

Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device

Lin Gan 07/17/2015

Motivation

Motivation

Requirements in separation technique

- Low sample volume
- Rapid
- Compatible with analysis methods
- Easy to produce, low cost

Dielectrophoresis (DEP)

- μL, pM
- Within 1 hour
- Gel free, label free, orthogonal analysis
- Photolithography

DNA

Structure known - complementary base pair, conductivity obtained

Long ssDNA strand directed by short ssDNA strands to form desired shapes

Outline

- Background
- Device and experimental setup
- Projects
 - DEP manipulation of DNA origamis
 - Polarizability determination of DNA origami
 - Effect of buffer valency in DEP trapping

Background : Electric Double Layer (EDL) and Electroosmosis (EOF)

 \vec{E} - electric field μ_{EOF} - EOF mobility \vec{u}_{EOF} - EOF velocity

Electrophoresis is the movement of dispersed charged particles relative to the surrounding liquid medium under the influence of a spatially uniform electric field

Background : Dielectrophoresis

Dielectrophoresis: The movement of particles in non-uniform electric field.

 α – polarizability, depend on size, shape, conductivity of particle and medium frequency of applied electric field.

Background : Dielectrophoresis

- Generating non-uniform electric field
- insulator-based DEP (iDEP)

Place insulating structures (obstacles) between a pair of electrodes

Summary of models for DNA for DEP

Short DNA (< 150 bp) \longrightarrow Stiff rod₍₁₎ Long DNA (>> 150 bp) \longrightarrow Coiled – sphere₍₂₎

Maxwell-Wagner-O'Konski (MWO) Theory(3)

- Consider polarization occurs due to migration and convection of ions in electric double layer (EDL)
- Suitable for low frequency, thin EDL

Dukhin-Shilov(DS) Theory(3)

- Diffusion layer also affects polarization
- Suitable for high frequency, thin EDL

Poisson-Nerst-Plank (PNP) Theory(1, 2)

• Suitable for high and low frequency, thick EDL

DEP mechanism is still unclear

DNA Origami and Polarizability Prediction

DNA Origami and Polarizability Prediction

	6HxB ()	6HxB (⊥)	Triangle ()	Triangle (⊥)
Shape	$\stackrel{z_{x}}{\longleftarrow} E$	→ E	$\rightarrow E$	
Ζ	$\frac{bc}{2a^2e^3} \left[ln\left(\frac{1+e}{1-e}\right) - 2e \right]$ $e = \sqrt{1 - \frac{bc}{a^2}}$	$\frac{1}{1-\gamma^2} - \frac{\gamma^{-2}}{4(1-\gamma^{-2})^{-1.5}} \ln\left[\frac{1+(1-\gamma^{-2})^{0.5}}{1-(1-\gamma^{-2})^{0.5}}\right]$ $\gamma = \frac{c}{a}$	$\left(-\frac{\gamma^2}{2M}\right) + \left(\frac{\pi\gamma}{4M^{1.5}}\right)$ $-\left(\frac{\gamma}{2M^{1.5}}\right)\arctan\left(\frac{\gamma^2}{M}\right)$ $M = 1 - \gamma^2$	$\left(\frac{1}{M}\right) + \left(\frac{\pi\gamma}{2M^{1.5}}\right) \\ - \left(\frac{\gamma}{M^{1.5}}\right) \arctan\left(\frac{\gamma^2}{M}\right)^{0.5}$
S	$S = 2 \frac{1}{\sqrt{a^2}}$	$\frac{1}{a-b^2}\ln\frac{a+\sqrt{a^2-b^2}}{b}$	$S = \frac{2}{\sqrt{a^2 - c^2}}$	$\tan^{-1}\frac{\sqrt{a^2-c^2}}{c}$
$\alpha (F \cdot m^2)$	2.603×10^{-30}	0.014×10^{-30}	3.473×10^{-30}	0.045×10^{-30}
$f(kg \cdot s^{-1})$	7.064×10^{-9}	1.528×10^{-9}	1.048×10^{-9}	1.557×10^{-9}
$\mu_{DEP} (m^4 \cdot V^{-2}$ $\cdot s^{-1})$	1.704×10^{-21}	0.004×10^{-21}	1.657×10^{-21}	0.015×10^{-21}

Trapping Device Set-up

Experimental setup

Fluorescence Video Microscope and microdevice. DNA is labeled with YOYO-1 (λ -Max_{Ex} = 491 nm, λ -Max_{Em} = 509 nm)

Determination of Polarizability Device Set-up

- Projects
 - DEP manipulation of DNA origamis
 - Polarizability determination of
 - DNA origami
 - Effect of buffer valency in DEP trapping

Origami Trapping - Frequency Dependence

Trapping Frequency Range

О

Origami Trapping - Frequency Dependence

500V 400 Hz

2100V 1000 Hz

O

Simulation

Convection-diffusion model:

Flux:

$$\vec{j} = -D\nabla c + c(\vec{u}_{EP} + \vec{u}_{EOF} + \vec{u}_{DEP})$$

Steady state:

 $\frac{\partial c}{\partial t} = \nabla \vec{j} = 0$

$$\vec{F}_{DEP} = \vec{F}_{drag}$$

$$\vec{u}_{DEP} = \frac{\vec{F}_{DEP}}{f} = \alpha \nabla \vec{E}^2 / 2f$$

For an ellipsoid particle,

$$f = 6\pi\eta \frac{2}{S}$$

Take 6Hxb as an example,

Assuming it's parallel to the electric field

$$S = \frac{2}{\sqrt{a^2 - b^2}} ln \frac{a + \sqrt{a^2 - b^2}}{b}$$

Parameters

D	3.951 x 10 ⁻¹² m²/s	diffusion coefficient
f	7.649 x 10 ⁻¹⁰ kg/s	friction factor
μ_{DEP}	2.831 x 10 ⁻²² m ⁴ / (V ² s)	DEP mobility
μ_{EP}	3.5 x 10 ⁻⁸ m²/ (Vs)	EP mobility ₍₁₎
μ_{EOF}	2.2 x 10 ⁻⁸ m ² / (Vs)	EOF mobility

Numerical Study – Time dependant concentration profiles

Trapping Distance comparison

 $L_{trap} = \mu_{EP} \boldsymbol{E} t_{half}$

- Projects
 - DEP manipulation of DNA origamis
 - Polarizability determination of DNA origami
 - Effect of buffer valency in DEP trapping

О

With DC only

Ο

AC with DC offset

$$c = \frac{1}{2} \frac{E_{gap}^2}{U_{AC}^2} \left(1 - \frac{E_{mid}^2}{E_{gap}^2} \right) = 886.42 \ m^{-2}$$

$$\gamma = \ln\left(\frac{1}{D}\right) + 2\ln\left(\frac{\kappa_B I}{qE}\right)$$

	6HxB ()	6HxB (⊥)	Triangle ()	Triangle (⊥)
Shape	$\stackrel{z}{\longleftarrow}_{x} \longrightarrow E$	→ E	$\rightarrow E$	
Ζ	$\frac{bc}{2a^2e^3} \left[ln\left(\frac{1+e}{1-e}\right) - 2e \right]$ $e = \sqrt{1 - \frac{bc}{a^2}}$	$\frac{\frac{1}{1-\gamma^2}}{-\frac{\gamma^{-2}}{4(1-\gamma^{-2})^{-1.5}}\ln\left[\frac{1+(1-\gamma^{-2})^{0.5}}{1-(1-\gamma^{-2})^{0.5}}\right]}$ $\gamma = \frac{c}{a}$	$\left(-\frac{\gamma^2}{2M}\right) + \left(\frac{\pi\gamma}{4M^{1.5}}\right)$ $-\left(\frac{\gamma}{2M^{1.5}}\right)\arctan\left(\frac{\gamma^2}{M}\right)$ $M = 1 - \gamma^2$	$\left(\frac{1}{M}\right) + \left(\frac{\pi\gamma}{2M^{1.5}}\right) \\ - \left(\frac{\gamma}{M^{1.5}}\right) \arctan\left(\frac{\gamma^2}{M}\right)^{0.5}$
S	$S = 2 \frac{1}{\sqrt{a^2}}$	$\frac{1}{a-b^2}\ln\frac{a+\sqrt{a^2-b^2}}{b}$	$S = \frac{2}{\sqrt{a^2 - c^2}}$	$\tan^{-1}\frac{\sqrt{a^2-c^2}}{c}$
$\alpha (F \cdot m^2)$	2.603×10^{-30}	0.014×10^{-30}	3.473×10^{-30}	0.045×10^{-30}
$f(kg \cdot s^{-1})$	7.064×10^{-9}	1.528×10^{-9}	1.048×10^{-9}	1.557×10^{-9}
$\mu_{DEP} (m^4 \cdot V^{-2}$ $\cdot s^{-1})$	1.704×10^{-21}	0.004×10^{-21}	1.657×10^{-21}	0.015×10^{-21}

- нишуне, – 6HxB

Determination of origami conductivity

$$\alpha = \frac{8}{3}\pi abc\varepsilon_m \frac{\sigma_p - \sigma_m}{Z\sigma_p + (1 - Z)\sigma_m}$$

$$\sigma_{6HxB} = 22.8 (\pm 3.8) S/m$$

Triangle origami orientation

$$\vec{F}_{DEP} = \vec{F}_{x} + \vec{F}_{y} + \vec{F}_{z}$$

$$|\vec{F}_{DEP}|^2 = |\vec{F}_x|^2 + |\vec{F}_y|^2 + |\vec{F}_z|^2$$

Considering the symmetry of the structure with $\beta = \theta$, the orientation of the triangle origami can be calculated from the vector and geometry relations

solution	I.	Ш
θ (°)	59.4	69.3
φ (°)	46.1	30.0

- Projects
 - DEP manipulation of DNA origamis
 - Polarizability determination of DNA origami
 - Effect of buffer valency in DEP trapping

Counterion Condensation (CC) theory

- Manning 1978
- describing the partial neutralization of the charges around DNA as a function of DNA conformation and counterion valence.

Effect of Buffer Valency Trapping

λ -DNA Trapping

$$AC \iff$$

$$AC \iff$$

1.66e¹² $\nabla \vec{E}^2$ 3.77e¹⁵

KH₂PO₄/K₂HPO₄ ~ 10 Mm 2000 V 60 Hz $KH_2PO_4/K_2HPO_4 \sim 5 mM$, MgCl₂ ~ 5 mM 1000 V 60 Hz

Buffer : pH = 7.0, σ = 0.20 S/m

Effect of Buffer Valency Trapping

6HxB DNA Trapping

 $KH_2PO_4/K_2HPO_4 \sim 5 mM$, MgCl₂ ~ 5 mM 1000 V 40 Hz

• The research projects enrich the study in DEP mechanism for submicron biomolecules

- Two artificial DNA structures with same scaffold but great topological difference showed distinct DEP trapping behaviors.
- Simulation model is in good agreement with experiment.
- The polarizabilities for the two species are experimentally determined by measuring the migration times through a potential landscape exhibiting dielectrophoretic barriers.
- The orientations of both species in the escape process and were studied suggesting that their diffusion is influenced by alignment with respect to the electric field during the escape process.
- Buffer valency study reveals that di-valent counterions neutralize the phosphate charge on DNA more efficiently than mono-valent counterions, resulting a difference in the decrease of DNA surface conductivity.

Acknowledgements

Advisor:

Dr. Alexandra Ros Committee members:

> Dr. Daniel Buttry Dr. Yan Liu

Ros group members

With special thanks:

Dr. Tzu-Chiao Chao Dr. Fernanda Camacho-Alanis Jan Klos Dr. Hao Yan and Dr. Yan Liu's group Dr. Olaf Schulz Dr. Bryant Doss Alex Ward Funding Sources:

NSF ASU Department of Chemistry & Biochemistry

