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ABSTRACT

The microelectronics technology has seen a tremendous growth over the past

sixty years. The advancements in microelectronics, which shows the capability of

yielding highly reliable and reproducible structures, have made the mass production

of integrated electronic components feasible. Miniaturized, low-cost, and accurate

sensors became available due to the rise of the microelectronics industry. A variety of

sensors are being used extensively in many portable applications. These sensors are

promising not only in research area but also in daily routine applications.

However, many sensing systems are relatively bulky, complicated, and expensive

and main advantages of new sensors do not play an important role in practical

applications. Many challenges arise due to intricacies for sensor packaging, especially

operation in a solution environment. Additional problems emerge when interfacing

sensors with external off-chip components. A large amount of research in the field of

sensors has been focused on how to improve the system integration.

This work presents new methods for the design, fabrication, and integration

of sensor systems. This thesis addresses these challenges, for example, interfacing

microelectronic system to a liquid environment and developing a new technique for

impedimetric measurement. This work also shows a new design for on-chip optical

sensor without any other extra components or post-processing.
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Chapter 1

INTRODUCTION

Electrochemical sensor research has experienced explosive growth over last thirty

years. Typical electrochemical sensors are composed of transducers that detect

changes in quantities and provide corresponding outputs, generally as electrical signals;

electronic systems that include noise filters, signal amplifiers, and signal processors.

More recently, since various sensors for electrochemical applications are being used

extensively in daily lives, miniaturized, low-cost, and reliable sensors are required for

routine applications. The wide use of these sensors can be mainly attributed to the

rise of the microelectronics industry. Due to the advancements in microelectronics,

sensors became small enough for portable applications with low power consumption

and little heat generated. These advances have also enabled sensors to work at lower

voltages to avoid expensive power supplies, leading to a reduction in the system cost.

Small sensors only need small volumes of solutions and greatly reduce reagent costs,

and the mass production. By eliminating solder joints and reducing interconnects,

the fabrication technology of microelectronic meets the desire for highly reliable

sensors. Moreover, advancements in microelectronic circuit technology allows for

reducing noises, amplifying, and processing signals, causing no requirement of external

electronic system. However, although several electrochemical techniques such as

cyclic voltammetry, impedance spectroscopy, and square wave voltammetry have been

developed, many electrochemical sensor systems are still sophisticated, bulky, and

expensive. These instruments have been used as characterization tools rather than as
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analytical tool for practical applications. Consequently, new and better electrochemical

sensors need to be developed leveraging the advancement in microelectronics.

One problem is microelectronic circuits for signal read-out and processing. Small

feature sensors generally generate small output signals. In order to obtain meaningful

physical parameters, electronic signals from transducers need to be filtered, amplified,

and processed. Since all the components are fabricated very close to each other, micro-

electronics are highly suitable for small signal operation. But it is not straightforward

for microelectronic circuit to connect with transducers. In addition, microelectronic

circuits should be close to the transducers, which can increase the signal-to-noise ratio.

The combination of knowledge in electrochemistry, solid state physics, and electrical

engineering offers the possibility of better sensors addressing this problem.

System integration in this design space presents numerous challenges. The first is

material constraints for sensor packaging due to requirements for interface assembly,

especially operation in a liquid environment. To meet these complicated constraints,

die-level fabrication and post-package are proposed. Second, a custom fabrication

process is used for the integration of microelectronic devices. However, some electrical

interfaces of sensors such as nanowire array, nanoparticles, and optical devices can not

be made by a standard fabrication process. Problems arise when connecting small size

sensors with these external components. To overcome these issues, sensors without

any other off-chip components or post-processing are developed.

This thesis describes new approaches for the design, fabrication, and packaging

of sensor systems. The work presented here is organized as follows. Chapter 2

briefly discusses some background concepts about electrochemical methods such

as cyclic voltammetry, electrochemical impedance spectroscopy, and square wave

voltammetry. Chapter 3 demonstrates a CMOS potentiostat for chemical sensing
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applications. The potentiostat chip is capable of performing cyclic voltammetry

under different conditions such as varying scan rates and concentrations. The use

of microfabrication processing allows for the integration of microelectronic circuits

in the sensor substrate, providing a solution to portable sensors. Chapter 4 presents

an on-chip electrochemical sensor. This sensor system shows all the advantages

that make CMOS suitable for lab-on-a-chip platforms. Chapter 5 reports a portable

electrochemical analysis system using impedimetric measurements instead of more

commonly used potentiometric techniques. This impedimetric measurement system

uses a small AC perturbation to get the impedance of an electrochemical cell without

affecting it as opposed to cyclic voltammetry which repeatedly reduces and oxidizes

the electrochemical cell. Chapter 6 presents a CMOS impedance measurement chip

using a new impedance detection technique. The impedance of an electrochemical cell

is measured by perturbing the system with a small potential stimulus instead of a

small AC perturbation. The main advantage of this method includes an extremely

short-time impedance measurements over the whole frequency range rather than

measuring at each individual frequency. Chapter 7 describes a low-cost square wave

voltammetry sensor based on relaxation oscillators. This chapter shows the ability to

detect different chemical species simultaneously. Chapter 8 presents a novel method

for light direction detection using commercial CMOS process. Design for this on-chip

sensor is demonstrated without the requirement for other optical components or post-

processing. Chapter 9 demonstrates a self-powered on-chip sensor for light-direction

detection. This sensor provides digitized output and does not requires any off-chip

power or external components. Chapter 10 shows an application of the on-chip

light detection sensor, i.e. a solar tracking system capable of maximizing the energy

harvesting.
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Chapter 2

ELECTROCHEMICAL METHODS

Electrochemical methods are a class of techniques in electrochemistry to study

the chemical response of a system to an electrical stimulation Bard and Faulkner

2000. In most electrochemical methods, a three-electrode setup is required: reference

electrode (RE), counter electrode (CE) and working electrodes (WE). The reference

electrode measures and controls the working electrode voltage to stabilize the solution

potential. The counter electrode allows current to pass balancing the current through

the working electrode. The three-electrode setup is connected to a potentiostat, an

instrument which provides the applied potential and measures the response current.

Electrochemical methods can be divided in four categories: potentiometry (the

potential is measured versus time), amperometry (the current is measured at a con-

stant applied potential), voltammetry (the current is measured while a predetermined

potential is applied), and impedimetry (the impedance of a system is measured with

small sinusoidal waveform perturbations). This chapter mainly discusses three com-

monly used electrochemical methods: cyclic voltammetry, electrochemical impedance

spectroscopy, and square wave voltammetry.

2.1 Cyclic Voltammetry

In 1938, cyclic voltammetry (CV) was first reported and theoretically discussed

by Randles Randles 1948. CV investigates the kinetics of electrochemical reactions

which take place at the electrode surface. The reactions proceed through two different
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processes, i.e. Faradaic and non-Faradaic. A Faradaic process arises from the trans-

fer of electrons across the metal electrolyte interface while a non-Faradaic process

involves electrical double layer charging of the interface with no electron transfer. The

electrochemical reaction occurring at electrode in the solution can be written as:

Ox+ ne− ⇔ Re (2.1)

where Ox and Re are oxidized and reduced species, respectively Nicholson and Shain

1964. The two-arrow sign ⇔ denotes that the reaction rate in the forward direction is

equal to that in the reverse direction.

Figure 1. CV potential waveform

In Fig. 1, the electrode potential scans linearly versus time from a to d until it

reaches a set potential called the switching potential, which leads to an oxidation of
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Figure 2. Cyclic voltammogram

the chemical species. Subsequently, the scan direction is inverted from d to g, and the

scan repeats multiple times during an experiment. Fig. 1 demonstrates that from a

low potential (initial potential) to a high potential (switching potential), the oxidation

process happens and generates a current peak for the analyte. The resulting current is

called anodic current (ipa). The current first increases until the potential arrives at the

oxidation potential, which is called the anodic peak potential (Epa). Then it decreases

as the oxidized chemical species is depleted in the vicinity of electrode surface. After

the switching potential, the scan direction of the applied potential is reversed. This

will produce an reduction peak (cathodic current ipc and cathodic peak potential

Epc) which has a similar shape to the oxidation peak. Thus the redox potential and

electrochemical reaction rates are recorded. The current peak ip depends on both the
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concentration C and the scan rate v according to the Randles–Sevcik equation Wang

2006.

2.2 Electrochemical Impedance Spectroscopy

Figure 3. EIS current response in a linear system

Electrochemical impedance spectroscopy (EIS) is a method of measuring impedance

of a system as a function of frequency Bard and Faulkner 2000; Barsoukov and

Macdonald 2005. In traditional EIS, electrochemical impedance is usually measured

by applying a small-amplitude sinusoidal signal to an electrochemical cell and record
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Figure 4. Impedance plot for an electrochemical cell

the response current through this system. When the excitation AC signal is small,

the electrochemical cell’s response is linear (or pseudo-linear). The response output

to a sinusoidal input will be sinusoidal with the same frequency and a phase shift ϕ

(see Fig. 3). The impedance of the electrochemical cell is calculated by:

Z =
Vin
Iout

=| Z | ejϕ = Zre + jZim (2.2)

where Z is the impedance of the system, Vin is the input potential, Iout is the response

current, j is the imaginary unit, and Zre and Zim are the real part and imaginary

part of Z. A typical Nyquist plot of EIS is illustrated in Fig. 4. The x-axis denotes

Zre, and the y-axis denotes the negative value of Zim. On this plot, the frequency

decreases from the left side to the right side. It is observed that charge-transfer and

mass-transfer regions are located at low and high frequencies, respectively.
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Figure 5. Principle of square-wave voltammetry. (a) Potential waveform Vin and the
current response Iout. (b) A typical voltammogram in square-wave voltammetry.

2.3 Square Wave Voltammetry

Square-wave voltammetry (SWV) has seen tremendous advancements in recent

years Chen and Shah 2013; Mirceski et al. 2013; Mirceski, Komorsky-Lovric, and

Lovric 2007. This method stems from the Kalousek commutator Ruzic 1972 and

Barker’s square-wave polarography Barker and Gardner 1992. Because SWV combines

the advantages of pulse techniques (high sensitivity), cyclic voltammetry (investigation

of the electrokinetic), and impedance methods (analytic measurements), it is now one

of the primary voltammetric techniques. The potential waveform Vin used in SWV

can be considered as a superposition of a square wave onto a staircase potential ramp

as seen in Fig. 5 (a). For each step of the staircase potential, two equal magnitude

and duration but opposite in direction square pulses are applied. These two square
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pulses are the forward pulse and the reverse pulse. The response current is sampled

twice; one at the end of the forward pulse and again at the end of the reverse pulse.

It should be noted that the current is sampled immediately before the potential

direction is changed. Therefore, the contribution to the response current resulting

from non-faradaic current is minimal. The current difference is obtain by subtracting

the reverse current from the forward current. Subsequently, a curve is plotted against

the staircase potential in Fig. 5 (b). The peak in the voltammogram appears as a

result of redox processes. The magnitudes of the current peak is proportional to the

concentration of the redox species Bard and Faulkner 2000; Mirceski et al. 2013.
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Chapter 3

CYCLIC VOLTAMMETRY MEASUREMENTS

This chapter presents a CMOS potentiostat chip fabricated in a standard 0.5 µm

CMOS process to perform electrochemical analysis via cyclic voltammetry Luo et al.

2013. This chip contains six independent channels for three electrode systems in

electrochemical cells. Our low power circuit has been designed to drive electrochemical

reactions in the solution using a class AB folded cascode amplifiers. The circuit

operates with rail to rail input and output and strong drive ability. We have shown

the potentiostat chip is capable of performing cyclic voltammetry (CV) with both

potassium ferricyanide and hexaammineruthenium chloride solutions. The chip is

capable of differentiating both the composition and concentration of the solution. We

compare our results with control experiments on a Gamry commercial electrochemical

workstation and demonstrate they are consistent.

3.1 Background

The detection of analyte composition and concentration in solution is essential for

many applications in industrial control Freitas et al. 2012, environmental engineering

Strycharz et al. 2011 and medical diagnosis Fairchild et al. 2009; La Belle et al.

2011. These applications can benefit from development of low cost, portable, robust

devices that are simple to use Y. Huang et al. 2013. Many new methods have been

developed for analysis including optical Warren-Smith et al. 2011, magnetic Hua

Wang et al. 2009 and electrochemical Mason et al. 2007 analysis. To obtain direct
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transduction of electrical signals and reduce interface noise electrochemical techniques

have become an important and widely used Cao, Greve, and Oppenheim 2008; Li

et al. 2011. In addition these electrochemical systems are fabricated in standard

CMOS processes Mason et al. 2007; Cao, Greve, and Oppenheim 2008; Li et al. 2011,

improving reliability and reducing not only the cost and reliability but the necessary

sample volume as well. The use of a CMOS process also allows for the integration

of state-of-the art circuits in the sensor substrate, providing a feasible pathway to

handheld sensor platforms.

Figure 6. Optical micrograph of the 1.5 mm × 3 mm die. This potentiostat chip was
fabricated in a standard CMOS process with six independent channels.

We describe a CMOS potentiostat chip shown in figure 6 that is used to preform

cyclic voltammetry to detect the aforementioned peak current for analyte analysis

in section 3.2. The chip was demonstrated by performing CV experiments with

potassium ferricyanide (Sigma-Aldrich, product no. 702587) solution using screen

printed carbon electrodes with a three electrode configuration (CH Instruments Inc.,

12



Part number TE100), described in section 3.3. Both the CMOS chip and a commercial

electrochemical workstation (Gamry Instruments Inc., Reference 3000TM ) were used to

run CV on various potassium ferricyanide concentrations and scan rates demonstrated

in section 3.4. These experiments were conducted to illustrate the effect of scan rate

and concentration on the peak current. We also use a different chemical species,

hexaammineruthenium chloride (Sigma-Aldrich, product no. 262005), to find the

change in the redox peak position to demonstrate identification of different species

in section 3.5. In addition three external gold electrodes were used in the potassium

ferricyanide solution for CV experiments in section 3.6. Finally the results are discussed

in section 3.7.

3.2 System Overview

Figure 7. Single channel potentiostat schematic for CV measurements. The two
amplifiers are on-chip and the voltage supplies, electrochemical cell and feedback
resistor are external.
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The 1.5 mm × 3 mm potentiostat chip was fabricated in a standard 0.5 µm CMOS

process and is shown in Fig.6. This CMOS circuit was designed with the help of

Dr. Hongyi Wang. The chip consists of six independent potentiostat circuits. The

basic schematic for each of those six channels each used to perform CV is shown

in figure 7. To conduct electrochemical experiments including cyclic voltammetry

Yang, Huang, et al. 2009 and impedance spectroscopy Yang, Jadhav, et al. 2009,

a three-electrode setup is required with reference electrode (RE), counter electrode

(CE) and working electrodes (WE). In CV, the electrode potential scans linearly with

time until it reaches a set potential called the switching potential. After reaching the

switching potential, the scan direction is reversed until it reaches the initial potential,

then the scan is repeated multiple times. When the scan potential moves from a high

potential (initial potential) to a low potential (switching potential), reduction occurs

and generates the current peak for the analyte, ip. The current first increases until the

potential arrives at the reduction potential then decreases since the reduced species

becomes depleted near the electrode surface. At this point the scan direction for the

applied potential is reversed. This produces an oxidation peak which has a similar

shape to the reduction peak but is inverted. This allows us to determine the redox

potential and electrochemical reaction rates. The peak current ip depends on both

the concentration and scan rate, according to the Randles-Sevcik equation Wang 2006.

If the solution is at 25 ◦C, the equation is described as:

ip = 2.69× 105n3/2AD1/2v1/2C (3.1)

where n is the number of electrons transferred in the redox reaction, A is the electrode

area, D is the diffusion coefficient, v is the scan rate, and C is the concentration.

We use the setup in figure 7 to perform these measurements; it is implemented with
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integrated amplifiers and external voltage supplies, electrochemical cell and feedback

resistor.

Figure 8. Class AB folded cascode amplifier schematic for the potentiostat circuit.

These CMOS potentiostat circuits were designed to achieve both low power and

strong drive capability. The amplifiers used are class AB folded cascode amplifiers

with the schematic shown in Fig.8. We have completely characterized the fabricated

chip and tested the performance of the amplifiers. This low power design has a

quiescent current of 44 µA and can be operated with a supply voltage from 5 V down

to 2 V. The input and output range of the system is rail to rail and the gain is 105

dB with a phase margin of 78 degrees. The system was design for low frequency

operation matched to our application and to minimize high frequency noise with a 0

dB bandwidth of 30 kHz. The PSRR is 70 dB, and the transconductance is 21 A/V.

The system can drive over 10 mA, source or sink.
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3.3 Potassium Ferricyanide CV Measurement by CMOS Potentiostat and Gamry

Figure 9. CV measurements of 100 mM potassium ferricyanide by our CMOS
potentiostat chip and the Gamry workstation.

Potassium Ferricyanide is a standard in calibration and measurements for elec-

trochemistry, thus it was chosen to demonstrate our system. A typical electrolyte

solution with 1 M potassium chloride (EMD Chemicals, product no. PX1405-1) and

100 mM potassium ferricyanide was used to verify the operation of our chip. The

cyclic voltammetry measurements were performed with an external electrochemical

cell using the screen printed carbon three electrode strips that have a Ag/AgCl RE

and carbon CE and WE. The experiment setup included a BK precision 1761 DC

power supply and a two channel Keithley 2636A System Source Meter. To verify the
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CMOS potentiostat performance, the results from the CMOS chip and Gamry are

compared. We used a 200 mV/s scan rate for this experiment. The plot in Fig.9 shows

agreement between the two voltammograms with both the magnitude and potential for

the oxidation and reduction peaks being the key values indicative of this agreement.

3.4 The Effect of Concentration and Scan Rate

Figure 10. CV measurements of 100 mM potassium ferricyanide at different scan
rates for both the Gamry and our CMOS potentiostat chip.

It is well know that from equation 3.1, the peak current depends not only on
the concentration of the redox species but on scan rate as well. Therefore we have
performed tests to demonstrate the effects of scan rate on CV for potassium ferri-
cyanide for our chip and the commercial Gamry system. In Fig.10 the blue and red
voltammograms show measurements with our chip at 100 mV/s and 200 mV/s scan
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rate for the solution of 1 M potassium chloride and 100 mM potassium ferricyanide.
We have also investigated the effects of concentration on the CV measurement. Fig.11
shows the voltammograms for different concentration at a 100 mV/s scan rate. The
blue and red voltammograms represent 100 mM and 50 mM potassium ferricyanide,
respectively both 1 M potassium chloride. All measurements were performed with the
carbon electrodes by both the CMOS chip and Gamry. As expected, peak currents
are dependent on redox concentrations and scan speeds and show good agreement
between our chip and the commercial system.

Figure 11. CV measurements for the different concentrations of potassium
ferricyanide on our CMOS potentiostat chip and the Gamry.
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3.5 Hexaammineruthenium Chloride CV Measurement by CMOS Potentiostat and

Gamry Workstation

Thus far we have shown good agreement between our system and the commercial

Gamry system as well as a match between our results and equation 3.1. We aim

to show the system is also capable of distinguishing different chemical species. To

this end we have performed CV with hexaammineruthenium chloride as the probe

as shown in Fig.12. The potential scan was performed in solution of 1 M potassium

chloride and 5 mM hexaammineruthenium chloride with a scan rate of 100 mV/s. The

external screen printed carbon electrode in the three electrode configuration were used

for the CV, and the voltammogram shows the measurements by CMOS chip are in

agreement with measurements made using the Gamry. The measurement also shows

a significant shift in the oxidation and reduction peaks relative to the measurements

for potassium ferricyanide indicative of different chemical species.

3.6 Potassium Ferricyanide CV Measurement with Three External Gold Electrodes

In the future we will use integrated Au electrodes on our CMOS chip to perform

CV measurements. To this end we have designed the chip with internal electrodes as

can be seen in figure 6. We have chosen gold electrodes, since the integration of more

preferable materials such as silver/silver chloride or platinum can not be accomplished

with our thermal evaporator system. Since the change in the electrode material will

cause a shift in the voltammogram, we utilize three external gold electrodes and repeat

the CV measurements. From the plot of the results in Fig.14 we demonstrate the CV

can be performed with gold electrodes. The electrochemical cell was implemented
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Figure 12. CV measurements of 5 mM hexaammineruthenium chloride by our CMOS
potentiostat chip and the Gamry workstation.

in a cuvette with three external gold electrodes. We used 0.2 M potassium chloride

and 20 mM potassium ferricyanide. Fig.13 shows results from both Gamry and the

CMOS system are consistent. As expected the difference in electrode materials caused

a shift in the voltammogram measured with Au electrodes relative to the previous

measurements that were performed with the screen printed carbon electrodes.
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Figure 13. CV measurement of potassium ferricyanide with three external gold
electrodes on the Gamry workstation and our CMOS potentiostat chip.

3.7 Conclusion

In this chapter, a CMOS potentiostat chip for electrochemical sensing application

is presented. The chip was fabricated in a standard 0.5 µm CMOS process with six

independent potentiostat circuits and integrated electrodes. The class AB folded

cascode amplifier was fully characterized as described in section 3.2 and can be used to

drive electrochemical reaction in the analyte solution. We have shown the potentiostat

is capable of performing CV measurements under various conditions including varying

sweep rates and concentrations. We have also shown the system can distinguish

between potassium ferricyanide and hexaammineruthenium chloride. Further we have

demonstrated the system works well using both screen printed carbon electrodes and
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Figure 14. Photograph of experimental setup with three external gold electrodes

gold electrodes. All these test are performed with the reported CMOS potentiostat

chip and the commercial Gamry electrochemical workstation, and the results verify

the robust functionality of the CMOS system and agreement with the commercial

standard.
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Chapter 4

CMOS ELECTROCHEMICAL SENSOR AND PACKAGING

This chapter reports an integrated CMOS electrochemical sensor with on-chip

electrodes and packaging Luo et al. 2014. The CMOS chip was fabricated in a standard

0.5 µm CMOS process, and it contains potentiostat circuits with integrated array

of three electrode cells. This CMOS circuit was designed in collaboration with Dr.

Hongyi Wang. In the potentiostat circuit, we designed high performance folded

cascode class-AB operational amplifiers with rail to rail input and output suitable for

low power consumption and strong drive capability. The 1.5 mm × 3 mm potentiostat

array chip operates from a 5 V supply at 45 µA. A gold electrode array was made

on the surface of the CMOS chip using a contact photolithographic process. For

compatibility with liquid test environments a packaging approach was developed.

The electrochemical sensor with on-chip electrodes was characterized by using cyclic

voltammetry (CV) with potassium ferricyanide.

4.1 Background

Due to the significant advances of CMOS technology in the past decades, it is a

well-established technology with a wealth of design techniques thoroughly investigated.

This has lead to the application of CMOS technology to fields outside of traditional

electronics including molecular sensing. Great effort has been made to miniaturize

and integrate analytical instruments for chemical applications. These CMOS-based

instruments include optical Lehmann et al. 2008, magnetic H. Lee et al. 2007 and
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electrochemical Li et al. 2011 sensors. We are particularly interested in electrochemical

sensors, since we can implement these in CMOS without any additional components

such as lenses or filters. Electrochemical techniques allow for direct transduction of

chemical information to electrical signals Li et al. 2011; Cao, Greve, and Oppenheim

2008, leading to the reduction of the interface noise. Moreover electrochemical sensors

can be easily miniaturized by CMOS process Li et al. 2011; Cao, Greve, and Oppenheim

2008; Mason et al. 2007; Stanacevic et al. 2007; Hwang et al. 2009; Nazari et al. 2013;

Manickam et al. 2010, which makes the detection systems low power, low cost, highly

accurate, portable and low volume. CMOS implementation allows us to realize the

analysis and readout circuit in the same substrate. However, in these applications,

devices need to directly contact the solutions being tested. This requires some isolation

of the reactive metals from the analyte solution. We demonstrate a simple technique

to isolate the aqueous solution to achieve an integrated fluid-environment sensor

interfaces. This system demonstrates all the advantages that make CMOS well-suited

for lab-on-chip platforms.

While we can design circuits to accommodate the aforementioned electrochemical

experimental techniques, there is a major challenge in the fluid environment for lab-on-

chip CMOS sensors. Electrochemical microsystems need direct contact between liquid

and electrodes for either voltammetry or impedance spectroscopy. It is well known that

aluminum (Al) and copper (Cu) are the most common materials used for metal layers

in CMOS fabrication. According to the standard 0.5 µm CMOS process used in this

work, the bonding pads and integrated electrodes on the CMOS chip, i.e. the exposure

area of top metal layer, are made of Al. However because of the oxidizing property of

the solutions, Al and Cu cannot be utilized as a durable conductive electrode in the

liquid environment. Moreover, the stable reference electrode needed to complete the
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electrochemical cell can’t be composed of such easily oxidized materials. To improve

the performance and the sensitivity, the sensing electrodes can be post-processed to

coat the fabricated the top metal layer of CMOS chip with another material. Because

Au is a stable noble metal and considered to be biocompatible Radke and Alocilja

2005, it is commonly used as sensing electrodes for electrochemical applications. It

can also be used as a pseudo-reference electrode. While gold is not an ideal reference,

it works quite well in most applications, and it is convenient to use a single metal for

all three electrodes.

Another issue for the use of CMOS chip within the liquid environment is the wire

bonding technique utilized by industry-standard packages, resulting in exposure of

wires to solution samples. In order to seal wires and create fluidic reservoirs, parylene-C

is often used as the encapsulation material Prodromakis et al. 2009. But is is difficult

to control the laser to ablate the parylene during patterning. And the ultrasonic bath

could damage the sealing around the wire bonds. Another parylene packaging method

was developed by Li et al Li et al. 2011. However their complicate method needs 300

W RF power RIE, which could damage the desired electrode surface, and is still lacks

an accurate alignment method during patterning and etching of the parylene. We

describe a simple methods for packaging that doesn’t require sophisticated equipment

or techniques to isolate the aqueous solutions from the galvanic connections.

In this paper, we report a CMOS based electrochemical microsystem with low power

consumption and strong drive capability. We describe the integrated electrochemical

system in section 4.2. Then the post-CMOS electrode microfabrication and packaging

are presented in section 4.3. Finally, the measurement results are discuss in section

4.4.
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4.2 System Overview

4.2.1 CMOS Potentiostat Structure

Figure 15. Photograph of the 1.5 mm × 3 mm potentiostat chip fabricated in a
standard 0.5 µm CMOS process with six independent channels having integrated
three electrode electrochemical cells. The chips is shown prior to post-processing.

Fig. 15 shows the potentiostat chip, which is fabricated in a standard 0.5 µm

CMOS process and consists of six potentiostat channels with each channel having

three integrated electrodes: RE, CE, and WE. A circuit is design to function as

the potentiostat for the electrochemical cell. The amplifiers for the potentiostat are

designed to be low power for portable applications but retain accuracy. In order to

measure various impedances of different analyte concentrations, amplifiers are capable

of supporting widely varying load properties. The amplifiers must also have sufficient

ability to drive the electrochemical cells, which have complex impedance characteristics.

A class AB folded-cascode amplifier was designed to meet these requirements. The

specifications of the CMOS amplifier has been presented previously Luo et al. 2013.
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For bioelectrochemical applications, the stimulus frequency is low, i.e. less than 100

Hz. The dc gain and the bandwidth of our amplifier are sufficient to operate the

sensors accurately for detection of biological molecules, our target application.

4.2.2 Experimental Setup

Figure 16. Single channel potentiostat schematic for CV measurements.

A typical potentiostat circuit used in an electrochemical experimental setup is

shown in Fig. 16. This could be operated in voltammetry mode by sweeping Vs or

impedance spectroscopy mode by applying a sinusoidal voltage instead. To characterize

the chip performance of the on-chip electrochemical sensor, we operated the chip

27



in cyclic voltammetry (CV) mode. The experimental setup includes the integrated

electrochemical system, which has the potentiostat circuit, the electrochemical cell,

and a feedback resistor. In addition we used a BK precision 1761 DC power supply

and a two channel Keithley 2636A System Source Meter for measurements. The power

supply was used to power the chip and provide biasing while the Keithley was used to

cycle the input voltage and measure the output of the potentiostat.

4.3 Post-CMOS Electrode and Packaging

4.3.1 Die-Level Fabrication

Figure 17. Process for post-CMOS electrode fabrication to both add a chrome/gold
layer to the surface and increase the electrode surface area.

In standard CMOS processes the material used for electrical contacts and intercon-

nections is Al or Cu, which can be easily oxidized by chemical solutions. To establish
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Figure 18. Electrodes are initially designed similarly to bond pads, and they are
coated with gold for operation in aqueous solutions. A single electrode is shown in
detail before (a) and after (b) Cr/Au patterning, deposition, and lift-off. The red
scale bar on the images for reference is 50 µm.

a durable microelectrode array, a noble metal, Au in this case, can be employed

as sensing electrode. We chose Au since it is considered to be biocompatible and

relatively quite inert. Au layer can easily be deposit at low temperature with a chrome

adhesion layer and patterned by using standard photolithography techniques.

The Fig. 17 illustrates our die level post-CMOS fabrication process. The S1813

photoresist is spin coated on the 1.5 mm × 3 mm CMOS chip at 3000 rpm for 30

seconds. Subsequently the chip is baked on a hotplate at 115 ◦C for 60 seconds. Then

photolithography is performed with an HTG mask aligner. The photoresist film is

exposed for 10 seconds. After exposure the pattern is developed in a mixture of

DI water and 351 developer with ratio of 5 to 1 for 40 seconds. The metal film is

formed by thermal evaporation of Cr/Au (30 nm/100 nm) with a Cressington 308R

evaporator. Finally a lift-off process is used in acetone with a Branson ultrasonic

cleaner for 1-2 minutes. The Au electrode array is characterized under an optical

microscope as demonstrated in Fig. 18.
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4.3.2 Package-Level Fabrication

Figure 19. Fabrication process for the “chip in package” structure to hold the fluid
volume for testing.

A packaging scheme was developed to allow the chip to operate in a liquid

environment using a “chip in package” approach. Fig. 19 shows the package level

fabrication process for this approach. The chip is wire bonded to a standard dual in

line package (DIP), (Global Chip Materials, SB4840001). To protect Au electrode

array, a drop of acrylic bonding compound is placed on the chip surface. Subsequently

the packaged chip is conformally coated by a 3 µm thick layer of parylene C using the

PDS 2010 LABCOTER 2 to seal electrical wires and prevent current leakage. Then

the package cavity is filled with UV curing epoxy (Loctite 3335). Using a 1.4 mm

× 2.8 mm Al foil mask the loctite 3335 is cured to form liquid reservoir on the chip
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Figure 20. Photograph of final package chip from above. The top rim of the bonded
vessel is visible as well as the surface of the CMOS die. The parylene C coating
results in an excellent seal against moisture.

substrate under 365 nm UV light for 15 minutes. The uncured epoxy and the acrylic

bonding compound are removed using acetone. Super glue is needed to bond a small

vessel as a liquid reservoir to increase the volume. The final package results in an

exposed Au electrode array with all other surfaces covered by parylene C. The final

package with Au electrode array exposed and vessel bonded is shown in Fig. 20.

4.4 Results

CV experiments were chosen to verify the functionality of the on-chip electro-

chemical sensor. A typical electrolyte solution with 0.1 M potassium chloride (EMD
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Figure 21. On-chip microelectrode CV measurements of the 0.1 M potassium chloride
and 10 mM potassium ferricyanide solution with a sweep rate 188 mV/s.

Chemicals, product no. PX1405-1) and 10 mM potassium ferricyanide (Sigma-Aldrich,

product no. 702587) was used as an analyte. The potential is swept at 188 mV/s, and

the output is detected with Keithley 2636A source meter. The cyclic voltammogram

shape differs from standard voltammograms due to the microscale integrated electrode

array as illustrated in Fig. 21. The voltammogram matches well with other systems

employing microelectrodes. The current is also quite low because of the smaller elec-

trode area, and the current becomes a steady value without peak. One reason is that

the integrated electrode is considered a dot with diffusion layer being hemispherical

and extending into the solution Bard and Faulkner 2000. When the diffusion layer

is much larger than the radius of electrode the diffusion to the electrode becomes
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important. The current goes to a steady value and is proportional to the radius of

the disk.

4.5 Conclusion

A CMOS electrochemical system with on-chip electrode array and packaging was

demonstrated. The main advantage of this integrated systems is the simplicity of

design and fabrication. This CMOS chip, fabricated in a standard 0.5 µm process,

contains six independent potentiostat circuits suitable for low-power, portable chemical

or molecular analysis applications. A die-level fabrication process was demonstrated to

pattern integrated Au electrodes on the chip surface for biocompatibility and stability.

Then a post-packaging technique was introduced to facilitate operation in a fluid

environment. To verify the performance, CV was implemented with a typical redox

probe, potassium ferricyanide. We have shown that our system works for the on-chip

electrochemical analysis and is well-suited for a handheld, portable instrument.
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Chapter 5

PORTABLE IMPEDIMETRIC INSTRUMENT

This chapter presents a low-cost, portable electrochemical analysis system us-

ing impedimetric measurements rather than more commonly used potentiometric

techniques. The presented impedance spectroscopy (impedimetric) technique uses a

small perturbation to obtain a linearized response without affecting the composition

of the sample as opposed to cyclic voltammetry (potentiometric) which repeatedly

reduces and oxidizes the sample. The presented system consists of an Arduino UNO

microcontroller, a CMOS digital-to-analog converter (DAC) chip, a potentiostat, and

data acquisition (DAQ) hardware. The Arduino UNO is loaded a program we have

written to generated sinusoidal excitations signals in conjunction with the CMOS DAC

chip. The CMOS chip fabricated in a standard 0.5 µm CMOS process contains a DAC

with a unity gain buffer circuit. The potentiostat is capable of carrying out impedance

measurements with both the Randles model and a potassium chloride (KCl) solution.

We describe a behavioral model of the op-amp used in the potentiostat using Verilog-A

hardware description language. Verilog-A simulation reduce the error relative to stan-

dard Cadence simulations and compare well with known Randles RC values giving an

error less than 1%. The impedance measurements for a KCl electrochemical solution

were performed with our system and a Gamry commercial electrochemical workstation

giving a relative error up to 16% for lower frequencies (below 37 Hz) and up to 31% at

higher frequencies. This work was completed in collaboration wiht Vishal Ghorband

and Zhijian Lu, two fellow members in Dr. Jennifer Blain Christen’s group.
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5.1 Background

Electrochemical impedance spectroscopy (EIS) is an experimental technique for

measuring the impedance of a system as a function of frequency Barsoukov and

Macdonald 2005; Bard and Faulkner 2000 for many applications, such as detection

of single-stranded DNA hybridization Anorga et al. 2010, single cell characterization

studies Jang and Wang 2007, corrosion studies Nishikata, Ichihara, and Tsuru 1995,

adsorption properties of molecules Mohsen, Fadl-allah, and El-Shenawy 2012 and

microbial fuel cell research He and Mansfeld 2009.

Generally, impedance measurement techniques can be classified by the excitation

functions employed Barsoukov and Macdonald 2005, which are frequency domain

Anorga et al. 2010; Jang and Wang 2007; Nishikata, Ichihara, and Tsuru 1995; Mohsen,

Fadl-allah, and El-Shenawy 2012; He and Mansfeld 2009 or time domain Yoo and

Park 2000; Yoo et al. 2003; Chang and Park 2007; X. Huang et al. 2011. For the

frequency domain methods, the impedance is normally measured by applying a small

amplitude AC signal that is varied over a range of frequencies Bard and Faulkner 2000.

The technique is most commonly used in commercial electrochemical workstations,

which are large, complex, and expensive. Time domain based methods involve a

small amplitude potential step used as the excitation source with the current response

collected, followed by proper data analysis. This measurement strategy is limited by

the sampling rate, the total number of the sampled points, and signal to noise ratio

X. Huang et al. 2011; it also requires complicated instrumentation and data analysis.

Even commercial potentiostats cannot meet these requirements Yoo and Park 2000.

Our aim is to demonstrate a portable impedance measurement device for biological

applications that can be used in a point of care setting.
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In this paper, we describe a portable EIS instrument using Arduino UNO interfaced

to DAC to produce a small sinusoidal signal. A CMOS chip, which contains a DAC and

a unity gain buffer, was designed and fabricated in a standard 0.5 µm CMOS process.

The purpose of the unity gain buffer is to ensure that the amplifier’s non-inverting

input to the potentiostat does not disrupt the DAC circuitry producing the small

sinusoidal signal. Then, the output voltage was recorded by DAQ (NI-USB-6212).

After appropriate data analysis, the magnitude and phase of the detected impedance

were obtain.

5.2 Complex Impedance Measurement Theory

An impedance measurement is usually performed by applying a small amplitude

AC potential to a Randles equivalent circuit or electrochemical cell and then collecting

the response current through the cell as shown in Fig. 22(a). The reason for applying

the small sinusoidal excitation is to ensure the electrochemical system behaves linearly

Bard and Faulkner 2000. However, real electrochemical cells exhibit more complex

behavior. A Randles equivalent model, which consists of a solution resistance Rs, a

double layer capacitance Cd and a charge transfer resistance Rct, is used to simplify

the electrochemical cell model as demonstrated in Fig. 22(b). In a linear system, the

current response to sinusoidal excitation should be a sinusoidal signal at the same

frequency but with an amplitude decrease and phase shift (ϕ in Fig. 22(c)). Thus the

impedance of the system can be expressed as equation (5.1).

Z = − Vin
Vout

Rf =| Z | e(ϕ−π) = Zre + jZim (5.1)
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Figure 22. (a) Impedance measurement system with potentiostat (b) Simplified
Randles circuit schematic diagram contains solution resistance Rs, double layer
capacitance Cd & charge transfer resistance Rct (c) Sinusoidal response to a Randles
circuit or electrochemical system. ϕ denotes phase shift between Vin and Vout.

where Z is the impedance of the system, Vin and Vout are the input potential and

output response signal, respectively, Rf is the feedback resistance, ϕ is phase shift

between input signal and output signal, j is the imaginary unit, and Zre and Zim are

the real part and imaginary part of Z.

The equivalent impedance of Randles model can be described by equation (5.2).
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Z = Rs +
Rct

1 + ω2Rct
2Cd

2 − j
ωCdRct

2

1 + ω2Rct
2Cd

2 (5.2)

where ω = 2πf is the angular velocity. Therefore, the real and imaginary parts of the

system impedance are given by equations (5.3) & (5.4).

Zre = Rs +
Rct

1 + ω2Rct
2Cd

2 (5.3)

Zim = − ωCdRct
2

1 + ω2Rct
2Cd

2 (5.4)

5.3 Simulations

5.3.1 Verilog-A & Cadence Simulation

Figure 23. Typical EIS waveforms showing gain and phase shift at 1 kHz
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The impedance measurement circuit was simulated to determine the gain and

phase difference we expect to measure for a given Randles model using a spectre

circuit simulator in Cadence. Verilog-A hardware description language provides a new

dimension in modeling, design, and simulation capability for analog and mixed signal

electronic systems. Presently, Verilog-A provides a means to incorporate testability

studies in the mixed signal design flow, our reason for performing Verilog-A simulations

of this system. Using a Verilog-A module for the op-amp and other components,

including resistors and capacitors, gives more practical results from simulations.

The main Verilog-A module in this system is an op-amp. Based on the datasheet

and our tests of the performance of the op-amp, we obtained the specifications (e.g.,

DC gain, phase margin, slew-rate and unity gain bandwidth). These values were used

to create the Verilog-A module for the op-amp which was used in the schematic and

simulated in an analog Cadence environment.

The circuit shown in Fig. 22(a) was simulated with a 10 mV peak to peak sinusoidal

signal applied to the input of the potentiostat and a feedback resistance Rf of 389 kΩ.

The simulated output voltage was measured with the gain and phase of the output

signal analyzed to find the real and imaginary impedance of Randles model circuit,

where Rs, Cd, and Rct are 220 Ω, 47 nF, and 4.7 kΩ, respectively. We chose these

specific values to compare the simulation results with the empirical results in the

section 5.4. Fig. 23 demonstrates typical input and output waveforms at 1 kHz.

Many iterations were performed for different frequencies from 1 Hz to 1.5 kHz to

accumulatea gain-phase data. Using the mathematical expressions (equations (5.3) &

(5.4)) from section 5.2, the real and imaginary impedance of the Randles model were

plotted. In Fig. 24, graphs of both theoretical (blue diamond) and simulated (red

circle) values of real and negative imaginary values of impedance of Randles model are
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Figure 24. Nyquist plot of the Randles circuit from mathematical calculation (Blue)
and simulation (Red).

shown. Compared to the theoretical values the error from the simulations is less than

1%, demonstrating the accuracy that can be achieved with the Verilog-A module.

5.4 Randles Equivalent Circuit Measurements

5.4.1 Hardware

An Arduino UNO microcontroller that provides sets of 10-bit digital I/O pins was

used with the DAC to generate the input signals. The Arduino UNO was selected to

provide a portable, inexpensive, and precise microcontroller. It is easily programmable

by uploading programs via a USB connection. The input signal from the Arduino is

converted to a sinusoidal signal using a custom DAC.
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Figure 25. Microphotograph of the 1.5 mm × 3 mm CMOS die.

The 10-bit segmented DAC with unity gain buffer was fabricated in a standard

0.5 µm CMOS process and operates with ±2.5 V power supply. The unity gain buffer

is composed of an op-amp circuit that ensures the input side of the circuit (DAC) is

isolated from the output, i.e. the potentiostat circuit. The specifications of the CMOS

op-amp have been reported previously Luo et al. 2013. Both the static and dynamic

performance of the 10-bit CMOS DAC were tested, and the measured specifications

are given in Table 1. Fig. 25 show a micrograph of the die which is 1.5 mm × 3 mm.

Table 1. CMOS DAC Specifications

Power Supply ±2.5 V
Reference Voltage (low & high) -2.5 V & +2.5 V

Quiescent Current 202 µA
Resolution 10 bits

DNL -0.6∼0.1 LSB
INL -0.5∼0.7 LSB

Sampling Rate 400 kS/s
SNDR(390.6 Hz at 400 kS/s) 54.85 dB

ENOB 8.8 bits
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5.4.2 Experimental Setup

Figure 26. (a) Block diagram of the portable EIS system with a 10-bit DAC designed
to provide the AC excitation. (b) circuit diagram for the potentiostat with Rd1 506
kΩ, Rd2 1.02 kΩ, and Rf 385 kΩ.

The experimental setup for the Randles cell impedance measurement consists of a

laptop, an Arduino UNO, a CMOS chip with a 10-bit DAC and unity gain buffer, a

potentiostat composed of NTE 987 op-amps, a Randles circuit and a DAQ (NI USB

6212) as shown in Fig. 26(a). The UNO custom code uploaded generated 10-bit DC

values with ±2.5 V full scale range. Subsequently, the DC signal was converted to

AC signal by the CMOS DAC buffered. Since the ±2.5 V AC signal from the unity
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gain buffer was large, a voltage divider was required to produce a ±5 mV amplitude

excitation (in Fig. 26 (b)). The impedance response of the Randles model to the

excitation was measured using the potentiostat. Finally, the response signal was

acquired by the DAQ followed by appropriate data analysis.

Figure 27. Nyquist plot of the Randles circuit from mathematical calculation (blue
squares) and experimental results (red circles).

A Randles circuit with 216 Ω Rs, 44 nF Cd, and 4.61 kΩ Rct was tested to verify

our impedance measurement technique. The impedance spectra for the Randles model

for both the mathematical calculation and the experimental measurement are plotted

in Fig. 27. The experimental measurement was carried out over the frequency range

from 8.22 Hz to 1220 Hz. The mathematical calculation closely approximates the

experimental measurement at low frequencies. However, the impedance differences

between the two becomes larger as the frequency increases. For example, the relative
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error with respect to the imaginary impedance between calculated and measured

values is approximately 16% at 1220 Hz. We believe this is due to the time delay,

caused by the software and discrete components, which plays an important role in the

impedance measurements at high frequency.

5.5 KCl Solution Measurements

Figure 28. Nyquist plot of 80 µl KCl solution at 4 mM concentration measured by
Gamry work station (Blue) and our portable device (Red).

Impedance measurement were performed with a 4 mM KCl solution to evaluate the

performance of our device. The potassium chloride was commercially available from

EMD Chemicals (PX1405−1). The aqueous solution was diluted using water (18.2

MΩ·cm) purified water from a Milli−Q water purification system. The experiment was
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carried out using screen printed carbon electrodes with a three-electrode configuration

(CH Instruments Inc., Part number TE100). An eighty µl solution of 4 mM KCl was

placed on the electrodes and tested over the frequency range from 37.2 Hz to 1220

Hz with both our instrument and a Gamry commercial electrochemical workstation

(Gamry Instruments Inc., Reference 3000TM).

The complex impedance spectra obtained by our portable instrument and the

Gamry workstataion are plotted in Fig. 28. This allows us to compared our results

with control experiments on the Gamry electrochemical workstation. We had difficulty

measuring the KCl solution impedance below about 37.2 Hz. However, the impedance

of Randles circuit could be detected starting at about 8.22 Hz. This results from

noise at the interface between solution and carbon electrodes. The impedance spectra

demonstrated the measurements with our portable instrument were in agreement with

measurements made using the Gamry at high frequencies. For the lower frequencies,

e.g. at 37.2 Hz, the relative error with respect to the imaginary impedance between

our portable device and the Gamry is estimated to be 16.1%. Especially around

60 Hz, the ambient noise generated by power lines strongly affects the impedance

measurements. It is interesting that the maximum relative error with respect to

imaginary impedance appearing at 147 Hz is approximately 31.1%.

5.6 Conclusion

In this chapter, we reported a portable impedimetric system which consists of

an Arduino UNO microcontroller, a CMOS DAC chip, a potentiostat, and DAQ.

Our code on the Arduino generated a 10-bit DC signal with ±2.5 V amplitude. In

order to convert the DC signal to AC, a DAC circuit was designed and fabricated
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in a standard 0.5 µm CMOS process. Since the sinusoidal output from the CMOS

chip was ±2.5 V, much larger than desired ±5 mV, a voltage divider was created.

The potentiostat was capable of carrying out measurements with both a Randles

circuit and KCl solution. Simulations with Cadence were performed to verify the

performance our device and improved with Verilog-A modules. The impedance spectra

from our device and the Gamry were compared with reasonable results. However, we

believe further integration of the system onto a single board with provide significant

improvements to the accuracy leading to a viable point of care system.
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Chapter 6

A NEW IMPEDANCE MEASUREMENT METHOD

This chapter presents an integrated realization of a simple and fast impedance

measurement technique. The impedance spectra are measured by perturbing the

system with a small potential stimulus generated by a relaxation oscillator and then

obtained by a followed processing of the current response. The circuit, fabricated in a

standard 0.5 µm CMOS process, contains a relaxation oscillator and a potentiostat.

This CMOS circuit is complete with the help of Dr. Hongyi Wang. The chip occupies

1.5 mm × 3 mm, and operates from ±2.5 V supplies at 225 µA. The reliability of the

instrument was verified by the measurement of Randles equivalent circuit over the

frequency range of 0.1 Hz - 3 kHz in a couple of milliseconds, showing good correlation

with the known results. The remarkable advantages, i.e. simplicity, rapidity, low noise

and miniaturization based on the CMOS process, make this technique a promising

candidate for impedance applications.

6.1 Background

Traditional electrical impedance spectroscopy (EIS) method measures the

impedance of a system as a function of frequency by applying a small AC signal at each

individual frequency Barsoukov and Macdonald 2005. The main limitation while using

this technique is the long measurement time over a whole frequency range especially at

the low frequency. To solve this limitation, a fast impedance measurement method, in

which a potential step was applied to the working electrode and the current response
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was recorded, has been proposed Yoo and Park 2000. But their method involves

the high performance instruments which are non-portable. Huang et al did some

modifications to this algorithm and constructed a portable and low-cost instrument

X. Huang et al. 2011. However time delay caused by the discrete component results in

error when measuring impedance. Moreover their detection time was approximately

50 times slower than Park’s Yoo and Park 2000 and ours. To overcome the time

delay issue this letter reports an integrated solution using a relaxation oscillator to

provide a small potential step. The system serves as a proof-of-concept and the CMOS

realization carries out the impedance measurement over the frequency range of 0.1 Hz

- 3 kHz.

6.2 Theory

From chapter 5, we know that the total impedance of the Randles model is given

by equation (6.1)

Z = Rs +
Rct

1 + ω2Rct
2Cd

2 − j
ωCdRct

2

1 + ω2Rct
2Cd

2 (6.1)

In Fig. 29, a step voltage Vap is applied to a Randles model. From Kirchhoff’s law,

the Vap can be expressed as (6.2)

Vap = Vcd +
(Vcd
Rct

+ Cd
dVcd
dt

)
= V H(t) (6.2)

where V is the magnitude and H(t) is the step function. Solving the equation (6.2),

the Vcd is obtained (6.3)

Vcd = H(t)
V Rct

Rct +Rs

(
1− exp

(
−
(Rct +Rs

RctRsCd

)
t
))

(6.3)
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Figure 29. A step voltage Vap is applied to a Randles equivalent circuit.

Therefore, the total current can be calculate by (6.4).

Itotal(t) = H(t)

[
V

Rs

exp
(
−
(Rct +Rs

RctRsCd

)
t
)

+
V

Rct +Rs

(
1− exp

(
−
(Rct +Rs

RctRsCd

)
t
))]
(6.4)

which can be simplified further to (6.5).

Itotal(t) = H(t)

(
V

Rct +Rs

)[
1 +

Rct

Rs

exp
(
−
(Rct +Rs

RctRsCd

)
t
)]

(6.5)

Subsequently the first derivative of applied voltage and the total current is calculated

by (6.6) and (6.7).

Id(t) =
dItotal(t)

dt
= δ(t)

V

Rs

−H(t)
V

R2
sCd

exp
(
−
(Rct +Rs

RctRsCd

)
t
)

(6.6)

Vd(t) =
dVap(t)

dt
= V δ(t) (6.7)

Then we have the current and voltage expressions (6.8) & (6.9) in frequency domain

by taking the Fourier transform.

Ift(ω) =

∫ ∞
−∞

Id(t) exp
(
− jωt

)
dt =

V

Rs

− V

R2
sCd

1(
Rct+Rs

RctRsCd
+ jω

) (6.8)

Vft(ω) =

∫ ∞
−∞

Vd(t) exp
(
− jωt

)
dt = V (6.9)
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Finally, the total impedance is describe by (6.10),

Z =
Vft
Ift

= Rs +
Rct

1 + ω2Rct
2Cd

2 −
jωRct

2Cd

1 + ω2Rct
2Cd

2 (6.10)

which is identical to equation (6.1).

6.3 Impedance Measurement System

Figure 30. Proposed integrated impedance measurement system.

The proposed integrated impedance measurement sensor consists of a relaxation

oscillator and potentiostat as shown in Fig. 30. A Schmitt trigger is employed

to implement the relaxation oscillator, which produces a square wave. It is well

known that the electrical stimulus must be small enough (normally less than 10 mV)

to make sure that the electrochemical system behaves linearly Yoo and Park 2000.

Thus, a voltage divider is required to generate 9.5 mV peak-to-peak waveforms in our

experiment. In each square wave cycle, there are two edges, i.e. a rising edge and

falling edge. A schematic diagram of the potential step (top) and current response
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Figure 31. Schematic diagram of the potential step and current response.

(bottom) is shown in Fig. 31. To make impedance measurement, only the rising edge

is needed. Then the electrical signals are applied to the electrochemical cell between

the reference electrode (RE) and the working electrode (WE) with the potentiostat.

Subsequently, the output signals are generated by the response current through the

counter electrode (CE). Finally both input and output signals are collected by an

oscilloscope (Tektronix DPO3014). By taking the first derivative of the applied

potential step and the small chronoamperometric current and subsequently using

Fourier transform, the impedance over a range of frequencies is calculated (in section

6.2).

The die microphotograph is demonstrated in Fig. 32. This chip, fabricated in a

standard 0.5 µm CMOS process, occupies 1.5 mm × 3 mm silicon area. The CMOS

impedance measurement sensor consists of operational amplifiers for the relaxation

oscillator and potentiostat. To support different loading characteristics the class
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Figure 32. Microphotograph of the fabricated chip.

AB folded-cascode amplifiers with rail-rail input and output are designed to meet

the requirements. Another advantage of this kind of amplifier is the low power

consumption, enabling efficient use of energy in a portable device. The performance

of the op-amp has been tested Luo et al. 2013.

6.4 Results and Discussion

To evaluate the performance of the system, a Randles circuit (inset, Fig. 33) was

utilized as the equivalent impedance to be measured from 0.1 Hz to 3 kHz. The

Randles model consists of a 1 kΩ resistor (Rs) with the parallel combination of 101 nF

capacitor (Cd) and a 10 kΩ resistor (Rct). The square wave generated by the relaxation

oscillator is approximate ±4.75 mV, which represents the applied potential step is 9.5
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Figure 33. A 9.5 mV peak-to-peak potential step (black) and Transient current
observed as the pulse is applied.

mV. Since the amplitude of the applied potential step was around 10 mV, the noise

may lead to distortion on data analysis X. Huang et al. 2011. We did not directly

collect the actually applied potential. Instead we detected the OPAMP non-inverting

input’s potential of the relaxation oscillator. From Fig. 30 the potential step actually

applied was the detected potential divided by 69.9. The advantage of using a voltage

divider is to decrease the input noise signal. The response current was the output

signal divided by the 5.08 kΩ resistance. The actually applied potential step and

response current were demonstrated in Fig. 33. After analysis described in section 6.2,

Fig. 34 shows the real and negative imaginary impedance of Randles circuit over the

bandwidth of 0.1 Hz to 3 kHz. To obtain the Randles model parameters, the fitting

of the equivalent circuit is performed. The experimental parameters are Rs 1.06 kΩ,
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Figure 34. Nyquist plot of the Randles circuit measured by this integrated impedance
system. The red dash line represents the fitting curve.

Cd 104.5 nF, and Rct 10.7 kΩ, which have the errors 6.0%, 3.5%, and 7.0% with the

known reference values.

It should be noted that for our experiment only a couple of milliseconds are needed

to make measurements. Followed by the appropriate analysis, the tested magnitude

and phase of different concentrations of equivalent circuit over the bandwidth of 0.1

Hz to 3 kHz can be obtained. For bioelectrochemical applications, low frequencies

(less than 100 Hz) are of interest Bhavsar et al. 2009. Measuring the impedance

spectra at low frequencies is essential. We extracted the electrical parameter values

by fitting measured data to Randles equivalent circuit Fig. 34. Thus, this impedance

measurement technique based on the relaxation oscillator is an effective method to

investigate the impedance properties. By utilizing the integrated impedance detection

system, the delay time can be significantly reduced.

In addition, record time and sampling rate are important factors to this method if

it is not properly dealt with. In Fig. 31, because only the rising edge is required, the
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measurement time is approximately equal to or less than half of the square waveform

cycle, T/2. According to equation (6.5), the response current decreases exponentially.

Thus, different response current curves in Fig. 31 mainly result from the exponential

decay constant, i.e. (Rct +Rs)/(RctRsCd). It is obvious that the curve 1 decays faster

than curve 3, which means the exponential decay constant of curve 1 is greater than

that of curve 3. The noise level of the instrument is estimated to be 5 mV. Thus, the

response signal can not be detected less than 5 mV. Since the chip operates at 5 V,

which means the maximum potential is 5 V, the exponential cutoff of the response

signal is approximately chosen to be 0.001≈e−6.9 = e−α1 , i.e. α1 = 6.9. As a result,

the decay time t1 is calculated by (6.11),

t1 =
α1RctRsCd
Rct +Rs

≤T/2 (6.11)

which means the period of square wave is estimated to be (6.12).

T≥2α1RctRsCd
Rct +Rs

(6.12)

For the Randles model in our experiment, the decay time is approximately equal to 0.64

ms and the period of square wave should be greater than 1.3 ms. Lasia et al reported

that the acquired impedance spectra may be reliable only for frequencies between

1/(N∆ts) and 1/(2∆ts) Jurczakowski and Lasia 2004, where N denotes the number of

points obtained in the experiments and ∆ts is the sampling time. The record time is

the product of N and ∆ts, and the sampling rate is the reciprocal of ∆ts. Therefore,

it may be feasible to perform multiple impedance tests with various sampling rates

and then combining the reliable segments in each measurements together to obtain

the impedance spectra.

Finally, though real world signals are analog in nature, is it preferable to convert

them in digital domain using an analog to digital converter (ADC) Kozak and Kale
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2003; Schreier and Temes 2005; Ortmanns and Gerfers 2006. The reasons are the high

accuracy, and reliability of digital circuits, and the low-cost, low-power, as well as

high-speed device produced by digital VLSI techniques. Therefore, it is important to

discuss the oversampling principle, which can improve the resolution of the conversion.

From the equation (6.5), the response signal potential Vout is given by (6.13)

Vout(t) = H(t)

(
V Rf

Rct +Rs

)[
1 +

Rct

Rs

exp
(
−
(Rct +Rs

RctRsCd

)
t
)]

(6.13)

where Rf is the feedback resistance. It is obvious that the maximum output potential

is VMAX = V Rf/Rs when Vout is at t = 0. To find the power of output signal, the

square of Vout is calculated by (6.14).

V 2
out(t) = H2(t)

(
V Rf

Rct +Rs

)2
[

1 +
2Rct

Rs

exp
(
−
(Rct +Rs

RctRsCd

)
t
)

+
R2
ct

R2
s

exp
(
−
(Rct +Rs

RctRsCd

)
2t
)] (6.14)

Thus, the response signal power σ2
sig is obtained by (6.15).

σ2
sig =

1

t1

∫ t1

0

V 2
out dt

=

(
V Rf

Rct +Rs

)2
[

1 +
2Rct

α1Rs

(
1− e−α1

)
+

R2
ct

2α1R2
s

(
1− e−2α1

)] (6.15)

where t1 and α1 is from equation (6.11). Because of e−α1≈0.001, equation (6.15) could

be simplified to (6.16).

σ2
sig≈

(
V Rf

Rct +Rs

)2
[

1 +
2Rct

α1Rs

+
R2
ct

2α1R2
s

]
(6.16)

Consider a Bint bit ADC with 2Bint quantization levels, i.e., with quantization error

∆ = 2VMAX/(2
Bint − 1)≈2VMAX/2

Bint . The power of the quantization error σ2
e is

given by (6.17).

σ2
e =

∆2

12OSR
≈ V 2

MAX

3 · 22BintOSR
=

V 2R2
f

3 · 22BintR2
sOSR

(6.17)
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where OSR = fs/(2fb) is the oversampling ratio and fs & fb are sampling frequency

& signal bandwidth. The quotient of the signal power σ2
sig divided by the quantization

error power σ2
e is expressed as (6.18).

σ2
sig

σ2
e

=
3 · 22BintR2

sOSR(
Rct +Rs

)2
(

1 +
2Rct

α1Rs

+
R2
ct

2α1R2
s

)
(6.18)

The signal-to noise ratio SNR is obtained by (6.19).

SNR = 10 log10

(
σ2
sig

σ2
e

)

= 6.02Bint + 10 log10OSR + 4.77
[
dB
]

+ 10 log10

(
R2
s(

Rct +Rs

)2(1 +
2Rct

α1Rs

+
R2
ct

2α1R2
s

)) (6.19)

For the Randles equivalent circuit used in this chapter, the SNR in expression (6.19)

could be rewritten as (6.20).

SNR = 6.02Bint + 10 log10OSR− 5.59
[
dB
]

(6.20)

According to equation (6.20), every additional bit for the quantizer improves the

SNR by almost 6 dB. Further, each doubling of the OSR increases the resolution by

approximately 3 dB. Fig. 35 demonstrates the number of bits Bint versus the OSR

at various SNR values. The curves are linear when the x-axis is in log scale. For a

constant SNR value, the enhancement of the OSR corresponds to fewer bits Bint

required. However, larger OSR needs higher clock frequency, and therefore results in

more power consumption Ortmanns and Gerfers 2006. It is clear that increasing Bint

is an effective way to improve SNR especially when the OSR cannot be increased

due to frequency limitation. This sets a tough requirement on the linearity of the

multi-bit ADC, which can further complicate tradeoffs (including cost) in real world

implementations of the circuit Ortmanns and Gerfers 2006.
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Figure 35. Number of bits Bint versus OSR as SNR is 40 dB (black), 60 dB (red),
80 dB (green), 100 dB (blue) & 120 dB (orange).

6.5 Conclusion

A integrated impedance measurement system on a relaxation oscillator was pro-

posed in this chapter. To verify this measurement technique, the experiment with a

Randles cell was implemented. The tested result is in good agreement with the real

resistors and capacitor. We demonstrated the corresponding CMOS based impedance

measurement instrument, which is simple, low-power, low noise and low cost. The

apparent advantages make this device promising in the practical impedimetric mea-

surement.
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Chapter 7

SQUARE WAVE VOLTAMMETRY

This chapter presents a simple, low-cost square-wave voltammetry (SWV) sensor

based on relaxation oscillators. The circuit of the system consists of a square wave

relaxation oscillator, a triangle wave relaxation oscillator, and a potentiostat. Relax-

ation oscillators produce a small amplitude square wave and a triangle wave so the

sensor does not require an external signal generator. The whole sensor operates from a

±2.5 V supply, which made it suitable for utilization in a portable device. The instru-

ment was tested with copper(II) and lead(II) nitrate for simultaneous SWV detection.

Oscillation pattern differences are directly observed for different types of metal ions.

Electrochemical parameters that exert influence such as various concentration were

carefully studied. For measurement results, peak current vs concentration are linearly

fitted, which agree with theoretical equation. Advantages with respect to simplicity

and low-cost make this technique suitable for practical applications.

7.1 Background

SWV is a powerful electrochemical method in the research of electrode process and

analytic measurement Mirceski et al. 2013; Mirceski, Komorsky-Lovric, and Lovric

2007; Lovric 2002; Eccles 1991. Because SWV combines the advantage of pulse

techniques, cyclic voltammetry and impedance techniques, this technique is considered

as one of the best voltammetric methods. Thus the new SWV devices will expand

their application.
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However most SWV sensors have been studied using an expensive commercial

potentiostat Rattanarat et al. 2014; Cui, Wu, and Ju 2015. These sensor systems are

not portable due to bulk and the need to connect with a personal computer. There is

a trend to perform rapid on site analyses to minimize the effects of transportation

and avoid pre-treatments. Large-size commercial potentiostats can not meet this need.

Although several portable commercial potentiostats are available on the market, they

are expensive and complicated in terms of both hardware and software Pellicer et al.

2010; Nagatani et al. 2011. Economou et al designed a “virtual” SWV instrument

which contains a potentiostat powered by two 9V batteries, and a 6025 E multifunction

I/O card (National Instruments, Austin, TX) Economou et al. 2002. The card is

programmed by LabVIEW to control the potentiostat. But because of the software

delay and slow conversion time of ADC the time delay will result in error in peak

detection. To solve this problem, Chen et al proposed a more complicated design

in hardware based on an FPGA, which makes cost prohibitive Chen and Du 2010.

With SWV, the oscillation pattern of the response signal contains the insight into

the electrode mechanism and electrokinetic information of the electrode processes

especially at the peak current Bard and Faulkner 2000. Unfortunately, none of them

has demonstrated the response oscillation pattern in the time domain.

Recently, Lim et al proposed a SWV redox sensor fabricated in standard CMOS

process technology Lim et al. 2013, 2014. They measured a potassium ferricyanide

solution from 0.6 mM to 6 mM by controlling the square wave pulse generator.

However, their ability to detect low concentration is poor. Moreover they could not

demonstrate the simultaneous detection of multi-metal ions.

In this paper we present the design and construction of a simple but effective

device for SWV. The SWV instrument is based on a square wave relaxation oscillator
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and a triangle wave relaxation oscillator, which generate a small amplitude square

wave and a triangle wave. The circuit of the sensor system is made of commercial

op-amps (NTE987) and inexpensive electronic components (resistors and capacitors),

which allow for mass production at low-cost. In addition, the device operates from a

±2.5 V supply, which makes it a candidate for portable use. Our algorithm for this

design is evidently simplified which did not require the complicated hardware and

controlled software. Therefore, the system avoids software delay issues and eliminates

the slow conversion time of ADC, which results in the error associated with detection

of peak current. The sensor system can demonstrate the current response oscillation

patterns for various chemical species in the time domain so that the significant details

of current peak are observed. The algorithm simplified the instrument and made this

method very suitable for practical applications.

7.2 Experimental Section

7.2.1 Chemical Reagents

Copper(II) nitrate and lead(II) nitrate were commercially available from J.T.

Baker (Product number:1800−01) and Sigma−Aldrich (Product number:228621),

respectively and were used without further purification. Acetate buffer solution of

0.1 M at pH 4.7 was prepared by mixing stock solutions of acetic acid and sodium

hydroxide. The water (typical resistivity 18.2 MΩ·cm) used to prepare all the solutions

was purified with a Milli−Q water purification system.
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7.2.2 System Architecture

Figure 36. A schematic diagram of the system architecture shows the square wave
relaxation oscillator, the triangle wave relaxation oscillator and the potentiostat. The
square wave relaxation oscillator and the voltage divider produced a small amplitude
(∼7 mV) perturbing the electrochemical system. The triangle wave relaxation
oscillator was used to generated the scan potential ramped at low speed (∼50 mV/s).
The aim of the unity gain buffer is to ensure that the buffer isolates the input side of
the circuit from the output side.

Our measurement system mainly consists of a square wave relaxation oscillator, a

triangle wave relaxation oscillator and a potentiostat as demonstrated in Fig. 36. All
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of them are made of commercial op-amps (NTE987), which operate from a ±2.5 V

supply.

7.2.2.1 Square Wave Relaxation Oscillator

The op-amp relaxation oscillator demonstrated in Fig. 36 produced a square wave.

The circuit’s period of square wave oscillation relied on the charge and discharge

of a capacitor (476 pF) through a feedback resistor (29.8 MΩ) Bakshi and Godse

2009. The oscillator utilized positive feedback, i.e. Schmitt trigger circuit, which

increased the gain of the amplifier. The high gain resulted in the op-amp’s output

to switch fast from one state to another and vice versa. The positive feedback was

used to add hysteresis to the transition threshold voltage. The op-amp square wave

oscillator was valid over the frequency range of about 10 Hz - 10 kHz. At the higher

frequencies, the op-amp slew rate limited the slope of the output square wave. As

an approximation, an electrochemical system is considered as a linear system when

small potential perturbations are applied Bard and Faulkner 2000. However, the

output voltage of the square wave oscillator, i.e. positive and negative saturation, were

approximately 3.7 V peak-to-peak, which violated the linearity requirement of the

electrochemical system. Thus, a voltage divider was needed to make the square wave

amplitude small (peak-to-peak amplitude ∼7 mV). Subsequently, this small-amplitude

square signal was applied to the electrochemical system using a potentiostat.
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7.2.2.2 Triangle Wave Relaxation Oscillator

The potential waveform of SWV is made up of a superposition of a square wave

onto an underlying staircase Bard and Faulkner 2000. The response current was

sampled at the end of the forward potential pulse and at the end of the reverse

potential pulse. However, this measurement strategy required a very complicated

circuit design. This paper presented a new method employing a linear sweep voltage

at slow speed instead of a staircase voltage. This algorithm simplified the instrument,

and therefore made this technique suitable for a low-cost device in future applications.

Using an op-amp integrator circuit rather than RC, a triangle wave, which had two

liner sweep segments, was produced as shown in Fig. 36. However to make SWV

measurements, only the sweep potential ramped from low to high voltage was needed.

The SWV response peaks appeared at approximately -0.1 V, and -0.6 V for Cu(II) and

Pb(II), respectively, in their coexistence Wei et al. 2012. In order to adjust the linear

ramp range and include -0.1 V, and -0.6 V, a divider and DC offset VDC were required

in Fig. 36. Thus, the adjusted linear sweep potential was described by equation (7.1)

Vtr_de = Vtr_in =
Vtr_oRtr1 + VDCRtr2

Rtr1 +Rtr2

(7.1)

where Vtr_o is the output of unity gain buffer I, Vtr_in is the non-inverting input

of unity gain buffer II, Vtr_de is the output of unity gain buffer II measured by an

oscilloscope (Tektronix DPO3014), and Rtr1 & Rtr1 are 9.9 MΩ & 0.5 MΩ respectively.

Because Rtr1 was much great than Rtr2 (i.e. Rtr1�Rtr2), equation (7.1) could be

simplified further to equation (7.2).

Vtr_de = Vtr_in = Vtr_o +
Rtr2

Rtr1 +Rtr2

VDC (7.2)
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The purpose of the unity gain buffer is to make sure that the buffer isolates the input

side of the circuit from the output side. Then the linear sweep potential from the

unity gain buffer was applied to the electrochemical cell.

7.2.2.3 Potentiostat & Current-to-Voltage Converter

In Fig. 36, a potentiostat is an electronic instrument which controls a three-

electrode cell, i.e. a working electrode (WE), a reference electrode (RE) and a counter

electrode (CE). The potentiostat system maintains the WE potential with respect to

the RE by adjusting the current through the CE. The small-amplitude square signal

and the linear sweep potential were applied to the RE and WE, respectively.

The electrochemical cell current is measured by the current-to-voltage (I/E) con-

verter, which forces the cell current to flow through a feedback resistor (2.16 kΩ).

Thus the cell current is equal to the voltage drop over the feedback resistor. In some

experiments, because the current varies by several orders of magnitude, a number of

various resistors are required to be automatically switched into the I/E circuit Chen

and Du 2010. But for our experiments, because the cell current doesn’t change too

much (approximately from ∼15 µA to ∼1.5 µA), using a single resistor is enough for

the current detection.

7.2.3 Methods

Using our instrument for SWV detection, chemical solutions were added on the

screen-printed electrode (CHI TE100). Under the same experimental conditions,

selective and simultaneous detections of Cu(II) and Pb(II) were performed. To measure
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the signal from the I/E converter, a low noise preamplifier (SR560, Stanford Research

Systems) with a low pass bandwidth less than 100 kHz was used to filter the output.

The square wave signal, the linear sweep signal and the response output were recorded

by an oscilloscope (Tektronix DPO3014). Because the external signal generator and

the control software were not needed, this technique significantly simplified the design

of the SWV detection system. Therefore, this algorithm eliminated the software delay

and the slow conversion time of ADC.

7.3 Results and Discussion

7.3.1 SWV Analytical Characteristics of Individual Lead(II)

To verify performance, the lead(II) nitrate solutions at various concentrations

were tested individually with our instrument. Volumes of 80 µl containing 0.3 mM

lead(II) nitrate and 0.1 M acetate buffer at pH 4.7 were pipetted on the screen-printed

electrode. A small-amplitude square wave (peak-to-peak amplitude 7 mV) produced

by a square wave relaxation oscillator was applied to the electrochemical cell using a

potentiostat. Meanwhile a linear sweep potential from -0.9 V to 0.25 V, generated

by a triangle wave relaxation oscillator, was applied to the WE at a scan rate of

∼50 mV/s. Fig. 37 (a) demonstrates SWV measurements of 0.3 mM lead(II) nitrate

in 0.1 M acetate buffer at pH 4.7. The blue line and the red line denote the linear

ramp and the output signal, respectively. The insets of Fig. 37 (a) illustrate the

response details near and away from the current peak. From the insets, the oscillation

patterns of the response signal change significantly for these locations. The Fig. 37

(b) shows the response waveform obtained near the current peak (top), and small
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Figure 37. (a) The linear ramp (blue) and the response signal (red) obtained by an
oscilloscope for SWV measurement of 0.3 mM lead(II) nitrate in 0.1 M acetate buffer
(pH 4.7). The top-left inset and bottom-right inset show oscillation patterns of the
response signal near and away from the current peak, respectively. (b) The response
signal detail near the current peak (top), and small-amplitude square waveform
(bottom). In response to a rising edge or falling edge, overshoots were observed. (c)
SWV response of 0.3 mM lead(II) nitrate in 0.1 M acetate buffer at pH 4.7.

square waveform (bottom) applied to the RE. In each square wave cycle, there are two

pulses, i.e. the forward pulse and the reverse pulse. For data analysis the response

signal obtained from the oscilloscope was sampled twice during one cycle, i.e. one at

the end of the forward pulse and another at the end of the reverse pulse. The signal

difference of the two measurements in each cycle, and the average value of the linear
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sweep potential were both calculated in this cycle. Obviously, the response difference

reaches the maximum value at the current peak and is almost zero in other locations.

The difference of each pair of current was plotted vs the linear sweep potential in

Fig. 37 (c). The peak current for 0.3 mM Pb(II) reached a maximum at potential

-0.74 V. This method can minimize the charging current which obscures the faradaic

current. SWV causes the current peaks for a faradaic process, in which the peak

height is proportional to the concentration of the chemical species of solution as seen

in equation (7.3) Mirceski, Komorsky-Lovric, and Lovric 2007.

∆Ip = nFAC∗O(DOf)1/2∆Ψ (7.3)

where ∆Ip is the peak current, n is the number of electrons, F is the Faraday constant,

A is the electrode area, C∗O is the concentration of the reactant, DO is the reactant

diffusion constant, f is the SWV frequency and ∆Ψ is the dimensionless peak current,

which relies on the square wave amplitude and potential increment in each cycle.

There are a few points that should be noticed in our experiment. First, because

the peak-to-peak amplitude of the applied square wave potential is small (∼7 mV),

the noise may cause some distortion. Thus, we utilized the oscilloscope to detect the

non-inverting input potential of the square wave relaxation oscillator Vsq_de instead

of the small square wave signal Vsq_in as seen in Fig. 36, which is given by equation

(7.4).

Vsq_in =
Vsq_deR1

R1 +R2

(7.4)

where R1 and R2 are 1.5 kΩ and 120.2 kΩ, respectively. Second, the linear sweep

potential actually applied to the WE was collected by the oscilloscope. However the

noise level of the linear signal would be as small as several mV. In order to minimized

the influence of the noise for data analysis, we assume the linear sweep potential
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actually applied was exactly as desired by using MATLAB software to create the

potential. Consequently, in each square waveform cycle, the mean value of the assumed

linear potential was estimated to be the potential staircase. Third, we have to point

out that the potential staircase in each cycle is not a constant. But the linear potential

increment of each cycle (0.26 mV) is much less than the peak-to-peak amplitude of the

square wave (∼7 mV). Therefore we can consider the linear sweep as an approximate

constant value for every square wave period. Finally, from Fig. 37, we observed that

the output signal could overshoot in response to a rising edge or falling edge. Because

these overshoots were undesirable, the response signal obtained from the oscilloscope

should be sampled before overshoots appeared, i.e. before the end of the forward pulse

or reverse pulse.

Figure 38. SWV response for the individual analysis of Pb(II) over a concentration
range of 0.15 mM to 0.4 mM.

Fig. 38 demonstrated SWV responses with regard to Pb(II) at different concentra-
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Figure 39. The linear fit line of Pb(II) peak current corresponding to Fig. 38.
Supporting electrolyte, 0.1 M acetate buffer (pH 4.7).

tions. Well-defined current peaks were observed in the concentration range of 0.15 to

0.4 mM. The current peaks, which were proportional to the concentration of Pb(II),

agreed with the equation (7.3). In Fig. 39, the current vs potential plot was fitted

with a linear equation i/A = 6.71× 10−6 + 3.00× 10−5c/mM giving an R2 value of

0.979. A detection limit is defined as the lowest concentration for which the metal

ions were detected against the current baseline. For lead(II), the detection limit was

found to 1.5 × 10−5M . As seen in Fig. 38 the locations of the current peaks were

not stable but changed from -0.758 V to -0.728 V when the concentration of Pb(II)

increases from 0.15 to 0.4 mM.
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7.3.2 SWV Analytical Characteristics of Individual Copper(II)

Figure 40. SWV response for the individual analysis of Cu(II) over a concentration
range of 0.3 mM to 0.8 mM.

Under the identical experimental condition in Section 7.3.1, Cu(II) was determined

using our SWV device. Fig. 40 demonstrates the SWV responses of Cu(II) at various

concentrations. It is obvious that the current peak shape of the Cu(II) is poor

compared to that of Pb(II). In Fig. 41, the current peaks were proportional to the

concentration of Cu(II) in the range of 0.3 to 0.8 mM, which was consistent with

equation (7.3). The linearization expression was i/A = 8.01×10−7+4.68×10−6c/mM

with an R2 value of 0.989. Similarly, the SWV peak positions of Cu(II) at different

concentration had a slight shift as the concentration changed.
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Figure 41. The linear fit line of Cu(II) peak current corresponding to Fig. 40.

7.3.3 SWV Analysis of Simultaneous Detection of Copper(II) and Lead(II)

By using the new instrument, we demonstrated the typical records of SWV analysis

for the simultaneous detection of Cu(II) and Pb(II) over the concentration range from

0.3 mM to 0.8 mM and 0.15 mM to 0.4 mM, respectively (in Fig. 42). Well-defined

peaks of Pb(II) were observed. However the shape of the Cu(II) peaks were poor

especially at high concentration, compare to those of Pb(II). This result was likely

because of the formation of Pb-Cu intermetallic compound Wei et al. 2012. In Fig.

43, the linearization equations were i/A = 1.06 × 10−6 + 7.60 × 10−6c/mM and

i/A = 8.86× 10−6 + 2.61× 10−5c/mM , with R2 value of 0.978 and 0.938, respectively.

In Fig. 42, the individual peaks of Cu(II) and Pb(II) were estimated at -0.046 V

and -0.599 V in their coexistence. The separation between the peaks of Cu(II) and
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Figure 42. SWV response for the simultaneous analysis of Cu(II), & Pb(II) over a
concentration range of 0.3 mM to 0.8 mM, & 0.15 mM to 0.4 mM, respectively.

Figure 43. The linear fit lines of Cu(II) & Pb(II) peak current corresponding to Fig.
42.

Pb(II) is so apparent that the simultaneous or the individual detection using the new

instrument is feasible. In addition, the peak position of Pb(II) remains relatively

constant at various concentrations. But it was observed a slight change for the peak

of Cu(II).
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7.3.4 Evaluation of Copper(II) and Lead(II) Mutual Interference

We observed differences in terms of sensitivity when we compared individual

with simultaneous analysis. For the individual detection of Cu(II) and Pb(II), the

sensitivities of Cu(II) and Pb(II) were 4.68× 10−6 A·mM−1 and 3.00× 10−5 A·mM−1

from Section 7.3.1 and 7.3.2. However, for the simultaneous analysis of Cu(II) and

Pb(II), the sensitivities obtained were 7.60× 10−6 A·mM−1 and 2.61× 10−5 A·mM−1

from Section 7.3.3. We also found that the sensitivity of Pb(II) changed slightly,

whereas the sensitivity of Cu(II) obviously increased.

Figure 44. SWV response of 0.3 mM, 0.4 mM, 0.5 mM, 0.6 mM, and 0.8 mM Cu(II)
in the presence of 0.3 mM Pb(II) in 0.1 M acetate buffer (pH 4.7), demonstrating the
interference of the concentrations of Cu(II) on the peak current of Pb(II).

For a better understanding of the differences in sensitivity for Cu(II) and Pb(II)

during the simultaneous analysis, the effect of the concentrations of Cu(II) on the

74



Figure 45. SWV response of 0.15 mM, 0.2 mM, 0.25 mM, 0.3 mM, and 0.4 mM Pb(II)
in the presence of 0.6 mM Cu(II) in 0.1 M acetate buffer (pH 4.7), demonstrating the
interference of the concentrations of Pb(II) on the peak current of Cu(II).

current peaks of Pb(II) and the effect of the concentrations of Pb(II) on the current

peaks of Cu(II) were further studied. Fig. 44 shows the SWV responses at varying

concentrations of Cu(II) in the presence of 0.3 mM Pb(II). The interference of the

concentrations of Cu(II) on the Pb(II) was observed. As the concentration of Cu(II)

increases, the current peaks of Pb(II) remain relatively constant. Similarly, we

investigated the SWV responses at different concentrations of Pb(II) in the presence

of 0.6 mM Cu(II) in Fig. 45. When the concentration of Pb(II) increases, slight shifts

in the current peaks of Cu(II) were observed. This may indicate mutual interferences

result from the formation of Pb-Cu intermetallic compounds Wei et al. 2012. Therefore,

simultaneous detection of Cu(II) and Pb(II) ions is possible by using our measurement

system.
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7.4 Conclusion

In this chapter, we described a simple, low-cost SWV measurement device. Our

instrument consists of a square wave relaxation oscillator, a triangle wave relaxation

oscillator and a potentiostat. To verify performance of the device, the selective and

simultaneous SWV detections of Cu(II) and Pb(II) were performed. Due to simplicity

of use and cost, this system provides a practical alternative for electrochemical analysis.
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Chapter 8

CMOS LIGHT-DIRECTION DETECTION SENSOR

This chapter presents an on-chip optical sensor capable of detecting the direction

of incident light. No off-chip optical or mechanical components or modifications, for

example, baffles, slit structures, mirrors, etc. are needed. The sensor was implemented

in a standard 0.5 µm CMOS process Hongyi Wang et al. 2013. The CMOS chip was

designed in collaboration with Dr. Hongyi Wang. A pair of on-chip photodiodes

separated by a metal “wall” (created by stacking all metal layers, contacts and vias

available in the process) is used to detect the direction of the incident light. This metal

stack “wall” creates on-chip shadowing to facilitate detection so the two photodiodes

produce different amounts of photocurrent. A model for this device is presented.

The analysis indicates that the ratio of the difference of these two currents to the

larger of the two currents has a linear relationship with the angle of the incident light.

Moreover, we also demonstrate this ratio is almost independent of the incident light

intensity. Test results verify these two conclusions and show good sensitivity to the

light direction and immunity to the light intensity. An accuracy of 1.6 degrees over a

100 degree range is achieved by the linear relationship.

8.1 Background

Light direction detection is essential in numerous applications including positioning

solar panels, orienting solar thermal collectors, and spacecraft altitude determination

Mohammad and Karim 2013. There are many methods introduced in the prior arts
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Yamada et al. 1996; Amemiya and Miyake 1995; Hill 1993; Hegyi 1993 to address

this problem. However, these methods require special off-chip mechanical and/or

optical components, for example, a board with apertures Amemiya and Miyake 1995,

one or more baffles Hill 1993, mirrors, etc. In addition, it is often necessary to have

a relative long distance between the light window and the sensing devices so that

the light can illuminate different sensors with varying directions. Modifications to

standard processing add complexity in post-processing and make it difficult for the

sensor to remain small volume and light weight. Furthermore previous publications

are susceptible to high thermal drift coupled with sensitivity to the intensity of the

incident light. The ratio to indicate the angle is often nonlinear Hegyi 1993 which

affects the detection accuracy or makes it difficult to calculate the angle.

In this paper, we present a light direction detection sensor based on the most popu-

lar integrated circuit process, namely, the Complementary Metal Oxide Semiconductor

(CMOS) process. The presented sensor does not need any other mechanical and optical

components or post-processing. Utilizing CMOS allows integration of many complex

integrated circuits, for example, amplifier, ADC (analog to digital converter), DSP

(digital signal processing unit), memory, or even RF (Radio Frequency) circuits. A

standard CMOS process provides ease of fabrication, low cost, small size and excellent

reliability. Another significant feature of the presented sensor is that it produces a

signal ratio with a linear relationship to the angle of the incident light. This ratio

also has very good immunity to light intensity, which is very helpful for the angle

calculation.
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8.2 CMOS Sensor Structure

The presented sensor uses shadowing effect that is demonstrated in the following

text to improve detection with respect to macroscale Pineda and Arredondo 2012 or

MEMS S. Mobasser and C. Liebe 2003 implementations. The sensor consists of 50

basic cells connected in parallel. Fig.46 shows the structure of two basic cells. The

essential feature of this sensor is created by stacking all metal layers, contacts and

vias available in the process to create on-chip “walls” as optical baffles. Two identical

photodiodes are located on opposite sides of the “wall”. When the light comes from

directly above of the “wall”, the two photodiodes are illuminated equally and produce

same currents. When the light comes from one side above the “wall”, it blocks part

of the light to the opposite photodiode which therefore produces less current than

the other photodiode. The difference of these two currents depends on the angle of

the incident light. It is possible to calculate the angle based on these two currents.

A theoretical model is created to understand the mechanism and compared to our

experimental results in this paper.

In Fig.46, θ is the angle between the light direction and the metal “wall”, h is the

height of the metal “wall”. The length, width and depth of each photodiode cell are l,

w, and v respectively. s is the length of the shadow region. In this design, h = 5.6

µm, l = 6 µm, w = 80 µm, v = 0.3 µm. DLi and DRi are the left side and right side

photodiodes respectively with subscript indicating different cells, i = 1− 50. IL and

IR are the currents of left and right photodiodes, respectively, and VL and VR are the

voltages of left and right photodiodes. The schematic current sources shown alongside

the diodes indicate the photocurrents generated by the corresponding photodiodes

due to the incident light.
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Figure 46. Structure of the proposed CMOS light direction sensor demonstrating the
wall and its operation.

For simplicity in the derivation, Fig.47 shows the geometry of a basic cell within

the sensor. OA and OB indicate the left side diode DL and right side diode DR in

the basic cell. They have the same length, namely, OA = OB = l. l is also shown in

Fig.46. OE is the metal “wall”, and the arrows indicate the incident light. The angle

between the metal “wall” and the light is the same θ shown in Fig.46.

Because the band gap voltage of silicon is 1.12 V, the longest wavelength of the

light that the photodiode can absorb is 1.1 µm. The absorption peak is at about 0.7

µm of wavelength. On the other hand, the space between two metal walls in this

design is 20 µm and the height of the wall is 5.6 µm, which are much larger than

the wavelength of the absorbed light. Therefore the diffraction does not influence the

derivation result significantly. To build a basic and simple model, it is not necessary to

consider the diffraction effect. However, if a more accurate mode is needed or the size

of wall and space are much small, the diffraction should be taken into consideration.
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Figure 47. Diagram of the basic cell geometry for the light direction sensor.

8.3 Theory

As we know, a photodiode generates current proportional to the optical power it

receives. The short-circuit photocurrent can be expressed as

IDIO = kPT = kP0AEFF = kP0wLEFF (8.1)

Where, k is a constant coefficient, PT is the total optical power the diode receives,

P0 is the incident optical power per unit cross-sectional area, AEFF and LEFF are the

effective area and effective length of the incident light to illuminate diode, w is the

width of the diode, which is shown in Fig.46.

Here we examine the case where the left diode is fully illuminated and the right

diode is partly shadowed by the metal “wall”. If the light comes from right side, a

similar result can be achieved. The case of zero incident light on any diode is not

considered for brevity. In this case, the total photocurrent from the left diode DL can
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be considered as composed of three parts. The first part is the current generated by

or proportional to the light which directly illuminates the diode. This part of current

can be described as

ILD = kP0w · AC (8.2)

The second part of current is generated by or proportional to the reflected light

from the metal “wall” with only part of the light is reflected. We assume the ratio

of the light reflected to the total light reaching the metal “wall” is α, so this part of

photocurrent is

ILR = αkP0w ·DE (8.3)

Since the light illuminating the diode wouldn’t be completely absorbed initially,

the residual light will be reflected many times by the back metal base, the metal layers,

and the interfaces of different materials. So the third part of the photocurrent can be

thought as the sum of all those currents produced by the background light. It can be

considered to be proportional to the total incident optical power and approximately

uniform in the left and right diode regions. So this current can be indicated as

ILB = βkP0w · (AC +DE + FG)
AO

AB
= βkP0w · AC (8.4)

where β is another constant in this equation. Summing the three parts of the

photocurrent, we can get the total photocurrent of the left diode as

IL = ILD + ILR + ILB = kP0w[(1 + β) · AC + α ·DE] (8.5)

Considering the incident light angle θ in Fig.47, we can rewrite the Eq. (8.5) as

Eq. (8.6)

IL = kP0w[(1 + β)l · cos θ + αh · sin θ] (8.6)
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Similarly, the photocurrent from the right diode can be considered to include two

parts. They are similar to the first and third parts of the photocurrent from the left

photodiode. The total current of the right side diode can be described as,

IR = kP0w[(1 + β)l · cos θ − h · sin θ] (8.7)

In order to calculate the angle of the light, we defined a variable as the ratio of

the difference of the two currents to the larger current, namely

RD/B =
|IL − IR|

Max(IL, IR)
(8.8)

Substituting Eq. (8.6) and Eq. (8.7) into Eq. (8.8) and considering the light

comes from the left side as we assumed, we find

RD/B =
IL − IR
IL

=
(α + 1)h · sin θ

(1 + β)l · cos θ + αh · sin θ
(8.9)

As mentioned above, h and l are both constants for a given fabrication process and

design. α and β depend on the process, layout and package, and they are assumed

to be constant in a given design. In the later section of this paper, α and β will be

determined by fitting this equation to the test data. We can see this assumption is

reasonable and gives good accuracy over the useful angle range. From Eq. (8.9) we

can see the ratio RD/B is independent of the light intensity and only depends on the

incident light angle θ. This was verified through empirical results.

From Eq. (8.9), although RD/B does not have a simple relationship to the incident

light angle, but with advanced analysis we find an exciting result. Based on the

design parameters in this design, we can give some values for α and β and plot RD/L

curves according to Eq. (8.9). Some of these curves are shown in Fig.48. We can see

RD/L has an approximately linear relationship with the incident light angle over a

range of α = 0.7− 0.95 and β = 0.5− 0.9. We have also verified the linearity with
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the α = 0.1, 0.2, ..., 0.9 and β = 0.1, 0.2, ..., 0.9. This linear relationship allows us to

calculate the angle in a very simple way.

Figure 48. Curves for RD/B at different α and β versus incident light angle according
to Eq. (8.9)).

8.4 Results and Discussion

We designed and fabricated this sensor in a standard 0.5 µm CMOS process. In

Fig.49, the photomicrograph of the sensor is illustrated. The sensor in this design has

50 basic cells connected in parallel with a total size of only 0.11 mm2.

Fig.50 shows the test results for the sensor with short-circuit photocurrents (top)

and the ratio RD/B (bottom) v.s. optical power at different incident light angles.
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Figure 49. Photomicrograph of the presented light direction sensor based on a
standard 0.5 µm CMOS integrated circuit process.

RD/B was calculated based on the short-circuit photocurrent and Eq. (8.8) separately.

It is clear from the Fig.50 that RD/B is almost constant over a wide range of the light

intensities, which agrees with Eq. (8.9).

Fig.51 (top) shows the two photocurrents versus the incident light angle when the

light intensity is a constant of 65 mW/cm2. Fig.51 (bottom) includes RD/B calculated

from the tested data, the linear fit of the tested RD/B, and the calculated RD/B

according to Eq. (8.9). This shows the RD/B values based on empirical results really

have a very nearly linear relationship with the incident light angle. If we use a linear

relationship to calculate the angles based on the tested ratio RD/B, the maximum

error is 1.6 degrees over a range of -50 to 50 degrees. On the other hand, if we

calculated the angle based Eq. (8.9) with α = 0.79 and β = 0.73 , the maximum error
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Figure 50. Short-circuit photocurrents (top) and the ratio RD/B (bottom) v.s.
incident light intensity measured at different incident light angles.

is 2 degrees. All of these results verified the conclusions we derived from the model

presented above.

Of course we can obtain better precision for the angle calculation through calibra-

tion, which is in fact quite simple with a commercial integrated circuits process. Signal

processing circuits can be easily integrated in the same die. Additionally, designing

a two-dimensional sensor would only require placing two sensors with a 90◦ angle

between them to realize the two-dimension detection.
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Figure 51. Photocurrents and ratio RD/B vs. light angle with a 65 mW/cm2 incident
light.

8.5 Conclusion

In summary, the on-chip light direction detection sensor is fabricated by the most

popular IC fabricating process, CMOS, with a small area of 0.11 mm2. It can be

easily integrated with other integrated circuits, and no other special mechanical and

optical post-processing or modifications are necessary for the presented sensor to work.

Another significant feature of the presented sensor is that it can give a signal with a

very linear relationship to the incident light angle. This makes it very convenient to

evaluate the angle from this signal.
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Chapter 9

A SELF-POWERED SENSOR WITH DIGITALIZED OUTPUT FOR LIGHT

DIRECTION

This chapter presents a novel self-powered chip to detect the direction of incident

light. This chip directly provides digitized output without the need of any off-chip

power supply, optical or mechanical components. The chip was implemented in a

standard 0.5 µm CMOS process Hongyi Wang et al. 2014. This chip was designed

with Dr Hongyi Wang’s help. Micro-scale metal baffle was created by stacking all

metal layers, contacts and vias available in the process to produce on-chip shadowing.

N-well/p+ photodiode arrays are located on both sides of the baffle to sense light.

The photocurrent generated by a photodiode depends on the size of the photodiode

and the shadowing. The shadowed area depends on the incident angle of the light. A

current mirror circuit is used to compare the currents generated by the photodiodes

on the opposite sides of the baffle and consequently, provide digital signal to indicate

the incident light angle. Compared with the ideal linear digital light angle detector

with the same resolution, the presented sensor achieved the maximum error of only 2

degrees over 110 degree test range.

9.1 Background

Low-power design is increasingly important in many fields, especially in a system

where a battery is used as the power supply Fish, Hamami, and Yadid-Pecht 2006;

Fish and Yadid-Pecht 2008. Many investigators are focused on finding solutions for
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this topic. One solution is the technique of energy harvesting Law, Bermak, and Shi

2011; Ay 2011, absorbing energy from local environment to power a device. On the

other hand, it is often necessary to detect the direction of the incident light; these

applications include spacecraft attitude control Sohrab Mobasser and C. C. Liebe 2004,

solar energy collection C.-Y. Lee et al. 2009, and motion detection Mousazadeh et al.

2009. Most methods introduced in the previous articles C.-Y. Lee et al. 2009; Pissavin

et al. 1997 require off-chip mechanical and/or optical components such as boards with

apertures C.-Y. Lee et al. 2009, baffles Pissavin et al. 1997, mirrors C.-Y. Lee et al.

2009, etc. In addition, these methods often need a relatively long distance between

the light window and light sensing devices so that the light can illuminate different

sensors in different directions. In this paper, we present a self-powered CMOS digital

sensor to detect the light direction. It does not need power supply, further mechanical,

optical components or post-processing. An NMOS current mirror circuit is designed

to convert the angle information into digital output. Compared with the ADC circuit

used in El Gamal, Yang, and Fowler 1999, the current mirror circuit is much more

simple and robust. The standard CMOS process provides ease of fabrication, low cost,

small size, and excellent reliability.

9.2 Sensor Structure

The presented sensor uses a vignetting effect Catrysse, Liu, and El Gamal 2000;

Hongyi Wang et al. 2013 that is demonstrated in Fig.52 to improve detection with

respect to macroscale Pineda and Arredondo 2012 or MEMS S. Mobasser and C. Liebe

2003 implementations. Compared with the original idea introduced in Hongyi Wang

et al. 2013, this chip has a novel self-powered structure with photodiode arrays as the
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Figure 52. Structure of the proposed CMOS light direction sensor shown in
cross-section with shadowing by the metal baffle (top) and the current mirror circuits
used to achieve digital output (bottom).

light sensor and a current mirror circuit as the signal processing unit. The top part in

Fig.52 is a cross-section of the sensor. A metal “wall” created by stacking all metal

layers, contacts and vias available in the process acts as an on-chip optical baffle.
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Two identical photodiodes DLi and DRi are placed on opposite sides of the baffle.

The schematic current sources shown beside each diode indicate the photocurrents

generated by the corresponding photodiodes. When light comes from directly above

of the baffle, the two photodiodes are illuminated equally and produce equal currents.

When light comes from one side above the baffle, the baffle blocks part of the light

to the opposite photodiode which therefore produces less current than the other

photodiode. The difference of these two currents depends on the incident angle of the

light.

9.3 Principle of Operation

To design such a sensor with good performance, it is important to optimize the

dimensions of the metal wall and the photodiodes. It is obvious that the higher the

metal wall is, the bigger the produced shadow difference in case of a certain angle

change. So, it is usually reasonable to make the metal wall as high as possible to

enhance the sensor’s sensitivity. In this chip the height h of the wall is about 4.6 µm,

which is determined by the used process. The width of the photodiodes is chosen

according to the range of the light angle to be detected. In this design, the width w

of all photodiodes is 6 µm. Therefore the maximum angel θmax that can be effectively

detected is given by Eq. (9.1)

θmax = arctan(w/h) (9.1)

An angle exceeding θmax will result in worse sensitivity because the photodiode on one

side is completely shadowed. Substituting w and h into Eq. (9.1), we know that θmax

is about 53 degree in this design. The test range should not be too wide for it will

decrease the sensitivity. There is a trade-off between the test range and the sensor’s
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sensitivity. The width of the metal wall is not critical. Therefore, several rows of vias

and contacts were laid in a staggered pattern in order to block the light and to meet

the design rules(e.g. metal density, via/contact space and etc.)

Diffraction is often an important factor to be considered when one designs a optical

sensor. Considering the bandgap voltage of silicon is 1.12 V, the longest wavelength

of the absorbed light is about 1.1 µm. Actually, the absorption peak is around 0.7

µm. However, in this design the space between two adjacent metal walls is 20 µm,

and the height of the wall is 5.6 µm, which are all much larger than the wavelength of

the absorbed light. Thus the diffraction does not influence the sensor’s performance

significantly.

In order to generate a digital signal related to the light angle, two identical

photodiode arrays are located on opposite sides of the baffle. The diodes in each array

have the normalized areas of 16, 15, 13, 11, 9, 7, 5, 3, and 1, respectively. The smallest

diode DL0 or DR0 with the normalized area of 1 is composed of 12 basic cells. Each

basic cell has a size of 6µm× 60µm. The photocurrents of DLref and DRref flow into

diode-connected NMOSs, MLref and MRref , respectively. They produce two gate bias

signals for MR0−7 and ML0−7. Each of the other photodiodes is connected to the drain

of an NMOS. All the NMOSs in Fig.52 have identical sizes.

If the examined light comes from the left side, the left diodes are fully illuminated

and the right diodes are partly shadowed due to the metal baffle. The case of zero

incident light on any diode is not considered for brevity. If the photocurrent generated

by DLi is larger than the photocurrent generated by DRref , the voltage of node Li

will be high. Otherwise, it will be low. The subscript i indicates different photodiodes,

i = 0− 7. The farther left the light comes from, the wider the shadow on the right

side, and the less the photocurrent in DRref . Then the smaller photodiode on the left
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side can produce a photocurrent larger than that produced by DRref . As a result,

there will be more Li nodes with high voltage level.

Similarly, the farther right the light comes from, the more Ri nodes will be high.

If the light comes from directly above the baffle, All the Li and Ri are low. So the

number of high voltage level Li or Ri indicates the angle of the incident light. The

circuit actually has thermometer code output which is similar to a Flash ADC.

In order to make the current mirror work well, the photocurrent produced by DLref

is assumed to completely flow into MLref , and that of DRref into MRref . That means

the threshold voltage of NMOS, Vthn should be lower than the forward conduction

voltage of the photodiode. This forward voltage is about 0.6 V. This requirement can

be fulfilled by a low threshold NMOS process. However, the Vthn in the used 0.5 µm

CMOS process is about 0.7 V. That is too high to be turn on by the photodiode

generated voltage. To solve this problem, we used another photodiode DP to boost

the potential of the common N-well of the photodiodes (Fig.52). In this case, the

photocurrent IDP needs to be larger enough to support the sum of IDLi, IDRi and IDS.

IDS is the current generated by the big N-well/P-sub photodiode DS. To keep costs

to a minimum, we used three of the same chips for verification. One is the main chip,

and the other two auxiliary chips connected in parallel are used as a big enough DP .

That is shown in Fig.53.

As we know, the threshold voltage Vthn changes with the temperature and the

process corner. Fortunately, Vthn and VDio have same changing tendency with the

temperature, which is helpful to keep the current mirror work. Considering the

different process corners, it would be better to use low threshold process for this

design. In order to achieve a good accuracy, the current mirror circuit should be paid
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Figure 53. Experimental setup for light-direction detection.

more attention to deal with the mismatch. Large size (W/L=20*4µm/4µm) NMOSs

and common-center structure were used in the layout for this purpose.

Fig.54 shows the photomicrograph of the presented chip. It was fabricated in a

standard 0.5 µm CMOS process. To improve the sensor’s sensitivity, each photodiode

shown in Fig.52 consists of a number of basic diode cells connected in parallel. The

number is dependent on the area ratio. The current mirror circuit is located on the

right side of the chip. It occupies a very small area and is shielded by a few metal

layers to avoid light influence.
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Figure 54. Micrograph of the presented chip.

9.4 Results and Discussion

To verify the photodiodes, we tested the short-circuit current of each diode at

different angles. The results are shown in Fig.55. ILi and IRi in the x-axis indicate

the photocurrent of DLi and DRi, respectively. It can be seen, for a given angle, the

currents of different diodes have the same ratios as their area. That indicates all the

photodiodes are functional.
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Figure 55. Photocurrents of each diode at different angles under sunlight with light
intensity of 85 mW/cm2.

The digital outputs of the chip were measured under sunlight by a 4-channel

oscilloscope repeatedly to get all the output signals (Fig.56). The outputs L0− L7

and R0−R7 change with varying angles. Without a power supply, the output voltage

of the chip can range from 0 V to 0.9 V. R0, R1, and L0 did not change their

states because the photocurrents of DRO, DR1, and DL0 could not be larger than the

photocurrent generated by DLref and DRref due to the background noise. However, in

Fig.56 we can see the digital output has a nearly linear relationship with the incident

angle of the light, which is in accord with the theory derived in Ref Hongyi Wang

et al. 2013. To verify this, we convert the digital output into a decimal form and plot

it in Fig.57. An ideal theoretical result is also shown in Fig.57. The ideal theoretical
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Figure 56. Outputs of the flash ADC versus the angle of the incident light.

result is derived from a linear digital light angle sensor with the same test range of

110 degrees and same resolution of 10 degrees. Comparing these two curves, we can

see the maximum difference between these two series of transition points is only 2

degrees over the range from -50 to 60 degrees. Therefore, it is excepted that based on

this structure and a bigger array with more different size of photodiodes, it is feasible

to design a new sensor with resolution and accuracy less than 2 degrees over the range

of 110 degrees (i.e., a 5.5 bit of light-angle-to-digital conversion resolution).
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Figure 57. Comparison of the tested outputs with the ideal output of the
self-powered ADC.

9.5 Conclusion

In this chapter, a self-powered on-chip sensor with digitalized output for light

direction detection is demonstrated. Fabricated in a standard 0.5 µm CMOS process,

all the metal layers, contacts and vias in the process are stacked as an optical baffle

to create on-chip shadowing. Two arrays with various sizes of photodiodes are located

on the opposite sides of the baffle to act as the light sensors. A simple current mirror

circuit compares the photocurrents and provides digital output to indicate the incident

light angle. Test Results show an error of only 2 degrees can be achieved compared

with the ideal output. The digital output has voltage level range of 0 V to 0.9 V, and

the detected angle range is from -50 to 60 degrees.
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Chapter 10

A SUN TRACKER WITH AN ON-CHIP SENSOR

This chapter demonstrates a self-powered Maximum Power Direction Tracking

(MPDT) system capable of maximizing the energy harvesting by automatically adjust-

ing the angle of the solar panel Hongyi Wang et al. 2015. The whole system is powered

by a solar panel so no extra power supply is needed. The entire system consists of

a solar panel, a motor, and a CMOS chip. A novel light direction sensor and the

needed circuit are integrated in a single chip which is fabricated by a standard 0.5 µm

CMOS process. Thus, it is small-size and low-cost. The system was tested to verify

performance with different light direction and intensity. The results show that the

system has good sensitivity to the incident angle and achieve tracking accuracy of ±1.8

degrees over a optical power range of 30-110 mW/cm2. This work is in collaboration

with Dr Hongyi Wang.

10.1 Background

In a variety of applications, we usually need a tracking system to get maximum

solar panel output power. For example, it is used in the spacecraft power system

to improve the energy harvesting efficiency and also used for the spacecraft attitude

determination Liebe and Mobasser 2001; Deans, Wettergreen, and Villa 2005; Delgado

et al. 2012. Many of these applications require low power, low cost, small size, and light

weight. Miniaturized on-chip sensor is an attractive choice to meet these requirements.

That make it easy to integrate complex circuits in a same chip, to improve the

99



reliability, and to cut down the cost. In this case, it is necessary to have an on-chip

light direction sensor for this system. Many techniques have been developed to detect

sun or light direction, such as the shading device method Quero et al. 2001, the tilted

surface method Karimov et al. 2005; Koyuncu and Balasubramanian 1991, and the

collimator tube method Mousazadeh et al. 2009. However, for the shading method,

not only the achieved accuracy of ±10 degrees is lower than the tilted surface method

and collimator tube method, but also its light sensitivity is low compared with the

other two methods. For the tilted surface method, it requires special off-chip optical

components, for example, light dependent resistors (LDR). Which make it impossible

to realize it on a chip. Although the accuracy of the collimator tube method is high,

the detection range is relative small i.e. 1 degree and its size is large. It is also difficult

to make this sort of sensor small-volume and light-weight.

This chapter presents a self-powered maximum power direction tracking system,

which consists of a motor, a solar panel, and a CMOS chip with a light direction

sensors and the signal processing circuits. Most of the circuits are integrated on the

same chip to process the sensing signal and control the motor. Because batteries are

expensive, bulky and require replacement and disposal, many ways to recharge or

replace them are being researched Sarkar and Chakrabartty 2013; Guan and Liao

2005; Dong et al. 2007. To overcome this problem, a solar panel is used to power the

sensor chip and the motor driver, which means this system is completely self-powered.

10.2 Sensor Design

In this chapter, an on-chip CMOS sensor is designed to detect the incident light

direction so as to know the strongest light direction. Fig. 58 shows a basic cell of
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Figure 58. Structure of the proposed CMOS light direction sensor.

the sensor. The whole sensor is formed by a number of the basic cells. A metal wall

created by stacking all metal layers, contacts, and vias available in the process is used

to generate on-chip micro-scale shadow. The height of the metal wall is h. We should

optimize the dimensions of the metal wall for the sensor’s good performance. In this

design, we choose 4.6 µm as the height of the metal wall.

In this design, diffraction has been considered. As we all know, the bandgap

voltage of silicon is about 1.12 V . So the longest wavelength of the absorbed light

is about 1.1 µm. Actually, the absorption peak is around 0.7 µm. However, in this

design the distance between two adjacent metal walls is 20 µm, and the height of the

mental wall is 4.6 µm. The physical dimensions are much larger than the wavelength

of the absorbed light. So the diffraction has little influence on the sensor performance

Hongyi Wang et al. 2013, 2014.

Two identical photodiodes are located on opposite sides of the metal wall. DL

is the left side diode and DR the right side diode. They have same width w and
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same length, l. The schematic current sources shown beside each diodes indicate the

photocurrents generated by the corresponding photodiodes. The angle between the

metal wall and the light direction is θ. When the light comes from directly above

of the wall, namely θ = 0, the two photodiodes are illuminated equally and produce

same currents. When the light comes from one side above the wall, namely θ > 0 or

θ < 0, the wall blocks part of the light to the opposite photodiode which therefore

produces less current than the other photodiode. So the relationship between of IDL

and IDR is relative to angle of the incident light. We can get more details by deriving

the expressions of IDL and IDR as flowing.

As we known, the photocurrent generated by a photodiode is proportional to the

optical power the photodiode receives. The short-circuit photocurrent can be written

as

IDIO = kPT = kP0AEFF = kP0wLEFF (10.1)

where, k is a constant coefficient, PT is the total optical power the diode receives, P0

is the optical power per unity sectional area of the light, AEFF is the sectional area of

the incident light, and LEFF is the length of the sectional area.

Here, we analyze the case of θ > 0. That means the left diode is fully illuminated

and the right diode is partly shadowed by the metal wall. The case of zero incident

light on any diode is not considered for brevity. In this case, the total photocurrent

generated by the left diode DL can be divided into three parts. The first part is the

current generated by the light which directly illuminates the diode. According to Eq.

(10.1) and the geometrical structure, this part of current can be described as

ILD = kP0wl sin θ (10.2)

The second part of current is the current generated by the reflected light (Fig. 58)

from the metal wall. Since only part of the light is reflected, we assume the ratio of
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the light reflected to the total light reaching the left side of the metal wall is α. This

part of photocurrent is expressed as

ILR = αkP0wh sin θ (10.3)

Since the light illuminating the diode wouldn’t be completely absorbed initially,

the residual light will be reflected many times by the back metal base, the metal

layers, and the interfaces of different materials. So the third part of the photocurrent

can be thought as the sum of all those currents produced by these background lights.

It can be considered to be nearly proportional to the total incident optical power and

approximately uniform in the left and right diode regions. So this part of current can

be indicated as

ILB = βkP0wl sin θ (10.4)

where, β is other constant in this equation. Summing the three parts of photocurrent,

we can get the total photocurrent of the left diode as

IDL = ILD + ILR + ILB = kP0w [(1 + β)l · cos θ + αh · sin θ] (10.5)

Similarly, the photocurrent generated by the right side diode can be considered to

include two parts. They are similar to the first and third parts of the photocurrent

generated by the left photodiode. The total current of the right side diode can be

described as,

IDR = kP0w(1 + β)l · cos θ − h · sin θ (10.6)

From Eq. (10.5) and Eq. (10.6), we can get the current ratio of IDL and IDR is,

IDL
IDR

=
(1 + β)l · cos θ + αh · sin θ
(1 + β)l · cos θ − h · sin θ

(10.7)

In the other case, if the light comes from the right side, θ < 0, the right side diode

is completely illuminated and the left side diode is partly shadowed. We can get the
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following result in a same way.

IDL
IDR

=
(1 + β)l · cos θ + h · sin θ

(1 + β)l · cos θ − αh · sin θ
(10.8)

Eq. (10.7) and Eq. (10.8) can be combined together as Eq. (10.9),

f(θ) =
IDL
IDR

=


(1 + β)l · cos θ + αh · sin θ
(1 + β)l · cos θ − h · sin θ

, θ ≥ 0

(1 + β)l · cos θ + h · sin θ
(1 + β)l · cos θ − αh · sin θ

, θ < 0
(10.9)

As mentioned before, h and l are both constants when the device has been

fabricated. α and β depend the process, layout and package. Their values could not

be exactly estimated but they are reasonably assumed to be constant in a given design.

Therefore, from Eq. (10.9) we can see the current ratio of IL/IR is independent on

the light intensity and only depends on the incident light angle θ. This is a useful

feature that means with a given IL/IR, the angle can be determined by

θ = f−1
(
IDL
IDR

)
(10.10)

With this analysis result, it is possible to design a circuit to control the tracking

system focusing on the sun with a certain angle error range under different light

intensity.

10.3 Circuit Design

Fig. 59 shows the circuit of the tracking system. Photodiodes DL and DR and

photocurrents IDL and IDR are same as shown in Fig. 58. The values of RL, RR1,

RR2, and RR3 can be selected to make the voltage VL and VR are much lower than the

forward conductive voltage of the diodes DL and DR. Under this condition, almost all
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Figure 59. Block diagram of the proposed tracking circuit.

of the currents IDL and IDR flow into the resistors, namely, IL = IDL and IR = IDR.

So 
VL = IDLRL

VR = IDR(RR1 +RR2 +RR3)

VRx = IDR(RR1 +RR2)

(10.11)

There are two comparators CP1 and CP2 in Fig. 59. Both them are integrated in

a same die with the light direction sensor. For the comparator CP1, the flip point

locates where its negative input and non-negative input equal to each other, VL = VRx,

namely

IDLRL = IDR(RR1 +RR2) (10.12)

so,
IDL
IDR

=
RR1 +RR2

RL

(10.13)

From Eq. (10.10) and Eq. (10.13), the corresponding angle θ1 for CP1 flipping can

be expressed as

θ1 = f−1
(
RR1 +RR2

RL

)
(10.14)

In the same way we can get the flip point for the comparator CP2 is
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θ2 = f−1
(
RR1 +RR2 +RR3

RL

)
(10.15)

Figure 60. Curve of the tracking circuit.

From Eq. (10.14) and Eq. (10.15), we can see the two angle flip points are

completely determined by the resistor ratio and irrelative to the light intensity. That

provide easy to adjust this two angles θ1 and θ2 by turning the two adjustable resistor

RR2 and RR3. By proper values for RR2 and RR3, the signal curves in Fig. 60 can be

achieved.

It can be seen when θ < θ1, the motor is driven by VM > 0, the angle will increase.

When θ > θ2, the motor is driven by VM < 0 and the angle will decrease. When

θ1 < θ < θ2, VM = 0, the motor will be stationary and there will be no power

consuming by the motor driver. That is the stable region. For the fixed-location
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solar-cell to track sun application, the needed rotating speed is very slow, so most of

the time this system stays in a very low power state, in which the motor driver does

not consume power, and only the comparators continuously work. In this design, the

consume current is only 88 µA. This is another significant feature for the low power

applications.

The two comparators in Fig. 59 have the same circuit structure. The design details

have been shown previously Luo et al. 2013. This comparator has a push-pull output

stage. The driving ability can be bigger than 40 mA. At the same time, the quiescent

current is only 44 µA as mentioned.

For a feedback loop, it is necessary to consider the stability issue. Since the

mechanical stuff have inertia, the rotation movement always has an overshoot before

it completely stop. For example, when the panel rotates from a more minus angle to

θ1, although the motor driving current is cut off very quickly, the rotating structure

cannot stop immediately and will stop at a angle larger than θ1. If this angle is beyond

θ2, the system will need to turn back. At the worst case, this turn back rotation stop

at an angle less than θ1 due to the inertia, thus an oscillation happens. This is the

stability issue. An simple way used in this design to prevent oscillation is to set the

stable range (θ2 − θ1) larger than the maximum overshoot in the worst case.

In this design, all the circuit and the motor are powered by a solar panel. The

resistors in Fig. 59 are discrete components for the facility to adjust the flip points

of the comparators. For different applications, the driving currents of the motor are

much different. So the motor driving MOSFETs M1-M4 also use discrete components.
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Figure 61. Microphotograph of the chip.

10.4 Implementation and Verification

Both the light direction sensor and the comparators are implemented in a same die

by a 0.5 µm standard CMOS process. The microphotograph is shown as Fig. 61. The

whole sensor consists of part I and part II. Each parts is composed of 50 basic sensor

cells as shown in Fig. 58. All the basic cells are connected in parallel. The total area

of the light direction senor is only 0.234 mm2. For the chip also includes other circuit

108



not related to this tracking system, the other circuits are not be described in this

chapter.

Figure 62. Currents and current ratio of the photodiode versus the light direction
angle under sunlight (Optical power = 83mW/cm2).

Fig. 62 plots the curves of photocurrent IL, IR, and the ratio IL/IR versus the

angle of the incident light under a constant light intensity of 83mW/cm2. The detailed

data is listed in Table 2. We tested the data with KEITHLEY 2636A SYSTEM Source

Meter. Each photocurrents changes with the light angle. When the angle is zero, IL

and IR are nearly equal to each other. When the light comes from left side (θ < 0),

IL > IR. And when the light comes from right side (θ > 0), IL < IR. This means the

sensor can function to indicate the incident angle as we analyzed in section 10.2.

The top part of Fig. 63 is the curves of the photocurrents of IL and IR at different
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Angle(Degree) IR(µA) IL(µA) IL/IR

43 2.628 0.924 2.84416
38 2.8215 1.142 2.47067
33 2.9835 1.366 2.18411
28 3.008 1.5995 1.88059
23 3.0536 1.854 1.64698
18 3.0955 2.134 1.45056
13 3.0335 2.39 1.26925
8 2.901 2.5375 1.14325
3 2.7925 2.6275 1.0628
0 2.69725 2.69725 1
-2 2.6655 2.724 0.97852
-7 2.558 2.83 0.90389
-12 2.452 2.949 0.83147
-17 2.346 3.048 0.76969
-22 2.1035 3.1175 0.67474
-27 1.849 3.1175 0.5931
-32 1.5725 3.0975 0.50767
-37 1.294 3.0195 0.42855
-42 1.032 2.869 0.35971

Table 2. Currents and current ratio of the photodiode v.s. the light direction angle
under sunlight(Optical power = 83mW/cm2).

angles versus different optical power. The ratio curves of IL/IR at different angles are

plotted at the bottom part of Fig. 63. It is obviously that for a given angle the ratio

almost does not changes over a optical power range of 1-94 mW/cm2 . This range is

much wider than the sunlight intensity in the daytime. The measurement results well

meet the analysis conclusion obtained in section 10.2. The conclusion shows that the

ratio IL/IR is independent on the optical intensity.

To verify the tracking performance, we set up a self-powered optical-mechanical-

electronic system as shown in Fig. 64. A solar panel with size of 13 cm × 8.5 cm is

adopted as the power supply of the whole system including the chip and the motor

driver.The specification of the solar panel and the motor are shown in Table 3 and
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Figure 63. Currents and current ratios of the photodiode v.s. light power (probe
station fiber light source).

Table 4. All the solar panel, the chip, and the discrete components are mounted on a

bread board which can rotate along an axis by a motor. The motor is driven by the

circuit shown in Fig. 59. When this system was put under the sunlight, the system

automatically rotates to make the normal of the chip always point to strongest light

direction even if the base of the system is moved or rotated. Moreover, when the

resistors are set appropriate values, the system works very stable and without any

oscillation.

Parameter Value

Typical Power Output 1.5 W
Typical Output Voltage 4.5 V
Typical Output Current 334 mA

Panel Dimensions 130mm × 85mm × 3mm

Table 3. Parameters of solar panel
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Figure 64. Photograph of the tracking setup.

To further verify the stable angle range, we tested the tracking system in the lab by

different light intensities. For there is no a light source in our lab which can illuminate

the whole solar panel, we use a power supply for the system in this case and just use

the light source to illuminate the chip. Fig. 65 shows the test results of the stable

range angels, θ1 and θ2. We can see the stable range only change a little over a optical

power range of 30-110 mW/cm2. The tracking accuracy of good as ±1.8 degrees is

achieved.

In order to make the system reliable under the condition of different temperature,

strong wind, and other critical circumstances, it is necessary to design the mechanical

structure carefully. The motor should provide enough torque and the gear should be

able to withstand the maximum torque. The needed torque is determined by weight

of the rotating part, the distance of the orthocenter to the axis, the wind velocity, the

friction and so on.
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Parameter Value

Operating Voltage 4.8-6.0 Volts
Operating Temperature Range -20 to +60 Degree C

Operating Speed (4.8V) 0.24sec/60 at no load
Operating Speed (6.0V) 0.20sec/60 at no load
Stall Torque (4.8V) 106.93 oz/in. (7.7kg.cm)
Stall Torque (6.0V) 133.31 oz/in. (9.6kg.cm)

Continuous Rotation Modifiable Yes
Current Drain (4.8V) 8.8mA/idle and 350mA no load operating
Current Drain (6.0V) 9.1mA/idle and 450mA no load operating

Motor Type 3 Pole Ferrite
Potentiometer Drive Indirect Drive

Bearing Type Dual Ball Bearing
Gear Type 3 Metal Gears and 1 Resin Metal Gear

Connector Wire Length 11.81” (300mm)
Dimensions 1.59” × 0.77”× 1.48” (40.6mm × 19.8mm × 37.8mm)

Weight: 1.94oz. (55.2g)

Table 4. Parameters of motor

10.5 Conclusion

Fabricated in a standard 0.5 µm process, an on-chip sensor for light direction

detection is presented. It is integrated with the comparators used for the signal

processing in a same chip. The chip, a few discrete components, a motor, and a solar

panel are used to implement a self-powered optimal power tracking system. The whole

system is powered by the solar panel. The system was tested under the sunlight. Test

results show the on-chip sensor work well to detect the light direction and the control

circuit can drive the motor to track the strongest light direction sun without any

oscillation. The system was also tested in a lab by a optical power range of 30-110

mW/cm2. In this range the tracking accuracy can be as good as ±1.8 degrees.
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Figure 65. Tracking performance versus light power.
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