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ABSTRACT 

A simplified bilinear moment-curvature model are derived based on the moment-

curvature response generated from a parameterized stress-strain response of strain 

softening and or strain-hardening material by Dr. Barzin Mobasher and Dr. Chote 

Soranakom. Closed form solutions are developed for deflection calculations of 

determinate beams subjected to usual loading patterns at any load stage. The solutions are 

based on a bilinear moment curvature response characterized by the flexural crack 

initiation and ultimate capacity based on a deflection hardening behavior. Closed form 

equations for deflection calculation are presented for simply supported beams under three 

point bending, four point bending, uniform load, concentrated moment at the middle, 

pure bending, and for cantilever beam under a point load at the end, a point load with an 

arbitrary distance from the fixed end, and uniform load. These expressions are derived for 

pre-cracked and post cracked regions. A parametric study is conducted to examine the 

effects of moment and curvature at the ultimate stage to moment and curvature at the first 

crack ratios on the deflection. The effectiveness of the simplified closed form solution is 

demonstrated by comparing the analytical load deflection response and the experimental 

results for three point and four point bending. The simplified bilinear moment-curvature 

model is modified by imposing the deflection softening behavior so that it can be widely 

implemented in the analysis of 2-D panels. The derivations of elastic solutions and yield 

line approach of 2-D panels are presented. Effectiveness of the proposed moment-

curvature model with various types of panels is verified by comparing the simulated data 

with the experimental data of panel test. 
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1. -  INTRODUCTION 

1.1 Cement Based Composites 

Concrete is used extremely widely in building and civil engineering structures, due to its 

low cost, flexibility, durability, and high strength. However, Concrete being one of the 

most consumed building materials and the disadvantage of concrete is the weakness in 

tension; a lot of research is going on developing building systems with low cement and 

utilizing renewable energy resources. Cement based composites aid in improving tensile 

strength and stiffness along with introduction of ductility in the infrastructure systems 

and is consist of fiber reinforced composites in form of fabric meshes and a cementitious 

bonding agent, recently, emerged as a very effective strengthening solution for existing 

reinforced concrete structures [ 1 ]. Different solutions to design cement based 

strengthening systems for concrete structures are proposed; among these the Fiber 

Reinforced Concrete (FRC) and Textile Reinforced Concrete (TRC) became the research 

topics of interest. The effectiveness of cement based composite systems as flexural 

strengthening materials of reinforced concrete structures has been demonstrated by 

results of some experimental investigations [ 2 ,3 ,4].  

1.1.1 Fiber Reinforced Concrete 

Fiber reinforced concrete (FRC) is plain concrete containing fibrous material which 

increases its structural integrity. It contains short discrete fibers that are uniformly 

distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic 

fibers and natural fibers. Fiber reinforced concrete is widely applied on the current 

infrastructure system and has been successfully used in slabs-on-grade, shotcrete, 

architectural concrete, precast products, offshore structures, structures in seismic regions, 

http://en.wikipedia.org/wiki/Fiber
http://en.wikipedia.org/wiki/Fiberglass
http://en.wikipedia.org/wiki/Synthetic_fiber
http://en.wikipedia.org/wiki/Synthetic_fiber
http://en.wikipedia.org/wiki/Natural_fiber
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thin and thick repairs, crash barriers, footings, hydraulic structures, and many other 

applications[5]. Figure 1.1.1 shows the various types of fiber and Figure 1.1.2 shows the 

applications of fiber reinforced concrete. Polypropylene fiber used in concrete enhances 

the shrinkage cracking resistance and toughness of plain concrete [6]. The compressive 

strength of high strength concrete improved with additions of steel fibers at various 

volume fractions [7]. The addition of 0.75% fiber content in the flexural members 

without shear stirrups is sufficient to achieve the ultimate resistance that is the same as 

the conventional RC flexural member with stirrups [8].  

 

Figure 1.1.1 - Various Types of Fiber for Reinforced Concrete 

In addition to the fiber reinforced concrete, fiber reinforced polymer (FRP) has also been 

identified as an attractive candidate material for civil infrastructure applications because 

of its high strength, light weight, and it non-corrosive and nonmagnetic characteristics 

[9].One of type of fiber reinforced polymer composite is FRP bars and they are intended 

for use as concrete reinforcing in areas where steel reinforcing has a limited life span due 

to the effect of corrosion. The FRP bars can be made from various types of fibers such as 

Glass (GFRP), Carbon (CFRP) and Aramid (AFRP). 
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(a) 

 

(b) 

 

 

Figure 1.1.2 - Applications of Fiber Reinforced Concrete; (a) GFRC Project at Trillium 

Building Woodland Hills, California; (b) Structural Components. 

1.1.2 Textile Reinforced Concrete 

Textile-reinforced concrete (TRC) is a composite material consisting of a matrix with a 

maximum aggregate grain size between 1 and 2 mm and high-performance, continuous 

multifilament-yarns made of alkali-resistant (AR) glass, carbon, or polymer[10]. Textile 

reinforced concrete (TRC) has been in service in engineering applications for many years 

in low-profile, relatively low-cost applications. TRC can be utilized to build slender, 

lightweight, modular and freeform structures and eliminate the risk of corrosion. The 

major advantages of TRC are its high tensile strength and pseudo-ductile behavior, the 

latter characterized by large deformations due to its tolerance of multiple cracking. TRC 

affords a priori better temperature stability and it can be used with the shotcrete technique. 

Composite TRC has the potential to reduce the carbon dependence and thus minimize the 

ecological footprint in accordance with the concepts of sustainable development [11]. 
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The bending and shear behavior of TRC were evaluated by various tests to indicate that 

both load carrying capacity and the shear loading capacity, can be increased with an 

additional textile reinforced layer. And the serviceability also will be improved [12]. For 

Textile Reinforced Concrete applications, bi- or multi-axial 2D and 3D textile meshes 

can be used as reinforcement. For a simple bi-axial case, the mesh comprises two groups 

of textile fiber yarns (threads), warp (0°) and weft (90°), interwoven perpendicularly to 

each other. Yarns are composed of multiple single fibers of continuous length, also 

designed as filaments. 

 

1.2 Strain Hardening Fiber Reinforced Cement Composite 

The tensile response of fiber reinforced cement composites can be generally classified in 

two distinct categories depending on their behavior after first cracking, namely, either 

strain-hardening or strain-softening. The strain-softening category can distinguish as 

deflection-hardening or deflection-softening [ 13 ]. As the strain-hardening FRC 

composites it is generally accepted that their use can significantly improve the seismic 

resistance of concrete structures subjected to reversed cyclic loading as well as their 

impact resistance. The design and implementation of these systems requires one to 

acknowledge and use the strain-hardening response that is attributed to multiple cracking. 

Propagation of initial crack in strain hardening composites is resisted by bridging 

mechanism.  Since a substantial amount of energy is required to further extend existing 

cracks, secondary cracks form. Single crack localization is therefore shifted to multiple 

distributed cracking mechanisms, leading to macroscopic pseudo-strain hardening 

behaviors. The dominant toughening mechanisms in these systems are attributed to 
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matrix cracking, ply delamination, and crack deflection mechanisms as studied by means 

of fluorescent microscopy and scanning electron microscopy.  

 

1.3 Derivation of Moment-Curvature Relationship  

1.3.1 Simplified Strain-hardening Fiber Reinforced Concrete Model 

A general strain hardening tensile, and an elastic perfectly plastic compression model as 

derived by Soranakom and Mobasher [14] [15] [16] and shown in Figure 1.3.1  Tensile 

response is defined by tensile stiffness, E, first crack tensile strain, cr, Cracking tensile 

strength, cr =Ecr, ultimate tensile capacity, peak, and post crack modulus, Ecr.  The 

softening range is shown as a constant stress level, Ecr.  The compression response is 

defined by the compressive strength, cy defined as Ecr.  The moment-curvature 

relationship is generated based on the tension and compression models discussed later 

here. Material parameters required for the strain softening and hardening (SSCC and 

SHCC) are summarized as follows.   

 
 

Figure 1.3.1 - Material Models for SHCC and SSCC FRC: (a) Compression; (b) Tension 

 



 6  

  

Parameters, α, μ, η, ω are defined respectively as normalized tensile strain at peak 

strength, post-crack modulus, and compressive yield strain. Material parameters required 

for the simplified models are summarized as follows: 

 Cracking tensile strain, cr
cr

E


        (1.3.1) 

             Normalized tensile strain at peak strength, peak

cr





 ;                          (1.3.2) 

 Normalized post-crack modulus, 
crE

E
       (1.3.3) 

 Normalized yield compressive strain, cy cy

cr crE

 


 
     (1.3.4) 

The only variable defined in terms of the applied tensile strain at the extreme fiber, β, 

which can be correlated to the extreme compressive strains at extreme fiber ,λ, are 

defined as: 

Normalized tensile strain at bottom fiber, t

cr





     (1.3.5) 

Normalized compressive strain at top fiber, c

cr





     (1.3.6) 

The ratio of compressive and tensile modulus, parameter γ, has negligible effect on the 

ultimate moment capacity [17]. In typical SHCC, the compressive strength is several 

times higher than tensile strength; hence the flexural capacity is controlled by the tensile 

component.   

1.3.2 Moment-Curvature Relationship  

Moment capacity of a beam section according to the imposed tensile strain at the bottom 

fiber (t = cr) can be derived based on the assumed linear strain distribution as shown in 
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Fig. 1.3.4 (a). Figure 1.4 shows the strain and stress distribution of cross-section in stage 

2.1.  The corresponding strain and stress distributions of other stage also can be generated 

by flowing the  tension and compression models. By using material models described in 

Figure 1.3.3 (a) and (b), the corresponding stress diagram is obtained as shown in Figure 

1.3.4 (b) in which the stress distribution is subdivided into a compression zone 1, tension 

zone 1and 2. Force components and their centroidal distance to the neutral axis in each 

zone can be expressed as:  

 

2
1

2 1

c

cr

F k

bh k







;   1 2

3

cy
k

h
    (1.3.7) 

  
 1 1

2

t

cr

kF

bh 


 ;       

 1 12

3

t ky

h 


   (1.3.8) 

   2 1 1 2

2

t

cr

kF

bh

  

 

   
 ; 

 
 

2
2 2 3 3

1
3 2

ty
k

h

   

  

   
 

 
    (1.3.9) 

where F and y are the force and its centroid, respectively; subscripts c1,t1,t2 designate 

compression zone 1, tension zone 1 and 2, respectively; b and h are the width and the 

height of the beam, respectively. The neutral axis parameter k is found by solving the 

equilibrium of net internal forces equal to zero, Fc1 + Ft1 + Ft2 = 0.  

 ctop cr=

 tbot cr=

1

1
hc1

ht1

kd

d
1

1
yc1

yt1

Fc1

yt2ft1

fc1

2 ht2

cr

Ft22

ft2

Ft1

(2.1)
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(a) (b) 

Figure 1.3.4 - Strain and Stress Diagrams at the Post Crack Stage (Ranges 2.1) (a) Strain 

Distribution; (b) Stress Distribution 

The neutral axis parameter k is found by solving the equilibrium of net internal forces and 

the nominal moment capacity Mn is obtained by taking the first moment of force about 

the neutral axis. This procedure can also be done for every combination of tension and 

compression (three tensile modes and two compression modes). In case 2.1 which 

represents cracking tension and elastic compression response the parameters for neutral 

axis and bending moment are expressed as:  

2
1 1

2
1

C C
k

C









; where   2

1 2 1 2 1C                 (1.3.10) 

The nominal moment capacity Mn is obtained by taking the first moment of force about 

the neutral axis, Mn = Fc1yc1 + Ft1yt1 + Ft2yt2, and it is expressed as a product of the 

normalized nominal moment mn and the cracking moment Mcr as follows: 

 
2

,
6

cr
n n cr cr

bh
M m M M


     (1.3.11) 

 
2 3

2 2

2 1 2

1
n

k k k
m C

k





 
 


; where 2

2 1 12C C C       (1.3.12) 

According to bilinear tension and elastic compression models shown in Figure 1.3.1 (a) 

and (b), the maximum moment capacity is obtained when the normalized tensile strain at 

the bottom fiber ( = t/cr) reaches the tensile strain at peak strength ( = peak/cr). 

However, the simplified equations (1.3.7) to (1.3.12) for moment capacity are applicable 

for the compressive stress in elastic region only. The elastic condition must be checked 



 9  

  

by computing the normalized compressive strain developed at the top fiber  and 

compare it to the normalized yield compressive strain. The general solutions for all the 

cases are presented in Table 1.2.  Using the strain diagram in Figure 1.3.4 (a), the 

relationship between the top compressive strain and bottom tensile strain as follow: 

 1

c t

kh k h

 



       (1.3.13) 

By substituting c = cr and t = cr in equation (1.3.13), then defining the maximum 

compressive strain to the yield compressive strain cy = cr , equation (1.3.13) is 

expressed in normalized form: 

1

k

k
   


      (1.3.14) 

The case represented by case 2.1 of the Table 1.3.1, where the tensile behavior is in 

elastic-plastic while the compressive behavior is still elastic is studied in this section.  

Equations for other cases can also be developed.  The general solution presented in Table 

1.3.1 can be simplified as follows.  The location of neutral axis represented as a function 

of applied tensile strain is represented as:  

 
       



2A ( 1 2 )k 2
A

A
1    (1.3.15) 

This equation can be easily simplified by assuming equal tension and compression 

stiffness ( For an elastic perfectly plastic tension material ( equation (1.3.15) 

reduces to: 

2 1

2 1



 




 
k      (1.3.16) 
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Table 1.3.1  - Neutral Axis k, Normalized Moment and Normalized Curvature for Each 

Stage of Normalized Tensile Strain at Bottom Fiber 

Stage k m = M/Mcr =Φ/ Φcr 

1 
0 < < 

1  
1

1
              for =1

2

1
   for 1

1

k












 
  

  

 
  3 2

1 1 1

1
1

2 1 3 3 1

1

k k k
m

k

     
 



 

 1
1

'
2 1 k


 



 

2.1 
1 < < 


0 <  < 

 

2
21 21

21 2
21

D D
k

D










 

 2
21 2 1 2 1D        

 

 3 3 2
21 21 21 21 21 21 21

21
21

2 3 3
'

1

C k C k C k C
M

k

    




3 2 2

21 2

(2 3 1) 3 1
C

   



   


 

 

 21
21

'
2 1 k


 



 

2.2 
1 < < 


< < 

cu 

22
22

22 2

D
k

D 



 

2
22 21D D    

 2 2
22 22 22 22 22 22' 3 2M C k C k C   

 
3

22 21 2
C C




   

 22
22

'
2 1 k


 



 

3.1 
 < < 

tu 

0 <  < 

 

2
31 31

31 2
31

D D
k

D









 

   2
31 2 1 2 2 1D             

 

 3 3 2
31 31 31 31 31 31 31

31
31

2 3 3
'

1

C k C k C k C
M

k

    




 

 3 2 2 2 2

31 2

(2 3 1) 3 3 1
C

      



     


 

 31
31

'
2 1 k


 



 

3.2 
< < 

tu 

< < 

cu 

32
32

32 2

D
k

D 



 

2
32 31D D    

 2 2
32 32 32 32 32 32' 3 2M C k C k C   

3

32 31 2
C C




   

 

 32
32

'
2 1 k


 



 

 

Once the neutral axis parameter k is solved, the normalized force component can be 

obtain. The nominal moment capacity Mn is obtained by taking the first moment of force 

about the neutral axis. 

 

1.4 Thesis Motivation and Objectives 

The motivation of this research is to improve the design procedure of reinforced concrete, 

especially to complete or optimize the design and analysis of fiber reinforced concrete 
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structure. In this study, the closed-form deflection equations of beam subjected with 

bending are presented and the accuracy of these analytical solutions of flexural behavior 

is verified by comparing with the experimental data.  Moment-curvature relationship is 

the start point in this research and based on the moment-curvature which derived from 

tension and compression models which is discussed in Section 1.3, a simplified bilinear 

moment-curvature model are presented and discussed in next Chapter. Using the 

algorithm of this study, one can use the model prediction tools as a design tool and 

customize the material properties of the composite for any stri=uctrual application. 

Lots of researcher studied the moment-curvature relationship and predictions of load-

deflection responses for cement-based composites. Barros, Joaquim AO, et al [ 18 ] 

presented a close-form solution for the prediction of the moment–curvature relationship 

of cross sections of fiber reinforced concrete (FRC) elements failing in bending and 

reinforced longitudinally with steel and fiber reinforced polymer (FRP) bars based on the 

strain compatibility analysis. A numerical method is applied to predict the load-middle 

span deflection response. However, this procedure of predicting moment-curvature is 

impractical for general users and only the mid-span deflection can be simulated in this 

study. The numerical method of simulating the load-deflection may not be easier applied 

than the analytical solution. Kwak et al [ 19 ] presented the moment–curvature 

relationships which is acceptable for RC sections and the finite element method is 

implemented in the prediction of load-deflection response of simply supported beam. The 

empirical expression of plastic hinge length is included in the analysis. Lim, T. Y , et al 

[20] developed an analytical method for the moment-curvature characteristics of steel-

fiber concrete (SFC) beams based on the tensile and compressive stress-strain behavior of 
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the composite. Deflection equations of mid-span of three- and four-point bending beam 

are derived.  

 However, prediction of the load-deflection responses in this study is acceptable not only 

for RC but also for FRC and hybrid reinforced concrete beam. In addition, instead of 

finite element method and numerical approach, the closed-form deflection equations of 

simply supported beam and cantilever beam with various loading patterns are presented 

in this study. Thus, our equations are more acceptable and powerful for general users.   
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2. - DERIVATION OF CLOSED-FORM DEFLECTION EQUATIONS FOR 

BEAMS WITH SIMPLIFIED MOMENT-CURVATURE MODELS 

 

Soranakom and Mobasher [21] developed a procedure to use a parameterized bilinear or 

trilinear stress-strain response of a strain-softening and or strain-hardening material and 

derived closed form solutions for moment and curvature response of an arbitrary cross 

section.  Once the moment-curvature response is obtained, it can be used in the context of 

slope-deflection equations to obtain the closed form solutions for load vs. rotation and 

load vs. deflection response of a beam subjected to a specified loading and boundary 

conditions [22]. Due to the nature of tension or compression dominated modes of failure, 

various cases must be considered, therefore closed form solutions to load-deflection 

equations is not obtainable directly due to mode interaction.   

An approach to simplify and parametrically represent the moment-curvature response as 

a bilinear or trilinear function is presented. In this manner, moment-curvature response 

can be used to obtain a strain softening, or deflection hardening load-deflection response 

from the parametrized moment model. A set of closed form solutions to calculate 

deflection profile as well as mid-span deflection of a beam under three- and four- point 

bending was presented using moment-area method previously. In this study, a bilinear 

moment-curvature model was developed which can be applied to reinforced concrete, 

fiber reinforced concrete and general composite materials that exhibit some level of 

damage such that the moment curvature response is represented by means of a non-linear 
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response. The procedures to calculate the closed form equations for the deflection 

calculation at any point along a beam throughout the entire load range are developed.    

2.1  Bilinear Moment-Curvature Relationship 

A simplified parametric moment curvature response is represented by a bilinear function 

in elastic pre-cracked and post-cracked stages as shown in Figure 2.1.1 and the 

normalized moment-curvature relationship is shown in Figure 2.1.2. The elastic stage 

extends to the onset of first flexural crack. The second stage follows until the ultimate 

flexural capacity which corresponds to the ultimate state. This level can be specified as 

the curvature associated with the maximum tensile of compressive strain based on a 

specified flexural failure or ultimate mode defined for the structure. The bilinear elastic 

post-cracking moment-curvature response is fully defined by two control points (Mcr,φcr) 

and (Mu,φu) and expressed as:   

g cr crM( ) EI                           0<M M   0<           (2.1.1) 

 u cr
cr cr cr u u

u cr

M M
M( ) M         M M M    1    

 


      


                      (2.1.2) 

The first cracking moment and first cracking curvature defined as: 

21

6
cr crM bd E 

               (2.1.3) 

2
 cr

cr
d





                                  (2.1.4)                                                                                                                                  

Eq.(2.1.1) and (2.1.2) can be presented in normalized form by introducing two 

normalizing constants as 

m'( q') q'                            0<m' 1    0<q' 1           (2.1.5) 
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 
1

1 1
1

m
m'( q') q'                        1 m'   1 q'

q


    


                                                 (2.1.6) 

The parameter based moment curvature relationships are therefore: 

'

cr

M ( )
m'( q')

M



; ' i

cr

q



  u

cr

M
m

M
 ;  u

cr

q



                                                          (2.1.7) 

 

 

Figure 2.1.1 - Bilinear Moment-Curvature Relationship 
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Figure 2.1.2 - Normalized Moment-Curvature Relationship Represented as (q’, m’) 

 

2.2 Moment-Curvature Distributions 

Once the relationship of moment-curvature can be simplified as in Section 2.1, the 

curvature distributions along the beams are generated based on simplified moment-

curvature relationship with known moment distributions. The equilibrium of the beam 

under the applied load and support conditions is governed by the rotation and 

displacement boundary conditions and determines the statically determinate distribution 

of the moment across the length of the beam.   

A case of three-point bending of a prismatic beam is presented here to demonstrate the 

generation of moment and curvature distributions. In Region I, where there is an elastic 

distribution of moments and curvature, as represented by an increasing moment up until 

the cracking moment Mcr (dash line in Fig. 2.2.1) with 0 2 crM '( x L ) M   . Since the 

loading and geometric is symmetric, left-half of beam is considered here. Eq. (2.2.1) 

shows the relationship of moment at mid-span and the moment at any cross section of x 
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(x≤2/L). Imposed the bilinear moment-curvature relationship, the relationship of 

curvature at mid-span and curvature at any cross section of x is presented in Eq. (2.2.2) 

2

2

M '( x )
x

M'( x L ) L



                                                           for 0

2

L
x                (2.2.1) 

 
1

2 '( 2 / L)x
x x

L







    

for 0
2

L
x                       (2.2.2) 

In the general post cracking range, the beam is divided into two distinct regions, where a 

portion of the beam enters the nonlinear zone. When the moment on the section exceeds 

the cracking moment, both the moment and curvature distribution are bilinear as a 

function of the position along the length of the beam, as shown in Figure 2.2.1 (solid line) 

with 2cr uM M '( x L ) M   . Region I and Region II is defined by the coordinate x=ξ 

such that M’(x)=Mcr. ξ is obtained from similar triangles of moment distribution diagram 

as shown in Figure 2.2.1(b). The curvature of two regions as a function of the position 

along the beam is then represented by relating the curvature distribution using the bilinear 

assumption. 

The curvature distribution is obtained as: 

 
21

crx x





 for 0 x  ; (2.2.3) 

 
22

2( ' 1)( )
1

2

q x
x cr

L

  
  

 


 


              for 

2

L
x   (2.2.4)            

Wherein 
 '

2
'

cr

Lx
q






  

Similar triangles of geometry in Figure 2.2.1(b): 
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2

2
2cr

M '( x L ) L
m'( x L )

M


  


                         (2.2.5) 

                                                                       
2 '

L

m
                   (2.2.6) 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 2.2.1 - Three-Point Bending ;(a) Moment and Curvature Distributions along the 

Beam;(b) Calculation of ξ; 

 

Using the same procedure, the moment and curvature distribution along the beam can be 

generated for a certain loading conditions. Note that the subscript of only ‘1’ means the 

maximum moment of beam is less than cracking moment, in other word, whole beam is 

in the pre-creaked region. However, subscript of ‘2i (i=1,2)’ means the some portion of 
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beam is in the post-creaked region and i=1 and 2 means the pre-creaked and post-creaked 

region, respectively. 

 

2.3 Derivation of Load-Deflection Equations for a Beam in Flexure 

Closed-form deflection equations of a beam in flexure are obtained from the analytical 

integration based on the curvature distribution and boundary conditions. The algorithm of 

generation of load-deflection equations are shown in Figure 2.3.1. 

 

Figure 2.3.1 -  Flowchart for the Derivation of Load-Deflection Equation 
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Calculation of the load-deflection response of an elastic beam is obtained from 

elementary beam formula up to the point where the linearity condition is satisfied (q’≤1 ), 

i.e. 1m'( q') q'  .  The procedure for the calculation of the beam deflection profile based 

on a bilinear moment-curvature response is therefore limited to the case that a portion of 

the beam is still elastic whereas another portion is in the secondary region with reduced 

modulus.  The applied bending moment of the secondary region is sufficiently large to 

cause the cracking, i.e. 1 1( m'( q') , q' )    These two regions are defined by the transition 

point along the length of the beams x= when m’(q’) = m’(x)=1. Thus,   is the length 

of origin x=0 to the point of m’(x)=m’(q’) =1. Figure 2.3.2 shows the pre-cracked and 

post-cracked regions for general loading for simply supported beam. Scr is defined as post 

cracking region and x=Lm is defined as the point which is subjected by maximum 

moment. 

 

 

Figure 2.3.2 - Flexural Stiffness Regions for General Loading for Simply Supported 

Beam 

The elastic curve representing deflection depends on the loadings and the flexural 

stiffness distribution along the beam as well as the continuity of the boundary condition 
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separating the two regions. The slope of elastic curve at any arbitrary cross section is 

computed based on the equations (2.3.1) and (2.3.2).  

 21 21 1
0

x

x dx C                                                     for    0 x          (2.3.1)   

   22 21 22 2
0

x

x dx x dx C   



                              for   mx L                (2.3.2) 

 

Likewise, the distribution of deflection along the beam is computed based on the 

following: 

 21 21 3
0

x

x dx C                                                     for  0 x                 (2.3.3) 

   22 21 22 4
0

x

x dx x dx C   



                               for  mx L        (2.3.4) 

 

The above integrals are performed after the curvature φ, is related to the magnitude of the 

moment, M, or expressed as: φ = φ(M) defined within each segment of bilinear moment 

curvature model and M(x) is represented as a polynomial function of the beam 

equilibrium. The constants of integration defined in terms of Ci are numerical values 

determined based on boundary conditions. 

In a case of symmetrical loading and geometry, the boundary conditions at the mid-span 

are specified by a zero slope. To obtain the slope and deflection prior to cracking, 

equations (2.3.1) and (2.3.4) are used where the special case of  = L/2 is used. The 

general expression of deflection is expressed in terms of equation (10), wherein 
*  is the 

deflection coefficient: 

* 2
cr L                                                                       (2.3.5) 
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Deflection equations for simply supported beam and cantilever beam under different 

loading conditions for pre-cracked and post-cracked regions are derived in detail in the 

following section using analytical integrations.  

 

2.3.1 Case 1 – Load-Deflection with Simply Supported Beam 

Simply supported beam of length L is considered here with the symmetric loading 

conditions which are- 

i) Concentrated point load at the mid-span of  the beam (3-point bending) (Case 1.1) 

ii) Two concentrated point load with the distance of 3/L to either two supports (Case 1.2) 

iii) Two concentrated point load with the distance of a to either two supports ( Case 1.3) 

iv) Uniform loading along the beam (Case 1.4) 

v) Concentrated moment at the mid-span of the beam (Case 1.5) 

vi) Two concentrated moment at the two ends of beam (Pure bending) (Case 1.6) 

 

Half of the beam in Case 1 is considered to generate the closed-form deflection equations 

due to the symmetric loading conditions. The rotation and deflection of the beam are 

obtained by successive integration and application of the boundary conditions as 

presented in Section 2.3.  The procedure is described in details for the Case 1.1, Case 1.2 

and Case 1.3 and then results are presented for other cases.  

 

Case Study 1.1 – Three-point bending 

The beam behaves in accordance to the elementary mechanics approaches up until the 

cracking at a moment equal to M’(x)= Mcr or (m’(x)=1) .  Beyond this moment level, as 



 23  

  

the load increases (m’(x)>1), the cracking region progresses along the length of the beam, 

so the length of the cracked region is determined based on the static equilibrium of the 

moment distribution. 

First, considering the maximum moment M’(x=L/2)≤Mcr, the whole beam is in the pre-

cracked region. The curvature distribution as shown in Equation (2.3.1.1) 

 
1

2 '
x x

L


  ,  0

2
Lx                                      (2.3.1.1) 

The rotation in any cross section is obtained by analytical integration of the curvature 

distribution as following: 

 1 10

2 'x
x x dx C

L


   ,  0

2
Lx    (2.3.1.2) 

C1 is calculated by imposing the boundary condition of the rotation of mid-span is zero. 

The deflection in any cross section is obtained as equation (2.3.1.3): 

   1 1 20

x
x x dx C   ,  0

2
Lx    (2.3.1.3) 

Applying the deflection boundary condition at the left support, one could get C2 equal to 

zero and the deflection coefficient equation as: 

3
*
1 3

'
43

x x
q

LL

 
   
 

  ,  0
2

Lx                                                    (2.3.1.4) 

 Second, considering the maximum moment M’(x=L/2)≥Mcr, the beam can be considered 

to consist of two distinct regions. The transition point of pre-cracked and post-cracked 

region is x= ξ. ξ is related to the length of beam and a given value of applied moment 

defined as m' (x=L/2) = M’(x=L/2)/Mcr, shown in Figure 2.3.1.1  

The two regions of three-point bending beam are defined as: 
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1) Region I ( 0 x  ), as pre-cracked region. 

2) Region II ( / 3x L   ), as the post cracked region. 

 

 

(a) 

 

 

 

 

(b) 

Figure 2.3.1.1 - Three-Point Bending ;(a) Moment and Curvature Distributions along the 

Beam;(b) Calculation of ξ; 

Curvature distributions for these two regions are presented in the Equation (2.3.1.5) and 

(2.3.1.6), which are based on the moment distribution shown in in Figure 2.3.1.1(a). 

 
21

crx x





                                                       for 0 x                          (2.3.1.5)  

 
22

2( ' 1)( )
1

2

q x
x cr

L

  
  

 


 


                         for 

2
Lx   ;             (2.3.1.6) 

Wherein, 
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2 '
L
m

   

The rotation in any cross section in Region I is obtained by analytical integration of the 

curvature distribution in Region I as following: 

 21 30

x crx x dx C





   0 x   (2.3.1.7)  

Likewise rotation in Region I, rotation in Region II is obtained as below 

 22 40

2( ' 1)( )
1

2

xcr q x
x xdx dx Ccr

L





 
 

 

  
    

 
      

2
Lx      (2.3.1.8) 

C3, C4 are integration constants determined based on the boundary conditions. The 

Boundary conditions specific to this case include zero rotation at the middle of the beam 

as well as continuity of the rotations at the end of Regions I and II from Equations 

(2.3.1.7) and (2.3.1.8).  

The deflection distribution in Region I is obtained by analytical integration of the rotation 

distribution as: 

   21 21 50

x
x x dx C    0 x    (2.3.1.9) 

Applying the deflection boundary condition at the left support, one could get C5 equal to 

zero and the deflection coefficient equation in Region I as: 

3
*

21 2 2

( ' 2 ' )

6 4

x L Lq q x

L L

  
 


                             0 x    (2.3.1.10) 

Using the above expression for Region I, the deflection equation in Region II is obtained 

as below 

     22 21 21 22 60
x

x dx C


                   
2

Lx     (2.3.1.11) 
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Applying the boundary condition    21 22    , one would get C6 = 0 and the 

deflection coefficient in Region II obtained as (2.3.1.12). 

       
2

2 33 2

2

*
2 22

2 '' 1 2 ' 4 ' '1

2 43 2 6

L qq x L q x x q L Lq

L LL L L

        
   
 

 




   (2.3.1.12) 

Case Study 1.2 –Four-point bend with distance of L/3 to either two supports 

First, considering the simulation of maximum moment of beam is less than cracking 

moment. The maximum moment of four-point bending beam is at x=L/2. If the 

M’(x=L/2)≤ Mcr, the beam is in the pre-creaked region and the curvature distributions is 

shown in Equation (2.3.1.13) and (2.3.1.14).  

 1

3 '
a x x

L


       for 0

3
Lx    (2.3.1.13)  

 1 'b x            for 
3 2

L Lx    (2.3.1.14) 

The rotation in any cross section is obtained by analytical integration of the curvature 

distribution as following: 

 1 10

3 'x

a x x dx C
L


      0

3
Lx     (2.3.1.15) 

  3
1 20

3

3 '
'

L x

b L
x xdx dx C

L


              

3 2
L Lx     (2.3.1.16) 

C2 is calculated by imposing the boundary condition of the rotation of mid-span is zero. 

C1 is calculated by applying the boundary condition    1 13 3a b
L L  . The deflection 

in any cross section is obtained as equation (2.3.1.17) and (2.3.1.18). 

   1 1 30

x

a ax x dx C                              0
3

Lx    (2.3.1.17) 
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     3 2
1 1 1 40

3

L L

b a bL
x x dx x dx C         

3 2
L Lx    (2.3.1.18) 

 

Applying the deflection boundary condition at the left support and the continuity of 

x=L/3, one could get C3 and C4 equal to zero and the deflection coefficient equation as: 

3
*
1 3

'
32

a

x x
q

LL


 
   

 

,   0
3

Lx    (2.3.1.19) 

   ,      
3 2

L Lx   (2.3.1.20) 

Second, considering the maximum moment M’(x=L/2)≥Mcr, the beam can be considered 

to consist of two distinct regions. The two regions of four-point bending beam are 

defined as: 

i) Region I ( 0 x  ), as pre-cracked region. 

ii) Region IIa ( / 3x L   ), as the post cracked region. 

iii) Region IIb ( 3 2L x L  ), as the post cracked and constant moment region.  

Curvature distributions for these three regions are generated based on the moment 

distribution (shown in Figure 2.3.1.2) and simplified bilinear moment-curvature, 

presented in the equation (2.3.1.21) to (2.3.1.23). The calculation of ξ is presented in 

Figure 2.3.1.2(b). 

 21
crx x







  0 x    (2.3.1.21)  

 
 

22

3 ' '

3 
a cr

q x q x L
x

L




 

  




   
3

Lx     (2.3.1.22) 

 22 'b crx q   
3 2

L Lx                       (2.3.1.23) 
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(a) 

 

 

 

 

 

 

(b) 

Figure 2.3.1.2 - Four-Point Bending ;(a) Moment and Curvature Distributions along the 

Beam;(b) Calculation of ξ; 

Wherein, 

3 '
L
m


 

The rotation in any cross section in Region I is obtained by analytical integration of the 

curvature distribution in Region I as following: 

 21 50

x crx x dx C





                          0 x    (2.3.1.24) 

Likewise rotation in Region I, rotations in Region IIa and IIb are obtained as below 
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 
 

22 60

3 ' '

3 

xcr
a cr

q x q x L

L
x xdx dx C




 



 

  


         

3
Lx           (2.3.1.25) 

 
 3

22 70 3

3 '
'

'
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L xcr
b cr crL

q x q x
x x dx dx q

L
dx C

L




  







  


     

3 2
L Lx     

 (2.3.1.26) 

C5, C6 and C7 are integration constants determined based on the boundary conditions. The 

Boundary conditions specific to this case include zero rotation at the middle of the beam 

as well as continuity of the rotations at the end of Regions I and IIa as well as Region IIa 

and IIb obtained from Equations (2.3.1.24), (2.3.1.25) and (2.3.1.26).  

 

The deflection distribution in Region I is obtained by analytical integration of the rotation 

distribution as: 

   21 21 80

x
x x dx C    0 x    (2.3.1.27) 

Applying the deflection boundary condition at the left support, one could get C8 equal to 

zero and the deflection coefficient equation in Region I as: 

  2

*
21

3 21
3 ' 2 '

6
x x q L Lq

L
    


 0 x    (2.3.1.28) 

Using the above expression for Region I, the deflection equation in Region IIa is obtained 

as below 

     22 21 21 22 90
x

a x dx C


         
3

Lx    (2.3.1.29) 

Applying the boundary condition    21 22a    , one would get C9 = 0 and the 

deflection coefficient in Region IIa obtained as (2.3.1.30). 

 

 
 3 3 2 2* 2 2 2 3

222

1
3 ' 3 3 9 ' 2 ' 9 ' 3 '

6 3
a x q x x L x q xL q xL xLq L q

L L
       


    


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3
Lx       (2.3.1.30) 

Similar to the procedure in Region IIa, the deflection equation in Region IIb is written as 

           22 21 21 22 22 22 63
0 3

x

b a a bL
x L x dx C            

 

3 2
L Lx   (2.3.1.31) 

Deflection compatibility at 
3

Lx results in C6 = 0 and the expression for deflection 

coefficient in Region IIb is simplified as shown in equation (2.3.1.32). 

2

22 2

* ' ' 1 3 3 '
1 1 '

2 542
b

q x q x q
q

L L LL

   
       

  


 





    

3 2
L Lx    (2.3.1.32) 

 

Case Study 1.3 - Four-point bend with distance of a to either two supports 

First, considering the simulation of maximum moment of beam is less than cracking 

moment. The maximum moment of four-point bending beam is at x=L/2. If the 

M’(x=L/2)≤ Mcr, the beam is in the pre-creaked region and the curvature distributions is 

shown in Equation (2.3.1.33) and (2.3.1.34).  

 1

'
a x x

a


       for 0 x a    (2.3.1.33) 

 1 'b x             for 
2

La x    (2.3.1.34) 

The rotation in any cross section is obtained by analytical integration of the curvature 

distribution as following: 

 1 10

'x

a x x dx C
a


      0 x a    (2.3.1.35) 

 1 20

'
'

a x

b a
x xdx dx C

a


               

2
La x     (2.3.1.36) 
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C1 is calculated by imposing the boundary condition of the rotation of mid-span is zero. 

C2 is calculated by applying the boundary condition    1 1a ba a  , The expressions of 

rotation is presented in Equation (2.3.1.37) and (2.3.1.38). 

2

1

' ' '

2 2 2
a

x a L

a

  
        0 x a    (2.3.1.37) 

1

1
' '( )

'
b a x a  


        

2
La x    (2.3.1.38) 

The deflection in any cross section is obtained as: 

   1 1 30

x

a ax x dx C                              0 x a    (2.3.1.39) 

     2
1 1 1 40

La

b a ba
x x dx x dx C        

2
La x    (2.3.1.40) 

Applying the deflection boundary condition at the left support and the continuity of x=a, 

one could get C3 and C4 equal to zero and the deflection coefficient equation as: 

 23

1

3 3

6 6

crcr
a

a La xx

a a




 
  ,  0 x a    (2.3.1.41) 

2 2

1

1 1 1

6 2 2
b cr cr cra x Lx      ,      

2
La x   (2.3.1.42) 

Second, considering the maximum moment M’(x=L/2)≥Mcr, the beam can be considered 

to consist of two distinct regions. The two regions of the four-point bending beam are 

defined as: 

i) Region I ( 0 x  ), as pre-cracked region. 

ii) Region IIa ( x a   ), as the post cracked region. 

iii) Region IIb ( 2a x L  ), as the post cracked and constant moment region.  



 32  

  

Curvature distributions for these three regions are generated based on the moment 

distribution (shown in Figure 2.3.1.3) and simplified bilinear moment-curvature, 

presented in the equation (2.3.1.43) to (2.3.1.45). The calculation of ξ is presented in 

Figure 2.3.1.3(b). 

 21
crx x







 0 x                                    (2.3.1.43)  

   22

' 1
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q
x x

a
  



 
   

 
  x a                                     (2.3.1.44) 

 22 'b crx q     
2

La x                                       (2.3.1.45) 

 

(a) 

 

 

 

 

crM ξ
=

M'(x= L 2 ) a  

 

(b) 

Figure 2.3.1.2 - Four-Point Bending (with arbitrary distance a) ;(a) Moment and 

Curvature distributions along the Beam;(b) Calculation of ξ; 
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Wherein, 

'

a

m
   

The rotation in any cross section in Region I is obtained by analytical integration of the 

curvature distribution in Region I as following: 

 21 50

x crx x dx C





     0 x    (2.3.1.46) 

Likewise rotation in Region I, rotations in Region IIa and IIb are obtained as below 
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xcr
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2
La x   (2.3.1.48) 

C5, C6 and C7 are integration constants determined based on the boundary conditions. The 

Boundary conditions specific to this case include zero rotation at the middle of the beam 

as well as continuity of the rotations at the end of Regions I and IIa as well as Region IIa 

and IIb obtained from Equations (2.3.1.46), (2.3.1.47) and (2.3.1.48).  

 

The deflection distribution in Region I is obtained by analytical integration of the rotation 

distribution as: 

   21 21 80

x
x x dx C    0 x    (2.3.1.49) 

Applying the deflection boundary condition at the left support, one could get C8 equal to 

zero and the deflection coefficient equation in Region I as: 

 3
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' 'q a a q L q x
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




   
   0 x    (2.3.1.50) 
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Using the above expression for Region I, the deflection equation in Region IIa is obtained 

as below 

     22 21 21 22 90
x

a x dx C


                   x a     (2.3.1.51) 

Applying the boundary condition    21 22a    , one would get C9 = 0 and the 

deflection coefficient in Region IIa obtained as (2.3.1.52). 
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
  

x a                             (2.3.1.52) 

Similar to the procedure in Region IIa, the deflection equation in Region IIb is written as 

           22 21 21 22 22 22 63
0 3

x

b a a bL
x L x dx C            

  

 
2

La x    (2.3.1.53) 

Deflection compatibility at 
3

Lx results in C6 = 0 and the expression for deflection 

coefficient in Region IIb is simplified as shown in equation (2.3.1.54). 

 * 2 2 2 2

22 2 2

1 1
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2 2 6

1
b q x q x q a a q a a q

L L L
            

2
La x           (2.3.1.54) 

Case 1.4 to Case 1.6 can be derived similarly. Results of load-deflection equations based 

on bilinear moment-curvature relationship for various loading pattern in summarized in 

Table 2.3.1 to Table 2.3.3 
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Table 2.3.1 - Curvature and Deflection of Elastic Region for Simply Supported Beam 

Case # Beam Type 1 1
* 
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2 '
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3
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Table 2.3.2 - Curvature and Deflection of Post- cracked Region 1 for Simply Supported 

Beam 

Case # 
Beam 

Type 

 

  
Region 1 Curvature 21 

Deflection 

coefficient  
*

21  
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2 '

L

m
 0 x    cr x


 1 2g g  

Case 1.2 
4PB with 

3/L 3 '

L

m
 0 x    cr x


  1 2 3f f f  

Case 1.3 

 

4PB with 

a '

a

m
 0 x    cr x




 

1 2s s  

Case 1.4 

SS-

Uniform 

loading 

1
1 1

2 '

L

m

 
   

 

 
0 x   

 
 2 

 





cr x Lx
L

 
1j  

Case 1.5 

SS-

Moment 

at the 

middle 
2 '

L

m
 0 x   cr x


 

1i  

Case 1.6 
SS-Pure 

bending 
/ / 'm cr  1 2t t  

 

 

 

 

 

 

 

 

 

 

 

 

 



 37  

  

 

Table 2.3.3 - Curvature and Deflection of Post- cracked Region 2 for Simply Supported 

Beam 
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Table 2.3.4 - Notations of the Deflection Equations for Simply Supported Beam 
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2.3.2 Case 2- Load-Deflection with Cantilever Beam 

Cantilever beam of length L is considered here with three different loading conditions 

which are- 

i) Concentrated point load at the free end (Case 2.1) 

ii) Uniform loading along the beam (Case 2.2) 

iii) Concentrated point load at the arbitrary cross-section with the distance S from the 

fixed end (Case 2.3) 

The rotation and deflection of the beam are obtained by successive integration and 

application of the boundary conditions as presented in Section 2.3.  The procedure is 

described in details for the Case 2.1 and Case 2.2. The summery results are presented in 

Table 2.3.5 to 2.3.7 

 

Case Study 2.1 –Cantilever beam with concentrated point load at the free end 

 The coordinate system remains the same as the left end of the beam is the origin and the 

positive direction of x- and y-axis as shown in Figure 2.3.2.1. The derivation of closed-

form deflection equations for cantilever beam presented here based on the assumptions of 

left end of beam is fixed and right end of beam is free. 

First, considering the maximum moment M’(x=0)≤Mcr, the whole beam is in the pre-

cracked region. The curvature distribution is shown in Equation (2.3.2.1). 

   1

'
x x L

L


    0 x L     (2.3.2.1) 

The rotation in any cross section is obtained by analytical integration of the curvature 

distribution as following: 
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   1 10

'x
x x L dx C

L


      0 x L    (2.3.2.2) 

Imposing the boundary condition of the rotation of fixed end is zero to get C1=0. The 

rotation in any cross section is obtained as equation (2.3.2.3): 

  2
1

' 1

2
x Lx x

L




 
  

 
    0 x L     (2.3.2.3) 

The deflection in any cross section is calculated by: 

   1 1 20

x
x x dx C      0 x L   (2.3.2.4) 

Applying the deflection boundary condition at the fixed end, one could get C2 equal to 

zero and the deflection coefficient equation as: 

3 2
*
1 3 2

'
6 2

x x
q

L L


 
   

 

   0 x L   (2.3.2.5) 

Second, considering the maximum moment M’(x=0)≥Mcr, the beam can be considered to 

consist of two distinct regions. The transition point of pre-cracked and post-cracked 

region is x= ξ. ξ is related to the length of beam and a given value of applied moment 

defined as m' (x=L/2) = M’(x=L/2)/Mcr, shown in Figure 2.3.2.1  

The two regions of cantilever beam subjected with the point load at the free end are 

defined as: 

1) Region I ( x L   ), as pre-cracked region. 

2) Region II ( 0 x   ), as the post cracked region. 

Curvature distributions for these two regions are presented in the Equation (2.3.2.6) and 

(2.3.2.7), which are based on the moment distribution shown in in Figure 2.3.1.1(a).   
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(a) 

 

 

 

crM L-ξ
=

M'(x=0) L  

 

 

(b) 

Figure 2.3.2.1 - Cantilever Beam Subjected with Point Load at Free End;(a) Moment and 

Curvature Distributions along the Beam;(b) Calculation of ξ; 

 
 

21

cr x

L
x

L







 ,                          x L      (2.3.2.6) 

 
  

22

' 1
1cr

q x
x 




  



 


,        0 x     (2.3.2.7) 

Wherein, 

1
1

'
L

m


 
  
 

 

The order of integrations of rotation and deflection for this case is different with the 

simply supported beam, which is first to get the rotation and deflection of Region II and 
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then to calculate that of Region I. The rotation in any cross section in Region II is 

obtained by analytical integration of the curvature distribution in Region I as following: 

 
  

22 30

' 1
1r

x

c

q x
x dx C




 

  
  





    0 x   (2.3.2.8) 

The rotation in Region I is obtained as below: 

 
    

21 40

' 1
1

cr
c

x

r

q x
x dx dx

x

L
C

L






 


   
 


  

 
     x L    (2.3.2.9) 

C3, C4 are integration constants determined based on the boundary conditions. The 

Boundary conditions specific to this case include zero rotation at the left end of the beam 

as well as continuity of the rotations at the transition point of Regions I and II. The 

deflection distribution in Region II is obtained by analytical integration of the rotation 

distribution as: 

   22 22 50

x
x x dx C                         0 x     (2.3.2.10) 

Applying the deflection boundary condition at the free end of beam, one could get C5 

equal to zero and the deflection coefficient equation in Region I as: 

  3 2
*

22 2 2

1 ' '

6 2

q x q x

L L





        0 x    (2.3.2.11) 

Using the above expression for Region II, the deflection equation in Region I is obtained 

as below 

     21 22 22 21 60
x

x dx C


                   x L    (2.3.2.12) 

Applying the boundary condition    21 22    , one would get C6 = 0 and the 

deflection coefficient in Region II obtained as (2.3.1.13). 
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x L     (2.3.2.13) 

 

Case Study 2.2 –Cantilever beam subjected with the uniform loading 

The moment and curvature distributions are obtained from the static equilibrium and 

bilinear moment-curvature relationship as shown in Figure 2.3.2.2.  First, considering the 

maximum moment M’(x=0)≤Mcr, the whole beam is in the pre-cracked region. The 

curvature distribution is shown in Equation (2.3.2.14). 

2

2

' 2 '
'x x

LL

 



        0 x L      (2.3.2.14) 

The rotation in any cross section is obtained by analytical integration of the curvature 

distribution as following: 

  2
1 120

' 2 '
'

x
x dx Cx x

LL


 


 
  

 


     0 x L    (2.3.2.15) 

Imposing the boundary condition of the rotation of fixed end is zero to get C1=-φ’L/3. 

The rotation in any cross section is obtained as equation (2.3.2.16): 

 
1

2 2

2

4 ' 2 ' '

33

x x L
x

LL

  
       0 x L     (2.3.2.16) 

The deflection in any cross section is calculated by: 

   1 1 20

x
x x dx C      0 x L   (2.3.2.17) 

Applying the deflection boundary condition at the fixed end, one could get C2 equal to 

zero and the deflection coefficient equation as: 
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4 3 2
*
1 4 3 2

'
12 3 2

x x x
q

L L L


 
    

 

   0 x L   (2.3.2.18) 

Second, considering the maximum moment M’(x=0)≥Mcr, the beam can be considered to 

consist of two distinct regions. The transition point of pre-cracked and post-cracked 

region is x= ξ. ξ is related to the length of beam and a given value of applied moment 

defined as m' (x=L/2) = M’(x=L/2)/Mcr, shown in Figure 2.3.2.2 

The two regions of cantilever beam subjected with the point load at the free end are 

defined as: 

1) Region I ( x L   ), as pre-cracked region. 

2) Region II ( 0 x   ), as the post cracked region. 

Curvature distributions for these two regions are presented in the Equation (2.3.2.19) and 

(2.3.2.20), which are based on the moment distribution shown in Figure 2.3.1.1(a).   

 
 
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,   x L    (2.3.2.19) 
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Wherein, 

1
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L

m


 
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(a) 
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(b) 

Figure 2.3.2.2 - Cantilever Beam Subjected with Uniform Loading ;(a) Moment and 

Curvature Distributions along the Beam;(b) Calculation of ξ; 

The rotation in any cross section in Region II is obtained by analytical integration of the 

curvature distribution in Region I as following: 

 
  

 222 3

2

0

'
'

2
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cr

x x Lx
q

L

q
x dx C

 
 

 
 
  






     0 x   (2.3.2.21) 

The rotation in Region I is obtained as below: 
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   (2.3.2.22) 

C3, C4 are integration constants determined based on the boundary conditions. The 

Boundary conditions specific to this case include zero rotation at the left end of the beam 

as well as continuity of the rotations at the transition point of Regions I and II. The 

deflection distribution in Region II is obtained by analytical integration of the rotation 

distribution as: 

   22 22 50

x
x x dx C                                       0 x     (2.3.2.23) 

Applying the deflection boundary condition at the fixed end of beam, one could get C5 

equal to zero and the deflection coefficient equation in Region I as: 

 
 

2 2 2 2

*
21 2

' 4 ' 4 12 ' 6 '1
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q x xq L x Lx q L q x

L L
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 



 


 
           0 x    (2.3.2.24) 

Using the above expression for Region I, the deflection equation in Region II is obtained 

as below 

     21 22 22 21 60
x

x dx C


                   x L   (2.3.1.25) 

Applying the boundary condition    21 22    , one would get C6 = 0 and the 

deflection coefficient in Region I obtained as (2.3.1.26). 

 *
21 1 2 3 4n n n n         x L                         (2.3.1.26) 

Wherein,                         
 

 
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4 3
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1 4
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A x x
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AL L L
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  
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 
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

   

Case 2.3 can be derived similarly. Results of load-deflection equations are summarized in 

Table 2.3.5 to Table 2.3.7 

Table 2.3.5 - Curvature and Deflection of Elastic Region for Cantilever Beam 

Case # Beam Type 1 1
* 

Case 

2.1 
C-Load at the end  

'
x L

L

  
3 2

3 2
'

6 2

 
  

 

x x
q

L L

 

Case 
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C-Uniform loading 

' 2 '2 '
2


 x x
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 


 4 3 2

4 3 2
'

12 3 2

 
   

 

x x x
q

L L L

 

Case 

2.3 
C-Load at any point 

0 x S    
'

x S
S

 * 
3 2

3 2
'

6 2

 
  

 

x x
q

S S

 

S x L   0 
1

'
2 6

 
 

 

x
q

S
 

 

 

Table 2.3.6 - Curvature and Deflection of Post- cracked Region 1 for Cantilever Beam 

Case 

# 

Beam 

Type 

 

  
Region 1 Curvature 21 

Deflection 

coefficient  *

21  

Case 

2.1 

 

C-Load at 

the end 

1
(1 )

'
L

m
   x L   

 cr x L

L








 1u  

Case 

2.2 

C-

Uniform 

loading 

1
1

'
L

m

 
  

 

 x L   
 2 2

2 2

2

2

cr x Lx L

L L











 
 

 

 1 2 3 4 n n n n  

Case 

2.3 

C-Load at 

any point 

1
(1 )S

'
 

m
  

 x S  
 cr x S

S








  1 2 3 4 c c c c  

S x L   0  5 6 7 8 c c c c  
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Table 2.3.7 - Curvature and Deflection of Post- cracked Region 2 for Cantilever Beam 

Case 

# 

Beam 

Type 

 

  
Region 2 Curvature 22 

Deflection 

coefficient  
*

22  

Case 

2.1 

C-Load 

at the 

end 

1
(1 )

'
L

m
   0 x   

  ' 1
1cr

q x  
 

 




  

2u  
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2.2 
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1
1

'
L

m

 
  

 
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  

 

2

2

2

2

1

cr

x Lx
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L
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  
 

 
  

5n  

Case 

2.3 

C-Load 
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1
(1 )S

'
 

m
  0  x   

  ' 1
1cr

q x  
 

 




  

9 10c c  

 

Table 2.3.8 - Notations of  the Deflection Equations for Cantilever Beam 
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2.4 Parametric Study and 2-D Contour  

Two parameters are considered here for parametric study- normalized moment m’ and 

normalize curvature q’. it is obvious that these two parameters mainly affect the 

deflection coefficient derived from Section 2.3. Two sets of parametric studies are 

conducted here to address the effect of moment-curvature models on the load-deflection 

response. One is the normalized curvature distribution along the beam with different m’ 

or q’. Another one is the deflection coefficient distribution along the beam with different 

m’ and q’. 

2.4.1 Normalized Curvature Distribution 

Assume the length of beam is unit length which is equal to one (L=1) and choose the 

three levels of normalized moment m’ equal to 1.2, 1.5 and 1.8 with a constant 

normalized curvature q’ =2 or choose the three levels of normalized curvature q’ equal to 

2, 2.5, 5 with a constant normalized moment m’=2, the normalized curvature distribution 

equations can be obtained by substituting one pair of parameters and unit length of beam 

in the curvature equations calculated in Section 2.3 for different types of beam. The 

derivation of normalized curvature equations with current parameters for three-point 

bending beam is presented here.  

Based on the bilinear moment-curvature models and the derivation of curvature 

distributions discussed early, the curvature distribution along beam for three-point beam 

as re-call here in Eq. (2.4.1.1) and (2.4.1.2) with ξ=L/2m’. 

 
21

crx x





     0 x       (2.4.1.1) 
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 
22

2( ' 1)( )
1

2

q x
x cr

L

  
  

 


 


   

2
Lx       (2.4.1.2) 

The normalized curvature distribution can be obtained by divided cracking curvature φcr 

on both side in Eq. (2.4.1.1) and (2.4.1.2), as shown in below. 

 
21

1

cr

x
x



 
    0 x       (2.4.1.3) 

 
22

2( ' 1)( )
1

2

x q x

Lcr

 

 

 
 


   

2
Lx      (2.4.1.4) 

Substituting the constant normalized moment m’=2, normalized curvature q’=2, 2.5, 5 

and unit length L=1 in Eq. (2.4.1.1) and Eq. (2.4.1.2). The normalized curvature 

distribution equations are shown in Table 2.4.1. 

Table 2.4.1 - Normalized Curvature Equations with Constant m’ for 3PB Beam 

m' ξ q' 
Normalized curvature equation 

φ 21 φ 22 

2 0.25 2 4x 4x 

2 0.25 2.5 4x 6x-0.5 

2 0.25 5 4x 16x-3 

 

Substituting the constant normalized curvature q’=2, normalized moment m’=1.2, 1.5, 

1.8 and unit length L=1 in the Eq. (2.4.1.1) and Eq. (2.4.1.2). The normalized curvature 

distribution equations are shown in Table 2.4.2. 

Table 2.4.2 - Normalized Curvature Equations with Constant q’ for 3PB Beam 

m' ξ q' 
Normalized curvature equation 

φ 21 φ 22 

1.2 0.42 2 2.38x 12.5x-4.25 

1.5 0.33 2 3.03x 5.88x-0.94 

1.8 0.27 2 3.70x 4.35x-0.17 
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Using the same procedure, the normalized curvature distributions along the beam for 

other cases with different pairs of parameters also can be obtained. Figure 2.4.1 shows 

the effects of m’ and q’ on normalized curvature distributions for simply supported beam 

with different loading cases. Figure 2.4.2 shows the effects of m’ and q’ on normalized 

curvature distributions for cantilever beam with different loading cases. It is obvious that 

increasing the normalized moment m’ or normalized curvature q’, increases the curvature 

responses along the beam. Three levels of q’ are 2, 2.5, 5 with a fixed m’=2, which means 

the post-cracked stiffness decreases from 1 to 0.667 to 0.25 with increasing the q’. 

However, the post-cracked stiffness in terms of normalized moment-curvature 

relationship increases from 0.2 to 0.5 to 0.8 with increasing the m’ from 1.2 to 1.5 to 1.8 

and the fixed q’=0. 
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  (a) 
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  (c) 

 

(d) 

 
Figure 2.4.1 - Effects of m’and q’ on Normalized Curvature Distribution for Simply 

Supported Beam; (a) 3PB; (b) 4PB; (c) Uniform Loading; (d) Moment at the Middle 
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  (c) 

 

 

 

Figure 2.4.2 - Effects of m’and q’ on Normalized Curvature Distribution for Cantilever 

Beam; (a) Uniform Loading; (b) Concentrated Load at Free End; (c) Concentrated Load 

with Distance S from Fixed End 

2.4.2 Deflection Coefficient Distribution 

Assume the length of beam is unit length which is equal to one (L=1) and choose the 

three levels of normalized moment m’ equal to 1.2, 1.5 and 1.8 with a constant 

normalized curvature q’ =2 or choose the three levels of normalized curvature q’ equal to 

2, 2.5, 5 with a constant normalized moment m’=2, the deflection coefficient equations 

can be obtained by substituting one pair of parameters and unit length of beam in the 

equations calculated in Section 2.3 for different types of beam. The derivation of 

deflection coefficient equations for three-point bending beam is presented here.  

Re-call the deflection coefficient equations of three-point bending: 
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3
*
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2

Lx      (2.4.1.7) 

Using the same procedure with the derivation of normalized curvature distribution 

discussed in Section 2.4.1. Table 2.4.3 and 2.4.4 shows the deflection coefficient 

equations after substituting the parameters. Figure 2.4.3 shows the effects of m’ and q’ on 

deflection distributions for simply supported beam with different loading cases. Figure 

2.4.4 shows the effects of m’ and q’ on deflection distribution for cantilever beam with 

different loading cases. 

Table 2.4.3 - Deflection Coefficient Equations with Constant m’ for 3PB Beam 

m' ξ q' 
Deflection coefficient equation 

δ21 δ22 

2 0.25 2 30.67 0.5x x  30.67 0.5x x  

2 0.25 2.5 30.67 0.56x x  3 20.25 0.5 0.005x x x    

2 0.25 5 30.67 0.88x x  3 21.33 0.75 0.25 0.016x x x    

 

Table 2.4.4 - Deflection Coefficient Equations with Constant q’ for 3PB Beam 

m' ξ q' 
Deflection coefficient equation 

δ21 δ22 

1.2 0.42 2 30.4 0.33x x  3 22 2 0.5 0.116x x x    

1.5 0.33 2 30.5 0.417x x  3 20.5 0.25 0.018x x x    

1.8 0.27 2 30.6 0.472x x  3 20.75 0.125 0.437 0.003x x x    
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   (c) 

 

 

(d) 

 

 

Figure 2.4.3 - Effects of m’and q’ on Deflection Distribution for Simply Supported 

Beam; (a) 3PB; (b) 4PB; (c) Uniform Loading; (d) Moment at the Middle 
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   (c) 

 

 

 

Figure 2.4.4 - Effects of m’and q’ on Deflection Distribution for Cantilever Beam; (a) 

Uniform Loading; (b) Concentrated Load at Free End; (c) Concentrated Load with 

Distance S from Fixed End 

2.4.3 2-D Contour  

The deflection distributions for different loading types presented in Section 2.4.2 shows 

the deflection with the any cross-section of the beam for a certain magnitude of loading. 

In this section, 2-D deflection contours are shown in here for demonstrating the tendency 

of deflection distribution along the beam with increasing the magnitude of load from zero 

to the final stage. Implement the simplified bilinear moment-curvature relationship 

(Section 2.1) as the input, deflection can be calculated by using the equation derived in 

Section 2.3. In this procedure, the cracking moment and cracking curvature firstly to be 

calculated and then behaviour (pre-cracked or post-creaked) of any cross-section of beam 

under a certain magnitude of load can be verified. 2-D contours of three-point bending 
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and four-point bending beam are shown here. The assumed dimension of specimen and 

the material properties used in here is list in Table 2.4.5. Figure 2.4.5 and Figure 2.4.6 

shows the 2-D deflection contours respect with the locations along the beam and applied 

load under the three and four-point bending tests, respectively. The parameter η=EIcr/EIg. 

Instead of the continuous variables, the levels of loading and the positions along the beam 

as the variables are evaluated the response of deflection as shown in Figure 2.4.7 and 

2.4.8 based on the dimensions and parameters of Table 2.4.5. Note that the transition 

point from pre-cracked behavior to post- cracked behavior can be easily observed from 

Figure 2.4.7(a) and Figure 2.4.8(a). In the certain cross-section, the deflection increases 

with increasing the load and the deflection increases rapidly after first cracking point. It 

means the post-stiffness decreases after first cracking point. 

 

Table 2.4.5- Parameters of 2-D Deflection Distribution 

Loading 

type 

Span 

(L),mm 

Width 

(b),mm 

Height 

(d),mm 
εcr, µstr E, Mpa η 

3PB 300 100 100 244 20400 0.01 

4PB 750 100 100 244 20400 0.01 
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Figure 2.4.5 - 2-D Deflection Distribution of Three-Point Bending 



Figure 2.4.6 - 2-D Deflection Distribution of Four-Point Bending 
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   (a) 

 

(b) 

 

 

Figure 2.4.7 - Deflection Distributions of Three- Point Bending; (a) Different Locations 

along the Beam; (b) Different Loading Levels. 

   (a) 

 

(b) 

 

 

Figure 2.4.8 - Deflection Distributions of Four- Point Bending; (a) Different Locations 

along the Beam; (b) Different Loading Levels. 
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2.5 Experimental Verification  

2.5.1 Algorithm to Predict Load Deflection Response 

For the given dimensions of specimen including span, height and width and a set of 

material parameters E, εcr and . The cracking moment and curvature Mcr, ϕcr are 

calculated from Eqs. (2.1.3) and (2.1.4), respectively. Deflection of beams with different 

regions is calculated by multiplying ϕcrL
2 

with simplified deflection coefficient equations 

specified in Table 2.3.1 to 2.3.8The procedure of prediction of load deflection response 

follows the approach of curvature control, which means increasing normalized curvature 

q’ from 0 to an assumed value which is corresponding to maximum load with a constant 

interval. Corresponding curvature ϕ’ is calculated from Eq. (2.1.7) and relative moment 

M’ can be obtained from the relationship of moment-curvature either in pre-cracking or 

post cracking stage. The load P’ can be calculated from moment M’ once the loading type 

known. Predicting the mid-span deflection by substituting x=2/L in deflection coefficient 

equations, 
*
elastic is applied for prediction when ' 1q  and only *

22  is used when ' 1q  

since the point of x=2/L is post-cracking region. Figure 2.5.1 shows the algorithm of 

predicting load-deflection response. 
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Figure 2.5.1 - Flow Chart of Prediction of Load-Deflection Response 

2.5.2 Data Set 1 

Experimental results of flexural tests of laminated Textile Reinforced Concrete (TRC) 

composites with alkali resistant (AR) glass, carbon, aramid, polypropylene textile fabrics, 

and a hybrid reinforcing system with aramid and polypropylene are presented by 

Mobasher, Barzin, et al.[23]. Three sets of experimental data from three-point bending 

tests are selected to simulate by implementing the proposed algorithm. The span is 220 
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mm with the rectangular cross section of width of 30 mm and height of 9 mm. Two of 

them are plain single fiber type composites made with both high and low modulus textiles 

and one of them is hybrid composite with these two type of textile. Aramid (A) were used 

as the high strength system and polypropylene (PP) were selected as low strength system 

as shown in Table 2.5.1.  The volume fractions of reinforcement for these three sets of 

data are shown in Table 2.5.2. The normalized moment-curvature relationships and load-

deflection responses of the three series were simulated by the algorithm proposed as 

shown in Figure 2.5.2 and Figure 2.5.3, respectively. The model parameters were 

obtained and summarized in Table 2.5.3. 

Table 2.5.1 - Properties of Yarns Made up the Fabrics for Data Set 1 

Yarn 

type 
Yarn nature 

Strength 

(MPa) 

Young’s 

Modulus 

(MPa) 

Filament 

size 

(mm) 

Bundle 

diameter 

(mm) 

PP Bundle 500 6900 0.040 0.40 

Aramid Bundle 2370 55000 0.012 0.38 

 

Table 2.5.2- Volume Fraction (Vf) of Reinforcement for Data Set 1 

Specimen Code 
 

Vf, % PP A 

100A 
Average 1.29   

Std. 

Dev. 
0.06   

100P 
Average 3.02   

Std. 

Dev. 
0.09   

25A75P 
Average 2.58 0.34 2.24 

Std. 

Dev. 
0.07 0.01 0.06 

 

 

Table 2.5.3 (a) - Simulated Parameters of 100A 



 67  

  

ID 
εcr, E 

η m q 
Mcr, Φcr, 

EI,10
7
 EIcr,10

6
 

µstr GPa KN-mm 10
-5

/mm 

100A-1 130 22 0.09 13.3 135 1158 2.89 4.0 3.7 

100A-2 130 22 0.08 14.5 160 1158 2.89 4.0 3.4 

100A-3 130 22 0.11 18.5 160 1158 2.89 4.0 4.4 

100A-4 130 22 0.11 18.5 160 1158 2.89 4.0 4.4 

100A-5 130 22 0.12 20.2 168 1158 2.89 4.0 4.6 

Avg. 130 22 0.10 17.0 157 1158 2.89 4.0 4.1 

STD.DV 0.0 0.0 0.01 2.93 12.56 0.00 0.00 0.0 5.2 

 

Table 2.5.3(b) - Simulated Parameters of 100P 

ID 
εcr, E 

η m q 
Mcr, Φcr, 

EI,10
7
 EIcr,10

5
 

µstr GPa KN-mm 10
-5

/mm 

100P-1 130 22 0.01 3.84 300 1158 2.89 4.0 3.8 

100P-2 130 22 0.015 5.19 280 1158 2.89 4.0 6.0 

100P-3 130 22 0.01 3.79 280 1158 2.89 4.0 4.0 

100P-4 130 22 0.013 4.63 280 1158 2.89 4.0 5.2 

100P-5 130 22 0.008 3.39 300 1158 2.89 4.1 3.2 

100P-6 130 22 0.011 4.84 350 1158 2.89 4.1 4.4 

Avg. 130 22 0.01 4.28 298 1158 2.89 4.0 4.4 

STD.DV 0.0 0.0 0.00 0.70 27.14 0.00 0.00 0.0 1.0 

 

Table 2.5.3(c) - Simulated Parameters of 25A75P 

ID 
εcr, E 

η m q 
Mcr, Φcr, 

EI,10
7
 EIcr,10

6
 

µstr GPa KN-mm 10
-5

/mm 

25A75P-1 130 22 0.05 11.5 230 1158 2.89 4.0 1.84 

25A75P-2 130 22 0.05 11.5 230 1158 2.89 4.0 1.84 

25A75P-3 130 22 0.02 6.98 240 1158 2.89 4.0 1.00 

25A75P-4 130 22 0.09 15.0 160 1158 2.89 4.0 3.53 

25A75P-5 130 22 0.04 8.10 170 1158 2.89 4.0 1.68 

25A75P-6 130 22 0.06 9.74 160 1158 2.89 4.0 2.21 

AVE 130 22 0.05 10.48 198.33 1158 2.89 4.0 2.02 

STD.DV 0.0 0.0 0.02 2.87 38.69 0.00 0.00 0.0 8.39 

 

Figure 2.5.2 shows the normalized moment-curvature relationships for the three sets of 

data. Note that composite made with high strength Aramid has highest ultimate 
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normalized moment m = 17.0, however the composite made with polypropylene has 

lowest ultimate normalized moment m=4.18. The ultimate normalized moment of hybrid 

composite is close to the average ultimate normalized moments of the two components. 

Figure 2.5.3 presented the simulated load-deflection responses for the three sets of 

experimental data. Comparing the stiffness ratio η in in terms of moment-curvature 

relationship, η of 100P, 25A75P, 100A are increases from 0.011 to 0.05 to 0.102. With 

the similar pre-cracked behavior, it is obvious that the composite made with Aramid has 

highest post-cracked stiffness and the combination of low stiffness fibers in the presence 

of high stiffness fibers can improve the post-cracked stuffiness.  
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Figure 2.5.2 - Normalized Moment-Curvature Relationships; (a) 100A; (b) 100P; (c) 

25A75P 
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Figure 2.5.3 - Load-Deflection Responses ; (a) 100A; (b) 100P; (c) 25A75P 

2.5.3 Data Set 2  

Experimental data of six full scales FRC beams were tested under three point loading 

system are selected to demonstrate the algorithm for the load-deflection response [24]. 

The experimental program studied the effects of two variables: fiber dosage, dimension 

of beam. Beams were made with different amounts of steel fibres.50 kg/m
3 

and 75 kg/m
3
. 

For each fibre content, three beams with different depths were cast: 500 mm (specimen 

ID: H500), 1000 mm (H1000) and 1500 mm (H1500). All beams had the same width of 

250 mm and distance between bottom fibre and rebar centroid of 60 mm. Table 4 

summarizes all sample geometry details. 

The load-deflection responses of the 6 beam series was simulated by the algorithm 

proposed. The parameters used in current model is Young’s modulus E, first cracking 

tensile strain εcr and ratio of EIcr to EIg,, . Through adjusting these parameters between 

in a reasonable limitation, the experimental data were fitted as shown in Figure 2.5.5. The 

parameters used for current simulation are shown in Table 2.5.5. Figure 2.5.4 shows the 
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normalized moment-curvature diagram as the input for the simulated data for these 6 

beams. Parameters m and q represents the normalized moment and normalized curvature 

of the ultimate stage respect to the experimental data. 

Table 2.5.4 - Geometry Characteristics of Specimens  

Beams H500 H1000 H1500 

Height (mm) 500 1000 1500 

Effective depth (mm) 440 940 1440 

Total length (mm) 3000 5900 9000 

Span(mm) 2640 5640 8640 

Width(mm) 250 250 250 

Bottom to rebar centroid distance (mm) 60 60 60 

Reinforcement longitudinal bars 8-14 8-20 8-24 

 

Table 2.5.5 - Steel Fiber Reinforced Concrete Parameters for Current Model 

Beam Type 
Fiber Content 

 kg/m
3
 

εcr, E 
η m q EI EIcr 

ustr GPa 

H500 
50 146 30.8 0.24 6.04 22 8.02E+13 1.93E+13 

75 120 31 0.26 9.32 33 8.07E+13 2.1E+13 

H1000 
50 120 30 0.22 5.18 20 6.25E+14 1.38E+14 

75 120 31 0.28 6.88 22 6.46E+14 1.81E+14 

H1500 
50 120 29 0.24 6.04 22 2.04E+15 4.89E+14 

75 120 30 0.28 7.16 23 2.11E+15 5.91E+14 

 

 



 72  

  

  

 

 

Figure 2.5.4 - Normalized Moment-Curvature Diagrams of Simulated Data; (a) H500; (b) 

H1000; (c) H1500 

 

Figure 2.5.5 shows the simulation of the six beams representing the effect of fiber content 

and dimension of beam. The experimental response of each beam is compared to the 

simulation curve using the models parameters presented in Table 2.5.2. Note that the 

simulation of flexural load-deflection responses for H500 beams is generally accurate as 
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shown in Figure 2.5.3a. However, it is clearly that closed form deflection equation model 

slightly overestimates the experimental data for the initial linear portion of curve when 

the height of beam increased (Figure 2.5.3b and Figure 2.5.3c) It reveals the prediction 

slightly underpredicts the real deformation at portion of the beginning after the linear part 

but overestimates on the last portion of curve. This is attributed to the derivation of 

closed form deflection equations based on the simplified bilinear moment-curvature 

relationship which lead to the prediction of real deformation is biased and not perfectly 

matched. 
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Figure 2.5.5 - Load Deflection Responses of FRC Beams at Two Levels of Fiber 

Contents (50 kg/m3 and 75 kg/m3) 

 

2.5.4 Data Set 3  

A total of eight rectangular reinforced concrete beams were investigated by Qu et al [25], 

named through B1 to B8. One reinforced with steel bars (B1), one reinforced with GFRP 

bars (B2), and six beams reinforced with a combination of steel and GFRP bars. The 

beams with rectangular cross section of 180 mm wide and 250 mm height and a span of 
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1.8m under a four-point bending test. Two steel bars of 10-mm diameter were used as 

reinforcement at the compression side. Steel stirrups with 10-mm diameter and 100-mm 

spacing were used as shear reinforcement. The details of the reinforced beam are shown 

in Table 2.5.6, where A=As+Af is the total area of reinforcement. 

Table 2.5.6 – Details of Test Beam for Data Set 3 

Beam ID As (mm
2
) Af (mm

2
) A (mm

2
) ρeff (%) 

B1 452.16 - 452.16 1.14 

B2 - 506.45 506.45 0.29 

B3 226.08 253.23 479.31 0.71 

B4 200.96 396.91 597.87 0.71 

B5 401.92 141.69 543.61 1.08 

B6 401.92 253.23 655.15 1.16 

B7 113.04 141.69 254.73 0.35 

B8 1205.76 396.91 1602.67 3.49 

 

Table 2.5.7 - Simulated Parameters of Current Model for Data Set 3 

ID 
εcr, 

10
-6

 

E, 

GPa 
η m q 

Mcr, 

KN-mm 

Φcr, 

1/mm 
EI EIcr 

B1 130 25 0.21 5.41 22 6094 1.04E-006 5.86E+12 1.23E+12 

B2 135 25 0.08 7.16 78 6328 1.08E-006 5.86E+12 4.69E+11 

B3 130 25 0.21 6.04 25 6094 1.04E-006 5.86E+12 1.23E+12 

B4 130 25 0.21 3.73 14 6094 1.04E-006 5.86E+12 1.23E+12 

B5 130 25 0.28 5.76 18 6094 1.04E-006 5.86E+12 1.64E+12 

B6 130 25 0.31 6.58 19 6094 1.04E-006 5.86E+12 1.82E+12 

B7 140 25.5 0.033 3.94 90 6694 1.12E-006 5.98E+12 1.97E+11 

B8 130 25 0.55 10.35 18 6094 1.04E-006 5.86E+12 3.22E+12 

 

The proposed algorithm is implemented to predict the flexural responses of these tests. 

Figure 2.5.6 shows the normalized moment-curvature relationships of beam based on the 

simulated parameters (Table 2.5.7). Figure 2.5.6(a) shows the comparison of B1 and B2 

and note that the post cracked stiffness in terms of moment- curvature response of B1 is 
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higher than B2 since the B1 is reinforced with steel bar and has a higher effective 

reinforcement ratio comparing with B2.  The difference between B3 and B6 is that the B6 

has more reinforced steel bar than that of B3. It is obvious that the post stiffness of B6 is 

higher than that of B3.  The similar conclusions could be reached for comparing B4 with 

B8 and B5 with B7 (Figure 2.5.6(c), Figure 2.5.6(d)). The effect of reinforcement type 

and combination on the post creaked behavior also can be directly analysed by comparing 

the stuffiness ratio η listed in Table 2.5.7. Figure 2.5.7 shows the predictions of load-

deflection responses and it is clearly reveals that the proposed closed-form deflection 

equations can accurately simulate the flexural behavior of pre-creaked and post creaked 

stage. Use of steel reinforcement in combination with GFRP reinforcement enhances the 

flexural stiffness after the cracking.  
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Figure 2.5.6 - Normalized Moment-Curvature Relationships;(a) B1,B2; (b) B3, B6; (c) 

B4, B8; (d)B5, B7 
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Figure 2.6.7 - Load-Deflection Responses ;(a) B1,B2; (b) B3, B6; (c) B4, B8; (d)B5, B7 

2.5.5 Data Set 4  

A total of nine rectangular RC beam with the dimension of 200 × 600 ×4000 mm (b×d×L) 

were tested to study and compare the effect of hybrid internal reinforcements and shear 

reinforcement rebar by four-point bending tests, as shown in Figure 2.5.8. The details of 

the reinforcement with each beam are shown in Table 2.5.8. 

 

Figure 2.5.8 - Set up of four-point bending test (Unit: mm) 
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Table 2.5.8 - Details of Reinforced Beam 

Beam 

Fiber 

volume 

fraction 

(%) 

Longitudinal reinforcement 
Shear 

reinforcement 

Ratio 

(%) 
Tension 

Top 

bar 

Ratio 

(%) 
Rebars 

V1 0 0.262 4φ10 2φ6.3 0.104 4φ6.3 

V2 0 0.262 4φ10 2φ6.3 0 0 

V3 0.75 0.052 2φ6.3 2φ6.3 0.052 2φ6.3 

V4 0.75 0.052 2φ6.3 2φ6.3 0 0 

V5 1 0.052 2φ6.3 2φ6.3 0 0 

V6 1.25 0.052 2φ6.3 2φ6.3 0 0 

V7 0.5 0.131 2φ10 2φ6.3 0 0 

V8 0.75 0.131 2φ10 2φ6.3 0 0 

V9 1.25 0.131 2φ10 2φ6.3 0 0 

 

Implementing the procedure to predict the applied load and deflection of mid-span of 

beam, the parameters used in the simulation are presented in Table 2.5.9. Figure 2.4.9 to 

Figure 2.4.11 shows the normalized moment-curvature relationships and load-deflection 

responses with simulated parameters. Since the cement based mixture are same with 

these nine beam, the simulated first cracking strain and Young’s modules just have 

slightly different with beam V4 and V9 compared with other beam which have the εcr is 

160 µstr and E is 28 GPa. 

From a conventional reinforcement point of view the effect of compression reinforcement 

as well as shear reinforcement can’t be ignored.  Figure 2.5.9 shows the responses of the 

beam V1 compared to beam V2.  The difference between these two beams is that beam 

V1 has the additional shear reinforcement while the V2 only have the longitudinal 

reinforcement. Note that the combined effect of transverse and compression 

reinforcement is shown in ability of the rebar to hold in place and avoid the premature 

failure of the shear failure of the beam. 
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Note that stiffness ratio η of beam V2 is 0.07 which is smaller than that of beam V1, 

which means the post crack stiffness in the sample with transverse reinforcement is much 

higher than the sample without transverse reinforcement since the pre-cracking stiffness 

is same which is decided by the mixture. It is obvious that the yield load of beam V1 is 

189 KN and normalized yield moment is 2.56, which are much higher than that of beam 

V2.  

Table 2.5.9 - Simulated Parameters of Current Model for Data Set 4 

ID 
εcr,  

10
-6

 

E,  

GPa 
η m q 

Mcr, 

KN-mm 

Φcr,  

10
-7

/mm 
EI,10

14
 EIcr10

13
 

V1 160 28 0.13 2.56 100 53760 5.33 1.01 1.31 

V2 160 28 0.07 1.91 92 53760 5.33 1.01 0.71 

V3 160 28 0.1 1.70 8 53760 5.33 1.01 1.01 

V4 155 28 0.065 1.36 6.5 52080 5.17 1.01 0.66 

V6 160 29 0.16 1.96 7.0 55680 5.33 1.04 1.67 

V7 160 28 0.09 1.58 7.5 53760 5.33 1.01 0.91 

V8 160 28 0.1 2.00 11.0 53760 5.33 1.01 1.01 

V9 165 29 0.13 2.23 10.5 57420 5.50 1.04 0.14 

 

The Figure 2.5.10 shows the responses of the beam V2, V3, V4 and V6. The fiber content 

of beam V3 is 0.75% which is same as the beam V4, however, the fiber content of beam 

V6 is 1.25%. The beam V3 has both longitudinal reinforcement and shear reinforcement 

while the beam V4 and V6 only has the shear reinforcement. Comparing the load-

deflection responses and the simulated parameters of beam V3 and V4, the post-creaked 

stiffness of beam V3 is much higher than the beam V4 since the effect of transverse 

reinforcement. The post creaked stiffness of beam V6 is also higher than the beam V3 

since the effect of fiber content. Obviously, the yield load of beam V4 is lower than that 

of beam V3 and V6 and the yield load of beam V6 is much higher than that of V3 and V4. 
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Figure 2.5.11 shows the comparison between the samples V7, V8, and V9.  Note that the 

difference between the three mixtures is expressed in the volume fraction of the fibers 

increasing from 0.5 to 0.75 and 1.25.  Also note that the post cracking stiffness in terms 

of simulated moment-curvature diagram increases from 9.07×10
12 

to 1.01×10
13

 and 

1.36×10
13

. 

 

  

Figure 2.5.9 - (a) Load-Deflection Response of BeamsV1, V2; (b) Simulated Normalized 

Moment-Curvature Relationship of Beams V1, V2 
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Figure 2.5.10 - (a) Load-Deflection Response of Beams V2, V3, V4, V6; (b) Simulated 

Normalized Moment-Curvature Relationship of Beams V2, V3, V4, V6 

  

 

Figure 2.5.11 - (a) Load-deflection response of beams V2, V7, V8, V9; (b) Simulated 

normalized moment-curvature relationship of beams V2, V7, V8, V9 
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Comparison of the predictions with previous model 

 In order to verify and evaluate the accuracy of current model, the comparison with 

previous model is conducted here. Using the algorithm of strain-hardening material 

model which is discussed in Section 1.3, the predictions of load-deflection response and 

moment-curvature relationship were generated for this set of data and the simulated 

material parameters of previous model are shown in Table 2.5.10. Figure 2.5.12 to Figure 

2.5.15 shows the comparisons of current model with previous model. Note that the 

parameter of first creaking strain εcr used in current model is 160 μstr and the εcr of 

previous model is in the range of 125 to 150. The Young’s modulus of current model is 

slightly lower than that of existed model. Since the current model is a simplified model 

based on the strain-hardening model (previous model), the predictions of load-deflection 

and moment-curvature responses with the both models are similar.  

Table 2.5.10 - Parameters with Previous Model for Data Set 4 

Beam 
Vf 

(%) 

Concrete Steel 

μ 
E 

(GPa) 

εcr 

(με) 
βtu ω λcu γ 

ρ 

(%) 

Es 

(GPa) 

fsy 

(MPa) 

V1 0 0.10  150     0.262   

V2 0 0.40  150     0.262   

V3 0.75 0.65  125     0.052   

V4 0.75 0.45  125     0.052   

V6 1.25 0.60 30 125 50 5 12 0.9 0.052 210 500 

V7 0.5 0.35  150     0.131   

V8 0.75 0.45  150     0.131   

V9 1.25 0.65  150     0.131   
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Figure 2.5.12 - Comparison of Current Model with Previous Model for Beam V1 

 

 

Figure 2.5.13 - Comparison of Current Model with Previous Model for Beam V3 
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Figure 2.5.14 - Comparison of Current Model with Previous Model for Beam V7 

 

 

Figure 2.5.15 - Comparison of Current Model with Previous Model for Beam V9 

 

2.5.6 Data Set 5  

Full scale beam tests from the Brite/Euram project BRPR-CT98-0813 “Test and design 

methods for steel fibre reinforced concrete” by Dupont were used for model 
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verification[26] . Table 2.5.11 provides the details of the 6 beam series, each with 2 

replicates, of two grades of normal (NSC), and high strength concrete (HSC). Normal 

strength concrete used fiber type RC 65/60 BN at 25 and 50 kg/m3 while HSC used fiber 

type RC 80/60 BP at 60 kg/m3. All beams had a cross section of 0.20 x 0.20 m, with two 

different span lengths of 1.0 and 2.0 m and tested under four point bending set up with a 

constant spacing between the two point loads at 0.2 m. These six beams labeled as B7 – 

B12 which are contained two rebars of size 8, 12 and 16 mm. Steel parameters were 

Young modulus of 200 GPa, yield strength of 560 MPa, and a concrete cover of 15 mm. 

Table 2.5.11 - Details of Beam for Data Set 5 

Beam 
Mix 

Fiber content Span 
Rebar 

ID kg/m
3
 m 

B7 NSC 25 1 2-8 

B8 NSC 25 2 2-8 

B9 NSC 50 1 2- 

B10 NSC 50 2 2- 

B11 HSC 60 1 2- 

B12 HSC 60 2 2- 

 

The normalized moment-curvature relationships and load-deflection responses of the 6 

beam series were simulated by the algorithm proposed as shown in Figure 2.5.16 and 

Figure 2.5.17, respectively. The model parameters were obtained and summarized in 

Table 2.5.12. Note that the differences between the beam B7, B9 and B11 are expressed 

in the fiber content increasing from 25 kg/m
3
 to 50 kg/m

3
 and 60 kg/m

3 
and with three 

levels of rebars of size 8, 12 and 16 mm. Also it is presented that the post cracking 

stiffness EIcr in terms of simulated moment-curvature diagram increases from 3.72×10
11 

to 7.6×10
11

 and 1.09×10
12

. Comparing the moment-curvature relationship of beam B8, 
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B10 and B12, the same conclusion can be made that the increasing the fiber content and 

reinforced ratio, increases the post-creaked stuffiness. It is obvious that the beam with 

larger span (B8, B10, 12) has slightly lower yield normalized moment than the beam with 

smaller span but same reinforced mixtures (B7, B9, B11) since the effect of size. 

Table 2.5.12 - Simulated Parameters of Current Model for Data Set 5 

ID 
εcr, 

10
-6

 

E, 

GPa 
η m q 

Mcr, 

KN-mm 

Φcr, 

10
-6

/mm 
EI,10

12
 EIcr,10

11
 

B7 130 31 0.09 2.53 18 5373 1.3 4.13 3.72 

B8 130 31 0.07 2.33 20 5373 1.3 4.13 2.89 

B9 130 30 0.19 4.99 22 5200 1.3 4.00 7.60 

B10 130 30 0.21 4.88 19.5 5200 1.3 4.00 8.40 

B11 160 39 0.21 6.04 25 8320 1.6 5.20 10.9 

B12 160 39 0.28 5.76 18 8320 1.6 5.20 14.6 

 

  

 



 88  

  

 

Figure 2.5.16 - Normalized Moment-Curvature Relationship of HRC Beams; (a) B7, B8; 

(b) B9, B10; (c) B11, B12 
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Figure 2.5.17 - Load-Deflection Response of HRC Beams at Three Levels of Fiber 

Contents; (a) 25 kg/m3; (b) 50 kg/ m3; (60) kg/ m3 

Comparison of the predictions with previous model 

 Using the algorithm of strain-hardening material model which is discussed in Section 1.3, 

the predictions of load-deflection response and moment-curvature relationship were 

generated for this set of data and the simulated material parameters of previous model are 

shown in Table 2.5.13. Figure 2.5.17 to Figure 2.5.19 shows the comparisons of current 
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model with previous model with these six beams. Note that the parameter of first 

creaking strain εcr used in current model is 130 μstr for normal strength concrete (NSC) 

and 160 for the high strength concrete (HSC), which are very close to  the εcr of previous 

model is in the range of 110to 160. The Young’s modulus of current model is slightly 

higher than that of existed model. It is obvious that the predictions of load-deflection and 

responses with the both models are similar. Figure 2.5.17 shows the normalized moment-

curvature relationships generated from current model has lower yield normalized moment 

than that of previous model for beam B7 and B8,  However the predictions of normalized 

moment-curvature relationships of beam B9, B10, B11 and B12 generated from this two 

models are similar as expected. 

Table 2.5.13 - Parameters with Previous Model for Data Set 5 

Beam 

ID 

Vf  

(kg/m
3
) 

Concrete Steel 

μ 
E 

(GPa) 

εcr 

(με) 
βtu ω λcu γ 

ρ 

(%) 

Es 

(GPa) 

fsy 

(MPa) 

B7 25 
0.34 29 110 227 12 32 0.7 0.251 

200 560 

B8 25 

B9 50 
0.38 29 130 192 10 27 0.7 0.566 

B10 50 

B11 60 
0.56 39 160 156 8 22 1.0 1.000 

B12 60 
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Figure 2.5.17 - Comparison of Current Model with Previous Model; (a) B7; (b) B8 
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Figure 2.5.18 - Comparison of Current Model with Previous Model; (a) B9; (b) B10 



 93  

  

 

 

Figure 2.5.19 - Comparison of Current Model with Previous Model; (a) B11; (b) B12 
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3. -  ELASTIC SOLUTIONS AND YIELD LINE THEORY FOR STRAIN-

HARDENING STRUCTURAL PANNELS 

3.1 Elastic Solution of Plates 

3.1.1 Governing Equation for Deflection of Plates    

The governing differential equation for the deflections for thin plate bending analysis 

based on Kirchhooff’s assumptions as shown in Eq. (3.1.1). This equation was obtained 

by Lagrange in 1811.  

 

4 4 4

4 2 2 4
2

w w w p

x x y y D

  
  

       (3.1.1) 

Wherein, p is load and D is the flexural rigidity of plate, as shown in Eq. (3.1.2). 

 

3

212(1 )

Et
D




        (3.1.2) 

Equation (3.1.1) may be rewritten, as follows: 

  2 2 4 p
w w

D
         (3.1.3) 

Where 

  
4 4 4

4

4 2 2 4
2

x x y y

  
   

  
     (3.1.4) 

Once a deflection function w(x, y) has been determined from Eq. (3.1.1), the stress 

resultants and the stresses can be calculated based on the elastic theory of plate. But we 

will not discuss these here. 
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3.1.2  Boundary Conditions 

Boundary conditions are the known conditions on the surfaces of the plate which must be 

prescribed in advance in order to obtain the solution of Eq. (3.1.1) corresponding to a 

particular problem. Such conditions include the load p(x, y) on the upper and lower faces 

of the plate; however, the load has been taken into account in the formulation of the 

general problem of bending of plates and it enters in the right-hand side of Eq. (3.1.1). It 

remains to clarify the conditions on the cylindrical surface, i.e., at the edges of the plate, 

depending on the fastening or supporting conditions. For a plate, the solution of Eq. 

(3.1.1) requires that two boundary conditions be satisfied at each edge. These may be a 

given deflection and slope, or force and moment, or some combination of these. For the 

sake of simplicity, let us list the satisfactions of the clamed, simply supported and free 

edges of a flat plate. 

1) Clamped, or built-in, or fixed edge y=0 

At the clamped edge, the deflection and slop are zero, i.e, 

 
0

0
y

w


    and  
0

0
y

w

y





 


      (3.1.5) 

2) Simply supported edge x=a 

At these edges the deflection and bending moment Mx are both zero, i.e., 

0
x a

w


    and  
2

2
0

x a

w

x






      (3.1.6) 

3)  Free edge y=b 
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Suppose that the edge y= b is perfectly free. Since no stresses act over this edge, then it is 

reasonable to equate all the stress resultants and stress couples occurring at points of this 

edge to zero, i.e., 

0y y b
M


 , 0y y b

Q


 , 0yx y b
M


    (3.1.7) 

3.2   Elastic Solutions of Various Types of Panels  

3.2.1 Case 1 – Round Panel 

When circular plates are analyzed, it is convenient to express the governing differential 

equation (3.1.1) in polar coordinates as: 

2 2 2 2
4

2 2 2 2 2 2

1 1 1 1w w w p
w

r r r r r r r r D 

       
        

            (3.2.1) 

If only consider the axisymmetric case. Eq. (3.2.1) can be simplified as: 

2 2
4

2 2

1 1w w p
w

r r r r r r D

     
      

         (3.2.2) 

The solution of Eq. (3.2.2) with the loading 0p p  (constant) is: 

4
2 2 0

1 2 3 4ln ln
64

p r
w C r C r r C r C

D
    

        (3.2.3) 

Where, C1, C2, C3, C4 are constants of integration and can be obtained from the boundary 

conditions. 

A radius of R and the thickness of t are considered here with a round panel subjected with 

a concentrated center force P with two boundary conditions which are- 

i) Simply supported edge (Case 1.1) 

ii) Clamped edge (Case 1.2) 
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Case study 1.1 Round panel subjected with concentrated load at center and simply 

supported edge 

The round panel subjected with the concentrated load at center is shown in Figure 3.2.1. 

The elastic solution of this case can be considered as two parts: a) solution of the round 

panel subjected with concentrated load at center and clamed edges; b) solution of the 

round panel subjected with the edges moment. 

 

Figure 3.2.1 - Round Panel Subjected with Concentrated Load at Center and Simply 

Supported Edge 

The procedure to get the deflection of round panel is to get the constants in the Eq. (3.2.3) 

by applying the boundary conditions. The solution for the solution of part a) can be 

obtained as: 

 

2 2 22 ln
16

P r
w r R r

D R

 
   

         (3.2.4) 

The solution of part b) can be obtained and shown in below: 

 
   

2 2

2 1 2 1

o oM r M R
w

v D v D
  

 
    (3.2.5) 
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Wherein Mo is the applied moment in the edge of round panel and Mo=P/4π 

The solution for the Case 1.1 is the summation of the Eq. (3.2.4) and Eq.(3.2.5), and the 

deflection as show in Eq. (3.2.6) 

  2 2 23
2 ln

16 1

P r v
w r R r

D R v

 
   

 
   (3.2.6) 

The maximum deflection wmax  is calculated by substituting the r=0 and the expression of 

maximum deflection is presented in Eq (3.2.7). 

 
2

max

3

16 1

PR v
w

D v

 
  

 
  (3.2.7) 

 

Case study 1.2 simply Clamped edge panel subjected with concentrated load at 

center 

A radius of R and the thickness of t is considered here with a clamped edge round panel 

subjected with a concentrated center force P, as shown in Figure 3.2.2. The elastic 

solution of this case can be calculated by substituting the p= -P/2πr into the Eq. (3.2.2) 

and solve the differential equation as: 

 
2

2 2 1
2 3ln ln

8 4

C rP
w r r r C r C

r
       (3.2.8) 

Imposing the boundary conditions: 

At 0,r   0w  , so we must have C2=0; 

At ,r R   10 1 2lnR
4

dw P
C

dr D
    ; 

At ,r R  
2

30
16

PR
w C

D
   ; 
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Substituting the C1, C2 and C3 to the Eq. (3.2.8) the solution for the solution of part a) can 

be obtained as: 

 2 2 22 ln
16

P r
w r R r

D R

 
   

 
 (3.2.9) 

The maximum deflection wmax  is calculated by substituting the r=0 and the expression of 

maximum deflection is presented in Eq. (3.2.10). 

 
2

max
16

PR
w

D
    (3.2.10) 

 

 

Figure 3.2.2 - Clamped Edge Round Panel Subjected with Concentrated Load at center 

3.2.2 Case 2 – Rectangular Panel  

Levy developed a method for solving rectangular plate bending problem with only one 

pair of edges (opposite edges) to be simply supported while the other pair can have any 

type of boundary conditions using single Fourier series [27]. It is obvious that the Levy 

solution should satisfy not only the governing differential equation as discussed in 

Section 1 but also the boundary conditions. The solution for governing differential 
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equation can be obtained in two parts as the homogeneous part (wo) and the particular 

integral (w1). The total solution will be the sum of these two solutions which can be 

written as: 

 
0 1w w w      (3.2.11) 

The homogeneous solution should satisfy the differential equation 

 2 2

0 0w                                                    (3.2.12) 

Let us consider a rectangular plate with sides a × b which is simply supported along the 

edges x=0, a. The simply supported boundary conditions can be written as Eq. (3.2.13) 

and the solution of the differential equation given in Eq. (3.2.14). 

 0,x a ;  
2

2
0

w
w

x


 


   (3.2.13) 

  0

1

sinm m

m

w f y x




     (3.2.14) 

Wherein fm(y) is a function of y only, and αm=mπ/a. 

According the Levy’s solution, the general solution for fm(y) can be written as 

   
1

cosh sinh sinh coshm m m m m m m m m m m

m

f y A y B y C y y D y y     




     (3.2.15) 

Where Am,  Bm, Cm, Dm  are constants and the solution of the homogeneous differential 

equation (3.2.14) as: 

 0

1

cosh sinh sinh cosh sinm m m m m m m m m m m

m

w A y B y C y y D y y x      




     (3.2.16) 

Next, we will assume the particular integral (w1) in the form 

  1

1

sinm m

m

w p y x




  (3.2.17) 



 101  

  

In which pm(y) is an arbitrary function of y. It may be noted that the above assumed form 

for the particular integral also satisfies the simply supported boundary conditions along 

x=0, a (Eq. 3.2.13). The lateral load q(x,y) acting on the plate can be expressed in terms 

of Fourier series as: 

    
1

, sinm m

m

q x y q y x




   (3.2.18) 

Where qm is determined from  
0

2
, sin

a

m mq q x y xdx
a

  . Substituting Eqs. (3.2.17) and 

(3.2.18) in the governing differential equation given in Eq. (3.1.3), we get 

 
1 4

m

m

q
w

D



  (3.2.19) 

Where qm  is the Fourier coefficient. For uniform loading, the qm can be written as: 

 
0

2 4
, sin , 1,3,5...

a

m m

q
q q x y xdx m

a m
   


  (3.2.20) 

The rectangular panel with side a × b and thickness of t is considered here with uniform 

loading po and different boundary conditions which are- 

i) Four edges simply supported (Case 2.1) 

ii) Four edges clamped (Case 2.2) 

Case Study 2.1 Rectangular panel with four edges simply supported 

According to the Levy’s solution, the homogeneous solution given in Eq. (3.2.16) is 

combined with the particular integral given in Eq. (3.2,19) with the Fourier coefficient qm 

given in Eq. (3.2.20) for a uniformly distributed load. Hence the complete solution can be 

written as: 
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4

5 5
1,3

4
cosh sinh sinh cosh sinm m m m m m m m m m m

m

qa
w A y B y C y y D y y x

m D
      







 
     

 


 (3.2.21) 

 

Figure 3.2.3 - Simply Supported Rectangular Panel Subjected with Uniform Load 

The coordinate axes selected for this case are such that the boundary conditions and the 

loading are symmetrical about the x-axis, as shown in Figure 3.2.3. The terms coshαmy 

and αmysinhαmy are even functions and hence are symmetrical about x-axis, while terms 

sinαmy and αmycoshαmy are odd functions and are antisymmetric about the x-axis. Since 

the boundary conditions and loading are symmetric about the x-axis, the lateral deflection 

also will be symmetric about x-axis. Hence only symmetric functions in y need to be 

considered in the homogeneous solution. This means that the constants Bm and Dm need 

not be considered for this problem. Hence the complete solution for the problem can be 

taken as: 

4

5 5
1,3

4
cosh sinh sinm m m m m m

m

qa
w A y C y y x

m D
   







 
   

 
  3.2.22) 
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The constants Am and Cm are now determined by using the boundary conditions along the 

edges y=b/2, -b/2. Since there edges are simply supported, the boundary conditions can 

be written as 

 ,
2 2

b b
y   ;   w=0, 

2

2
0

w
w

x


 


  (3.2.23) 

Substituting the Eq.( 3.2.23) in the Eq. (3.2.22). The constant Am and Cm can be solved 

and the solution of deflection can be obtained as: 

4

5 5
51,3

1 4
4 tanh cosh 2 sinh sin

2
cosh

2

m
m m m m m

mm

bqa
w b y y y x

bD m
m


    







 
   

       
   

 



  (3.2.24) 

The maximum deflection occurs at the center of the plate. Substituing the x=a/2, y=0 in 

Eq. (3.2.25). The expression for maximum deflection can be written as 

1 1

4 2 2

max 5 5 5
1,3 1,3

tanh 1
4 ( 1) ( 1) 4 2

cosh
2

m m m m

mm m

b b
qa

w
bD m m

 



 

 

 

 
  

   
 
 

   (3.2.25) 

It can be shown that 

1

52

5
1,3

( 1) 5

1536

m

m m









 , so we obtain the expression for maximum 

deflection as 

1

4 4 2

max 5 5
1,3

tanh 1
5 4 ( 1) 4 2

384
cosh

2

m m m

mm

b b
qa qa

w
bD D m

 









 
 

   
 
 

   (3.2.26) 

If assume the Poisson’s ration as 0.3, for this case, the Eq. (3.2.26) can be simplified as a 

general expression as: 
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4

max

qa
w

D
   (3.2.27) 

Where α is a numerical factor which is related to the ratio of b/a, as shown in Table 3.2.1 

and a is refer to the length of the shorter side. 

Table 3.2.1 - Numerical Factor for Maximum Deflection for Case 2.1 

b/a α 

1 0.00406 

1.5 0.00771 

2 0.01013 

4 0.01282 

  0.01302 

 

Hence it may be concluded that for all practical purposes, for rectangular plates having 

dimensions such that b/a ≥ 4, the maximum deflection can be computed from beam 

equations.  

Case Study 2.2 Rectangular panel with four edges clamped 

The solution of this case can be obtained by referring the Westergaard approximate 

solution for rectangular panels [28].The maximum deflection equations can be written as: 

  
4

2

max 3
1

qa
w C v

Et

 
   

 
  (3.2.28) 

Wherein, a is the short span length and C is parameter which is related to the boundary 

condition. With the clamped edges, the C can be expressed as: 

 
4

0.032

1
C





  (3.2.29) 

Wherein, / ba  , b is the longer span length. 
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3.2.3 Case 3- Square Panel 

The square panel with side a and thickness of t is considered here with uniform loading 

po and different boundary conditions which are- 

i) Four edges simply supported (Case 3.1) 

ii) Four edges clamped (Case 3.2) 

Based on the solutions of rectangular panel discussed in Section 3.2, it is early to obtain 

the solution of square panel since the square panel is a special case comparing with 

rectangular panel.  

For the square panel with four edges simply supported (Case 3.1), the maximum 

deflection can be calculated by substituting b/a=1 in the Eq. (3.2.17) and written as: 

 

4

max 0.00406
qa

w
D


  (3.2.30) 

For the square panel with four edges clamped (Case 3.2), the maximum deflection can be 

calculated by substituting / b 1a   in Eq. (3.2.29) to get the parameter C and calculate 

maximum deflection by using Eq. (3.2.28). 

  
4

2

max 3

0.032
1

2

qa
w v

Et

 
   

 
  (3.2.31) 

The maximum deflection equations based on the elastic theory of plate for all cases are 

shown in Table 3.2.2. Where,v is Poisson’s ratio, v=3 for Case 2.1 and 3.1
3

212(1 )

Et
D





 

Parameter   can be obtained from Table 3.2.1. 
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Table 3.2.2 – Elastic Maximum Deflection Equations for Case 1 to Case 3 

Shape 
Cas

e # 

Boundary 

Conditions 
Geometry 

Maximum 

Deflection wmax 

Round  

Panel 

1.1 
Simply 

supported 

 
 

2 3

16 1

PR v

D v

 
 

 
 

1.2 Clamped 

 
 

2

16

PR

D
 

Rectang

ular 

Panel 

2.1 
Simply 

supported 

 
 

4qa

D
  

2.2 Clamped 

 
 

 2 4

4 3

0.032 1

1

v qa

Et

  
 

  
 

Square 

Panel 

3.1 
Simply 

supported 

 

4

0.00406
qa

D
 

3.2 Clamped 

 

 
4

2

3

0.032
1

2

qa
v

Et

 
  

 

 

 

Clamped support

Simply supported

Free support

Moment Rotation

 
 



 107  

  

3.3 Yield Line Analysis Approach 

Yield line design is a well-founded method of designing reinforced concrete slabs, and 

similar types of elements. It uses yield line theory to investigate failure mechanisms at 

the ultimate limit state. The theory is based on the principle that work done in rotating 

yield lines is equal to work done in moving the loads [29][30], as shown in: 

ext intW W       (3.3.1) 

( ) ( )N m l            (3.3.2) 

Wherein, Wext is the extenal work; Wint is the internal work; N is ythe load acting within a 

particular region; δ is the vertical displacement of the load on each region; m is the unit 

moment in or moment of resistance of the slab ; l is the length of yield line or its 

projected length onto the axis of rotation for that region.  θ is the rotation of the region 

about its axis of roation. 

When applying the Work Method for yield line analysis the calculations for the external 

work due to loads and the internal work due to dissipation of energy within the yield lines 

are carried out independently. The results are then made equal to each other and from the 

resulting equations the unknown, be it the ultimate moment ‘m’ generated in the yield 

lines or the ultimate failure distributed load ‘q’ of the slab is evaluated. 

The slab is divided into rigid regions that rotate about their respective axes of rotation 

along the support lines. If the point of maximum deflection is given a value of unity then 

the vertical displacement of any point in the regions is thereby defined. The work done 

due to external loads is evaluated by taking all external loads on each region, finding the 

center of gravity of each resultant load and multiplying it by the distance it travels. 
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The work done due to dissipation of energy is quantified by projecting all the yield lines 

around a region onto, and at right angles to, that region’s axis of rotation. These projected 

lengths are multiplied by the moment acting on each length and by the angle of rotation 

of the region. At the small angles considered, the angle of rotation is equated to the 

tangent of the angle produced by the deflection of the region.  

3.4  Moment-Load Relationship of Panels 

Work method has been used to calculate the moment-load relationship for all the basic 

configurations of slabs namely square, rectangle and circular with all possible support 

conditions by Aswani, K [ 31 ]. In this section, the derivation of moment-curvature 

relationship for round panel having a point load acting at center with a magnitude of P are 

presented here as an example to show the algorithm and the equations of other types of 

panels are obtained from [30] and listed in Table 3.4.1. 

3.4.1 Case Study 1 – Applied Load vs. Yield Line Moment Relationship for Round 

Panels  

Round panels of radius R is considered here with a point load of ‘P’ acting at the center 

on it. Yield lines form a fan shaped design and it is considered that each point on the 

yield line is consistent and under tension. Hogging moment along the yields lines and 

sagging moment along the supports are also assumed to be equal in magnitude. Two end 

conditions can be considered which are – 

i) It is simply supported (Case 1.1) 

ii) It has clamped support (Case 1.2) 

Derivation for round panel with simply supported is presented here. Cases 2.1 can be 

derived similarly. 
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Case 1.1 –Round Panel with Simply Supported Edges 

In figure 3.4.1, if one defines number of cracks as n, then the central angle α can be 

calculated as 2π/n. It has been assumed here that when number of cracks, n tends to 

infinity, the angle α becomes zero. In case of a simply supported three point ring 

specimens, n is taken as 3. Flexural capacity of round slab simply supported (Case 1.1) 

subjected to a center-point loading is shown in figure 3.4.1.  Note that depending on the 

number of yield lines, the internal energy dissipation changes.   

θ

2R

δ

Section A-A

dα

R

P

 

Figure 3.4.1 - Principle of Virtual Work of a Round Panel with Simply Supported in its 

Contour and Subjected to Center Point Load 

It is however shown that in the case of simply supported round slab, the allowable 

applied load can be related to the bending moment capacity which is determined through 

laboratory tests on flexural samples. 

int extW W ;
R


   
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intdW MR d M d      

extW P  

2

0
2int extW W M d M P



         

2

P
M


                                                            (3.4.1) 

If the support is fixed (Case 1.2), the solution would yield: 

2

0
2 4

int extW W

M d RM M P


      



  
                              (3.4.2) 

4

P
M


                                                               (3.4.3) 

3.4.2 Case Study 2 – Applied Load vs. Yield Line Moment Relationship for 

Rectangular Panels 

Rectangular slab of length ‘b’ and breadth ‘a’ has been considered here and a uniformly 

distributed load ‘q’ is acting on it. It is assumed that yield lines are at 45° to the sides and 

each point on the yield line is consistent and under tension. Hogging moment at yield line 

and sagging moment about the edges are also assumed to be equal in magnitude.  

i) All sides are simply supported (Case 2.1) 

ii) All sides have clamped supports (Case 2.2) 

Derivation for Rectangular panel with simply supported is presented here. Cases 2.1 can 

be derived similarly. 

 

Case 2.1 – Rectangular slab with simply supported 
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The slab is divided into rigid regions that rotate about their respective axes of rotation 

along the support lines. If the point of maximum deflection is given a value of unity then 

the vertical displacement of any point in the regions is thereby defined. 

 

 

Figure 3.4.2 - Simply Supported Rectangular Slab 

 

The expenditure of external loads is evaluated by taking all external loads on each region, 

finding the center of gravity of each resultant load and multiplying it by the distance it 

travels. Two groups are considered the triangles and the trapezoidal sections: 

 21 1
( ) ( ) 3

3 2 6
ext

qa
W N q a q b a a b a

   
         

   
    (3.4.4) 

In the above expression, the first half of the expression consists of both the triangles 

(regions 1 and 3 completely and parts of region 2 and 4). Their area is a
2
 and therefore 

equivalent point load is expressed as qa
2
 and 1/3 is the deflection of the centroid when 
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maximum deflection has been assumed as unity. Second half of the expression is 

composed of the rectangle at the center which consists of the remaining regions of two 

and four.  

The internal work done due to dissipation of energy is quantified by projecting all the 

yield lines around a region onto, and at right angles to, that region’s axis of rotation. 

These projected lengths are multiplied by the moment acting on each length and by the 

angle of rotation of the region. At the small angles considered, the angle of rotation is 

equated to the tangent of the angle produced by the deflection of the region. Assuming 

the moment caused due to the rotation of yield lines as m (positive/sagging) and moment 

caused due to the rotation about the clamped sides as m’ (negative/hogging). 

int

2 2 2 2
( )W m l ma mb m a mb

a a a a


       
           

       
               (3.4.5) 

Term 1 and 3 represent the triangular portion and terms 2 and 4 represent the Trapezoidal 

sections contributions.  There are no negative moments since simply supported panel. one 

gets - int 4 1
b

W m
a

 
  

 
 

Energy equilibrium requires: Wext = Wint, from which one gets- 

 2 3

24( )

qa b a
m  

b a





                             (3.4.6) 

3.4.3 Case Study 3 – Applied Load vs. Yield Line Moment Relationship for Square 

Panels 

Square slab of edge length a is considered here with a distributed load of ‘q’ acting on it. 

It is assumed that yield lines are at 45° to the sides and each point on the yield line is 
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consistent and under tension. Hogging moment about the yield lines and sagging moment 

about the clamped supports are also assumed to be equal in magnitude. Three end 

conditions can be considered which are – 

i) All sides are simply supported (Case 3.1) 

ii) All sides have clamped supports (Case 3.2) 

 

Case 3.1 – Square panel with simply supported edges 

Plastic analysis approach uses the principal of virtual work to equate the internal and 

external work to obtain the collapse load.  Similarly the yield pattern is used to define the 

potential collapse mechanism of a plate supported along its two or four edges.  If the 

panel has fixed edges, then the yielding along the edge is also needed to be included in 

the calculations.   

From the relationship of equating the external work done by loads moving to the internal 

energy dissipated by rotations about yield line, one gets:  

 

ext intW W       (3.4.7) 

( ) ( )N m l            (3.4.8) 
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Figure 3.4.3 - Simply Supported Square Panel  

In left hand side, q is the uniformly distributed load and a
2
/4 is the area of each wedge 

(So the equivalent point load is q x a
2
/4) and δmax/3 is the deflection of the centroid. On 

the right hand side, a is the length of the square as the rotations are projected onto the 

sides. Rotation angle, θ, can be calculated from geometry shown in Figure 3.4.3 as 

δmax/0.5L. 

2

max max4 4
4 3 0.5

a
q m a

a

    
   

  
     (3.4.9) 

Simplifying equation 2-3 and solving for moment, one gets- 

2 24
8

12 24

a q qa
m            ,           m       (3.4.10) 

Where m is the moment along the yield lines, q is the uniformly distributed load and a is 

the length of the square side.  

Table 3.4.1 - The Relationships between Load and Moment for Various Panels 
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Shape 
Case 

# 

Boundary 

Conditions 
Failure Modes 

Yield line 

Moment-Applied 

load 

Round 

Panel 

1.1 
Simply 

supported 

 
 

2

P
m


  

1.2 Clamped 

 
 

4

P
m


  

Rectangular 

Panel 

2.1 
Simply 

supported 
 

 

 2 3

12(2 2 )

qb b a
m

b a





 

2.2 Clamped 

 
 

 2 3

12(4 4 )

qb b a
m

b a





 

Square 

Panel 

3.1 
Simply 

supported 

 

2

24

qa
m   

3.2 Clamped 

 

2

48

qa
m   

Clamped support

Simply supported

Free support

Moment Rotation
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3.5 Curvature-Deflection Relationship of Panels 

Aswani, K derived the rotation-deflection relationship and curvature-deflection 

relationship for various types of panels [30]. Rotations that a slab undergoes at supports 

for certain deflections were calculated using the concepts of kinematics and geometry of 

slab. The derivation of curvature-deflection relationship of round panel is presented in 

this section as an example.  

New concept of hinge length is imposed in here and serval empirical equations of hinge 

length are presented. A slab under bending can be considered to consist of two distinct 

regions: the small hinge region where concrete crushing is visible, where wide flexural 

cracks occur, and where most of the permanent rotation is concentrated around the wide 

flexural cracks so that the trend of the moment distribution has little effect; and the non-

hinge region which applies to most of the length so that it is affected by the trend of the 

moment distribution, where there are much narrower cracks, where, in particular, 

concrete crushing does not occur and where standard procedures of equilibrium can be 

applied [32][33].   

Hinge length has been derived to be a function of span, depth or reinforcement [34]. 

Curvature is a measure of sectional ductility and rotation is a measure of member 

ductility. Product of sectional ductility (curvature) and hinge length gives the member 

ductility (rotation).   

Many researchers have concentrated mainly on quantifying the hinge length, L* 

empirically. Some suggested approaches are as shown in table below [34]: 

 

Table 3.5- Empirically Derived Hinge Lengths 
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Researcher reference Hinge length (L*) Hinge  length variables 

Baker [35] k(z/d)
1.4

d Span (z), depth (d) 

Sawyer [36] 0.25d+0.075z Span, depth 

Corley [37] 0.5d+0.2(z/d)√d Span, depth 

Mattock [38]  0.5d+0.05z Span, depth 

 

3.5.1 Case Study 1 – Curvature – Deflection Relationship for a Round Panel 

Assume a round slab with radius R for with yield lines are originating at the center and 

extending till the boundary of the slab as shown in the Figure 3.5.1 below and maximum 

deflection occurs at that center [Error! Bookmark not defined.]. 

 

Figure 3.5.1 – Curvature-Deflection Relationship for Round Panel 

From Figure 3.5.1 crack segment 1 rigidly rotate around the axis AB. 

sin(30) 1

2

C BC R

AO R




          

 
2

C


            
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Thus, the deflection at the edge (point C) is half that of the center. Assume each crack 

segment is rigid and it rotates around the crack axis represented by vectors OC , OD and 

OE as shown in Fig. 3.2. 

( ,0,0.5 )OC R   

( sin(30), cos(30),0.5 )OD R R     

( sin(30), cos(30),0.5 )OE R R      

The vectors normal to crack segment 1 and 2 can be found by cross product of the two 

adjacent vectors. 

2
1

3 3 3
, ,

4 4 2
n OD OC R R R 

  
    

  
    (3.5.1) 

  2
2

3 3 3
, ,

4 4 2
n OC OE R R R 

  
     

  
    (3.5.2) 

The angle of curvature φ between segment 1 and 2 is the angle between these two normal 

vectors, determined by the dot product. 

 

2 2
1 11 2

2 2
1 2

1 1 2
cos cos

* * 2

n n R

L n n L R






 
 

      
    

    
 

   (3.5.3) 

Deflection in terms of curvature can be simplified as: 

 
22 (1 cos *)

(1 2cos *)

R L

L










     (3.5.4) 
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3.5.2 Case Study 2 – Curvature – Deflection Relationship for a Rectangular Panel 

Let us assume a rectangular slab with length a and breadth b for which yield lines are at 

45° to the sides and meet at points as show in the Figure 3.5.2 below and maximum 

deflection occurs at that point. 

 

 

Figure 3.5.2 - Curvature-Deflection Relationship for Rectangular Panel 

To find the angle of rotation, we first find the angle at center between two surfaces. 

Curvature, φ and angle between the planes, 2θ can then be related as
1

* 2L


 

 
  

 
.  For 

finding the angles between both surfaces we find the angle that the normal to these 

surfaces make with each other.   
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First we find the angle between planes 1 and 3. This is similar to the case of square slab. 

As we obtain the results we see that deflection expression is same as that obtained for 

square slab of dimension b.   

 

Figure 3.5.3 - Planes KON and PLM 

For plane # 1 (KON), normal n1 is obtained by the cross product of vectors KO  and KN . 

2

1

(0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 0.5

0 0

KO a a

KN a

i j k

n KO X KN a a a i a k

a



 





    

 

Equation of the plane # 1 is given as- 

2

2

( 0) 0( 0) 0.5 ( 0) 0

( ) (0.5 ) 0

a x y a z

a x a z





      

 
     (3.5.5) 

For plane # 3 (PLM), the normal n3 is obtained by the cross product of vectors LP  & LM  
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2

( 0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) ( 0.5 )

0 0

LP a a

LM a

i j k

n LP X LM a a a i a ak

b



 

 



      

 

Equation of the plane # 3 is given as 

 2

( ) 0( 0) ( 0.5 ) ( 0) 0

( ) 0.5 0

a x b y a a z

a x a z ab



 

       

  
    (3.5.6) 

So the angle between two planes under yielding is given as- 

   

2 2 4 2 2

13 13 2 2
2 2 4 2 2 4

0.25 4
cos2 cos( 2 *)

40.25 0.25

a a a
L

aa a a a

 
  

 

 
     

    
 

 

Deflection in terms of curvature can be simplified as: 

13

13

1 cos2 *

2 1 cos2 *

La

L










    (3.5.7) 

It is known by symmetry that 13 24   

Similarly, we find the angle between planes 1 and 4 by the same procedure – 

 

Figure 3.5.4 - Planes KON and NOPM 
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For plane # 1 (KON), the normal n1 by the cross product between the vectors KO & KN  

2

1

(0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( )
2

0 0

KO a a

KN a

i j k
a

n KO X KN a a a i k

b



 





    

 

Equation of the plane # 1is given as 

2

2

( 0) 0( 0) 0.5 ( 0) 0

( ) 0.5 0

a x y a z

a x a z





      

 
     (3.5.8) 

For plane # 4 (NOPM), the normal n4 is the cross product of vectors NO  and NM  

4

( 0.5 ,0.5 , )

( ,0,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) (0.5 )

0 0

NO a a

NM b

i j k

n NO X NM a a b j ab k

b



 

  

 

     



 

Equation of the plane # 4 is given as 

 

( ) ( 0.5 ) ( 0) 0

( ) 0.5 0

b y a b a z

b y ab z ab



 

    

  
 

So the angle between two planes under yielding is given as- 

   

3 2

14 14 2 2
2 2 4 2 2 2 2

0.25
cos2 cos( 2 *)

40.25 0.25

ba a
L

aa a b b a
  

 

 
     

    
 

 

2
1

14 2 2

1
cos

2 * 4

b

L b




  
  

 
     (3.5.9) 

Deflection in terms of curvature can be simplified as:  

14

14

1 cos2( *)

2 cos2( *)

La

L







      (3.5.10) 
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By the geometry of slab we know that 
12 14 23 34       .  

1

3

2

 

Figure 3.5.5 - Rectangular Slab Fixed from 3 Sides and Free from Fourth 

 

For a two-way slab supported on 3 sides and free on fourth, the deflection-curvature 

relationship will remain unchanged and will be equal to equation 2-26. 

3.5.3 Case Study 2 – Curvature – Deflection Relationship for a Rectangular Panel 

Let us assume a square slab with side L for which yield lines are at 45° to the sides and 

meet at center and maximum deflection, δ also occurs at center. 

 

Figure 3.5.6 - Curvature-Deflection Relationship for Square Panel 

 



 124  

  

To find the angle of rotation, we first find the angle at center between two surfaces. 

Curvature, φ and angle between the planes, 2θ can then be related as
1

* 2L


 

 
  

 
 

where L* is the hinge length and φL* is the rotation.  For finding the angles between both 

surfaces we find the angle that the normal to these surfaces make with each other.   

  

Figure 3.5.7 Planes AED and EBC 

For plane # 1 (AED), the normal n1 is the cross product of vectors AE and AD . 

2
1

(0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) 0.5

0 0

AE a a

AD a

i j k

n AE X AD a a a i a k

L



 





    

 

Equation of the plane # 1 is given as 

2

2

( 0) 0( 0) 0.5 ( 0) 0

( ) 0.5 0

a x y a z

a x a z





      

 
     (3.5.11) 

For plane # 3 (BCE), the normal n2 is the cross product of vectors BE  and BC . 
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2
2

( 0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) 0.5

0 0

BE a a

BC a

i j k

n BE X BC a a a i a k

a



 

 

 

     

 

Equation of the plane # 3 is given as 

2

2 2

( ) 0( 0) 0.5 ( 0) 0

( ) 0.5 0

a x a y a z

a x a z a



 

      

  
     (3.5.12) 

The angle between planes is the angle between their normal vectors. If A1x + B1y + C1z + 

D1 = 0 and A2x + B2y+C2z+D2 = 0 are plane equations, then angle between planes can be 

found using the following formula: 

1 2 1 2 1 21

2 2 2 1/2 2 2 2 1/2

1 1 1 2 2 2

. . .
cos

( ) ( )

A A B B C C

A B C A B C
 

  
  

    
  

So the angle between two planes under yielding is given as: 

   

2 2 4 2 2

2 2
2 2 4 2 2 4

2 2
1

2 2

0.25 4
cos2 cos( 2 *)

40.25 0.25

1 4
cos

2 * 4

a a a
L

aa a a a

a

L a

 
  

 








 
   

 

  
  

 

   (3.5.13) 

Deflection- curvature relationship is given as: 

1 cos2 *

2 1 cos2 *

a L

L










     (3.5.14) 

Where δ is the deflection, φ is the curvature, L* is the hinge length and L is the 

dimension of the slab.  
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Table 3.5.1 Summary of Relationship between Curvature and Deflection for Panels 

Type of Panel Curvature- Deflection 

Round 
22 (1 cos *)

(1 2cos *)

R L

L










 

Rectangle 

(yield lines are at 45°, two-way) 

1 cos2( *)

2 cos2( *)

a L

L







  

Square (yield lines are at 45°) 
1 cos2 *

2 1 cos2 *

a L

L










 

 

3.6 Bilinear Moment-Curvature Relationship for Panel 

A simplified parametric moment curvature response is represented by a bilinear function 

in elastic pre-cracked and post-cracked stages as shown in Figure 3.6.1 and Figure 3.6.2. 

The elastic stage extends to the onset of first flexural crack. The second stage follows 

until the ultimate flexural capacity which corresponds to the ultimate state. The 

difference between this model with the moment-curvature diagram discussed in Section 

2.1 is the flexural behavior after the cracking point. There are two type of behavior, one 

is the strain-hardening behavior with the stiffness ratio η as a positive number (dash line 

in Figure 3.6.1 and 3.6.2)  , another one is the strain-softening behavior when the η is 

negative number (solid line in Figure 3.6.1 and 3.6.2)  The bilinear elastic post-cracking 

moment-curvature response is fully defined by two control points (Mcr,φcr) and (Mu,φu) 

and expressed as:   

 

 

g cr cr

u cr
cr cr u

u cr

M( ) EI                           0<M M   0<  

M M
M( ) M          1

  


    



   

    
 

                  (3.6.1)                                

 First cracking moment and first cracking curvature defined as: 
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21

6
cr crM bd E 

2
 cr

cr
d




   (3.6.2) 

Equation (3.1) can be presented in normalized form by introducing two normalizing 

constants as 

 
1

1 1 1
1

m'( q') q'                            0<m' 1    0<q' 1 

m
m'( q') q'                          q'

q

  


   



                                       (3.6.3) 

The parameter based moment curvature relationships are therefore: 

'

cr

M ( )
m'( q')

M



; ' i

cr

q



  u

cr

M
m

M
 ;  u

cr

q



   , cr

g

EI

EI
                                         (3.6.4) 

 

Figure 3.6.1 - Bilinear Moment-Curvature Relationship for Panels 
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Figure 3.6.2 - Normalized Moment-Curvature Curve Represented as (q’, m’) 

 

3.7 Experimental Verification 

3.7.1 Algorithm to Predict Load-Deflection Response  

Algorithm to predict the load deflection response of panel based on the simplified 

bilinear moment-curvature model is divided into two stages, which are pre-cracking stage 

and post-cracked stage. The elastic solutions present in Section 1 are implemented in the 

pre-cracking stage and the solution of yield line presented in Section 3.2 is used in the 

post-cracked stage. Using the simplified moment-curvature model (Section 3) one can 

approach the problem in the following manner: 

i. For a given cross section and material properties and calculated the cracking 

moment and cracking curvature using the Eq (3.6.2) 

ii. Assume the maximum normalized curvature q’, which is corresponding to 

ultimate stage.  Select the discrete points of q’ from the zero to the q’max and 

calculate the corresponding curvature ϕ’ is calculated from Eq (3.6.4) and 

relative moment M’ can be obtained from the relationship of moment-

curvature for each q’. 
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iii. Appling the yield line theory to find the magnitude of load with the transition 

point from pre-cracked stage to the post-cracked stage (q’=1). 

iv. Using the elastic solution to get the load-deflection response when the q’<1. In 

terms of the q’>1, a load vector is generated using the relationship between 

moment and load for the panel configurations as derived by the yield line 

methodology in section 2.2. The slab is segmented into finite sections and 

maximum deflection is calculated using the relationship between curvature and 

deflection as derived in section 2.3. 

This procedure is applied at each step until a complete load deflection response is 

obtained for the corresponding moment curvature relationship. 

3.7.2 Data Set 1 

Four round plates were investigated according to the ASTM standard [39] by Kim, 

Jihwan, et al [40]  The dimensions of the plates are 420 mm in diameter and 48 mm in 

thickness (which are smaller than the dimensions recommended by the standard). The 

plates are supported by three symmetrically arranged hinged supports at 120
ο
.  The 

volume fraction of steel fiber is 1.5%. The responses of point load – deflection of center 

were simulated by the proposed algorithm of predicting the experimental data of panels.  

The simulated parameters used in the model are listed in the Table 3.7.1 and hinge length 

was assumed as 20 mm for all samples. 

Table 3.7.1 - Simulated Parameters of Current Model for Data Set 1 

Sample# 
εcr, 

10
-6

 

E, 

GPa 
η m q 

Mcr, 

KN-mm 

Φcr, 

10
-6

/mm 
EI, 10

11
 EIcr, 10

8
 

1 130 32 0.0033 1.95 290 639 5.42 1.18 3.89 

2 130 32 0.004 2.00 250 639 5.42 1.18 4.72 

3 135 32 0.004 2.04 260 663.6 5.62 1.18 4.72 

4 135 32 0.005 2.34 270 663.6 5.62 1.18 5.90 
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Figure 3.7.1 shows the normalized moment-curvature relationships of the samples and 

Figure 3.7.2 shows the load-deflection responses. The blue solid line represents the 

simulated pre-cracked behavior which is generated by using the elastic equation of round 

panel (Section 3.2), however, the red dash line represents the post-cracked behavior 

generated by the yield line approach (Section 3.4 and 3.5). The transition point between 

these two stages is decided by the input moment-curvature relationship.  Note that the 

stiffness ratio η is positive due to the deflection- hardening response after the first 

cracking point. It is obvious that the algorithm proposed can predict the pre-cracked load-

deflection response perfectly and the prediction of the post-cracked response is 

underestimated. Trend of the post-cracked behaviors can also be obtained and the 

approximated post stiffness of both moment-curvature relationship and load-deflection 

response can be predicted. 

 

Figure 3.7.1- Normalized Moment-Curvature Relationship 
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Figure 3.7.2 - Load-Deflection Responses of the Round Panel Samples 

Figure 3.7.3 shows the effect of hinge length, L* on the load-deflection response. From 

figure 3.7.3 it can be seen that the pre-cracked response does not effected by the assumed 

hinge length and the post cracked stiffness decreases with increasing the hinge length. 
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Figure 3.7.3 - Effect of Hinge Length on Simulated Results 

3.7.3 Data Set 2 

Two series of round plate were casted and tested according to the ASTM standard [39] by 

Xu, Hanfeng, et al [41]. One series of them were casted using steel fiber reinforced high 

strength concrete (HSC) with two different fiber volume fraction; 0.5% (SFRC05) and 

1.0% (SFRC10). Another series specimen was casted using synthetic fiber HSC with 

fiber volume fraction of 0.5% (SYNFRC05) and 1.0% (SYNFRC10). The dimensions of 

the plates are 635 mm in diameter and 60 mm in thickness.  The plates are supported by 

three symmetrically arranged hinged supports at 120
ο
. The details of specimens are 

shown in Table 3.7.2. The average responses of load – deflection of center for each series 

were simulated by the proposed algorithm and the simulated parameters used in the 

model are listed in the Table 3.7.3 and hinge length was assumed as 32 mm for all 

samples. 
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Table 3.7.2- Details of Round Panel Specimens for Data Set 2 

ID Diameter, mm Thickness, mm Fiber Type Vf, % 

SFRC05 635 60 Steel 0.5 

SFRC10 635 60 Steel 1.0 

SYNF10 635 60 Synthetic 0.5 

SYNF10 635 60 Synthetic 1.0 

 

Table 3.7.3- Simulated Parameters of Current Model for Data Set 3 

ID 
εcr, 

10-6 

E, 

GPa 
η m q 

Mcr, 

KN-mm 

Φcr, 

10-6/mm 

EI, 

1011 

EIcr, 

108 

SFRC05 125 13 -0.0008 0.026 1300 619 4.2 1.49 1.1 

SFRC10 135 18 -0.0006 0.053 1580 926 4.5 2.06 1.2 

SYNF05 120 11 -0.0005 0.10 1800 503 4.0 1.26 0.63 

SYNF10 130 16 -0.0004 0.24 1800 768 4.3 1.77 0.74 

 

Figure 3.7.3 shows the normalized moment-curvature relationship of the specimens and 

Figure 3.7.4 shows the load-deflection responses and the simulated curve generated by 

the current model. The solid line represents the simulated pre-cracked behavior which is 

generated by using the elastic equation of round panel; however, the dash line represents 

the post-cracked behavior generated by the yield line approach. The transition point 

between these two stages is decided by the assumed moment-curvature relationship.  

Note that the proposed model could not accurately predict the first cracking point and the 

prediction of the post-cracked responses slightly overestimated the experimental data, but 

the trend can be fitted perfectly. The stiffness ratio η is negative due to the deflection- 

softening response after the first cracking point. Figure 3.7.3(a) shows the normalized 

moment-curvature relationship of SFRC round panels and it is obvious that the elastic 

behaviors of the specimens with different volume fraction of fiber are similar. The post 

cracked stiffness and cracking moment of the panels with higher fiber content (Vf=1%) is 
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slightly high than that of panels with lower fiber content (Vf=0.5%) and resulted in the 

higher energy absorption with higher fiber content. The same conclusion can be derived 

from the Figure 2(b) which is shows the normalized moment-curvature relationship of 

synthetic fiber reinforced round panels. It is obvious that the post cracked stiffness in 

terms of load-deflection response is slightly different with different fiber types. The 

panels with steel fiber reinforced have higher post-cracked stiffness, as shown in Table 

3.7.3 and Figure 3.7.4.   

 

  

Figure 3.7.3 - Normalized Moment –Curvature Relationships of Round Panels; (a) 

SFRC;(b) Synthetic FRC 
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Figure 3.7.4 - Load-Deflection Responses of Round Panels; (a) SFRC;(b) Synthetic FRC 

 

3.7.4 Data Set 3 

Experimental results for fiber reinforced concrete square slabs are considered in a study 

published by Khaloo and Afshari here [42].two series of them were studied here for 

verifying the current model. The span of slabs is 680 mm x 680 mm with 80 mm 

thickness and subjected with the point load at center.  The fiber used in this experiment is 

steel fiber but with two different shapes and named as fiber S25 and S35, separately; the 

shape properties are presented as Table 3.7.4.  The variable investigated is fiber 

volumetric percentage with 1% and 1.5%. The details of the square slabs are shown in 

Table 3.7.5. The responses of point load – deflection of center for each series were 

simulated by the proposed algorithm. The simulated parameters used in the current model 

are listed in the Table3.7.5 and hinge length was assumed as 68 mm for all samples. 
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Table 3.7.4- Shape Properties of Steel Fibers for Data Set 3 

Fiber ID Length, mm Width, mm Thickness, mm Equivalent diameter, mm 

S25 25 0.8 0.35 0.597 

S35 35 1 0.35 0.668 

 

Table 3.7.5- Details of Round Panel Specimens for Data Set 3 

Specimen ID Length of side, mm Thickness, mm Fiber ID Vf, % 

S25-1 680 80 S25 1.0 

S25-2 635 80 S25 1.5 

S35-1 635 80 S35 1.0 

S35-2 635 80 S35 1.5 

 

Figure 3.7.5 shows the normalized moment-curvature relationship of the specimens and it 

is obvious that the elastic behaviors of the specimens with different volume fraction of 

fiber are similar. Figure 3.7.6 shows the load-deflection responses and the simulated 

curve generated by the algorithm. The solid line represents the simulated pre-cracked 

behavior which is generated by using the elastic equation of square panel. The dash line 

represents the post-cracked behavior generated by the yield line approach. The transition 

point between these two stages is decided by the input assumed moment-curvature 

relationship.  Note that the proposed model could not accurately catch the first cracking 

point in terms of load-deflection response and the predictions of post-cracked responses 

slightly overestimates the experimental data. 
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Table 3.7.6- Simulated Parameters of Current Model for Data Set 3 

Sample# 
εcr, 

10
-6

 

E, 

GPa 
η m q 

Mcr, 

KN-mm 

Φcr, 

10
-6

/mm 
EI, 10

11
 EIcr, 10

8
 

1 100 7.5 -0.003 0.043 320 544 2.5 2.18 6.5 

2 110 9 -0.0025 0.040 385 718 2.75 2.61 6.5 

3 110 7 -0.0035 0.024 280 558500 2.75 2.03 7.1 

4 110 9.5 -0.0024 0.043 400 758000 2.75 2.76 6.6 

 

The toughness of the panels with higher fiber content (Vf=1.5%) is higher than that of 

panels with lower fiber content (Vf=1%) since the higher cracking moment and equal 

post stiffness of specimen with higher fiber content. The stiffness ratio η is negative due 

to the deflection- softening response after the first cracking point. It is obvious that there 

has little difference of post-cracked stiffness in terms of load-deflection responses 

between the two series of specimen since both fibers are steel even the shapes of fiber are 

slightly different. 

  

Figure 3.7.5 - Normalized Moment –Curvature Relationships of Square Panels; (a) Steel 

Fiber with Length of 25 mm;(b) Steel Fiber with Length of 35 mm 
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Figure 3.7.6 - Load-Deflection Responses of Square Panels; (a) Steel Fiber with Length 

of 25 mm;(b) Steel Fiber with Length of 35 mm 

3.7.5 Data Set 4 

Two series of round plate specimens were casted and tested according to the ASTM 

standard by de Montaignac, Renaud, et al [43].  Two types of hooked-end fibers: the 

RC80/60 fibers (60 x 0.75 mm) and the RC65/35 fibres (35 x 0.55 mm). Three fibre 

dosages were selected: 0.75, 1.0 and 1.25% in volume. The dimensions of the plates are 

750 mm in diameter and 80 mm in thickness.  The plates are supported by three 

symmetrically arranged hinged supports at 120
ο
 and the point load subjected at the center 

of the panels. The details of beam are shown in Table 3.7.7. The responses of point load – 

deflection of center for each specimen were simulated by the proposed and the simulated 

parameters used in the model are listed in the Table 3.7.8 and hinge length was assumed 

as 38 mm for all samples. 
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Table 3.7.7- Details of Round Panel Specimens for Data Set 4 

ID Diameter, mm Thickness, mm Fiber Type Vf, % 

F60-1 750 80 RC80/60 0.75 

F60-2 750 80 RC80/60 1.0 

F35-1 750 80 RC65/35 1.0 

F35-2 750 80 RC65/35 1.25 

 

Table 3.7.8- Simulated Parameters of Current Model for Data Set 4 

Sample# 
εcr, 

10
-6

 

E, 

GPa 
η m q 

Mcr, 

KN-mm 

Φcr, 

10
-6

/mm 
EI, 10

11
 EIcr, 10

8
 

F60-1 135 20 -0.0008 0.32 900 2160 3.38 6.4 4.80 

F60-2 135 22 -0.0006 0.46 900 2376 3.38 7.0 4.22 

F35-1 130 20 -0.0007 0.34 950 2080 3.25 6.4 4.48 

F35-2 135 21 -0.0008 0.24 950 2268 3.38 6.7 5.38 

 

 

  

Figure 3.7.7 - Normalized Moment –Curvature Relationships of Round Panels; (a) 

RC80/60 with Two Levels of Fiber Content; (b) RC65/35 with Two Levels of Fiber 

Content 
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Figure 3.7.8 - Load-Deflection Response of Round Panels; (a) RC80/60 with Two Levels 

of Fiber Content;(b) RC65/35, Vf=1.0%; (c) RC65/35, Vf=1.25% 

Figure3.7.7 shows the normalized moment-curvature relationship of the specimens and 

Figure 3.7.8 shows the load-deflection responses and the simulated curve generated by 

the current model. The solid line represents the simulated pre-cracked behavior and the 

dash line represents the post-cracked behavior generated by the yield line approach. Note 

that the proposed model could not accurately predict the first cracking point and the 

prediction the post-cracked responses generally underestimates the experimental data. 

Figure 3.7.8 shows the toughness of the panels with higher fiber content is slightly high 
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than that of panels with lower fiber content, which means the more energy can be 

absorbed  with higher fiber content. 
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