
Methods in the Assessment of Genotype-Phenotype Correlations in Rare Childhood Disease 

Through Orthogonal Multi-omics, High-throughput Sequencing Approaches	  
by 

Szabolcs Szelinger 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment  
of the Requirements for the Degree  

Doctor of Philosophy  
 
 
 
 
 
 
 
 
 
 

Approved June 2015 by the 
Graduate Supervisory Committee:  

 
David W. Craig, Co-Chair 
Kenro Kusumi, Co-Chair 
Michael S. Rosenberg 

Matthew J. Huentelman 
Vinodh Narayanan 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
ARIZONA STATE UNIVERSITY 

  
August 2015  



  i 

ABSTRACT  
  

Rapid advancements in genomic technologies have increased our understanding of rare 

human disease. Generation of multiple types of biological data including genetic variation from 

genome or exome, expression from transcriptome, methylation patterns from epigenome, protein 

complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools 

provide comprehensive view into biological mechanisms that impact disease trait and risk. In 

spite of available data types and ability to collect them simultaneously from patients, researchers 

still rely on their independent analysis. Combining information from multiple biological data can 

reduce missing information, increase confidence in single data findings, and provide a more 

complete view of genotype-phenotype correlations. Although rare disease genetics has been 

greatly improved by exome sequencing, a substantial portion of clinical patients remain 

undiagnosed. Multiple frameworks for integrative analysis of genomic and transcriptomic data are 

presented with focus on identifying functional genetic variations in patients with undiagnosed, rare 

childhood conditions. Direct quantitation of X inactivation ratio was developed from genomic and 

transcriptomic data using allele specific expression and segregation analysis to determine 

magnitude and inheritance mode of X inactivation. This approach was applied in two families 

revealing non-random X inactivation in female patients. Expression based analysis of X 

inactivation showed high correlation with standard clinical assay. These findings improved 

understanding of molecular mechanisms underlying X-linked disorders. In addition multivariate 

outlier analysis of gene and exon level data from RNA-seq using Mahalanobis distance, and its 

integration of distance scores with genomic data found genotype-phenotype correlations in 

variant prioritization process in 25 families. Mahalanobis distance scores revealed variants with 

large transcriptional impact in patients. In this dataset, frameshift variants were more likely result 

in outlier expression signatures than other types of functional variants. Integration of outlier 

estimates with genetic variants corroborated previously identified, presumed causal variants and 

highlighted new candidate in previously un-diagnosed case. Integrative genomic approaches in 

easily attainable tissue will facilitate the search for biomarkers that impact disease trait, uncover 



  ii 

pharmacogenomics targets, provide novel insight into molecular underpinnings of un-

characterized conditions, and help improve analytical approaches that use large datasets. 
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PREFACE  
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microarray based technology and whole genome association studies in common diseases 
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faster, cheaper, more informative ways to study human disease. In 2007, TGen stepped into the 

next-generation era of high-throughput sequencing and the author and his group was responsible 

to develop new high-throughput, multiplexed method in next-generation sequencing that allowed 

the implementation of gene focused sequencing studies on large number of patients. In addition 

the author was responsible for the wet lab work and manuscript composition in one of the first 

whole genome sequencing studies at TGen that focused on the identification of causal variant in 

a rare childhood disorder.  
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author. The author conceived Chapter 2 with the guidance from Drs. David Craig, Matt 

Huentelman and Vinodh Narayanan. The author was responsible for conceptual design, wet lab, 
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published as Characterization of X Chromosome Inactivation Using Integrated Analysis of Whole-

Exome and mRNA Sequencing(Szelinger et al. 2014). The author was responsible for all major 

areas of this study including, sample preparation, wet lab, data collection, majority of data 

analysis, and the majority of the manuscript preparation. Drs. David Craig, Matt Huentelman, and 

Vinodh Narayanan helped conceive the conceptual design, Ivana Malenica and Jason 

Corneveaux aided with data analysis concepts and computer programming. 

Chapter 4 is an original work by the author with contribution from multiple individuals. The 

author was responsible for study design, wet lab, data collection, data analysis, and manuscript 

composition. The author received guidance in conceptual design from Dr. David Craig, in data 
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Sample preparation and wet lab support was provided by Ashley Siniard, Rebecca Reiman, Lori 

Cuyugen, and Jon Adkins. Clinical phenotyping and patient related inquires was supported by 
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CHAPTER 1 

CLINICAL DIAGNOSIS OF RARE HUMAN DISEASE IN THE ERA OF NEXT-GENERATION 

SEQUENCING 

Introduction 

There are approximately 7,000 rare diseases, and they are defined by a prevalence of 

less than 200,000 affected for any given rare condition in the United States alone. Although much 

effort has taken place, only in about half of described, rare diseases the molecular etiology of the 

condition has been identified (Boycott et al. 2013). A substantial portion of already described 

disorders are monogenic and associated with rare, pathogenic variants within a single gene 

(Bamshad et al. 2011). Rare variants can run in families and follow Mendelian inheritance such 

as autosomal recessive, autosomal dominant, or X-linked inheritance. Therefore, Mendelian 

inheritance models can provide a basis for the identification of causal variants in disease-

associated genes in rare conditions (Bamshad et al. 2011).  

Historically over the past two decades disease gene identification for a disorder of 

unknown genetic etiology relied on focused, candidate gene sequencing or genome mapping 

strategies. Candidate gene sequencing typically requires a prior knowledge of disease biology, or 

familiarity with suspected disease locus harboring the candidate gene. Due to a continued 

reliance on Sanger sequencing, candidate gene sequencing has and continues to be labor and 

cost intensive, which resulted in a limited number of published studies and limits its future 

potential for gene identification (Thomasson et al. 1991).  

In some cases, mapping strategies have been possible using linkage analysis (including 

homozygosity mapping) to uncover disease-associated loci by tracking co-segregation of genetic 

variants with phenotype. Usually, mapping or linkage approaches require multiple affected 

patients, ideally together with family members. In linkage analysis, the family members, and their 

affected relatives are evaluated for regions defined by genetic markers informative towards 

chromosomal position that may or may not segregate with disease status. The main principle is 

that disease-associated markers are not necessarily causal, but they are inherited together in a 

region that did not recombine during sexual reproduction. Across generations, these regions 
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become smaller and can be powerful when large pedigrees are available. Given a genetic 

interval, candidate gene, Sanger sequencing typically follows linkage mapping to help identify 

causal gene and potential pathogenic mutations. One of the first successful application of 

genome mapping strategy in rare disease was the identification of the gene associated with 

Cystic Fibrosis, cystic fibrosis transmembrane conductance regulator gene (CFTR), using 

restriction fragment length polymorphism (RFLP) in combination with Sanger sequencing (Kerem 

et al. 1989).  

More recently homozygosity mapping utilized microarray technology to find loss-of-

heterozygosity (LOH) regions for recessive traits or structural variations indicative of deletions. In 

mapping of LOH, this approach takes advantage of multiple affected individuals within a founder 

population to identify regions of homozygosity that overlap among the patients. As is the case 

with linkage studies, LOH analysis is followed up by Sanger sequencing across the minimal 

region to identify potentially pathogenic variants (Chiang et al. 2006). Similarly, the quantitative 

nature of these arrays can lead to identification of the genetic basis of disease by mapping 

deletions within individuals with a common phenotype (Craig et al. 2008). 

However, candidate gene, gene mapping, and microarray studies provide information on 

a limited scale when compared to the complexity of the whole genome or all of the coding regions 

of the genome. In addition, they are usually resource intensive, low-throughput with substantial 

costs. In gene mapping the region of interest may be substantially large due to small number of 

available pedigrees in very rare conditions. Therefore, further reduction to single, disease-

associated locus requires multiple mapping steps and additional families, which may be 

unattainable in very rare diseases and in heterogeneous conditions. Locus heterogeneity, multi-

genic causes, can also result in false discovery. Thus, these studies are most informative in 

highly distinct diseases where a single gene with high penetrance is predicted as causal.  

The emergence of high-throughput, next-generation sequencing methods, approximately 

2007-2010, combined with the additional ability to capture DNA or partition DNA at defined 

regions opened up exhaustive single step approaches instead of the two step process of map to 

candidates and sequence candidates through Sanger sequencing. To date, whole genome 
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sequencing (WGS), and whole exome sequencing (WES) have had a remarkable impact on the 

clinical diagnosis of rare, Mendelian disorders that have only been impeded by the ability to 

identify the one or two causal genetic variants from the 3 to 4 million of genetic variants 

differentiating any two individuals. Sequencing the entire genome of a patient by WGS allows for 

a global view of all genetic variations including single nucleotide polymorphisms (SNP), short 

insertions and deletions (indel), translocations, large chromosomal rearrangements, and copy 

number variations (Gilissen et al. 2014). A number of clinical WGS studies have successfully 

applied the comprehensive sequencing approach in the identification of causal alleles in single 

patient studies where disease gene identification was confounded by heterogeneous phenotype 

(Lupski et al. 2010; Bainbridge et al. 2011; Welch et al. 2011).  Conversely, sequencing the high 

impact, protein-coding regions of the genome by WES helped expedite genetic diagnosis in a 

number of single-gene Mendelian diseases with simple inheritance patterns and well defined 

phenotype (S. B. Ng et al. 2009; Bamshad et al. 2011; S. B. Ng et al. 2010). WES focuses 

sequencing resources to approximately 1% of the genome by targeting genetic variations in 

coding or exonic regions for about 20,000 protein coding genes.  

As a result, in a short period of time, discovery of new clinically actionable variations 

causing disease, or genetic diagnosis by WGS and WES shows a tremendous potential to impact 

the ability to diagnose, treat, and manage care for rare childhood disorders. The reduced costs, 

fast turnaround time, and availability of a range of exome targeting assays make WES an 

intriguing tool for identifying the genetic basis of disorders with unknown genetic etiology. 

However, WES still yields tens of thousands of variants, of which many variants remain plausible 

candidate causal variants, as their impact on gene function is not ascertained by WES or WGS. 

Thus, improvements in interpretation of genetic variants to their functional impact can further 

reduce the number of candidate variants and identify those that have greatest impact on gene 

function. 

Currently, in silico predictions of a variant’s functional impact are based on how the 

variant is predicted to alter transcription and translation of the DNA sequence. The first step in the 

generation of protein product from the genetic code defining a gene is the creation of intermediary 
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RNA copy of the gene. This messenger RNA (mRNA) goes through transcriptional modification 

that removes intronic sequences and leaves only exonic and un-translated regions (UTR). 

Genetic variants can influence how introns are spliced out, which exons are included in what 

combination. This can result in multiple mRNA species, or transcripts that can be translated into 

protein products with divergent properties. Functional predictions utilize this information to classify 

genetic variants into functional classes based on how they impact the mRNA transcript. The most 

common functional classes are loss-of-function, missense, or synonymous (McCarthy et al. 

2014). Loss-of-function variants can subject a transcript to nonsense-mediated decay or loss-of-

function of the translated protein. SNP and indel variants can cause a frameshift in the open 

reading frame of the mRNA sequence during translation and can result in altered amino acid 

sequence, thus categorized as frameshift variants. In addition frameshift variants can be further 

classified as stop-gain, stop-loss and splice donor and splice acceptor variants. Missense 

variants result in the change in the mRNA codon sequence, and consequently the amino acid 

they code for. Synonymous SNPs or indels do not change the amino acid sequence and 

assumed silent to function. Previously, population scale sequencing predicted that 95% of rare 

protein coding variants with a population frequency of <1% may have a functional impact and an 

individual may carry up to 500 rare functional variants (Tennessen et al. 2012). However, not all 

functional variants are disease causing, thus additional information is necessary to associate a 

variant’s predicated impact to phenotype and further reduce plausible candidates. 

To further narrow to the most plausible candidate variants a variety of additional filters 

are applied during standard WES studies that include predictions about the variants’ 

pathogenicity, their observed frequency in the general population, presumed inheritance of the 

condition, and available clinical information about the patient (Gilissen et al. 2012) (Figure 1). 

However, even after best practice, a few hundred candidate variants may still remain as 

potentially causal for any disease, thus variant prioritization approaches can greatly impact 

genetic diagnosis (Richards et al. 2015).  
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Figure 1. Variant Prioritization in clinical sequencing studies. This figure shows standard workflow 
in a clinical sequencing study. It starts by data generation and alignment to a reference genome 
the millions of sequenced reads. This is followed by variant identification and variant annotation. 
Annotation is performed to understand the variant’s properties in terms of evolutionary 
conservation, population frequency, clinical and disease relevance, gene function, etc. On this 
figure under “Variant Annotation” the various acronyms refer to databases that contain 
information about variant properties. Post annotation, variants are filtered based on quality and 
based on genomic position to select the most informative variants, like coding variants. This step 
is followed by variant prioritization, which is a multi-tiered data reduction process utilizing accrued 
information about the likelihood of the variant to be pathogenic and its potential association with 
observed phenotype. Candidates are further evaluated by a board of clinical staff until consensus 
is found based on the combined evidence. The selected variant is validated and reported. 
Reports can be focused, or expanded, that provides information only on the most likely 
pathogenic variant, or provides additional variants that are incidental or with unknown 
significance. 
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 As described in Figure 1, variant prioritization is a multi-tiered approach and in the 

following we will describe the most common information used to reduce plausible candidates and 

the approaches that utilize them. 

One of the cornerstones of variant prioritization is the assumption made about the 

inheritance of the patient’s disease. This information is then utilized as a filter mechanism to 

eliminate those genomic variants from candidate list that do not adhere to assumed inheritance 

model. Inheritance based reduction of variants can be used in single patient, in most Mendelian 

disorders, the inclusion of genotype data from multiple affected individuals or from family 

members can greatly expedite candidate variant reduction. For diseases that are expected to 

follow autosomal dominant inheritance, a number of affected patients with overlapping phenotype 

are usually needed; ideally with parents that are unaffected in order to identify heterozygous, and 

often de novo, variants (S. B. Ng et al. 2009). In disorders that are expected to follow autosomal 

recessive inheritance, biological parents needed  to find homozygous or compound heterozygous 

variants (Becker et al. 2011). In cases, where causality may be due to de novo mutation, 

sequencing the family trio may be sufficient in some cases (Vissers et al. 2010). In families where 

consanguinity is suspected, homozygosity mapping in a single patient may be sufficient to identify 

a homozygous causal variant although family segregation in family trio WES data can provide 

additional support (Bilguvar et al. 2010).  

The most widely used strategy to prioritize variants in rare disease sequencing studies is 

based on family inheritance by sequencing the patients and their biological parents or family trio 

(Farwell et al. 2014). Parents being the first order relatives of patients, nearly all of the identified 

genetic variants will be present in the parents, and application of Mendelian inheritance patterns, 

de novo filtering, and clinical phenotyping can reduce a substantial portion of genetic variants 

suspected to be associated with the patient’s condition. The power of family based sequencing 

can be seen in 30% success rate in diseases where well characterized, phenotypically 

homogeneous group of patients are difficult to obtain (Farwell et al. 2014). Interestingly, recent 

clinical studies of hundreds of singleton patients achieved an approximately equal 25% diagnostic 

yield irrespective of variant prioritization or patient selection strategy. This suggests limited utility 
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of WES alone in clinical diagnosis highlighting the need for novel approaches to improve 

diagnostic rate (Y. Yang et al. 2013; Y. Yang et al. 2014). As new publications emerge, revisiting 

cases can yield a diagnosis, suggesting that in many cases the causal variant does lie within the 

primary few hundred candidate variants and can be better captured by alternative filtering 

strategies. 

Variant annotations can provide further evidence for or against a variant’s causality. After 

sequencing and data processing, high quality variants are annotated with population frequency, in 

silico prediction for pathogenicity, variant type, predicted impact of variant to protein structure and 

function, and biochemical properties (Gargis et al. 2015). Population frequency information is 

usually obtained from large databases of thousands of sequenced from the 1000 Genomes 

Project (Consortium et al. 2012), or Exome Aggregate Consortium (Exome Aggregation 

Consortium). Annotations for pathogenicity, biochemical properties can be obtained from 

aggregate tools like dbNSFP (X. Liu, Jian, and Boerwinkle 2013). dbNSFP is a variant-level 

collection of predictions from a wide range of in silico tools (e.g. SIFT, MutationTaster, CADD, 

PolyPhen, etc.) in a single tabulated format across millions of variant loci. There are multiple 

variant effect predictors that annotate variants for variant type and their impact on protein function 

(eg. missense, non-sense, silent) including SnpEff, ANNOVAR, Variant Effect Predictor, VAAST 

(Cingolani et al. 2012; K. Wang, Li, and Hakonarson 2010; McLaren et al. 2010; Hu et al. 2013). 

Annotations are often enhanced by medical information obtained from genome-wide clinical 

databases that contain genotype-phenotype descriptions like ClinVar (Landrum et al. 2014), or 

information about known disease causing genes, or variants and their associated conditions from 

OMIM (OMIM), CGD (Solomon, Nguyen, and Bear 2013), and HGMD (Stenson et al. 2003). 

There are two main approaches to prioritization that utilize clinical information, variant 

predictions based on annotation and inheritance models; a probabilistic model, and a heuristic 

model. Heuristic model is based on some assumptions (e.g. variant is rare and deleterious to 

protein function) that guide variant filtration process. In general, it starts by filtering out known 

variants, commonly from dbSNP, making up about 90-95% of candidates. For rare diseases, 

variants are further filtered by applying a population allele frequency cutoff of 1% (M. X. Li et al. 
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2012). This is usually followed by further reduction by filtering variants that may be present in in-

house sequenced cohort. The remaining 100-500 private variants are then evaluated for 

pathogenicity using in silico prediction algorithms for deleteriousness to protein function (obtained 

from the variant annotations). Application of inheritance models and genotype segregation are 

also part of heuristic models, however, they can be applied at various steps of prioritization 

depending on researcher and assumptions made about the patient’s clinical information. 

Probabilistic models assess sequence variants for their likelihood to be associated with disease 

when variants from affected patients are compared to variants obtained from control genomes 

(Hu et al. 2013). Filtering variants for inheritance, population frequency, or predictions for 

functional impact prior to comparative analysis can extend this model. In some cases heuristic 

and probabilistic models are combined to obtain higher confidence candidate lists (Coonrod et al. 

2013). 

 Still, there are several factors that may impede diagnosis and yielding the approximately 

30% rate for identification of the genetic basis of disease. Technological difficulties related to 

sequencing can impact diagnostic yield, for example. With the advent of Sanger sequencing, it 

became known that genomic complexity of an organism greatly influences the sequence 

coverage that can be achieved, and extreme GC or AT rich genomes are hard to sequence to 

even coverage (Ajay et al. 2011; Lam et al. 2011). This GC bias mainly manifests itself with 

coverage gaps. GC content bias in Mendelian disease discovery is especially problematic, 

because most causal variations lie in the protein coding regions of the genome which are known 

to have higher GC content than surrounding inter-genic regions, especially in first exons (Lander 

et al. 2001; Majewski 2002). Both WES and WGS are prone to coverage bias which can impact 

variant discovery and produce false negatives in clinical diagnosis (Ross et al. 2013). WES is 

also poorly powered to study copy-number variations, triplicate expansions, and large insertions 

deletions that may overlap exon-intron boundaries or those that are situated in non-coding, 

regulatory regions. There are a number of target enrichment assays available for WES each of 

which has its own advantage or disadvantage in terms of completeness of targeted genomic 

regions, capture efficiency, design strategy for exon-intron boundaries, and accuracy for SNP and 
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indel detection (Meienberg et al. 2015; Chilamakuri et al. 2014). The non-uniform performance of 

these exome assays is a critical consideration prior in a WES study design.  

In addition to technological challenges variant prioritization approach and available 

annotations can greatly impact diagnostic yield. Filtering out known variants may remove true 

causal mutations, as dbSNP contains rare, disease causing variants. The choice between 

autosomal recessive or dominant inheritance models can be influenced by the accuracy of clinical 

phenotyping. In addition, the annotation tool used can impact our interpretation of a variant’s 

predicted pathogenicity. These factors can result in the exclusion of potentially deleterious 

variants. Alas, there are many types of annotations are available, and variant prediction 

approaches differ between laboratories and in many times between exome sequencing projects 

within the same laboratory. This may confound disease gene identification for patients with similar 

clinical symptoms studied at different times. In addition, continually updated annotations warrant 

the continued re-analysis of previously studied exomes, and may alter previously obtained 

results. Effort is taken by multiple groups to standardize analytical processes associated with 

clinical exome sequencing to provide a best-practices framework that aims to maximize the utility 

of current scientific knowledge to improve diagnostic yield (Gargis et al. 2015). 

In addition to best-practice models there is a community effort by American College of 

Medical Genetics (ACMG) underway to standardize interpretation techniques for WES (Richards 

et al. 2015). One of the main confounding factors of variant interpretations for diagnosis is our 

ability to define a variant as pathogenic, which is mostly based on in silico predictions and 

available annotations as described above. As noted, there are a multitude of tools available to 

predict a variant’s likelihood to impact gene function and thus impacting its rank on the ranked 

candidate variant lists. However, a systematic evaluation of prediction algorithms has shown that 

the concordance between prediction tools is approximately 60-65% and is dependent on the data 

source that the algorithm is trained on (eq. Ensembl, RefSeq) (McCarthy et al. 2014). This can 

result in discordant classification of a candidate variant in terms of pathogenicity and predicted 

functional impact. Since variant prioritization assumes that most likely pathogenic candidates will 

have a large functional impact on gene function, incorrect predictions can result in the enrichment 
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of false positive variants among the top ranked candidates. Thus ACMG recommendations aim to 

standardize nomenclature to describe variants identified as potentially causal as “pathogenic,” 

“likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”. It also suggests the 

combination of multiple annotation tools prior interpretation to improve confidence. Finally, the 

ACMG group acknowledges that functional studies using RNA sequencing (RNA-seq) or protein-

based assays can greatly support variant predictions to gene function obtained through 

computational methods. Ideally, these assays would be most informative and provide stronger 

evidence if performed in patient derived tissue (Richards et al. 2015). 

Our understanding of the genetic basis of disease-associated traits has greatly improved 

with the advent of high-throughput “omics” methods (Figure 2). We are now able to routinely 

generate comprehensive data from multiple biological systems including, genome, epigenome, 

transcriptome, proteome, and metabolome, with methods collectively referred to as “omics”. In 

addition to studying genetic variations by WGS or WES, researchers have been working on 

analytical methods to study the comprehensive expression profile of genes by Transcriptome 

sequencing, the regulation of gene expression by Chip-seq or Methylation sequencing, the 

diversity and structure of proteins and metabolites by Mass-spectrometry. These “omics” methods 

have been successfully applied to various tissues including whole blood, and recently garnered 

attention in single cell studies (Shapiro, Biezuner, and Linnarsson 2013). Historically, 

measurements from each type of omics analysis have been analyzed individually to look for 

associations between the biological system studied and the phenotype observed and to find 

predictor markers in the biological system studied to the observed phenotype. The study of 

individual biological systems allowed us to uncover pieces of the puzzle, but as described above 

in the diagnostic yield of WES studies, studying single biological systems can explain only in part 

the genetic etiology of human disease. Therefore additional information is necessary from other 

biological systems to gather evidence for causality of genetic variants in disease diagnosis.  

Recently systems biology approaches have been developed that integrate multiple 

“omics” data types (Ritchie et al. 2015). Combination of multiple data can reduce unreliable data, 

improve confidence, and gather additional evidence that may reduce false positive findings from 
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single source. In addition the complete biological background of disease-associated traits can 

only be deciphered by connecting the cause-and-effect relationships when considering all 

biological systems simultaneously.  

 

Figure 2. Multi-omics for the study of biological systems. This plot shows biological systems, 
genome, epigenome, transcriptome, proteome and metabolome as they related to each other and 
the various “omics” tools that enable us to study them (i.e. Exome-sequencing, Chip-seq, mRNA-
seq, mass-spectrometry, liquid chromatography or LC). For each biological system on the right 
face of the pyramid, the various features are listed that the “omics” tools are able to interrogate 
(i.e. SNPs, histone modifications, small RNA, post-translational modification, metabolites). Arrows 
on the left indicate the flow of genetic information from the genome level to the final manifestation 
in the phenotype on top.  

 

There are two main integration approaches: multi-staged analysis, which involves 

integrating information using a stepwise, hierarchical analysis approach, and meta-dimensional 

analysis, which refers to the concept of integrating multiple different data types into a multivariate 

model associated with given outcome (Ritchie et al. 2015).  

Multi-stage approach divides analysis into steps with an initial association test between 

data types followed by association analysis of the combined data with phenotype. Many times, 

multi-staged integration studies use two types of data; genomic and transcriptomic (Huang et al. 
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2007; Lappalainen et al. 2014). Integration starts by reducing genomic data to those variants that 

are associated with observed phenotype based on association analysis or in silico predictions 

about the deleteriousness of the variants, and additional criteria about population frequency and 

inheritance. This reduced genomic variant list is then associated with other data types, to find 

those variants that are associated with transcription or epigenetic modifications, for example. This 

step can identify variants that are expression quantitative trait loci (eQTL), predictors for 

nonsense-mediated decay, alternative splicing, associated with DNA methylation metabolite, 

protein, miRNA levels, depending on the data type used. This step is followed by an additional 

step that performs either an association test of the combined data with the phenotype of interest 

or further filters genetic variants based on the variant’s functional effect. This approach has been 

applied in the identification of eQTLs that are associated with drug response (Huang et al. 2007). 

In Autism Spectrum Disorder (ASD), integration of genomic and transcriptomic data from whole 

blood sequencing was able to identify potentially causal variants in monogenic forms of ASD that 

were missed by WES alone (Codina-Solà et al. 2015). In population scale integrative studies, 

utilizing heterozygous alleles from genomic data and their impact on transcript expression (i.e. 

allele-specific expression) have identified common genomic variations that are eQTLs 

(Lappalainen et al. 2014). 

Meta-dimensional analysis takes an approach where multiple data-types are combined 

and analyzed simultaneously. This approach essentially combines data matrices from as many 

data types as possible into a single matrix. The combined data matrix is then used for multiple 

analytical approaches for association testing with outcome that include Bayesian modeling by 

Fridley et al. (2012), to Cox regression by Mankoo et al. (2011). This approach has been used to 

develop comprehensive analytical tool, ATHENA, that incorporates, copy-number variation, 

methylation, miRNA, and gene expression to study association with complex traits in cancer 

(Holzinger et al. 2014). The advantage of this approach is that it allows the study of interaction 

between the data types simultaneously that may be missed in a step-wise process. However, the 

combination of data types that was analyzed by different methods and may be at different scale 
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can be challenging for integrations into a single matrix and may require data transformation that 

can reduce correlation between the data types. 

Currently, most integration approaches have been trained on common disorders, like 

cancers and cardiovascular disease, with a relatively large number of affected and non-affected 

control populations. This allows for building models that can perform association analysis for 

expected outcome. However, in rare disease, many time only a few affected patients available, 

and phenotype is not well characterized, thus integrative association test would lack power. 

As an alternative, in this dissertation we set out to develop an integrative approach 

whereby simultaneous analysis of next-generation sequencing data obtained from whole blood 

DNA and RNA of patients with rare childhood disorders will provide information on the functional 

impact of rare, coding variants, and enable us to rank them based on their functional impact. In 

many cases, it is easy to acquire RNA from tissues of childhood patients enrolling into a clinical 

sequencing study, particularly whole blood or even skin fibroblast, recognizing that many 

metabolic disorders are transcriptionally active in multiple tissues. Rare variants associated with 

dysregulation of gene expression at the RNA level is consistent, though does not prove, that the 

variant has a functional role, and could be prioritized differently with respect to other private 

variants with completely unknown functional impact. Thus integration of data from multiple 

biological systems in the same patient can improve standard variant prioritization procedures and 

unmask variants whose functional impact is not well supported by DNA sequencing alone. We 

hope that integration will improve our understanding of the functional impact rare variants have on 

cellular phenotype and disease trait that may be clinically actionable, will unveil molecular targets 

for pharmacogenomics, and will improve patient specific care.  
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CHAPTER 2 

SHARED DE NOVO MUTATION IN THE WD REPEAT DOMAIN 45 PROTEIN IN A SIBLING 

PAIR WITH BETA-PROPELLER PROTEIN-ASSOCIATED NEURODEGENERATION 

Introduction 

 In this chapter we set out to take advantage of the wide spectrum of genomic and 

functional information we can obtain from simultaneous sequencing of DNA and RNA in a sibling 

pair diagnosed with a rare, X-linked, neurological disorder that was previously only reported in 

sporadic, singleton cases. In addition this study hopes to identify the underlying molecular 

mechanisms leading to a more severe, lethal phenotype in the male sibling and a less severe 

manifestation in the female sibling. Our approach to study an X-linked disorder in the context of 

integrative DNA and RNA sequencing has only recently was reported and is described in Chapter 

3 (Szelinger et al. 2014). 

Beta-propeller protein-associated neurodegeneration (BPAN) is a newly recognized member 

of the neurodegeneration with brain iron accumulation (NBIA) group of disorders (MIM:300894). 

The disorder is also known as static encephalopathy and neurodegeneration in adulthood 

(SENDA). BPAN is characterized by developmental delay and intellectual disability in early 

childhood, followed by neurodegeneration, and characteristic MRI findings of hypointensity on T2-

images in the globus pallidus and substantia nigra (Haack et al. 2012). Clinical symptoms 

deteriorate after adolescence with progressive loss of psychomotor skill, rigidity, and reduction or 

complete lack of language skills (Haack et al. 2013). Key hallmark of adult BPAN is dystonia, 

Parkinsonism, and dementia. A subset of patients show Rett-like symptoms, ocular defects, and 

gastrointestinal dysfunction (Hayflick et al. 2013). Most of the diagnosed are sporadic, singleton 

cases with a wide ethnic spectrum. Mutations in WDR45, a member of the WD40 repeat domain 

genes, are known to cause BPAN (Pagon et al. 1993). Patients reported to date are 

predominantly females, carrying de novo, heterozygous single nucleotide variants or small indels 

consistent with an X-linked de novo dominant model (Haack et al. 2012; Hayflick et al. 2013; 

Ozawa et al. 2014; Okamoto et al. 2014). There is a substantial overlap in clinical manifestation 

of BPAN between males and females, which suggest the role of post-zygotic mutations, and 
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chromosomal aberrations (Haack et al. 2012). Phenotypic variability has also been suggested by 

existence of skewed X chromosome inactivation in the germline DNA of some cases (Saitsu et al. 

2013; Haack et al. 2012). X chromosome inactivation (XCI) is a process by which one of the two 

X chromosomes inherited from parents are silenced by epigenetic mechanisms during early 

female embryonic development (Augui, Nora, and Heard 2011). Consequently, in each progeny 

of the cell the same X chromosome will be active leading to a mosaic pattern of X-linked gene 

expression; in a portion of cells the maternally inherited X is active, and in others the paternal X is 

active. Lyon proposed that inactivation occurs randomly in females and therefore the overall 

expression of X-linked genes results in an approximate equal proportion (Lyon 1961). Any 

deviation from this ratio results in skewedness in favor of one of the parental X and in extreme 

cases result in complete silencing of one of the X chromosomes. Skewed XCI can mediate 

phenotypic variability in X-linked diseases (J. I. Young and Zoghbi 2004). 

DNA methylation status is standard assay (HUMARA) to assess the X inactivation ratio of the 

two chromosomes and relies on the methylation status of a polymorphic triplicate expansion in 

the human androgen receptor (AR) gene. Most females are polymorphic of this repeat and the 

two chromosomes can be distinguished (Amos-Landgraf et al. 2006). The methylation status of a 

restriction site in the proximity of the repeat is associated with X inactivation status, and 

enzymatic digest of the un-methylated restriction site (active X, Xa) followed by PCR amplification 

will lead to amplification of the methylated (inactive X, Xi) AR locus. On the other hand, the un-

methylated, active allele will be cut by the restriction enzyme and no amplicon will be generated 

(Allen et al. 1992). Capillary analysis of the amplicon peaks correlates with PCR yield of the 

active and inactive alleles and their normalized ratios give the XCI ratio.  

The contribution of X inactivation to the phenotypic heterogeneity among patients with X-

linked disorders can be best studied by comprehensive genomics methods that reduce the need 

for multitude of molecular tests, and helps in the identification causal genes, and provides a 

unique view of biological processes contributing to phenotype. We performed family-based WES 

and RNA-seq analysis of the sibling pair and their unaffected parents. The male sibling presented 

with a more severe phenotype and expired by the time of this study. The female sibling presented 



  16 

a less severe phenotype consistent with some Rett-like symptoms. Exome sequencing identified 

a de novo, missense variant in WDR45 that was shared by both siblings. RNA-seq analysis 

showed nominally significant differential regulation of WDR45 between the siblings and parents. 

We used allelic expression to directly quantify X-linked, heterozygous SNP allele and combined 

with genotype segregation we found an extreme, non-random XCI in the female patient in favor of 

the maternal X. The de novo mutation showed allele specific expression concordant with the 

biased expression of the maternal X chromosome suggesting that the WDR45 mutant allele 

originated on the maternal X and implicated XCI in phenotypic heterogeneity between the 

siblings. Comparison of RNA-seq data to methylation assay showed high correlation. This is the 

first study of a sibling pair sharing a de novo dominant, X-linked, WDR45 mutation in BPAN.  

 

Materials and Methods 

Exome Sequencing. 

Sequencing and data analysis methods are described in Chapter 4. Materials and Methods. 

RNA-seq 

Sequencing and data processing methods are described in Chapter 4. of Materials and Methods. 

Fragments Per Kilobase Of Exon Per Million Fragments Mapped (FPKMs) were calculated using 

Cufflinks2.2.1 and plots were generated using GGplot2 (R v3.1.3) (Trapnell et al. 2013). We 

performed differential expression analysis between parents and patients using Cuffdiff2 in the 

Cufflinks package. We only retained WDR45 and those genes for analysis that were shown to 

interact with WDR45 from public interaction database BioGRID 3.3 (BioGRID). 

XCI with HUMARA analysis 

Females were enrolled from 29 families from the Dorrance Center for Rare Childhood Disorders 

including affected female patients, and if available their mothers, female siblings regardless of 

affected status, and female grandparents. The enrolled families are listed in Table 14, in Chapter 

4. We obtained DNA and total RNA for a total of 48 participants, 5 of which had already been 

evaluated for XCI and described in Chapter 3. These 48 participants included 10 female patients 

diagnosed with Aicardi Syndrome, previously described by Schrauwen et al. (2015). Genomic 
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DNA from each participant was sent for HUMARA test to Greenwood Genetic Center 

(Greenwood, SC) and RNA-seq was performed as described in Chapter 4 Materials and 

Methods.  

After WES and RNA-seq, the estimation of XCI ratio was performed as described in 

Szelinger et al. (2014) and also in Chapter 3. Briefly, in family trios, and large families, the SNP 

variants were phased for affected patient or sibling if paternal and maternal genotypes were 

available. Maternal and grandmother genotypes were not phased. Next, heterozygous genotypes 

were selected from the X chromosomes and pileup was created from RNA-seq data to count the 

number of reads mapping to each heterozygous allele. The allele counts were used to obtain 

allele ratio for each heterozygous locus. The allele ratio was defined as the read count of the SNP 

allele over the sum of counts for SNP and reference alleles. The distribution of allelic ratios 

across X was fitted to the beta distribution and the mean of the allele ratio distributions were used 

as XCI ratio. These un-scaled ratios were then scaled to 100 scale. Scaling was performed by 

taking the ratio of 100 and the cumulative value of the ratios of the 2 chromosomes for each 

patient. This difference factor was then multiplied by the un-scaled ratios of each X 

chromosome’s allelic ratios to obtain the scaled XCI ratio. Complete skewing of XCI was defined 

as a ratio of <2:98/>98:2, extreme skewing was <10:90/>90:10, moderately skewed as 

<20:80/>80:20, and random XCI as >20:80/<80:20. 

To estimate the distribution of the XCI ratios in our cohort the XCI ratios were binned 

based on the more dominant alleles for the RNA-seq experiment and from the inactive allele from 

the HUMARA assay. The bins were defined as 50-60, 60-70, 70-80, 80-90, and 90-100. XCI ratio 

of 59:34 is binned into the 50-60 category and a ratio of 81:18 is binned into the 80-90 category, 

respectively.  

Calculation of statistical significance and Spearman’s rank correlation was performed by 

the cor.test function in the R statistical package and visualized by GGplot2 (R v3.0.3). 
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Results 

Clinical Description 

We present a family with two siblings affected with BPAN enrolled into the Dorrance 

Center for Rare Childhood Disorders under a human research protocol approved by WIRB (Table 

1). The family id for this family is 0103 (Chapter 4, Table 13). 

The older sibling (Patient 0103_1) is a male who expired at age 18. He was born 4 weeks 

early, 4 lb. 15 oz., without complications. He rolled over front to back, and was able to sit with 

support; but was noted to be delayed by 6 months of age. MRI at 10 months suggested a white 

matter process. He developed infantile spasms and myoclonic seizures at 1 year, and was 

treated with vigabatrin and adrenocorticotrophic hormone (ACTH). He regressed. He has had 

intractable epilepsy since then, with continued daily seizures including myoclonic seizures, staring 

spells, and tonic seizures with apnea. At age 2, he has hypotonic, but with hyperreflexia, clonus 

and up going toes. By age 5, physical findings were of spastic quadriplegia, hypertonia, with 

cortical thumb posture. With time, he had progressive spastic quadriplegia with contractures, 

progressive scoliosis, cortical visual impairment and bilateral sensorineural hearing loss. 

Longitudal Magnetic Resonance Imaging showed cerebral and cerebellar atrophy, white matter 

volume loss, T2 and GRE hypointensity in the globus pallidus (GP) and substantia nigra (SN). 

This female child (Patient 0103_2) is now 14 years old. Birth history was unremarkable, 

with a birth weight of 7 lb. 9 oz. She rolled over at 5 months, and was able to sit if propped up. 

Delayed development was noted early, and was seen by neurologist at 17 months. She was 

hypotonic; unable to sit with support, had poor visual fixation and tracking, and poor hand use. 

Seizures, consisting of tonic stiffening, appeared at around age 2 years, and have persisted. 

Seizures have been better controlled than her brothers. She made slow progress in her 

development but remains in a wheelchair most of the time. She is able to walk with assistance, 

hold a cup, throw toys, and tries to communicate. Features noted at multiple examinations include 

poor eye contact, bruxism, hand clasping, truncal hypotonia, peripheral hypertonia with 

hyperreflexia, features that are suggestive of Rett syndrome. MRI scans have suggested white 

matter volume loss, hypointensity in the GP and SN similarly to brother’s MRI. 
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Table 1. 

Clinical features of the patients with BPAN. 

 0103_1 (P1) 0103_2 (P2) 
General Characteristics 

Age (y) 18 14 
Gender Male Female 

Neuropsychiatric Symptoms 
Intellectual Disability Severe Moderate 

Developmental 

Delay 

+ (6 mo) + (<1y) 
Behavioral Problems + + 

Cognitive 

Dysfunction 

Progressive  Non-progressive 
Psychopathology  Rett-like symptoms 

Neurological Symptoms 
Current Status Expired Wheelchair/short assisted 

walks 
Communication - Few words 

Seizures present + (1y) + (2y) 
Visual Impairment +  + 

Dystonia + + 
Seizures Epileptic, myoclonic, tonic tonic 

Muscle function Spastic quadriplegia, contractures Hand clasping, hypotonia 

Radiology features 

MRI 
hypointensity in globus pallidus, 

substantia nigra 

hypointensity in globus 

pallidus, substantia nigra 
Cerebral atrophy + n.a. 

Genetic tests 

Karyotype 46 XY Karyotype 46 XX 

Fluorescence in situ hybridization Chromosomal microarray 

FragileX, mtDNA point mutation 

screen, MeCP2 sequencing, Leber 

hereditary optic neuropathy gene 

test 

MeCP2 sequencing, 

neuronal ceroid-

lipofuscinoses, CLN3, 

CLN6 gene test 

Molecular testing 

Very long chain fatty acids Plasma amino acids 

Lysosomal enzymatology Urine organic acids 

Electron microscopy for leukocytes Plasma lactate, pyruvate 

Neuronal Ceroid-Lipofuscinoses 

enzymatology 

Acylcarnitine profile 
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Exome analysis. 

An average of 13.9 Gb of mappable bases were sequenced for average target coverage 

of 103X, and greater than 85% of the target regions were covered by at least 30X. Please refer to 

Appendix B  for QC metrics of  exome sequencing. 

Variant analysis identified 642,202 SNVs and short indels in the family. To identify the 

causal variant we annotated 16,126 missense, nonsense and short indel variants. BPAN is 

primarily a sporadic disease with singleton cases, and this family has two affected, thus we 

focused our attention on autosomal recessive and de novo variants. Due to the severe, well-

characterized phenotype, we also postulated that X-linked variants may contribute to disease 

therefore we also evaluated variants on the X chromosome. In both affected children 140 

autozygous, 27 compound heterozygous, and 17 X-linked candidate variants were identified. In 

addition de novo variants in the male child (n=57), female child (n=42), and in both children 

(n=25) were uncovered. Evaluation of the candidate variants for pathogenicity, led to the 

identification of a de novo missense variant in WDR45 shared by the siblings (Table 2). The male 

sibling was hemizygous and the female sibling was heterozygous for the mutant allele. This 

variant was found in exon 10 (NM_007075.3, c.758T>C, p.Leu253Pro), and both parents carried 

a homozygous wild type genotype (Figure 3B). The average exome sequencing depth of the 

locus across the family members was 105 ± 33X above base quality cutoff of 10 (phred scaled). 

This mutation was not observed in the Exome Aggregate Consortium’s over sixty thousand 

unrelated exomes (Exome Aggregate Consortium) and had a moderate conservation score of 1.5 

by phyloP, and was conserved across multiple vertebrates (Figure 3C).  

Previously, Verhoeven at al reported a wheelchair bound, adult female with severe 

intellectual disability diagnosed with BPAN carrying an in-frame deletion at c.752-74del six bases 

upstream from the variant identified in the male and female siblings (Verhoeven et al. 2014). 

Overlap between the phenotypic manifestations between the siblings and reported case supports 

this variant as likely causal. WDR45 is a repeat domain protein and amino acid changes in the 

repeat domains structure through missense variants can interfere with protein folding and 

function.  
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Table 2. 

Candidate variants by whole-exome sequencing. 

chr:pos Gene Model cDNA aa 

Variant 

type 

MAF NHLBI 

(EA/AA/All) 

MAF      

1,000 

Genom

e 

phyloP SIFT 

12:53343231 KRT18 de 

novo 

c.274G>C p.Ala92Pro missense NA NA 2.43 0 

X:48933095 WDR45 de 

novo 

c.758T>C p.Leu263Pro missense NA NA 1.51 0 

15:40648398 PHGR1 AR c.215G>A p.Gly48Asp missense NA NA 2.29 0 

4:10502936 
CLNK AR 

c.1084C>

T 

p.Arg362Cys missense NA 0.2 2.52 0 

4:10586571 c.92C>T p.Pro31Leu missense 6.2/1.2/4.5 3.0 1.36 0 

chr10:1697959

3 
CUBN AR 

c.5924C>

T 

p.Pro1975Le

u 

missense 1.1/0.1/0.7 1.4 0.03 0.01 

chr10:1693249

0 

c.8635C>

A 

p.Leu2879Ile missense 3.7/0.5/2.7 0.9 2.59 0.27 

chr15:5252795

1 
MYO5C    AR 

c.2878A>

G 

p.Lys960Glu missense 2.1/0.5/1.6 1.6 0.96 1 

chr15:5254361

5 

c.1634C>

A 

p.Ser545Tyr missense 1.5/0.3/1.1 0.6 2.87 0.08 

4:43256191 
UBR1 AR  

c.4642A>

G 

p.Thr1548Al

a 

missense 7.4/1.7/5.4 3.3 0.96 1 

4:43317071 c.2695A>

G 

p.Ile899Val missense 3.0/0.5/2.2 1.0 2.87 0.08 

chrX:12905546

4 

UTP14

A 

X 

linked 

c.1249G>

A 

p.Glu417Lys missense 0.05/0.0/0.0

3 

NA 2.49 0.54 

Model = Inheritance, AR = autosomal recessive, MAF= minor allele frequency, NHLBI= NHLBI Exome Sequencing project 
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Figure 3. WDR45 variant allele. A. Family pedigree, F=father, M=mother, P1=affected male, 
P2=affected female. B. Sequencing traces obtained from Exome Sequencing (a) and mRNA 
sequencing (b) of c.758C>T nucleotide variant in WDR45 for each individual. Variant allele is 
boxed across the traces. C. Amino acid conservation of WDR45 variant allele across vertebrates.  
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We sequenced an average of 73.4 million bases across the family members. This 

includes the smallest library size of 26.8 million reads for the affected male sibling (0103_1) and 

the largest library size of 128.1 million reads for the mother (0103_3) (Appendix C). RNA-seq 

analysis of female sibling’s X chromosome variants revealed 117 heterozygous SNPs with 

dbSNP137 identifier expressed at a coverage above 20X. These were phased to 62 maternal and 

55 paternal SNPs. We found 96 unphased, heterozygous SNPs in the mother. Based on the 

allelic ratio distributions the female child had a moderately skewed XCI ratio of 87:7 while the 

mother had random XCI of 56:37. Scaling the XCI ratios to 0-100 scale the XCI ratios were 

extreme 93:7, and random 59:41, for the patient and the mother, respectively (Figure 4). 

Distribution of phased SNP alleles expressed from maternal X indicated bias against the 

expression of paternally inherited SNP alleles in the female child and suggested that the paternal 

X chromosome was only active in approximately 7% of the whole blood cells. The mutant allele in 

WDR45 also showed a biased expression with over 97% of reads mapping to the mutant allele 

and result in an allelic ratio of 0.97. The bias seen towards the maternal X expression and 

expression bias to similar degree toward the mutant allele suggests that the mutant allele 

originates on the maternal X. 

 WDR45 is transcribed in whole blood and the male sibling showed the lower expression 

of WDR45 compared to female sibling (FPKM= 51.0 vs. 78.77) (Table 3). Using Cuffdiff2 we 

compared the siblings to the parents to find that WDR45 is dysregulated at a nominal significance 

(p=0.045), showing a downregulation of the WDR45 transcript. This suggests a disruptive effect 

of the missense variant to mRNA stability. WDR45 mediates protein-protein interaction, so we 

selected 7 genes that were shown to interact with WDR45 (Behrends et al. 2010; Oláh et al. 

2011; Fischer 2008; Emanuele et al. 2011). We found that LHX6 was not expressed in whole 

blood and only APP is dysregulated at a nominal level (p=0.049). This upregulation was primarily 

caused by the male sibling whose expression of APP was the highest. None of the nominal 

significance estimates remained significant after Benjamini-Hochberg correction.  

 

Table 3. 
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Expression of WDR45 and its interacting proteins. 

Gene|Ensembl ID FPKM 
(0103_1) 

FPKM 
(0103_2) 

FPKM 
(0103_3) 

FPKM     
(0103_4) Log2fold p value 

UBC|ENSG00000150991 521.21 795.34 1124.93 515.55 -0.538 0.224 
CLNS1A|ENSG00000074201 35.71 44.51 29.02 26.38 0.252 0.418 

LHX6|ENSG00000106852 0 0 0 0 0 - 
SLC25A11|ENSG00000108528 26.49 35.41 43.29 29.03 -0.475 0.413 

APP|ENSG00000142192 31.44 13.40 13.28 11.82 0.615 0.049 
ATG2A|ENSG00000110046 13.92 11.15 19.13 6.49 -0.197 0.506 
ATG2B|ENSG00000066739 3.71 2.93 2.65 1.97 0.320 0.427 
WDR45|ENSG00000196998 51.00 78.77 86.76 93.36 -0.771 0.045 

 

 

Figure 4. X inactivation by X-linked allele expression ratios. Then scatter plots show the allelic 
ratio of X-linked SNP variants. The corresponding reference allele ratios are not plotted. When 
the SNP alleles are phased an overall expression pattern of the parent-of-origin chromosome can 
be observed. We show the ratio of X-linked alleles between the pseudo-autosomal regions PAR1 
and PAR2 on the terminal ends. A. The distribution of phased SNP alleles in P2 indicated a 
biased expression in favor of the maternally derived SNPs (magenta), over the paternal (green) X 
chromosome alleles. Histogram indicates a bimodal allelic ratio distribution. The black dot 
indicates the allelic ratio of the variant in WDR45 suggesting that source of the mutation is the 
maternal X. Colored horizontal lines show the means of the paternal and maternal allelic ratio 
distributions scaled to 1, at 0.93 and 0.07, respectively. B. The distribution of allelic ratios in the 
mother. These X-linked variants are not phased and so colored uniformly. Histogram of the allelic 
ratios indicates non-normal distribution without evidence of bimodality. The two horizontal lines 
indicate the mean of the predicted allelic ratio distributions inferred from the data at 0.56 and 
0.37, respectively.  
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In order to compare the utility of RNA-based estimation of XCI ratio, we determined XCI 

ratio from RNA-seq and from methylation assay by HUMARA for 48 total females from the Center 

For Rare Childhood Disorders. This cohort included 21 affected female patients (44%), 23 

unaffected mothers (48%), 3 unaffected siblings (6%), and 1 grandmother (2%). We found 9 of 

the 48 enrolled female participants were uninformative (~19%) for the methylation assay due to 

homozygosity at the AR locus. Population scale analysis of heterozygosity in HUMARA analysis 

suggested ~8% of females are not polymorphic, and comparison with population data indicated 

that our cohort was enriched for uninformative female (Fisher’s p=0.0372) (Amos-Landgraf et al. 

2006). The enrichment of uninformative females was likely due to enrollment of families with 

multiple, related females homozygous for the AR allele. Methylation assay reports the XCI ratio of 

inactive AR allele over the active allele, and the signal peaks are scaled to 100. In un-scaled 

measurement, the ratio of the two X chromosomes did not always add up to 100 as the HUMARA 

assay does (Table 2). This is the result of variance in chromosome wide SNP expression  across 

X. Un-scaled allelic ratios revealed 4 females with skewed XCI (>80:20) (~8%), when scaled, this 

number increased to six females (~12.5%)(Table 4). Of the 4 females predicted to have skewed 

XCI 2 were affected patients indicating that approximately 10% of female patients will have 

skewed XCI. We observed complete skewing in a single affected female patient (0118_1) based 

on methylation and categorized as extreme skewing by RNA-seq (Table 4). Not one participant 

had complete skewing by RNA-seq suggesting that X chromosome silencing is not complete 

across X, and that some genes may be expressed from both chromosomes. We also observed 

extreme skewing in 3 participants by methylation (0118_2, 0011_2, 0049_2), which were 

categorized as extreme (0118_2) moderately skewed (0049_2) and random XCI (0011_2) by 

RNA-seq. While only 2 participants (4%) had extreme skewing by RNA-seq, the methylation 

analysis identified 4 participants (8%). Interestingly 3 of the 4 participants with extreme skewing 

were mothers of affected female patients. This corresponds with previous reports that skewing 

can increase with age (Knudsen et al. 2007).  

In 19 of the 48 participants segregation analysis could help us determine the phase of 

inactivation by analysis of parental variant calls. Nine participants showed biased expression of 
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the paternal X. Additionally, nine females showed biased expression of maternally inherited X 

suggesting that in our small cohort the choice of maternal of paternal silencing is random. In a 

single  case the parent-of-origin could not be determined because XCI was completely random 

and the phased allelic ratios were equal. In this female allelic ratio of additional phased SNPs 

could potentially help decipher parent-of-origin. On average 142±40 heterozygous SNP was 

evaluated within the X-linked regions for each female. The distribution of X inactivation ratio 

estimates from random 50:50 to 100:0 is right skewed towards the random XCI obtained from un-

scaled RNA-seq data with 20 females (42%) of females categorized in this group (Figure 5). The 

distribution of XCI ratios between scaled and HUMARA data follow similar trend suggesting that 

scaling shift the ratios toward a normal distribution. We also observed two families (0002, 0047) 

with familial homozygosity at the AR locus which would normally be an uninformative test, allelic 

expression shows random XCI in each case increasing the available information for a more 

comprehensive view of molecular data. In addition in 4 of the 9 uninformative cases we were also 

able to determine the phase of X inactivation.  
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Table 4.  

Results of XCI ratio estimation by HUMARA and RNA-seq. 

Family  individual status HUMARA* RNA-seq+ 
(un-scaled) 

RNA-seq++ 
(scaled) 

preferentially 
silenced X 

# X-linked 
SNPs 

0001 0001_1 affected 62:38 69:30 70:30 Xp 144 
0001 0001_2 mother 65:35 59:39 60:40  139 
0001 0001_3 sibling 60:40 46:44 51:49 Xp 212 
0004 0004_2 mother 70:30 60:35 63:37  157 
0011 0011_1 affected 77:23 68:30 69:31 Xm 163 
0012 0012_1 affected 56:44 50:47 52:48  157 
0014 0014_2 mother 65:35 61:31 66:34  191 
0016 0016_2 mother 62:38 57:34 63:37  166 
0018 0018_2 mother 71:29 75:22 77:23  150 
0019 0019_1 affected 53:47 54:38 59:41 Xm 128 
0019 0019_2 mother 55:45 64:34 65:35  100 
0020 0020_1 affected 60:40 59:42 58:42  219 
0025 0025_2 mother 65:35 43:54 44:56  129 
0029 0029_1 affected 52:48 49:48 51:49 Xp 132 
0033 0033_1 affected 63:37 57:39 59:41 Xm 122 
0033 0033_2 mother 64:36 61:35 64:36  138 
0034 0034_2 mother 64:36 58:34 63:37  159 
0046 0046_1 affected 50:50 47:46 51:49  241 
0048 0048_1 affected 70:30 56:38 60:40 Xp 92 
0048 0048_2 mother 79:21 61:30 67:33  98 
0049 0049_1 affected 71:29 64:28 70:30 Xm 156 
0091 0091_1 sibling 68:32 61:38 62:38 Xp 116 
0091 0091_3 grandmother 70:30 75:17 82:18  66 
0117 0117_2 mother 55:45 47:47 50:50  114 
0139 0139_2 mother 58:42 59:34 63:37  142 
0140 0140_2 affected 60:40 62:42 60:40  143 
0152 0152_2 mother 51:49 50:46 52:48  63 
0157 0157_1 affected 55:45 46:41 53:47 Xm 97 
0002 0002_2 affected uninformative 47:47 50:50 equal 156 
0002 0002_3 sibling uninformative 63:35 65:35 Xp 188 
0002 0002_3 mother uninformative 74:25 76:24  189 
0008 0008_9 affected uninformative 47:45 51:49 Xm 123 
0034 0034_1 affected uninformative 73:25 74:26 Xp 194 
0047 0047_1 affected uninformative 49:48 51:49 Xp 171 
0047 0047_2 mother uninformative 74:25 75:25  159 
0059 0059_2 mother uninformative 65:33 66:34  144 
0091 0091_2 mother uninformative 48:48 50:50  96 
0157 0157_2 mother 74:26 72:12 86:14  69 
0008 0008_2 mother 88:12 73:23 76:24  96 
0014 0014_1 affected 83:17 72:23 76:24 Xm 239 
0023 0023_1 affected 84:16 77:22 78:42 Xm 133 
0024 0024_2 mother 81:19 62:29 68:32  134 
0059 0059_1 affected 82:18 67:27 71:29 Xm 134 
0018 0018_1 affected 84:16 81:18 82:18 Xp 103 

0011$$ 0011_2 mother 93:7 78:23 77:23  148 
0049 0049_2 mother 90:10 81:19 81:19  133 
0118 0118_1 affected 100:0 90:6 94:6  140 
0118 0118_2 mother 96:4 90:8 92:8  119 
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*=ratio is defined by the proportion of methylated (inactive) X over the proportion of unmethylated 
X (active). +=ratio is defined by the allelic ratio of higher frequency SNP alleles over SNP alleles 
with lower frequency. ++=XCI ratio is scaled to 0-100 from un-scaled ratios by normalizing the 
additive proportions of the SNP ratio distributions to 100. 
$$=Light grey shaded rows indicate samples where only methylation assay predicted extreme X 
skewing. Dark grey shaded rows indicate cases where both HUMARA and RNA-seq predicted 
extreme skewing. Xp= paternal X chromosome, Xm=maternal X chromosome 
 

 

Figure 5. Distribution of X inactivation. The axes indicate 5 arbitrary bins of X inactivation ratios 
and the percent of total samples in each category. Each estimation method is listed in the legend. 
Un-scaled estimates of XCI by RNA-seq indicate an enrichment of XCI ratios at the random 50:50 
level due to the difficulty of the algorithm to differentiate between overlapping allelic ratio 
distributions. 
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Previous studies of allelic expression XCI estimates have been inconclusive whether 

direct expression based XCI analysis correlate with DNA methylation (Amos-Landgraf et al. 2006; 

Swierczek et al. 2012). To that effect, we evaluated the correlation between the RNA-seq derived 

XCI estimates and the HUMARA method. Correlation was estimated for the 39 informative 

datasets with both HUMARA and RNA-seq data.  Using Spearman’s rank-order correlation we 

found statistically significant correlation between expression and methylation based estimates 

(Figure 6). There was strong linear correlation between HUMARA assay results and un-scaled 

RNA-seq estimates (Spearman: S= 1636.727, ρ = 0.834, P= 4.157e-11). Scaling the expression 

estimates improved the linear relationship and significance although at the more extreme XCI 

ratios HUMARA predicted twice as many extreme events than expression methods (Spearman: 

S= 1472.278, ρ = 0.850, P= 6.801e-12). This may resulted from the fact that expression 

estimates are based on the mean of the allelic ratio distribution and variance in allelic expression 

due to incomplete silencing of X, influence of imprinting, cis-, trans-regulatory elements on SNP 

expression may moderate extreme ratio estimates. Moreover, scaling the expression estimates 

preserved strong correlation with un-scaled ratios overall, although in families 091 and 0157 

scaling resulted in a shift from random XCI to moderately skewed which can impact biological 

interpretation. Scaling the RNA-seq data did not significantly changes un-scaled estimates, as 

correlation of the two RNA-seq estimates was significant (Spearman: S= 410.518, ρ = 0.958, P= 

2.2e-16). 
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Spearman’s ρ = 0.834  
p value = 4.1 e-11 

Spearman’s ρ = 0.851  
p value = 6.8 e-12 

Spearman’s ρ = 0.958  
p value = 2.2 e-16 

A B 

C 
Figure 6. Correlation of XCI ratio estimates 
by RNA-seq and HUMARA. A=HUMARA 
compared to un-scaled allelic ratios. 
B=HUMARA compared to scaled allelic 
ratios. C=un-scaled and scaled allelic 
ratios. 
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Discussion 

In this study, we obtained insight into the phenotypic variability in beta-propeller 

associated neurodegeneration by the first integrated whole-exome and RNA-seq study of a male-

female sibling pair diagnosed with BPAN. Characteristic features like brain iron accumulation in 

the globus pallidus, and the substantia nigra, progressive neurological and psychomotor decline 

and seizures, Parkinsonism and dementia in adulthood are all common diagnostic of BPAN. 

BPAN is also known as static encephalopathy of childhood with neurodegeneration in adulthood 

and heterogeneity has been reported in disease manifestation (Saitsu et al. 2013; Hayflick et al. 

2013). The male sibling, who has passed on, presented a more severe phenotype including 

epileptic, myoclonic seizures, spastic quadriplegia, and cerebral atrophy. The female sibling 

shows Rett-like symptoms including hyperreflexia, truncal hypotonia, and hand clasping, she is 

able to walk short distances, and manifests white matter volume loss.  

Sequencing in the family revealed a shared, de novo dominant missense mutation in the 

X-linked WDR45 gene. WDR45 is a member of the WD repeat domain proteins with multiple 

homologs on the autosomes (Haack et al. 2012). It contains multiple, conserved 40 amino acid 

residues usually terminated by a tryptophan-aspartic acid repeat residues(D. Li and Roberts 

2001). Their role has been implicated in signal transduction, regulation of protein complex 

formation, and cell-cycle control. WD repeat proteins contain a symmetrical, seven-bladed, beta-

propeller motif that mediates protein-protein interaction (Haack et al. 2012). WDR45 has been 

implicated in autophagy, the cell’s intracellular degradation system that transports cytoplasmic 

molecules for degradation to the lysosomes (Lu et al. 2011). Saitsu et al. (2013) showed using 

autophagic flux assay that WDR45 mutant lymphoblastoid cell lines present a blockage in the 

autophagic flux and affect autophagosome formation. Knockdown of rat Wdr45 results in 

accumulation of autophagic structures (Lu et al. 2011). In addition the importance of autophagy in 

neurodevelopmental disease has been implicated as mice lacking autophagy in neurons were 

seen to develop psychomotor dysfunction (Hara et al. 2006). 

We identified a missense mutation in exon 10 of WDR45 that leads to the substitution of 

a conserved leucine to proline (Figure 3C). This amino acid residue change was in the 6th WD 
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repeat domain of WDR45. Previously an in-frame deletion was reported 2 amino acid residues 

upstream in this exon in a middle aged female who is wheelchair bound, with severe intellectual 

disability, and tonic, clonic seizures that overlaps with female sibling’s phenotype (Verhoeven et 

al. 2014). All three males reported thus far carried frameshift indels (Haack et al. 2012). It has 

been suggested that males with germline mutations are non-viable, and severity may depend on 

when the mutations occur during development. The siblings share a de novo mutation in germline 

DNA suggesting a low probability for the mutation to occur after embryogenesis. This is 

supported by the fact the male sibling was severely affected. However the female sibling showed 

milder phenotype suggesting that if the mutation occurred prior embryogenesis some other 

molecular mechanism may have altered her symptoms.  

Previously, X inactivation was implicated as a mechanism that may explain phenotypic 

similarity between males and females and for the second part of our study we looked at new 

approach to study the role of X inactivation in the heterogeneity between the siblings. Using RNA-

seq instead of traditional methylation assay, we found that the female patient had a 93:7 

extremely skewed XCI in favor of the maternal X chromosome. To determine the chromosome 

where the mutation situated, we had to rely on allele frequency data from RNA-seq, as germline 

mutation occurred de novo. However, correlating the chromosome wide allelic ratios to the allelic 

expression of the wild type and mutant alleles could be used to infer the parent-of-origin of the 

chromosome with the mutant allele of the variant and wild type allele. Allele specific expression 

was observed at the mutant allele from allele ratio of 0.48 in the DNA to 0.93 in RNA. By 

inference, we concluded that the SNP allele likely resides on the maternal X chromosome. This 

was supported by almost complete loss of the wild type allele expression. The dominant allele, 

the SNP allele however showed very similar allele bias to the maternally inherited SNP alleles. 

This finding implicates maternal germline or gonadal mosaicism as the mother’s blood DNA 

shows only wild type alleles. Previously, a familial Rett Syndrome case also implicated maternal 

germline mosacism as a mechanism to phenotypic heterogeneity among sibling with same X-

linked mutation (Venâncio et al. 2007). In addition, Danda et al. reported two female siblings with 
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a rare X-linked Oculo-facio-cardio-dental (OFCD) syndrome (MIM 300166) with a shared de novo 

mutation in BCOR an X-linked gene that was only found in the siblings (Danda et al. 2014). 

RNA-seq also identified a possible mode for phenotypic variability. We found that the 

male sibling had most reduced expression of WDR45 in blood and loss of function mutations in 

this gene lead to loss of protein product suggesting a reduced mRNA stability (Saitsu et al. 2013). 

However the female patient not only shows higher WDR45 abundance in blood, she shows 

expression of the wild type allele suggesting that a portion of her cells express the normal protein. 

Saitsu et all showed that both missense and loss-of-function variants lead to protein degradation 

suggesting that the male sibling is likely have no protein expression in whole blood thus 

autophagy is severely impacted (Saitsu et al. 2013). It has been shown that even in genes that 

are subject to X inactivation a leaky expression can be detected in mice hybrid cells, suggesting 

that even at low wild type allele frequency the female patient may produce the wild type protein 

(F. Yang et al. 2010). BPAN phenotype is mostly brain specific, so the possibility that the female 

patient expresses some level of wild type protein, and that the boy only expressed the mutant 

could lead to the male lethality and a rescue of the more severe phenotype in the female sibling. 

To elucidate the role of X-inactivation in the phenotypic spectrum of this sibling pair, parent-of-

origin of X inactivation of other reported cases of BPAN may be necessary as those female 

patients with skewed XCI have not been completely characterized (Haack et al. 2012; Saitsu et 

al. 2013).  

 RNA-seq analysis of XCI showed high correlation with DNA methylation assay. 

Traditionally skewing has been estimated by the methylation assay of the AR locus. This assay 

has shown good correlation with other quantitation methods based on pyrosequencing of cDNA 

(Mossner et al. 2013). Other expression based methods showed little correlation highlighting the 

problematic nature of using a small number of genes to determine XCI (Swierczek et al. 2012). 

Instead of selecting alleles in specific genes, integration of the genomic and functional 

sequencing data we were able to study allelic expression across the X-linked region of X greatly 

improving our ability to predict XCI status. The mean of X-linked SNP allele expression rather 

than one or few genes can reduces noise and improve accuracy (Cotton et al. 2013). It should be 
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noted that while HUMARA method was uninformative in 9 cases due to homozygosity at a single 

locus, leveraging over hundred high quality, expressed alleles in each participant’s RNA-seq 

method provided an XCI estimate in each participant. Variability of SNP allele expression across 

chromosome X resulted that that the ratio of Xi and Xa did not add up to 100 in most cases. Thus 

a slightly different scale confounded comparison of un-scaled XCI estimates to HUMARA assay. 

This inconsistency in allelic expression can be attributed to variable silencing of genes across X 

(Carrel and Willard 2005). Thus, pre-selection for genes that are only expressed from the active X 

may be able to bring XCI estimate by expression to same scale as HUMARA, but may reduce the 

number of SNPs to estimate XCI. Our method for scaling allele ratios and provides a basis to 

compare XCI ratios by HUMARA and allelic expression. 

RNA-seq approach identified two female patients from the same family with extreme 

skewing. The female patient with extreme XCI was diagnosed with Aicardi Syndrome. Although 

previously, Eble et al. (2009) showed that 18% of Aicardi patients have extreme skewing, the 

mother in this family is un-affected suggesting a different mechanism to this patient’s phenotype. 

Although familial skewed XCI are rare and may be by chance alone, some cases have been 

reported in haemophilia B and X-linked adrenoleukodsytrophy suggesting that genetic 

mechanisms of unidentified gene mutations may contribute to the inheritance of the mutation 

(Ørstavik, Orstavik, and Schwartz 1999; Z. Wang et al. 2013). 

RNA-seq and segregation analysis could identify the parent-of-origin of XCI in 19 

patients, aiding interpretation in the context of clinical symptoms. In half of the cases the paternal 

X and other half maternal X was silenced. Our cohort suggests that selection of X to be 

inactivated by the X inactivation process is not determined by the origin of the X chromosome but 

is likely determined by genetic and epigenetic factors of each chromosome. This is supported by 

studies showing that the choice of X inactivation can be influenced by epigenetic events that are 

not well understood (Gribnau et al. 2005). 

In conclusion, we successfully applied integrated DNA and RNA sequencing to better 

understand the molecular mechanism of an X-linked disorder and its heterogeneity in a case of 

affected sibling pairs with shared de novo mutation. The two siblings share the same mutation but 
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XCI ratio analysis, shows that there is low expression of the wild type allele in a subset of the 

female sibling’s cell that can lead to a less severe phenotype. We found that WDR45 was most 

dysregulated in the male patient supporting the phenotypic heterogeneity between the siblings. 

Segregation analysis of parental genotypes and XCI analysis implicate maternal gonadal 

mosacism as the most likely source of the mutation and molecular mechanism. In addition we 

performed RNA-seq on a total of 48 females from our study, which showed high correlation with 

standard methylation assay. We were able to identify a familial extreme inactivation that pointed 

out the role X inactivation played in the female patient’s phenotype. Our method improved on 

current assay by reporting XCI for all subjects that were uninformative for the methylation assay 

and added parent-of-origin information to standard quantitative analysis. Integration of next-

generation sequencing methods in rare diseases will lead to a more comprehensive view of 

disease etiology and reduced need for individual clinical assays in patient management. 
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CHAPTER 3 

CHARACTERIZATION OF X CHROMOSOME INACTIVATION USING INTEGRATED ANALYSIS 

OF WHOLE-EXOME AND MRNA SEQUENCING  

Introduction 

In this chapter we set out to develop a method to quantify X inactivation ratio using 

simultaneous sequencing of DNA and RNA. We first use simulated data to show the utility of 

integrated data to quantify the proportion of active and inactive X chromosomes in females. Next 

we apply this method to a clinical case where skewed X inactivation was identified prior this 

study.  

Diagnosing and uncovering the genetic basis of disease has been revolutionized by 

WES, allowing discovery of new disease genes and improving the rate of clinical diagnosis for 

rare genetic conditions. Indeed, the genetic basis of childhood disorders can be identified in 

approximately 25% of patients, where successful molecular diagnosis frequently has a major 

impact on patient management and treatment (Dixon-Salazar et al. 2012; Y. Yang et al. 2013). 

Prioritization of candidate variants for the remaining patients remains challenging due mainly to 

insufficient understanding of the functional consequence of substantial fraction of candidate 

variants (Gilissen et al. 2012). Large scale functional characterization of genomic variation by 

simultaneous DNA and RNA sequencing from a patient can reveal genotype-phenotype 

correlation, can highlight gene expression profile that is associated with the studied genetic 

condition, and allows immediate evaluation of in silico prediction algorithms to the effect genomic 

variants have on gene expression, alternative splicing, exon usage, gene fusions (Z. Wang, 

Gerstein, and Snyder 2009). In breast and pancreatic cancer integrated analysis of DNA and 

RNA has been successfully utilized to obtain insight into molecular mechanisms that explain 

pathogenicity and uncovered potential therapeutic targets to improve patient management (Shah 

et al. 2012; Craig et al. 2013; Liang et al. 2012). In addition, RNA-seq has been utilized in the 

context of the affect epigenetic modifications have on gene expression (Babak et al. 2008; X. 

Wang et al. 2008). Integrative analysis of WES and RNA-seq data in X-linked disorders may also 
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be informative both in diagnosis and gene discovery for phenotypes emerging caused by 

epigenetic changes such as XCI (Lyon 1961).  

In the process of XCI, in females, cells undergo epigenetic inactivation of one of the 

inherited, parental X chromosomes resulting in consecutive daughter cells expressing one X 

(Muller 1932; Augui, Nora, and Heard 2011). The proportion of cells with either parental X as the 

active is defined by the XCI ratio that ranges from 50:50 random to 100:0 completely skewed. 

Epigenetic analysis of X chromosome in unaffected females indicate that XCI ratio normally 

distributed in the general population (Amos-Landgraf et al. 2006). Although, on the cellular level 

X-linked alleles are expressed in a dominant fashion, in cell populations X-linked alleles show 

mosaic pattern of expression, which can lead to heterogeneous phenotypes in females who are 

carriers for disease causing, deleterious mutations (Migeon 2006). In X-linked neurological 

disease, mode and magnitude of XCI can influence disease severity and outcome (Ørstavik 

2009). Indeed, case-control studies demonstrate that skewed XCI is common among females 

who are carriers for X-linked Mental Retardation disorders (XLMR) (Plenge et al. 2002). XCI may 

also lead to asymptomatic carrier status by selective advantage of cells expressing the wild-type 

alleles(Van Esch et al. 2005). One of the difficulties diagnosing females with X-linked diseases 

and skewed XCI is the broad and overlapping description of clinical phenotype, the limited 

availability of similar patients, and lack of high-throughput, expression-based methods to estimate 

XCI(Ørstavik 2009). Routine, clinical method to estimate XCI ratio rely on the HUMARA 

differential DNA methylation assay that targets a polymorphic short tandem repeat (STR) in the 

human androgen receptor gene (AR) (Allen et al. 1992). Methylation of this repeat is associated 

with XCI. Although >90% of females are polymorphic at this site, it provides expression 

information indirectly from DNA, and, relies on a single locus (Amos-Landgraf et al. 2006). There 

is also conflicting evidence whether DNA methylation can reflect the quantitative expression ratio 

of active X (Xa) to inactive X (Xi) compared to allele-expression-based methods (Busque et al. 

2009; Swierczek et al. 2012). Using next-generation sequencing of DNA and RNA 

simultaneously, we can scan for potential disease causing variations, and at the same time learn 

about the functional implications of genomic changes with the additional benefit of learning about 
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transmission of alleles and potential imbalance in chromosome X expression. By phasing X-

linked variant alleles, we can learn about the mode, or parent-of-origin of imbalance, and the 

magnitude can be estimated from direct measurement of relative expression of chromosome-

wide heterozygous alleles.  

In this chapter we present genetic and functional analysis from high-throughput 

sequencing of WES and RNA-seq to both (1) identify potentially pathogenic genetic mutations 

and (2) identify XCI ratio using phased and unphased allele-specific expression analysis. We 

show that high-throughput sequencing can be utilized to estimate XCI ratio on simulated data and 

we apply our approach to a patient with undiagnosed, heterogeneous phenotype. Using family-

trio based WES with segregation analysis, we characterized a de novo, heterozygous deletion on 

Xp22.31 as potentially pathogenic, and we identified a moderately skewed XCI ratio from the 

RNA-seq experiment. Integration of exome and expression data revealed that the deletion 

occurred on the paternal X (Xp), and skewed XCI favored the expression of the cytogenetically 

normal, maternal X (Xm), suggesting a mechanism for the mild neurological phenotype.  

 

Materials and Methods 

In Silico Experiment 

XCI results in two cell populations in females, one expressing Xm, the other expressing 

Xp. In theory, the degree of cellular mosaicism of X-linked allele expression can be estimated by 

RNA-seq using count-based approach (Figure 7A). In this approach, we obtain digital 

measurement of allele expression from Xm and Xp by counting sequenced reads mapping to 

each allele, which is directly related to the expression of the chromosome with the allele. On the 

X chromosome, the allele counts come from either Xa, or Xi, and the ratio of allele frequencies at 

a heterozygous locus correlates with the overall XCI status of the Xp and Xm chromosomes in 

the tissue. However, epigenetic modifications, including DNA methylation, cis-, and trans-acting 

elements, and chromosome strata can influence allele expression at a single locus. Therefore, 

chromosome-wide heterozygous allele frequency ratio can provide a better estimate of the overall 

expression of each parental X. In addition, when the transmission of the allele can be determined 
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from parent to offspring by segregation analysis, and variants can be assigned a parental origin 

(i.e. phase), phasing the alleles can identify the parental X that is preferentially inactivated or 

activated. To evaluate this approach, we simulated RNA-seq reads with female, heterozygous 

genotypes from a pool of known, X chromosome SNPs in coding regions from the ESP6500 

NHLBI Exome Sequencing Project (NHLBI Exome Sequencing Project,). The 4996 SNPs were 

randomly binned in two sets analogous to maternal or paternal SNPs (i.e. phased SNPs) by rand 

function of a perl script. In the first set, the alternative allele of the genotype was assigned as 

paternal (Alt-P, n=2520), and in the second set (Alt-M, n=2476), the alternative allele was 

assigned as the maternal allele. Using seqtk FASTA processing tool (seqtk) the Alt-M and Alt-P 

alleles were introduced into two separate chromosomes X transcriptome fasta files containing 

known transcripts greater than 500bp from Homo sapiens.GRCh37.62.gtf. The two modified fasta 

files were analogous to an X transcriptome with maternal variant alleles and one with paternal 

variant alleles. Next 10 million, 100bp paired reads in fastq format were generated, mapping to 

the two transcriptome files from above (5 million read1 and 5 million read2) using wgsim 0.3.1-r13 

fastq simulator (wgsim). Command line options for wgsim included zero indel error rate, an outer 

distance of 150bp between the paired reads, a uniform Phred quality score of 40 for each base, 

and a 0.001% base error rate. The combination of these two parental, Alt-M, and Alt-P allele 

containing fastq files in various ratios followed by mapping them back to the chromosome X 

reference, and followed by estimation of allelic expression by read count provides the basis for 

the estimation of XCI ratio. Essentially, after the two modified fastq files with 10 million reads 

were generated, seqtk was used to subsample them randomly, and merge each set into a single 

fastq file analogous to the reads obtained through RNA-seq of an experimental sample. When, for 

example, XCI ratio of 75:25 was simulated, 7.5 million correctly paired reads were randomly 

sampled from Alt-M alleles containing fastq file and 2.5 million were subsampled from Alt-P fastq 

file and merged. In theory, after alignment and allele count, there would be a 75:25 allelic 

imbalance in favor of the Alt-M alleles to an overall chromosome wide 75:25 ratio since 

approximately 75% of reads contain alleles from Alt-M. Using this approach, RNA-seq reads were 

simulated for 11 expected X inactivation ratios: completely skewed X inactivation (100:0), 
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extremely skewed X inactivation (95:5, 90:10), moderately skewed X inactivation (85:15, 80:20), 

and random X inactivation (75:25, 70:30, 65:35, 60:40, 55:45, 50:50).  
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Figure 7. Schematic view of estimation of XCI ratio from read counts data. (A) Overview of the 
simulation study. From a reference transcriptome (a), two haplotypes are simulated with known 
variant alleles (b). Sequence read simulator generates reads with error attributes using the two 
haplotypes as reference (c). The reads from both read simulations are merged and aligned back 
to the original reference (d, dashed lines). Counting the number of reads mapping to each known 
allele, the allelic ratio of mapped variant alleles can be determined (e). The overall XCI ratio is 
determined for large number of variants by estimating the mean of the allele ratio distributions of 
multiple alleles (f). (B) Workflow of XCI estimation from RNA-seq experiment using phased and 
un-phased approaches. Essentially, RNA-seq reads are aligned followed by obtaining the 
transcriptome pileup at each sequenced loci. This is followed by counting the number of reads 
mapping to each allele across the transcriptome. Next, loci are reduced to those that contain 
heterozygous calls in the genomic DNA and allelic ratio is calculated at each heterozygous locus. 
If there is no available information on the phase of X-linked alleles at heterozygous loci, the un-
phased, X-linked allelic ratios are evaluated for their distribution using semi-parametric model and 
XCI is reported from the parameters of the semi-parametric model. When transmission of alleles 
can be obtained from DNA data, the phased, X-linked allele ratios are evaluated by the beta 
distribution and XCI reported from the parameters of the beta model with the phase of XCI. 
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Estimation of XCI Ratio. 

Estimation of XCI ratio followed similar steps in both the in silico experiment and for the 

patient (Figure 7B). Reads were aligned to human reference genome GRCh37.62 using TopHat2 

(Kim et al. 2013). Alignment of next generation sequencing data has reference bias that may 

influence the allelic ratio estimate of SNP alleles. Reduction of bias can be achieved by read 

alignment to diploid reference incorporating parental genotype information or by reduction of 

mapping stringency by increasing the number of mismatches allowed in a read for alignment 

(Rozowsky et al. 2011; Stevenson, Coolon, and Wittkopp 2013). Therefore five and four 

mismatches per 100bp read length were allowed in the in silico and clinical experiments, 

respectively. Allele counts were obtained by generating a chromosome wide pileup with SAMtools 

mpileup command (H. Li et al. 2009). Bases with Phred quality score > 20 were counted only in 

the in silico and clinical experiments. Pileup was parsed by an in-house perl script. Next the allelic 

ratio at each heterozygous locus was calculated by dividing the number of reads mapping to the 

variant allele with the total number of reads mapping to the locus. After allelic ratio calculation the 

SNPs were further filtered for quality by following procedure: (1) SNPs within the PAR1 and PAR2 

pseudo-autosomal regions were filtered out as they follow autosomal inheritance and can bias 

XCI ratio(Mangs and Morris 2007) (2) Filtered for high confidence variant loci from exome dataset 

with a genotype filter score of PASS by GATK VariantRecalibrator (McKenna et al. 2010). (3) Loci 

without a dbSNP identifier were filtered out (4) Variants with less than 20X coverage were filtered 

out.  

First, phased alleles were used to estimate XCI ratio. Phasing was performed in the in 

silico experiment by assigning the heterozygous variants into their respective Alt-P and Alt-M bin, 

and by genotype phasing of the trio in the family study as described below. Phasing of X-linked 

heterozygous variants allows us to evaluate the functional profile of each inherited parental copy. 

By estimating the parameters (mean, variance) of each copy’s allele ratio distribution we can 

estimate the proportion of cells with Xm or Xp as active and inactive (eg. mean allelic ratio of 

paternal alleles of 65% and mean allelic ratio of maternal alleles of 35 equals an estimated XCI 

ratio of 65:35). To control for over-dispersion of read count data from RNA-seq, phased allelic 
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ratios were fitted to the beta distribution to estimate their mean and variance using the fitdistr 

module of MASS package in R (MASS) (Skelly et al. 2011; Zhou, Xia, and Wright 2011; 

Hardcastle and Kelly 2013; Sun 2011).  

Next, XCI ratio was also estimated without phasing the alleles. When phasing information 

is unavailable we can lose our ability to define the activity of the parental chromosomes. In this 

case, the inheritance is unknown and the distribution of allele expression from the two 

chromosome copies may overlap suggesting similar proportion of cells with one of the parental 

copies active. However, alleles sampled from the two chromosome copies can have their unique 

distribution pattern resulting in multi-modal allele distributions. Multi-modal distributions can be 

understood as a mixture of two or more distributions and thus mixture models based on the 

expectation maximization (EM) algorithm may be used to estimate the parameters of each 

component or mode of the distribution. The problem with normal mixture modeling is that the 

number of components in the data set can greatly affect outcome and advised to account for prior 

modeling. The semi-parametric (SP) model, however, has no assumptions about the modality or 

the normality of the data and can also approximate the parameters of each component in a data 

distribution. In estimation of the inactivation status of the X chromosomes, the mean allelic ratios 

estimated by the SP model can directly correlate to the proportion of cells carrying the variant 

alleles. Thus, allelic expression captured in component 1 and 2 of a multi-modal allelic distribution 

can be thought of as indicators of the proportion of activity of parentally inherited chromosomes in 

the tissue. The SP method is motivated by the fact that the choice of a parametric family may not 

always be evident from the distribution of the data, as it is in over-dispersed and heavy-tailed 

distributions (Hunter, Wang, and Hettmansperger 2007). We applied Bordes et al. stochastic 

expectation-maximization algorithm for estimating SP model parameters for unphased data 

(Bordes, Chauveau, and Vandekerkhove 2007). The mean of the estimated component 

distributions were utilized as the expression status of each inherited chromosomes but were blind 

to the origin of alleles and applied to define the XCI ratio.  
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Family Study 

The participating family of Northern European ancestry provided written consent and was 

enrolled into the Center For Rare Childhood Disorders Program at the Translational Genomics 

Research Institute (TGEN). The patient was 12 years old at the time of enrollment and verbal 

assent was obtained from her and documented in writing by the consenting staff person. In 

addition, written consent for the minor under the age of 18 years was obtained from the parents. 

All additional participants over 18 years of age provided written consent at the time of enrollment. 

The study protocol and consent procedure was approved by the Western Institutional Review 

Board. The primary goal of enrollment is to utilize family-trio based WES in the clinical diagnosis 

of previously undiagnosed, rare conditions suspected of genetic cause. The female child, now 14 

years old had no clinical diagnosis at the time of enrollment, although complex neurobehavioral 

condition was suspected based on manifesting phenotype of emotional instability, attention 

deficit, and delays in development and learning. She was born at 38 weeks gestation, and 

required minimal respiratory assistance. There were early concerns about her development, as 

she didn’t walk until 13-14 months of age. Behavioral problems were noted at age 2, consistent 

with current phenotypic description above. Treatments with medications for poor attention, 

impulsivity, repetitive behaviors, and learning difficulties started at age 5. She did not have 

convulsive seizures, but subtle events consisting of staring, loss of awareness, and 

tremulousness had been observed. MRIs of the brain were normal; EEG showed right posterior 

temporal sharp waves. The patient had an older unaffected brother, and her neurological 

examination was normal showing concrete ability to respond and interpret questions. Previous 

genetic analysis of genomic DNA from whole blood by array-based comparative genomic 

hybridization (aCGH) identified a heterozygous deletion between positions 6.4-8.1 Mb on 

chromosome X. Additionally, HUMARA DNA methylation assay at the AR gene identified 85:15 

skewed X inactivation within peripheral blood, providing a hypothesized mechanism for the 

patient’s moderate phenotype. To find possible causal variants that may explain her condition and 

to validate previous genetic and epigenetic findings whole-exome and RNA-seq sequencing was 

completed on genomic DNA and mRNA isolated from peripheral blood for the mother, father, and 
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patient. Whole blood was collected into EDTA Blood tubes and PaxGene RNA tubes. Genomic 

DNA was isolated with DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD), and total RNA 

was isolated from PaxGene RNA tubes using PaxGene Blood miRNA kit (Qiagen, Germantown, 

MD) following manufacturer’s suggested protocol. Exome capture and library preparation was 

performed with 2µg of input genomic DNA for each participant using the TruSeq DNA sample 

preparation kit v2 and the TruSeq Exome Enrichment kit v2 (Illumina, San Diego, CA) following 

manufacturer’s guidelines. The three DNA samples were sequenced as part of a pool of 6 

multiplexed libraries on two lanes of a HiSeq2000 v3 flowcell using version 3 of Illumina’s 

multiplexed paired–end sequencing chemistry for 101 bp read length (Illumina, San Diego, CA). 

RNA library preparation was performed for each family member from 1.5µg of total RNA using 

Illumina TruSeq RNA Sample Prep Kit v2 according to manufacturer’s instructions (Illumina, San 

Diego, CA). The three RNA samples were sequenced as part of a multiplexed pool of 4 samples 

on a single lane of a HiSeq2000 v3 flowcell using version 3 of Illumina’s multiplexed paired–end 

sequencing chemistry for 101 bp read length (Illumina, San Diego, CA).  

Binary base calls files were generated by the Illumina HiSeq2000 RTA module during 

sequencing and were converted to demultiplexed fastq files using CASAVA 1.8.2 (Illumina, San 

Diego, CA). Quality filtered reads from exome data were aligned to reference genome with BWA 

0.6.2-r126 (H. Li and Durbin 2009). Binary alignment files were converted and coordinate sorted 

into the standard BAM format using SAMtools 0.1.18 (H. Li et al. 2009). Aligned reads were 

realigned around short insertion and deletions and duplicate reads were filtered using Picard 1.79 

(picard). This followed aligned base quality recalibration with GATK 2.2 (McKenna et al. 2010). 

Flowcell lane level sample BAMs were then merged with Picard 1.79 if samples were sequenced 

across multiple lanes. Variant calling was done by UnifiedGenotyper and genotype quality 

recalibrated using VariantRecalibrator as described in the best practice methods of GATK 2.2 

(DePristo et al. 2011).  

Demultiplexed fastq files obtained from the RNA-seq experiment were aligned to human 

reference genome using ensembl.63.genes.gtf of annotated, known transcripts with TopHat2 

(Kim et al. 2013). Aligned reads were assembled into transcripts with Cufflinks 2.0.2 using known 
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transcript annotation in ensembl.63.genes.gtf as guide and we used annotated high abundance 

transcript annotation of ribosomal RNA and mitochondrial genes in an 

ensembl.63.genes.MASK.gtf. Post transcript assembly, Cufflinks was used to calculate the 

relative concentration of each annotated transcript by assigning an FPKM value (Fragments Per 

Kilobase of transcript per Million mapped reads) to each gene and transcript (Trapnell et al. 

2010). 

Calculation of physical coverage.  

To determine the boundaries of the interstitial deletion on X, sequence read counts were 

obtained across X chromosome in a 100 bp sliding window for the mother and child using 

previously described methods (Craig et al. 2013). This script uses the SAMtools package to parse 

the exome BAM file for the patient and mother (H. Li et al. 2009). The algorithm uses a sliding 

window across the selected chromosome in 100 bp length, and for each read mapping within the 

window finds its mate pair and fills in the gap between the read pairs, then counts this gapped 

read as one read mapping within the window. This raw read count per 100bp window is then 

normalized by dividing the raw read count with the total reads mapping to the sum of sliding 

windows. Next, the normalized coverage in each window is transformed to log2 scale in both the 

mother and child and log2 transformed normalized read count is deducted from each other as 

described in Equation 1: 

  

 Plotting log2 differences across chromosomes allows detection of large chromosomal 

deletions and amplifications, where a log2 difference of -1 means a heterozygous deletion in one 

of the copies. 

Genotype phasing.  

While any given SNP or indel could be potentially causative towards a disease 

phenotype, SNPs could also be used as markers for segregation analysis. In this study, we were 

interested in the parental origin (i.e. phase) of the deletion and the X inactivation skewing. We 

refer to the process of phasing as determining the parent-of-origin of a molecular variant (i.e., a 

!log 2(
#!reads!mapping!to!100bp!window!for!case

#!reads!mapping!in!all!100bp!windows!for!case ) − log 2(
#reads!mapping!to!100bp!window!for!control

#reads!mapping!in!all!100bp!windows!for!control )
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heterozygote SNP or mRNA transcript containing a SNP), recognizing that phasing can have 

broader meanings. In our analyses, we use SNPs as markers to phase a genetic interval or 

region, where the interval could be a deletion, gene transcript, or chromosome. For example, if 

the patient is “A/T” for a SNP, the mother is “A/T” and the father is “A/A”, we can determine the 

“T” allele is from the mother. Larger events can also be phased by examining SNP genotypes 

contained within the larger event (i.e., a deletion); however, this requires that one recognize that 

SNP genotypes should be recoded to match their ploidy. For example, males containing a single 

X chromosome should be understood to be “A” and not “A/A”. Likewise, SNPs within a deletion 

should be understood to be “T”, rather than “T/T”. 

 

Results 

Estimation of XCI Ratio from Simulated Data.  

We developed a simulation study for 11 datasets to estimate XCI pattern from paired, 

RNA-seq reads. For each dataset, 4996 loci provided read count information to estimate XCI and 

on average 1600 SNPs had a minimum read depth of 20. After phasing, the allelic ratios were 

fitted to the beta distribution and their parameters estimated. The distributions showed increased 

mono-allelic expression from 50:50 random to 100:0 completely skewed XCI (Figure 8). As 

expected, at 50:50 XCI ratio the maternal (Alt-M alleles) and paternal (Alt-P alleles) distributions 

almost completely overlap with their mean ratios at around 0.5 indicating bi-allelic expression and 

suggesting approximately equal expression of both chromosomes (Figure 8, 50:50). At each 

expected XCI ratio, the experimental, mean XCI ratios obtained from the beta distributions of the 

phased allelic ratios showed high concordance with expected XCI (Table 5). Although we 

compensated for read mapping bias by allowing 5 mismatches, our results show some deviation 

from the expected mean XCI in each dataset. Since our reads were generated against only 

known transcripts of 500bp or longer, some sequence homology between transcripts and the 

other regions of chromosome X may have resulted in read bias affecting allelic ratio estimates. As 

we shift expected allelic ratios from 50:50 random toward completely skewed 100:0, we observed 

an increased bimodality with the two phases separating into discrete distributions. 
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Table 5.  

Estimation of XCI Ratio of in silico phased SNPs by beta testing. 

Expected 
XCI ratio 

(%) 

Alt-M  
 mean ratio 

(%) 
SD 

Alt-P 
mean ratio 

(%) 
SD 

Observed 
XCI Ratio 

(%) 
100:0 99.64 1.81 0.06 0.31 99.64 : 0.06 
95:5 95.46 11.88 3.91 10.83 95.46 : 3.91 

90:10 90.63 15.12 7.96 14.63 90.63 : 7.96 
85:15 84.82 14.35 13.11 14.79 84.82 : 13.11 
80:20 78.91 12.91 18.01 15.40 78.91 : 18.01 
75:25 74.31 12.63 22.59 11.61 74.31 : 22.59 
70:30 69.76 14.02 28.87 10.94 69.76 : 28.87 
65:35 63.25 11.59 34.11 10.78 63.25 : 34.11 
60:40 58.76 11.47 39.15 11.58 58.76 : 39.15 
55:45 54.05 11.51 42.88 14.08 54.05 : 42.88 
50:50 49.25 11.79 47.84 12.00 49.25 : 47.84 

XCI = X inactivation, SD = standard deviation 
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Figure 8. Phasing and distribution of in silico allelic ratios. Histograms of showing the allelic ratio 
distribution after each heterozygous SNP in the in silico data is assigned phase. Each 
heterozygous SNP allele was covered with at least 20 reads. Alt-M allelic ratios [magenta] and 
Alt-P allelic ratios [green] in bins of 20. Dark bars indicate SNP ratios that overlap between 
phased groups. Colored lines are the kernel density estimates of the phased allelic ratio 
distributions. 
 
 

Coverage analysis indicated high correlation between expected and observed XCI ratios. 

Although Pearson’s correlation was above 0.990 from coverage as low as 10X, correlation 

coefficient convergence with expected was achieved at > 0.999 above 20X suggesting that as 

low coverage RNA-seq experiments may be used for XCI ratio estimation (Figure 9). Unphased 

allelic ratio distribution followed a similar distribution pattern to phased dataset (Figure 10). 

Application of SP model to unphased allelic ratios resulted in consistent estimation of expected 
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XCI ratios (Table 6). The mean may be biased by the number of SNP markers available and 

other factors such as variants in genes that normally escape inactivation. However, our simulation 

shows that when relatively large number of markers is available, both beta distribution and SP 

model can consistently estimate the XCI ratio to the expected (Table 7). 

 

 
Figure 9. Correlation of expected and observed XCI ratios.  
(A) The mean allelic ratio of the Alt-M alleles the in silico data to their corresponding expected 
allelic ratio. For example in 70:30 simulation, Alt maternal alleles have an observed mean allelic 
ratio of 69.0. (B) The mean allelic ratio of Alt-P alleles from each in silico dataset. Eg. in 70:30 
simulation, Alt-P alleles have an observed allelic ratio of 27.6. Each color indicates the correlation 
of observed vs. expected ratios at minimum sequence coverage of 10X, 20X, 30X, 40X, and 50X. 
Pearson correlation coefficient was highest at r > 0.9998 above 20X read coverage. 
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Figure 10. Un-phased allelic ratio distributions. Histograms showing the allelic ratio distribution 
after each heterozygous SNP in the in silico experiment when phase is not assigned. Each 
heterozygous SNP had to be covered with at least 20 reads. Black lines indicate the Gaussian 
kernel density of unphased allelic ratio distributions. Similar to phased experiments, the shift of 
distributions from unimodality in random XCI (50:50) toward bi-modality as XCI becomes more 
skewed towards 100:0 complete skewing. 
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Table 6.  

Estimated XCI ratio of un-phased data by semi-parametric method. 

 

Expected XCI 
ratio 

Component 1 
mean allelic 

ratio (%) 

Standard 
Deviation 

Component 2 
mean allelic 

ratio (%) 

Standard 
Deviation 

Observed XCI 
ratio 

100:0 99.6 2.2 0.0 1.1 99.6:0.0 
95:5 94.8 6.2 5.2 6.2 94.8:5.2 

90:10 88.9 9.1 9.7 8.5 88.9:9.7 
85:15 84.7 10.2 13.7 9.4 84.7:13.7 
80:20 78.9 11.5 18.7 11.0 78.9:18.7 
75:25 74.3 12.0 24.2 12.0 74.3:24.2 
70:30 69.0 12.8 27.6 12.4 69.0:27.6 
65:35 64.7 12.5 32.7 12.5 64.7:32.7 
60:40 58.0 13.9 37.0 13.6 58.0:37.0 
55:45 51.0 14.8 49.7 14.9 51.0:49.7 
50:50 48.6 14.0 47.8 14.0 48.6:47.8 

 
 
 
Table 7.  

Variant coverage and XCi ratio. 

 
Expected 

XCI total ≥10X ≥20X ≥30X ≥40X ≥50X 
100:0 4878 3163 1606 723 288 119 
  95:5 4887 3203 1681 756 332 160 
90:10 4882 3180 1590 694 308 136 
85:15 4891 3168 1598 708 316 138 
80:20 4894 3203 1591 693 323 131 
75:25 4887 3176 1595 738 310 140 
70:30 4875 3166 1627 712 293 137 
65:35 4891 3165 1591 686 287 132 
60:40 4878 3186 1623 727 313 143 
55:45 4891 3239 1695 724 348 151 
50:50 4879 3205 1597 703 312 126 
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Exome Analysis 

WES resulted in an average of 139 million paired reads with average insert size of 249 

base pairs [bp] corresponding to an average 14.8 gigabases (Gb) on the HiSeq2000 platform for 

the trio. After quality filtering, the 121 million average reads were aligned to reference with an 

88% alignment rate. Approximately 97% of target regions had a mean base coverage of 10X 

(Table 8). Joint variant calling identified 85,708 single nucleotide variants (SNVs) and short indels 

in with 85.96% of calls in dbSNP135 (dbSNP). Functional evaluation of calls identified 42,192 

(46%) missense, 344 non-sense (0.38%), and 48,373 (53%) silent variations. 

Transition/transversion ratio was 2.31 for all calls, and 2.447 for dbSNP variants. We applied 

various filtering approaches described elsewhere, but extensive search within Clinvar (Landrum 

et al. 2014), The Human Gene Mutation Database (HGMD) (Stenson et al. 2003), and OMIM 

(OMIM) did not identify any unambiguous genetic variants that likely caused or contributed to the 

child’s phenotype (Gilissen et al. 2012). 

Table 8.  

Summary metrics of Exome sequencing. 

 

Mappable 
Paired 
Reads                      

(M) 

Mappable 
Unique  
Paired 
Reads      

(M) 

Paired 
Reads 

Mapped          
(M) 

Mapped 
Bases       
(Gb) 

On/Near 
Target 

Mapped 
Bases    
(Gb) 

Mean 
Coverage 
Captured 
Regions      

(X) 

Target 
Regions 

Coverage 
>10X     
(%) 

Fold 
Enrichment 

Child 138.58 121.30 107.22 10.79 8.13 85.71 98.05 26.17 

Mother 145.77 128.17 113.15 11.39 8.54 88.79 97.73 25.71 

Father 133.88 115.60 101.66 10.22 7.78 84.25 97.66 26.6 

Average 139.41 121.69 107.35 10.80 8.15 86.25 97.81 26.16 

M = million, Gb = Gigabases, X= number of times locus was sequenced 
 

Characterization and Phasing of Xp22.31 Deletion  

Absence of candidate rare variants focused our attention to the previously identified 

interstitial deletion on Xp22.31. We compared log2 normalized physical coverage of the 

daughter’s exome to the log2 normalized coverage of the mother’s (see Materials and Methods), 

and observed those regions where the ratio fell below the threshold coverage of -1. Comparative 
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analysis identified the deletion as heterozygous at Xp22.31 with breakpoints at 6,451,600 and 

8,095,100, respectively (Figure 11). Similar comparison to the father’s exome indicated that father 

was hemizygous for this region; therefore the deletion occurred de novo. The distal breakpoint is 

approximately 50bp upstream of VCX3A and the proximal breakpoint resides within the first 

100bp of miR-651, a microRNA gene with no known biological function. The deletion 

encompasses 1,643,501bp harboring five genes and two microRNA genes (Table 9). This region 

was in concordance with the aCGH. The deletion was phased to Xp based on rs5933863, at 

X:7,270,694 G>A in the 3’ un-translated UTR region of the STS gene (NM_000351). The affected 

child’s genotype was homozygous G/G, the mother’s was heterozygous G/A, and the father’s was 

homozygous alternative A/A. Recoding based on anticipated ploidy, the child’s genotype is “G”, 

the mother remains “G/A”, and the father with a single X chromosome is recoded “A”. Principles 

of X-linked inheritance dictate that the child must have a heterozygous genotype G/A at this 

position. Since she is missing the paternal allele A and has an apparent genotype of “G”, there is 

evidence that the region containing this SNP on Xp was deleted resulting in an out-of-phase 

genotype (Table 10). This out-of-phase coding SNP was validated by Sanger method in the trio 

(Figure 12).  
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Figure 11. De Novo Deletion on Xp22.31.  
(a) Chromosomal view of log2 coverage difference between affected child and mother obtained 
by WES. The log2 difference of normalized read coverage between affected child and mother is 
shown on the y axis, with each blue dot indicating log2 difference in normalized sequence 
coverage in a 100bp window. The red line across the chromosome is the mean log2 differences 
across a sliding window of 25. A large deletion on chromosome X is recognizable in the child 
indicated by drop in log2 difference to -1 between 0-10Mbase. (b) Zoomed in view of reduced 
sequence read coverage between 6.4 - 8.1Mbase of the short arm of the chromosome. The pink 
shaded area indicates the deletion breakpoints predicted by aCGH analysis that overlaps with 
deletion seen by the exome coverage analysis. Gene tracks above the x-axis was obtained from 
UCSC Genome Browser and contains the deleted genes VCX3A, HDHD1, STS, VCX, PNPLA4 
genes and MI4767 microRNA genes. 
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Figure 12. Determining phase of rs5933863.  
Next-generation sequencing traces visualized using the Integrated Genomic Viewer (IGV) and 
below them the corresponding Sanger traces of rs5933863 G>A alleles in the STS gene that 
helped determine phase and origin of the 1.7Mb deletion on chromosome X (J. T. Robinson et al. 
2011). Patient’s IGV and Sanger traces (a) indicate that she is either homozygous G/G or 
hemizygous “G” genotype at this position. The mother’s (b) and the father’s (c) traces indicate 
that they are “G/A” and “A” genotype, respectively.  
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Table 9.  

Genes within 6,4-8,1 Mb interstitial deletion. 

Gene Gene Name Start End Strand RefSeq ID OMIM  Phenotype 

VCX3A 
Variably charged, X-

linked 3A 
6,451,659 6,453,159 - NM_016379 300533 XLI/MR 

MIR4767 microRNA 4767 7,065,901 7,065,978 + NR_039924   

HDHD1 
Haloacid dehalogenase-

like hydrolase domain 

containing 1 

6,966,961 7,066,231 - NM_001135565 306480  

STS 
Steroid sulfatase, 

isozyme S 
7,137,472 7,272,682 + NM_000351 300747 XLI 

VCX 
Variably charged, X-

linked 
7,810,303 7,812,184 + NM_013452 300229  

PNPLA4 
Patatin-like 

phospholipase domain 

containing 4 

7,866,804 7,895,475 - NM_004650 300102  

MIR651 microRNA 651 8,095,006 8,095,102 + NR_030380   

 XLI=X-linked ichtyosis, MR=mental retardation 

 

Table 10.  

Genotype phase of X-linked SNPs within the 6,4-8,1 Mb interstitial deletion 

Chr:pos ref alt rsID 
Proband Mother Father 

gt ploidy depth 

(ref) 

depth 

(alt) 

gt ploi

dy 

depth 

(ref) 

depth 

(alt) 

gt ploid

y 

depth 

(ref) 

depth 

(alt) X;727069

4 

G A rs5933863 G/G 1n 33 0 G/A 2n 46 43 A/A 1n 0 28 

X:727099

6 

A A rs1131289 G/G 1n 0 79 G/G 2n 2 176 G/G 1n 0 75 

X:727222

5 

G A rs13648 A/A 1n 0 1 nc - - - A/A 1n 0 1 

X:786737

8 

T C rs3470971

7 

C/C 1n 0 96 C/C 2n 0 141 C/C 1n 0 56 

X:786743

5 

G A rs1200998

9 

A/A 1n 0 72 A/A 2n 0 122 A/A 1n 0 57 

X:786766

8 

G C rs7739847

3 

C/C 1n 1 2 G/C 2n 2 4 C/C 1n 0 1 

X:786773

2 

A G rs6639976 G/G 1n 0 2 G/G 2n 0 1 nc - - - 

chr=chromosome, pos=position, ref=reference allele, alt=alternative allele, rsID=dbSNP137 id, 
gt=genotype, 1n=haploid, 2n=diploid, nc=no call by lack of coverage 
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Estimation of XCI Ratio from RNA-seq experiment.  

Sequencing the patient’s mRNA resulted in an average of 116 million paired reads per 

sample mapping to human reference genome (Table 11). From the exome variant call set 1,729 

single nucleotide variants including indels mapped to chromosome X, of which 901 were called 

heterozygous in the affected child. 374 calls were heterozygous SNPs within transcripts, and 325 

were X-linked, outside PAR1 and PAR2 regions (Mangs and Morris 2007). 226 variants were high 

quality with score PASS by GATK Variant Recalibration. Next we selected variants that were 

previously documented in dbSNP build 135. A total of 83 SNPs were covered with at least 20 

reads. 37 phased to Xm and 44 to Xp, and two Mendelian errors. The 37 Xm alleles were from 23 

genes, with 19 genes with a single heterozygous expressed variant and four had more than two 

heterozygous expressed variants. The 44 Xp alleles were from 31 genes, and 22 of them had a 

single heterozygous variant expressed and 9 had more than one heterozygous variant. The allele 

ratio distribution indicated bimodal distribution showing lower expression of paternally inherited 

heterozygous SNPs (Figure 13). The XCI ratio estimated from phased alleles was 82.7:20.3 

(approximately 83:20), and from the unphased allelic data was 82.2:19.2 (approximately 82:19), 

consistent with moderately skewed X inactivation with a ratio of 85:15 obtained by the HUMARA 

methylation assay. The integration of phase information had minimal affect to final estimate 

indicating the power of the SP model. In addition to the patient, we estimated XCI ratio in 4 

additional female individuals from our clinical sequencing center (Figure 14). In each case XCI 

was estimated by our RNA-seq approach and the HUMARA assay. A single case was 

uninformative for the HUMARA, caused by homozygosity at the methylation sensitive repeat 

sequence of the AR locus (Figure 14, S34). In 3 out of the 5 cases (60%), the HUMARA method 

suggested moderately skewed XCI ratio (>80:20) (Figure 14, S14, S18, S23). However, 

expression analysis supported strong correlation between the three methods only in the clinical 

case of this report where skewed XCI was estimated by all three methods (Figure 14, S18). In 

three of the remaining four cases skewed XCI was not supported by the RNA-seq analysis 

(Figure 14, S14, S23, S34). In a single case all three methods predicted random XCI ratio (Figure 

14, S11). In general there is a high concordance between the three approaches with the beta and 
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the SP methods have the highest concordance (Pearson’s r = 0.99), but these approaches have 

weaker correlation with HUMARA (SP Pearson’s r=0.84, beta Pearson’s r= 0.80). In general, we 

see a lower XCI ratio estimated by allele expression analysis than by HUMARA. Estimates of XCI 

ratio may be biased by reference bias in read mapping, insufficient coverage at heterozygous 

loci, and by heterogeneous gene expression driven by DNA methylation and cis-acting regulatory 

mechanisms. 

 

Table 11.  

Summary metrics of RNA-seq 

 

Quality 
Reads    

Mapped           
(M) 

Reads 
Mapped  
in Pairs         

(M) 

Reads 
Mapped  
in pairs          

(%) 

Mappable 
Bases 
 (Gb) 

Mapped 
Bases 
(Gb) 

FPKM >1.0           
#genes/total 
annotated 

on X 

Median 
Insert 
Size 

Child 95.44 84.13 88.15 8.047 8.046 346 /2688 154 

Mother 154.90 135.39 87.41 13.538 13.537 374/2688 156 

Father 99.18 83.11 83.8 8.894 8.893 362/2688 154 

Average 116.51 100.88 86.58 10.161 10.159 361/2688 155 

M = Megabases, Gb = Gigabases, X= number of times locus was sequenced 
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Figure 13. Phased allelic expression on chromosome X. (A) Allelic ratio of heterozygous SNPs 
show bimodal distribution of the expressed maternal (magenta dots, n=37) and paternal (green 
dots, n=44) alleles indicated biased expression of the inherited chromosomes. (B) Chromosome-
wide allele frequency of the phased alleles from RNA-seq indicate that overall, maternal X has a 
preferential expression in the patient with mean ratio across X of 0.82.7±0.083 (dashed magenta 
line), compared to paternal alleles of 0.20.3±0.095 (green dashed line). Biased expression in 
favor of the maternally inherited alleles is preserved across the entire length of the chromosome. 
However, alleles within genes that potentially escape X inactivation can show bi-allelic expression 
as defined by an allelic ratio 2SD outside the mean of the phased allele ratios (colored, dotted 
lines). Essentially all high quality heterozygous SNPs with a minimum of 20X coverage could be 
phased based on transmission of alleles within the X-linked region. SNPs where transmission of 
alleles could not be determined (clear circle) lie predominantly in the pseudo-autosomal region 
(PAR1) except two Mendelian errors. 
 

PAR1 PAR2 

A B 
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Figure 14. Estimation of XCI ratio in 5 patients. XCI estimated in five female patients. The x-axis 
indicates the approach (Beta= beta distribution of phased allelic expression, Hum= HUMARA 
DNA methylation assay, SP= semi-parametric method of unphased allelic expression). The y-axis 
indicates the XCI ratio (eg. S11 XCI ratio by Hum = 75:25). XCI ratio estimated by fitting allele 
ratios to the beta distribution can provide information about parental bias in XCI ratio as in the 
patient (S18) has 82.7:20.3 biased XCI that favors the expression of Xm (magenta). The ratio of 
allele expression from the maternal chromosome to the allele expression from the paternal 
chromosome (blue) gives the XCI ratio. In S18, using the beta model, we were able to determine 
that moderately skewed XCI ratio favored the expression of Xm compared to Xp. We had no 
phase information on the AR locus for the HUMARA assay, thus phase of XCI could not be 
determined. Homozygosity at the AR locus, in S34 shows uninformative HUMARA test, 
underlying the utility of RNA-seq in XCI estimation. The SP method does not consider allele 
phase to estimate the parameters of allele distributions, so phase of XCI could not be determined. 
RNA-seq estimates random XCI (<80:20) in S14 and S23 compared to moderately skewed XCI 
(>80:20) by HUMAR. S18 and S11 show complete concordance between the three methods. 
There is no clear trend that would indicate a higher likelihood of biased inactivation of either 
parental chromosome.  
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Identification of Genes that Escape X inactivation 

Phased, allele-specific expression analysis highlighted a number of variants in genes that 

may escape inactivation. Escape of X inactivation results in bi-allelic expression of genes from Xa 

and Xi in the same cell and can contribute to phenotypic variability in females who are carriers of 

X-linked disease (Carrel and Willard 2005). Therefore a catalogue of escape genes in clinical 

evaluation may contribute to the better understanding of clinical symptoms and may offer 

treatment options. We identified escape genes in the patient by examining 325 heterozygous loci 

across X and the deviation of their allelic ratio from the mean allelic ratio of each phased 

distribution. We defined a candidate escape gene by having a heterozygous SNP with an allelic 

ratio two standard deviations (2SD) outside the mean allelic ratio of the chromosome-wide allelic 

distribution and showing bi-allelic expression. Bi-allelic expression was defined as allelic ratio 

between 0.1 and 0.9. Therefore if a paternally inherited variant had an allelic ratio of 0.49 and the 

mean allele ratio of the chromosome-wide paternal alleles was 0.203 with a standard deviation of 

0.09, that variant allele ratio was greater then 2SD from the mean, thus was bi-allelic expressed. 

Of the 325 X-linked heterozygous alleles 15 showed bi-allelic expression in 12 genes, but 7 

variants were considered false positive owing to low read coverage (<7X)(Table 12) (Y. Zhang et 

al. 2013). Comparison of the sufficiently covered variant loci to chromosome wide XCI screens in 

hybrid cell lines and fibroblast indicated that in 4 of the 6 escape genes, XCI status was 

consistent with previous assignments of genes as escaping from XCI using both hybrid cell line 

and fibroblast data. Protein Convertase 1 Inhibitor (PCSK1N) and Plexin A3 (PLXNA3) both 

suggest escape status in the patient, and were previously reported as subject of XCI (Carrel and 

Willard 2005; Y. Zhang et al. 2013). PCSK1N and its associated propeptide may have a role in 

body weight and behavior in mice, and Plexin A3 is a co-receptor of the axon guidance receptor, 

Neurophilin-2 (NRP2) but their dosage affect owing to XCI remain to be elucidated (Morgan et al. 

2010). The distribution of genes that are shown to escape XCI was consistent with the regions 

that contain the highest density of escape genes, and were mostly located on the short arm of 

chromosome X (Disteche 1999). 
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Table 12.  

Escape of XCI. 

position dbSNP 
variant 

phase 

allelic 

ratio 

read 

depth 
Gene ID Carrel et al. 

X:3,524,309 rs6567569 paternal 0.49 55 PRKX Escape 
X:10,203,342 rs41305355 maternal 0.38 8 CLCN4 Heterogeneous 
X:10,204,267 rs4830442 maternal 0.50 12 CLCN4 Heterogeneous 
X:15,339,588 rs148660178 maternal 0.50 2 PIGA Subject 
X:15,801,330 rs12841514 paternal 0.55 20 CA5B Escape 
X:15,801,643 rs28707735 paternal 0.56 9 CA5B Escape 
X:15,802,800 rs5980189 paternal 0.50 4 CA4B Escape 
X:20,143,370 rs13179 paternal 0.50 10 EIF1AX Escape 
X:41,374,523 rs5918192 paternal 0.60 5 CASK Subject 
X;46,358,046 rs148701104 paternal 0.50 2 ZNF673 - 
X:48,690,749 rs11538178 paternal 0.47 15 PCSK1N Subject 

X:100,881,434 rs6995 paternal 0.50 4 ARMCX3 Subject 
X:132,438,872 rs1129980 paternal 0.50 2 GPC4 Heterogeneous 
X:153,694,334 rs5945430 paternal 0.50 8 PLXNA3 Subject 
X:153,759,858 rs1050757 paternal 0.67 3 G6PD Subject 

 

Discussion 

In this study we applied integrated WES and RNA-seq to simultaneously evaluate the 

functional effect of coding variations in the process of clinical diagnosis. Although previous clinical 

testing suggested a mechanism for the patient’s disease, with the combined analysis of the trio 

exome and the patient’s RNA expression that we are now able to hypothesize a mechanism for 

the observed phenotype. Variant filtration approaches after trio WES did not result in the 

identification of strong candidate causal variations. Although there was suggestive evidence from 

the aCGH that the disease pathology may be related to a heterozygous deletion on Xp22.31, it 

was only with incorporation of SNP phasing and comparative analysis of sequenced reads that 

we were able to determine that the deletion occurred de novo. Genes associated with 

neurological dysfunction including a number of variable-charge X-linked genes lie within the 

deletion (VCX, VCX3A) (Jiao et al. 2009). Although we were not able to detect lymphocyte 

expression of any of the VCX genes, there is suggestive evidence these genes have roles in 

cognitive function. VCX3A overexpression in rat hippocampal neurons increase neurite outgrowth 

that may positively influence synaptic plasticity (Jiao et al. 2009). Furthermore, some males who 

are hemizygous for a recurrent Xp22.31 deletion and have X-linked ichtyosis (OMIM 308100) also 
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demonstrate mental retardation (Van Esch 2005). This region appears to be a hotspot for copy 

number changes, complex duplications, and triplications, suggesting that the instability of this 

region may contribute to disease risk (P. Liu et al. 2011). The inherent limitation of our approach 

is that our resolution to define the exact genomic content of the deletion is reduced by exome 

sequencing and can only be circumvented with whole-genome sequencing approaches.  

Phased and unphased allele-specific expression in the patient was concordant with the 

HUMARA assay and indicated moderately skewed XCI.  

The contribution of skewed XCI to her condition is not clear, although the phased XCI ratio allows 

us to develop a hypothesis for the molecular mechanism that underlies her condition. One could 

hypothesize that random XCI in the patient and potential dominant negative affect of the deletion 

would result in a severe neurological condition. However, females who are carriers for deleterious 

chromosomal mutations may not present clinical symptoms owing to selective advantage and 

preferential expression of the normal X (Plenge et al. 2002; Desai et al. 2011). These females are 

usually heterozygous for an X-linked deleterious allele and have skewed XCI. The patient has 

skewed XCI and is heterozygous for the deletion but showing some mild neurological condition, 

suggesting that the preferential expression of the cytogenetically normal X may be compensating 

for the deleterious affect of the deletion. While insufficient cases have been reported to provide 

statistical significance, females who were diagnosed with Xp22.31 microduplication and 

preferentially silenced the X with the microduplication had normal phenotype while those who 

preferentially express the X with the microduplication had intellectual disability (F. Li et al. 2010). 

It is plausible that loss of a chromosome copy at Xp22.31 has different clinical manifestation than 

copy gain. Therefore the contribution of Xp22.31 rearrangements to neurological dysfunction 

need further study. For the patient sequenced in this study, our data are consistent with a model 

that the preferential expression of the cytogenetically normal, maternal X may have contributed to 

her mild cognitive phenotype. 

  Our ability to uncover molecular mechanisms by DNA and RNA-seq in patient’s surrogate 

tissue (peripheral blood) that may correlate with phenotype in the central nervous system argues 

for potential benefit in clinical diagnostic cases that remain unresolved. This is supported by a 
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number of studies that find a strong correlation in gene expression profile in blood with affected 

status in such diseases as Parkinson’s Disease and Huntington’s Disease (Scherzer et al. 2007; 

Borovecki et al. 2005). Previous studies evaluating the methylation status of X-linked genes and 

overall XCI patterns across various tissues show that XCI is concordant between tissues, 

including blood and brain (Bittel et al. 2008; Cotton et al. 2011). However, these studies were 

performed in females with no known neurological condition and showed that variable XCI status 

exists in about 12% of X-linked genes and variance between tissues increases with age. Studies 

in Rett syndrome and XCI in mice show some evidence that deleterious alleles lead to 

preferential silencing of the mutant X in brain tissue, but their correlation with blood has not been 

well characterized. (J. I. Young and Zoghbi 2004). In females with Rett Syndrome there is 

evidence that skewed XCI correlates with disease, however correlation between blood and brain 

XCI pattern was low in a small sample set. Therefore the use of whole blood to predict XCI 

patterns in the brain and their correlation to disease susceptibility remains to be elucidated.  

Our simulation proposed an approach to estimate XCI ratio using chromosome-wide SNP 

expression and found that phased and unphased SNPs can equally estimate the ratio with both 

beta and SP model. Even if research and clinical sequencing application will be limited in 

sequence coverage, our method is able to predict XCI at high concordance with expected as low 

as 10X coverage. Our method also allowed for base error rate therefore providing a more realistic 

sequence data. Our approach based on read count, and relative ratio estimation of variant alleles, 

can be applied to other sequencing platforms and to other expressed regions of the genome that 

are targeted by RNA-seq. Principles of skewed expression demonstrated in this study could be 

relevant to imprinted portions of autosomes and therefore applicable to disorders like Prader-Willi 

and Angelman syndromes (Biliya and Bulla 2010). Skewed expression of autosomal 

heterozygous alleles can be markers for imprinted regions, and may uncover cis-regulatory 

elements.  

Although, in our small dataset, XCI estimation from RNA-seq analysis was not fully 

concordant with the methylation assay, direct measurement of allele expression may provide a 

better estimate of the true cellular activity of each inherited chromosome copies. HUMARA assay 
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targets a single genomic locus and relies on the methylation of a repeat sequence targeted by 

methylation sensitive restriction enzyme. Deletions, copy number changes, homozygosity at the 

AR locus, enzymatic and PCR inefficiency, hypo-methylation of restriction enzyme target, 

difficulties associated with data interpretation, and the challenges associated with the 

amplification of repeat regions may influence assay results (Swierczek et al. 2012).  

Our approach is dependent on the accuracy and sensitivity of multiple SNP markers 

expressed in the X-linked region. There is heterogeneity in the regulation of X-linked gene 

expression by epigenetic mechanisms, therefore, sampling alleles from multiple genes with 

various expression levels to infer XCI ratio may be inconsistent with previous methods but 

excluding alleles from genes that escape XCI can provide an inaccurate picture of the X 

chromosome activity, and molecular characteristics of the tissue source (Carrel and Willard 

2005). Therefore, we did not filter out alleles from genes that were previously reported to escape 

XCI. This may have contributed to an overall lower XCI ratio estimates by RNA-seq compared to 

the methylation assay. In addition, methylation based assessment of XCI may not be concordant 

with expression based methods owing to differences in assays and applied analytical methods. 

Challenges in RNA-seq experiments include technical and analytical variability that may affect 

XCI ratio therefore transcription-based validation assays may be useful to improve our approach 

(Carrel and Willard 2005; Moreira de Mello et al. 2010; Swierczek et al. 2008). The use of direct 

expression analysis of multiple SNP markers may also increase our power to accurately estimate 

XCI, providing a basis to improve our definition of clinically significant XCI ratio boundaries. 

However a more systematic screening of XCI by RNA-seq across a series of X-linked disorders in 

females may greatly enhance our understanding of the underlying cause of phenotypic variability. 

WES identified a deleterious deletion on Xp22.31 that is in a hotspot for chromosomal 

rearrangements and associated with a number of neurological conditions. In addition, using 

allele-specific expression analysis from RNA-seq we were able to define XCI ratio in simulated 

and experimental data. Although the number of individuals reported, and the number of 

heterozygous alleles in the X-linked region may be small, both the SP and beta models could 

reliably estimate XCI from RNA-seq data. The benefit of the SP model is that parental sequencing 
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and genotype phasing is not necessary to estimate XCI, it compares well to XCI based on allele 

phasing, and can be applied to individuals only. The combined genomic and functional data 

allowed formulating hypothesis for the molecular mechanism for the patient’s symptoms, which 

can provide a basis for further clinical studies and patient management. However, extensive 

functional analysis is required to assess if our hypothesis based on sequencing blood RNA can 

be applied to a neurological condition. Finally, our study also represents an application of high-

throughput sequencing methods and their simultaneous utilization to study epigenetic 

mechanisms in the clinical settings and how they contribute to genetic basis of a heterogeneous 

disease. Rapid decrease in sequencing costs, improved analytical methods, comprehensive, 

integrative sequencing approaches will likely be used more in the future and may replace 

traditional methods that may be uninformative owing to atypical disease phenotype, low-

throughput, high costs and invasiveness. 

In conclusion, we showed the utility of combined analysis of genomic and functional 

variations on a chromosomal scale to determine XCI ratio. Application of this method showed 

concordance with currently available clinical test thus provides a sensible alternative in studies 

that apply next-generation sequencing to study complex, hard-to-diagnose phenotypes. In 

addition, we showed that the use of integrated approach can provide insight into the underlying 

molecular process potentially correlating with her symptoms. 
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CHAPTER 4 

INTEGRATED ANALYSIS OF DNA AND RNA SEQUENCE DATA IN RARE CHILDHOOD 

DISORDERS BY MULTIVARIATE OUTLIER ANALYSIS OF RARE FUNCTIONAL VARIANTS  

Introduction 

 In this chapter we set out to develop a novel framework to study the functional impact of 

germline DNA variants derived from patient specific tissue, to improve standard variant 

prioritization methods by integrated DNA and RNA sequencing. Identifying the genetic basis of 

disease in rare childhood disorders is often hampered by discerning which variants from a list of a 

few dozen to a few hundred variants are functional, and thus the focus of this chapter is to 

describe an approach for prioritizing those variants with a functional impact on transcription. A 

germline variant can have a variety of functional effects on transcription, including but not limited 

to exposing cryptic splicing sites causing in-frame exon skipping, causing premature truncation of 

transcription or altering promoter binding. 

RNA-seq is a high-throughput approach that provides qualitative and quantitative 

information on the impact of functional variants by sequencing the transcriptome or transcribed 

RNA species including mRNA, long non-coding RNAs (lincRNA), small-RNAs in a tissue of 

interest relating to specific condition (Z. Wang, Gerstein, and Snyder 2009). This approach works 

essentially like DNA sequencing except the millions of sequenced mRNA fragments are mapped 

to a known transcript structure of the genome, or assembled without a reference transcript map to 

detect novel transcripts (Ozsolak and Milos 2010). The most commonly investigated properties of 

the transcriptome are alternative mRNA transcription and processing (de Klerk and 't Hoen 2015). 

Choice of promoter, exon splicing, alternative poly-adenylation directly impact the mRNA 

composition of the cell and can result in cellular heterogeneity affecting clinical phenotypes 

(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al. 2014; H. Zhang, Lee, and Tian 

2005; Florea, Song, and Salzberg 2013).  

Current RNA-seq analytical approaches provide multitude of information on the functional 

portion of the genome including but not limited to gene and isoform expression, differential gene 

and isoform expression, allele-specific expression, and alternative splicing and exon usage. 
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One common RNA-seq analysis approach is the estimation of transcriptome abundance 

of the sequenced sample, either alone, within groups, or by comparison to others. The number of 

reads mapping to transcript relates to its expression but within-sample, across-sample biological 

and technical variability during RNA-seq can influence estimates and only provide a relative 

expression level. Transcript abundance is impacted by the presence of isoforms, recognizing that 

we are measuring fragments that are typically much smaller than the overall transcript (in the 

case of Illumina next generation sequencing). A single gene may have many different types of 

transcripts, or here referred to as isoforms, representing possibly alternatively spliced variants of 

an mRNA species with different composition of exons. Due to ambiguity in read mapping, reads 

may map to multiple isoforms. There are numerous statistical approaches to resolve this 

uncertainty based on known exon structure and the quality of mapping reads (H. Jiang and Wong 

2009; Trapnell et al. 2010). Currently the most common measures to quantify the expression of a 

transcript are transcript per million (TPM) and fragments per kilobase of transcript per million 

reads mapped (FPKM) (B. Li and Dewey 2011; Trapnell et al. 2010).  

Finding genes harboring functional variants that are differentially expressed between two 

or more conditions has become a routine experimental design to study phenotypic variability in 

human disease. This approach is based on estimating the change in read counts in expressed 

transcripts between conditions followed by statistical testing if the change is greater than what 

would be expected just due to random variation. The final result of a differential expression study 

provides an estimated magnitude of change in expression (fold change) and its significance (p-

value) (Rapaport et al. 2013). Differential expression analysis can provide a list of genes that are 

associated with given predictors (i.e. affected, unaffected) or responses (i.e. treated, untreated). 

There is extensive literature on experimental designs and analytical strategies for differential 

gene expression studies using RNA-seq which is beyond the scope of this study (Rapaport et al. 

2013; Finotello and Di Camillo 2015; Oshlack, Robinson, and Young 2010). 

Another analysis approach for RNA-seq is to measure allele specific expression (ASE), 

which was a core concept behind our prior chapter on X-inactivation. While in that chapter we 
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were looking at a chromosome-level impact, ASE is more narrowly defined as the unequal 

expression of two copies of the same gene and this imbalance in expression can be important in 

phenotypic variability in human disease. ASE in extreme cases can result in monoallelic 

expression of only one copy of a gene while the other is silenced, by significantly biased 

expression of the two alleles. ASE may also result in allele specific transcript expression 

presenting biased expression a transcript with one allele over the other. This pattern of 

expression may be influenced by epigenetic gene regulation, XCI, or parental imprinting (Fang et 

al. 2012; Moreira de Mello et al. 2010). ASE studies utilize heterozygous loci across the 

transcriptome and quantify the relative proportion of the mRNA expression between the two 

alleles (Main et al. 2009). Mapping bias present in RNA-seq against alternative alleles present 

challenges for accurate estimation of ASE and can be tackled by the creation of reference 

genomes that contain both reference and alternative alleles or by adjusting the mapping 

algorithms for alignment stringency (Rozowsky et al. 2011; Stevenson, Coolon, and Wittkopp 

2013). Genetic variants that result in allele specific gene expression are also called expression 

quantitative trail loci (eQTL) that have been shown to have population and tissue specificity 

(Lappalainen et al. 2014; Battle et al. 2014). ASE analysis provides a direct measurement of the 

allelic differences by counting the number reads mapping to the two alleles, and provides a 

probabilistic significance estimate of the difference in the from of a p-value. 

 Alternative splicing results in the differential inclusion of exons into mRNA. Splicing is the 

most prevalent regulatory mechanism with 95% of genes undergoing splicing (E. T. Wang et al. 

2008). The major splicing events are exon skipping, alternative use of splice donor and acceptor 

sites, intron retention and mutually exclusive exons (de Klerk and 't Hoen 2015). Most common 

mechanisms genetic variants impact exon usage is by exon skipping which occurs in 

approximately 30% of human and mouse genes showing great diversity in exon usage across 

tissues (Sugnet et al. 2004; Florea, Song, and Salzberg 2013). Detection of alternatively spliced 

mRNA transcripts and their exon structure is based on counting sequenced reads in a pre-

defined exon map of the transcriptome and then performing a comparative estimation of the 

difference among conditions (Anders, Reyes, and Huber 2012). This approach can provide 
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information on the diversity of transcripts with various combinations of exon usage, and quantifies 

the difference (fold change) between the conditions allowing for hypothesis-based analysis.  

Non-sense mediated decay (NMD) is an important mRNA quality control mechanism that 

has been associated with over 10% of all human diseases (Bidou et al. 2012). NMD is caused by 

mutations that lead to premature termination codon (PTC) in the mRNA sequence. PTC can lead 

to the degradation of mRNA transcript and to non-functional protein or truncated polypeptide. 

Authentic stop codon or upstream mutations resulting in the change in the open reading frame 

can lead to PTC, therefore variant calling and annotation has a major role in the prediction of 

NMD transcripts. Optimally variant detection should be in genomic context as variant callers for 

RNA-seq are still in their infancy (Piskol, Ramaswami, and Li 2013). The next step is to correlate 

the stop codon signal to abundance of transcript where PTC lies. This is challenging because 

genes have multiple splice variants and therefore we need to identify the transcript where the 

stop codon lies, or infer NMD from read counts mapping to the wild type and mutant allele. There 

are some methods that detect NMD sensitive transcripts (Vitting-Seerup et al. 2014), but most 

commonly simple allele ratio estimates are used to infer NMD (MacArthur et al. 2012). 

Outlier detection is one of the major steps in many “omics” applications. High-throughput 

“omics” generate large amount of data and obtaining the most important information, and to 

perform a coherent analysis many times starts with identifying observations that deviate from the 

bulk of the data. Thus, outliers are data that deviate so much from other observations that are 

suspected to be generated by other mechanisms (Hawkins 1980). A data point that is an outlier 

from the other data may be indicative of low sample quality, sample stratification, technical noise, 

and can suggest biologically important features that correlate with clinically important traits. It is 

therefore important to identify them prior analysis or as the goal of the analytical process. 

Outlier analysis can be grouped into two main groups, univariate and multivariate 

methods. Univariate statistical models often rely on assumptions made about the distribution of 

the data, with the expectation that that data points are independently distributed (Ben-Gal 2005). 

Essentially, a univariate model would calculate the sample mean and standard deviation 

of a single variable and classify outliers as measurements that are 2 or 3 standard deviation away 
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from the mean. Visually univariate outliers can be detected by using scatterplots, QQ plots or 

boxplots. Univariate methods have difficulty when multiple outliers exist in the sample data. This 

can be attributed to the fact that when multiple outliers exist in the same direction, the mean of 

the sample data shifts and the standard deviation estimates increase so the lesser outlier falls 

within the standard deviation limit and thus goes undetected. This is called the masking effect. In 

other cases where large outliers shift the mean and the standard deviation so much as other 

observations become outliers as well is called swamping effect (Ben-Gal 2005). Statistical 

methods like the Grubb’s test (Grubbs 1969) or the Tietjen-Moore test (Tietjen and Moore 1972) 

exist to compensate for effects biasing outlier estimation, but require the knowledge of expected 

number of outliers in the data and assume normal data distributions.  

In RNA-seq, where data distributions do not follow normal distribution univariate 

measurements are fitted to Gaussian, Poisson, or beta distributions and outliers are estimated 

based on the probability that point belong to the data distributions. Such approaches are utilized 

in differential gene, exon or transcript expression studies that use a gene-by-gene technique to 

test whether a single measure in a patient’s condition (i.e. expression of a gene) is significantly 

different from the expression of the gene in a control condition/group. In essence, these tests like 

DESeq, or DEXSeq, use read count data to quantitate expression level, and assuming a Poisson 

or negative binomial distribution, model the expression levels between conditions to estimate the 

probability that the gene is an outlier in the patient (A. Roberts et al. 2012; Love, Huber, and 

Anders 2014). However analysis of the transcriptome is performed over thousands of genes, and 

multiple testing corrections may leave biologically relevant, outlier genes off the list of significant 

differential expression list.  

As described above RNA-seq provides information on multiple transcriptomic features 

and analyzing them individually provides information about the impact of genomic variation to the 

specific RNA feature. However, true understanding of biological systems, like transcriptome and 

its diversity can be best explained by integrating measurements from multiple transcriptomic 

features. Essentially, the identification of genes that are significantly impacted by genetic variation 

can be best studied if multiple measurements from allelic expression, exon usage, transcript 
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diversity, or gene level expression can be combined and evaluated simultaneously. Patterns in 

these complex datasets can provide a means of quantifying truly multivariate patterns that arise 

from the correlational structure of the variables. Multivariate analysis also highlights patterns that 

are redundant in univariate analysis, provides means to identify patterns and relationships 

between variables that may be missed by univariate analysis. As an example, identification of 

alternative exon usage obtained from a single measurement for a patient that may be considered 

as a measurement error can gain biological importance if gene or transcript level measurements 

are combined with exon measurements and multiple variables indicate an outlier pattern of the 

exon when applied to multivariate algorithm. Thus, multivariate analysis of multiple variables is 

best suited for high dimensional data sets. Detection of outliers in multivariate models is only 

possible by identifying interactions between the different variables within the class of data. 

Essentially, by adding additional dimension to univariate data, outliers detected by univariate 

method can be confirmed or rejected, or new outliers can be identified relying on multiple 

measurements. Thus taking into account the relationship of the multivariate is a critical step in 

multivariate analysis. Some of the more common multivariate outlier methods include statistical 

models, and data-mining techniques (Ben-Gal 2005). Statistical models are based on the 

identification of observations that lie relatively far from the center of the multivariate data 

distribution. Data mining techniques apply clustering of multiple variables into distinct clusters that 

may include multiple observations indicating relationship of observations in multi-dimensional 

space. Multivariate analysis is not computationally intensive and can be used as an unbiased 

data exploratory tool simply summarizing the variability in the data (Jombart, Pontier, and Dufour 

2009). 

One of the most extensively applied multivariate statistical approach for RNA-seq data is 

principal component analysis (PCA) (Yeung and Ruzzo 2001). PCA is primarily used to reduce 

multi-dimensional data into as few components as possible that explains the greatest variability in 

the original data. PCA based methods work best for data that is transformed to normalize data 

distribution and stabilize variance. The transformation results in creation of linearly uncorrelated 

variables from possibly correlated variables that negatively impacts clustering of variables and 
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impacts the number of outliers detected (Yeung and Ruzzo 2001). Un-correlating the variables 

allows for the estimation of distances between the variables using Euclidian distance. PCA is also 

sensitive for the scale of the variables. In quality control procedures of RNA-seq experiments 

using gene expression abundance measures across multiple samples as multivariate, PCA can 

identify samples whose expression do not adhere to group indicating potential quality issues (Ellis 

et al. 2013). In cancer, PCA allows for separation of normal samples from samples with different 

stages of tumor progression (Veytsman et al. 2014). Using a subset of genes and their 

expression profile outlier PCA can also identify sub-populations of cells among hundreds of 

single-cell RNA-seq experiments (Buettner et al. 2015).  

The most common multivariate approach that takes into account the relationship between 

variables in a multivariate data space is the Mahalanobis distance (MD) (Mahalanobis 1936). 

Given n observations from a p-dimensional dataset, the algorithm first estimates the mean of 

each variable, followed by estimation of covariance between each variable. This is followed by 

taking the square root of the quadratic multiplication of mean difference and inverse of covariance 

matrix. Mahalanobis measures the distance for each observation from the multidimensional mean 

(centroid) of the data distribution given the covariance (De Maesschalck and Jouan-Rimbaud 

2000). An observation is a multivariate outlier if its probability falls under a threshold given a 

degrees of freedom. Since Mahalanobis scores follow a Chi-Squared distribution for normal data 

the degrees of freedom equals the number of variables in the dataset.  

The advantage of MD is that it does not have assumptions about the scale of the 

variables and does not require data normalization, or transformation. In addition it allows for 

integration of large number of variables that are only limited by the number of observations, as 

MD works best when number of observations exceeds the number of variables. The utility of 

multivariate outlier analysis and Mahalanobis distance to quantify outliers has been demonstrated 

by Kothari et al. (2013) who applied continuous variables of absolute gene expression and fold 

change from differential gene expression in a two-dimensional data space to identify kinase 

expression signatures across hundreds of samples that may be targets for pharmacogenomics 

treatment in breast and pancreatic cancer. In addition, Schissler et al. (2015) applied log2 
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transformed gene expression measurements from paired normal and tumor tissue of the same 

breast cancer patient in a two-dimensional data space to identify dysregulated pathways. In this 

approach the MD is calculated for each gene within its respective pathway with the initial 

assumption of no difference in gene expression between the normal and tumor tissues. Thus the 

MD is interpreted as a signed magnitude of differential expression between tissues incorporating 

the variance of other genes within the pathway where the gene lies. The average of gene specific 

MD scores for each pathway were then used to define the pathway as potentially relevant 

clinically. These two approaches underscore the utility of MD in large cohorts where patients with 

outlier expression signatures are studied for specific genes, or in single-patient cases where all 

expressed genes are evaluated for outlier gene signatures that may be associated with 

phenotype. Both methods show the utility of MD when variables of the same or different scales 

are studied.  

However, the application of traditional gene-level expression signatures in cross patients 

studies can mask distinctive signals from single patient, and may not fully explain the significance 

of the gene signature to disease mechanism.  

To address this, we present a framework to apply multivariate outlier analysis of multiple 

transcriptomic signatures of gene and exon expression from RNA-seq in a group of 29 patients 

with rare genetic conditions (Figure 15). Our cohort includes patients with or without genetic 

diagnosis, but enrolled patients present clinical symptoms that are difficult to categorize and do 

not easily fit into any clinical disease phenotype. Thus in a sense our cohort is a collection of 

clinical outliers. We use gene and exon expression to search for transcriptional multivariate 

patterns that are rare, and outliers in the multivariate data space. Specifically, our analysis 

framework leverages multivariate outlier analysis by MD, recognizing that there are thousands of 

possible genetic variants in standard clinical exome sequencing to make diagnosis in any given 

pediatric disorder of unknown etiology. The goal is to provide MD score based on the expression 

profile for each candidate variant, such that those with the highest score are indicative of outlier 

expression pattern supported by gene and exon data within our cohort. In this case, if there were 

500 candidate variants one would perhaps choose for in depth functional analysis the variants 
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with highest scores before those with lower scores. Thus, we will utilize the hypothesis that 

variants with substantial impact on transcription by their outlier score would be more likely to be 

functional, and thus more relevant than a non-functional variant when considering the variant with 

a phenotype or disease in any child. Multivariate analysis by Mahalanobis distance of outliers 

provides a tested and established approach to integrate gene and exon expression values for 

patient specific variants so they can be simultaneously interpreted with clinical information.  

In this chapter, genomic information in the form of rare variant annotation from family 

based DNA sequencing are integrated with MD scores for each patient. Integration of genomic 

data with MD scores was expected to identify rare, functional variants that have significant impact 

on transcription, and provide a basis to further reduce the list of potential candidate variants in 

rare disease diagnosis. Our results show that gene-based MD scores have association with 

variants predicted to have high functional impact. We also found that frameshift variants had 

higher outlier scores than variants in other functional classes. Using this approach we found that 

presumed causal variants previously identified by DNA sequencing in a subset of cases showed 

large functional impact corroborating the genomic findings and supporting causality. Integration of 

RNA-seq based outlier analysis also revealed new candidate variant in previously undiagnosed 

case, suggesting the utility of integrated DNA-RNA analytical approaches in the diagnosis of rare 

childhood diseases. 

 



  77 

 

Figure 15. Schematic overview and workflow. We prepared an integrative DNA and RNA 
sequencing data set by combining family-based whole exome data with family-based RNA-seq 
analysis results for 29 patients from the Center for Rare Childhood Disorders at TGen. Exome 
data was obtained from family sequencing, variants were called, annotated and filtered by in-
house analytical pipeline for all 29 patients. RNA-seq was performed for the same family 
members followed by differential gene and exon expression analysis between each patient and 
their parents. Multiple measures were taken from each differential analysis and used to perform 
multivariate outlier analysis by Mahalanobis distance for each expressed gene and exon in the 29 
patient cohort. MD scores obtained for each patient transcriptome data were integrated with 
variant annotations from exome sequencing to a final tabulated variant table utilized for variant 
prioritization. 
 

 

Materials and Methods 

Patients 

Patients with undiagnosed genetic condition from 32 families were selected from the 

Dorrance Center for Childhood Disorders between 2012 and 2014. Enrollment criteria into the 

Center’s study included, but were not limited to previously undiagnosed, possibly severe 

condition, an ambiguous genetic origin, and negative, or inconclusive genetic tests prior 

enrollment.  
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Standardized clinical assessment was performed by the referring physician or by the 

center’s clinical staff. All patients went through standard clinical evaluation prior enrollment, and 

remained undiagnosed. Clinical evaluation varied case-by-case and included but were not limited 

to karyotyping, genetic panel testing, mitochondrial DNA genotyping, magnetic resonance 

imaging, chromosomal microarray testing, enzymatic assays. Most patients exhibit some form of 

neurological phenotype and were characterized as one of the following condition: Neurologic, 

Multi-system, Musculoskeletal structural, Cardiac (Table 13). Written informed consent was 

obtained from the patients at the time of enrollment, or from parent/guardian for patients under 

the age of 18. The Western Institutional Review Board (WIRB) approved this study. 

The goal of the center is to obtain consent and to collect biospecimen from the patient 

and his/her biological parents. Recognizing that not all family members could be consented and 

whole blood obtained, we define a family trio, with exome, and/or whole genome, and RNA 

sequencing was performed in the patient and their biological parents. In addition we define a 

singleton where whole genome or exome sequencing could be performed only in the patient. 

Furthermore, we define a large family where exome and\or whole genome sequencing was 

performed for patient, biological parents, affected or unaffected siblings, grandparents, uncles, 

and/or aunts. Finally, we define a parent-child duo in those families where exome or whole 

genome data could only be obtained from one of the biological parent and the patient. For 

detailed clinical description of each patient please refer to Appendix A. 
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Table 13.  

Study patients. 

Family Patient 
(Gender) Ethnicity 

Family 
History 

Age/Age of 
Onset Organ System Clinical Diagnosis 

0001 1(F) Caucasian N 15y/<1mo Neurologic Neurotransmitter Disorder 
0002 1(F) Caucasian Y 13y Unaffected Migraine 
0002 2(F) Caucasian Y 21y/5y Cardiac, 

Neurologic 
Intellectual disability, (Wolfe-
Parkinson-White syndrome) 

0002 4(M) Caucasian Y 18y/8y Neurologic Hemiplegic migraine 
 0002 

 5(M) Caucasian Y 9y/<2y Neurologic Leigh Syndrome; 
Mitochondrial encephalopathy 

0004 1(M) Caucasian N 17y/4mo Neurologic Developmental Delay | ID | 
Microcephaly 

0005 1(M) Caucasian N 6y1/<1mo 
Neurologic, 
Musculoskeletal 
structural 

Nystagmus|Motor 
Delay|Feeding Disorder 

0006 1(F) Middle East C|Y 12y/2-3y 
Neurologic, 
Musculoskeletal 
structural 

Ataxia with sensory 
neuropathy 

0008 1(F) Indian N 17y/3-4mo Musculoskeletal
/structural 

progressive 
leukoencephalopathy|spastic 

|global cerebral atrophy 

0016 1(M) Asian N 10y/6y 
Neurologic, 
Musculoskeletal 
structural 

progressive cerebellar 
ataxia|dystonia 

0018 1(F) Caucasian N 15y/2y Neurologic ADHD, Autism Spectrum 
Disorder 

0019 1(F) Caucasian Y 11y/<1mo Neurologic non-progressive cerebellar 
ataxia, infantile dystonia 

0024 1(M) Middle East C 17y/2 mo Neurologic Aicardi-Goutieres Syndrome 
0025 1(M) Caucasian N 6y/<1mo Musculoskeletal 

structural 
motor delay, hypotonia|feeding 

disorder 

0049 1(F) Caucasian N 11y/<1mo 
Neurologic, 
Musculoskeletal 
structural 

Cockayne Syndrome, COFS-2 

0091 1(M) Caucasian Y 9y/5y Neurologic Schizophrenia 
0103 1(M) Hispanic Y 19y1/6mo Neurologic NBIA| BPAN 
0103 2(F) Hispanic Y 14y/<1y Neurologic NBIA| BPAN 
0117 1(M) Caucasian N 10y/birth Neurologic congenital nystagmus, 

Pelizaeus–Merzbacher-like  

0139 1(M) Caucasian N 19y/prenatal Cardiac, 
neurologic 

Situs inversus; developmental 
delays, chronic lung disease 

0152 1(M) Caucasian N 3y1/<1y Multi Leigh Syndrome 
0157 1(F) Caucasian N 5y/1y7mo Neurologic Developmental Delay 
0011 1(F) Caucasian N 8y/<1mo Neurologic Aicardi Syndrome 
0014 1(F) Caucasian N 14y/<1mo Neurologic Aicardi Syndrome 
0033 1(F) Caucasian N 7y/3mo Neurologic Aicardi Syndrome 
0034 1(F) Hispanic N 3y/<1mo Neurologic Aicardi Syndrome 
0046 1(F) Afr.American

/Caucasian N 4y/3mo Neurologic Aicardi Syndrome 

0047 1(F) Caucasian N 14y/3mo Neurologic Aicardi Syndrome 
0048 1(F) Caucasian N 8y/3mo Neurologic Aicardi Syndrome 
0118 1(F) Caucasian N 18y/3mo Neurologic Aicardi Syndrome 
0059 1(F) Caucasian N 9y/3mo Neurologic Aicardi Syndrome 
0012 1(F) Caucasian N 12y/3y Neurologic Developmental delay, autism 

spectrum disorder 

0020 1(F) Caucasian N 5y/birth Multi Neonatal progeroid disorder, 
failure to thrive 

0023 1(F) Hispanic N 7y/<1y Neurologic 
Infantile choreoathetosis; 

dystonia, rigidity; cognition is 
near normal 

0029 1(F) Caucasian Y 6y/<2y Neurologic Leukoencephalopathy 
0140 1(F) Caucasian N 5y/10mo Musculoskeletal  

Abbreviations: F=female, M=male, N = no family history, C = consanguinity or suspected consanguinity, Y= multiple 
affected within the family, 1 = expired. 
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 The 32 enrolled families consisted of 18 trios (56%), 8 large families (25%), 4 singletons 

(13%), and 2 parent+proband duos (6%) (Figure 16). This cohort is ethnically heterogeneous, 27 

patients are Caucasian (75%), 4 are Hispanic (11%), 1 of African American descent (3%), and 4 

are of Asian descent (11%)In six families, there is a family history of the rare condition with 

multiple affected individuals (0002, 0006, 0019, 0091, 0103, 0029), and we enrolled multiple 

affected patients from families 0002 (n=3) and 0103 (n=2) for a total of 36 patients. One of the 

children (0002_1) is diagnosed as unaffected sibling but we included her due to some mild 

symptoms that we felt was important to decipher the phenotypic heterogeneity within the family. 

From the 32 families 25 families participated in the study described in this chapter (Ch.4), 5 

families in the study described in Chapter 3 and 30 families in the study described in Chapter 2. 

There is an overlap between the studies in terms of participation and participation is described in 

Table 3. Among the 32 families, there were a total of 24 female patients (66.7%) and 12 (33.3%) 

males. The study participants included 10 females diagnosed with Aicardi Syndrome 

(MIM:304050). In two families (0006, 0024) the clinicians reported that there was evidence of 

consanguinity. In 23 patients the primary organ system that is affected is neurologic, for 5 

patients a combination of neurologic and musculoskeletal symptoms were observed. Three 

patients show severe musculoskeletal symptoms, and two patients show extensive multi-system 

clinical symptoms. In ten families, the likely pathogenic, disease causing mutations using exome 

and genome sequencing was identified prior RNA-seq (0001, 0002, 0005, 0012, 0018, 0020, 

0024, 0047, 0049, 0103).  
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Figure 16. Family structure of enrolled patient. 
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Table 14.  

Study Participation and sequencing 

Family WGS Count WES Count RNA-seq Count Study 

0001 - - P|M|F|S1|S2|S3 6 P|M|F|S3 4 Ch4 Ch2  
0002 - - P1|P2|P3|M|F|S 6 P1|P2|P3|M|F|S 6 Ch4 Ch2  
0004 P|M|F 3 - - P|M|F 3 Ch4 Ch2  
0005 P 1 - - P|M|F 3 Ch4   
0006 P 1 - - P|M|F 3 Ch4   
0008 - - P|M|F|S1 4 P|M|F 3 Ch4 Ch2  
0011 P|M|F 3 - - P|M|F 3 Ch4 Ch2 Ch3 
0012 P 1 M|F 2 P 1  Ch2  
0014 P|M|F 3 - - P|M|F 3 Ch4 Ch2 Ch3 
0016 - - P|M|F 3 P|M|F 3 Ch4 Ch2  
0018 - - P|M|F 3 P|M|F 3 Ch4 Ch2 Ch3 
0019 - - P1|P2|P3|M|F|S

1 

6 P1|M|F 3 Ch4 Ch2  
0020 P 1 - - P 1  Ch2  
0023 - - P|M|F 3 P 1  Ch2 Ch3 
0024 - - P|M|F 3 P|M|F 3 Ch4 Ch2  
0025   P1|M|F|S1|S2 5 P1|M|F 3 Ch4 Ch2  
0029   P1|P2|M|F|S 5 P1 1  Ch2  
0033   P|M|F 3 P|M|F 3 Ch4 Ch2  
0034   P|M|F 3 P|M|F 3 Ch4 Ch2 Ch3 
0046   P|M 2 P 1  Ch2  
0047   P|M|F 3 P|M|F 3 Ch4 Ch2  
0048   P|M|F 3 P|M|F 3 Ch4 Ch2  
0049   P|M|F 3 P|M|F 3 Ch4 Ch2  
0059   P|M|F 3 P|M|F 3 Ch4 Ch2  
0091   P|M|F|S1|G 5 P|M|F|S1|G 5 Ch4 Ch2  
0103   P1|P2|M|F 4 P1|P2|M|F 4 Ch4 Ch2  
0117   P|M|F 3 P|M|F 3 Ch4 Ch2  
0118   P|M 2 P|M 2  Ch2  
0139   P|M|F 3 P|M|F 3 Ch4 Ch2  
0140   P 1 P 1  Ch2  
0152   P|M|F 3 P|M|F 3 Ch4 Ch2  
0157   P|M|F 3 P|M|F 3 Ch4 Ch2  
Total  13  90  90    

P,P1,P2,P3= proband, M=mother, F=father, S,S1,S2= unaffected sibling, Ch2=Chapter 2, 
Ch3=Chapter 3, Ch4=Chapter 4 
 

Biospecimens 

We collected from each consented study participant whole blood in Vacutainer Blood 

Collection Tube (Becton, Dickinson and Company; Franklin Lakes, NJ) and in PaxGene RNA 

tube (Qiagen; Germantown, MD). Genomic DNA isolation was performed in multiple stages 

depending on the time of enrollment. Patients DNA enrolled prior January 2013 was isolated at 

Barrow Neurological Institute using Wizard SV Genomic Purification System (Promega, Madison, 

WI). From 2013 blood collections were sent out for DNA and total RNA isolation at GeneDx 
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(Gaithersburg, MD). From 2014, genomic DNA isolation was performed under Clinical Laboratory 

Improvement Amendment (CLIA) standard operating procedures. RNA isolated at TGEN followed 

standard manufacturer recommended protocol using PaxGene Blood miRNA kit (Qiagen; 

Germantown, MD). 

Whole Genome Sequencing 

Whole Genome Sequencing was performed for a total of 13 individuals, including 3 

parents-proband trios, and 4 singletons proband. Genomic DNA from 10 of the 13 individuals 

were prepared and sequenced at Illumina Whole Genome Sequencing Service (Understand Your 

Genome, Illumina FastTrack), and one trio was prepared and sequenced at TGEN (Table 3). 

TGEN library preparation was performed using Illumina suggested whole genome library 

preparation protocol with some modifications to achieve sequencing libraries with longer than 

500bp insert size. 1µg of genomic DNA was fragmented using random shearing by sonication on 

the Covaris S1 system to a target insert size of approximately 1000bp. After fragmentations the 

sheared fragments were blunt end repaired and A base added to the 3’ end of the DNA 

fragments. Barcoded adapters ligated to fragments by an A-to-T ligation step followed by size 

selection on agarose gel. DNA bands corresponding to approximately 1000bp were sliced out of 

the gel and purified using the Quantum Prep Freeze’N’Squeeze DNA Gel Extraction Spin 

Columns (Bio-Rad, Hercules, CA). Purified genomic DNA was consequently PCR amplified, and 

quantitated by qPCR, followed by equimolar pooling. The pooled trio was sequenced on a single 

HiSeq2000 flowcell using multiplexed, paired sequencing chemistry for 100 bp read length. 

Whole Exome Sequencing 

Coding regions were captured using TruSeq Exome Enrichment Kit v2 (Illumina, San 

Diego, CA) and SureSelectXT Human All Exon V5 (Agilent, Santa Clara, CA) following 

manufacturer recommended protocol. Sequencing was performed after prepared samples were 

pooled in pools of 6 for TruSeq Exome libraries, or pools of 8 for SureSelect libraries. Each pool 

was sequenced on two lanes of a Hiseq2000 flowcell using multiplexed paired end chemistry and 

101bp read length with a goal of 100X coverage.  
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RNA preparation and sequencing 

Total RNA was isolated from PaxGene blood tubes (Qiagen, Georgetown, MD) using 

manufacturer recommended protocol. The purity of the total RNA was assessed using Nanodrop 

ND-1000 (Thermo Scientific, Wilmington, DE), and integrity was assessed by BioAnalyzer 2100 

(Agilent, Santa Clara, CA). Samples with an RNA integrity number (RIN) of at least 5 were used 

in this study. mRNA libraries were prepared using Illumina TruSeq stranded RNA library 

preparation kit and Illumina TruSeq RNA library preparation kit v2 (Illumina, San Diego, CA). The 

choice of kit was consistent within families. The Illumina sample preparation kits utilize oligo-dTs 

hybridized to magnetic beads to purify the mRNA molecules followed by thermal fragmentation. 

The fragmented RNA molecules were converted to first strand cDNA by random hexamer primers 

and reverse transcriptase enzyme. DNA Polymerase I and RNase H were used to polymerize 

second strand of cDNA. Double stranded cDNA molecules were end repaired to obtain blunt 

ends, which was followed by ligation of a single A base to each 3’ end. Sequencing adaptors with 

unique barcodes and T overhang were ligated to A-tailed cDNA fragments creating a final 

sequencing library. Libraries were amplified to increase cDNA yield for sequencing and final 

amplified libraries are quantified by qPCR. Final libraries were evaluated for fragment size 

distribution using Agilent BioAnalyzer 2100. Stranded RNA library preparation includes addition of 

Actinomycin D to reduce DNA-dependent synthesis during first strand cDNA synthesis. Strand 

specificity was achieved by incorporating dUTP instead of dTTP in second strand of cDNA. 

Quantified libraries were equimolarly pooled based on qPCR concentrations into pools of 4, and 

final library pools were quantified before cluster generation for sequencing. Each pool was 

sequenced on a single lane of a HiSeq2000 flowcell using multiplexed, paired end sequencing 

chemistry for a 101bp read length. 
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Bioinformatics Analysis 

Upon completion of sequencing runs, raw basecall files were converted to sequenced 

reads in FASTQ format using CASAVA 1.8.2 (Illumina, San Diego, CA). The fastqc package was 

used to evaluate the raw reads for overall quality (fastqc). Reads were aligned to human 

reference genome hs37d5.fa from the 1000 Genomes Project. The reference genome contained 

contigs associated with ribosomal unit, cancer causing viruses, and ERCC spike-ins. Alignment 

was performed by mem module of the Burrows Wheeler Aligner (BWA v0.7.8) (Li 2013), and 

binary alignment files were generated by SAMTOOLS v0.1.19(H. Li et al. 2009). After alignment 

the base quality scores were recalibrated and joint indel realignment was performed on the BAM 

files of each family member using Genome Analysis Toolkit (GATK v3.1-1)(McKenna et al. 2010). 

Duplicate read pairs were marked using PICARD v1.119 (picard). Single nucleotide 

polymorphisms (SNPs), short insertion and deletions were identified using HaplotypeCaller 

module of GATK. 

RNA data 

 Reads were aligned to human reference genome hs37d5.fa as described above. 

Alignment was performed by Spliced Transcripts Alignment to a Reference (STAR_2.3.1z_r395) 

(Dobin et al. 2012) and binary alignment files were generated by SAMTOOLS v0.1.19(H. Li et al. 

2009). Alignment was facilitated using known transcript structure of the human genome from 

Homo sapiens GRCh37.74.gtf (ftp://ftp.ensembl.org/pub/release-74/gtf/homo_sapiens/). 

Duplicate read pairs were marked using PICARD v1.119 (picard). Final bam alignments were 

used to estimate gene expression abundance in the form of normalized FPKM values (Fragments 

Per Kilobase Of Exon Per million Fragments Mapped) using the Cufflinks 2.2.1 package(Trapnell 

et al. 2013). Library size normalization was performed across all the families presented as 

follows: Post BAM file generation, individual BAM read alignment files were processed by 

cuffquant module of Cufflinks. Cuffquant essentially takes a transcript annotation and an 

alignment file from the RNA-seq experiment and pre-processes the information in the alignment 

with reference to the transcript coordinates by generating a binary output that is an input to 

cuffnorm, reducing the computational burden on the normalization step. The sample level output 
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of cuffquant module is the input for the next module called cuffnorm. Cuffnorm takes input 

reference annotation and a list of output files from cuffquant, and it normalizes FPKM 

abundances across all the input based on geometric mean of all samples in the normalization and 

controlling for library size. We normalized FPKM abundances across 79 enrolled participants from 

25 families including patients and their biological parents described in this chapter. 

We used the cuffdiff2 module of Cufflinks to estimate differential gene expression of 

annotated transcripts. In each comparison the biological parents were assigned as “control”, and 

thus differential gene expression was based on parent compared to offspring/patient. Cuffdiff 

applies a geometric normalization method the number of fragments mapping to each transcript 

and applies an algorithm that considers cross-replicate variance and uncertainty in read mapping 

to different isoforms of the same gene(Trapnell et al. 2013). It models fragment counts using the 

beta negative distribution and reports change in expression between conditions (eq, parents, 

patient) on gene level with statistical significance. Cuffdiff2 calculates the log2 foldchange of gene 

expression between conditions. In those genes where one of the conditions had zero mapped 

fragments the foldchange is positive or negative infinity depending which condition has zero 

fragments.  

Normalized FPKMs and cuffdiff2 analysis output were inserted into an in-house relational 

database. The Mongo database was based on dynamic, document style data structure that 

allowed for horizontal and vertical scaling giving flexibility to storage and access to ever-

increasing omics data (mongo). We reduced the cuffdiff2 output by filtering out genes assigned 

“FAIL”, “LOWDATA”, “HIDATA”, or “NOTEST”. 

Estimation of alternative exon usage was performed using the R 3.1.2/Bioconductor 

package DEXSeq v.1.12.2(Anders, Reyes, and Huber 2012). This method is based on the counts 

of mapped reads overlapping well annotated exons. If read overlaps exon boundaries of multiple 

overlapping transcripts with different boundaries for the exon, DEXSeq merges all the boundaries 

of the exons into a single feature and breaks it up into multiple “counting bins”. Reads were 

counted that overlap exon boundaries in protein coding regions using a flattened gtf annotation 

based on Homo sapiens.GRCh37.74.gtf. We excluded all overlapping exons of different genes to 
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reduce the number of merged exons as DEXSeq does not count overlapping exons into their own 

respective bins. After read count DEXSeq uses sizefactor obtained from the geometric mean 

coverage of each exon across conditions to report normalized exon coverage “exonBaseMean” 

as the abundance estimate of exon expression. The read count dispersion due to technical and 

biological variability is estimated for each condition and a generalized linear model is used to 

estimate differential exon usage for each counting bin(Anders, Reyes, and Huber 2012). Based 

on DEXSeq read count we estimated a normalized coverage difference between the conditions 

(E). For each sample we calculated the total number of reads mapping to all counting bins (Na, 

Nb…Nn). Next we obtained the ratio of counts per bin (Ci) over all the reads mapping to all 

counting bins for each sample across all counting bins. Finally we obtained a relative coverage 

difference in each exon (Ei) between the conditions by dividing the normalized count in the 

condition 1 (patient) with sum of normalized counts in condition 2 (parents) as seen in Equation 2: 

𝐸𝑖 =
𝐶𝑖𝑎
𝑁𝑎

Σ 𝐶𝑖𝑏
𝑁𝑏

 

The DEXSeq output and the calculated coverage difference were inserted into in-house mongo 

database. We used exonBaseMean and normalized coverage difference (nDiff) as 

measurements in multivariate outlier analysis of exons expression. 

Variant Annotation Matrix 

Variants identified by the HaplotypeCaller were inserted into mongo database for each 

family from VCF formatted variant list, followed by annotation by snpEff according to Homo 

sapiens GRCh37.74 annotation(Cingolani et al. 2012). SnpEff annotated variants with their 

predicted functional impact on amino acid change, protein structure. We included annotations for 

known canonical transcripts only. In addition, variants were annotated with prediction scores for 

functional, pathogenic affect (SIFT, CADD, MutationTaster), conservancy (phyloP, phastCons), 

and population frequency (dbSNP141, Exome Sequencing Project, 1000 Genomes) using the 

collection of annotations stored in dbNSFPv2.8 (P. C. Ng and Henikoff 2003; Kircher et al. 2014; 

Schwarz et al. 2014; X. Liu, Jian, and Boerwinkle 2013; Pollard et al. 2010; Siepel et al. 2005; 
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Consortium et al. 2010). Genotype-phenotype correlation from ClinVar was added. ClinVar 

contains genomic variants and their relationship to observed phenotype, health status, 

categorizing them based on likeliness of pathogenicity(Landrum et al. 2014). We also added 

disease gene annotation from Clinical Genomics Database(Solomon, Nguyen, and Bear 2013) 

which contains over 3000 genes that are know to be associated with genetic conditions. This 

database was curated into adult and pediatric disease causing genes with information on 

available intervention, and primary organ system to be affected. Population frequency estimates 

from large-scale exome sequencing project, the Exome Aggregation Consortium were also added 

to variant annotations (Exome Aggregation Consortium). We removed all variants that fell within 

5’ and 3’ UTR regions, introns, upstream or downstream of genes, intergenic variants with the 

expectation that most rare, functional variants that may be detected by mRNA sequencing will lie 

within amino acid coding regions. Variants with a phred-scaled genotype confidence quality (GQ) 

of less than 90, and phred-scaled probability estimate (QUAL) that the SNP event exist of less 

than 500 as described in the VCF format guide were removed (Consortium et al. 2012). 

Annotated variants were further filtered for an estimated allelic frequency of less than 5%, a 

measurement taken from the maximum population frequency of the population frequencies 

reported in dbNSFP v2.9(X. Liu, Jian, and Boerwinkle 2013).  

Multivariate Outlier Analysis  

 Central to multivariate analysis is the definition of objects and the number and nature of 

variables that is to be analyzed for each object. In addition interpretation of multivariate data 

depends on the relationships we set out to observe; whether we are looking for relationship 

between the objects or the variables. (Jombart, Pontier, and Dufour 2009). In this study we 

defined objects as patients and the variables as measurements obtained from RNA-seq analysis 

with the intention to study relationship between patients in terms of outlier behavior. Outlier 

behavior was estimated in a gene and exon level. Thus for each expressed gene and exon we 

built two-dimensional matrices with two vectors. In each matrix we tested a single gene or exon 

with n objects and p variables. In gene-based matrix the variables included two vectors of 

continuous values of log2 transformed, normalized gene abundance defined by the FPKM value 
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from Cufflinks, and log2 fold change expression difference between each patient and their 

parents from Cuffdiff. In exon-based matrix for n objects we included two vectors with continuous 

values of log2 transformed, normalized exon coverage defined by exonBaseMean value in 

DEXSeq, and log2 normalized exon expression difference defined by the nDiff value as described 

above in Methods. We set following rules for estimation of the distance scores for each gene: 1) 

each vector had to have the same dimension, thus both FPKM and log2foldchange must be 

obtained for a patient, 2) genes with zero covariance were filtered out, 3) each value within the 

vectors had to be numeric, thus genes with a log2foldchange of negative or positive infinity were 

given an arbitrary value of -19 or +19, respectively. We applied this method to account for the fact 

that in differential expression, the lack of read fragments in one of the two condition results in a 

logarithmic ratio that may not capture well biological significance. Since, we were looking for 

extreme events, insufficient read fragment coverage can indicate biologically important events 

that one could pursue. 4) We defined the detection limit of a gene to FPKM ≥ 0.1, and required 

that >90% of objects have an expression above defined limit. For each gene that passed 

detection criteria we added 0.1 to the FPKM to facilitate our ability to transform the FPKM values 

to a logarithmic scale and apply uniformly scaled data for distance analysis. 

Estimation of Mahalanobis distance for expressed exons followed similar rules as 

described for genes. We used exonBaseMean of ≥1 as our detection limit and required at least 

90% of patients to have an expression above detection limit. We performed logarithmic 

transformation of exonBaseMean and nDiff prior Mahalanobis distance analysis.  

We used the native Mahalanobis function of the R statistical package wrapped in a perl script to 

first query our database of RNA-seq expression results for each gene and exon across the 29 

patients followed by loading the descriptors into the n x p vector matrix for distance analysis in R 

programming language(Rv3.1.2). MD score (MD) was determined for each object (n) in the n x p 

matrix with respect to the vector means (µ) for each vector p, and the covariance (S) of all vectors 

as shown in Equation 3: 

MD2 = (p - µ)’S-1(p - µ) 
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Statistical Analysis.  

We evaluated the gene-based and exon-based MD scores using a non-parametric 

Kolmogorov-Smirnov test to compare the two data distributions. This test has the advantage of no 

assumptions about normality of the distributions. Similar distributions would suggest that 

measurements are taken from the same data and exon and gene based scores would be 

redundant. Levene’s test for equal variance test was used to test for variance in the MD scores 

grouped based on their functional impact. MD scores were grouped into “high” or “moderate-to-

low” groups as described in the Results section. Levene’s test was used to test the first 

assumption of the Mann-Whitney rank sum test of equal variance. Using Mann-Whitney of the 

MD scores, we are able to compare the variants predicted to have high or moderate-to-low 

functional impact. Mann-Whitney is a non-parametric rank sum test that can test for the null 

hypothesis of no difference in the mean ranks of the data distributions. A significant difference in 

mean ranks between high and moderate-to-low functional impact would indicate a more 

significant impact on transcription by one of the functional classes. Mann-Whitney was performed 

using the Wilcox test.  

In addition the variants were further grouped into nine functional classes including 

frameshift, insertions-deletions, missense, sequence feature, splice site, splice region, start/stop, 

synonymous , start codon as described in the Results section. Kruskal-Wallis test was used to 

test the hypothesis that MD scores among the nine functional classes show different distribution 

of scores. This test is essentially an extension of the Mann-Whitney test for comparing more than 

two data sets. When multiple data distributions are compared the Kruskal-Wallis tests for the null 

hypothesis that the median ranks of all groups come from the same distribution. A significant 

finding would suggest that one of the data distributions is enriched for higher MD scores. Since 

the Kruskal-Wallis does not identify which functional class is enriched for outliers if the null 

hypothesis fails, we performed pairwise, non-parametric test of rank sums by Dunn’s test (Dunn 

1964). Dunn’s test uses average ranking from Kruskal-Wallis rank sum test and test the null 

hypothesis of no difference in pairwise manner. It reports a z score as test statistics based on the 

difference of the average ranks and the sum of ranks between the two groups. The pairwise 
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probability that one random value from a group is larger than a random value from another group 

can then be evaluated for multiple testing corrections. All tests were preformed in R programming 

language using ks.test, levene.test. dunn.test functions. 

 

Results 
 We will present the results in three sections.  In the first section the QC metrics of the 

DNA and RNA sequencing will be shown focusing on the obtained throughput and QC metrics 

that are standard procedures for large scale DNA and RNA sequencing projects.  In the second 

section, we analyze the multivariate MD score’s ability to discern transcriptionally functional 

variants.  In the third section, we will present two families applying the approaches within the 

context of a genetic diagnosis. 

Quality Control Metrics.  We first provide quality control metrics for the sequence data 

we generated.  Between 2012 and 2014 we obtained whole genome data for 7 patients and 6 

parents for 3 trios and 4 singletons for a total of 7 families with WGS data. Median genomic 

coverage for the trio sequenced at TGEN was 23.2 ± 0.5X and for the individuals sequenced at 

Illumina was 43.1 ± 6.5X (Table 15). Genomic coverage analysis indicated that in each TGEN 

prepared genome >90% of bases were sequenced at least 10X depth, and for the Illumina 

genomes >90% of bases for sequenced at least 20X reads depth (Figure 17A). We must 

recognize that the genomes sequenced at TGEN were prepared using non-standard methods to 

obtain long insert library of approximately 1000bp. Standard Illumina library preparation methods 

target a 350bp insert size and kits designed for clinical sequencing service have been optimized 

for throughput and quality. In light of this, the long insert libraries of samples 004_1, 004_2, and 

004_3 have performed well. In addition we sequenced 90 whole exome samples from the 

remaining 19 families. The mean per base coverage for the exome target regions was 85 fold, 

with 93.1% of bases covered more than 10 fold and 67.1% above 50 fold (Figure 17B.) On 

average 4.5 million SNVs and short indels were identified in the whole genome data and 475 

thousand in the exome data. The average dbSNP rate that shows the proportion of variants 

identified previously in human populations is 0.96 for the genomes and 0.94 for the exomes which 
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is in line with previous findings by the 1000 Genomes project (Consortium et al. 2012). We find on 

average the exome data resulted in more non-synonymous variants called 3,695 in exomes 

compared to 2,965 in the genomes. Exome sequencing achieves a higher overall coverage in 

exons than genome sequencing thus increasing confidence in variant calls in exome data. 

Interestingly exome analysis resulted in a lower average calls in start sites (n=151) compared to 

the genomes (n=180). The capture of exon 1 in next-generation sequencing is a known issue 

caused by a higher GC content in first exons. Thus exome kits are challenged by this and the 

optimization of exome capture kits to leverage the efficient capture of first exons with start sites is 

an ongoing process. The results of variant calling and annotation can be found in Table 16.  
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Table 15.  

Quality metrics of Whole Genome Sequencing 

Individual Gender 
Total 

Reads(M) 

Read 
Length 

(bp) 

% Reads 
Aligned 
(Pairs) 

QC 
Aligned 
Bases 

(M) 
Coverage 

(X) 

Insert 
Size 
(bp) 

% 
Duplicates 

004_1 Male 897 101 99.78 88,648 22.6 722 15.05 

004_2 Female 895 101 99.85 88,636 23.7 701 11.99 

004_3 Male 884 101 99.86 87,498 23.3 708 11.73 

005_1 Female 1,163 100 99.51 114,343 35.7 302 2.07 

006_1 Female 1,258 100 99.51 123,051 38.8 304 2.16 

011_1 Female 1,296 100 99.74 127,581 38.7 295 3.81 

011_2 Female 1,762 100 99.73 172,955 52.5 285 4.25 

011_3 Male 1,137 100 99.69 111,390 33.8 294 3.47 

012_1 Female 1,526 100 99.42 149,566 47.6 313 2.78 

014_1 Female 1,565 100 99.60 154,337 48.5 317 2.70 

014_2 Female 1,123 100 99.66 110,738 48.5 323 2.31 

014_3 Male 1,541 100 99.66 152,066 47.5 303 2.95 

020_1 Female 1,310 100 99.89 129,322 39.4 280 3.66 

 Abbreviations; M= million, bp=base pairs. 
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Figure 17. Coverage analysis of WGS and WES. Plot shows sequencing depth obtained for 
whole-genome sequencing (A) and whole-exome sequencing (B).  
A) Samples 004_1, 004_2 and 004_3 are the long insert libraries with a lower overall coverage 
that can be seen by the three curves to the left. In these samples 50% of bases were covered by 
at least 20X The Illumina sequenced samples show that 50% of bases are covered at a minimum 
of 30X (011_3), and in some cases 50X of average depth is achieved for 50% of bases (014_2). 
B) Histogram showing the percent of targets (exons) with average coverage of 10X, 50X, 100X. 
Target coverage for 90 exomes show that samples achieve at least 10X average target coverage 
in >90% of targeted regions, and between 70-80% of targets are covered at 50X for most 
exomes. 
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Table 16.  

Variant call metrics for 32 families.  
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This table shows the variant call summary of the family based whole genome and exome sequencing for all 
study participants presented in all chapters of this dissertation. In terms of quality metrics the most important 
QC metrics include the dbSNP rate and transition-transversion ratio (Ti/Tv). 
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For RNA-seq, on average, 96,5 million reads mapped to reference genome for a total of 

90 RNA-seq libraries (Figure 18A) The smallest library size was 26.8 million reads up to the 

largest library size of 239.8 million reads. Refer to sample-by-sample RNA-seq metrics to 

Appendix C. The RNA content of the prepared libraries shows that on average 60.9% of bases 

were amino acid coding, 29.6% were UTR bases, 5.8% intronic, 3.7% intergenic, and 0.07% were 

ribosomal bases (Figure 18B). We found 14,441 protein coding genes with a median FPKM of 

greater than zero in all study participants. We found 190,219 exons in 18,378 protein coding 

genes with an exonBaseMean above zero and 133,752 exons in 14,055 genes with a median 

exonBaseMean of 1 (Table 17). 

 

Table 17.  

Expression estimates for protein coding genes and exons. 

FPKM 

threshold 

0 0.001 0.01 0.1 1 5 10 50 100 500 1000 

# genes 14,77

1 

14,642 14,484 13,067 10,653 7,745 5,669 1,569 775 139 66 

% genes 79.87 79.18 78.32 70.66 57.61 41.88 30.65 8.48 4.19 0.75 0.36 

baseMean 

threshold 

0 0.001 0.01 0.1 1 5 10 50 100 500 1000 

# exons 190,2

19 

148,09

1 

148,09

1 

148,09

1 

133,75

2 

114,22

0 

102,85

7 

65,23

9 

45,44

5 

12,46

4 

6,00

1 % exons 86.28 67.17 67.17 67.17 60.97 51.81 46.65 29.62 20.61 5.65 2.72 

% genes 100.0

0 

82.91 82.91 82.91 76.47 68.62 64.75 54.14 47.47 23.86 13.8

9 This table shows the number of protein coding genes and their percentage to the total at various expression levels 
estimated for genes (FPKM) and exons (baseMean) 
 

We evaluated the gene expression correlation of protein coding genes to find outlier 

samples that may bias multivariate analysis (Figure 19A). Selection was done gene-by-gene 

those protein coding genes that showed expression >0 FPKM in at least one of the study 

participant (n=15,454). Correlation was also evaluated in the exon usage data. We selected 

exons in protein coding genes that were expressed in at least one of the patients with an 

exonBaseMean of >0 (n=123,945). Family 0002 patients were highly correlated as expected as 

exonBaseMean is calculated across conditions, and in each patient exon usage was compared to 

parents’ exon expression (Figure 19B). Overall correlation across exons was Spearman’s rho 

>0.9 suggesting high quality data. 
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Figure 18. Mapping of RNA-seq data. A) Distribution of high quality sequenced reads across 90 
individuals from RNA-seq presented in all 3 chapters. B) Proportion of bases sequenced across 
individuals in relation to their RNA contents. The horizontal axis shows each prepared samples  
and the vertical axis the % bases mapping to mRNA species.  
 
 
 
 
 
 
 

 
Figure 19. Sample correlations of gene and exon expression. A) Pairwise correlation of 
normalized FPKMs in protein coding genes across 25 families presented in this chapter for outlier 
analysis. The higher the correlation on a 0-1 scale the more red the cell’s color. Each cell 
represents a comparison between two samples. B) Pairwise correlation of exonBaseMean 
between 25 families (29 patients). The more red the cell the higher the correlation. These plots 
show high correlation above 0.8 for gene based expression and >0.9 for exons, indicating that 
sequencing libraries were of good quality. 
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Overall assessment of RNA-seq found that 53.2% of protein coding genes (n=9,831) 

were expressed in at least 90% of samples above the detection limit of FPKM >= 0.1, and 64,1% 

of protein coding exons were expressed above the detection limit of exonBaseMean >=  1.0. This 

allows us to investigate over half of protein coding genes in whole blood for multivariate outlier 

testing analysis (Figure 20). 

 

 

 

Figure 20. Transcript abundance of protein coding genes. The x-axis indicates FPKM thresholds 
and the vertical axis indicates the number of protein coding genes where >90% of participants 
had an FPKM above threshold. The orange color indicates all protein coding genes and the blue 
bars indicate genes in the Clinical Genomics Database. This plot shows that we could study over 
60% of protein coding genes in whole blood above our detection limit of 0.1FPKM. When looking 
at genes that are known to cause disease we obtain a similar percentage at 0.1 FPKM. 
 
 

 

 

 

 

0

20

40

60

0.001 0.01 0.1 1 5 10 50 100 500 1000
>= FPKM

ge
ne

s 
w

ith
 e

xp
re

ss
io

n 
in

 >
=9

0%
 s

am
pl

es
 (%

)

geneSet

All

CGD

Whole Blood Gene Expression



  99 

Multivariate analysis by Mahalanobis distance. We selected RNA-seq data types of 

gene and exon expression as the basis for multivariate analysis because of the availability of 

relatively straightforward techniques to obtain their measurements, and their measurements could 

be used to correlate expression with in silico predictions of variant affect to gene function. Gene 

expression and differential gene expression are the most common methods to quantitatively and 

qualitatively study transcriptomic diversity and its relation to phenotype. These measurements are 

rapidly approaching their applications in clinical studies showing high correlation between 

sequencing platform and improved accuracy in their measurements (S. Li et al. 2014; Risso et al. 

2014). Selection of exons during splicing can have a great impact of mRNA complexity and 

protein diversity in the cell. It is also suggested that over 95 percent of genes are spliced that 

leads to inclusion of different sets of exons in mRNA (E. T. Wang et al. 2008). In addition, exon 

skipping is the most common mechanism of alternative splicing occurring in over 38% of genes 

(de Klerk and 't Hoen 2015). DEXSeq provides exon-by-exon information on splice events without 

considering isoform complexity thus significant findings cannot be correlated with isoforms found 

in the tissue. Sulem et al. (2015) showed that 74% loss-of-function variants, including splice site, 

have effect on all transcripts of the gene.  

Mahalanobis distance is a unitless, descriptive measure of relative distance of a data 

point from the centroid of the data distribution taking into account the correlation of each data 

point within the multivariate dataset by estimating the covariance (Mahalanobis 1936). Calculation 

of a covariance matrix is essentially a normalization method, thus Mahalanobis analysis does not 

requires input data to be normalized or scaled to a common scale. However, as a proof-of-

concept we brought all multivariate to a common scale and used log transformed FPKM, 

exonBaseMean, and nDiff to match log transformed fold change from differential expression. 

Covariance estimation is a critical step in Mahalanobis analysis, because without covariance 

distances between multivariate would simply be the Euclidian distance that does not capture the 

relationship between the data points (De Maesschalck and Jouan-Rimbaud 2000). In addition, the 

large dynamic range of achieved RNA-seq experiments warrants data transformation to improve 

confidence in prognostic metrics and make data more amenable to analytical tools that assume 
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normal distribution of input (Zwiener, Frisch, and Binder 2014; Risso et al. 2014). While our RNA-

seq data does not follow normal distribution even after transformation, Kothari et al. (2013) 

reported successful application of Mahalanobis distance in a multivariate data space of gene 

expression and differential gene expression to identify outlier genes for the discovery of clinically 

actionable kinase gene targets in cancer therapies. 

 In order to integrate candidate variants we calculated outlier MD scores across 29 

patients for genes and exons harboring rare variants by calculating the MD score for each 

candidate variant (post-filtering) and each individual. By example, a variant (GeneX Y555C) 

would have an associated outlier score such as ‘MD score = 1.32’. In total 25,053 variants 

remaining after variant annotation and filtration for frequency were scored in 7,222 genes across 

the patient cohort. The number of variants scored can be found in Table 18. The scores ranged 

between 19.2558-0.0006 for genes and between 25.4-0.0009 for exons. Next we filtered our list 

to those genes with a single variant within patients and obtained 18,834 variants in 7,043 genes. 

The range of scores was 19.3-0.0001 for gene-based scores and did not change for exon-based 

scores (Table 18). The highest gene-based distance score was seen in 0002_4 (MD score = 

19.3) and highest exon score was detected in 0103_1 (MD score = 25.4). 

On average there was 863±200 variants in each patients with scores for both genes and 

their exons. The distribution of gene and exon distance scores indicated non-normal, right 

skewed distribution with very long tails for both scores suggesting that most variants have similar 

functional impact across patients (Figure 21). This follows our expectations that variants with 

functional impact that deviate from general tendencies will be rare and likely patient specific. We 

performed a bootstrap version of Kolgomorov-Smirnov test to find out if the gene and exon MD 

scores come from same distribution in the full and filtered dataset. Hypothesis testing is done with 

the null hypothesis that the two data sets come from the same distribution. Bootstrapping is 

performed by Monte Carlo simulations and allows for non-continuous data or data with many ties. 

Our data has many ties as many variants may have the same MD scores. Two-sample KS test 

indicated that gene scores and exon scores are not coming from the same distribution for full 

dataset and filtered dataset (full: Kolmogorov-Smirnov, D= 0.0491, P= 2.2e-16; filtered D= 
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0.0357, P= 7.735e-11). There are weak, linear relations between gene and exon distance 

measurements and overall exon scores tend to be higher than gene scores. (Spearman’s Rank, 

S = 699004637637, P < 2.2e-16, rho= 0.37232) (Figure 22). Proportion of shared variance 

between the gene and exon ranked scores shows that little variance in one distance is explained 

by variance the other distance (R2=0.1386) suggesting that the two distances capture different 

properties of the transcriptome. 
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Figure 21. Distribution of MD scores. A. Scores for variants across 29 patients with both gene and 
exon scores n=25,053. B. Scores for variants in single hit genes n=18,834. In general we can see 
non-normal, very right skewed distributions. For both gene and exon scores indicating a very few 
MD scores with very high magnitude for the full datasets and the filtered variants as well.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18.  

Mahalanobis score

D
en

si
ty

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Mahalanobis score

D
en

si
ty

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

gene scores
exon scores

A B 



  103 

Gene and exon measures for 29 patients.  

Sample ID 

# rare, 

coding 

variants  

# variants 

with Gene 

Score 

# variants 

with Exon 

Score  

max/min  Gene 

Score 

max/min 

Exon Score 

# of 

genes 

scored  

# variants 

with 

Gene/Exon 

Scores 001_1 1046 669 622 10.5/0.003 6.5/0.00009 475 594 
002_5 1574 1070 928 11.5/0.0003 15.8/0.002 694 902 
002_2 1574 1070 928 8.1/0.003 9.3/0.006 698 906 
002_1 1574 1077 928 6.9/0.0001 12.1/0.001 699 907 
002_4 1574 1077 928 19.3/0.002 5.3/0.003 698 906 
004_1 524 333 314 16.0/0.007 19.8/0.05 243 302 
005_1 863 537 447 6.1/0.002 12.0/0.01 368 434 
006_1 1253 779 686 11.0/0.001 7.5/0.001 531 667 
008_1 1979 1268 1143 13.6/0.0001 17.8/0.007 807 1085 
011_1 2110 1271 1149 6.6/0.0001 9.7/0.005 792 1100 
014_1 2354 1505 1469 12.9/0.05 10.3/0.004 818 1295 
016_1 1994 1292 1955 11.7/0.002 11.8/0.002 566 1092 
18_1 1553 1012 1512 17.3/0.03 21.5/0.006 661 845 
19_1 1508 977 1468 7.2/0.0003 6.2/0.001 629 814 
24_1 1499 960 1473 17.9/0.006 19.7/0.003 634 806 
25_1 1426 944 1394 16.9/0.01 22.5/0.004 645 813 
33_1 1758 1105 1002 10.3/0.00006 20.3/0.001 715 961 
34_1 2022 1351 1153 13.5/0.005 14.4/0.0003 807 1126 
47_1 1330 863 786 10.8/0.0003 5.3/0.0005 593 753 
48_1 1476 899 842 10.9/0.0002 21.7/0.006 636 789 
49_1 1319 871 786 8.5/0.004 7.9/0.0004 594 758 
59_1 1851 1181 1057 11.3/0.0006 22.2/0.0006 780 1012 
91_1 1286 818 738 10.5/0.0002 20.1/0.0002 562 696 

103_1 1731 899 960 15.8/0.0003 25.4/0.3 646 831 
103_2 1731 952 960 13.5/0.003 20.3/0.09 757 861 
117_1 1723 1065 1000 12.6/0.0008 23.2/0.002 836 944 
139_1 1610 1085 985 15.8/0.003 13.3/0.001 684 947 
152_1 1545 1003 916 17.7/0.0005 14.0/0.003 662 882 
157_1 1823 1173 1068 9.6/0.0004 12.4/0.005 848 1025 

This table indicates the range of scores from minimum to maximum for each patient. The last 
column indicates the number of variants successfully evaluated for both gene-based and exon-
based outlier analysis. 
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Figure 22. Gene and exon distance correlations. Black dots indicate variants (n=18,834) and their 
associated gene and exon scores in the 29 patients. There is a general trend of higher exon 
scores. Linear regression suggests a linear relationship between the two scores with a correlation 
coefficient of 0.37 indicating a medium effect size.  
 

Next we evaluated the distribution of MD scores with relation to the variants’ functional 

impact. We defined two variant classes high, and moderate-to-low. Based on available variant 

annotation, high functional impact variants predicted to cause frameshift, start codon loss, stop 

codon gained, stop codon lost, splice donor, and splice acceptor changes. The moderate-to-low 

functional impact variants were defined as missense, insertions-deletions, splice region, 

synonymous, start codon gain, and sequence feature consequences. Levene’s test for equal 

variance within the functional classes revealed that gene scores have the same variance in both 

full dataset (Levene's Test, F=1.1541, P=0.2827) and filtered dataset (Levene's Test, F=0.3218, 

P=0.5705). We found that exon scores in the filtered dataset had unequal variances (Levene's 

Test, F=5.0929, P=0.02403), but in the full dataset variance between functional classes was 

equal (Levene's Test, F=0.0052, P=0.9424). Levene’s Test tests for one of the assumptions of 

Mann-Whitney rank sum test, which is equal variances of the data distributions. Gene and exon 

scores indicate that distributions of distance scores for HIGH and MOD-LOW impact variants are 

similar (Figure 23). Based on the median ranks of gene-based scores we find that variants 
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predicted in high functional impact class have higher distance scores in the full variant list (Mann–

Whitney U ,U =7492668, P=0.006378,two-tailed) and among filtered variants as well (Mann–

Whitney U ,U = 3375335, P= 0.001005,two-tailed) (Figure 24). Exon scores are not associated 

with functional class in either the full or filtered variant list (full list: Mann–Whitney U ,U =3186404, 

P=0.1741,two-tailed, filtered: Mann–Whitney U ,U =7176454, P=0.378,two-tailed). The median 

MD scores for genes were highest for variants with high functional impact (1.57) compared to 

1.28 for moderate-to-low impact variants (Table 19). Results indicate that high impact functional 

variants have larger MD scores than variants with low moderate-to-low functional class based on 

overall gene scores. Lack of difference between the two functional classes among exon scores 

can be attributed to cryptic splice sites and alternate exon usage impacted by missense variants 

(Ahlborn et al. 2015). 

 

Figure 23. Distribution of MD scores within functional classes. Horizontal axis indicates the gene 
and exon scores and the vertical axis shows the density distribution. The orange line shows 
scores for variants in moderate-to-low impact functional class and yellow indicates variants in 
high impact functional class. The distribution of these scores also follows a non-normal, right 
skewed distribution. 
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Table 19.  

MD scores for high and moderate-to-low functional variants. 

  Single Hit Genes Full Dataset 
 Gene Score Exon Score Gene Score  Exon Score 

 High Mod-Low High Mod-Low High Mod-Low High Mod-Low 
Variants (n) 330 18,504 330 18,504 574 24,479 574 24,479 

Mean 2.26 1.96 2.25 1.98 2.13 1.97 2.02 1.95 
Median 1.57 1.28 1.28 1.22 1.52 1.29 1.18 1.20 

 Std.Dev 2.17 2.11 2.58 2.35 2.11 2.37 2.10 2.32 
Min 0.0018 0.0001 0.0054 0.0001 0.0018 0.0001 0.0053 0.0001 

Max 12.66 19.26 12.61 25.45 12.66 19.26 12.81 25.45 

P
er

ce
nt

 25 0.73 0.51 0.53 0.51 0.62 0.58 0.53 0.51 
50 1.57 1.28 1.28 1.22 1.52 1.18 1.29 1.20 
75 2.92 2.91 2.63 2.42 2.78 2.27 2.63 2.39 
95 6.97 8.01 6.17 6.80 6.41 7.67 6.19 6.77 

 

  



  107 

 

 

Figure 24. Variants in different functional class and their MD scores. Violin plots of the MD 
distance scores based on functional class (i.e HIGH, MODERATE-TO-LOW). a=includes all 
scored variants across the 29 patients. b=scores for single hit genes across 29 patients. Star 
above plot indicates statistical significance by Mann-Whitney test. The exon scores in the MOD-
TO_LOW group have much longer tails indicating large variance within the dataset. Values in 
HIGH functional class have much shorter tails suggesting that variants with prediction of high 
functional impact are more likely have a more uniform behavior. 
 

Analysis of functional effect for variants with high MD scores 

After evaluating variants based on their predicted functional impact we set out to study 

MD scores based on their position and predicted impact on the mRNA structure. We selected 

genes with single coding variant for each patient. Based on available annotation, we defined 9 

functional classes of variants as frameshift (SnpEff=frameshift), insertions-deletions 

(SnpEff=disruptive inframe insertion, disruptive inframe deletions, inframe deletion, inframe 

insertions) missense (SnpEff=missense), sequence feature (SnpEff=sequence feature), splice 

site (SnpEff=splice acceptor, splice donor), splice region (SnpEff=splice region), start|stop 
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(SnpEff=start lost, stop gained, stop lost), synonymous (SnpEff=synonymous, stop retained), start 

codon (SnpEff= start codon gain, initiator codon). Non-parametric analysis of variance of gene 

and exon scores across the nine functional classes shows that distribution of scores are from 

different distributions with different means and medians. (gene scores: Kruskal-Wallis, H=15.604, 

p=0.05, exon scores: Kruskal-Wallis, H=17.584,p=0.02) (Figure 25). Splice site, frameshift and 

nonsense variants have the highest MD scores for genes on average suggesting that they may 

be related with respect to their impact on transcriptional activity (Table 20). Significant 

dysregulation of transcripts by nonsense variants, especially variants causing nonsense-mediated 

decay has been demonstrated in unaffected populations (MacArthur et al. 2012).  

Pairwise comparisons of MD scores by Dunn’s test reveals that frameshift variants 

impact transcription at highest degree among the 29 patients showing statistical difference from 

indels (P=0.01), missense (P=0.002), sequence feature (P=0.001), splice region (P=0.009), start 

gained (P=0.004), and synonymous variants (P=0.003) (Table 21). Frameshift variants (n=175) 

are more likely to have higher Mahalanobis distances suggesting that they impact “outlierness”, 

although this difference is not seen when frameshift variants are compared with splice site and 

start|stop gained or lost variants (Figure 25A). High confidence, loss of function variants resulting 

in the shift of the open reading frame have been implicated as most likely loss-of-function variants 

(MacArthur et al. 2012). Overall, in our dataset, the greatest difference to the effect genetic 

variants have on transcription is between frameshift and sequence feature variants (Bonferroni 

P=0.024).  

The distribution of distance scores for exon usage is more evenly distributed indicating 

that alternative exon usage is not the function of a single variant type (Figure 25B). Pairwise 

comparison of MD scores shows that frameshift, missense, sequence feature, start|stop and 

synonymous variants in exons are more likely impact exon usage than inframe indels in exons 

(Frameshift-VS-indels P=0.019, missense-VS-indels P=0.019,sequence feature-VS-indel 

P=0.020,start|stop-VS-indels P=0.019, synonymous-VS-indels P=0.009). Interestingly, 

synonymous variants show significant difference from sequence features (P=0.003), and from 

splice site variants (P=0.030). Synonymous variants in exons may lie in exonic splice enhancers 
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and they can impact alternative splicing and protein function (Rice et al. 2013; Sheikh et al. 

2013). Our results also suggest that authentic splice site mutations are not necessarily 

accompanied by alternative exon usage and if exon usage occurs they may have similar 

functional impact across patients.  
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Figure 25. MD scores and functional effect. A=gene scores, B=exon scores. There are nine 
functional effect groups, each colored differently. Overall all groups show a non-normal right 
tailed distribution. Exon scores are more uniform than gene scores. Gene scores show that 
frameshift variants have a higher median MD scores than other groups (frameshift median = 
1.703). 
 
 
Table 20.  

MD scores and functional class. 

Gene Score          
 #/class Min Median Mean Max 25% 50% 75% 95% 

frameshift 175 0.0018 1.703 2.228 9.111 0.785 1.703 2.739 6.967 
indels 280 0.0012 1.267 1.901 13.62 0.511 1.267 2.599 5.657 

missense 6,823 0.0003 1.277 1.975 17.72 0.529 1.277 2.619 6.169 
seq. feature 2,390 0.0001 1.233 1.906 15.97 0.498 1.233 2.504 6.294 
splice site 70 0.0172 1.518 2.243 12.66 0.741 1.518 2.914 6.164 

splice region 1,669 0.0003 1.331 2.057 19.26 0.536 1.331 2.715 6.626 
start gained 344 0.0068 1.336 1.776 10.84 0.580 1.336 2.330 5.534 

start|stop 84 0.0038 1.400 2.327 9.552 0.618 1.400 3.084 7.698 
synonymous 6,999 0.0001 1.283 1.965 17.87 0.532 1.283 2.684 6.105 

          
Exon Score          
frameshift 175 0.034 1.312 2.351 12.61 0.481 1.312 3.164 8.825 

indels 280 0.015 1.107 1.667 11.24 0.427 1.107 1.933 5.785 
missense 6,823 0.000 1.227 1.993 24.17 0.512 1.227 2.421 6.884 

seq. feature 2,390 0.001 1.152 1.859 25.45 0.505 1.152 2.301 6.211 
splice site 70 0.003 1.176 1.963 22.67 0.474 1.176 2.389 7.067 

splice region 1,669 0.005 1.161 2.074 12.08 0.454 1.161 2.688 6.875 
start gained 344 0.010 1.14 2.044 24.96 0.426 1.140 2.341 7.782 

start|stop 84 0.057 1.376 2.177 10.7 0.703 1.376 2.831 6.435 
synonymous 6,999 0.000 1.262 2.009 25.43 0.524 1.262 2.493 6.876 
25%,50%,75%,95%= the percentile cutoff value. 
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Table 21.  

Dunn’s test of pairwise comparisons of functional classes. 

Gene 

Score 

         

 
frameshift indels missense 

seq. 

feature splice site 

splice 

region 

start 

gained start|stop 

synonymou

s 

frameshift  0.351 0.086 0.027 1 0.329 0.147 1 0.106 
indels 0.010  1 1 1 1 1 1 1 

missense 0.002 0.441  1 1 1 1 1 1 
seq. 

feature 

0.001 0.357 0.088  1 1 1 1 1 
splice site 0.318 0.119 0.108 0.068  1 1 1 1 

splice 

region 

0.009 0.280 0.148 0.028 0.162  1 1 1 
start 

gained 

0.004 0.399 0.296 0.482 0.087 0.163  1 1 
start|stop 0.284 0.114 0.099 0.059 0.479 0.157 0.080  1 
synonymo

us 

0.003 0.407 0.378 0.057 0.116 0.197 0.264 0.108 
 

 
          

Exon 

Score 

         
frameshift  0.683 1 1 1 1 1 1 1 

indels 0.019  0.692 1 1 1 1 0.691 0.328 
missense 0.168 0.019  0.714 1 1 1 1 1 

seq. 

feature 

0.059 0.110 0.020  1 1 1 1 0.090 
splice site 0.089 0.076 0.110 0.315  1 1 1 1 

splice 

region 

0.268 0.200 0.455 0.386 0.436  1 1 1 
start 

gained 

0.072 0.212 0.132 0.411 0.316 0.357  1 1 
start|stop 0.335 0.019 0.116 0.052 0.071 0.186 0.056  1 
synonymo

us 

0.232 0.009 0.150 0.003 0.030 0.397 0.075 0.151 
 

 

Columns and rows indicate functional class. Clear cells indicate raw p values of the test statistic 
and grey columns show the Bonferroni correction p –values for multiple testing from Dunn’s test. 
Top table indicates pairwise analysis of gene scores, lower table shows pairwise comparisons of 
exon scores. Red values show p<0.05 significance. 
 

Patients with known causal variants. 

In this section we will show result of Mahalanobis scores from RNA-seq. integrated with 

genomic variants. Integration was performed for each patient and for each rare variant that 

remained after filtration described above in the Variant Annotation section of the Material and 

Methods section.  

We investigated 10 patients with genetic diagnosis prior RNA-seq and multivariate 

analysis. Each patient had a presumed causal variant for a total of 7 genes (Table 22). In two 

families multiple affected siblings were diagnosed with a presumed causal variant (0002, 0103). 

In patient 0001_1 the presumed causal DDC gene had an average normalized FPKM of 0.07 

under the detection limit of this study so no outlier analysis could be preformed. The average 

abundance for the remaining 6 causal genes was FPKM=26.78. In two patients the source of 

causal variation was compound heterozygous mutations (0005_1, 0049_1), three patients de 
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novo variants contributed to disease (0047_1, 0103_1, 0103_2), one patient had a autozygous 

variant (0024_1) and 4 patients from families 0001 and 0002 presented causal variants that did 

not follow Mendelian inheritance. For each patient specific variant we calculated the percentile 

rank of the gene and exon distance measurement associated with the variant. In three patients 

the presumed causal variant ranked in the 95th percentile, and for 4 patients ranked in the 90th 

suggesting that presumed causal variants show elevated impact on gene regulation.  

In general, distance measures for genes range from 48th percentile in family 00024 to the 

top ranked gene based distance score in family 0002. The casual variant ranked 48th percentile is 

a homozygous missense variant and the top ranked variant is a missense variant in family 0002. 

In family 0103 the siblings share a de novo variant but their ranks differ from 83rd percentile for 

0103_1 compared to 96th percentile for 0103_2 indicating that difference in transcript regulation.  

MD scores for exons show a greater variance from the 4h percentile in sample 0047_1 to 

ranking at the top in patient 0002_5. In three patients (0049_1, 0002_5, 0002_2) splice region, 

frameshift and cryptic splice site variations resulted in both exon and gene based distance scores 

in the 90th percentile. This suggests that these variants have a role in alternative splicing. In 

cases where gene based distance scores are not accompanied with high exon based distance 

scores suggests that those variants are silent to alternative exon usage, however they may 

negatively impact mRNA stability which is captured by a gene based distance score that is an 

outlier when compared to the other patients. 

Functional importance of our findings were supported by in silico predictions of high 

conservancy by phyloP and moderate deleteriousness by CADD as listed in Table 22 (Siepel et 

al. 2005; Kircher et al. 2014). 
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Table 22.  

Patients with known causal variants. 
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In the following we discuss two cases where we present the utility of our approach in a 

case where casual mutation was known prior RNA-seq and multivariate outlier analysis, and 

another case where candidate variant was identified after DNA-RNA integration and outlier 

analysis. 

The first family (0002) is a Caucasian family of six with three affected siblings and one 

unaffected sibling (Figure 26A).  The genetic diagnosis in MTFMT took several years and without 

knowledge through extensive functional characterization of a cryptic splice-site, the functional 

importance of the causative variant would have been unknown. In many ways, more efficient 

identification of the causal variant in this case is the goal of our outlier analysis.  

Within the family, patient 0002_1 was described as unaffected born in 2002, then started 

complaining about migraine headaches at age 9.  Overall, this patient had an unremarkable 

phenotype.  

Patient 0002_2 was suspected with Wolff-Parkinson-White Syndrome (MIM:194200) and 

with mitochondrial encephalomyopathy at time of enrollment. She has short stature, which was 

treated with growth hormone. She has learning disability, attention deficit disorder. She has 

cardiac conduction defect that is stable and without episodes of tachyarrhythmia. She has 

exercise intolerance and can walk at most 0.25 mile before getting tired. She has amblyopia and 

wears eye glasses. She is weak, has hyperflexible ankle joints, which was stabilized. She is 

stuttering that is suggestive of Tourette’s Syndrome (MIM:137580). She had cardiac 

catheterization, ablation procedure, tonsillectomy and adenoidectomy to improve sleep. Her 

molecular tests showed elevated plasma and CSF lactate. She has cerebral folate deficiency, 

which is treated with leucovorin. She has decreased methyltetrahydrofolate level.   

Patient 0002_4 is a male patient with a suspected mitochondrial disorder. He presented 

with headaches at 8-9 years of age. He has been having hemiplegic migraine since age 15. His 

molecular tests showed elevated plasma lactate. He has normal plasma amino acids, plasma 

lactate, CSF amino acids, CSF lactate, CSF neurotransmitters, neopterin, tetrahydrobiopterin, 

and methyltetrahydrofolate. He presented with normal cardiac function, and ophthalmological 

pulmonary evaluations were normal. His immunohistochemistry is normal.  His skeletal muscle 
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enzymology shows reduced activity of mitochondrial oxidative phosphorylation (OXPHOS) 

complexes I and III; abnormal high-resolution spirometry on cultured fibroblasts. Genetic testing 

for mtDNA deletions, KCN1A, CACNA1A gene testing are negative.   

Patient 0002_5 is an affected male. Clinical diagnosis at time of enrollment was 

Mitochondrial encephalomyopathy with suspected Leigh Syndrome (MIM:256000). He has 

developmental delay and a coordination disorder. He presented with expressive language 

disorder with dysarthric and delayed speech. He has small stature. He is hyper with short 

attention span. Complex I deficiency is likely; decreased ND6 subunit was observed on skeletal 

muscle biopsy. His MRI showed symmetric frontal white matter (pericallosal) lesions and 

symmetric basal ganglia lesions. EKG and ECHO of heart showed no evidence of cardiac 

disease. Areas of T2 signal abnormality involving the genu of the corpus callosum extending into 

the bifrontal white matter with additional lesions located within the inferior left putamen and 

bilateral subthalamic regions. A small area of patchy enhancement involves the genu of the 

corpus callosum and restricted diffusion is noted around the margins of this dominant lesion 

centered in the genu of the CC and the left inferior putamen lesion. Ophthalmic tests showed pale 

optic nerves. MR Spectroscopy of the brain showed a large lactate peak over normal appearing 

right basal ganglia. He is normal for CSF 5’ pyridoxal phosphate, CSF succinyladenosine, CSF 

neurotransmitters, ceruloplasmin, plasma amino acids, urine organic acids, and urine 

mucoplysaccharides. Lysosomal storage panel and tests for disorders of glycosylation was 

normal. He has abnormally low CSF 5-methyltetrahydrofolate, high CSF lactate, high CSF 

alanine. He has significantly increased myofiber lipid with unremarkable immunochemistry but 

showing complex I defect. He has normal muscle levels of Coenzyme Q10. Genetic testing  for 

PDHA1 gene mutations and for mtDNA point mutations and deletions tests was negative. 

 We sequenced the exome and mRNA of the entire family 0002. Exome sequencing 

achieved an average target coverage of 87.7X across targeted regions. Bioinformatics analysis 

identified 473,005 SNP and short indel variants with 95% of them reported in dbSNP141 and with 

a Ti/Tv ratio of 2.1 (Table 16). A total of 1574 protein coding variants in 1326 genes had a 

frequency of <5% and were evaluated for their impact on expression by Mahalanobis distance. 



  116 

Variant prioritization identified a missense variant in exon 4 of MTFMT gene (NM_139242.3, 

c.626C>T, p.Ser209Leu). Patient 0002_5 and 0002_2 were homozygous for this variant and all 

other family members, including parents were heterozygous. (Figure 26C). The identified variant 

was verified by Sanger sequencing (Figure 26B). This variant is known pathogenic variant 

reported by Tucker et al showing that heterozygous mutation result in a frameshift and premature 

stop codon by skipping exon 4 during pre-mRNA processing in patients with Leigh Syndrome 

(Tucker et al. 2011). This finding corroborated suspicion of Leigh Syndrome in 0002_5 and 

resulted in the diagnosis in the affected patients although the phenotypic heterogeneity was noted 

across siblings. Patient 0002_5 phenotype showed similarity with reported cases and thus he was 

diagnosed with Leigh Syndrome. In addition Haack et al later reported that the exon 4 mutation 

was one of the most frequent mutations in defects of mitochondrial oxidative phosphorylation 

(OXPHOS) (Haack et al. 2014).  

Analysis of RNA-seq reads supports exon skipping in the homozygous patients, with 

most reads spanning the exon 3-4 and exon 4-5 boundaries (Figure 26C). RNA-seq read data 

supports that heterozygous family members express a transcript in whole blood that includes 

exon 4 as IGV traces show reads mapping in exon 4. Differential gene expression analysis 

between each patient and their parents shows that MTFMT is more dysregulated among the 

homozygous patients then heterozygous patients (0002_5 p value = 0.00455, 0002_2 p value= 

0.03815, 0002_1= 0.59625, 0002_4= 0.47585). Alternative exon usage analysis corroborates the 

prediction of exon skipping with the two homozygotes suggesting differential usage of exon 4. 

Taken these two RNA-seq analyses together and applying gene abundance and exon analysis by 

multivariate approach shows that gene-based and exon-based scores correlate with severity of 

phenotype and for zygosity. Patient’s 0002_5 was most severely affected and MTFMT gene and 

exon score and the variant in exon 4 had the largest MD scores among all identified rare variants 

(Figure 27A and Table 22). Interestingly his homozygous female sibling, 0002_2 showed a similar 

exon-skipping pattern by RNA-seq reads, although MD scores indicated that variants in other 

genes and exons had greater transcriptional impact (Figure 27B). This variability may be 

indicators of false positives, or suggestive of the effect of other variants that lead to phenotypic 
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heterogeneity presented among patients with the same presumed causal variant. The 

heterozygous siblings show similarly diminished impact of heterozygous MTFMT mutation to its 

transcriptional profile implicating the role of other genetic variants in clinical symptoms of 

mitochondrial condition with MTFMT variant (Figure 27C, D).  
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Figure 26. Family sequencing of the MTFMT variant. A=pedigree of family 0002. B=Sanger 
verification of the causal variant. C= Next-generation sequencing traces of exome and RNA-seq 
experiment for exon 4 including the missense variant. Solid black lines separate the traces for 
each family member. The red rectangle highlights the position of the causal variant with respect 
to exon 4. The exon can be seen by the blue horizontal bar at the bottom of the plot. For each 
family member the image is divided by dashed, black line. The traces above the dashed lines 
indicate the exome reads and the track under the dashed lines indicates the RNA-seq reads.  
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Figure 27. Expression profile of the MTFMT gene in family 0002. This plot shows the expression 
of MTFMT across the four siblings. A=0002_5, B=0002_2, C=0002_4, D=0002_1. The first 
column shows results of Cuffdiff differential expression for protein coding genes. The horizontal 
axis shows log2 foldchange, and vertical axis is the negative log10 of the probability that the gene 
is significantly dysregulated between the conditions. The second column shows the results of 
differential exon usage analysis. The horizontal axis is the log2 normalized exon coverage for 
exons with normalized coverage >1. The vertical axis shows the log2 normalized coverage 
difference between the patients and the parents. The third column shows a scatterplot of the 
gene-based and exon-based MD scores for the each rare variant. The red dot in each plot 
indicates the MTFMT gene in relation to all other genes in the analysis. Rows A and B are shows 
the siblings with the homozygous genotype for the MTFMT variant. 
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The second family we describe was family 117 with a single affected male.  In this case, 

the genetic basis was not known prior to using the MD score and the candidate variant failed to 

be prioritized to a high enough level to warrant a genetic diagnosis. Effectively, our databases 

indicated this patient as undiagnosed at the time of analysis.  Subsequent review of the initial 

genetic analysis prior to RNA-seq indicated some in the analysis group did view this as a good 

candidate, but the large number of other variants and other patients led to a failure to detect what 

on new inspection became a plausible causal variant for the genetic basis of the child’s disease. 

 Clinical diagnosis at enrollment was suspected Pelizaeus–Merzbacher-like disease with 

no candidate genes identified. The patient presented with nystagmus, hypotonia, delayed 

development. The patient had limited speech to about 5 words, but could use signs. He was 

characterized with a leukodytrophy or significant dysregulation of the myelin sheet that protects 

nerve cells. His MRI scans showed diffuse lack of myelination of subcortical white matter, but with 

time some improvement, especially in the genu of corpus callosum; atrophy of splenium of corpus 

callosum. His urine organic acids test was negative. Genetic testing of PLP1, GJA12, CDG 

screening was negative. His CT scan was negative for calcifications. 

We sequenced the exome and mRNA of the entire family 117. Exome sequencing 

achieved an average target coverage of 93.2X across targeted regions. Bioinformatics analysis 

identified 403,156 SNP and short indel variants with 95% of them reported in dbSNP141 and with 

a Ti/Tv ratio of 2.17 (Table 16). A total of 1723 protein coding variants in 1458 genes had a 

frequency of <5% and were evaluated for their impact on expression by Mahalanobis distance. 

Post integration of MD scores with genetic variants 944 variants from 836 genes were update 

with both gene-based and exon-based distance scores. Next the gene and exon based scores 

were ranked for all 944 variants. Gene-based ranking revealed a compound heterozygous variant 

in the SNAP29 gene. The two variants rank #2 (MD Gene score= 12.29) and the two exonic 

scores ranked #107 of 944 scored variants (MD Exon score= 3.98), and #2 of 944 scored 

variants (MD Exon score= 12.81) respectively. The first variant was predicted to cause a loss of 

start codon in exon 1 (NM_004782, c.2T>C, p.Met1?) had a CADD score of 18, a phyloP of 5.05 

and a genomic coverage of 32X. The second variant is a predicted loss-of-function, frameshift 
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insertion in exon 2 (NM_004782, c.348_349insG, p.Gly118fs) had a genomic coverage of 76X in 

the patient (Figure 28). The mutations were not observed in the Exome Aggregate Consortium’s 

over sixty thousand unrelated exomes (Exome Aggregate Consortium) SNAP29 was classified as 

autosomal recessive disease causing gene in the Clinical Genomics Database. Further 

evaluation revealed that mutations in SNAP29 are known to cause Cerebral dysgenesis, 

neuropathy, ichthyosis, and palmoplantar keratoderma, CEDNIK Syndrome (MIM:609528). 

CEDNIK syndrome was first described by Sprecher et al in two consanguineous families of 

Middle Eastern descent with homozygous frameshift deletion (Sprecher and Ishida-Yamamoto 

2005). To date, patients with CEDNIK syndrome have been reported to carry homozygous 

frameshift insertions or deletions resulting in premature termination of the protein (Sprecher and 

Ishida-Yamamoto 2005; Fuchs-Telem et al. 2011). Common clinical manifestations of the 

disorder are roving eye movement, hypotonia, and malformation of the corpus callosum, 

neuropathy, microcephaly, facial dysmorphism, ichtyosis, and keratoderma. Hemizygous loss of 

function mutations in SNAP29 in patients from non-consanguineous parents diagnosed with 

22q.11.2 deletion syndrome show some overlap with symptoms of CEDNIK patients (McDonald-

McGinn et al. 2013). The patient in this study is from a non-consanguineous family, carrying 

compound heterozygous variants (Figure 28C). Exon 1 mutation, on chr22:21213400:T>C was 

inherited from the father and is a predicted loss-of-function variant (Figure 28B). Exon 2 mutation, 

of 22:21224735:T>TG was inherited from the mother and is also predicted loss-of-function variant 

with a premature stop codon 16 amino acid resides downstream from the frameshift insertion 

(Figure 28A).  

Sequenced reads from RNA-seq support the loss of maternally inherited transcript 

because the patient only express the paternal allele in exon 1 and the maternal insertion is not 

found in exon 2 track (Figure 28C). The mother also lacks reads that map to the insertion 

suggesting that the insertion is a loss-off-function variant in whole blood. This is supported by 

previous findings that frameshift insertions and deletion lead to truncated protein product 

(McDonald-McGinn et al. 2013; Fuchs-Telem et al. 2011). Multivariate outlier analysis suggested 

the importance of compound heterozygous mutation in SNAP29 as gene-based MD score was 
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ranked #2 on variant list (Figure 29). Differential gene expression does not support significant 

dysregulation of SNAP29 in whole blood when parents and affected patient are compared (p-

value = 0.59, Cuffdiff). Exon based scores also ranked on top of the MD score list, however 

sequencing traces show no evidence of exon skipping. Frameshift mutation in exon 2 suggested 

a premature stop codon, therefore a high MD scores for exonic variants can be indicative of 

alternate exon usage, and in essence mRNA degradation by non-sense mediated decay.  
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Figure 28. Exome and RNA sequencing of SNAP29 variant.  
A=Mother, B=Father, C=Patient. Blue center vertical line divides exon 1 and exon 2 tracks. 
Family member tracks are divided by black solid horizontal lines. Dashed horizontal lines 
separate the exome (upper) and RNA-seq tracks (lower). Exon 1 mutation is a 
chr22:21213400:T>C, and exon 2 mutation is a 22:21224735:T>TG their positions indicated by 
red arrows. 
 

 

 

A 

B 

C 

Exon 1 Exon 2 



  124 

 

Figure 29. Expression profile of SNAP29. This plot shows the expression of SNAP29 in patient 
0117_1. A=results of Cuffdiff differential expression for protein coding genes. The horizontal axis 
shows log2 foldchange, and vertical axis is the negative log10 of the probability that the gene is 
significantly dysregulated. B= differential exon usage analysis. The horizontal axis is the log2 
normalized exon coverage for exons with normalized coverage >1. The vertical axis shows the 
log2 normalized coverage difference between the patients and the parents. C=scatterplot of the 
gene-based and exon-based MD scores for each rare variant. The red dot in plot A indicates the 
SNAP gene, in B exon 1 and exon 2 results, and in C the two variants’ MD scores.  
 

Discussion 

In this study, we developed a framework for integrated DNA and RNA analysis of         

high-throughput sequencing data in a multivariate format for 29 patients with rare childhood 

disorders using Mahalanobis distance for outliers to prioritize candidate variants. 

The cohort represented a spectrum of rare neurological and musculoskeletal conditions 

with prolonged diagnostic odysseys and complex phenotype making clinical diagnosis 

challenging. Patients were selected for family-based DNA and RNA sequencing to utilize variant 

segregation with phenotype and used parental transcriptomes for comparative expression 

analysis. We performed outlier analysis on transcriptomic features including genes and exons 

and found patient specific variants that have large impact on transcription and correlate with 

phenotype. We obtained multiple measurements on these features including expression 

abundance and differential expression magnitude and applied these variables in a multivariate 

matrix to determine Mahalanobis distance of each patient specific feature.  

After grouping variants across the 29 families based on predicted functional impact, we 

found that gene-based distance scores were associated with variants predicted to have high 

functional impact. This suggested that variants like splice acceptor, or donor, and stop codon are 

more likely result in an expression signature that is an outlier when gene expressions from 

A B C 
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multiple patients are compared. However, the exon-based scores did not support this finding. 

This may have been caused by multiple factors including the difference how gene and exon 

expression is estimated and also the variance in the scores. Exon score distributions had longer 

tails suggesting a greater variance in the data regardless of functional class (Figure 24). Exon 

expression in DEXSeq is determined by normalizing read counts for each exon across conditions 

which may introduce artifacts for those exons that are significantly differentially used between 

conditions (Hooper 2014). In addition, our estimation of differential exon usage is calculated 

based on the total number of reads sequenced per sample, and in some families the number of 

reads sequenced across samples varies greatly from 26 million to over 200 million reads per 

sample (Appendix C). 

When variants were further categorized based on their predicted effect to mRNA 

sequence, we found that frameshift variants were associated with higher MD scores than other 

functional groups except splice site and start and stop codon variants. This suggests that the 

least frequently occurring variants tend to have the highest impact on transcription in our cohort. 

These three variant groups, frameshift, splice site and start|stop codon were the least frequent in 

our cohort of 18,834 variants (frameshift = 175/18,834, 0.9%; splice site = 70/18,834, 0.3%, 

start|stop codon= 84/18,834, 0.4%) (Table 20). It is important to note that variant annotation and 

classification into functional groups may have an impact on association analysis, and choice of 

annotation tool can be critical in interpretation (McCarthy et al. 2014). Therefore, future studies 

should evaluate those variants for association that are consistently classified between annotation 

tools. In addition prospective studies should increase the number of participants to increase 

power to detect associations between functional variants and their outlier scores. 

We showed that over 50% of protein coding genes could be investigated in this study. 

Gene expression measured in whole blood has great implication to detect functionally active 

candidate variants only if candidate gene activity can be observed in blood. We recognize that 

many diseases manifest their phenotype in certain tissues exclusively. Thus information obtained 

by RNA-seq from whole blood will only be relevant if functional observations made in blood carry 

over to primary tissue. Previous study by Yang et al. (2013) found that exome sequencing 
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achieved diagnostic success rate of 25% sequencing germline DNA in 250 clinical patients. 

Expression profile of published causal genes from Y. Yang et al. (2013) showed that 85% of 

causal genes were expressed in whole blood above the detection limit  we set in this study and 

69% were expressed above FPKM of 1 in our RNA-seq cohort. Using brain tissue data from 

Human BodyMap 2.0 Project analyzed simultaneously with our patient cohort, we found that 97% 

of previously published causal genes by Y. Yang et al., were above our detection limit and 88% 

were expressed above FPKM of 1.  

We demonstrated that in our ten patients who had previous presumed causal variants the 

variants had outlier behavior and MD scores were ranked in the  90th percentile almost 

exclusively. In concordance with previously published data, close to half of presumed causal 

variants were missense (Y. Yang et al. 2013). Interestingly, we found similar proportion of 

presumed causal variants affecting splicing at authentic splice sites, splice regions, and exonic 

splice suppressor elements. This is an enrichment of splice variants compared to previously 

reported clinical sequencing studies (Y. Yang et al. 2013).  This may be caused by our small 

sample size and our selection of extreme cases to be enrolled in our study.  

Our study design was motivated by two factors, 1) diagnosis of rare disease can be 

improved upon by integrative genomics approaches, 2) rare variants have large impact on cellular 

phenotype that can be measured in a high-throughput manner. Unambiguity for a variant’s 

causality can be improved by evidence from gene level signatures either from bioinformatics 

analyses or functional studies (MacArthur et al. 2014). Our approach obtains further evidence by 

integrated analysis of gene and exon based transcriptomic signatures in patient specific tissue. 

The correlation between predictions obtained from DNA sequencing with functional effect was 

previously demonstrated by MacArthur at al, who validated variant predictions of loss-of-function 

mutations causing nonsense-mediated decay in transcriptomic analysis of lymphoblastoid cell 

lines (MacArthur et al. 2012). Our study is another example of the power of integrated genomics 

and functional approaches have in the identification of high impact functional variants.    

 Our approach showed that focused, supervised data from genomic and functional 

sequencing can be efficiently joined and be surprisingly informative when multiple variables from 
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RNA-seq used for outlier analysis. Some of the confounding factors of integrative genomics 

approaches are the size of the data generated, the noise across data types, lack of correlation 

between sequencing technologies (Ritchie et al. 2015). To address these issues, we reduced our 

data to protein-coding variants only, which focused our attention to the most informative regions 

of the genome. In addition we used normalized, log transformed gene and exon abundances to 

reduce noise in the multivariate matrix and between samples. Normalization of gene expression 

across samples is an important issue as technical and biological variation can impact data 

interpretation. Multiple methods are suggested for normalization that are beyond the scope of this 

study, but we used geometric mean developed for DESeq and implemented in Cufflinks 2.2 to 

normalize gene expression across the 25 families (Dillies et al. 2013). We recognize that 

expression estimation is an important topic in RNA-seq and other approaches than FPKM have 

been proposed as more accurate estimators of expression abundance. However, we found that 

Cufflinks version 2.2 incorporated new elements addressing previous concerns of FPKM 

normalization, and its streamlined modular workflow was simple to implement and combined with 

differential gene expression analysis (Trapnell et al. 2013). In future studies of multivariate 

analysis accuracy of outlier estimation may be improved by use of TPM and other abundance 

estimators (B. Li and Dewey 2011).  

  Although the ultimate goal of our study was to find pathogenic variants that are 

supported by functional data, integration of genomic and functional data in our study only reports 

the magnitude of the functional impact with the MD score. Thus our findings in themselves do not 

prove causality. In current literature, most integrative approaches of genomic and functional 

variations test the integrated data for association with phenotype of interest (Schadt et al. 2005; 

Huang et al. 2007). A significant association is usually quantified by a p-value that can be set 

arbitrarily and needs adjustment for multiple testing due to the large number of variants tested. 

Multiple testing correction however in many cases is very conservative and leads to an inflation of 

false-negatives (Johnson et al. 2010). Our study is not powered to perform association analysis 

because we are studying extreme phenotypes with a single patient in most cases.  
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In two families we showed the utility of our approach by verifying the predicted affect of a 

presumed causal variant and by uncovering a new candidate variant. In family 0002, our method 

worked essentially as a validation tool. Based on previous clinical findings, MTFMT was the most 

plausible candidate variant that correlated with observed phenotype. MTFMT’s main role is to 

transfer formyl group to methionyl-trNA (met-tRNAMet). met-tRNAMet is essential in translation 

initiation and elongation in humans. The transfer of a formyl group determines the role of met-

tRNAMet in the translation process. Formylated met-tRNAMet is associated with translation initiation 

in the ribosome, while un-formylated met-tRNAMet is essential in translation elongation(Haack et 

al. 2014). Dysregulation of MTFMT due to mutations have been associated with altered 

mitochondrial oxidative phosphorylation (OXPHOS) due to inefficient translation of OXPHOS 

associated genes (Tucker et al. 2011). To date, mutations in MTFMT have been reported in two 

studies associated with OXPHOS dysfunction (Tucker et al. 2011; Haack et al. 2014). The 

c.626C>T mutation we found in our patients is the most common variant reported in 13 of 16 

OXPHOS cases (Haack et al. 2012). In all but one case this variant was found in a compound 

heterozygous form. Exome Aggregation Consortium data of 60,706 exomes of unrelated 

individuals showed that this mutation had an MAF of about 0.00036%. Interestingly the two 

patients in our study who carry the homozygous mutation show phenotypic heterogeneity. Patient 

0002_5 was diagnosed with Leigh Syndrome. One of the hallmarks of Leigh phenotype is a 

characteristic symmetrical brain lesion in basal ganglia and white matter loss, which was 

documented in the patient’s MRI. In addition, Tucker et al. (2011) previously reported two cousins 

who had MTFMT mutations and cardiac dysfunction leading to a diagnosis of Wolff-Parkinson-

White Syndrome (WPWS). Patient 0002_2 fits the WPWS description. Thus this family is an 

example of the phenotypic heterogeneity in mitochondrial disease. The integration showed the 

significant functional impact of the exon-skipping event that was more dominant in the 

homozygous patients. The full molecular characterization of the DNA-RNA predictions requires 

the addition of proteomic characterization of potential mechanism that lead to heterogeneity in the 

phenotypes of the homozygotes.   
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In family 0117, conventional exome sequencing approach and variant prioritization failed 

to identify the compound heterozygous variant in SNAP29 as a potential candidate and only after 

outlier analysis of gene-based and exon-based scores, coupled with segregation analysis, this 

gene became a candidate. This patient does not fit the clinical description of CEDNIK syndrome, 

however, some phenotypic overlap, multivariate outlier analysis, and published study suggest the 

role of SNAP29 in this patient. SNAP29 is a soluble SNARE protein that has been implicated in 

cytoplasmic trafficking and synaptic plasticity. The importance of SNAP29 in nerve myelination by 

microglia has been previously shown (Schardt et al. 2009). The overexpression of SNAP29 and 

its binding partner Rab3A increased cell surface directed myelin proteolipid trafficking(Schardt et 

al. 2009). Schardt et al. (2009) also shown that in rat brain the remyelination process correlates 

with an increased abundance of SNAP29 in sciatic nerves. Although no previous CEDNIK 

syndrome patient has been shown to have dysmyelination, or myelin related brain phenotype, the 

patient in this study shows diffuse lack of myelination. This patient also shows delayed 

development and abnormalities in the corpus callosum, which are hallmarks of patient 

phenotypes with loss-of-function SNAP29 mutations and CEDNIK syndrome. Previously 

homozygous mutations affecting both copies of SNAP29 showed loss of protein product by 

Western blot analysis (Sprecher and Ishida-Yamamoto 2005). In addition patients with 

heterozygous deletion encompassing SNAP29, and with a heterozygous mutation in the other 

copy of SNAP29 has shown atypical CEDNIK phenotype (McDonald-McGinn et al. 2013). This 

patient has a predicted loss-of-function insertion that is predicted to result in no protein product 

from the maternal copy of SNAP29. However the patient shows expression of the paternal copy 

of the gene containing a loss of initiator codon mutation. This suggests a mechanism for gene 

translation from an alternate start site for translation machinery that may result in a modified N 

terminal of the nascent protein product leading to altered protein function and phenotypic 

presentation in the child. Investigation of the mRNA sequence of SNAP29 shows that there are 

two alternate start codons downstream in exon 2, and ribosomes can initiate translation from 

alternative start codons through leaky scanning (Kozak 2005). In addition, RNA-seq data shows 

that father also expresses the mutant transcript with no phenotypic presentation. Additional 
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molecular characterization of the mutant transcript is needed to connect DNA-RNA findings to 

patient’s phenotype. 

In conclusion, we developed a novel framework of integrating genomic and functional 

information obtained from next-generation sequencing in our efforts to prioritize variants for 

diagnosis of complex, hard-to-diagnose childhood disorders. Our framework of combining 

multiple data types is mostly a proof-of-concept in our investigation of outlier expression 

signatures in patients who themselves are outliers. Our approach needs further development so 

data processing and management can be more streamlined and additional functional data can be 

incorporated into multivariate analysis. The promise of merging large datasets with complex 

information in an efficient and informative way will potentially improve clinical diagnosis, variant 

interpretation, speed up our search for clinically actionable biomarkers and empower novel study 

designs.  
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Family 0001, Patient 0001_1 

Caucasian family of 6 with single affected female.  This is a 14 year-old girl with a history of 

hypotonia, weakness and motor delay. Her parents and three sisters are unaffected. 

Birth history: Second pregnancy for this mother, complicated by mild hypertension during the third 

trimester. Fetal movement may have been reduced compared to her first child. Delivery was 

normal and without complication, with normal Apgar scores.  

By 3-4 months, she was noted to be floppy, with poor head control. Development was notably 

delayed by 8 months (she was babbling, rolling over, able to commando crawl, but not able to sit). 

Neurological evaluations and testing was started by 11 months of age. She was visually attentive 

and had no facial weakness. She couldn’t maintain sitting, she reached for objects without tremor, 

and there was a decrease in axial and appendicular tone. Tendon reflexes were present. EEG, 

blood count, metabolic profile, creatine kinase, lactate, ammonia, Acylcarnitine profile, plasma 

amino acids, very long chain fatty acids, and urine organic acids were all normal. At age 2, 

muscle biopsy did not lead to a specific diagnosis. Enzyme testing for mitochondrial disease was 

negative.  Over the years, consistent findings on exam have been small stature, hypotonia, 

weakness, and decreased endurance. Her speech was dysarthric and difficult to understand, but 

fluent. She was able to walk for short periods, especially after a rest, but she fatigued quickly. 

She had a mild gaze apraxia, poor control of her neck muscles, and hypotonia especially at the 

shoulders and neck. She had a strong grip and briskly active tendon reflexes. Her heel cords 

were tight. Nerve conduction velocities were normal; EMG studies were suggestive of a mild 

myopathic process, without myotonia, or decremental response on repetitive stimulation. 

Edrophonium challenge test did not produce any change in her EMG or improve her strength. 

Cognitive development has always been normal. She never had trouble controlling bladder or 

bowel function.  

At age 7, she had her first spinal fluid examination for neurotransmitter metabolites and pterins; 

this was reported as normal, but re-examination suggested mildly low homovanillic acid (HVA) 

and slightly elevated 3-ortho-methylDOPA. Therapeutic trial of L-DOPA/Carbidopa was not 
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effective; trial of pyridostigmine was also not effective. She and her family were enrolled in the 

research study at the Neurogenetics Center at St. Joseph’s Hospital and TGen.  

At age 8 she was seen at the Mayo Clinic, and EMG (including single fiber EMG) was not 

consistent with a congenital myasthenia syndrome. A second muscle biopsy was not diagnostic. 

Features on examination again included hypotonia, neck muscle weakness, dystonic posturing of 

the feet and episodes of ocular dystonia. A second spinal fluid examination was done and again 

showed slightly low HVA and elevated 3-ortho-methyl-DOPA. A second trial of L-

DOPA/Carbidopa was not effective. She continued to have spells of dystonia in her legs, and 

ocular dystonic attacks (oculogyric crises). She was getting weaker – by age 10, she was using a 

motorized wheelchair, was having trouble chewing, and was losing weight; the idea of placing a 

feeding gastrostomy tube was being contemplated. 

At age 10.5 years, she was started empirically on a combination of bromocriptine and selegiline, 

based on the hypothesis that she might have a variant of AADC (aromatic amino-acid 

decarboxylase) deficiency. She had a dramatic response to this treatment – within 6 months, she 

was completely out of the wheelchair, and was able to walk to school and around school all day; 

she did not have any more episodes of falling.  

At this time, she is active, can walk and run and dance; she does fatigue after a full day of school. 

Her primary problems now remain difficulty with speech, neck and lower back posture, and short 

stature. 

She is maintained now only pramipexole, a dopamine receptor agonist, and has been taken off 

selegiline. 

MRI scan: MRI at 3-4 months of age was normal. At age 2, a second MRI of the brain and spine 

was normal. A third brain MRI done at age 5 was normal. MRI of the C-spine done at age 7 was 

normal. 

Molecular tests: see case description above. 

Genetic tests: at age 7 GCH1 gene testing was normal (for GTP cyclohydrolase deficiency). At 

age 8, gene testing did not detect mutation in the TH (tyrosine hydroxylase) gene. 
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Family 0002 

Clinical Description in Chapter 4. 

Family 0004, Patient 0004_1 

Caucasian family of five with single affected male. Clinical diagnosis at time of enrollment was 

leukoencephalopathy, developmental delay, microcephaly, and intellectual disability. Patient 

could start to walk at age 6. Patient presents hypotonia, developmental delay, autism spectrum 

symptoms, feeding disorder, scoliosis, and microcephaly.  

MRI scan: Normal brain MRI, EEG, and ERG. 

Molecular tests: Enzyme tests were normal for lactate. Tests for plasma amino acids and urine 

organic acids were negative. Muscle biopsy showed normal histology with slightly increased 

cytochrome C oxidase level. 

Genetic tests: Normal Fragile X, MeCP2 sequence, FISH for Angelman, UBE3A sequence 

Family 0005, Patient 0005_1 

Caucasian family of 5 with single affected male. Clinical diagnosis at time of enrollment without a 

suspected causal gene is Pelizaeus-Merzbacher-like disease with nystagmus and motor delay. 

He presented motor delay and nystagmus at infancy with feeding disorder.  

MRI scan: Her MRI initially thought to show abnormal myelination. Follow‐up MRI showed T2 

hyperintensity in dentate nucleus of cerebellum and bilateral thalamic signal abnormalities. 

Molecular tests: Lysosomal enzyme and very long chain fatty acids test was normal. 

Genetic tests:  PLP, GJA12, GJC2 gene and duplication test was negative.  

This patient was enrolled in the study presented in Chapter 4 and his mother was enrolled in the 

RNA-seq-HUMARA study presented in Chapter 2.  

Family 0006, Patient 0006_1 

This is a Middle Eastern family of four with X affected. Here clinical diagnosis at time of 

enrollment without a suspected gene is ataxia with sensory neuropathy, similar to Friderich’s 

Ataxia. Parents are first cousins so parental consanguinity is suspected. Sister is also affected 

with NF1 disease and radius dysplasia. 

MRI scan: not available 
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Molecular tests: not available 

Genetic tests: not available 

Family 0008, Patient 0008_1 

Caucasian family of four with single affected female. Here clinical diagnosis at enrollment without  

a suspected causal gene is progressive leukoencephalopathy, spastic quadriparesis, global 

cerebral atrophy and neurodegenerative disorder. She presented feeding problems as an infant 

including colicky behavior and vomiting. She showed failure to thrive. She was diagnosed with 

cerebral palsy at age 2. At time of enrollment she presents contractures, ocular bobbing, 

myoclonic jerks but reflexes are present. Brain CT scan indicated progressive global atrophy 

without calcifications. 

MRI scan: Abnormal. MRI at 8 month with white matter volume loss. 

Molecular tests: not available 

Genetic tests: She had negative Rett syndrome genetic test, and BAC array indicated no large 

structural variant in here genome. 

This patient was enrolled in the study presented in Chapter 4. She and her mother were also 

presented in the RNA-seq-HUMARA study in Chapter 2. 

Family 0011, Patient 0011_1 

Caucasian family of three with single affected female. Her clinical diagnosis at enrollment without 

a suspected causal gene is Aicardi Syndrome. Prenatal ultrasound showed brain cysts and 

prenatal MRI was suggestive of agenesis of corpus callosum. Congenital “hydrocephalus”; s/p 

fenestration of cerebral cysts; subsequent third ventriculostomy at 3 months. Ophthalmology 

exam at 2 weeks showed choreoretinal lacunae a hallmark of Aicardi syndrome. She presented 

infantile spasms at 3 months of age and has severe developmental delay.  

MRI scan: Post‐natal MRI showed agenesis of corpus callosum.  

Molecular tests: not available 

Genetic tests: not available 

This patient and here mother were enrolled in the study presented in Chapters 1 and 2.  
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Family 0012, Patient 0012_1 

Caucasian family of four with single affected female and unaffected younger brother. Clinical 

diagnosis at enrollment was developmental delay, autism spectrum disorder. Genetic test 

identified de novo interstitial deletion 2q23.1 – q24.2. She had early feeding problems and failure 

to thrive. Presented delayed milestones. At age 3 she was diagnosed with Autism Spectrum 

Disorder. Clinical test showed normal EEG.  

MRI scan: not available 

Molecular tests: not available 

Genetic tests: not available 

This patient participated in RNA-seq and HUMARA comparison of XCI ratio study described in 

Chapter 2. 

Family 0016, Patient 0016_1 

Asian family of four with single affected male and unaffected sister. Clinical diagnosis at 

enrollment was progressive cerebellar ataxia, dystonia. Patient walked at 15 months of age, and 

started talking at 2 years of age. Patient presents dysarthria, motor delay, progressive ataxia, and 

dystonia, tight heel cords. Spine X-ray is normal. 

MRI scan: Normal.  

Molecular tests: Lysosomal enzyme test, plasma amino acid, urine organic acid, acylcarnitines, 

creatine, guanidinoacetate all negative. CPK, alphafetoprotein, B12, ceruloplasmin test are 

normal. Muscle biopsy is normal. 

Genetic tests: Fragile X, MPS7, mtDNA, Ataxia (recessive) panel, spinocerebellar ataxia gene 

panel was all negative. Array CGH found 68kb heterozygous deletion at 1p36.11. 

This patient was enrolled in the DNA-RNA study in Chapter 4 and his mother was enrolled into 

the study presented in Chapter 2. 

Family 0018, Patient 0018_1 

Clinical description can be found in Chapter 2. This family was enrolled in she study presented in 

Chapter 2, and 3. The patient and her mother also participated in the RNA-seq-HUMARA study 

described in Chapter 2.  
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Family 0019, Patient 0019_1 

Caucasian family of six with 3 affected and one unaffected children. Clinical diagnosis of female 

patient at time of enrollment was autosomal recessive non‐progressive cerebellar ataxia infantile 

dystonia. Patient was delivered by C-section for failure to progress; immediately after delivery, 

was arching her back, eyes were rolled up. Arching and rigidity with involuntary eye movements 

continued as a neonate, continued until age 4 yrs. 

Patient was delayed in motor milestones - rolling over at 1 year; sat up at 2 years; pulled to stand 

3 years; walking at 4 years with gait trainer. Clinical examination at age 1.5-2 years showed 

hypotonia, preserved reflexes, tongue thrusting. Patient has poor writing skills, dysarthric speech, 

better cognition, and possible myopathy. Patient has normal nerve conduction and EMG.  

Clinical test at 7 years of age, showed that she could walk with crutches, had broad based ataxic 

gait, able to climb, and movements are slow. She had low muscle tone, head lag, and action 

tremor; but presented no spasticity.  

MRI scan: MRI shows mild cerebellar vermis atrophy. 

Molecular tests: lactate, pyruvate, and lysosomal enzyme levels are normal.  

Genetic tests: MeCP2, Spinal muscular atrophy (SMA) test negative. 

This patient was enrolled in the study presented in Chapter 4 and her mother was enrolled into 

the study presented in Chapter 2. 

Family 0020, Patient 0020_1 

Caucasian family of 5 with single affected female and two unaffected brothers. Clinical diagnosis 

at time of enrollment was Neonatal progeroid disorder, failure to thrive. She has a feeding 

disorder, lipodystrophy, and cutis marmorata. 

MRI scan: Normal. 

Molecular tests: Plasma amino acids, urine organic acids, cholesterol, triglycerides, Acyl 

carnitine profile were all normal. 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 2. 
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Family 0023, Patient 0023_1 

Caucasian family of three with single affected female. Clinical diagnosis at time of enrollment was 

infantile choreoathetosis, dystonia. She was born premature at 26‐27 weeks, but she had a 

relatively normal NICU course. She presented apnea at 8 months of age and development 

regressed. She had developmental delay with rigidity, fisting, head lag, and hyperreflexia. She 

has near normal cognition. 

MRI scan: She had two MRIs both of which were normal and EEG was normal as well. CT scan 

for calcification was negative. 

Molecular tests: Urine amino acids, organic acids normal. Total and free plasma carnitine tests 

were normal. Copper and ceruloplasmin were normal. CSF neurotransmitter metabolites, 

tetrahydropbiopterin/neopterin profile, methyltetrahydrofolate, amino acids were all normal. 

Lysosomal enzymes were also normal.  

Genetic tests: MeCP2 point mutation, deletion and duplication gene test was negative. 

Congenital Disorder of Glycosylation was negative. 

This patient was enrolled in the study presented in Chapter 2. 

Family 0024, Patient 0024_1 

Middle Eastern family of seven with single affected male and four unaffected siblings. Clinical 

diagnosis at enrollment was Aicardi-Goutieres Syndrome. Suspected parental consanguinity. 

MRI scan: not available 

Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 4 and his mother was enrolled into 

the study presented in Chapter 2. 

Family 0025, Patient 0025_1 

Caucasian family of four with single affected male and unaffected female sibling. Clinical 

diagnosis at enrollment was suspected feeding disorder, choreoathetosis. He had neonatal 

feeding difficulty and showed no reaction to pain. As a neonate he had megacystis, and urinary 
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retention. He presented hypotonia and delayed motor development with poor head control. He 

has bladder-emptying problem. 

MRI scan: Brain MRI showed cavum septum pellucidi. MRI of spine was normal. EMG normal 

Molecular tests: Urine acyl glycines, urine organic acids, and TORCH titers all normal. Normal 

serum CPK, lactate, ammonia all negative. Plasma short chain fatty acids showed mild 

ketonemia. CSF neurotransmitter metabolites, tetrahydrobiopterin, neopterin, 

methyltetrahydrofolate were all normal. Muscle biopsy showed normal ETC complex enzyme 

activity. 

Genetic tests: Array CGH was negative for copy number changes. 

Family 0029, Patient 0029_1 

Caucasian family of seven with two affected siblings (male, and female) and three unaffected 

brothers. Clinical diagnosis at time of enrollment was Aicardi-Goutieres Syndrome.  

The female patient had normal development until age 17 months, when developmental 

regression and spastic quadriparesis developed. 

MRI scan: MRI showed delayed myelination. CT scan showed no calcifications.  

Molecular tests: Lysosomal enzymes test was normal. CSF neopterin was slightly elevated. 

Genetic tests: FISH for Pelizaeus-Merzbacher disease was negative, spastic paraparesis panel 

was also negative. Gene test in SMAHD1 found a heterozygous variant in exon 12 at I448T.  

This patient was enrolled in the study presented in Chapter 2. 

Family 0033, Patient 0033_1 

Caucasian family of 5 with single affected female and unaffected brother and sister. Clinical 

diagnosis at time of enrollment was Aicardi syndrome. She started to present seizures at 10 

weeks of age. She has choreoretinal lacunae.  

MRI scan: not available 

Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 4, and she with her mother was 

presented in Chapter 2. 
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Family 0034, Patient 0034_1 

Hispanic family of 5 with single affected female and a brother and an unaffected sister. Clinical 

diagnosis at time of enrollment was Aicardi Syndrome.  

Prenatal ultrasound was suggestive of ventriculomegaly, and possible agenesis of corpus 

callosum. At birth diagnosed with asymmetric ventriculomegaly, agenesis of the corpus callosum, 

and L microphthalmia with optic nerve dysplasia. She smiled at 2 months of age. Myoclonic 

seizures and infantile spasms in clusters presented at 3.5 months. Seizures were controlled with 

vigabatrin and valproate. Ophthalmology exam showed microphthalmia, bilateral optic nerve 

colombomas with variable size, choreoretinal lacunae surrounding optic nerves in both eyes, 

sparing fovea. Combination of infantile spasms with agenesis of corpus callosum and optic nerve 

coloboma/choreoretinal lacunae led to diagnosis of Aicardi Syndrome. 

MRI scan: MRI showed dilation of posterior portion of ventricles, left more than right; third 

ventricle was elevated. CT scan showed features of agenesis of corpus callosum, and 

colpocephaly. EEGs showed slowing and bursts of epileptiform activity, primarily from left 

hemisphere. 

Molecular tests: not available  

Genetic tests: not available  

This patient was enrolled in the study presented in Chapter 4, and she with her mother was 

presented in Chapter 2. 

Family 0046, Patient 0046_1 

African American family of 5 with single affected female and two half-sisters unaffected. Clinical 

diagnosis at time of enrollment was Aicardi Syndrome. Pregnancy was normal, prenatal 

ultrasound suggested agenesis of corpus callosum. Prenatal MRI showed partial agenesis of 

corpus callosum MRI at birth partial agenesis of corpus callosum. Seizures were noted at 6 

weeks of age; ophtho exam at 3 months of age showed retinal lacunae and consequently was 

diagnosed with Aicardi syndrome. She has intractable epilepsy and spams like seizures.  

MRI scan: Brain MRI at 3 months of age also showed cortical dysplasia in left frontal lobe and 

partial agenesis of corpus callosum with preserved genu and anterior body of corpus callosum. 
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Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 2. 

Family 0047, Patient 0047_1 

Caucasian family of five with single affected female. Clinical diagnosis at time of enrollment was 

Aicardi Syndrome. She is a high functioning Aicardi patient. She walked at 2.5 years and uses a 

few single words; finger feeds, and is able to use the toilet. Normal birth. She showed infantile 

spasms and retinal lesions at 3 months of age. She has seizures. 

MRI scan: MRI showed only a small remnant of the splenium of corpus callosum; posterior fossa 

arachnoid cyst requiring shunting;  

Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 4, and she with her mother was 

presented in Chapter 2. 

Family 0048, Patient 0048_1 

Caucasian/Filipino family with a single affected female. Clinical diagnosis at time of enrollment 

was Aicardi Syndrome. She had infantile spasms and seizures starting at 10 weeks of age. 

She has global developmental delay, failure to thrive, trunkal hypotonia, scoliosis with trunkal 

curvature. She has the Aicardi characteristic of lacunae 

MRI scan: MRI showed absent corpus callosum, heterotopic gray matter in frontal lobes, 

intracranial cysts, ventricular dilatation ex vacuo, and abnormal sulcation patter.  

Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 4, and she with her mother was 

presented in Chapter 2. 

Family 0049, Patient 0049_1 

Caucasian family of five with single affected female. Clinical diagnosis at enrollment was 

Cockayne syndrome or Cerebro-Oculo-Facio-Skeletal Syndrome (COFS type 2). 
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She presents severe delay in motor and cognitive development. 

She has intrauterine growth retardation, congenital cataracts, congenital nystagmus, specifically 

continuous rotary and horizontal nystagmus. She has microcephaly, developmental delay, 

hypotonia and dystonia. She has Dysphagia, failure to thrive, and scoliosis. 

MRI scan: MRI shows diffuse T2 hyperintensities in the entire white matter indicative of 

leukoencephalopathy. 

Molecular tests: Plasma amino acids, urine organic acids, extended newborn screen all 

negative. 

Lysosomal enzymes, very long chain fatty acids are negative. 

Genetic tests: Congenital disease of glycosylation screen is negative. 3. FISH for Prader-Willi 

syndrome was negative. 

This patient was enrolled in the study presented in Chapter 4, and she with her mother were 

presented in Chapter 2. 

Family 0059, Patient 0059_1 

Caucasian family with single affected female. Her clinical diagnosis at enrollment without a 

suspected causal gene is Aicardi Syndrome. She presented seizures at 3 months of age. She 

has a cyst in the brain and is getting smaller. She has preserved, almost entire corpus callosum 

She has lacunae in one eye and her vision is improving. 

MRI scan: not available 

Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 4, and she with her mother was 

presented in Chapter 2. 

Family 0091, Patient 0091_1 

Caucasian family of four with single affected male and unaffected female sibling. Clinical 

diagnosis at enrollment was Schizophrenia, which was diagnosed at age 7. He has language 

difficulties and did not start to speak until age 4. He is also presenting symptoms characteristics 
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of Bipolar disorder. He has a propensity for violence and aggression. He has commanding 

auditory and visual hallucinations. EEG was normal. 

Maternal grandmother and her sister as well as maternal great-grandmother diagnosed with 

schizophrenia. Asperger's runs on father's side of family.  

MRI scan: not available 

Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 4, and his mother and grandmother 

presented in Chapter 2. 

Family 0103, Patient 0103_1 and 0103_2 

Clinical description can be found in Chapter 2. These patients were enrolled in the study 

presented in Chapter 2 and 3. 

Family 0117, Patient 0117 

Caucasian family of three with single affected male. Clinical diagnosis at enrollment was 

Pelizaeus–Merzbacher-like disease (leukodystrophy) with no candidate genes identified. 

Patient present nystagmus, hypotonia, delayed development. Limited speech, can only say about 

5 words, but can use signs. 

MRI shows diffuse lack of myelination of subcortical white matter, but with time some 

improvement, especially in the genu of corpus callosum; atrophy of splenium of corpus callosum 

Molecular tests: urine organic acids negative.  

Genetic tests: PLP1, GJA12, CDG screening is negative. 

CT scan negative for calcifications. 

This patient was enrolled in the study presented in Chapter 4, and his mother presented in 

Chapter 2. 

Family 0118, Patient 0018_1 

Caucasian family with single affected female. Clinical diagnosis at enrollment was Aicardi 

Syndrome. 

MRI scan: not available 
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Molecular tests: not available 

Genetic tests: not available 

This patient and her mother were enrolled in the study presented in Chapter 2. 

Family 0139, Patient 0139_1 

Caucasian family of three with single affected male. Clinical diagnosis at enrollment was not 

available. Self reported case. Patient has very small stature and features. Total situs inversus, 

wide set eyes, small low set ears, developmental and speech delays. 

Patient is unable to feed through mouth, VP shunt and g-tube and fundo. 

He has chronic lung disease, immotile cilia syndrome. 

MRI scan: not available 

Molecular tests: not available 

Genetic tests: not available 

This patient was enrolled in the study presented in Chapter 4, and his mother presented in 

Chapter 2. 

Family 0140, Patient 0140_1 

This is an adopted, Caucasian female patient. Clinical diagnosis at enrollment was suspected 

Dystonia. 

She has abnormal gait and posture that fluctuates without weakness; left leg with choreoathetotic 

or dystonic posture; can walk one minute and then is crawling the next because she cannot walk 

She was evaluated for Torticollis. She has low set ears flat nasal bridge. 

MRI scan: MRI showed stable very small 2.2mm syrinx at T12-L1. EMG was normal. 

Molecular tests: CSF was normal. 

Genetic tests: DYT1 mutation was negative. Array cGH for insertions deletions was negative. 

This patient was enrolled in the study presented in Chapter 2. 

Family 0152, Patient 0152_1 

Caucasian family with single affected male. Clinical diagnosis at enrollment was Leigh’s 

Syndrome with suspected causal mechanism. This is and old Amish family. Patient can crawl, sit 

without support, pull to stand, and cruise. He can say about 12 words and continues to expand. 
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MRI scan: MRI showed bilateral signal intensity alterations involving the anterior aspect of the 

subthalamic regions and the substantia nigra and pars reticularis of the mid brain. CT scan was 

normal 

Molecular tests: spectroscopy suggested subtle alterations in the lactate profile. 

Genetic tests: indicated that the child had a regions of homozygosity (ROH) across 9 

chromosomes. Genes associated with Mitochondrial complex I deficiency/Leigh’s syndrome are 

in these regions (NDUFAF2 and NDUFS3). 

This patient was enrolled in the study presented in Chapter 4 and her mother was enrolled in a 

study presented in Chapter 2. 

Family 0157, Patient 0157_1 

Caucasian family with affected female. Clinical diagnosis at enrollment was not available. Patient 

presents delayed development, Autism Spectrum behavior. She has normal skin. 

MRI scan: MRI showed non-specific symmetric prominence of T2-weighted high signal within the 

eperitrigonal white matter; delay in myelination or dysmyelination. 

Molecular tests: patient has borderline low levels of vitamin A level and undetectable DHEAS 

level. 

Genetic tests: FISH study showed a de novo 1.6 Mb deletion at Xp 22.31 (6,456,510-8,077,333)  
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APPENDIX B  

WHOLE EXOME SEQUNECING METRICS 
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       PCT target bases covered 

ID 

Study 

Chapter 

Gend

er 

Capture 

assay 

HQ 

Read 

(M) 

PCT 

Aligned 

reads 

Mean 

target 

coverage 
2X 10X 20X 30 X 

0001_1 Ch2|Ch4 F TruSeq 39.22 0.840 19.4 0.8

15 

0.59

0 

0.39

8 

0.23

1 
0001_3 Ch2|Ch4 M TruSeq 127.96 0.842 54.8 0.9

62 

0.91

1 

0.82

7 

0.71

1 
0001_2 Ch2|Ch4 F TruSeq 128.11 0.835 55.4 0.9

62 

0.91

2 

0.82

8 

0.71

1 
0001_4 Ch2 F TruSeq 129.77 0.895 91.8 0.9

74 

0.95

1 

0.92

4 

0.88

8 
0001_5 Ch4 F TruSeq 131.60 0.899 94.9 0.9

73 

0.95

0 

0.92

4 

0.89

2 
0001_6 Ch4 F TruSeq 147.49 0.899 104.5 0.9

74 

0.95

3 

0.93

1 

0.90

3 
0002_5 Ch2|Ch4 M TruSeq 193.32 0.872 124.4 0.9

76 

0.95

2 

0.92

6 

0.89

4 
0002_2 Ch2|Ch4 F TruSeq 135.25 0.877 87.3 0.9

71 

0.93

8 

0.89

5 

0.84

3 
0002_4 Ch2|Ch4 M TruSeq 125.71 0.872 80.3 0.9

71 

0.93

4 

0.88

4 

0.82

1 
0002_1 Ch2|Ch4 F TruSeq 138.80 0.884 85.2 0.9

66 

0.92

6 

0.87

9 

0.82

3 
0002_6 Ch4 M TruSeq 114.83 0.884 71.6 0.9

63 

0.91

4 

0.84

9 

0.77

0 
0002_3 Ch2|Ch4 F TruSeq 123.56 0.884 77.4 0.9

64 

0.92

0 

0.86

3 

0.79

6 
0008_1 Ch2|Ch4 F TruSeq 152.24 0.880 100.0 0.9

72 

0.94

2 

0.90

7 

0.86

4 
0008_3 Ch4 M TruSeq 141.72 0.876 94.8 0.9

73 

0.94

2 

0.90

3 

0.85

4 
0008_2 Ch2|Ch4 F TruSeq 129.64 0.883 84.9 0.9

71 

0.93

5 

0.89

0 

0.83

5 
0008_4 Ch4 F TruSeq 133.06 0.883 87.7 0.9

72 

0.93

9 

0.89

6 

0.84

4 
0012_3 Ch4 M TruSeq 92.04 0.878 54.3 0.9

60 

0.90

9 

0.82

8 

0.72

0 
0012_2 Ch4 F TruSeq 94.63 0.876 56.5 0.9

58 

0.91

0 

0.83

5 

0.73

4 
0016_1 Ch4 M TruSeq 62.47 0.868 30.0 0.9

43 

0.82

1 

0.64

0 

0.45

2 
0016_3 Ch4 M TruSeq 142.58 0.895 101.2 0.9

75 

0.95

4 

0.93

0 

0.89

9 
0016_2 Ch2|Ch4 F TruSeq 146.68 0.898 101.6 0.9

75 

0.95

2 

0.92

9 

0.90

0 
0018_1 Ch2|Ch3|Ch

4 

F TruSeq 138.58 0.883 81.7 0.9

61 

0.91

7 

0.86

2 

0.79

6 
0018_3 Ch2|Ch3|Ch

4 

M TruSeq 133.88 0.878 77.8 0.9

62 

0.91

3 

0.85

0 

0.77

6 
0018_2 Ch2|Ch3|Ch

4 

F TruSeq 145.77 0.882 84.9 0.9

62 

0.92

1 

0.87

0 

0.80

7 
0019_1 Ch2|Ch4 F TruSeq 90.53 0.873 54.6 0.9

58 

0.91

0 

0.83

5 

0.72

9 
0019_4 Ch4 F TruSeq 105.24 0.875 68.2 2.2

24 

0.96

2 

0.92

0 

0.85

8 
0019_5 Ch4 M TruSeq 134.00 0.872 83.4 0.9

69 

0.93

9 

0.90

0 

0.84

6 
0019_3 Ch4 M TruSeq 91.15 0.873 53.3 0.9

61 

0.91

2 

0.83

2 

0.71

9 
0019_2 Ch2|Ch4 F TruSeq 94.00 0.871 57.4 0.9

58 

0.91

1 

0.84

0 

0.74

0 
0019_6 Ch4 F TruSeq 99.06 0.871 60.3 0.9

60 

0.91

6 

0.85

1 

0.76

0 
0023_1 Ch2|Ch3 F TruSeq 134.41 0.884 74.9 0.9

64 

0.91

5 

0.85

4 

0.78

2 
0023_3 Ch2|Ch3 F TruSeq 164.02 0.882 94.1 0.9

67 

0.92

7 

0.87

9 

0.82

6 
0023_2 Ch2|Ch3 M TruSeq 152.04 0.876 82.4 0.9

65 

0.91

8 

0.86

4 

0.80

2 
0024_1 Ch2|Ch4 F TruSeq 120.12 0.881 76.7 0.9

65 

0.91

9 

0.86

0 

0.79

0 
0024_3 Ch4 M TruSeq 112.98 0.885 71.5 0.9

62 

0.91

0 

0.84

0 

0.75

6 
0024_2 Ch2|Ch4 F TruSeq 130.30 0.891 83.2 0.9

65 

0.92

1 

0.86

7 

0.80

2 
0025_1 Ch2|Ch4 F TruSeq 156.44 0.882 92.3 0.9

65 

0.92

6 

0.87

8 

0.82

3 
0025_3 Ch4 M TruSeq 147.60 0.878 86.8 0.9

65 

0.92

1 

0.86

7 

0.80

5 
0025_2 Ch2|Ch4 F TruSeq 176.04 0.869 102.9 0.9

66 

0.93

0 

0.89

0 

0.84

5 
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0025_4 Ch4 F Agilent 129.23 0.978 140.1 0.9

92 

0.98

6 

0.97

3 

0.95

2 
0025_5 Ch4 M Agilent 134.79 0.970 147.1 0.9

93 

0.98

6 

0.97

4 

0.95

4 
0029_1 Ch2 M TruSeq 115.83 0.888 82.9 0.9

55 

0.91

7 

0.87

5 

0.82

3 
0029_2 Ch2 F TruSeq 104.61 0.881 73.1 0.9

49 

0.89

2 

0.82

3 

0.75

0 
0029_3 Ch2 M TruSeq 144.50 0.871 102.5 0.9

61 

0.93

2 

0.90

3 

0.86

9 
0029_4 Ch2 F TruSeq 124.04 0.877 87.9 0.9

60 

0.92

9 

0.89

6 

0.85

3 
0029_5 Ch2 M TruSeq 151.58 0.840 43.5 0.9

62 

0.89

5 

0.76

4 

0.60

5 
0033_1 Ch2|Ch4 F TruSeq 139.65 0.900 100.2 0.9

73 

0.95

1 

0.92

8 

0.89

9 
0033_3 Ch2|Ch4 M TruSeq 145.74 0.894 102.5 0.9

76 

0.95

3 

0.93

0 

0.89

9 
0033_2 Ch2|Ch4 F TruSeq 146.21 0.896 104.4 0.9

74 

0.95

3 

0.93

1 

0.90

3 
0034_1 Ch2|Ch3|Ch

4 

F TruSeq 134.89 0.899 97.8 0.9

72 

0.95

0 

0.92

6 

0.89

6 
0034_3 Ch2|Ch3|Ch

4 

M TruSeq 121.93 0.897 87.7 0.9

72 

0.94

7 

0.92

0 

0.88

3 
0034_2 Ch2|Ch3|Ch

4 

F TruSeq 121.11 0.900 81.4 0.9

73 

0.94

6 

0.91

4 

0.87

0 
0046_1 Ch2 F TruSeq 112.76 0.874 45.4 0.9

54 

0.88

0 

0.76

6 

0.63

8 
0046_2 Ch2 F TruSeq 149.68 0.886 79.5 0.9

64 

0.92

1 

0.86

7 

0.79

9 
0047_1 Ch2|Ch4 F TruSeq 96.12 0.875 58.4 0.9

61 

0.91

5 

0.84

5 

0.74

8 
0047_3 Ch2|Ch4 M TruSeq 98.56 0.872 61.4 0.9

63 

0.91

9 

0.85

5 

0.76

6 
0047_2 Ch2|Ch4 F TruSeq 119.45 0.877 73.4 0.9

64 

0.92

8 

0.88

0 

0.81

5 
0048_1 Ch2|Ch4 F TruSeq 96.96 0.871 58.3 0.9

60 

0.91

5 

0.84

7 

0.75

4 
0048_3 Ch2|Ch4 M TruSeq 93.18 0.873 55.6 0.9

61 

0.91

3 

0.83

9 

0.73

7 
0048_2 Ch2|Ch4 F TruSeq 106.08 0.869 61.3 0.9

61 

0.91

8 

0.85

6 

0.77

1 
0049_1 Ch2|Ch4 F TruSeq 140.43 0.877 71.4 0.9

65 

0.91

6 

0.85

2 

0.77

8 
0049_3 Ch4 M TruSeq 134.70 0.873 68.5 0.9

66 

0.91

4 

0.84

6 

0.76

9 
0049_2 Ch2|Ch4 F TruSeq 125.76 0.878 65.0 0.9

63 

0.90

7 

0.83

4 

0.74

9 
0059_1 Ch2|Ch4 F TruSeq 143.69 0.879 103.1 0.9

68 

0.94

4 

0.92

0 

0.89

0 
0059_3 Ch4 M TruSeq 152.70 0.875 110.6 0.9

70 

0.94

6 

0.92

4 

0.89

6 
0059_2 Ch2|Ch4 F TruSeq 151.30 0.883 108.4 0.9

69 

0.94

5 

0.92

3 

0.89

6 
0091_1 Ch2|Ch4 F TruSeq 125.67 0.876 78.5 0.9

69 

0.93

8 

0.89

1 

0.81

5 
0091_3 Ch4 M TruSeq 170.94 0.872 105.6 0.9

72 

0.94

8 

0.92

0 

0.87

8 
0091_5 Ch2 F Agilent 143.42 0.978 154.3 0.9

92 

0.98

6 

0.97

4 

0.95

7 
0091_2 Ch2|Ch4 F TruSeq 130.68 0.882 83.3 0.9

69 

0.94

0 

0.90

1 

0.83

7 
0091_4 Ch2 F TruSeq 158.58 0.873 100.2 0.9

71 

0.94

8 

0.91

6 

0.86

4 
0103_1 Ch2|Ch4 M TruSeq 144.44 0.891 109.0 0.9

66 

0.93

9 

0.91

0 

0.87

6 
0103_2 Ch2|Ch4 F TruSeq 123.90 0.891 91.5 0.9

64 

0.93

3 

0.89

8 

0.85

6 
0103_4 Ch2|Ch4 M TruSeq 143.73 0.889 106.4 0.9

66 

0.93

8 

0.90

9 

0.87

4 
0103_3 Ch2|Ch4 F TruSeq 140.95 0.885 104.7 0.9

65 

0.93

6 

0.90

6 

0.87

2 
0117_1 Ch4 M TruSeq 135.07 0.884 95.9 0.9

67 

0.94

1 

0.91

0 

0.86

8 
0117_3 Ch4 M TruSeq 126.66 0.882 92.0 0.9

66 

0.93

8 

0.90

5 

0.86

2 
0117_2 Ch2|Ch4 F TruSeq 127.41 0.889 91.7 0.9

66 

0.93

8 

0.90

7 

0.86

5 
0118_1 Ch2 F TruSeq 135.49 0.887 98.1 0.9

66 

0.93

8 

0.90

8 

0.87

1 
0118_2 Ch2 F TruSeq 142.71 0.886 102.9 0.9

66 

0.94

1 

0.91

3 

0.87

8 
0139_1 Ch4 M TruSeq 161.13 0.873 86.0 0.9

72 

0.94

4 

0.91

2 

0.87

3 
0139_3 Ch4 M TruSeq 103.65 0.880 58.1 0.9

65 

0.92

8 

0.87

4 

0.79

4 
0139_2 Ch2|Ch4 F TruSeq 136.84 0.877 73.3 0.9

68 

0.93

7 

0.90

1 

0.85

4 
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0140_1 Ch2 F TruSeq 151.16 0.877 80.8 0.9

69 

0.94

1 

0.90

9 

0.86

8 
0152_1 Ch2|Ch4 M Agilent 84.85 0.961 96.8 0.9

93 

0.98

1 

0.95

4 

0.90

6 
0152_3 Ch4 M Agilent 66.82 0.978 78.0 0.9

92 

0.97

7 

0.93

4 

0.86

2 
0152_2 Ch2|Ch4 F Agilent 93.09 0.979 109.0 0.9

92 

0.98

3 

0.96

3 

0.92

9 
0157_1 Ch2|Ch4 F Agilent 110.45 0.978 122.7 0.9

92 

0.98

5 

0.96

9 

0.94

3 
0157_3 Ch4 M Agilent 112.65 0.980 128.9 0.9

93 

0.98

7 

0.97

2 

0.94

7 
0157_2 Ch2|Ch4 F Agilent 103.48 0.979 116.9 0.9

92 

0.98

5 

0.96

8 

0.93

8  
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APPENDIX C  

RNA-SEQ SEQUENCING METRICS 
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Id Study Chapter 

Gend

er RIN 

Read

s HQ 

(M) 

HQ 

Base

s 

(Gb) 

Bases 

mapp

ed 

(Gb) 

Median 

CV 

Covera

ge 

5’-3’ 

Bias 

0001_4 Ch2 F 7.8 154.7 13.1 12.8 0.39 0.65 
0001_1 Ch2|Ch4 F 8.6 119.6 10.0 9.6 0.37 0.74 
0001_3 Ch2|Ch4 M 8.6 117.1 9.3 9.0 0.37 0.76 
0001_2 Ch2|Ch4 F 8.8 82.2 7.4 7.1 0.38 0.77 
0002_1 Ch2|Ch4 F 8.9 108.3 9.1 8.8 0.38 0.75 
0002_2 Ch2|Ch4 F 8.9 152.5 12.7 12.3 0.38 0.75 
0002_3 Ch2|Ch4 F 8.9 125.9 10.4 10.0 0.37 0.72 
0002_4 Ch2|Ch4 M 9.4 106.0 9.2 8.9 0.37 0.74 
0002_5 Ch2|Ch4 M 8.9 127.3 9.6 9.3 0.38 0.81 
0002_6 Ch4 M 9 162.1 12.8 12.4 0.38 0.71 
0004_1 Ch4 M 8.2 128.3 8.2 8.0 0.41 0.67 
0004_2 Ch2|Ch4 F 7.5 230.6 14.5 14.0 0.42 0.67 
0004_3 Ch4 M 4.8 184.8 10.3 10.0 0.50 0.48 
0005_1 Ch4 M 9.1 117.4 9.8 9.5 0.38 0.74 
0005_3 Ch4 M 8.9 164.8 12.0 11.6 0.39 0.71 
0005_2 Ch4 F 8.4 126.3 11.4 11.0 0.39 0.73 
0006_1 Ch4 F 8.5 111.5 9.4 9.1 0.37 0.73 
0006_3 Ch4 M 8.7 98.8 7.1 6.9 0.38 0.76 
0006_2 Ch4 F 8.8 109.9 8.9 8.6 0.37 0.77 
0008_1 Ch2|Ch4 F 7.7 116.7 9.0 8.7 0.45 0.57 
0008_3 Ch4 M 7.3 134.2 10.5 10.2 0.42 0.63 
0008_2 Ch2|Ch4 F 7.3 166.3 11.0 10.6 0.44 0.58 
0011_2 Ch2|Ch3|Ch4 F 7.1 128.3 8.7 8.4 0.41 0.69 
0011_3 Ch3|Ch4 M 5.9 142.1 9.4 9.2 0.45 0.59 
0011_1 Ch2|Ch3|Ch4 F 8.8 126.9 9.1 9.1 0.38 0.74 
0012_1 Ch2 F 8.1 135.5 10.1 9.7 0.39 0.72 
0014_2 Ch2|Ch3|Ch4 F 8.6 132.9 10.5 10.1 0.41 0.71 
0014_3 Ch3|Ch4 M 8.3 141.2 10.0 9.6 0.40 0.69 
0014_1 Ch2|Ch3|Ch4 F 8.5 135.5 9.6 9.5 0.39 0.70 
0016_1 Ch4 M 8.5 120.6 10.0 9.7 0.38 0.71 
0016_2 Ch2|Ch4 F 8.5 159.1 11.1 10.7 0.38 0.70 
0016_3 Ch4 M 8.7 102.4 8.5 8.2 0.40 0.74 
0018_1 Ch2|Ch3|Ch4 F 7.5 109.3 8.6 8.4 0.39 0.74 
0018_2 Ch2|Ch3|Ch4 F 8 174.8 14.5 14.1 0.39 0.74 
0018_3 Ch2|Ch3|Ch4 M 7.9 111.0 9.5 9.2 0.39 0.73 
0019_1 Ch2|Ch4 F 8.1 177.1 12.6 12.2 0.40 0.72 
0019_2 Ch2|Ch4 F 8.8 152.2 9.9 9.5 0.38 0.73 
0019_3 Ch4 M 7.3 124.3 9.8 9.5 0.43 0.65 
0020_1 Ch2 F 8.5 122.0 10.1 9.7 0.37 0.72 
0023_1 Ch2|Ch3 F 8 151.7 10.3 10.0 0.39 0.72 
0024_1 Ch2|Ch4 F 7.4 145.9 11.3 10.9 0.39 0.74 
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0024_2 Ch2|Ch4 F 7.5 116.6 9.5 9.2 0.39 0.73 
0024_3 Ch4 M 8.1 104.8 8.9 8.7 0.40 0.69 
0025_1 Ch2|Ch4 F 5.1 239.8 14.7 14.0 0.49 0.56 
0025_3 Ch4 M 5.9 130.8 8.5 8.2 0.46 0.65 
0025_2 Ch2|Ch4 F 6 198.7 12.0 11.4 0.46 0.62 
0033_2 Ch2|Ch4 F 6.3 123.1 10.0 9.9 0.43 0.72 
0033_3 Ch2|Ch4 M 6.4 111.2 8.0 7.9 0.45 0.71 
0033_1 Ch2|Ch4 F 8.7 110.1 9.3 9.2 0.43 0.68 
0034_2 Ch2|Ch3|Ch4 F 8.6 104.9 9.0 8.9 0.41 0.80 
0034_3 Ch2|Ch3|Ch4 M 7.9 118.8 9.4 9.3 0.42 0.77 
0034_1 Ch2|Ch3|Ch4 F 9 112.7 9.9 9.9 0.39 0.75 
0046_1 Ch2  8.8 102.3 8.7 8.3 0.37 0.76 
0047_3 Ch2|Ch4 M 7.8 108.8 9.0 8.9 0.38 0.75 
0047_2 Ch2|Ch4 F 7.5 114.2 9.2 9.1 0.41 0.65 
0047_1 Ch2|Ch4 F 8.8 120.5 8.7 8.6 0.38 0.76 
0048_2 Ch2|Ch4 F 6 109.8 8.2 8.1 0.45 0.60 
0048_3 Ch2|Ch4 M 6.1 165.9 10.4 10.3 0.44 0.62 
0048_1 Ch2|Ch4 F 6.9 135.0 8.8 8.7 0.43 0.65 
0049_1 Ch2|Ch4 F 7.5 149.7 10.8 10.7 0.40 0.70 
0049_2 Ch2|Ch4 F 7 124.3 9.2 9.1 0.41 0.61 
0049_3 Ch4 M 6.8 110.8 9.0 8.9 0.42 0.69 
0059_1 Ch2|Ch4 F 7.3 64.6 5.3 5.3 0.43 0.63 
0059_2 Ch2|Ch4 F 7 148.4 10.8 10.7 0.41 0.69 
0059_3 Ch4 M 7.7 137.0 9.8 9.7 0.40 0.71 
0091_1 Ch2|Ch4 F 7.3 116.5 9.4 9.4 0.43 0.66 
0091_2 Ch2|Ch4 F 7.1 127.8 9.5 9.4 0.43 0.63 
0091_3 Ch4 M 7.6 132.0 9.1 9.0 0.43 0.66 
0091_4 Ch2 F 7.1 102.0 7.9 7.8 0.43 0.72 
0091_5 Ch2 F 5.6 194.5 12.1 11.4 0.39 0.68 
0103_4 Ch2|Ch4 M 6.9 128.1 10.9 7.4 0.46 0.63 
0103_3 Ch2|Ch4 F 8.9 45.2 3.6 2.4 0.47 0.67 
0103_2 Ch2|Ch4 F 7 76.0 9.6 6.4 0.45 0.66 
0103_1 Ch2|Ch4 M 6.9 26.8 2.8 2.0 0.44 0.70 
0103_2 Ch2|Ch4 F 7 76.0 9.6 6.4 0.45 0.66 
0103_3 Ch2|Ch4 F 8.9 45.2 3.6 2.4 0.47 0.67 
0103_4 Ch2|Ch4 M 6.9 128.1 10.9 7.4 0.46 0.63 
0117_1 Ch4 M 8.4 101.8 7.3 7.2 0.40 0.69 
0117_2 Ch2|Ch4 F 7.9 185.3 13.2 13.1 0.41 0.69 
0117_3 Ch4 M 8.5 88.1 6.4 6.4 0.44 0.64 
0118_1 Ch2 F 8.1 137.8 9.8 9.7 0.39 0.76 
0118_2 Ch2 F 8.4 116.6 9.3 9.2 0.39 0.71 
0139_1 Ch4 M 9.6 202.8 13.4 12.8 0.37 0.79 
0139_3 Ch4 M 5.2 200.6 13.5 13.0 0.40 0.71 
0139_2 Ch2|Ch4 F 7.7 183.7 11.9 11.4 0.53 0.59 
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0140_1 Ch2 F 7.7 235.2 16.1 15.5 0.39 0.79 
0152_1 Ch4 M 8.1 163.3 13.4 12.2 0.40 0.73 
0152_3 Ch4 M 7.4 231.4 15.5 14.7 0.40 0.73 
0152_2 Ch2|Ch4 F 8.1 99.6 8.3 7.4 0.40 0.71 
0157_1 Ch2|Ch4 F 7.1 199.1 13.1 12.2 0.43 0.69 
0157_3 Ch4 M 7 181.2 12.1 11.3 0.41 0.71 
0157_2 Ch2|Ch4 F 7.6 174.6 12.4 11.5 0.42 0.71 

 

  

 

 

 

 

 

 

 

 

 


