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ABSTRACT

Threshold regression is used to model regime switching dynamics where the effects of

the explanatory variables in predicting the response variable depend on whether a certain

threshold has been crossed. When regime-switching dynamics are present, new estimation

problems arise related to estimating the value of the threshold. Conventional methods utilize

an iterative search procedure, seeking to minimize the sum of squares criterion. However,

when unnecessary variables are included in the model or certain variables drop out of

the model depending on the regime, this method may have high variability. This paper

proposes Lasso-type methods as an alternative to ordinary least squares. By incorporating

an L1 penalty term, Lasso methods perform variable selection, thus potentially reducing

some of the variance in estimating the threshold parameter. This paper discusses the

results of a study in which two different underlying model structures were simulated. The

first is a regression model with correlated predictors, whereas the second is a self-exciting

threshold autoregressive model. Finally the proposed Lasso-type methods are compared to

conventional methods in an application to urban traffic data.
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1 INTRODUCTION

Regime Switching Models, where linear dynamics depend on the level of a threshold vari-

able have many applications in Economics and Finance. The idea is that certain predictor

variables may play a different role in determining the value for the response variable de-

pending on whether or not some threshold has been crossed. Often there is good reason,

either empirical or theoretical, to believe that a certain variable contains a threshold. If

this is the case, the first step in estimating the underlying model is to identify the location

of the threshold. Once a threshold estimate is obtained, coefficients for predictor variables

in each regime can be estimated.

Conventional methods for estimating the location of the threshold utilize ordinary least

squares (OLS) regression in an iterative search procedure. These methods fit a multi-regime

model for every potential threshold point with-in the threshold variable. Then the model

with the smallest residual sum of squares is selected as the best non-linear model. In order

to determine whether or not non-linear dynamics are present, the non-linear model must

be compared to a linear model. This can be done by means of a log-likelihood ratio test, or

by minimizing some information criterion, such as the Akaike information criterion (AIC)

or the Bayesian information criterion (BIC).

There are a number of scenarios which can complicate threshold estimation. There may

be a large number of potential predictor variables. These variables may be correlated, and

some of these variables may drop out of the model depending on the regime. In these sce-

narios the conventional method for estimating the threshold may have high variability. We

also consider self-exciting threshold auto regressive (SETAR) models, where an additional

step of estimating the lag order p is necessary. This is usually done by first estimating

the number of lags under a linear assumption. In addition to variability, the least squares

method may incorrectly favor a linear model with additional predictors rather than selecting

the true regime switching model.

Another problem with least squares regression is that this method is sensitive to outliers.

In many applications, such as modeling stock market returns or traffic flow systems, outliers
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are common, suggesting that the random disturbances may have heavy-tailed distributions.

Thus there is also a need for robust threshold estimation methods.

We propose Lasso-type penalized estimation methods, which perform simultaneous vari-

able selection and estimation, as an alternative method to OLS. Such methods could reduce

some of the variance in estimating the threshold by eliminating insignificant variables and

lags at each step in the iterative procedure. We consider traditional Lasso, and two vari-

ations: Elastic-net (E-net), which does well when variables are correlated, and Lad-Lasso.

The latter combines least absolute deviation regression, which is robust to outliers, with

penalized estimation. Thus it should perform well in the case of heavy tailed error distri-

butions when there are also regime-dependent dynamics.

In this paper we will consider two different types of regime-switching models: one where

the predictor variables are correlated and second a SETAR model. We will compare our

estimation method to the conventional method in a simulation study. Our focus is on

threshold estimation. We also evaluate how well Lasso, E-net, and Lad-lasso perform in

selecting the correct variables or lags in each regime.

In application, when regime-switching dynamics are thought to be present, the number of

regimes is usually unknown. However, a two-regime model is often sufficient to capture non-

linear dynamics. For the purposes of this paper, only two-regime models were considered.

Lasso has been applied to linear autoregressive models (Nardi and Rinaldo, 2011); in a

very recent paper, Lee et al. (2014), demonstrated the benefits of Lasso for high-dimensional

regression when there is the possibility of regime-switching behavior. The objective of this

paper is to combine threshold estimation with penalized estimation.

The beginning of this paper, parts 1-4, provides an introduction to regime-switching

and SETAR models. We discuss conventional methods for threshold estimation, model

identification, and specifying lag order. We provide a brief overview of Lasso-type panelized

estimation methods. In part five we present our alternative method for threshold estimation.

We explain the motivation for employing these methods, and how we incorporate the Lasso-

penalty. In part six we present the results of our simulation study. Finally we apply our
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method and conventional methods to data from an urban traffic network. We conclude with

a discussion of our results, and areas which require further exploration.
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2 REGIME-SWITCHING MODELS

The relationship between the response variable and the predictor variables in a two-regime

model are typically expressed as a piecewise function of the predictor variables and the

noise, with the threshold parameter, γ.

yi =

p∑
j=1

xijβj1 + εi qi ≤ γ

yi =

p∑
j=1

xijβj2 + εi qi > γ

Which, for convenience, we re-parameterize as follows:

yi =

p∑
j=1

xijβj +

p∑
j=1

xijδjI(qi > γ) + εi

This expression allows us to think of q as a dummy variable. In matrix form we have:

Y = XβXβXβ +XδXδXδ ◦ I(qi > γ) + εεε

where qi is the ith element of the threshold variable q, δδδ is the vector containing the the

change in intercept and change in slope coefficients, and I(·) represents a vector whose

elements are one or zero and are determined by the indicator function.

From the re-parameterized model, it is evident that if the threshold, γ is known, we can

employ the OLS criterion for estimation as we would in a linear scenario. However, if γ is

unknown, reliable estimates of βββ and δδδ depend on first having a good estimate of γ.

A common approach for estimating the threshold is through an iterative search pro-

cedure. It is usually assumed that the breakpoint exists within the observed threshold

variable, qqq, which may or may not belong to the set of covariates. The iterative procedure

searches through a trimmed vector qsqsqs, avoiding the extreme elements of qqq, which could lead
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to an improper model matrix. The residual sum of squares is minimized for each element

in qsqsqs. Finally the location of the breakpoint is selected by choosing the element of qsqsqs with

the minimum residual sum of squares.

Qi(βββ) = ||Y − (XβXβXβ +XδXδXδ ◦ I(qqq > qsi))||2

γ̂ = argminqsi∈qqq(Qi)

Regime-switching models, where the regime change is triggered by an observable variable,

gained prominence during the 80s and 90s. Hansen (2011) provides an overview of the

literature on threshold estimation for this class of models.
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3 SETAR MODELS

A popular method of fitting time-series data is with an autoregressive (AR) model. In

autoregressive models some of the variation in the current observations of a variable, yt,

can be explained by previous realizations (lags) of that variable. When fitting such an

autoregressive model, the first step is to estimate the lag order p, the number of steps

backward in time that contribute to predicting y at the current time, t.

Estimating p is done by minimizing an information criterion formulated as

IC(p)=Tlog(σ̂(p))+cT (p + 1), where cT is the penalty term specific to the information

criterion chosen, and σ̂(p) is the mean of the squared residuals for the fitted model of

order p. Once the lag order p has been estimated, the coefficients for each time lag can be

estimated by ordinary least squares regression (OLS).

SETAR models have regime-switching dynamics, where the current regime is determined

by the value of y at a certain lag, d. A two regime model can be expressed as follows:

yt = φ10 + φ11yt−1 + ...+ φ1p1yt−p1 + εt, yt−d ≤ γ

yt = φ20 + φ21yt−1 + ...+ φ2p2yt−p2 + εt, yt−d > γ

Here there may be regime dependent lag orders, and gaps in significant lags. Again we can

re-paramaterize the model in terms of φ and δ coefficients:

yt = φ0 + φkyt−k + (δ0 + δkyt−k)I(yt−d > γ) + εt, k = max p1, p2

These models are sometimes denoted AR(2, p1, p2), where the first parameter represents the

number of regimes.

The same search procedure through the the threshold variable, here defined q = yt−d,

can be applied for estimating threshold-autoregressive models (Hansen, 1997). However, in

the case of an AR(2, p1, p2) model, there is an additional complication to the conventional

estimation method for regime-switching dynamics, namely that the lag order must first be
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estimated. This is usually done by by estimating p from an AR model. Thus when fitting

SETAR models, conventional methods have two model selection stages, at the beginning

where p is chosen and at the end when tests for linearity take place.

Pitarakis (2006) shows that estimating the correct lag order p, under regime-switching

dynamics presents serious challenges, and errors in estimation can have a significant impact

on subsequent tests for linearity. Since overfitting is usually preferred to under-fitting, the

AIC criterion is often used at this stage. But if the lag order is over estimated, then at

the second stage there will be unimportant lags included. Including extra lags will lead to

larger variation in parameter estimation, which can lead to a failure to reject the null in

subsequent tests for linearity.

To avoid the pitfalls related to testing for regime-switching dynamics with an incorrect

order specification, Pitarakis proposed fitting all pmax(pmax + 1) possible models, where

pmax is the maximum lag order considered. He recommends the BIC criterion for this

method, which has good power without systematically pointing to non-linearity as the AIC

criterion does. However, this method still does not consider the possibility of different lag

orders in each regime, nor does it address the problem of gaps in significant lags.
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4 LASSO-TYPE PENALIZED ESTIMATION METHODS

Lasso-type penalized estimation methods perform simultaneous model estimation and vari-

able selection by minimizing the usual residual sum of squares (RSS), subject to a constraint

on the size of the estimated coefficients. Lasso puts a penalty on the sum of the absolute

value of the coefficients.

Q(β) = RSS + λ||βββ||1

Use of the L1 norm allows the Lasso to shrink some coefficients to zero, effectively eliminat-

ing them from the model. Here λ is a tuning parameter: λ = 0 corresponds to least squares

estimation, and the larger λ becomes, the more coefficients shrink to zero. λ values are

typically selected through a k-fold cross validation procedure. While the penalty term in

the Lasso criterion introduces some bias in the estimator, this is usually balanced by large

improvements in the variance.

The Lasso method was first introduced by Tibshirani in 1996, as an alternative to

stepwise procedures for model selection based on information criteria such as AIC and BIC.

Since then, a number of variations on Lasso have been proposed. Among these are the

Elastic-net and Lad-lasso, which can outperform Lasso under certain conditions.

One draw-back to Lasso is that it tends to select one predictor from a set of strongly

correlated predictors. The Elastic-net (E-net) was proposed by Zou and Hastie (2004) to

improve on the Lasso, acting “like a stretchable fishing net that retains ‘all the big fish’.”

The Elastic-net performs its variable selection by incorporating both the L1 and the L2

penalty:

Q(β) = RSS + (1− α)λ||βββ||2 + αλ||βββ||1 α ∈ [0, 1]

E-net gives non-zero coefficients to significant variables even when they are correlated.

A second weakness of Lasso is that large outliers tend to have an exaggerated impact on

estimation due to the squared term in the objective function. Lad-Lasso was developed as a

robust estimation method, by combining least absolute deviation regression with Lasso-type
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penalized estimation.

Q(β) = ||Y −XβXβXβ||1 + λ||βββ||1

Gao and Huang (2010) discuss sparsity conditions and conditions on the structure of the

model matrix needed for the Lad-lasso to be consistent in estimation and selection. They

suggest either the AIC or BIC criterion for selecting the tuning parameter. However Lad

estimation methods are computationally expensive, and a number of alternative choices for

λ have been proposed. There is no consensus on the best choice for λ. For this paper we

used the R package ‘flare’, which generates a default vector of λ values. We chose three

values for λ based on this package.
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5 LASSO METHODS FOR THRESHOLD ESTIMATION

The purpose of this paper is to determine whether introducing Lasso methods into the

iterative search procedure, in place of OLS, will reduce the variance of γ̂. There are two

reasons why the L1 penalty could potentially improve upon OLS. First, it would perform

variable selection at each stage of the search procedure. We expect that this variable

selection will reduce the variance of γ̂ when we include variables that do not belong in the

final model or when a certain variable is important in one regime but drops out in the

second. Along similar lines, for AR(2, p1, p2), the methods we propose do not require the

initial step of selecting an appropriate lag order, and should do well when there are gaps in

significant lags.

Secondly, we chose to consider Elastic-net because we were interested in methods that

perform well when variables are correlated, and Lad-lasso because it is robust to outliers and

heavy tailed distributions. Both of these conditions are prevalent in time-series applications.

Besides the potential advantages we examine in this paper, there are some additional

motivations for considering Lasso methods. Tests for non-linearity are usually based on

an information criterion as in Pitarakis (2006). Since such criteria place a penalty on the

number of parameters included in the model, Lasso-methods may improve the power of

these tests. Or such tests may not be necessary since, in theory, Lasso-methods should

shrink the δδδ coefficients to 0 when the underlying model is linear.

Applying Lasso-methods in place of OLS is straightforward. We simply incorporate

the appropriate penalty into the search procedure. The following equations correspond to

Lasso, E-net, and Lad-lasso respectively

10



Qi(β) = ||Y − (XβXβXβ +XδXδXδ ◦ I(q > qi))||2 + λ||(β, δβ, δβ, δ)||1

Qi(β) = ||Y − (XβXβXβ +XδXδXδ ◦ I(q > qi))||2 + (1− α)λ||(β, δβ, δβ, δ)||1 + αλ||(β, δβ, δβ, δ)||1

Qi(β) = ||Y − (XβXβXβ +XδXδXδ ◦ I(q > qi))||1 + λ||(β, δβ, δβ, δ)||1

Finally, the threshold is estimated by minimizing Qi.
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6 SIMULATIONS

To evaluate the performance of our method we conducted two different simulation studies

and considered various scenarios for each. In the first study, the response variable was

generated from correlated predictors; insignificant variables were also included in the model

matrix. We investigate the effect of sample size, the location of the threshold, γ, and the

distributions of the error terms.

In the second study, we generate data from an underlying SETAR model. Here again

the methods were evaluated under different error term distributions. For Lad-lasso we used

three different tuning parameters based on how a λλλ vector of length three would be generated

in ‘flare.’ We report them as Lad1, Lad2, and Lad3. Lad3 corresponds to smallest value of

the tuning parameter: λ =
√

log(p)/n. We present our results below.

CORRELATED VARIABLES

For the correlated variables study we simulated sample sizes of 100, 200, and 400. We

generated a matrix XXX of correlated variables, where the covariance of the ith and jth

columns is .8|i−j|, i 6= j, with a threshold variable, q ∼ N(0, 1) that does not belong to

the group of covariates. We consider two different threshold values, 0.25, and 0.75. Fur-

thermore, we consider three alternative error distributions, Normal(0,0.5), Laplace(0,0.5),

and Student’s t on 3 degrees of freedom. For each scenario our vectors of coefficients were

βββ = (0.5, 1, 1.5, 2, 0, 0, 0, 0, 0)T , and δδδ = (0.5,−1,−1, 0, 0, 0, 0, 0)T . The first term in the

coefficient vectors correspond to the intercept. Thus in the second regime the intercept

increases, X1 drops out of the model completely, and the coefficient for X2 is reduced. 500

trials were run.

For each trial we applied the same iterative search procedure in the threshold variable,

first with OLS, then via unpenalized, Lad regression (Median Regression), followed by the

Lasso, Elastic-net (α = 0.5) and the Lad-lasso criteria.

We present some summary statistics of our results in Tables 1-3, corresponding to the

different error distributions. Each table presents the empirical bias, median absolute devi-
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ation (MAD), interquartile range (IQR), and the 5th and 95th percentiles of the threshold

estimate, for all five methods.

Under the Normal distribution no method clearly out-performed the other: Lad3, had

the best results regarding bias, however of all the methods it also had the highest MAD;

this improved with sample size. OLS did slightly worse than other methods in terms of

bias however this also improved with sample size. This is somewhat surprising since we

usually expect OLS methods to be unbiased but to have relatively high variance, and Lasso

to make up for bias with smaller variance. We did not notice any difference in the relative

performance of these methods, when the threshold was on the extreme (.75).

The story is similar for heavy tailed distributions. Though on the whole Median regres-

sion did better than OLS, it is not clear that penalized estimation methods can improve

threshold estimation, at least of small sample sizes. We again notice less bias in the Lad3

estimator, but usually at the expense MAD and IQR. For Student errors, when γ = .75,

robust methods, Median and Lad3, outperform other methods.

This simulation demonstrates the importance of sample size in selecting a value for λ

in Lad-lasso. For n = 100, Median regression, which corresponds to λ = 0 performed

better, but as n increased Lad3 began to outperform Median. For an interesting discussion

on an appropriate choice of tuning parameter see Wang (2013). Wang recommends that

the penalty should be λ =
√

2n log(p) for larger sample sizes, however he also notes that

if ||Xj ||1 < λ, then β̂j = 0. Which means that if the tuning parameter is too large, even

significant variables may be eliminated from the model. We found these penalties were too

large for our estimation problem, which may be related to the sparsity of our model matrix

when fitting models for extreme values of qsqsqs.
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SETAR

For the SETAR simulation study, we generated a time-series of 300 steps in each trial.

Our threshold variable was the difference between lag 1 and lag 2 in absolute terms with

γ = 1. There were two motivations for this choice of a threshold variable. First, it is not

unreasonable to expect an increase in volatility to trigger a regime switch. Secondly, for

simulation purposes, this choice helped to ensure that values reasonably close to the true

threshold occurred within the the search vector. Our underlying model was as follows.

yt = 0.4yt−1 − .5yt−2 + .3yt−3 + εt, |yt−1 − yt−2| ≤ 1

yt = 1 + .3yt−1 + .5yt−2 − .3yt−3 − .5yt−13 + εt, |yt−1 − yt−2| > 1

Thus in the first regime the lag order was 3, while in the second regime lag 2 and 3 drop

out of the model, and lag 13 enters the model. This last choice was motivated by empirical

findings based on monthly data where terms related to seasonality may be present in one

regime but not in the other. Coefficients in each regime were chosen to satisfy conditions

for stationarity. Here we also considered three random noise scenarios: Normal(0,0.5),

Laplace(0,0.5), Student(3).

We used the same iterative search procedure through the threshold variable, minimizing

the criterion for each method: OLS, Median, Lasso, Elastic-net(α = 0.5), and Lad1, Lad2,

and Lad3. We ran 1,000 trials.

Figure 1 shows box-plots of γ̂ for each of the methods under the three different error

distributions. The red horizontal line represents the true breakpoint, γ. Figure 2 shows the

same box-plots, but with the outliers removed for a better visual.
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Figure 1: Boxplots SETAR

Figure 2: Boxplots SETAR: A Closer Look

In this simulation our results were much more striking. Lasso methods clearly out

perform OLS and Median regression, in variance, and with the exception of Lad3, improve

in terms of bias as well. We also observe, with the exception of the student errors that the

empirical distribution of γ̂ are symmetric and centered about γ.

Table 4 reports the empirical bias, MAD, IQR and the 5th and 95th percentiles for γ̂, for

each of the six methods. These summaries reflect the results observed from the box plots.

Lasso and Elastic-net clearly outperformed, both in terms of bias and measures of spread,

for Normal and Laplace. For Student(3), Lad2 and Lad3 had the best performance, which

is what we expected to see since large disturbances can occur under a Student distribution.
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While Lad3 was biased compared to the other Lasso methods, this was due to a few large

outliers, and it had the smallest MAD.

Table 4: Summaries

ε Method Bias MAD IQR 5% 95%

Normal

OLS 0.2408 0.2097 0.4042 0.6778 2.3800
MEDIAN 0.2903 0.3803 0.6850 0.4864 2.4636
LASSO -0.0051 0.0223 0.0299 0.9413 1.0557
ENET -0.0058 0.0215 0.0286 0.9433 1.0476
LAD1 -0.6818 0.0481 0.0650 0.2433 0.4045
LAD2 -0.0099 0.0316 0.0417 0.8916 1.0841
LAD3 -0.0097 0.0210 0.0290 0.9299 1.0471

Laplace

OLS 0.0855 0.1531 0.2285 0.6337 1.7842
MEDIAN 0.0463 0.2456 0.3422 0.3578 1.8460
LASSO -0.0060 0.0149 0.0202 0.9532 1.0375
ENET -0.0062 0.0153 0.0208 0.9519 1.0350
LAD1 -0.1292 0.0343 0.0692 0.2147 1.0493
LAD2 -0.0098 0.0176 0.0231 0.9375 1.0366
LAD3 -0.0105 0.0136 0.0196 0.9414 1.0325

Student

OLS 1.4773 0.3732 1.1566 0.7023 5.9364
MEDIAN 1.4721 0.2806 0.6867 0.7708 3.7727
LASSO 0.1388 0.0358 0.0495 0.9080 1.2092
ENET 0.0769 0.0336 0.0469 0.9033 1.2161
LAD1 -0.4637 0.0959 0.1430 0.3269 1.0510
LAD2 -0.0131 0.0407 0.0544 0.6219 1.1518
LAD3 0.1745 0.0249 0.0333 0.9271 1.1268

Table 5 reports type I and type II errors for the Lasso methods. Type I error is the

percentage of unimportant lags, on average, selected by each method out of the total number

of unimportant lags that could have been selected. Type II error represents the percentage

of important lags, on average, that each method failed to select. We were interested in how

Lasso, Elastic-net and Lad-Lasso compared in “balancing” the trade off between type I and

II errors.

Both Lasso and E-net were more conservative in dropping variables from the model,

while the percentages for type II errors were large but not compared to the percentages for

Lad-lasso in type I. Lad3 was the only method to offer a comparable balance between type

I and type II. It is also clear from this table that the first choice of a tuning parameter was
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too large of a penalty since the method eliminated all of the important variables almost 100

percent of the time.

Table 5: Type I and II Errors

Type ε LASSO ENET LAD1 LAD2 LAD3

I
Normal 15.40 13.34 100.0 99.17 72.48
Laplace 13.77 10.75 90.6 80.09 63.84
Student 30.18 28.55 100.0 95.46 65.86

II
Normal 79.12 82.11 4.17 10.17 22.83
Laplace 74.48 79.51 7.30 14.51 22.47
Student 67.94 70.11 4.37 12.50 21.87

In both simulation studies, results varied substantially between Lad1, Lad2 and Lad3.

Because Lad-lasso uses least absolute deviation, selecting the appropriate λ by cross-validation

is computationally expensive. We believe that with further investigation results for Lad-

lasso could be improved. Consideration should also be given to adaptive Lad-lasso, which

uses a vector of tuning parameters λλλ that are weighted by previous values of the estimates

for the coefficients. Wang et al. (2007) recommend λj = log(n)/(n|β̂j |), where β̂j is the

unpenalized Lad estimate for the jth predictor, and show that Lad-lasso is
√
n-consistent

without requiring any moment assumptions on the error terms.
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7 MODELING URBAN TRAFFIC VOLUMES

Here we review some results after applying our method to data on traffic volumes in an

urban network. The data was adjusted for seasonality by removing the weakly profiles.

Measurements were taken at three minute time intervals.

Inference began with a Keenan’s test for linearity (P-value<0.000). The next step was

to identify the threshold lag. This was done my fitting SETAR models, on a small portion

of the data set using the conventional OLS method up to lag 10. The threshold lag that

produced a model with the smallest residual sum of squares was selected for further analyses.

This procedure lead us to select lag 9 as the threshold variable.

We used the first three weeks to fit our models, and the following 4,571 measurements

as testing data to evaluate each method. For comparison, we also fit an auto-regressive

integrated moving average (ARIMA(p,d,q)) model. The latter assumes that current obser-

vation are determined by a linear combination of p previous observations and q previous

disturbances, where d is a difference parameter, which helps to remove non-stationarity.

Time-series with regime-switching dynamics behave similarly to non-stationary time-series.

ARIMA estimation can perform well as a linear alternative to SETAR estimation.

Table 6 displays the chosen threshold for each of the estimated SETAR models. We

also include the proportion of observations that fell in the second regime as defined by

each model. In Table 7 we report the root mean squared prediction error (RMSE), mean

absolute prediction error (MAE), and the median absolute prediction error (MedAPE).

Lasso-methods outperformed OLS. However Lad-Lasso was the only non-linear method to

outperform ARIMA. It is interesting to note that d = 0, indicating that differencing did

not improve the fit.

Table 6: Estimated Threshold

OLS LASSO ENET LAD

γ̂ 1.21 11.53 11.53 3.62

P̂ .56 .25 .25 .42
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Table 7: Out of Sample Statistics

OLS LASSO ENET LAD ARIMA

RMSE 12.9716 11.9623 11.9621 11.8430 11.9012

MAE 8.6134 7.5823 7.5858 7.3718 7.5333

MedAPE 5.8272 4.3315 4.3309 4.0517 4.3462

Table 8: Tests for Differences in Prediction Accuracy

LASSO ENET LAD ARIMA

OLS 0.000000 0.000000 0.000000 0.000000
LASSO 0.710471 0.011894 0.001405
ENET 0.012028 0.001123
LAD 0.273875

We were also interested in testing whether there was a difference in the prediction ac-

curacy of our methods. For this analyses, we used the well-known Diebold-Mariano (DM)

test. Table 8 displays the matrix of (two-sided) comparison tests. While the difference

between OLS and all other methods was highly significant, there were no significant differ-

ences between Lasso and E-net, nor between Lad-lasso and ARIMA. A possible explanation

is that ARIMA and Lad-lasso have more in common, in the sense that they were the two

most parsimonious models, while Lasso and Elastic-net retained more lags in each regime.

The plots in Figure 3 show a section of the out-of-sample time-series (black), and the

one-step-ahead predictions (red) for each method.
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Figure 3: Predicted Values

(a) OLS (b) LASSO (c) ENET

(d) LAD (e) ARIMA

Figure 4 shows the autocorrelation functions (ACF) of the standardized residuals. If

the correct model has been specified we would expect to see estimated correlations close

to zero. Lasso and E-net provide the most satisfactory results, followed by ARIMA. The

plots for the OLS and Lad-lasso models indicate left over serial correlation among the error

terms.The reason for the discrepancy between the residual analyses and the out-of-sample

performance of Lad-lasso, may lie with the choice of λ. A smaller tuning parameter could

provide a better balance, by retaining important lags while avoiding overfitting.
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Figure 4: ACF for Standardized Residuals

(a) OLS (b) LASSO (c) ENET

(d) LAD (e) ARIMA

Below we provide the estimated models for each method. The Lasso and E-net models

kept the same lags in the model. All of the Lasso methods estimated lag orders up to

20 in the first regime. In the second regime, Lasso and E-net estimated change in slope

coefficients up to lag 18, and did not include a change in intercept coefficient. Lad3 on the

other hand included a change in intercept, while it only estimated a change in slope up to

lag 5. The estimated ARIMA model combined the first two lags and the two previous error

disturbances, without differencing.
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OLS: yt = − 0.06 + 0.23yt−1 + 0.07yt−2 + 0.07yt−3 − 0.05yt−4 + 0.06yt−5 + 0.01yt−6

+ 0.08yt−7 + 0.06yt−8 − 0.22yt−9 + 0.26yt−10 − 0.06yt−11 − 0.03yt−12 + 0.08yt−13

+ (0.62 + 0.10yt−1 + 0.03yt−2 − 0.03yt−3 + 0.08yt−4 − 0.05yt−5 + 0.04yt−6

− 0.06yt−7 − 0.02yt−8 + 0.23yt−9 − 0.29yt−10 + 0.07yt−11 + 0.07yt−12 − 0.07yt−13)I(yt−9 > 1.21) + εt

LASSO: yt =0.43 + 0.44yt−1 + 0.12yt−2 + 0.03yt−3 + 0.01yt−4 + 0.01yt−5 + 0.01yt−6 + 0.04yt−7

+ 0.01yt−8 + 0.04yt−9 + 0.02yt−10 − 0.003yt−11 + 0.02yt−13 + 0.004yt−14 + 0.01yt−16

− 0.01yt−17 + .001yt−18 + 0.02yt−20

(0.013yt−1 − 0.01yt−2 + 0.02yt−3 + 0.03yt−4 + 0.02yt−5 − 0.02yt−7

− 0.04yt−10 − 0.05yt−110.04yt−12 − 0.01yt−16 − 0.01yt−17 − 0.01yt−18)I(yt−9 > 11.52) + εt

ENET: yt =0.42 + 0.44yt−1 + 0.12yt−2 + 0.04yt−3 + 0.01yt−4 + 0.01yt−5 + 0.01yt−6 + 0.04yt−7

+ 0.01yt−8 + 0.04yt−9 + 0.02yt−10 − 0.003yt−11 + 0.02yt−13 + 0.004yt−14

+ 0.01yt−16 − 0.01yt−17 + 0.0002yt−18 + 0.02yt−20

+ (0.01yt−1 − 0.01yt−2 + 0.02yt−3 + 0.03yt−4 + 0.02yt−5

− 0.02yt−7 − 0.03yt−10 − 0.05yt−11 + 0.04yt−12 − 0.01yt−16 − 0.01yt−17 − 0.01yt−18)I(yt−9 > 11.52) + εt

LAD: yt = − 0.004 + 0.49yt−1 + 0.14yt−2 + 0.05yt−3 + 0.03yt−4 + 0.0005yt−5 + 0.005yt−6 + 0.03yt−7

+ 0.01yt−10 + 0.01yt−12 + 0.01yt−13 + 0.02yt−20

+ (0.55 + 0.01yt−1 + 0.04yt−5)I(yt−9 > 3.62) + εt

ARIMA: yt =1.22 + 1.52yt−1 − 0.54yt−2 − 1.07et−1 + 0.17et−2 + εt

While tests for non-linearity were highly significant, the estimated ARIMA model pro-

vides a better fit, based on out-of-sample performance and residual analyes, than the con-

ventional, OLS method for estimating a SETAR model. One explanation for why the linear

model outperformed the SETAR model when we used the conventional method is that OLS

cannot perform variable selection. This reasoning is re-enforced by the improvements we

observe when Lasso-type penalties are introduced into SETAR estimation.
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8 CONCLUSION

The goal of this paper was to investigate how Lasso-type methods would perform compared

to OLS in threshold estimation. We considered two different frameworks: correlated vari-

ables and SETAR. Because Lasso-type methods can perform variable selection, we expected

to see a reduction in the variance of γ̂ when there were extra variables included in the es-

timation. We also were interested in how our methods would perform when the random

errors had heavy-tailed distributions.

Our findings from the first simulation study suggest that Lasso-methods, in particular

Lad-lasso, can improve the bias of the threshold estimate. However, in measures of spread,

large sample sizes are necessary for our methods to compare favorably to the least squares

method. This result is surprising since we expected to see an improvement in the variance

of γ̂, possibly at the expense of some bias. We also see the need for a careful choice of

λ in Lad-lasso. For the second simulation study, our results were much more definitive.

Introducing the Lasso penalty improved threshold estimation dramatically.

In time-series analyses, there may be evidence in favor of a regime-switching model.

However, in practice the conventional method for estimating a SETAR model can be un-

satisfactory compared to fitting a more parsimonious, ARIMA model. Our application to

modeling traffic volumes suggest that estimating a SETAR model using Lasso-type methods

not only improve upon OLS, but offer comparable results to an ARIMA model.

In the future we will study the impact of Lasso methods on tests for non-linearity. By

eliminating unnecessary variables or lags, Lasso methods could improve the power of these

tests. Or, it is possible that by shrinking the δ coefficients to 0 when the true underlying

model is linear, these tests can be avoided altogether.
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