
Compiler and Architecture Design for Coarse-Grained Programmable Accelerators

by

Mahdi Hamzeh

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2015 by the
Graduate Supervisory Committee:

Sarma Vrudhula, Chair
Kailash Gopalakrishnan

Aviral Shrivastava
Carole-Jean Wu

ARIZONA STATE UNIVERSITY

August 2015



©2015 Mahdi Hamzeh

All Rights Reserved



ABSTRACT

The holy grail of computer hardware across all market segments has been to

sustain performance improvement at the same pace as silicon technology scales. As the

technology scales and the size of transistors shrinks, the power consumption and energy

usage per transistor decrease. On the other hand, the transistor density increases

significantly by technology scaling. Due to technology factors, the reduction in power

consumption per transistor is not sufficient to offset the increase in power consumption

per unit area. Therefore, to improve performance, increasing energy-efficiency must

be addressed at all design levels from circuit level to application and algorithm levels.

At architectural level, one promising approach is to populate the system with

hardware accelerators each optimized for a specific task. One drawback of hardware

accelerators is that they are not programmable. Therefore, their utilization can be

low as they perform one specific function. Using software programmable accelerators

is an alternative approach to achieve high energy-efficiency and programmability. Due

to intrinsic characteristics of software accelerators, they can exploit both instruction

level parallelism and data level parallelism.

Coarse-Grained Reconfigurable Architecture (CGRA) is a software programmable

accelerator consists of a number of word-level functional units. Motivated by promising

characteristics of software programmable accelerators, the potentials of CGRAs in

future computing platforms is studied and an end-to-end CGRA research framework

is developed. This framework consists of three different aspects: CGRA architectural

design, integration in a computing system, and CGRA compiler. First, the design and

implementation of a CGRA and its instruction set is presented. This design is then

modeled in a cycle accurate system simulator. The simulation platform enables us

to investigate several problems associated with a CGRA when it is deployed as an

accelerator in a computing system. Next, the problem of mapping a compute intensive

i



region of a program to CGRAs is formulated. From this formulation, several efficient

algorithms are developed which effectively utilize CGRA scarce resources very well to

minimize the running time of input applications. Finally, these mapping algorithms

are integrated in a compiler framework to construct a compiler for CGRA.

ii



DEDICATION

To Mitra

whose unconditional love and support made this dissertation possible

and

My Parents

who always encouraged me throughout my education

iii



ACKNOWLEDGEMENTS

I would like to express my gratitude to my family, friends and professors whose

help and support made it possible for me to complete this thesis.

I would also like to extend my deepest gratitude to Dr. Sarma Vrudhula for his

encouragement, mentorship and guidance throughout my Ph.D. studies. Your first

and most important question for me, "what are you passionate about?", was a great

inspiration in my graduate career. You have always been enthusiastic, supportive, and

energetic with a great passion to explore new ideas and I am grateful for that. I am

thankful for accepting me to be a member of your research team.

I would like to thank Dr. Aviral Shrivastava for serving in my committee. He

introduced me to coarse-grain reconfigurable architectures in computer architecture

course. Since then, I have enjoyed several discussions with him and he has been

enthusiastic about new research ideas. I would like to thank Dr. Carole Wu for joining

the committee. Her insight and suggestions have been a great resource for me. I am

grateful to Dr. Kailash Gopalakrishnan, not only for serving in my committee but

also for his mentorship during my internship at IBM research. Several resources and

new directions became reachable for me during the time I worked in his team that

had an immense influence in my research.

I have been fortunate to work and share space with my classmates and peers at ASU.

I would like to thank Digant Desai, for being a great friend and his encouragement

to explore new ideas. I would like to thank my friends, Vinay Hanumaiah, Niranjan

Kulkarni, Moeed Haghnevis, Mohammad Ali Abbasi, Zahra Abbasi, Shahrzad Shi-

razipour, Amrit Panda, Yooseong Kim, Dipal Singh, Bryce Holton, Reiley Jeyapaul,

Jinghua Yang, and Joseph Davis at ASU.

I would like to express my gratitude and appreciation to CIDSE graduate advisors

and to individuals at ASU specially Lisa Christian, Monica Dugan and Pamela Dunn.

iv



I am deeply thankful to Intel Labs in Santa Clara, CA and IBM research at Thomas

J. Watson Research Center. I believe my internships provided me a great opportunity

to be exposed to new problems and granted me access to industrial resources that

were not easily accessible at school.

I gratefully acknowledge the support I received from the following sources: the

National Science Foundation - grants CSR-EHS 0509540, NeTS 0905035; Science

Foundation Arizona – grant SRG 0211-07; the Stardust Foundation; NSF I/UCRC

Center for Embedded Systems – grant DWS-0086; NSF I/UCRC Center for Embedded

Systems and from NSF grant 1361926. I would also like to thank the Department of

Computer Science for granting me a research/teaching assistantship.

My family have always supported me from early education to this point. I would

like to thank my parents, Bahram Hamzeh and Haydeh Moattar for their support.

My sister, Anahita, who has always been a true friend for me and my brother, Milad.

Finally and most importantly, I am specially grateful to my wife and love Mitra.

Throughout my Ph.D. studies, you have always been by my side without any complaint,

every single moment of it. It is because of you that I could complete this work, thanks

for your support and encouragement.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Programmable Accelerators: Challenges and Opportunities . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER

2 RECONFIGURABLE COMPUTING FROM HARDWARE PERSPEC-

TIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Reconfigurable Computing Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Trends in Reconfigurable Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 RU bit width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Limiting the set of operations at each RU . . . . . . . . . . . . . . . . . 13

2.3.3 Reconfiguration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Representative CGRAs Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 KressArray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 RAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 MorphoSys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 ADRES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 CGRA Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 PE Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



CHAPTER Page

2.5.3 Local Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.5 Interconnection Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.6 Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 MAPPING PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Input Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Modulo Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Mapping Problem in NP-Complete . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Notes on Routing and Re-computation Complexity . . . . . . . . 62

4 EPIMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Re-Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 GENERALIZED RESOURCE ALLOCATION . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Multi-cycle Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Supporting Pipeline Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Placement and Register Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 SUPPORTING CONDITIONALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



CHAPTER Page

6.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Partial Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.2 Full Predication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.3 Dual-Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 REGIMap extension to support conditionals . . . . . . . . . . . . . . . . . . . . . 96

7 A FRAMEWORK TO STUDY CGRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 System Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 REGIMap Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4.1 Optimizing scheduling window factor . . . . . . . . . . . . . . . . . . . . . 109

7.4.2 Optimizing the number of clique search attempts . . . . . . . . . . 109

7.4.3 EPIMap performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4.4 EPIMap success rate at first mapping attempt . . . . . . . . . . . . . 113

7.4.5 Re-scheduling is effective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4.6 Constraining resources during scheduling is effective . . . . . . . . 115

7.4.7 Placement and register allocation search space . . . . . . . . . . . . . 115

7.4.8 Register allocation performance . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.9 Multi-cycle implementation severely damages performance . . 120

7.4.10Compilation time of loops with EPIMap . . . . . . . . . . . . . . . . . . 121

7.4.11REGIMap Compilation time scales well with register file size121

7.4.12Pipelining is effective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4.13Pipelining compilation time overhead . . . . . . . . . . . . . . . . . . . . . 123

7.5 Supporting Loops with Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



CHAPTER Page

7.5.1 Need for supporting Conditionals in Loops . . . . . . . . . . . . . . . . 124

7.5.2 Performance of dual-issue scheme . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5.3 Dual issue scheme and CGRA interconnect . . . . . . . . . . . . . . . . 125

7.6 Performance projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 SUMMARY AND FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

ix



LIST OF TABLES

Table Page

2.1 Features of Several CGRAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Opcode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Details of Predicate Operand Multiplexer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Details of Operand Multiplexer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Memory Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 The Mapping of Operations in Figure 3.4(e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



LIST OF FIGURES

Figure Page

1.1 A 4× 4 CGRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Components of a Reconfigurable Computing Platform . . . . . . . . . . . . . . . . . . . 12

2.2 KressArray Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 RAW Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 MorphoSys Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 ADRES Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Internal Structure of a PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Internal Structure of a Rotating Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Flexible Register File Internal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 CGRA Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Memory Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 CGRA Interconnection Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Basic Block Highlevel View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 A CFG Representation of Loop in Algorithm 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 DFG Representation of CFG Shown in Figure 3.1 . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 An Example of Accelerating a Loop Using Modulo Scheduling . . . . . . . . . . . . 40

3.5 An Example of a Mapping with Re-computation . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 An Example of a Mapping with Routing and Re-computation . . . . . . . . . . . . 43

3.7 Problems Associated with Loop Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Policies Taken by Existing Modulo Scheduling Algorithms: Integrated and

Decomposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Reduction from 3-partition Problem to CGRA Mapping Problem. . . . . . . . . 61

4.1 Examples of ASAP, ALAP and Modulo Scheduling. . . . . . . . . . . . . . . . . . . . . . 70

xi



Figure Page

4.2 An Example of a Complete Mapping Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 An Example of Mapping a DFG with Multi-cycle Operations. . . . . . . . . . . . . 81

5.2 An Example of a Mapping with Pipelined Operations. . . . . . . . . . . . . . . . . . . . 84

5.3 An Example of a Mapping with Integrated Placement and Register Allocation. 89

6.1 An Example of Partial Predication Transformation with Mapping. . . . . . . . . 92

6.2 An Example of Full Predication Transformation with Mapping. . . . . . . . . . . . 94

6.3 An Example of DFG Transformation for Dual-issue Execution. . . . . . . . . . . . 95

6.4 An Example of DFG Transformation to Torm Packed Nodes in Dual-issue

Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 An Overview of CGRA Study Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Compilation Flow for CGRA Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 The Success Rate of Fining Maximum Clique. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Performance of Loops Mapped Using EPIMap vs DRESC. . . . . . . . . . . . . . . . 112

7.5 The Success Rate of Placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 Performance Comparison of Loops Mapped Using REGIMap and Register-

Aware DRESC When Size of Register File is 8. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.7 Performance Comparison of Loops Mapped Using REGIMap and Register-

Aware DRESC When Size of Register File is 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.8 Performance Comparison of Loops Mapped Using REGIMap and Register-

Aware DRESC When Size of Register File is 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.9 The Compilation Time of Loops Using EPIMap and DRESC Algorithms. . 128

7.10 The Compilation Time Using REGIMap and DRESC in Single Cycle

CGRA Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xii



Figure Page

7.11 The Compilation Time Using REGIMap and RA-DRESC in a Pipelined

CGRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.12 The Performance Overhead of Supporting Pipelined CGRAs. . . . . . . . . . . . . . 132

7.13 The Compilation Time Overhead of a Pipelined CGRA. . . . . . . . . . . . . . . . . . 133

7.14 The Number of Loop with Conditional Constructs in SPEC2k6 Benchmark

Suit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.15 The Achieved II in Mapping Loops When Different Predication Scheme is

Used in a Mesh Interconnected CGRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.16 The Achieved II in Mapping Loops When Different Predication Scheme is

Used in a CGRA with Diagonal Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiii



Chapter 1

INTRODUCTION

The holy grail of computer hardware and software design across all market segments

is to achieve and sustain levels of improvement in performance on the same scale

as increases in transistor density. Over past decades, increasing the number of

transistors and clock frequency have driven the performance forward aggressively. On

one hand, transistor density has been increasing exponentially, although it slowed

down recently. On the other hand, total power consumption on chip has been kept

relatively constant. Therefore, designers have been able to maintain the temperature

of the chip within silicon working range. Supply voltage scaling was the major driver

in power consumption reduction per transistor which has kept the increase in total

power consumption modest. However, this golden era has ended recently because

supply voltage scaling could not be achieved at the same pace as technology scales.

Recent empirical studies [28] have shown that current strategy to increase per-

formance by increasing the number of cores will probably fail. This is due to the

fact that voltage scaling has slowed or almost stopped, and the power consumption

of individual cores are not reducing enough to allow the increase in the number of

active computing units. Hence, as technology scales, an increasing fraction of the

silicon will have to be dark, i.e., be under-clocked or powered off. In fact, it is the

heat dissipation capability of the silicon package that will become the limiting factor.

This study estimated that at 8nm, more than 50% of the chip will have to be dark.

The dilemma is to keep the total power consumption on chip constant while transistor

density increases without compromising the performance.

One promising and increasingly popular approach to improve energy efficiency is a

1



heterogeneous multi-core which is populated with a collection of specialized or custom

hardware accelerators (CHA) each optimized for a specific task such as graphics, image

processing, etc. Computation is handed over to the power/energy optimized CHAs

and each can be power gated when not needed. Several commercial examples of such

systems include IBM PowerEN processor [63] and Qualcomm Snapdragon S4 Pro [1].

The trend is to having many smaller, highly optimized CHAs integrated with a few

general purpose processors.

One of the drawbacks of the CHAs is the lack of flexibility in terms of programma-

bility. While CHAs permit energy efficient use of the silicon area, their utilization can

be low as they perform one specific function, their design cost is high and it is difficult

and costly to upgrade them as the underlying algorithms they implement change. At

the other end of the spectrum are special purpose instruction set processors such as

Graphics Processing Units (GPUs), which have become very popular. Although they

are programmable, their energy efficiency and performance advantages are limited

to parallel loops [97]. Moreover, such specialized processors require significant effort

to program them using specialized languages (e.g. CUDA). In between of these two

extremes, are Field Programmable Gate Arrays (FPGAs). Their low cost and high

degree of reconfigurability, however, is offset by high energy overhead due to fine-grain

reconfigurability and long interconnects.

A promising alternative to a CHA, GPU and FPGA is the Coarse-Grained Recon-

figurable Architecture (CGRA) [102]. A CGRA consists of a number of word-level

functional units called programming elements or PEs, that are interconnected through

a rich interconnection network. The PEs are connected to a local memory through

a shared bandwidth bus. When deployed as an accelerator, CGRAs have been

shown to achieve high energy efficiency [13] while demonstrating all advantages of a

programmable accelerator.

2



Figure 1.1. A 4× 4 CGRA.

The promising characteristics of CGRAs have motivated us to study problems asso-

ciated with using CGRAs in a general-purpose computing platform. This dissertation

is categorized into three parts, each aim to address one aspect of the problem. The

first part studies CGRA design and implementation. The second part is dedicated

to addressing compilation problems associated with acceleration of applications in

CGRAs. Finally, the problem of integrating CGRA in a computing platform as an

accelerator is studied in the third part.

1.1 Programmable Accelerators: Challenges and Opportunities

A CGRA is an array of processing elements (PEs) connected through a rich

network. PEs are generally equipped with an ALU and few registers. A PE issues

an instruction every cycle, where that instruction dictates which operation to be

3



performed on the set of inputs specified by the instruction. CGRAs vary in PEs

functionality, interconnection between PEs, memory and register file organization.

An example of a CGRA with PEs connected through a mesh interconnect is shown

in Figure 1.1. PEs are connected to neighbouring PEs, and the output of a PE is

accessible to its neighbours in the next cycle as an input. In addition, a common data

bus from the data memory provides data to all the PEs in a row.

In a general purpose processor, the coordination between components is controlled

at execution time while such mechanism is not present in CGRAs. A control unit (CU),

either a centralized control unit of in-order processors or a distributed implementation

of out-of-order processors, controls and synchronizes events in a general purpose

processor. Instruction fetch, issue and dispatch, assigning operations to functional

units and controlling the execution flow, all are handled by a CU. As the number of

components is increased in a processor, the complexity of such control unit increases

significantly. Thus, it is extremely expensive in terms of area and power to increase

instruction level parallelism (ILP) beyond certain levels with such sophisticated CUs.

CU must also cross check every pair of instructions in flight to discover data and

control dependencies. Increasing ILP requires increasing the number of instructions

in-flight. This leads to a significant increase in CU complexity to cross check all

instructions and satisfy their data dependencies. Yet another problem arises with

interconnection between functional units. As the number of functional unit increases,

the complexity of interconnection between functional units increases significantly to

provide short paths between functional units executing dependent instructions. This

leads to an increase in area, power, and overhead in performance.

Due to these facts, to increase performance at lower hardware complexity, multi-

threading programming paradigm has been proposed which shifts these problem to the

programmers to specify threads with minimal data dependency. To ensure correctness

4



of the program, programmer has to explicitly handle data dependencies between

threads. This is referred to as critical regions [99] and is one of the most challenging

problems for programmers.

Designing an effective CU which can deliver a high ILP in a wide range of appli-

cations is very challenging nowadays. This is because an abstract view of underline

micro-architecture is present to the compiler. The idea behind abstracting the micro-

architecture through instruction set architecture (ISA) is to guarantee binary compati-

bility from implementation to implementation of a processor. In this model, a limited

space, such as vector operations [75], is available to explicitly express parallelism in

an application .

It is the role of a CU to extract parallelism from application and efficiently utilize

computing resources in such paradigm. If binary compatibility was not a major

concern and detail of micro-architecture is exposed to a compiler, CU could have been

simplified significantly. This is the main idea behind CGRAs.

With a simple and regular structure, a rich set of functional units, distributed

register files, and high memory bandwidth, one promising technique to reach higher

performance at low power consumption is the use of CGRAs. As opposed to general

purpose processors, micro-architecture details are exposed to the compiler which

is responsible for assigning operations to PEs rather than a CU. In CGRAs, the

mapping of operation in an application to resources in CGRA is static in the sense

that operations are assigned to PEs at compile time. Developing efficient application

mapping techniques is the most important problems in CGRAs.

Over the last twenty years, CGRAs have been an active field of research. During

the 1990s, system design was the primary focus of CGRA research. A catalog of these

designs is given in [45]. Around the time that [45] was written, a shift in the focus

of CGRA research began. Researchers realized that without automated and efficient

5



application mapping techniques, widespread use of CGRAs is not feasible. Rather

than focusing on CGRA design, the majority of CGRA research has directed towards

developing effective CGRA compilers.

Compiling applications for CGRAs is an important field of research for several

reasons. First and foremost, the CGRA is a promising tool that can be used to increase

performance and power efficiency in computing. By allowing reconfigurability at a

coarse level, CGRAs provide the flexibility needed to execute a variety of applications

with minimal overhead. However, hand mapping of applications to CGRAs is not

a viable solution. Automated compilers are needed which can map a broad range

of applications to a broad range of CGRAs to unlock the potential advantages of

CGRAs.

Several characteristics inherent to CGRAs contribute to the difficulty of program-

ming them. Operations must be scheduled for several (sometimes dozens) of processing

elements, and naturally the operations must meet the data dependency requirements

of the computation. The connections among the processing elements are often sparse,

leading to difficulty in routing operands between two PEs. Often, CGRAs consist of

resources (e.g. multipliers) that are shared by the PEs, so conflicts must be resolved.

In addition, all of these design elements vary among different CGRA designs, so

creating a single compiler that can successfully map applications to multiple CGRAs

is further complicated.

1.2 Problem Statement

This dissertation aims to study the following problems associated with using

CGRAs in a computing platform:

1. Mapping inner most loops onto CGRAs. Many applications execute in phases

6



and a few set of those phases or regions contribute to most of the execution time.

Those regions are usually composed of loop nests. Acceleration of those regions

can significantly reduce the application execution time. Therefore, studying the

problem of mapping loop nests onto CGRA is a fundamental problem we aim

to address in this research. Even though there are many heuristic techniques

for this problem, this problem is not studied well. In fact, because there is

no precise formulation for this problem, important characteristics of it are not

extracted yet. This problem is addressed in chapter 4.

2. Efficient resource allocation in mapping of loop nests onto CGRA. An efficient

utilization of available resources on CGRA plays an important role in perfor-

mance and is studied in chapter 5. Registers are one of those resources which

can be utilized to satisfy data dependencies between operations. An effective

register utilization reduces the unwanted traffic between accelerator and memory

subsystem too. In this dissertation, we present a precise formulation for the

CGRA mapping problem while using register files. In contrast to the previ-

ous ad-hoc problem definitions, our problem formulation is quite general and

supports re-computation, and sharing of routing paths with dependencies.

3. Many important loops embody conditional statements. Therefore, it is important

to develop compiler and architectural schemes to accelerate and map such

loops. In chapter 6, several problems associated with accelerating loops with

conditional statements are studied and effective technique are presented to

support acceleration of those loops.

4. CGRA design, implementation, and integration in a system as an accelerator.

CGRA in envisioned as an accelerators in computation systems. Two major

requirements of this study include an architectural design and implementation

of CGRA, and a system level and cycle accurate simulator to run applications

7



on CGRA which is presented in chapter 7. We aim to address CGRA design

problems as well as system level integration of CGRA into a computing platform.

5. Compiler construction for CGRAs. Compiler construction is an error-prone,

difficult, and time consuming task. An effective accelerator without a compiler

to automatically and efficiently compiles application for it is useless. Thanks

to the advances in compiler design, a compiler for a new architecture can be

built quickly by reusing existing libraries. We integrate the mapping techniques

presented in this dissertation into llvm and study different problems associated

with constructing an end-to-end compiler for CGRAs which is presented in

chapter 7.

8



Chapter 2

RECONFIGURABLE COMPUTING FROM HARDWARE PERSPECTIVE

2.1 Background

Semiconductor device fabrication has always been an expensive and time consuming

process [100]. Thus providing reconfigurability 1 feature on silicon significantly reduces

implementation time and cost. The earliest attempt to present such feature on silicon

dates back to early 70’s when Programmable Logic Arrays (PLAs) were introduced [58].

Since then, the reconfigurability feature on silicon has improved significantly from

reconfigurable interconnects to programmable logic blocks and interconnects between

those blocks. The field of reconfigurable computing received enormous attention in

early 1990s when Field programmable gate arrays (FPGA) became commercially

available at relatively acceptable price 2. By the end of that decade, FPGAs were

widely deployed [111] in various systems due to two major reasons:

• An exponential increase in the number of logic gate count allows engineers to

implement and accelerate a large set applications.

• Financial benefits of using FPGAs in low volume products.

Due to fine grain programmability, FPGAs can be programmed to implement

from bit level operations up to super word level functions. This flexibility, however,

comes at the cost of programming difficulty and high static power consumption [38].

1In past, the term programmability was more commonly used for this feature.

2Acceptable price is a vague term but FPGAs are usually used in product prototyping or in
application with relatively small market (low volume production). For such applications, non recurring
costs are usually dominant and price per device does not play a major role in total expenses.

9



Limitations and overhead of reconfiguring FPGAs at run-time (in flight), in addition

to above-mentioned issues, impose a significant restriction on using FPGAs extensively

in wider set of energy-constrained applications.

FPGA vendors acknowledged these problems and started addressing these issues

around 2000s. By then, the functionality of CAD tools 3 improved as well as a rich set

of libraries for commonly used functions have been developed [11]. In addition, FPGA

devices were equipped with rich set of standard hard core and soft core IPs 4. Yet,

engineers need an extensive training to use FPGAs and CAD tools effectively. Better

CAD tools made FPGAs easier to program but there are many obstacles yet to be

addressed to make FPGAs usable for engineers without extensive hardware training.

For instance, programming FPGAs using high level programming labguages has been

an active research problem [54, 55, 56, 86] for more than a decade. Static power

consumption, however, is unlikely to be addressed well in FPGAs because fine-grained

programmability requires high static power consumption.

Coarse-grained reconfigurable architectures or CGRAs aim to extend reconfigurable

computing application by presenting two important features. As opposed to FPGAs,

CGRAs are programmable at instruction level granularity. Due to this feature,

compared to FPGAs, a significantly less silicon area is required to implement CGRAs.

Besides, static power consumption is much lower in CGRAs compared to FPGAs.

More importantly, given major improvements in compiler technologies, automation in

mapping applications specified at high level programming languages onto CGRA can

be achieved in near future where a programmer and a compiler interactively generate

and optimize a target application for CGRA acceleration. Therefore, there is no need

3Tools developed for synthesis and simulation of hardware designs in FPGA.

4Hard cores such as embedded powerPC processor, memory controllers, etc., and soft cores such
as FFT units, microBlaze processor provided as library in CAD tools, etc.

10



to extensively train engineers to use CGRAs as compared to FPGAs. This removes a

major burden in widespread use of CGRAs.

2.2 Reconfigurable Computing Alternatives

Several computing platforms have also received a significant attraction recently

due to their performance and financial benefits including Graphics Processing Units

(GPUs) and vector accelerators. Each of these acceleration platforms, GPUs, vector

machines, and reconfigurable computing platforms, are well suited for one class of

application with some overlap.

GPUs have rapidly evolved in last decade with extended programming capability.

These changes allow GPUs to be programmed to perform general-purpose computation

as opposed to be limited to perform graphic computation only. This topic is generally

referred to as GPGPU [90].

GPGPUs are generally equipped with thousands cores and this number has been

increasing rapidly over the past decade. GPGPUs are an excellent computing platforms

for the workloads that can be partitioned into a large number of threads with minimal

interaction between those threads. The effectivity of GPGPUs decreases significantly

as the number of workload partitions decreased or the interaction between them

increases [52, 107]. In addition, the collision between memory access across threads

should be minimized to minimize the performance penalty [107]. In such acceleration

model, programmers are responsible to find an effective way to partition the workload.

Single instruction multiple data computing model or SIMD is another alternative

acceleration platform. They can effectively accelerate a number of applications at low

energy cost. Such platform work well for applications with regular access pattern [75].

11



This is important because operations are executed on a wide bucket of data. Any

irregularity in data bucket should be handled sequentially with extensive penalty [88].

2.3 Trends in Reconfigurable Computing

The hardware design aspects of CGRAs have been studied extensively in past three

decades. A majority of these designs have target a specific application for acceleration

such as PADDI [17] and ULIW[64] that target real-time signal processing applications

or MorphoSys [67] that accelerates video compression. A small set of these designs,

instead, aim at providing a general computing platform such as ADRES [13].

RU

RU

RU

RU

Interface
Interconnect

Reconfigurable 
Unit

Figure 2.1. Components of a Reconfigurable Computing Platform.

Because several CGRAs are optimized for different goals, there are a number of

variations in their designs such as unit operation bit-width, reconfiguration model,

programming model, interconnection. In this section, several CGRA design are

categorized based on those such variations.

12



In Figure 2.1, several components on a reconfigurable platform are shown. These

components include reconfigurable computing units (RU), interconnection between

RUs, and interface between recomputing platform and the rest of a computing system.

2.3.1 RU bit width

A gradual trend in reconfigurable computing, from FPGAs to CGRAs, is that the

bit width of the functional units has been increasing. Major FPGA vendors such as

Xilinx and Altera have been increasing the size of configurable logic blocks (CLBs)

as well as integrating an increasing number of digital signal processing units (DSPs).

Those DSP units perform standard signal processing operations such as different filters

on inputs.

RUs in Figure 2.1 represent CLBs in an FPGA. In an FPGA with DSP units, RUs

are heterogeneous representing both CLBs and DSPs. The input bit width of those

RUs representing DSPs are generally 16-bits or higher and has been increasing in past

decade.

The trend is to integrate an increasing number of wider RUs such as DSPs on

FPGAs. A similar trend can be seen in published CGRA design reports. In Table 2.1,

the operation width of RUs in several CGRAs are shown.

2.3.2 Limiting the set of operations at each RU

A consequence of increasing the bit width of inputs is that RUs would only be

able to implement a limited set of boolean functions on those inputs. Supporting all

Boolean functions on inputs is not practical. However, the supported operations can

13



Table 2.1. Features of several CGRAs.
Name Year Operation width Reconfig. model Interconnect

PADDI [17] 1990 16 bits Static Crossbar
PADDI-2 [110] 1993 16 bits Static Crossbar
KressArray [46] 1995 32 bits Static Mesh
RaPiD [26] 1996 16 bits Static Linear

MATRIX [83] 1996 8 bits Dynamic Mesh
RAW [108] 1997 32 bits Static Mesh

PipeRench [34] 1998 4 bits Dynamic Linear
REMARC [84] 1998 16 bits Static Mesh
MorphoSys [67] 1998 16 bits Dynamic Mesh

DPR [103] 2002 8 bits Dynamic Segmented
ULIW [64] 2002 16 bits Dynamic Mesh
ADRES [13] 2005 32 bits Dynamic Mesh
PPA [93] 2009 32 bits Dynamic Mesh
DySer [37] 2011 32 bits Dynamic Mesh

be implemented very efficiently at far less area compared to RUs supporting bit level

operations.

2.3.3 Reconfiguration model

In early reconfigurable platforms, an application could only be supported if the

entire application would be mapped onto the computing platfrom. Later, computing

platforms were attached to general computing platforms as an accelerator. In this

model, the main processor is responsible for programming and controlling the reconfig-

urable platform. The latency of attaching such accelerator has dramatically decreased

as new bus interfaces has been introduced.

Current computing platforms enable us to reprogram the reconfigurable computing

platfrom in-flight, frequently. Consequently, it opens the door to accelerate a wide

set of applications as the silicon area limitation, imposed on earlier reconfigurable

computing platforms, is significantly relaxed. An application can be partitioned

14



into multiple contexts which can be programmed onto the reconfigurable computing

platform in several steps.

An important feature that recent reconfigurable platforms present is that they can

hold an even increasing context size to minimize the overhead of in-flight reconfigura-

tion. Internally, the context for an RU 5 can change at cycle granularity. By increasing

the bit width of interface between general computing platform and reconfigurable

computing platform, large contexts can be sent faster.

2.3.4 Interconnection

There are several interconnects between RUs that can connect RUs to each other.

In FPGAs, these interconnects are partitioned into several segmented. There are few

switches that enable or disable connection between different segments. By enabling

few switches, a path can be established between an output of an RU to an input of

another RU. This is referred to as routing in FPGA CAD tools.

As the length of a path between two RUs increases, the delay to send a data

between those units increases too. Due to this negative effects, FPGA CAD tools try

to minimize the physical distance between connected components. Designers on the

other hand, optimize their performance by pipelining the communication between

connected units placed inevitably at far distances.

The number of those segments have been increasing to minimize the delay between

neighboring RUs. In addition, interconnects have changed to be increasingly local,

short, and regular. Mesh interconnect, for example, is widely used in several CGRA

designs. Instead of providing a rich set of switches, in recent CGRAs, RUs would act

5we will refer to this as instruction.

15



✍✟✑☛✞✗✟✝

✙☛✔✟

✚✝✟✞✞✕✝✝✆✛✜✢
✕✌✌✝✟✞✞

✡✟☞✟✝✆✗☛☎☞

�✁✂✄✄✠✁✁✎✏✒✓ ✖✘✣✤✁✘✥ ✦✣✧✤

★✩✪★✫✬✭✮ ✯✰✱ ✗☎ ✲☎✞✗ ✆☞✌ ✳✆☛☞ ✳✟✴☎✝✛ ✵✶✷✶ ✯✰✱ ✸

✹✺✻✼✼✽✺✺✾✿❀❁

✑✔☎❂✆✔ ✢❃❄ ❂❅✞

☎❆ ☎❆ ☎❆ ☎❆ ☎❆ ☎❆

☎❆ ☎❆ ☎❆ ☎❆ ☎❆ ☎❆

☎❆ ☎❆ ☎❆ ☎❆ ☎❆ ☎❆

❇☞☛✗

✄✤✎✤✦✄ ❈✓❈❉

❊☎☞❋●
❅☞☛✗

❍■❏❑ ▲▼◆❖❍▼PP◗❍

☎❆ ☎❆ ☎❆ ☎❆ ☎❆ ☎❆

✫★❘✷✬❙❚ ❯✭✪✭❱✭✪❲ ✰✬❳✪ ❨✫❩❬❭❪

Figure 2.2. KressArray Architecture [87].

as switches too. The mapping software is responsible to map dependent computation

blocks onto close RUs or pay the penalty of routing in term of RUs and delay.

2.4 Representative CGRAs Designs

In this section, several CGRA designs that represent a wide range of CGRAs based

on above-mentioned variations are reviewed.

16



2.4.1 KressArray

KressArray [46, 47] (depicted in Figure 2.2) consists of PEs 6 connected through a

mesh interconnection network. The interface between reconfigurable array and general

computing platform is provided through a hierarchal global routing network to route

data from outside to PEs and vice versa. A controller is responsible for managing

input and output of data streams, and configuration process. KressArray is among

pioneer CGRAs designs with emphasis on scalability. Several switches are provided at

the boundaries of interconnection network which can be utilized to connect multiple

CGRA devices in a mesh style network.

The datapath of PEs is 32-bit wide. In addition to arithmetic and logical operations,

PEs can route data to the neighboring PEs. PEs are equipped with a small register file,

a routing switch, and an ALU. The main application of this architecture is multimedia

application with high computation and high data throughput demands.

KressArray configuration memory is programmed by the host computer via a

configuration bus. PEs are programmed selectively in the configuration process.

During configuration process, the address of a PE in the mesh is first asserted. In

the next step, the configuration is directly forward to the selected PE. Through

configuration, registers can be set in PEs to hold constant values or memory pointers.

KressArray is a data driven architecture. Execution of instructions is triggered when

all inputs are available. This scheme simplifies the mapping problem significantly.

This architecture is envisioned as an off-chip accelerator. It is a passive device on

bus so that the programming or configuration should be initiated by a host machine.

6rDPU: reconfigurable datapath unit

17



✁�✂�

✁✄☎✆✝✞

✠✟✡☎☛✆✟☞☛

✍�✂�

✎✌

✑✎

✑✎

✒✌✏

✔�✂�

Figure 2.3. RAW Architecture [108].

Besides, input data for computation should be delivered through a data sequencer

unit. Several designs such as XPP [9] are inspired from KressArray architecture.

2.4.2 RAW

Reconfigurable architecture workstation (RAW) [108] is made up of a set of inter-

connected PEs 7. Each PE contains a RISC-like 8 pipeline, data memory, instruction

memory, a reconfigurable logic, and a switch. As opposed to most CGRAs, data and

instruction memory is distributed in PEs in this architecture. The pipeline is kept

minimal without any support of register renaming nor dynamic instruction issuing. In

7In their original article, the term tile is used instead of PE.

8Reduced instruction set computing.

18



an inspiring approach, this architecture exposes all low-level details of hardware to

the compiler. This enables compiler to allocate resources more efficiently as opposed

to pure hardware-based resource allocation.

Each PE is connected to a local switch. A switch can be configured at cycle

granularity thanks to a configuration memory in switch. The separation of instruction

memory in PE and network switch allows the PE to take arbitrary branches without

disturbing the routing of independent messages. Compiler is responsible for orchestrat-

ing data with minimal stall occurrence. Should compiler fails to find a static schedule,

RAW provides dynamic support of flow control. Figure 2.3 depicts an overview of a

RAW Microprocessor along with external RAM interface.

The interconnect between PEs is optimized for single data word transfer. The

interconnection is divided into two logical networks, static and dynamic. The static

one is utilized for static schedule with data transfer determined by compiler. When

no data transfer is scheduled on the network, the instruction scheduled dynamically

by RAW control unit can utilize the network as a dynamic one.

2.4.3 MorphoSys

The MorphoSys architecture [67] comprises five major components, Reconfigurable

Cell Array or RC Array (shown in Figure 2.4(b), a control processor, context memory,

frame buffer, and a DMA controller. The RC Array is composed of 64 PEs 9 arranged

in a 2-dimensional mesh. The computation model of PEs in a row is SIMD 10 where all

of these PEs share the context (instruction). PEs are connected through a three-layer

9The term RC is used in their article

10Single instruction multiple data

19



✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

✁✂

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

�✄ �✄

✪☎✠✘✫ ✪☎✠✘✆

✪☎✠✘✬ ✪☎✠✘✭

✝✞✟ ✝✡✟

Figure 2.4. MorphoSys Architecture [67].

network which enables fast data exchange between PEs. Each PE incorporates an

ALU and a register file. The idea behind RC Array is to implement the datapath for

custom instructions for the processor.

Instructions are hold in context memory. This memory is to be programmed through

DMA transactions. In fact, RC Array does not have direct access to memory subsystem,

rather, all memory operations have to be performed through DMA operations. Frame

buffer is used as local memory during computation. Inputs, through DMA operations

are copied to this memory and the result of computation would be collected back by

DMA.

RC Array can be logically divided into tiles of 4 by 4 PEs as shown in Figure 2.4(a).

MorphoSys framework includes a compiler (mCom) to map hybrid code to this

architecture. The partitioning of the code between host processor and RC Array,

however, should be done manually by user.

20



Figure 2.5. ADRES Architecture [80].

2.4.4 ADRES

Shown in Figure 2.5, Architecture for Dynamically Reconfigurable Embedded

System [13, 80] or ADRES is a VLIW processor tightly coupled with a array of

PEs 11. Each PE is composed of a functional unit (an ALU) and a register file. PEs

are logically partitioned into a VLIW processors and a reconfigurable matrix. The

VLIW processor executes unaccelerated parts of the application while reconfigurable

matrix would accelerate repetitive sections of the code. Due to tight integration of

11RC is used instead of PE in their article.

21



reconfigurable matrix and VLIW processor, the programming model of ADRES is

significantly simplified.

Each PE is composed of a functional unit, a register file and small instruction

memory. PEs are connected through a mesh interconnection network. There is a

predication network which enables ADRES to execute regions with conditional clauses.

The register file in VLIW processor is shared with reconfigurable matrix. This reduces

the communication between reconfigurable matrix and memory subsystem. A compiler

framework is developed for this architecture. It targets innermost loops in application

to map on reconfigurable matrix.

2.5 CGRA Components

In this section, several components of our CGRA design are presented.

2.5.1 PE Structure

The internal structure of a PE is shown in Figure 2.6. An instruction is fed to a PE

at cycle granularity which controls all Components of a PE. An instruction controls

the functional unit to perform an operation on input(s). Each input is selected using

a multiplexer. The inputs to this multiplexer are register file output, output register

of the PE, output registers of neighboring PEs 12, immediate value from instruction,

or data bus. The predicate inputs are also selected by a multiplexer. Inputs of this

multiplexer are pairs of predicate bits. Its inputs come from predicate register file,

predicate output of the PE, or predicate outputs of neighboring PEs.

12Up, down, left, and right

22



Figure 2.6. Internal Structure of a PE.

An important component of a PE is how writing to register files are enabled.

Note that there are two register files, one for data and one for predication. Given an

instruction opcode and instruction destination, write enable is asserted for selected

register file by register control unit.

2.5.2 Register File

The datapath register file, has 4 inputs, 2 for selecting read registers indexes, 1

to select write register index, and 1 bit to enable or disable writing to the register

file. As we will discuss later, a rotating register file is an ideal structure for CGRA

acceleration model. It is because a rotating register file enables compiler to generate a

compact code which virtually displaces the register indexes at run-time. Since CGRAs

are well suited to accelerate loop, this structure enables CGRAs to avoid writing to

23



R1

W

+

+

R1

write

data 1

Offset counter

R2
+R2 data 2

Register Bank

Register 1

Register 2

Register n

Register n-1

log n

log n

log n

Figure 2.7. Internal Structure of a Rotating Register Rile.

the same register index over and over in consecutive loop iterations. A structural view

of a rotating register file is presented in Figure 2.7.

In rotating register file, there is a counter which is incremented at the end of every

iteration of the loop. By increasing this counter, a selected index in register file would

be increased by one every iteration. For instance, when register 1 at iteration 2 of the

loop is written, the value is in fact would be stored in register 3. It is because counter

at iteration 2 is 2 which would be accumulated with register index.

In addition to rotating register file, a non-rotating register file is essential at each

PE. We logically split the register file into rotating and non-rotating register files as

shown in Figure 2.8. Non-rotating register files are necessary to hold constant values

and address pointers are usually used to load data from memory or store data back.

Such variables do not often change during an execution, an even if they do, it is very

infrequent. Thus, it is better to store them in a register file where their indexed fo

not change from iteration to iteration. When register indexes are changing, a value

stored in a register can be read with different indexes at every iterations. This makes

generating instruction for load and store very difficult. In fact, indexing such variables

would require extra operations at run-time.

24



R1

W

+

+

R1

write

data1

Offset counter

R2
+R2 data2

RC

Register Bank

Reset

Register 1

Register 2

Register n

Register n-1

log n

log n

log n

log n

log n

log n

Figure 2.8. Flexible Register File Internal Structure.

2.5.3 Local Memory Interface

CGRA is connected to memory subsystem through CGRA memory. This memory

acts as a private cache for CGRA. There is a shared bus at each row which provides

communication to the memory for PEs at that row. This bus is shared among all

PEs at that row, so at any given cycle, only one PE can communicate with memory.

This bus consists of address bus and data bus. To load a data from memory, the

address bus is asserted first. In the following cycle, data will be available on data

bus or there is a cache miss. For a store transaction, address bus and data bus are

both asserted at a cycle. If that address is not present in CGRA memory, it would be

handled by CGRA memory controller. Memory transactions are controlled by memory

instructions. A memory write transaction consists a memory command and two PE

indexes. The first index specifies the PE asserting address bus. The second index

selects PE asserting data bus if the transaction is a store operation.

25



(a) Format 1

(b) Format 2

Figure 2.9. CGRA Instruction Format.

2.5.4 Instruction Set

There are two types of instructions: instructions issued to PEs and memory

instructions. PE instructions consist of arithmetic, logic, and data manipulation

operations. Memory instructions deal with load and store operations between PEs

and memory subsystem.

As shown in Figure 2.9, PE instructions are categorized into two formats. In

the first type, input operands of an instruction are registers, either read from local

register file or read from output register of neighboring PEs. In the second type of PE

instruction, there is an immediate 13 input operand.

There is no branch instruction in CGRA ISA. However, there is a predication

network which can be utilized to conditionally execute instructions. A predication

input in an instructions determines whether an instruction should be executed or

squashed at a given cycle. When the predicate input is 0, the instruction would not

change the state of a PE at that cycle. There is one exception that if an instruction

13The value of the operand is static and can be known at compile time.

26



updates the predicate output, such as conditional instructions 14, it is executed

regardless of predicate input. However, if the predicate input is 0 for such instruction,

the predicate output is always 0. This is essential to correctly execute predicate

instruction in the presence of nested if-clauses.

The first type of PE instructions is depicted in Figure 2.9(a). The first field in

the instruction is used to identify instruction type. When it is 0, the instruction has

two inputs and one output operands. Opcode is 5 bits supporting up to 32 different

operations. Details of supported operations in summarized in Table 2.2.

Table 2.2. Opcode Summary.

Opcode Mnemonic Instruction Action (C style)

0 AND Bitwise AND R = Op1&Op2

1 ORR Bitwise OR R = Op1|Op2

2 EOR Bitwise XOR R = Op1⊕Op2

3 ORN
Bitwise OR

complement
R = Op1|Op2

4 BIC Bit clear R = Op1&Op2

5 ASR
Arithmetic shift

right
R = Op1 >> Op2

6 LSR Logical Shift Right R = (U)(Op1 >> Op2)

7 LSL Logical Shift Left R = Op1 << Op2

8 ROR
Logical rotate

right
R = ror(Op1, Op2)

14Such as IF statement.

27



9 RRX
Sign extended

rotate right
R = rrx(Op1, Op2)

10 CLZ
Count the number

of leading zeros
R = #of zeros in Op1

11 MOV
Copy input to

output
R = Op1, PR = POp1

12 MVH

Copy 16 MSB bits

from input to

output

R = Op2 << 16&FFFF0000 15

13 MVL

Copy 16 LSB bits

from input to

output

R = 0000FFFF&(U)(Op2 >> 16) 16

14 CMP Compare PR 17 = (Op1 == Op2)

15 SLT Set less than PR = (Op1 < Op2)

16 SLE
Set less than or

equal
PR = (Op1 <= Op2)

17 SLTU
Unsigned set less

than
PR = (U)(Op1 < Op2)

18 SLEU
Unsigned set less

than or equal
PR = (U)(Op1 <= Op2)

19 SOC Set overflow PR = C

15Note that if instruction is immediate format, the immediate operand is to be sign extended.

16Note that if instruction is immediate format, the immediate operand is to be sign extended.

17Predicate output

28



20 ADC Add with carry R = Op1 +Op2 18 +C

21 ADD Add R = Op1 +Op2

22 SUB Subtract R = Op1−Op2

23 SBC
Subtract with

carry
R = Op1−Op2− C

24 SEL Select R = Select(Op1, Op2)(predicate)

25 RSC
Reverse subtract

with carry
R = Op2−Op1− C

26 MUL Multiply R = Op1×Op2

27 UML Unsigned multiply R = (U)(Op1×Op2)

28 ADD16 Parallel add
R [31 : 15] = Op1 [31 : 15] +Op2 [31 : 15],

R [31 : 15] = Op1 [15 : 0] +Op2 [15 : 0]

29 SUB16 Parallel subtract
R [31 : 15] = Op1 [31 : 15]−Op2 [31 : 15],

R [31 : 15] = Op1 [15 : 0]−Op2 [15 : 0]

30 REM 19 Remainder R = Op1%Op2

31 DIV Divide R = Op1/Op2

Predicate MUX (Pred MUX ) field selects predicate input among 4 neighboring PEs

predicate output, one from the PE predicate output executing the instruction, and

one from its predicate register file. Details are given in Table 2.3. Note that predicate

18If Op2 is immediate, it is sign extended.

19Division is not implemented yet but reserved for future developments.

29



Table 2.3. Details of Predicate Operand Multiplexer.
Predicate
MUX 0 1 2 3

Predicate
Operand

Predicate
Register File

Complement
Predicate

Register File

Left PE
Predicate

Left PE
Complement
Predicate

Predicate
MUX 4 5 6 7

Predicate
Operand

Right PE
Predicate

Right PE
Complement
Predicate

Up PE
Predicate

Up PE
Complement
Predicate

Predicate
MUX 8 9 10 11

Predicate
Operand

Down PE
Predicate

Down PE
Complement
Predicate

Output
Predicate

Output
Complement
Predicate

Predicate
MUX 12 13 14 15

Predicate
Operand Unused Unused Unused Unused

output is formed from a predicate result and its complement. This implementation is

chosen to simplify the execution both the outcome paths of a conditional clause.

Predicate register (Pred Reg) field is used to select the predicate register. WR

represents the destination register that is to be updated by an instruction. It is

also used to update predicate register file (WPR). When W is 1, the register file is

updated otherwise, the output register of a PE is updated only after execution of an

instruction. Left MUX and Right MUX specify the first and second input operands

of the instruction, which can be among neighboring PEs output, selected PE output,

register file of PE, or Data Bus. Details are given in Table 2.4. R1 and R2 are used

to specify the first and second register operand, should local registers be used in an

instruction. 7 bits are reserved for future increase in size of register files.

The second PE instruction type is shown in Figure 2.9(b). The first field is 1

30



Table 2.4. Details of Operand Multiplexer.
Left/Right
MUX 0 1 2 3 4 5 6 7

Input
Operand

Register
File Immediate Left

PE
Right
PE

Up
PE

Down
PE

Data
Bus

Output
Register

Figure 2.10. Memory Instruction Format.

Table 2.5. Memory Commands.
Mem CMD Action

0 NOP
1 Load word
2 Load sub-word high
3 Load sub-word low
4 Store word
5 Store sub-word high
6 Store sub-word low
7 Exchange word 20

representing immediate format instruction. All fields up to immediate are identical to

the first format. When one operand is immediate, the Right MUX and R2 fields are

not needed, thus immediate field can be extended to 12 bits.

Memory operations are handled through memory instructions. There is a memory

bus arbiter at each row in CGRA. This element executes a memory instruction at

every cycle. A memory instruction is formed from 3 fields as shown in Figure 2.10.

AD BUS specifies which PE in the row asserts address bus. DA BUS specifies the PE

number in the row asserting data bus. The memory operation, whether it is a load or

store, is specified by Mem CMD. Memory commands are summarized in Table 2.5.

31



Figure 2.11. CGRA Interconnection Network.

2.5.5 Interconnection Network

Interconnection between PEs in CGRA is essential to leverage spatial and temporal

locality. As shown in Figure 2.11 PEs are connected through a mesh network. Each

PE can read from output of its 4 neighboring PEs at every cycle.

All PEs in CGRA receive an instruction from instruction memory at every cycle.

PEs in a row share data bus. At a given cycle, only one PE can write to data bus.

For simplicity, we assume that a PE at row 0 has an input from PE at row 3. This is

32



the case for PEs at column 0 too. In fact, we assume a torus connection between PEs

to simplify compiler design.

2.5.6 Control Unit

Applications execute in phases and often just a few phases or regions contribute

most to the execution time. Those regions are usually composed of loops and it is

the acceleration of those loops that significantly reduces the execution time of an

application. The execution of a loop nest consists of three phase in CGRA: Prolog,

Kernel, and Epilog. The length of those regions are sent to CGRA controller. It starts

with executing prolog. Once the prolog region is complete, the kernel execution is

initiated which continues in a repetitive manner until it is completed.

A PE is connected to the controller which checks the condition of the loop. For

instance, many loops are expressed with a number of iteration that is checked at the

beginning or end of each iteration. The PE that checks the end loop condition, simply

compares the number of executed iterations with the number of iteration loop has to

be executed in the program.

Once execution of the kernel is over, control unit fetches the instruction from epilog

region unit execution is over. At this point, controller is responsible for interrupting

the main processor. The corresponding interrupt service routine would hand the

execution to the program on the main processor.

In addition to those roles, control unit is responsible to stop and resume the

execution in CGRA when a cache miss occurs due to a load operation. In addition,

the counter registers in rotating register files are controlled by this unit.

33



Chapter 3

MAPPING PROBLEM

As opposed to general-purpose processors that only instruction set is visible

to the compiler, the micro-architecture details of a CGRA is exposed to a CGRA

compiler. This enables compilers to optimize applications for underline CGRA and take

advantage of interconnection between PE to maximize performance. In CGRAs, the

mapping of operation of the input application to resources on CGRA is static because

operations are assigned to PEs at compile time. Developing efficient application

mapping techniques is one of the most important problems in CGRAs.

Over the last twenty years, CGRA design have been an active field of research.

However, without automated and efficient application mapping techniques, widespread

use of CGRAs is not feasible. Recently, CGRA research community has focused on

developing effective CGRA compilers.

Several CGRA characteristics contribute to the difficulty of programming CGRAs.

Operations must be scheduled for several (sometimes dozens) of PEs, and naturally

the operations must meet the data dependency requirements of the computation.

The interconnection among the PEs are often sparse, leading to difficulty in routing

operands between PEs. Often, CGRAs consist of resources (e.g. multipliers) that are

shared by the PEs, so resource conflicts must be resolved. In addition, all of these

design elements vary among different CGRA designs, so creating a universal compiler

that can successfully map applications to multiple CGRAs is further complicated.

The most important problem, by far, is to effectively accelerate compute intensive

kernels of an application on CGRAs. In this chapter, the problem of mapping loop

kernels onto CGRA is studied. First, a background is presented along with a review

34



of state-of-the-art. Then, the mapping problem is formulated and its complexity is

studied.

3.1 Background

3.1.1 Kernels

Applications execute in phases and often just a few phases or regions contribute

most to the execution time. Those regions are usually composed of loops and it

is the acceleration of those loops that significantly reduce the execution time of

an application. Software pipelining is a classical technique to accelerate loops by

reordering the instructions [65]. Modulo scheduling [94] is a form of software pipelining.

The goal in modulo scheduling is to overlap the execution of successive iterations of a

loop to minimize the execution time. The performance metric in modulo scheduling

in the time interval between initiating two successive iterations of the loop, referred

to as Initiation Interval or II.

3.1.2 Input Representation

Control flow graph or CFG is an excellent intermediate representation of different

code segments, used extensively in compilers for optimization purposes [85]. Compilers,

generally break an input program into a set of basic blocks with few arcs connecting

those blocks to each other. From compiler perspective, a basic block is a sequence

of instructions with one entry point at the beginning of the basic block and one exit

point at the end of it. In other word, in this representation, no control flow instruction

can jump into a middle of a basic block and no control flow instruction in middle of

35



statement 1
statement 2

…
statement n

switch()

Figure 3.1. Basic Block Highlevel View.

a basic block can jump outside of the block other than at exit point of the block as

shown in Figure 3.1.

Note that an entry point of a basic block can be connected to exit point of a

set of basic blocks. Additionally, the exit point of a basic block can be a branch.

An exit point of a basic block that represents a conditional clause, for example, can

be connected to multiple basic blocks representing various possible outcomes of a

conditional clause in a high-level programming language construct.

To schedule instructions within a basic block, compilers generally construct an

acyclic data dependency graph called data acyclic graph (DAG) [85]. Consider the

snippet of code shown in Listing 3.1. A CFG is constructed for this code in Figure 3.2.

Without any optimization, three basic blocks are required to represent this loop. Loop

counter, i, is initialized in BB1, loop condition is checked in BB2, loop body is

executed BB3 where loop counter is incremented as well.

Listing 3.1. An example of CFG representation.

for(i=0; i < 100; i++) {

C[i]=A[i]+B[i];

}

36



i <- 0 

if (i<100)

C[i] <- A[i] + B[i]
i <- i + 1 

TF

BB3

BB1

BB2

Figure 3.2. A CFG Representation of Loop in Algorithm 3.1.

A loop with sufficiently large number of iterations with high computation demand

is generally selected for CGRA acceleration. A selected loop for CGRA acceleration

is represented as a CFG. As opposed to traditional scheduling in compilers where

each basic block is initially scheduled independently, a CGRA compiler schedules all

instructions within a selected loop as a whole. This is accomplished by constructing a

data dependency graph called data flow graph (DFG) from CFG representation of

the loop. As opposed to a DAG, cyclic dependencies may be present in a DFG. This

makes the scheduling and mapping of a loop onto a CGRA challenging. In Figure 3.3,

a DFG constructed from CFG shown in Figure 3.1 is presented. In this figure, the

node labeled A represents loading from ith index of array A, B represents loading from

ith index of array B, C represents storing to ith index of array C. Node i represents

i← i+ 1 operation and the node labeled IF represents instruction that checks exit

condition of the for loop.

A DFG I = (VI , EI) is formed from a set of nodes and a set of arcs. In this structure,

a node represents an operation or an instruction in single assignment (SSA) [85] form

37



IF A B

C

i
1

1

11 1

Figure 3.3. DFG Representation of CFG Shown in Figure 3.1.

of the loop. An arc from node u to v represented by (u, v) ∈ EI implies that operation

v ∈ VI requires the output of operation u ∈ VI as an input.

There is a weight associated with each arc, represented by e(u,v). This weight

represents iteration distance between dependent instructions in a loop. For instance,

when e(u,v) is 0, there is a data dependency between u and v at the same loop iteration.

The weight of arc from node A to node B in Figure 3.3 is 0. On the other hand,

when the weight of an arc is a positive number, it implies a data dependency between

instructions across loop iterations. For example, the weight of arc from node i to

node IF is 1 indicating that the IF instruction at iteration j reads the output of

instruction i updated at iteration j−1. Note that in a for loop, counter is incremented

at the end of an iteration, thus, any instance of using that counter within loop body

reads the value of i updated at previous iteration 21.

Let ui represents operation u ∈ VI at ith iteration of the loop. When e(u,v) = k

where k ≥ 0, it implies that vi has an input from ui−k
22. Note that k cannot be

negative and this relation is only defined when i ≥ k.

21In case of 1st iteration, it reads the value of loop initialization.

22operation u at (i− k)
th iteration.

38



Finally, control dependencies, the ones that determine the flow of the execution,

are converted into data dependency using predication transformation. (details will be

discussed in Chapter 6).

Once nodes are created, data dependency between pair of nodes has to be discovered.

An arc (u, v) is added to EI if the output register 23 of node u is an input operand of

node v. By traversing through the basic blocks once, the iteration distance between

dependent operations are discovered. Consider (u, v) in a basic block. If in that basic

block u appears first, the weight is 0; otherwise, it is 1 because that dependency is

extended across two successive iterations of the loop. Since every register can only

be assigned once, when v appears first in a basic block before u, it implies that v is

reading output of operation u produced in the previous iterations.

For an arc (u, v) when u and v are in different basic blocks of a loop, the order in

which their basic block appears in the loop determines the weight of this arc. If there

is a path from basic block of u to v without passing the last basic block of the loop,

referred to as loop latch, the weight is 0. Otherwise it is 1. A simple DFG constructed

from CFG shown in Figure 3.1 is presented in Figure 3.4(a).

3.1.3 Modulo Scheduling

In this section, we present several problems associated with modulo scheduling

and mapping a loop onto a CGRA. Consider the DFG shown in Figure 3.4(a). We

would like to map this DFG onto a 2× 2 CGRA shown in Figure 3.4(b). To better

visualize this example, PEs on the CGRA are shown in linear form in Figure 3.4(c).

The first mapping is presented in Figure 3.4(d). In this mapping, it takes 4 cycles

23Note that all instructions are in SSA form.

39



(a)

a

c

f e

b

g

d 1 2

34

1 2 43

Time

1

2

3

4

Ite
ra

tio
n

a b

c db

ef

g

II=
4

(b) (c)

(d)

Time

1

2

3

4

II=
2

a b

c db

ef

g

II=
2

(e)

Time

1

2

3

4

II=
2

a b

c db

ef

g

II=
2

5

6

II=
2

7

8

II=
2

(f)

a b

c db

ef

g

a b

c db

ef

g

Ite
ra

tio
n

Ite
ra

tio
n

Ite
ra

tio
n

Figure 3.4. (a) An input DFG, (b) A 2× 2 CGRA, (c) The same CGRA shown in
linear form, (d) A valid mapping of the given DFG on CGRA with iteration latency
=II= 4, (e) Another mapping for the given DFG with iteration latency= 4 and
II = 2, lower II is achieved because two iterations of the loops are executed
simultaneously. Dark PEs are used to execute operation from other iterations of the
loop. (f) Detail of execution overlap of three successive iterations of the loop. Nodes
from first iteration are white, from second iteration are yellow, and from third
iteration are green.

to execute one iteration of the loop. Mapping starts at cycle 1 when nodes a and b are

mapped to PE1 and PE2. At the next cycle, operations c and d are executed at PE1

and PE3. Because the output of operation b is to be used in cycle 3, PE2 retains its

output at cycle 2 to hold the output of operation b executed at cycle 1. We refer to

such operation as routing.

At cycle 3, operation f and e are executed on PE1 and PE2. Finally, PE1 executes

operation g and the execution of one iteration of this loop is completed. The next

iteration of the loop can be initiated at cycle 5. This implies that II in this mapping

is 4.

II is proportional to execution time and is inversely proportional to performance.

40



We wish to minimize the execution time, hence, the goal in modulo scheduling is

to minimize II. It is possible to increase the performance by 2X only by allocating

different resources to execute operations. This resource allocation is referred to as

placement in CGRA mapping literature. In Figure 3.4(e), another mapping of input

DFG to input CGRA is presented. At cycle 1, operations a and b are executed on

PE1 and PE4. In the next cycle, c and d are mapped to PE1 and PE4. PE3 routes

operation b. At cycle 3, operations f and e are executed at PE2 and PE3. Finally,

PE2 executes operation g to complete one iteration of the loop. PEs shown in black

color are used to execute operation from other iterations of the loop.

Similar to the previous mapping, it takes 4 cycles to execute one iteration of the

loop. II, however, is reduces to 2. To better illustrated this II, the execution of

three consecutive iterations of this loop is presented in Figure 3.4(f). Note that it is a

snapshot of execution when mapping shown in Figure 3.4(e) is used. Operations in the

first iteration of the loop are colored white, second are yellow, and the third iteration

are green. As it is shown in this mapping, at cycle 3, PE1 and PE4 are not used to

execute any instruction of the first iteration. Thus, it is possible to utilize them to

execute operation a and d of the second iteration. Any resource that is needed to

carry out the execution of c and d (PE1 and PE4), as well as the routing of b (PE3)

in the second iteration of the loop are free at cycle 4. Therefore, the execution of the

second iteration of the loop can be completed without any resource conflict with the

execution of the first iteration of the loop.

Although the latency of completing one iteration of the loop is unchanged, a new

iteration of the loop can be initiated every 2 cycles. Hence, the throughput and

performance are improved by 2X. In modulo scheduling, as is shown in this example,

operations from successive iterations of the loop are executed together. Before formally

41



defining the mapping problem, let’s review few characteristics of the problem which

make the mapping different from existing definitions [18, 78] in literature.

First, to define the mapping problem, it is important to precisely define range and

domain in mapping function. Previous studies [18, 78] defined mapping a function

from operations in DFG to resources in CGRA. However, this definition is to restrictive.

Consider the mapping depicted in Figure 3.5. We wish to map Figure 3.5(a) onto

CGRA Figure 3.5(b) at the minimum II. The mapping shown in Figure 3.5(c) is the

best 24 possible mapping. This mapping is achieved because operation b is mapped

onto two PEs, PE1 and PE1, at the same cycle. We refer to this as re-computation.

Re-computation is different from routing. A routing PE only copies one of its

inputs to the output register. In this mapping, however, operation b is indeed executed

twice. At cycle 1, PE2 issues operations a. Both PE1 and PE3 read the output

register of PE2 and execute operation b. The output register of PE1 is read by PE1

to execute operation c at cycle 3. At the same cycle, PE3 reads its own output register

and executes operation d. Finally, at cycle 4, operation e and f are issued by PE2

and PE4 to complete the execution of one iteration.

II in this mapping is 2. This is because the first iteration of the loop is initiated

at cycle 1 and the second iteration is initiated at cycle 3. This is accomplished only

because of the re-computation through which at cycle 3 and 4, all the resources

to initiate the execution of the next iteration of the loop become available. Those

resources are colored black in Figure 3.5(c).

This example clearly shows that the mapping is not simply a function from

operations in DFG to PEs in resource graph. This is counter-intuitive because we

expect II to increase as the number of operation executed by PEs increases.

24The one with the minimum II.

42



Figure 3.5. (a) an input DFG, (b) a 2× 2 CGRA, (c) A mapping of the input DFG
into the CGRA at the minimum II. One iteration of the loop requires 4 cycles to
execute and II = 2. The minimum II is achieved because operation b is executed
twice. Without re-computation, mapping at II = 2 is impossible.

Figure 3.6. (a) an input DFG, (b) a 2× 2 CGRA, (c) The same CGRA shown in
linear form, (d) a valid mapping of the given DFG on CGRA with iteration latency
=II= 4, (e) another mapping for the given DFG with iteration latency= 4 and
II = 2, lower II is achieved because two iterations of the loops are executed
simultaneously, (f) Detail of execution overlap of three successive iterations of the
loop. Nodes from the first iteration are white, from second iteration are yellow, and
from third iteration are green.

An important aspect of this problem is that only permitting routing or re-

computation cannot guarantee the optimality of a solution. For instance, in Figure 3.6,

a mapping is presented where neither routing nor re-computation alone could yield to

a mapping at minimum II. The first mapping, depicted in Figure 3.6(c), uses routing

43



to map operation b. The minimum II that can be achieved by utilizing routing scheme

is II = 3. Figure 3.6(d) shows another mapping that utilizes re-computation scheme.

This mapping is no better than the former one because II = 3 while the latency of

executing one iteration is reduced from 4 to 3. In the third mapping presented in

Figure 3.6(e), routing and re-computation schemes are combined to map operation

b. Even though the number of nodes and the latency of executing one iteration is

increased, II is reduce to 2 cycles.

Definition 1 A node v in the resource graph RII is said to be associated with an

operation i in the DFG if v is a PE executing 25 operation i at cycle t. For instance,

in Figure 3.6(d), PE1 and PE2, at time 2 and PE4 at time 3 are associated with b.

Observations: Using the examples presented before, we make two important obser-

vations that are essential to the general problem formulation.

1. Every node in the DFG is associated with at least one node in the RII .

2. For every edge (i, j) in the DFG, all nodes in the RII that are associated with j

have a path P from a PE associated with i.

3. All intermediate nodes in P are PEs associated with i (routing i) or j (routing

j).

3.2 Related Works

Loop acceleration has consistently been an attractive research problem in com-

piler community. Several problems have to be addressed to achieve a reasonable

acceleration factor in loops [85]. The fundamental goal in all of these problems is to

25Execution here includes routing too.

44



Loop UnrollingMemory 
Optimization

Resource 
Representation

Control Flow 
Optimization

Loop 
Acceleration

Software 
PipeliningVectorization

Figure 3.7. Important problems that need to be addressed for an effective loop
acceleration.

minimize execution stalls and to maximize the utilization of computational resources.

These problems include memory optimization, loop unrolling, vectorization, software

pipelining, and an efficient resource representation as shown in Figure 3.7.

The goal of memory optimization is to layout loop variables in such a way that they

can be accessed with highest bandwidth with respect to loop access pattern [77, 95, 101].

Several techniques are available such as polyhydral model [10, 77] that captures the

loop access pattern and transform the loop to maximize iteration distance between

memory dependencies [7, 77].

Loop unrolling is another important optimization which unrolls a loop for a number

of time with aim of increasing resource utilization in underline processor [14, 15, 39, 98].

For a limited set of loops, vectorization is an orthogonal optimization to loop unrolling.

Fo such loops, operations in several consecutive loop iterations are transformed

into a single vector operation. Auto-vectorization in loops is an active research

problem [7, 62, 104] and several such techniques are implemented in commercial

compilers [35, 75].

Control dependencies, either within operation in a loop or within consecutive

loop iterations, limits the performance by enforcing a serial dependencies between

loop instructions, which in turn limits instruction level parallelism and iteration

level parallelsim. Several techniques are available to minimize this effect including

converting control flows to data flow through predication [73, 74].

45



When an underline architecture is exposed to a compiler, resource representation

plays an important role in scheduler. Several representations has been proposed for

resources such as table representation [94], and graph representation [48, 79]. All

of these problems need to be addressed in a compiler to be able to schedule the

instructions effectively. The goal in scheduling is to order instructions such that at

run-time, the loop execution time is minimized.

Perfect pipelining [3] is among the earliest scheduling technique to accelerate

loop by unrolling a loop for a number of time. With the advent of Very Long

Instruction Word (VLIW) architectures, extracting instruction level parallelism beyond

instructions within a basic block became necessary to utilize functional units well.

Software pipelining [65] and modulo scheduling [94] have been shown to effectively

accelerate loop execution in VLIW architectures by overlapping the execution of

successive loop iterations. Lam [65] formally studied the problems associated with

software pipelining a loop such as scheduling cyclic dependency between loop iterations,

replicating variables in the loop to avoid resource congestion, and supporting loops

with conditional statements. Earlier work which proposed algorithmic technique to

software pipeline loops include [57] and [109].

Most notably, Rau [94] proposed an effective iterative modulo scheduling algorithm

for VLIW architectures. This heuristic relies on a modulo reservation table (MRT) to

keep track of hardware resources during scheduling. This technique follows a top to

bottom scheduling policy. As such, operations without any predecessor are listed as

ready for scheduling. As the algorithm proceeds, it adds more operations to ready

list whose predecessors are already scheduled. Operations in this list are sorted based

on some factors. Higher priority is given to operations within recurrence cycle paths.

Later works devoted more effort in developing better heuristics to assign priority to

nodes, and taking into account resource constraints [71].

46



An important problem that designers faced during 90’s was to increase the num-

ber of functional units in VLIW processors. Scaling up such architecture requires

increasing the number of read and write ports in register file because there is a central

register file that is shared among all functional units in VLIW processors. An increase

in the number of register file ports is extremely challenging. Silicon area and power

consumption to realize such increase in the number of register file ports increase signif-

icantly. In addition, the latency of register file read and write increases substantially

by increasing the number of read and write ports. To alleviate this problem, clustered

VLIW processors [5] have been proposed. In such design, a set of functional units

form a cluster in a VLIW processor with a shared register file. Register file, however,

are not shared across clusters. Such clusters then replicated to form a large processor.

Thus, the complexity of register file design is kept relatively low while the number of

functional units are scaled up beyond what could have been achieved with a shared

register file structure. Clusters, in this design, communicate through an inter-cluster

bus. This was a move toward architectures more like CGRAs.

While such design is excellent in scalabity, it poses yet more challenge in software

pipelining loops. It is because a cluster allocation decision has to be made during

software pipelining a loop. To cope with this problem, DFG of the loop is partitioned

with the objective of minimizing communication between partitions, each to be assigned

to one cluster [4] for execution. Sánchez and González [96] presented an algorithm in

which operations are assigned with a cycle and a cluster with the goal of minimizing

cache misses. Such algorithms have been shown to be effective in architectures where

all clusters can communicate with another.

However, as cluster architectures evolved which only implement local communi-

cation between clusters for scalability purposes, modulo scheduling turned out to be

even more challenging. It is because multiple decisions has to be made at the same

47



time when an operation is selected for scheduling. In the meantime, an assignment of

an operation to a cluster has to be verified for routing between that operation and

its dependent ones. When a failure occurs, backtracking decision, such as how far

and when to backtrack, whether a failure occurs due to routing failure or resource

congestion, substantially effects the mapping algorithm outcome and running time.

Distributed Modulo Scheduling (DMS) [30] introduced backtracking capability

to IMS [94] which simultaneously assigns a cycles and a cluster to operations. In

this algorithm, a decision to assign a cycle or cluster to an operation may require

to unschedule previously scheduled operation. In addition, if a predecessor of an

operation is assigned to a different cluster, while scheduling, mov instructions are

inserted to transfer data from one cluster to another.

A hierarchical scheduling approach is taken by [81] and [29] where a loop DFG is

partitioned and assigned to tiles (clusters) with the goal of minimizing inter-cluster

communication. Each partition is then modulo scheduled with the goal of minimizing

waits for dependent instructions assigned to different tiles.

As tile clusters such as CGRAs become dominant (mesh line interconnect), software

pipelining algorithms have evolved to take into account challenges introduced by this

structure. In general, existing modulo scheduling algorithms take one of the following

approaches: integrated approach or decomposed approach as shown in Figure 3.8.

With an integrated mapping policy, the process of assigning time, resource, and

satisfying data dependencies for a selected operation is taken place at once in an

node-by-node fashion. In contrast, when a decomposed policy is taken, the mapping

problem is decomposed into several simpler and well-understood sub-problems. Each

problem, then, is solved with a well known objective. A majority of CGRA mapping

techniques implement an integrated mapping policy.

48



Nature-Inspired

Decomposed

Modulo 
Scheduling

Integrated

Node CentricEdge CentricSemi-brute 
Force Nature-InspiredPartitioning

Figure 3.8. Policies taken by existing modulo scheduling algorithms: integrated and
decomposed.

Mei et al. [78, 79] was one of the pioneers to study CGRA mapping problem. They

proposed the construction of a resource graph which they named Modulo Routing

Resource Graph (MRRG). They noticed that the mapping problem is indeed mapping

loop DFG onto MRRG graph and a major challenge in mapping is to satisfy data

dependencies between operations on a sparely connected resource graph. However,

instead of using a compact representation of resources in MRRG, extensive architectural

details are available in MRRG. This is because all problems including control signal

generation for routing was intended to be solved at once in their technique.

This paper presents a simulated annealing [61] based mapping technique that is

inspired from place and route algorithm [27] in FPGAs. In this technique, MII is

approximated first and used to construct a resource graph. A time and a resource is

assigned to all operations respecting order of operations and their data dependency.

However, it is permitted to over utilize a resource with multiple operations at a given

cycle at the beginning. Obviously, the initial mapping is unacceptable and cannot

be realized in practice. However, as the algorithm proceeds, it attempts to remove

over-utilization of resources while preserving data dependency between operations.

This is accomplished by several steps in simulated annealing algorithm. Nodes

are selected one by one and based on the current temperature, they can be assigned

49



to new execution cycle and resources. A cost function is introduced to represent the

overuse of resources. Along with this function and a gradual temperature reduction,

operations are moved until an acceptable solution is found. An acceptable solution is

the one where all resources execute one operation at a cycle. If an acceptable solution

is not achieved within a timing budget, II is increased and the algorithm starts from

the beginning. Experimental results demonstrate that loops with few operations can

be effectively mapped using this algorithm [79] but at a long convergence time. Details

about cost function and temperature reduction of this technique can be found in [105].

Similar mapping strategy using simulated annealing search technique is taken in [48]

with different cost functions. Particle Swarm Optimization (PSO) [59] is another

search heuristic which mimics social behaviour of the bird flocks. This searching

strategy is used [33] to iteratively assign operations to resources and associate a cost

to a mapping. Mappings are evolved in time, based on permitted operations in PSO

to decrease mapping cost. The major problem with such searching schemes is long

convergence time.

Bansal et al. [8] focused on the problems posed by sparse connectivity between

PEs when mapping loops on CGRAs even without software pipelining the loop. They

realized that connectivity is by far the most important problem. Therefore, they

applied different heuristic cost functions for associating a priority and an affinity of

nodes, associating a cost to mapping a node to a PE considering the connectivity of

CGRA. It uses a list scheduling based technique [81] which verifies connectivity (by

routing dependencies between mapped operations) while mapping an operation.

A node centric approach is taken by Park et al. [91]. Mapping a DFG onto a

CGRA is expressed as drawing DFG onto the CGRA space in [91]. They presented an

algorithm inspired from [70] to map DFGs onto a 3D grid of PEs stacked up II times.

A top to bottom scheduling policy is taken where all operations are first associated

50



with a level. Starting from operation at level 0 (operations without any predecessor),

operations are assigned to a resource. An MRT holds and tracks resource status,

connectivity between resources, and available register at each resource during II cycles.

When operations are assigned to resources, data dependencies from predecessors are

also satisfied.

Various cost functions are introduced in [91] to represent the costs associated

with routing data dependencies for an operation when it is assigned to a resource,

including the cost of using that particular resource. Since it is possible to exhaust all

resources for routing purposes while no resource is left to be assigned to subsequent

operations, a heuristic technique is used to skew the schedule to reduce resource

congestion. Through evaluation, this paper shows that routing can quickly exhaust

all resources which are required to be used in subsequent operations. Therefore, using

resources likely to be used in subsequent operations are associated with higher costs

to avoid such problems. Developing an effective technique to avoid resource starvation

without knowledge about subsequent instructions, however, is extremely difficult, if

possible at all.

This paper also presents a simplified model for resource graph compared to MRRG

presented in [79]. MRRG exposes much more information to scheduler than needed to

make a mapping decision. Resource graph should only expose sufficient information

to guarantee availability of resources for routing. Actual signal generation for routing

can be delayed if construction of one can be guaranteed during mapping. Such

resource graph simplification significantly decreases the time to find a valid mapping

as demonstrated in the paper.

A similar node-by-node approach is taken in [24] while different cost functions

and different scheme to prioritize nodes are introduced. In addition, this algorithm

permits backtracking in the algorithm and unmapping operations that already assigned

51



to resources. In addition, once all local registers at a PE are exhausted, memory

operations are inserted in DFG to spill intermediate variables.

Chen and Mitra [18] take an exhaustive searching approach. They made an

interesting observation about the resources used for routing data dependencies. When

a node-by-bode mapping policy is taken, routing data dependencies for operations with

multiple successors may lead to an ineffective resource utilization. This occurs because

the output of a resource executing such operation may be sent to multiple resources

through disjoint paths. This is an ineffective resource usage because the same data

is carried out in those disjoint paths. Therefore, sharing resource to establish path

between producer and multiple consumers can significantly result in better resource

utilization.

This heuristic has been extensively used in [18]. Nodes are selected for mapping

based on their priority in this technique. For a selected node, the set of predecessor

and successor operations that are already mapped to resources in formed. Using

this set, the set of potential resources that the selected operation can be mapped is

discovered. Each potentially mapping in recursively expanded and the result is tested

to verify if it forms a minor relation [22] between input DFG and resource graph.

If at any step, it fails to find any potential mapping for an operation, the routing

between its predecessors and selected operation are expanded to increase the number

of potential mapping resources for the operation.

Various heuristics are used to minimize the mapping time. For instance, a number

of functions look ahead and verify if a mapping will fail in subsequent steps when

required resources for subsequent operations are exhausted. In addition, availability

of paths between dependent operation when both successors and predecessors of a

selected operation are mapped is checked at each step. Experiments results show

that this technique can quickly map loops at IIs close to MII. In addition, authors

52



implemented a version of EPIMap technique, which will be presented later, and found

that their technique and their EPIMap implementation map loops at close IIs [18].

Their implementation only limited to resource allocation scheme presented in [40] not

the whole mapping.

Park et al.[92] discovered that the main reason that modulo scheduling algorithms,

in general, and their earlier work [91] in particular, cannot efficiently utilize resources

on CGRA is that routing data dependencies between operations is a secondary problem

while making a mapping decision. Therefore, they took an edge centric mapping

approach. In contrast to earlier node centric approaches, EMS[92] focuses more on

mapping edges in DFG onto edges in resource graph, thereby assigning operations to

resources by first tackling feasibility of routing between mapped operands.

EMS exhibits an interesting characteristic by taking this mapping approach. First,

when an operation is assigned to a PE, it is guaranteed that data can be routed between

one of its producers to the resource the operation is to be executed at. Therefore,

routing failure is less likely to occur. In addition, this guaranteed path is established in

shortest distance between producer and consumer, thereby occupies minimum number

of resources.

To present a global view of resources and the overhead associated with making a

mapping decision, a cost function is introduced for estimating the cost of satisfying

the rest of data dependencies when an operation is assigned to a resource. Note

that at each step of this algorithm, an arc in DFG is selected to be mapped to a

possibly minimal set of edges in resource graph. Thus, once making a decision, a data

dependency between one producer and the selected operation is already routed while

other data dependencies have to be estimated to make a decision about accepting or

rejecting a potential mapping of a node to a resource. This cost function associates a

large overhead for using sparse resources such as memory capable units or multiplier

53



for routing purposes. Thus, proactively avoiding resource starvation for subsequent

instructions.

EMS initially simplifies DFG by categorizing nodes into two sets: I) The set of

important nodes such as the one within recurrence cycle of the loop and, II) The

set of high fan-out nodes which potentially exhaust resources during mapping to

route data dependencies. Each node in the second set along with its consumer would

be represented by only one node in simplified DFG. Then, a scheduling window for

each operation is established between earliest and latest cycle that operation can be

scheduled.

Ansaloni et al.[6] also incorporated a search window for scheduling operation but

they used term slack instead. Arcs in DFG are selected to be assigned to a set of arcs

in resource graph in EMS, thereby assigning operations to a cycle and PE in resource

graph. Experimental results show that EMS maps loops at IIs that are around 2%

higher than [79] at a fraction of the compilation time.

MII in some loops is limited by recurrence dependencies between operations. To

minimize II in mapping, it is crucial to schedule those operation such that the latency

of recurrence cycle is minimized. This importance factor is studied in [60] and [89]

and mapping algorithms are adjusted to map those operations upfront. Experimental

results demonstrate that for loop with recurrence cycle, when resources are assigned

to operation in that cycle, it is more likely to find mapping at MII.

In all above-reviewed techniques, a mapping decision is made at once for each node

where nodes are selected by some priority. Routing data dependencies are also taken

care of while mapping decision is being made. CGRAs usually implement a sparse

interconnection between functional units. The problem associated with this mapping

policy is that resources necessary to map subsequent operations are quickly exhausted

for routing purposes. The cost functions associated with routing in most of those

54



algorithms is proportional to the number of resources used for a routing. However,

it cannot be foreseen whether a resource used for a routing might be needed to map

subsequent operations. It is very challenging to avoid this problem, thereby mapping

failure is very frequent when such mapping policy is taken. In all of these techniques,

II is increased after a number of failures in mapping attempts at a given II. This

failure budget varies by characteristics exhibited by DFGs and it is very challenging

to adjust this budget based on input DFG.

An alternative approach is to decompose the mapping problem into several well-

studied problems. Each problem can be addressed effectively independent of other

problems with a well-defined objective. It has been shown that such policy is very

effective in compilers and synthesis tools [82]. It is, however, still challenging to

adjust objective of sub-problems that effectively lead to optimizing the main problem

objective. In existing literature, the mapping problem is decomposed into scheduling,

resource allocation, routing and partitioning.

Venkataramani et al. [106] presented a mapping technique for MorphoSys [67]

architecture. A mapping is accomplished by scheduling operations first and then

placement (binding). Once operations are assigned with a time, it is assumed that

a valid resource allocation can be made, due to rich interconnection between PEs

in MorphoSys. Afterward, scheduled DFG is partitioned into sets of maximum 16

operations. The goal of partitioning is to minimize communication between sets, and

to minimize execution time.

The mapping problem is partitioned into scheduling, placement, and routing in [31].

The following steps are taken until a valid mapping is found in this algorithm. Opera-

tions are initially scheduled respecting order by taking into account data dependency

between operations as well as available resources. However, the actual resource allo-

cation is deferred after all instructions are scheduled. In the next step, a simulated

55



annealing search technique [61] is implemented to assign operations to resources in

resource graph. During placement, operations are moved between resources as well as

time (slack of schedule windows extract at scheduling step).

If placement fails due to violating data movement latency between operations,

padScheduling heuristic is used. This heuristic permits operations to be rescheduled

beyond slack windows to meet data movement latency. When all operations are

associated with a resource, data dependency between operations is routed using

heuristics presented in [69] and [76]. If routing fails, II is increased and SPR [31]

starts from the beginning.

While this technique partitions the problem into distinct problems with different

objectives, it suffers from two important problems. The placement is slow and takes

long time to converge not only because it is based on simulated annealing, but also

because the search space for operations include resource and time dimensions. Second,

a routing failure does not necessarily imply that a feasible mapping cannot be made at

the same II. However, to keep the compilation time low and avoid exhaustive search,

II is increased once routing fails.

While there are many algorithms that decompose the mapping problem into several

subproblems such as scheduling, resource allocation, routing, register allocation, etc.,

a systematic decomposition approach with well defined objective at each step that

justified the optimality of the approach is still missing.

In next part, the problem of mapping and modulo scheduling loops onto CGRA

is studied and its characteristics are extracted. Using insight gained from problem

definition, an effective mapping algorithm will be presented.

56



3.3 Problem Definition

The general problem of mapping an input DFG to a CGRA is based on the three

observations stated before. Let’s describe the resource graph construction first.

Given an II and a CGRA, time extended resource graph denoted by RII = (VR, ER)

is constructed by replicating the nodes in the CGRA, II times, representing available

resources from cycles 0 through II − 1. For every pair (u, v) of adjacent nodes in the

CGRA, there is an arc from (replication of) u at time t to replication of v at time

t+ 1. Note that every node in the CGRA is adjacent to itself. In Figure 3.4(b), PE2

is connected to PE1 and PE3. Therefore, in Figure 3.4(f), the output PE2 at cycle 2

can be read by PE1, PE2 and PE3 at cycle 3.

Definition 2 Given a DFG I = (VI , EI) and a CGRA, the mapping objective is to

construct a time extended resource graph RII = (VR, ER) of minimum extension for

which

1. there exists a mapping M : VI → 2VR, where 2VR is the power set of VR,

2. for every arc in (i, j) ∈ EI , the following property holds: for each node rn ∈ RII

associated with j, there is a path P = (r1, . . . , r`, . . . , rr, . . . rn) such that r1 is

a PE associated with i, r2 through r` are the same PE as r1. ` is the latency

of executing operation i. There are k ≥ 0 PEs between r` and rr−1 that are

associated with i and the rest are associated with j.

The above formulation can be intuitively understood as follows. For a mapping to

be valid, all operations must be executed (mapped) and data dependencies between

operations must be obeyed. First, VI is the domain, thus all operations in VI must

be executed. To ensure that data dependencies are satisfied, when there is an arc

between two operations i and j, any PE executing operation j must receive the output

57



of operation i from a PE executing i. This is ensured when a path exists between a

PE executing operation i to nodes executing or routing operation j, when (i, j) ∈ Ei.

Last, an operation i with the execution latency of ` cycles that is mapped to a PE

r1, the path is valid if and only if all PEs r1 through r` are same physical PE as r1.

Thus, the output of an operation would take at least ` cycles to become available.

Let PEt
i represents PEi at modulo cycle t where 0 ≤ t < II. In Figure 3.4(e),

VI = {a, b, c, d, e, f, g} and VR = {PEt
i |0 ≤ t < II ∧ 1 ≤ i ≤ 4}. The mappings are

shown in Table 3.1.

Table 3.1. The mapping of operations in Figure 3.4(e).
Instruction Resource(s)

a {PE0
1}

b {PE0
4 , PE

1
3}

c {PE1
1}

d {PE1
4}

e {PE0
3} 26

f {PE0
2}

g {PE1
2}

This formulation is general and allows routing, re-computation, and any combination

of both. It is because any instruction can be mapped into any number of resources in

resource graph. Thus, an operation can be routed and computed by any number of

PEs.

26The modulo cycle 0 represents cycle 2 at execution (II = 2)

58



3.4 Complexity Analysis

In this section, we study the complexity of CGRA mapping problem in general.

Besides that, we study complexities associated with routing and re-computation

problems.

3.4.1 Mapping Problem in NP-Complete

In order to establish the complexity of the mapping problem, we introduce 3-

partition problem which is known to be NP-complete in the strong sense [32] and

reduce 3-partition problem into a restricted mapping problem. The reduction idea is

partially borrowed from [25].

Definition 3 3-partition. A finite set A of 3m elements, a bound B ∈ Z+ and a

size s(a) ∈ Z+ for each a ∈ A such that s(a) satisfies B
4
< s(a) < B

2
, and such that∑

a∈A s(a) = mB. Can A be partitioned into m disjoint sets S1, S2, ..., Sm such that,

for
∑1≤∀i≤m

a∈Si
s(a) = B?

Please not that the restriction of s(a) implies that the number of elements at each set

must be exactly three.

Definition 4 (P1). Here, we restrict the number of functional unit to 2.

Lemma 3.4.1 3-partition problem polynomially transforms to (P1).

Proof 1 Given an instance of 3-partition problem,

A = {a1, a2, ..., a3m}, we construct an instance of problem (P1). In this reduction,

the set of nodes in DFG is formed from union of three sets, i.e. T = T1
⋃
T2
⋃
T3.

Let L(Oi) be the latency of executing operation Oi. T1 = {O1, O2, ..., O3m} where

59



L(Oi) = s(ai), 1 ≤ ∀i ≤ 3m, T2 = {P1, P2, ..., Pm} where L(Pi) = B, 1 ≤ ∀i ≤ m and

T3 = {Q1, Q2, ..., Q2(m−1)} where L(Qi) = 1, 1 ≤ ∀i ≤ 1m.

Next, we form the arc set as shown in Figure 3.9. First, 1 ≤ ∀i < m, we form

two arcs from Pi, to Q2i−1 and Q2i. This ensures that a valid mapping can be made

only if a PE is allocated to execute an operation from set T2 that takes exactly B

cycles. Therefore, there is only one PE available to execute a set of operations from

set T1. The accumulative latency of those operations has to be exactly B cycles (see

Figure 3.9). It is because Q2i−1 and Q2i has to be scheduled after B cycles at the same

cycle, thus both PE resources has to be available then.

Second, 1 ≤ ∀i < m, we form two arcs from Q2i−1 and Q2i to Pi+1. This ensures

that another PE has to be allocated for executing Pi+1 immediately after Q2i−1 and

Q2i are executed. Finally, II is set to be m(B + 1)− 1.

If an instance of 3-partition problem has a solution, it is easy to see that problem

(P1) has a solution. Every element in set Si is associated with an element in set T1 in

the constructed mapping instance. Let Si = {ai, bi, ci}. We schedule the elements in T1

associated with ai at cycle (i− 1)× (B + 1), bi at (i− 1)× (B + 1) + s(ai), and ci at

(i− 1)× (B + 1) + s(ai) + s(bi). Since those associated elements execute at exactly B

cycles, Pi can be executed in the meantime at PE1. Q2i−1 and Q2i are to be executed

on PE1 and PE2 at cycle (i+ 1)×B − 1.

Conversely, if the instance of problem (P1) has a solution, operations of set T1

must be partitioned into m sets. It is because there is a chain of operations starts from

{P1, Q1, P2, Q3, ...., Pm−1, Q2m−1, Pm}. This chain takes exactly II = m(B + 1) − 1

cycles to execute and deploys one functional unit entirely. Also, at the end of each Pi

operation, there are two operations that must be executed before Pi+1 can be scheduled,

Q2i−1, Q2i which need both functional unit to be used at the same cycle. So PEs cannot

execute any other node at that time. Thus, there is only one functional unit available

60



Figure 3.9. The idea behind reducing 3-partition to mapping problem. We introduce
operations with latency of B cycles. Those operations are connected to exactly 2
operations, whose latency is 1 cycle. Then, those nodes connected to next operation
with B cycles latency. This makes 1 PE available for exactly B cycles.

between (i − 1) × (B + 1) to (i + 1) × B − 1 cycles for all 1 ≤ i ≤ m while the

other functional unit is executing nodes in T2. Since there is no empty time slot and

execution must break every B cycles, the set of tasks in T1 must be partitioned into

m sets of B cycles. It implies that an instance of 3-partition has a solution iff the

constructed instance of problem (P1) has a solution.

Note that this proof can easily be extended to CGRA with heterogeneous PEs where

only one functional unit supports operations in set T2. Thus 3-partition problem can

polynomially be reduced to problem (P1) either with homogeneous or heterogeneous

functional units.

Theorem 3.4.2 The mapping problem is NP-complete.

Proof 2 We have shown that 3-partition problem can be polynomially reduced to

problem (P1) which is the restricted problem of mapping problem. Thus, mapping

problem is NP-complete.

61



3.4.2 Notes on Routing and Re-computation Complexity

Throughout this section, for simplicity, we assume the input DFG does not have a

self loop .

Definition 5 Let G and H be two directed graphs. A mapping f : V (G)→ V (H) is a

Homomorphism if (f(u), f(v)) ∈ E(H)⇒ (u, v) ∈ E(G). It is called an Epimorphism

if it is arc surjective, i.e., every node in H is an image of some node in G. Note that

node surjective implies arc surjective [49].

Simply stated, for every valid mapping there exists an epimorphic map M : V ∗R → VI

that satisfies certain conditions where V ∗R ∈ VR (V ∗R is a subset of nodes in resource

graph). Conversely, an epimorphic map from M : V ∗R → VI , that satisfies the same

conditions corresponds to a valid mapping. Thus the optimization problem is to

construct an epimorphism M : V ∗R → VI .

Now we see how the formulation works. Consider a node in resource graph (i.e.

a PE) i ∈ V ∗R. Let i′ = M(i) ∈ VI . i′ is an operation that is mapped to node i in

resource graph. For example, if the node i is PE3 at time 2 in Figure 3.6(d), then,

i′ =M(PE2
3) = b. Similarly, let j ∈ V ∗R : ∃(j, i) ∈ E∗R, and let j′ be the operation that

is mapped to resource j. For example, j is the PE2 at time 1, and j′ =M(PE1
2) = a.

Then epimorphism requires that if there is an arc between a and b, then there must

be an arc between PE2 at time 1, and PE3 at time 2. This example illustrates how

epimorphism ensures that data dependencies are preserved.

This formulation seamlessly captures routing and re-computation. Whenever we

use routing/re-computation, a set of PEs in the time extended resource graph map

to one operation in the DFG. For example, in Figure 3.6(c), in which the out-degree

problem is resolved using routing, PE2 of time 2, and PE2 of time 3 are mapped to

62



operation b. Since operation a has an arc to operation b, epimorphism requires that

there is at least one arc between the set of PEs that are mapped to a, and the set

of PEs that are mapped to b. This is true, since there is an arc from PE2 at time

1 (where operation a is mapped), to PE2 at time 2 (where operation b is mapped).

Similarly the data dependencies with operations c, d, e, and f are satisfied.

In Figure 3.6(d), in which the out-degree problem is resolved using re-computation,

a set of two PEs, PE1 of time 2, and PE3 of time 2 are mapped to operation b. In

this case also, both of these nodes has an incoming arc from PE2 at time 1 where a is

executed. Data dependencies for all other operations are satisfied as well.

Again, to use routing or re-computation, a set of PEs in the time extended resource

graph map to one operation in the DFG. The only difference is the presence/absence

of arc(s) between the PEs in the set. In Figure 3.6(e), PE1 at time 2, and PE4 of

time 3 have an arc between them, so they transfer data through routing. On the other

hand, in Figure 3.6(d), PE1 of time 2, and PE2 of time 2 do not have an arc between

them, therefore the operation b has to be recomputed.

We now explain the conditions. Essentially, the condition is just to ensure that the

PE at which computation, or re-computation happens, receives all the input operands

from its predecessor. Let i′ = M(i) ∈ VI . i′ is the operation that is mapped to PE

i. Let j ∈ V ∗R : ∃(j, i) ∈ E∗R. Thus, if we consider a resource node (i.e. a PE) i ∈ V ∗R.

Then there are two possible cases. Either i is a routing node and has an input from

another node that is executing i′. Or ∀k′ ∈ VI : ∃(k′, i′) ∈ EI , there must exist a

k ∈ V ∗R : ∃(k, i) ∈ E∗R and M(k) = k′.

Theorem 3.4.3 Let I = (VI , EI) be the input DFG and RII = (VR, ER) be the

time extended resource graph. Every valid mapping implies an epimorphic function

M : V ∗R −→ VI where V ∗R is a subgraph of VR.

63



Proof 3 • M is function. A mapping is valid if each PE executes the maximum

of one operation per cycle. Therefore, ∀i ∈ V ∗R,M(i) is exactly one element in

VI .

• M is surjective. A valid mapping implies that every nodes in graph I must

be mapped onto some PEs in time extended resource graph. Therefore, it is

surjective.

• A subset of RII is homomorphic to I. In a valid mapping, every node i ∈ VI

is mapped to a set of nodes si ⊂ VR. Therefore, ∀a, b ∈ V ∗R, if there is an arc

(a, b) ∈ E∗R, then either a, b ∈ si or a ∈ si, b ∈ sj where si 6= sj. The first

case simply implies homomorphism according to definition. We claim that the

second case also implies homomorphism. Let’s assume node j ∈ VI is mapped to

sj. If there is an arc between nodes i and j then it implies a homomorphism.

Otherwise, it is trivial to see that if there is no arc between i and j but between

a and b, then we can remove (a, b) from E∗R and mapping will still be valid.

Both graphs in Figure 3.6(c) and Figure 3.6(d) are epimorphic to Figure 3.6(a).

All arcs in the mapping correspond to an arc in the input DFG.

Definition 6 Input subgraph: for every node i in a digraph I = (VI , EI), there exists

a subgraph G = (VG, EG) such that VG is the set of all nodes j : (j, i) ∈ EI in addition

to node i; also EG is the set of all arcs (j, i) : (j, i) ∈ EI .

Definition 7 An isomorphism from G = (VG, EG) onto H = (VH , EH) is defined as

f : VG −→ VH such that:

1. |EG| = |EH |

2. |VG| = |VH |

3. ∀u, v ∈ VG : (u, v) ∈ EG iff (f(u), f(v)) ∈ EH [32].

64



Theorem 3.4.4 Every valid mapping implies an epimorphic function M : V ∗R −→ VI

such that ∀i ∈ V ∗R, input subgraph of M(i), K = (VK , EK), input subgraph of i,

L = (VL, EL): if Indegree(M(i)) > 0⇒

1. ∀j ∈ VL :M(j) =M(i) or

2. K and L are isomorphic.

Proof 4 • Theorem 3.4.3 proves that every valid mapping implies an epimorphic

function M : V ∗R −→ D.

• Let’s assume a ∈ VI is mapped onto set sa ⊂ V ∗R. ∀i ∈ V ∗R : Indegree(i) > 0

either:

– all incoming arcs of i are from nodes j ∈ sa which implies ∀j ∈ VL :M(j) =

M(i).

– input arcs of i are from a combination of nodes j ∈ sa and nodes k /∈ sa.

This case cannot happen according to mapping problem definition.

– all incoming arcs are from nodes j /∈ sa. In this case, we show that in order

to have a valid mapping, K and L should be isomorphic. Let’s assume that

K and L are not isomorphic. Then either VK 6= VL or EK 6= EL. If the

number of nodes or arcs are different then the mapping cannot be valid.

Theorem 3.4.5 Every epimorphic function M : V ∗R −→ VI with following constraint

implies a valid mapping. Constraint: ∀i ∈ M : V ∗R, input subgraph of M(i), K =

(VK , EK), input subgraph of i, L = (VL, EL): if Indegree(M(i)) > 0⇒

1. ∀j ∈ VL :M(j) =M(i) or

2. K and L are isomorphic.

Proof 5 • Because the function is surjective, all nodes in VI must be covered by

at least one node in V ∗R.

65



• Since epimorphism preserves node adjacency [49] and the function is arc surjec-

tive, then all arcs in EI are covered by an arc in V ∗R.

• ∀u ∈ VI : indegree(u) > 0 where K = (VK , EK) is input subgraph of u and

L = (VL, EL) is input subgraph of M−1(u):

– if ∀j ∈ VL : M(j) = u, there must be a node v ∈ V ∗R such that input

subgraph of v is isomorphic to K. Because function is surjective, all arcs of

EK must be mapped. Therefore, according to the constraint, since the first

case cannot happen, there exists a node whose input subgraph is isomorphic

with K which implies u is mapped properly.

– if K and L are isomorphic, then mapping of u is valid.

Theorem 3.4.6 Every valid mapping from an input DFG I = (VI , EI) onto a time

extended resource graph RII = (VR, ER) is equivalent to an epimorphic function

M : V ∗R −→ VI such that ∀i ∈ VI , input subgraph of M(i), K = (VK , EK) and

input subgraph of i, L = (VL, EL) : if Indegree(M(i)) > 0⇒

1. ∀j ∈ VL :M(j) =M(i) or

2. K and L are isomorphic.

where V ∗R ⊆ VR.

Proof 6 • From Theorem 3.4.4, every valid mapping implies an epimorphic func-

tion M : V ∗R −→ VI with above-mentioned constraints.

• From Theorem 3.4.5, every Epimorphic function M : V ∗R −→ VI with above-

mentioned constraints implies a valid mapping.

66



Chapter 4

EPIMAP

The mapping problem is very challenging because when an II is given and fixed,

finding a valid mapping is an NP-Complete problem. There are well-known techniques

to approximate the lower bound II, referred to as minimum II or MII. However,

the existence of a valid mapping for an II is not guaranteed. Therefore, existing

techniques start with MII and explore the search space to find a valid mapping. If

a mapping at MII could not be found, II is increased until a valid mapping can

be made. Such schemes have to carefully look for possible mappings at a given II

and spend adequate time to find it. However, if one spends too much time on an II,

explore the entire search space, given that no mapping can be made at that II, it

might be impractical to use such technique in a compiler due to huge compilation time.

Therefore, a reasonable mapping technique has to heuristically decide to increase II

after adequate search.

In this section, we describe our heuristic algorithm called EPIMap. EPIMap divides

the mapping into two well-known problems, scheduling and placement. In scheduling

step, a modulo cycle is assigned to operations. When all operations are scheduled,

resources will be allocated for each operation. Routing, i.e satisfying data dependency

between operations, is resolved in part in scheduling and placement. Second, the

priority of the nodes (selection ordering) in this algorithm is adjusted progressively

based on the success of failure of mapping nodes in previous mapping attempts.

This algorithm is fundamentally different from previous techniques. First, the

placement problem is formally studied in this research. We reduce the placement

problem to finding the maximum clique problem. We extend the placement to support

67



register allocation too. Second, the node selection order in our algorithm is adjusted

to characteristics of input loop found during previous mapping attempts.

4.1 Overview

EPIMap addresses the mapping problem in a constructive manner. It first estimates

MII and then iteratively schedules the operations such that the scheduled graph

meets certain necessary mapping conditions. In this step, II estimation is adjusted

too when scheduling for a give II found to be not feasible. Using CGRA description

and II, a resource graph is constructed. Resource graph and scheduled DFG are used

to construct a compatibility graph. In the end, EPIMap finds the maximum clique in

the constructed compatibility graph. This clique represents the mapping output.

If all DFG nodes are represented in the clique, the mapping is complete. Otherwise,

EPIMap finds the set of DFG nodes that are not represented in the clique and re-

schedules them with higher priority. This is what we refer to as adjusting nodes

priority based on the characteristics of input DFG.

The above steps are repeated until a mapping can be made or II increases. When

II increases, EPIMap starts over as shown in Algorithm 2. The rest of this section is

devoted into 3 basic steps of EPIMap: Scheduling, Placement, and Re-Scheduling.

4.2 Scheduling

At this step, an execution time is assigned to each operation and II is approximated.

During scheduling, operations are ordered with respect to each other to form a ready

list. Operations are then selected by this order to be assigned to an execution time

t ∈ Z+. This time is chosen such that there are sufficient number of resources available

68



at the execution time of the selected operation. If a CGRA is fully connected, this

step is sufficient to complete the mapping, like classical modulo scheduling in VLIW

processors such as [94].

MII can be expressed as

MII =Max(ResMII,RecMII) (4.1)

where ResMII is the resource constrained minimum II and where RecMII is the

recurrence-constrained minimum II. In an M ×N CGRA,

ResMII = d n

M ×N
e (4.2)

where n is the number of operations in the DFG. RecMII indicates inter-iteration

dependency of operations in a loop. When such a dependency exists, the next iteration

cannot start until the result(s) from the previous iteration becomes available. We use

the same technique as in [94] to extract RecMII.

There are few necessary mapping conditions a DFG must meet to be mappable.

First, the out-degree of all nodes in DFG should be less than or equal to the out-degree

of PEs in the resource graph. The out-degree of a node v is the number of operations

using the result of v as an input. On the other hand, the out-degree of a PE r, is

the number of adjacent PEs to r plus one. It is because r itself and all neighboring

PEs of r can read the output register of r and use it as an input in the next cycle.

The out-degree of all nodes in DFG is checked while scheduling is conducted. If a

node is found to violate this constraint, routing nodes are added at the output of the

violating node.

The second necessary mapping condition is that the number of nodes scheduled at

any cycle must be at most equal to the number of PEs in CGRA. When an operation

v is to be scheduled at a cycle t, the number of available resources at cycle t is checked.

69



Figure 4.1. a) Nodes are scheduled as soon as all predecessors are completed (ASAP),
b) Nodes are scheduled just before the earliest successor is scheduled (ALAP), c)
Nodes are scheduled in a modular manner, d) A 2× 2 CGRA shown in linear form, e)
A resource graph constructed for the same CGRA with extension II = 2.

If there are sufficient number of resources available to perform operation v, it is

scheduled at t and a resource is reserved for operation v in the resource table. For a

multi-cycle operation with latency of ` cycles, a resource must be available from cycle

t to t+ `.

Operations are scheduled in three steps: ASAP, ALAP, and Modulo steps. Initially

operations are scheduled in an ASAP manner, that is, an operation is scheduled as

soon as all predecessors are completed, that is:

tj ≥ ti + di ∀(i, j) ∈ E : w(i,j) = 0 (4.3)

where tj is the cycle operation j is scheduled and di is the latency of executing

operation i. Operation without any predecessor at the same iteration are scheduled at

cycle 0.

At this step, operations are ordered with respect to other operations at the same

iteration. That is, an operation is scheduled at the earliest cycle after all predecessors

at the same iteration are completed. As such, arcs are limited to the one with weight

of zero, e.g. w(i,j) = 0. An arc with a weight greater than zero represents data

70



dependency across loop iterations. A table is formed to keep track of the number of

available resources at any cycle. If there are no available resources at cycle ti + di,

the time is increased until there is enough resources available. EPIMap forms a list

to holds all operations that are ready to schedule, i.e. operations that all of their

predecessors have already been scheduled. Operations in this list are sorted based

on priority presented in [72]. Nodes in DFG shown in Figure 4.1(a) are scheduled in

ASAP manner.

Critical cycle is the set of operations in a recurrence cycle that determines RecMII.

Operations within the critical cycle have the highest priority followed by load operations.

The second important factor is the earliest cycle at which an operation can be scheduled.

We wish to schedule an operation as soon as all predecessor operations are completed.

This is an important factor because we wish to minimize the time and resources

required to hold a data on registers to satisfy data dependencies. When an operation

v is not scheduled immediately after all predecessors are completed, the output of all

predecessors have to be hold temporarily until v is executed. This imposes overhead

of allocating resources such as PEs to hold (route) those values until all consumers

are initiated. The third factor is the in-degree of an operation where operations with

highest in-degree number are prioritized in this scheme. Similar to previous factor,

operations with greater in-degree require more resources to temporarily hold the

output of their predecessors as compared to operations with smaller in-degree number.

For an operations i with execution latency of few cycles, all predecessors must

be scheduled di cycles after u is scheduled. If PEs are pipelined, the number of

resources at ti is reduced by 1. On the other hand, if di is greater than 1 but i cannot

be pipelined, a resource from cycle ti to tj must be reserved for operation i. Such

multi-cycle operation can impact operations that are to be scheduled in next di cycles.

For such operations, during next di cycles, EPIMap makes sure that a resource will be

71



available for operations within critical cycle. If this cannot be guaranteed, operation

i is scheduled with few cycles delay until all operations within the critical cycle are

guaranteed an available resource. Note that II is proportional to latency of critical

cycle.

Algorithm 1: Schedule(Graph I = (VI , EI), CGRA Resources, II, C)
1 for ∀u ∈ VI do

2 if Out_Degree(u) > k then

3 Insert routing node v after u ;

4 Move k − 1 predecessors of u to v ;

5 TL ← ASAP_Schedule(I = (VI , EI), CGRA Resources) ; /* schedule nodes in ASAP manner */

6 ALAP_Schedule(I = (VI , EI), CGRA Resources, C × TL) ; /* schedule nodes in ALAP manner */

7 S ← set of all nodes without successor in VI ; /* initiate ready list */

8 Sort(S) ; /* sort ready list */

// while there is an unscheduled node

9 while |S| 6= 0 do

// select a node u to schedule

10 for ∀u ∈ S do

11 tu ← C × TL ; /* scale the schedule window, tuning C is discussed in Section ?? */

// find the latest cycle u can be scheduled

12 for ∀v ∈ Successors(u) do

13 if tv < tu then

14 tu ← tv − dv ;

// select a cycle from scheduling window of u

15 for tC ← tu downto Tu
ASAP + du do

16 if a Res is available in Table for u between tC and tC − du then

17 Update(Table, u, tC , du) ; /* allocate a resource for u during its execution

period */

18 Update(S, u) ; /* update S with predecessors of u that are ready (sorted

insertion) */

19 Remove u from S;

20 if u could not be scheduled then

21 Increase II;

22 Reset(Table);

23 goto 7;

At the end of this step, the latency of executing one iteration of the loop, L

is determined. Given this latency, the operations in the loop are scheduled in an

72



ALAP manner. That is, an operation is scheduled at the latest cycle before all of its

successors are initiated:

ti ≤ tj − di ∀(i, j) ∈ E : w(i,j) = 0 (4.4)

The backward scheduling starts with the set of nodes without any successor at

the same iteration. Those nodes are scheduled at time C × L where C is a constant

factor. In Section ??, we run few experiment to optimize C factor. Increasing the

latency of an iteration by a constant factor enables EPIMap to schedule operations

with more flexibility when a mapping attempt fails. Being able to increase the latency

of an iteration plays an important role when EPIMap constrains the scheduling and

relaxes the resource allocation to increase the chance of finding a mapping. We will

discuss this later in this section. Nodes in DFG shown in Figure 4.1(b) are scheduled

in ALAP manner.

When the ASAP and ALAP schedules for all operations are completed, EPIMap

associates a modulo schedule to operations. Let tiASAP and tiALAP denote the cycles

that operation i is scheduled in ASAP and ALAP steps. Next, a table with II rows is

formed to keep track of the number of available resources in CGRA from cycle 0 to

II − 1. EPIMap schedules the operations backward similar to previous step. This

time, however, the number of time slots in resource table is limited to II, rather

than C × L rows. EPIMap forms a list that holds the set of operations ready to be

scheduled sorted like before. Let v be the first node in this list. EPIMap finds the

greatest cycle tiASAP ≤ tiC ≤ tiALAP when there are enough resources available at row

tiC%II to schedule i. Note that tiC < tjC − di ∀(i, j) ∈ E : w(i,j) = 0. Nodes in DFG

shown in Figure 4.1(c) are modulo scheduled. The modulo cycle association of nodes

is shown on right and the schedule cycle is shown on left of this DFG.

73



If EPIMap fails to schedule operations within II cycles, II is increased by 1 until

a feasible schedule can be made. Note that II can at most increase to L. The details

of scheduling is presented in Algorithm 1.

4.3 Placement

When operations are modulo scheduled within II cycles, each operation has to

be assigned to a PE for execution. We refer to such assignment as placement. For

simplicity, let’s assume that the latency of executing instructions is one cycle. In this

case, the placement is in fact the problem of finding a subgraph in the constructed

resource graph that is isomorphic to the scheduled DFG. Subgraph isomorphism is

an NP-Complete problem [32]. Instead of just checking the existence of such relation

between the scheduled graph and resource graph, we take a different approach to solve

the placement problem.

EPIMap tries to find the maximum common subgraph (MCS) [68] between the

resource graph and the scheduled DFG. If the size of nodes in MCS is equal to the

size of node in DFG, the mapping is complete. Otherwise, the set of nodes not present

in MCS are given higher priority in next scheduling attempts.

The placement is completed in three steps. First the resource graph is constructed

from II approximated in scheduling and PEs in CGRA. Second, a graph called

compatibility graph is constructed from DFG and resource graph. Last, EPIMap

finds the maximum clique in the compatibility graph. This clique represents the MCS

between resource graph and DFG.

Step 1 - Resource Graph Construction:

Denoted by RII = (VR, ER), the set of nodes in resource graph are constructed

by replicating the set of PEs in CGRA II times. Each PE replication at a cycle

74



0 ≤ t < II represents a PE available to execute an operation at modulo cycle t. For

every pair (u, v) of adjacent PEs in the CGRA, there is an arc from (replication of) u

at time t%II to (replication of) v at time (t+ 1)%II. Note that every node in the

CGRA is adjacent to itself. The set of nodes in the resource graph constructed for

CGRA depicted in Figure 4.1(d) is shown in Figure 4.1(e) for II = 2. The arcs for

PE2 at cycle 0 and 1 are shown to visualize the set of arcs in resource graph.

Step 2 - Compatibility Graph Construction:

Consider the set of operations scheduled at modulo cycle 0 ≤ t < II. That is:

St = {∀u ∈ VD : tuC%II = t} (4.5)

Let PEt
i represents replication of PEi at cycle t in resource graph. In a homoge-

neous, i.e. the functionality of all PEs are the same, an operation within set St can

be executed at any resource PEt
i . However, in a heterogeneous CGRA, a subset of

resources can execute operation u. Let Boolean function S(PEi, u) be true if PEi

supports instruction u.

Ru = {∀PEt
i ∈ VR : tuC%II = t ∧ S(PEi, u) = true} (4.6)

Let pair (PEt
i , u) represents an assignment of operation u to a node in resource

graph that can execute this operation. The set of nodes in compatibility graph is

formed from all such pairs. It is important to note that scheduling the operations

significantly reduces the size of nodes (such pairs) in compatibility graph. Because

in Ru, resources are limited to the one that have the same t (time extension) that is

equal to tuC%II (modulo cycle assigned to operation u). Scheduling in fact, decreases

the size of Ru by a factor of II. For instance, operations a and b are scheduled in

modulo cycle 0 as shown in Figure 4.1(e). As such, pair (PE0
1 , a) is present in node

75



set of compatibility graph while (PE1
1 , a) is not present because a is scheduled at time

0 not 1.

Note that a node in compatibility graph represents a potential assignment of

an operation to a resource (a potential mapping). The placement search space is

composed of all of such potential assignments. In this space, we wish to find a subset

of nodes in compatibility graph where no two potential assignments have a conflict

with each other. For instance, consider the set of pairs formed for mapping DFG in

Figure 4.1(c) to resource graph in Figure 4.1(e). (PE0
1 , a) and (PE0

1 , b) are two valid

pairs because both operation a or b can be assigned to PE0
1 . However, those pairs

cannot co-exist in any solution because PE0
1 can only execute one operation per cycle.

Consider (PE0
1 , a) and (PE1

3 , c) pairs. Both of these assignments are acceptable but

they cannot co-exist in solution because if a is mapped on PE0
1 , PE1

3 that executes

operation c cannot read the output register of PE0
1 because PE1 and PE3 are not

directly connected in CGRA while PE1
3 requires the output of PE0

1 (a) to execute c.

Co-existence is represented by edges in compatibility graph. We wish to form

the set of edges such that an edge connects two pairs in a compatibility graph when

they can co-exist in a solution. Given two pairs of assignments (PEt
i , u) and (PEt′

j , v)

where PEt
i ∈ Ru and PEt′

j ∈ Rv, there is an edge between them unless:

1. u = v.

2. (t = t′) ∧ (i = j).

3. ((u, v) ∈ ED) ∧ ((PEt
i , PE

t′
j ) /∈ ER).

4. ((v, u) ∈ ED) ∧ ((PEt′
j , PE

t
i ) /∈ ER).

Using above relation, EPIMap forms the set of edges in compatibility graph using the

above relation. Note that co-existence is a symmetric relation.

Step 3 - Find the Maximum Clique:

76



Figure 4.2. a) A scheduled DFG, b) A resource graph constructed for a 2× 1 and
II = 2, c) The compatibility graph with 8 nodes, each node represents a potential
assignment of a node in DFG to a resource in resource graph. Nodes colored blue
form a clique of size 4. This clique represents the final placement. d) The placement
highlighted with blue nodes in (c) is shown in details.

Consider two nodes in the compatibility graph. An edge between those nodes

implies that those two assignments can co-exist in a solution. A set of nodes in

compatibility graph where every two nodes are connected with an edge implies a

solution where all of those assignments can co-exits with each other. We wish to find

the largest such subgraph in compatibility graph. If the size of this set is VD, it implies

that all operations are assigned to a resource and the mapping is complete. Finding a

graph with such property is a well-known NP-Complete problem, maximum clique

problem [32].

Consider a scheduled DFG shown in Figure 4.2(a) with an II = 2. A resource

graph is constructed for a 2× 1 CGRA with this II as shown in Figure 4.2(b). There

are 8 potential assignments of operations to resources. This is reflected as the set of

nodes in compatibility graph presented in Figure 4.2(c).

An edge between two potential assignments in compatibility graph reflects whether

those assignment can co-exist in a solution. For instance, there is no edge between

(PE0
1 , a) and (PE0

2 , a). It is because both of these nodes assign the same operation, a,

to difference resources. There is no edge between (PE0
1 , a) and (PE0

1 , d) either because

77



PE0
1 can only execute either a or d at modulo cycle 0. A clique is highlighted with

blue colored nodes in the compatibility graph. This clique represents the mapping

shown in Figure 4.2(d).

4.4 Re-Scheduling

If a placement fails to allocate at least one PE for each operation, the set of

unplaced operations are formed to be rescheduled in the next attempts. Since EPIMap

schedules operations at the greatest available time slot, at this step, operations for

which a resource could not be allocated in previous attempt, are scheduled one cycle

earlier than their current schedule cycle. If such rescheduling is impossible for an

operation, a routing node is inserted after the node (relaxing placement problem). If

this rescheduling requires to schedule an operation earlier than its ASAP schedule, or

adding extra nodes increases ResMII and MII, then the DFG is rescheduled with

a new heuristic. At this step, the number of available PEs is set to be N − 1 where

N was the number of available PEs at the previous scheduling attempt. Thus the

resource table constructed for scheduling will allow less number of operations at any

given cycle in ASAP and ALAP, increasing the length of a schedule. However, it does

not directly impact II.

This heuristic constraints the scheduling problem, however, the resource allocation

problem would be relaxed. Note that decreasing the number of available resources can

increase II when routing nodes are required to schedule the operations. In such case,

EPIMap increases MII by one and resets the number of available resources to be the

number of PEs. When MII is increased, EPIMap proceeds with a new scheduling

and placement attempt.

78



Algorithm 2: EPIMap(Graph I = (VI , EI), CGRA Resources, C)
1 Schedule(I, CGRA Resources, MII, C) ; /* modulo schedule operations and extract MII */

2 R← CGRAResources ; /* R holds the number of each CGRA resources */

3 D ← I ; /* D is a copy I, transformation is done on D to preserve I from any change */

4 while true do

5 Schedule(D, R, II, C) ; /* modulo schedule D with R resources and estimate II */

// II is changed?

6 if II > MII then

7 D ← I ; /* reset D to the original DFG */

8 R← CGRAResources ; /* reset R with original CGRA resources */

9 MII ←MII + 1 ; /* increase MII by 1 */

10 continue;

// while clique size is increasing and MII is not increased

11 while VCli increasing and II < MII do

12 CMP ←Comp_Graph(CGRA Resources, D, II) ; /* construct the compatibility graph */

13 Cli←Max_Clique(Comp) ; /* find the maximum clique */

// if all nodes are present in the clique

14 if |VCli| = |VD| then

15 return mapping ; /* mapping is complete */

// re-schedule nodes not present in the clique upfront

16 ReSchedule(D, VCli − VD, R, II, C)

17 R← R− 1 ; /* decrease the number of resources by 1 */

79



Chapter 5

GENERALIZED RESOURCE ALLOCATION

Pipelining is an effective hardware technique to improve throughput at a modest

hardware overhead. In addition, some operations are inherently sequential and multi-

cycle implementation of such operations can significantly reduce the area without

scarifying frequency. Supporting pipelined as well as multi-cycle operations are very

important in any mapping algorithm.

An important performance factor in any processor is register files utilization. An

effective register utilization increases the performance of an accelerator significantly

and minimizes data communication with memory sub-system. In this section, we

extend the mapping algorithm to allocate PEs for multi-cycle operations, pipelined

PEs, as well as supporting register allocation with placement simultaneously.

5.1 Multi-cycle Extension

Complex arithmetic operations such as division are usually supported by a multi-

cycle ALUs to save silicon area and maintain working frequency. Single cycle imple-

mentation of such operations severely damages performance and requires extensive

silicon area. In this part, we extend the placement model to support operations with

multi-cycle execution.

First, placement of multi-cycle operations requires to allocate a PE for few cycles.

We need to modify compatibility graph to represent such assignment during those

multi-cycle execution. We extend placement model without imposing any overhead to

80



Figure 5.1. a) A DFG with 5 operations where execution of operation b takes 2 cycles.
b) A resource graph constructed for a 2× 1 CGRA and II = 3. c) The compatibility
graph constructed from DFG and resource graph. Nodes with blue color forming a
clique of size 5. d) The mapping of DFG onto CGRA and II = 3. This mapping is
represented with blue colored nodes forming a clique in c.

the number of nodes in compatibility graph as well as to the size of clique representing

placement.

Let u be an operation which requires multiple cycles to execute on a PE. Let

(PEt
i , u) represents an assignment of instruction u to PEi where u is scheduled to

initiate at modulo cycle t. Although u requires few cycles to complete, there is no

need to add more nodes to the compatibility graph to model assignment of operation u

to PEs during those cycles. Rather, this can be modeled as one node in compatibility

graph and an adjustment to edge formation. In fact, allocating a PE for multiple

cycles is treated as resource conflict between nodes in compatibility graph. This is an

important feature because the placement complexity is expected to increase when the

size of compatibility graph or clique increases.

For node (PEt
i , u) in compatibility graph, when the latency of executing u is l

cycles, all resources representing PEi for next l cycles should have no edge to (PEt
i , u).

This represents a resource conflict between (PEt
i , u) and all assignments to PEi in next

l cycles. This is illustrated in Figure 5.1. Operation b in DFG shown in Figure 5.1(a)

takes 2 cycles to execute. A resource graph with II = 3 is constructed for a 2 × 1

81



CGRA in Figure 5.1(b). Two nodes in compatibility graph represent assignment of

operation b to resources, (PE1
2 , b) and (PE1

1 , b), potential assignments of operation b

into two resources at cycle 1 when b is scheduled to be executed.

The resource conflict of assigning operation b to any resource in next cycles is

considered in compatibility graph construction shown in Figure 5.1(c). For instance,

no node representing resource PE1 at modulo cycle 1 and 2 is connected to node

(PE1
1 , b) with an edge in compatibility graph. This is the case for nodes (PE1

2 , b) as

no assignment representing PE2 at cycles 1 and 2 is connected to (PE1
2 , b). A clique

of size 5 is highlighted with blue colored nodes in Figure 5.1(c) and its corresponding

mapping is shown in Figure 5.1(d).

For (PEt
i , u) and (PEt′

j , v) where PEt
i ∈ Ru, PEt′

j ∈ Rv, and u is a multi-cycle

operation, there is an edge between those nodes unless:

1. u = v.

2. ((t+ du)%II > t) ∧ (t′ ≥ t) ∧ (t′ − t < du) ∧ (j = i).

3. ((t+ du)%II < t) ∧ (t′ ≥ t) ∧ (j = i).

4. ((t+ du)%II < t) ∧ (t′ < (t+ du)%II) ∧ (j = i).

5. ((u, v) ∈ ED) ∧ ((PE
(t+du)%II
i , PEt′

j ) /∈ ER).

6. ((v, u) ∈ ED) ∧ ((PEt′
j , PE

t
i ) /∈ ER).

5.2 Supporting Pipeline Operations

Pipelining is an effective technique to improve throughput and frequency. As

opposed to multi-cycle operation, a pipelined PE can issue a new instruction every

cycle. The result of a pipelining, similar to multi-cycle operation, becomes available

after few cycles (few cycles latency).

When there are variations in latency of operations in a pipelined functional unit,

82



structural hazards have to be carefully avoided. The structural hazard occurs when

two instructions are completed at the same cycle in a PE. In such case, the output

register can only be updated by one of those operations. This is classically referred to

as structural hazard [50]. Structural hazards, too, are modeled as resource conflict in

compatibility graph.

There is an edge between (PEt
i , u) and (PEt′

j , v) where PEt
i ∈ Ru, PEt′

j ∈ Rv,

and u and v are operations to be executed on a pipelined PE unless:

1. u = v.

2. ((t+ du)%II = (t′ + dv)%II) ∧ (j = i) (represents structural hazard).

3. ((u, v) ∈ ED) ∧ ((PE
(t+du)%II
i , PEt′

j ) /∈ ER).

4. ((v, u) ∈ ED) ∧ ((PE
(t′+dv)%II
j , PEt

i ) /∈ ER).

This modification in constructing compatibility graph is illustrated in Figure 5.2.

Operations a and e in DFG shown in Figure 5.2(a) are to be executed by pipelined

functional units with latency of two cycles. A resource graph is constructed for a 3× 1

CGRA and II = 3 as depicted in Figure 5.2(b). The compatibility graph constructed

for this DFG and resource graph is partially shown in Figure 5.2(c). In this graph,

(PE0
2 , a) represents assignment of operation a into PE2 at cycle 0. Since a takes two

cycles to complete, any operation assigned to PE2 that is completed at cycle 1 has a

resource conflict with (PE0
2 , a). For instance, (PE0

2 , a) and (PE1
2 , d) cannot co-exist

in any solution, thus, there is no edge between those two nodes in compatibility graph.

It is because the output register of PE2 at the end of cycle 2 can only be updated by

1 operation. This is clearly a structural hazard between those assignments.

On the other hand, (PE0
2 , a) and (PE1

2 , e) do not cause any structural hazard. The

output register of PE2 at the end of cycle 1 can be updated by the result of operation

a when e is assigned to PE2 at cycle 1. It is because the result of operation e is to

83



Figure 5.2. a) A DFG where operations a and e are to be executed on a pipelined PE.
b) A resource graph constructed for a 3× 1 CGRA with II = 3. c) A part of the
compatibility graph for input DFG and resource graph is shown. d) A mapping of the
input DFG to the CGRA is presented.

update output register of PE2 at cycle 2. This is represented by an edge between

those two assignments in this figure. A mapping of this DFG to input CGRA is shown

in Figure 5.2(d).

5.3 Placement and Register Allocation

Register utilization is an important factor to maximize performance of an accelera-

tor. Allocating local register files at PEs can significantly reduce data communication

between PEs when data dependent instructions are scheduled few cycles apart. This

data dependency can extend to instructions within successive loop iterations. In such

cases, satisfying data dependencies through register files is more effective and less

costly than variable spilling (sending data back and forth to the memory subsystem).

Traditionally, registers are allocated after scheduling. However, register allocation

after modulo scheduling imposes a significant overhead either in performance or in

compilation time. It is because in case of a failure in allocating registers, one may

spill few variables and increase the II to compensate for extra load/store operations.

Due to repetitive nature of modulo scheduling and loop execution, the performance

84



overhead of such policy is proportional to the number of loop iteration, which is

presumably high and unacceptable.

The second plausible reaction to register allocation failure is to search for another

modulo schedule and placement with the hope that a feasible register allocation

is possible for the new mapping. This solution is preferable because it incurs no

performance overhead, but it is not viable because it is unknown whether a new

modulo schedule would permit a feasible register allocation. It is in fact very difficult

to develop a reasonable heuristic to guess the non-existence of any feasible register

allocation for a given II when many feasible modulo schedules are available. Besides,

finding a valid modulo schedule along with placement is a time consuming process. A

register allocation failure in such policy imposes significant compilation time overhead.

A better policy is to modulo schedule operations, and then simultaneously place

operation and allocate registers to hold variables temporarily. In this part, we

extend the placement to model simultaneous PE and register allocation. An intuitive

solution is to include registers in resource graph. Thus, when a compatibility graph

is constructed, it inherently includes potential assignments of operations to local

registers. This, however, significantly increases the size of compatibility graph by a

factor of R where R is the size of register file. On top of this, the size of clique we

search for increases substantially too.

Next, we present an integrated placement and register allocation model without

any node overhead either in compatibility graph nor in clique we search for. Instead

of repeating registers in resource graph, RII , registers are encodes in the weight of

arcs in the compatibility graph. As presented in previous section, the arcs in this

graph were undirected and binary. Register-aware EPIMap, or REGIMap, instead,

constructs a weighted directed graph P . In this extension, the existence of arcs is

still a symmetric relation, yet the weights are not. For assignments (PEt
i , u) and

85



(PEt′
j , v) where PEt

i ∈ Ru, PEt′
j ∈ Rv, and u and v are operations to be executed on

a pipelined PE, there is an arc between them unless:

1. u = v.

2. ((t+ du)%II = (t′ + dv)%II) ∧ (j = i).

3. ((u, v) ∈ ED) ∧ ((PE
(t+du)%II
i , PEt′

j ) /∈ ER) ∧ (j 6= i).

4. ((v, u) ∈ ED) ∧ ((PE
(t′+dv)%II
j , PEt

i ) /∈ ER) ∧ (j 6= i).

Now that the bidirectional arcs are formed symmetrically, we update the weight of

arcs. Note that registers provide connectivity between two resources in resource graph

representing the same physical PE but at different execution time.

First, the set of dependent operations (intra-iteration dependency) that are sched-

uled few cycles apart are detected. Let (u, v) ∈ ED where w(u,v) = 0 and tvC − tuC > 1.

The weight of arc between (PEt
i , u) and (PEt′

i , v)
27 is to be increased by:

γ =

⌈
tvC − tuC
II

⌉
(5.1)

When these operations are scheduled less than II cycles, one register is sufficient

to carry-out data dependency between them. However, when those are scheduled more

than II cycles apart, this data dependency must be carried-out between successive

iterations of the loop though multiple registers.

Consider (PEt
i , u) and (PEt′

i , v) where (u, v) ∈ ED, w(u,v) = 0 and tvC − tuC > 1.

Without loss of generality, let’s assume tvC − tuC < II. A register is used to hold the

results when u is executed on PEt
i and one is released after v is executed on PEt′

i .

Since the interval between tuC and tvC can extend to multiple iterations, the number of

required register is proportional to this interval.

27Note those operations should be mapped to the same physical PE to be able to share a register.

86



Let C = (VC , IC) be the compatibility graph we are constructing. Let SPEi
be the

set of all operation assignments to PEi in compatibility graph that is:

SPEi
= {∀(δ, PEt

i ) ∈ VC} (5.2)

Without loss of generality, let’s assume t < t′ 28. All nodes in SPEi
representing

PEi with a time extension t ≤ θ < t′, use those γ registers to carryout this data

dependency until v is executed on PEt′
i . Thus, the weight of arcs between those nodes

to (PEt′
i , v) is increased by γ.

The rest of PEs SPEi
carryout γ − 1 outstanding data dependencies (produced but

not consumed yet). The weight of arcs from those nodes to (PEt
i , u) is increased by

γ − 1. When t > t′, the elements of those two sets should be interchanged.

Second, the set of operations with inter-iteration dependencies are detected. The

weight of arc between (PEt
i , u) and (PEt′

i , v) where w(u,v) > 0 is to be increased by:

w = w(u,v) −



⌊
tvC−t

u
C

II

⌋
− 1 if tvC ≥ tuC

⌈
tvC−t

u
C

II

⌉
otherwise

(5.3)

Similar to the previous case, at all resources between PEt
i and PEt′

i , w registers should

be available to establish a path between those resources. Therefore, the weight of arcs

from all nodes in compatibility graph representing PEi to (PEt
i , u) is increased by w.

However, the weight of arcs from nodes representing PEi between cycle tvC and tuC to

(PEt
i , u) must be increased by w − 1.

28Because of the modulo operation t can be greater than t′. Note that t 6= t′ otherwise there can
be no arc between those nodes in compatibility graph (check compatibility relation).

87



At the end of this step, the sum of arcs, at each node (PEt
i , u) in compatibility

graph, represents the number of required registers in PEi at cycle t. This is illustrated

in Figure 5.3. Consider the DFG shown in Figure 5.3(a) to be mapped to a 2 × 1

CGRA with II = 2. As it is shown in Figure 5.3(b), registers are not present in

resource graph constructed for mapping. The compatibility graph constructed from

scheduled DFG and resource graph is shown in Figure 5.3(c). The weight of arcs in

this graph represents the number of required registers for each assignment of operation

to a resource. The sum of outgoing arcs represent the total number of required register

at a PE. This number should be always less than the size of local register files.

For instance, consider operations a and d ins DFG shown in Figure 5.3(a). These

operations are scheduled 3 cycles apart while II = 2. This implies that when operation

a from iteration j is issued until the result is used by d of iteration j, a new iteration

of the loop is initiated. As shown Figure 5.3(d), operation a of iteration j is executed

at cycle i+ 1 and its result is stored in register 1 at PE2. At cycle i+ 3 instruction

a from iteration j + 1 is issued by PE2 where the result is kept in register 2. At

next cycle, instruction d of iteration j is issued by PE2. In this example, 1 register

is required in PE2 at cycle i + 2 and i + 4 represented by modulo cycle 1 when d

is assigned to PE2. However, at modulo cycle 0, two registers are required at PE2

when a is assigned to PE2. In Figure 5.3(c), the weight of arc from node (PE0
2 , a)

to (PE1
2 , d) is 2 (w =

⌈
3−0
2

⌉
) and it is 1 (w − 1)for the arc at the opposite direction

representing exactly the number of required registers at PE2 at those cycles.

88



Figure 5.3. a) A DFG where dependent operations a and d are scheduled few cycles
apart. b) A resource graph constructed for a 2× 1 CGRA with II = 2. Registers are
not present in resource graph. c) Compatibility graph is constructed of the DFG and
resource graph. The weight of arcs in this graph represent the number of registers
required for each operation assignment to a PE. A valid mapping is highlighted with
nodes colored blue. d) A valid mapping with registers are depicted from the
highlighted nodes in compatibility graph.

89



Chapter 6

SUPPORTING CONDITIONALS

One of the major challenges associated with all accelerators is to effectively execute

loops that have if-then-else (ITE) constructs. The fundamental problem is that the

outcome of a branch is unknown before runtime, thus, how to efficiently and effectively

allocate computing resources to multiple execution flow branches. Accelerators use

predication to execute the conditional constructs.

Hardware accelerators and FPGAs will execute both the paths of an ITE construct

in parallel, and then choose the results of the taken path. This results in wasted

resources and power. GP-GPUs also schedule the instructions and allocated resources

for both the paths of the ITE construct, but at the runtime, do not issue the instructions

for the not-taken path. This saves power, but the cycles and resources allocated for

the not-taken path are still wasted. In the graphics processing community, this is

referred to as the problem of “branch divergence.”

This chapter deals with the problem of efficiently executing ITEs on a CGRA.

Fundamentally, there are three ways to accelerate loops with an ITE construct on

a CGRA. First is full predication - in which operations producing the same output

are mapped to the same PE, but at different times. Second is partial predication - in

which one extra select operation is inserted for each output which is used to merge the

values produced in different branches. Third is a dual-issue architecture in which two

instructions (one from each side of the ITE) are issued to the PE, and the operation

to be executed is chosen at runtime by the PE.

Even though the dual-issue CGRA architecture has the potential to achieve the best

performance, full predication and partial predication schemes are more common, since

90



executing loops on dual-issue architecture requires compiler support – and none exists.

Specifically, a compiler technique is needed to merge operations from either branches

to be executed on a PE. How operation are paired not only affects the correctness of

an execution, but also has a significant impact on the resulting performance. In this

chapter, we formulate and solve the problem of merging operations from the branches

to maximize performance.

6.1 Background and Related Work

Supporting acceleration of loops with conditionals is important, since many

performance-critical loops have ITE constructs in them; ignoring them can greatly

reduce the loop acceleration factor. The basic way to support conditionals in accelera-

tors is through predication. Supporting predication on CGRAs requires a predicate

network. As shown in Figure 1.1, the predicate network consists of predicate inputs

from the neighboring PEs, a predicate output, and a small predicate register file. The

result of the ITE expression, executed on a PE, is propagated to the PEs on which

operations of the if-part and the operations of the else-part are executed through

the predicate network. Most CGRAs implement the hardware of the predicate net-

work [16, 21, 43]. There are three basic ways to support acceleration of conditionals

on CGRAs.

6.1.1 Partial Predication

In partial predication, the operations of both the if-part and the else-part are

mapped on different PEs. If the same variable is to be updated in both the if-part and

the else-part, the final result is computed by selecting the output from the taken-path

91



Figure 6.1. (a) shows a loop body with an ITE construct. Using partial predication,
the loop is transformed to (b). The output e, that is calculated in both the paths is
combined using the select operation. (c) Shows the DFG of the transformed code,
and (d) shows the mapping of the DFG on a 2× 2 CGRA. Note that the II achieved
is 3 cycles.

based on the evaluation of the branch condition. This is achieved through a special

operation, called select or a conditional move, which takes in the result of the branch

condition (through predicate network), and two updated values of the variable to select

the correct one. If a variable is to be updated in only one path, a select operation is

still required to choose between the old value 29 and the new value produced at that

iteration. The new value is valid only if the path of the branch in which the new value

is computed should have been executed. Architectural support for partial predication

is studied in [41].

Figure 6.1(b) shows the partial predication transformation of the loop body shown

in Figure 6.1(a). In this scheme, new variables for operations in ITE paths are

introduced. This new variable enables those paths to be executed independently, in

parallel. For instance, operations at line 5 and 6 in Figure 6.1(b) can be executed

independently. At the end, predicate (h) chooses the final value of (e). The select

instruction is necessary to support partial predication transformation. Figure 6.1(c)

29The value updated in last iteration where this variable has been updated

92



is the DFG constructed after partial predication transformation and Figure 6.1(d)

shows the mapping of this loop to a 2× 2 CGRA. II in this mapping is 3 and is the

minimum possible for partial predication transformation.

To map an ITE that has “n” operations on each path, the number of operations

for partial predication transformation is, in the worst case, 3n. This is because all

the operations from both paths must be mapped (2n), as well as the select operations

(n). A select operation is needed for each output that will be needed in the rest of the

program. The select operation may not be required for intermediate outputs. In the

worst case, all the 2n outputs will be used in the rest of the program, and therefore n

select operations will be required. This increases II substantially and results in a loss

of performance.

6.1.2 Full Predication

Full predication does not require a select operation. Instead, the operations that

update the same variable are mapped to the same PE, albeit at different times. Since

only one of the operations will be executed at runtime (and the other will be squashed),

the correct value of the output is present in the register file of that PE by the end of

that iteration. If an output is computed in only one path of the ITE construct, then

the output must be computed on the PE that previously updated the same variable.

This is done so that after executing an ITE, for each variable there is a unique PE,

that has its value and therefore no select operation is needed.

Consider the body of a loop shown in Figure 6.1(a). The result of full predication

transformation is presented in Figure 6.2(a). Operations at line 5 and 7 in the original

snippet of the code are guarded by (h) in Figure 6.2(a) at line 5 and 6. Operation at

93



Figure 6.2. (a) shows the transformed code using full predication scheme. There is no
select operation, but operations at line 5 and 6 that compute the variable “e” have to
be mapped to the same PE. Note that in addition to the DFG, there are placement
constraints that must be met for a legitimate mapping for full predication. (b) shows
the DFG of the transformed loop. and (c) shows the mapping of the loop on a 2× 2
CGRA.

line 4, uses variable (e) that is updated in the previous iteration. To make sure that

variable (e) gets updated properly, operations at line 5 and 6 must be mapped on the

same PE where variable (e) is kept. Figure 6.2(c) presents the best mapping of this

loop after full predication transformation. The best II achieved for full predication

is 4. If we have to map only an ITE construct that has n operations on either path,

then the number of operation nodes for full predication DFG in the worst case is 2n,

but there are placement constraints for each of 2n nodes. The tight constraints on the

operation placement are very restrictive, and can severely degrade the performance.

6.1.3 Dual-Issue

This scheme alleviates the problem of accelerating conditionals by issuing two

instructions to a PE simultaneously, one from the if-path, and one from the else-path.

Depending on the result of the conditional operation, only one of them is executed at

94



Figure 6.3. (a) shows the DFG with partial predication transformation. The
operations from the two sides of the branch are merged to form packed nodes (packed
nodes represent a pair of nodes executed in a dual-issue PE). (b) shows the DFG
after the packing transformation. (c) shows the mapping of the transformed DFG on
a 2× 2 CGRA. II of 2 is achieved.

runtime. This method also does not require select operation. Hardware requirements

for dual-issue execution is studied in [41].

Figure 6.3(a) shows the DFG after partial predication transformation. The nodes

on either side of the DFG are merged to form a packed node. Packed node represents

dual-issue operations. Operation (e) represented by a hexagonal shape node is a packed

node. The adjacency of nodes are preserved after this transformation. Figure 6.3(b)

shows the DFG after the packing transformation. Figure 6.3(c) shows the mapping

after this transformation to a 2×2 CGRA. II of this mapping is 2 and is the minimum

possible. If we have to map only an ITE construct that has n operations on either

path, then the number of operation nodes for dual-issue DFG in the worst case is

n. Plus there are no placement constraints. Therefore, dual-issue may be the best

solution to accelerate conditional loops.

95



6.2 REGIMap extension to support conditionals

Although the dual-issue scheme promises the best performance, partial and full

predication schemes seem to be more common in CGRAs. The reason is that the

traditional schemes of full and partial predication do not require much change in the

compiler. However, the new scheme of dual-issue requires extensive compiler support.

This is because supporting partial predication requires generation of select operations,

which is a well studied compiler topic. In fact it is a part of Single Static Assignment

(SSA) transformation that is present in most compilers, and the select or conditional

move operations are constructed in the phi elimination pass in compilers back-end.

Once the DFG with select operations is generated, existing CGRA scheduling and

mapping techniques (e.g., [2, 8, 18, 23, 31, 44, 48, 66, 79, 92]) designed to map non-

conditional loops on CGRA, can also be used. Supporting full predication is also

relatively straightforward, since the DFG remains the same. The only new aspect

is placement constraints on the operations, which only means that as soon as the

output of an operations is mapped, the mapping of the second operation updating

that output is also fixed.

On the other hand, for a dual-issue architecture, compiler support is needed to pack

operations from both paths of a branch, into a packed node. How we do operation

pairing not only affects the correctness, but also has a significant impact on the

resulting performance. Next, we formulate the conditions for legitimate packing, and

also formulate the problem of performance optimization by packing, and then solve

the problem to achieve efficient mapping for a dual-issue architecture.

Supporting execution of conditional loops in CGRAs has not received much

attention in the research community. The only compiler technique we have seen is a

form of full predication, presented in [42]. In this scheme, operations within body of an

96



if-then-statement are mapped to the same PE. We believe that this is too restrictive,

and it will cause significant performance loss because other PEs will not be utilized.

It is important to note that the performance is proportional to PE utilization.

In this section, we extend REGIMap to support mapping loops with conditional

constructs and name it BRMap. BRMap starts with a given control flow graph (CFG)

of a loop. BRMap enables user to choose between full predication, partial predication,

and dual issue transformations to be applied. Based on selected transformation,

BRMap constructs a DFG from the input CFG. At the end, BRMap calls REGIMap

to complete the mapping.

Step 1: DFG Construction. BRMap constructs a DFG from the CFG of a loop

first. There are standard schemes to construct hyper-blocks from multiple basic blocks

of a CFG using full-predication and partial-predication transformations [73]. DFG

constructed from full-predication transformation can be directly fed to the underlying

CGRA mapping algorithm. However, it is necessary to ensure that all instructions

updating same variable are to be mapped on the same physical PE.

DFG constructed after partial-predication transformation requires minimal change

in the mapping algorithm. REGIMap only allocates registers for nodes on PEs. We

enhance REGIMap to allocate registers at PEs and predication network using the

same technique.

Dual-issue scheme starts from a partial predicated DFG. DFG is scheduled first

and MII = Max(ResMII,RecMII) is extracted. Before conducting any DFG

minimization (dual-issue transformation or D-transformation), we determine whether

minimizing DFG by forming packed instructions would benefit the performance or not.

BRMap conducts DFG minimization only if there is a performance benefit to do so. In

some DFGs, reducing the number of nodes may not benefit the performance at all. The

reason is that, mapping II in some loops is limited by RecMII rather than ResMII.

97



Algorithm 3: D-Transformation(Input D)

1 begin

2 while |M | increasing do

3 while |C| increasing do

4 for All instructions o in D do

5 So ← successors of o;

6 if So = So ∩M or o is a select then

7 C ← C ∪ {o};

8 ASAP_Schedule D;

9 ALAP_Schedule D;

10 for All instructions o in C do

11 if o is a select instruction then

12 Ioi ← if-path input of o ;

13 Ioe ← else-path input of o ;

14 if o is only successor of Ioi and Ioe then

15 Pack o, Ioi , and Ioe into P o ;

16 M ←M ∪ {P o} ;

17 else

18 S ← (if-path× else-path) inputs of o;

19 Sort S by cost of each pair;

20 if the best cost is positive then

21 Replace selected pair with P o ;

22 M ←M ∪ {P o};

98



Although packing pairs of instructions decreases the total number of nodes in a DFG,

it does not affect RecMII at all. It is because reducing the number of nodes through

packing does not alter the latency of any path. Therefore, such loops would not

benefit from reducing the number of operations because their performance is limited

by latency of critical cycles [94]. The second reason is that even if the number of nodes

in a DFG is reduced, the number of reduced nodes can be insufficient to decrease II.

Given a DFG I = (VI , EI) and anM×N CGRA, ResMII = d |VI |
M×N e. If removing few

nodes from DFG does not alter ResMII (because of the non-linear relation between

|VI | and MII), packing is unlikely to benefit performance. In this case, BRMap

conducts a preliminary mapping first. If the underlying CGRA mapping algorithm

finds a mapping at an II > MII, only then BRMap starts packing instructions to

reduce the number of operations in DFG.

When CGRA mapping algorithms fail to find a mapping for a given II, extra nodes

(in form of routing and/or recomputing nodes) are added to the DFG. Those extra

nodes relax data dependencies between instructions whose data dependencies could not

be satisfied in a mapping. However, increasing the number of nodes in a DFG gradually

increases ResMII and consequently MII (note that it is non-linear relation). For

such cases, reduction in the number of nodes through packing instructions provides

further flexibility to the mapping algorithm to add routing and recomputing nodes

when a mapping failure occurs.

Step 2: Packing Pair of Nodes. The minimization algorithm is presented in

Algorithm 22. To conduct DFG minimization, BRMap first schedules the operations.

Scheduling determines a partial order for nodes to execute. This order is essential

to form dual-issue instructions. If nodes are packed without respecting the partial

order of operations in a DFG, it is possible to transform the input DFG to the one

99



for which no feasible schedule exists. Thus, it is crucial to respect partial orders of

instruction and pack them carefully.

Consider the following paths in a DFG. P1 = (i1, i2, s) and P2 = (i3, i4, s) and

P3 = (i5, s). i5 is the predicate Boolean input and s is a select instruction. If

pairs C1 = (i1, i4) and C2 = (i2, i3) are chosen, there is no feasible schedule for the

transformed DFG. It is because i1 must be scheduled after i2 which implies C1 < C2.

However, i3 must be scheduled before i4 which implies C2 < C1. Thus, no feasible

order for C1 and C2 exists.

To respect partial order of operations, BRMap starts from a select instruction.

Each select instruction has three inputs: an input from if-path of an ITE construct,

another input from else-path, and a Boolean input to choose among former two.

A select instruction along with two inputs from if-path and else-path are the first

candidates to form a packed node. The necessary condition to form a packed node

is that the schedule window (tALAP − tASAP , i.e. time between ASAP schedule till

ALAP schedule) of the pair overlaps. Please note that if only one of those operations

are to be executed at run-time, there is no need to have a select operation.

In Figure 6.4(a), select instruction e and its inputs are packed to form a new node.

The transformed DFG is shown in Figure 6.4(b) where three nodes are merged.

Next, BRMap finds the set of input nodes of the packed nodes. Similar to select

instruction, there are inputs from if-path and else-path of an ITE constructs to those

packed nodes. However, the number of inputs of packed nodes may vary. This is

different from select instruction where the number of inputs is always three. At

this step, we need to ensure that for any pair of instructions we choose, there is an

instruction from if-path and one from else-path. For instance, in Figure 6.4(b), j and

k cannot form a pack because they both are within the if-path.

100



Figure 6.4. (a) shows the input DFG. The first candidate to form a packed node is
select instruction e and its inputs. (b) select node and its inputs are replaced with a
new packed node. Nodes i and j are the best pair to form next packed node. Nodes k
and m cannot be reduced because m is used as an input to instruction c that is not
within the loop body. (c) shows the minimized DFG. The number of nodes in the
final DFG is reduced by three.

If there are many possible pairs, BRMap attempts to pack a pair that it is easier

to place at the mapping step. Let Ia be the set of inputs of node a. Consider two

candidate nodes to form a packed node (a, b). BRMap finds the intersection of Ia and

Ib. It also finds the overlap in schedule window of a and b. BRMap finds a pair with

the maximum intersection and overlap in schedule windows. BRMap packs any pair

of nodes that is possible to pack in a greedy manner (O(n2)).

In Figure 6.4(b), nodes i and j in this DFG are packed next. They share input b and

they are scheduled at the same cycle. The minimized DFG is shown in Figure 6.4(c).

Nodes m and k cannot be packed because node c is not within an ITE construct and

there is an arc from m to c.

A packed node from a pair of nodes with common inputs is easier to map. For

a packed node, the number of dependencies that must be satisfied to find a valid

mapping is usually higher than a regular node. When a pair of nodes forming a

packed node share an input, the number of dependent nodes that should be placed in

101



neighbering PEs decreases. Therefore, it is easier to place such packs compare with

the one without any common input. BRMap iteratively finds pairs of nodes to form

packed nodes until no further pair can be found (O(n3)).

Step 3: Mapping Transformed DFG onto CGRA. The number of data

dependencies after forming packed nodes makes mapping of DFG significantly more

challenging than a regular DFG. Thus, it is important to use a constructive CGRA

mapping technique. REGIMap is a constructive CGRA mapping algorithm which effi-

ciently utilized resources on CGRA. After DFG minimization, BRMap calls REGIMap

to find a valid mapping of DFG on CGRA. We modified REGIMap to allocate registers

both in PEs register files and predication network.

102



Chapter 7

A FRAMEWORK TO STUDY CGRAS

7.1 Introduction

This study requires an extensive infrastructure development to build a system

that simulates a CGRA as an accelerator. It also requires to integrate the compiler

techniques presented in previous chapters in a compiler framework. This infrastructure

is necessary to conduct experiment on and ensure the correct execution of an application

on a system equipped with a CGRA as an accelerator.

Three major requirements of this framework include an architectural design and

implementation of CGRA, a system level, cycle accurate simulator to run applications,

and a compiler to automatically and efficiently map kernels on CGRA. An overview of

this framework is depicted in Figure 7.1. Architectural design and hardware implemen-

tation is necessary to extract physical characteristics of CGRA. This implementation

enables an accurate modeling of CGRA in a computing system simulator. These

properties are used to model CGRA as an accelerator in gem5 [12] system. Modeling

CGRA in gem5, allows us to evaluate CGRA at system level and measure its benefits

as a whole. In addition, it enables us to ensure that compiler techniques presented in

this research result in correct execution of input application source codes.

Extracting CGRA characteristic from hardware implementation is necessary for

compiler design and optimization too. Without detail information about characteristics

of CGRA, latency of different operation, compilers cannot generate a precise and

103



Figure 7.1. An overview of different aspects of this research. It includes a design of
CGRA, simulation at system level, and compiler development.

correct mapping of application kernels onto CGRA. We integrated the compilation

techniques developed in this research in llvm [19] compiler framework.

An important aspect of this framework is to design an interface between components

in the system. Most importantly, the interface between CGRA accelerator and

processor 30 is designed at system level. At this level, CGRA is envisioned as an

accelerator in a computing system where it has to communicate with processor and

30Processor implies an active processing element in a computing system usually referred to as
core or CPU.

104



memory subsystem. The interface provides the compiler a set of well-defined system

calls to produce binaries so that a well-defined communication interface between

hardware and software at one end, and between processor and accelerator at the other

end is available. This chapter is devoted to present an overview of this infrastructure

used to evaluate compiler techniques presented in this research.

7.2 System Simulation

gem5 [12] is a system simulation framework. It has a collection of models for

components used to build modern computing systems. This collection includes models

of processors, caches, memory, bus, disks, etc. Through a sophisticated software

design, interface between components and their detail implementations are separated.

Therefore, units such as processors can be configured to behave as one of many

commercially available processors. Thanks to this elegant design, a new instruction

set can be introduced into the framework using a domain-specific language. Most

importunately, many commercial processors have already been modeled in gem5.

This rich simulation framework has motivated us to model CGRA in gem5. During

execution, CGRA model is kept inactive until a new CGRA thread is initiated.

At this point, CGRA is configured to start execution, that is to fetch instructions

from its instruction memory. At every execution cycle, CGRA fetches a packet of

instructions 31. These instructions are sent to PEs for decoding and execution. All

memory transactions are collected in the next step to be forwarded to data cache.

At the end of a cycle, CGRA controller changes the execution state. Execution

states include idle when CGRA is not active, configuration when CGRA is reading

31one instruction per PE.

105



its configuration for next execution phase, epilog where the first few iterations of a

loop is executed, kernel when CGRA is executing loop pipeline in steady state, prolog

when CGRA is finishing loop pipeline. When the computation is completed, CGRA

thread interrupts the main processor. At this point, any thread-wait function that

have been called on processor will be waken up and resume.

CGRA configuration plays an important role in this communication model. The

most important component of this model is configuration memory. This region acts

as a mail box where processor saves dynamic variables such as pointers, control loop

related information such as epilog, prolog and kernel length.

In gem5, we instantiate CGRA instruction and data memory as cache. This enables

us to use the existing interface for CGRA and the rest of the system. The rest of

the system is connected as a regular gem5 configuration. It is important to note that

CGRA cores, however, have to be explicitly specified at configuration so a CGRA unit

would be instantiated at run-time. In the end of a simulation, we compare the result

of a program executed on CGRA with the one that is only executed on the main

processor. We verify whether the mapping technique presented in this dissertation

maps the loops properly to the CGRA and the program output matches the expected

outputs.

7.3 Compiler

llvm [19] is a rich set compiler libraries. These libraries can be connected together

to form a complete compiler for a target system. Due to this flexibility in llvm, we

have introduced several CGRA specific compiler optimizations in llvm. We have

designed an instruction set for CGRA that is very close to ARM instruction set [36].

Therefore, we can easily adapt ARM instructions and generate CGRA instruction.

106



Figure 7.2. Compilation flow for mapping applications.

We adapted ARM backend to generate a new backend in llvm. In this backend,

loops nests are analysed to identify the ones that can be efficiently accelerated on

CGRA. Those loops are then optimized for CGRA execution.

A new instruction set can be introduced to llvm using a domain-specific language.

We introduced CGRA instruction set and extended ARM backend in llvm. At the

end of standard optimizations, when all instructions are still in single assignment form

(SSA), a new CGRA specific pass is introduced.

A loop nest is represented as a control flow graph (CFG). We would like to construct

a data flow graph for each loops nest. If a loop is found profitable for CGRA mapping,

a thread is created which hold sequence of instructions generated from that loop to

CGRA and that loop will be removed from the main thread CFG.

At the end of this step, CGRA binary generator creates a binary output for the

mapping. This binary is inserted in the hybrid binary file generated by the compiler

at the end of compilation.

The mapping algorithms presented in previous chapters have been integrated in

llvm compiler framework. A new backend is introduced in llvm framework to support

compilation for CGRA. This framework transforms loop kernels to CGRA ISA and

optimize them for accelerations. The rest of the application is compiled with llvm

ARM backend.

107



Several optimization is performed before modulo scheduling including loop fission,

fusion, interchange, peeling, and unrolling as well as classical loop optimization is llvm

framework. After those optimization, before Phi elimination, we construct the data

flow graph for the loop. If there are conditional clauses within the loop, operations

are predicated. The regular instructions are partially predicated and operations which

can cause exception are fully predicated .

7.4 REGIMap Evaluation

In this section, we conduct different experiments to evaluate EPIMap and REGIMap

for single cycle, multi-cycle, and pipelined CGRAs. Loops that are important for

performance are selected from SPEC2006 [51] and digital signal processing applications.

The profiling switch is enabled during compilation (gcc -pg and opt -insert-edge-

profiling) of benchmarks. We used gprof to measure the running time of different

regions in applications. Among hotspot regions in the code, we select and accelerate

those regions contribute most to total execution time (10% or more). The source code

of applications are modified and C pragma is used to assist compiler kernel detection

unit to identify those loops.

We compare REGIMap with DRESC algorithm [78] and its register allocation

extension [20], which we name RA-DRESC throughout this section. DRESC modulo

scheduling algorithm is based on a simulated annealing search technique. It is

shown [20] that DRESC accelerates loops better than all existing mapping schemes.

However, DRESC mapping time is inherently slow due to its semi-exhaustive searching

nature. The DFG constructed from optimized loops are sent to both EPIMap(and

REGIMap) and DRESC(and RA-DRESC). The mapping results are compared against

each other. We implemented EPIMap and REGIMap in C++ and compiled it using

108



clang v3.4 with -O3 optimization. We assume a 4× 4 mesh inter-connected CGRA

with PEs capable of executing fixes-point and logical operations. We also assume that

the latency of accessing memory is 1 cycle and data bus is shared among all PEs in a

row.

7.4.1 Optimizing scheduling window factor

During modulo scheduling, a scheduling window is defined for an operation u

between the cycle ASAP and ALAP cycles associate to operation u. In Chapter 4,

we introduced a scale factor (C) to scheduling window. This factor gives us more

flexibility to associate an execution cycle to an operation. In our experiments, we

observe that a scaling factor between 3 and 5 is sufficient to achieve more than 90%

success rate in modulo scheduling operations at MII. Note that we measured this

rate before placement, thus this number does not reflect the success rate of mapping

at MII. When C is reduced to 1, equivalent to the original scheduling window,

the modulo scheduling success rate at MII decreases dramatically to less than 40%.

When the scheduling window factor is set to 5, it has less than 1% overhead in total

compilation time. In the rest of our experiments, we use this configuration for EPIMap

and REGIMap.

7.4.2 Optimizing the number of clique search attempts

Placement is reduced to finding the maximum clique is compatibility graph, which

is a well-known NP-Complete problem. Exhaustive search for the maximum clique

imposes a significant compilation time overhead. Instead, we use dynamic programming

approach where we keep track of the best solution (largest cliques). Every time the

109



30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12

Figure 7.3. The success rate of fining maximum clique. The X-axis is the number of
consecutive failed attempts in increasing the maximum clique size. When EPIMap
fails to increase the size of maximum clique 8 consecutive times, it is 98% likely that
the maximum clique size has already been reached.

upper bound on the size of a candidate clique is no better than best clique so far, we

stop expanding that candidate clique. EPIMap stops searching for new candidates

when in 8 consecutive attempts, the size of a newly found clique candidate is no better

than best solution.

We selected 8 because in our experiments, we observed that in more than 98% of

times, if we fail to increase the size of clique after 8 consecutive attempts, there is

no clique with larger size. When we conduct an exhaustive search for largest clique,

in 1 out of 50 loops, the size of maximum clique increased. When we increased this

number to 16, we did not observe any improvement in final clique size while loop

compilation time increased substantially. For the rest of our experiments, we use this

configuration (8) in our placement algorithm.

7.4.3 EPIMap performance

In this part, we conduct experiments to compare the performance of mapping

loops using EPIMap and DRESC. In order to compare the performance of mapping

those loops, II is selected as our performance metric. In fact, the execution time of

110



a loop is proportional to its mapping II. To make this comparison independent of

register allocation, we set the size of local register files to 64. This number is selected

because in our experiments, we observed that 64 registers are sufficient to map all of

those selected loops. Note that such a large local register file is clearly not feasible

in practice. We used EPIMap and DRESC mapping algorithms without any register

allocation to compare their efficiency on base mapping only.

In this experiments, we first assume that all instructions have single cycle latency.

Later, we assume multi-cycle implementation of a multiplier with latency of 4 cycles.

Finally, multipliers are pipelined with latency of 4 cycles and 1 cycle throughput.

We compare the II of mapping loops using EPIMap and DRESC loops in various

applications. Those results are compared with MII for those loops too.

As depicted in Figure 7.4(a), loops mapped at II that is very close to MII when

we use EPIMaps and it is much lower than mappings generated by DRESC when all

instruction can be executed in 1 cycle. On average EPIMap finds mapping at an II

that is about 11% higher than MII. On the other hand, those loops mapped with

EPIMap run on average 31% faster than those mapped using DRESC.

In Figure 7.4(b), a multi-cycle multiplier is integrated at each PE with latency of

4 cycles and EPIMap and DRESC are used to generate mappings. In a multi-cycle

implementation, generally the MII is limited by latency of multi-cycle operations. For

such implementation, EPIMap performs even better than single cycle implementation

and generates mapping at IIs about 3% higher than MII. Loops mapped using

DRESC algorithm in a multi-cycle ALU implementation also performs slightly better

than single cycle case. This is because in a multi-cycle CGRA implementation, the

resource (PE) utilization is much lower than single cycle implementation, thus mapping

is much easier. On average, loops are accelerated 10% faster when EPIMap is used

compare to when those loops are mapped using DRESC.

111



012345678

Initiation Interval 

M
II

EP
IM

ap
D
R
ES
C

(a
)
Si
ng

le
cy
cl
e
la
te
nc
y.

0123456789

1
0

Initiation Interval 

M
II

EP
IM

ap
D
R
ES
C

(b
)
M
ul
ti
-c
yc
le

la
te
nc
y.

0123456789

1
0

Initiation Interval 

M
II

EP
IM

ap
D
R
ES
C

(c
)
P
ip
el
in
ed

A
L
U
s.

F
ig
ur
e
7.
4.

P
er
fo
rm

an
ce

of
lo
op

s
m
ap

pe
d
us
in
g
E
P
IM

ap
vs

D
R
E
SC

fo
r
ca
se
s
on

si
ng

le
cy
cl
e
la
te
nc
y,

m
ut
i-c

yc
le

an
d

pi
pe

lin
ed

A
LU

s.

112



In Figure 7.4(c), multipliers in ALUs are pipelined with latency of 4 cycles and

1 cycle throughput. Those loops are mapped at IIs which is on average about 15%

higher than MII when EPIMap is used. Note that multi-cycle and pipeline ALU

implementation imposes a significant communication overhead between operations.

It is because the variation between completion of instruction increases significantly

and intermediate results have to be communicated between various PEs over multiple

cycles. Those loops mapped with EPIMap can be executed on average 45% faster

compared to when they are mapped using DRESC. We conclude that EPIMap is more

effective than DRESC in accelerating loops when local register files are sufficiently

large.

7.4.4 EPIMap success rate at first mapping attempt

Scheduling plays an important role in CGRA mapping. An effective scheduling

can actively avoid the cases for which a placement is not feasible. More importantly,

a feasible minimum II can be accurately estimated when the order of operations and

their communication is taken into account well. In fact, when data communication

between operations is high, it imposes significant routing overhead which requires to

include extra routing operation in DFG. This can increase II while it is unknown

when MII is approximated initially. It is because this overhead is not observed in

MII calculation. The search time between lower bound II calculated after scheduling

and using MII at the starting point for mapping plays an important role in making

mapping time faster.

In our experiments we observe that about 59% of selected loops are successfully

mapped in the first placement attempts as shown in Figure 7.5 in EPIMap. We conclude

that scheduler assigns modulo cycle to operations which results in high success rate in

113



placement. In addition, it does not impose large overhead by adding many routing

nodes which increases effective minimum II. More importantly, this shows that

resource conflicts between operation are effectively avoided during scheduling.

It is also important that the scheduling algorithm does not over estimate lower

bound II. It is because this over estimation results in mapping loops at higher II thus

losing performance. To verify that, we implement an exhaustive mapping search that

starts at MII rather than starting from minimum II computed during scheduling.

We did not find any loop for which a mapping can be found lower than what scheduler

outputs as lower bound II.

7.4.5 Re-scheduling is effective

Placement is a time consuming process, and a failure in allocating PEs imposes

a significant overhead in loop compilation time. On the other hand, placement can

provide important information to the scheduler about which nodes could not be placed

as well as resource conflicts between operations. A scheduler can effectively use such

information and re-schedule operations to actively avoid failures in next mapping

attempts.

We measure the percentage of mapping success after a loop is scheduled until

it is successfully placed (between line 11-16 in Algorithm 2). We observe that the

placement success rate is about 86% in EPIMap (and REGIMap). The success rate

without re-scheduling is only 59%. This is a direct impact of re-schedule function in

EPIMap (and REGIMap) which enables EPIMap to adjust the priority of the nodes

based on input DFG characteristics.

114



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5 6 8

Figure 7.5. The success rate of placement. 59% of loops are successfully mapped in
first placement attempt. In first 3 placement attempts, more than 90% of all loops
are successfully mapped.

7.4.6 Constraining resources during scheduling is effective

When placement and rescheduling both fail, EPIMap uses another heuristic instead

of directly increasing II. At this step, EPIMap conducts a new phase of scheduling

while reducing the number of available PEs at all cycles by 1 (line 17 in Algorithm 2).

This heuristic may increase the schedule length for operation not in critical cycle.

However, increasing latency of one iteration of the loop does not directly increase

II. In our experiments, we observed that 70% of loops failed in placement and

re-scheduling attempts, could eventually be mapped without any increase in II.

7.4.7 Placement and register allocation search space

Here, we demonstrate the compilation time benefit of register allocation model

introduced in REGIMap algorithm. As it is discussed in Section 5.3, PE and register

allocation can be done simultaneously if registers, too, are replicated in resource

graph. However, when registers are replicated in resource graph, it incurs a substantial

overhead in the number of nodes both in resource graph as well as in compatibility

graph.

115



Formulating registers at the weight of arcs, as is done in REGIMap, enables us

to effectively allocate registers with minimal overhead in placement. To show that,

we slightly modified EPIMap to replicate registers in resource graph. In the end,

the placement of operations would change to allocating PEs and registers during the

course of searching for the largest clique. Our experiments show that such resource

allocation imposes between 16X to 52X compilation time overhead when the size of

local register file is only 4. When REGIMap is used, all loops are mapped at the

same II as the modified EPIMap did. We conclude that register allocation model in

REGIMap significantly reduces the compilation time of loops compared to original

technique based on MCS technique.

We also compared the overhead of integrated placement and register allocation

using REGIMap with EPIMap placement only approach (arcs in compatibility graphs

are binary). We observed that when the size of register files are set to 64 (64 registers

are sufficient to allocate registers for all loops), the compilation times of EPIMap and

REGIMap are close. In fact, on average, the compilation time increases only by 2.29%

in REGIMap. We conclude that REGIMap does not impose significant compilation

time overhead to placement while it extends the mapping operations to simultaneously

allocating PEs and registers.

7.4.8 Register allocation performance

Here, we evaluate the performance of loops mapped using REGIMap and RA-

DRESC with different number of registers. In this experiment, we would like to

compare the effectiveness of mapping as well as register allocation together.

In the first configuration, we set the size of local registers to 8. Then, we evaluate

the performance of those mapping techniques when PEs execute all instruction in one

116



02468

1
0

1
2

Initiation Interval 

M
II

R
EG

IM
ap
-8

R
A
-D
R
ES
C
-8

(a
)
Si
ng

le
cy
cl
e
la
te
nc
y.

02468

1
0

1
2

Initiation Interval 

M
II

R
EG

IM
ap
-8

R
A
-D
R
ES
C
-8

(b
)
M
ut
i-c

yc
le

la
te
nc
y.

02468

1
0

1
2

1
4

1
6

Initiation Interval 

M
II

R
EG

IM
ap
-8

R
A
-D
R
ES
C
-8

(c
)
P
ip
el
in
ed

A
L
U
s.

F
ig
ur
e
7.
6.

P
er
fo
rm

an
ce

co
m
pa

ri
so
n
of

lo
op

s
m
ap

pe
d
us
in
g
R
E
G
IM

ap
an

d
R
eg
is
te
r-
A
w
ar
e
D
R
E
SC

w
he
n
si
ze

of
re
gi
st
er

fil
e
is
8
fo
r
si
ng

le
-c
yc
le

la
te
nc

y,
m
ul
ti
-c
yc
le

an
d
pi
pe

lin
ed

A
LU

s.

117



cycle. As shown in Figure 7.6(a), REGIMap accelerates loops at lower II than DRESC

across most benchmarks with exception of fft. On average, loops are accelerated 50%

faster when we use REGIMap compared to RA-DRESC mappings.

In next configuration, multipliers use multi-cycle implementation to save area.

For this CGRA configuration, loops are accelerated at relatively close performance

when REGIMap and RA-DRESC are used. Details are depicted in Figure 7.6(b).

We expected such results because the resource utilization of mappings on multi-cycle

CGRA configuration is low. Thus, it is easier to find a mapping and both mapping

schemes show consistently similar mapping results. Those mappings, in fact, heavily

rely on routing nodes and registers to satisfy data dependency between operations.

Since the are many spare resources in multi-cycle implementation case, it is relatively

easy to find a mapping.

Finally, we compare both mapping schemes when ALUs are pipelined. For such

configuration, REGIMap consistently maps loops at lower II than RA-DRESC. On

average, as is shown in Figure 7.6(c), loops mapped using REGIMap execute 68%

faster than when RA-DRESC is used.

As the number of registers decreases in CGRA, effective register allocation becomes

extremely important for a successful mapping. In next configuration, we reduce the

number of registers to 4 and compare performance of mappings using REGIMap and

RA-DRESC. For a single cycle CGRA implementation with 4 registers, REGIMap

accelerate loops 1.6 times faster than when they are mapped using RA-DRESC.

REGIMap accelerates on average loops 5% and 81% faster than RA-DRESC for

multi-cycle and pipelined CGRA implementation, respectively. Results are presented

in Figure 7.7.

When registers are scarce, the performance (II) of mappings tightly depends on

register allocation effectiveness. In such case, the mapping II generally increases

118



02468

1
0

1
2

1
4

Initiation Interval 

M
II

R
EG

IM
ap
-4

R
A
-D
R
ES
C
-4

(a
)
Si
ng

le
cy
cl
e
la
te
nc
y.

02468

1
0

1
2

Initiation Interval 

M
II

R
EG

IM
ap
-4

R
A
-D
R
ES
C
-4

(b
)
M
ul
ti
-c
yc
le

la
te
nc
y.

02468

1
0

1
2

1
4

1
6

1
8

2
0

Initiation Interval 

M
II

R
EG

IM
ap
-4

R
A
-D
R
ES
C
-4

(c
)
P
ip
el
in
ed

A
L
U
s.

F
ig
ur
e
7.
7.

P
er
fo
rm

an
ce

co
m
pa

ri
so
n
of

lo
op

s
m
ap

pe
d
us
in
g
R
E
G
IM

ap
an

d
R
eg
is
te
r-
A
w
ar
e
D
R
E
SC

w
he
n
si
ze

of
re
gi
st
er

fil
e
is
4.

119



because data dependencies are satisfied with frequently using routing nodes in addition

to registers. The results shown in Figure 7.8 demonstrate that REGIMap utilizes

register much better than RA-DRESC. In a single cycle CGRA implementation,

REGIMap accelerate loops on average 73% faster than RA-DRESC when each PE

has 2 local registers.

Mappings generated for a multi-cycle implementation of CGRA generally require

more registers than single cycle implementation. For such implementation, registers

are usually used for transferring data between dependent operations. However, because

MII is mapping loops for such CGRA is limited by latency of multi-cycle operation,

PEs are under-utilized. Thus, using PEs to route operation between dependent

operation does not degrade performance. REGIMap and RA-DRESC accelerate loops

for multi-cycle CGRA with similar acceleration factor as shown in Figure 7.8(b).

Mappings generated for pipelined CGRAs, too, require extensive register usage.

REGIMap for such CGRAs accelerates loops on average about 83% faster than

mappings generated by RA-DRESC as shown Figure 7.8(c). We conclude that

REGIMap utilizes local registers better than RA-DRESC and accelerates loops better.

7.4.9 Multi-cycle implementation severely damages performance

Throughout our experiment, we observe that using multi-cycle functional units

severely damages performance and increases mapping IIs. Since CGRAs are generally

used as accelerators, performance benefit is by far the most important factor. On

average, MII decreases by 53% when we use a pipelined implementation as compared

to a multi-cycle one. Due to this fact, we continue our experiments with single cycle

and pipeline CGRA configurations.

120



7.4.10 Compilation time of loops with EPIMap

Next, we compare the running time of EPIMap and DRESC when mapping loops on

different CGRA implementations. We observe that REGIMap accelerates loops faster

at significantly lower compilation time. On average, in a single cycle implementation,

EPIMap finds mappings on average 138 times faster than DRESC. In a pipelined

CGRA, EPIMap mapping time is 192X faster than DRESC. We observe a consistent

faster compilation time when REGIMap and RA-DRESC are used for mappings.

The gap between compilation time substantially increases as the number of registers

decreases. Details are presented in Figure 7.9.

7.4.11 REGIMap Compilation time scales well with register file size

An important property of a good compilation scheme is to show a consistent

execution time over different architectural configuration. In this part, we present

the running time of REGIMap and RA-DRESC when the size of local register files

changes for both single cycle and pipeline CGRA implementation. In Figure 7.10,

the compilation time using REGIMap and RA-DRESC to map loops are shown for

different register files sizes in single cycle CGRA implementation.

We observe that loops are mapped consistently at a significantly lower compilation

time using REGIMap compared to RA-DRESC. In addition, we observe that as the

size of register file decreases, the compilation time increases slightly in REGIMap. We

expect this increase because when less number of registers are available to transfer

data between dependent instruction, extra nodes are allocated for routing purposes.

As the number of nodes increases, both II and the compilation time increase because

121



the size of the problem increases. We can observe the similar increase in compilation

time when RA-DRESC is used. However, it occurs at a significantly higher overhead.

Mapping loops for pipelined CGRA imposes overhead in using registers. Therefore,

we expect higher increase in compilation time as the number of registers decreases.

The results are presented in Figure 7.11. We observe that the compilation time of

loops using REGIMap and RA-DRESC both increases with decreasing the number

of registers. However, compilation time using RA-DRESC algorithm is significantly

higher than REGIMap. Note that the Y-axis is scaled exponentially.

7.4.12 Pipelining is effective

Pipelining is an effective optimization in hardware implementation to improve

performance and frequency. Thus, a mapping algorithm should effectively map loops

for such CGRA implementation. On the other hand, as discussed before, pipelining

imposes a significant overhead in register usage. Therefore, we expect an increase in II

of mappings for a pipeline CGRA compared to a single cycle CGRA implementation.

The II overhead imposed by pipelining CGRA implementation in EPIMap (and

REGIMap) and DRESC (and RA-DRESC) are shown in Figure 7.12 for different

register file sizes. EPIMap accelerates loop with on average only 0.11 increase in

II. DRESC, on the other hand, compiles loop with an average 0.69 increase in II.

We conclude that EPIMap supports pipelining much better than DRESC. There are

cases that mapping in pipelined CGRA results in decrease in II such as Dhrystone.

This occurs in applications with imbalance data dependency between operations.

Variation in latency of executing operations makes data dependencies in those loops

more balanced.

This overhead in II increases as the size of local register files decreases. However,

122



loops mapped using REGIMap consistently show lower overhead of pipelining as com-

pared to RA-DRESC. We conclude that REGIMap successfully handle communication

overhead of pipelining while RA-DRESC shows less tolerance.

7.4.13 Pipelining compilation time overhead

Compilation time is an important factor in mapping. The compilation time

overhead of supporting and mapping loops on pipelined CGRAs is shown in Figure 7.13.

The Y-axis shows this overhead in percentage. Supporting pipelining imposes only 7%

compilation time overhead on average to EPIMap. This overhead is about 78% on

average in DRESC.

The average overhead is 32%, 45%, and 31% in REGIMap for CGRA with 8, 4,

and 2 local registers. On the other hand, this overheads increases in RA-DRESC and

on average is 105%, 147%, and 38%. We conclude that REGIMap compilation time

increases modestly to support pipeline CGRAs.

7.5 Supporting Loops with Conditionals

In this section, we evaluate the performance impact of various transformations

introduced in Chapter 6 to support acceleration of loop with conditionals. We conduct

our experiments to explore the performance of the various architectural and compiler

techniques for handling conditionals in CGRA. We map the loops on a 4× 4 CGRA

with sufficient instruction memory to hold all instructions within a loop body as well

as sufficient data memory space to hold all the variables. Latency of all operations are

assumed only one cycle. Load and store operations requires two CGRA operations,

one for address bus transaction and the other for data bus transaction. The bus is

123



shared among all PEs within a row; in other words, only one memory transaction can

proceed at any cycle in a row. We conduct our experiments on mesh-interconnected

CGRA and then we enrich interconnection further with diagonal connections between

PEs.

7.5.1 Need for supporting Conditionals in Loops

Our first evaluation demonstrates the importance of supporting conditions within

loops. If conditional constructs are not supported, many performance-significant loops

cannot be accelerated on CGRAs. As shown in Figure 7.14, about 40% of loops that

can be executed on CGRA have at least one ITE construct within the body of the

loop. Here, the condition we are referring to is different from the main loop condition

which controls the number of times a loop would be executed. We are referring to an

ITE construct in the loop. This plot is extracted after -O3 optimization in llvm.

7.5.2 Performance of dual-issue scheme

Next, we compare different techniques to accelerate loops with conditionals, namely:

full predication approach presented in [42], full predication, partial predication, and

BRMap for dual-issue. Figure 7.15 plots the achieved II of the loops by different

schemes. The bars on the right corner show the average II achieved over all the

loops by the techniques. This figure shows that the dual-issue approach leads to the

best acceleration (least II) among all the techniques. The full predication approach

presented in [42] performs the worst, since it is highly restrictive – all the instructions

inside the conditionals have to be mapped to the same PE – this results in long

124



schedule length, and long II. Our approach for full predication performs better,

primarily because it is less restrictive. The restriction is that the operations in

different branches that are generating the same output must be mapped to the same

PE. Partial predication performs better than both of these, since it does not add

restrictions in mapping, only adds more nodes to the graph. However, dual-issue

scheme performs best, since it neither adds restrictions, nor extra nodes in the graph.

Overall dual-issue architecture can improve II by almost 42% as compared to the full

predication scheme proposed in [42].

7.5.3 Dual issue scheme and CGRA interconnect

As interconnection is enriched with diagonal connections, the full predication

scheme presented in [42] does not improve considerably (only about 0.7% on average).

This is because this technique constrains ITE constructs to be executed sequentially,

and does not benefit from either more PEs nor richer interconnect between PEs. Full

predication gains the most performance benefit from diagonal connections, (about

7% on average). This is because many instructions in this scheme requires three

dependencies to be satisfied in mapping. Because of the high data dependency between

operations, it is more likely that all dependencies cannot be satisfied in mapping in

a mesh-interconnected CGRA. Therefore, mapping fails and more routing nodes are

needed to be inserted in the DFG. This eventually leads to more frequent increment

in II. Partial predication achieves modest benefits from better interconnection

(on average about 4.5%). Dual-issue architecture gains 6.7% performance benefit

from better interconnection because dual-issue instructions have the highest data

dependency among all instructions. Therefore, when more communication channels

125



are available, data dependencies are more likely to be met in mapping. However,

even in a richly connected CGRA, dual-issue architectures achieves the lowest II, and

(therefore) the best performance.

7.6 Performance projection

In many applications, a loop mapped using REGI/EPIMap algorithm can reach

up to 14 instructions per cycle (IPC). However, this is an upper bound for IPC and

memory subsystem performance and latency can greatly change that. For example,

in inner-most loop of 2-dimensional matrix multiplication, there are 8 operations

and it can be mapped with an II = 1, that is equivalent to one iteration per cycle.

Therefore, the upper bound on IPC is 8, which is close to what is observed (7.9

IPC) during simulation. This is because the cache hit rate is 98.3% with Access Map

Pattern Matching (AMPM) [53] prefetcher for a 16KB 4-way set associative cache.

IPC linearly decreases with increasing memory access latency or decreasing cache hit

rate. For example, we reach IPC of 0.96 when cache hit rate reduces to 12%. Due to

this great sensitivity of CGRA performance to memory latency, it is very important

to optimize memory subsystem for the target application with minimal access latency

and sufficient bandwidth.

126



02468

1
0

1
2

1
4

1
6

Initiation Interval 

M
II

R
EG

IM
ap
-2

R
A
-D
R
ES
C
-2

(a
)
Si
ng

le
cy
cl
e
la
te
nc
y.

02468

1
0

1
2

1
4

Initiation Interval 

M
II

R
EG

IM
ap
-2

R
A
-D
R
ES
C
-2

(b
)
M
ut
i-c

yc
le

la
te
nc
y.

02468

1
0

1
2

1
4

1
6

1
8

2
0

Initiation Interval 

M
II

R
EG

IM
ap
-2

R
A
-D
R
ES
C
-2

(c
)
P
ip
el
in
ed

A
L
U
s.

F
ig
ur
e
7.
8.

P
er
fo
rm

an
ce

co
m
pa

ri
so
n
of

lo
op

s
m
ap

pe
d
us
in
g
R
E
G
IM

ap
an

d
R
eg
is
te
r-
A
w
ar
e
D
R
E
SC

w
he
n
si
ze

of
re
gi
st
er

fil
e
is
2.

127



1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

Compilation Time (S) 

EP
IM

ap
D
R
ES
C

1
0
0
0

(a
)
T
he

co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
us
in
g
E
P
IM

ap
an

d
D
R
E
SC

al
go
ri
th
m
s
fo
r
a
si
ng

le
cy
cl
e
C
G
R
A

im
pl
em

en
ta
ti
on

.

1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

Compilation Time (S) 

EP
IM

ap
D
R
ES
C

1
0
0
0

(b
)
T
he

co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
us
in
g
E
P
IM

ap
an

d
D
R
E
SC

al
go
ri
th
m
s
fo
r
a
pi
pe

lin
ed

C
G
R
A

im
pl
em

en
ta
ti
on

.

F
ig
ur
e
7.
9.

T
he

co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
us
in
g
E
P
IM

ap
an

d
D
R
E
SC

al
go

ri
th
m
s
fo
r
di
ffe

re
nt

C
G
R
A

im
pl
em

en
ta
ti
on

.

128



1

1
0

1
0
0

1
0
0
0

Compilation Time (S) 

EP
IM

ap
R
EG

IM
ap
-8

R
EG

IM
ap
-4

R
EG

IM
ap
-2

(a
)
T
he

co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
us
in
g
R
E
G
IM

ap
fo
r
di
ffe

re
nt

re
gi
st
er

fil
e
si
ze

is
sh
ow

n
in

a
si
ng

le
cy
cl
e
C
G
R
A

im
pl
em

en
-

ta
ti
on

.

1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

Compilation Time (S) 

D
R
ES
C

R
A
-D
R
ES
C
-8

R
A
-D
R
ES
C
-4

R
A
-D
R
ES
C
-2

(b
)
T
he

co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
us
in
g
R
A
-D

R
E
SC

fo
r
di
ffe

re
nt

re
gi
st
er

fil
e
si
ze

is
sh
ow

n
in

a
si
ng

le
cy
cl
e
C
G
R
A

im
pl
em

en
-

ta
ti
on

.

F
ig
ur
e
7.
10

.
T
he

co
m
pi
la
ti
on

ti
m
e
us
in
g
R
E
G
IM

ap
an

d
D
R
E
SC

fo
r
lo
op

s
in

si
ng

le
cy
cl
e
C
G
R
A

im
pl
em

en
ta
ti
on

is

pr
es
en
te
d.

129



1

1
0

1
0
0

1
0
0
0

ff
t

h
m
m
er

at
ax

p
h
yl
ip

m
ad

D
h
ry
st
o
n
e

lu
3
m
m

b
ig
c

se
id
el

ch
o
le
sk
y

b
lo
w
fi
sh

ja
co
b
i-
2
d

ge
m
m

cl
u
st
al
w

sh
a

n
-b
o
d
y

tr
is
o
lv

Compilation Time (S) 

EP
IM

ap
R
EG

IM
ap
-8

R
EG

IM
ap
-4

R
EG

IM
ap
-2

(a
)
T
he

co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
us
in
g
R
E
G
IM

ap
fo
r
di
ffe

re
nt

re
gi
st
er

fil
e
si
ze

is
sh
ow

n
in

a
pi
pe

lin
e
C
G
R
A

im
pl
em

en
ta
ti
on

.

1

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0
0

Compilation Time (S) 

D
R
ES
C

R
A
-D
R
ES
C
-8

R
A
-D
R
ES
C
-4

R
A
-D
R
ES
C
-2

(b
)
T
he

co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
us
in
g
R
A
-D

R
E
SC

fo
r
di
ffe

re
nt

re
gi
st
er

fil
e
si
ze

is
sh
ow

n
in

a
pi
pe

lin
e
C
G
R
A

C
G
R
A

im
pl
em

en
ta
ti
on

.

Fi
gu

re
7.
11
.
T
he

co
m
pi
la
ti
on

ti
m
e
us
in
g
R
E
G
IM

ap
an

d
R
A
-D

R
E
SC

fo
r
lo
op

s
in

pi
pe

lin
e
C
G
R
A

im
pl
em

en
ta
ti
on

is
sh
ow

n.

130



-0
.50

0
.51

1
.52

2
.53

3
.5

Delta Initiation Interval 

D
el
ta
-D
R
ES
C

D
el
ta
-E
P
IM

ap

(a
)
A

co
m
pa

ri
so
n
be

tw
ee
n
ov
er
he

ad
of

su
pp

or
ti
ng

pi
pe

lin
e
C
G
R
A

in
I
I
of

m
ap

pi
ng

s
in

E
P
IM

ap
an

d
D
R
E
SC

.

0

0
.51

1
.52

2
.53

3
.54

4
.55

Delta Initiation Interval 

D
el
ta
-R
A
-D
R
ES
C
-8

D
el
ta
-R
EG

I-
8

(b
)
A

co
m
pa

ri
so
n
be

tw
ee
n
ov
er
he

ad
of

su
pp

or
ti
ng

pi
pe

lin
e
C
G
R
A

in
I
I
of

m
ap

pi
ng

s
in

E
P
IM

ap
an

d
D
R
E
SC

w
he

n
ea
ch

P
E

ha
s
8
re
gi
st
er
s.

(c
on

tin
ue
d)

131



0123456

Delta Initiation Interval 

D
el
ta
-R
A
-D
R
ES
C
-4

D
el
ta
-R
EG

I-
4

67
D
el
ta
-R
A
-D
R
ES
C
-2

D
el
ta
-R
EG

I-
2

(a
)
A

co
m
pa

ri
so
n
be

tw
ee
n
ov
er
he

ad
of

su
pp

or
ti
ng

pi
pe

lin
e
C
G
R
A

in
I
I
of

m
ap

pi
ng

s
in

E
P
IM

ap
an

d
D
R
E
SC

w
he

n
ea
ch

P
E

ha
s
4
re
gi
st
er
s.

-2-101234567

Delta Initiation Interval 

D
el
ta
-R
A
-D
R
ES
C
-2

D
el
ta
-R
EG

I-
2

(b
)
A

co
m
pa

ri
so
n
be

tw
ee
n
ov
er
he

ad
of

su
pp

or
ti
ng

pi
pe

lin
e
C
G
R
A

in
I
I
of

m
ap

pi
ng

s
in

E
P
IM

ap
an

d
D
R
E
SC

w
he

n
ea
ch

P
E

ha
s
2
re
gi
st
er
s.

F
ig
ur
e
7.
12

.
T
he

ov
er
he
ad

of
su
pp

or
ti
ng

pi
pe

lin
ed

C
G
R
A
s
in
I
I
of

m
ap

pi
ng

s.

132



-1
0
0

-5
00

5
0

1
0
0

1
5
0

2
0
0

Compilation Time Overhead 

D
el
ta
-E
P
IM

ap
D
el
ta
-R
EG

I-
8

D
el
ta
-R
EG

I-
4

D
el
ta
-R
EG

I-
2

(a
)
T
he

ov
er
he

ad
of

su
pp

or
ti
ng

pi
pe

lin
ed

C
G
R
A

in
co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
in

R
E
G
IM

ap
.

D
e
lt
a-
D
R
ES
C

D
e
lt
a-
EP
IM

ap

-1
0
00

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Compilation Time Overhead 

D
el
ta
-D
R
ES
C

D
el
ta
-R
A
-D
R
ES
C
-8

D
el
ta
-R
A
-D
R
ES
C
-4

D
el
ta
-R
A
-D
R
ES
C
-2

(b
)
T
he

ov
er
he

ad
of

su
pp

or
ti
ng

pi
pe

lin
e
C
G
R
A

in
co
m
pi
la
ti
on

ti
m
e
of

lo
op

s
in

D
R
E
SC

.

F
ig
ur
e
7.
13

.
T
he

ov
er
he
ad

of
m
ap

pi
ng

lo
op

s
on

to
pi
pe

lin
e
C
G
R
A

in
pe

rc
en
ta
ge
.

133



0%

20%

40%

60%

80%

Precentage of Conditional Loops

Figure 7.14. It is important to support loops with conditional constructs. Many
important loops have at least one conditional clause in their body.

0

2

4

6

8

10

12

14

In
it

ia
ti

o
n

 In
e

rv
al

Dual Issue

Partial Predication

Full Predication

FP-Choi

Figure 7.15. This figure plots the achieved II for different loops with conditionals
from various benchmarks. The graph shows that Dual-issue architecture with our
proposed compiler technique results in the lowest II.

134



0

2

4

6

8

10

12

14

In
it

ia
ti

o
n

 In
e

rv
al

Dual Issue

Partial Predication

Full Predication

FP-Choi

Figure 7.16. The Performance of compiled loops using different acceleration
techniques in mesh and diagonal interconnected CGRA. Dual-issue scheme leads to
the best acceleration among all. Partial predication and full predication show
relatively close performance benefit. Better interconnection benefits all application
but the benefit is narrow for loops limited by RecMII.

135



Chapter 8

SUMMARY AND FUTURE WORKS

Coarse-Grained Reconfigurable Architectures (CGRAs) are extremely attractive

platform when both performance and power efficiency are paramount. However, the

achievable performance and power efficiency of CGRAs critically hinges upon compiler

capabilities. Several problems has to be addressed to construct an effective compiler

for CGRAs.

In this dissertation, we formulate the problem of mapping application onto a

CGRA and establish its complexity. We also characterize the necessary conditions for

application specification to find a feasible mapping. To tackle the mapping problem,

we proposed a heuristic algorithm called EPIMap. EPIMap is different from the

existing methods in the sense that it systematically searches the solution space to find

a valid mapping.

One of the main challenges in CGRA compilers is to efficiently utilize registers

which is specially difficult due to their distributed nature. We formulated the problem

of mapping loops on CGRAs while efficiently using registers, we present a unified and

precise formulation of the problem of simultaneous placement and register allocation,

and an efficient and effective heuristic solution, REGIMap is distilled from our problem

formulation.

Another important problem in CGRA compilers is to accelerate loops that have

if-then-else constructs. In this dissertation, we study different acceleration schemes

for loops with if-then-else constructs and develop compiler techniques to efficiently

accelerate such loops on CGRAs.

Through out this study, we present several mapping techniques. Initiation Interval,

136



the performance metric in modulo scheduling, is used as the main performance metric.

We have developed a compiler and simulation framework for CGRA. This framework

enables us to run application on CGRA on a computing system. It will be very

valuable to design an effective interface between CGRA and the rest of a computing

system specially the processor. This enables us to accurately mesure the performance

of the system equipped with a CGRA and measure the execution time as a whole.

Several optimization schemes are available which transforms loops to maximize

loop performance based on memory access pattern observed during a loop execution

such as polyhydral model [10, 77]. I will be interesting to integrate the proposed

mapping schemes in this dissertation with those memory optimizations.

Just-in-time compilation of loops at run-time and offload them on CGRAs seems

another interesting research directions.

137



REFERENCES

[1] “Snapdragon s4 processors: System on chip solutions for a new mobile age”,
(Copyright © 2011 Qualcomm, Inc, 2011).

[2] Ahn, M., J. W. Yoon, Y. Paek, Y. Kim, M. Kiemb and K. Choi, “A spatial map-
ping algorithm for heterogeneous coarse-grained reconfigurable architectures”, in
“Proceedings of the Conference on Design, Automation and Test in Europe”, pp.
363–368 (2006).

[3] Aiken, A. and A. Nicolau, “Perfect pipelining: A new loop parallelization
technique”, in “Proceedings of the 2Nd European Symposium on Programming”,
pp. 221–235 (1988).

[4] Akturan, C. and M. Jacome, “Caliber: a software pipelining algorithm for
clustered embedded vliw processors”, in “Computer Aided Design, IEEE/ACM
International Conference on”, pp. 112–118 (2001).

[5] Aleta, A., J. M. Codina, A. Gonzalez and D. Kaeli, “Heterogeneous clustered
vliw microarchitectures”, in “Proceedings of the International Symposium on
Code Generation and Optimization”, pp. 354–366 (2007).

[6] Ansaloni, G., L. Pozzi, K. Tanimura and N. Dutt, “Slack-aware scheduling on
coarse grained reconfigurable arrays”, in “Design, Automation Test in Europe
Conference Exhibition”, pp. 1–4 (2011).

[7] Bandishti, V., I. Pananilath and U. Bondhugula, “Tiling stencil computations
to maximize parallelism”, in “Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis”, SC ’12, pp.
40:1–40:11 (2012).

[8] Bansal, N., S. Gupta, N. Dutt, A. Nicolau and R. Gupta, “Network topology
exploration of mesh-based coarse-grain reconfigurable architectures”, in “Pro-
ceedings of the Conference on Design, Automation and Test in Europe”, pp.
10474– (2004).

[9] Becker, J. and M. Vorbach, “Architecture, memory and interface technology
integration of an industrial/ academic configurable system-on-chip (csoc)”, in
“Proc. ISVLSI”, pp. 107–112 (2003).

[10] Benabderrahmane, M.-W., L.-N. Pouchet, A. Cohen and C. Bastoul, “The
polyhedral model is more widely applicable than you think”, in “Proceedings
of the 19th Joint European Conference on Theory and Practice of Software,
International Conference on Compiler Construction”, pp. 283–303 (2010).

138



[11] Betz, V., J. Rose and A. Marquardt, eds., Architecture and CAD for Deep-
Submicron FPGAs (Kluwer Academic Publishers, Norwell, MA, USA, 1999).

[12] Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill and D. A. Wood, “The gem5 simulator”, SIGARCH Comput.
Archit. News 39, 2, 1–7 (2011).

[13] Bouwens, F., M. Berekovic, B. D. Sutter and G. Gaydadjiev, “Architecture en-
hancements for the adres coarse-grained reconfigurable array”, in “Proc. HiPEAC”,
pp. 66–81 (2008).

[14] Cardoso, J. and P. Diniz, “Modeling loop unrolling: Approaches and open issues”,
in “Computer Systems: Architectures, Modeling, and Simulation”, edited by
A. Pimentel and S. Vassiliadis, vol. 3133 of Lecture Notes in Computer Science,
pp. 224–233 (Springer Berlin Heidelberg, 2004).

[15] Carr, S. and Y. Guan, “Unroll-and-jam using uniformly generated sets”, in
“Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture”, pp. 349–357 (1997).

[16] Chang, K. and K. Choi, “Mapping control intensive kernels onto coarse-grained
reconfigurable array architecture”, in “Proc. ISOCC”, pp. I–362–I–365 (2008).

[17] Chen, D. and J. Rabaey, “A reconfigurable multiprocessor ic for rapid prototyping
of algorithmic-specific high-speed dsp data paths”, Solid-State Circuits, IEEE
Journal of 27, 12, 1895–1904 (1992).

[18] Chen, L. and T. Mitra, “Graph minor approach for application mapping on
cgras”, ACM Trans. Reconfigurable Technol. Syst. 7, 3, 21:1–21:25 (2014).

[19] Chris Lattner and Vikram Adve, “The LLVM Instruction Set and Compilation
Strategy”, Tech. Report UIUCDCS-R-2002-2292, CS Dept., Univ. of Illinois at
Urbana-Champaign (2002).

[20] De Sutter, B., P. Coene, T. Vander Aa and B. Mei, “Placement-and-routing-based
register allocation for coarse-grained reconfigurable arrays”, in “Proceedings of
the 2008 ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems”, pp. 151–160 (2008).

[21] De Sutter, B., P. Raghavan and A. Lambrechts, Handbook of Signal Processing
Systems, chap. Coarse-Grained Reconfigurable Array Architectures, pp. 553–592
(Springer, 2013), 2 edn.

[22] Diestel, R., Graph Theory (Graduate Texts in Mathematics) (Springer, 2005).

139



[23] Dimitroulakos, G., M. D. Galanis and C. E. Goutis, “Exploring the design space
of an optimized compiler approach for mesh-like coarse-grained reconfigurable
architectures”, in “Proceedings of the 20th International Conference on Parallel
and Distributed Processing”, pp. 113–113 (2006).

[24] Dimitroulakos, G., S. Georgiopoulos, M. D. Galanis and C. E. Goutis, “Resource
aware mapping on coarse grained reconfigurable arrays”, Microprocessors and
Microsystems 33, 2, 91 – 105 (2009).

[25] Du, J. and J. Y.-T. Leung, “Complexity of scheduling parallel task systems”,
SIAM J. Discret. Math. 2, 4, 473–487 (1989).

[26] Ebeling, C., D. Cronquist and P. Franklin, “Rapid — reconfigurable pipelined
datapath”, in “Field-Programmable Logic Smart Applications, New Paradigms
and Compilers”, edited by R. Hartenstein and M. Glesner, vol. 1142 of Lecture
Notes in Computer Science, pp. 126–135 (Springer Berlin Heidelberg, 1996).

[27] Ebeling, C., L. McMurchie, S. Hauck and S. Burns, “Placement and routing
tools for the triptych fpga”, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 3, 4, 473–482 (1995).

[28] Esmaeilzadeh, H., E. Blem, R. St. Amant, K. Sankaralingam and D. Burger,
“Dark silicon and the end of multicore scaling”, in “Proceedings of the 38th
annual international symposium on Computer architecture”, pp. 365–376 (2011).

[29] Farooq, M. and L. John, “Loop-aware instruction scheduling with dynamic
contention tracking for tiled dataflow architectures”, in “Compiler Construction”,
edited by O. de Moor and M. Schwartzbach, vol. 5501 of Lecture Notes in
Computer Science, pp. 190–203 (Springer Berlin Heidelberg, 2009).

[30] Fernandes, M., J. Llosa and N. Topham, “Distributed modulo scheduling”, in
“High-Performance Computer Architecture, 1999. Proceedings. Fifth Interna-
tional Symposium On”, pp. 130–134 (1999).

[31] Friedman, S., A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling and S. Hauck,
“Spr: An architecture-adaptive cgra mapping tool”, in “Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays”,
pp. 191–200 (2009).

[32] Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness (W. H. Freeman & Co., New York, NY, USA,
1979).

[33] Gnanaolivu, R., T. Norvell and R. Venkatesan, “Mapping loops onto coarse-
grained reconfigurable architectures using particle swarm optimization”, in “Soft
Computing and Pattern Recognition (SoCPaR), 2010 International Conference
of”, pp. 145–151 (2010).

140



[34] Goldstein, S., H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor and
R. Laufer, “Piperench: a coprocessor for streaming multimedia acceleration”, in
“Computer Architecture, Proceedings of the 26th International Symposium on”,
pp. 28 –39 (1999).

[35] Golin, R., “Auto Vectorization”, https://archive.fosdem.org/2014/schedule/
event/llvmautovec/attachments/audio/321/export/events/attachments/
llvmautovec/audio/321/AutoVectorizationLLVM.pdf/ (2014).

[36] Goodacre, J. and A. N. Sloss, “Parallelism and the arm instruction set architec-
ture”, Computer 38, 7, 42–50 (2005).

[37] Govindaraju, V., C.-H. Ho and K. Sankaralingam, “Dynamically specialized
datapaths for energy efficient computing”, in “High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on”, pp. 503–
514 (2011).

[38] Greggain, L., “Cost benefit tradeoffs for asic versus programmable logic device”,
in “ASIC Seminar and Exhibit, 1990. Proceedings., Third Annual IEEE”, pp.
5.1–5.4 (1990).

[39] Gupta, S., N. Dutt, R. Gupta and A. Nicolau, “Loop shifting and compaction for
the high-level synthesis of designs with complex control flow”, in “Proceedings of
the Conference on Design, Automation and Test in Europe”, pp. 10114– (2004).

[40] Hamzeh, M., A. Shrivastava and S. Vrudhula, “Epimap: Using epimorphism
to map applications on cgras”, in “Proceedings of the 49th Annual Design
Automation Conference”, pp. 1284–1291 (2012).

[41] Han, K., J. Ahn and K. Choi, “Power-efficient predication techniques for acceler-
ation of control flow execution on cgra”, ACM Trans. Archit. Code Optim. 10,
2, 8:1–8:25 (2013).

[42] Han, K., K. Choi and J. Lee, “Compiling control-intensive loops for cgras with
state-based full predication”, in “PRoc. DATE”, pp. 1579–1582 (2013).

[43] Han, K., J. K. Paek and K. Choi, “Acceleration of control flow on cgra using
advanced predicated execution”, in “Proc. FPT”, pp. 429–432 (2010).

[44] Hannig, F., H. Dutta and J. Teich, “Regular mapping for coarse-grained recon-
figurable architectures”, in “Proc. ICASSP”, pp. 57–60 (2004).

[45] Hartenstein, R., “A decade of reconfigurable computing: a visionary retrospec-
tive”, in “Proceedings of Design, Automation and Test in Europe”, pp. 642 –649
(2001).

141

https://archive.fosdem.org/2014/schedule/event/llvmautovec/attachments/audio/321/export/events/attachments/llvmautovec/audio/321/AutoVectorizationLLVM.pdf/
https://archive.fosdem.org/2014/schedule/event/llvmautovec/attachments/audio/321/export/events/attachments/llvmautovec/audio/321/AutoVectorizationLLVM.pdf/
https://archive.fosdem.org/2014/schedule/event/llvmautovec/attachments/audio/321/export/events/attachments/llvmautovec/audio/321/AutoVectorizationLLVM.pdf/


[46] Hartenstein, R., M. Herz, T. Hoffmann and U. Nageldinger, “Using the kress-
array for reconfigurable computing”, in “Proc. SPIE”, pp. 150–161 (1998).

[47] Hartenstein, R., M. Herz, T. Hoffmann and U. Nageldinger, “Kressarray xplorer:
a new cad environment to optimize reconfigurable datapath array architectures”,
in “Design Automation Conference, 2000. Proceedings of the ASP-DAC 2000.
Asia and South Pacific”, pp. 163–168 (2000).

[48] Hatanaka, A. and N. Bagherzadeh, “A modulo scheduling algorithm for a coarse-
grain reconfigurable array template”, in “Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International”, pp. 1–8 (2007).

[49] Hell, P. and J. Nesetril, Graphs and Homomorphisms (Oxford University Press,
New York, NY, USA, 2004).

[50] Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quantitative
Approach (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003),
3 edn.

[51] Henning, J. L., “Spec cpu2006 benchmark descriptions”, SIGARCH Comput.
Archit. News 34, 4, 1–17 (2006).

[52] Iandola, F., D. Sheffield, M. Anderson, P. Phothilimthana and K. Keutzer,
“Communication-minimizing 2d convolution in gpu registers”, in “Image Process-
ing , 20th IEEE International Conference on”, pp. 2116–2120 (2013).

[53] Ishii, Y., M. Inaba and K. Hiraki, “Access map pattern matching for data cache
prefetch”, in “Proceedings of the 23rd International Conference on Supercomput-
ing”, pp. 499–500 (2009).

[54] Iskander, Y., C. Patterson and S. Craven, “High-level abstractions and modular
debugging for fpga design validation”, ACM Trans. Reconfigurable Technol. Syst.
7, 1, 2:1–2:22 (2014).

[55] Jacobsen, M., Y. Freund and R. Kastner, “Riffa: A reusable integration frame-
work for fpga accelerators”, in “Field-Programmable Custom Computing Ma-
chines, Annual IEEE Symposium on”, pp. 216–219 (2012).

[56] Jacobsen, M. and R. Kastner, “Riffa 2.0: A reusable integration framework
for fpga accelerators”, in “Field Programmable Logic and Applications, 23rd
International Conference on”, pp. 1–8 (2013).

[57] Jain, S., “Circular scheduling: A new technique to perform software pipelining”, in
“Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation”, pp. 219–228 (1991).

142



[58] Jump, J. and D. R. Fritsche, “Microprogrammed arrays”, Computers, IEEE
Transactions on C-21, 9, 974–984 (1972).

[59] Kennedy, J. and R. Eberhart, “Particle swarm optimization”, in “Neural Networks,
Proceedings., IEEE International Conference on”, vol. 4, pp. 1942–1948 vol.4
(1995).

[60] Kim, W., D. Yoo, H. Park and M. Ahn, “Scc based modulo scheduling for
coarse-grained reconfigurable processors”, in “Field-Programmable Technology
(FPT), 2012 International Conference on”, pp. 321–328 (2012).

[61] Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi, “Optimization by simulated
annealing”, Science 220, 4598, 671–680 (1983).

[62] Kong, M., R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet and P. Sadayappan,
“When polyhedral transformations meet simd code generation”, in “Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation”, pp. 127–138 (2013).

[63] Krishna, A., T. Heil, N. Lindberg, F. Toussi and S. VanderWiel, “Hardware
acceleration in the ibm poweren processor: architecture and performance”, in
“Proceedings of the 21st international conference on Parallel architectures and
compilation techniques”, pp. 389–400 (2012).

[64] Kumar, A., A. Hansson, J. Huisken and H. Corporaal, “An fpga design flow
for reconfigurable network-based multi-processor systems on chip”, in “Design,
Automation Test in Europe Conference Exhibition”, pp. 1–6 (2007).

[65] Lam, M., “Software pipelining: an effective scheduling technique for vliw ma-
chines”, in “Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation”, pp. 318–328 (1988).

[66] Lee, G., S. Lee and K. Choi, “Automatic mapping of application to coarse-
grained reconfigurable architecture based on high-level synthesis techniques”, in
“Proc. ISOCC”, pp. 395–398 (2008).

[67] Lee, M.-H., H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E. M. C. Filho
and V. C. Alves, “Design and implementation of the morphosys reconfigurable
computingprocessor”, J. VLSI Signal Process. Syst. 24, 147–164 (2000).

[68] Levi, G., “A note on the derivation of maximal common subgraphs of two
directed or undirected graphs”, Calcolo 9, 341–352 (1973).

[69] Li, S. and C. Ebeling, “Quickroute: a fast routing algorithm for pipelined architec-
tures”, in “Field-Programmable Technology, Proceedings of IEEE International
Conference on”, pp. 73–80 (2004).

143



[70] Li, W. and H. Kurata, “A grid layout algorithm for automatic drawing of
biochemical networks”, Bioinformatics 21, 9, 2036–2042 (2005).

[71] Llosa, J., “Swing modulo scheduling: A lifetime-sensitive approach”, in “Pro-
ceedings of the 1996 Conference on Parallel Architectures and Compilation
Techniques”, pp. 80– (1996).

[72] Llosa, J., “Swing modulo scheduling: A lifetime-sensitive approach”, in “Pro-
ceedings of the 1996 Conference on Parallel Architectures and Compilation
Techniques”, PACT ’96, pp. 80– (IEEE Computer Society, Washington, DC,
USA, 1996).

[73] Mahlke, S., Exploiting instruction level parallelism in the presence of conditional
branches, Ph.D. thesis, UIUC (1997).

[74] Mahlke, S., R. Hank, J. McCormick, D. August and W.-M. Hwu, “A comparison
of full and partial predicated execution support for ilp processors”, in “Computer
Architecture, 1995. Proceedings., 22nd Annual International Symposium on”,
pp. 138–149 (1995).

[75] Maleki, S., Y. Gao, M. J. Garzarán, T. Wong and D. A. Padua, “An evaluation
of vectorizing compilers”, in “Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques”, pp. 372–382 (2011).

[76] McMurchie, L. and C. Ebeling, “Pathfinder: A negotiation-based performance-
driven router for fpgas”, in “Proceedings of the 1995 ACM Third International
Symposium on Field-programmable Gate Arrays”, pp. 111–117 (1995).

[77] Mehta, S., P.-H. Lin and P.-C. Yew, “Revisiting loop fusion in the polyhe-
dral framework”, in “Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming”, pp. 233–246 (2014).

[78] Mei, B., S. Vernalde, D. Verkest, H. De Man and R. Lauwereins, “Dresc: a
retargetable compiler for coarse-grained reconfigurable architectures”, in “Field-
Programmable Technology, 2002. (FPT). Proceedings. 2002 IEEE International
Conference on”, pp. 166–173 (2002).

[79] Mei, B., S. Vernalde, D. Verkest, H. De Man and R. Lauwereins, “Exploiting loop-
level parallelism on coarse-grained reconfigurable architectures using modulo
scheduling”, in “Proceedings of the Conference on Design, Automation and Test
in Europe - Volume 1”, pp. 10296– (2003).

[80] Mei, B., S. Vernalde, D. Verkest, H. D. Man and R. Lauwereins, “ADRES: An
architecture with tightly coupled VLIW processor and coarse-grained recon-
figurable matrix.”, in “Proceedings of the Conference on Field Programmable
Logic”, vol. 2778, pp. 61–70 (Springer, 2003).

144



[81] Mercaldi, M., S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Oskin
and S. J. Eggers, “Instruction scheduling for a tiled dataflow architecture”, in
“Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems”, pp. 141–150 (2006).

[82] Micheli, G. D., Synthesis and Optimization of Digital Circuits (McGraw-Hill
Higher Education, 1994), 1st edn.

[83] Mirsky, E. and A. DeHon, “Matrix: a reconfigurable computing architecture
with configurable instruction distribution and deployable resources”, in “Proc.
FPGAs for Custom Computing Machines”, pp. 157 –166 (1996).

[84] Miyamori, T. and K. Olukotun, “Remarc: Reconfigurable multimedia array
coprocessor”, IEICE Trans. on Information and Systems pp. 389–397 (1998).

[85] Muchnick, S. S., Advanced Compiler Design and Implementation (Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997).

[86] Muck, T. R. and A. A. Frohlich, “Towards unified design of hardware and software
components using c++”, IEEE Transactions on Computers 99, PrePrints, 1
(2013).

[87] Nageldinger, U., “Coarse Grained Reconfigurable Architectures”, http://helios.
informatik.uni-kl.de/papers/publications/Nageldinger2cgra.pdf, [Online] (????).

[88] Nuzman, D., I. Rosen and A. Zaks, “Auto-vectorization of interleaved data for
simd”, in “Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation”, pp. 132–143 (2006).

[89] Oh, T., B. Egger, H. Park and S. Mahlke, “Recurrence cycle aware modulo
scheduling for coarse-grained reconfigurable architectures”, in “Proceedings of
the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems”, LCTES ’09, pp. 21–30 (2009).

[90] Owens, J., M. Houston, D. Luebke, S. Green, J. Stone and J. Phillips, “Gpu
computing”, Proceedings of the IEEE 96, 5, 879–899 (2008).

[91] Park, H., K. Fan, M. Kudlur and S. Mahlke, “Modulo graph embedding: Mapping
applications onto coarse-grained reconfigurable architectures”, in “Proceedings
of the International Conference on Compilers, Architecture and Synthesis for
Embedded Systems”, pp. 136–146 (2006).

[92] Park, H., K. Fan, S. A. Mahlke, T. Oh, H. Kim and H.-s. Kim, “Edge-centric mod-
ulo scheduling for coarse-grained reconfigurable architectures”, in “Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques”, pp. 166–176 (2008).

145

http://helios.informatik.uni-kl.de/papers/publications/Nageldinger2cgra.pdf
http://helios.informatik.uni-kl.de/papers/publications/Nageldinger2cgra.pdf


[93] Park, H., Y. Park and S. Mahlke, “Polymorphic pipeline array: A flexible multi-
core accelerator with virtualized execution for mobile multimedia applications”,
in “Proceedings of the 42Nd Annual IEEE/ACM International Symposium on
Microarchitecture”, pp. 370–380 (2009).

[94] Rau, B. R., “Iterative modulo scheduling: An algorithm for software pipelin-
ing loops”, in “Proceedings of the 27th Annual International Symposium on
Microarchitecture”, pp. 63–74 (1994).

[95] Ravishankar, M., J. Eisenlohr, L.-N. Pouchet, J. Ramanujam, A. Rountev and
P. Sadayappan, “Code generation for parallel execution of a class of irregular
loops on distributed memory systems”, in “Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis”,
pp. 72:1–72:11 (2012).

[96] Sánchez, J. and A. González, “Modulo scheduling for a fully-distributed clustered
vliw architecture”, in “Proceedings of the 33rd Annual ACM/IEEE International
Symposium on Microarchitecture”, pp. 124–133 (ACM, New York, NY, USA,
2000).

[97] Sanders, J. and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming (Addison-Wesley Professional, 2010), 1st edn.

[98] Sarkar, V., “Optimized unrolling of nested loops”, Int. J. Parallel Program. 29,
5, 545–581 (2001).

[99] Silberschatz, A., P. B. Galvin and G. Gagne, Operating System Concepts (Wiley
Publishing, 2008), 8th edn.

[100] Smith, g., “Time is money”, Design Test, IEEE 30, 1, 55–57 (2013).

[101] Stock, K., M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanujam and
P. Sadayappan, “A framework for enhancing data reuse via associative reordering”,
in “Conference on Programming Language Design and Implementation”, (2014).

[102] Taylor, M. B., “Is dark silicon useful?: harnessing the four horsemen of the
coming dark silicon apocalypse”, in “Proceedings of the 49th Annual Design
Automation Conference”, pp. 1131–1136 (2012).

[103] Toi, T., N. Nakamura, Y. Kato, T. Awashima, K. Wakabayashi and L. Jing,
“High-level synthesis challenges and solutions for a dynamically reconfigurable
processor”, in “Proceedings of the 2006 IEEE/ACM International Conference on
Computer-aided Design”, pp. 702–708 (2006).

[104] Vasilache, N., B. Meister, M. Baskaran and R. Lethin, “Joint scheduling and
layout optimization to enable multi-level vectorization”, in “IMPACT”, (Paris,
France, 2012).

146



[105] Vassiliadis, S. and D. Soudris, Fine- and Coarse-Grain Reconfigurable Computing
(Springer Publishing Company, Incorporated, 2007), 1st edn.

[106] Venkataramani, G., W. Najjar, F. Kurdahi, N. Bagherzadeh and W. Bohm, “A
compiler framework for mapping applications to a coarse-grained reconfigurable
computer architecture”, in “Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems”, pp. 116–125
(2001).

[107] Volkov, V. and J. W. Demmel, “Benchmarking gpus to tune dense linear algebra”,
in “Proceedings of the ACM/IEEE Conference on Supercomputing”, pp. 31:1–
31:11 (2008).

[108] Waingold, E., M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal, “Baring
it all to software: Raw machines”, Computer 30, 9, 86–93 (1997).

[109] Wang, J. and C. Eisenbeis, “Decomposed software pipelining: A new approach
to exploit instruction level parallelism for loop programs”, in “Proceedings of the
IFIP WG10.3. Working Conference on Architectures and Compilation Techniques
for Fine and Medium Grain Parallelism”, pp. 3–14 (1993).

[110] Yeung, A. and J. Rabaey, “A 2.4 gops data-driven reconfigurable multiprocessor
ic for dsp”, in “Solid-State Circuits Conference, 1995. Digest of Technical Papers.
41st ISSCC, 1995 IEEE International”, pp. 108–109 (1995).

[111] Zafar, N., “Managing risk in asic design cycle”, in “ASIC Seminar and Exhibit,
1990. Proceedings., Third Annual IEEE”, pp. 7.1–7.3 (1990).

147


	Table of Contents
	List of Tables
	List of Figures
	Chapter
	Introduction
	Reconfigurable Computing from Hardware Perspective
	Mapping Problem
	EPIMap
	Generalized Resource Allocation
	Supporting Conditionals
	A Framework to study CGRAs
	Summary and Future Works
	References


