the proportion of extreme PPP-values for all absolute measures of 

data-model fit for data generated and analyzed by a GCM in which the strength of 

quadratic effect varied across individuals. Each column represents one of the four 
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combinations that result from crossing the levels of the residual and quadratic variance 

sizes. The results for data generated with a small (large) residual variance are shown in 

the two columns shown on the left (right). Looking within either level associated with the 

size of the residual variance, the effect of increasing the size of the quadratic variance is 

observed moving from left to right. The rows represent one of the four combinations that 

result from crossing the strength of the quadratic mean and the shape of the distribution. 

The top (bottom) two rows show the results for data generated with normally distributed 

(non-normal) outcomes. Holding the shape of the distribution constant (i.e., normal, non-

normal), the impact of increasing the strength of the quadratic effect is observed looking 

down a column. 

  Drawing from the NHST perspective, the discrepancy functions would ideally 

reject the model about 5% of the time given a cutoff of .05 for declaring a PPP-value as 

extreme when the data generation and analysis models are aligned. Irrespective of the 

type of data generation model, the proportions of extreme PPP-values were consistently 

low and even conservative for the CCC (both conditional and marginal), R2 (both 

conditional and marginal), and the SGDDMM. The same was also true for the SGDDMC 

and LR for data generated from a normal distribution. However, for these latter two 

functions, the proportions of extreme PPP-values were larger than the ideal of 5% for 

data generated from a non-normal distribution. With proportions of extreme PPP-values 

generally hovering close to 0.50, this was particularly true for the LR. Interestingly, the 

proportions of extreme PPP-values for the LR were close 0.50 for data generated with a 

small quadratic variance even for normally distributed data.  
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 Underspecified Marginal Mean Structure. Figure 19 displays the proportion of 

extreme PPP-values when the marginal mean structure was underspecified. Although the 

structure of the figure matches that of Figure 17, the proportions are based on fitting a 

linear GCM to data that followed a GCM with a quadratic effect but no quadratic 

variance. Given this relationship between the data generation and analysis models, the 

proportion of extreme PPP-values would ideally by close to one. From NHST 

perspective, such a result is reflective of high power to detect model inadequacy when it 

is present. 
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Figure 19. Proportion of extreme PPP-values for data generated by a growth curve model 
with a quadratic of equal strength across individuals but analyzed as a growth curve 
model with a linear functional form.  
 
 With proportions of extreme PPP-values consistently close to zero, neither the 

conditional nor marginal versions of the CCC and R2 (blue and red lines, respectively) 

functions exhibited sensitivity to the underspecification of the marginal mean structure. 

With one exception, the proportions of extreme PPP-values for the LR (black line) were 

consistently at or close to one. Although still quiet reflective of being sensitive to the 
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underspecified marginal mean structure, the proportion of extreme PPP-values for the LR 

decreased somewhat with (a) the smallest sample size, (b) a small quadratic mean, and (c) 

a large residual variance for data generated with a normal distribution.  

 With proportions of extreme PPP-values at or close to one, the SGDDM functions 

(both conditional and marginal) were consistently sensitive to the underspecified 

marginal mean structure with a strong quadratic mean (see the green lines in the second 

and fourth rows). However, the performance of these functions deteriorated when the 

quadratic mean was small (green lines in the first and third rows), particularly when the 

residual variance was large (second column). Given a small residual variance, the 

proportions of extreme PPP-values for these functions increased with sample size. 

Notably, given a small quadratic mean irrespective of the size of the amount of residual 

variation, the proportion of extreme PPP-values for the SGDDMC were also larger for 

non-normal rather than normally distributed data.  

Underspecified Conditional Mean Structure. Figure 20 (see below) displays 

the proportion of extreme PPP-values when the marginal mean structure was adequately 

specified but the conditional mean structure was underspecified. In the context of the 

current work, this involved applying a GCM with a quadratic effect that does not exhibit 

between-person variation to data from a GCM in which the quadratic effect that does 

exhibit between-person variation. Given the relationship between the data generation and 

analysis models, ideal performance depends on the characteristic of the model targeted by 

the discrepancy function. Among functions that target the marginal mean structure, low 

proportions of extreme PPP-values would be ideal since the marginal mean structure of 

the data analysis model is aligned with that of the data generation model. However, since 
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high proportions may reflect indirect manifestations of the underspecified conditional 

mean structure or even some other as yet unaccounted for source of misfit, there is 

hesitation to refer to the proportion of extreme PPP-values for marginal functions as Type 

I error rates. In contrast, the proportions of extreme PPP-values would ideally be high for 

functions that target the conditional mean structure when the data analysis model fails to 

capture between-personal variation in the function form of growth. Accordingly, the 

proportion of extreme PPP-values for the conditional functions can be viewed as 

estimates of power. Notably, misfit of the conditional mean structure hypothetically 

should have no bearing on the fit of the marginal mean structure (Wu et al., 2009; Wu & 

West, 2013). As the intent of having conditional and marginal versions of discrepancy is 

to separate sources of misfit that arise from the two mean structures, it is of interest 

whether the ideals described above are realized as this would reflect a capacity to 

disentangle misfit in the conditional mean structure from that of the marginal mean 

structure.  
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Figure 20. Proportion of extreme PPP-values for data generated as a growth curve model 
with a quadratic functional form that varied across individuals but analyzed by a growth 
curve model with a quadratic functional form assumed equal across individuals.  
 
 Consistent with the ideal described above for the CCCM and 𝑅!! , the proportions 

of extreme PPP-values were low and even conservative across all conditions in which the 

conditional mean structure was underspecified. Unfortunately, and inconsistent with ideal 

performance for separating sources of misfit between mean structures, the same was also 

true for the CCCC and 𝑅!!. The performances of the other discrepancy functions of 
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absolute fit was largely driven by (a) the size of the quadratic variance, (b) sample size, 

and (c) the shape of the distribution of observed variables. Given a large quadratic 

variance, the proportion of PPP-values for the LR and the SGDDM functions (both 

conditional and marginal) were at or close to one. For each of these functions, reducing 

the size of the quadratic variance resulted in lower proportions of extreme PPP-values. 

Decreasing the amount of quadratic variation had a smaller impact on the proportion of 

extreme PPP-values when the residual variance was small rather than large. Given a 

small residual variance, the loss in the proportion of extreme PPP-values was offset with 

increased sample size, particularly for the SGDDM functions, as they were not subject to 

ceiling effects. Given a large residual variance, decreasing the amount of quadratic 

variance had larger effect on the proportion of extreme PPP-values. The effect was 

stronger on the performance of the SGDDM functions than for the LR. Notably, the 

decrease in the proportion of extreme PPP-values for the SGDDMC and LR was smaller 

for non-normal data than for normally distributed data.  

 Underspecified Marginal and Conditional Mean Structure. Figure 21 displays 

the proportion of extreme PPP-values when the marginal and conditional mean structures 

were both underspecified. In the context of the current work, this involved applying a 

linear GCM to a GCM in which the quadratic effect that exhibits between-person 

variation. For this relationship between the data analysis and generation models, the 

proportions of extreme PPP-values would ideally approach one for all discrepancy 

functions.  
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Figure 21. Proportion of extreme PPP-values for data generated as a growth curve model 
with a quadratic functional form that varied across individuals but analyzed by a growth 
curve model with a linear functional form.  
 
 With proportions of extreme PPP-values consistently close or equal to zero, the 

CCC and R2 functions (both conditional and marginal) were not sensitive to the joint 

underspecification of the conditional and marginal mean structures. In stark contrast, the 

LR was quite sensitive with proportions of extreme PPP-values at or close to one in 

almost all conditions. Although the performance of the LR was still strong, performance 
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was found to deteriorate slightly in conditions generated with (a) the smallest sample 

size, (b) a small quadratic mean, (c) a small quadratic variance, and (d) a large residual 

variance.  

Given a large quadratic mean and/or quadratic variance, the proportions of 

extreme PPP-values for the SGDDM (both conditional and marginal) were at or close to 

one. Decreasing the size of the quadratic mean and/or quadratic variance resulted in 

smaller proportions of extreme PPP-values, particularly for data generated with a large 

residual variance. Notably, increased sample size served to offset the loss in the 

proportion of extreme PPP-values when the residual variance was small.  

ANOVA Results for Realized Values of the LRT 

 As was done for measures of absolute fit, a series of ANOVA models were 

conducted to evaluate the impact of factors in the simulation design on the realized values 

of the LRT, the only measure of relative fit. Owing to the number of observations within 

cells, the outcome of interest was the effect sizes (as measured by partial η2) of factors in 

the ANOVA design. The effect sizes served to identify the strongest effects on the 

realized values of the LRT, which were in turn used to identify effects to be explored 

graphically. The presentation of results for the LRT differs from the presentation of 

results for absolute measures. The focus of the latter was on the particular relationships 

between data generation and analysis models. For the LRT, the results pertaining to each 

model comparison (i.e., M1 v. M2 and M2 v. M3) are presented for each of the three 

types of data analysis models. As a reminder, M1 represents a linear GCM; M2 

represents a GCM with a quadratic effect of equal strength across individuals; and M3 

represents a GCM with quadratic effect that varies in strength across individuals.  
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 Linear GCM Model. Table 8 displays the effect sizes for factor in the ANOVA 

design for data generated to follow a GCM with a linear functional form. The factors in 

the ANOVA model consisted of sample size (denoted N, 3 levels), the size of the residual 

variance (denoted RV, 2 levels), and the shape of the distribution of outcomes (denoted 

DS, 2 levels). All factors were full crossed to yield 12 cells in the ANOVA design. 

Separate analyses were conducted for the realized values of the LRT associated with the 

two model comparisons.  

Table 8 

Effect Sizes of Each Effect on the Realized Values for the LRT for Data Generated to 

Follow a Linear Growth Curve Model (GCM) 

 Model Comparison 

Effect 

Linear (M1) 
v. 

Equal Quadratic (M2) 

Equal Quadratic (M2) 
v. 

Varying Quadratic (M3) 
DS < .001 .005 
N < .001 .074 
RV < .001 .093 
N × DS < .001 .002 
RV × DS < .001 .010 
N × RV < .001 .001 
N × RV × DS < .001 < .001 
Note. DS = distribution shape, N = sample size, RV = residual variance.  

 For data generated to follow a linear GCM model, none of the factors had 

meaningful bearing on the realized values of the LRT when comparing M1 to M2. In 

contrast, the realized values of the LRT when comparing M2 to M3 were impacted by (a) 

the main effect of sample size and (b) the main effect of the residual variance size. The 

realized values for both comparisons (M1 v M2 is represented by gray bars, M2 v. M3 is 

represented by black bars) are plotted against sample size (shown along the horizontal 



 107 

axis) for each level of the residual variance (shown as increasing from left to right across 

panels).  
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Figure 22. Plot of the interaction between sample size and the size of the residual 
variance on the mean realized values of the LRT for data generated to follow a linear 
GCM. 
 
 For the comparison between M1 and M2, the average realized values of the LRT 

were not impacted by sample size, the size of the residual variance, or the interplay 

between these two factors. Despite the relatively small size, the striking result was the 
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nature of the effects of sample size and the size of the residual variance for the 

comparison between M2 and M3, particularly for data generated with a small residual 

variance; as seen in Figure 22 the average realized values were negative. Although not 

shown below, the LRT was found to exhibit similar behavior for null comparisons 

involving the more complicated models considered in this work. As discussed more in the 

subsequent chapter, this finding was particularly surprising and clearly has implications 

for the use of the LRT within the PPMC framework. 

 GCM with Equal Strength of the Quadratic Mean Across Cases. Table 9 

shows the effect sizes for each effect in the ANOVA design for data generated to follow a 

GCM with a quadratic functional form that was equivalent in strength for all individuals. 

The factors in the ANOVA model included sample size (3 levels), the strength of the 

quadratic mean (denoted QM, 2 levels), the size of the residual variance (2 levels), and 

the shape of the distribution for the observed variables (2 levels). All factors were full 

crossed to yield 24 cells in the ANOVA design. Separate analyses were conducted for the 

two model comparisons.  

When comparing the realized values of the LRT for M1 and M2, a three-way 

interaction was found between the strength of the quadratic mean, sample size, and the 

size of the residual variance. This effect trumped a two-way interaction between the 

strength of the quadratic mean and sample size and the main effect of the quadratic 

strength. Excepting to small main effects of sample size and the size of the residual 

variance, the factors manipulated in the simulation had virtually no impact on the realized 

of the LRT when comparing the fit of M2 to that of M3. However, consistent with the 

null findings presented for the linear model, negative values were evidenced. 
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Table 9 

Effect Sizes of Each Effect on the Realized Values for the LRT for Data Generated to 

Follow a Growth Curve Model (GCM) with an Equal Quadratic From Across Cases 

 Model Comparison 

Effect 

Linear (M1) 
v. 

Equal Quadratic (M2) 

Equal Quadratic (M2) 
v. 

Varying Quadratic (M3) 
DS < .001 .003 
N .030 .047 
QM .262 < .001 
RV .002 .042 
N × DS < .001 < .001 
N × QM .620 < .001 
N × RV .010 .009 
QM × DS < .001 < .001 
QM × RV .070 < .001 
RV × DS < .001 < .001 
N × QM × DS .002 < .001 
N × QM × RV .245 < .001 
N × RV × DS < .001 < .001 
QM × RV × DS < .001 < .001 
N × QM × RV × DS < .001 < .001 
Note. DS = distribution shape, N = sample size, QM = quadratic mean, RV = residual 
variance. 
 
 Figure 23 displays the average realized values of the LRT involving the 

comparison between M1 and M2 for each combination of the levels associated with 

sample size (moving from left to right within panels), the strength of the quadratic effect 

(small and large quadratic effects are represented by gray and black bars, respectively), 

and the size of the residual variance (shown as increasing from left to right across 

panels). For simplicity, the midpoints of the random uniform distributions for drawing 

values of sample size serve as the labels of sample size. The realized values of the LRT 

were found to increase with increasing sample size, increasing strength of the quadratic 

mean, and smaller residual variance. The nature of the interaction between these three 
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factors was such that increasing the strength of the quadratic mean enhanced the impact 

of sample size but increasing the size of the residual variance hindered this combined 

effect.  
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Figure 23. Plot of the interaction between sample size, the strength of the quadratic 
mean, and the size of the residual variance on the mean realized values of the LRT when 
comparing M1 and M2 for data generated to follow a GCM with a quadratic effect that is 
identical across individuals. 
 
  GCM with Varying Strength of the Quadratic Mean Across Cases. Table 10 

displays the effect sizes for each effect in the ANOVA design for data generated to 

follow GCM generated with a quadratic functional form that varied in strength across 
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individuals. The ANOVA design consisted of five factors including sample size (3 

levels), the strength of the quadratic mean (2 levels), the size of the quadratic variance 

(denoted QV, 2 levels), the size of the residual variance (2 levels), and the shape of the 

distribution (2 levels). All factors were fully crossed to yield 48 cells in the ANOVA 

design. Separate analyses were conducted for the realized values associated with each 

model comparison of interest (i.e., M1 v. M2 and M2 v. M3).  

Focusing first on the comparison between M1 and M2, the key effects on the 

realized values of the LRT included the strength of quadratic mean, a two-way interaction 

between sample size and the strength of the quadratic mean, and a three-way interaction 

involving these two factors and the size of the residual variance. Turning to the 

comparison between M2 and M3, a similar pattern of effects on the LRT was found 

involving the size of the quadratic variance rather than the strength of the quadratic mean. 

Unlike the prior two types of generation models, the realized values of the LRT were not 

tied to a null comparison. Notably, the behavior of the LRT mirrors that displayed in 

Figure 23, which shows the three-way interaction between the same factors for data that 

follow a GCM with a quadratic effect that did not vary across people. The pattern of 

results held for the three-way interaction between sample size, the strength of the 

quadratic mean (variance), and the realized values of the LRT for the comparison between 

M1 (M2) and M2 (M3). Given the similarity of the results, these effects were not plotted 

below.   
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Table 10 

Effect Sizes of Each Effect on the Realized Values for the LRT for Data Generated to 

Follow a Growth Curve Model (GCM) with a Quadratic From that Varied Across Cases 

 Model Comparison 

Effect 

Linear (M1) 
v. 

Equal Quadratic (M2) 

Equal Quadratic (M2) 
v. 

Varying Quadratic (M3) 
DS < .001 < .001 
N .022 .001 
QM .187 < .001 
QV < .001 .099 
RV .001 < .001 
N × DS < .001 < .001 
N × QM .525 < .001 
N × QV .003 .368 
N × RV .008 < .001 
QM × DS < .001 < .001 
QM × QV .011 < .001 
QM × RV .040 < .001 
QV × DS < .001 < .001 
QV × RV < .001 .032 
RV × DS < .001 < .001 
N × QM × DS .003 < .001 
N × QM × QV .057 .005 
N × QM × RV .185 < .001 
N × QV × DS < .001 .008 
N × QV × RV .001 .159 
N × RV × DS < .001 < .001 
QM × QV × DS < .001 < .001 
QM × QV × RV .003 < .001 
QM × RV × DS < .001 < .001 
QV × RV × DS < .001 < .001 
N × QM × QV × DS < .001 .003 
N × QM × QV × RV .025 .003 
N × QM × RV × DS .001 < .001 
N × QV × RV × DS < .001 .004 
QM × QV × RV × DS < .001 < .001 
N × QM × QV × RV × DS < .001 .002 
Note. DS = distribution shape, N = sample size, QM = quadratic mean strength, QV = 
quadratic variance, RV = residual variance.  
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Distribution of PPP-Values for the LRT 

 Figure 24 displays the marginal density (shown along the vertical axis) 

distribution of PPP-values (shown along the horizontal axis) for the LRT. The two 

columns represent the model comparisons. As a reminder, for a given trial within a 

condition, the -2 log likelihoods for a given model comparison were based on using the 

posterior distributions of model parameters for the two models being compared and the 

collection of posterior predictive datasets associated with the more restrictive model. The 

rows correspond to the three data generation models. The desired result is for PPP-values 

to be uniformly distributed when either (a) the more restricted model sufficiently captures 

growth process or (b) two models being compared both represent a case of overfitting. 

When the less restricted model provides better fit to the observed data than the more 

restricted model, PPP-values would ideally be concentrated towards the lower extreme of 

the PPP-value scale.  

 In the case of data generated to follow a linear GCM (the top row), the two model 

comparisons both represent null comparisons. The PPP-values for the comparison 

between M1 (i.e., linear GCM) and M2 (i.e., equal quadratic) were concentrated at the 

middle of the PPP-value scale. This finding indicates that the LRT is unlikely to point the 

analyst to selecting a model with a non-varying quadratic relationship with the passage 

time over a linear model when the actually follow the latter. A different picture emerges 

for the comparison between M2 and M3 (i.e., varying quadratic). For this model 

comparison, the distribution of PPP-values was peaked at low values and then gradually 

tapered off throughout the PPP-value range; this finding suggests that the LRT may favor 
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a model with a varying quadratic effect over a model with a non-varying quadratic effect 

for data that follow a linear GCM.   
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Figure 24. Plots of the marginal (i.e., over all manipulated factors) densities for the PPP-
values of the LRT for different associations between the data generation and analysis 
models.  
 



 115 

 The second row displays the results for data generated to follow a GCM in which 

the quadratic effect was equal across individuals. Consistent with the desired result, the 

distribution of PPP-values was heavily concentrated at the lower boundary of the PPP-

value scale. This finding suggests that LRT is quite likely to favor the quadratic GCM 

(M2) over the linear GCM (M1); this is a desirable result since the former GCM 

represents the data generation model. The peak of the distribution of PPP-values for the 

comparison between a quadratic growth curve models with (M2) and without (M3) was 

located at the lower boundary of the PPP-value scale. As was the case for data generated 

under linear GCM, the tail of the distribution gradually tapered off throughout the 

remaining range of the PPP-value.  

 The third row displays the results for data generated to follow GCM in which the 

quadratic effect varied across individuals.  As evidenced by distributions that were 

heavily concentrated at the lower bound of the PPP-value scale, (a) a GCM with a 

quadratic effect equivalent in strength across individuals was likely to be favored over a 

linear GCM and (b) a GCM with a varying quadratic effect was likely to be favored over 

a GCM in which the quadratic effect was assumed equal across individuals.  

Proportion of Extreme PPP-Values for the LRT 

 In this section, the proportions of extreme PPP-values of the LRT are graphically 

summarized across all conditions in the simulation design. Each figure presented in this 

section corresponds to one of the three models used to generate data. Although there are 

some differences in the general organization of the figures (described in greater detail 

below), the within-panel structure is consistent. For each panel, the proportions of 

extreme PPP-values (defined as a PPP-value ≤ .05) are plotted against the three levels of 



 116 

sample size. Each level of sample size is represented by the midpoint between the 

minimum and maximum values of the random uniform distribution used to draw values 

of sample size. Two bars are displayed within each level of sample size. The red bar 

represents the comparison between M1 (linear GCM) and M2 (GCM with equal quadratic 

effect); the reference distribution was based on computing the LRT using posterior 

predictive data consistent M1. The blue bar represents the comparison between M2 and 

M3; the reference distribution was based on computing the LRT using posterior predictive 

data consistent with M2. The remaining features of the figures were dependent on the 

characteristics governed the generation of data. 

 Linear GCM. Figure 25 displays the proportion of extreme PPP-values for data 

that follow a linear GCM. The figure is organized as a 2 × 2 matrix such that (a) the 

effect of departing from normality is seen looking down a column and (b) the effect of 

increasing the amount of residual variation is within rows. Looking across all conditions, 

the proportions of extreme PPP-values were generally conservative when comparing M1 

to M2 (red bars). In contrast, the proportions of extreme PPP-values were higher when 

comparing M2 and M3 (blue bars). Given a small residual variance (first column), the 

proportions were higher for non-normal data (bottom row) than those observed for 

normally distributed (top row) data.  
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Figure 25. Proportion of extreme PPP-values for data generated as a linear growth curve 
model.  
 
 Non-Varying Quadratic GCM. Figure 26 displays the proportion of extreme 

PPP-values for data generated to follow GCM with quadratic effect that was equal across 

individuals. The figure is organized as a 2 × 4 matrix in which (a) rows represent the 

levels of distribution shape and (b) columns represent one of four combinations that 

result from crossing the size of the residual variance and the strength of the quadratic 
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mean. Conditions generated with small (large) residual variance are shown in the first and 

second (third and fourth) columns. The levels of the quadratic strength are shown as 

increasing within the levels of the residual variance.  
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Figure 26. Proportion of extreme PPP-values for data generated as a growth curve model 
with a quadratic functional form that was identical across individuals.  
 
 In general, the proportions of extreme PPP-values for the LRT were at (or close 

to) one for data generated when comparing M1 and M2 (red bars).  Although the 
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proportion of extreme PPP-values was still quite high, the proportions declined somewhat 

for data generated with (a) about 250 individuals, (b) a small quadratic mean, and (c) 

large residual variance. When comparing M2 and M3 (blue bars), the proportion of PPP-

values were relatively low compared to those observed for the comparisons between M1 

and M2. However, for the comparisons between M2 and M3, PPP-values were observed 

to increase for data generated with non-normal outcomes compared to data generated 

with normally distributed outcomes. 

 Varying Quadratic GCM. Figure 27 displays the proportion of extreme PPP-

values for data generated to follow GCM with quadratic effect that varied across 

individuals. The figure is organized as a 4 × 4 matrix. The rows represent the four 

combinations that result from crossing the shape of the distribution and the strength of the 

quadratic mean. The top (bottom) two rows represent conditions generated with a small 

(large) quadratic mean. The impact of departing from normality is seen looking down a 

column within the levels associated with the strength of the quadratic mean. The columns 

represent the four combinations that result from crossing the size of the quadratic 

variance and the size of the residual variance. The first and second (third and fourth) two 

rows represent conditions generated with a small (large) quadratic variance. The levels of 

the residual variance are shown as increasing within the levels of the quadratic variance. 
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Figure 27. Proportion of extreme PPP-values for data generated as a growth curve model 
with a quadratic functional form that varied across individuals.  
 
 In general, the proportions of extreme PPP-values were high for both model 

comparisons. As observed when the quadratic effect was equal across individuals, the 

proportions of extreme PPP-values associated with the comparison between M1 and M2 

(red bars) were lowest for data generated with a small quadratic mean and a large residual 

variance (top two rows in the second and fourth columns). Given these same 
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characteristics, increasing the size of the quadratic variance also reduced the proportions 

(moving from the first to the second row). Although proportions were consistently high 

when comparing M2 and M3 (blue bars), the loss in performance for conditions with a 

small quadratic variance and a large residual variance (second column) were offset with 

increased sample size.  
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Chapter 5: Discussion 

Although modern approaches to GCM were developed more than 30 years ago 

(e.g., Baker, 1954; Meredith & Tisak, 1990), methodological research pertaining to 

model criticism for GCM has only recently emerged (Coffman & Millsap, 2006; Leite & 

Stapleton, 2011; Wu et al., 2009; West & Wu, 2010; Wu & West, 2013). The current 

work builds upon this growing body of research by investigating the performance of 

several discrepancy functions with PPMC as the foundation for model criticism. 

Moreover, this research has implications for applications beyond GCM that extend to the 

broader modeling frameworks of MLM and factor analytic models that include a mean 

structure.  

 The purpose of this study was to investigate the performance of several 

discrepancy functions for critiquing the fit of growth curve models with PPMC as the 

framework for model criticism. Many of the discrepancy functions considered in the 

study—namely the CCC (both conditional and marginal), R2 (both conditional and 

marginal), LR, and LRT—have received some attention in methodological research. 

However, the breadth of the existing literature is limited and none of which has pursued a 

Bayesian approach to model criticism. This study also pursued the SGDDMC—an 

existing function that has shown promise for critiquing psychometric models—and the 

SGDDMM, which was constructed to target underspecification of the marginal mean 

structure. Taken together, the results carry implications for use in applied research and 

serve as a basis for future methodological research. These implications are discussed 

following a summary and discussion about the performance and behavior of the 

discrepancy functions investigated in this study. 
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Performance of Discrepancy Functions 

 The existing research pertaining to the criticism of growth curve models has only 

focused on patterns in the realized values of discrepancy functions. In order to connect 

the results to prior research, and establish a baseline for new functions, the behavior of 

the realized values of discrepancy functions was also considered in the current study. 

Unlike prior research, the PPMC framework used in the current work involves 

empirically constructing a reference distribution for any discrepancy function, making it 

possible to investigate the performance of discrepancy functions in null and non-null 

settings. In what follows, the goal is to synthesize the existing literature, the behavior of 

realized values for the discrepancy functions in the current study, and performance in null 

and non-null settings.  

 Performance in Null Conditions. Among the discrepancy functions that have 

been investigated in previous research, some patterns in the realized values in null 

conditions (see Tables 2 through 4) were consistent with past research while others were 

not. Wu and West (2013) performed the only study to date that has investigated the 

behavior of discrepancy functions in null conditions for GCM models. There were three 

key findings in the current work that were aligned with those reported by Wu and West 

when the data analysis and generation models were aligned. First, the realized values of 

the CCCC and 𝑅!! were found to decrease to the extent that the amount of residual 

variation was increased. Second, when relevant, the realized values of the CCCM and 𝑅!!  

exhibited a positive relationship with increasing strength of the quadratic mean.  Third, 

with one exception that has not been considered in prior work, the realized values of the 

LR were generally not impacted by any of the design factors when the data analysis 
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model was aligned with the data generation model. The key exception was a small main 

effect in which departures from multivariate normality in the observed scores gave rise to 

larger realized values of the LR.  

 No research to date has pursued the SGDDMC for critiquing the fit of growth 

curve models. As a result, connections cannot be made with prior research. In null 

situations, the realized values of the SGDDMC were observed to (a) decrease with 

increasing sample size and (b) increase for data generated with non-normal rather than 

normally distributed repeated measures.  

 The SGDDMM was constructed for the purposes of the current work, and 

accordingly, there is no existing research to connect the results of the current work to. In 

null situations, the realized values of the SGDDMM were observed to decrease with (a) 

increased residual variation and (b) increased quadratic variation (seen only in Table 4). 

Notably, the implication of the relationship between the realized values of the marginal 

SGDDMM and the amount of residual variation is at odds with that observed for the 

CCCC and 𝑅!!. Whereas these functions were found to become more indicative of 

increasingly greater misspecification of a null model with increasing residual variation, 

the SGDDMM became increasingly more indicative of better data-model fit with 

increasing residual variation.  

 Another peculiar result was observed for the SGDDMM. For a given data 

generation model, the effect sizes were identical across the different data analysis models. 

This peculiar result was observed looking across tables associated with data generated 

with an equal quadratic mean across individuals (Tables 3 and 5) and for data generated 

with a varying quadratic mean across individuals (Tables 4, 6, and 7). Upon further 
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review, it was discovered that the realized values of the SGDDMM for a particular 

‘observed’ dataset were constant. This was the result of the (marginal) R matrix being 

identical irrespective of the particular set of model-implied vector of expected means. By 

extension, the observed covariance matrix, which is also computed by the deviation 

between observed scores and some vector of means, was equivalent to the R matrix used 

to compute the SGDDMM. As discussed in greater detail below, this result highlights the 

importance of carefully selecting/engineering discrepancy functions, particularly for data 

that exhibit a multilevel structure with model expectations present at multiple levels.  

 As for the LRT, there were two situations in the current work that represented a 

null comparison. One of which included comparing M1 (linear GCM) and M2 (equal 

quadratic strength GCM) for data that followed a linear GCM (see Table 8), and the other 

involved comparing M2 and M3 (varying quadratic strength GCM) for data that followed 

a GCM in which the quadratic strength was equal across individuals (see Table 9). In the 

former case, none of the design factors impacted the realized values of the LRT. 

Excepting to a small main effects of sample size and the size of the residual variance, a 

similar statement holds for the latter case. Notably, with the use of the LRT, one set of 

realized values were based on the comparison between two models that were both 

overparameterized relative to the data generation model. In this case, the realized values 

were negative on average. This finding poses serious methodological challenges to the 
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use of the LRT not just in null situations but also more broadly within the PPMC 

framework3.  

Before describing the impact of factors in the simulation design on the 

proportions of extreme PPP-values, it is worthwhile to first review patterns in the 

marginal distributions of PPP-values. The marginal distributions of PPP-values are 

aligned with the perspective of the applied analyst in that characteristics of the process 

that gave rise to the observed data (i.e., quadratic strength, size of residual variance, 

etcetera) are unknown; to the applied analyst, it only matters what decision is likely to be 

made given the alignment or lack thereof between the observed data and the model (or 

model comparison) at hand. The top row in Figure 13 displays the marginal distributions 

of PPP-values for the CCC (both conditional and marginal), R2 (both conditional and 

marginal), and the SGDDMC; the corresponding results for the SGDDMM and LR are seen 

																																																								
3 Given that both models were overparameterized relative to the data generation model, 

additional analyses were undertaken to assess if the result (a) was a manifestation of poor 

convergence and/or (b) a mistake in the calculation of model log likelihoods. These 

additional analyses involved (a) fitting the overparameterized models to linear GCM data 

in commercial software via ML estimation (i.e., Mplus; Muthén & Muthén, 2010), (b) 

computing the log likelihoods using both sets of model parameters using the function in 

R, and (c) estimating the overparameterized models using fixed values of for one set of 

MCMC draws and comparing the log likelihoods to those obtained in R. The results of 

these analyses indicated that (a) the models do converge and (b) the computation of 

model log likelihoods was correct.  
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in the top left panels of Figures 14 and 15, respectively. For the LRT, the PPP-values that 

represent null comparisons are shown in (a) the first column within the top row and (b) 

the second column in the second row of Figure 24.  

On the basis of the marginal distributions of PPP-values, most of the discrepancy 

functions were unlikely to indicate poor fit of a data analysis model when it was aligned 

with the data generation model. Specifically, the distributions of PPP-values for the CCC 

(both marginal and conditional), R2 functions (both marginal and conditional), and 

SGDDMM were centered around 0.5, a result that signifies solid data-model fit. The PPP-

values for the SGDDMC were generally uniform but rarely exceeded 0.75. In contrast to 

the performance of the other absolute measures of data-model fit, the distribution of PPP-

values for the LR in null situations was skewed in the positive direction. This result 

reflects a general tendency of the LR to indicate a model inadequate even when all 

features pertinent to the data generation model have been captured in the data analysis 

model.  

 Many of the patterns and relationships described thus far carried over into the 

proportions of extreme PPP-values, which in null situations, represents the Bayesian 

proxy for Type I error rates. Figures 16 through 18 display the proportions of extreme 

PPP-values in null situations for all absolute functions.  For each type of data generation 

model, the proportion of PPP-values of the CCC (blue lines, both marginal and 

conditional), R2 (red lines, both marginal and conditional), and SGDDMM (green lines 

with empty markers) were consistently at or close to zero. Aside from a small, but non-

trivial increase for data generated with non-normal outcomes, a similar result held for the 

conditional SGDDMC (green line with empty markers). Although the effect was larger 
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than that for the SGDDMC, the proportion of extreme PPP-values for the LR (black line 

with empty markers) also increased for data non-normally distributed data. Unlike all 

other measures, the proportion of extreme PPP-values were strongly impacted by the size 

of the quadratic variance irrespective of the levels of other factors in the design. 

Specifically, the proportions of PPP-values for the LR were about 0.50 when the 

quadratic variance was small and close (or equal) to zero when the quadratic variance 

was large.  

 The red bars in Figure 25 (linear GCM data) and the blue bars in Figure 26 (GCM 

with equal strength for all individuals) represent the relevant null comparisons for the 

LRT. Apart from the methodological challenges of evaluating relative fit via the LRT in 

the PPMC context and the presence of negative values, the LRT was quite unlikely to 

result in overspecifying the complexity of the functional form for the marginal mean 

structure. As seen in Figure 25, the PPP-values for the comparison between M1 (linear 

GCM) and M2 (GCM with equal strength of the quadratic effect) were very low across 

all conditions. However, if an analyst were to take the unlikely route of then comparing 

M2 and M3 (the blue bars) for data that follow a linear GCM, the decision may result in 

the selection of a substantially overparameterized model, particularly for non-normal 

data. One possible explanation for this result is that a GCM that allows the strength of the 

quadratic effect to vary might actually result in better approximation to the linear 

conditional mean structure. In comparing a M2 to M3 (GCM with varying strength of the 

quadratic effect), the LRT (the blue bars in Figure 26) reflected a tendency to 

unnecessarily favor a more complex conditional mean structure. As was the case for the 
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other null comparison, this effect was exacerbated for data generated with non-normal 

outcomes.  

 As just described, the shape of the distribution for observed measures impacted 

the LR, SGDDMC, and the LRT such that proportions of extreme PPP-values were larger 

for data generated with non-normally distributed data than for normally distributed data. 

On the one hand, this effect may reflect a tendency to deem a data-analysis model 

inadequate even when it captures the key features of the data generation process. On the 

other hand, irrespective of the features used to generate and analyze the data, the 

likelihood of the score for a particular individual at a particular measurement occasion 

was assumed to have arisen from a normal distribution. As a result, the increase in the 

proportion of extreme PPP-values may reflect a true discrepancy between the data and 

the specification of the likelihood.  

 Performance in Non-Null Conditions. Excepting to the LRT (see Liu et al., 

2012), all of the existing literature reporting on the performance of discrepancy functions 

for growth curve models in non-null situations have targeted the behavior of realized 

values. Among the discrepancy functions that have been investigated in other work, some 

patterns were consistent with previous research while others were not. As was the case 

for the discussion of null results, the initial part of this discussion for non-null situations 

serves to compare and contrast the results of the current study to the existing literature. 

The novel aspects of the current study will follow from there. 

 Wu and West (2013) conducted the only existing research on the performance of 

the LR, CCC (both conditional and marginal), and R2 (both conditional and marginal) in 

non-null situations. Starting with the LR, the realized values were impacted by a three-
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way interaction between sample size, the strength of the quadratic mean, and the size of 

the residual variance when the marginal mean structure was underspecified (see Figure 9 

in this work and Table 5 in Wu & West, 2013). The nature of the interaction was such 

that increasing the strength of the quadratic mean resulted in a larger difference in the 

realized of the LR between the levels of the residual variance (though larger residual 

variances always produced larger realized values of the LR, on average). Within the 

levels of the quadratic mean strength, increasing sample size served to widen the gap 

between the levels of the residual variance.  

 In the current work, the realized values of the LR were also impacted by a three-

way interaction between sample size, the size of the quadratic variance, and the size of 

the residual variance (see Figure 11). The nature of the interaction was such that 

increasing the size of quadratic variance resulted in a smaller difference in LRs between 

the levels of the residual variance (though larger residual variances always produced 

larger realized values of the LR, on average). Within the levels of the quadratic variance 

size, increasing sample size served to widen the gap between the levels of the residual 

variance. Since none of the manipulated variables had any bearing on the realized values 

of the LR when only the conditional mean structure was underspecified, this falls in 

contrast to the results reported by Wu and West (2013).  

  Wu and West (2013) found that the realized values of the CCCC and 𝑅!! were 

sensitive to misspecification in the conditional mean structure, but the degree in 

sensitivity was attenuated with increasing residual variation. As seen in Table 6, the 

realized values of the CCCC and 𝑅!! were not impacted by the degree of misspecification, 

which was captured by the size of the quadratic variance (denoted QV). The only factor 
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that impacted the realized values of these functions was the size of the residual variance, 

which served to decrease the realized values; this finding was consistent with the results 

reported by Wu and West (see Table 7 in their work). The lacking effect of the quadratic 

variance on the realized values of the CCCC and 𝑅!! may be due to differences in how an 

underspecified conditional mean structure was defined. In Wu and West, the 

underspecified conditional mean structure was defined by fixing the quadratic variance to 

zero in the data analysis model for data in which (a) the form of the true marginal mean 

structure was linear but (b) the quadratic variance was some positive value. A similar 

approach for creating an underspecified conditional mean structure was used for the 

current work, but the true marginal mean structure exhibited a quadratic relationship with 

time. Notably, the strength of the quadratic mean did impact the realized values of the 

CCCC and 𝑅!!, such that lower values were observed in an all situations in which the 

marginal mean structure was underspecified (see Tables 5 and 7 above). Since the impact 

of misspecifications in only the marginal mean structure were not reported for the CCCC 

and 𝑅!!, it remains an open question what unique role the strength of the quadratic mean 

had in the study conducted by Wu and West.  

 The CCCM and 𝑅!!  were impacted by the strength of the quadratic mean in all 

cases in which the data analysis model underspecified some aspect of the functional form 

(see Tables 5 – 7). Excepting to the situation in which both the marginal and conditional 

mean structures were underspecified (see Table 8 in Wu & West, 2013), this finding 
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varies from the results reported on the raw realized values4 for these functions in the 

study conducted by Wu and West (2013), which were generally not found to be impacted 

by the degree of misspecification. 

 Despite some key differences in the simulation design, the behavior of the 

realized values of the LRT in non-null situations found in the current work align with the 

results reported by Leite and Stapleton (2011). Regardless of whether the 

misspecification came from an underspecified marginal mean structure (see Table 1 in 

Leite & Stapleton, 2011) or an underspecified conditional mean structure (see Table 2 in 

Leite & Stapleton, 2011), the realized values of the LRT were impacted by an interaction 

between sample size and the degree of underspecification. Notably, the amount of 

residual variation, which was not part of Leite and Stapleton’s design, was found to 

moderate this interaction. The relevant results in the current work can be found for the 

comparison between M1 and M2 in Tables 9 and for the comparison between M2 and M3 

in Table 10. The nature of the interactions were such that (a) the difference across the 

levels of varying the degree misspecification became larger with sample size and (b) the 

impact of increasing the degree of misspecification was lessened with increased residual 

variation.  

																																																								
4 When only the marginal mean structure was underspecified, the impact of 

misspecification severity was only realized for the CCCM and 𝑅!!  functions when 

compared to the respective values when the correct data analysis model was applied (see 

Table 6 in Wu & West, 2013).  
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 Among the collection of discrepancy functions, only the SGDDM functions (both 

conditional and marginal) have not been pursued in previous methodological work 

pertaining to GCM. Notably, once conditioned on the data generation model, the realized 

values of the SGDDMM were identical irrespective of the data analysis model. This matter 

is briefly described above in the section pertaining to null conditions and is described in 

greater detail below. To avoid redundancy, the patterns in the realized values for the 

SGDDMM are not described in non-null situations.  

 The realized values of the SGDDMC were sensitive to underspecification, and 

when the relationship between data generation and analysis models made it possible, and 

specific to the key sources of underspecification. The general behavior of the realized 

values of the SGDDMC was such that the factor(s) representing the source(s) of 

underspecification interacted with the amount of residual variation. For the situation in 

which only the marginal mean structure was underspecified (see Table 5 and Figure 8), 

the realized values of the SGDDMC were impacted by the interaction between the 

strength of the quadratic mean and the residual variance. For the situation in which only 

the conditional mean structure was underspecified (see Table 6 and Figure 10), the 

realized values of the SGDDMC were impacted by the interaction between the amount of 

quadratic variation and the residual variance. In both of these cases, increasing the degree 

of underspecification resulted in higher realized values; however, increasing the amount 

of residual variation resulted in bigger declines for the levels associated with a larger 

degree of underspecification. 

 As seen in Figure 12, the pattern of results for the SGDDMC when both mean 

structures were underspecified highlight the capacity to be specific to the sources of 



 134 

misspecification, particularly when one source was small and the other was large. That is, 

given a small quadratic mean (variance), the SGDDMC became larger with an increase in 

the amount (strength) of quadratic variation (the quadratic mean). The SGDDMC was the 

only absolute function that exhibited this behavior.  

 As was the case for null conditions, no existing research has investigated the 

performance of the discrepancy functions within the GCM context in terms of making a 

decision about model adequacy (such has NHST) in non-null situations. In terms of the 

marginal distributions of PPP-values, the SGDDMC (the second through fourth rows in 

third column of Figure 14), SGDDMM (panels in the second row and second column of 

Figure 15), LR (panels in the second row and second column of Figure 16), and LRT 

(second row in the first column and bottom row in Figure 24) were the most promising 

for detecting misspecifications for either mean structure. For each of these functions, the 

masses of the PPP-value distributions were heavily concentrated close to zero given an 

underspecified data analysis model (in the case of the absolute measures listed above) or 

non-null comparison (in the case of the LRT). With distributions of PPP-values centered 

around 0.50 in non-null situations, the worst functions were the CCCC and 𝑅!! (second 

through fourth rows in the first and second columns of Figure 14). Although the levels of 

the quadratic strength impacted the distribution of PPP-values for the CCCC and 𝑅!!  

(second through fourth rows in the fourth and fifth columns of Figure 14), the PPP-values 

were not sufficiently high to be deemed extreme even when the quadratic mean was 

large.   

 Given a data analysis model that underspecifies some aspect of the data 

generation model, the proportion of extreme PPP-values are analogous to the NHST 
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concept of statistical power. Among the measures of absolute data-model fit (see Figures 

19 – 21), the CCC and R2 functions (both marginal and conditional) were consistently the 

worst performing discrepancy functions (the blue and red lines, respectively). Regardless 

of the relationship between the data generation and analysis model, the proportion of 

extreme PPP-values were consistently close or equal to zero. In contrast, the proportion 

of extreme PPP-values for the LR (black line with empty markers) were typically quite 

high and were often close to one. As seen in Figure 21, the only exception to this 

performance for the LR occurred with a small quadratic variance and large residual 

variance—particularly unfavorable conditions—when the condition mean structure was 

underspecified.  

 With rare exception, both SGDDM functions (green lines) almost always detected 

model underspecification provided that at least one source of underspecification was 

large. When only the marginal (conditional, see Figure 20) mean structure (see Figure 19) 

was underspecified, the proportions of extreme PPP-values were consistently close to one 

when the quadratic mean (variance) was large (see the second and fourth columns in the 

figures cited above). However, the sensitivity of these functions diminished with 

decreased underspecification (see the first and third columns in Figures 19 and 20), 

particularly when the residual variance was large (see the third column in Figures 19 and 

20). A similar result obtained when both mean structures were underspecified (see Figure 

21). That is, if the quadratic mean was small but the quadratic variance was large (second 

and fourth columns in the first and third rows of Figure 21), or vice versa (first and third 

columns in the second and fourth rows of Figure 21), the proportions of extreme PPP-

values were at or close to one. With both mean structures underspecified, sensitivity for 
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both SGDDM functions only deteriorated when the degree of underspecification for both 

mean structures was small (first and third columns in the first and third rows of Figure 

21), particularly when the residual variance was large (third column in the first and third 

rows of Figure 21). In cases of underspecification, the SGDDMC (green line with empty 

markers) generally outperformed the SGDDMM (green line with solid markers) when the 

degree of underspecification was small irrespective of the relationship between the data 

generation and analysis models.  

Implications for Applied Researchers 

 On the Importance of Selecting/Engineering Discrepancy Functions. As 

recognized by Levy (2011), and exemplified in the current work by the SGDDMM, the 

selection/engineering of discrepancy functions requires careful thought. With the 

balanced structure considered in this work, the intent of the SGDDMM was not realized. 

By exchanging the model-implied means in place of the model-implied scores, the logic 

for constructing the SGDDMM mirrored that of the CCCM and 𝑅!!  functions. Unlike the 

latter two functions, which target the diagonal elements of the R matrix, the intent of the 

SGDDMM was to measure the portion of the off-diagonal elements in the R matrix that 

was due to misspecifications of the marginal mean structure.  

At the extreme of a completely balanced structure for time, such as that 

considered for the current work, the realized values of the SGDDMM will be identical 

regardless of the means from which observed scores were subtracted. As mentioned 

above, the implication is that the observed sample means would also produce the same 

realized value of the SGDDMM; this amounts to unintentionally computing the SGDDMM 

using the observed covariance matrix. At the other extreme, if conditions with completely 
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unbalanced time structure had been pursued, the SGDDMM would be equal to the 

SGDDMC. Thus, the intention and utility of the SGDDMM may be realized in situations in 

that lie somewhere in between a completely balanced structure for time and a completely 

unbalanced structure for time. One example of such a time structure would obtain by 

centering age (assuming integer values) at a particular value. This has the potential to 

yield “groups” that are distinguished by a particular vector of time scores such that cases 

within groups share the same vector of time scores and cases between groups have some 

other vector of time scores. In this case, the SGDDMM would be the same across cases 

within groups but differ between groups. More importantly, the SGDDMM would yield a 

perspective about data-model misfit that is not characterized by the observed covariance 

matrix (as with a completely balanced design for time) or the SGDDMC (as with 

completely unbalanced design for time).  

Recommendations for Practice. A central goal of this work was to provide 

recommendations for practice. To this end, one of the motivating factors that guided the 

selection of discrepancy functions was the need to identify functions that could 

disentangle misspecification in the marginal mean structure from misspecification in the 

conditional mean structure. Drawing from the existing literature, the CCCC and 𝑅!! were 

selected to target the fit of the conditional mean structure, and the CCCM and 𝑅!!  were 

selected to target the fit of the marginal mean structure. With the same intent, the current 

work pursued the SGDDMC, which has shown promise for other types of multivariate 

models, and the SGDDMM, which was newly constructed for investigation in the current 

work. Finally, the sources of misfit could also be targeted by the LRT, which derives 

meaning from the relationship between two models that are being compared. 
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Unfortunately, on the basis of the results for this work, these ideals that would allow the 

sources of misspecification to be separated were not realized as cleanly as desired. On the 

basis of the results, the performances of the discrepancy functions are better suited for a 

broader set of recommendations.  

Owing to particularly poor performance, the CCC and R2 (both marginal and 

conditional) are not recommended for use as a diagnostic for the criticism of growth 

curve models. On the basis of the proportion of PPP-values, these functions are just as 

likely to deem a data analysis model as adequate regardless of whether a key process of 

the data has been captured. Moreover, although the conditional and marginal versions of 

these functions target different sources of data-model fit, there was minimal evidence that 

these functions exhibit the capacity to disentangle underspecification between the two 

mean structures. The key exception was the distribution of PPP-values of the CCCM and 

𝑅!! , which consisted of two modes corresponding to the strength of quadratic mean. 

However, none of the PPP-values were extreme enough to indicate meaningful 

underspecification.   

 In contrast to the CCC and R2 functions, the LR, SGDDM functions (particularly 

the conditional version), and the LRT exhibited some promise for critiquing the fit of 

growth curve models. Generally speaking, these functions were sensitive and specific to 

the sources of underspecification in terms patterns in the realized values and PPP-values. 

This is especially true if one grants the possibility that the increased PPP-values for non-

normal data in null conditions observed for each of these functions reflects a true 

misspecification between the distributional specification of the likelihood and the data at 
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hand. In light of these benefits, it is important to be mindful of the unique practical 

disadvantages associated with each of these functions.  

 Unlike any of the other discrepancy functions considered in this work, the key 

disadvantage of LR is that it cannot be computed with unbalanced time structures owing 

to the absence of unique model-implied covariance matrix. The LRT has two key 

disadvantages. First, the realized values in the PPMC framework may be negative even if 

the models being compared reach convergence. Second, in comparison to the other 

discrepancy functions considered in this work, computing the LRT is procedurally 

complicated in the PPMC framework. Since there is no meaningful improvement in 

performance over measures of absolute fit, the additional complexity of computing the 

LRT may not be worth doing. The key disadvantage of the SGDDM functions, which also 

happens to be true of the LR, is the matter of isolating sources of misfit. Given that these 

functions are applied in the absolute sense, evidence of model inadequacy does not 

indicate the source of data-model misfit that gives rise to the unaccounted for conditional 

associations. This critique, however, can be overcome with the use of a model building 

strategy that typifies standard applications of growth curve modeling.  

Study Limitations 

 There were a number of features of the current work that explored new frontiers 

in the space of model criticism for GCM. This work is the first to methodologically 

explore a Bayesian approach for the criticism of growth curve models; moreover, many 

of the discrepancy functions have received very limited attention in the existing research 

while others have not yet been suggested for use. In part due to the relative novelty of the 

current work, some design choices were limited to conditions that have been considered 
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in other methodological work to support comparisons across studies; this may limit the 

generalizability of the work. Some reasonable extensions to the current work—in both 

Bayesian and frequentist frameworks—would involve investigating the impact of missing 

data and different structures for the passage of time. Both of these issues have thus far 

received no attention with respect to matters of data-model fit for growth curve models, 

as far as the author knows. For the current work, the manipulation of distributional shape 

simultaneously altered the skew and kurtosis; the particular values used to generate data 

resulted in the generation of positively skewed and leptokurtic data. Reasonable 

extensions may involve varying the type and strengths of skewness and kurtosis, 

particularly such that the unique impact of these two features of distributions can be 

investigated. Finally, a reasonable Bayesian extension may involve (a) evaluating the 

impact of different prior distribution specifications and (b) pursuing Bayes Factors (see 

Gill, 2007) as a tool within the Bayesian analysis framework for evaluating the relative fit 

of models outside of the PPMC framework.  

Concluding Remarks 
 

On the basis of the results for the current work, and drawing from the extant 

methodological literature, separating misfit in the conditional mean structure from the 

marginal mean structure remains challenging. The task of disentangling between these 

sources of data-model misfit is particularly challenging when the sources of 

underspecification (e.g., strength of the mean for an underspecified effect of the marginal 

mean structure, amount of variation for an underspecified effect for the conditional mean 

structure) are small, particularly to the extent that the data unreliable (i.e., large residual 

variance). The applied analyst is best served by sequentially adding terms, and at each 
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step, evaluating the results for multiple diagnostic measures. The results of this research 

suggest that SGDDM functions (particularly the SGDDMC) and the LR would serve as 

useful diagnostics at each step for critiquing the model on its own merit. The LRT is also 

a useful diagnostic for evaluating the relative improvement in fit between two models 

adjacent to one another in the model-building process. It is important to bear in mind, 

however, that a model that offers substantially better fit to the observed data does not 

necessarily mean that the superior model fits the data well in the absolute sense. 

A reasonable question, particularly for applied analysts who may be less familiar 

with Bayesian analysis methods, is whether the additional time and effort required to 

conduct a PPMC analysis is worth the effort. One way to overcome this concern is the 

availability of code to conduct a PPMC analysis using the functions investigated in this 

work. To this end, all of the requisite components for estimating the Bayesian 

hierarchical model and conducting PPMC are appended below (see Appendixes C and D 

for estimation; see Appendixes E and F for conducting PPMC). The code is also available 

from the author (or the dissertation chair) upon request. In some cases, such as with the 

LRT (and other relative fit measures more broadly), the advantages unique to PPMC—

such as the propagation of uncertainty in the model parameters—may not be worth the 

added complexity of implementation. However, in the absence of known reference 

distributions—such as with the SGDDMC—the capacity to empirically construct the 

reference distribution extends the analyst’s toolkit for critiquing the fit of growth curve 

models. Indeed, it is this flexibility of PPMC for model criticism that represents a natural 

complement to the increasingly generalized versions of foundational growth curve 

models often encountered in applied research settings.	
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The Multilevel Modeling Parameterization  

A key assumption of ordinary least squares (OLS) regression modeling is that the 

units of analysis are independent observations from a homogeneous population. 

However, data in the social sciences often exhibit a nested (other common terms include 

clustered and hierarchical) structure among units of analysis; the implication of such 

structures is the potential for units at lower levels of analysis to be dependent on higher 

units of analysis. From the domain of education, students (level-1) are nested within 

schools (level-2) that are in turn nested within districts (level-3). In clinical settings, 

patients (level-1) are nested within clinicians (level-2). As described in greater detail 

below, repeated measures over time (level-1) can be viewed as nested within individuals 

(level-2). When the data exhibit a multilevel structure, the scores on an outcome measure 

at lower levels of analysis have the potential to be dependent on membership in higher 

units of analysis. For example, the scores among students within schools may be more 

similar to each other than they are to the scores of students in other schools, and 

therefore, the scores for students are dependent in part on their membership in a 

particular school. When the outcome of interest has variation at multiple levels of 

analysis (e.g., two levels), but a model with too few levels is employed (e.g., one level), 

the standard errors associated with estimates of model parameters will be too small 

(Raudenbush & Bryk, 2002; Singer & Willett, 2006). The ultimate impact is of 

employing a model with too few levels is overstatement of confidence in the inferences 

drawn on the basis of the model. 

 With standard OLS regression as the foundation, multilevel modeling (MLM; 

Raudenbush & Bryk, 2002) extends the model to account for clustering among units of 
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analysis. The foundational MLM for growth includes two levels of clustering. The level-1 

units include the vector of repeated measures and level-2 units are individuals. That is, 

repeated measures are nested within individuals. The level-1 model is formally given by:  

𝑦!" =  𝜋!! + 𝜋!"𝑇𝐼𝑀𝐸!"
! + 𝑟!".

!

!!!

 (A.1) 

Conceptually, the score for individual i at time t (yit) is characterized by a linear 

combination of predictors and a residual term (rit). The collection of predictors includes 

an intercept term (π0i) and a series of terms relating the passage of time to scores on the 

outcome of interest (π1i, π2i,…, πJi). Each additional predictor relating time to the 

outcome introduces complexity to the form of growth as represented by a polynomial of 

degree j (e.g., π1i = linear & 𝑇𝐼𝑀𝐸!"! , π2i = quadratic & 𝑇𝐼𝑀𝐸!"! , π3i = cubic & 𝑇𝐼𝑀𝐸!"! ). As 

in single-level OLS regression models, residuals are typically assumed rit ~ N(0, σ2) and 

uncorrelated for any two measurement occasions.  

The level-2 model allows for the potential that the association between the 

passage of time and the outcome to (potentially) vary between individuals. This is 

captured in the level-2 model by a vector of means for each of the level-1 coefficients 

(γ00, γ10,…, γJ0) and a vector of deviation scores (u0i, u1i,…, uJi) from these means for 

each individual i as follows: 

𝜋!!
𝜋!!
⋮
𝜋!"

=

𝛾!!
𝛾!"
⋮
𝛾!!

+

𝑢!!
𝑢!!
⋮
𝑢!"

, (A.2) 

such that ui = [u0i, u1i,…, uJi] ~ N(0, ∑JJ). The value of a level-1 coefficient can be forced 

to be the same for all individuals (i.e., πji = γj0) by fixing the variance of the coefficient to 
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zero i. e. ,𝜎!! = 0 . The level-2 model can be substituted into the level-1 model to yield 

a combined MLM model as follows: 

𝑦!" = 𝛾!! + 𝑢!! + 𝑇𝐼𝑀𝐸!"
! 𝛾!! + 𝑢!" + 𝑟!"

!

!!!

 (A.3) 

The level-2 model is the feature of MLM that generalizes the standard analysis of 

variance (ANOVA) approach for modeling longitudinal data. The ANOVA model allows 

individuals to vary at the intercept (i.e., π0i = γ00 + u0i) but restricts growth to be 

equivalent for individuals (i.e., π1i = γ10).  

The Structural Equation Modeling Parameterization 

 Structural equation modeling (SEM; Kline, 2005) is a framework that provides 

tremendous flexibility for specifying relationships among observed and/or latent 

variables. In doing so, analysts can assess the fit of specific models that align with 

substantive theory against observed data. A model is deemed to fit the data well to the 

extent that features of the data (i.e., measures of central tendency, measures of dispersion, 

and measures of association) implied by the model reproduce the corresponding features 

of the observed data. Systematic discrepancies between the implied and observed features 

of data represent characteristics of the observed data that are not represented well by the 

model.  

 The SEM approach for modeling longitudinal data draws on confirmatory factor 

analysis (CFA), a class of measurement models that summarize the associations among 

dependent measures through one or more latent variables. Dependent measures usually 

include observed measures, but may also include other latent variables when higher-order 

latent variables are specified (Kline, 2005). With CFA as the basis, the parameters that 
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govern growth are viewed as independent latent variables that must be inferred from the 

set of dependent observed T repeated measures (Bollen & Curran, 2006; Meredith & 

Tisak, 1990; Preacher, Wichman, MacCallum & Briggs, 2008). Unlike typical 

applications of CFA models, which only include a covariance structure, the CFA model 

for growth also includes a mean structure among the latent variables that represent the 

growth parameters. The means of the repeated measures are fixed to zero to identify the 

model, and accordingly, the marginal mean structure is entirely determined by the growth 

factors. To differentiate this model from standard CFA models, and to be consistent with 

common terminology, the CFA model for growth will herein be referred as the latent 

curve model (LCM).   

 

Figure A1. A path diagrammatic representing of a quadratic latent curve model. 

Figure A1 shows a LCM with an intercept (µI), a linear slope (µS), and a quadratic 

effect (µQ); the intercept and slope parameters also include random effects (ζI, ζS, 
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respectively) and the potential for these effects to be correlated (ζIS). The single-headed 

arrows that emerge from the growth factors represent the unidirectional causal path to the 

observed repeated measures (y0, y1,…,yT – 1). For the LCM shown, the intercept has an 

equal impact at each of the T occasions as indicated by a weight of 1 for each repeated 

measure. The integer weights for the slope factor reflect the assumption that the (a) 

interval between any two adjacent measurement occasions was the same and (b) all 

individuals had the same schedule of measurement occasions. The weights for the 

quadratic growth factor were obtained by simply squaring the weights for the linear slope 

growth factor. Finally, terms denoting residual scores (r0,…, rT-1) are also shown as 

causal variables of observed measures. For the particular model shown, residuals are 

assumed to be homoskedasticly distributed (as shown by a common error variance, ε) and 

uncorrelated for all pairs of measurement occasions (as represented by the absence of 

curved arrows between error terms). 

Defining the Data Model, Mean Structures, and Covariance Structures of 

LGM. The LCM can be viewed as consisting of three general structures that collectively 

give yield a model for describing longitudinal data. The three general structures include 

the data model, the mean structure, and the covariance structure; of these structure are 

described in turn in this section.  

Data Model. Let yi be the T (the total number of measurement occasions) × 1 

vector of repeated measures, Λi the T × M (the number of growth factors) matrix of 

regression coefficients that define the metric for TIME, ηi the M × 1 vector of scores on 

the growth factors, and εi is a T × 1 vector of residuals. With these ingredients, the data 

model (Preacher et al., 2008) is given by: 
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𝐲! = 𝚲!𝜼! + 𝛆!. (A.4) 

Further, let µη be the M × 1 vector of factor means (i.e., µI, µS, µQ) and ζi the M × 1 vector 

of deviation scores for individual i (i.e., ζI, ζS, ζIS). With these elements, ηi is 

characterized by a mean and deviation term as follows: 

𝜼𝒊 = 𝝁𝜼 + 𝜻! . (A.5) 

Mean Structures. There are two mean structures, both of which obtain by 

marginalizing over the data model. The first mean structure (herein called the conditional 

mean structure) can be thought of as a regression model between the vector of observed 

repeated measures and time for each individual. The vector of expected values on the 

outcome for a given individual depends on the metric used for clocking the passage of 

time (Λi) and scores on the growth factors (ηi) as follows: 

𝐸 𝐲!|𝚲! ,𝜼! = 𝚲! 𝜼! . (A.6) 

In essence, the model that defines the conditional mean structure allows for the 

possibility of unique growth trajectories (the deviation term for individual i is retained, ζi) 

but does not allow for measurement error at any measurement occasion (the vector of 

residuals is dropped, εi). 

 The second mean structure (herein called the marginal mean structure) can be 

thought of as the regression model between the vector of the repeated measures and time 

averaging over individuals. Mechanically, the marginal mean structure obtains by 

integrating over the latent variables that represent the growth factors and is fully defined 

by Λi and the means of the growth factors (µη) as follows: 

𝐸 𝐲!|𝚲! ,𝝁𝜼 = 𝚲!𝝁𝜼. (A.7) 
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In the case of a fixed assessment schedule for all individuals (e.g., 0, 1,…, T – 1), the 

vector of expected values will be the same for all individuals. However, in the case of 

varying assessment schedules across individuals, the vector of expected values will only 

be the same for individuals with identical assessment schedules; it is possible that there is 

a unique assessment schedule for each individual. It important to note that even when 

assessment schedules do vary over all individuals, the marginal and conditional mean 

structures have the potential to differ if deviation terms on the growth factors are present. 

The former is dependent on the means of the latent growth factors but not a deviation 

term; the latter is dependent on the latent growth factors and the deviation term.  

Defining the Covariance Structures. LGM also includes three covariance 

structures. The first covariance structure is a T × T matrix that includes the variances and 

covariances of residuals as follows: 

𝝝! =

𝜎!!!

𝜎!"! 𝜎!!!

⋮ ⋮ ⋱
𝜎!!! 𝜎!!! … 𝜎!!!

. (A.8) 

The second covariance structure is an M × M matrix that includes the variances and 

covariances among the growth factors as follows.  

𝚿 =

𝜎!!!

𝜎!"! 𝜎!!!

⋮ ⋮ ⋱
𝜎!"! 𝜎!"! … 𝜎!!!

. (A.9) 

The third matrix is simply the overall sample covariance matrix of the observed repeated 

measures (Σi), which is obtained from Λi, Ψ, and Θε as follows: 

𝚺! = 𝚲!𝚿𝚲!! + 𝚯𝜺. (A.10) 
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Overlap Between the MLM and SEM Approaches for Modeling Growth. 

Although the surface features between the MLM and SEM approaches for modeling 

growth differ, there is a high degree of overlap between the two parameterizations 

(Bauer, 2003; Bauer & Curran, 2002; MacCallum & Kim, 2000; Preacher et al., 2008; 

Raudenbush, 2001; Rovine & Molenaar, 2000).  In the description provided above for 

each parameterization, the equations and notation largely draw on the standard 

representations used for each in applied and methodological research. However, the two 

parameterizations have identical expressions despite the use of different notation. For 

instance, the level-1 regression coefficients in the MLM parameterization (π0i = γ00 + u0i; 

π1i = γ10 + u1i; π2 = γ20) are equivalent to the elements of ηi in the data model used for the 

SEM parameterization (ηIi = µI + ζIi; ηSi = µS + ζSi; ηQ = µQ, respectively). Owing to these 

and other equivalent expressions, the two parameterizations often yield identical results 

for many types of models for describing growth.  

Distinctions between the MLM and SEM Approaches for Modeling Growth. 

Any model for characterizing growth can be represented equally by the MLM and SEM 

parameterizations at the equation level. The key distinctions between the 

parameterizations largely come to differences in software. As a result, it is currently the 

case that the onus falls on the applied researcher to select the software package that is 

better suited to the research question at hand. The remainder of section identifies the 

unique advantageous of each approach to modeling growth. 

 Arguments for the Use of the SEM Approach. An attractive feature of growth 

modeling irrespective of the parameterization is the ability to incorporate predictors of 

the variation in growth parameters. However, when interest lies in using the growth 
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parameters (assuming that growth varies over individuals) as predictors of other 

variables, SEM is currently the preferred choice for addressing such research questions 

with respect to the selection of software. A hallmark of SEM is the ability to use latent 

variables as either (a) outcomes that are regressed on other variables (whether observed 

or latent) or (b) as predictors on to which other variables (whether observed or latent) are 

regressed on. This ability derives from the perspective that latent variables, such as 

growth factors, are variables in their own right (Preacher et al., 2008) and may be part of 

a larger system of observed and latent variables. As implemented in MLM-based 

software packages, growth parameters can either serve as (a) predictors of the repeated 

measures or (b) as outcomes of predictors. However, owing to the equivalence of 

mathematical expressions between the SEM and MLM-based parameterizations, MLM-

based estimates of growth parameters that vary between individuals can theoretically be 

used as predictors of other variables within a larger variable system. However, it is 

currently that case that such models are either difficult or impossible to specify using 

dedicated MLM software packages. 

 Related to the perspective that latent variables may be part of a larger system of 

relationships, it is not necessary that the repeated measures be observed. Interest may lie 

in characterizing growth on a set of repeated latent variables that are in turn measured by 

a set of indicators that are repeatedly collected. Assuming the meaning of the latent factor 

remains unchanged over time, the capacity to specify such models makes it possible to 

describe growth on a set of variables that are not presumed to be free of measurement 

error (Preacher et al., 2008).  
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 Arguments for the Use of MLM Approach. The primary advantage of the MLM 

approach to characterizing growth over the SEM approach is the ability to incorporate 

additional levels of analysis. From the MLM perspective, the repeated measures are 

viewed as level-1 units of analysis that are nested within individuals, the level-2 units of 

analysis. The MLM approach can readily accommodate, for instance, a dependence 

structure in which measurement occasions (level-1) are nested within individuals (level-

2) who are in turn nested within schools (level-3). Generally speaking, constructing 

models with more than two levels using the SEM approach can be quite difficult and 

even impossible for some software packages dedicated to constructing structural equation 

models (Preacher et al., 2008). 

Looking Beyond Software and Tradition. As mentioned above, the close 

interconnections between the MLM and SEM approaches have been widely 

acknowledged (Bauer, 2003; Bauer & Curran, 2002; MacCallum & Kim, 2000; Preacher 

et al., 2008; Raudenbush, 2001; Rovine & Molenaar, 2000). The distinctions can be 

regarded as practical differences, as opposed to statistical differences, that arise on 

account of (a) historical traditions for the use of the MLM and SEM approaches to 

modeling growth and (b) differences associated with the dedicated software packages that 

define the perceived boundaries for each approach. Historically, MLM has roots in the 

inherently nested structure associated with data in the tradition of education. The SEM 

approach to modeling growth is tied to the tradition of psychology, which largely draws 

on the use of latent constructs to represent unobserved processes that give rise to the 

relationships among a set of observed variables. Many of the perceived differences 

between the MLM and SEM approaches to modeling growth are tied to software. 
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However, these differences are beginning to blur as dedicated MLM software (such as 

MLM) incorporates features commonly associated with LGM and dedicated SEM 

software (such as Mplus) becomes more capable of fitting MLM (Preacher et al., 2008).  
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APPENDIX B 

R CODE FOR DATA GENERATION 
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########################################################################
### 
## The following syntax generates growth curve data and estimates three models via 
JAGS. 
## The output from the three models are submitted to a PPMC analysis. 
########################################################################
### 
 
############################################# 
## Load any necessary libraries. 
############################################# 
 
library(MASS) 
 
############################################# 
## Specify constants for the simulation. 
############################################# 
 
# Number of measurement occasions. 
J <- 5 
 
# Number of trials. 
trials <- 100 
 
############################################## 
## Write all functions that are used. 
############################################## 
 
# Simulating non-normal data. 
fleishtarget <- function(x,a){ 
  b<-x[1] 
  cc<-x[2] 
  d<-x[3] 
  g1<-a[1] 
  g2<-a[2] 
  (2 - ( 2*b^2 + 12*b*d + g1^2/(b^2+24*b*d+105*d^2+2)^2 + 30*d^2 ) )^2 + 
    (g2 - ( 24*(b*d+cc^2*(1+b^2+28*b*d)+d^2*(12+48*b*d+141*cc^2+225*d^2)) ) 
)^2+ 
    (cc - (g1/(2*(b^2+24*b*d+105*d^2+2)) ) )^2 
} 
 
findbcd <- function(skew,kurtosis){ 
  optim(c(1,0,0),fleishtarget,a=c(skew,kurtosis),method="BFGS", 
        control=list(ndeps=rep(1e-10,3),reltol=1e-10,maxit=1e8)) 
} 
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########################################################################
##### 
## The following specifies the conditions for generating data. 
## Since they are not likely to be pursued in practice, conditions with a non-zero 
quadratic ## variance will be removed if there is no quadratic mean. 
########################################################################
### 
 
sample.size <- matrix(c("SN","MN","LN")) 
quad.mean <- matrix(c("NQM", "SQM", "LQM")) 
quad.sd <- matrix(c("NQV", "SQV", "LQV")) 
res.sd <- matrix(c("SRV", "LRV")) 
dist.shape <- matrix(c("N", "NN")) 
 
conditions <- expand.grid(sample.size, quad.mean, quad.sd, res.sd, dist.shape) 
colnames(conditions) <- c("samplesize", "quadmean", "quadsd", "ressd", "distshape") 
 
attach(conditions) 
conditions$remove <- ifelse(quadmean=="NQM" & (quadsd=="SQV"|quadsd=="LQV"), 
1, 0) 
detach(conditions) 
conditions <- subset(conditions, remove==0, select=-remove) 
 
# SPECIFY THE GENERAL FORMS OF DIRECTORIES TO CREATE AND WRITE 
TO. 
gendir <- "/Volumes/Seagate Backup Plus Drive/GCM Dissertation" 
dir.create(gendir) 
 
# Time the data generation and model estimation component. 
system.time( 
   
  # Open the loop over conditions. 
  for(which.cond in 1:nrow(conditions)){ 
     
    # Specify directories that will be used for storing data. 
    conddir <- paste(paste(gendir, "/", sep=""),  
                     paste(conditions[which.cond,1], conditions[which.cond,2], 
conditions[which.cond,3],  
                           conditions[which.cond,4], conditions[which.cond,5], sep="_"), sep="") 
     
    datadir <- paste(conddir, "/data", sep="") 
    observeddatadir <- paste(datadir, "/", "ObservedData", sep="") 
     
    dir.create(conddir) 
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    dir.create(datadir) 
    dir.create(observeddatadir) 
     
    # Specify directories that will be used for storing data. 
    conddir <- paste(paste(gendir, "/", sep=""),  
                     paste(conditions[which.cond,1], conditions[which.cond,2], 
conditions[which.cond,3],  
                           conditions[which.cond,4], conditions[which.cond,5], sep="_"), sep="") 
     
    datadir <- paste(conddir, "/data", sep="") 
    observeddatadir <- paste(datadir, "/", "ObservedData", sep="") 
     
    # Everything proceeds faster when the folders already exist. 
    # The following folders are for later steps that are more time consuming. 
    estimation.directory <- paste(conddir, "/", "Model Estimation Data", sep="") 
    plot.directory <- paste(conddir, "/", "Diagnostic Plot", sep="") 
    postpred.values.directory <- paste(datadir, "/", "Posterior Predictive Data", sep="") 
     
    dir.create(estimation.directory) 
    dir.create(plot.directory) 
    dir.create(postpred.values.directory) 
   
    # Open the loop over trials. 
    for(which.trial in 1:trials){ 
       
      # Determine the number of records. 
      if(conditions[which.cond,1]=="SN") N <- round(runif(1, min=225, max=275), 
digits=0) 
      if(conditions[which.cond,1]=="MN") N <- round(runif(1, min=475, max=525), 
digits=0) 
      if(conditions[which.cond,1]=="LN") N <- round(runif(1, min=975, max=1025), 
digits=0) 
       
      # Simulate a value for the mean intercept and slope parameters. 
      imean <- runif(1, min=9, max=11) 
      smean <- runif(1, min=.3*imean, max=.5*imean) 
       
      # Simulate a value for the mean quadratic effect. 
      if(conditions[which.cond,2]=="NQM") qmean <- 0 
      if(conditions[which.cond,2]=="SQM") qmean <- runif(1, min=-.03*imean, max=-
.01*imean) 
      if(conditions[which.cond,2]=="LQM") qmean <- runif(1, min=-.13*imean, max=-
.10*imean) 
       
      # Simulate values of the quadratic variance parameter by specifying quadratic 
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standard deviations. 
      if(conditions[which.cond,3]=="NQV") qsd <- 0 
      if(conditions[which.cond,3]=="SQV") qsd <- runif(1, min=.1, max=.2) 
      if(conditions[which.cond,3]=="LQV") qsd <- runif(1, min=.5, max=.6) 
      qvar <- qsd^2 
       
      
 # Simulate values of the residual variance parameter by specifying a residual standard 
deviation and converting it to a variance. 
      if(conditions[which.cond,4]=="SRV") rsd <- runif(1, min=.75, max=1.25) 
      if(conditions[which.cond,4]=="LRV") rsd <- runif(1, min=2.25, max=2.75) 
      rvar <- rsd^2 
       
      # Simulate values of the skewness and kurtosis. 
      if(conditions[which.cond,5]=="N") skew <- 0 
      if(conditions[which.cond,5]=="N") kurtosis <- 0 
      if(conditions[which.cond,5]=="NN") skew <- runif(1, min=.8, max=1.2) 
      if(conditions[which.cond,5]=="NN") kurtosis <- runif(1, min=.8, max=1.2) 
       
      # Create the matrix of means. 
      means <- matrix(c(imean, smean, qmean)) 
       
      # Simulate a value for the intercept and slope variance and covariance parameters. 
      isd <- runif(1, min=3, max=4) 
      ssd <- runif(1, min=.3*isd, max=.5*isd) 
      ivar <- isd^2 
      svar <- ssd^2 
       
      iscor <- runif(1, min=.25, max=.35) 
      iscov <- iscor*(isd*ssd) 
       
      # Create the covariance matrix among the growth parameters. 
      psi <- matrix(c(ivar, iscov, 0, 
                      iscov, svar, 0, 
                      0, 0, qvar), ncol=3, nrow=3) 
       
      # Create the diagonal matrix of residual variances. 
      theta <- diag(rvar,J) 
       
      # Using the growth parameter mean vector and covariance matrix, simulate level-1 
growth parameters. 
      level1 <- t(as.matrix(mvrnorm(N, means, psi))) 
       
      # Using the residual covariance matrix, create a matrix of residual scores. 
      resscores <- mvrnorm(N, matrix(rep(0,J),ncol=1,nrow=J), theta) 
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      # Specify the time matrix. 
      time <- matrix(seq(from=0,to=4,by=1),ncol=1,nrow=J) 
       
      # Create a null matrix to fill with simulated data. 
      gcm <- matrix(NA, N, J) 
       
       
# Now simulate data consistent with the particular combination of manipulations. 
      gcm[ ,1] <- level1[1, ] + level1[2, ]*time[1,1] + level1[3, ]*(time[1,1]^2) + resscores[ 
,1] 
      gcm[ ,2] <- level1[1, ] + level1[2, ]*time[2,1] + level1[3, ]*(time[2,1]^2) + resscores[ 
,2] 
      gcm[ ,3] <- level1[1, ] + level1[2, ]*time[3,1] + level1[3, ]*(time[3,1]^2) + resscores[ 
,3] 
      gcm[ ,4] <- level1[1, ] + level1[2, ]*time[4,1] + level1[3, ]*(time[4,1]^2) + resscores[ 
,4] 
      gcm[ ,5] <- level1[1, ] + level1[2, ]*time[5,1] + level1[3, ]*(time[5,1]^2) + resscores[ 
,5] 
             
      # If the data are to follow a non-normal distribution, alter the data accordingly. 
      if(conditions[which.cond,5]=="NN") gcmcorr <- matrix(cor(gcm), ncol=ncol(gcm), 
nrow=ncol(gcm)) 
      if(conditions[which.cond,5]=="NN") bcd <- as.matrix(findbcd(skew, kurtosis)$par) 
      if(conditions[which.cond,5]=="NN") gcmcorrnew <- matrix(NA, ncol(gcm), 
ncol(gcm)) 
      if(conditions[which.cond,5]=="NN") for(j in 1:nrow(gcmcorr)){ 
        for(jj in 1:ncol(gcmcorr)){ 
          gcmcorrnew[j,jj] <- gcmcorr[j,jj]*(bcd[1,1]^2 + (3*bcd[1,1]*bcd[3,1]) + 
(3*bcd[3,1]*bcd[1,1]) + (9*bcd[3,1]*bcd[3,1])) +  
            (gcmcorr[j,jj]^2*(2*bcd[2,1]*bcd[2,1])) + (gcmcorr[j,jj]*(6*bcd[3,1]*bcd[3,1])) 
        } 
      } 
      if(conditions[which.cond,5]=="NN") gcmmeans <- matrix(rep(0,ncol(gcm))) 
      if(conditions[which.cond,5]=="NN") gcmnew <- mvrnorm(nrow(gcm), gcmmeans, 
gcmcorr) 
      if(conditions[which.cond,5]=="NN") gcmfinal <- matrix(NA, nrow(gcm), ncol(gcm)) 
      if(conditions[which.cond,5]=="NN") for(wr in 1:nrow(gcmfinal)){ 
        for(wc in 1:ncol(gcmfinal)){ 
          a = -bcd[2,1] 
          gcmfinal[wr,wc] <- a + bcd[1,1]*gcmnew[wr,wc] + bcd[2,1]*(gcmnew[wr,wc]^2) 
+ bcd[3,1]*(gcmnew[wr,wc]^3) 
        } 
      } 
      # The new non-normal data is not in the original scale; this following converts the 
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non-normal data to the scale of the original data. 
      if(conditions[which.cond,5]=="NN")  
      gcmfinal.new <- matrix(NA, N, J) 
      for(wc in 1:ncol(gcmfinal)){ 
        gcmfinal.new[ ,wc] <- mean(gcm[,wc]) + ((gcmfinal[,wc]-
mean(gcmfinal[,wc]))*(sd(gcm[,wc])/sd(gcmfinal[,wc]))) 
      } 
               
      if(conditions[which.cond,5]=="NN") gcmfinal.new <- as.data.frame(gcmfinal.new) 
      if(conditions[which.cond,5]=="NN") colnames(gcmfinal.new) <- c("y1", "y2", "y3", 
"y4", "y5")       
       
       
 
 
# Provide column names for the GCM object. 
      colnames(gcm) <- c("y1", "y2", "y3", "y4", "y5")  
             
      # Write the data. 
      setwd(observeddatadir) 
 
      if(conditions[which.cond,5]=="N") write.table(round(gcm, digits=5),  
                                                     paste(observeddatadir, "/", "obs.trial", which.trial, 
".dat", sep=""),  
                                                     row.names=F, col.names=F, quote=F, sep="\t") 
 
       
      if(conditions[which.cond,5]=="NN") write.table(round(gcmfinal.new, digits=5),  
                                                     paste(observeddatadir, "/", "obs.trial", which.trial, 
".dat", sep=""),  
                                                     row.names=F, col.names=F, quote=F, sep="\t") 
             
      # Write out all simulated model parameters. 
      setwd(datadir) 
       
      if(which.trial==1) simulated.parameters <- matrix(NA, trials, 17) 
       
      # Indicate which replication. 
      simulated.parameters[which.trial,1] <- which.trial 
      # Write out the number of records. 
      simulated.parameters[which.trial,2] <- N 
      # Write out the generating model parameters. 
      simulated.parameters[which.trial,3] <- means[1,1] 
      simulated.parameters[which.trial,4] <- means[2,1] 
      simulated.parameters[which.trial,5] <- means[3,1] 
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      simulated.parameters[which.trial,6] <- psi[1,1] 
      simulated.parameters[which.trial,7] <- psi[2,2] 
      simulated.parameters[which.trial,8] <- psi[3,3] 
      simulated.parameters[which.trial,9] <- psi[1,2] 
      simulated.parameters[which.trial,10] <- isd 
      simulated.parameters[which.trial,11] <- ssd 
      simulated.parameters[which.trial,12] <- qsd 
      simulated.parameters[which.trial,13] <- iscor     
      simulated.parameters[which.trial,14] <- rvar     
      simulated.parameters[which.trial,15] <- rsd 
      # Skew and kurtosis information. 
      simulated.parameters[which.trial,16] <- skew 
      simulated.parameters[which.trial,17] <- kurtosis 
       
      simulated.parameters <- round(as.data.frame(simulated.parameters), digits=3) 
      colnames(simulated.parameters) <- c("rep", "N", "gamma0", "gamma1", "gamma2",  
                                          "psi00", "psi11", "psi22", "psi01", 
                                          "sdpsi00", "sdpsi11", "sdpsi22", "rho01", 
                                          "resvar", "ressd", 
                                          "skew", "kurtosis") 
       
      write.table(simulated.parameters, paste(datadir,  "/SimulatedModelParameters.dat", 
sep=""), sep="\t", col.names=T, row.names=F, quote=F) 
         
    } # Closes the loop over trials. 
   
  } # Closes the loop over conditions. 
 
) # Closes the clocking of time. 
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APPENDIX C 

JAGS CODE FOR ESTIMATING GROWTH CURVE MODELS 
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Estimate a Linear Growth Curve Model 

model{ 
   
  #/ Specify the likelihood of the data. 
  #/ tau.res is the residual variance. 
  for(i in 1:N){ 
    for(j in 1:J){ 
      y.prime[i,j] <- beta[i,1] + beta[i,2]*time[j,1]; 
      y[i,j] ~ dnorm(y.prime[i,j],tau.res); 
    } 
  } 
         
  #/ Specify the priors for the average growth parameters.  
  gamma[1] ~ dnorm(0,1); 
  gamma[2] ~ dnorm(0,1); 
   
  #/ Specify the priors for person-specific deviation terms. 
  for(i in 1:N){ 
  beta[i,1:2] ~ dmnorm(gamma[ ], tau.psi[ , ]) 
  } 
   
  #/ Specify the hyper priors for the person-specific deviation terms. 
  tau.psi[1:2,1:2] ~ dwish(Omega[ , ],1); 
  sigma.psi[1:2,1:2] <- inverse(tau.psi[ , ]); 
     
  #/ Specify the priors for the residual variances and the person-specific growth 
parameters. 
  tau.res ~ dgamma(1,1); 
  sigma.res <- 1/sqrt(tau.res); 
  rho01 <- sigma.psi[1,2]/(sqrt(sigma.psi[1,1])*sqrt(sigma.psi[2,2])); 
   

} 
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Quadratic Growth Curve Model with Non-varying Functional Form Across 

Individuals 

model{ 
   
  #/ Specify the likelihood of the data. 
  #/ tau.res is the residual variance. 
  for(i in 1:N){ 
    for(j in 1:J){ 
      y.prime[i,j] <- beta[i,1] + beta[i,2]*time[j,1] + gammaq*(time[j,1]*time[j,1]); 
      y[i,j] ~ dnorm(y.prime[i,j],tau.res); 
    } 
  } 
         
  #/ Specify the priors for the average growth parameters.  
  gamma[1] ~ dnorm(0,1); 
  gamma[2] ~ dnorm(0,1); 
  gammaq ~ dnorm(0,1); 
   
  #/ Specify the hyper priors for the person-specific deviation terms. 
  tau.psi[1:2,1:2] ~ dwish(Omega[ , ],2); 
  sigma.psi[1:2,1:2] <- inverse(tau.psi[ , ]); 
   
  #/ Specify the person specific growth parameters. 
  for(i in 1:N){ 
    beta[i,1:2] ~ dmnorm(gamma[ ], tau.psi[ , ]) 
  } 
   
     
  #/ Specify the priors for the residual variances and the person-specific growth 
parameters. 
  tau.res ~ dgamma(1,1); 
  sigma.res <- 1/sqrt(tau.res); 
  rho01 <- sigma.psi[1,2]/(sqrt(sigma.psi[1,1])*sqrt(sigma.psi[2,2])); 
   
   
} 
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Quadratic Growth Curve Model with Varying Functional Form Across Individuals 

model{ 
   
  #/ Specify the likelihood of the data. 
  #/ tau.res is the residual variance. 
  for(i in 1:N){ 
    for(j in 1:J){ 
      y.prime[i,j] <- beta[i,1] + beta[i,2]*time[j,1] + betaq[i]*(time[j,1]*time[j,1]); 
      y[i,j] ~ dnorm(y.prime[i,j],tau.res); 
    } 
  } 
   
  #/ Specify the priors for the average growth parameters.  
  gamma[1] ~ dnorm(0,1); 
  gamma[2] ~ dnorm(0,1); 
  gammaq ~ dnorm(0,1); 
   
  #/ Specify the hyper priors for the person-specific deviation terms. 
  tau.psi[1:2,1:2] ~ dwish(Omega[ , ],2); 
  sigma.psi[1:2,1:2] <- inverse(tau.psi[ , ]); 
  tau.psi.q ~ dgamma(1,1); 
  sigma.psi.q <- inverse(tau.psi.q); 
   
  #/ Specify the person specific growth parameters. 
  for(i in 1:N){ 
    beta[i,1:2] ~ dmnorm(gamma[ ], tau.psi[ , ]); 
    betaq[i] ~ dnorm(gammaq, tau.psi.q); 
  } 
   
   
  #/ Specify the priors for the residual variances and the person-specific growth 
parameters. 
  tau.res ~ dgamma(1,1); 
  sigma.res <- 1/sqrt(tau.res); 
  rho01 <- sigma.psi[2,1]/(sqrt(sigma.psi[1,1])*sqrt(sigma.psi[2,2]));   
   
} 
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APPENDIX D 

MODEL FITTING VIA JAGS AS INTERFACED THROUGH R 
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##############################################################################
########################################## 
## The purpose of this code is estimate all models for all all trials in all conditions in JAGS. 
## Diagnostic plots will only be produced for the first two trials to conserve space and time. 
## Significant preliminary investigations indicate that MCMC simulation parameters are 
sufficient for all data generation by data analysis conditions. 
##############################################################################
############################################################################ 
 
############################################# 
## Load any necessary libraries. 
############################################# 
 
library(mcmcplots) 
library(rjags) 
 
############################################# 
## Specify constants for the simulation. 
############################################# 
 
# Number of measurement occasions. 
J <- 5 
 
# Number of trials. 
trials <- 100 
 
# Number of models. This is really only used to control looping over models. 
nmodels <- 3 
 
# SPECIFY THE PATHS FOR THE JAGS FILES THAT WILL BE USED FOR ESTIMATION. 
model1.file <- "/Volumes/Derek Fay's Time 
Caps/Dissertation/GrowthModel/code/model1_hierarchicalz.R" 
model2.file <- "/Volumes/Derek Fay's Time 
Caps/Dissertation/GrowthModel/code/model2_hierarchicalz.R" 
model3.file <- "/Volumes/Derek Fay's Time 
Caps/Dissertation/GrowthModel/code/model3_hierarchicalz.R" 
 
# SPECIFY THE FILE THAT CONTAINS THE NUMBER OF BURN-IN ITERATIONS TO 
USE FOR EACH DATA GENERATION/ANALYSIS COMBINATION. 
nthin.file <- "/Volumes/Derek Fay's Time Caps/GCM Dissertation/Thin by Condition 
NonNormal Fix.csv" 
nthin.file <- read.csv(nthin.file, header=T) 
#nthin.file <- subset(nthin.file, samplesize=='SN' & quadmean=='NQM' & quadsd=='NQV' & 
ressd=='SRV' & distshape=='NN') 
#nthin.file1 <- as.matrix(nthin.file) 
#nthin.file <- as.data.frame(nthin.file1) 
 
##############################################################################
########################################################################## 
## The following specifies the conditions for generating data. 
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## Since they are not likely to be pursued in practice, conditions with a non-zero quadratic 
variance will be removed if there is no quadratic mean. 
##############################################################################
########################################################################## 
 
# Create the list of conditions. 
sample.size <- matrix(c("SN","MN","LN")) 
quad.mean <- matrix(c("NQM", "SQM", "LQM")) 
quad.sd <- matrix(c("NQV", "SQV", "LQV")) 
res.sd <- matrix(c("SRV", "LRV")) 
dist.shape <- matrix(c("NN")) 
 
conditions <- expand.grid(sample.size, quad.mean, quad.sd, res.sd, dist.shape) 
colnames(conditions) <- c("samplesize", "quadmean", "quadsd", "ressd", "distshape") 
 
attach(conditions) 
conditions$remove <- ifelse(quadmean=="NQM" & (quadsd=="SQV"|quadsd=="LQV"), 1, 0) 
detach(conditions) 
conditions <- subset(conditions, remove==0, select=-remove) 
#conditions <- subset(conditions, samplesize=='SN' & quadmean=='NQM' & quadsd=='NQV' & 
ressd=='SRV' & distshape=='NN') 
#conditions1 <- as.matrix(conditions) 
#conditions <- as.data.frame(conditions1) 
 
# This series of steps was necessary owing to an accidental stopping of the program.  
# The program was accidently stopped at row 27 of the conditions matrix. 
# The following keeps only those rows (there should be 16), converts to matrix, and then back to 
data frame. This ensures that 
# the levels in both files match.  
#conditions <- conditions[27:nrow(conditions), ] 
#conditions <- as.matrix(conditions) 
#conditions <- as.data.frame(conditions) 
 
# The following is the general form of a directory into which specific folders will be created and 
into which data will be access and written to. 
gendir <- "/Volumes/Seagate Backup Plus Drive/GCM Dissertation" 
 
# Open the system time function. 
system.time( 
 
# Open the loop over conditions. 
for(which.cond in 1:nrow(conditions)){ 
   
  condition.directory <- paste(gendir, "/", conditions[which.cond,1], "_", 
conditions[which.cond,2], "_", conditions[which.cond,3], "_", conditions[which.cond,4], "_", 
conditions[which.cond,5], sep="") 
  estimation.directory <- paste(condition.directory, "/", "Model Estimation Data", sep="") 
  plot.directory <- paste(condition.directory, "/", "Diagnostic Plot", sep="") 
  
# Open the loop over trials within conditions.   
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for(which.trial in 1:trials){ 
 
  observeddatadir <- paste(condition.directory, "/data/ObservedData", sep="") 
  setwd(observeddatadir) 
  file <- paste("obs.trial",which.trial,".dat",sep="") 
  y <- read.table(file, sep="\t", header=F) 
  N <- nrow(y) 
  J <- ncol(y) 
 
  for(which.model in 1:nmodels){ 
 
# Print out what is currently being estimated. 
  print(paste(paste("Currently estimating model = ", which.model, " for ", sep=""), 
              paste("Sample Size = ", conditions[which.cond,1], sep=""), 
              paste("Quadratic Mean = ", conditions[which.cond,2], sep=""), 
              paste("Quadratic Variance = ", conditions[which.cond,3], sep=""), 
              paste("Residual Variance = ", conditions[which.cond,4], sep=""), 
              paste("Distribution Shape = ", conditions[which.cond,5], " for trial = ", which.trial, 
sep=""))) 
   
# Indicate which parameters will be monitored. 
  if(which.model==1) params.to.monitor <- c("gamma", "beta", "sigma.psi", "rho01", "tau.res", 
"sigma.res") 
  if(which.model==2) params.to.monitor <- c("gamma", "gammaq", "beta", "sigma.psi", "rho01", 
"tau.res", "sigma.res") 
  if(which.model==3) params.to.monitor <- c("gamma", "gammaq", "beta", "betaq", "sigma.psi", 
"sigma.psi.q", "rho01", "tau.res", "sigma.res") 
   
  if(which.model==1) params.to.monitor.plot <- c("gamma", "sigma.psi", "rho01", "tau.res", 
"sigma.res") 
  if(which.model==2) params.to.monitor.plot <- c("gamma", "gammaq", "sigma.psi", "rho01", 
"tau.res", "sigma.res") 
  if(which.model==3) params.to.monitor.plot <- c("gamma", "gammaq", "sigma.psi", 
"sigma.psi.q", "rho01", "tau.res", "sigma.res") 
   
# Specify initial values. 
  g00.inits1 <- runif(1, min=15, max=17) 
  g00.inits2 <- runif(1, min=5, max=7.5) 
  g10.inits1 <- runif(1, min=6, max=8) 
  g10.inits2 <- runif(1, min=-1, max=1) 
  if(which.model>1) g20.inits1 <- runif(1, min=0, max=2) 
  if(which.model>1) g20.inits2 <- runif(1, min=-2, max=0) 
  gamma.inits1 <- c(g00.inits1, g10.inits1) 
  gamma.inits2 <- c(g10.inits2, g10.inits2) 
   
  tau.res.inits1 <- runif(1, min=3, max=5) 
  tau.res.inits2 <- runif(1, min=.03, max=.05) 
   
# Combine the initial values for both chains into one object. 
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  if(which.model==1) inits1 <- list("gamma"=gamma.inits1, "tau.res"=tau.res.inits1) 
  if(which.model==1) inits2 <- list("gamma"=gamma.inits2, "tau.res"=tau.res.inits2) 
  if(which.model!=1) inits1 <- list("gamma"=gamma.inits1, "gammaq"=g20.inits1, 
"tau.res"=tau.res.inits1) 
  if(which.model!=1) inits1 <- list("gamma"=gamma.inits2, "gammaq"=g20.inits2, 
"tau.res"=tau.res.inits2) 
  inits <- list(inits1, inits2) 
   
# Specify other key components that are needed for estimation. 
  time <- matrix(c(0,1,2,3,4), nrow=J, ncol=1) 
   
# The precision matrix for the person-specific growth parameters. 
  Omega <- diag(1,2); 
   
# Create list of the objects necessary for estimating in JAGS. 
  jags.data <- list("y"=y, "N"=N, "J"=J, "time"=time, "Omega"=Omega) 
   
# Specify MCMC simulation parameters. 
  nchains <- 2 
  nburnin <- 500 
  if (which.model==1) nthin <- subset(nthin.file, samplesize==conditions[which.cond,1] & 
                                        quadmean==conditions[which.cond,2] & 
                                        quadsd==conditions[which.cond,3] & 
                                        ressd==conditions[which.cond,4] & 
                                        distshape==conditions[which.cond,5], select=model1) 
  if (which.model==2) nthin <- subset(nthin.file, samplesize==conditions[which.cond,1] & 
                                        quadmean==conditions[which.cond,2] & 
                                        quadsd==conditions[which.cond,3] & 
                                        ressd==conditions[which.cond,4] & 
                                        distshape==conditions[which.cond,5], select=model2) 
  if (which.model==3) nthin <- subset(nthin.file, samplesize==conditions[which.cond,1] & 
                                        quadmean==conditions[which.cond,2] & 
                                        quadsd==conditions[which.cond,3] & 
                                        ressd==conditions[which.cond,4] & 
                                        distshape==conditions[which.cond,5], select=model3) 
  nthin <- as.numeric(nthin) 
     
  nadapt <- 0       
  iters.per.chain <- 150 
  niters <- iters.per.chain*nthin 
   
  # Determine which model is relevant. 
  if(which.model==1) modelfile <- model1.file 
  if(which.model==2) modelfile <- model2.file 
  if(which.model==3) modelfile <- model3.file 
   
  # Estimate the model. 
  fit <- jags.model(file=modelfile, n.adapt=nadapt, n.chains=nchains, data=jags.data, inits=inits) 
  update(fit, n.iter=nburnin, variable.names=params.to.monitor) 
  fit.samples <- coda.samples(fit, variable.names=params.to.monitor, n.iter=niters, thin=nthin) 
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  # Save the posterior draws. 
  posterior.draws <- as.matrix(fit.samples) 
  beta0 <- subset(posterior.draws, select=noquote(paste("beta[", seq(from=1, to=N, by=1), ",", 
"1]", sep=""))) 
    colnames(beta0) <- paste("beta0", seq(from=1, to=N, by=1), sep="_") 
  beta1 <- subset(posterior.draws, select=noquote(paste("beta[", seq(from=1, to=N, by=1), ",", 
"2]", sep=""))) 
    colnames(beta1) <- paste("beta1", seq(from=1, to=N, by=1), sep="_") 
  if(which.model==3) beta2 <- subset(posterior.draws, select=noquote(paste("betaq[", 
seq(from=1, to=N, by=1), "]", sep=""))) 
    if(which.model==3) colnames(beta2) <- paste("beta2", seq(from=1, to=N, by=1), sep="_") 
  gammas <- subset(posterior.draws, select=noquote(paste("gamma[", seq(from=1, to=2, by=1), 
"]", sep=""))) 
  if(which.model>1) gammaq <- subset(posterior.draws, select=noquote(gammaq)) 
    colnames(gammas) <- c("gamma00", "gamma10") 
    if(which.model>1) colnames(gammaq) <- c("gamma20") 
  sigma.res <- subset(posterior.draws, select=noquote("sigma.res")) 
    colnames(sigma.res) <- c("theta") 
  sigma.psi <- subset(posterior.draws, select=noquote(c("sigma.psi[1,1]", "sigma.psi[1,2]", 
"sigma.psi[2,2]"))) 
  if(which.model==3) sigma.psi.q <- subset(posterior.draws, select=noquote("sigma.psi.q")) 
    colnames(sigma.psi) <- c("sigma00", "sigma12", "sigma11") 
    if(which.model==3) colnames(sigma.psi.q) <- "sigma22" 
 
  # Write out the parameter files. 
  setwd(estimation.directory) 
  write.table(beta0, paste("beta0.model", which.model, ".trial", which.trial, ".dat", sep=""), 
row.names=F, col.names=T, sep="\t", quote=F) 
  write.table(beta1, paste("beta1.model", which.model, ".trial", which.trial, ".dat", sep=""), 
row.names=F, col.names=T, sep="\t", quote=F) 
  if(which.model==3) write.table(beta2, paste("beta2.model", which.model, ".trial", which.trial, 
".dat", sep=""), row.names=F, col.names=T, sep="\t", quote=F) 
  write.table(gammas, paste("gammas.model", which.model, ".trial", which.trial, ".dat", sep=""), 
row.names=F, col.names=T, sep="\t", quote=F) 
  if(which.model>1) write.table(cbind(gammas, gammaq), paste("gammas.model", which.model, 
".trial", which.trial, ".dat", sep=""), row.names=F, col.names=T, sep="\t", quote=F) 
  write.table(sigma.res, paste("theta.model", which.model, ".trial", which.trial, ".dat", sep=""), 
row.names=F, col.names=T, sep="\t", quote=F) 
  if(which.model<=2) write.table(sigma.psi, paste("psi.model", which.model, ".trial", which.trial, 
".dat", sep=""), row.names=F, col.names=T, sep="\t", quote=F) 
  if(which.model==3) write.table(cbind(sigma.psi, sigma.psi.q), paste("psi.model", which.model, 
".trial", which.trial, ".dat", sep=""), row.names=F, col.names=T, sep="\t", quote=F) 
   
  # Plot the diagnostics. 
  trial.model.diagnostics <- paste(plot.directory, "/trial", which.trial, sep="") 
  if(which.trial<2 & which.model==1) dir.create(trial.model.diagnostics) 
  model.diagnostics <- paste(trial.model.diagnostics, "/model", which.model, sep="") 
  if(which.trial<2) dir.create(model.diagnostics) 
  if(which.trial<2) mcmcplot(fit.samples, parms=params.to.monitor.plot, dir=model.diagnostics, 
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style="plain", 
                             filename=paste("diagnostics.model.", which.model, sep=""), 
                             extension="html") 
 
    } # Close the loop over models. 
 
  } # Close the loop over trials. 
 
} # Close the loop over conditions. 
 
) # Closes the system time function. 
 
#gc(rm(list=ls())) 
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APPENDIX E 
 

R CODE FOR PERFORMING PPMC WITH THE ABSOLUTE FIT DISCREPANCY 

FUNCTIONS 
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##############################################################################
################################################# 
## The purpose of the following code is to conduct PPMC. 
## This writes out the set of model expectations and posterior predictive data files for each  
## model for each trial corresponding to each data analysis model in each condition.  
## Other dependencies include the covariance matrix among growth parameters, residual 
variances, and the gammas. 
##############################################################################
################################################# 
 
# Specify any libraries that are needed. 
library(TeachingDemos) # For setting the seed. 
library(MASS) 
library(psych) 
 
# Specify the number of trials. 
trials <- 100 
 
# Specify the number draws that were used to construct the posterior distribution. 
D <- 300 
 
##############################################################################
############################### 
## Generate and write out posterior predictive data. 
## Conduct PPMC. 
##############################################################################
############################### 
 
# Create the list of conditions. 
sample.size <- matrix(c("SN","MN","LN")) 
quad.mean <- matrix(c("NQM", "SQM", "LQM")) 
quad.sd <- matrix(c("NQV", "SQV", "LQV")) 
res.sd <- matrix(c("SRV", "LRV")) 
#dist.shape <- matrix(c("NN")) 
dist.shape <- matrix(c("N", "NN")) 
 
conditions <- expand.grid(sample.size, quad.mean, quad.sd, res.sd, dist.shape) 
colnames(conditions) <- c("samplesize", "quadmean", "quadsd", "ressd", "distshape") 
 
attach(conditions) 
conditions$remove <- ifelse(quadmean=="NQM" & (quadsd=="SQV"|quadsd=="LQV"), 1, 0) 
detach(conditions) 
conditions <- subset(conditions, remove==0, select=-remove) 
 
# Specify constants that will be used throughout for indexing through loops. 
gendir <- "/Volumes/Seagate Backup Plus Drive/GCM Dissertation" 
 
# Likelihood ratio - taken from Preacher, Wichman, MacCallum, & Briggs. 
LR.f <- function(N, sigma, S, y, mu.hat){ 
  mean.diff <- matrix((colMeans(y) - mu.hat), ncol=1, nrow=5) 
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fml <- as.matrix((log(det(sigma))) - log(det(S)) + tr(S%*%solve(sigma)) - J + 
((t(mean.diff)%*%solve(sigma)%*%mean.diff))) 
  (N-1)*fml 
  } 
 
# Level-1 conditional concordance measure. 
ccc1.f <- function(y, y.exp, mu.hat, N, J){ 
  diffs1 <- as.matrix(y - y.exp) 
  diffs2 <- as.matrix(y - mean(y)) 
  diffs3 <- as.matrix(y.exp - mean(mu.hat)) 
  1 - ((sum(diag(t(diffs1)%*%diffs1)))/((sum(diag(t(diffs2)%*%diffs2))) + 
(sum(diag(t(diffs3)%*%diffs3))) + (N*J)*((mean(y)-mean(mu.hat))^2))) 
} 
 
# Level-1 pseudo-R2. 
r21.f <- function(y, y.exp, mu.hat){ 
  diffs1 <- as.matrix(y-mean(y)) 
  diffs2 <- as.matrix(y.exp - mean(mu.hat)) 
  
((sum(diag((t(diffs1)%*%diffs2))))^2)/((sum(diag(t(diffs1)%*%diffs1))*(sum(diag(t(diffs2)%*%
diffs2))))) 
} 
 
# Level-1 SGDDM. 
sgddm1.f <- function(y, y.exp, J, N){ 
  diffs <- y-y.exp 
  rescov <- as.matrix((cov(diffs)*(N-1))/N) 
  sgddm.mat <- matrix(NA, J, J) 
  for(j in 1:J){ 
    for(jj in 1:J){ 
      if(j!=jj) sgddm.mat[j,jj] <- rescov[j,jj]/(sqrt(rescov[j,j])*sqrt(rescov[jj,jj])) 
    } 
  } 
  sum(abs(sgddm.mat[lower.tri(sgddm.mat, diag=F)]))/((J*(J-1))/2) 
} 
 
# Level-2 conditional concordance measure. 
ccc2.f <- function(y, mu.hat, N, J){ 
   
  means.yexp <- matrix(NA, N, J) 
  means.yexp[ ,1] <- mu.hat[1, ] 
  means.yexp[ ,2] <- mu.hat[2, ] 
  means.yexp[ ,3] <- mu.hat[3, ] 
  means.yexp[ ,4] <- mu.hat[4, ] 
  means.yexp[ ,5] <- mu.hat[5, ] 
   
  diffs1 <- matrix(NA, N, J) 
  diffs1[ ,1] <- as.matrix(y[ ,1]-mu.hat[1, ]) 
  diffs1[ ,2] <- as.matrix(y[ ,2]-mu.hat[2, ]) 
  diffs1[ ,3] <- as.matrix(y[ ,3]-mu.hat[3, ]) 
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  diffs1[ ,4] <- as.matrix(y[ ,4]-mu.hat[4, ]) 
  diffs1[ ,5] <- as.matrix(y[ ,5]-mu.hat[5, ]) 
  diffs2 <- as.matrix(y - mean(y)) 
  diffs3 <- as.matrix(means.yexp - mean(mu.hat)) 
  1 - ((sum(diag(t(diffs1)%*%diffs1)))/((sum(diag(t(diffs2)%*%diffs2))) + 
(sum(diag(t(diffs3)%*%diffs3))) + (N*J)*((mean(y)-mean(mu.hat))^2))) 
} 
 
# Level-1 pseudo-R2. 
r22.f <- function(y, mu.hat, N, J){ 
   
  means.yexp <- matrix(NA, N, J) 
  means.yexp[ ,1] <- mu.hat[1, ] 
  means.yexp[ ,2] <- mu.hat[2, ] 
  means.yexp[ ,3] <- mu.hat[3, ] 
  means.yexp[ ,4] <- mu.hat[4, ] 
  means.yexp[ ,5] <- mu.hat[5, ] 
   
  diffs1 <- y - mean(y) 
  diffs2 <- means.yexp - mean(mu.hat) 
   
  
((sum(diag((t(diffs1)%*%diffs2))))^2)/((sum(diag(t(diffs1)%*%diffs1))*(sum(diag(t(diffs2)%*%
diffs2))))) 
} 
 
# Level-1 SGDDM. 
sgddm2.f <- function(y, mu.hat, N, J){ 
   
  diffs <- matrix(NA, N, J) 
  diffs[ ,1] <- as.matrix(y[ ,1]-mu.hat[1, ]) 
  diffs[ ,2] <- as.matrix(y[ ,2]-mu.hat[2, ]) 
  diffs[ ,3] <- as.matrix(y[ ,3]-mu.hat[3, ]) 
  diffs[ ,4] <- as.matrix(y[ ,4]-mu.hat[4, ]) 
  diffs[ ,5] <- as.matrix(y[ ,5]-mu.hat[5, ]) 
  rescov <- as.matrix((cov(diffs)*(N-1))/N) 
  sgddm.mat <- matrix(NA, J, J) 
  for(j in 1:J){ 
    for(jj in 1:J){ 
      if(j!=jj) sgddm.mat[j,jj] <- rescov[j,jj]/(sqrt(rescov[j,j])*sqrt(rescov[jj,jj])) 
    } 
  } 
  sum(abs(sgddm.mat[lower.tri(sgddm.mat, diag=F)]))/((J*(J-1))/2) 
} 
 
################################################################### 
## For each model within each trial, open the parameter estimates.  
################################################################### 
 
# use the system time function to time the computations. 
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system.time( 
   
  # Open the loop over conditions. 
  for(wc in 1:nrow(conditions)){ 
     
    # Specify paths to obtain requisite data. 
    condition.directory <- paste(gendir, "/", conditions[wc,1], "_", conditions[wc,2], "_", 
conditions[wc,3], "_", conditions[wc,4], "_", conditions[wc,5], sep="") 
    observed.data.directory <- paste(condition.directory, "/data/", "ObservedData", sep="") 
    estimation.directory <- paste(condition.directory, "/", "Model Estimation Data", sep="") 
    postpred.directory <- paste(condition.directory, "/data/", "Alt Posterior Predictive Data", 
sep="") 
    expectation.directory <- paste(condition.directory, "/data/", "Model Expectation", sep="") 
    results.directory <- paste(condition.directory, "/data/", "Results", sep="") 
    dir.create(postpred.directory) 
    dir.create(results.directory)   
       
    print(conditions[wc, ]) 
         
 
# Set up empty matrices to compute posterior predictive p-values for each trial. 
LRp <- matrix(NA, trials, 3) 
CCC1p <- matrix(NA, trials, 3) 
CCC2p <- matrix(NA, trials, 3) 
R21p <- matrix(NA, trials, 3) 
R22p <- matrix(NA, trials, 3) 
SGDDM1p <- matrix(NA, trials, 3) 
SGDDM2p <- matrix(NA, trials, 3) 
 
# Set up the loop over trials. 
for(wt in 1:trials){ 
   
    # Specify a null matrix for the draws for each fo the posterior predictive measures. 
    LR <- matrix(NA, D, 6) 
    CCC1 <- matrix(NA, D, 6) 
    CCC2 <- matrix(NA, D, 6) 
    R21 <- matrix(NA, D, 6) 
    R22 <- matrix(NA, D, 6) 
    SGDDM1 <- matrix(NA, D, 6) 
    SGDDM2 <- matrix(NA, D, 6) 
         
    # Open the observed data. 
    setwd(observed.data.directory) 
    y.obs <- as.matrix(read.table(paste("obs.trial", wt, ".dat", sep=""), header=F, sep="\t")) 
    colnames(y.obs) <- NULL 
    N <- nrow(y.obs) 
    J <- ncol(y.obs) 
    print(paste("Trial = ", wt, sep="")) 
     
    # Model 1 files. 
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    setwd(estimation.directory) 
    beta0.m1 <- as.matrix(read.table(file=paste("beta0.model1.trial", wt, ".dat", sep=""), header=T, 
sep="\t")) 
    beta1.m1 <- as.matrix(read.table(file=paste("beta1.model1.trial", wt, ".dat", sep=""), header=T, 
sep="\t")) 
    gammas.m1 <- as.matrix(read.table(file=paste("gammas.model1.trial", wt, ".dat", sep=""), 
header=T, sep="\t")) 
    psi.m1 <- as.matrix(read.table(file=paste("psi.model1.trial", wt, ".dat", sep=""), header=T, 
sep="\t"))     
    theta.m1 <- as.matrix(read.table(file=paste("theta.model1.trial", wt, ".dat", sep=""), header=T, 
sep="\t"))     
     
     
# Model 2 files. 
    setwd(estimation.directory) 
    beta0.m2 <- as.matrix(read.table(file=paste("beta0.model2.trial", wt, ".dat", sep=""), header=T, 
sep="\t")) 
    beta1.m2 <- as.matrix(read.table(file=paste("beta1.model2.trial", wt, ".dat", sep=""), header=T, 
sep="\t")) 
    gammas.m2 <- as.matrix(read.table(file=paste("gammas.model2.trial", wt, ".dat", sep=""), 
header=T, sep="\t")) 
    psi.m2 <- as.matrix(read.table(file=paste("psi.model2.trial", wt, ".dat", sep=""), header=T, 
sep="\t"))     
    theta.m2 <- as.matrix(read.table(file=paste("theta.model2.trial", wt, ".dat", sep=""), header=T, 
sep="\t"))     
     
    # Model 3 files. 
    setwd(estimation.directory) 
    beta0.m3 <- as.matrix(read.table(file=paste("beta0.model3.trial", wt, ".dat", sep=""), header=T, 
sep="\t")) 
    beta1.m3 <- as.matrix(read.table(file=paste("beta1.model3.trial", wt, ".dat", sep=""), header=T, 
sep="\t")) 
    beta2.m3 <- as.matrix(read.table(file=paste("beta2.model3.trial", wt, ".dat", sep=""), header=T, 
sep="\t")) 
    gammas.m3 <- as.matrix(read.table(file=paste("gammas.model3.trial", wt, ".dat", sep=""), 
header=T, sep="\t")) 
    psi.m3 <- as.matrix(read.table(file=paste("psi.model3.trial", wt, ".dat", sep=""), header=T, 
sep="\t"))     
    theta.m3 <- as.matrix(read.table(file=paste("theta.model3.trial", wt, ".dat", sep=""), header=T, 
sep="\t"))     
     
    # Create lambda matrices that will be used for computing the model implied mean vector and 
covariance matrix. 
    time <- as.matrix(seq(from=0, to=J-1, by=1)) 
    lambda1 <- as.matrix(cbind(rep(1,J), time)) 
    lambda2 <- as.matrix(cbind(rep(1,J), time, time^2)) 
         
    #for(wm in 1:models){ 
     
    for(d in 1:D){ 
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      if(d==75|d==150|d==225) print(paste("Draw = ", d, sep="")) 
 
      # Create null matrices to write posterior predictive and expected values. 
      y.rep.m1 <- matrix(NA, N, J) 
      y.rep.m2 <- matrix(NA, N, J) 
      y.rep.m3 <- matrix(NA, N, J) 
             
      y.exp.m1 <- matrix(NA, N, J) 
      y.exp.m2 <- matrix(NA, N, J) 
      y.exp.m3 <- matrix(NA, N, J) 
             
      # Generate expected values. 
      y.exp.m1[ ,1] <- beta0.m1[d,] + beta1.m1[d,]*lambda1[1,2] 
      y.exp.m1[ ,2] <- beta0.m1[d,] + beta1.m1[d,]*lambda1[2,2] 
      y.exp.m1[ ,3] <- beta0.m1[d,] + beta1.m1[d,]*lambda1[3,2] 
      y.exp.m1[ ,4] <- beta0.m1[d,] + beta1.m1[d,]*lambda1[4,2] 
      y.exp.m1[ ,5] <- beta0.m1[d,] + beta1.m1[d,]*lambda1[5,2] 
       
      y.exp.m2[ ,1] <- beta0.m2[d,] + beta1.m2[d,]*lambda2[1,2] + gammas.m2[d,3]*lambda2[1,3]   
      y.exp.m2[ ,2] <- beta0.m2[d,] + beta1.m2[d,]*lambda2[2,2] + gammas.m2[d,3]*lambda2[2,3]   
      y.exp.m2[ ,3] <- beta0.m2[d,] + beta1.m2[d,]*lambda2[3,2] + gammas.m2[d,3]*lambda2[3,3]   
      y.exp.m2[ ,4] <- beta0.m2[d,] + beta1.m2[d,]*lambda2[4,2] + gammas.m2[d,3]*lambda2[4,3]   
      y.exp.m2[ ,5] <- beta0.m2[d,] + beta1.m2[d,]*lambda2[5,2] + gammas.m2[d,3]*lambda2[5,3]   
       
      y.exp.m3[ ,1] <- beta0.m3[d,] + beta1.m3[d,]*lambda2[1,2] + beta2.m3[d,]*lambda2[1,3]   
      y.exp.m3[ ,2] <- beta0.m3[d,] + beta1.m3[d,]*lambda2[2,2] + beta2.m3[d,]*lambda2[2,3]   
      y.exp.m3[ ,3] <- beta0.m3[d,] + beta1.m3[d,]*lambda2[3,2] + beta2.m3[d,]*lambda2[3,3]   
      y.exp.m3[ ,4] <- beta0.m3[d,] + beta1.m3[d,]*lambda2[4,2] + beta2.m3[d,]*lambda2[4,3]   
      y.exp.m3[ ,5] <- beta0.m3[d,] + beta1.m3[d,]*lambda2[5,2] + beta2.m3[d,]*lambda2[5,3]   
       
      # Generate posterior predictive data. 
      # Set the seed for generating posterior predictive data. 
      set.seed(d+1000) 
      y.rep.m1 <- y.exp.m1 + as.matrix(mvrnorm(N, rep(0,J), diag(theta.m1[d,1],J))) 
      set.seed(d+2000) 
      y.rep.m2 <- y.exp.m2 + as.matrix(mvrnorm(N, rep(0,J), diag(theta.m2[d,1],J))) 
      set.seed(d+3000) 
      y.rep.m3 <- y.exp.m3 + as.matrix(mvrnorm(N, rep(0,J), diag(theta.m3[d,1],J))) 
     
      ## Write out the expected values and posterior predictive data. 
      setwd(expectation.directory) 
      write.table(y.exp.m1, paste("yexp_model1_trial", wt, "_draw", d, ".dat", sep=""), 
col.names=F, row.names=F, quote=F, sep="\t") 
      write.table(y.exp.m2, paste("yexp_model2_trial", wt, "_draw", d, ".dat", sep=""), 
col.names=F, row.names=F, quote=F, sep="\t") 
      write.table(y.exp.m3, paste("yexp_model3_trial", wt, "_draw", d, ".dat", sep=""), 
col.names=F, row.names=F, quote=F, sep="\t") 
       
      setwd(postpred.directory) 
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      write.table(y.rep.m1, paste("yrep_model1_trial", wt, "_draw", d, ".dat", sep=""), 
col.names=F, row.names=F, quote=F, sep="\t") 
      write.table(y.rep.m2, paste("yrep_model2_trial", wt, "_draw", d, ".dat", sep=""), 
col.names=F, row.names=F, quote=F, sep="\t") 
      write.table(y.rep.m3, paste("yrep_model3_trial", wt, "_draw", d, ".dat", sep=""), 
col.names=F, row.names=F, quote=F, sep="\t") 
       
      # Compute key functions to support the computations of discrepancy functions. 
       
      # Model implied covariance matrix. 
      psi.m1z <- matrix(c(psi.m1[d,1], psi.m1[d,2], 
                          psi.m1[d,2], psi.m1[d,3]), ncol=2, nrow=2) 
       
      psi.m2z <- matrix(c(psi.m2[d,1], psi.m2[d,2], 0, 
                          psi.m2[d,2], psi.m2[d,3], 0, 
                          0, 0, 0), ncol=3, nrow=3) 
      psi.m3z <- matrix(c(psi.m3[d,1], psi.m3[d,2], 0, 
                          psi.m3[d,2], psi.m3[d,3], 0, 
                          0, 0, psi.m3[d,4]), ncol=3, nrow=3) 
       
      sigma.m1 <- lambda1%*%psi.m1z%*%t(lambda1) + diag(theta.m1[d,1], J) 
      sigma.m2 <- lambda2%*%psi.m2z%*%t(lambda2) + diag(theta.m2[d,1], J) 
      sigma.m3 <- lambda2%*%psi.m3z%*%t(lambda2) + diag(theta.m3[d,1], J) 
       
      # Model implied mean vector. 
      mu.hat.m1 <- t(as.matrix(gammas.m1[d, ]%*%t(lambda1))) 
      mu.hat.m2 <- t(as.matrix(gammas.m2[d, ]%*%t(lambda2))) 
      mu.hat.m3 <- t(as.matrix(gammas.m3[d, ]%*%t(lambda2)))             
             
       
##############################################################################
### 
      ## Compute the discrepancy functions. 
      
##############################################################################
### 
       
      LR[d,1] <- LR.f(N=N, sigma.m1, S=cov(y.obs), y=y.obs, mu.hat=mu.hat.m1) 
      LR[d,2] <- LR.f(N=N, sigma.m1, S=cov(y.rep.m1), y=y.rep.m1, mu.hat=mu.hat.m1) 
      LR[d,3] <- LR.f(N=N, sigma.m2, S=cov(y.obs), y=y.obs, mu.hat=mu.hat.m2) 
      LR[d,4] <- LR.f(N=N, sigma.m2, S=cov(y.rep.m2), y=y.rep.m2, mu.hat=mu.hat.m2) 
      LR[d,5] <- LR.f(N=N, sigma.m3, S=cov(y.obs), y=y.obs, mu.hat=mu.hat.m3) 
      LR[d,6] <- LR.f(N=N, sigma.m3, S=cov(y.rep.m3), y=y.rep.m3, mu.hat=mu.hat.m3) 
                             
      CCC1[d,1] <- ccc1.f(y=y.obs, y.exp=y.exp.m1, mu.hat=mu.hat.m1, N=N, J=J) 
      CCC1[d,2] <- ccc1.f(y=y.rep.m1, y.exp=y.exp.m1, mu.hat=mu.hat.m1, N=N, J=J) 
      CCC1[d,3] <- ccc1.f(y=y.obs, y.exp=y.exp.m2, mu.hat=mu.hat.m2, N=N, J=J) 
      CCC1[d,4] <- ccc1.f(y=y.rep.m2, y.exp=y.exp.m2, mu.hat=mu.hat.m2, N=N, J=J) 
      CCC1[d,5] <- ccc1.f(y=y.obs, y.exp=y.exp.m3, mu.hat=mu.hat.m3, N=N, J=J) 
      CCC1[d,6] <- ccc1.f(y=y.rep.m3, y.exp=y.exp.m3, mu.hat=mu.hat.m3, N=N, J=J) 
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      R21[d,1] <- r21.f(y=y.obs, y.exp=y.exp.m1, mu.hat=mu.hat.m1) 
      R21[d,2] <- r21.f(y=y.rep.m1, y.exp=y.exp.m1, mu.hat=mu.hat.m1) 
      R21[d,3] <- r21.f(y=y.obs, y.exp=y.exp.m2, mu.hat=mu.hat.m2) 
      R21[d,4] <- r21.f(y=y.rep.m2, y.exp=y.exp.m2, mu.hat=mu.hat.m2) 
      R21[d,5] <- r21.f(y=y.obs, y.exp=y.exp.m3, mu.hat=mu.hat.m3) 
      R21[d,6] <- r21.f(y=y.rep.m3, y.exp=y.exp.m3, mu.hat=mu.hat.m3) 
       
      SGDDM1[d,1] <- sgddm1.f(y=y.obs, y.exp=y.exp.m1, J=J, N=N) 
      SGDDM1[d,2] <- sgddm1.f(y=y.rep.m1, y.exp=y.exp.m1, J=J, N=N) 
      SGDDM1[d,3] <- sgddm1.f(y=y.obs, y.exp=y.exp.m2, J=J, N=N) 
      SGDDM1[d,4] <- sgddm1.f(y=y.rep.m2, y.exp=y.exp.m2, J=J, N=N) 
      SGDDM1[d,5] <- sgddm1.f(y=y.obs, y.exp=y.exp.m3, J=J, N=N) 
      SGDDM1[d,6] <- sgddm1.f(y=y.rep.m3, y.exp=y.exp.m3, J=J, N=N) 
       
      CCC2[d,1] <- ccc2.f(y=y.obs, mu.hat=mu.hat.m1, N=N, J=J) 
      CCC2[d,2] <- ccc2.f(y=y.rep.m1, mu.hat=mu.hat.m1, N=N, J=J) 
      CCC2[d,3] <- ccc2.f(y=y.obs, mu.hat=mu.hat.m2, N=N, J=J) 
      CCC2[d,4] <- ccc2.f(y=y.rep.m2, mu.hat=mu.hat.m2, N=N, J=J) 
      CCC2[d,5] <- ccc2.f(y=y.obs, mu.hat=mu.hat.m3, N=N, J=J) 
      CCC2[d,6] <- ccc2.f(y=y.rep.m3, mu.hat=mu.hat.m3, N=N, J=J) 
       
      R22[d,1] <- r22.f(y=y.obs, mu.hat=mu.hat.m1, N=N, J=J) 
      R22[d,2] <- r22.f(y=y.rep.m1, mu.hat=mu.hat.m1, N=N, J=J) 
      R22[d,3] <- r22.f(y=y.obs, mu.hat=mu.hat.m2, N=N, J=J) 
      R22[d,4] <- r22.f(y=y.rep.m2, mu.hat=mu.hat.m2, N=N, J=J) 
      R22[d,5] <- r22.f(y=y.obs, mu.hat=mu.hat.m3, N=N, J=J) 
      R22[d,6] <- r22.f(y=y.rep.m3, mu.hat=mu.hat.m3, N=N, J=J) 
       
      SGDDM2[d,1] <- sgddm2.f(y=y.obs, mu.hat=mu.hat.m1, J=J, N=N) 
      SGDDM2[d,2] <- sgddm2.f(y=y.rep.m1, mu.hat=mu.hat.m1, J=J, N=N) 
      SGDDM2[d,3] <- sgddm2.f(y=y.obs, mu.hat=mu.hat.m2, J=J, N=N) 
      SGDDM2[d,4] <- sgddm2.f(y=y.rep.m2, mu.hat=mu.hat.m2, J=J, N=N) 
      SGDDM2[d,5] <- sgddm2.f(y=y.obs, mu.hat=mu.hat.m3, J=J, N=N) 
      SGDDM2[d,6] <- sgddm2.f(y=y.rep.m3, mu.hat=mu.hat.m3, J=J, N=N) 
           
    } # Close the loop over draws.    
           
    LRp[wt,1] <- mean(LR[,2]>=LR[,1]) 
    LRp[wt,2] <- mean(LR[,4]>=LR[,3]) 
    LRp[wt,3] <- mean(LR[,6]>=LR[,5]) 
       
    CCC1p[wt,1] <- mean(CCC1[,2]>=CCC1[,1]) 
    CCC1p[wt,2] <- mean(CCC1[,4]>=CCC1[,3]) 
    CCC1p[wt,3] <- mean(CCC1[,6]>=CCC1[,5]) 
         
    CCC2p[wt,1] <- mean(CCC2[,2]>=CCC2[,1]) 
    CCC2p[wt,2] <- mean(CCC2[,4]>=CCC2[,3]) 
    CCC2p[wt,3] <- mean(CCC2[,6]>=CCC2[,5]) 
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    R21p[wt,1] <- mean(R21[,2]>=R21[,1]) 
    R21p[wt,2] <- mean(R21[,4]>=R21[,3]) 
    R21p[wt,3] <- mean(R21[,6]>=R21[,5]) 
     
    R22p[wt,1] <- mean(R22[,2]>=R22[,1]) 
    R22p[wt,2] <- mean(R22[,4]>=R22[,3]) 
    R22p[wt,3] <- mean(R22[,6]>=R22[,5]) 
 
    SGDDM1p[wt,1] <- mean(SGDDM1[,2]>=SGDDM1[,1]) 
    SGDDM1p[wt,2] <- mean(SGDDM1[,4]>=SGDDM1[,3]) 
    SGDDM1p[wt,3] <- mean(SGDDM1[,6]>=SGDDM1[,5]) 
     
    SGDDM2p[wt,1] <- mean(SGDDM2[,2]>=SGDDM2[,1]) 
    SGDDM2p[wt,2] <- mean(SGDDM2[,4]>=SGDDM2[,3]) 
    SGDDM2p[wt,3] <- mean(SGDDM2[,6]>=SGDDM2[,5]) 
     
    # Write out the values of the realized and posterior predictive values of the discrepancy 
functions. 
    setwd(results.directory) 
    write.table(CCC1, paste("Level1_CCC_Draws_Trial", wt, ".dat", sep=""), row.names=F, 
col.names=F, quote=F, sep="\t") 
    write.table(CCC2, paste("Level2_CCC_Draws_Trial", wt, ".dat", sep=""), row.names=F, 
col.names=F, quote=F, sep="\t") 
    write.table(R21, paste("Level1_RSquared_Draws_Trial", wt, ".dat", sep=""), row.names=F, 
col.names=F, quote=F, sep="\t") 
    write.table(R22, paste("Level2_RSquared_Draws_Trial", wt, ".dat", sep=""), row.names=F, 
col.names=F, quote=F, sep="\t") 
    write.table(SGDDM1, paste("Level1_SGDDM_Draws_Trial", wt, ".dat", sep=""), 
row.names=F, col.names=F, quote=F, sep="\t") 
    write.table(SGDDM2, paste("Level2_SGDDM_Draws_Trial", wt, ".dat", sep=""), 
row.names=F, col.names=F, quote=F, sep="\t") 
    write.table(LR, paste("LR_Draws_Trial", wt, ".dat", sep=""), row.names=F, col.names=F, 
quote=F, sep="\t") 
   
    setwd(results.directory) 
    if(wt==trials) CCC1p <- cbind(rep("CCC1", trials), seq(from=1, to=trials, by=1), CCC1p) 
    if(wt==trials) CCC2p <- cbind(rep("CCC2", trials), seq(from=1, to=trials, by=1), CCC2p) 
    if(wt==trials) R21p <- cbind(rep("RSquared1", trials), seq(from=1, to=trials, by=1), R21p) 
    if(wt==trials) R22p <- cbind(rep("RSquared2", trials), seq(from=1, to=trials, by=1), R22p) 
    if(wt==trials) SGDDM1p <- cbind(rep("SGDDM1", trials), seq(from=1, to=trials, by=1), 
SGDDM1p) 
    if(wt==trials) SGDDM2p <- cbind(rep("SGDDM2", trials), seq(from=1, to=trials, by=1), 
SGDDM2p) 
    if(wt==trials) LRp <- cbind(rep("LR", trials), seq(from=1, to=trials, by=1), LRp) 
     
    if(wt==trials) results.to.write <- rbind(CCC1p, CCC2p, R21p, R22p, SGDDM1p, SGDDM2p, 
LRp) 
    if(wt==trials) colnames(results.to.write) <- c("Function", "Trial", "M1", "M2", "M3") 
    if(wt==trials) write.csv(results.to.write, file="Posterior Predictive PValues.csv", na='', 
row.names=F) 
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    } # Close the loop over trials. 
} # Close the loop over conditions. 
) 
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APPENDIX F 

R CODE FOR PERFORMING PPMC WITH THE LRT DISCPRENACY FUNCTION 
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########################################################################
####################################################### 
## The purpose of the following code is to conduct PPMC. 
## This writes out the set of model expectations and posterior predictive data files for 
each  
## model for each trial corresponding to each data analysis model in each condition.  
## Other dependencies include the covariance matrix among growth parameters, residual  
## variances, and the gammas. 
########################################################################
####################################################### 
 
# Specify any libraries that are needed. 
library(TeachingDemos) # For setting the seed. 
library(MASS) 
library(psych) 
 
# Specify the number of trials. 
trials <- 100 
 
# Specify the number draws that were used to construct the posterior distribution. 
D <- 300 
 
########################################################################
##################################### 
## Generate and write out posterior predictive data. 
## Conduct PPMC. 
########################################################################
##################################### 
 
# Create the list of conditions. 
sample.size <- matrix(c("SN","MN","LN")) 
quad.mean <- matrix(c("NQM", "SQM", "LQM")) 
quad.sd <- matrix(c("NQV", "SQV", "LQV")) 
res.sd <- matrix(c("SRV", "LRV")) 
dist.shape <- matrix(c("NN")) 
dist.shape <- matrix(c("N", "NN")) 
 
conditions <- expand.grid(sample.size, quad.mean, quad.sd, res.sd, dist.shape) 
colnames(conditions) <- c("samplesize", "quadmean", "quadsd", "ressd", "distshape") 
 
attach(conditions) 
conditions$remove <- ifelse(quadmean=="NQM" & (quadsd=="SQV"|quadsd=="LQV"), 
1, 0) 
detach(conditions) 
conditions <- subset(conditions, remove==0, select=-remove) 
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#conditions <- droplevels(subset(conditions, samplesize=="SN" & quadmean=="NQM" 
& quadsd=="NQV" & ressd=="SRV" & distshape=="N")) 
#conditions <- droplevels(conditions[1, ]) 
# Specify constants that will be used throughout for indexing through loops. 
gendir <- "/Volumes/Seagate Backup Plus Drive/GCM Dissertation" 
 
# Negative log-likelihood for the model. 
negtwoLL.f <- function(N, J, sigma, y, mu.hat){ 
  ind1 <- -1*(.5*(mahalanobis(y, mu.hat, sigma, inverted=FALSE))) 
  constant <- -(((N*J)/2)*log(2*pi)) - ((N/2)*log(det(sigma))) 
  ind2 <- constant + sum(ind1) 
  -2*ind2 
} 
 
########################################################################
########################################################################
###### 
## For each model within each trial, open the parameter estimates.  
########################################################################
########################################################################
###### 
 
# use the system time function to time the computations. 
system.time( 
   
  # Open the loop over conditions. 
  for(wc in 1:nrow(conditions)){ 
     
    # Specify paths to obtain requisite data. 
    condition.directory <- paste(gendir, "/", conditions[wc,1], "_", conditions[wc,2], "_", 
conditions[wc,3], "_", conditions[wc,4], "_", conditions[wc,5], sep="") 
    observed.data.directory <- paste(condition.directory, "/data/", "ObservedData", sep="") 
    estimation.directory <- paste(condition.directory, "/", "Model Estimation Data", 
sep="") 
    postpred.directory <- paste(condition.directory, "/data/", "Posterior Predictive Data", 
sep="") 
    expectation.directory <- paste(condition.directory, "/data/", "Model Expectation", 
sep="") 
    results.directory <- paste(condition.directory, "/data/", "Results", sep="") 
    #dir.create(results.directory) 
     
    print(conditions[wc, ]) 
     
    # Set up empty matrices to compute posterior predictive p-values for each trial. 
    NEGTWOLLp <- matrix(NA, trials, 6) 
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    # Set up the loop over trials. 
    for(wt in 1:trials){ 
       
      # Specify a null matrix for the draws for each fo the posterior predictive measures. 
      NEGTWOLL <- matrix(NA, D, 20) 
       
      # Open the observed data. 
      setwd(observed.data.directory) 
      y.obs <- as.matrix(read.table(paste("obs.trial", wt, ".dat", sep=""), header=F, 
sep="\t")) 
      colnames(y.obs) <- NULL 
      N <- nrow(y.obs) 
      J <- ncol(y.obs) 
      print(paste("Trial = ", wt, sep="")) 
       
      # Model 1 files. 
      setwd(estimation.directory) 
      gammas.m1 <- as.matrix(read.table(file=paste("gammas.model1.trial", wt, ".dat", 
sep=""), header=T, sep="\t")) 
      psi.m1 <- as.matrix(read.table(file=paste("psi.model1.trial", wt, ".dat", sep=""), 
header=T, sep="\t"))     
      theta.m1 <- as.matrix(read.table(file=paste("theta.model1.trial", wt, ".dat", sep=""), 
header=T, sep="\t"))     
       
      # Model 2 files. 
      setwd(estimation.directory) 
      gammas.m2 <- as.matrix(read.table(file=paste("gammas.model2.trial", wt, ".dat", 
sep=""), header=T, sep="\t")) 
      psi.m2 <- as.matrix(read.table(file=paste("psi.model2.trial", wt, ".dat", sep=""), 
header=T, sep="\t"))     
      theta.m2 <- as.matrix(read.table(file=paste("theta.model2.trial", wt, ".dat", sep=""), 
header=T, sep="\t"))     
       
      # Model 3 files. 
      setwd(estimation.directory) 
      gammas.m3 <- as.matrix(read.table(file=paste("gammas.model3.trial", wt, ".dat", 
sep=""), header=T, sep="\t")) 
      psi.m3 <- as.matrix(read.table(file=paste("psi.model3.trial", wt, ".dat", sep=""), 
header=T, sep="\t"))     
      theta.m3 <- as.matrix(read.table(file=paste("theta.model3.trial", wt, ".dat", sep=""), 
header=T, sep="\t"))     
       
      # Create lambda matrices that will be used for computing the model implied mean 
vector and covariance matrix. 
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      time <- as.matrix(seq(from=0, to=J-1, by=1)) 
      lambda1 <- as.matrix(cbind(rep(1,J), time)) 
      lambda2 <- as.matrix(cbind(rep(1,J), time, time^2)) 
       
      #for(wm in 1:models){ 
       
      for(d in 1:D){ 
         
        if(d==75|d==150|d==225) print(paste("Draw = ", d, sep="")) 
         
        # Open the posterior predictive data. 
        setwd(postpred.directory) 
        y.rep.m1 <- read.table(paste("yrep_model1_trial", wt, "_draw", d, ".dat", sep=""), 
header=F, sep="\t") 
        y.rep.m2 <- read.table(paste("yrep_model2_trial", wt, "_draw", d, ".dat", sep=""), 
header=F, sep="\t") 
        y.rep.m3 <- read.table(paste("yrep_model3_trial", wt, "_draw", d, ".dat", sep=""), 
header=F, sep="\t") 
                           
        # Compute key functions to support the computations of discrepancy functions. 
         
        # Model implied covariance matrix. 
        psi.m1z <- matrix(c(psi.m1[d,1], psi.m1[d,2], 
                            psi.m1[d,2], psi.m1[d,3]), ncol=2, nrow=2) 
         
        psi.m2z <- matrix(c(psi.m2[d,1], psi.m2[d,2], 0, 
                            psi.m2[d,2], psi.m2[d,3], 0, 
                            0, 0, 0), ncol=3, nrow=3) 
               
        psi.m3z <- matrix(c(psi.m3[d,1], psi.m3[d,2], 0, 
                            psi.m3[d,2], psi.m3[d,3], 0, 
                            0, 0, psi.m3[d,4]), ncol=3, nrow=3) 
         
        sigma.m1 <- lambda1%*%psi.m1z%*%t(lambda1) + diag(theta.m1[d,1], J) 
        sigma.m2 <- lambda2%*%psi.m2z%*%t(lambda2) + diag(theta.m2[d,1], J) 
        sigma.m3 <- lambda2%*%psi.m3z%*%t(lambda2) + diag(theta.m3[d,1], J) 
         
        # Model implied mean vector. 
        mu.hat.m1 <- t(as.matrix(gammas.m1[d, ]%*%t(lambda1))) 
        mu.hat.m2 <- t(as.matrix(gammas.m2[d, ]%*%t(lambda2))) 
        mu.hat.m3 <- t(as.matrix(gammas.m3[d, ]%*%t(lambda2)))             
         
        
########################################################################
### 
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        ## Compute the discrepancy functions. 
########################################################################
### 
                 
        NEGTWOLL[d,1] <- negtwoLL.f(N=N, J=J, sigma=sigma.m1, y=y.obs, 
mu.hat=mu.hat.m1) 
        NEGTWOLL[d,2] <- negtwoLL.f(N=N, J=J, sigma=sigma.m2, y=y.obs, 
mu.hat=mu.hat.m2) 
        NEGTWOLL[d,3] <- negtwoLL.f(N=N, J=J, sigma=sigma.m3, y=y.obs, 
mu.hat=mu.hat.m3) 
         
        NEGTWOLL[d,4] <- negtwoLL.f(N=N, J=J, sigma=sigma.m1, y=y.rep.m1, 
mu.hat=mu.hat.m1) 
        NEGTWOLL[d,5] <- negtwoLL.f(N=N, J=J, sigma=sigma.m2, y=y.rep.m1, 
mu.hat=mu.hat.m2) 
        NEGTWOLL[d,6] <- negtwoLL.f(N=N, J=J, sigma=sigma.m3, y=y.rep.m1, 
mu.hat=mu.hat.m3) 
         
        NEGTWOLL[d,7] <- negtwoLL.f(N=N, J=J, sigma=sigma.m1, y=y.rep.m2, 
mu.hat=mu.hat.m1) 
        NEGTWOLL[d,8] <- negtwoLL.f(N=N, J=J, sigma=sigma.m2, y=y.rep.m2, 
mu.hat=mu.hat.m2) 
        NEGTWOLL[d,9] <- negtwoLL.f(N=N, J=J, sigma=sigma.m3, y=y.rep.m2, 
mu.hat=mu.hat.m3) 
         
        NEGTWOLL[d,10] <- negtwoLL.f(N=N, J=J, sigma=sigma.m1, y=y.rep.m3, 
mu.hat=mu.hat.m1) 
        NEGTWOLL[d,11] <- negtwoLL.f(N=N, J=J, sigma=sigma.m2, y=y.rep.m3, 
mu.hat=mu.hat.m2) 
        NEGTWOLL[d,12] <- negtwoLL.f(N=N, J=J, sigma=sigma.m3, y=y.rep.m3, 
mu.hat=mu.hat.m3) 
                         
      } # Close the loop over draws.    
       
      # Realized values. 
      NEGTWOLL[ ,13] <- NEGTWOLL[,1]-NEGTWOLL[,2] 
      NEGTWOLL[ ,14] <- NEGTWOLL[,2]-NEGTWOLL[,3] 
       
      # Posterior predictive values given model 1. 
      NEGTWOLL[ ,15] <- NEGTWOLL[,4]-NEGTWOLL[,5] 
      NEGTWOLL[ ,16] <- NEGTWOLL[,5]-NEGTWOLL[,6] 
       
      # Posterior predictive values given model 2. 
      NEGTWOLL[ ,17] <- NEGTWOLL[,7]-NEGTWOLL[,8] 
      NEGTWOLL[ ,18] <- NEGTWOLL[,8]-NEGTWOLL[,9] 
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      # Posterior predictive values given model 3. 
      NEGTWOLL[ ,19] <- NEGTWOLL[,10]-NEGTWOLL[,11] 
      NEGTWOLL[ ,20] <- NEGTWOLL[,11]-NEGTWOLL[,12] 
       
      # PPP-values given model 1. 
      NEGTWOLLp[wt,1] <- mean(NEGTWOLL[,15]>=NEGTWOLL[,13]) 
      NEGTWOLLp[wt,2] <- mean(NEGTWOLL[,16]>=NEGTWOLL[,14]) 
 
      # PPP-values given model 2. 
      NEGTWOLLp[wt,3] <- mean(NEGTWOLL[,17]>=NEGTWOLL[,13]) 
      NEGTWOLLp[wt,4] <- mean(NEGTWOLL[,18]>=NEGTWOLL[,14]) 
       
      # PPP-values given model 3. 
      NEGTWOLLp[wt,5] <- mean(NEGTWOLL[,19]>=NEGTWOLL[,13]) 
      NEGTWOLLp[wt,6] <- mean(NEGTWOLL[,20]>=NEGTWOLL[,14]) 
                   
      # Write out the values of the realized and posterior predictive values of the 
discrepancy functions. 
       
      setwd(results.directory) 
      write.table(NEGTWOLL, paste("New_NEGTWOLL_Draws_Trial", wt, ".dat", 
sep=""), row.names=F, col.names=F, quote=F, sep="\t") 
      if(wt==trials) NEGTWOLLp <- cbind(rep("NEGTWOLL", trials), seq(from=1, 
to=trials, by=1), NEGTWOLLp)       
      if(wt==trials) colnames(NEGTWOLLp) <- c("Function", "Trial", "M1M2_M1", 
"M2M3_M1", "M1M2_M2", "M2M3_M2", "M1M2_M3", "M2M3_M3") 
      if(wt==trials) write.csv(NEGTWOLLp, file="New NEGTWOLL Posterior Predictive 
PValues.csv", na='', row.names=F) 
             
    } # Close the loop over trials. 
  } # Close the loop over conditions. 
   
) 
 
 
 

 

 

 

 


