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ABSTRACT 

For a (N+1)-bus power system, possibly 2N solutions exists. One of these solutions 

is known as the high-voltage (HV) solution or operable solution. The rest of the solu-

tions are the low-voltage (LV), or large-angle, solutions. 

In this report, a recently developed non-iterative algorithm for solving the pow-

er-flow (PF) problem using the holomorphic embedding (HE) method is shown as 

being capable of finding the HV solution, while avoiding converging to LV solutions 

nearby which is a drawback to all other iterative solutions. The HE method provides a 

novel non-iterative procedure to solve the PF problems by eliminating the 

non-convergence and initial-estimate dependency issues appeared in the traditional 

iterative methods. The detailed implementation of the HE method is discussed in the 

report. 

While published work focuses mainly on finding the HV PF solution, modified 

holomorphically embedded formulations are proposed in this report to find the 

LV/large-angle solutions of the PF problem. It is theoretically proven that the pro-

posed method is guaranteed to find a total number of 2N solutions to the PF problem 

and if no solution exists, the algorithm is guaranteed to indicate such by the oscilla-

tions in the maximal analytic continuation of the coefficients of the voltage power se-

ries obtained. 

After presenting the derivation of the LV/large-angle formulations for both PQ 

and PV buses, numerical tests on the five-, seven- and 14-bus systems are conducted 
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to find all the solutions of the system of nonlinear PF equations for those systems us-

ing the proposed HE method. 

After completing the derivation of finding all the PF solutions using the HE method, 

it is shown that the proposed HE method can also be used to find only the PF solutions 

of interest (i.e. type-1 PF solutions with one positive real-part eigenvalue in the 

Jacobian matrix), with a proper algorithm developed. The closet unstable equilibrium 

point (closest UEP), one of the type-1 UEP’s, can be obtained by the proposed HE 

method with limited dynamic models included. 

The numerical performance as well as the robustness of the proposed HE method is 

investigated and presented by implementing the algorithm on the problematic cases and 

large-scale power system. 
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1 INTRODUCTION 

1.1 Power-Flow Problems 

The power-flow (PF) problem is commonly used in the power system analysis. 

The solution of the PF problem provides the bus voltage magnitudes and angles in the 

power system, given the real and reactive power injections at the load (PQ) buses and 

real power injection and voltage magnitude at the voltage controlled (generator/PV) 

buses, respectively. 

For a simple two-bus system, two distinct solutions exist provided the load bus is 

loaded below the bifurcation-point (voltage-collapse-point) loading. The solution with 

the high voltage magnitude and small voltage angle is known as the high-voltage (HV) 

solution and the low-voltage (LV) solution is the one with the lower voltage magni-

tude and larger voltage angle compared to the HV solution. At the voltage collapse 

point, the HV and LV solutions become identical. 

When the system becomes large, there usually exists more than one solution ac-

cording to the nonlinear characteristic of the power-balance-equations (PBE’s). The 

solution at the stable or operable point is the HV solution and possibly many other 

LV/large-angle or non-operable solutions exist in the system. 

1.2 Iterative Methods 

Relatively reliable iterative techniques (i.e. Gauss-Seidel (GS), Newton-Raphson 

(NR), and BX/XB Fast Decoupled Load Flow (FDLF)) are currently used for solving 
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the nonlinear PBE’s that define the PF problems. Those iterative methods and many 

of their variants work well for operating points close to nominal [1]-[5]. However it-

erative methods face convergence problems when the system is in extremis, where the 

voltages stay far from nominal [6]. Further, the iteration trajectory is starting point 

dependent: depending on the initial estimate of the voltages, network specification 

and load/generation condition, the solution procedure can oscillate, diverge or (pref-

erably) lead to the HV solution or possibly one of many LV/large-angle solutions, 

which is non-preferable in most cases. Therefore finding the HV solution is not guar-

anteed by any iterative algorithm known to date. 

Many attempts ([7]-[17]) have been made to analyze the convergence properties 

of the most common PF algorithms and to improve the convergence behavior, yet 

convergence problems still remain [18], [19]. Perhaps the most vexing deficiency for 

iterative methods is that when the solution procedure does not converge, the user is 

left to wonder whether there is indeed no solution or whether a solution exists but the 

method is unable to find it. 

While the convergence problems plague methods designed to find the HV solution, 

the methods designed to find all the solutions for the power system are notoriously 

unreliable. Calculation of all the solutions is important to a certain extent because the 

distance between the HV solution and “closest” LV solution is a crude measure of 

system voltage stability margin [20]-[22]. Reliably calculating all the solutions for a 

power system remains a hard nut to crack. 
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1.3 Holomorphic Embedding 

The holomorphic embedding (HE) is the technique of embedding a small problem 

within a large problem containing newly introduced complex variables while guaran-

teeing that the resultant problem is analytic or, equivalently, holomorphic. The HE 

method can be applied to the power-balance equations (PBE’s), which originally are 

non-holomorphic or non-analytic due to the existence of the complex conjugate oper-

ator. 

1.3.1 Holomorphic Functions 

A holomorphic function is a complex-valued analytic function. Functions of com-

plex variables that are complex differentiable everywhere in a neighborhood around a 

point are said to be holomorphic about that point. Since the holomorphic functions are 

analytic, they allow the use of the powerful theorems and techniques applicable only to 

the analytic function. In real analysis, differentiability in a neighborhood does not 

guarantee the analyticity of the function; however, in complex functions, differentia-

bility guarantees analyticity. i.e., the power series expansion of the function about a 

point converges to the value of the function at that point [23]. 

1.3.2 Holomorphic Embedding Method 

The holomorphic embedding method [24], a novel non-iterative method for solv-

ing the PF problems, eliminates the convergence problems of traditional iterative 

methods and unequivocally signals when no solution exists. It is guaranteed to find 
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the HV solution for a two-bus system using a simplified version of HE, mathemati-

cally proven in [25]. This approach is generalized for the multi-bus problem in [24] 

and [26] but with no controlled element models (i.e. PV/generator bus, Var limiting, 

LTC’s, SVC’s etc.) included. 

1.4 Objectives 

The long-run objective of this research is to use the HE method to find all or a 

certain set of solutions in a system of arbitrary topology, which includes voltage con-

trolled bus models (PV bus). The research work reported upon in this document is 

focused on the implementation of the HE method as follows: 

 To propose HE formulations for both PQ and PV bus model that will allow 

the LV/large-angle solutions to be found. 

 To theoretically prove that the proposed HE-based LV/large-angle formu-

lations are guaranteed to find all the LV/large-angle solutions for a power 

system. 

 To numerically test the proposed algorithm on systems for which all the 

solutions are known and show that all solutions are obtained for these sys-

tems, i.e. the five-, seven- and 14-bus systems. 

 To propose an algorithm that only finds the type-1 PF solutions (with one 

real-part eigenvalue in the system Jacobian matrix) using the proposed HE 

method. 

 To numerically test the proposed algorithm on systems for which all the 
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type-1 solutions are known and validate that all the type-1 solutions are 

obtained for the systems been tested, i.e. the three-, five-, seven-, 14-, 

118-bus systems. 

 To investigate the numerical issues of the HE method for the problematic 

cases and come up with solutions to improve the numerical performance of 

the HE method. Also the robustness of the HE method needs to be tested 

on large-scaled power systems, i.e. ERCOT system with more than 6000 

buses. 

1.5 Organizations 

This report is organized into six chapters: 

Chapter 2 contains a literature review regarding iterative methods, the HE method 

and the methods whose goal is to find all or a set of solutions for a PF problem. 

Discussed in Chapter 3 is the theory of the HE method, its characteristics as well 

as the sequence of calculations used in the HE method to solve the general multi-bus 

PF problem. 

Starting from a simple two-bus system, derived in Chapter 4 is a modified HE 

PBE that is guaranteed to find only the LV solution in the two-bus system. This chap-

ter has been presented in my qualifying exam and it is included in this report as refer-

ence.  

Based on the derivation discussed in Chapter 5, a generalized HE PBE’s that are 

guaranteed to all find all the LV/large-angle solutions for a multi-bus system are pro-
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posed in Chapter 5. It is theoretically proven that the proposed formulation has the 

capability of finding all the solutions to the PF problem. Also numerical experiments 

on the five-, seven- and 14-bus systems show that the proposed formulation works as 

predicted. 

An efficient algorithm to locate the type-1 PF solutions existing for a PF system is 

proposed in Chapter 6. It is shown that only the type-1 solutions are obtained using 

the proposed HE-based method on the five-, seven-, 14-, 118-bus systems. With the 

dynamic models included in the system, the proposed HE-based algorithm can be 

used to find the type-1 unstable equilibrium points (UEPs) and to determine the clos-

est UEP, that is, the UEP with the lowest energy function value among all type-1 

UEP’s. 

The numerical performance of the HE method is given in Chapter 7 and the prob-

lematic cases (i.e. the heavily loaded 43-bus system) are tested. It is shown that when 

the system is operating near its voltage collapse point, the HE method is likely to suf-

fer precision issue, thus higher precision arithmetic will be needed in calculating the 

HV solution. Further, with the special case of the 43-bus LV solution, a continua-

tion-power-flow-liked algorithm is applied to the proposed HE method to find the ex-

isting LV solution, without encountering the precision issue. In the end, the HE 

method is implemented using a sparsity-based Matlab program to simulate the 

large-scaled power systems and the results show that the solutions obtained by the HE 
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method match (through three decimal places) the solutions obtained by commercial 

software (PowerWorld), which use traditional iterative method. 

The conclusions are included in Chapter 8. 
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2 LITERATURE REVIEW 

The objective of the PF problem is to obtain the steady-state condition of the bus 

voltage magnitudes and angles given the real and reactive power injection at load (PQ) 

buses, and to find the voltage angles and reactive power given the voltage magnitude 

and real power injection at voltage controlled (PV/generator) buses. The HV solution 

for the PF problem is of importance and frequently used as the initial condition for 

other power system analysis such as transient stability, fault analysis. 

2.1 Iterative Methods 

One may formulate the bus PBE’s in different forms depending on form in which 

the complex bus voltages variables and branch admittance constants are expressed: 

While there is no industry standard, the polar form of the voltage variables and the 

rectangular form of the branch admittances is most widely used. The PBE’s at bus i in 

an (N+1)-bus system can be written as shown in (2.1): 

where Pi is the real power injection at bus i, Qi is the reactive power injection at bus i, 

|Vi| and δi are the bus voltage magnitude and voltage angle for bus i, respectively, and 

Gik and Bik are the line conductance and susceptance between bus i and bus k, respec-

tively. The slack bus index is taken as 0. 

 )sin()cos(
0

kiikkiik

N

k

kii BGVVP   


 

 )cos()sin(
0

kiikkiik

N

k

kii BGVVQ   


 

(2.1) 
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With PBE’s written for every bus except the slack bus, a system of nonlinear 

equations is formed that can be solved using a number of iterative methods given an 

initial estimate of voltage variables. With a reasonable initial estimate, the desired HV 

solution, which is the operable solution, is typically found. However for 

ill-conditioned systems (those that are weakly-interconnected and have high R/X ratio 

lines [6]) or conditions where the system operates near the voltage collapse point, di-

vergence of the iterative methods can be observed frequently, and it is challenging to 

determine whether the divergence is caused by the non-existence of a solution or the 

lack of robustness of the iterative methods. Basically three types of problems exist 

when using the iterative methods on the PF problem to find the HV solution: a) No 

solution exists and the procedure diverges, b) An HV solution exists however the iter-

ative method diverges or c) The iterative method converges to one of the undesired 

solutions (LV solutions). As shown stylized in Figure 2.1 (from [8]), using an iterative 

method for finding the solution for f(x)=0 can have the convergence problems men-

tioned in a), b) and c), respectively, above.  
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Figure 2.1 Convergence Problems for Iterative Methods 

As stated previously, it is difficult and usually impossible for the user to distin-

guish between cases a) and b). This is particularly true when the system is heavily 

loaded. With a poor initial estimate, the voltage solution can converge to (one of) the 

LV solution(s) as it is shown in c).  

2.2 All the Solutions for a Power System 

An (N+1)-bus network, characterized by the N complex nonlinear PBE’s, has at 

most 2
N
 voltage solutions, not all of which may be unique. Starting from a reasonable 

initial estimate of the voltage profile, if the iterative methods converge, they usually, 

though not always, converge to the HV solution or the operable solution. While often 

times the HV solution is the desired solution, the LV solutions, in an appropriately 

reformulated but related problem, are metrics useful for assessing the system’s dy-

namic stability margin. However finding all the solutions for a power system is usu-

ally complicated and the process heretofore has been unreliable. 

2.3 Improve Convergence for Iterative Method 

The GS method was the first iterative method applied for solving the PF problem, 

however, slow as well as unreliable convergence prevented the GS method from be-

ing widely used [27] . Consequently the NR method was developed which had better 

convergence behavior (for non-radial systems) as it required fewer iterations to con-

verge compared to the GS method [27]. However despite the use of sparsity tech-



12 

 

niques, the full NR method was computationally expensive as the Jacobian matrix 

was updated at each iteration; therefore quasi-Newton-based methods were developed 

for applications where the combination of complexity and computational speed were 

issues [27]. Newton’s method and its variants relied on the function being well be-

haved in the region between the initial estimate and the solution. While these methods 

and many of their variants were ubiquitously used by the power industry and worked 

well for conditions close to nominal conditions, as the system moved into extremis 

and the voltages moved far from nominal, these methods could and did fail to con-

verge. 

The limitations and advancements in iterative methods have been a topic of re-

search for many years and are discussed in the following sections. 

2.3.1 Step-Size Adjustment Newton’s Method 

References [28]-[30] proposed a modified Newton’s method with a step-size ad-

justment factor to improve the convergence behavior. Based on the traditional New-

ton’s method, a modified correction estimate was added to the solution estimate and a 

cost function was introduced to determine the value of the correction. It was claimed 

that with the proposed method, case b) (divergence) in Figure 2.1 could be prevented 

and that the convergence behavior of traditional Newton’s method was improved in 

any case. 

However it was found that each of these methods converged on a subset rather 

than all problems with the operable solutions, the convergence improvement of the 
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methods proposed was not guaranteed, therefore these methods still suffered one 

drawback that all Newton-based methods seemed to suffer: the method did not signal 

if no solution existed and it was left to the users to wonder why convergence did not 

occur. Moreover the proposed method was more time consuming compared to the full 

Newton’s method. 

2.3.2 Decoupled Newton’s Methods 

By exploring the weak coupling of real power and voltage magnitude or reactive 

power and voltage angle, a Newton-based method, called fast decoupled load flow 

(FDLF) method [4], was proposed and widely used in the PF problems. The approxi-

mated Jacobian matrix needed to be calculated only once at the beginning of the itera-

tion procedure in the FDLF method, unlike the traditional Newton’s method. The less 

frequent evaluation of the Jacobian in the FDLF decreased its execution time com-

pared to a full Newton method.. The convergence behavior for FDLF was discussed 

in [31]-[34]: Though FDLF usually took more iterations to converge, the execution 

time reduced considerably since the Jacobian matrix remained unchanged for each 

iteration. However to a greater or lesser degree, convergence problem still existed, 

especially when the system was heavily loaded, or when the coupling of real power 

and voltage magnitude (or reactive power and voltage angle) was strong, both of 

which made the approximation of the Jacobian matrix used inappropriate. 
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2.3.3 Miscellaneous Load-flow Method 

Other techniques, though not in the popular category, have attracted some interest 

in the past. Reference [35] transformed the PF problem into a minimization problem 

where the objective function was constructed to minimize the sum of square of the 

power mismatches in PBE’s. However, the method was computationally expensive 

and unreliable. This minimization approach did not fit into the PF problem well be-

cause of the nonlinearities in the PBE’s [27]. Other approaches called hybrid Newton 

methods [36]-[39] used a different minimization objective to improve the computa-

tional performance for the minimization methods. The goal of the minimization was 

to find a ‘closer’ estimate to the solution of the PBE’s located on the line between two 

consecutive iteration points. These minimization methods reduced the number of iter-

ations needed by the traditional Newton approach; also the convergence performance 

was improved with the hybrid Newton’s methods compared to the traditional Newton 

approach. However as system size and the number of PV buses increased, the algo-

rithm was reported to needed more iterations to converge than the traditional Newton 

approach [27]. More critically, the minimization formulation yielded a computation-

ally expensive solution process. Therefore, even in the cases where fewer iterations 

were needed, the execution time required was still large. 
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2.3.4 Non- Iterative Methods 

A non-iterative method called the Series Load-Flow method was proposed in [40]. 

Though it was difficult (impossible except for textbook-size systems) to represent the 

PF solution in a closed form, a series approximation of the solution could be devel-

oped. However the work in [40] was essentially an analytical representation for the 

iteration process. Reference [41] had extended the work in [40] and the series was de-

rived by expanding the solution function using Taylor series theory around a feasible 

operating point. The solution could be explicitly expressed by the Taylor series ex-

pansion thus the load sensitivity could be performed easily by checking the 

first-order-term coefficient of the Taylor series. Unlike other iterative methods, the 

voltage solution could be derived by one substitution once the series was established 

with non-iterative characteristics. However the solution was still initial point depend-

ent; a reasonable feasible point that had small PBE’s mismatches was required, oth-

erwise the convergence of the Taylor series was not guaranteed. Finally, the calcula-

tion of the coefficients in the Taylor series could be computationally intensive and 

impractical for large system applications. 

2.3.5 Continuation Power Flow Method 

Another method which was widely used to improve the convergence is the con-

tinuation power flow (CPF) method (also known as the continuous Newton’s method). 

It was proposed in [43]-[49] that for ill-conditioned systems, the CPF method could 
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be applied to overcome the convergence problem efficiently. The idea of CPF was to 

follow the characteristic curve of the power system (usually known as power-voltage 

(PV) or power-angle (Pδ) curve). Starting from a known solution on the curve, the 

load in the problem was increased until reaching the voltage collapse point, where di-

vergence occurred for the traditional Newton’s method. The CPF formulation was 

usually accomplished by augmenting the PF problem somewhat with one more new 

parameter introduced to model the load scaling and the prediction of the next solution 

on the curve was calculated based on a modified Jacobian matrix which allowed the 

user to reach the voltage collapse point, without encountering the matrix singularity 

issue. 

The drawback for the CPF method was that the PBE’s needed to be solved many 

times, starting from a known solution and moving incrementally toward the voltage 

collapse point, a process which would increase the execution time. This led to an inef-

ficient in the algorithm, which became problematic when the system size became 

large. Thus the application of CPF methods had its own limitations. 

2.4 Finding All the Solutions for Power-Flow Problem 

There exist many algorithms proposed to find all the solutions existed for the PF 

problem and will be discussed in this section. 
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2.4.1 CPF Method 

The proposed method in [50] was touted as being able to compute all the PF solu-

tions using the CPF method. A five-bus system and a seven-bus system were numeri-

cally tested and all solutions for the system were found by the CPF method shown in 

[50]. While it had been conjectured that CPF method was capable of finding all solu-

tions to the PF problems, a counterexample was published in 2013 [51] which showed 

that the CPF method was not 100% reliable while there existed strong voltage support 

in the power system. A rather simple five-bus system with all PV buses was tested 

which provided a counterexample that the method in [50] was not guaranteed to find all 

the solutions. 

2.4.2 Homotopy Method 

The homotopy method was another method used to solve for all the solutions ex-

isted in the power system [52], [53] reliably and the author of [54] recently developed 

a method called numerical polynomial homotopy continuation (NPHC) to find all the 

possible solutions for a set of polynomials, which could be applied to the PF problem. 

Before solving for the solutions of the PF problem, notated as P(x), another easily 

solvable system of polynomials, Q(x), were constructed. Requirements should be met 

that: all the roots for Q(x) should be obtained without difficulty and the number of 

roots for Q(x) should be identical to the number of possible roots in P(x). Connected 

by the homotopy path, the roots of P(x) could be obtained by starting from various 
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roots of Q(x). The idea of the CPF method was somewhat similar to the homotopy 

method as at least one point of the analytic function had to be known. For the CPF 

method, the known point was on the PV curve and solved from the PF problem, 

where for homotopy method, the point can be obtained variously as long as the func-

tion Q(x) satisfied the requirements above. The NPHC method was relatively reliable 

in finding all the solutions for the PF problem. It was reported in [54] that the NPHC 

method was computational expensive and it would produce non-physical solutions 

(solutions that did not satisfy the PBE’s, caused by solving the real and reactive 

PBE’s in the complex domain), resulting in more computation than required. 

2.4.3 Groebner Basis 

Technique using Groebner basis to find all the solutions for the PF problem was 

developed in [55]. The Buchberger algorithm, introduced in [55], could be used to 

calculate the Groebner basis in a relatively efficient way. By finding the Groebner ba-

sis for the non-linear system of equations, they could be solved in a manner similar to 

Gaussian elimination, which was used for solving simultaneous linear equations. The 

following example was given in [55] for understanding how Groebner basis technique 

could be used in solving a set of non-linear equations. 

Two non-linear equations in (2.2) are to be solved: 
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Using Buchberger’s algorithm, the Groebner basis for (2.2) can be determined as 

shown in (2.3): 

Note that the first equation in (2.3) is only dependent on the variable y, therefore 

the possible solutions for y can obtained. Substituting the values of y back into the 

second equation in (2.3), the solution for x for the specific y value can be obtained 

thus all the solutions can be found for (2.2). 

The system of equations for the PF problem could be solved using the Groebner 

basis approach to find all the possible solutions. However, the process is computa-

tionally expensive, e.g., for a five-bus system, the degree of the single-variable poly-

nomial equation (i.e. the first equation in (2.3)) reaches 52 (given in [56]) and in-

volves intensive calculation. Therefore the Groebner basis is impractical for large 

systems and it is only practical for systems of no more than five/six buses [24]. 

2.5 Type-1 Algebraic Solutions for Power-Flow Problem 

2.5.1 Type-1 PF Solutions 

For power system voltage stability assessment, only the type-1 PF solutions, where 

the system’s Jacobian matrix has only one eigenvalue whose real-part is positive, are 

of interest among all the existing non-operable solutions ([57]-[59]). It had been pro-

posed in [60]-[64] that the LV solutions for the PF problem could be determined 

through state-space equations (with dynamic models included) by exploring the sign 
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change of the eigenvalues in the system Jacobian matrix. Only one LV solution could 

be found by tracing the full PV curve. A simple six-bus system was tested in [60] ver-

ifying that with the known HV solution, one LV solution could be found. Moreover, 

[65] indicated that the search for the LV solutions could be restricted to finding the 

type-1 equilibrium points. These are equilibrium points whose linearized dynamic 

system’s Jacobian matrix has a single eigenvalue with a positive real part.  

In [65], an algorithm has been proposed to find the type-1 PF solutions using the 

NR method. The idea of the algorithm is to start with a guess at an initial estimate close 

to the type-1 PF solution by setting one of the bus voltage initial values close to 0.0 

instead of 1.0, so that the iterative process would be expected to converge to the type-1 

solution. However the drawback of this algorithm is obvious: 1) NR method is not 

guaranteed to find all the type-1 solutions, 2) NR method will not necessary converge to 

the desired solution even if the initial estimate is close to the solution [68], [69].  

A more reliable algorithm based on the CPF method ([50]) was developed in [70] 

to find all the type-1 PF solutions in the electric power systems. It was numerically 

verified for the same five-/seven-bus system given in [50]. In [70], the CPF-based 

method traced the PV curve (for a load/PQ bus) or the Pδ curve (for a generator/PV 

bus) for all the buses in the system. This was achieved by:  

(1) varying the loading of one PQ bus at a time or,  

(2) varying the real power generation for one PV bus at a time. 

The numerical continuation starts from the HV solution where all the eigenvalues 

of the PF Jacobian matrix were negative. Once the trace reached the bifurcation point or 
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a turning point, one of the eigenvalues for the system Jacobian matrix will become zero 

and the rest of them would remain negative. After reaching the bifurcation point, the 

method proposed in [70] would continue to trace the unstable branch for the PV/Pδ 

curve, therefore one of the eigenvalues of the Jacobian matrix would become positive, 

resulting a type-1 PF solution. While the theory in [70] is rigorous, the CPF-based 

method can fail to find all the type-1 solutions numerically, for systems with non-radial 

topology and weakly connected regions that have strong voltage support [51]. 

2.5.2 The Closest Unstable Equilibrium Point 

For system with dynamic models included (i.e. a classical machine model, constant 

impedance load model), the system stability boundary is evaluated by the closest un-

stable equilibrium point (closest UEP), coming from one of the type-1 UEP’s with the 

least-valued energy function compared to the stable equilibrium point (SEP) [71]-[76]. 

The author in [77] proposed a method of finding the closest UEP by redefining the 

problem statement such that a search of the closest UEP was replaced by the search of 

the SEP for a newly defined system. The newly defined system therefore could be 

solved by iterative algorithm (NR method) starting from a reasonable initial estimate. 

However it was reported in [78] that normally only two type-1 UEP’s can be found by 

the method proposed in [77], therefore it was not guaranteed to find all the type-1 

UEP’s, or to find the closest UEP with the least-valued energy function among all the 

possible type-1 UEP’s.  
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A homotopy-based method to find all the type-1 UEP’s for the power system was 

developed in [78]. It was proven in [78] that if the homotopy curve passed the bifur-

cation point only once, the solution obtained would be a type-1 UEP. Note that a similar 

argument was made in [70] as a way to find all the type-1 PF solutions using the 

CPF-based method.. While the method proposed in [78] was reliable in finding the all 

the type-1 UEP’s (or closest UEP), it was computational expensive to trace the 

homotopy curve for a large system as reported in [79] and tended to revisit of the type-1 

solutions multiple times, which reduced the efficiency of the algorithm.  
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3 THE HIGH-VOLTAGE SOLUTION USING THE 

HOLOMORPHIC EMBEDDING METHOD 

3.1 Embedded PBE’s 

As mentioned previously, the HE method is a technique of embedding a small 

problem within a large problem with complex variables while guaranteeing that the 

resultant problem is analytic or equivalently, holomorphic. In the case of the 

non-analytic PBE’s for the PF problem, an appropriate embedding will eliminate the 

non-analyticity of the original PBE’s caused by the complex conjugate operator.  

Consider an (N+1)-bus power system: Let i be the bus number index in the 

(N+1)-bus system. The PBE of bus i can be expressed as: 

Where Yik is the (i, k) entry of the bus admittance matrix, Si is the complex power in-

jection at bus i, and Vi is the bus voltage at bus i. The slack bus is denoted by the index 

0. 

Equation (3.1) may be holomorphically embedded into a larger problem with a 

complex variable s as shown in (3.2), giving the embedded formulation of PQ bus 

where NPQ is the set of PQ buses in the (N+1)-bus system. 
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Similar formulation for the PV bus can be written in (3.3) with an additional volt-

age magnitude constraint, where NPV is the set of PV buses and Vi
cntr

 is the controlled 

voltage magnitude for PV bus i. Note that for the PV bus, the reactive power injec-

tion/absorption is a variable to be determined after the solution is obtained, therefore 

Qi is unknown in (3.3) and becomes as a function of s, unlike the form for PQ buses 

given in (3.2) where Qi is independent of s. It should also be noted that the coeffi-

cients for Qi(s) is purely real. 

The slack bus voltage can be written in (3.4) where VSLACK is the specified slack 

bus voltage in the power system. The un-embedded PBE’s can be recovered from 

(3.2) to (3.4) at s=1. 

The following observations can be made regarding (3.2) to (3.4): 

1) With the parameter s as a variable, the notation V(s) is used to emphasize that the 

voltage has become a holomorphic function of the complex parameter s. 

2) The complex conjugate of the voltage, V
*
 that appears in the PBE’s is replaced 

by V
*
(s

*
) instead of V

*
(s). The presence of s

*
 rather than s in this term retains the 

property of holomorphism of the function, and therefore, equivalently, analytici-

ty. 
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3) At s=0, the power injection terms (Si for the PQ bus or Pi for the PV bus) in the 

embedded PBE’s vanish. This represents the germ case where there is no genera-

tion/no load in the system. For this case, (3.2) and (3.3) are reduced to (3.5) and 

(3.6), respectively 

The voltage solution at s=0 can be obtained by solving the set of equations given 

in (3.4), (3.5) and (3.6) simultaneously. 

4) As stated previously, at s=1, the PBE’s in (3.1) are recovered from the embedded 

system of equations and the solution obtained is guaranteed to be the HV solution 

for the PF problem. The solution at s=1 is results from the solution at s=0 by the 

technique of maximal analytic continuation [24]. 

However, solving for the solution at s=0, or the germ solution, is somewhat diffi-

cult since (3.6) is in the quadratic form. Therefore the iterative methods mentioned in 

Chapter 2 will have to be applied unreliably to obtain the solution at s=0 which re-

quires a good initial estimate of the solution. A simpler way to find the germ solution 

is to use the modified HE PBE’s given in (3.7)-(3.9). With the modified HE PBE’s, the 

solution at s=0 can be obtained simply by observation and will be discussed in details 

as follows. 

PQ

N

k

kik NiVY 


,0)0(
0

 
(3.5) 

2*

*
0

)0()0(

,
)0(

)0(
)0(

cntr

iii

PV

i

i
N

k

kik

VVV

Ni
V

jQ
VY









 
(3.6) 



26 

 

In (3.7) and (3.8), Yik
(tr)

 is the bus admittance matrix entry between bus i and bus k 

considering only the non-shunt branch impedance. In other words, the shunt branches 

are ignored when constructing the bus admittance matrix. The variable Yik
(sh)

 is a diag-

onal matrix containing only the shunt elements. Numerically Yik
(sh)

= Yik - Yik
(tr)

. With 

the embedding of s in front of the 


N

k

k

sh

ik sVY
0

)( )(  term in (3.7) and (3.8), the effect of 

shunts will vanish at s=0. Also the effect of slack bus and PV bus voltage being dif-

ferent from 1.0 per-unit vanishes at s=0. Therefore at s=0 (3.7)-(3.9) reduce to the form 

given in (3.10)-(3.12), respectively. 
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Notice that (3.10) and (3.11) can be satisfied at s=0 if all the bus voltages are 1.0 

p.u. and all the reactive power injections for PV buses are zero. Therefore, with the 

modified HE PBE’s given in (3.7)-(3.9), the solution at s=0 can be easily obtained 

given in (3.13) without the necessity of solving quadratic equations using the iterative 

methods: 

The solution procedure of (3.10)-(3.12) is based on representing the voltage func-

tion as a power series and then generating the maximal analytic continuation of the 

power series [24]. 

3.2 Power Series Expansion 

Assuming the PBE’s are holomorphically embedded: it is guaranteed, because of 

analyticity, that the voltage and PV bus reactive power can be represented as power 

series using s as the expansion parameter. I.e. the voltage function V(s) in (3.2) and 

reactive power function Q(s) in (3.3) can be expressed as a Maclaurin series as follows 

within its radius of convergence: 

PVi

i

NiQ

NiV





,0)0(

...0,1)0(
 

(3.13) 







0

)]([)(
n

nsnVsV  







0

)]([)(
n

nsnQsQ  

(3.14) 



28 

 

where the V[n] is the nth order coefficient for the V(s) function and it is complex 

number, Q[n] is the nth order coefficient for the Q(s) function but it is purely real 

number. 

The Maclaurin series expansion of the voltage function can be used to prove that the 

embedding in (3.2) and (3.3) is holomorphic: To be analytic, any function f must sat-

isfy the Cauchy-Riemann equations. An equivalent condition in complex domain 

known as Wirtinger’s ([23]) derivative requires that: 

In [24], it is mentioned that the embedding can retain the holomorphicity only 

when V* is embedded with variable s* instead of s. We will prove this statement using 

the Wirtinger’s derivative. The truncated Maclaurin series expansion of the V*(s) and 

V*(s*) (if they were to exist within radius of convergence) are written below: 

The variable V
*
(s) in (3.16), is a function of s

*
 therefore the Wirtinger equations 

will not be satisfied. The expansion of V
*
(s

*
) indeed is independent of s

*
 such that 

0)( ***  ssV . Thus the voltage function V
*
(s

*
) in (3.16) is holomorphic. The 

power series of the voltage, (3.14), when evaluated at s=1, gives the solution to the 

original PBE’s. However, if the power series has a radius of convergence less than 1.0, 

then the sum of power series terms evaluated at s=1 will not converge; however a 

technique known as analytic continuation [82] may be applied to extend this radius of 
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convergence. The maximal analytic continuation (which is unrelated to CPF) allows 

certain ostensibly unbounded series to converge by effectively extending the conver-

gence region to the maximum possible value. One maximal analytic continuation, the 

diagonal or near-diagonal Padé Approximant [82], uses rational approximants to 

achieve this goal. It can be proven that the Padé Approximant is the maximal analytic 

continuation of the power series in [83]. In other words, if a solution of the PBE’s ex-

ists, the Padé Approximant is guaranteed to converge [24]; and conversely, if the Padé 

Approximant does not converge, the system of PBE’s does not have a solution, mean-

ing the power system is beyond the voltage collapse point and non-operable. The idea 

of Padé Approximant will be discussed in Section 3.4. 

3.3 Power Series Coefficients 

The procedure of calculating the power series coefficients is discussed in detail 

given in [26] without the PV bus model. The n
th

 order coefficient for the voltage series 

can be calculated given the voltage series coefficients up to (n-1)-th order: 

where Wi(s) is a power series equivalent to 1/Vi(s) and Wi[n] is the n
th

 order coefficient 

for Wi(s).  

The product of Wi(s) and Vi(s) is a convolution of two power series given in (3.18). 
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By equating the both sides in (3.18), the convolution of Wi(s) and Vi(s) will be 1.0 

only if its constant term (s
0
) is 1.0 and other terms set equal to zero starting from s

1
 

term given in (3.19). 

With Vi[0] given in (3.13), Wi[0] is 1.0 from (3.19). Then Vi[1] can be calculated 

from (3.17), and Wi[1] found using (3.19). This procedure can be repeated for calcu-

lating the remaining coefficients for the voltage series. 

While determining the power series coefficients for the PQ bus is relatively straight 

forward, the calculation procedure for the PV bus coefficients is more involved. In the 

PV bus formulation given in (3.8), the reactive power injection (absorption) for the PV 

bus is no longer a constant but dependent on s, equivalently becoming another power 

series Qi(s). Therefore the 
)(

)(
*

sV

sjQ

i

i
 term in (3.8) can be written as a convolution of 

two power series. The n
th

 order coefficient for the voltage series can be calculated giv-

en the voltage series and reactive power coefficients up to (n-1)-th order. 

where Wi(s) is again the power series equivalent to 1/Vi(s).  



 






otherwise

n

mnWmV

n

n

n

m

ii

,0

0,1

][][

0

0

0





 (3.19) 

PV

N

k

k

sh

ik

n

m

iiii

N

k

k

tr

ik

NinVYmnWmQjnWP

nVY













,]1[][][]1[

][

0

)(

0

**

0

)(

 

(3.20) 



31 

 

Note that for the PV bus, the voltage magnitude is constant as shown in the second 

equation in (3.8), thus introducing the HE voltage constraint given in (3.21). 

Note that the real part of Vi[n] can be calculated from (3.21) given the voltage se-

ries up to Vi[n-1], shown in (3.21). 

With the real part of Vi[n] calculated, the imaginary part of Vi[n] and real-valued 

Qi[n] can be calculated by separating (3.20) into real and imaginary parts. Note that 

Qi[0]=0 (3.13); consequently the first term ][]0[ * nWQ ii  in the convolution 


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ii mnWmQ
0

* ][][  on the RHS of (3.20) will vanish. Therefore there exist two real 

equations (the real and imaginary parts of (3.20)) with two real unknowns (the imagi-

nary part of Vi[n] and real-valued Qi[n]). Thus the remaining coefficients for Vi(s) and 

Qi(s) can be calculated. By massaging the PQ/PV bus formulations into one matrix 
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(details in [87] and given in (3.23)), it is straightforward to obtain the power series co-

efficients for the PQ/PV buses. 

where the indices 0, 1, 2 are the slack bus, PV and PQ index, respectively. Subscript re 

and im are the abbreviation for real and imaginary, respectively. The term 

Rhs_known[n-1] is the calculated RHS of embedded PV bus PBE at s
n-1

. 

3.4 Maximal Analytic Continuation 

While the procedure for finding the coefficients for the voltage power series is well 

developed and details are discussed in [26] and [87], the idea of analytic continuation 

is relatively unknown to engineers. Below is a simple example demonstrating the ana-

lytic continuation technique: 

Consider an infinite-term power series, f1(s), given in (3.24), 

Truncating the series at its n
th

 order and multiply the series in (3.24) by (1-s), the 

truncated series can be calculated as (3.25),  
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By taking the limit of n to infinity, f1(s) in (3.24) can be evaluated as 

It can be determined that, when |s|<1, f1(s) is identical to 
s1

1
. Therefore the infi-

nite-term series f1(s) represent an explicit function 
s1

1
 within the radius of converge 

of the series, i.e. |s|<1, shown in Figure 3.1.  

 

Figure 3.1 Radius of Convergence of Power Series f1(s) 

Consider an integral function f2(s) given in (3.27), 

The explicit form of the integral function f2(s) can be derived shown in (3.28), 
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Note f1(s) in (3.24) and f2(s) in (3.27) can represent the explicit function 
s1

1
 

within different regions shown in Figure 3.2. Light blue in Figure 3.2 is the region 

where the integral function f2(s) can represent 
s1

1
 and the circular dark blue region 

is the radius of convergence for the power series f1(s). It can be observed that the inte-

gral function can represent the explicit function 
s1

1
 in a larger region compared to 

the power series. With the above property, the integral function f2(s) is known as the 

analytic continuation for the power series f1(s), and the explicit function 
s1

1
 is the 

maximal analytic continuation for the power series. Note that 
s1

1
 is 

non-holomorphic only at s=1, giving the largest possible region where function is 

holomorphic. 

 

Figure 3.2 Regions for f1(s) and f2(s) Representing 1/(1-s)  
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As mentioned in Section 3.2, the Padé Approximant is proven to be the maximal 

analytic continuation (in a rational form) of a power series [83]. There exist many 

methods to calculate the Padé Approximant, one of which is to build the Padé Ap-

proximant from the power series coefficients by using the direct or matrix method. 

Another method to find the Padé Approximant is to form the continued fraction using 

the Viskovatov method [26]. The details for both the direct method and Viskovatov 

method are shown in Section 3.5 below.  

3.5 Padé Approximant 

3.5.1 Direct/Matrix Method 

The Padé Approximant, the technique for finding a rational form representation for 

the power series, was developed by Henri Padé in 1890. Any general analytic function, 

c(s), can be represented by the power series given in (3.29) within its radius of con-

vergence: 

where c[n] is the power series coefficient for n
th

 degree term (s
n
). 

For the power series given by (3.29) truncated to L+M+1 terms, the Padé Ap-

proximant can be expressed as the rational form of two finite power series, a(s) and b(s), 

given in (3.30): 
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where L is the degree of the numerator polynomial a(s), and M is the degree of the 

denominator polynomial b(s).  

The approximant in (3.30) is referred as an [L/M] Padé and it can be evaluated from 

the power series in (3.29) truncated at (L+M)-th order, given in (3.31): 
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where O (s
L+M+1

) indicates the truncation error for the [L/M] Padé.  

In (3.31), the power series coefficients for c(s) are known, giving L+M+1 known 

coefficients while there are L+M+2 unknowns in a(s) and b(s). Hence, one of the co-

efficients in either a(s) or b(s) is a free variable and for simplicity, the constant term in 

the denominator polynomial, b[0], is chosen to be 1.0. Multiplying (3.31) by b(s) on 

both sides: 
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It can be observed that the coefficients from sL+1 to sL+M
 on the LHS of  

(3.32) have to be zero since there is no corresponding term on the RHS of (3.32). 

Hence b[i] coefficients are given by the set of equations in (3.33). 
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The equations given in (3.33) form a system of M linear equations that can be ex-

pressed in a matrix form given in (3.34) by moving the known term to the RHS, i.e. 
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b[0]c[L+1], b[0]c[L+2], etc., where b[0]=1. Therefore the power series coefficients for 

b(s) can be obtained by solving the matrix equation in (3.34) using traditional LU 

factorization techniques. 
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With the coefficients obtained for the denominator polynomial, the power series 

coefficients in a(s) can be obtained by equating the coefficients from s
0
 to s

L
 on both 

sides of (3.32): 
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Though the matrix method described above allows the calculation of a rational 

approximant of any arbitrary degree, Stahl’s theory [83]-[85] indicates that the diag-

onal (L=M) or the near-diagonal (|L-M|=1) Padé Approximants yield the best accuracy 

when evaluating the power series outside its radius of convergence. 

Using the above mentioned calculation procedure, a near-diagonal [0/1] Padé Ap-

proximant is calculated for the same series given in (3.24), where the series is truncated 

after the s
2
 term. The Padé Approximant evaluated is found to be

s1

1
, which coincides 
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with the explicit function in Section 3.4. This example is consistent with Stahl’s proof 

that the Padé Approximant is indeed the maximal analytic continuation, hence giving 

the best rational function approximation of the power series beyond its radius of con-

vergence. 

3.5.2 Viskovatov Method 

Another method to find the Padé Approximant from a given power series is to 

build the continued fraction using the Viskovatov method. Such continued fraction is 

equivalent to the diagonal (or near-diagonal for series with an even number of terms) 

Padé Approximant of the given power series [24]. The detailed procedure of 

Viskovatov method is demonstrated below for any general analytic function notated as 

c(s): 

Equation (3.29) can be written as: 

The series c
(1)

(s) in (3.36), originally represented by the reciprocal of a power se-

ries, can be transformed into a new power series given by: 

)(
]0[

][]2[]1[

1
]0[

)][]2[]1[(]0[

][]2[]1[]0[)(

)1(

1

1

2

sc

s
c

sncscc

s
c

sncsccsc

sncscsccsc

n

n

n





















 (3.36) 














1)1()1()1(

12

)1(

]1[]1[]0[

)][]3[]2[]1[(

1
)(

n

n

sncscc

sncscscc
sc

 (3.37) 



39 

 

The process of calculating the coefficients of the new power series c
(1)

(s) is de-

scribed below. Using the notation of (3.37), by definition, 

Equation (3.38) is a product of two power series on the LHS. Since this product 

must equal one for any value of s, it must be the case that 

Now, ,3,2,1],[)1( nnc  can be calculated from (3.38) as follows:  

1) Assume the coefficients of c
(1)

[n] have been calculated through index k-1. 

2) Multiply the appropriate terms on the LHS of the two power series, (3.38), up 

through the k
th

 term to find the coefficient of s raised to k. (It is shown previ-

ously in Section 3.3 that the coefficients of the product of two power series can 

be determined by the convolution of the two corresponding discrete sequenc-

es). 

3) By equating the coefficients of the power series on the both sides of (3.38), the 

c
(1)

[k] term can be calculated. For example, if c
(1)

[1] is to be calculated, the co-

efficient for s
1
 in the product of two power series in (3.38) is (c[1]c

(1)
[1]+ 

c
(1)

[0]c[2]), which has to equal zero as the RHS of (3.38) has no term corre-

sponding to s
1
. Since c[1], c[2] and c

(1)
[0] are known, c

(1)
[1] can therefore be 

calculated as:
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ccc  . Repetition of this procedure can be used 

to calculate c
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[k]. 

1)][]2[]1[(

)]1[]1[]0[(

1

1)1()1()1(












n

n

sncscc

sncscc
 

 

(3.38) 

 

]1[

1
]0[)1(

c
c   (3.39) 



40 

 

Applying the technique as described above to the last equation in (3.36) recursively 

yields: 

The continued fraction in (3.41) can be evaluated directly by replacing s=1. It can 

also be evaluated in the form cn(s)=an(s)/bn(s) using the three term recursion relation 

(3.42) in [26] where n is the order of the recursion relation. 

It should be noted that the a(s) and b(s) obtained by the Viskovatov method theo-

retically coincides with the a(s) and b(s) obtained from the matrix method in Section 

3.5.1, while different though comparable numerical values are obtain due to the limit of 

machine precision. The three term recursion relation is preferred over the continued 

fraction since it gives flexibility in choosing the number of terms in the continued 

fraction and reduces the number of steps for calculation. To be more precise, when 

using the three term recursion relation, a posteriori increase in the length of the con-
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tinued fraction, involves fewer calculations than direct evaluation, which requires 

starting the continued fraction anew. This occurs because bi is a function of c[i] and 

previous bk values, k<i; hence if an extra term is added to the continued fraction, it can 

be incorporated into the rational approximant by one more evaluation of (3.42). 

In the numerical implementation of the above mentioned steps, the power series of 

voltage function and reactive power function, (3.14), and hence the continued fraction 

expansion, (3.41), are evaluated only for a finite number of terms. Despite using ex-

tended precision, the power series coefficients cannot be represented accurately, after 

about 40-60 terms, due to the accumulation of round-off error [24]. 

Both methods were applied to this research and the direct method was preferred 

since it can better detect some numerical precision issues by simply checking the con-

dition number of the coefficient matrix. 

3.6 Curve Following in HE 

As stated previously, the HE method is different from the traditional continuation 

methods used for solving the PF problem in so many ways that the two are mathe-

matically unrelated. In (3.2), as the parameter s is increased from 0 to 1, the load at all 

the PQ buses, e.g., i, increases linearly from 0 to Si though interest is only on the case 

where s=0 and s=1. Based on this observation it is tempting to conclude that the HE 

formulation also performs curve following similar to the continuation methods. On the 

contrary, (3.2) represents the PBE’s accurately only at s=1. If shunt reactance exists at 
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bus i in the system, the 


N

k

k

sh

ik sVYs
0

)( )(  term in (3.7) will be scaled as s increases, 

making the solution of the HE PBE’s different from the un-embedded PBE’s in (3.1) 

for s≠1. Also the modification on PV bus voltage constraint and slack bus voltage in 

(3.8) and (3.9) will contribute to the differences between the HE PBE’s and the original 

PBE’s. In this section, the difference will be demonstrated for a simple two-bus system 

with the shunt reactance connected to the PQ/load bus as shown in Figure 3.3. 

The PBE for the PQ bus in Figure 3.3 can be written as: 

Where the variable V is the voltage at the PQ bus, V0 is the slack-bus voltage, Z=R+jX is 

the line impedance between the PQ bus and the slack bus, S=-(PL+jQL) is the complex 

power at the PQ bus, and XC is the shunt reactance connected to the PQ bus, which is 

included to emphasize the effect of the 


N

k

k

sh

ik sVYs
0

)( )(  term. 

 
Figure 3.3 Two-Bus Example with Shunt Reactance 
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(3.43) 
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The system parameters for the two-bus model are specified using a 100 MVA base 

in Figure 3.3. In order to demonstrate the difference between the HE solution and the 

continuation method for solving the PBE’s, a comparison is made between the pow-

er-voltage (PV) curve generated from the un-embedded PBE in (3.1) and the HE 

voltage function curve generated from (3.2). For the purposes of distinction, the HE 

voltage function curve is referred to as the sV curve to distinguish it from the traditional 

PV curve. 

In Figure 3.4, the red dashed line represents the plot of the true PV (not sV) curve 

for the load bus in the two bus system that is obtained using a continuation method. The 

HE voltage function, V(s), defined by (3.2) is plotted as a function of the parameter s, 

shown by the solid blue line in Figure 3.4 which is obtained using the HE formulation. 

 

Figure 3.4 Two-Bus Model: Curve Following in HE 
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Observe in Figure 3.4 that a difference exists between the PV and sV curves except 

at the point s=1, where the original PBE for the two-bus system is recovered from the 

embedded equations. By modifying the embedded PBE’s, the HE method can be 

structured to eliminate the gap between the PV and sV curves, thus providing a way of 

tracing the PV curve and finding the voltage collapse point. This is the ongoing work 

for one of our research group members. 
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4 TWO-BUS LOW-VOLTAGE SOLUTION 

To find the LV solutions in the power system, starting from a two-bus system, a 

proposed two-bus HE LV formulation will be discussed in this chapter. This work was 

presented in my qualifying exam and it is reproduced here for reference. The tradition-

al schematic of a two-bus system without the shunt reactance is shown in Figure 4.1 

(copied from PowerWorld) where bus 1 is the slack bus. 

 

Figure 4.1 Two-Bus Example without Shunt Reactance 

The PBE for the PQ bus (bus 2) may be written in several forms. For our purposes, 

the form below is expeditious: 

where the variable V is the voltage at the PQ bus, V0 is the slack-bus voltage, Z=R+jX 

is the line impedance between these two buses, and S=P+jQ is the complex power at 

the PQ bus.  

Equation (4.1) represents a nonlinear equation for which two solutions exist, when 

the load is less than the bifurcation point load. 

*

*

0

V

S

Z

VV
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
 

(4.1) 
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4.1 Theoretical Derivation 

It will be convenient to introduce a unitless variable U: 

Equation (4.1) can be written as: 

Multiply both sides by Z in (4.3), add 1.0 to both sides, and define 
2

0

*

V

ZS
. The 

PBE then becomes: 

There exist two solutions for the PBE, (4.1), which can be obtained in closed form: 

These two solutions exist when: 

where U+ is the HV solution and U- is the LV solution. 

Now taking the complex conjugate of (4.4) yields: 

0V

V
U   

(4.2) 

**

00

*1

UVV

S

Z

U



 

(4.3) 

*
1

U
U


  

(4.4) 

2

0

2

0,

V

RQXP

V
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j

I

R

IR 











  
(4.5) 

IIR jU  

2

4

1
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1
 

(4.6) 

0
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1 2  IR   
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Equations (4.4) and (4.8) are used in [25] to find only the HV solution for a 

two-bus system. The main idea in the convergence proof in [25] is to formulate a con-

tinued fraction by first substituting (4.8) into (4.4) and then continuing the substitution 

by alternately substituting for U and U
*
 using (4.4) and (4.8) respectively. The first 

step in this process is to substitute (4.8) into (4.4), which gives: 

By continuing the substitution presented in (4.9), the continued fraction in (4.10) 

can be easily established. The author of [25] proves that the continued fraction con-

verges to the HV solution regardless to the starting point. 

While the formulation in (4.4) is guaranteed to find the HV solution, it is necessary 

to reformulate the PBE to find the LV solution: Moving 1 to the LHS in (4.4), multi-

plying both sides by U
*
 and then dividing both sides by (U-1) yields: 

Taking the complex conjugate of both sides in (4.11) yields: 

U
U

*
* 1


  

(4.8) 

U

U
*

1

1







  (4.9) 

...1
1

1

1
*













U

 
(4.10) 
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4.1.1 Embedding 

The idea of HE method is to introduce a complex parameter, s, and perform the 

embedding in (4.11) and (4.12), yielding a pair of equations, (4.13) and (4.14), re-

spectively. Though embedding s into (4.13) and (4.14) is not necessary for the math-

ematical derivation of the formulation to find the LV solution for the two-bus system, 

HE is of importance in solving for the LV/large-angle solutions while applied to the 

multi-bus system in Chapter 5. 

Equation (4.11) can be recovered from (4.13) by setting s=1. It is important to em-

phasize that the parameter embedded in function U
*
 needs to be s

*
 instead of s to retain 

the holomorphicity of the equations; otherwise the equations would not be analytic, 

something that is necessary in the subsequent proof. 

4.1.2 Continued Fraction 

Using (4.13) and (4.14) and then following the same substitution process that re-

sulted in (4.10), a new continued fraction can be found: 

*

*

1 U
U





 

 

(4.12) 

)(1
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s
sU
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


 

 

(4.13) 

)(1
)(

**

*

sU

s
sU





 

 

(4.14) 



49 

 

In order to put (4.15) into a form with structural regularity, it is necessary to sub-

tract 1.0 from both sides of (4.15), which gives a continued fraction in form similar to 

that of (4.10): 

4.1.3 The LV Solution 

The rational-function form of U(s)-1 is well known to be ([25]): 

where 

It will be convenient to separate odd and even order index terms of An and Bn 

which may be expressed with the following notation, respectively: 

...1
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Substituting (4.23) and (4.24) back into (4.18) and (4.20), respectively, the recur-

sion relations obtained become: 

The odd terms, An
(-)

 and Bn
(-)

, can be substituted in terms of the even parts. Substi-

tuting (4.25) into (4.26) yields: 

Rearranging (4.26) by moving the odd part of An to LHS of the equation and even 

part of An to the RHS yields: 

Substituting (4.30) into (4.29) yields: 

After rearranging (4.31), the three terms recursion relationship for An
(+)

 is: 

)()();()( )(

2

)(
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
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 (4.23) 
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A similar derivation from (4.29) to (4.32) can be applied to the even-order terms of 

Bn yielding the three terms recursion relationship for Bn
(+)

 is given in (4.33): 

Recursion equations (4.32) and (4.33) may be thought of as second-order differ-

ence equations. The solutions of even-order-index terms of An and Bn are dependent on 

the roots of the characteristic polynomial of the difference equations. For a se-

cond-order difference equation, two polynomials (λ+ and λ-) exist. 

where 

Consider the initial conditions for An and Bn in (4.19) and (4.21), respectively. 

The odd order terms of An and Bn (say A-1 and B-1) can be determined from the even 

order terms by (4.30) for An and similar formulation for Bn. For example, by setting 

n=-1 in (4.30), A-1 can be determined as: 

0)()()21()( )(

1

22)()(

1  





 sBssBssB nnRn   
 (4.33) 

nn

n

nn

n

DDsB

CCsA

















)(

)(

)(

)(

 
 (4.34) 

0)21(
222    ss R   (4.35) 

 Rs
2

1
  (4.36) 

 Rs
2

1
  (4.37) 

22

4

1
IR ss     (4.38) 

)()()( )(

0

)(

1

)(

1 sAzAssA 





    
 (4.39) 



52 

 

where A-1
(-)

,A-1
(+)

,A0
(+)

 are the same to A-1, A-2 and A0, respectively. 

Similarly B-1 can be determined as: 

By substituting (4.40) and (4.41) into (4.19) and (4.21), respectively, the follow-

ing can be derived: 

Coefficients C for An and D for Bn can be found using the four linear equations in 

(4.41) to give: 

The explicit form for the even-order terms of An and Bn are obtained by substituting 

(4.42) into (4.34): 

The even-order terms of the continued fraction in (4.17) can be expressed in a ra-

tional form by substituting (4.43) and (4.44) into (4.17): 
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By cancelling the term  in (4.45), it can be reduced to: 

Dividing (λ+)
n
 in both the numerator and denominator in (4.46) yields: 

where U2n(s) is equivalent to Un
(+)

(s). 

Using the expression for λ+ and λ- in (4.36) and (4.37), respectively, the ratio of λ- 

/λ+ can be written: 

Therefore if, 

then Δ in (4.38) is a real number. Since σR is real as defined, λ+ is greater than λ-. 

Therefore λ-/λ+ in (4.48) is less 1.0 so that: 
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If (4.49) is not obeyed, then no limit exists in (4.50) and the rational function of 

(4.47) and the rational function oscillates. Equation (4.49) then is the requirement for 

the continued fraction to converge. The conditions under which (4.4) has two different 

solutions is (4.7), which matches exactly with (4.49) at s=1 and s=1 is the solution 

point of interest. This verifies that if there is a solution, the lambda ratio in (4.50) goes 

to zero as n goes to infinity, which means, as will be shown below, that the solution of 

the proposed formulation to which the continued faction expansion converges is the 

LV solution. 

Under the condition of (4.49), the limit of even-order index terms of (4.17) be-

comes: 

Substituting (4.36) into (4.51): 

Simplifying (4.52) by multiplying both the numerator and denominator by 
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Note that 222

4

1
IR ss    (see (4.38)). By expanding , (4.53) be-

comes: 

The limit of the (4.17) provided by (4.54) is the same as the algebraic LV solution 

of the quadratic PBE shown in (4.6) at s=1. This completes the first half of the proof 

that the proposed formulation converges to the LV solution, if one exists, for the 

even-order terms of the continued fraction in (4.15). It must also be shown that the 

same limit is obtained for the odd order terms. Indeed this is the case by the following 

a derivation similar to that above as follows. 
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From (4.28), )()( sBn


 can be determined: 

It is trivial to show that (4.57) is obeyed for both λ+ and λ-: 

Therefore )()( sBn
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 can be simplified as: 

The odd order of the voltage can be expressed in a rational form: 
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Therefore both even and odd order index terms of the continued fraction resulting 

from (4.11) and (4.12) converging to the LV solution if the condition in (4.51) is satis-

fied. It is important to check if the solution still converges at the bifurcation point 

where the HV and LV solutions are identical. 

If the loading condition for the two-bus system is at the bifurcation point condition, 

then λ+= λ- and Δ=0. The explicit solutions for An
(+)

 and Bn
(+)

 in (4.34), which are based 

on the roots of characteristic polynomials, will be changed to: 

By substituting (4.60) into the initial conditions in (4.19) for An and (4.21) for Bn: 

Therefore the coefficients (C+, C-, D+ and D+) can be calculated from (4.61): 

Then (4.60) becomes: 

By substituting (4.63) into (4.17), the limit of Un
(+)

 becomes: 
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Dividing both the numerator and denominator in (4.64) by nλ
n
 and simplifying the 

equation: 

Substituting the expression of λ into (4.36) (or (4.37)) with Δ=0 into (4.65) and 

breaking σ into real and imaginary parts: 

Since Δ in (4.38) is 0: 

By substituting (4.67) into (4.66), equation (4.66) becomes: 
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Note that Δ is 0, therefore the limit of the odd-order terms of the continued fraction 

in (4.15) still attains the same value as when λ-/λ+ is less than 1.0, but now the value 

can be either HV or LV solutions as they are identical at the voltage collapse condition. 

The limit of the even-order terms of the continued fraction can be similarly derived 

and proven to converge to the bifurcation point. 

Based on the foregoing derivations, it can be concluded that the continued fraction 

implied by (4.11) and (4.12) yields only the LV solution, if it exists. If the solution 

does not exist for a two-bus system, oscillatory behavior can be observed as the limit 

of (4.48) will not be zero but a complex number with magnitude of one which leads to 

oscillations in the evaluation of the continued fraction in (4.15).  

4.2 Numerical Example for a Two-Bus System 

In Section 4.1 the theoretical analysis of finding the LV solution for a two-bus sys-

tem using HE is discussed. In this section, a simple numerical experiment for a 

two-bus system will be conducted using both NR and HE. The parameters, in per-unit, 

for the two-bus system are listed in Table 4.1. The HV solution and LV solution for 

this problem are 0.9-j0.1 and 0.1-j0.1, respectively. 
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Table 4.1 Parameters for the Two-Bus System of Figure 4.1 

Parameter R X Q P V0 

Value (p.u.) 0.1 0.3 -0.14 -0.38 1.0 

These solutions for the two-bus system are obtained using both the NR and HE 

methods. The robustness of each method is tested by choosing a range of initial esti-

mates and the observing the outcome of the algorithm. The range of the initial esti-

mates of the voltage magnitude is chosen from 0 to 1.2 and the initial estimates of the 

phase angle vary between -180 to 180 degrees. Both magnitudes and voltage angles of 

the initial estimates are divided into 100 points, therefore the total number of initial 

voltage estimates used is 10,000. The tolerance of the mismatch in PBE is selected as 

10
-4

 in the test. The entire range of initial estimates and the selected convergence crite-

rion are used in both the NR and HE numerical experiments.  

The results of the experiment using the NR method on the two-bus system, in Fig-

ure 4.1, are displayed in Figure 4.2. (I would like to give my gratitude to Muthu Kumar 

Subramanian who generated this plot and gave me permission to use it in my research). 

A red pixel at the coordinates of the initial voltage estimate in Figure 4.2 indicates the 

iterations converge to HV solution, a blue pixel indicates the iterations converge to LV 

solution, and a black pixel indicates the iterations failed to converge after 20 iterations. 

From Figure 4.2, it can be seen that the NR method does not always converge, nor, 

when it does, does it converge exclusively to either the HV solution or the LV solution. 
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Figure 4.2 Solution of NR Method from Different Starting Points 

Then multiple-initial-condition numerical experiments described above are con-

ducted repeatedly using the proposed method LV formulation to show that it, (4.15), 

will obtain only the LV solution regardless of the initial estimate of U, as indicated by 

the foregoing proof. The results of this experiment confirm that the proposed method, 

(4.15), converges to the LV solution and (4.10) converges to the HV solution for all 

starting points as shown in Figure 4.3 and Figure 4.4, respectively, with the same color 

interpretation in Figure 4.2. 
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Figure 4.3 Solution of Proposed LV HE Formulation from Different Starting Points 

 

Figure 4.4 Solution of HV HE Formulation from Different Starting Points 
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4.3 Conclusion 

The PBE LV HE formulation is proven mathematically to find and only find the LV 

solution for a two-bus system, if the solution exists, regardless of the starting point. A 

comparison between the performance of NR method and HE method shows that the 

former approach may or may not converge while the latter method does guarantee 

convergence. And, when the NR method does converge, it does not converge reliably to 

either the LV solution or the HV solution, indicating the NR method’s performance is 

initial-point-dependent, something well known. In contrast, the HE formulation pro-

posed is independent of the initial estimates and always reaches to the LV solution, if it 

exists. 
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5 MULTI-BUS LOW-VOLTAGE/LARGE-ANGLE 

FORMULATIONS 

As has been discussed in Chapter 3, the multi-bus system PBE’s can be embedded 

with a complex variable s and the solution can be obtained through a power series 

expansion and continued fraction conversion. A simplified HE HV formulation for the 

two-bus system is discussed in [25], and, in Chapter 4, by reformulating the PBE, a 

proposed HE method was mathematically proven to guarantee to find the LV solution 

for a two-bus system if it exists. The generalized multi-bus LV/large-angle formula-

tions will be proposed in this chapter for both the PQ and PV bus model using the HE 

method. These three lemmas will be cited that, when combined, can be used to prove 

that the method proposed is capable of finding all of the solutions of the power-flow 

problem. 

5.1 Germ 

In application of analytic continuation techniques, finding a germ is necessary. The 

formal definition of a germ is given in [86]. Assuming f(s) is a power series converg-

ing within its radius of convergence around point s0:  

Then the vector g=(s0, f[0], f[1], f[2], …) is defined as a germ of f(s), where f[n] is 

the n
th

 order coefficient for the power series. 







0

0 )]([)(
n

kssnfsf  
(5.1) 
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In the HE PF method, given s0 (which is zero), the germ is uniquely determined by 

the value of f[0]; therefore, in the HE PF method, the term “germ” can be used inter-

changeably with “the PF solution at s=0,” or, equivalently, f[0]. It can be noted that the 

coefficients of V(s) and Q(s) in (3.14) with the initial conditions in (3.13) is one possi-

ble germ or solution for the specific HE PBE’s, given from (3.7) to (3.9), at s0=0. 

There exist other possible germs for the same set of HE PBE’s ((3.7)-(3.9)) due to the 

quadratic characteristic of the PF problem. 

5.2 Solution Existence 

Lemma 1: In the HE PF method, it is guaranteed that a germ will lead to a solution 

of the PF problem, if the solution exists. Otherwise the oscillations of the Padé Ap-

proximants will indicate that no solution can be found by the specific germ. 

With the technique of maximal analytic continuation (via Padé Approximants), the 

maximal region where the voltage function, V(s), is holomorphic can be obtained. 

Within this maximal region, the voltage function can therefore be evaluated and a 

converged value will be obtained, given a sufficient number of power series coeffi-

cients. Therefore if the point, s=1, is within the maximal region using the domain of 

complex rather than quaternion numbers, the voltage solutions of the PF problem can 

be obtained. On the contrary, if s=1 is outside the maximal region, no solution exists 

over the field of complex numbers as indicated by the oscillation of the Padé Approx-

imants [83].  
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5.3 Unique Germ-to-Solution Mapping 

Lemma 2: In the HE PF method, each unique germ will correspond to a different 

solution, resulting in a unique germ-to-solution mapping if a solution corresponding to 

that germ exists. 

In the HE PBE’s, each germ will correspond to a unique solution if it exists, i.e. a 

unique mapping, guaranteed by the Stahl’s theorem given in [83].  

5.4 Finding All Possible Germs for the HE PBE’s 

Lemma 3: With the proposed HE LV/large-angle PBE’s, given in Section 5.4.1 and 

Section 5.4.2, all the PF solutions at s=0 (or all the germs) for the proposed set of HE 

PBE’s are guaranteed to be found. 

For an (N+1)-bus network with one slack bus, there possibly exist (2
N
+m) PF 

solutions, as suggested by the author of [80]. A number of 2
N
 possible PF solutions 

(out of the total (2
N
+m) PF solutions) are due to the quadratic characteristics of N 

complex PBE’s, and the so-called ‘extra’ m PF solutions are purely system topology 

and parameter dependent. The goal of this thesis is to find the 2
N
 PF solutions that exist 

for the no-load case and then “follow” these solutions as the load in the system in-

creases toward the full load. The so-called extra PF solutions, which are excess of 2
N
 

and system topology dependent, will not be discussed in this report. For the sake of 

convenience, the 2
N
 PF solutions are referred as “ALL” of the PF solutions of interest. 

A total number of 2
N
 unique germs must be found if all of the 2

N
 possible solutions 
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using the HE method are to be found. It should be emphasized that all the possible 

germs must be found using the same formulation of the HE PBE’s since there are an 

infinite number of HE PBE formulations. In this study, the HE PBE formulation similar 

to that given in (3.7) and (3.8) is used. (The modification to (3.7) and (3.8) need-

ed—and described below—is to move the shunt term to the RHS of (3.7) and (3.8)). 

The proposed method to find all possible germs for the HE PQ and PV bus models are 

presented as follows in Section 5.4.1 and Section 5.4.2, respectively.  

5.4.1 LV Formulation for PQ Buses and Finding 2
NPQ Germs 

It can be observed in (3.10) that at s=0, the complex power injections at PQ buses 

and real power injections at PV buses vanish, which is known as the 

no-load/no-generation condition. The complex power (Si) at a PQ bus, bus i, can be 

expressed in (5.2), where Ii is the sum of current injection at bus i.  

It can be noted that when Si=0, two solutions exist: 

(1) The sum of current injection at bus i (Ii) is zero, or 

(2) The voltage at bus i (Vi) is zero. 

Note that the solution obtained at s=0 in (3.13) is equivalent to the solution ob-

tained from case (1) since there is no current flow in the system and every bus voltage 

are 1.0 per-unit. As mentioned before, the HV solution, if it exits, can be obtained 

starting from the germ given in (3.13), guaranteed by analytic continuation. 

*

iii IVS   
(5.2) 
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If case (2) is considered, the system will have current flow at the no-load condition, 

or s=0, with the bus voltage being zero. Assume the PQ bus i is considered to be in 

case (2), the bus voltage at s=0 therefore becomes zero, i.e. Vi(0)=Vi[0]=0. It can be 

observed that the term 
)( **

*

sV

sS

i

i  on the RHS of (3.7) becomes undefined since both the 

numerator and the denominator become zero at s=0. It is well known that if the inde-

terminate form of 
0

0
 is encountered, one can apply the L’Hôpital’s rule to evaluate 

the indeterminate form 
0

0
, by using the derivatives of both the numerator and denom-

inator. I.e.: 

Since Vi[1] is a non-zero term, the undefined 
0

0
 is therefore evaluated to be 

]1[
*

*

i

i

V

S
. By starting from V[0]=0, instead of V[0]=1 in (3.13), the solution obtained is 

the LV solution if it exists, as guaranteed by the equation structure of (3.13) and the 

maximal analytic continuation provided by Padé Approximants. Note for each PQ bus 

in the power system, V[0] can be selected to be either non-zero, which will be dis-

cussed in the following section, or zero and the resulting various germs will lead to 

different solutions at s=1 if they exist. Similarly, different germs can be found for for-

mulations that include PV buses and it will be discussed in detail in Section 5.4.2. 
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It will be convenient to introduce a dual voltage variable in (5.4), assuming K1 is 

the set of PQ buses with V[0]=0. 

In terms of the power series coefficients, the relationship in (5.4) can be written as: 

It can be observed that the N
th

 power series coefficient in the dual voltage (Vi
(d)

[n]) 

can be calculated given the coefficients in the original voltage up to the (N-1)-th term, 

thus resulting a “delay” in the power series coefficients between the dual voltage and 

original voltage.  

Note that the original voltage variable, Vi(s), can be recovered in (5.6). 

With the notation used in (5.6), the HE PBE’s for PQ bus in (3.7) can be separated 

into (5.7) and (5.8), representing the bus set J1 and K1, respectively, where J1 is the 

set of PQ buses with V[0]≠0, K1 is the set of PQ buses with V[0]=0 and 0 is the slack 

bus number index. 
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 Rearranging (5.7) and (5.8) as (5.9) and (5.10), respectively: 

At s=0, the germ for the LV solutions can be determined by solving for the bus 

voltages of set J1, given in (5.11). Subsequently, the dual bus voltages of set K1 are 

solved using (5.12), giving the bus voltages of set J1. Note that the bus voltages for set 

J1 are not necessarily 1.0 but need to be solved from (5.11), as a resultant of current 

flow and voltage drop in the system at s=0 mentioned previously. 
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Similarly, the bus voltage power series coefficients for set J1 in (5.9) have to be 

solved prior to obtaining the coefficients for set K1 in (5.10). The procedure of finding 

the voltage power series coefficients from (5.9) and (5.10) are straightforward using 

the similar process given in [24] and [87]. 

It can be noticed that two cases, (1) and (2) in section 5.1, are the only possible 

cases where there is no complex power injection for each PQ bus. The first term in 

voltage power series, V[0], can only be either zero or 1.0 (non-zero in general due to 

the effect of LV bus in the system as discussed above). Thus for a (N+1)-bus power 

system with only PQ buses, 2
N
 possible germs are to be found from (5.11) and (5.12) 

by varying the elements in set J1 or K1. And thus, by the maximal analytic continua-

tion, all possible solutions existing at s=1 are guaranteed to be obtained guaranteed by 

the Stahl’s theorem [24], [83]. 

5.4.2 Large-Angle Formulation for PV Buses and Finding 2
NPV Germs 

With the PQ bus LV formulation derived in Section 5.4.1, a LV/large-angle HE 

formulation for the PV bus will be discussed next. The goal is to find all the possible 

germs that exist for the PV bus formulation in (3.8), and by analytic continuation, the 

solutions at s=1 are guaranteed to be found if existed. 

Equation (5.13) is the HE PV bus formulation at s=0 given in (3.11)(1), 

                                                 
1
 The specified PV bus voltage need not be 1.0 per-unit. Since the HE PV bus voltage, referred by 

(3.8) is given as V=1+s(|Vsp|
2
-1), the PV bus voltage will become Vi(s)=1.0 at s=0. 
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In order to find all the possible germs for the PV bus formulation, all the solutions 

that satisfy (5.13) need to be found, of which there should be 2
N
. The real power 

generation for the PV bus is zero at s=0, thus there is no real power flow in the 

system. The calculation of the germs for the PV bus formulation for the simple 

two-bus case (shown in Figure 5.1) is illustrated, which can be readily extended to 

multi-bus system. 

 

 

Figure 5.1 Two-Bus System with the PV Bus Model 

Assuming that the transmission line is lossless (line impedance Z is purely imagi-

nary or equivalently R=0), the real power flow on the transmission line therefore is 

given by: 
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where V0 and V1 are the voltage magnitudes for the slack bus and the PV bus, respec-

tively. The variables θ0 and θ1 are the voltage angles for the slack bus and the PV bus, 

respectively. And X is the line reactance.  

Without loss of generality, the slack bus voltage angle is selected as 0º, i.e. θ0 is 0º. 

Note that if θ0-θ1 is 0º or 180º (-180º), then V0 and V1 either are in the same phase or 

180º out of phase, and the real power transferred is zero. Assuming at s=0 |V0|=1 and 

|V1|=1, V1 therefore can be selected arbitrarily as either 1.0 or -1.0 and the real power 

flow will be zero or equivalently, the real power generation from the slack bus will be 

zero.  

5.4.3 Finding 2
N
 Germs for a Multi-Bus Lossless System 

Generally, in a multi-bus system, each PV bus voltage (at s=0) can be arbitrarily 

selected as either1.0 or -1.0 using the HE method, as long as the system is lossless. For 

PQ buses, the voltages must be selected as either zero or nonzero with the requirement 

that the sum of the complex power flows into the bus is zero. Two cases are considered 

to prove the above statements: 1) if the lossless multi-bus system has only PV buses and 

no PQ bus, 2) if the lossless multi-bus system has both PV and PQ buses.  

Case 1: The proof for case 1) is straight forward: At s=0, if all the PV bus voltage 

values are either 1.0 or -1.0 as discussed above, the real power flow between any two 

buses therefore is calculated to be zero by (5.14), resulting in no real power 

flow/generation in the system. There are two options for the value of each PV bus 

voltage: either 1.0 or -1.0. Thus 2
N
 germs may be found. 
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Case 2: To prove for case 2), the bus voltages for the PQ buses at s=0 have to be 

examined. Note that the slack bus voltage is given as 1.0 (at angle 0°) and assume the 

PV bus voltages are arbitrarily selected as either 1.0 or -1.0, giving PVN
2

 
combinations 

of PV bus voltages. As discussed in Section 5.4.1, there are likewise two options for the 

PQ bus germ—either the PQ bus voltage is zero or the sum of PQ bus current injections 

is zero—giving PQN
2  combinations for PQ buses and a total of 

)(
22 PQPV NNN 

  

germs. Note that all PQ bus voltages resulting from these constraints are feasible since 

each voltage is either zero or the result of the solution of a set of nonsingular linear 

equations. The PBE’s for PQ buses at s=0, given in (5.11) and (5.12), can be modified 

as (5.15) and (5.16) by including the definition the set of PV buses: 

 The PQ bus voltages for J1 set (where the bus current injection is zero) can be 

calculated by solving the linear set of equations given in (5.15). Note that in (5.15), 

)(tr

ijY  is purely imaginary since the system is lossless. By dividing both side of (5.15) 

by j1, the set of equations becomes purely real with the slack bus voltage and PV bus 

voltages being purely real numbers (given the assumption that the slack bus voltage is 

given as 1.0 (at angle 0°) and the PV bus voltages are either 1.0 or -1.0). Therefore the 

PQ bus voltages in J1 set are calculated to be purely real, by solving the linear set of 
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equations whose coefficients are real as given in (5.15). Likewise the PQ bus votlages 

in the K1 set are all real numbers since the PQ bus voltages in K1 set are simply 

selected to be zero. Thus the slack bus voltage, PQ and PV bus voltages in the system 

are all purely real numbers at s=0, such that the bus angle difference for any two buses 

is either 0º or 180º. Therefore, the real power flow between any two buses is calculated 

to be zero by (5.14), resulting in no real power flow/generation in the system. The prove 

for case 2 is completed, and by summarizing case 1 and case 2, it can be concluded that 

there exist two options (1.0 or -1.0) for the value of each PV bus voltage, at s=0, for any 

multi-bus lossless system. 

In general, two options exist for each PQ and PV bus germ, given the condition that 

the system is lossless: (1) For a PQ bus, either the bus voltage is zero or the sum of bus 

current injection is zero; (2) For PV bus, the bus voltage is either 1.0 or -1.0. Thus for a 

(N+1)-bus lossless system with both PQ and PV buses, there exist 2
N
 possible germs by 

varying the germ option for each PQ and PV bus. 

5.4.4 Finding 2
N
 Germs for a Practical Multi-Bus System 

For a practical power system, however, the resistance always exists on the trans-

mission line. One way to eliminate the effect of the resistance in the system, so that 

solving for the germ of the PV bus (at s=0) becomes trivial, is to move the conductance 

term in the admittance matrix to the RHS of the HE PBE’s, i.e. 
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where Gik is the line conductance between bus i and k, and Bik is the line susceptance. 

Using the same notation as in Chapter 3, i.e., Wi(s)=1/Vi(s), (5.17) can be represented 

by the power series coefficients in (5.18). 

With (5.17), by varying the first term in the PV voltage power series to be either one 

or minus one, all the possible germs or solutions existing for the PV bus at s=0 can be 

obtained. Note that if all the PV voltage power series are set to be 1.0 at s=0 , the first 

term of reactive power series (Q(s)) for all the PV bus will be zero given as given in 

(3.13) and repeated below in (5.19). 

However, if a set (K2) of PV bus voltage series starts from -1.0, as shown in (5.20), 

the LHS of the first equation in (3.11) (duplicated below in (5.21)) will become non-

zero, resulting in the first term of Qi(s), Qi[0] or Qi(0), becoming nonzero.  
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Thus there will exist more unknowns (the imaginary part of Vi[n], the real and 

imaginary part of Wi[n] and the real variable Qi[n]) than equations (the real and imag-

inary parts of (3.20)), leading to an underdetermined set of equations. This can be re-

solved by including a set of linear equations involving Vi[n] and Wi[n] shown in (5.22), 

which is based upon the relationship Wi(s)=1/Vi(s). 

Note that for the PQ bus LV formulation, moving the conductance term to the RHS 

of HE PBE’s is not required since the germ can be obtained by solving a set of linear 

equations given in (5.11) and (5.12). Considering there usually exist some PV buses in 

a power system, it will be convenient to extract the conductance term from the admit-

tance matrix for the generalized form HE PBE’s given in (5.23) and (5.24) for the PQ 

and PV, buses, respectively. 
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For any (N+1)-bus system with both PQ and PV buses, 2
N
 possible germs are to be 

found by varying the germ option for each PQ and PV bus. By starting from all possible 

germs existing at s=0, it is guaranteed through Stahl’s theorem and the use of maximal 

analytic continuation, that all of the solutions of the PBE’s at s=1 can be obtained. 

5.5 The Guarantee to Find All the PF Solutions 

Theorem 1: Since all 2
N
 possible germs for the HE PBE’s can be easily found for 

the proposed HE PBE formulation, as given in Lemma 3, all the complex-valued solu-

tions for the PF problem therefore are guaranteed to be obtained, using the technique 

of maximal analytic continuation (Lemma 1) and unique germ-to-solution mapping 

(Lemma 2). 

The above theorem is the statement that one can find all the PF solutions using the 

proposed HE PBE’s in (5.23) and (5.24), as a consequence of Lemma 1-3. Thus the 

proof that the proposed HE method is guaranteed to find all complex-valued PF solu-

tions is completed. 
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5.6 Discussions 

It should be noted that two sets of PQ bus PBE’s are given in (5.23), providing two 

different PBE’s for the PQ bus model. However as emphasized in Lemma 3, all the 

germs have to be found using the same HE PBE formulation. Does the proof in Theo-

rem 1 still hold true while two set of HE PBE’s have to be solved for the PQ bus model? 

The answer is yes because the formulations are the same; they only differ due to a 

substitution of different variables. By looking into the details of the PQ bus LV for-

mulation, it can be noted that a substitution of variables is made in (5.4) due to the 
0

0
 

problem. As discussed in (5.3), a form of 
0

0
will result in a defined/bounded number by 

using the L’Hôpital’s rule in theory, but will result in an execution time error, 

not-a-number (NaN) if using Matlab. Thus, the change of variables (5.4) is necessary in 

implementation of the proposed algorithm in machine programming rather than in 

theory. Note that a variable s appears on the RHS of (5.3), resulting a delay in power 

series coefficients between Vi
(d)

(s) and Vi(s). Therefore Vi(s) has to be solved a priori to 

Vi
(d)

(s), as a resultant of change of variable in (5.3). Thus two set of HE PBE’s are given 

in (5.23) for the PQ bus model, which theoretically represents the same HE PBE if no 

substitution of variable is made. 

Another problem that may raise up is: what if the HE PBE’s are different from 

(5.23) and (5.24), is it guaranteed to find all the possible solutions for the PF problem? 

The answer is yes, as long as all the germs can be found. However, as discussed in 

Lemma 3, the solutions at s=0 for the HE PBE’s, in (5.23) and (5.24), can be reliably 
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obtained without solving a set of quadratic PBE’s. If one changes the HE PBE’s rather 

than using (5.23) and (5.24), the PBE’s at s=0 again becomes the quadratic form and 

there will be no guarantee that all the PF solutions can be found, which in essence is the 

target we are trying to reach. 

5.7 Numerical Tests 

5.7.1 Five & Seven-Bus System 

Using the LV/large-angle formulations for both PQ and PV bus derived in sections 

5.4.1 and 5.4.2, numerical tests for finding all of the solutions for a five and seven-bus 

system will be discussed. The system topology of the five-bus system is shown in 

Figure 5.2 where bus 5 is the slack bus. The slack bus voltage is set to be 1.06 per-unit 

at angle zero and the PV bus (bus 1) voltage is controlled to be 1.0 per-unit. The system 

branch information is given in Table 5.1 and the bus admittance matrix is shown in 

Table 5.2. 

G

G

1

2 3

4

5

 

Figure 5.2 Five-Bus System 
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Table 5.1 Branch Data for the Five-Bus System 

Branch Line Impedance 

1-2 0.06 + j0.18 

1-3 0.06 + j0.18 

1-4 0.04 + j0.12 

1-5 0.02 + j0.06 

2-3 0.01 + j0.03 

2-5 0.08 + j0.24 

3-4 0.02 + j0.24 

 

Table 5.2 Bus Admittance Matrix for the Five-Bus System 

 

YBUS= 

6.25 – j18.75 -5 + j15 -1.25 + j3.75 0 0 

-5 + j15 10.8334 – j32.75 -1.6667 + j5 -1.6667 + j5 -2.5 + j7.5 

-1.25 + j3.75 -1.6667 + j5 12.9167 – j38.75 -10 + j30 0 

0 -1.6667 + j5 -10 + j30 12.9167 – j38.75 -1.25 + j3.75 

0 -2.5 + j7.5 0 -1.25 + j3.75 3.75 – j11.25 

 

The load injections in the five-bus system are S1, S2, S3 and S4 for buses 1, 2, 3 and 

4, respectively. The p.u. values of S1 to S4 are: 

S1= –0.2 – j0.1, S2= –0.45 – j0.15, S3= –0.4 – j0.05, S4= –0.6 – j0.1 

The solutions for the five-bus system were found by using the CPF method [50] 

and are given in Table 5.3. 
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Table 5.3 Solutions for the Five-Bus System Using Continuation Method [50] 

 HV soln. LV soln.’s 

Soln. NO. 1 2 3 4 5 

V1 1∠-2.067° 1∠-138.967° 1∠-128.586° 1∠-12.146° 1∠-126.625° 

V2 
0.980 

∠-4.535° 

0.501 

∠-129.851° 

0.377 

∠-116.836° 

0.793 

∠-12.679° 

0.062 

∠-159.529° 

V3 
0.977 

∠-4.853° 

0.587 

∠-134.863° 

0.410 

∠-124.173° 

0.740 

∠-13.879° 

0.215 

∠-144.796° 

V4 
0.966 

∠-5.692° 

0.831 

∠-141.660° 

0.066 

∠-185.734° 

0.057 

∠-71.501° 

0.698 

∠-133.440° 

V5 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 

LV soln.’s 

Soln. NO. 6 7 8 9 10 

V1 1∠-16.504° 1∠-18.097° 1∠-16.908° 1∠-22.520° 1∠-119.882° 

V2 
0.197 

∠-26.042° 

0.056 

∠-61.126° 

0.034 

∠-69.046° 

0.196 

∠-30.681° 

0.088 

∠-141.839° 

V3 
0.030 

∠-81.865° 

0.049 

∠-80.670° 

0.184 

∠-37.786° 

0.036 

∠-85.945° 

0.165 

∠-144.756° 

V4 
0.628 

∠-23.451° 

0.632 

∠-25.443° 

0.686 

∠-23.872° 

0.081 

∠-79.418° 

0.075 

∠-178.499° 

V5 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 

A total of 10 solutions are obtained and reported by [50] and, as a check, they 

were substituted back into the PBE’s, which were satisfied for all solutions. The 

maximum mismatch of the PBE’s is less than 10
-4

. Therefore the 10 solutions ob-

tained (listed in Table 5.3) for the five-bus system are used as a benchmark for com-

parison with the solutions obtained by the HE method. 

Using the HE method, there existed 16 different germs for the five-bus system; 

therefore 16 possible solutions can be obtained. It will be convenient to use a binary 

number to represent whether the HV or LV formulation is applied to a certain bus, i.e. 

a 1 in position i , with the left-most position being position 1, indicates that the HV 

formulation is used for the PBE for bus i and a 0 in position i indicates that the LV 
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formulation is used for the PBE for bus i. A four-bit binary number will be used for 

the five-bus system in order to represent the HV/LV combination where the slack bus 

voltage is always considered to be fixed at 1.06 per-unit. For example, 1111 repre-

sents the condition where the HV PBE’s are used for all buses, 1010 represents the 

condition where the HV PBE’s are used for buses 1 and 3 and the LV PBE’s are used 

for buses 2 and 4. Using an application developed with Matlab (16 digits of mantissa 

precision), 10 out of 16 solutions were obtained listed in Table 5.4, where the PBE’s 

mismatch tolerance is set to be 10
-5

 in the program For the cases where no solution 

found, the oscillation of the diagonal Padé Approximant was detected indicating that 

no non-quaternion solution exists for this germ. 

The voltage solution differences (in both magnitudes and angles) between Table 

5.3 and Table 5.4 are listed in Table 5.5. It can be observed that all the 10 solutions 

for this five-bus system can be found using the proposed HE method. 
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Table 5.4 Solutions for the Five-Bus System using HE Method 

Soln. NO. 

(Binary) 

1 

(1111) 

2 

(0111) 

3 

(0110) 

4 

(1110) 

5 

(0011) 

V1 
1 

∠-2.0675° 

1 

∠-138.9679° 

1 

∠-128.5864° 

1 

∠-12.1469° 

1 

∠-126.6253° 

V2 
0.9805 

∠-4.5358° 

0.5012 

∠-129.8511° 

0.3770 

∠-116.8370° 

0.7933 

∠-12.6793° 

0.0626 

∠-159.5293° 

V3 
0.9771 

∠-4.8535° 

0.5879 

∠-134.8640° 

0.4108 

∠-124.1731° 

0.7403 

∠-13.8795° 

0.2160 

∠-144.7964° 

V4 
0.9662 

∠-5.6925° 

0.8317 

∠-141.6605° 

0.0666 

∠184.2660° 

0.0580 

∠-71.5017° 

0.6982 

∠-133.4401° 

V5 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 

Soln. NO. 

(Binary) 

6 

(1101) 

7 

(1001) 

8 

(1011) 

9 

(1100) 

10 

(0010) 

V1 
1 

∠-16.5040° 

1 

∠-18.0976° 

1 

∠-16.9089° 

1 

∠-22.5210° 

1 

∠-119.8826° 

V2 
0.1972 

∠-26.0422° 

0.0563 

∠-61.1266° 

0.0342 

∠-69.0465° 

0.1968 

∠-30.6818° 

0.0881 

∠-141.8392° 

V3 
0.0301 

∠-81.8652° 

0.0496 

∠-80.6706° 

0.1846 

∠-37.7869° 

0.0369 

∠-85.9455° 

0.1659 

∠-144.7572° 

V4 
0.6289 

∠-23.4519° 

0.6327 

∠-25.4435° 

0.6865 

∠-23.8729° 

0.0814 

∠-79.4189° 

0.0756 

∠-178.5106° 

V5 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 1.06∠0° 
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Table 5.5 Absolute Differences between the Solutions using Continuation Method and 

the HE Method 

Soln. NO. 1 2 3 4 5 

V1 
Mag. (p.u.) 0* 0* 0* 0* 0* 

Angle (deg.) 0.0005 0.0009 0.0004 0.0009 0.0003 

V2 
Mag. (p.u.) 0.0005 0.0002 0* 0.0003 0.0006 

Angle (deg.) 0.0008 0.0009 0.0010 0.0003 0.0003 

V3 
Mag. (p.u.) 0.0001 0.0009 0.0008 0.0007 0.0010 

Angle (deg.) 0.0005 0.0010 0.0001 0.0005 0.0004 

V4 
Mag. (p.u.) 0.0002 0.0007 0.0006 0.0010 0.0002 

Angle (deg.) 0.0005 0.0005 1.5320 0.0007 0.0001 

Soln. NO. 6 7 8 9 10 

V1 
Mag. (p.u.) 0* 0* 0* 0* 0* 

Angle (deg.) 0* 0.0006 0.0009 0.0010 0.0004 

V2 
Mag. (p.u.) 0.0002 0.0003 0.0002 0.0008 0.0001 

Angle (deg.) 0.0002 0.0006 0.0005 0.0008 0.0002 

V3 
Mag. (p.u.) 0.0001 0.0006 0.0006 0.0009 0.0009 

Angle (deg.) 0.0002 0.0006 0.0009 0.0005 0.0012 

V4 
Mag. (p.u.) 0.0009 0.0007 0.0005 0.0004 0.0006 

Angle (deg.) 0.0009 0.0005 0.0009 0.0009 0.0106 

 

* Match up to four significant digits 

The plots for the voltage magnitudes (in p.u.) and angles (in degrees) for different 

solutions are shown in Figure 5.3 through Figure 5.12. Observe that when the LV HE 

formulation is applied to one bus, the voltage solution obtained at that specific bus has 

a smaller magnitude or larger phase angle compared to the solution obtained with the 

HV HE formulation for the same bus. 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.3 HV Solution (1111) 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.4 LV PBE’s Applied to V1 (0111) 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.5 LV PBE’s Applied to V1& V4 (0110) 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.6 LV PBE’s Applied to V4 (1110) 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.7 LV PBE’s Applied to V1&V2 (0011) 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.8 LV PBE’s Applied to V3 (1101)  
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.9 LV PBE’s Applied to V2&V3 (1001)  
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.10 LV PBE’s Applied to V2 (1011)  
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.11 LV PBE’s Applied to V3&V4 (1100) 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.12 LV PBE’s Applied to V1, V2&V4 (0010) 
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topology of the seven-bus system is shown in Figure 5.13 where bus 7 is the slack bus 
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proposed in this report, the PV bus (bus 1) is treated as a PQ bus by specifying the 

real/reactive power since this bus model conversion is used in [50]. The system branch 

data is given in Table 5.6. 
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Figure 5.13 Seven-Bus System 

 

Table 5.6 Parameters for the Seven-Bus System 

Branch Line Impedance Branch Line Impedance 

1-2 0.082 + j0.192 4-5 0.024 + j0.1 

2-3 0.067 + j0.171 5-6 0.057 + j0.174 

2-5 0.058 + j0.176 5-7 0.019 + j0.059 

2-6 0.013 + j0.042 6-7 0.054 + j0.223 

3-4 0.024 + j0.1   

 

The load injections in the seven-bus system are S1, S2, S3, S4, S5 and S6 for buses 1, 

to 6, respectively. The p.u. values of S1 to S6 are: 

S1= 0.9 + j0.3, S2= –0.478 – j0.039, S3= –0.942 – j0.190,  

S4= –0.135 – j0.058, S5= –0.183 – j0.127, S6= –0.135 – j0.058 

Note that bus 1 is injecting positive real/reactive power into the system acting as 

generator. The solutions for the seven-bus system taken from [50] are given in Table 
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5.7 and were verified by substitution into the power mismatch form yielding real and 

reactive mismatches of less than 10
-5

 per-unit. 

Table 5.7 Solutions for the Seven-Bus System Using a Continuation Method [50] 

 HV soln. LV soln.’s 

Soln. NO. 1 2 3 4 

V1 
1.07577 

∠-5.28593° 

0.73120 

∠14.95760° 

0.28797 

∠101.81875° 

0.34350 

∠88.33610° 

V2 
0.96352 

∠-2.93423° 

0.58756 

∠-5.22121° 

0.54147 

∠-6.29309° 

0.43321 

∠-6.83457° 

V3 
0.90411 

∠-8.44389° 

0.17451 

∠-52.67754° 

0.54303 

∠-19.80951° 

0.24973 

∠-44.27974° 

V4 
0.92780 

∠-5.74999° 

0.41217 

∠-14.20556° 

0.64577 

∠-11.24617° 

0.43590 

∠-16.13621° 

V5 
0.96382 

∠-2.44630° 

0.66377 

∠-3.20560° 

0.77500 

∠-3.86173° 

0.68791 

∠-3.91929° 

V6 
0.96747 

∠-2.59176° 

0.66377 

∠-4.30311° 

0.64015 

∠-5.01581° 

0.54957 

∠-5.31378° 

V7 1∠0° 1∠0° 1∠0° 1∠0° 

 The solutions obtained from the HE method are given in Table 5.8. The binary 

number representation is used to represent the HV/LV formulation combination for 

simplicity, starting from bus 1 on the left-most bit to bus 6 on the right-most bit. I.e., 

solution 2, represented by 110111 in Table 5.8, is obtained by using the LV PBE for 

bus 3. Solution 3 is obtained by using the LV PBE for bus 1, solution 4 is obtained by 

using the LV PBE’s for buses 1 and 3 and solution 1 is the HV solution. Otherwise no 

solution can be obtained, indicated by the oscillations of the diagonal Padé Approxi-

mant. 
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Table 5.8 Solutions for the Seven-Bus System Using the HE Method 

 HV soln. LV soln.’s 

Soln. NO. (Bin.) 1(111111) 2(110111) 3(011111) 4(010111) 

V1 
1.0758 

∠-5.2859° 

0.7312 

∠14.9587° 

0.2880 

∠101.8197° 

0.3435 

∠88.3331° 

V2 
0.9635 

∠-2.9342° 

0.5875 

∠-5.2213° 

0.5415 

∠-6.2929° 

0.4331 

∠-6.8349° 

V3 
0.9041 

∠-8.4439° 

0.1745 

∠-52.6807° 

0.5430 

∠-19.8094° 

0.2497 

∠-44.2802° 

V4 
0.9278 

∠-5.7501° 

0.4122 

∠-14.2060° 

0.6458 

∠-11.2461° 

0.4359 

∠-16.1363° 

V5 
0.9638 

∠-2.4463° 

0.7229 

∠-3.2055° 

0.7750 

∠-3.8617° 

0.6879 

∠-3.9192° 

V6 
0.9675 

∠-2.5918° 

0.6638 

∠-4.3031° 

0.6402 

∠-5.0157° 

0.5496 

∠-5.3131° 

V7 1∠0° 1∠0° 1∠0° 1∠0° 

 

Table 5.9 Absolute Differences between the Solutions using Continuation Method and 

the HE Method 

Soln. NO. 1 2 3 4 

V1 
Mag. (p.u) 0.00003 0* 0.00003 0* 

Angle (deg.) 0.00003 0.00110 0.00125 0.00300 

V2 
Mag. (p.u) 0.00002 0.00006 0.00003 0.00011 

Angle (deg.) 0.0003 0.00011 0.00019 0.00033 

V3 
Mag. (p.u) 0.00001 0.00001 0.00003 0.00003 

Angle (deg.) 0.00001 0.00346 0.00011 0.00026 

V4 
Mag. (p.u) 0* 0.00003 0.00003 0* 

Angle (deg.) 0.00002 0.00044 0.00007 0.00021 

V5 
Mag. (p.u) 0.00002 0.00004 0* 0.00001 

Angle (deg.) 0* 0.00010 0.00003 0.00009 

V6 
Mag. (p.u) 0.00003 0.00003 0.00005 0.00003 

Angle (deg.) 0.00004 0.00001 0.00011 0.00068 

* Match up to four significant digits 

Observe that all four solutions for the seven-bus system can be found using the 

proposed HE method. The plots for the voltage magnitudes and voltage angles (in de-

grees) for different solutions are shown in Figure 5.14 through Figure 5.17. Similar to 
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the five-bus system in Figure 5.2, observe that when the LV HE formulation is ap-

plied to a bus, the voltage solution obtained at that specific bus has a smaller magni-

tude or a larger phase angle compared to the solutions obtained with the HV HE for-

mulation for the same bus. 

 

(a) Voltage Magnitudes 

 

(a) Voltage Angles 

Figure 5.14 HV Solution (111111) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1 2 3 4 5 6 

111111 

1 

2 

3 

4 

5 

6 

Voltage magnitude 

(p.u.) 

Bus No. 

-9 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

0 

1 2 3 4 5 6 

111111 

1 

2 

3 

4 

5 

6 

Voltage Angle 

(degree) Bus No. 



100 

 

 

(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.15 LV PBE’s Applied to V3 (110111) 
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(a) Voltage Magnitudes 

 

(b) Voltage Angles 

Figure 5.16 LV PBE’s Applied to V1 (011111) 
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(a) Voltage Magnitudes 

 

(a) Voltage Angles 

Figure 5.17 LV PBE’s Applied to V1&V3 (010111) 
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parameters and bus data are given in per-unit in Table 5.10 and Table 5.11, respec-

tively.. The PV buses in the system are modeled as PV buses with no Var constraints 

on them. The total number of solutions obtained for the 14-bus system is 90 and the 

solutions are given in Table 10.1. In Table 10.1, the voltage solution is split into volt-

age magnitude (|V|) and angle (θ). 
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Figure 5.18 14-Bus System 
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Table 5.10 Branch Data for the 14-Bus System 

Branch Line Impedance Shunt (y) 

1-2 0.01938 + j0.05917 0.0528 

1-5 0.05403 + j0.22304 0.0492 

2-3 0.04699 + j0.19797 0.0438 

2-4 0.05811 + j0.17632 0.034 

2-5 0.05695 + j0.17388 0.0346 

3-4 0.06701 + j0.17103 0.0128 

4-5 0.01335 + j0.04211 0 

4-7 j0.20912 0 

4-9 j0.55618 0 

5-6 j0.25202 0 

6-11 0.09498 + j0.1989 0 

6-12 0.12291 + j0.25581 0 

6-13 0.06615 + j0.13028 0 

7-8 j0.17615 0 

7-9 j0.11001 0 

9-10 0.03181 + j0.0845 0 

9-14 0.12711 + j0.27038 0 

10-11 0.08205 + j0.19207 0 

12-13 0.22092 + j0.19988 0 

13-14 0.17093 + j0.34802 0 

 

  



105 

 

Table 5.11 Bus Data for the 14-Bus System 

Bus Bus Type Vcntr Pload Qload Pgen 

1 3 1.06 0 0 NA 

2 2 1.045 0.045 0.031 0.1 

3 1 NA 0.036 0.022 0 

4 1 NA 0.011 -0.009 0 

5 1 NA 0.023 0.006 0 

6 1 NA 0.024 0.017 0 

7 1 NA 0.05 0.031 0 

8 2 1.09 0.02 0.005 0 

9 1 NA 0.052 0.036 0 

10 1 NA 0.018 0.008 0 

11 1 NA 0.011 0.003 0 

12 1 NA 0.007 0.016 0 

13 1 NA 0.012 0.009 0 

14 1 NA 0.014 0.007 0 

With the proposed method, a total of 90 solutions are found for the given IEEE 

standard 14-bus system under the lightly loaded condition and these solutions, gener-

ated for publications, are given in Table 10.1 in APPENDIX.A. 
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6 FINDING THE TYPE-1 POWER-FLOW SOLUTIONS USING 

THE PROPOSED HOLOMORPHIC EMBEDDING METHOD 

As has been discussed in Chapter 5, of all the existing solutions, a total of 2
N
 solu-

tions for the PF problem can be obtained by starting from 2
N
 unique germs, for a 

(N+1)-bus system, using the proposed HE method. For power system voltage/angle 

stability assessment, the type-1 PF solutions or the type-1 UEP’s (where the system’s 

Jacobian matrix has only one eigenvalue with a positive real-part) are of interest and in 

this section, the method of finding all the type-1 PF solutions/UPE’s (out of 2
N
 possible 

solutions) using the HE method is proposed. 

6.1 Type-1 PF Solutions 

With the proof completed in Section 5 that a number of 2
N
 PF solutions can be 

obtained by the proposed HE method, the algorithm to find all the type-1 PF solutions, 

out of 2
N
 PF solutions, will be discussed in this section.  

Theorem 2: A type-1 PF solution is found for each formulation in which one and 

only one bus PBE is included in its LV/large-angle form. 

To prove Theorem 2 for a general power system (a (N+1)-bus power system), a 

two-step proof (broken into Lemma 4 and Lemma 5) will be needed. 

Lemma 4: The germ, with only one bus substituted in the LV/large-angle formula-

tion, is a type-1 PF solution at s=0 or in other words, a type-1 germ. 

To complete the proof for Lemma 4, consider that the n
th

 bus, a PQ bus, in an 

(N+1)-bus power system is embedded with the proposed LV formulation, the embed-
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ded PBE’s for the system are given in (6.1) and (6.2) (derived from (5.23) and (5.24) by 

setting J1=n, K1={NPQ\n}, J2=NPV, K2=∅), for PQ and PV buses, respectively. For 

convenience, the system given by (6.1) and (6.2) will be called as System A. 

At s=0, the PBE’s in (6.1) and (6.2) represent a system with no load/real-power 

generation, given in (6.3) and (6.4), as given earlier. However this germ is valid for any 

system loading condition since s multiplies all system loads. .This is stated formally in 

Lemma 4.1. 
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Lemma 4.1: The solution of (6.3) and (6.4), is the germ for any load pattern applied 

to the system characterized by (6.1) and (6.2). 

Consider the same (N+1)-bus power system (defined by (6.5) and (6.6)) charac-

terized by (6.1) and (6.2), but with a different load/real-power generation profile that is 

zero everywhere except on the n
th

 bus, where it is non-zero. For convenience, the sys-

tem given by (6.5) and (6.6) will be called as System B. 

Since only bus n has a nonzero load, the s variable is a load scaling factor that af-

fects only bus n for System A (unlike System B that that has many buses with non-zero 

loads.) Though the change in load data resulting from the change in the s parameter will 

be different in these two systems (System A and B), they have the same germ due to the 

unchanged system topology and branch data. Thus the proof of Lemma 4.1 is com-
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pleted. Lemma 4.2 (given as follows) will be needed to further prove that the germ, 

with only bus n in the LV form, is a type-1 germ. 

Lemma 4.2: The germ for the system, defined by (6.5) and (6.6), is a type-1 germ at 

s=0, using the theory developed in [70]. 

In [70], if only one load (on one bus) is scaled using the CPF-based method, the 

type-1 PF solution can be obtained by tracing the PV/Pδ curve, starting from a given 

HV solution. It is suggested in [70] that only one eigenvalue in the Jacobian matrix will 

have real-part whose sign changes as the CPF method pass the bifurcation point; thus 

the solutions obtained is a type-1 PF solution. Note that the HV solution of System A at 

the no-load condition is 1.0 per-unit for every bus in the system, which is by definition 

the germ. Starting from the HV solution at the no-load condition (or the HV germ), the 

CPF method can be used to trace the entire PV curve: Traditionally it starts by tracing 

the upper portion of the PV curve as the load on bus n increases, up to the bifurcation 

point, and traces the lower part of the PV curve “backward” as the load on bus n is 

scaled down to the no-load condition. Given in Figure 6.1 is the interpretation of the 

CPF method: it starts from the HV germ and traces the higher PV curve of bus n (shown 

as red in Figure 6.1), up to the bifurcation point (maximum loading point), while only 

the load at bus n is scaled up. After reaching the bifurcation point, the CPF method will 

trace the lower PV curve (shown as black in Figure 6.1), with only the load at bus n 

being scaled down. By the Ohm’s law (given by (5.2) and repeated in (6.7)), at the 
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no-load condition, the lower PV curve of bus n has to start from 0.0 since it is the 

no-load condition (Si=0 in (6.7)). 

Therefore the starting point of the lower PV curve is a type-1 solution guaranteed 

by the theory developed in [70], thus the corresponding LV germ is a type-1 germ. The 

proof for Lemma 4.2 is completed. 

P

V

HV germ

LV germ

1

0

 

Figure 6.1 Germ Identification on a PV curve 

It is shown that the germ, with only bus n substituted in the LV/large-angle form, is 

a type-1 germ for the system B, given by Lemma 4.2. As System A and B share the 

same LV germ given by Lemma 4.1, such LV germ (the type-1 germ for System B) is 

then a type-1 germ for System A, completing the proof for Lemma 4. 

To prove that the PF solution corresponding to the type-1 germ is a type-1 solution, 

Lemma 5, must be proven. 

*

iii IVS   
(6.7) 
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Lemma 5: The sign of the eigenvalue in the Jacobian matrix will not change during 

the analytic continuation as s goes from 0.0 to 1.0, provided the base case solution 

exists. 

It has been shown that s can be viewed not only as a embedding variable, but a load 

scaling factor that scales all loads/real-power generations in the system (given by (6.5) 

and (6.6)) as it goes from 0.0 to 1.0, during the analytic continuation. Therefore the 

analytic continuation can also be as a numerical continuation (i.e. CPF) with all the 

loads/real-power generations in the system scaled by s. By the theory given in [70], the 

eigenvalues of the Jacobian matrix will not change in sign unless the CPF method 

reaches a bifurcation point. The theory can be applied to the HE method since the an-

alytic continuation can be viewed as a numerical continuation. Therefore it can be 

concluded that the eigenvalues in the Jacobian matrix for the germ (at s=0) and at the 

corresponding solution (at s=1), if it existing, will have the same sign. Thus the proof 

for Lemma 5 is completed. 

Since it is proven in Lemma 4 that the germ is a type-1 germ with only one bus in 

the LV/large-angle form, the corresponding PF solution, if it exists, will be a type-1 PF 

solution, guaranteed by Lemma 5. This completes the proof for Theorem 2. 

It has been theoretically proven in Chapter 5 that the proposed HE method is 

guaranteed to find all the PF solutions, if they exist in the PF problem, proven by 

Theorem 1. Therefore all the type-1 solutions are guaranteed to be found by the pro-



112 

 

posed HE-based algorithm, providing a reliable algorithm to calculate all the type-1 PF 

solutions that exist in the power system, guaranteed by Theorem 2. 

For the same 14-bus system used in Chapter 5, using the proposed algorithm, 12 

type-1 solutions are obtained and it can be checked that these 12 solutions obtained in 

Appendix.A are all the type-1 solutions out of all the solutions obtained by the proposed 

HE-based method in Appendix.A. For a more generalized case, 36 type-1 solutions are 

obtained for the IEEE 118-bus system [88], given in Appendix.B. Numerical experi-

ments indicate that when the proposed LV/large-angle formulation is applied to n buses 

(n>1), the solution obtained will usually be a type-n solution; while this is an empirical 

result, there exists cases where the above statement does not hold true. 

6.2 The Closest Unstable Equilibrium Point 

While the dynamic models included below are the uncomplicated classical models, 

the method of finding the type-1 UEP’s and closest UEP using the HE-based method 

will be discussed as follows. For the system represented by the classical machine model 

and constant impedance load with purely reactance branch impedances, the dynamics 

of the i
th

 generator in an n-generator system can be expressed as: 



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where mi is the inertia constant for generator i; di is the damping constant for generator 

i; Pmi is the constant mechanical power input for generator i; δi is the angle of internal 

voltage of the i
th

 generator; ωi is the rotor angle velocity of the i
th

 generator with respect 

to the reference frequency. Bij is the line susceptance between generator i and generator 

j. 

The energy function (VE) of (6.8) can be defined in terms of the machine angles and 

angular speed in (6.9): 

where )(V  and )(V are the the potential energy and kinetic energy of a given 

state in the power system, respectively. The expression for )(PV  and )(KV and 

are given by (6.10) and (6.11), respectively, for a power system bus system with N 

generators. 

To find the equilibrium condition, the derivative, with respect to time, in (6.8) is set 

to zero, leading to the formulation in (6.12). 
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Note that the formulation in (6.12) is simply the real PBE, and it can be modeled in 

the complex form of the PBE and solved by the proposed HE method. Therefore all the 

type-1 solution(s) can be obtained using the proposed HE method in order to search for 

the closest UEP. Using the proposed HE method, a unique type-1 solution is obtained 

for each type-1 germ (unless the system is at the bifurcation point) without revisiting 

the same UEP for multiple times as happens with other methods. A simple 

three-machine system is represented by the equations given in (6.13), where the ma-

chine with index 3 is the reference machine/infinite bus which gives the reference angle 

at zero and the reference angular velocity.  

Note that at the equilibrium point, equation (6.13) will be reduced to (6.14) and the 

PBE’s in (6.14) are expressed in the polar form of the voltage. It is easy to transfer the 

PBE’s in (6.14) into the voltage rectangular form so that the HE method can be applied. 

The type-1 solutions obtained for the three-machine system using the proposed HE 

method are listed in Table 5.8. The results, given in Table 6.1, match those obtained in 
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[77] through four decimal places. By substituting the type-1 solutions into the energy 

function given in [77] (shown in (6.15)), solution 1 is determined to be the closest UEP 

in the system.  

Table 6.1 Type-1 Solutions for the Three-Machine System Using the HE Method 

 
Type-1 UEP’s 

1 2 

δ1 (deg.) 2.676 174.030 

δ2 (deg.) 174.030 19.143 

Energy 

Function 
-0.3133 0.3150 

This three-machine system represented by (6.13) is found in the literature most 

frequently for validation purposes. Though the system tested for the closest UEP 

problem is small in size, the theory is rigorous for the HE method. The proposed HE 

method can be extended to find all the type-1 UEP’s when the classical dynamic model 

is used, guaranteed by Theorem 2. After finding all the type-1 solutions, the closest 

UEP can be determined by evaluating the type-1 UEP with the lowest energy function 

value, a process that is highly parallelizable. 

6.3 Conclusion 

With the strategy of substituting one bus in its LV/large-angle form, the corre-

sponding solution obtained, if it exists, is shown to be the type-1 PF solution, where 

the PF Jacobian has a single eigenvalue with a positive real part, among all the 

LV/large-angle solutions that can be possibly found by the proposed HE method. By 
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including an uncomplicated dynamic model for the generator and load (the classical 

generator model and constant impedance load), the system angle stability or transient 

stability margin can be evaluated using the proposed HE method by finding the clos-

est unstable equilibrium point (UEP), which is a type-1 UEP’s with the lowest value 

of the energy function among all the type-1 UEP’s. 
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7 NUMERICAL PERFORMANCE OF THE HOLOMORPHIC 

EMBEDDING METHOD 

While in theory the HE method is rigorous and guaranteed to find the solution if it 

exists, the limitation of the arithmetic precision affects its numerical performance as 

observed in different tests. In this chapter, the numerical performance of the proposed 

HE method will be discussed and analyzed. 

7.1 Numerical Performance for Heavily Loaded System 

With the idea of ‘curving fitting’ introduced in Chapter 3, it can be noticed that the 

proposed HE method will need more terms to get an accurate solution for a heavily 

loaded system compared to the system under lightly loaded condition. This is due to the 

fact that the characteristic curve (the PV curve) of the power system that the power 

series is trying to fit into, contains the higher order components when the system is 

heavily loaded, while the PV curve is more nearly linear when the system is light 

loaded. Given in Figure 7.1 is a conventional PV curve in a power system, the blue line 

indicates the system load value when it is lightly loaded and the black line indicates the 

load value when the system is near the voltage collapse. It can be observed that under 

lightly loaded conditions, the part of the PV curve (from no-load condition to the op-

erating point) can be easily approximated by a polynomial with low order since the 

curve presented is almost linear. Therefore the number of terms needed for the voltage 

power series will be few in order to fit into the PV curve. However, at the heavily 
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loaded condition, the PV curve presented is more complicated and contains more 

higher-order components as it approaches the voltage collapse point or the saddle-node 

bifurcation point, leading to a higher-order polynomial/power series in the voltage 

function. 

P/s

PV curve
1

0

V

Light 

Load

Heavy 

Load
 

Figure 7.1 Conventional PV Curve at Different Loading Level 

7.1.1  43-Bus System 

An ill-conditioned 43-bus radial distribution system [6] is used to verify the nu-

merical performance of the proposed HE method when the system is in its extremis. 

This system is reported as a very heavily loaded system where the traditional NR 

method fails to converge to the HV/operable PF solution. The system topology is given 

in Figure 7.2. Node 1 is the slack bus and nodes 2-43 are the PQ buses. The branch data 

and bus data are given in per-unit in Table 7.1 and Table 7.2, respectively. 
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Figure 7.2 43-Bus System 
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Table 7.1 Non-zero Ymatrix Entry Data for the 43-Bus System 

Y(1,1) 0.0 -30.609i; Y(19,19) 164.292 -280.783i; 

Y(1,2) 0.0 +30.609i; Y(19,22) -164.292 +272.805i; 

Y(2,2) 481.288 -1545.194i; Y(20,20) 0.0 -15.002i; 

Y(2,5) -277.195 +873.583i; Y(21,21) 104.312 -143.609i; 

Y(2,6) -34.368 +108.124i; Y(21,24) 0.0 +9.267i; 

Y(2,15) -169.726 +534.322i; Y(21,29) -104.312 +133.623i; 

Y(3,3) 0.0 -5.714i; Y(22,22) 164.292 -282.281i; 

Y(3,4) 0.0+ 6.015i; Y(22,26) 0.0 +9.023i; 

Y(4,4) 61.331 -69.160i; Y(23,23) 321.579 -328.810i; 

Y(4,13) -61.331 +62.874i; Y(23,29) -157.677 +161.760i; 

Y(5,5) 277.195 -916.892i; Y(24,24) 0.0 -8.572i; 

Y(5,7) 0.0 +21.277i; Y(25,25) 87.150 -106.814i; 

Y(5,8) 0.0 +20.513i; Y(25,27) 0.0 +9.023i; 

Y(6,6) 34.368 -118.699i; Y(25,29) -56.100 +65.824i; 

Y(6,12) 0.0 +10.638i; Y(26,26) 0.0 -8.572i; 

Y(7,7) 0.0 -20.000i; Y(27,27) 0.0 -8.572i; 

Y(8,8) 452.840 -482.861i; Y(28,28) 373.447 -612.837i; 

Y(8,9) -288.938 +295.777i; Y(28,39) -202.775 +256.136i; 

Y(8,23) -163.902 +167.191i; Y(29,29) 318.089 -372.311i; 

Y(9,9) 300.983 -317.044i; Y(29,30) 0.0 +3.766i; 

Y(9,10) -12.045 +12.342i; Y(29,37) 0.0 +7.895i; 

Y(9,16) 0.0 +8.796i; Y(30,30) 125.789 -524.464i; 

Y(10,10) 12.045 -20.855i; Y(30,32) 0.0 +30.769i; 

Y(10,11) 0.0 +2.857i; Y(30,38) 0.0 +4.131i; 

Y(10,17) 0.0 +5.714i; Y(30,40) -125.789 +485.547i; 

Y(11,11) 0.0 -2.857i; Y(31,31) 0.0 -13.038i; 

Y(12,12) 0.0 -10.000i; Y(31,37) 0.0 +13.038i; 

Y(13,13) 92.381 -100.709i; Y(32,32) 0.0 -30.769i; 

Y(13,18) 0.0 +6.015i; Y(33,33) 0.0 -3.320i; 

Y(13,25) -31.050 +31.640i; Y(33,38) 0.0 +3.320i; 

Y(14,14) 0.0 -15.015i; Y(34,34) 0.0 -7.365i; 

Y(14,43) 0.0 +15.400i; Y(34,38) 0.0 +6.852i; 

Y(15,15) 340.398 -916.783i; Y(35,35) 0.0 -6.180i; 

Y(15,19) 0.0 +8.649i; Y(35,38) 0.0 +6.180i; 

Y(15,20) 0.0 +15.791i; Y(36,36) 0.0 -2.703i; 

Y(15,28) -170.673 +357.003i; Y(36,38) 0.0 +2.703i; 

Y(16,16) 0.0 -8.576i; Y(37,37) 0.0 -21.348i; 

Y(17,17) 0.0 -5.714i; Y(38,38) 0.0 -22.398i; 

Y(18,18) 0.0 -5.714i; Y(39,39) 512.581 -663.260i; 
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Y(39,41) 0.0 +15.015i; Y(41,41) 0.0 -15.015i; 

Y(39,43) -309.806 +392.255i; Y(42,42) 0.0 -20.000i; 

Y(40,40) 125.789 -508.837i; Y(43,43) 309.806 -408.029i; 

Y(40,42) 0.0 +21.622i;   
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Table 7.2 Bus Data for the 43-Bus System 

Bus Vcntr Pload Qload Bus Vcntr Pload Qload 

1 1.06   23  0 0 

2  0 0 24  0.64 0.48 

3  0.16 0.12 25  0 0 

4  0 0 26  0.8 0.6 

5  0.53 0.4 27  0.32 0.24 

6  0 0 28  0 0 

7  1.6 1.2 29  0 0 

8  0 0 30  0 0 

9  0 0 31  -1.16 -0.52 

10  0 0 32  -2.9 -0.257 

11  0 0 33  -2.85 -0.3 

12  0.8 0.6 34  0 0 

13  0 0 35  -0.58 -0.56 

14  0.8 0.6 36  0.005 0.03 

15  0 0 37  0 0 

16  0.64 0.48 38  1.44 1.02 

17  0 0 39  0 0 

18  0.24 0.18 40  0 0 

19  0 0 41  0.8 0.3 

20  0.88 0.66 42  2.24 1.68 

21  0 0 43  0 0 

22  0 0     

 With the double precision arithmetic (programmed in Matlab), the proposed HE 

method is unable to reach the given PBE’s mismatch (10
-3

) in calculating the HV so-

lution for the 43-bus system, with a maximum of 91 terms included in the power series. 

Plotted in Figure 7.3 is the maximum PBE’s mismatch vs. the number of terms in the 

power series. It can be observed that the proposed HE method ‘tends’ to reach the 

mismatch tolerance but fails to ‘converge’ within the given mismatch tolerance. 
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Figure 7.3 Maximum PBE’s Mismatch vs. the Number of Terms in the Power Series 

 It is instructive to plot the condition number of the Padé coefficient matrix in the 

proposed HE method, as the condition number is a significant signal in determining 

whether precision issues occur in the matrix calculations. As a rule of thumb, if the 

condition number ϰ(C)=10
k
, then the arithmetic may lose up to k digits of accuracy due 

to loss of precision from LU factorization and forward/backward substitution when 

calculating the Padé’ approximant. [89]. The maximum condition number of the Padé 

coefficient matrices for all buses for the voltage function is plotted in Figure 7.4 versus 

the number of terms included in the power series. 
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Figure 7.4 Maximum PBE’s Mismatch vs. the Number of Terms in the Power Series 

 It can be observed that the maximum condition number of the Padé matrix becomes 

as large as 10
16

 after 31 terms are included in the power series. Thus, in the process of 

calculation of the coefficients in the numerator/denominator polynomials of the Padé 

matrix, up to 16 digits of accuracy may be lost and it may exhaust the numerical pre-

cision of the Matlab program (double precision.) 

 In evaluating the rounding error in calculating the denominator polynomial of the 

Padé approximant, the obtained coefficients are substituted back into the matrix form of 

the equations. For example, assume the matrix form of the equations are in the form of 

Cb=c (given in (3.34) and repeated in (7.1)). 
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(7.1) 

where C is the Padé matrix on the LHS of (7.1), c is the known coefficients of the power 

series terms given by the vector on the RHS of (7.1) and b is the unknown coefficients 

of the denominator of the Padé approximant.  

The errors are calculated by C  -c by substituting the calculated b values, named   , 

into (7.1). Both the absolute value of the error and the relative percentage of the error 

are calculated by |C  -c| and |C  -c|/|c|. The maximum value of the absolute value (in 
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blue) and relative value of the error (in red) are plotted in Figure 7.5 versus the number 

of terms included in the power series. 

 

Figure 7.5 Maximum Absolute/Relative Error in Cb-c vs. the Number of Terms in the 

Power Series 

7.1.2 Multi-Precision Complex (MPC) Application 

Since the HV solution cannot be obtained by the Matlab program with 16 digits of 

arithmetic accuracy, arbitrary-precision arithmetic was used to provide adequate pre-

cision for the proposed HE method to check if an accurate solution can be obtained. 

There exist various software packages as well as libraries supporting arbi-

trary-precision real arithmetic: Maxima, Maple, Mathematica, etc. The arbi-

trary-precision arithmetic library used in current research is called Multi-Precision 

Complex (MPC). This library was selected since it supported complex arithmetic. 

This library is a dynamic library developed by the GNU Company [90] for perform-

ing arithmetic operations on complex numbers with arbitrarily high precision. In order 

to build the MPC library, Multiple Precision Floating-Point Reliably (MPFR) and 

1.00E-16 

1.00E-13 

1.00E-10 

1.00E-07 

1.00E-04 

1.00E-01 

1.00E+02 

1.00E+05 

1.00E+08 

1.00E+11 

1.00E+14 

1.00E+17 

1.00E+20 

1.00E+23 

0 10 20 30 40 50 60 70 80 90 100 

Absolute Error 

Relative Error 

Number of 

terms in the 

power series 

Error 



126 

 

GNU Multiple Precision (GMP) libraries are needed. These libraries can be installed 

on most Unix-like systems. The libraries were installed on a computer running on a 

Windows OS with Cygwin which is a Unix-like environment in for Windows OS. 

  The proposed HE method is programmed in C language with the extended preci-

sion library to find the HV solution for the same 43-bus system, given in 7.1.1. The C 

program developed uses 200 bits precision (56 digits in the mantissa) rather than 64 bits 

precision (16 digits in the mantissa) in Matlab program. The proposed HE method 

reaches the mismatch tolerance (10
-3

) with 37 terms in the power series and the solution 

obtained is given in Table 7.3. The solution obtained matches with the solution given 

by [10] though 3 decimal places, but with a smaller mismatch in the PBE’s than that 

given by [10]. (The maximum PBE mismatch calculated is 5*10
-3

 from the solution 

provided in [10]). 
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Table 7.3 HV Solution for the 43-Bus System 

Bus V Bus V 

1 1.1360 23 1.0839-j2.4225e-1 

2 1.0704-j2.0129e-1 24 1.1018-j3.1164e-1 

3 1.0985-j2.8089e-1 25 1.0762-j2.4548e-1 

4 1.0664-j2.4847e-1 26 1.0192-j3.6497e-1 

5 1.0677-j2.0317e-1 27 1.1008-j2.8404e-1 

6 1.0687-j2.0774e-1 28 1.0628-j2.0734e-1 

7 1.0650-j2.7307e-1 29 1.0834-j2.4243e-1 

8 1.0840-j2.4152e-1 30 1.1289-j2.3378e-1 

9 1.0825-j2.4163e-1 31 1.1256-j2.9826e-2 

10 1.0845-j2.4477e-1 32 1.2073-j1.6654e-1 

11 1.0845-j2.4477e-1 33 1.2205-j3.1090e-1 

12 1.0658-j2.7755e-1 34 1.0551-j3.3422e-1 

13 1.0682-j2.4819e-1 35 1.2219-j3.0431e-1 

14 1.0346-j2.5361e-1 36 1.1425-j3.6351e-1 

15 1.0659-j2.0498e-1 37 1.0881-j1.0787e-1 

16 1.0415-j2.9972e-1 38 1.1341-j3.5924e-1 

17 1.0845-j2.4477e-1 39 1.0578-j2.0855e-1 

18 1.0878-j2.9010e-1 40 1.1243-j2.3583e-1 

19 1.0567-j2.9015e-1 41 1.0274-j2.5293e-1 

20 1.0706-j2.5817e-1 42 1.1194-j3.2696e-1 

21 1.0791-j2.4254e-1 43 1.0559-j2.0862e-1 

22 1.0537-j2.9033e-1   

 In order to further investigate where the severe loss of precision occurs, different 

bits of precision are assigned during different steps in the proposed algorithm. There 

exist multiple places in the proposed HE method where round-off errors may accu-

mulate: 

1) Calculation of the LU factors of the Y matrix. 

In (5.23) and (5.24) (repeated in (7.2) and (7.3)), the LU factors of the Y matrix (or 

the imaginary part of the Y matrix) has to be calculated while calculating the voltage 

power series coefficients. Though it is unlikely that the LU factorization of the Y matrix 
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can be of significance in the precision issues for a small system (i.e. 43-bus system), it 

may accumulate round-off when the system size becomes large. 

2) Calculating the convolution of two power series 

In (7.2) and (7.3), multiple convolutions exist in the procedure of calculating the 

power series coefficients. I.e., for the term 
)( **

*

sV

sS

i

i  in (7.2), the inverse of the voltage 

function has to be calculated using the convolution of two power series. For the term 

)()( **
sVsV ii  in (7.3), the convolution occurs in the voltage magnitude constraint for the 

PV bus. Also, the convolution appears in the reactive power function divided by the 

voltage function (
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proximant. 

It has been observed in the 43-bus system, the condition number of the Padé matrix 

increases dramatically with the increasing number of terms included in the power se-

ries. Precision lost due to the large condition number of the Padé approximant may 

exhaust the precision in the arithmetic. 

The first 31 power series coefficients obtained, using 200 bits (56 digits) and 300 

bits (86 digits) in the arithmetic using the C program, are compared against with the 

power series coefficients obtained from Matlab with 64 bits (16 digits), and the results 

are given in Table 7.4. In Table 7.4, Matlab64B/16D stands for the double precision 

arithmetic (in Matlab) with 64 bits/16 digits precision. MPC200B/56D stands for the 

extended precision arithmetic with 200 bits/56 digits precision and MPC300B/86D 

stands for the extended precision arithmetic with 300 bits/86 digits precision. It can be 

observed that the power series coefficients obtained from the Matlab program matches 

as few as 10 digits when compared with power-series coefficients obtained using the 56 

digits extended precision MPC code. Also, the power series coefficients obtained from 

the Matlab program matches as few as 10 digits when compared with power-series 

coefficients obtained using the 86 digits extended precision MPC code. Therefore, 

during the process of calculating the power series coefficients, around five digits of 

precision are lost and 10 digits of precision can be preserved.  
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Table 7.4 Number of Matched-up Digits with Different Precision for the Power Series 

Coefficients (Worst Case) 

Power Series (31 terms) Matlab64B/16D MPC200B/56D MPC300B/86D 

Matlab64B/16D X 10 10 

MPC200B/56D X X 56 

MPC300B/86D X X X 

Further, the [15/15] Padé approximant obtained, using 200 bits (56 digits) and 300 

bits (86 digits) in the arithmetic, are compared against the power series coefficients 

obtained from Matlab with 64 bits (16 digits), and the results are given in Table 7.5. It 

can be observed that the Padé approximant obtained, with 56 digits of extended preci-

sion, only matches up to at least 3 digits with the power series coefficients obtained 

from the Matlab program, which indicates severe loss of precision in the procedure of 

calculating the Padé approximant. The Padé approximant calculated with 200 bits 

arithmetic precision matches up to at least 49 digits when compared with the Padé 

approximant calculated with 300 bits precision, indicating that the precision loss occurs 

in calculating the Padé approximant even with 200 bits included in the computation. 

Table 7.5 Number of Matched-up Digits with Different Precision for the Padé Ap-

proximant (Worst Case) 

Padé ([15/15]) Matlab64B/16D MPC200B/56D MPC300B/86D 

Matlab64B/16D X 3 3 

MPC200B/56D X X 49 

MPC300B/86D X X X 

 The 43-bus system, in 7.1.1, is a problematic system with heavy loading, large R/X 

ratio branches and is a radial system. While it is uncertain if all those aspects might 

affect the numerical performance of the proposed HE method, it will now be shown, 

using the IEEE-30 bus system [91], that operation near the bifurcation point will cause 

severe precision issue for the proposed HE method. For the sake of validation, the load 
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in the IEEE-30 bus system is scaled by a factor of 2.81 to bring the system near the 

voltage collapse point. The Matlab program (with 64 bits precision) cannot find the HV 

solution within the given mismatch tolerance (10
-3

), while the C program with extended 

precision (200 bits) can find the solution with 73 terms included in the power series. 

The number of terms needed to get the accurate HV solution using 200 bits of precision 

is plotted, as given in Figure 7.6, vs. the loading condition for the 30-bus system, and it 

can be observed that as the load increases, the number of terms needed in the power 

series increases. 

 

Figure 7.6 Number of Terms needed in the Power Series vs. Load using 200 bits of 

precision 

To validate that the severe precision loss occurs in calculating the Padé approxi-

mant when the system is heavy loaded, the power series coefficients and the Padé ap-

proximant obtained for the 30-bus system under different loading conditions, using 200 

bits (56 digits) and 300 bits (86 digits) representations using the C program, are com-
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for the 30-bus system under normal condition (with scaling factor of 1.0) are given in 

Table 7.6 and Table 7.7 for power series coefficients and Padé approximant, respec-

tively. The results for the 30-bus system under heavily loaded condition (with scaling 

factor of 2.81) are given in Table 7.8 and Table 7.9. 

 

Table 7.6 Number of Matching Digits with Different Precision for the Power Series 

Coefficients (Worst Case) for Normal Loading 

Power Series (31 terms) Matlab64B/16D MPC200B/56D MPC300B/86D 

Matlab64B/16D X 14 14 

MPC200B/56D X X 56 

MPC300B/86D X X X 

 

Table 7.7 Number of Matching Digits with Different Precision for the Padé Approxi-

mant (Worst Case) for Normal Loading 

Padé ([15/15]) Matlab64B/16D MPC200B/56D MPC300B/86D 

Matlab64B/16D X 10 10 

MPC200B/56D X X 56 

MPC300B/86D X X X 

 

Table 7.8 Number of Matching Digits with Different Precision for the Power Series 

Coefficients (Worst Case) for Heavy Loading 

Power Series (31 terms) Matlab64B/16D MPC200B/56D MPC300B/86D 

Matlab64B/16D X 10 10 

MPC200B/56D X X 56 

MPC300B/86D X X X 

 

Table 7.9 Number of Matching Digits with Different Precision for the Padé Approxi-

mant (Worst Case) for Heavy Loading 

Padé ([15/15]) Matlab64B/16D MPC200B/56D MPC300B/86D 

Matlab64B/16D X 3 3 

MPC200B/56D X X 46 

MPC300B/86D X X X 
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7.2 Precision Issue for the LV Solution of the 43-bus System 

While the precision issues in finding the HV PF solution of the 43-bus system, 

using the proposed HE method, can be resolved by using extended precision arithmetic, 

the numerical issue for the LV solution of the 43-bus system is different and will be 

discussed in this section. 

For a conventional lower part of the PV curve, the voltage magnitude goes up 

monotonically as the load increases (as shown in Figure 6.1). However, the curve 

presented in the 43-bus system behaves differently, as shown in Figure 7.7, when all the 

loads in the system are scaled up (the PV curve of bus 42 is generated by PSAT [92] 

where λ is the load scaling parameter used in the CPF method.) 

 

Figure 7.7 The PV curve for Bus 42 obtained using PSAT 
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It can be observed that the lower PV curve first goes down when the load increases 

and it reaches to a 'minimum', then it turns up after the 'minimum' point. The numerical 

tests conducted show that the proposed LV/large-angle PBE’s have precision issues in 

convergence right before the 'minimum' point and no LV solution can be found after 

that ‘turning point’ even with the higher precision and adequate number of terms, i.e. 

including 56 digits precision and 99 terms in the power series. With the discussion of 

curve fitting and numerical tests given in Section 7.1 that the proposed HE method 

suffers precision issue near the voltage collapse point, it is likely that the HE method 

will suffer the numerical issue at the ‘minimum’ point of the lower PV curve, shown in 

Figure 7.7. 

One way of overcoming the precision issue at the local minima on the PV curve is 

to use a process similar to the continuation-power-flow method: the load in the system 

is scaled by a small increment and the solution from the previous loading condition is 

used as the new germ for the next loading level. While the current form of the proposed 

HE method does not allow the algorithm to start from the previous solution, modifica-

tions can be made by adding an extra term on the RHS of the embedded PBE’s to re-

alize it, as given in (7.4) to (7.6). 
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where Vi
Last

 is the solution obtained from the last loading level. 

 The proposed LV/large-angle PBE’s, given by (7.2) and (7.3), will be needed in 

calculating the first voltage solution at the first loading level which is one step away 

from the zero load condition. Once the solution at the first loading level is obtained, one 

can use the proposed HE method in (7.4) to (7.6) to calculate the next solution without 

the necessity of introducing the dual voltage in (7.2) and (7.3). The procedure to cal-

culate the power series coefficients is straightforward and has been discussed in 

Chapter 3. 

 With the CPF-based computation process applied to the HE formulations, one LV 

solution for the 43-bus system can be obtained by substituting bus 37 in its LV form, 

using a PBE’s mismatch tolerance of 10
-3

. The obtained LV solution is listed in Table 

7.10. 
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Table 7.10 LV Solution for the 43-Bus System 

Bus V Bus V 

1 1.1360 23 1.0111 -j2.3476e-1 

2 1.0346 -j2.0153e-1 24 1.0150 -j3.0396e-1 

3 1.0160 -j2.7097e-1 25 1.0010 -j2.3541e-1 

4 9.8998e-1 -j2.3786e-1 26 9.6550e-1 -j3.6733e-1 

5 1.0311 -j2.0307e-1 27 1.0188 -j2.7503e-1 

6 1.0323 -j2.0792e-1 28 1.0264 -j2.0758e-1 

7 1.0226 -j2.7433e-1 29 1.0091 -j2.3272e-1 

8 1.0127 -j2.3621e-1 30 9.3614e-1 -j1.9618e-1 

9 1.0110 -j2.3625e-1 31 1.0568 -j5.3029e-3 

10 1.0128 -j2.3920e-1 32 1.0266 -j1.1446e-1 

11 1.0128 -j2.3920e-1 33 9.9023e-1 -j2.7848e-1 

12 1.0238 -j2.7906e-1 34 8.2156e-1 -j3.1170e-1 

13 9.9197e-1 -j2.3765e-1 35 9.9208e-1 -j2.7012e-1 

14 9.9480e-1-j2.5475e-1 36 8.9322e-1 -j3.4099e-1 

15 1.0297 -j2.0522e-1 37 1.0186 -j8.9303e-2 

16 9.6190e-1 -j2.9676e-1 38 8.8307e-1 -j3.3504e-1 

17 1.0128 -j2.3920e-1 39 1.0212 -j2.0874e-1 

18 1.0043 -j2.8083e-1 40 9.3019e-1 -j1.9845e-1 

19 1.0111 -j2.9152e-1 41 9.8927e-1 -j2.5439e-1 

20 1.0302 -j2.5944e-1 42 8.8149e-1 -j2.9944e-1 

21 1.0044 -j2.3274e-1 43 1.0192 -j2.0879e-1 

22 1.0079 -j2.9164e-1   

7.3 Large Systems 

While the system tested by the HE method is small in size, a sparsity-based program 

is being developed by our research group in order to simulate the large-scaled systems. 

The Electric Reliability Council of Texas (ERCOT) power system with more than 6000 

buses (a total of 6057 buses without islanding) has been simulated by the proposed HE 

method without considering discrete controls (i.e. no remote regulation, no bus-type 

switching) in the system to validate the algorithm. The maximum voltage magnitude 

difference between the solution obtained by the proposed HE method and the solution 
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obtained from PowerWorld is 2.56*10
-4

 and the maximum angle difference is 0.71 

degree, which numerically verifies that the proposed HE method can find the HV so-

lution for a large scaled power system. The first 100 buses’ voltage magnitudes (in p.u.) 

and angles (in degrees) are given in Table 7.11. 

Table 7.11 HV Solution for ERCOT System from HE Method and PowerWorld 

Bus 

Num-

ber 

Mag. 

(HE) 

Mag. 

(Power 

World) 

Abs. Mag. 

Error 

Angle 

(HE) 

Angle 

(Power 

World) 

Abs. 

Angle 

Error 

1 1.03711 1.03717 5.94E-05 27.06 26.64 0.42 

2 1.03637 1.03644 6.98E-05 27.09 26.67 0.42 

3 1.03472 1.03479 6.63E-05 26.81 26.38 0.43 

4 1.03112 1.03118 6.46E-05 26.35 25.92 0.43 

5 1.03589 1.03595 6.37E-05 26.99 26.57 0.42 

6 1.03240 1.03247 6.78E-05 26.34 25.91 0.43 

7 1.03212 1.03218 6.19E-05 26.31 25.89 0.42 

8 1.02461 1.02468 6.64E-05 25.76 25.31 0.45 

9 1.00299 1.00308 8.56E-05 22.40 21.93 0.47 

10 1.01745 1.0176 1.49E-04 25.94 25.44 0.50 

11 1.01883 1.0189 7.23E-05 25.70 25.23 0.47 

12 1.01774 1.01789 1.50E-04 25.80 25.3 0.50 

13 1.01763 1.01777 1.38E-04 25.34 24.85 0.49 

14 1.00335 1.00345 1.00E-04 22.54 22.06 0.48 

15 1.01865 1.01873 8.09E-05 25.69 25.22 0.47 

16 1.00457 1.00465 7.87E-05 22.77 22.31 0.46 

17 1.01669 1.0167 1.32E-05 26.42 25.97 0.45 

18 1.00415 1.00424 9.07E-05 20.80 20.33 0.47 

19 1.00626 1.00627 6.42E-06 22.72 22.25 0.47 

20 1.01055 1.01056 1.03E-05 24.28 23.83 0.45 

21 1.01942 1.01949 6.82E-05 25.54 25.08 0.46 

22 1.01009 1.01017 7.81E-05 23.01 22.55 0.46 

23 1.00290 1.00299 9.29E-05 21.77 21.3 0.47 

24 1.00372 1.00381 9.17E-05 20.82 20.35 0.47 

25 1.00160 1.0017 1.01E-04 20.95 20.47 0.48 

26 1.00957 1.00981 2.42E-04 28.58 27.99 0.59 

27 1.00149 1.0016 1.12E-04 19.58 19.09 0.49 

28 1.00714 1.0072 6.46E-05 18.99 18.48 0.51 
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29 0.99707 0.99718 1.09E-04 19.04 18.54 0.50 

30 0.95049 0.95074 2.50E-04 24.53 23.91 0.62 

31 0.99408 0.99419 1.06E-04 18.84 18.35 0.49 

32 0.99536 0.99545 8.85E-05 18.67 18.18 0.49 

33 1.00502 1.00509 6.63E-05 17.96 17.48 0.48 

34 1.01330 1.01331 1.50E-05 24.55 24.09 0.46 

35 1.00281 1.00288 6.71E-05 17.77 17.29 0.48 

36 1.00909 1.00913 4.29E-05 19.84 19.35 0.49 

37 1.00551 1.00556 5.43E-05 18.53 18.05 0.48 

38 1.00759 1.00768 8.83E-05 19.52 19.05 0.47 

39 1.01272 1.01276 4.47E-05 20.11 19.62 0.49 

40 1.00654 1.00658 4.16E-05 16.32 15.83 0.49 

41 0.99879 0.99883 4.18E-05 15.88 15.4 0.48 

42 1.01114 1.01115 8.85E-06 24.06 23.6 0.46 

43 1.00834 1.00838 3.65E-05 13.98 13.5 0.48 

44 0.99094 0.99106 1.22E-04 18.93 18.44 0.49 

45 1.01725 1.01735 1.04E-04 16.91 16.38 0.53 

46 1.01230 1.01238 8.44E-05 15.72 15.2 0.52 

47 1.00524 1.00543 1.90E-04 31.53 30.86 0.67 

48 1.00951 1.00961 9.67E-05 17.50 16.98 0.52 

49 1.01416 1.01426 1.00E-04 16.82 16.3 0.52 

50 1.00630 1.00653 2.29E-04 30.28 29.64 0.64 

51 1.00018 1.00027 9.17E-05 17.93 17.41 0.52 

52 1.01636 1.01646 9.69E-05 16.79 16.26 0.53 

53 1.01700 1.01709 9.21E-05 16.88 16.35 0.53 

54 1.00181 1.00192 1.13E-04 18.91 18.38 0.53 

55 1.02181 1.02192 1.14E-04 17.15 16.63 0.52 

56 1.00457 1.0048 2.25E-04 29.73 29.09 0.64 

57 1.00985 1.00999 1.36E-04 21.25 20.72 0.53 

58 1.01385 1.01395 1.05E-04 19.31 18.79 0.52 

59 1.00492 1.00504 1.24E-04 19.86 19.33 0.53 

60 1.02326 1.02338 1.18E-04 17.78 17.25 0.53 

61 1.00841 1.0085 9.36E-05 18.90 18.38 0.52 

62 1.00876 1.00885 8.99E-05 19.01 18.5 0.51 

63 1.00481 1.00492 1.11E-04 19.22 18.7 0.52 

64 1.02725 1.02725 4.69E-06 14.50 14.03 0.47 

65 1.00624 1.00634 1.01E-04 19.09 18.57 0.52 

66 1.01037 1.01046 8.82E-05 11.45 10.95 0.50 

67 1.01086 1.01095 9.21E-05 12.00 11.5 0.50 

68 1.00199 1.00209 9.96E-05 17.46 16.96 0.50 

69 0.95610 0.95624 1.43E-04 15.22 14.71 0.51 
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70 1.01033 1.01042 8.52E-05 11.34 10.84 0.50 

71 1.01496 1.01505 8.79E-05 11.05 10.54 0.51 

72 1.00169 1.00175 5.89E-05 10.34 9.85 0.49 

73 1.00027 1.00032 5.19E-05 10.37 9.88 0.49 

74 1.01382 1.01389 7.19E-05 18.97 18.47 0.50 

75 1.01566 1.01573 6.55E-05 19.01 18.5 0.51 

76 1.01440 1.01446 6.26E-05 18.87 18.36 0.51 

77 1.00186 1.00195 8.64E-05 17.24 16.74 0.50 

78 1.01716 1.01722 5.91E-05 19.08 18.58 0.50 

79 1.02159 1.02164 4.54E-05 19.35 18.85 0.50 

80 1.02355 1.02359 3.72E-05 19.57 19.07 0.50 

81 1.03152 1.03154 2.45E-05 20.50 20.01 0.49 

82 0.99811 0.99818 7.39E-05 18.43 17.94 0.49 

83 1.00913 1.00915 2.19E-05 10.69 10.21 0.48 

84 1.00932 1.00934 2.12E-05 10.55 10.07 0.48 

85 1.03171 1.0317 6.15E-06 13.93 13.47 0.46 

86 1.00698 1.00699 1.30E-05 9.33 8.86 0.47 

87 1.01013 1.01015 1.84E-05 10.25 9.77 0.48 

88 0.97928 0.9793 1.97E-05 22.68 22.23 0.45 

89 1.01178 1.01178 2.31E-06 18.87 18.41 0.46 

90 1.01868 1.0187 2.02E-05 23.85 23.4 0.45 

91 1.00438 1.0044 1.60E-05 9.87 9.39 0.48 

92 1.02250 1.0225 1.08E-06 13.96 13.49 0.47 

93 1.00457 1.00458 9.48E-06 9.91 9.44 0.47 

94 1.01655 1.01655 3.73E-06 10.47 10 0.47 

95 1.00210 1.00212 2.09E-05 8.78 8.31 0.47 

96 0.95749 0.95749 1.23E-06 13.45 12.99 0.46 

97 0.99543 0.99544 1.35E-05 21.63 21.18 0.45 

98 1.02604 1.02604 4.97E-06 15.60 15.14 0.46 

99 1.00256 1.00258 1.66E-05 8.98 8.51 0.47 

100 1.02246 1.02247 5.14E-06 15.91 15.44 0.47 

 

The voltage magnitude/angle error between the solution obtained from the pro-

posed HE method and the solution obtained from PowerWorld, for each bus in the 

ERCOT system, are plotted in Figure 7.8 and Figure 7.9, respectively. 
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Figure 7.8 The Magnitude Error in the ERCOT system vs. Bus Number 

 

 

Figure 7.9 The Angle Error in the ERCOT system vs. Bus Number 

7.4 Conclusion 

The numerical performance of the proposed HE method has been tested on an 

ill-conditioned power system (i.e. 43-bus system, load scaled 30-bus system) operat-
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ing near the voltage collapse point, showing that extended precision may be needed as 

the system approaches to the voltage collapse point or the bifurcation point. The spe-

cial case of the 43-bus bus system is tested to validate the numerical performance of 

the proposed LV/large-angle formulation and a continuation-power-flow-liked pro-

cess is proposed in order to overcome the precision issue in obtaining the LV solution 

of the 43-bus system. To validate the numerical performance of the HE method on a 

large power system, the ERCOT system, with more than 6000 buses, has been tested. 

The HE numerical results compared with results obtained from the commercial soft-

ware (i.e. PowerWorld) shows that the HE method is capable of finding the HV PF 

solution when the system size is large in scale. 
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8 CONCLUSION 

8.1 Summary 

The HE method was introduced for solving the PF problem by using an HE for-

mulation which relied on expanding the voltage as a power series in the embedding 

parameter, s. The primary advantage of the method was that it was guaranteed to 

converge to the HV solution for the PF problem and would signal if no solution ex-

isted.  

By reformulating the PBE for a PQ bus, a PBE LV HE formulation for the 

two-bus system was mathematically proven to converge to only the LV solution, if the 

solution exists. The generalized formulation for the multi-bus system was derived and 

numerical experiments showed that all LV/large-angle solutions for the five- and 

seven-bus systems could be found and matched with the LV solutions found by other 

algorithms. It was observed that if one bus PBE was represented using the LV HE 

formulation, the voltage solution obtained (if it converged) for that specific bus would 

have a relatively lower voltage magnitude and larger phase angle for the system tested 

than the HV solution obtained for the same bus. 

The proposed HE method is further developed to find only the type-1 PF solutions 

(where the PF Jacobian has a single eigenvalue with a positive real part), among all 

the LV/large-angle solutions. By including a proper dynamic model for the generator 

and load, the system angle stability or transient stability margin can be evaluated by 



143 

 

finding the closest unstable equilibrium point (UEP), which is a type-1 UEP’s with 

the lowest value of the energy function among all the type-1 UEP’s. 

The numerical performance of the proposed HE method has been investigated by 

the system operating near the voltage collapse (i.e. 43-bus system, load scaled 30-bus 

system), showing that extended precision may be needed as the system approaches to 

the voltage collapse point or the bifurcation point. The numerical issues in finding the 

LV solution of the 43-bus system are tackled by a continuation-power-flow-liked 

process applied to the proposed HE method and it can be applied to other case where 

precision is a problem. To validate the numerical performance of the HE method on 

large power system, the ERCOT system, with more than 6000 buses, has been tested. 

The numerical results shows that the HE method is capable of finding the HV PF so-

lution when the system size is large in scale, by comparing the result obtained from 

the commercial software (i.e. PowerWorld.)  
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Table 10.1 Solutions for the 14-Bus System using HE Method 

Soln. 

NO. 
1 2 3 4 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -0.201 1.045 -2.614 1.045 -2.635 1.045 -2.868 

V3 1.048 -0.834 0.977 -3.973 0.965 -3.857 0.951 -4.073 

V4 1.051 -1.068 0.915 -4.410 0.893 -4.064 0.866 -4.144 

V5 1.051 -0.936 0.918 -3.691 0.873 -2.821 0.854 -2.899 

V6 1.047 -1.853 0.625 -14.401 0.334 -20.944 0.312 -22.440 

V7 1.061 -2.109 0.839 -12.160 0.860 -11.663 0.795 -13.442 

V8 1.090 -2.284 1.090 -12.381 1.090 -11.878 1.090 -13.675 

V9 1.053 -2.262 0.652 -17.065 0.710 -15.962 0.586 -19.706 

V10 1.050 -2.266 0.645 -16.833 0.642 -16.927 0.536 -20.544 

V11 1.048 -2.116 0.634 -15.822 0.491 -18.851 0.425 -21.829 

V12 1.044 -1.891 0.548 -15.618 0.160 -30.617 0.149 -31.958 

V13 1.045 -1.973 0.477 -13.989 0.004 -44.490 0.006 -46.201 

V14 1.047 -2.223 0.005 -53.577 0.397 -17.082 0.008 -57.297 
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Soln. 

NO. 
5 6 7 8 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -2.648 1.045 -2.897 1.045 -2.560 1.045 -2.795 

V3 0.985 -4.107 0.955 -4.173 0.963 -3.705 0.949 -3.928 

V4 0.929 -4.697 0.874 -4.356 0.889 -3.810 0.862 -3.904 

V5 0.911 -3.693 0.865 -3.227 0.868 -2.492 0.849 -2.590 

V6 0.488 -19.044 0.369 -21.435 0.300 -20.259 0.282 -21.814 

V7 0.918 -11.270 0.802 -13.439 0.855 -11.465 0.791 -13.240 

V8 1.090 -11.472 1.090 -13.670 1.090 -11.681 1.090 -13.474 

V9 0.813 -14.626 0.598 -19.490 0.701 -15.823 0.580 -19.565 

V10 0.755 -15.497 0.556 -20.200 0.629 -16.744 0.525 -20.381 

V11 0.624 -17.238 0.463 -21.169 0.467 -18.504 0.405 -21.549 

V12 0.006 -9.797 0.009 -14.286 0.018 -19.736 0.020 -21.504 

V13 0.391 -24.169 0.198 -27.238 0.005 -44.836 0.008 -46.692 

V14 0.624 -17.604 0.006 -58.595 0.393 -16.987 0.008 -57.214 

Soln. 

NO. 
9 10 11 12 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -2.609 1.045 -2.801 1.045 -2.714 1.045 -2.762 

V3 0.963 -3.777 0.940 -3.807 0.932 -3.565 0.948 -3.851 

V4 0.889 -3.908 0.846 -3.563 0.832 -3.074 0.861 -3.770 

V5 0.882 -2.946 0.842 -2.473 0.820 -1.704 0.846 -2.470 

V6 0.436 -17.127 0.312 -20.563 0.184 -24.724 0.262 -23.809 

V7 0.817 -11.905 0.734 -13.585 0.729 -13.256 0.791 -12.798 

V8 1.090 -12.131 1.090 -13.837 1.090 -13.511 1.090 -13.032 

V9 0.620 -17.051 0.470 -21.778 0.466 -21.493 0.581 -18.857 

V10 0.432 -18.157 0.326 -23.150 0.324 -22.917 0.404 -20.037 

V11 0.003 -67.808 0.004 -71.860 0.005 -73.492 0.004 -71.690 

V12 0.441 -16.914 0.264 -21.835 0.056 -29.783 0.011 -14.578 

V13 0.457 -17.561 0.233 -20.820 0.011 -47.503 0.226 -28.769 

V14 0.545 -17.617 0.007 -58.798 0.010 -58.860 0.421 -21.856 
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Soln. 

NO. 
13 14 15 16 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -2.760 1.045 -2.711 1.045 -2.472 1.045 -2.542 

V3 0.934 -3.662 0.932 -3.560 0.943 -3.244 0.929 -3.164 

V4 0.835 -3.246 0.832 -3.065 0.853 -2.773 0.827 -2.383 

V5 0.825 -1.961 0.820 -1.692 0.867 -2.400 0.839 -1.922 

V6 0.216 -24.229 0.182 -24.680 0.513 -14.772 0.397 -17.287 

V7 0.730 -13.385 0.729 -13.248 0.686 -11.541 0.646 -11.939 

V8 1.090 -13.638 1.090 -13.502 1.090 -11.810 1.090 -12.225 

V9 0.467 -21.609 0.466 -21.485 0.361 -20.639 0.292 -23.859 

V10 0.324 -23.019 0.324 -22.908 0.004 -63.662 0.005 -66.704 

V11 0.005 -73.434 0.005 -73.470 0.248 -14.763 0.191 -18.086 

V12 0.017 -18.330 0.050 -28.983 0.495 -15.327 0.343 -18.565 

V13 0.113 -30.817 0.012 -47.498 0.485 -15.550 0.301 -17.297 

V14 0.009 -60.182 0.010 -58.864 0.409 -18.528 0.009 -57.686 

Soln. 

NO. 
17 18 19 20 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -2.531 1.045 -2.517 1.045 -2.652 1.045 -2.557 

V3 0.920 -3.030 0.918 -2.966 0.926 -3.308 0.920 -3.060 

V4 0.810 -2.008 0.806 -1.858 0.820 -2.529 0.810 -2.039 

V5 0.809 -1.113 0.806 -1.024 0.822 -1.775 0.812 -1.307 

V6 0.207 -23.884 0.208 -23.877 0.281 -23.170 0.248 -23.010 

V7 0.653 -11.791 0.640 -11.694 0.664 -12.244 0.641 -11.797 

V8 1.090 -12.074 1.090 -11.983 1.090 -12.523 1.090 -12.086 

V9 0.315 -22.887 0.289 -23.747 0.333 -22.826 0.289 -23.812 

V10 0.005 -67.920 0.005 -68.580 0.005 -67.595 0.005 -68.348 

V11 0.094 -29.316 0.094 -29.352 0.132 -25.608 0.115 -26.552 

V12 0.080 -31.105 0.082 -31.211 0.011 -15.296 0.014 -16.698 

V13 0.007 -48.211 0.009 -47.412 0.205 -29.695 0.131 -29.575 

V14 0.168 -26.787 0.017 -58.901 0.269 -26.387 0.013 -61.305 
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Soln. 

NO. 
21 22 23 24 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -2.510 1.045 -2.495 1.045 -2.564 1.045 -2.552 

V3 0.920 -2.989 0.917 -2.923 0.934 -3.274 0.924 -3.104 

V4 0.809 -1.938 0.805 -1.784 0.836 -2.643 0.816 -2.182 

V5 0.807 -1.014 0.804 -0.920 0.843 -2.064 0.823 -1.554 

V6 0.197 -23.681 0.197 -23.681 0.384 -18.159 0.306 -19.979 

V7 0.653 -11.732 0.639 -11.629 0.676 -11.860 0.643 -11.893 

V8 1.090 -12.016 1.090 -11.919 1.090 -12.134 1.090 -12.181 

V9 0.315 -22.832 0.289 -23.687 0.350 -21.572 0.290 -23.908 

V10 0.005 -67.891 0.006 -68.554 0.005 -66.455 0.006 -68.565 

V11 0.088 -29.821 0.089 -29.895 0.007 -66.445 0.008 -67.679 

V12 0.036 -26.051 0.035 -25.826 0.372 -18.534 0.259 -21.289 

V13 0.008 -48.477 0.011 -47.561 0.372 -19.034 0.229 -20.382 

V14 0.168 -26.780 0.017 -58.969 0.353 -21.147 0.010 -59.082 

Soln. 

NO. 
25 26 27 28 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -2.609 1.045 -2.526 1.045 -1.628 1.045 -1.671 

V3 0.923 -3.204 0.918 -2.983 0.909 -1.152 0.907 -1.184 

V4 0.815 -2.327 0.806 -1.887 0.792 1.145 0.788 1.163 

V5 0.815 -1.476 0.807 -1.069 0.821 0.327 0.814 0.409 

V6 0.239 -24.000 0.213 -23.861 0.443 -13.815 0.402 -15.185 

V7 0.662 -12.125 0.640 -11.717 0.509 -1.919 0.508 -2.029 

V8 1.090 -12.405 1.090 -12.007 1.090 -2.282 1.090 -2.393 

V9 0.331 -22.822 0.289 -23.781 0.009 -55.260 0.010 -56.368 

V10 0.005 -67.871 0.006 -68.688 0.063 -27.010 0.052 -33.198 

V11 0.011 -70.077 0.013 -69.110 0.244 -15.503 0.217 -17.484 

V12 0.013 -16.212 0.017 -18.074 0.401 -14.755 0.349 -16.534 

V13 0.179 -30.467 0.112 -30.744 0.370 -14.121 0.307 -15.461 

V14 0.256 -26.581 0.013 -61.231 0.151 -18.487 0.022 -48.634 
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Soln. 

NO. 
29 30 31 32 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -1.646 1.045 -1.678 1.045 -14.707 1.045 -7.304 

V3 0.908 -1.169 0.906 -1.190 0.654 -19.971 0.005 -49.573 

V4 0.791 1.144 0.787 1.166 0.304 -25.344 0.771 -9.210 

V5 0.819 0.354 0.813 0.428 0.001 -74.950 0.856 -7.681 

V6 0.428 -14.258 0.394 -15.395 0.157 -41.502 0.860 -9.438 

V7 0.509 -2.006 0.508 -2.079 0.594 -41.527 0.910 -10.674 

V8 1.090 -2.370 1.090 -2.444 1.090 -41.839 1.090 -10.877 

V9 0.010 -55.730 0.010 -56.561 0.451 -45.551 0.875 -10.798 

V10 0.025 -48.353 0.030 -46.247 0.396 -46.225 0.871 -10.680 

V11 0.215 -16.161 0.201 -17.835 0.276 -46.153 0.865 -10.159 

V12 0.387 -15.219 0.342 -16.750 0.155 -41.205 0.857 -9.544 

V13 0.357 -14.624 0.301 -15.708 0.184 -45.023 0.859 -9.731 

V14 0.144 -19.413 0.023 -48.731 0.328 -46.460 0.866 -10.467 

Soln. 

NO. 
33 34 35 36 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -8.920 1.045 -8.933 1.045 -9.070 1.045 -8.965 

V3 0.005 -51.902 0.005 -51.818 0.005 -51.931 0.005 -52.054 

V4 0.670 -12.089 0.654 -11.807 0.633 -11.801 0.680 -12.430 

V5 0.751 -9.668 0.717 -8.794 0.702 -8.767 0.746 -9.703 

V6 0.511 -21.594 0.273 -28.217 0.256 -29.671 0.403 -26.408 

V7 0.729 -21.485 0.749 -21.171 0.694 -23.200 0.796 -20.384 

V8 1.090 -21.739 1.090 -21.419 1.090 -23.466 1.090 -20.616 

V9 0.547 -26.411 0.597 -25.559 0.494 -29.562 0.682 -23.735 

V10 0.538 -25.933 0.538 -26.405 0.450 -30.270 0.631 -24.474 

V11 0.522 -24.104 0.407 -27.705 0.353 -30.818 0.519 -25.666 

V12 0.446 -22.827 0.125 -37.249 0.115 -38.439 0.007 -17.452 

V13 0.389 -21.305 0.005 -52.315 0.007 -53.241 0.323 -32.038 

V14 0.006 -62.101 0.333 -26.962 0.010 -66.867 0.521 -26.459 
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Soln. 

NO. 
37 38 39 40 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -9.096 1.045 -8.887 1.045 -9.027 1.045 -8.906 

V3 0.005 -52.020 0.005 -51.715 0.005 -51.837 0.005 -51.727 

V4 0.640 -12.007 0.651 -11.609 0.631 -11.619 0.650 -11.608 

V5 0.710 -9.103 0.713 -8.533 0.699 -8.531 0.723 -8.900 

V6 0.303 -28.649 0.249 -27.699 0.235 -29.227 0.355 -24.253 

V7 0.701 -23.099 0.746 -21.058 0.692 -23.082 0.712 -21.514 

V8 1.090 -23.363 1.090 -21.307 1.090 -23.350 1.090 -21.774 

V9 0.504 -29.222 0.591 -25.510 0.490 -29.511 0.521 -26.799 

V10 0.466 -29.768 0.529 -26.337 0.442 -30.223 0.362 -28.051 

V11 0.385 -29.956 0.391 -27.535 0.339 -30.720 0.003 -76.260 

V12 0.011 -21.812 0.024 -27.990 0.025 -29.803 0.357 -24.298 

V13 0.162 -34.696 0.006 -52.735 0.009 -53.545 0.372 -25.366 

V14 0.008 -67.618 0.330 -26.964 0.010 -66.880 0.452 -26.820 

Soln. 

NO. 
41 42 43 44 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -9.001 1.045 -8.996 1.045 -8.968 1.045 -8.745 

V3 0.005 -51.669 0.005 -51.757 0.005 -51.552 0.005 -51.141 

V4 0.618 -11.173 0.630 -11.460 0.611 -10.891 0.624 -10.265 

V5 0.693 -8.288 0.696 -8.366 0.681 -7.819 0.714 -8.265 

V6 0.250 -27.397 0.214 -30.763 0.177 -30.910 0.418 -21.792 

V7 0.644 -23.695 0.692 -22.675 0.642 -23.571 0.603 -21.180 

V8 1.090 -23.982 1.090 -22.943 1.090 -23.860 1.090 -21.487 

V9 0.398 -32.160 0.490 -28.914 0.396 -32.076 0.304 -30.528 

V10 0.275 -33.777 0.341 -30.265 0.274 -33.741 0.005 -72.901 

V11 0.005 -80.540 0.004 -80.471 0.005 -82.305 0.201 -22.412 

V12 0.205 -28.709 0.014 -22.316 0.023 -26.093 0.400 -22.522 

V13 0.183 -28.197 0.185 -36.831 0.091 -38.111 0.393 -23.047 

V14 0.009 -68.094 0.351 -31.643 0.010 -69.701 0.336 -27.542 
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Soln. 

NO. 
45 46 47 48 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -8.770 1.045 -8.846 1.045 -8.770 1.045 -8.800 

V3 0.005 -51.027 0.005 -51.144 0.005 -50.926 0.005 -51.146 

V4 0.605 -9.823 0.600 -9.976 0.593 -9.484 0.611 -10.121 

V5 0.692 -7.716 0.679 -7.555 0.672 -7.106 0.695 -7.893 

V6 0.321 -24.142 0.229 -30.117 0.202 -29.875 0.313 -25.232 

V7 0.571 -21.863 0.586 -22.144 0.567 -21.817 0.595 -21.649 

V8 1.090 -22.187 1.090 -22.460 1.090 -22.143 1.090 -21.960 

V9 0.248 -34.192 0.282 -33.073 0.246 -34.271 0.295 -31.672 

V10 0.006 -76.294 0.006 -77.358 0.006 -78.281 0.006 -76.328 

V11 0.153 -26.036 0.106 -34.504 0.091 -35.991 0.008 -73.029 

V12 0.273 -25.469 0.014 -22.939 0.019 -24.373 0.299 -25.838 

V13 0.241 -24.521 0.166 -37.537 0.106 -37.070 0.300 -26.775 

V14 0.011 -66.264 0.222 -36.399 0.015 -70.071 0.290 -30.595 

Soln. 

NO. 
49 50 51 52 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -8.772 1.045 -8.817 1.045 -8.749 1.045 -144.794 

V3 0.005 -50.971 0.005 -51.067 0.005 -50.872 0.874 -141.787 

V4 0.597 -9.628 0.597 -9.802 0.590 -9.360 0.736 -135.744 

V5 0.680 -7.348 0.674 -7.290 0.668 -6.902 0.606 -128.508 

V6 0.247 -26.920 0.197 -30.962 0.176 -30.713 0.691 -132.184 

V7 0.569 -21.898 0.584 -22.097 0.566 -21.793 0.867 -137.430 

V8 1.090 -22.223 1.090 -22.414 1.090 -22.120 1.090 -137.644 

V9 0.247 -34.353 0.280 -33.164 0.246 -34.309 0.802 -137.610 

V10 0.007 -78.704 0.006 -78.042 0.007 -78.983 0.780 -136.989 

V11 0.011 -73.748 0.014 -75.402 0.016 -73.858 0.734 -134.968 

V12 0.203 -28.288 0.016 -24.043 0.023 -25.985 0.694 -132.556 

V13 0.182 -27.924 0.146 -38.443 0.091 -38.306 0.702 -133.262 

V14 0.013 -67.881 0.211 -36.808 0.016 -70.095 0.755 -136.052 
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Soln. 

NO. 
53 54 55 56 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -141.926 1.045 -141.701 1.045 -141.995 1.045 -141.414 

V3 0.824 -140.340 0.820 -140.169 0.834 -140.475 0.811 -139.989 

V4 0.637 -134.853 0.629 -134.631 0.655 -135.351 0.613 -134.366 

V5 0.512 -125.732 0.490 -124.533 0.516 -126.234 0.482 -124.259 

V6 0.375 -140.543 0.201 -146.773 0.317 -145.682 0.224 -146.913 

V7 0.705 -144.702 0.731 -144.240 0.773 -143.384 0.683 -145.756 

V8 1.090 -144.965 1.090 -144.493 1.090 -143.624 1.090 -146.027 

V9 0.512 -149.905 0.572 -148.719 0.645 -146.781 0.480 -152.016 

V10 0.484 -149.167 0.505 -149.318 0.586 -147.224 0.432 -152.334 

V11 0.427 -145.968 0.354 -149.558 0.453 -147.316 0.328 -151.430 

V12 0.322 -141.807 0.073 -153.533 0.009 -137.168 0.016 -140.910 

V13 0.282 -140.550 0.006 -172.312 0.267 -152.441 0.117 -153.493 

V14 0.007 175.473 0.319 -150.226 0.476 -148.746 0.008 170.563 

Soln. 

NO. 
57 58 59 60 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -141.701 1.045 -141.710 1.045 -141.393 1.045 -141.708 

V3 0.819 -140.157 0.815 -140.112 0.806 -139.888 0.796 -139.745 

V4 0.627 -134.584 0.621 -134.351 0.604 -134.002 0.588 -132.834 

V5 0.488 -124.414 0.490 -124.423 0.470 -123.313 0.474 -122.985 

V6 0.193 -146.603 0.249 -142.576 0.149 -148.590 0.275 -140.121 

V7 0.730 -144.238 0.694 -144.747 0.679 -145.532 0.586 -144.432 

V8 1.090 -144.492 1.090 -145.014 1.090 -145.805 1.090 -144.748 

V9 0.570 -148.748 0.498 -150.262 0.475 -151.832 0.286 -154.300 

V10 0.501 -149.353 0.346 -151.578 0.330 -153.238 0.005 163.434 

V11 0.349 -149.585 0.004 162.046 0.005 158.194 0.129 -142.984 

V12 0.040 -149.598 0.253 -143.093 0.020 -141.531 0.261 -141.290 

V13 0.007 -172.590 0.275 -145.614 0.144 -156.688 0.264 -143.080 

V14 0.318 -150.278 0.395 -149.598 0.325 -153.855 0.267 -150.921 
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Soln. 

NO. 
61 62 63 64 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -141.458 1.045 -141.358 1.045 -141.358 1.045 -141.514 

V3 0.786 -139.490 0.787 -139.477 0.783 -139.396 0.791 -139.601 

V4 0.569 -132.202 0.569 -132.351 0.562 -131.991 0.578 -132.589 

V5 0.454 -121.654 0.451 -121.592 0.445 -121.047 0.461 -122.266 

V6 0.183 -143.252 0.148 -148.173 0.130 -147.648 0.205 -143.520 

V7 0.559 -144.922 0.573 -145.012 0.557 -144.900 0.580 -144.722 

V8 1.090 -145.253 1.090 -145.335 1.090 -145.232 1.090 -145.042 

V9 0.241 -157.402 0.271 -156.136 0.240 -157.468 0.279 -155.159 

V10 0.007 159.652 0.006 159.405 0.007 158.079 0.006 160.140 

V11 0.080 -151.331 0.059 -161.503 0.044 -168.535 0.013 171.430 

V12 0.138 -144.690 0.023 -142.947 0.050 -147.087 0.191 -144.572 

V13 0.127 -145.715 0.115 -157.563 0.069 -155.529 0.201 -147.220 

V14 0.015 170.725 0.192 -159.062 0.017 168.506 0.236 -154.018 

Soln. 

NO. 
65 66 67 68 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -141.368 1.045 -141.345 1.045 -141.360 1.045 -129.020 

V3 0.783 -139.405 0.786 -139.458 0.783 -139.397 0.655 -134.288 

V4 0.563 -132.014 0.568 -132.290 0.562 -131.988 0.305 -139.672 

V5 0.446 -121.107 0.449 -121.421 0.445 -121.032 0.002 -174.765 

V6 0.135 -146.975 0.135 -148.791 0.130 -147.457 0.158 -155.667 

V7 0.557 -144.917 0.572 -145.020 0.557 -144.910 0.595 -155.770 

V8 1.090 -145.249 1.090 -145.343 1.090 -145.242 1.090 -156.082 

V9 0.240 -157.490 0.270 -156.213 0.240 -157.488 0.452 -159.774 

V10 0.007 157.850 0.007 158.786 0.007 157.813 0.397 -160.438 

V11 0.025 177.636 0.025 176.070 0.028 179.597 0.277 -160.338 

V12 0.076 -147.872 0.027 -144.027 0.064 -147.946 0.156 -155.388 

V13 0.081 -152.733 0.107 -158.200 0.074 -154.515 0.186 -159.172 

V14 0.017 168.896 0.188 -159.361 0.017 168.678 0.330 -160.658 
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Soln. 

NO. 
69 70 71 72 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -128.856 1.045 -137.743 1.045 -135.570 1.045 -135.647 

V3 0.651 -134.314 0.005 -176.166 0.006 -175.594 0.006 -175.695 

V4 0.298 -140.340 0.519 -127.317 0.441 -128.174 0.456 -128.674 

V5 0.002 -173.720 0.472 -117.251 0.395 -115.309 0.400 -115.922 

V6 0.092 -170.330 0.554 -123.212 0.286 -134.045 0.252 -139.003 

V7 0.579 -159.718 0.751 -130.131 0.616 -141.432 0.674 -139.368 

V8 1.090 -160.037 1.090 -130.378 1.090 -141.732 1.090 -139.642 

V9 0.424 -164.960 0.666 -130.401 0.427 -146.897 0.540 -142.886 

V10 0.362 -166.358 0.643 -129.625 0.397 -146.045 0.487 -143.215 

V11 0.227 -168.854 0.597 -126.983 0.338 -141.852 0.370 -142.601 

V12 0.054 -164.988 0.556 -123.734 0.239 -135.357 0.012 -131.131 

V13 0.110 -173.630 0.564 -124.694 0.212 -134.540 0.214 -146.756 

V14 0.279 -167.823 0.617 -128.429 0.008 179.387 0.393 -144.583 

Soln. 

NO. 
73 74 75 76 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -135.212 1.045 -135.393 1.045 -135.190 1.045 -135.430 

V3 0.006 -175.427 0.006 -175.456 0.006 -175.357 0.006 -175.110 

V4 0.423 -128.025 0.428 -127.826 0.417 -127.697 0.403 -125.932 

V5 0.373 -113.983 0.378 -113.931 0.365 -112.975 0.366 -112.196 

V6 0.174 -140.700 0.183 -136.237 0.114 -141.837 0.192 -134.588 

V7 0.600 -143.283 0.608 -142.103 0.597 -143.323 0.517 -142.094 

V8 1.090 -143.591 1.090 -142.408 1.090 -143.633 1.090 -142.453 

V9 0.404 -149.790 0.416 -148.015 0.401 -149.943 0.238 -152.781 

V10 0.359 -150.047 0.289 -149.581 0.278 -151.617 0.007 164.997 

V11 0.265 -148.292 0.005 165.694 0.006 161.586 0.085 -141.901 

V12 0.023 -136.048 0.180 -137.317 0.030 -137.309 0.173 -136.206 

V13 0.089 -148.050 0.202 -141.269 0.113 -152.025 0.181 -139.467 

V14 0.010 173.695 0.316 -147.251 0.268 -151.823 0.201 -150.119 
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Soln. 

NO. 
77 78 79 80 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -135.306 1.045 -141.359 1.045 -129.020 1.045 -128.856 

V3 0.006 -175.039 0.783 -139.397 0.655 -134.288 0.651 -134.314 

V4 0.397 -125.801 0.563 -131.991 0.305 -139.672 0.298 -140.329 

V5 0.357 -111.544 0.445 -121.046 0.002 -174.765 0.002 -173.719 

V6 0.143 -138.384 0.131 -147.302 0.158 -155.667 0.092 -170.320 

V7 0.513 -142.673 0.557 -144.910 0.595 -155.771 0.579 -159.717 

V8 1.090 -143.035 1.090 -145.243 1.090 -156.082 1.090 -160.037 

V9 0.233 -153.940 0.240 -157.488 0.452 -159.774 0.424 -164.960 

V10 0.008 161.683 0.007 157.819 0.397 -160.439 0.362 -166.356 

V11 0.022 -176.642 0.028 179.620 0.277 -160.338 0.227 -168.856 

V12 0.119 -139.811 0.064 -147.795 0.156 -155.388 0.054 -164.989 

V13 0.134 -144.842 0.074 -154.457 0.186 -159.172 0.110 -173.625 

V14 0.177 -154.045 0.017 168.641 0.330 -160.658 0.279 -167.821 

Soln. 

NO. 
81 82 83 84 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -137.743 1.045 -135.570 1.045 -135.160 1.045 -135.647 

V3 0.005 -176.167 0.006 -175.594 0.006 -175.415 0.006 -175.696 

V4 0.519 -127.317 0.441 -128.174 0.419 -127.972 0.456 -128.674 

V5 0.472 -117.251 0.395 -115.309 0.368 -113.617 0.400 -115.922 

V6 0.554 -123.212 0.286 -134.045 0.143 -142.956 0.252 -139.003 

V7 0.751 -130.131 0.616 -141.432 0.597 -143.643 0.674 -139.368 

V8 1.090 -130.378 1.090 -141.732 1.090 -143.956 1.090 -139.643 

V9 0.666 -130.401 0.427 -146.898 0.399 -150.490 0.540 -142.886 

V10 0.643 -129.625 0.397 -146.045 0.351 -151.162 0.487 -143.215 

V11 0.597 -126.983 0.338 -141.852 0.246 -150.301 0.370 -142.601 

V12 0.556 -123.734 0.240 -135.357 0.047 -145.210 0.012 -131.131 

V13 0.564 -124.694 0.212 -134.540 0.015 -162.239 0.214 -146.756 

V14 0.617 -128.429 0.008 179.387 0.012 172.822 0.393 -144.583 
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Soln. 

NO. 
85 86 87 88 

Voltage |V| θ |V| θ |V| θ |V| θ 

V1 1.060 0.000 1.060 0.000 1.060 0.000 1.060 0.000 

V2 1.045 -135.212 1.045 -135.393 1.045 -135.190 1.045 -135.430 

V3 0.006 -175.427 0.006 -175.456 0.006 -175.357 0.006 -175.110 

V4 0.423 -128.025 0.428 -127.826 0.417 -127.697 0.403 -125.932 

V5 0.373 -113.983 0.378 -113.931 0.365 -112.975 0.366 -112.196 

V6 0.174 -140.700 0.183 -136.237 0.114 -141.837 0.192 -134.588 

V7 0.600 -143.283 0.608 -142.103 0.597 -143.323 0.517 -142.094 

V8 1.090 -143.591 1.090 -142.408 1.090 -143.633 1.090 -142.453 

V9 0.404 -149.790 0.416 -148.015 0.401 -149.943 0.238 -152.781 

V10 0.359 -150.047 0.289 -149.581 0.278 -151.617 0.007 164.997 

V11 0.265 -148.292 0.005 165.694 0.006 161.586 0.085 -141.901 

V12 0.023 -136.048 0.180 -137.317 0.030 -137.309 0.173 -136.206 

V13 0.089 -148.050 0.202 -141.269 0.113 -152.025 0.181 -139.467 

V14 0.010 173.695 0.316 -147.251 0.268 -151.823 0.201 -150.119 

Soln. 

NO. 
89 90   

Voltage |V| θ |V| θ     

V1 1.060 0.000 1.060 0.000     

V2 1.045 -135.306 1.045 -135.239     

V3 0.006 -175.039 0.006 -174.990     

V4 0.397 -125.801 0.392 -125.682     

V5 0.357 -111.544 0.352 -111.074     

V6 0.143 -138.384 0.112 -142.075     

V7 0.513 -142.673 0.509 -143.028     

V8 1.090 -143.034 1.090 -143.409     

V9 0.233 -153.940 0.228 -154.774     

V10 0.008 161.683 0.008 160.684     

V11 0.022 -176.642 0.031 -150.521     

V12 0.119 -139.811 0.044 -138.537     

V13 0.134 -144.842 0.089 -152.639     

V14 0.177 -154.045 0.154 -158.109     

 

  



165 

 

APPENDIX B  

TYPE-1 SOLUTIONS FOR IEEE-118 BUS SYSTEM 
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Table 11.1 Type-1 Solutions for the 118-Bus System using HE Method 

Solution NO. 1 2 3 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -125.4280 0.9550 -68.7545 0.9550 -60.9903 

2 0 0.0091 -161.8933 0.9713 -67.6892 0.9715 -60.9553 

3 0 0.9496 -116.0593 0.9672 -68.0841 0.9651 -59.8421 

4 2 0.9980 -98.1969 0.9980 -65.4053 0.9980 -55.2501 

5 0 0.9991 -97.4356 1.0002 -65.1147 0.9918 -54.3202 

6 2 0.9900 -102.8418 0.9900 -66.7473 0.9900 -58.3383 

7 0 0.9893 -104.2881 0.9892 -66.7573 0.9894 -59.2127 

8 2 1.0150 -85.8953 1.0150 -62.0051 1.0150 -46.1028 

9 0 1.0429 -78.6408 0.0547 13.7151 1.0429 -38.8487 

10 2 1.0501 -71.0565 1.0500 112.1399 1.0500 -31.2678 

11 0 0.9812 -103.2019 0.9850 -66.3630 0.8438 -59.0108 

12 2 0.9900 -106.2960 0.9900 -66.4001 0.9900 -60.2792 

13 0 0.9576 -100.4058 0.9670 -65.8426 0.0259 -104.1241 

14 0 0.9724 -101.5510 0.9828 -65.0660 0.9826 -58.8741 

15 2 0.9700 -86.2466 0.9700 -59.5413 0.9700 -53.1484 

16 0 0.9601 -99.6093 0.9779 -64.2094 0.9776 -57.5051 

17 0 0.9789 -82.2311 0.9852 -56.9473 0.9879 -48.9895 

18 2 0.9730 -84.0818 0.9730 -58.6851 0.9730 -51.2627 

19 2 0.9620 -83.9288 0.9620 -58.5222 0.9620 -51.6704 

20 0 0.9433 -79.9834 0.9507 -55.9237 0.9508 -49.0299 

21 0 0.9376 -76.0635 0.9485 -53.0476 0.9487 -46.1235 

22 0 0.9470 -70.8033 0.9589 -49.0100 0.9593 -42.0533 

23 0 0.9885 -61.6672 0.9945 -41.7701 0.9954 -34.7674 

24 2 0.9920 -54.6085 0.9920 -37.2550 0.9920 -31.2067 

25 2 1.0500 -59.6495 1.0500 -38.3364 1.0500 -30.2727 

26 2 1.0150 -59.6379 1.0150 -37.9391 1.0150 -29.3256 

27 2 0.9680 -73.8919 0.9680 -51.5099 0.9680 -43.7609 

28 0 0.9613 -76.4816 0.9615 -53.7095 0.9615 -45.9494 

29 0 0.9633 -78.4382 0.9633 -55.2314 0.9633 -47.4589 

30 0 0.9682 -75.2351 0.9888 -52.3736 0.9964 -42.3658 

31 2 0.9670 -78.6647 0.9670 -55.3031 0.9670 -47.5262 

32 2 0.9630 -74.4477 0.9630 -51.9611 0.9630 -44.3196 

33 0 0.9536 -79.4088 0.9638 -56.1401 0.9648 -49.6085 

34 2 0.9840 -70.5774 0.9840 -51.0791 0.9840 -44.4099 

35 0 0.9775 -70.9516 0.9788 -51.5101 0.9792 -44.8298 



167 

 

36 2 0.9800 -71.0007 0.9800 -51.5317 0.9800 -44.8505 

37 0 0.9736 -69.7768 0.9812 -50.4804 0.9836 -43.8070 

38 0 0.9156 -62.5898 0.9601 -44.2307 0.9734 -37.1625 

39 0 0.9642 -71.6990 0.9667 -53.4405 0.9674 -47.1483 

40 2 0.9700 -71.9011 0.9700 -54.2522 0.9700 -48.1849 

41 0 0.9663 -71.5592 0.9667 -54.4324 0.9668 -48.5530 

42 2 0.9850 -67.8042 0.9850 -52.1091 0.9850 -46.7441 

43 0 0.9230 -61.6862 0.9489 -45.5148 0.9553 -39.9797 

44 0 0.9109 -44.5496 0.9405 -34.2034 0.9481 -30.5174 

45 0 0.9371 -37.5269 0.9558 -29.2435 0.9608 -26.2277 

46 2 1.0050 -31.3774 1.0050 -24.3627 1.0050 -21.7981 

47 0 1.0037 -25.8588 1.0098 -20.0533 1.0117 -17.9144 

48 0 1.0142 -28.7891 1.0143 -22.2360 1.0144 -19.8083 

49 2 1.0250 -27.6296 1.0250 -21.1996 1.0250 -18.8081 

50 0 1.0011 -29.6736 1.0009 -23.3646 1.0008 -21.0000 

51 0 0.9668 -32.3077 0.9665 -26.1558 0.9664 -23.8258 

52 0 0.9568 -33.2705 0.9564 -27.1612 0.9563 -24.8406 

53 0 0.9460 -34.2713 0.9458 -28.2781 0.9457 -25.9832 

54 2 0.9550 -33.3786 0.9550 -27.4708 0.9550 -25.1946 

55 2 0.9520 -33.4335 0.9520 -27.5519 0.9520 -25.2815 

56 2 0.9540 -33.4256 0.9540 -27.5198 0.9540 -25.2441 

57 0 0.9706 -32.2152 0.9704 -26.1361 0.9703 -23.8222 

58 0 0.9590 -33.0788 0.9588 -27.0314 0.9587 -24.7244 

59 2 0.9850 -25.9198 0.9850 -20.4470 0.9850 -18.2660 

60 0 0.9931 -21.4086 0.9931 -16.0602 0.9931 -13.9066 

61 2 0.9950 -20.4948 0.9950 -15.1607 0.9950 -13.0102 

62 2 0.9980 -20.9472 0.9980 -15.5885 0.9980 -13.4324 

63 0 0.9916 -21.9700 0.9919 -16.6328 0.9919 -14.4817 

64 0 0.9977 -19.9624 0.9979 -14.6958 0.9980 -12.5601 

65 2 1.0050 -16.3464 1.0050 -11.2610 1.0050 -9.1652 

66 2 1.0500 -16.0790 1.0500 -10.6319 1.0500 -8.4558 

67 0 1.0194 -19.0895 1.0194 -13.6800 1.0194 -11.5130 

68 0 1.0113 -11.7290 1.0121 -8.3431 1.0122 -6.9565 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -20.5764 0.9840 -15.5910 0.9840 -13.8510 

71 0 0.9823 -23.9119 0.9850 -17.7919 0.9856 -15.6626 

72 2 0.9800 -39.8231 0.9800 -27.9418 0.9800 -23.8450 

73 2 0.9910 -24.1753 0.9910 -18.0246 0.9910 -15.8879 

74 2 0.9580 -17.4788 0.9580 -14.1007 0.9580 -12.9120 

75 0 0.9617 -14.8157 0.9643 -12.0081 0.9651 -11.0106 

76 2 0.9430 -15.6305 0.9430 -13.0797 0.9430 -12.1486 
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77 2 1.0060 -10.0741 1.0060 -7.9588 1.0060 -7.1428 

78 0 1.0017 -10.3746 1.0018 -8.1918 1.0018 -7.3454 

79 0 1.0043 -10.0799 1.0043 -7.7665 1.0042 -6.8615 

80 2 1.0400 -8.0121 1.0400 -5.3402 1.0400 -4.2719 

81 0 1.0277 -10.4409 1.0281 -7.3099 1.0282 -6.0377 

82 0 0.9773 -8.7818 0.9773 -6.4111 0.9773 -5.4804 

83 0 0.9717 -6.4803 0.9717 -4.0923 0.9717 -3.1537 

84 0 0.9747 -2.3019 0.9747 0.1141 0.9747 1.0653 

85 2 0.9850 0.0243 0.9850 2.4537 0.9850 3.4109 

86 0 0.9867 -1.3453 0.9867 1.0843 0.9867 2.0414 

87 2 1.0150 -1.0852 1.0150 1.3434 1.0150 2.3007 

88 0 0.9859 4.6473 0.9859 7.1004 0.9859 8.0684 

89 2 1.0050 9.7266 1.0050 12.1966 1.0050 13.1720 

90 2 0.9850 -2.5454 0.9850 -0.0599 0.9850 0.9228 

91 2 0.9800 -4.4007 0.9800 -1.9012 0.9800 -0.9126 

92 2 0.9900 -6.6706 0.9900 -4.1515 0.9900 -3.1541 

93 0 0.9854 -8.6266 0.9854 -6.1031 0.9854 -5.1035 

94 0 0.9886 -9.8670 0.9886 -7.3392 0.9886 -6.3378 

95 0 0.9776 -10.2955 0.9777 -7.7773 0.9777 -6.7802 

96 0 0.9877 -9.7693 0.9878 -7.2639 0.9879 -6.2725 

97 0 1.0088 -9.2429 1.0088 -6.6528 1.0088 -5.6231 

98 0 1.0233 -10.1762 1.0233 -7.5423 1.0233 -6.4936 

99 2 1.0100 -11.0996 1.0100 -8.5052 1.0100 -7.4739 

100 2 1.0170 -10.5703 1.0170 -8.0091 1.0170 -6.9939 

101 0 0.9921 -9.7948 0.9921 -7.2501 0.9921 -6.2416 

102 0 0.9896 -7.8164 0.9896 -5.2895 0.9897 -4.2884 

103 2 1.0100 -14.3129 1.0100 -11.7517 1.0100 -10.7350 

104 2 0.9710 -16.8834 0.9710 -14.3217 0.9710 -13.3050 

105 2 0.9650 -17.9876 0.9650 -15.4259 0.9650 -14.4092 

106 0 0.9611 -18.2478 0.9611 -15.6860 0.9611 -14.6693 

107 2 0.9520 -21.0486 0.9520 -18.4867 0.9520 -17.4701 

108 0 0.9662 -19.1877 0.9662 -16.6259 0.9662 -15.6093 

109 0 0.9670 -19.6403 0.9670 -17.0785 0.9670 -16.0619 

110 2 0.9730 -20.4872 0.9730 -17.9254 0.9730 -16.9087 

111 2 0.9800 -18.8421 0.9800 -16.2803 0.9800 -15.2636 

112 2 0.9750 -23.5864 0.9750 -21.0246 0.9750 -20.0079 

113 2 0.9930 -81.6502 0.9930 -56.6135 0.9930 -48.6535 

114 0 0.9601 -74.7769 0.9601 -52.3343 0.9601 -44.6475 

115 0 0.9600 -74.7843 0.9600 -52.3492 0.9600 -44.6548 

116 2 1.0050 -12.1222 1.0050 -8.7329 1.0050 -7.3448 

117 0 0.9738 -107.8370 0.9738 -67.9411 0.9738 -61.8202 
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118 0 0.9465 -15.6615 0.9478 -12.9711 0.9482 -12.0038 
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Solution NO. 4 5 6 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -75.2155 0.9550 -60.8854 0.9550 -35.8242 

2 0 0.9715 -75.8685 0.9715 -61.2720 0.9714 -35.3750 

3 0 0.9672 -73.8103 0.9673 -59.5987 0.9675 -34.8985 

4 2 0.9980 -67.5682 0.9980 -53.9267 0.9980 -31.0006 

5 0 1.0016 -66.8148 1.0016 -53.2425 1.0012 -30.5116 

6 2 0.9900 -72.1614 0.9900 -57.9976 0.9900 -33.4484 

7 0 0.9893 -73.6024 0.9893 -59.2152 0.9893 -33.9689 

8 2 1.0150 -57.7976 1.0150 -45.1172 1.0150 -25.0459 

9 0 1.0429 -50.5436 1.0429 -37.8631 1.0429 -17.7918 

10 2 1.0500 -42.9627 1.0500 -30.2822 1.0500 -10.2103 

11 0 0.9827 -72.8181 0.9835 -58.5731 0.9848 -33.8662 

12 2 0.9900 -75.6017 0.9900 -60.8467 0.9900 -34.4525 

13 0 0.9643 -71.7818 0.9659 -58.0832 0.9678 -35.6793 

14 0 0.0078 -145.1318 0.9818 -58.9640 0.9839 -35.6632 

15 2 0.9700 -63.7112 0.9700 -51.8838 0.9700 -37.3143 

16 0 0.9724 -71.2930 0.0165 -110.1142 0.9824 -34.9031 

17 0 0.9857 -59.3716 0.9365 -47.9731 0.9902 -33.4047 

18 2 0.9730 -61.5598 0.9730 -50.7356 0.9730 -37.5487 

19 2 0.9620 -61.8474 0.9620 -50.7599 0.9620 -39.8218 

20 0 0.9484 -58.7283 0.9511 -48.1950 0.0182 -105.9121 

21 0 0.9452 -55.4552 0.9491 -45.3457 0.1867 -37.8975 

22 0 0.9554 -50.9578 0.9597 -41.3412 0.4567 -27.4096 

23 0 0.9935 -43.0081 0.9955 -34.1566 0.9309 -22.0201 

24 2 0.9920 -38.3338 0.9920 -30.6794 0.9920 -21.0883 

25 2 1.0500 -39.2527 1.0500 -29.4835 1.0500 -16.5402 

26 2 1.0150 -38.5703 1.0150 -28.3939 1.0150 -14.9532 

27 2 0.9680 -53.0431 0.9680 -43.2502 0.9680 -30.1388 

28 0 0.9614 -55.3739 0.9615 -45.4924 0.9615 -32.1117 

29 0 0.9633 -57.0419 0.9633 -47.0619 0.9633 -33.3809 

30 0 0.9894 -52.3069 0.9775 -41.2351 1.0029 -26.4175 

31 2 0.9670 -57.1657 0.9670 -47.1505 0.9670 -33.3626 

32 2 0.9630 -53.6125 0.9630 -43.8653 0.9630 -30.8622 

33 0 0.9616 -58.9292 0.9646 -48.5445 0.9681 -35.7730 

34 2 0.9840 -52.3673 0.9840 -43.5846 0.9840 -32.8710 

35 0 0.9788 -52.7720 0.9791 -44.0003 0.9797 -33.2645 

36 2 0.9800 -52.8007 0.9800 -44.0236 0.9800 -33.2878 

37 0 0.9811 -51.7069 0.9826 -42.9634 0.9863 -32.2326 

38 0 0.9590 -44.8502 0.9675 -36.2861 0.9888 -25.4348 
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39 0 0.9667 -54.5861 0.9670 -46.3701 0.9680 -36.2915 

40 2 0.9700 -55.3508 0.9700 -47.4423 0.9700 -37.7498 

41 0 0.9667 -55.4938 0.9668 -47.8325 0.9669 -38.4574 

42 2 0.9850 -53.0687 0.9850 -46.0838 0.9850 -37.5773 

43 0 0.9473 -46.5590 0.9559 -39.2896 0.9638 -30.4452 

44 0 0.9388 -34.8425 0.9489 -30.0441 0.9585 -24.1373 

45 0 0.9547 -29.7364 0.9613 -25.8333 0.9679 -21.0013 

46 2 1.0050 -24.7638 1.0050 -21.4589 1.0050 -17.3796 

47 0 1.0095 -20.3754 1.0119 -17.6286 1.0144 -14.2340 

48 0 1.0143 -22.5985 1.0144 -19.4830 1.0144 -15.6219 

49 2 1.0250 -21.5518 1.0250 -18.4864 1.0250 -14.6831 

50 0 1.0009 -23.7053 1.0008 -20.6795 1.0008 -16.9160 

51 0 0.9665 -26.4817 0.9664 -23.5070 0.9663 -19.7949 

52 0 0.9564 -27.4830 0.9563 -24.5222 0.9562 -20.8240 

53 0 0.9458 -28.5890 0.9457 -25.6659 0.9457 -22.0057 

54 2 0.9550 -27.7736 0.9550 -24.8782 0.9550 -21.2458 

55 2 0.9520 -27.8523 0.9520 -24.9653 0.9520 -21.3415 

56 2 0.9540 -27.8224 0.9540 -24.9277 0.9540 -21.2960 

57 0 0.9704 -26.4551 0.9703 -23.5041 0.9703 -19.8157 

58 0 0.9588 -27.3474 0.9587 -24.4066 0.9587 -20.7287 

59 2 0.9850 -20.7089 0.9850 -17.9540 0.9850 -14.4627 

60 0 0.9931 -16.3105 0.9931 -13.5959 0.9931 -10.1449 

61 2 0.9950 -15.4097 0.9950 -12.6996 0.9950 -9.2531 

62 2 0.9980 -15.8398 0.9980 -13.1216 0.9980 -9.6670 

63 0 0.9918 -16.8820 0.9919 -14.1711 0.9920 -10.7239 

64 0 0.9979 -14.9383 0.9980 -12.2502 0.9980 -8.8258 

65 2 1.0050 -11.4865 1.0050 -8.8571 1.0050 -5.4915 

66 2 1.0500 -10.8915 1.0500 -8.1441 1.0500 -4.6591 

67 0 1.0194 -13.9360 1.0194 -11.2016 1.0193 -7.7307 

68 0 1.0120 -8.4948 1.0123 -6.7542 1.0124 -4.5313 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -15.8948 0.9840 -13.6935 0.9840 -10.9596 

71 0 0.9848 -18.1661 0.9857 -15.4718 0.9864 -12.1260 

72 2 0.9800 -28.6720 0.9800 -23.4862 0.9800 -17.0495 

73 2 0.9910 -18.4003 0.9910 -15.6965 0.9910 -12.3425 

74 2 0.9580 -14.3002 0.9580 -12.7975 0.9580 -10.9363 

75 0 0.9642 -12.1715 0.9652 -10.9111 0.9662 -9.3469 

76 2 0.9430 -13.2208 0.9430 -12.0461 0.9430 -10.5826 

77 2 1.0060 -8.0644 1.0060 -7.0379 1.0060 -5.7461 

78 0 1.0018 -8.2998 1.0018 -7.2353 1.0018 -5.8940 

79 0 1.0043 -7.8792 1.0042 -6.7413 1.0042 -5.3044 
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80 2 1.0400 -5.4614 1.0400 -4.1231 1.0400 -2.4209 

81 0 1.0281 -7.4519 1.0282 -5.8549 1.0282 -3.8192 

82 0 0.9773 -6.5259 0.9773 -5.3559 0.9774 -3.8772 

83 0 0.9717 -4.2076 0.9717 -3.0279 0.9717 -1.5364 

84 0 0.9747 -0.0023 0.9747 1.1932 0.9747 2.7053 

85 2 0.9850 2.3368 0.9850 3.5399 0.9850 5.0617 

86 0 0.9867 0.9674 0.9867 2.1704 0.9867 3.6923 

87 2 1.0150 1.2266 1.0150 2.4297 1.0150 3.9515 

88 0 0.9859 6.9827 0.9859 8.1993 0.9858 9.7387 

89 2 1.0050 12.0783 1.0050 13.3041 1.0050 14.8556 

90 2 0.9850 -0.1788 0.9850 1.0561 0.9850 2.6194 

91 2 0.9800 -2.0206 0.9800 -0.7782 0.9800 0.7947 

92 2 0.9900 -4.2716 0.9900 -3.0182 0.9900 -1.4309 

93 0 0.9854 -6.2233 0.9854 -4.9672 0.9854 -3.3764 

94 0 0.9886 -7.4596 0.9886 -6.2012 0.9887 -4.6072 

95 0 0.9777 -7.8973 0.9777 -6.6444 0.9777 -5.0577 

96 0 0.9878 -7.3835 0.9879 -6.1377 0.9879 -4.5602 

97 0 1.0088 -6.7755 1.0088 -5.4817 1.0088 -3.8416 

98 0 1.0233 -7.6668 1.0233 -6.3489 1.0233 -4.6773 

99 2 1.0100 -8.6280 1.0100 -7.3322 1.0100 -5.6895 

100 2 1.0170 -8.1321 1.0170 -6.8548 1.0170 -5.2361 

101 0 0.9921 -7.3710 0.9921 -6.1038 0.9921 -4.4983 

102 0 0.9896 -5.4098 0.9897 -4.1519 0.9897 -2.5586 

103 2 1.0100 -11.8732 1.0100 -10.5958 1.0100 -8.9772 

104 2 0.9710 -14.4432 0.9710 -13.1658 0.9710 -11.5471 

105 2 0.9650 -15.5474 0.9650 -14.2700 0.9650 -12.6513 

106 0 0.9611 -15.8076 0.9611 -14.5302 0.9611 -12.9115 

107 2 0.9520 -18.6083 0.9520 -17.3309 0.9520 -15.7122 

108 0 0.9662 -16.7475 0.9662 -15.4701 0.9662 -13.8514 

109 0 0.9670 -17.2001 0.9670 -15.9227 0.9670 -14.3040 

110 2 0.9730 -18.0470 0.9730 -16.7696 0.9730 -15.1509 

111 2 0.9800 -16.4019 0.9800 -15.1245 0.9800 -13.5058 

112 2 0.9750 -21.1462 0.9750 -19.8688 0.9750 -18.2501 

113 2 0.9930 -58.9355 0.9930 -48.5250 0.9930 -33.2976 

114 0 0.9601 -53.9359 0.9601 -44.1695 0.9601 -31.1208 

115 0 0.9600 -53.9424 0.9600 -44.1727 0.9600 -31.1162 

116 2 1.0050 -8.8842 1.0050 -7.1424 1.0050 -4.9189 

117 0 0.9738 -77.1427 0.9738 -62.3877 0.9738 -35.9935 

118 0 0.9478 -13.1243 0.9483 -11.9029 0.9488 -10.3845 
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Solution NO. 7 8 9 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -31.6031 0.9550 -31.7435 0.9550 -50.3472 

2 0 0.9714 -31.1288 0.9714 -31.2626 0.9714 -49.8800 

3 0 0.9675 -30.6880 0.9675 -30.8311 0.9675 -49.4291 

4 2 0.9980 -26.8394 0.9980 -26.9953 0.9980 -45.5627 

5 0 1.0012 -26.3593 1.0012 -26.5177 1.0012 -45.0838 

6 2 0.9900 -29.2424 0.9900 -29.3868 0.9900 -47.9822 

7 0 0.9893 -29.7421 0.9893 -29.8810 0.9893 -48.4879 

8 2 1.0150 -20.9944 1.0150 -21.1801 1.0150 -39.7158 

9 0 1.0429 -13.7403 1.0429 -13.9260 1.0429 -32.4617 

10 2 1.0500 -6.1592 1.0500 -6.3451 1.0500 -24.8808 

11 0 0.9848 -29.6226 0.9848 -29.7556 0.9849 -48.3356 

12 2 0.9900 -30.1914 0.9900 -30.3213 0.9900 -48.9469 

13 0 0.9679 -31.3105 0.9680 -31.4015 0.9681 -49.8375 

14 0 0.9840 -31.2627 0.9840 -31.3453 0.9841 -49.7931 

15 2 0.9700 -32.5215 0.9700 -32.4705 0.9700 -50.4180 

16 0 0.9825 -30.6078 0.9825 -30.7487 0.9821 -49.8338 

17 0 0.9906 -29.0364 0.9907 -29.2013 0.9892 -49.2761 

18 2 0.9730 -32.5918 0.9730 -32.5162 0.9730 -50.7495 

19 2 0.9620 -34.2991 0.9620 -33.9918 0.9620 -50.3877 

20 0 0.4050 -38.3925 0.5652 -37.9757 0.9562 -50.1251 

21 0 0.0209 -77.6589 0.2889 -42.3680 0.9563 -48.9833 

22 0 0.3417 -23.2169 0.0140 -77.7819 0.9662 -46.9260 

23 0 0.9161 -18.8404 0.8718 -19.8575 0.9928 -42.7654 

24 2 0.9920 -18.6076 0.9920 -20.1098 0.9920 -38.1058 

25 2 1.0500 -13.0962 1.0500 -13.9766 1.0500 -37.6405 

26 2 1.0150 -11.3907 1.0150 -12.0815 1.0150 -34.1951 

27 2 0.9680 -26.5545 0.9680 -27.5566 0.9680 -61.2635 

28 0 0.9616 -28.4328 0.9616 -29.3492 0.0101 -116.5587 

29 0 0.9633 -29.5965 0.9632 -30.4173 0.7102 -64.8742 

30 0 1.0047 -22.5623 1.0051 -22.8008 0.9992 -41.2595 

31 2 0.9670 -29.5407 0.9670 -30.3274 0.9670 -65.1049 

32 2 0.9630 -27.2898 0.9630 -28.3821 0.9630 -58.3161 

33 0 0.9688 -31.6583 0.9688 -31.6547 0.9659 -47.6270 

34 2 0.9840 -29.4669 0.9840 -29.5044 0.9840 -43.2720 

35 0 0.9798 -29.8807 0.9798 -29.9234 0.9793 -43.6913 

36 2 0.9800 -29.8978 0.9800 -29.9391 0.9800 -43.7115 

37 0 0.9868 -28.8797 0.9868 -28.9290 0.9840 -42.6719 

38 0 0.9924 -22.3206 0.9925 -22.4335 0.9760 -36.1890 
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39 0 0.9681 -33.1626 0.9681 -33.2100 0.9675 -46.0852 

40 2 0.9700 -34.7520 0.9700 -34.7983 0.9700 -47.1644 

41 0 0.9669 -35.5622 0.9669 -35.6077 0.9668 -47.5680 

42 2 0.9850 -34.9628 0.9850 -35.0061 0.9850 -45.8562 

43 0 0.9658 -27.6552 0.9658 -27.6909 0.9563 -39.0535 

44 0 0.9611 -22.2913 0.9610 -22.3242 0.9494 -29.9306 

45 0 0.9697 -19.5023 0.9697 -19.5341 0.9616 -25.7644 

46 2 1.0050 -16.1278 1.0050 -16.1579 1.0050 -21.4167 

47 0 1.0150 -13.1982 1.0150 -13.2255 1.0119 -17.6042 

48 0 1.0145 -14.4431 1.0145 -14.4747 1.0144 -19.4575 

49 2 1.0250 -13.5236 1.0250 -13.5556 1.0250 -18.4653 

50 0 1.0008 -15.7700 1.0008 -15.8030 1.0008 -20.6659 

51 0 0.9663 -18.6660 0.9663 -18.7003 0.9664 -23.5029 

52 0 0.9561 -19.6999 0.9561 -19.7345 0.9563 -24.5207 

53 0 0.9456 -20.8943 0.9456 -20.9299 0.9457 -25.6715 

54 2 0.9550 -20.1437 0.9550 -20.1800 0.9550 -24.8890 

55 2 0.9520 -20.2423 0.9520 -20.2787 0.9520 -24.9777 

56 2 0.9540 -20.1942 0.9540 -20.2304 0.9540 -24.9386 

57 0 0.9702 -18.6949 0.9702 -18.7297 0.9703 -23.5044 

58 0 0.9586 -19.6113 0.9586 -19.6464 0.9587 -24.4089 

59 2 0.9850 -13.4078 0.9850 -13.4476 0.9850 -17.9911 

60 0 0.9931 -9.1035 0.9931 -9.1443 0.9931 -13.6405 

61 2 0.9950 -8.2133 0.9950 -8.2542 0.9950 -12.7451 

62 2 0.9980 -8.6244 0.9980 -8.6651 0.9980 -13.1656 

63 0 0.9921 -9.6838 0.9921 -9.7247 0.9920 -14.2164 

64 0 0.9981 -7.7934 0.9981 -7.8348 0.9980 -12.2998 

65 2 1.0050 -4.4788 1.0050 -4.5217 1.0050 -8.9177 

66 2 1.0500 -3.6069 1.0500 -3.6468 1.0500 -8.1824 

67 0 1.0193 -6.6827 1.0193 -6.7230 1.0194 -11.2425 

68 0 1.0124 -3.8649 1.0124 -3.8986 1.0123 -6.8240 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -10.2518 0.9840 -10.6518 0.9840 -15.7022 

71 0 0.9865 -11.2615 0.9865 -11.7589 0.9848 -17.9703 

72 2 0.9800 -15.3932 0.9800 -16.3824 0.9800 -28.4599 

73 2 0.9910 -11.4764 0.9910 -11.9747 0.9910 -18.2044 

74 2 0.9580 -10.4479 0.9580 -10.6922 0.9580 -14.0279 

75 0 0.9664 -8.9324 0.9663 -9.1253 0.9643 -11.8764 

76 2 0.9430 -10.1839 0.9430 -10.3273 0.9430 -12.7525 

77 2 1.0060 -5.3763 1.0060 -5.4465 1.0060 -7.3549 

78 0 1.0018 -5.5084 1.0018 -5.5766 1.0018 -7.5391 

79 0 1.0042 -4.8884 1.0042 -4.9529 1.0042 -7.0198 
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80 2 1.0400 -1.9187 1.0400 -1.9745 1.0400 -4.3319 

81 0 1.0282 -3.2124 1.0281 -3.2534 1.0282 -5.9744 

82 0 0.9774 -3.4478 0.9774 -3.5107 0.9774 -5.6232 

83 0 0.9717 -1.1030 0.9717 -1.1653 0.9717 -3.2918 

84 0 0.9747 3.1452 0.9747 3.0837 0.9747 0.9348 

85 2 0.9850 5.5048 0.9850 5.4436 0.9850 3.2840 

86 0 0.9867 4.1353 0.9867 4.0742 0.9867 1.9146 

87 2 1.0150 4.3945 1.0150 4.3334 1.0150 2.1738 

88 0 0.9858 10.1873 0.9858 10.1268 0.9858 7.9481 

89 2 1.0050 15.3081 1.0050 15.2480 1.0050 13.0561 

90 2 0.9850 3.0757 0.9850 3.0161 0.9850 0.8113 

91 2 0.9800 1.2541 0.9800 1.1949 0.9800 -1.0205 

92 2 0.9900 -0.9670 0.9900 -1.0257 0.9900 -3.2567 

93 0 0.9854 -2.9113 0.9854 -2.9698 0.9854 -5.2048 

94 0 0.9887 -4.1412 0.9887 -4.1995 0.9886 -6.4379 

95 0 0.9778 -4.5939 0.9778 -4.6526 0.9777 -6.8831 

96 0 0.9880 -4.0994 0.9880 -4.1584 0.9879 -6.3788 

97 0 1.0088 -3.3608 1.0088 -3.4174 1.0088 -5.7062 

98 0 1.0233 -4.1865 1.0233 -4.2418 1.0233 -6.5650 

99 2 1.0100 -5.2080 1.0100 -5.2644 1.0100 -7.5560 

100 2 1.0170 -4.7622 1.0170 -4.8196 1.0170 -7.0849 

101 0 0.9921 -4.0287 0.9921 -4.0866 0.9921 -6.3375 

102 0 0.9897 -2.0927 0.9897 -2.1511 0.9897 -4.3888 

103 2 1.0100 -8.5033 1.0100 -8.5607 1.0100 -10.8260 

104 2 0.9710 -11.0732 0.9710 -11.1306 0.9710 -13.3960 

105 2 0.9650 -12.1774 0.9650 -12.2348 0.9650 -14.5002 

106 0 0.9611 -12.4376 0.9611 -12.4950 0.9611 -14.7603 

107 2 0.9520 -15.2383 0.9520 -15.2957 0.9520 -17.5611 

108 0 0.9662 -13.3775 0.9662 -13.4349 0.9662 -15.7003 

109 0 0.9670 -13.8301 0.9670 -13.8875 0.9670 -16.1529 

110 2 0.9730 -14.6770 0.9730 -14.7344 0.9730 -16.9997 

111 2 0.9800 -13.0319 0.9800 -13.0893 0.9800 -15.3546 

112 2 0.9750 -17.7762 0.9750 -17.8336 0.9750 -20.0989 

113 2 0.9930 -29.0232 0.9930 -29.3017 0.9930 -50.6650 

114 0 0.9601 -27.5434 0.9601 -28.5978 0.9598 -60.1204 

115 0 0.9600 -27.5379 0.9600 -28.5858 0.9597 -60.3793 

116 2 1.0050 -4.2524 1.0050 -4.2862 1.0050 -7.2122 

117 0 0.9738 -31.7324 0.9738 -31.8623 0.9738 -50.4879 

118 0 0.9489 -9.9771 0.9489 -10.1471 0.9478 -12.7488 
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Solution NO. 10 11 12 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -46.8041 0.9550 -29.4877 0.9550 -26.9477 

2 0 0.9714 -46.4067 0.9714 -28.9657 0.9714 -26.4208 

3 0 0.9675 -45.8566 0.9675 -28.5927 0.9675 -26.0548 

4 2 0.9980 -41.8582 0.9980 -24.8384 0.9980 -22.3101 

5 0 1.0013 -41.3492 1.0011 -24.3747 1.0011 -21.8482 

6 2 0.9900 -44.3970 0.9900 -27.1558 0.9900 -24.6188 

7 0 0.9893 -44.9606 0.9893 -27.6159 0.9893 -25.0748 

8 2 1.0150 -35.6638 1.0150 -19.1980 1.0150 -16.6915 

9 0 1.0429 -28.4097 1.0429 -11.9438 1.0429 -9.4374 

10 2 1.0500 -20.8288 1.0500 -4.3630 1.0500 -1.8565 

11 0 0.9846 -44.9089 0.9849 -27.4688 0.9849 -24.9238 

12 2 0.9900 -45.5151 0.9900 -27.9999 0.9900 -25.4520 

13 0 0.9673 -47.0765 0.9681 -28.9452 0.9681 -26.3721 

14 0 0.9836 -47.1281 0.9841 -28.8378 0.9841 -26.2585 

15 2 0.9700 -49.9119 0.9700 -29.4395 0.9700 -26.7714 

16 0 0.9815 -45.8206 0.9823 -28.2879 0.9824 -25.7416 

17 0 0.9875 -44.0024 0.9900 -26.4380 0.9903 -23.8960 

18 2 0.9730 -47.1178 0.9730 -28.9785 0.9730 -26.3514 

19 2 0.9620 -48.3439 0.9620 -29.6830 0.9620 -26.9777 

20 0 0.9502 -45.5145 0.9552 -28.1539 0.9557 -25.6248 

21 0 0.9479 -42.4656 0.9551 -26.0836 0.9559 -23.6855 

22 0 0.9585 -38.2321 0.9662 -22.9776 0.9670 -20.7295 

23 0 0.9957 -30.6970 0.9985 -17.1961 0.9988 -15.1824 

24 2 0.9920 -27.7107 0.9920 -16.1323 0.9920 -14.4195 

25 2 1.0500 -25.5434 1.0500 -11.0675 1.0500 -8.8619 

26 2 1.0150 -24.2740 1.0150 -9.5353 1.0150 -7.2560 

27 2 0.9680 -39.1309 0.9680 -23.8477 0.9680 -21.5799 

28 0 0.9615 -41.2858 0.9616 -25.7026 0.9616 -23.4006 

29 0 0.9633 -42.7578 0.9632 -26.8401 0.9632 -24.5000 

30 0 0.9915 -36.5749 1.0045 -21.1202 1.0060 -18.6560 

31 2 0.9670 -42.8118 0.9670 -26.7750 0.9670 -24.4213 

32 2 0.9630 -39.7415 0.9630 -24.3799 0.9630 -22.1126 

33 0 0.0181 -98.3286 0.9688 -31.2071 0.9692 -28.2175 

34 2 0.9840 -45.2302 0.9840 -32.5459 0.9840 -28.8615 

35 0 0.9719 -45.5828 0.9798 -32.7029 0.9799 -29.1631 

36 2 0.9800 -45.6908 0.9800 -32.7885 0.9800 -29.2094 

37 0 0.9410 -44.0600 0.9868 -31.3699 0.9872 -28.0215 

38 0 0.9505 -34.9179 0.9888 -23.1243 0.9937 -20.6922 
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39 0 0.9515 -48.0111 0.9681 -35.5527 0.9679 -32.8101 

40 2 0.9700 -49.2881 0.9700 -37.0840 0.9700 -34.6935 

41 0 0.9668 -49.5896 0.9669 -37.8498 0.9669 -35.7283 

42 2 0.9850 -47.5983 0.9850 -37.1290 0.9850 -35.7427 

43 0 0.9539 -40.5402 0.0250 -83.1509 0.5733 -32.3876 

44 0 0.9464 -30.6587 0.5594 -22.2844 0.0238 -73.9865 

45 0 0.9597 -26.2165 0.7782 -20.0058 0.5102 -24.0247 

46 2 1.0050 -21.7040 1.0050 -18.4196 1.0050 -23.3499 

47 0 1.0118 -17.7795 1.0139 -14.7526 1.0111 -17.5217 

48 0 1.0143 -19.6435 1.0143 -16.1405 1.0134 -19.0139 

49 2 1.0250 -18.6245 1.0250 -15.0638 1.0250 -17.3936 

50 0 1.0009 -20.7733 1.0009 -17.2226 1.0012 -19.3511 

51 0 0.9665 -23.5437 0.9665 -20.0060 0.9671 -21.8751 

52 0 0.9565 -24.5434 0.9564 -21.0093 0.9570 -22.8081 

53 0 0.9458 -25.6449 0.9458 -22.1204 0.9461 -23.7275 

54 2 0.9550 -24.8262 0.9550 -21.3088 0.9550 -22.7751 

55 2 0.9520 -24.9039 0.9520 -21.3886 0.9520 -22.8116 

56 2 0.9540 -24.8750 0.9540 -21.3577 0.9540 -22.8205 

57 0 0.9704 -23.5143 0.9704 -19.9827 0.9707 -21.7317 

58 0 0.9588 -24.4054 0.9588 -20.8764 0.9592 -22.5731 

59 2 0.9850 -17.7449 0.9850 -14.2634 0.9850 -15.0108 

60 0 0.9931 -13.3417 0.9931 -9.8704 0.9931 -10.4113 

61 2 0.9950 -12.4403 0.9950 -8.9702 0.9950 -9.4878 

62 2 0.9980 -12.8714 0.9980 -9.3993 0.9980 -9.9582 

63 0 0.9918 -13.9127 0.9919 -10.4424 0.9913 -10.9642 

64 0 0.9979 -11.9664 0.9979 -8.5019 0.9975 -8.9070 

65 2 1.0050 -8.5077 1.0050 -5.0582 1.0050 -5.1630 

66 2 1.0500 -7.9269 1.0500 -4.4470 1.0500 -5.1564 

67 0 1.0194 -10.9696 1.0194 -7.4933 1.0194 -8.1344 

68 0 1.0123 -6.5152 1.0124 -4.2307 1.0124 -4.2920 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -12.8784 0.9840 -9.6270 0.9840 -9.1818 

71 0 0.9859 -14.4635 0.9867 -10.4740 0.9867 -9.9178 

72 2 0.9800 -21.5022 0.9800 -13.7822 0.9800 -12.6637 

73 2 0.9910 -14.6852 0.9910 -10.6876 0.9910 -10.1307 

74 2 0.9580 -12.2806 0.9580 -10.1055 0.9580 -9.8435 

75 0 0.9655 -10.4952 0.9666 -8.6822 0.9667 -8.4801 

76 2 0.9430 -11.7103 0.9430 -10.0604 0.9430 -9.9251 

77 2 1.0060 -6.8242 1.0060 -5.4363 1.0060 -5.3986 

78 0 1.0018 -7.0203 1.0018 -5.5847 1.0018 -5.5522 

79 0 1.0042 -6.5237 1.0042 -4.9961 1.0042 -4.9738 
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80 2 1.0400 -3.8994 1.0400 -2.1154 1.0400 -2.1215 

81 0 1.0282 -5.6210 1.0282 -3.5167 1.0282 -3.5581 

82 0 0.9773 -5.1372 0.9774 -3.5692 0.9774 -3.5514 

83 0 0.9717 -2.8088 0.9717 -1.2286 0.9717 -1.2121 

84 0 0.9747 1.4129 0.9747 3.0129 0.9747 3.0272 

85 2 0.9850 3.7598 0.9850 5.3692 0.9850 5.3825 

86 0 0.9867 2.3904 0.9867 3.9998 0.9867 4.0131 

87 2 1.0150 2.6496 1.0150 4.2590 1.0150 4.2723 

88 0 0.9859 8.4197 0.9858 10.0460 0.9858 10.0574 

89 2 1.0050 13.5249 1.0050 15.1628 1.0050 15.1729 

90 2 0.9850 1.2772 0.9850 2.9265 0.9850 2.9354 

91 2 0.9800 -0.5569 0.9800 1.1017 0.9800 1.1096 

92 2 0.9900 -2.7966 0.9900 -1.1241 0.9900 -1.1178 

93 0 0.9854 -4.7454 0.9854 -3.0695 0.9854 -3.0636 

94 0 0.9886 -5.9793 0.9887 -4.3004 0.9887 -4.2948 

95 0 0.9777 -6.4228 0.9777 -4.7508 0.9777 -4.7444 

96 0 0.9879 -5.9163 0.9879 -4.2532 0.9879 -4.2459 

97 0 1.0088 -5.2586 1.0088 -3.5352 1.0088 -3.5345 

98 0 1.0233 -6.1250 1.0233 -4.3713 1.0233 -4.3739 

99 2 1.0100 -7.1090 1.0100 -5.3832 1.0100 -5.3828 

100 2 1.0170 -6.6322 1.0170 -4.9295 1.0170 -4.9266 

101 0 0.9921 -5.8816 0.9921 -4.1917 0.9921 -4.1873 

102 0 0.9897 -3.9301 0.9897 -2.2518 0.9897 -2.2461 

103 2 1.0100 -10.3733 1.0100 -8.6706 1.0100 -8.6676 

104 2 0.9710 -12.9433 0.9710 -11.2406 0.9710 -11.2376 

105 2 0.9650 -14.0475 0.9650 -12.3448 0.9650 -12.3418 

106 0 0.9611 -14.3077 0.9611 -12.6050 0.9611 -12.6020 

107 2 0.9520 -17.1084 0.9520 -15.4057 0.9520 -15.4027 

108 0 0.9662 -15.2476 0.9662 -13.5449 0.9662 -13.5419 

109 0 0.9670 -15.7002 0.9670 -13.9975 0.9670 -13.9945 

110 2 0.9730 -16.5470 0.9730 -14.8443 0.9730 -14.8414 

111 2 0.9800 -14.9020 0.9800 -13.1993 0.9800 -13.1963 

112 2 0.9750 -19.6463 0.9750 -17.9436 0.9750 -17.9406 

113 2 0.9930 -43.7228 0.9930 -26.3945 0.9930 -23.8818 

114 0 0.9601 -40.0476 0.9601 -24.7190 0.9601 -22.4515 

115 0 0.9600 -40.0511 0.9600 -24.7281 0.9600 -22.4606 

116 2 1.0050 -6.9033 1.0050 -4.6183 1.0050 -4.6796 

117 0 0.9738 -47.0561 0.9738 -29.5409 0.9738 -26.9930 

118 0 0.9484 -11.5238 0.9490 -9.7854 0.9491 -9.6142 
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Solution NO. 13 14 15 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -41.2050 0.9550 -37.2767 0.9550 -31.1542 

2 0 0.9714 -40.6799 0.9714 -36.7493 0.9714 -30.6232 

3 0 0.9675 -40.3113 0.9675 -36.3838 0.9675 -30.2628 

4 2 0.9980 -36.5633 0.9980 -32.6402 0.9980 -26.5261 

5 0 1.0011 -36.1003 1.0011 -32.1781 1.0011 -26.0654 

6 2 0.9900 -38.8750 0.9900 -34.9480 0.9900 -28.8276 

7 0 0.9893 -39.3325 0.9893 -35.4036 0.9893 -29.2803 

8 2 1.0150 -30.9339 1.0150 -27.0213 1.0150 -20.9239 

9 0 1.0429 -23.6798 1.0429 -19.7671 1.0429 -13.6698 

10 2 1.0500 -16.0987 1.0500 -12.1859 1.0500 -6.0889 

11 0 0.9849 -39.1860 0.9849 -35.2548 0.9849 -29.1276 

12 2 0.9900 -39.7123 0.9900 -35.7804 0.9900 -29.6522 

13 0 0.9681 -40.6630 0.9681 -36.7154 0.9681 -30.5620 

14 0 0.9841 -40.5523 0.9841 -36.6017 0.9841 -30.4435 

15 2 0.9700 -41.1596 0.9700 -37.1565 0.9700 -30.9140 

16 0 0.9821 -39.9608 0.9822 -36.0377 0.9824 -29.9237 

17 0 0.9896 -38.0244 0.9899 -34.1213 0.9903 -28.0390 

18 2 0.9730 -40.6042 0.9730 -36.6438 0.9730 -30.4714 

19 2 0.9620 -41.3413 0.9620 -37.3291 0.9620 -31.0748 

20 0 0.9532 -39.2654 0.9540 -35.4657 0.9552 -29.5487 

21 0 0.9523 -36.7861 0.9534 -33.1458 0.9551 -27.4807 

22 0 0.9632 -33.2102 0.9644 -29.7533 0.9662 -24.3772 

23 0 0.9973 -26.6947 0.9978 -23.5240 0.9985 -18.5993 

24 2 0.9920 -24.3745 0.9920 -21.6355 0.9920 -17.3920 

25 2 1.0500 -21.4925 1.0500 -18.0208 1.0500 -12.6220 

26 2 1.0150 -20.3514 1.0150 -16.7523 1.0150 -11.1647 

27 2 0.9680 -34.4114 0.9680 -30.8742 0.9680 -25.3726 

28 0 0.9615 -36.3872 0.9615 -32.8056 0.9616 -27.2336 

29 0 0.9633 -37.6597 0.9633 -34.0285 0.9632 -28.3780 

30 0 1.0038 -32.8735 1.0048 -28.9819 1.0064 -22.9180 

31 2 0.9670 -37.6426 0.9670 -33.9937 0.9670 -28.3153 

32 2 0.9630 -34.9155 0.9630 -31.3839 0.9630 -25.8916 

33 0 0.9684 -43.4736 0.9687 -39.1756 0.9692 -32.4486 

34 2 0.9840 -45.0763 0.9840 -40.3286 0.9840 -32.9139 

35 0 0.9797 -45.3860 0.9798 -40.6894 0.9799 -33.3366 

36 2 0.9800 -45.4315 0.9800 -40.7207 0.9800 -33.3505 

37 0 0.9864 -44.2465 0.9867 -39.6192 0.9873 -32.3515 

38 0 0.9885 -35.7179 0.9913 -31.6727 0.9958 -25.3684 
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39 0 0.9654 -51.3289 0.9658 -46.4506 0.9668 -38.4238 

40 2 0.9700 -54.5336 0.9700 -49.5121 0.9700 -41.0498 

41 0 0.9663 -56.5328 0.9664 -51.4109 0.9667 -42.6354 

42 2 0.9850 -59.1827 0.9850 -53.7861 0.9850 -44.1553 

43 0 0.9469 -53.3766 0.9635 -46.0286 0.9712 -35.2474 

44 0 0.9392 -63.3259 0.9624 -51.8880 0.9703 -36.0944 

45 0 0.9507 -66.0853 0.9717 -53.1917 0.9776 -35.5880 

46 2 1.0050 -75.7309 1.0050 -56.3393 1.0050 -33.1179 

47 0 0.0138 -125.5228 0.9733 -44.3538 0.9997 -29.5205 

48 0 0.9994 -58.0984 0.0095 -90.1966 1.0149 -33.3607 

49 2 1.0250 -53.0330 1.0250 -46.4282 1.0250 -32.9517 

50 0 1.0020 -53.0558 1.0021 -46.7730 0.0105 -91.9665 

51 0 0.9694 -53.0992 0.9694 -47.2287 0.9648 -39.1614 

52 0 0.9599 -53.3632 0.9598 -47.6036 0.9547 -40.3124 

53 0 0.9474 -52.4401 0.9474 -46.9878 0.9449 -41.8229 

54 2 0.9550 -50.1219 0.9550 -44.8985 0.9550 -41.3026 

55 2 0.9520 -49.7285 0.9520 -44.5782 0.9520 -41.2956 

56 2 0.9540 -50.1346 0.9540 -44.9165 0.9540 -41.7614 

57 0 0.9711 -51.7990 0.9714 -46.1219 0.5505 -43.2618 

58 0 0.9602 -52.1431 0.9603 -46.5483 0.9576 -40.5622 

59 2 0.9850 -35.0073 0.9850 -31.0668 0.9850 -26.9559 

60 0 0.9928 -28.2387 0.9929 -24.6843 0.9928 -20.1029 

61 2 0.9950 -27.0793 0.9950 -23.5656 0.9950 -19.0166 

62 2 0.9980 -27.9413 0.9980 -24.3641 0.9980 -19.4693 

63 0 0.9849 -28.6265 0.9862 -25.0963 0.9860 -20.8418 

64 0 0.9923 -25.3545 0.9934 -22.0391 0.9935 -17.7119 

65 2 1.0050 -18.5184 1.0050 -15.7444 1.0050 -11.5587 

66 2 1.0500 -24.5228 1.0500 -20.7271 1.0500 -14.2702 

67 0 1.0199 -26.8751 1.0198 -23.1783 1.0193 -17.4280 

68 0 1.0108 -13.0228 1.0114 -11.2006 1.0120 -8.4573 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -12.4983 0.9840 -11.6242 0.9840 -10.2855 

71 0 0.9863 -13.8199 0.9864 -12.7804 0.9866 -11.1853 

72 2 0.9800 -19.5267 0.9800 -17.6512 0.9800 -14.7607 

73 2 0.9910 -14.0380 0.9910 -12.9967 0.9910 -11.3993 

74 2 0.9580 -12.6634 0.9580 -11.9620 0.9580 -10.8960 

75 0 0.9653 -11.1155 0.9657 -10.4762 0.9662 -9.5068 

76 2 0.9430 -13.1646 0.9430 -12.4215 0.9430 -11.3009 

77 2 1.0060 -9.4422 1.0060 -8.5658 1.0060 -7.2501 

78 0 1.0017 -9.8452 1.0017 -8.9186 1.0018 -7.5269 

79 0 1.0043 -9.7487 1.0043 -8.7247 1.0043 -7.1862 
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80 2 1.0400 -8.2351 1.0400 -6.9416 1.0400 -4.9944 

81 0 1.0274 -11.3464 1.0278 -9.7146 1.0282 -7.2586 

82 0 0.9772 -8.5375 0.9772 -7.4708 0.9773 -5.8679 

83 0 0.9717 -6.2626 0.9717 -5.1829 0.9717 -3.5603 

84 0 0.9747 -2.1274 0.9747 -1.0266 0.9747 0.6278 

85 2 0.9850 0.1783 0.9850 1.2893 0.9850 2.9587 

86 0 0.9867 -1.1911 0.9867 -0.0802 0.9867 1.5892 

87 2 1.0150 -0.9319 1.0150 0.1790 1.0150 1.8484 

88 0 0.9859 4.7646 0.9859 5.8934 0.9859 7.5899 

89 2 1.0050 9.8194 1.0050 10.9605 1.0050 12.6754 

90 2 0.9850 -2.4777 0.9850 -1.3246 0.9850 0.4084 

91 2 0.9800 -4.3522 0.9800 -3.1894 0.9800 -1.4414 

92 2 0.9900 -6.6518 0.9900 -5.4743 0.9900 -3.7044 

93 0 0.9853 -8.6152 0.9854 -7.4345 0.9854 -5.6591 

94 0 0.9885 -9.8622 0.9885 -8.6781 0.9886 -6.8980 

95 0 0.9775 -10.2753 0.9775 -9.0986 0.9776 -7.3296 

96 0 0.9875 -9.7299 0.9876 -8.5627 0.9878 -6.8080 

97 0 1.0087 -9.3334 1.0087 -8.1027 1.0088 -6.2523 

98 0 1.0233 -10.3313 1.0233 -9.0686 1.0233 -7.1700 

99 2 1.0100 -11.1952 1.0100 -9.9616 1.0100 -8.1071 

100 2 1.0170 -10.6181 1.0170 -9.4089 1.0170 -7.5912 

101 0 0.9921 -9.8125 0.9921 -8.6167 0.9921 -6.8190 

102 0 0.9896 -7.8105 0.9896 -6.6269 0.9896 -4.8478 

103 2 1.0100 -14.3595 1.0100 -13.1502 1.0100 -11.3323 

104 2 0.9710 -16.9296 0.9710 -15.7203 0.9710 -13.9023 

105 2 0.9650 -18.0338 0.9650 -16.8245 0.9650 -15.0065 

106 0 0.9611 -18.2940 0.9611 -17.0847 0.9611 -15.2666 

107 2 0.9520 -21.0947 0.9520 -19.8854 0.9520 -18.0674 

108 0 0.9662 -19.2339 0.9662 -18.0246 0.9662 -16.2065 

109 0 0.9670 -19.6865 0.9670 -18.4772 0.9670 -16.6591 

110 2 0.9730 -20.5334 0.9730 -19.3241 0.9730 -17.5060 

111 2 0.9800 -18.8883 0.9800 -17.6790 0.9800 -15.8609 

112 2 0.9750 -23.6326 0.9750 -22.4233 0.9750 -20.6052 

113 2 0.9930 -37.8557 0.9930 -33.9946 0.9930 -27.9795 

114 0 0.9601 -35.2665 0.9601 -31.7325 0.9601 -26.2363 

115 0 0.9600 -35.2776 0.9600 -31.7432 0.9600 -26.2463 

116 2 1.0050 -13.4185 1.0050 -11.5934 1.0050 -8.8468 

117 0 0.9738 -41.2533 0.9738 -37.3214 0.9738 -31.1932 

118 0 0.9482 -12.5308 0.9485 -11.8430 0.9488 -10.8031 
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Solution NO. 16 17 18 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -26.0291 0.9550 -25.0192 0.9550 -29.2947 

2 0 0.9714 -25.4966 0.9714 -24.4865 0.9714 -28.7621 

3 0 0.9675 -25.1384 0.9675 -24.1286 0.9675 -28.4041 

4 2 0.9980 -21.4046 0.9980 -20.3951 0.9980 -24.6708 

5 0 1.0011 -20.9446 1.0011 -19.9352 1.0011 -24.2107 

6 2 0.9900 -23.7035 0.9900 -22.6937 0.9900 -26.9692 

7 0 0.9893 -24.1549 0.9893 -23.1449 0.9893 -27.4205 

8 2 1.0150 -15.8100 1.0150 -14.8017 1.0150 -19.0765 

9 0 1.0429 -8.5561 1.0429 -7.5477 1.0429 -11.8224 

10 2 1.0500 -0.9752 1.0500 0.0333 1.0500 -4.2410 

11 0 0.9849 -24.0000 0.9849 -22.9896 0.9849 -27.2662 

12 2 0.9900 -24.5246 0.9900 -23.5143 0.9900 -27.7900 

13 0 0.9681 -25.4195 0.9682 -24.4066 0.9681 -28.6892 

14 0 0.9841 -25.2989 0.9841 -24.2857 0.9841 -28.5685 

15 2 0.9700 -25.7213 0.9700 -24.7000 0.9700 -29.0029 

16 0 0.9825 -24.8102 0.9825 -23.8027 0.9824 -28.0652 

17 0 0.9906 -22.9564 0.9906 -21.9553 0.9905 -26.1889 

18 2 0.9730 -25.3319 0.9730 -24.3206 0.9730 -28.5861 

19 2 0.9620 -25.8837 0.9620 -24.8631 0.9620 -29.1573 

20 0 0.9560 -24.6309 0.9561 -23.6639 0.9555 -27.7410 

21 0 0.9563 -22.7657 0.9565 -21.8384 0.9556 -25.7545 

22 0 0.9675 -19.8945 0.9677 -19.0126 0.9667 -22.7444 

23 0 0.9990 -14.4801 0.9991 -13.6691 0.9987 -17.1127 

24 2 0.9920 -13.8430 0.9920 -13.1447 0.9920 -16.1172 

25 2 1.0500 -8.0971 1.0500 -7.2057 1.0500 -10.9906 

26 2 1.0150 -6.4723 1.0150 -5.5471 1.0150 -9.4761 

27 2 0.9680 -20.7717 0.9680 -19.8657 0.9680 -23.7068 

28 0 0.9616 -22.5750 0.9616 -21.6577 0.9616 -25.5453 

29 0 0.9632 -23.6552 0.9632 -22.7252 0.9632 -26.6647 

30 0 1.0073 -17.8199 1.0074 -16.8140 1.0070 -21.0860 

31 2 0.9670 -23.5695 0.9670 -22.6351 0.9670 -26.5931 

32 2 0.9630 -21.3007 0.9630 -20.3968 0.9630 -24.2282 

33 0 0.9694 -26.9014 0.9694 -25.8133 0.9693 -30.3534 

34 2 0.9840 -26.9161 0.9840 -25.7442 0.9840 -30.5720 

35 0 0.9799 -27.3618 0.9799 -26.1938 0.9799 -31.0119 

36 2 0.9800 -27.3691 0.9800 -26.2001 0.9800 -31.0208 

37 0 0.9876 -26.4087 0.9876 -25.2462 0.9875 -30.0509 

38 0 0.9981 -20.0098 0.9985 -18.9489 0.9976 -23.4863 
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39 0 0.9675 -31.7735 0.9677 -30.4844 0.9673 -35.6561 

40 2 0.9700 -33.9914 0.9700 -32.6292 0.9700 -38.0129 

41 0 0.9668 -35.2778 0.9668 -33.8616 0.9668 -39.4019 

42 2 0.9850 -35.9803 0.9850 -34.4163 0.9850 -40.3847 

43 0 0.9708 -27.7278 0.9705 -26.2812 0.9711 -31.8906 

44 0 0.9685 -26.3176 0.9680 -24.4615 0.9694 -31.2342 

45 0 0.9756 -24.9837 0.9751 -22.9770 0.9764 -30.1773 

46 2 1.0050 -22.2984 1.0050 -20.2616 1.0050 -27.5113 

47 0 1.0107 -19.3274 1.0123 -17.4111 1.0060 -24.1977 

48 0 1.0147 -21.6183 1.0147 -19.3974 1.0148 -27.2385 

49 2 1.0250 -20.9648 1.0250 -18.6951 1.0250 -26.6928 

50 0 0.9970 -24.7392 0.9968 -22.5175 0.6509 -27.9648 

51 0 0.4237 -29.5485 0.7147 -26.1313 0.9514 -38.6360 

52 0 0.0193 -87.3612 0.5170 -26.8883 0.9413 -40.6225 

53 0 0.5331 -38.4316 0.0243 -81.2849 0.9379 -44.3575 

54 2 0.9550 -34.2132 0.9550 -32.5447 0.9550 -45.4209 

55 2 0.9520 -33.9359 0.9520 -31.9802 0.9520 -45.6682 

56 2 0.9540 -34.2355 0.9540 -32.1740 0.9540 -46.4047 

57 0 0.9661 -30.5650 0.9659 -28.4352 0.0091 -96.2568 

58 0 0.6453 -33.1137 0.8127 -29.5484 0.9480 -42.2594 

59 2 0.9850 -21.1127 0.9850 -19.7449 0.9850 -28.1987 

60 0 0.9929 -14.6456 0.9929 -13.4418 0.9926 -20.0769 

61 2 0.9950 -13.6235 0.9950 -12.4357 0.9950 -18.9618 

62 2 0.9980 -13.8916 0.9980 -12.6834 0.9980 -19.0811 

63 0 0.9876 -15.5103 0.9881 -14.3113 0.9836 -21.1929 

64 0 0.9949 -12.6480 0.9952 -11.5367 0.9918 -17.5994 

65 2 1.0050 -7.2616 1.0050 -6.3667 1.0050 -10.6951 

66 2 1.0500 -7.9440 1.0500 -6.6697 1.0500 -12.2434 

67 0 1.0189 -11.4405 1.0189 -10.1961 1.0185 -16.1427 

68 0 1.0124 -5.6513 1.0124 -5.0679 1.0121 -7.8907 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -9.1352 0.9840 -8.9075 0.9840 -9.9056 

71 0 0.9867 -9.8248 0.9868 -9.5561 0.9867 -10.7268 

72 2 0.9800 -12.3362 0.9800 -11.8593 0.9800 -13.9046 

73 2 0.9910 -10.0374 0.9910 -9.7685 0.9910 -10.9403 

74 2 0.9580 -9.9418 0.9580 -9.7508 0.9580 -10.6142 

75 0 0.9667 -8.6229 0.9668 -8.4451 0.9664 -9.2585 

76 2 0.9430 -10.2356 0.9430 -10.0189 0.9430 -11.0356 

77 2 1.0060 -5.9437 1.0060 -5.6748 1.0060 -6.9649 

78 0 1.0018 -6.1407 1.0018 -5.8550 1.0018 -7.2267 

79 0 1.0042 -5.6458 1.0042 -5.3278 1.0043 -6.8571 
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80 2 1.0400 -3.0260 1.0400 -2.6182 1.0400 -4.5858 

81 0 1.0283 -4.7538 1.0282 -4.2336 1.0282 -6.7484 

82 0 0.9773 -4.2600 0.9774 -3.9279 0.9773 -5.5261 

83 0 0.9717 -1.9318 0.9717 -1.5954 0.9717 -3.2146 

84 0 0.9747 2.2895 0.9747 2.6329 0.9747 0.9797 

85 2 0.9850 4.6362 0.9850 4.9829 0.9850 3.3136 

86 0 0.9867 3.2668 0.9867 3.6135 0.9867 1.9441 

87 2 1.0150 3.5260 1.0150 3.8727 1.0150 2.2033 

88 0 0.9859 9.2958 0.9858 9.6484 0.9859 7.9501 

89 2 1.0050 14.4007 1.0050 14.7574 1.0050 13.0393 

90 2 0.9850 2.1528 0.9850 2.5135 0.9850 0.7759 

91 2 0.9800 0.3186 0.9800 0.6825 0.9800 -1.0710 

92 2 0.9900 -1.9213 0.9900 -1.5525 0.9900 -3.3297 

93 0 0.9854 -3.8703 0.9854 -3.5003 0.9854 -5.2833 

94 0 0.9886 -5.1042 0.9886 -4.7331 0.9886 -6.5213 

95 0 0.9777 -5.5475 0.9777 -5.1789 0.9776 -6.9551 

96 0 0.9879 -5.0409 0.9879 -4.6754 0.9878 -6.4363 

97 0 1.0088 -4.3843 1.0088 -3.9976 1.0088 -5.8616 

98 0 1.0233 -5.2512 1.0233 -4.8539 1.0233 -6.7698 

99 2 1.0100 -6.2348 1.0100 -5.8473 1.0100 -7.7156 

100 2 1.0170 -5.7576 1.0170 -5.3781 1.0170 -7.2070 

101 0 0.9921 -5.0067 0.9921 -4.6318 0.9921 -6.4388 

102 0 0.9897 -3.0549 0.9897 -2.6841 0.9896 -4.4712 

103 2 1.0100 -9.4986 1.0100 -9.1192 1.0100 -10.9481 

104 2 0.9710 -12.0686 0.9710 -11.6892 0.9710 -13.5180 

105 2 0.9650 -13.1728 0.9650 -12.7934 0.9650 -14.6222 

106 0 0.9611 -13.4330 0.9611 -13.0536 0.9611 -14.8824 

107 2 0.9520 -16.2337 0.9520 -15.8543 0.9520 -17.6831 

108 0 0.9662 -14.3729 0.9662 -13.9935 0.9662 -15.8223 

109 0 0.9670 -14.8255 0.9670 -14.4461 0.9670 -16.2749 

110 2 0.9730 -15.6724 0.9730 -15.2930 0.9730 -17.1218 

111 2 0.9800 -14.0273 0.9800 -13.6479 0.9800 -15.4767 

112 2 0.9750 -18.7716 0.9750 -18.3922 0.9750 -20.2210 

113 2 0.9930 -22.9541 0.9930 -21.9645 0.9930 -26.1503 

114 0 0.9601 -21.6412 0.9601 -20.7364 0.9601 -24.5718 

115 0 0.9600 -21.6505 0.9600 -20.7456 0.9600 -24.5817 

116 2 1.0050 -6.0391 1.0050 -5.4555 1.0050 -8.2797 

117 0 0.9738 -26.0656 0.9738 -25.0553 0.9738 -29.3310 

118 0 0.9490 -9.8347 0.9491 -9.6388 0.9489 -10.5467 
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Solution NO. 19 20 21 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -29.8536 0.9550 -58.6664 0.9550 -27.0901 

2 0 0.9714 -29.3209 0.9714 -58.1223 0.9714 -26.5552 

3 0 0.9675 -28.9631 0.9675 -57.7804 0.9675 -26.2004 

4 2 0.9980 -25.2299 0.9981 -54.0664 0.9980 -22.4713 

5 0 1.0011 -24.7698 1.0011 -53.6124 1.0011 -22.0121 

6 2 0.9900 -27.5282 0.9900 -56.3475 0.9900 -24.7659 

7 0 0.9893 -27.9793 0.9893 -56.7887 0.9893 -25.2153 

8 2 1.0150 -19.6358 1.0150 -48.5160 1.0150 -16.8870 

9 0 1.0429 -12.3817 1.0429 -41.2660 1.0429 -9.6329 

10 2 1.0500 -4.8003 1.0500 -33.6852 1.0500 -2.0520 

11 0 0.9849 -27.8251 0.9849 -56.6337 0.9849 -25.0590 

12 2 0.9900 -28.3487 0.9900 -57.1433 0.9900 -25.5818 

13 0 0.9681 -29.2485 0.9682 -58.0374 0.9682 -26.4679 

14 0 0.9841 -29.1277 0.9841 -57.9036 0.9841 -26.3443 

15 2 0.9700 -29.5634 0.9700 -58.2847 0.9700 -26.7336 

16 0 0.9824 -28.6221 0.9821 -57.3206 0.9825 -25.8612 

17 0 0.9905 -26.7419 0.9897 -55.2295 0.9906 -23.9945 

18 2 0.9730 -29.1422 0.9730 -57.6932 0.9730 -26.3483 

19 2 0.9620 -29.7162 0.9620 -58.3164 0.9620 -26.8796 

20 0 0.9554 -28.2725 0.9504 -55.6046 0.9559 -25.5954 

21 0 0.9555 -26.2657 0.9482 -52.6436 0.9562 -23.7071 

22 0 0.9666 -23.2323 0.9586 -48.5095 0.9673 -20.8093 

23 0 0.9986 -17.5641 0.9950 -41.1233 0.9989 -15.3532 

24 2 0.9920 -16.5078 0.9920 -37.0740 0.9920 -14.6106 

25 2 1.0500 -11.4867 1.0500 -37.2680 1.0500 -9.0590 

26 2 1.0150 -9.9907 1.0150 -36.7095 1.0150 -7.4746 

27 2 0.9680 -24.2096 0.9680 -50.3081 0.9680 -21.7336 

28 0 0.9616 -26.0541 0.9615 -52.4359 0.9616 -23.5452 

29 0 0.9632 -27.1801 0.9633 -53.8772 0.9632 -24.6346 

30 0 1.0069 -21.6456 1.0058 -50.6031 1.0077 -18.9158 

31 2 0.9670 -27.1108 0.9670 -53.9203 0.9670 -24.5523 

32 2 0.9630 -24.7297 0.9630 -50.7611 0.9630 -22.2578 

33 0 0.9693 -30.9405 0.9690 -60.5807 0.9695 -27.8565 

34 2 0.9840 -31.1902 0.9840 -61.7945 0.9840 -27.7699 

35 0 0.9799 -31.6295 0.9799 -62.2597 0.9800 -28.2314 

36 2 0.9800 -31.6386 0.9800 -62.2617 0.9800 -28.2343 

37 0 0.9875 -30.6676 0.9877 -61.3331 0.9877 -27.3002 

38 0 0.9975 -24.0836 1.0001 -55.1505 0.9997 -21.2616 
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39 0 0.9673 -36.3048 0.9672 -67.1133 0.9679 -32.3171 

40 2 0.9700 -38.6800 0.9700 -69.5718 0.9700 -34.3343 

41 0 0.9668 -40.0826 0.9667 -71.0373 0.9669 -35.4723 

42 2 0.9850 -41.1025 0.9850 -72.2281 0.9850 -35.7689 

43 0 0.9711 -32.5749 0.9713 -63.3214 0.9698 -27.7832 

44 0 0.9695 -32.0165 0.9699 -62.9744 0.9669 -25.1808 

45 0 0.9765 -30.9955 0.9771 -62.0315 0.9742 -23.4085 

46 2 1.0050 -28.3293 1.0050 -58.8360 1.0050 -20.5081 

47 0 1.0052 -24.9597 0.9593 -53.1307 1.0122 -17.5443 

48 0 1.0148 -28.1148 1.0149 -59.7434 1.0146 -19.5337 

49 2 1.0250 -27.5846 1.0250 -59.5104 1.0250 -18.8023 

50 0 0.9895 -33.1367 0.9881 -65.3101 1.0000 -21.4649 

51 0 0.3931 -38.6049 0.9464 -72.9004 0.9649 -24.8989 

52 0 0.4719 -45.3715 0.9360 -75.2195 0.9547 -26.0786 

53 0 0.7352 -49.0015 0.9348 -79.8395 0.9449 -27.6698 

54 2 0.9550 -47.8754 0.9550 -81.5191 0.9550 -27.2092 

55 2 0.9520 -47.8770 0.9520 -82.3282 0.9520 -27.3962 

56 2 0.9540 -48.6161 0.9540 -81.6329 0.9540 -27.2669 

57 0 0.9576 -42.4146 0.9560 -75.0781 0.9694 -25.1762 

58 0 0.0087 -100.8201 0.9446 -76.9486 0.9577 -26.2012 

59 2 0.9850 -29.5535 0.9850 -86.1394 0.9850 -21.9264 

60 0 0.9925 -21.0889 0.0081 -169.8237 0.9932 -19.7440 

61 2 0.9950 -19.9557 0.9950 -94.6950 0.9950 -18.4916 

62 2 0.9980 -20.0380 0.9980 -93.3665 0.9980 -21.5827 

63 0 0.9827 -22.2622 0.9324 -79.2999 0.9893 -17.8973 

64 0 0.9912 -18.5193 0.9142 -75.3496 0.9944 -15.8374 

65 2 1.0050 -11.3115 1.0050 -47.3557 1.0050 -9.7623 

66 2 1.0500 -12.9882 1.0500 -54.9957 1.0500 -12.0099 

67 0 1.0184 -16.9836 0.9633 -73.1670 0.0158 -79.0656 

68 0 1.0120 -8.2931 0.9970 -32.2064 1.0122 -7.2784 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -10.0397 0.9840 -17.5292 0.9840 -9.4622 

71 0 0.9867 -10.8835 0.9853 -19.5382 0.9867 -10.1903 

72 2 0.9800 -14.1751 0.9800 -28.7180 0.9800 -12.8967 

73 2 0.9910 -11.0971 0.9910 -19.7671 0.9910 -10.4032 

74 2 0.9580 -10.7327 0.9580 -17.6194 0.9580 -10.2903 

75 0 0.9663 -9.3710 0.9615 -15.9721 0.9665 -8.9750 

76 2 0.9430 -11.1783 0.9430 -19.7484 0.9430 -10.7382 

77 2 1.0060 -7.1484 1.0060 -18.2819 1.0060 -6.6525 

78 0 1.0018 -7.4218 1.0008 -19.2310 1.0018 -6.8984 

79 0 1.0043 -7.0747 1.0036 -20.1929 1.0043 -6.4979 
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80 2 1.0400 -4.8656 1.0400 -21.6173 1.0400 -4.1407 

81 0 1.0282 -7.1068 1.0173 -28.4211 1.0282 -6.1963 

82 0 0.9773 -5.7536 0.9760 -19.4509 0.9773 -5.1534 

83 0 0.9717 -3.4451 0.9712 -17.3186 0.9717 -2.8378 

84 0 0.9747 0.7443 0.9747 -13.4164 0.9747 1.3631 

85 2 0.9850 3.0759 0.9850 -11.2230 0.9850 3.7002 

86 0 0.9867 1.7065 0.9867 -12.5925 0.9867 2.3308 

87 2 1.0150 1.9657 1.0150 -12.3326 1.0150 2.5900 

88 0 0.9859 7.7083 0.9862 -6.8294 0.9859 8.3424 

89 2 1.0050 12.7947 1.0050 -1.9076 1.0050 13.4355 

90 2 0.9850 0.5285 0.9850 -14.3371 0.9850 1.1759 

91 2 0.9800 -1.3208 0.9800 -16.3184 0.9800 -0.6679 

92 2 0.9900 -3.5828 0.9900 -18.7760 0.9900 -2.9220 

93 0 0.9854 -5.5372 0.9850 -20.7766 0.9854 -4.8744 

94 0 0.9886 -6.7759 0.9878 -22.0560 0.9886 -6.1114 

95 0 0.9776 -7.2080 0.9765 -22.3878 0.9776 -6.5476 

96 0 0.9878 -6.6871 0.9861 -21.7372 0.9878 -6.0318 

97 0 1.0088 -6.1271 1.0081 -22.0272 1.0088 -5.4369 

98 0 1.0233 -7.0427 1.0235 -23.3738 1.0233 -6.3350 

99 2 1.0100 -7.9817 1.0100 -23.9246 1.0100 -7.2901 

100 2 1.0170 -7.4675 1.0170 -23.0867 1.0170 -6.7891 

101 0 0.9921 -6.6962 0.9920 -22.1358 0.9921 -6.0253 

102 0 0.9896 -4.7257 0.9895 -20.0009 0.9896 -4.0615 

103 2 1.0100 -11.2085 1.0100 -26.8279 1.0100 -10.5302 

104 2 0.9710 -13.7785 0.9710 -29.3978 0.9710 -13.1002 

105 2 0.9650 -14.8827 0.9650 -30.5020 0.9650 -14.2044 

106 0 0.9611 -15.1429 0.9611 -30.7622 0.9611 -14.4646 

107 2 0.9520 -17.9436 0.9520 -33.5629 0.9520 -17.2653 

108 0 0.9662 -16.0828 0.9662 -31.7021 0.9662 -15.4045 

109 0 0.9670 -16.5354 0.9670 -32.1547 0.9670 -15.8571 

110 2 0.9730 -17.3823 0.9730 -33.0015 0.9730 -16.7040 

111 2 0.9800 -15.7372 0.9800 -31.3565 0.9800 -15.0589 

112 2 0.9750 -20.4815 0.9750 -36.1007 0.9750 -19.8032 

113 2 0.9930 -26.6972 0.9930 -54.8914 0.9930 -23.9813 

114 0 0.9601 -25.0739 0.9601 -51.1338 0.9601 -22.6003 

115 0 0.9600 -25.0839 0.9600 -51.1486 0.9600 -22.6100 

116 2 1.0050 -8.6824 1.0050 -32.6745 1.0050 -7.6670 

117 0 0.9738 -29.8897 0.9738 -58.6846 0.9738 -27.1228 

118 0 0.9488 -10.6733 0.9458 -18.1940 0.9489 -10.2567 
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Solution NO. 22 23 24 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -63.8947 0.9550 -27.0225 0.9550 -27.1467 

2 0 0.9714 -63.4139 0.9714 -26.4892 0.9714 -26.6127 

3 0 0.9675 -62.9823 0.9675 -26.1321 0.9675 -26.2567 

4 2 0.9980 -59.1437 0.9980 -22.3996 0.9980 -22.5258 

5 0 1.0012 -58.6686 1.0011 -21.9400 1.0011 -22.0663 

6 2 0.9900 -61.5380 0.9900 -24.6973 0.9900 -24.8220 

7 0 0.9893 -62.0323 0.9893 -25.1481 0.9893 -25.2721 

8 2 1.0150 -53.3485 1.0150 -16.8095 1.0150 -16.9387 

9 0 1.0429 -46.0944 1.0429 -9.5554 1.0429 -9.6845 

10 2 1.0500 -38.5135 1.0500 -1.9745 1.0500 -2.1037 

11 0 0.9849 -61.8807 0.9849 -24.9912 0.9849 -25.1152 

12 2 0.9900 -62.4727 0.9900 -25.5168 0.9900 -25.6398 

13 0 0.9681 -63.3727 0.9682 -26.3988 0.9682 -26.5214 

14 0 0.9841 -63.3126 0.9841 -26.2770 0.9841 -26.3987 

15 2 0.9700 -63.9198 0.9700 -26.6599 0.9700 -26.7780 

16 0 0.9821 -63.2179 0.9825 -25.8195 0.9825 -25.9360 

17 0 0.9891 -62.3538 0.9908 -24.0035 0.9908 -24.1058 

18 2 0.9730 -64.4157 0.9730 -26.3261 0.9730 -26.4324 

19 2 0.9620 -64.6350 0.9620 -26.8299 0.9620 -26.9395 

20 0 0.9508 -69.2990 0.9568 -25.8818 0.9566 -25.9058 

21 0 0.9500 -71.7618 0.9575 -24.2420 0.9572 -24.2027 

22 0 0.9597 -73.7733 0.9687 -21.6281 0.9684 -21.5166 

23 0 0.9843 -76.0321 0.9994 -16.6166 0.9993 -16.3920 

24 2 0.9920 -88.5924 0.9920 -16.6263 0.9920 -16.2049 

25 2 1.0500 -59.7630 1.0500 -9.7686 1.0500 -9.6908 

26 2 1.0150 -53.8259 1.0151 -7.9463 1.0150 -7.9336 

27 2 0.9680 -71.4463 0.9680 -22.3634 0.9680 -22.3045 

28 0 0.9613 -71.9906 0.9616 -24.1021 0.9616 -24.0619 

29 0 0.9627 -71.6659 0.9632 -25.1102 0.9632 -25.0910 

30 0 0.9956 -54.9714 1.0081 -18.8292 1.0080 -18.9635 

31 2 0.9670 -71.0804 0.9670 -24.9989 0.9670 -24.9871 

32 2 0.9630 -72.4055 0.9630 -22.9055 0.9630 -22.8414 

33 0 0.9629 -59.8857 0.9695 -27.4769 0.9695 -27.6598 

34 2 0.9840 -54.1927 0.9840 -27.0390 0.9840 -27.2908 

35 0 0.9788 -54.5875 0.9800 -27.5048 0.9800 -27.7580 

36 2 0.9800 -54.6188 0.9800 -27.5065 0.9800 -27.7593 

37 0 0.9811 -53.5101 0.9877 -26.5790 0.9878 -26.8343 

38 0 0.9590 -46.8313 0.9998 -20.6839 1.0000 -20.9608 
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39 0 0.9667 -56.3011 0.9681 -31.3100 0.9681 -31.5797 

40 2 0.9700 -57.0151 0.9700 -33.1616 0.9700 -33.4398 

41 0 0.9667 -57.1187 0.9669 -34.1754 0.9669 -34.4600 

42 2 0.9850 -54.5857 0.9850 -34.1326 0.9850 -34.4350 

43 0 0.9457 -48.1305 0.9686 -26.3918 0.9687 -26.6767 

44 0 0.9368 -35.9893 0.9650 -22.7965 0.9651 -23.1313 

45 0 0.9534 -30.7307 0.9727 -20.6586 0.9728 -21.0117 

46 2 1.0050 -25.6492 1.0050 -17.6270 1.0050 -17.9798 

47 0 1.0088 -21.1394 1.0141 -14.7841 1.0139 -15.1136 

48 0 1.0143 -23.4694 1.0146 -16.3196 1.0146 -16.7021 

49 2 1.0250 -22.4189 1.0250 -15.5000 1.0250 -15.8904 

50 0 1.0009 -24.5789 1.0004 -17.9464 1.0004 -18.3562 

51 0 0.9665 -27.3637 0.9656 -21.1006 0.9656 -21.5357 

52 0 0.9564 -28.3674 0.9555 -22.2045 0.9554 -22.6464 

53 0 0.9458 -29.4796 0.9453 -23.5895 0.9453 -24.0500 

54 2 0.9550 -28.6688 0.9550 -22.9784 0.9550 -23.4524 

55 2 0.9520 -28.7488 0.9520 -23.1196 0.9520 -23.5978 

56 2 0.9540 -28.7177 0.9540 -23.0323 0.9540 -23.5067 

57 0 0.9704 -27.3411 0.9699 -21.2488 0.9698 -21.6955 

58 0 0.9588 -28.2351 0.9582 -22.2174 0.9582 -22.6692 

59 2 0.9850 -21.6273 0.9850 -16.9449 0.9850 -17.4871 

60 0 0.9931 -17.2355 0.9931 -12.8411 0.9931 -13.4026 

61 2 0.9950 -16.3354 0.9950 -11.9736 0.9950 -12.5374 

62 2 0.9980 -16.7642 0.9980 -12.3437 0.9980 -12.9035 

63 0 0.9919 -17.8076 0.9925 -13.4406 0.9926 -14.0040 

64 0 0.9979 -15.8677 0.9984 -11.6636 0.9985 -12.2379 

65 2 1.0050 -12.4256 1.0050 -8.6416 1.0050 -9.2443 

66 2 1.0500 -11.8112 1.0500 -7.1768 1.0500 -7.7220 

67 0 1.0194 -14.8578 1.0193 -10.3201 1.0193 -10.8719 

68 0 1.0119 -9.3053 1.0106 -9.3453 1.0102 -10.0391 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -28.6683 0.9840 -14.6053 0.9840 -13.3702 

71 0 0.7899 -31.9504 0.9868 -15.0611 0.9868 -13.8967 

72 2 0.9800 149.9971 0.9800 -16.3868 0.9800 -15.5808 

73 2 0.9910 -34.9562 0.9910 -15.2727 0.9910 -14.1085 

74 2 0.9580 -22.3179 0.9580 -18.8925 0.9580 -16.8168 

75 0 0.9562 -18.4671 0.9559 -18.4505 0.9596 -16.1837 

76 2 0.9430 -17.9275 0.9430 -26.4298 0.9430 -22.6761 

77 2 1.0060 -10.2891 1.0060 -30.2880 1.0060 -24.7508 

78 0 1.0018 -10.4493 0.6607 -29.7470 1.0018 -25.0128 

79 0 1.0042 -9.8834 0.0126 -63.8862 1.0043 -24.6436 
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80 2 1.0400 -7.0666 1.0400 -20.2960 1.0400 -22.3734 

81 0 1.0279 -8.5470 1.0182 -13.3308 1.0163 -14.5214 

82 0 0.9774 -8.4665 0.9766 -25.3966 0.0227 -83.9209 

83 0 0.9717 -6.1289 0.9706 -22.8509 0.2924 -63.6289 

84 0 0.9747 -1.8923 0.9741 -18.2828 0.7523 -62.1445 

85 2 0.9850 0.4617 0.9850 -15.7726 0.9850 -61.4989 

86 0 0.9867 -0.9077 0.9867 -17.1421 0.9867 -62.8684 

87 2 1.0150 -0.6485 1.0150 -16.8828 1.0150 -62.6091 

88 0 0.9858 5.1343 0.9855 -10.8110 0.9773 -51.8947 

89 2 1.0050 10.2482 1.0050 -5.4986 1.0050 -43.3936 

90 2 0.9850 -1.9908 0.9850 -17.5427 0.9850 -52.3557 

91 2 0.9800 -3.8179 0.9800 -19.2105 0.9800 -51.4549 

92 2 0.9900 -6.0472 0.9900 -21.2034 0.9900 -49.5672 

93 0 0.9854 -7.9935 0.9855 -23.0879 0.8818 -48.0986 

94 0 0.9887 -9.2251 0.9888 -24.2660 0.7968 -45.9030 

95 0 0.9777 -9.6738 0.9779 -24.8316 0.6685 -44.8354 

96 0 0.9879 -9.1740 0.9881 -24.4800 0.5443 -39.9244 

97 0 1.0088 -8.4709 1.0084 -22.7407 0.7708 -29.1842 

98 0 1.0233 -9.3144 1.0229 -23.0669 1.0046 -32.0051 

99 2 1.0100 -10.3195 1.0100 -24.5561 1.0100 -40.0639 

100 2 1.0170 -9.8601 1.0170 -24.4967 1.0170 -45.0472 

101 0 0.9921 -9.1191 0.9923 -23.9749 0.9919 -47.8256 

102 0 0.9897 -7.1763 0.9898 -22.2324 0.9898 -49.0915 

103 2 1.0100 -13.6012 1.0100 -28.2378 1.0100 -48.7883 

104 2 0.9710 -16.1711 0.9710 -30.8078 0.9710 -51.3583 

105 2 0.9650 -17.2753 0.9650 -31.9120 0.9650 -52.4625 

106 0 0.9611 -17.5355 0.9611 -32.1722 0.9611 -52.7226 

107 2 0.9520 -20.3362 0.9520 -34.9729 0.9520 -55.5234 

108 0 0.9662 -18.4754 0.9662 -33.1121 0.9662 -53.6626 

109 0 0.9670 -18.9280 0.9670 -33.5647 0.9670 -54.1152 

110 2 0.9730 -19.7749 0.9730 -34.4116 0.9730 -54.9620 

111 2 0.9800 -18.1298 0.9800 -32.7665 0.9800 -53.3169 

112 2 0.9750 -22.8741 0.9750 -37.5108 0.9750 -58.0612 

113 2 0.9930 -63.8757 0.9930 -24.0673 0.9930 -24.1492 

114 0 0.9601 -72.5649 0.9601 -23.2405 0.9601 -23.1785 

115 0 0.9600 -72.5433 0.9600 -23.2489 0.9600 -23.1873 

116 2 1.0050 -9.6953 1.0050 -9.7421 1.0050 -10.4380 

117 0 0.9738 -64.0137 0.9738 -27.0578 0.9738 -27.1808 

118 0 0.9435 -18.6861 0.9411 -22.6402 0.9438 -19.6720 
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Solution NO. 25 26 27 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -26.1411 0.9550 -23.7433 0.9550 -25.5089 

2 0 0.9714 -25.6072 0.9714 -23.2100 0.9714 -24.9751 

3 0 0.9675 -25.2510 0.9675 -22.8530 0.9675 -24.6188 

4 2 0.9980 -21.5198 0.9980 -19.1207 0.9980 -20.8877 

5 0 1.0011 -21.0603 1.0011 -18.6611 1.0011 -20.4282 

6 2 0.9900 -23.8163 0.9900 -21.4182 0.9900 -23.1842 

7 0 0.9893 -24.2665 0.9893 -21.8689 0.9893 -23.6344 

8 2 1.0150 -15.9321 1.0150 -13.5307 1.0150 -15.2999 

9 0 1.0429 -8.6778 1.0429 -6.2766 1.0429 -8.0458 

10 2 1.0500 -1.0969 1.0500 1.3044 1.0500 -0.4649 

11 0 0.9849 -24.1097 0.9849 -21.7123 0.9849 -23.4776 

12 2 0.9900 -24.6343 0.9900 -22.2375 0.9900 -24.0022 

13 0 0.9682 -25.5166 0.9682 -23.1212 0.9682 -24.8848 

14 0 0.9841 -25.3940 0.9841 -22.9994 0.9841 -24.7622 

15 2 0.9700 -25.7753 0.9700 -23.3869 0.9700 -25.1445 

16 0 0.9825 -24.9307 0.9825 -22.5365 0.9825 -24.2980 

17 0 0.9908 -23.1008 0.9908 -20.7122 0.9908 -22.4669 

18 2 0.9730 -25.4291 0.9730 -23.0429 0.9730 -24.7966 

19 2 0.9620 -25.9377 0.9620 -23.5540 0.9620 -25.3066 

20 0 0.9565 -24.9030 0.9566 -22.5455 0.9565 -24.2624 

21 0 0.9572 -23.1991 0.9572 -20.8610 0.9571 -22.5516 

22 0 0.9684 -20.5122 0.9685 -18.1961 0.9684 -19.8567 

23 0 0.9993 -15.3863 0.9993 -13.1048 0.9993 -14.7184 

24 2 0.9920 -15.1990 0.9920 -12.9831 0.9920 -14.5109 

25 2 1.0500 -8.6842 1.0500 -6.3519 1.0500 -8.0319 

26 2 1.0150 -6.9275 1.0150 -4.5724 1.0151 -6.2770 

27 2 0.9680 -21.2988 0.9680 -18.9623 0.9680 -20.6479 

28 0 0.9616 -23.0564 0.9616 -20.7139 0.9616 -22.4075 

29 0 0.9632 -24.0856 0.9632 -21.7364 0.9632 -23.4389 

30 0 1.0080 -17.9559 1.0080 -15.5501 1.0080 -17.3235 

31 2 0.9670 -23.9818 0.9670 -21.6303 0.9670 -23.3360 

32 2 0.9630 -21.8359 0.9630 -19.5014 0.9630 -21.1846 

33 0 0.9695 -26.6633 0.9695 -24.2677 0.9695 -26.0430 

34 2 0.9840 -26.3038 0.9840 -23.9078 0.9840 -25.6967 

35 0 0.9800 -26.7698 0.9800 -24.3706 0.9800 -26.1621 

36 2 0.9800 -26.7715 0.9800 -24.3732 0.9800 -26.1639 

37 0 0.9878 -25.8446 0.9877 -23.4411 0.9878 -25.2362 

38 0 0.9999 -19.9479 0.9996 -17.4820 0.9999 -19.3267 
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39 0 0.9681 -30.6119 0.9680 -28.2555 0.9681 -30.0190 

40 2 0.9700 -32.4845 0.9700 -30.1553 0.9700 -31.9006 

41 0 0.9669 -33.5142 0.9669 -31.2053 0.9669 -32.9371 

42 2 0.9850 -33.5149 0.9850 -31.2614 0.9850 -32.9562 

43 0 0.9688 -25.7514 0.9691 -23.4911 0.9689 -25.1875 

44 0 0.9653 -22.2990 0.9656 -20.2428 0.9654 -21.8001 

45 0 0.9729 -20.2136 0.9731 -18.2325 0.9730 -19.7386 

46 2 1.0050 -17.2270 1.0050 -15.3537 1.0050 -16.7812 

47 0 1.0143 -14.4343 1.0154 -12.7404 1.0146 -14.0332 

48 0 1.0146 -15.9178 1.0145 -13.9599 1.0146 -15.4548 

49 2 1.0250 -15.0978 1.0250 -13.1175 1.0250 -14.6302 

50 0 1.0004 -17.5369 1.0005 -15.4865 1.0004 -17.0540 

51 0 0.9657 -20.6817 0.9659 -18.5408 0.9657 -20.1791 

52 0 0.9555 -21.7830 0.9557 -19.6175 0.9556 -21.2750 

53 0 0.9453 -23.1611 0.9454 -20.9288 0.9453 -22.6386 

54 2 0.9550 -22.5449 0.9550 -20.2638 0.9550 -22.0117 

55 2 0.9520 -22.6846 0.9520 -20.3885 0.9520 -22.1481 

56 2 0.9540 -22.5987 0.9540 -20.3164 0.9540 -22.0653 

57 0 0.9699 -20.8256 0.9700 -18.6428 0.9699 -20.3138 

58 0 0.9582 -21.7922 0.9584 -19.5912 0.9583 -21.2765 

59 2 0.9850 -16.4861 0.9850 -13.9595 0.9850 -15.8995 

60 0 0.9931 -12.3750 0.9931 -9.7785 0.9931 -11.7732 

61 2 0.9950 -11.5067 0.9950 -8.9023 0.9950 -10.9032 

62 2 0.9980 -11.8783 0.9980 -9.2883 0.9980 -11.2779 

63 0 0.9925 -12.9738 0.9924 -10.3706 0.9925 -12.3706 

64 0 0.9984 -11.1927 0.9983 -8.5499 0.9984 -10.5808 

65 2 1.0050 -8.1601 1.0050 -5.4152 1.0050 -7.5261 

66 2 1.0500 -6.7168 1.0500 -4.1792 1.0500 -6.1278 

67 0 1.0193 -9.8576 1.0193 -7.2963 1.0193 -9.2635 

68 0 1.0108 -8.8898 1.0119 -5.9579 1.0111 -8.2230 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -12.3637 0.9840 -10.4188 0.9840 -11.5918 

71 0 0.9868 -12.8902 0.9868 -10.9218 0.9868 -12.1256 

72 2 0.9800 -14.5746 0.9800 -12.4867 0.9800 -13.8469 

73 2 0.9910 -13.1021 0.9910 -11.1336 0.9910 -12.3375 

74 2 0.9580 -15.3294 0.9580 -12.5303 0.9580 -14.1601 

75 0 0.9617 -14.5869 0.9648 -11.5815 0.9631 -13.3219 

76 2 0.9430 -20.1162 0.9430 -15.3278 0.9430 -18.0729 

77 2 1.0060 -20.9992 1.0060 -13.9232 1.0060 -17.9696 

78 0 1.0017 -21.3346 1.0018 -14.1394 1.0016 -18.4525 

79 0 1.0043 -21.1071 1.0043 -13.6818 1.0043 -18.5104 
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80 2 1.0400 -19.2308 1.0400 -11.1658 1.0400 -17.4271 

81 0 1.0190 -12.6563 1.0244 -7.8795 1.0204 -11.5810 

82 0 0.4202 -30.3817 0.9709 -22.3644 0.8943 -26.5558 

83 0 0.0110 -95.5252 0.9692 -26.0703 0.9173 -27.6370 

84 0 0.6591 -73.0127 0.9733 -31.4149 0.9581 -28.8073 

85 2 0.9850 -72.4005 0.9850 -33.6352 0.9850 -29.0020 

86 0 0.9867 -73.7699 0.9867 -35.0046 0.9867 -30.3714 

87 2 1.0150 -73.5107 1.0150 -34.7454 1.0150 -30.1122 

88 0 0.9682 -59.2996 0.0213 -92.2157 0.9889 -28.0515 

89 2 1.0050 -48.4015 1.0050 -21.0956 1.0050 -25.4918 

90 2 0.9850 -55.1052 0.9850 -29.4366 0.9850 -40.2734 

91 2 0.9800 -52.2612 0.9800 -28.0066 0.9800 -44.1429 

92 2 0.9900 -47.3432 0.9900 -25.3020 0.9900 -49.3618 

93 0 0.9223 -44.2572 0.9847 -24.3948 0.0069 -86.9537 

94 0 0.8739 -40.6963 0.9870 -23.1574 0.6921 -38.4224 

95 0 0.7948 -38.6249 0.9750 -22.6179 0.7344 -34.8473 

96 0 0.7285 -33.6572 0.9845 -20.8601 0.8260 -29.4060 

97 0 0.8679 -25.8224 1.0036 -16.3637 0.9202 -23.3037 

98 0 1.0073 -28.2576 1.0187 -16.6666 1.0024 -27.5520 

99 2 1.0100 -35.7155 1.0100 -20.7145 1.0100 -36.1046 

100 2 1.0170 -40.2714 1.0170 -22.7105 1.0170 -41.4336 

101 0 0.9907 -44.1288 0.9924 -24.6737 0.9902 -45.6532 

102 0 0.9892 -46.3776 0.9901 -25.1974 0.9889 -48.2321 

103 2 1.0100 -44.0125 1.0100 -26.4516 1.0100 -45.1747 

104 2 0.9710 -46.5825 0.9710 -29.0216 0.9710 -47.7447 

105 2 0.9650 -47.6867 0.9650 -30.1258 0.9650 -48.8489 

106 0 0.9611 -47.9468 0.9611 -30.3859 0.9611 -49.1090 

107 2 0.9520 -50.7476 0.9520 -33.1867 0.9520 -51.9098 

108 0 0.9662 -48.8868 0.9662 -31.3259 0.9662 -50.0489 

109 0 0.9670 -49.3394 0.9670 -31.7785 0.9670 -50.5015 

110 2 0.9730 -50.1862 0.9730 -32.6253 0.9730 -51.3484 

111 2 0.9800 -48.5411 0.9800 -30.9802 0.9800 -49.7033 

112 2 0.9750 -53.2854 0.9750 -35.7245 0.9750 -54.4476 

113 2 0.9930 -23.1443 0.9930 -20.7625 0.9930 -22.5083 

114 0 0.9601 -22.1729 0.9601 -19.8376 0.9601 -21.5218 

115 0 0.9600 -22.1817 0.9600 -19.8462 0.9600 -21.5306 

116 2 1.0050 -9.2857 1.0050 -6.3483 1.0050 -8.6173 

117 0 0.9738 -26.1753 0.9738 -23.7785 0.9738 -25.5432 

118 0 0.9453 -17.6230 0.9476 -13.7845 0.9464 -15.9938 

  



194 

 

Solution NO. 28 29 30 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -25.3490 0.9550 -27.5041 0.9550 -23.4966 

2 0 0.9714 -24.8152 0.9714 -26.9699 0.9714 -22.9632 

3 0 0.9675 -24.4589 0.9675 -26.6142 0.9675 -22.6063 

4 2 0.9980 -20.7276 0.9980 -22.8838 0.9980 -18.8741 

5 0 1.0011 -20.2681 1.0011 -22.4245 1.0011 -18.4145 

6 2 0.9900 -23.0242 0.9900 -25.1796 0.9900 -21.1715 

7 0 0.9893 -23.4745 0.9893 -25.6295 0.9893 -21.6221 

8 2 1.0150 -15.1397 1.0150 -17.2978 1.0150 -13.2844 

9 0 1.0429 -7.8855 1.0429 -10.0436 1.0429 -6.0303 

10 2 1.0500 -0.3047 1.0500 -2.4627 1.0500 1.5507 

11 0 0.9849 -23.3177 0.9849 -25.4725 0.9849 -21.4655 

12 2 0.9900 -23.8424 0.9900 -25.9968 0.9900 -21.9906 

13 0 0.9682 -24.7251 0.9682 -26.8781 0.9682 -22.8744 

14 0 0.9841 -24.6026 0.9841 -26.7551 0.9841 -22.7525 

15 2 0.9700 -24.9854 0.9700 -27.1326 0.9700 -23.1400 

16 0 0.9825 -24.1386 0.9825 -26.2910 0.9825 -22.2887 

17 0 0.9908 -22.3082 0.9908 -24.4566 0.9908 -20.4624 

18 2 0.9730 -24.6380 0.9730 -26.7839 0.9730 -22.7941 

19 2 0.9620 -25.1480 0.9620 -27.2916 0.9620 -23.3061 

20 0 0.9565 -24.1077 0.9565 -26.2333 0.9566 -22.2847 

21 0 0.9571 -22.3998 0.9571 -24.5121 0.9572 -20.5907 

22 0 0.9684 -19.7082 0.9683 -21.8053 0.9685 -17.9151 

23 0 0.9993 -14.5750 0.9993 -16.6483 0.9993 -12.8068 

24 2 0.9920 -14.3769 0.9920 -16.4041 0.9920 -12.6561 

25 2 1.0500 -7.8808 1.0500 -9.9886 1.0500 -6.0762 

26 2 1.0151 -6.1246 1.0152 -8.2441 1.0150 -4.3057 

27 2 0.9680 -20.4967 0.9680 -22.6088 0.9680 -18.6886 

28 0 0.9616 -22.2555 0.9616 -24.3717 0.9616 -20.4430 

29 0 0.9632 -23.2859 0.9632 -25.4067 0.9632 -21.4686 

30 0 1.0080 -17.1628 1.0080 -19.3244 1.0079 -15.3043 

31 2 0.9670 -23.1826 0.9670 -25.3051 0.9670 -21.3636 

32 2 0.9630 -21.0336 0.9630 -23.1442 0.9630 -19.2270 

33 0 0.9695 -25.8818 0.9695 -28.0313 0.9695 -24.0320 

34 2 0.9840 -25.5336 0.9840 -27.6793 0.9840 -23.6847 

35 0 0.9800 -25.9988 0.9800 -28.1472 0.9800 -24.1475 

36 2 0.9800 -26.0007 0.9800 -28.1483 0.9800 -24.1501 

37 0 0.9878 -25.0725 0.9878 -27.2246 0.9877 -23.2179 

38 0 0.9999 -19.1585 1.0001 -21.3647 0.9996 -17.2557 
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39 0 0.9681 -29.8580 0.9681 -31.9673 0.9680 -28.0402 

40 2 0.9700 -31.7412 0.9700 -33.8258 0.9700 -29.9447 

41 0 0.9669 -32.7788 0.9669 -34.8449 0.9669 -30.9982 

42 2 0.9850 -32.8011 0.9850 -34.8168 0.9850 -31.0637 

43 0 0.9689 -25.0324 0.9687 -27.0551 0.9691 -23.2895 

44 0 0.9654 -21.6570 0.9651 -23.4946 0.9657 -20.0733 

45 0 0.9730 -19.6000 0.9728 -21.3695 0.9732 -18.0748 

46 2 1.0050 -16.6496 1.0050 -18.3231 1.0050 -15.2081 

47 0 1.0147 -13.9139 1.0137 -15.4266 1.0154 -12.6108 

48 0 1.0146 -15.3169 1.0146 -17.0640 1.0145 -13.8103 

49 2 1.0250 -14.4906 1.0250 -16.2572 1.0250 -12.9668 

50 0 1.0004 -16.9094 1.0003 -18.7372 1.0005 -15.3315 

51 0 0.9657 -20.0280 0.9655 -21.9349 0.9659 -18.3803 

52 0 0.9556 -21.1221 0.9554 -23.0506 0.9558 -19.4555 

53 0 0.9453 -22.4808 0.9452 -24.4677 0.9454 -20.7627 

54 2 0.9550 -21.8505 0.9550 -23.8799 0.9550 -20.0946 

55 2 0.9520 -21.9858 0.9520 -24.0283 0.9520 -20.2185 

56 2 0.9540 -21.9039 0.9540 -23.9345 0.9540 -20.1472 

57 0 0.9699 -20.1597 0.9698 -22.1032 0.9700 -18.4797 

58 0 0.9583 -21.1210 0.9582 -23.0805 0.9584 -19.4270 

59 2 0.9850 -15.7205 0.9850 -17.9639 0.9850 -13.7753 

60 0 0.9931 -11.5892 0.9931 -13.8935 0.9931 -9.5900 

61 2 0.9950 -10.7186 0.9950 -13.0298 0.9950 -8.7133 

62 2 0.9980 -11.0944 0.9980 -13.3931 0.9980 -9.1001 

63 0 0.9925 -12.1861 0.9926 -14.4963 0.9924 -10.1817 

64 0 0.9984 -10.3935 0.9985 -12.7381 0.9983 -8.3585 

65 2 1.0050 -7.3313 1.0050 -9.7650 1.0050 -5.2174 

66 2 1.0500 -5.9481 1.0500 -8.2009 1.0500 -3.9943 

67 0 1.0193 -9.0821 1.0193 -11.3556 1.0193 -7.1099 

68 0 1.0112 -8.0137 1.0099 -10.6067 1.0119 -5.7560 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -11.4964 0.9840 -13.3330 0.9840 -9.9720 

71 0 0.9868 -12.0269 0.9868 -13.8800 0.9868 -10.4853 

72 2 0.9800 -13.7311 0.9800 -15.6683 0.9800 -12.1031 

73 2 0.9910 -12.2387 0.9910 -14.0919 0.9910 -10.6971 

74 2 0.9580 -14.0308 0.9580 -16.6875 0.9580 -11.8279 

75 0 0.9633 -13.1848 0.9598 -16.0306 0.9654 -10.8115 

76 2 0.9430 -17.8584 0.9430 -22.3949 0.9430 -14.0701 

77 2 1.0060 -17.6562 1.0060 -24.3113 1.0060 -12.0199 

78 0 1.0016 -18.1071 1.0015 -24.8196 1.0017 -12.4021 

79 0 1.0043 -18.1029 1.0043 -24.9266 1.0043 -12.2651 
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80 2 1.0400 -16.8472 1.0400 -23.9797 1.0400 -10.6404 

81 0 1.0208 -11.2386 1.0148 -15.4617 1.0247 -7.5612 

82 0 0.7500 -24.2828 0.4718 -37.1888 0.8279 -12.9171 

83 0 0.8151 -24.9352 0.6161 -42.7165 0.8681 -11.2324 

84 0 0.9245 -25.4793 0.8582 -47.4274 0.9415 -8.5148 

85 2 0.9850 -25.3503 0.9850 -48.4789 0.9850 -7.0125 

86 0 0.9867 -26.7197 0.9867 -49.8483 0.9867 -8.3820 

87 2 1.0150 -26.4605 1.0150 -49.5891 1.0150 -8.1227 

88 0 0.9879 -22.6980 0.9874 -45.2403 0.9863 -2.7045 

89 2 1.0050 -18.9712 1.0050 -41.1110 1.0050 2.1591 

90 2 0.9850 -32.5831 0.9850 -54.3228 0.9850 -10.3264 

91 2 0.9800 -35.5211 0.9800 -56.9388 0.9800 -12.3542 

92 2 0.9900 -39.3855 0.9900 -60.3317 0.9900 -14.8806 

93 0 0.7543 -39.7354 0.7541 -61.2999 0.9159 -16.1545 

94 0 0.5601 -39.2472 0.5598 -61.7550 0.8593 -16.8665 

95 0 0.0252 -69.1076 0.2784 -67.6497 0.7689 -16.7749 

96 0 0.5340 -27.5429 0.0140 -94.5992 0.6860 -14.6218 

97 0 0.7708 -21.1860 0.4979 -26.1079 0.0095 -59.7639 

98 0 1.0028 -26.8746 0.9797 -37.9925 1.0215 -14.6436 

99 2 1.0100 -35.3293 1.0100 -50.5869 1.0100 -17.2810 

100 2 1.0170 -40.5902 1.0170 -58.5475 1.0170 -18.1568 

101 0 0.9926 -40.9498 0.9925 -60.1696 0.9923 -17.6422 

102 0 0.9901 -40.0121 0.9901 -60.3825 0.9898 -15.9064 

103 2 1.0100 -44.3313 1.0100 -62.2886 1.0100 -21.8979 

104 2 0.9710 -46.9013 0.9710 -64.8586 0.9710 -24.4679 

105 2 0.9650 -48.0055 0.9650 -65.9628 0.9650 -25.5721 

106 0 0.9611 -48.2656 0.9611 -66.2230 0.9611 -25.8323 

107 2 0.9520 -51.0664 0.9520 -69.0237 0.9520 -28.6330 

108 0 0.9662 -49.2056 0.9662 -67.1629 0.9662 -26.7722 

109 0 0.9670 -49.6582 0.9670 -67.6155 0.9670 -27.2248 

110 2 0.9730 -50.5050 0.9730 -68.4624 0.9730 -28.0716 

111 2 0.9800 -48.8599 0.9800 -66.8173 0.9800 -26.4266 

112 2 0.9750 -53.6042 0.9750 -71.5616 0.9750 -31.1709 

113 2 0.9930 -22.3506 0.9930 -24.4942 0.9930 -20.5097 

114 0 0.9601 -21.3708 0.9601 -23.4820 0.9601 -19.5635 

115 0 0.9600 -21.3795 0.9600 -23.4909 0.9600 -19.5721 

116 2 1.0050 -8.4077 1.0050 -11.0073 1.0050 -6.1461 

117 0 0.9738 -25.3834 0.9738 -27.5378 0.9738 -23.5316 

118 0 0.9465 -15.8205 0.9440 -19.4588 0.9481 -12.7875 
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Solution NO. 31 32 33 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -23.1245 0.9550 -22.8139 0.9550 -24.3056 

2 0 0.9714 -22.5912 0.9714 -22.2807 0.9714 -23.7721 

3 0 0.9675 -22.2342 0.9675 -21.9235 0.9675 -23.4154 

4 2 0.9980 -18.5020 0.9980 -18.1910 0.9980 -19.6836 

5 0 1.0011 -18.0423 1.0011 -17.7313 1.0011 -19.2241 

6 2 0.9900 -20.7994 0.9900 -20.4887 0.9900 -21.9807 

7 0 0.9893 -21.2501 0.9893 -20.9395 0.9893 -22.4312 

8 2 1.0150 -12.9120 1.0150 -12.6004 1.0150 -14.0946 

9 0 1.0429 -5.6579 1.0429 -5.3463 1.0429 -6.8406 

10 2 1.0500 1.9230 1.0500 2.2346 1.0500 0.7404 

11 0 0.9849 -21.0935 0.9849 -20.7830 0.9849 -22.2745 

12 2 0.9900 -21.6187 0.9900 -21.3083 0.9900 -22.7994 

13 0 0.9682 -22.5027 0.9682 -22.1925 0.9682 -23.6827 

14 0 0.9841 -22.3808 0.9841 -22.0708 0.9841 -23.5606 

15 2 0.9700 -22.7691 0.9700 -22.4603 0.9700 -23.9460 

16 0 0.9825 -21.9167 0.9825 -21.6074 0.9825 -23.0967 

17 0 0.9908 -20.0905 0.9908 -19.7834 0.9908 -21.2687 

18 2 0.9730 -22.4229 0.9730 -22.1156 0.9730 -23.5996 

19 2 0.9620 -22.9355 0.9620 -22.6281 0.9620 -24.1107 

20 0 0.9566 -21.9134 0.9566 -21.6182 0.9566 -23.0817 

21 0 0.9572 -20.2189 0.9572 -19.9327 0.9572 -21.3822 

22 0 0.9685 -17.5427 0.9685 -17.2667 0.9684 -18.7002 

23 0 0.9993 -12.4335 0.9993 -12.1735 0.9993 -13.5820 

24 2 0.9920 -12.2821 0.9920 -12.0507 0.9920 -13.4122 

25 2 1.0500 -5.7018 1.0500 -5.4219 1.0500 -6.8655 

26 2 1.0150 -3.9328 1.0152 -3.6324 1.0151 -5.1007 

27 2 0.9680 -18.3159 0.9680 -18.0319 0.9680 -19.4798 

28 0 0.9616 -20.0704 0.9616 -19.7837 0.9616 -21.2360 

29 0 0.9632 -21.0962 0.9632 -20.8065 0.9632 -22.2635 

30 0 1.0079 -14.9315 1.0079 -14.6188 1.0080 -16.1159 

31 2 0.9670 -20.9912 0.9670 -20.7004 0.9670 -22.1592 

32 2 0.9630 -18.8543 0.9630 -18.5711 0.9630 -20.0176 

33 0 0.9695 -23.6636 0.9695 -23.3473 0.9695 -24.8394 

34 2 0.9840 -23.3202 0.9840 -22.9967 0.9840 -24.4911 

35 0 0.9800 -23.7826 0.9799 -23.4585 0.9800 -24.9549 

36 2 0.9800 -23.7852 0.9800 -23.4613 0.9800 -24.9572 

37 0 0.9877 -22.8523 0.9877 -22.5275 0.9877 -24.0267 

38 0 0.9996 -16.8814 0.9995 -16.5464 0.9997 -18.0855 
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39 0 0.9680 -27.6831 0.9680 -27.3627 0.9680 -28.8328 

40 2 0.9700 -29.5924 0.9700 -29.2746 0.9700 -30.7278 

41 0 0.9669 -30.6495 0.9669 -30.3336 0.9669 -31.7743 

42 2 0.9850 -30.7249 0.9850 -30.4142 0.9850 -31.8207 

43 0 0.9691 -22.9485 0.9692 -22.6388 0.9690 -24.0490 

44 0 0.9657 -19.7678 0.9658 -19.4788 0.9656 -20.7625 

45 0 0.9732 -17.7823 0.9732 -17.5009 0.9731 -18.7382 

46 2 1.0050 -14.9328 1.0050 -14.6650 1.0050 -15.8347 

47 0 1.0156 -12.3624 1.0157 -12.1192 1.0151 -13.1771 

48 0 1.0145 -13.5232 1.0145 -13.2417 1.0145 -14.4652 

49 2 1.0250 -12.6765 1.0250 -12.3914 1.0250 -13.6292 

50 0 1.0006 -15.0311 1.0006 -14.7351 1.0005 -16.0175 

51 0 0.9659 -18.0669 0.9660 -17.7568 0.9658 -19.0967 

52 0 0.9558 -19.1386 0.9558 -18.8247 0.9557 -20.1801 

53 0 0.9455 -20.4361 0.9455 -20.1119 0.9454 -21.5098 

54 2 0.9550 -19.7611 0.9550 -19.4293 0.9550 -20.8581 

55 2 0.9520 -19.8827 0.9520 -19.5486 0.9520 -20.9870 

56 2 0.9540 -19.8134 0.9540 -19.4814 0.9540 -20.9111 

57 0 0.9700 -18.1603 0.9701 -17.8438 0.9700 -19.2102 

58 0 0.9584 -19.1049 0.9584 -18.7855 0.9584 -20.1635 

59 2 0.9850 -13.4064 0.9850 -13.0364 0.9850 -14.6214 

60 0 0.9931 -9.2109 0.9931 -8.8301 0.9931 -10.4597 

61 2 0.9950 -8.3331 0.9950 -7.9510 0.9950 -9.5856 

62 2 0.9980 -8.7220 0.9980 -8.3421 0.9980 -9.9676 

63 0 0.9923 -9.8017 0.9923 -9.4197 0.9924 -11.0536 

64 0 0.9983 -7.9728 0.9982 -7.5847 0.9983 -9.2438 

65 2 1.0050 -4.8170 1.0050 -4.4131 1.0050 -6.1372 

66 2 1.0500 -3.6237 1.0500 -3.2518 1.0500 -4.8441 

67 0 1.0193 -6.7359 1.0193 -6.3605 1.0193 -7.9678 

68 0 1.0120 -5.3305 1.0121 -4.8931 1.0116 -6.7382 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -9.5950 0.9840 -9.4819 0.9840 -10.6491 

71 0 0.9868 -10.1086 0.9868 -9.9852 0.9868 -11.1694 

72 2 0.9800 -11.7277 0.9800 -11.5522 0.9800 -12.8219 

73 2 0.9910 -10.3204 0.9910 -10.1970 0.9910 -11.3812 

74 2 0.9580 -11.2656 0.9580 -11.1342 0.9580 -12.8101 

75 0 0.9658 -10.1999 0.9659 -10.0645 0.9645 -11.8721 

76 2 0.9430 -13.0838 0.9430 -12.8832 0.9430 -15.7657 

77 2 1.0060 -10.5330 1.0060 -10.2452 1.0060 -14.5533 

78 0 1.0016 -10.9545 1.0017 -10.5543 1.0017 -14.9554 

79 0 1.0043 -10.8933 1.0043 -10.2761 1.0043 -14.8569 
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80 2 1.0400 -9.4794 1.0400 -8.2590 1.0400 -13.3391 

81 0 1.0252 -6.8713 1.0258 -6.1521 1.0232 -9.1607 

82 0 0.9772 -11.8462 0.9772 -12.8419 0.9725 -21.1048 

83 0 0.9727 -9.9815 0.9736 -11.4671 0.9720 -21.0255 

84 0 0.9754 -6.5038 0.9761 -8.7723 0.9761 -20.3960 

85 2 0.9850 -4.5110 0.9850 -7.1531 0.9850 -19.7675 

86 0 0.9867 -5.8804 0.9867 -8.5226 0.9867 -21.1369 

87 2 1.0150 -5.6212 1.0150 -8.2634 1.0150 -20.8777 

88 0 0.9866 -0.4867 0.9872 -3.7915 0.9885 -18.0815 

89 2 1.0050 4.1820 1.0050 0.4223 1.0050 -15.0175 

90 2 0.9850 -8.4957 0.9850 -12.7056 0.9850 -29.2921 

91 2 0.9800 -10.6797 0.9800 -15.2540 0.9800 -32.7595 

92 2 0.9900 -13.4369 0.9900 -18.5476 0.9900 -37.3956 

93 0 0.9850 -15.1843 0.9850 -18.8789 0.9797 -33.8184 

94 0 0.9876 -16.2450 0.9871 -18.7142 0.9809 -30.2446 

95 0 0.9766 -15.6563 0.9756 -17.5225 0.9679 -27.8951 

96 0 0.9873 -13.8430 0.9866 -14.9445 0.9797 -23.8335 

97 0 1.0079 -12.0134 1.0066 -11.9548 1.0005 -18.9262 

98 0 0.0237 -76.3001 1.0169 -14.4685 1.0119 -21.1706 

99 2 1.0100 -17.9051 1.0100 -19.1907 1.0100 -27.4561 

100 2 1.0170 -19.4716 1.0170 -21.7101 1.0170 -31.1569 

101 0 0.9913 -17.7939 0.0199 -63.0210 0.4533 -34.2504 

102 0 0.9891 -14.9936 0.6633 -19.1600 0.0028 -83.3003 

103 2 1.0100 -23.2127 1.0100 -25.4512 1.0100 -34.8980 

104 2 0.9710 -25.7827 0.9710 -28.0212 0.9710 -37.4680 

105 2 0.9650 -26.8869 0.9650 -29.1254 0.9650 -38.5722 

106 0 0.9611 -27.1471 0.9611 -29.3855 0.9611 -38.8323 

107 2 0.9520 -29.9478 0.9520 -32.1863 0.9520 -41.6331 

108 0 0.9662 -28.0870 0.9662 -30.3255 0.9662 -39.7722 

109 0 0.9670 -28.5396 0.9670 -30.7781 0.9670 -40.2248 

110 2 0.9730 -29.3864 0.9730 -31.6249 0.9730 -41.0717 

111 2 0.9800 -27.7414 0.9800 -29.9798 0.9800 -39.4266 

112 2 0.9750 -32.4857 0.9750 -34.7241 0.9750 -44.1709 

113 2 0.9930 -20.1378 0.9930 -19.8335 0.9930 -21.3140 

114 0 0.9601 -19.1908 0.9601 -18.9073 0.9601 -20.3544 

115 0 0.9600 -19.1995 0.9600 -18.9159 0.9600 -20.3631 

116 2 1.0050 -5.7202 1.0050 -5.2822 1.0050 -7.1298 

117 0 0.9738 -23.1597 0.9738 -22.8493 0.9738 -24.3404 

118 0 0.9484 -12.0016 0.9484 -11.8359 0.9474 -14.1438 
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Solution NO. 34 35 36 

Bus  

NO. 

Bus  

Type 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

V  

(p.u.) 

Angle  

(deg.) 

1 2 0.9550 -61.4890 0.9550 -59.9020 0.9550 -35.6155 

2 0 0.9714 -61.0336 0.9714 -59.4430 0.9714 -35.4648 

3 0 0.9675 -60.5658 0.9675 -58.9803 0.9675 -34.5627 

4 2 0.9980 -56.6752 0.9980 -55.0970 0.9980 -30.0275 

5 0 1.0012 -56.1930 1.0012 -54.6158 1.0014 -29.4782 

6 2 0.9900 -59.1168 0.9900 -57.5320 0.9900 -33.0584 

7 0 0.9893 -59.6323 0.9893 -58.0445 0.9894 -33.8273 

8 2 1.0150 -50.7831 1.0150 -49.2189 1.0150 -23.1251 

9 0 1.0429 -43.5290 1.0429 -41.9648 1.0429 -15.8710 

10 2 1.0500 -35.9481 1.0500 -34.3839 1.0500 -8.2901 

11 0 0.9848 -59.4797 0.9848 -57.8914 0.9846 -33.4584 

12 2 0.9900 -60.1075 0.9900 -58.5148 0.9900 -34.7199 

13 0 0.9680 -60.9913 0.9681 -59.3968 0.9679 -34.0069 

14 0 0.9841 -60.9606 0.9841 -59.3618 0.9838 -34.2977 

15 2 0.9700 -61.6048 0.9700 -59.9890 0.9700 -31.3493 

16 0 0.9819 -61.1125 0.9819 -59.4915 0.9811 -33.5105 

17 0 0.9886 -60.8091 0.9888 -59.1271 0.9902 -28.4214 

18 2 0.9730 -62.1289 0.9730 -60.4813 0.9730 -30.6395 

19 2 0.9620 -61.6052 0.9620 -59.9957 0.9620 -31.0307 

20 0 0.9554 -62.1414 0.9556 -60.4842 0.9552 -29.5118 

21 0 0.9547 -61.5810 0.9551 -59.8894 0.9551 -27.4490 

22 0 0.9633 -60.1767 0.9640 -58.4471 0.9662 -24.3514 

23 0 0.9862 -57.0290 0.9873 -55.2419 0.9984 -18.5825 

24 2 0.9920 -50.5374 0.9920 -48.9718 0.9920 -17.3053 

25 2 1.0500 -51.8650 1.0500 -50.1532 1.0500 -12.6147 

26 2 1.0150 -47.4551 1.0150 -45.7952 1.0150 -11.1341 

27 2 0.9680 -79.8575 0.9680 -78.0748 0.9680 -25.4955 

28 0 0.9600 -78.7368 0.9598 -76.8211 0.9615 -27.3923 

29 0 0.9615 -76.5482 0.9614 -74.4832 0.9633 -28.5766 

30 0 0.9942 -52.2301 0.9952 -50.6943 1.0056 -22.8338 

31 2 0.9670 -75.3026 0.9670 -73.1850 0.9670 -28.5281 

32 2 0.9630 -78.0143 0.9630 -75.4929 0.9630 -26.0349 

33 0 0.9632 -57.6228 0.9636 -56.1865 0.9689 -30.7600 

34 2 0.9840 -51.9711 0.9840 -50.7301 0.9840 -28.7944 

35 0 0.9789 -52.3732 0.9790 -51.1351 0.9798 -29.2434 

36 2 0.9800 -52.4019 0.9800 -51.1624 0.9800 -29.2511 

37 0 0.9816 -51.3091 0.9819 -50.0784 0.9868 -28.2880 

38 0 0.9615 -44.6435 0.9639 -43.4477 0.9934 -22.1119 
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39 0 0.9668 -54.2146 0.9670 -53.0544 0.9680 -32.6164 

40 2 0.9700 -54.9954 0.9700 -53.8766 0.9700 -34.2322 

41 0 0.9667 -55.1535 0.9667 -54.0693 0.9669 -35.0626 

42 2 0.9850 -52.7698 0.9850 -51.7803 0.9850 -34.5184 

43 0 0.9479 -46.2519 0.9492 -45.2243 0.9662 -27.1217 

44 0 0.9394 -34.6836 0.9410 -34.0099 0.9616 -21.9703 

45 0 0.9551 -29.6311 0.9561 -29.0849 0.9701 -19.2594 

46 2 1.0050 -24.6899 1.0050 -24.2274 1.0050 -15.9378 

47 0 1.0095 -20.3242 1.0099 -19.9403 1.0151 -13.0494 

48 0 1.0143 -22.5427 1.0143 -22.1077 1.0145 -14.2753 

49 2 1.0250 -21.5008 1.0250 -21.0732 1.0250 -13.3617 

50 0 1.0009 -23.6621 1.0009 -23.2406 1.0007 -15.6141 

51 0 0.9665 -26.4485 0.9665 -26.0350 0.9662 -18.5180 

52 0 0.9564 -27.4526 0.9564 -27.0412 0.9561 -19.5540 

53 0 0.9458 -28.5660 0.9458 -28.1605 0.9456 -20.7542 

54 2 0.9550 -27.7560 0.9550 -27.3548 0.9550 -20.0078 

55 2 0.9520 -27.8363 0.9520 -27.4365 0.9520 -20.1077 

56 2 0.9540 -27.8050 0.9540 -27.4039 0.9540 -20.0584 

57 0 0.9704 -26.4266 0.9704 -26.0167 0.9702 -18.5505 

58 0 0.9588 -27.3209 0.9588 -26.9127 0.9586 -19.4685 

59 2 0.9850 -20.7189 0.9850 -20.3397 0.9850 -13.2934 

60 0 0.9931 -16.3284 0.9931 -15.9555 0.9931 -8.9952 

61 2 0.9950 -15.4284 0.9950 -15.0562 0.9950 -8.1057 

62 2 0.9980 -15.8570 0.9980 -15.4835 0.9980 -8.5155 

63 0 0.9919 -16.9005 0.9919 -16.5283 0.9921 -9.5761 

64 0 0.9979 -14.9614 0.9979 -14.5926 0.9981 -7.6891 

65 2 1.0050 -11.5211 1.0050 -11.1615 1.0050 -4.3834 

66 2 1.0500 -10.9028 1.0500 -10.5249 1.0500 -3.4935 

67 0 1.0194 -13.9500 1.0194 -13.5740 1.0193 -6.5713 

68 0 1.0120 -8.5682 1.0121 -8.3277 1.0124 -3.7979 

69 3 1.0350 0 1.0350 0 1.0350 0 

70 2 0.9840 -19.2140 0.9840 -18.7692 0.9840 -9.9029 

71 0 0.9830 -22.2990 0.9832 -21.7509 0.9866 -10.8287 

72 2 0.9800 -36.9332 0.9800 -35.8593 0.9800 -14.5357 

73 2 0.9910 -22.5545 0.9910 -22.0033 0.9910 -11.0429 

74 2 0.9580 -16.3441 0.9580 -16.0478 0.9580 -10.2316 

75 0 0.9625 -13.7719 0.9628 -13.5286 0.9665 -8.7599 

76 2 0.9430 -14.3897 0.9430 -14.1767 0.9430 -10.0500 

77 2 1.0060 -8.5767 1.0060 -8.4134 1.0060 -5.3000 

78 0 1.0018 -8.7888 1.0018 -8.6214 1.0018 -5.4326 

79 0 1.0043 -8.3231 1.0042 -8.1477 1.0042 -4.8136 
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80 2 1.0400 -5.7844 1.0400 -5.5869 1.0400 -1.8483 

81 0 1.0281 -7.6136 1.0281 -7.3887 1.0282 -3.1435 

82 0 0.9773 -6.9500 0.9773 -6.7712 0.9774 -3.3734 

83 0 0.9717 -4.6257 0.9717 -4.4459 0.9717 -1.0287 

84 0 0.9747 -0.4107 0.9747 -0.2291 0.9747 3.2193 

85 2 0.9850 1.9331 0.9850 2.1155 0.9850 5.5788 

86 0 0.9867 0.5637 0.9867 0.7460 0.9867 4.2093 

87 2 1.0150 0.8227 1.0150 1.0052 1.0150 4.4685 

88 0 0.9859 6.5872 0.9859 6.7711 0.9858 10.2611 

89 2 1.0050 11.6885 1.0050 11.8734 1.0050 15.3817 

90 2 0.9850 -0.5629 0.9850 -0.3771 0.9850 3.1492 

91 2 0.9800 -2.4002 0.9800 -2.2135 0.9800 1.3275 

92 2 0.9900 -4.6445 0.9900 -4.4566 0.9900 -0.8937 

93 0 0.9854 -6.5945 0.9854 -6.4063 0.9854 -2.8380 

94 0 0.9886 -7.8293 0.9886 -7.6410 0.9887 -4.0679 

95 0 0.9777 -8.2704 0.9777 -8.0827 0.9778 -4.5206 

96 0 0.9879 -7.7610 0.9879 -7.5740 0.9880 -4.0260 

97 0 1.0088 -7.1235 1.0088 -6.9313 1.0088 -3.2880 

98 0 1.0233 -8.0000 1.0233 -7.8052 1.0233 -4.1140 

99 2 1.0100 -8.9748 1.0100 -8.7824 1.0100 -5.1352 

100 2 1.0170 -8.4901 1.0170 -8.2997 1.0170 -4.6892 

101 0 0.9921 -7.7353 0.9921 -7.5460 0.9921 -3.9555 

102 0 0.9897 -5.7800 0.9897 -5.5915 0.9897 -2.0195 

103 2 1.0100 -12.2313 1.0100 -12.0409 1.0100 -8.4303 

104 2 0.9710 -14.8013 0.9710 -14.6109 0.9710 -11.0002 

105 2 0.9650 -15.9055 0.9650 -15.7151 0.9650 -12.1044 

106 0 0.9611 -16.1657 0.9611 -15.9752 0.9611 -12.3646 

107 2 0.9520 -18.9664 0.9520 -18.7760 0.9520 -15.1653 

108 0 0.9662 -17.1056 0.9662 -16.9152 0.9662 -13.3045 

109 0 0.9670 -17.5582 0.9670 -17.3678 0.9670 -13.7571 

110 2 0.9730 -18.4050 0.9730 -18.2146 0.9730 -14.6040 

111 2 0.9800 -16.7600 0.9800 -16.5695 0.9800 -12.9589 

112 2 0.9750 -21.5043 0.9750 -21.3138 0.9750 -17.7032 

113 2 0.9930 -63.2842 0.9930 -61.4863 0.9930 -28.3332 

114 0 0.0034 -138.7763 0.1407 -80.0878 0.9601 -26.3710 

115 0 0.1096 -89.1579 0.0091 -137.1197 0.9600 -26.3796 

116 2 1.0050 -8.9576 1.0050 -8.7170 1.0050 -4.1855 

117 0 0.9738 -61.6485 0.9738 -60.0558 0.0319 -88.1868 

118 0 0.9469 -14.5257 0.9470 -14.2963 0.9490 -9.8224 

 


