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ABSTRACT 

 

Increased priority on the minimization of environmental impacts of conventional 

construction materials in recent years has motivated increased use of waste materials or 

bi-products such as fly ash, blast furnace slag with a view to reduce or eliminate the 

manufacturing/consumption of ordinary portland cement (OPC) which accounts for 

approximately 5-7% of global carbon dioxide emission. The current study explores, for 

the first time, the possibility of carbonating waste metallic iron powder to develop 

carbon-negative sustainable binder systems for concrete. The fundamental premise of this 

work is that metallic iron will react with aqueous CO2 under controlled conditions to 

form complex iron carbonates which have binding capabilities. The compressive and 

flexural strengths of the chosen iron-based binder systems increase with carbonation 

duration and the specimens carbonated for 4 days exhibit mechanical properties that are 

comparable to those of companion ordinary portland cement systems. The optimal 

mixture proportion and carbonation regime for this non-conventional sustainable binder 

is established based on the study of carbonation efficiency of a series of mixtures using 

thermogravimetric analysis. The pore- and micro-structural features of this novel binding 

material are also evaluated. The fracture response of this novel binder is evaluated using 

strain energy release rate and measurement of fracture process zone using digital image 

correlation (DIC). The iron-based binder system exhibits significantly higher strain 

energy release rates when compared to those of the OPC systems in both the unreinforced 

and glass fiber reinforced states. The iron-based binder also exhibits higher amount of 

area of fracture process zone due to its ability to undergo inelastic deformation facilitated 

by unreacted metallic iron particle inclusions in the microstructure that helps crack 
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bridging /deflection. The intrinsic nano-mechanical properties of carbonate reaction 

product are explored using statistical nanoindentation technique coupled with a stochastic 

deconvolution algorithm. Effect of exposure to high temperature (up to 800°C) is also 

studied. Iron-based binder shows significantly higher residual flexural strength after 

exposure to high temperatures. Results of this comprehensive study establish the viability 

of this binder type for concrete as an environment-friendly and economical alternative to 

OPC.   
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Chapter 1 Introduction 

1.1 Background 

The rapid growth of civilization and the phenomenal industrial and technological 

developments of human society over the past few decades have placed unprecedented 

demands on construction materials such as cement. But, production of cement results in 

generation of a significant amount of CO2, a major contributor to the global warming 

(Worrell et al. 2001; Mehta and Monteiro 2006). Manufacturing of cement involves 

heating of raw materials to a very high temperature which makes it a severely energy-

intensive process. Besides, a significant amount of CO2 is produced chemically from 

cement production (Worrell et al. 2001). Moreover, cement industry accounts for about 

5% of the total global CO2-emission (Worrell et al. 2001).  These issues have potentially 

devastating consequences to mankind in the long term if left unchecked. Hence, this is an 

ideal time to focus on increasing sustainability of infrastructural materials through novel 

alternative strategies  with a view to seeking new and innovative ways to manage natural 

resources in a manner that is ecologically sustainable and yet economically viable. With 

this quest, the current study explores synthesis and properties of a novel sustainable 

structural material through carbonation of waste metallic iron dust. The main concept of 

this study is inspired by the idea of CO2-corrosion of, and scale formation in carbon-steel 

pipelines in the oil and gas industry, which is a result of CO2 injection into the oil wells 

to reduce the viscosity of the oil and thus increase oil production. The novel binder 

system provides yet-unheard-of synergistic benefits through: (i) consumption and 

trapping of CO2 from a GHG-emitting industrial operation and subsequent carbonate 

formation, and (ii) providing a means to reduce the overall Ordinary Portland Cement 
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(OPC) production through its complete elimination. Thus, the novel structural binder 

provides an environment-friendly, carbon-negative and economically viable alternative to 

traditional structural materials.  

1.2 Objective 

The main objectives of the present study are 

a) Preliminary investigation on possibility of carbonating metallic iron powder to 

form a sustainable binder. 

b) Determination of optimal mixture proportions and carbonation regime for 

strength based on the study of carbonation efficiency. 

c) Detailed pore- and microstructural characterization of the novel binder. 

d) Investigation of fracture-response of this novel binder through evaluation of 

strain energy release rates and fracture process zone. Also, detailed study on 

fundamental difference in crack-propagation and strain-localization mechanism 

between this novel iron-based binder and hardened cement paste. 

e) Nano-mechanical characterization of individual phases in iron-based novel 

binder using statistical nanoindentation technique and quantification of effective 

homogenized properties using mean-field homogenization theories. 

f) Investigation of high-temperature resistance of novel iron-based binder and 

comparison with traditional OPC. 

g) Evaluation of fundamental modification in crack-propagation mechanism 

imparted by metallic iron powder waste in cement mortars towards enhancement 

of toughness of the material. 



3 

  

1.3 Dissertation Layout  

This dissertation is primarily composed of seven research papers that are published, 

submitted or will be submitted for publication. Some chapters contain additional data that 

are not presented in papers. These papers are presented in Chapter 4-10. Chapter 4-9 

discuss detailed investigation on synthesis and mechanical behavior under various 

loading and exposure conditions whereas Chapter 10 shows effect of metallic iron 

particulate inclusion as OPC-replacement on fracture response of cement mortars. This 

section shows overall organization of the thesis for clarity. 

Chapter 2 consists of extensive literature review on (1) carbonation of metallic particles 

and is effect on mechanical behavior; (2) effect of metallic particulate inclusion on 

mechanical behavior of cement mortars. 

Chapter 3 provides brief description of experimental methodologies and materials used in 

this study. Various instruments were used in different experiments in this dissertation. 

This chapter gives a generalized description on the instruments. Detailed application-

specific information on materials and experimental methods are detailed in individual 

chapters.  

Chapter 4 reports preliminary investigation on synthesis and mechanical behavior of 

novel binder. Effect of source materials on carbonation efficiency and thus strength is 

elucidated.  Optimal mixture proportion and carbonation regime is established.  

Chapter 5 carries out a detailed pore- and microstructural characterization of the novel 

material. The pore-structure is evaluated using mercury intrusion porosimetry and ESEM 

under backscattered mode on plane polished surfaces is used for microstructural 

characterization.  
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Chapter 6 evaluates the fracture-response of the novel binder using compliance-based 

strain energy release rates. A comparison with traditional hardened cement paste is also 

evaluated.  

Chapter 7 shows fundamental difference in crack-propagation mechanism between iron-

based novel binder and hardened cement paste through evaluation of fracture process 

zone (FPZ) characterized by digital image correlation (DIC). In addition geometric 

measurements of FPZ, thus measured, are used in a strain energy release rate-based 

inverse analysis approach applying a crack-face bridging model to predict the tensile 

behavior of the novel binder.  

Chapter 8 evaluates intrinsic nano-mechanical properties of different phases present in 

novel iron carbonate binder using statistical nanoindentation technique. Effective 

homogenized Young’s modulus of the bulk material is also predicted using mean-field 

homogenization theories. Further the results are validated through macro-scale 

experiments. 

Chapter 9 provides response of novel iron-based binder subjected to elevated 

temperatures. A comparison with hardened cement paste and alkali-activated blast 

furnace slag binder is also evaluated. The thermal damage in pore-structure at different 

temperatures is evaluated using MIP and BSE SEM images are used along with elemental 

mapping on plane polished surfaces to assess the comparative microstructural damage at 

different elevated temperatures.  

Chapter 10 investigates fundamental modification in crack-propagation mechanism 

imparted by metallic iron powder waste in cement mortars towards enhancement of 
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toughness. This idea is inspired by the study on effect of unreacted iron particles in iron-

based binder in facilitating microstructural reinforcement explored in Chapter 6 and 7.   
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Chapter 2 Literature Review 

The proceeding literature review is divided into three sections: the first one is on 

possibility of using mineral carbonation as a pathway to form a structural binder; the next 

one is on characterization of fracture behavior of cementitious materials and the last one 

is on constitutive material modelling of cementitious materials. 

2.1 Mineral carbonation as a pathway to form a structural binder  

2.1.1 Background and Overview  

Concrete is the most widely used construction material and it contains cement, water, 

coarse and fine aggregates. The environmental impacts associated with concrete 

production have been studied in detail (Worrell et al. 2001; Mehta and Monteiro 2006) . 

It has been reported that major contributor of greenhouse gas emissions in concrete is 

manufacturing of cement (Worrell et al. 2001; Mehta and Monteiro 2006). Manufacturing 

of portland cement involves heating of raw materials such as limestone and clay in a kiln 

at 1500°C. Thermal decomposition of limestone produces approximately 0.5 ton of CO2 

for every ton of CaO produced (Worrell et al. 2001; Mehta and Monteiro 2006). Besides, 

there is significant amount of additional CO2-emission is associated with high energy 

consumption of the kiln. Cement is currently one of enormously used materials on this 

planet. Human civilization has never used any such material in such tremendous 

quantities except water. Hence, greenhouse gas emissions from cement production can 

make a significant impact due to its large consumption. Cement industry has been 

reported to be responsible for 5% of the global anthropogenic CO2 emissions (Worrell et 

al. 2001). These issues have potentially devastating consequences to mankind in the long 

term if left unchecked. Hence, this is ideal time to focus on sustainability of construction 
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materials. There are three primary ways of enhancing sustainability of construction 

materials: (1) decrease the energy demand associated with cement production (Popescu, 

Muntean, and Sharp 2003); (2) partial replacement of cement with inert fillers such as 

limestone powder or reactive pozzolanic materials such as fly ash and blast furnace slag 

(Vance et al. 2013; Bonavetti et al. 2003; J. J. Chen, Kwan, and Jiang 2014; Berndt 2009; 

Atiş 2002) and (3) 100% replacement of cement using reactive pozzolanic materials 

through alkali-activation (Ravikumar, Peethamparan, and Neithalath 2010; 

Chithiraputhiran and Neithalath 2013). Strategies have been implemented to decrease the 

energy demand by increasing the efficiency of the production plant and by implementing 

a procedure that requires lower temperature to produce cement and use of low-energy 

cement (Popescu, Muntean, and Sharp 2003). But these procedures are not effective in 

obtaining significant reduction in CO2-emission since the CO2-emission in cement 

industry is primarily contributed by calcination of limestone. Another strategy for 

reduction in CO2-emissions is partial replacement of cement with pozzolanic materials 

such as fly ash, blast furnace slag or metakaolin. These pozzolanic materials are 

aluminosilicate materials which chemically react to form additional C-S-H gel. Studies 

have been done on using fine limestone powder as partial replacement of OPC to increase 

sustainability (Vance et al. 2013; Bonavetti et al. 2003; J. J. Chen, Kwan, and Jiang 

2014). Limestone is interground with OPC clinker in the cement manufacturing process 

or blended with the cement during concrete batching. Current ASTM standards allow for 

up to 15% of limestone (by mass) in OPC (Vance et al. 2013). Inter-grinding limestone 

with clinker -provides improved particle packing (Vance et al. 2015; A. Kumar et al. 

2013), while the finer limestone particles in both interground and blended systems act as 
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nucleation sites which enhance the rate of hydration of the OPC phases (Vance et al. 

2013). The incorporation of limestone powder in low water-to-cement ratio (w/c) 

concretes has been shown to provide similar or better strengths to companion OPC 

systems in spite of a reduction in the amount of cement used (Vance et al. 2013). While 

the above-mentioned methods incorporate partial replacement of cement with reactive 

pozzolanic materials or inert fillers, the need to reduce the CO2 footprint of portland 

cement production has motivated studies on several new types of alternative binding 

materials for concrete such as the family of alkali activated aluminosilicate binders 

(Ravikumar, Peethamparan, and Neithalath 2010). These binders generally are alkali-

activated systems that use an alkaline activator, typically sodium hydroxide or sodium 

silicate, along with a silica-and-alumina rich precursor material such as fly ash or ground 

granulated blast furnace slag to synthesize a final product with properties comparable to 

or better than those of ordinary Portland cement concrete (Ravikumar, Peethamparan, and 

Neithalath 2010). However, availability of these raw waste ingredients is limited, 

especially for fly ash, due to enhanced use of natural gas and alternative energy sources 

that may limit operation of coal-fired power plants and thereby limit the availability of fly 

ash (Vance 2014). Hence, this is ideal time to focus on new and innovative ways to use 

existing natural resources to form structural binder in a manner that is ecologically 

sustainable and yet economically viable. With this quest, this study aims at finding a 

novel route to form carbon-negative structural binder by trapping CO2 in metallic 

minerals. The proceeding sections introduce the concept of CO2-minimization through 

mineral carbonation that can be used as an innovative pathway to synthesize a structural 

binder.      
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2.1.2 Mineral carbonation for CO2-minimization  

According to U.S. Environmental Protection Agency (EPA) an average coal-fired power 

plant which produces 4 million MWh of electricity emits about 4 million tons of CO2 

(Oelkers, Gislason, and Matter 2008). Several studies (Flower and Sanjayan 2007; H. 

Yang et al. 2008; M. Schneider et al. 2011; Rehan and Nehdi 2005) over the past two 

decades suggest that the most stable, long-term storage mechanism of atmospheric CO2 is 

the formation of carbonate minerals. Mineral carbonation is the process which captures 

CO2 as stable carbonate minerals, such as calcite (CaCO3), dolomite (Ca0.5Mg0.5CO3), 

magnesite (MgCO3) and siderite (FeCO3) (Oelkers, Gislason, and Matter 2008; Gislason 

et al. 2010; Matter and Kelemen 2009). This route of CO2-capture can be either ex situ, 

as a part of industrial operation or in situ, by injection of CO2 into the geological 

formations where potential minerals are available for carbonation (H. Yang et al. 2008). 

The energy state of mineral carbonate is 60-180 kJ/mol which is lower than that of CO2 

(400 kJ/mol) (M. M. Maroto-Valer et al. 2005; M. Mercedes Maroto-Valer, Tang, and 

Zhang 2005). Hence, CO2-capture in the form of mineral carbonation ensures long-term 

fixation of CO2 rather than temporary storage. This process thus eliminates the risk of 

any accidental release of stored CO2 which may otherwise leak from underground if 

mineral carbonation is not used. 

Mineral carbonation requires reaction of CO2 with metals to form carbonate minerals. 

The required cations include Ca
2+

, Mg
2+

 and Fe
2+

. The most abundant natural source of 

these cations is silicates which are energetically favored to form carbonate minerals 

(Seifritz 1990; Lackner et al. 1995; Lackner 2002). Mineral carbonation reactions, where 

rocks such as Forsterite, anorthite, olivine, serpentine etc. react with CO2 to form 
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carbonate minerals, are observed in nature and in the laboratory (McGrail et al. 2006; 

Giammar, Bruant, and Peters 2005). Although formation of mineral carbonates in such 

process is thermodynamically favorable, it is not straightforward due to mammoth scale 

and slow rate of reaction that reduces the efficiency of the overall process (Oelkers, 

Gislason, and Matter 2008). The natural weathering of rocks to form carbonates happens 

in nature over geological time scales. But, expedition of the process is needed to make 

this process viable. Artificial mineral carbonation was first proposed in a study (Seifritz 

1990) to imitate the natural process. But, in order to accelerate the process, two methods 

were proposed: (1) enhancement of dissolution of mineral ions using stronger acids; (2) 

use of higher CO2-pressure to increase the rate of reaction. Many researchers investigated 

these possibilities (Oelkers 2001; S. A. Carroll and Knauss 2005; Golubev and Pokrovsky 

2006; Oelkers, Gislason, and Matter 2008). With this increment in reaction rates, the 

capacity of CO2-fixaion becomes huge, even though use of strong acid may cause 

problem in reaction facilities and in the environment (Oelkers, Gislason, and Matter 

2008). On the other hand, higher pressure requires additional energy (Oelkers, Gislason, 

and Matter 2008). In order to eliminate the problems regarding use of strong acids, 

organic acids were proposed later which have been observed to accelerate silicate 

dissolution rates (Golubev and Pokrovsky 2006). The mineral carbonation of silicate 

minerals were also studied using mechanical process (Nelson 2004; Oelkers, Gislason, 

and Matter 2008). Silicate minerals such as forsterite, lizardite, wollastonite and synthetic 

minerals such as magnesium silicate were grinded in presence of gaseous CO2 and it 

resulted in a small amount of CO2-fixation. But, this efficiency of this process is limited 

considering energy needed to grind these silicate minerals (H. Yang et al. 2008). 
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Acceleration of carbonation reaction is also investigated through surface-activation 

physically and chemically (M. Mercedes Maroto-Valer, Tang, and Zhang 2005; M. M. 

Maroto-Valer et al. 2005). Significant improvement in carbonation efficiency with 

surface-activation was reported. Results of all the above mentioned literatures in this 

section suggests that fine minerals (bearing Ca2+, Mg2+, Fe2+ etc.) with large surface 

area can produce carbonates in realistic timescale using organic acids to augment the rate 

of reaction. Another very interesting fact is that the secondary carbonate rocks formed 

during mineral trapping perform very well under both compression as well as tension 

(Hobbs 1964; Hobbs 1967; Herget and Unrug 1976). This opens up the possibility of 

using fine waste iron powder from industrial shotblasting facility in steel plants as a 

cationic source to perform mineral carbonation with a view to form a structural binder 

which is studied in detail in this dissertation. This shot-blasted iron powder waste is 

generated in significant amount during manufacturing process of steel as bag house dust. 

This dust is typically extracted by the air pollution control system on Electric Arc 

Furnace (EAF). The traditional means of disposing of EAF dust is at a waste landfill site 

as it is not economically feasible to recycle back iron from the dust. The proceeding 

section sheds light on some comprehensive literatures that deals with carbonation of iron 

to better-understand its potential to be used for mineral carbonation for binder formation.    

2.1.3 CO2-corrosion of steel in oil and gas industry 

CO2-corrosion and carbonate film formation in steel pipelines were first observed in oil 

and gas industry.  Since then, several researchers have published many articles on 

evaluation of the mechanism of this scale-formation which served as background 

knowledge in this dissertation towards synthesis of carbonate from waste iron powder. 
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This section highlights several aspects of CO2-corrosion, reported in the literature, which 

are beneficial in development of the novel binder.   

2.1.3.1 Background 

With increasing energy-demand, new sources of oil and gas are increasingly explored in 

harsher environments in deep high temperature/pressure conditions (M. B. Kermani and 

Morshed 2003). These have created challenges in terms of economy of the project, 

maintenance exploration facilities. The CO2-corrosion of carbon steel pipelines and 

equipment in the oil and gas industry (M. B. Kermani and Morshed 2003), therefore, 

remains a major obstacle, due to increased tendency to inject CO2 into the oil wells to 

reduce the viscosity of the oil to increase the efficiency of the oil production and thereby 

reduction of project cost. The following sections report on several key aspects of CO2-

corrosion of steel that are necessary to assess the potential of using fine iron powder 

waste to be beneficially carbonated for binder formation.  

2.1.3.2 CO2-corrosion mechanism 

In the CO2-containing environment there are various species that are present such as H
+
, 

CO3
2-

, HCO3
-
, H2CO3 etc. Hence, the electrochemical process becomes complicated. The 

electrochemical process is greatly influenced by pH of the solution. At lower pH 

(pH<4.0), reduction of H
+
 becomes dominant cathodic process (Equation                                                          

2-1). However, as the pH increases (pH 4.0-6.0) the dominant cathodic reaction is 

switched to reduction of HCO3
-
 and H2CO3 (Equation 2-2 and                                         

2-3) (J. B. Sun et al. 2012). 

22 2H e H                                                              [2-1] 
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2 3 3 22 2H CO e HCO H                                           [2-2] 

2

3 3 22 2 2HCO e CO H                                             [2-3] 

The anodic reaction includes dissolution of iron as follows: 

2 2Fe Fe e                                                                 [2-4] 

Here Equation 2-4 consists of three steps (J. B. Sun et al. 2012) 

2Fe H O FeOH H e                                               [2-5] 

FeOH FeOH e                                                         [2-6] 

2

2FeOH H Fe H O                                                 [2-7] 

Now, FeCO3 can form when concentrations of Fe
2+

 ions and CO3
-2

 ions exceed the 

solubility product of FeCO3 (J. B. Sun et al. 2012): 

2 2

3 3Fe CO FeCO                                                          [2-8] 

2

3 3Fe HCO e FeCO H                                             [2-9] 

There are several other CO2-corrosion mechanism reported (M. B. Kermani and Morshed 

2003). However, irrespective of the mechanism type the concentrations of dissolved CO2 

in solution and the mass transport of dissolved CO2 to the steel surface have a great 

influence on carbonation efficiency (M. B. Kermani and Morshed 2003).  

2.1.3.3 Factors influencing CO2-corrosion of steel 

The rate of CO2-corrosion is influenced by a number of parameters including 

environmental, physical and metallurgical parameters. The effects of these factors are 

sufficiently described in detail by a number of authors (M. B. Kermani and Morshed 

2003).  The key factors influencing the rate of CO2-corrosion are: (1) pH of solution, (2) 
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CO2-concentration, (3) temperature, (4) pressure, (5) morphology of steel surface, (6) 

fluid dynamics involving transport of CO2 to the steel surface and (7) steel chemistry. All 

these parameters are inter-dependent and can influence CO2-corrosion. Effect of these 

parameters on corrosion rate is described in detail elsewhere (M. B. Kermani and 

Morshed 2003). Here, these effects are mentioned briefly. The influential parameters are 

shown in Figure 2-1.   

While there are still debates on which ionic species are involved in corrosion reaction, it 

is evident that the resulting cathodic reaction is influenced by partial pressure of CO2 and 

temperature. For a given temperature, partial pressure of CO2 determines the pH of 

solution and concentrations of different species in the solution (M. B. Kermani and 

Morshed 2003). 

 

Figure 2-1 Parameters influencing CO2-corrosion (M. B. Kermani and Morshed 2003) 
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Supersaturation plays a key role in determining the stability of protective layer. For a 

ionic dissolution AB=A
+
+B

-
, the supersaturation is defined as “log[A

+
][ B

-
]/Ksp  where 

Ksp is the solubility product . High concentrations of A
+
 and B

-
 leads to precipitation of 

corrosion layer through various mechanisms (M. B. Kermani and Morshed 2003) such as: 

(1) diffusion barrier i.e. diffusion length between the metal substrate and corrosive 

medium, (2) formation of low-porosity layer, (3) creation of concentration gradients of 

the main species (Fe
++

 and HCO3
-
). The supersaturation is reported to be influenced by 

rate of iron dissolution (Dugstad 1992; M. B. Kermani and Morshed 2003). 

Supersaturation is achieved at much lower Fe
++

 concentrations with increasing 

temperature facilitating precipitation of FeCO3 (Figure 2-2). 

 

Figure 2-2 Fe
++

 solubility in pure water at 0.1 MPa partial pressure of CO2 as a function 

of solution temperature (Dugstad 1992) 

 

The operating temperature strongly affects the corrosion process. The corrosion rate is 

reported to be increasing with increase in temperature up to 80°C as the possibility of 

supersaturation is progressively increased at lower iron dissolution as explained earlier. 

Figure 2-3 shows effect of temperature on corrosion rate. 
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Figure 2-3 Effect of temperature on CO2-corrosion (de Waard, Lotz, and Milliams 1991; 

M. B. Kermani and Morshed 2003)  

 

 Besides, increasing corrosion rate with increasing temperature in the low-temperature 

range has been attributed to increased mass-transfer rate as a consequence of flow rate 

and slow iron carbonate formation (M. B. Kermani and Morshed 2003). Above 80°C 

solubility of iron carbonate in the solution decreases (M. B. Kermani and Morshed 2003) 

and iron carbonate is precipitated due to supersaturation. The corrosion rate diminishes 

due to formation of protective layer as the diffusion process becomes dominant which is 

slow in nature (M. B. Kermani and Morshed 2003). Besides, localized corrosion occurs at 

sites where the surface film breaks or a nonprotective layer is formed (M. B. Kermani 

and Morshed 2003).  

The effects of partial pressure of CO2 are also influential as it controls CO2-concentration 

and pH of the solution up to a great extent. The general rule of thumb criteria for 

corrosion of carbon or low-alloy steel is given as (M. B. Kermani and Morshed 2003): (1) 

if PCO2 < 0.5 bar (7 psi), corrosion is unlikely implying corrosion is uniform and rate of 

corrosion is very low (0.1 mm/y); (2) if 0.5 bar (7psi) < PCO2 < 2 bar (30 psi), corrosion is 

possible with a rate in between 0.1-1 mm/year; (3) if PCO2 > 2 bar (30 psi), corrosion is 
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likely with corrosion arte exceeding 1mm/year implying severe damage is expected. 

These effects are described in detail in (M. B. Kermani and Morshed 2003). 

Solution pH plays a key role in CO2-corrosion of steel as it influences both 

electrochemical process as well as the surface film formation. The surface film formation 

governs the electrochemical process as well as it deals with transport of CO2 to the steel 

surface. It has been reported that solubility of Fe
++ 

reduces with increase in pH (M. B. 

Kermani and Morshed 2003).  The solubility of Fe
++ 

reduces five times when pH is 

increased from 4 to 5 and it is reduced 100 times when pH is increased from 5 to 6. If the 

pH is increased above 5, reduction in solubility of Fe
++ 

results in higher supersaturation, 

which increases the corrosion rate and thus protective layer if formed. The protective 

layer lowers the corrosion rate as it facilitates dominance of diffusion-controlled process 

(M. B. Kermani and Morshed 2003). 

It has been reported that organic acids significantly influence and complement CO2-

corrosion (M. B. Kermani and Morshed 2003).  Organic acids are shown to aid CO2-

corrosion by reducing the protectiveness of the films and thereby increasing the 

sensitivity to attack (Joosten et al. 2002; M. B. Kermani and Morshed 2003). Significant 

reduction in the film-stability was observed in many studies (Crolet 1985; Garsany et al. 

2002; Hedges, McVeigh, and others 1999; M. B. Kermani and Morshed 2003). It has also 

been reported that presence of organic acids tend to solubilize the dissolving iron ions 

and hinder the formation of the film which can otherwise passivate the iron surface 

reducing the rate of corrosion (Crolet 1985; Garsany et al. 2002; Hedges, McVeigh, and 

others 1999; M. B. Kermani and Morshed 2003). Another study (Crolet, Thevenot, and 

Nesic 1998) reports that at a given pH the solubility of iron increased significantly when 
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bicarbonate of some concentration is replaced by equal quantity of acetate. Overall, the 

presence of organic acids caused considerable about of increase in corrosion rates (M. B. 

Kermani and Morshed 2003; Crolet, Thevenot, and Nesic 1998; Crolet 1985; Garsany et 

al. 2002; Hedges, McVeigh, and others 1999). This information is beneficial towards 

reducing the timescale of mineral carbonation for binder formation which is detailed 

later. 

CO2-corrosion is shown to occur when water is present and wets the steel surface and the 

intensity of CO2-corrosion attack increases with increase in water-exposure time (Rolf 

Nyborg and others 2002; de Waard, Lotz, and Milliams 1991; Dugstad and others 1998; 

B. Kermani and Smith 1997). It is well known that oil/water systems can form emulsions. 

The rate of corrosion reduces in case of water-in-oil emulsions as it prevents water-

wetting of steel (Lotz, Van Bodegom, and Ouwehand 1991). On the other hand, the 

corrosion rate has been shown to increase in case of formation of oil-in-water emulsions 

(Lotz, Van Bodegom, and Ouwehand 1991; M. B. Kermani and Smith 1997; M. B. 

Kermani and Morshed 2003).   

Wax layer formed in the pipelines have been shown to be influential in CO2-corrosion of 

steel. The effect can be damaging or protective based on nature of wax layer (M. B. 

Kermani and Smith 1997; M. B. Kermani and Morshed 2003). Crude oil has also been 

found to be influential in CO2-corrosion of steel. It has been reported that crude oils 

modify the morphology, composition and compaction of corrosion products (Choi, 

Tonsuwannarat, and others 2002; M. B. Kermani and Morshed 2003). It destabilizes the 

corrosion layer and aids localized corrosion. Metallurgical compositions of steel have 

also been shown to influence the CO2-corrosion process (Rolf Nyborg et al. 2000). 



19 

  

Increase in Chromium and Molybdenum in steel have been found to reduce the 

corrosion-potential (Ikeda 1985; Rolf Nyborg et al. 2000; M. B. Kermani and Morshed 

2003). High Sulphur containing steel has been reported to have higher corrosion potential 

than low Sulphur containing steel (M. B. Kermani and Morshed 2003). 

Information provided in this section regarding influence of different factors on CO2-

corrosion potential is employed towards development of novel structural binder through 

carbonation or waste iron particles which are detailed later. 

2.1.3.4 Carbonate surface film formation  

CO2-corrision of steel is strongly dependent on the morphology of the surface film 

formed during corrosion process. Hence, it is not only the thickness, but also the structure 

and morphology of the surface film controls the corrosion rate (M. B. Kermani and 

Morshed 2003). The formation of iron carbonate scale is strongly dependent on the 

thermodynamics and kinetics of iron carbonate precipitation and supersaturation plays a 

key role in this respect as explained earlier. A high supersaturation of iron carbonate is 

required for formation of protective layer at low temperatures (M. B. Kermani and 

Morshed 2003; Dugstad 1992). The precipitation process is reported to be comprised of 

two steps: nucleation and growth (M. B. Kermani and Morshed 2003). The dominating 

step is determined by the morphology of the surface film formed (M. B. Kermani and 

Morshed 2003; Rolf Nyborg et al. 2000). Iron carbonate reduces the corrosion rate by 

reducing the film porosity without altering local phase compositions or concentration 

gradients (M. B. Kermani and Morshed 2003). Figure 2-4 shows the SEM surface 

morphologies of the corrosion scale formed on the low alloy steel surface after exposure 

to CO2-saturated water. 
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Figure 2-4 Figure : SEM surface morphologies of the surface film formed on low alloy 

steel after potentiostatic polarization in carbon dioxide-saturated formation water for: (a 

and b) 0.25 h; (c) 0.5 h; and (d) 1 h. (J. B. Sun et al. 2012) 

 

Growth of iron carbonate scale is a slow temperature-dependent process as explored 

earlier. Increasing temperature within the threshold limit improves not only the 

protectiveness of the scale, but also adhesion and hardness of the film (M. B. Kermani 

and Morshed 2003). Maximum rate of corrosion has been observed from 60°C to 70°C 

and beyond 70°C the rate drops due to increasing protectiveness of the surface film 

formed (M. B. Kermani and Morshed 2003). Another study (Videm et al. 1996) found 

that the lowest temperature, necessary to reduce corrosion rate significantly, was 50°C. 

Several other studies (Dayalan et al. 1995; R. Nyborg and Dugstad 1997) reported that 

protectiveness of the surface film drops significantly at lower temperatures (<60°C) and 

iron carbide film is predominantly formed. Another study (SHANNON 1976) reported 

some key findings on characteristics of corrosion film/layer such as: (1) at 75°C, 1 bar 
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CO2-Pressure and at a pH range of 5.6-6.3, the corrosion film mainly consisted of iron 

carbonate. ; (2) Perfectly rhombohrdric iron carbonate (siderite) crystals were found; (3) 

he film was few microns thick and was formed after 24 hours of exposure; (4) periodic 

exposure to atmosphere (oxygen) provided improved scale adhesion and hardness; (5) 

similar immersion of 99.5% pure iron into CO2-saturated water produced a patchy 

cracked and loosely adherent iron carbonate scale which was attributed to the absence of 

carbide network in the pure iron; (6) the scale formation is influenced by solution 

chemistry also. Scale formed in distilled water was very loose whereas water containing 

Mg
2+

 ion was shown to provide increased adhesion; (7) the nucleation and growth of iron 

carbonate scale is a slow temperature dependent process and any environmental change 

has significant influence on the precipitation process and thereby on corrosion rate. 

2.1.3.5 Summary of literature review on CO2-corrosion of steel 

This overview of the above literature review on CO2-corrosion of steel has led to a 

number of key points which are beneficial towards development of the novel binder 

formed based on iron carbonation. 

(1) Nucleation and growth of iron carbonate is a slow temperature dependent process 

and any environmental change has significant influence on the precipitation 

process and thereby on corrosion rate. 

(2) Rate of carbonation of steel increases with temperature. But, increased 

temperature also increases protectiveness of the iron carbonate layer. The 

protectiveness of the surface film drops significantly at lower temperatures 

(<60°C) and the lowest temperature, necessary to reduce corrosion rate 

significantly is about 50°C. 
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(3) At temperatures less than 60°C, higher concentrations of Fe
++

 is needed in order 

to obtain supersaturation and thereby precipitation of iron carbonate. Hence, in 

order to increase Fe
++

-concentrations some reagents are needed that facilitates 

dissolution of iron. 

(4) The rate of iron carbonation increases with increase in CO2 partial pressure. At 

ambient pressure higher concentration of Fe
++

 is needed. 

(5) An organic reducing agent is needed to facilitate better dissolution of the metallic 

iron and enhance its reactivity. Thus the rate of reaction can be significantly 

increased. 

(6) pH in the range 5.8-6.3 is necessary to form iron carbonate precipitations.  But, it 

should be noted that high pH in combination with high temperature provides very 

protective layer that inhibits further ingress of CO2 into the steel substrate. 

(7) Pure iron exposed to CO2-saturated water produces a patchy cracked and loosely 

adherent iron carbonate scale. Hence, filler materials are needed in order to 

decrease the porosity for development of novel binder. 

(8) Presence of water is necessary as it acts as a transport medium for CO2. 

2.1.4 Carbonation of iron for development of a novel carbon-negative binder 

The section evaluates the information obtained from the extensive literature review on 

mineral carbonation and carbonation of steel in the previous sections towards developing 

a novel pathway for binder formation using carbonation of waste iron powder. The 

fundamental premise of this study is that metallic iron powder can be carbonated (in 

anoxic conditions, with oxidation inhibiting additives) to produce a strong, durable, and 

microstructure-designed multi-phase composite. The attempt of this study is to engineer 
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the material (from a viewpoint of both the source materials used and the processing 

conditions) to pave the way for its large-scale production and implementation, especially 

in special engineering applications. The chemical pathway that is being relied upon in the 

material design process of iron carbonate matrix are the anodic dissolution of iron, and 

the cathodic proton reduction and reduction of carbonic acid (Singer and Stumm 1970; 

M. B. Kermani and Morshed 2003).  

2

2 2 3 22 2Fe CO H O Fe HCO H                                  [2-10] 

2

3 3 2 22Fe HCO FeCO CO H O                                   [2-11] 

 

Figure 2-5: Influence of (a) Ph and (b) CO2 partial pressure on Fe
+2

 concentration in the 

solution and the precipitation potential 

 

The above reaction mechanism is similar to that of iron carbonate scale formation in steel 

pipes carrying oil and gas, which is a multi-billion dollar problem for the oil and gas 

industry (M. B. Kermani and Morshed 2003; Tomson, Johnson, and others 1991; Rolf 

Nyborg 2005; Koteeswaran 2010; El-Lateef et al. 2012; Allison 2012; Linter and 

Burstein 1999). In this research, this deleterious mechanism is put into beneficial use as 

an attractive and sustainable processing route for binding matrices. When CO2 dissolves 

in water, it forms carbonic acid (H2CO3), which quickly dissociates into H
+
 and HCO3

-
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ions. H2CO3 is very effective in its attack on iron and is more corrosive than HCl at the 

same pH (Bruno, Wersin, and Stumm 1992). Iron will bond with the bicarbonate ion and 

precipitate as iron carbonate (FeCO3) which has low solubility in water (W. Sun 2006; 

Bénézeth, Dandurand, and Harrichoury 2009; Ohmoto, Watanabe, and Kumazawa 2004). 

This simple reaction series, which proceeds under ambient conditions, and which can be 

accelerated using other additives, highlights the application potential of iron carbonates. 

The necessary condition for the precipitation of FeCO3 is that the concentrations of Fe
2+

 

and CO3
2-

 ions exceed their solubility limits (Ohmoto, Watanabe, and Kumazawa 2004). 

Typical iron carbonate precipitation diagrams (Figure 2-5a and b) show the influence of 

pH and CO2 partial pressure on Fe
2+

 concentration and hence the precipitation of iron 

carbonate (Johnson 1991; Kemp 1971; J. J. Carroll and Mather 1992; Lower 1999; Han, 

Brown, and Nešic 2010). A low pH induces better dissolution of Fe
2+

 but as the carbonate 

ions in solution are consumed towards the formation of iron carbonate, precipitation of 

the reaction product ensues. If the CO2 partial pressure exceeds 2 bars, for any Fe
2+

 

concentration greater than 1 ppm, iron carbonate will theoretically precipitate (Han, 

Brown, and Nešic 2010). Increasing iron solubility (through dissolution agents) results in 

product precipitation at atmospheric pressure itself. These figures provide general 

guidelines on the synthesis conditions required for the production of iron carbonate 

binders. It however needs to be remembered that thermodynamics only dictates if iron 

carbonate can precipitate out of the solution; it is the kinetics that determines the extent to 

which it forms. Precipitation happens on the particle surfaces and the reaction rate 

reduces with time because the reaction product acts as a diffusion barrier for the 

dissolved CO2 (Do 1982; Ar and Doğu 2001).  Incomplete reaction, that retains a strong 
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iron core inside the carbonate reaction product, is a desired outcome as will be shown 

later in this proposal. However, it should be remembered that the iron carbonate binder is 

very different from the OPC-based binders with respect to the reaction mechanisms, 

kinetics, and products; the role played by water in the reaction sequence and the reaction 

rates being important determinants of properties. Water is not bound to the reaction 

products in iron carbonate, and is electrolyzed to H2 which is released (Koteeswaran 

2010), influencing the microstructure. 

2.2 Fracture-behavior of cementitious materials 

Fracture mechanics is a branch of solid mechanics that involves evaluation of the 

behavior of the materials in the vicinity of a crack and at the crack tip. Linear elastic 

fracture mechanics (LEFM) has been applied by researchers since the earlier works of 

Griffith, Orowan and Irwin (Griffith 1921; Orowan 1948; Irwin 1958). LEFM has been 

successfully employed by researchers and engineers for safe design of engineering 

materials and for development of new materials based on fracture energy- microstructure 

relationship. Many brittle ceramics and high strength metals are adequately characterized 

by LEFM using single parameter like stress intensity factor. However, its application in 

cementitious materials such as cement paste, mortars and concrete has not been 

successful due to development of a tension-softening area or damage zone at the tip of 

the notch. Hence, cementitious composites are termed as ‘quasi-brittle’. The success of 

application of LEFM in these materials depends on appropriate consideration of damage 

zone. The crack-tolerance of such quasi-brittle materials is greatly influenced by the 

nature of stress transfer in the fracture process zone (FPZ). This complex nature of strain 

localization in the main crack as well as various branches of secondary cracks and micro-
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cracks is a major contributor to the non-linearity in quasi-brittle material fracture. The 

FPZ dissipates substantial energy through various mechanisms such as micro-cracking, 

crack-deflection, crack bridging, crack-tip blunting, and crack-branching, thereby 

facilitating steady-state crack propagation in the pre-peak load region and prevention of 

catastrophic failure of structures after the peak load capacity is exceeded (Shah 1995a).  

Hence this study addresses the crack propagation mechanisms in novel iron carbonate 

binder and particulate reinforced OPC systems through monitoring the strain softening 

and strain localization behavior using the concept of FPZ. The dimensions of the FPZ and 

its evolution with load (and crack mouth opening displacement (CMOD), in a CMOD-

controlled regime) are complex functions of the matrix microstructure and provide 

valuable information on matrix contributions to crack propagation and energy dissipation.  

While several experimental techniques such as high speed photography (Bhargava and 

Rehnström 1975), acoustic emission (Haidar et al. 2005; Carpinteri and Lacidogna 2003; 

Maji, Ouyang, and Shah 1990), scanning electron microscopy (SEM) (Mindess and 

Diamond 1980; Hadjab.S, Chabaat, and Thimus 2007; Nemati 1997; X. Hu and 

Wittmann 1990), and laser-speckle interferometry (Jia and Shah 1994; Horii and 

Ichinomiya 1991) have been used to investigate FPZ in concretes, this study employs a 

non-contact digital image correlation (DIC)-based speckle-tracking method (Yates, 

Zanganeh, and Tai 2010; Nunes and Reis 2012a; Roux, Réthoré, and Hild 2009; 

Skarżyński, Kozicki, and Tejchman 2013; Skarżyński, Syroka, and Tejchman 2011; Das, 

Aguayo, et al. 2014; Das, Hendrix, et al. 2014c; Skarżyński and Tejchman 2013) to 

assess the surface displacements and strains, and thus the width of the FPZ.  More 
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application-specific information on fracture behavior are provided later in subsequent 

chapters in detail. 

2.3 Micro/Nano-mechanical characterization towards development of constitutive 

material model for cementitious materials 

This section first discusses information obtained from literature on determination of 

nano-mechanical properties using nanoindentation. Application of nanoindentation on 

heterogeneous materials is elucidated. In addition, information on constitutive material 

modelling techniques for heterogeneous materials such as concrete is provided with a 

view to develop a constitutive material model for novel iron carbonate binder which is 

highly heterogeneous in nature as explored later.    

2.3.1 Nanoindentation: 

Indentation has been most commonly used technique for determination of mechanical 

properties of materials. During the early 1970s the potential of measurement of elastic 

modulus from indentation load-displacement curve was established (Bulychev et al. 

1975; Li and Bhushan 2002) which promoted development of instrumented indentation 

testing technologies (Li and Bhushan 2002). During the past three decades, the scope of 

indentation testing has been extended to nanometer range motivated partly by 

development of nano-composites, nanometer thick films and due to newly available 

techniques of probing mechanical properties in small volumes (Bhushan 2010; Oliver and 

Pharr 1992; Pharr 1998; Li and Bhushan 2002). Among all the available materials, 

diamond is the most frequently used material because of its high hardness and elastic 

modulus to minimize the contribution of indentation itself on the indentation load-

displacement data (Li and Bhushan 2002). There are several shape of indenter available 
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such as four-sided Vickers, Knoop indenter, Berkovich triangular pyramidal indenter etc. 

Among these, Berkovich triangular pyramidal indenter is preferred over others as three 

sided pyramid is easily grounded to a sharp point (Tabor 1951; Bhushan 2010; Oliver and 

Pharr 1992). There are primarily two methods available for determination of Young’s 

modulus from nanoindentation: (1) traditional Oliver-Pharr method (Oliver and Pharr 

1992) and (2) Continuous stiffness measurement (CSM) (Li and Bhushan 2002). 

2.3.1.1 Oliver-Pharr method: 

This method uses slope of initial portion of unloading curve to obtain the Young’s 

modulus. Figure 2-6 shows a typical load-displacement curve during indentation 

followed by withdrawal. Here maxh represents displacement at peak load, ch is the contact 

depth, fh is the final displacement after full unloading and S is the initial unloading 

stiffness i.e S dP dH .  

 

Figure 2-6: Typical load-displacement curve during and after nanoindentation (Oliver and 

Pharr 1992; Li and Bhushan 2002)  
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A geometry-independent relationship between contact stiffness, contact area and elastic 

modulus is given as (Sneddon 1965): 

2 r

A
S E


                                                    [2-12] 

Where  is a constant which depends on geometry of indenter (  =1.034 for Berkovich 

indenter) (Oliver and Pharr 1992) and rE is the reduced elastic modulus given as: 

22 11 i
T

i

E
E E

 
                                               [2-13] 

Where,  and E are Poisson’s ratio and Young’s modulus of the sample; i and iE are 

Poisson’s ratio and Young’s modulus of indenter (for diamond, i =0.07 and iE = 1141 

GPa). The elastic modulus of the sample can be calculated using Equation                                                    

2-12 and 2-13 with available stiffness data and projected area which is given as (for 

Berkovich indenter): 

2 1 1/2 1/4 1/128

1 2 3 824.56 ...c c c c c cA h C h C h C h C h                           [2-14] 

 

Where C1-C8 are constants. The lead term in the above equation corresponds to perfect 

Berkovich indenter and others take into account the blunting of the tip (Oliver and Pharr 

1992).  

The Oliver-Pharr methodology works well for hard ceramics (Li and Bhushan 2002). 

However it underestimates the area as much as 50% for softer materials. Again this 

methodology requires multiple loading-unloading process at different depths separately 

in order to obtain depth-dependent properties and thus there was need for a continuous 

measurement technique. That’s why, the continuous stiffness measurement (CSM) 

method was introduced. 
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2.3.1.2 Continuous stiffness measurement (CSM): 

While the traditional Oliver-Pharr methodology (Oliver and Pharr 1992) measures the 

contact stiffness only at the point of unloading, the CSM technique allows measurement 

of contact stiffness at any point of the loading curve corresponding to any depth of 

penetration. In the CSM technique a small sinusoidal signal is imposed over the DC 

signal. For a given excitation frequency, the displacement response (Figure 2-7(a)) and 

the phase angle are measured continuously as a function of depth.  

 

Figure 2-7: Schematic of (a) CSM loading cycle, (b) dynamic indentation model (Li and 

Bhushan 2002) 

 

For quantification of contact stiffness the dynamic response of the indentation system is 

needed to be determined. Figure 2-7(b) shows a schematic of dynamic indentation model 

used for evaluation of dynamic response. The model involves mass, m of the indenter, 

spring constant KS, leaf springs that support the indenter Kf , contact stiffness S,  and 

damping coefficient C for air in the gaps of capacitor displacement sensing system. For 

an imposed driving force 
i t

OSP P e  and displacement response
( )

0( ) i th h e    , the 

contact stiffness can be obtained from displacement signal (Li and Bhushan 2002). 

(a)
(b)
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Where OSP is the magnitude of the force, ( )h  is the magnitude of the displacement, 

is the frequency of oscillation and   is the phase angle between the force and the 

displacement. Equation 2-15 and 2-16 can be solved for contact stiffness and damping. 

Obtained contact stiffness is given as: 
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                            [2-17]  

The obtained contact stiffness, thus obtained, corresponding to any displacement at any 

depth can be used in Equations 2-12 and 2-13 to obtain the Young’s modulus of the 

material.  

2.3.1.3 Application of nanoindentation on heterogeneous cementitious materials: 

Nanoindentation is a powerful tool to measure local mechanical properties of materials. 

This technique was developed for investigation of local mechanical properties of 

homogeneous materials. But, many engineering materials especially structural materials 

such as concrete exhibits heterogeneity spread in different length scales (nanometer to 

meters). Hence, determination of intrinsic mechanical properties of different phases at 

different length scales becomes important in order to assess its bulk mechanical 

properties. Nanoindentation has been a widely used technique to measure local 

mechanical properties of cement paste at micron level. Several authors have reported 
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indentation results on cement (G. Constantinides, Ulm, and Van Vliet 2003; Sorelli et al. 

2008; Mondal, Shah, and Marks 2007; Zhu et al. 2007; Pelisser et al. 2013; C. Hu and Li 

2014; Hughes and Trtik 2004; Davydov, Jirásek, and Kopeckỳ 2011). Stiffness of 

calcium hydroxide (CH) and two different types of CSH (low density and high density) is 

reported (G. Constantinides, Ulm, and Van Vliet 2003). Figure 2-8 displays 

nanoindentation results on CSH. Low density CSH has a mean stiffness of 21.7 GPa 

whereas high density CSH exhibits a stiffness of 29.4 GPa (Georgios Constantinides and 

Ulm 2004; G. Constantinides, Ulm, and Van Vliet 2003).  These properties are reported 

to be material properties that are independent of mixture proportions (G. Constantinides, 

Ulm, and Van Vliet 2003).    

  

Figure 2-8: Histogram of Young’s modulus for CSH in hydrated cement paste (Georgios 

Constantinides and Ulm 2004; G. Constantinides, Ulm, and Van Vliet 2003) 

 

Several other studies also evaluated nano-mechanical properties of cement paste at 

different w/c ratios and at different curing age (Georgios Constantinides and Ulm 2004; 

Hughes and Trtik 2004; Zhu et al. 2007; Georgios Constantinides and Ulm 2007; Howind 

et al. 2011). Most of these studies used statistical nanoindentation technique to 

deconvolute the mechanical properties of individual phases from a large number of 

indentation tests on polished surface of hardened cement paste. Effect of penetration 
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depth on nano-mechanical properties has also been evaluated (Davydov, Jirásek, and 

Kopeckỳ 2011). It has been reported that general shift of NI results are observed with 

increase in penetration depth due to surface roughness. It has also been reported that the 

depth of penetration should be at least equal to the size of RVE in order to capture 

representative properties (Davydov, Jirásek, and Kopeckỳ 2011). Similar methodology, 

based on depth sensing nanoindentation and statistical deconvolution of individual phase-

properties, has been adopted in this study to evaluate intrinsic nano-mechanical properties 

of individual phases in heterogeneous iron-based novel binder as reported in detail in this 

dissertation. 

2.3.2 Development of constitutive material model for cementitious materials 

Evaluation of the constitutive relation of concrete is a challenging and complicated task 

since concrete has a variety of microstructures and no single distinctive one. Usually the 

macroscopic behavior of concrete is modeled by plastic constitutive relations (Drucker 

and Prager 2013; Riedel et al. 1999) and the material is assumed to be homogeneous. 

Several empirical constitutive models based on experimental data are reported 

(Bencardino et al. 2008; Graybeal 2007; Thomas and Ramaswamy 2007). However the 

microstructural inhomogeneity is completely neglected in these models. A closer look 

reveals that concrete has heterogeneous microstructure and the nonlinear behavior of 

concrete is attributed to the initiation, propagation, accumulation and coalescence of 

micro-cracks. Thus coupling of microstructure and macroscopic properties are needed to 

appropriately model the concrete behavior and multiscale modelling becomes vital.     

With the advent of parallel computing power, simulation-based design and analysis were 

emerged, and multiscale modelling became a key tool for characterization of structure-
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property relation down to atomic level (Horstemeyer 2010; Byun and Schere 2006; 

Andersson, Yuan, and Sundén 2010; Macklin et al. 2009; Formaggia et al. 1999; Kanouté 

et al. 2009). This method produces simulation-based precise and accurate property 

predictions eliminating the need for large scale expensive tests.  

Essentially, the idea of simulation-based design/analysis as a substitute to large scale tests 

became more popular after comprehensive test ban treaty of 1996, in which many 

countries promised to discontinue large scale system level tests. With this perspective, the 

experiments shifted from large scale tests to multiscale tests to provide validation of 

material models at different length scales and the simulations were being performed 

based on physical characteristics rather than being empirical. The rapid growth in the 

capabilities of parallel computing helped the development of multiscale modeling 

research since more number of degrees of freedoms can be solved under parallel 

computing environment and it leads to more precise and accurate property prediction.  

Multiscale modelling has been used in the field of solid mechanics effectively (Atluri 

2004; Zienkiewicz and Taylor 2005; Qian et al. 2002; Bazant and Jirásek 2002; Van 

Houtte et al. 2006). While the modern continuum theories are driven by conservation of 

mass, momentum and energy, there are too many unknowns than the number of equations 

available. Hence, constitutive relations are required to solve differential equations using 

finite element analysis. There are many postulates that guide the development of 

multiscale constitutive theory: objectivity, physical admissibility, equipresence and 

locality.  Among all these, the multiscale modeling has historically driven by physical 

admissibility which essentially means identification of discrete microstructural feature 
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that is the main source of phenomenological behavior at the macro scale (Horstemeyer 

2010). 

Two different methodologies are there in the solid mechanics continuum theory: 

hierarchical and concurrent. In the hierarchical method the numerical techniques are 

independently run at different length scales and a bridging mechanism such as 

homogenization technique is used to relate a property in a small scale to that at larger 

scales. There are multiple ways of multiscale-bridging in hierarchical technique although 

the use of thermodynamically constrained internal state variables (ISVs) is most popular 

(Clerk-Maxwell 1875; Onsager 1931a; Onsager 1931b; Eckart 1948). This is a top-down 

approach i.e. ISVs exist in the macro scale and they can reach down to subscales to 

obtain property. ISV formulation captures the effects of a representative volume element 

and hence ISVs provide macroscopically average of microscopic arrangement. The 

hierarchical method can also be coupled or uncoupled. The uncoupled hierarchical 

method is characterized by bottom up staggered strategy which is information transfer 

only from fine scale to the coarse scale whereas the coupled hierarchical method involves 

data exchange in both directions i.e. fine and coarse scale for each time/load step. In the 

uncouple hierarchical method the effective material properties are obtained by averaging 

the structural response of the heterogeneous material in the fine scale representative 

volume element (RVE) (Lloyd 1994; Elssner, Korn, and Ruehle 1994; Griffith 1921; 

Robertsausten 1887; McClintock 1968). Historically, analytical models such as isostress, 

isostrain or  Hashin-Shtrikman models (Horstemeyer and Ramaswamy 2000; 

Horstemeyer et al. 2000; Potirniche et al. 2006) are used to obtain effective material 

properties although these models do not include important features such as phase 
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geometry and spatial distribution of phases . Besides, assuming a uniform strain does not 

ensure equilibrium in the tractions in the phase boundaries and on the other hand, 

uniform stress model implies that the matrix and the inclusions are not bonded together. 

Although some analytical models have been developed (Nemat-Nasser and Hori 1999; 

Mura 1987; Aboudi 1991) to take particle shape and spatial distribution into account, 

most of them are restricted to spherical particle shape. Numerical homogenization 

schemes (Varvara Kouznetsova, Geers, and Brekelmans 2002; Toro et al. 2014; T. Zohdi 

et al. 1998) are required for more complex shapes. Uncoupled homogenization 

techniques are also applied to nonlinear material behavior. Several models such as 

homogenized plasticity model (Sanchez-Palencia and Zaoui 1987), anisotropic 

continuum damage model (Unger and Eckardt 2011) etc. are available.  

Although two-scale multiscale model is well known in the area of composite materials, 

its application to cement and concrete is not old. Several researches were carried out in 

the last decade on the application of multiscale analysis to evaluate the constitutive 

relation of the concrete (Markovic and Ibrahimbegovic 2004; Ibrahimbegović and 

Markovič 2003; Varvara Kouznetsova, Geers, and Brekelmans 2002; V. Kouznetsova, 

Brekelmans, and Baaijens 2001; Ghosh, Lee, and Raghavan 2001; J. Lee et al. 2009; 

Pichler, Hellmich, and A Mang 2007; Wriggers and Moftah 2006; Sanahuja, Dormieux, 

and Chanvillard 2007). Most of these papers involve application of theory of 

homogenization to predict the material properties and the method is applied on 

statistically representative volume elements. It has also been established that Finite 

Element Method (FEM) is one of the most effective numerical methods to predict 

macroscopic homogenized material property by volumetrically averaging the numerical 
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solutions of a unit cell (T. I. Zohdi and Wriggers 2001; Tarek I. Zohdi and Wriggers 

2008; Gal and Kryvoruk 2011). Generation of RVE and distribution of aggregates also 

play a key role in these simulations.  The aggregate distribution in the RVE is generally 

done by means of grading curves (Wriggers and Moftah 2006; Z. M. Wang, Kwan, and 

Chan 1999; Gal and Kryvoruk 2011; Gal et al. 2008). Recently, the homogenized 

constitutive relation of fiber reinforced composite is modeled (Gal and Kryvoruk 2011; 

Gal and Kryvoruk 2011b; J. L. Zhang et al. 2014) and the effect of interfacial transition 

zone (ITZ) on homogenized modulus of elasticity has also been explored (J. L. Zhang et 

al. 2014; M. Zhang, Ye, and Breugel 2013).  The constitutive relation of concrete has also 

been approximated by neural networks when the shape of stress-strain curve is a priori 

(Ghaboussi, Garrett Jr, and Wu 1990; Ghaboussi, Garrett Jr, and Wu 1991). The main 

advantage of the uncoupled hierarchical method is its numerical efficiency which comes 

at the cost of a disadvantage of lack of mutual interaction between scales and the material 

behavior is captured in only a homogenized way. Coupled hierarchical method has also 

been employed for constitutive relations of heterogeneous composites. In the coupled 

hierarchical method, the constitutive relation at a point in macro-scale is not defined by 

effective equations, but it is described by the constitutive behavior of the point in the 

finer scale (Smit, Brekelmans, and Meijer 1998; V. Kouznetsova, Brekelmans, and 

Baaijens 2001; Miehe and Koch 2002). In this method, a heterogeneous RVE is assigned 

to each integration point of the finite element discretization and the boundary value 

problem is solved. It has also been reported in the literature (Unger and Eckardt 2011; 

Gitman 2006) that the classical homogenization techniques described above are not really 

suitable a heterogeneous material such as concrete due to localized behaviors resulting in 
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softening which violates the assumption of scale-separation.  This problem is taken care 

of by means of gradient-enhanced homogenization scheme (Varvara Kouznetsova, Geers, 

and Brekelmans 2002), which is extension of classical homogenization scheme. The 

details of this method can be found in (Gitman 2006).  
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Chapter 3 Materials and Experimental Methods 

3.1 Materials 

This study uses metallic Iron powder with median particle size 19.03 µm as main starting 

material. The iron powder is obtained from a shotblasting facility as a waste material. The 

other materials used include Class F fly ash and metakaolin conforming to ASTM C 618, 

and limestone powder with a median particle size 0.7 µm conforming to ASTM C 568. 

Commercially available Type I/II ordinary Portland cement (OPC) conforming to ASTM 

C 150 was also used mainly for comparison purpose except in the case of metallic 

particulate reinforced mortars. The chemical compositions of these materials and their 

reason of selection are detailed later in subsequent chapters in detail in this dissertation. 

3.2 Experimental Methods  

Experimental methods varied significantly depending upon different objectives of the 

study.  This section gives a generalized broad overview of the experimental methods used 

in this dissertation. More in depth application-specific aspects of different experimental 

methods are provided individually in the experimental methods sections in each chapter. 

3.2.1 Simultaneous Thermal Analysis (STA/TGA)  

The Thermogravimetric Analysis (TGA) is a very common material-characterization 

technique that provides information about the change in weight of materials in air or 

under inert conditions as a function of the temperature. Measurements are used primarily 

to determine the composition of materials and to predict their thermal stability at 

temperatures up to 1000°C. The technique can characterize materials that exhibit weight 

loss or gain due to decomposition, oxidation, or dehydration.  Here in this project TGA is 
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used to assess the influence of CO2 penetration on the degree of reaction. A Perkin Elmer 

STA 6000 simultaneous thermal analyzer was used for thermo-gravimetric analysis 

(TGA). The analyzer was programmed to increase the temperature from 30°C to 995°C at 

a rate of 15°C/minute in a N2 environment. The STA 6000 used in this research project is 

shown in Figure 3-1. 

 

Figure 3-1: Perkin Elmer STA 6000 instrument setup 

 

3.2.2  Mercury Intrusion Porosimetry (MIP)  

Mercury intrusion porosimetry (MIP) is a well-established technique to investigate the 

pore structure of porous materials.  MIP was performed in this research projet in two 

steps: (i) evacuation of gases, filling the sample holder with mercury and increasing the 

pressure to 345 kPa, and (ii) intrusion of the mercury into the sample at high pressures 

(up to 414 MPa). The contact angle and surface tension used for the analysis were 130° 

and 0.485 N/m respectively. Accurate determination of the contact angle was not carried 

out in this study, which could have introduced errors in the pore size determination. In 

addition, mercury intrusion porosimetry has several possible sources of error: (i) error 

due to the ink-bottle effect, where a pore with a smaller entrance to a larger pore is 

recorded as a large volume of the smaller pore, (ii) unconnected isolated fraction of pores 
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are not detected by MIP and (iii) high pressures exerted on the sample during mercury 

intrusion may damage the underlying pore structure. However, since the emphasis is on 

comparative evaluation of pore sizes, this inaccuracy is not deemed to be critical. The 

pore diameters can be evaluated using standard Washburn equation, based on the 

assumption that the pores in the porous media are cylindrical in shape. A minimum pore 

diameter of 0.003 µm can be evaluated using MIP. Total volume of mercury intruded 

(which is the total porosity) and critical pore diameter (which is the peak in the 

differential volume intruded curve) can be obtained from MIP. The instrument used in the 

experiments is shown in Figure 3-2. 

 

Figure 3-2: Quantachrome PoreMaster mercury intrusion porosimeter 

 

3.2.3 Three-point bending test in MTS load frame 

Three-point-bending tests were performed using MTS loading frame on notched beams 

as shown in Figure 3-3. The beams were tested in a crack mouth opening displacement 

(CMOD)-controlled mode (CMOD acting as the feedback signal) during the loading 

cycles and in a load-controlled mode during the unloading cycles. Thus, several loading-
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unloading cycles were implemented in the load-CMOD plot. These multiple 

loading=unloading cycles were implemented in order to obtain compliance-based strain 

energy release rates for evaluation of fracture response. 

 

Figure 3-3: Experimental setup for closed loop CMOD-controlled three-point bending 

test 

3.2.4 Digital image correlation (DIC)  

DIC is used to obtain full-field surface displacements through successive post-processing 

of digital images taken at specific intervals of time during the test. In order to obtain a 

good correlation, the specimen surface should be flat. The specimen surface (region of 

interest) is painted white using spray paint. After the painted surface dries, black speckles 

are made on the surface randomly using black spray paint. The black speckle area should 

be approximately 50% of the overall area of region of interest. There should be good 

contrast between the black speckles and painted white surface. While application of 

spray-paints is most common speckling technique for specimen size in the range of 

25mm-1.25m, other techniques are available for smaller samples. For samples of size less 

than 12 mm, toner powder can be applied to create very fine pattern. Lithography or 

vapor–deposition technique is applied for extremely small specimens (approximately 500 

microns).  Stencils can be used to spray a perfect speckle pattern if the specimen size is 

too large (greater than 2m). Precautions should be taken while making speckles and the 
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following information must be kept in mind: (i) the speckle patterns should not have 

repetitiveness, (ii) the speckle size should not be too big. If the speckle size is too large, 

there will be certain subsets where entire region would be in black or in white. This 

would result in a bad match since we have an extra match everywhere in the field. 

Increase in subset size further to solve this problem would result in loss of spatial 

resolution, (iii) on the other hand, too small speckle patterns (relative to size of region of 

interest) would have problems such as aliasing. 

The cameras should be positioned somewhat symmetrically about the specimen; this will 

keep the magnification level consistent. The exact angle between the cameras is not 

critical; a broad range of angles between 15º and 45º generally gives excellent results. As 

the image is made sharp through the focus adjustment, it will also be necessary to adjust 

the brightness of the image. There are two controls available for this: the aperture/iris 

setting on the lens, and the exposure time setting of the camera. Opening the aperture 

allows more light to fall on the sensor. Exposure time is the amount of time the camera 

sensor gathers light before reading out a new image. Longer exposure times make the 

image brighter but can also create blur if significant motion happens during the exposure 

times. For many tests, blur is not a concern for the specimen itself, but can be an issue 

when acquiring images of a hand-held calibration grid. When exposure and aperture 

settings are complete, the image should be as bright as possible without showing any 

overdriven (red) pixels in the speckled area. In many cases, ambient light will not be 

enough to achieve this without using unacceptably large exposure times or aperture 

settings; for these cases, supplemental light will be required. For calibration purpose, a 

suitable grid is selected that approximately fills the field of view. Occasionally, lighting 
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configuration can affect grid selection. Some grids may be slightly reflective; under 

intense or directional light sources, these reflections can wash out the grid image. For 

these cases, especially matte grids should be used, or care taken to avoid reflections. ) 

After calibration process is completed, images were taken  every 5 seconds (12 images 

per minute) during the three point bending test. After collection of all the images, the 

imaged area was analyzed using the commercial VIC-2D software
TM

.to obtain the 

displacement fields. Figure 3-4 shows experimental setup of DIC during three point 

bending test. 

 

Figure 3-4: Digital image correlation setup for three-point bending test 

3.2.5 Scanning electron microscopy (SEM) 

Morphological analysis was done using a Philips XL30 Field Emission Environmental 

scanning electron microscope (FESEM) coupled with energy dispersive X-ray analysis 

(EDX), as shown in Figure 3-5, in order to get an understanding on morphology as well 

as chemical composition of reaction product. 
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Figure 3-5: SEM-XL30 Environmental FEG (FEI) 

 

While secondary imaging techniques are useful to examine the morphology of the 

fracture surfaces, the roughness of these surfaces introduces errors in the quantification of 

the microstructural or compositional features. Hence a suitable combination of grinding 

and polishing was carried out to achieve a level of flatness appropriate for microstructural 

and compositional analysis by the Electron Micro-Probe Analyzer (EMPA). JEOL JXA-

8530F Hyperprobe, as shown in Figure 3-6, was used in this study primarily to detect 

elemental compositions of novel reaction product. The grinding/polishing procedure is 

explained later in detail. The polished sample was placed under electron gun of JEOL 

JXA-8530F Hyperprobe (EMPA). The hyperprobe features a field emission electron gun 

surrounded by five Wavelength Dispersive Spectrometers (WDS). The combination of 

WDS and EDS makes it a very powerful analytical tool. 
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Figure 3-6: JEOL JXA-8530F Hyperprobe featuring Field Emission Scanning Electron 

Microscope (FESEM) surrounded by five Wavelength Dispersive Spectrometers (WDS)  

 

3.2.6 Nanoindentation  

The nanoindentation measurements were carried out on the polished sample in a 

commercial Nanoindenter (MTS Nanoindenter XP) using a Berkovich tip as shown in 

Figure 3-7. Polished vacuum saturated epoxy-impregnated sample was mounted on 

aluminum stubs for nanoindentation testing using superglue. All the indentation locations 

were carefully selected prior to testing to ensure that the pores or cavities are not 

encountered in the process. Thus, the indentation experiments were carried out mostly on 

the solid phases, which resulted in very few spurious peaks in the modulus frequency 

distribution curves. The depth of penetration was chosen to be 500 nm which is smaller 

than the characteristic size of unreacted fly ash inclusions in order to avoid phase-

interactions during penetration. Continuous stiffness measurement (CSM) technique was 

employed here to measure the contact stiffness. More in depth application-specific 

aspects of statistical nanoindentation method is provided in the chapter involving Nano-

mechanical properties of novel iron-based binder.  
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Figure 3-7: MTS Nanoindenter XP instrument setup 
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Chapter 4 Preliminary Investigation on the Synthesis of Novel Cementitious 

Binders Utilizing the Chemistry of Iron Carbonation 

4.1 Introduction 

Reduction in the amount of greenhouse gases (GHG) such as CO2 in the atmosphere has 

been the spotlight in numerous research papers (Bachu, Gunter, and Perkins 1994; 

Holloway 1997; T. Xu, Apps, and Pruess 2004; Flaathen et al. 2009; Gislason et al. 2010; 

Qafoku et al. 2012). Mineral route of carbonation, where mined mineral rocks are used as 

the feedstock through which CO2 is passed is one of the promising routes  to reduce the 

concentration of CO2 in the atmosphere (Klein et al. 2013; T. Xu et al. 2007; Naganuma 

et al. 2011). One of the major benefits of mineral carbonation is that CO2 is chemically 

sequestered (as opposed to physical sequestration in almost all other methods, which is 

not always leakage-proof), thus making the sequestration virtually permanent.  It has also 

been noticed that the secondary carbonate rocks formed during mineral trapping 

demonstrate mechanical strength (Hobbs 1964; Hobbs 1967; Herget and Unrug 1976) 

which reflects the possibility of usage of mineral trapping in conjunction with sustainable 

binder formation for construction. Magnesium oxide bearing rocks such as olivine and 

serpentine has been used as candidates for mineral carbonation; however possibilities 

exist for the use of several other metal or alkali metal species to be beneficially 

carbonated (Matter and Kelemen 2009; T. Xu, Apps, and Pruess 2005).  

In this study, the results of a preliminary study that investigates the potential of formation 

of a novel binder from metallic waste iron powder is reported.  Metallic iron powder is 

generated in significant amounts as bag house dust waste during the Electric Arc Furnace 

(EAF) manufacturing process of steel and from the shot blasting operations of structural 
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steel sections. The traditional means of disposing EAF and shotblasting dust is landfilling 

as it is not economically feasible to recycle back iron from the dust. Several million tons 

of such waste material is being landfilled at great costs all over the world. In the present 

work, an approach to form a sustainable binder system for concretes from carbonation of 

iron dust is proposed, which is inspired by the idea of CO2-corrosion of, and scale 

formation in carbon steel pipelines in the oil and gas industry, which is a result of CO2 

injection into the oil wells to reduce the viscosity of the oil and thus increase oil 

production (Rivera-Grau et al. 2012; M. B. Kermani and Morshed 2003). The novel 

binder system, relying on the beneficial effects of “corrosion” of iron particles to form a 

binding matrix provides yet-unheard-of synergistic benefits through: (i) consumption and 

trapping of CO2 from a GHG emitting industrial operation and subsequent carbonate 

formation, and (ii) providing a means to reduce the overall Portland cement production 

(which is a significant emitter of GHG) through the use of carbonated metallic iron 

powder as the binder material for concrete.  

Several studies on iron carbonate formation by CO2 corrosion of steel have been reported 

(Wu et al. 2004; Nordsveen et al. 2003; Nesic, Postlethwaite, and Olsen 1996). The most 

common reaction of iron involves the formation of oxides. However dissolved CO2 is 

also capable of reacting with iron where a dense layer of iron carbonate forms and 

adheres strongly to the substrate. The accepted reaction steps for this process are (J. B. 

Sun et al. 2012):      

2

2 2 3 22 2Fe CO H O Fe HCO H                                  [4-1] 

2

3 3 2 22Fe HCO FeCO CO H O                                   [4-2] 

The net reaction then is:  
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2 2 3 2Fe CO H O FeCO H                                      [4-3] 

Though the basic reaction scheme seems straightforward and simplistic, the kinetics of 

the reaction and the rate of product formation are often very slow so as to be of any use 

for beneficial industrial applications. Hence dissolution agents (organic) that have the 

potential to enhance the corrosion rate of iron due to their high reducing power and 

complexing capacity (S. O. Lee et al. 2007; Taxiarchou et al. 1997; Ambikadevi and 

Lalithambika 2000; M. B. Kermani and Morshed 2003) need to be employed to control 

the reaction rates.  In addition, several other factors are important when an alternate 

material is being considered for applications that commonly use Portland cement. These 

relate to early age properties including the rheological behavior (flowability and 

castability) and early strength development. Hence additives common to Portland cement 

concretes such as class F fly ash, powdered limestone, and metakaolin have been used in 

this study as minor ingredients along with metallic iron powder to form pastes with 

adequate binding capabilities. This chapter reports the optimal proportions of iron powder 

and other additives, and investigates the influence of curing regime (CO2 and air 

exposure) for desired mechanical properties of these binder systems. Characterization of 

the reaction products in these binder systems is carried out using thermo-gravimetric 

analysis in this study. A proper understanding of the influence of source materials and 

processing on the mechanical properties of this unique binding system is expected to 

contribute to other related studies on this sustainable material as well as lead to 

entrepreneurial ventures to make beneficial products out of this technology, which is the 

ultimate objective of this research task.   
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4.2 Experimental Program 

4.2.1 Starting materials: Composition and particle size  

Metallic Iron powder with median particle size of 19 µm is used as the main starting 

material in this study. The iron powder is obtained from a shotblasting facility in 

Phoenix, AZ. The iron powder has mostly elongated and angular particles as can be seen 

from Figure 4-1, thereby influencing the rheological properties of the mixture. However 

the larger surface area-to-volume ratio of this shape provides benefits related to 

reactivity.  

 

Figure 4-1: SEM image of angular iron particles 

 The chemical composition of the iron powder as obtained using Particle Induced X-ray 

Emission (PIXE) is shown in Table 4-1.  

 

Table 4-1. Chemical composition of Iron powder (from PIXE) 

Fe(%) Cu(%) Mn(%) Cr(%) Ca(%) K(%) O(%) 

88 0.2 0.8 0.3 0.1 0.04 10 
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The other materials used include Class F fly ash and metakaolin conforming to ASTM C 

618, and limestone powder with a median particle size 0.7 µm conforming to ASTM C 

568. Fly ash was used to provide a silica source for the reactions
1
 (to potentially facility 

iron silicate complexation (R. Kumar et al. 1990; Fairén et al. 2004)), fine limestone 

powder to provide nucleation sites, and  metakaolin to provide cohesiveness in the fresh 

state to the iron-based mixtures. It needs to be remembered that the water is reduced in 

the chemical reactions but does not form part of the binder. Hence, in order to minimize 

the water demand, yet keeping the consistency and cohesiveness of the mixture, 

metakaolin was used. An organic reducing agent/chelating agent for metal cations was 

also used. Commercially available Type I/II ordinary Portland cement (OPC) conforming 

to ASTM C 150 was used to prepare conventional cement pastes and compare the 

compressive strengths of the novel iron-based binder systems with those of the traditional 

OPC-based systems. OPC was also partially replaced by class F fly ash and blast furnace 

slag up to 40% and 50% respectively by mass for comparison purpose.  The oxide 

compositions of OPC, fly ash and metakaolin and slag are tabulated in Table 4-2. 

 

 

 

 

Table 4-2. Chemical composition (%) of minor ingredients used in iron carbonation 

                                                 
1
 Other more reactive silica sources such as silica fume can also be used, but fly ash has been chosen 

partly to make beneficial use of its spherical shape that enhances the workability characteristics of the 
material.  
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Components  Cement Fly ash Metakaolin Slag 

SiO2 21.0 59.52 51.7 39.42 

Al2O3 3.61 23.03 43.2 8.5 

Fe2O3 3.47 4.62 0.5 0.37 

CaO 63.0 4.87 - 35.53 

MgO 3.26 - - 12.63 

SO3 3.04 0.48 - 2.89 

Na2O 0.16 2.32 - 1.7 

K2O 0.36 - - 0.39 

LOI 2.13 0.37 0.16 - 

 

 

Figure 4-2: Particle size distribution of Metallic Iron powder, OPC, Fly ash, metakaolin 

and limestone powder 

 

The particle size distributions of the iron powder, fly ash, metakaolin, limestone powder 

and OPC, obtained from a laser diffraction-based particle size analyzer are shown in 

Figure 4-2. All the ingredients are finer than the iron powder used. Please note that the 
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quantified data presented in this study could vary based on iron powder fineness
2
, but the 

general mechanisms and trends are expected to remain the same.  

4.2.2 Mixing procedure and sample preparation 

The mixing procedure involves initial dry mixing of all materials (iron powder, fly ash, 

limestone powder, metakaolin, and the organic reducing agent). Water was then added 

and mixed in order to obtain a uniform cohesive mixture. The mass-based water-to-solids 

ratio (w/s) was varied between 0.22 and 0.25 depending upon the proportions of the 

constituents in the mixtures to attain a cohesive mix. The mixture was then tamped into 

cylindrical molds (32.5 mm diameter x 65 mm long) of the Harvard miniature 

compaction apparatus (Figure 4-3a) in five layers to fill the mold completely. The 

specimens were demolded immediately using the Harvard miniature specimen ejector 

(Figure 4-3b) and placed inside clear plastic bags filled with 100% CO2 in room 

temperature inside a fume hood for 1 to 4 days. The bags were refilled with CO2 every 12 

hours so as to maintain saturation inside the chamber. After the respective durations of 

CO2 exposure, the samples were placed in air at room temperature to allow the moisture 

to evaporate for 1 to 30 days. The samples that are ready for compressive strength testing 

are shown in Figure 4-3c. Compressive strengths of the OPC-based systems were 

performed in accordance with ASTM C 109 on 50 mm cubes. The water-to-cementitious 

materials ratio adopted for the OPC-based mixtures was 0.40.   

                                                 
2
 Note that reducing the fineness does not always result in strength enhancement as in the case of OPC 

mixtures. Larger size iron particles with a smaller carbonation ring to just facilitate binding of adjacent 
particles could result in better properties (flexural and fracture response in particular) because of the 
better properties of iron.  
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Figure 4-3: (a) Harvard miniature compaction apparatus, (b) specimen ejector, (c) 

Cylindrical samples for compression test 

4.2.3 Determination of optimal mixture-proportions and curing procedure 

A total of eight different mixtures with varying iron powder, fly ash, limestone, and 

metakaolin contents were proportioned in this preliminary study to select a few best 

performing mixtures, first in terms of compressive strength. The iron powder content 

ranged from 58 to 69% by mass whereas fly ash, limestone and metakaolin varied in the 

range of 15-20%, 8-10% and 6-10% by mass respectively. The w/s ratios varied between 

0.22 and 0.25. These preliminary proportions were arrived at based on several trial 

proportions that used iron powder from 50-100% of the total binder content along with 

the other ingredients, and several w/s ratios in the range of 0.15 to 0.30. The proportions 

of the eight short-listed mixtures are shown in Table 4-3. In all cases, the organic 

reducing agent, which is a weak acid, was added in a powder form at 2% of total mass of 

the constituents.  

 

 

 

(a) (b) (c)
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Table 4-3. Mixture proportions for the preliminary study 

 

 

For the preliminary study, the specimens were kept in a 100% CO2 atmosphere for 3 days 

immediately after casting and demolding and cured in air for 2 days before they were 

tested in uniaxial compression. The best performing mixture contained 60% iron powder, 

20% fly ash, 8% limestone and 10% metakaolin (Mix 2 in Table 4-3) whereas another 

mixture containing 64% iron powder, 20% fly ash, 8% limestone, 6% metakaolin (Mix 1 

in Table 4-3) also performed quite similarly in terms of average compressive strength 

(>25 MPa). Once the two best performing mixtures were determined, the CO2 curing 

duration was varied from 1 to 4 days and the air curing duration varied from 1 to 3 days 

in order to determine the optimal combination of CO2 and air-curing durations. 

4.2.4 Flexural strength test 

The flexural strength tests were carried out on Mixes 1 and 2 (best performing mixtures 

under compression). Paste beams, 250 mm x 25 mm x 25 mm in size were prepared and 

cured in a 100% CO2 environment for 2-6 days. The air-exposure time was maintained 

constant at 3 days. The 3-point bending tests were conducted as shown in Figure 4-4 and 

the load and displacement data were recorded using NI LabVIEW data acquisition 

software. A displacement rate of 0.375 mm/min was maintained for all the flexural tests.  
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Figure 4-4: 3-point bending test of beams 

4.2.5 Thermo-gravimetric analysis (TGA) 

A Perkin Elmer STA 6000 simultaneous thermal analyzer was used for thermo-

gravimetric analysis (TGA). The analyzer was programmed to increase the temperature 

from 30
o
C to 995°C at a rate of 15°C/minute in a N2 environment. The samples for TGA 

were taken from the cylindrical samples. Samples from both surface as well as core of the 

cylindrical specimens were analyzed in order to assess the influence of CO2 penetration 

on the degree of reaction. 

4.3 Results and Discussions 

4.3.1 Influence of source materials and curing conditions on compressive strength  

4.3.1.1 Influence of source materials and determination of optimal mixtures for 

compressive strength 

As mentioned earlier, eight different mixtures (Table 4-3) were proportioned to 

understand the effects of various constituents on compressive strength of iron carbonate 

binders and to determine the optimal mixtures in terms of compressive strength for a 

specific curing duration and procedure. The samples were kept in a CO2 environment for 

3 days and then cured in air for 2 days at 23±2
o
C to get a comparative view of 
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compressive strengths of the eight mixtures. The compressive strengths of different 

mixtures are reported in Figure 4-5 (a), from which it can be observed that Mixes 1 and 2 

are the best performing ones. The variability of strength between a number of identical 

samples tested is also low as can be observed from this figure. Figure 4-5 (b) shows the 

7-day compressive strengths of moist-cured OPC-based pastes with and without several 

cement replacement materials for comparison, which demonstrates the similarity in 

strengths at the chosen ages of treatment. While it is well known that OPC-based systems 

gain strength over a period of time and will likely end up with much higher compressive 

strengths, the values reported here for iron carbonate based binder systems are in the 

range of strengths that are used for a large number of construction applications.   

 

Figure 4-5: (a) Compressive strength vales of the mixtures (3 days in CO2 and 2 

days in air), and (b) comparison of strength with conventional OPC mixtures 

 

The influence of various constituents on compressive strength is elaborated in Figure 4-6. 

Figure 4-6 (a) implies that the samples with 20% fly ash were significantly stronger than 

the ones with 15% fly ash, irrespective of the contents of limestone and metakaolin. Both 

the best performing mixes (Mix 1 and 2) contained 20% fly ash by mass. A pore-structure 

(a) (b)
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study, detailed in the forthcoming chapter, has shown that these mixtures have the lowest 

porosity, as determined from mercury intrusion porosimetry, plausibly a combined effect 

of particle packing and increased reaction product formation (as will be confirmed from 

TGA results in a later section). From Figure 4-6 (b), it can be seen that the limestone 

content exerts negligible influence on compressive strength at lower fly ash contents, but 

at higher fly ash contents, a lower amount of limestone powder is preferable. 

Compressive strength is relatively insensitive to variations in metakaolin content for the 

samples containing 20% fly ash as the synergistic effect of silicates and cohesive nature 

of metakaolin likely ensures a denser matrix.  At a lower fly ash content, an increase in 

the metakaolin content is associated with significant decrease in the compressive strength 

values. 

 

 

(a) (b)

(c)
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Figure 4-6: Effect of: (a) flyash, (b) limestone, and (c) metakaolin content on 

compressive strength of iron carbonate binders 

 

In order to discern the statistical influence of the amounts of fly ash, metakaolin and 

limestone on the compressive strength and the relative sensitivity of strength to these 

factors, a 2
3
 factorial analysis was carried out. The response surfaces of compressive 

strength are shown in Figure 4-7. It is confirmed that fly ash is the dominant factor 

among the three as far as compressive strength is concerned. The sensitivity of 

compressive strength with variations in the amount of limestone and metakaolin is 

relatively low. Metakaolin is basically used as a rheology modifier in these systems 

whereas the fine limestone is expected to be a nucleation site for the reaction products. 

The range of amount of limestone used in this study (8-10%) does not significantly 

impact the strength. More studies are required to understand how fine limestone powder 

participates in the reactions; however TGA studies in the forthcoming section do indicate 

some consumption of limestone in the reaction.  
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Figure 4-7: Response surfaces showing the statistical influence of amount of (a) fly ash 

and metakaolin, (b) fly ash and limestone, (c) metakaolin and limestone on compressive 

strength 

 

As discussed earlier, Figure 4-5 (a) does not provide any realistic differences in strengths 

between Mixes 1 and 2 under the chosen curing condition. To observe whether changes 

in curing conditions would elicit varied response from these mixes, the cylindrical 

specimens were carbonated for 3 or 4 days and air cured for 1 or 3 days.  Figure 4-8 

demonstrates the strengths of these mixes after being cured under such conditions. Here 

the number before ‘C’ represents the days of carbonation whereas the number before ‘A’ 

represents the air-exposure time in days. Mix 2 was chosen for all further studies reported 

here because it performed similar to or better than Mix 1 for all the curing procedures in 

terms of compressive strength.  

(a)

(c)

(b)
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Figure 4-8: Comparison of compressive strength of Mixes 1 and 2 under different curing 

condition 

4.3.1.2 Effect of curing conditions on compressive and flexural strength 

The effects of curing procedure and duration on compressive as well as flexural strengths 

are shown in Figure 4-9.  The samples were cured in CO2 for 1 to 4 days and in air for 1 

to 3 days thereafter. The strength values are shown in a response surface plot as function 

of CO2 and air-curing durations in Figure 4-9a. The influence of CO2 curing duration is 

obvious from this figure. The compressive strength values were very low for the samples 

cured in CO2 for 1 day only due to the very low degree of carbonation. Since it is the 

carbonation that provides the mechanical strength, there is no discernible strength 

increase when the moisture leaves the system through air exposure. This can be seen 

from this figure where for 1 day of carbonation, increasing the air exposure duration from 

1 to 3 days does not impact the compressive strength positively. However the effect of 

air-curing is evident when the carbonation duration is increased. A significant increase in 

strength is observed for specimens carbonated for a longer duration when the air curing 

time was increased. This is attributed to the fact that the pore sizes decrease with 
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increased carbonation duration as shown in Figure 4-10. More details on the pore 

structure are reported in the forthcoming chapter. The characteristic pore size of 1–day 

carbonated samples are larger, which consequently exerts less internal moisture pressure 

under a compression test and therefore loss of moisture through air exposure does not 

have a larger effect on internal pressure and thus the compressive strength. The pore sizes 

of samples carbonated for a longer duration are lower due to increased reaction product 

formation, resulting in an increased sensitivity of compressive strength to the loss of 

moisture.  In order to clearly bring in the effect of air exposure, Figure 4-9b plots the 

compressive strengths as a function of air exposure duration after the samples were 

carbonated for 4 days. First three days of exposure to air results in an enhancement in the 

compressive strength but as the moisture dries out completely there is no significant 

change in compressive strength which signifies that the reaction product is passive and 

stable in nature in air and it does not cause any deterioration when exposed to air for 

longer time. Thus the air exposure duration (depending on the pore structure of the 

material that lets moisture escape from the bulk of the specimen) influences the 

compressive strength at longer carbonation durations.  
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Figure 4-9: Effect of (a) curing procedure and curing duration, (b) air-curing duration on 

compressive strength of Mix 2. The samples were carbonated for 4 days for the data in 

Figure 4-9b. 

 

Figure 4-10: Variations in average pore diameter with varying carbonation duration 

 

Figure 4-11 (a) shows the variation in flexural strength of iron carbonate binders (both 

Mix 1 and Mix 2) with an increase in carbonation duration. The flexural strengths are 

very similar for both the mixes, which is in line with the trends for compressive strength. 

It can be noticed that a carbonation duration of 6 days result in a relatively high flexural 

(a) (b)
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strength of about 8 MPa. Figure 4-11 (b) shows the relationship between flexural strength 

and density for these mixes.  Higher carbonation durations results in more reaction 

product formation and increased density as the reaction product fills the pores more 

efficiently.   

 

 

Figure 4-11: (a) Logarithmic increase of flexural strength with increase in carbonation 

duration, (b) interaction between bulk density and flexural strength 

4.3.2 Reaction products and extent of carbonation 

Thermo-gravimetric analysis was carried out on powdered samples extracted from the 

surface as well as the core of the cylindrical specimens in order to investigate the degree 

of reaction that is responsible for differences in mechanical properties. First, thermal 

analysis results of Mixes 2 and 6 have been compared in order to understand the 

differences in product constitution between the best and worst performing mixtures as far 

as compressive strength is concerned.  The major differences between these mixtures are 

in the iron powder and fly ash contents. Figure 4-12 (a) and (b) depict the TG curves and 

their derivatives for the samples from the surface and core of cylindrical specimens 

corresponding to Mixes 2 and 6 respectively.  Both the specimens were carbonated for 3 

(a) (b) 
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days. A comparison of Figure 4-12 (a) and (b) suggests that the total weight loss for Mix 

2 is significantly higher than that for Mix 6, indicating that the overall  degree of reaction 

and product formation is lower under the chosen carbonating conditions for the starting 

material combination of Mix 6. The total weight loss of the sample from the surface of 

Mix 6 cylinder is slightly lower than the weight loss from the core sample of Mix 2 

cylinder. This shows that the constitution of Mix 6 is not amenable to desirable levels of 

carbonation and product formation, which reflects in the compressive strength of the 

binder.  This observation also points to the fact that the carbonation efficiency and 

mechanical properties of iron carbonate binders are very sensitive to the overall starting 

material composition – from a compositional viewpoint, the difference between Mixes 2 

and 6 are not very large. It should also be considered that the range of iron powder 

contents that provided reasonable strengths were rather narrow - between 60 and 69%, as 

shown in Table 4-3.  

The DTG curves demonstrate three distinct peaks for the binder samples as can be 

observed in Figure 4-12. The peak at around 110
o
C is attributed to evaporable water, the 

one at around 300
o
C to products belonging to the carbonate-oxalate-cancrinite group 

(Olysycha et al., 2011), and the one at around 740
o
C to calcium carbonate.  The DTG for 

Mix 2 provides a distinct peak at about 300°C (for samples from both the core and the 

surface) whereas the intensity of the peak reduces for samples from Mix 6. The peak is 

almost non-existent for the sample from the core of Mix 6, indicating that the carbonation 

efficiency for that mixture constitution is low.  
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Figure 4-12: TG and DTG curves corresponding to the core and surface of: (a) Mix 2, 

and (b) Mix 6, carbonated for 3 days 

Further, the effect of carbonation duration on reaction product formation is investigated 

and explained using Figure 4-13. Figure 4-13 shows the TG and DTG curves for samples 

of Mix 2 corresponding to the surface and core of the carbonated cylindrical specimen 

after 1 to 4 days of carbonation and 3 days of air-exposure. The peak at 110°C in the 

DTG plot (due to evaporation of water) reduces in magnitude with increase in 

carbonation duration especially after 2 days of carbonation whereas the peak at 300°C 

increases in magnitude significantly when the carbonation period is increased. This peak 

at 300°C is very common for carbonate-oxalate cancrinite group materials (Olysych et al. 

2011). Another important phenomenon observed in Figure 4-13 is that the difference in 

final weight loss between surface and core reduces as the carbonation duration is 

increased. This indicates that CO2 diffusion extends to the core with an increase in 

exposure duration as expected. By 4 days, there is virtually no difference in the TG and 

DTG signatures between the core and the surface indicating that complete carbonation 

can be achieved in these samples. However it must be remembered that this is a function 

of specimen size, constitution, and the carbonating environment.  

(a) (b)
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Figure 4-13: Thermal analysis results of samples from Mix 2 carbonated for (a) 1 day, (b) 

2 days, (c) 3 days and (d) 4 days. All samples were exposed to air for 3 days after 

carbonation 

 

A further analysis of the carbonation duration-dependent mass loss patterns is attempted 

in Figure 4-14. Figure 4-14a shows the percent mass loss in the 250-400
o
C range and 

tracks the relative degree of carbonation in the surface and core of the samples. The mass 

loss observed in the 650-800°C range in the DTG plots correspond to thermal 

decomposition of calcium carbonate into calcium oxide. The amount of calcium 

carbonate remaining in the system was calculated based on the stoichiometry of the 

thermal decomposition reaction of calcium carbonate. The percentage of unreacted 

calcium carbonate present in the system for various carbonation durations is shown in 
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Figure 4-14 (b) which shows a significant difference in the amount of unreacted CaCO3 

between the core and the surface in the first two days of carbonation. However this 

difference is reduced as the carbonation period is increased to 3 to 4 days. The amount of 

unreacted CaCO3 is generally the same at the specimen surface at all carbonation 

durations as can be observed from Figure 4-14 (b). As carbonation proceeds, the amount 

of CaCO3 remaining in the core drops because of the consumption of some limestone in 

the reaction product formation. Thus it can be inferred that some portion of calcium 

carbonate is utilized to form the carbonate-oxalate complex and the remaining unreacted 

limestone is decomposed in that temperature range. Since, the thermal analysis study 

confirms similar degree of carbonation of core and surface after 4 days of carbonation, 

the upper limit of carbonation duration has been restricted to 4 days in the studies 

reported here.  

 

Figure 4-14: Effect of carbonation duration on: (a) mass loss in the 250-400
o
C in TGA, 

and (b) amount of CaCO3 remaining  

 

(a) (b)
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4.4 Conclusions 

This study has reported experimental results and analysis on the effect of source materials 

and curing conditions on mechanical properties of a unique binder system that utilizes the 

carbonation of metallic iron powder for cementation properties. The experiments carried 

out here showed that waste iron powder in combination with commonly used concrete 

ingredients such as fly ash, limestone powder, and metakaolin as minor components can 

be carbonated to produce a binding material with acceptable properties for a wide range 

of construction applications. In addition, this route of binder formation is a method of 

CO2 minimization both in terms of CO2 trapping in the form of carbonate formation as 

well as provision of an alternate structural binder that helps reduce portland cement 

consumption. Compressive strengths in the 30-35 MPa range were obtained after four 

days of carbonation.  

The compressive strength of the binder systems were significantly influenced by the fly 

ash content. While limestone in the chosen range did not influence the strength at lower 

fly ash contents, the synergistic effects were evident at higher fly ash contents. 

Metakaolin primarily influenced the processing of the binder by providing cohesion to 

the mixtures. CO2 exposure duration and air curing duration were also found to be 

influential on the mechanical properties of the binder. The effect of air-exposure time on 

compressive strength was found to be negligible at lower levels of carbonation (1-2 days) 

although the sensitivity increased significantly at higher carbonation durations (3-4 days).   

Thermo-gravimetric analysis showed that the carbonation efficiency of iron carbonate 

binders is very sensitive to the overall starting material composition. The difference in 

mass loss between surface and core reduced significantly as the CO2 diffusion is 
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extended to the core with an increase in carbonation duration. The distinct DTG peak at 

300 °C which is very common for carbonate-oxalate cancrinite group materials was 

evident in the signals of these binders. The mass loss in the temperature range of 250-400 

°C increased as the carbonation duration increased, indicating the formation of more 

carbonate-bearing binding products. CaCO3 content in the specimen core decreased when 

the carbonation was increased, which served as an indication of the consumption of 

limestone in reaction product formation. These results point to the fact that the reaction 

product formation increases as the carbonation progresses resulting in a denser structure 

and therefore better mechanical performance. 
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Chapter 5 Pore- and Micro-structural Characterization of the Novel Structural 

Binder based on Iron Carbonation 

5.1 Introduction 

While the effect of source materials (including minor ingredients) on the compressive 

strength and extent of reaction product formation were investigated in detail in the 

previous chapter, the current chapter investigates the pore structure and microstructure of 

the iron-based binder. The pore structure of the iron-based binder is characterized in 

detail using mercury intrusion porosimetry (MIP). The pore structure features extracted 

using MIP are used in established theoretical models to predict the gas diffusivity and 

moisture permeability of these novel binders. Electron microscopy coupled with energy-

dispersive X-ray spectroscopy (EDS) is used to evaluate the morphology of the reaction 

products and the chemical constituents of the microstructure. Thus this study sheds light 

on the pore- and micro-structure of iron-based binder systems and provides valuable 

information that is critical towards positioning this material as a potential alternative to 

OPC systems, especially in regions where the requisite source materials and CO2-

emitting processes are present.   

5.2 Experimental program  

5.2.1 Starting materials: Composition and particle size  

Metallic Iron powder with median particle size 19.03 µm has been used as main starting 

material in this study. The other materials used include Class F fly ash and metakaolin 

conforming to ASTM C 618, and limestone powder with a median particle size 0.7 µm 

conforming to ASTM C 568. Commercially available Type I/II ordinary Portland cement 
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(OPC) conforming to ASTM C 150 was used to prepare conventional cement pastes and 

compare the compressive strengths of the novel iron-based binder systems with those of 

the traditional OPC-based systems.  More information on chemical compositions and 

particle size distributions are detained in the previous chapter.                                                                                                                                                                                                                                                                                                                                                                            

5.2.2 Mixing and curing procedure  

The mixing procedure involves initial dry mixing of all materials (iron powder, fly ash, 

limestone powder, metakaolin, and the organic reducing agent). Water was then added 

and mixed in order to obtain a uniform cohesive mixture. The mass-based water-to-solids 

ratio (w/s) was varied between 0.22 and 0.25 depending upon the proportions of the 

constituents of the mixtures to attain a cohesive mix. Cylindrical samples of 32.5 mm 

diameter and 65 mm length were prepared using   Harvard miniature compaction 

apparatus and Harvard miniature specimen ejector. The samples were placed immediately 

inside clear plastic bags filled with 100% CO2 in room temperature inside a fume hood 

for 1 to 4 days. The water-to-Cement ratio adopted for OPC was 0.40.   

A total of eight different mixtures with varying iron powder, fly ash, limestone, and 

metakaolin contents were proportioned as explained in the previous chapter (Table 4-3). 

The iron powder content ranged from 58 to 69% by mass whereas flyash, limestone and 

metakaolin varied in the range of 15-20, 8-10 and 6-10% by mass respectively. The 

proportions of the eight mixtures are shown in Table 4-3.  

For comparison purpose, the specimens were kept in the CO2 atmosphere immediately 

after casting and demolding, for 3 days and cured in air for 2 days before they were tested 

in uniaxial compression as explained in the previous chapter on preliminary 

investigations. The best performing mixture contained 60% iron powder, 20% flyash, 8% 
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limestone, 10% limestone (Mix 2 in Table 4-3). Four days in carbon dioxide curing 

followed by 3 days of air drying was found to result in the maximum compressive 

strength. Hence, Mix 2 is mainly used here in the pore- and microstructural 

characterization of iron-based novel binder. 

5.2.3 Pore Structure Determination using MIP 

Mercury intrusion porosimetry (MIP) which is a well-established technique to investigate 

the pore structure of porous materials, was adopted here to study the pore structure of 

iron carbonate systems.  The samples for MIP were taken from the same core of the 

cylindrical sample prepared for compressive strength testing. Thermal analysis results 

had shown that the selected CO2 exposure duration resulted in similar carbonation levels 

in the core of the 32.5 mm diameter sample as that of the surface (Das, Souliman, et al. 

2014). MIP was performed in two steps: (i) evacuation of gases, filling the sample holder 

with mercury and increasing the pressure to 345 kPa, and (ii) intrusion of the mercury 

into the sample at high pressures (up to 414 MPa). The contact angle and surface tension 

used for the analysis were 130° and 0.485 N/m respectively. Accurate determination of 

the contact angle was not carried out in this study, which could have introduced errors in 

the pore size determination. However, since the emphasis is on comparative evaluation of 

pore sizes, this inaccuracy is not deemed to be critical. The pore diameters can be 

evaluated using Washburn equation, based on the assumption that the pores in the porous 

media are cylindrical in shape (Moon, Kim, and Choi 2006; Ghafari et al. 2014; Sánchez-

Fajardo, Torres, and Moreno 2014). A minimum pore diameter of 0.003 µm can be 

evaluated using MIP. Total volume of mercury intruded (which is the total porosity) and 

critical pore diameter (which is the peak in the differential volume intruded curve) can be 
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obtained from MIP. The average pore diameter (da) is calculated from the total pore 

volume and the pore surface areas as: (Moon, Kim, and Choi 2006) 

4
a

V
d

A
                                                         (5-1) 

where V is the volume of mercury intruded per gram of sample (cc/g) and A is the total 

pore area (m
2
/g) obtained from MIP. The pore tortuosity () was empirically determined 

from the pore volume () as (Carniglia 1986): 

  2.23 1.13              for 0.05 0.95         ( 5-2) 

 

5.2.4 Microstructural Evaluation 

Morphological analysis was done using a Philips XL30 Field Emission Environmental 

scanning electron microscope (FESEM) coupled with energy dispersive X-ray analysis 

(EDX) in order to get an understanding on morphology as well as chemical composition 

of reaction product. The pastes were crushed and small pieces from core were mounted to 

the stub with epoxy resin for FESEM. 

Secondary imaging techniques essentially show the morphological nature of the surface 

of the specimen. The minimum effort to prepare a sample and the ease of interpreting the 

topographical feature makes secondary imaging techniques very attractive. However, the 

roughness of the fractures surface which is not representative of the material affects the 

scattered electron imaging especially the quantitative analysis. A flat surface is required 

for more accurate compositional analysis. A suitable combination of grinding and 

polishing has been done on the sample in order to achieve flatness of the surface. Prior to 

mounting, the sample was ultrasonically cleaned in GP cleaning solution, rinsed with 

ethyl alcohol and dried with compressed air spray to remove debris from 
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sectioning/handling. The cleaning process improves the adhesion of the mounting 

material to the sample. After drying, the sample was placed into a 32 mm two-part 

mounting cup. EpoxySet was used for encapsulation which does not require any external 

heating to cure. The cup was placed into a VacuPrep
TM

 epoxy impregnation system and 

subjected to 28 inHg of vacuum for 5 to remove entrapped air from epoxy. After 

hardening the epoxy gains enough strength to withstand the stresses during grinding and 

polishing. The sample was then prepared using MetPrep 3
TM

 grinder/polisher with power 

head as listed in Table 5-1. 600 and 800 Grit Silicon Carbide (SiC) abrasive discs were 

used to remove deformations caused by sectioning. Removal of deformations caused by 

grinding was done by 3 µm and 1 µm diamond suspensions. Final polishing was done 

with 0.04 µm colloidal silica suspension. After each grinding and polishing step the 

sample as well as the sample holder were cleaned using organic soap and dried using 

compressed air spray and images were taken under optical microscope to see the progress 

of the polishing (Figure 5-1). The polished sample was placed under electron gun of 

JEOL JXA-8530F Hyperprobe (Electron Microprobe). The hyperprobe features a field 

emission electron gun surrounded by five Wavelength Dispersive Spectrometers (WDS). 

The combination of WDS and EDS makes it a very powerful analytical tool. 
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Figure 5-1: Surface of the sample as the polishing progresses (images taken using optical 

microscope at 100X) 

 

Table 5-1: Grinding and Polishing procedure  

  step 1 2 3 4 5 

C
o
n
su

m
ab

le
s 

Abrasive 600 Grit 800 Grit 3 µm 1 µm 0.04 µm 

Type SiC SiC Diamond Diamond 
Colloidal 

silica 

Carrier 
Abrasive 

Disc 

Abrasive 

Disc 

 Glycol 

Suspensio

n 

 Glycol 

Suspensio

n 

Suspension 

coolant Water Water 
GreenLub

e 

GreenLub

e 
Water 

S
et

ti
n
g
s 

Platen 

Speed(RPM) 
300/Comp 

300/Com

p 
150/Comp 150/Comp 150/Comp 

Sample speed 

(RPM) 
150 150 150 150 150 

Force(N) 25 25 25 30 30 

Time (min) Until flat 2 2 5 2 
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5.3 Results and discussions 

5.3.1 Pore-Structural Analysis of Iron-Based Binders 

This section examines the pore structure of the iron carbonate binders. It is well known 

that the pore structural features exert a significant influence on the mechanical and 

transport properties (Scheidegger 1963; Plessis and Masliyah 1988), of any porous 

material. The influences of source material composition and treatment conditions 

(carbonation and air-exposure durations) on the resultant pore structure are discussed.  

5.3.1.1 Effect of Starting Material Composition  

Mixture 2 (Table 4-3) was the best-performing mixture from a compressive strength 

standpoint, while Mixture 6 performed the worst as shown in Figure 4-5. A comparison 

of the pore structure of these two mixtures as determined using MIP is shown in Figure 

5-2. There is a significant difference in the total volume of mercury intruded, with 

Mixture 2, showing a pore volume of about half as that of Mixture 6, implying a denser 

microstructure in the former mixture. The critical pore size, which is indicated by the 

peak location in the derivative of the pore size-volume intruded curve, remains generally 

invariant between the two mixtures.   A companion study has confirmed through thermo-

gravimetric analysis that the carbonation efficiency and the amounts of reaction products 

formed in Mixture 6 was much lower as compared to Mixture 2 and, that the carbonation 

efficiency and mechanical properties of iron carbonate binders are very sensitive to the 

overall starting material composition (Das, Souliman, et al. 2014).  
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Figure 5-2: Comparison of pore structure of Mixtures 2 (60% iron powder, 20% fly ash, 

8% limestone, 10% metakaolin) and 6 (65% iron powder, 15% fly ash, 8% limestone, 

10% metakaolin) after 4 days of carbonation and 3 days of air-exposure.  

 

 

5.3.1.2 Effect of Carbonation and Air-Exposure Duration  

The volume of mercury intruded as a function of the pore sizes and the derivative of this 

relationship are shown in Figure 5-3 for various carbonation regimes applied to Mixture 

2. For all the carbonation durations, an air-exposure duration of 3 days following 

carbonation was chosen as there is no appreciable increase in compressive strength 

beyond this air-exposure duration as shown in Figure 4-9.  The total volume of mercury 

intruded reduces significantly with an increase in carbonation duration due to the 

increased formation of reaction products (Das, Souliman, et al. 2014). The consequent 

increase in specimen density results in improved mechanical properties. The derivative 

plots show no significant differences in the peak locations as a function of the 

carbonation duration. However, the reduction in porosity with increasing carbonation 

duration can be expected to reduce the number of pores of the critical size (the size 

corresponding to the major peak in the derivative curve). Therefore, while the critical 

pore sizes remain rather unchanged, the average pore size is reduced considerably with an 
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increase in the carbonation duration. The reduction in the total pore volume is known to 

primarily influence the mechanical properties, whereas, the reduction in pore size is more 

influential in transport properties.   

 

Figure 5-3: Effect of carbonation duration on pore structure for Mixture 2. Carbonation 

duration of: (a) 1 day and 2 days; (b) 3 days and 4 days. Air exposure of 3 days after all 

carbonation regimes. The number before ‘C’ represents the days of carbonation whereas 

the number before ‘A’ represents the air-exposure time in days.  

 

 

Figure 5-4 depicts the carbonation efficiency as a function of CO2 exposure time in 

relation to pore size and the representative range of sizes as determined using MIP. The 

percentage of pores of three different size ranges determined using the Washburn 

equation is shown here. Even though the size range determination using MIP is somewhat 

flawed, it is useful to compare between materials of similar chemical composition and 

processed in a similar fashion (Winslow 1984; Giesche 2006; Feldman 1984; Lawrence 

1978). The fraction of pores greater than 0.2 µm (the larger pores, which are unfilled 

owing to insufficient reaction product formation) decreases with increasing carbonation 

period whereas the fraction of pores in the range 0.0036 – 0.05 µm increases 

correspondingly. For example, after 1 day of carbonation, the pores > 0.2 µm constitute 

(a) (b)
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more than 70% of the overall pore volume. After 4 days of carbonation, this fraction 

drops to approximately 45%. The smaller pores are likely to be the ones which are part of 

the reaction product structure. Their relative increase represents an increase in product 

formation with carbonation as the thermal analysis (Das, Souliman, et al. 2014) and 

mechanical property results suggest. Also, the trends in the pore sizes depicted in Figure 

5-4 follow the trends in compressive strength, thereby lending credibility to the use of 

this method.  

 

Figure 5-4: (a) Pore size ranges in iron carbonate binder (Mixture 2) as a function of 

carbonation duration; and (b) variation of porosity, pore sizes, and tortuosity as a function 

of carbonation duration. Air exposure duration of 3 days after respective carbonation 

durations  

Figure 5-4(b) depicts the variation of porosity, average pore diameter (calculated using 

Equation 5-1 and tortuosity (calculated using Equation 5-2 with varying carbonation 

durations. As seen in this figure, both porosity and average pore diameter decrease 

significantly when the carbonation duration is increased from 1 to 4 days. These 

observations are in agreement with the compressive strength results in Figure 4-5 and the 

thermogravimetric analysis results described in the previous chapter on preliminary 

investigations. With an increase in the carbonation duration, the pore structure becomes 

more tortuous due to increased amounts of reaction product formation. The porosity and 

(a) (b)
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tortuosity values presented here are used to calculate the theoretical transport parameters 

of iron carbonate systems which are presented later in this study.   

5.3.1.3 Comparison of the Pore Structures of Iron Carbonate and OPC-based Systems  

In this section, a comparison of the overall pore volumes and the critical pore size of iron 

carbonate and OPC binder systems is described. Figure 5-5(a) shows that the porosity of 

the hardened OPC paste (cured in moisture for 28 days) is higher as compared to the iron-

based binder (carbonated for 4 days, followed by air-exposure for 3 days). However, one 

should be aware of the fact that the porosity of OPC systems can be controlled through 

several means such as reduction in water-to-cementing materials ratio (w/cm) facilitated 

by the use of chemical admixtures, incorporation of other reactive ingredients and 

improved curing practices. The pore structure of OPC pastes provided here is only used 

as a point of comparison and not intended to derive quantitative conclusions regarding 

the pore structure of OPC systems, which can be found in  several other publications 

(Chindaprasirt, Jaturapitakkul, and Sinsiri 2005; Cook and Hover 1999; Goto and Roy 

1981; Tanaka and Kurumisawa 2002).  Also, for the iron-based binder systems, the 

composition and curing conditions used are designed to provide the optimal 

microstructure and strength. From the derivative plots shown in Figure 5-5(a), it is clear 

that the iron-based binder has a larger critical pore diameter than the OPC system which 

will impact the transport of moisture, ions, and gases through the pore structure. The 

increased pore size is likely a result of the H2 gas which is a by-product of iron 

carbonation. The pore volume of the OPC paste corresponding to a pore diameter range 

of 0.0036-0.05 µm (smallest pores) is higher than that for the iron-based binder as shown 

in Figure 5-5(b). Since the pores of this range are generally observed as part of the 
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reaction product, this implies a larger amount of reaction products in the OPC paste, 

which is unsurprising. The volume of pores corresponding to the size range of 0.05-0.2 

µm is higher for the iron-based binder, whereas the amount of larger pores remains 

relatively the same in both these systems. The larger amount of pores in the transport-

controlling pore size range (> 0.05 µm) in the iron carbonate binder indicates the need for 

studies on refining the pore structure in these novel materials.  

 

Figure 5-5: Comparison between the pore structures of iron carbonate and OPC paste 

systems: (a) porosity and the derivative volume intruded as functions of the pore 

diameter, and (b) pore volume fraction for different pore size ranges. For the iron 

carbonate binder, the data corresponds to Mixture 2 after 4 days of carbonation and 3 

days of air-exposure while the OPC pastes were cured for 28 days in a moist 

environment.  

5.3.1.4 Extracting the Transport Characteristics of Iron-Based Binders from Pore 

Structure Information 

The pore structure features of the iron-based binder systems described in the previous 

sections are used here to obtain relative indicators of the transport performance of iron-

based binders. Transport of moisture and ions (e.g., Cl
-
) through mechanisms such as 

permeability and diffusivity are important in dictating the durability of binders which 

have the potential to be used in infrastructural construction. The major transport 

(a) (b)
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descriptors extracted from the measured pore structure features in this study are water 

vapor diffusivity and moisture permeability.   

Diffusion of a gaseous phase into a porous media under steady state conditions can be 

expressed using Fick’s first law as shown in Equation                                                    

5-3.                    

                  
g e

c
F D

x


 


                                                   (5-3) 

Here, Fg is the diffusion flux, De is the effective diffusion coefficient of gas in the porous 

media, c is the concentration and x is the distance. The normalized diffusivity (D’) is the 

ratio of De to the gas diffusion coefficient Da in air. The relationship between the 

diffusivity and porosity is often expressed using Archie’s law (Archie 1942) as shown in 

Equation 5-4. The exponent m is called the cementation factor determined experimentally 

by fitting the data for diffusivity and porosity. Different m values ranging from 1.65 to 

4.89 are reported in the literature for porous media including rocks of varying 

morphology and pore structure (Peng, Hu, and Hamamoto 2012).  

 ' me

a

D
D

D
                                                    (5-4) 

Diffusion of gases in a porous media can be considered to take place primarily through 

one of the three mechanisms: (i) through the interconnected pore volume, (ii) through the 

pore surface, or (iii) through the solid matrix material (Iii, Watson, and Mason 1961). In 

many porous media, diffusion through the pore volume is likely to be the dominant path 

unless the porosity and permeability are extremely low. There are two limiting cases of 

such a diffusion process: Knudsen diffusion and normal diffusion. In Knudsen diffusion, 

collision of gas molecules with the solid pore wall is the dominant mechanism whereas in 



85 

  

normal diffusion the collision between gas molecules is limiting and the gas-wall 

collision is negligible (Iii, Watson, and Mason 1961). Mean free transport paths 

determine the type of dominant diffusion mechanism. For Knudsen diffusion to be the 

limiting case, the mean free path needs to be greater than the average pore diameter in the 

media, and for normal diffusion to become dominant, the mean free path has to be 

smaller than the average pore diameter (Iii, Watson, and Mason 1961). The diffusion 

coefficient of water vapor in air, Da, is 25 x 10
-6

 m
2
/s (Gelderblom et al. 2011; LaManna 

and Kandlikar 2011). The mean free path of water vapor () at standard temperature and 

pressure (25° C, 1 bar) is calculated as 0.12 µm using the following equation (Liu 2008; 

Lide 2003): 

22 A

RT

N d p



                                                 (5-5) 

Here, R is the universal gas constant, T is the temperature in K, NA is the Avogadro 

constant, d is the diameter of water vapor molecule (0.275 nm) and p is the pressure. The 

pore structure details of iron carbonate binders from MIP suggests that the average pore 

diameter for  the matrices investigated here are smaller than the mean free path of water 

vapor. Hence, the Knudsen diffusion can be considered to be the dominant mechanism. 

The gas diffusion coefficient (D) can be obtained from the Knudsen diffusion coefficient 

(DKA) and diffusion coefficient in air as (Iii, Watson, and Mason 1961):  

  
1 1 1

a KAD D D
                                                   (5-6) 

The Knudsen diffusion coefficient (m
2
/s) can be expresses as follows (Kast and 

Hohenthanner 2000): 
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48.5KA a

T
D d

M
                                               (5-7) 

where T is the absolute temperature (K); M is the molecular weight of water (g/mole) and 

da is the average pore diameter (µm). The effective diffusion coefficient (De) can then be 

calculated as (Iii, Watson, and Mason 1961; Ataka, Kato, and Zhu 2005; Carniglia 1986): 

eD D



                                                          (5-8) 

where  is the total volumetric porosity and  is the tortuosity of the pore structure.  

The intrinsic permeability is a measure of relative ease with which a fluid can be 

transported through a porous media under a potential gradient. Many studies derive 

permeability of a porous material from MIP data (Swanson 1981; Stanley 1980; Katz and 

Thompson 1986; Katz and Thompson 1987). Among them, the Katz-Thompson model is 

widely used and is employed here to evaluate the intrinsic permeability of iron-based 

binder. For a medium with a characteristic length scale Lc, intrinsic permeability (k) can 

be expressed as,  

2

0

1
( )( )

226

eff

ck L



                                                 (5-9) 

Here the term 0( / )eff    is the normalized electrical conductivity of the medium. 

(1/226) is a constant developed by Katz and Thompson for rock specimens. The Katz-

Thompson theory is based on the assumption the pores are cylindrical.  Previous studies 

have used the pore structure data (extracted from MIP or image analysis techniques) to 

derive the permeability of porous media (Swanson 1981; Stanley 1980; Katz and 

Thompson 1987; Neithalath, Sumanasooriya, and Deo 2010; Sumanasooriya and 

Neithalath 2011). Katz and Thompson simplified Equation 10 to include only 
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characteristic length terms extractable from MIP to predict the permeability, which is 

given as (Katz and Thompson 1987):  

2 max
max max

1
( ) ( ) ( )

89 c

L
k L S L

L
                                      (5-10) 

Here, LC is characteristic length or the pore diameter corresponding to threshold pressure 

(the pressure corresponding to point of inflection in the rapidly rising range of the 

cumulative mercury intrusion curve) (Katz and Thompson 1987; Webb 2001), Lmax is the 

pore diameter at which the hydraulic conductance is maximum;   is the porosity and 

max( )S L is the fraction of volume of connected pore space composed of pores of size Lmax 

or larger.    

The normalized water vapor diffusivity and moisture permeability as a function of 

carbonation duration is shown in Figure 5-6(a). With a reduction in porosity and pore 

sizes and a consequent increase in tortuosity as a result of increased carbonation, both the 

normalized diffusivity and permeability decrease as expected. The reduction in 

diffusivity and permeability follows the same trend as the reduction of porosity with 

increase in carbonation duration for the binder as shown in Figure 5-4. Figure 5-6(b) 

shows the normalized diffusivity-porosity relationship for the iron-based binder. The 

diffusivity values are calculated from the porosity data by incorporating the effective 

diffusion coefficient values (De) (Equation 5-8) in Equation                                                 

5-4. The value of the exponent m in Equation 5-4 is obtained as 3.18 through a non-linear 

regression fit to Archie’s law with 95% confidence bounds. The value of m is in the 

realistic range of 1.6 (red brick) to 4.89 (mudstone) as reported elsewhere (Peng, Hu, and 

Hamamoto 2012). It has also been reported that a smaller m value correlates to larger 
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pores indicating higher diffusivity due to the lower tortuosity and increased pore 

connectivity. The relationship between porosity and moisture permeability is shown in 

Figure 5-6(c). As expected, permeability increases as the porosity increases—note the 

conventional power-law permeability-porosity relationship that is seen to be valid for the 

iron-based binder. It should be noted that the value of permeability of the iron-based 

binder after 4 days of carbonation (k = 2.5 x 10
-16

 m
2
) is significantly higher than that of a 

28-day moist-cured hardened cement paste (k = 6.17 x 10
-20

 m
2
) (Goto and Roy 1981).  

This is primarily due to larger pore sizes in iron carbonate binders even though the total 

pore volumes in the iron-based binder system are lower. However, it should also be 

considered that the transport characteristics of concretes (containing aggregates in large 

volume fractions along with the binder) are more important in application scenarios. The 

lower volume of the paste (or the binding fraction) in concretes result in the paste 

properties being less dominant as compared to those where pure paste is used.   
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Figure 5-6 (a): Effect of carbonation duration on diffusivity and permeability; (b) 

diffusivity-porosity relationship (Archie’s law); (c) permeability-porosity relationship for 

the iron-based binder. All the data points correspond to those of Mixture 2.  

 

5.3.2 Microstructural Evaluation 

5.3.2.1 Reaction product morphology and composition 

The reaction products formed from iron carbonation and the influence of source materials 

have been described in detail (Das, Souliman, et al. 2014). In this study, the 

morphological and compositional features of these binders are outlined. Compositional 

analysis using both secondary electron (SE) imaging and backscattered electron (BE) 

imaging is described here. There are several publications that report microstructural 

quantification of cementitious systems using SEM/EDS (Thaulow, Jakobsen, and Clark 

1996; S. Wang, Baxter, and Fonseca 2008; H. Xu and Van Deventer 2002; Mijno et al. 

(a) (b) 

(c) 
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2004; Scrivener 2004). But, it should be noted that the main objective here is to identify 

the elements present in the reaction product since SEM/EDS is effort-intensive for the 

quantification of reaction product composition, especially for heterogeneous 

microstructures such as the ones discussed here (Scrivener 2004). Hence, in this study the 

microstructural analysis is restricted to identification and distribution of different phases 

in the binder system.  

Figure 5-7 (a) and (b) show the morphology of the reaction products observed on a 

fracture surface of the iron carbonate binder.  The microstructure is heterogeneous, 

containing angular  iron particles, spherical fly ash particles and porous reaction products. 

Reaction product film formation is observed on the surface of iron particles. Some 

reaction product formation is noted on the surface of the fly ash particles as well. A few 

small cracks are also detected. Figure 5-8(b) shows the EDS spectrum of the reaction 

product formed on the surface of the iron particle shown in Figure 5-8(a). The results 

indicate that the final reaction product contains iron, calcium, aluminum, and silicon 

representing an iron-oxalate-carbonate complex incorporating silica. This confirms what 

has been shown in the previous chapter. EDS spectrum is also reported for the non-

carbonated sample (Figure 5-8 (c)) and is shown in Figure 5-8(d). The microstructure 

along with the composition is significantly different from that of the carbonated system. 

Large, unreacted iron particles are observed with no detectable reaction product 

formation on the surface. Only Fe, C and Si are present in EDS spectra. This confirms 

that no binding product formation occurs in the absence of dissolved CO2.  
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Figure 5-7: SE images of iron carbonate binder (Mixture 2) after 4 days of carbonation 

for and air-exposure for 3 days.  

 

 

 

Figure 5-8: (a) SE image of Mixture 2 after 4 days of carbonation and 3 days of air-

exposure, (b) EDS spectrum of area shown in (a); (c) SE image of Mixture 2 after only 3 

days of air curing (no carbonation), (d) EDS spectrum at location shown in (c) 

 

(a) (b)

P

(a) (b)

(c) (d)
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Secondary imaging techniques essentially only provide the surface morphology of the 

region investigated.  The minimum effort to prepare a sample and the ease of interpreting 

the topographical feature makes secondary imaging techniques very attractive. However, 

the roughness of the fracture surface renders quantitative analysis virtually impossible. A 

flat surface is required for more accurate compositional analysis. A suitable combination 

of grinding and polishing has been carried out in order to achieve desired surface flatness. 

Figure 5-9(a) and (b) show the backscatter electron (BE) images of polished surfaces of 

the iron carbonate binder along with representative EDS spectra of the points indicated in 

the images. The elemental composition corresponding to the EDS map of Figure 5-9(a) 

indicates that the bright particles are the iron particles. These particles are highly angular 

as can be seen from the micrograph. The location chosen for EDS analysis shown in 

Figure 5-9(b) is on the relatively dense reaction product formed around the iron particle. 

EDS confirms the presence of iron as the major component, followed by silica, 

aluminum, and calcium rich components.   
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Figure 5-9: (a) and (b): BE images of Mixture 2 at two different locations after 

carbonation for 4 days and air curing for 3 days.  The representative EDS spectra of the 

points marked in the micrographs are shown on the right. 

 

 

5.3.2.2 Elemental maps  

Elemental maps were acquired using the EPMA to better understand the spatial 

distribution of the reaction products. Maps were acquired of iron, silicon, aluminum, 

calcium, and carbon. The results are shown in Figure 5-10. The brighter the color, the 

higher the concentration of the element shown for each map. Iron is observed at locations 

away from the particles also, aided by the organic dissolution agent. The distribution of 

carbon is fairly uniform, except in regions occupied by the unreacted iron particles and 

the fly ash particles where it shows a higher concentration. This indicates that the 
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reaction products which are formed away from the iron particles are also complex iron 

carbonates, although the stoichiometry could be locally different (this is not discounting 

the presence of carbon from the calcium carbonates added in the matrix also). The 

circular black regions in the iron elemental map indicate unreacted, rounded fly ash 

particles which is confirmed by the presence of high concentrations of Si and Al. The 

distribution of Calcium is also shown to be mostly uniform. This is likely due to the small 

size (0.7 µm) of the calcium carbonate (limestone) particles used in the matrix. The 

utilization of limestone in reaction product formation has also been confirmed through 

thermo-gravimetric analysis in the previous chapter.  
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Figure 5-10: (a) A backscattered electron micrograph of the iron carbonate binder (shown 

in the upper left) along with EDS elemental maps of: (b) Fe, (c) Si, (d) Al, (e) Ca, and (f) 

C.  

5.3.2.3 Using BSE images to determine porosity 

Image analysis was carried out on backscattered electron micrographs to obtain the area 

fraction of porosity. The images with significant edge effects were discarded and 5 

images are thus obtained at different resolutions. The chosen images are processed and 

analyzed using ImageJ©, a freely available image analysis software, using procedures 

already established in (Neithalath, Sumanasooriya, and Deo 2010; “Influence of 

Aggregate Size and Gradation on Acoustic Absorption of Enhanced Porosity Concrete” 

(a) (b)

(c) (d)

(e) (f)
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2004). The grey-scale images were converted to binary image by thresholding to separate 

the solid and the pore phases. The threshold limits were chosen based on grey level 

histogram. Figure 5-11(a) shows a representative original grey scale BSE image and 

Figure 5-11(b) shows the thresholded binary image where darker phase represents the 

pore phase. Five such images for the mixture carbonated for 4 days and subsequently air 

cured for 3 days were used to determine the total pore area. The average area fraction of 

porosity obtained was 9.48%, with a standard deviation of 2.5%, which is lower than that 

obtained from mercury intrusion porosimetry (MIP) (about 19%). This is expected 

because much lower pore sizes can be interrogated using MIP (ranging between 10 

microns and 0.003 microns). It has also been recognized that a large number of images 

need to be analyzed to obtain statistically significant figures for the pore structure 

features (Scrivener 2004).  

 

Figure 5-11: (a) A representative BSE image of an iron carbonate matrix (carbonated for 

4 days, and cured in air for 3 days), and (b) thresholded greyscale image showing the 

solid phase (bright) and pore phase (dark).  

5.4 Conclusions 

Fundamental characterization of pore- and micro-structure of a novel complex binder 

system based on the carbonation of metallic iron powder has been discussed in this study. 

(a) (b)
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With metallic iron powder (sourced as a waste/by-product material) used as the major 

component, minor components such as fly ash, metakaolin, limestone and an organic acid 

were used in different proportions to impact the reaction product formation as well as 

rheological characteristics of this binder. The pore- and micro-structural properties of the 

best-performing (based on compressive strength) binder system were reported in this 

study.  

Increasing the carbonation duration from 1 to 4 days significantly reduced the total pore 

volume in the iron carbonate binder as determined by MIP. This was in turn reflected in 

the compressive strength of the binders, while the critical pore size remained relatively 

unchanged. However, it was observed that the fraction of the larger pores and the average 

pore size significantly reduced with increasing carbonation duration. A comparison with 

the pore structure of 28-day cured OPC pastes showed that the overall pore volume was 

lower in iron carbonated binders, however, the critical pore sizes were larger. The pore 

structure features (porosity, average pore size, and tortuosity) were used to theoretically 

determine the water vapor diffusivity through a consideration of Knudsen diffusion, and 

moisture permeability using a modified version of the Katz-Thompson equation. The 

implementation of Archie’s law to the normalized diffusivity-porosity relationship 

yielded a cementation factor of around 3 for the iron carbonate binders, which is close to 

those of many porous engineering materials. The porosities and moisture permeabilities 

of iron carbonate binders were found to be well correlated by a power-law expression.  

Secondary and backscattered imaging revealed many of the important features of the 

microstructure of this novel binder material. The influence of carbonation on the reaction 

product formation on iron particle surfaces was established. A dense, heterogeneous 
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microstructure was obtained after carbonation. The reaction product analysis using EDS 

showed the presence of iron, carbon, silicon, aluminum and calcium, indicating that the 

reaction product is a complex carbonate which was quantified in an earlier study using 

thermogravimetric analysis.  
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Chapter 6 Fracture Response of Iron-based Novel Binder 

6.1 Introduction 

This chapter reports on fracture response of the novel Iron Carbonate binder and draws a 

comparison with hardened cement paste.  One of the major drawbacks of ceramic 

matrices in general and cementitious matrices in particular relate to their low toughness. 

In addition, these low-toughness ceramics lose a significant portion of their strength 

because of service-related damage such as crack growth under static load or cyclic 

fatigue. Thus, enhancing the toughness of these materials contributes to minimization and 

control of strength loss.  In the synthesis of the iron-based binder, metallic iron powder is 

carbonated only to a small fraction (necessitated by limitations in reaction kinetics (Das, 

Souliman, et al. 2014)), which results in the presence of large amounts of residual 

metallic powder in the microstructure.  The presence of this phase, a significant fraction 

of which is elongated, will likely render notable increase in the toughness of this binder 

because of the energy dissipation by plastic deformation (Trusty and Yeomans 1997) 

imparted by the metallic particulate phase. In addition, the matrix contains other 

processing additives including harder fly ash particles, softer limestone particles, and 

ductile clayey phases which influence the overall fracture performance of the novel 

binder significantly. The performance of glass fiber reinforcement in iron-based and OPC 

binder systems are also explored so as to investigate the synergistic influence of 

unreacted metallic iron particles in the matrix and the fiber reinforcement on the 

properties of interest.  Center-point cyclic flexural tests on single-notched beams are 

carried out to determine the critical stress intensity factor (KIC
S
) and the critical crack tip 

opening displacement (CTODC) using the well-accepted two parameter fracture model 
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(TPFM). The differences in fracture behavior between the iron-based binder and the 

traditional OPC binder are also quantified using R-curves. Additionally, the use of digital 

image correlation (DIC) is explored as a non-contact means of extracting the fracture 

parameters of iron-based binders.  

6.2 Experimental program 

6.2.1 Materials, Mixtures and Specimen Preparation 

The major starting material used in this study is a waste metallic iron powder with a 

median particle size of 19.03 µm, obtained from an industrial shot-blasting operation. 

The iron particles are elongated and angular in shape; while influencing the rheological 

properties of the fresh mixture, angular shape also provides benefits related to increased 

reactivity owing to the higher surface-to-volume ratio of the particles. Some minor 

ingredients such as Class F fly ash and metakaolin conforming to ASTM C 618, and 

limestone powder (median particle size of 0.7 µm) conforming to ASTM C 568 were also 

used in the binder synthesis (Das, Souliman, et al. 2014). Fly ash provides a silica source 

for the reactions (to potentially facilitate iron silicate complexation (R. Kumar et al. 

1990)), while the fine limestone powder provides nucleation sites. Metakaolin imparts 

cohesiveness to the paste mixtures because of its clayey origins. In the process of iron 

carbonation, water only serves as an agent of mass-transfer and does not as such 

chemically participate in the reactions. Minimization of water demand, yet keeping the 

consistency and cohesiveness of the mixture was achieved through the use of metakaolin. 

An organic reducing agent/chelating agent for metal cations (oxalic acid, in this case) was 

also used. Commercially available Type I/II OPC conforming to ASTM C 150 was used 

to prepare conventional cement pastes that were used as the baseline system to compare 
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the properties of the novel iron-based binder systems. The chemical compositions of 

OPC, fly ash and metakaolin can be found in our previous publications (Vance et al. 

2013; Das, Aguayo, et al. 2014). The iron powder is coarser than all other ingredients 

used here. While the quantified data presented in this study could vary depending on the 

fineness of the iron powder, the general trends and mechanisms remain the same. 

The powder fraction of the iron-based binder mixture used in this study consists of 60% 

iron powder, 20% fly ash, 8% limestone, 10% metakaolin, and 2% organic acid by mass. 

This combination demonstrated the highest compressive strength and lowest porosity 

among a series of trial mixtures prepared as part of material design studies (Das, 

Souliman, et al. 2014). The mixing procedure involves initial dry mixing of all the 

starting materials and then adding water to obtain a uniform cohesive mixture. A mass-

based water-to-solids ratio (w/s)m of 0.24 was used to attain a cohesive mix, which also 

was arrived at based on several preliminary studies (Das, Souliman, et al. 2014). Since 

the carbonation process of iron does not incorporate water in the reaction products and it 

is merely an agent of mass-transfer, the (w/s)m used is primarily based on the criteria of 

obtaining desired workability.  

Prismatic specimens of size 127 mm (length) x 25.4 mm (depth) x 25.4 mm (width) were 

prepared in polypropylene molds and immediately placed inside clear plastic bags filled 

with 100% CO2 in room temperature inside a fume hood. The samples were demolded 

after 1 day of carbonation in order to attain enough strength so as to strip the molds 

without specimen breakage. After demolding, the beams were placed again in a 100% 

CO2 environment for another 5 days. The bags were refilled with CO2 every 12 hours or 

so to maintain saturation. After the respective durations of CO2 exposure, the samples 
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were placed in air at room temperature to allow the moisture to evaporate for 4 days. 

These CO2 and moisture exposure durations are considered in this study because the 

mechanical properties demonstrated insignificant changes beyond these curing times. It 

can be safely assumed that, for the specimen sizes evaluated here, these durations result 

in kinetic carbonation limits, and further carbonation cannot be achieved without changes 

in process conditions (e.g., temperature or pressure).   Companion OPC mixtures of the 

same size as mentioned above were prepared with a water-to-cement ratio (w/cm) of 

0.40, which is common for moderate-strength concretes in many buildings and 

infrastructural applications. The OPC beams were demolded after 1 day and were kept in 

a moist chamber (>98% RH and 23±2 
o
C) for a total of 28 days. The fiber-reinforced 

binders were prepared by adding 0.5% and 1.0% glass fibers (25 µm diameter and 10 mm 

long) by volume to the blends while mixing. The fiber reinforced iron-based and the OPC 

binders were cured in the same way as their non-reinforced counterparts.  

6.2.2 Determination of Flexural Strength and Fracture Parameters 

The flexural strengths of both iron-based and OPC binders were determined using 

standard center-point loading as per ASTM C293/293M-10, on beams having a span of 

101.6 mm. The fracture properties, viz., the critical stress intensity factor (KIC
S
) and the 

critical crack tip opening displacement (CTODC), were determined from three-point bend 

tests on notched beams using the two-parameter fracture model (TPFM) (Y. Jenq and 

Shah 1985; Shah 1995a) as shown in Figure 6-1. For each mixture four replicate beams 

were tested. The notch depth was 3.8 mm (corresponding to a notch depth-to-beam depth 

ratio of 0.15). The beams were tested in a crack mouth opening displacement (CMOD)-
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controlled mode (CMOD acting as the feedback signal) during the loading cycles and in a 

load-controlled mode during the unloading cycles.  

 

Figure 6-1: (a) Experimental setup for the TPFM test, and (b) a typical load-CMOD plot 

showing the loading and unloading compliances 

 

The TPFM involves the use of the loading and unloading compliances, peak load, 

specimen and notch geometries, and a geometry correction factor, to determine the values 

of KIC
S
 and CTODC. A typical load-CMOD plot is shown in Figure 6-1(b) with the 

loading and unloading compliances. The steps used in TPFM to determine the fracture 

parameters and the relevant mathematical operations are adequately described in many 

publications (Y. Jenq and Shah 1985; Shah 1995a; Rehder, Banh, and Neithalath 2014; 

Y. S. Jenq and Shah 1985; Mobasher 2011). 

6.2.3 Scanning Electron Microscopy (SEM)  

Microstructural analysis was carried out using a JEOL JXA-8530F Hyperprobe (Electron 

Microprobe). Small rectangular pieces (10 x 10 mm in size) were used for microscopic 

observations. The samples were from the interior portions of the beams, and it was shown 

in a companion study that the CO2 curing regimen adopted in this study resulted in 

carbonation across the entire depth for samples of comparable or larger sizes (Das, 

(a) (b)
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Souliman, et al. 2014). Prior to mounting, the sample was ultrasonically cleaned and 

rinsed with ethyl alcohol and dried with compressed air spray to remove debris from 

sectioning/handling. After drying, the sample was placed into a 32 mm two-part 

mounting cup, filled with a room-temperature setting epoxy, and subjected to 95 kPa of 

vacuum for 5 minutes to remove entrapped air. After hardening, the sample was polished 

using 600 and 800 grit Silicon Carbide (SiC) abrasive discs, and further ground using 3 

µm and 1 µm diamond paste. Final polishing was done with a 0.04 µm colloidal silica 

suspension before they were placed under the electron gun of JEOL JXA-8530F 

Hyperprobe.  

6.2.4 Digital Image Correlation (DIC) for the Determination of Fracture Properties 

DIC is a non-contact optical method to analyze digital images to extract the full 

displacement field on a specimen surface (Das, Aguayo, et al. 2014; Krottenthaler et al. 

2013; Rossol et al. 2013; Yuan et al. 2014; Ghorbani, Matta, and Sutton 2014; Tominaga 

et al. 2014; Yates, Zanganeh, and Tai 2010; Nunes and Reis 2012a; Roux, Réthoré, and 

Hild 2009; Lin and Labuz 2013; Sutton, Orteu, and Schreier 2009).  Here, the beam 

surface was painted with random black and white speckles to improve image correlation. 

A charge coupled device (CCD) camera was used to record images every 5 seconds. 

After the collection of images during the entire loading-unloading sequence as described 

in the previous section, a suitable analysis region was chosen as shown in Figure 6-2(a) 

and image correlation performed to obtain the displacement fields on the specimen 

surface. 
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Figure 6-2: (a) Three-point bend specimen showing the analysis region for displacement 

field mapping, and (b) schematic of mapping of points in DIC 

 

In the DIC method, the correlation between the subsets of images from the deformed and 

undeformed state is determined in order to calculate the displacement fields. A point (x,y) 

in the undeformed state is mapped with a point (x
*
,y

*
) in the deformed state as shown in 

Equation 6-1 and Figure 6-2(b).   
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                                                [6-1]                                                                  

The horizontal (u) and vertical (v) displacement fields in the surface analysis region are 

then computed by minimization of the correlation coefficient (C) which can be defined as 

(Yates, Zanganeh, and Tai 2010):   
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Here, G and H are grey scale light intensities corresponding to the point in the subset. 

From the results of u-displacement fields, the crack tip opening displacement (CTOD) 

and the crack extension (corresponding to the load and CMOD pertaining to that time 

step) can be obtained as described later in the study.   
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6.3 Results and discussions 

6.3.1 Microstructure of Iron Carbonate Binders 

As discussed earlier, microstructural analysis was carried out on polished iron carbonate 

binder samples to understand the material morphology and the impact of the material 

microstructure on its properties.  The images shown here are for specimens cured for 6 

days in a CO2 environment. Figure 6-3(a) shows the general appearance of the material 

microstructure with bright (high density) iron particles along with the reaction products 

and pores. The unreacted iron particles are, in general, elongated. The implications of 

these unreacted particles are discussed in the forthcoming section on fracture properties. 

The dense reaction products (the grey phases in the microstructure) are formed from the 

carbonation of smaller iron particles and their complexation with the other minor 

ingredients in the mixture, which was confirmed from a thermal analysis study to be 

belonging to the carbonate-oxalate-cancrinite group (Das, Souliman, et al. 2014). A 

higher magnification image is shown in Figure 6-3(b) where an elongated iron particle 

and the surrounding microstructure containing spherical fly ash particles are shown. The 

dark regions in this microstructure are the pores, the volume fraction of which was found 

to be comparable to those of OPC-based systems as detailed in an extensive 

quantification work (Das, Souliman, et al. 2014). Dissolution of iron into the matrix from 

the particle and the formation of reaction products is shown in Figure 6-3(c).  
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Figure 6-3: Microstructure of iron-based binder: (a) lower magnification (150X) image 

(scale bar corresponds to 100 µm); (b) higher magnification (1200X) image showing an 

elongated iron particle and the surrounding regions (scale bar corresponds to 10 µm); and 

(c) showing dissolution of Fe
+2

 from iron particle into the surrounding matrix (4300X) 

(Scale bar corresponds to 1 µm)  

6.3.2 Flexural Strength 

The compressive strengths and the reaction product quantification in iron carbonate 

binder systems have already been reported in detail (Das, Souliman, et al. 2014; Das, 

Stone, et al. 2014). Here, the flexural strengths of plain and fiber-reinforced iron-based 

binder systems are reported along with their comparison to OPC systems.  Figure 6-4 

shows the flexural strengths of plain and fiber-reinforced iron carbonate binders after 6 

days of carbonation and the corresponding OPC pastes after 28-days of hydration for 

comparison. The results presented here suggest that the iron carbonate binder is about 

(a) (b)

(c)
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four-to-six times stronger than the traditional OPC paste in flexure. This can be attributed 

to a combination of the stronger carbonate matrix along with the presence of unreacted 

iron particles in the microstructure as shown in Figure 6-3. Both the binders are observed 

to exhibit increases in flexural strength with inclusion of fibers, with the iron-based 

system showing a much pronounced increase. While it has been proved that addition of 

glass fiber in OPC system results in increase in toughness with only minor increase in 

flexural strength (Sivakumar and Santhanam 2007; Altun, Haktanir, and Ari 2007; Kwan, 

Ramli, and Cheah 2014), the iron-based binder shows a different trend where the flexural 

strength is increased significantly with the incorporation of glass fibers into the matrix.  

An enhancement in flexural strength of about 50% is observed for the iron-based binder 

when 0.5% glass fibers by volume is incorporated, but further fiber addition does not 

appear to correspondingly enhance the material behavior. Such an observation is noticed 

for the Mode I fracture toughness of these binder systems also, and the explanation is 

provided in a later section.  

 

Figure 6-4: Comparison of flexural strength of 6-day carbonated iron Carbonate sample 

and OPC paste after 28 days for different fiber dosage 
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6.3.3 Fracture of Notched Beams and Fracture Parameters 

In this study, the fracture parameters of the iron-based and OPC binder systems are 

studied using the TPFM. TPFM idealizes the pre-peak non-linear behavior in a notched 

specimen through an effective elastic crack approach. The beam sizes and the notch depth 

are same for both the systems, thereby rendering the comparisons of the fracture 

parameters free of size effects. The effect of fiber volume fractions on the fracture 

parameters are also evaluated in conjunction with the response of the matrix phase. 

6.3.3.1 Cyclic Load-CMOD response of notched beams 

The representative load-CMOD responses are shown in Figure 6-5 for the iron-based 

binder and the companion OPC-based binder with and without fiber reinforcement. 

Figure 6-5(a) plots the load-CMOD response for the control OPC and iron-based binder 

(without fiber reinforcement), which clearly depicts the fundamental differences in the 

flexural response of these matrices. The significantly higher peak load and improved post 

peak response of the iron-based binder as compared to control OPC binder can be 

attributed to the presence of unreacted metallic iron particles (Figure 6-3) which are 

inherently strong and ductile. It needs to be noted that the iron-based binder contains 

higher amounts of larger pores (average size > 0.2 µm) even though the total pore 

volumes are comparable (Das, Stone, et al. 2014), and consequently, demonstrates 

compressive strength that is slightly lower than that of the OPC binder (Das, Souliman, et 

al. 2014). However, the presence of strong and ductile phases in the microstructure 

dominates the flexural response, as shown earlier. The incorporation of fibers in an OPC 

matrix makes it ductile as observed from the post-peak response and the larger CMODs 

for the fiber reinforced systems as opposed to the unreinforced materials shown in Figure 



110 

  

6-5 (b) and (c); a response that is well documented. Both the peak load and the residual 

load are significantly higher for the iron carbonate binder, with and without fiber 

reinforcement, depicted in Figure 6-6(a) and (b). The incorporation of glass fibers 

enhances the peak load of the iron-based binder much more than it does to the OPC 

binder, signifying the synergistic impact of the iron carbonate matrix (including the 

unreacted iron particles) and fiber on the flexural response. The residual load for the 

control binders were measured at a CMOD value of 0.12 mm whereas a CMOD value of 

0.25 mm was chosen for the binders with fiber reinforcement. The residual loads provide 

an indication of the crack-tolerance and the post-peak response of these systems.    

 

Figure 6-5: Representative Load-CMOD responses for iron carbonate binder and 

comparison with OPC paste for (a) Control; (b) 0.5% and (c) 1.0% fiber volume fraction 

 

(a) (b)

(c)
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Figure 6-6: (a) Peak load, and (b) residual load of OPC and iron carbonate binders as a 

function of fiber volume fraction 

 

6.3.3.2 KIC
S

 and CTODc of iron carbonate composite systems and their comparison to 

OPC-based systems 

Figure 6-7 reports the two major fracture parameters-fracture toughness (KIC
S
) and 

critical crack tip opening displacement (CTODC) derived using TPFM for both the 

binders, as a function of the fiber volume fraction. Figure 6-7(a) shows that the fracture 

toughness values of the iron-based binders are much higher than those of the control OPC 

binders (~ 5-7 times) irrespective of the fiber volume fraction. An increase in fiber 

volume fraction is found to enhance the toughness of both the binder systems, as 

expected, attributed to the crack-bridging effects of the fiber and the resultant increase in 

energy dissipation under load. The KIC
S

 values of the iron carbonate binder range from 30 

MPa.mm
0.5 

to 50 MPa.mm
0.5

, which is approximately half of those of glass ceramics 

(HAN 2009), polycrystalline cubic zirconia, SiN, Alumina (Becher 1991) and high-

performance structural ceramics such as SiC (Mukhopadhyay, Datta, and Chakraborty 

1999), and five times larger than the companion OPC binder. It is noteworthy to state that 

the above-mentioned ceramics are prepared via high-temperature processing whereas the 

(a) (b)
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iron-based binder in this study is processed at ambient temperature and pressure in a CO2 

environment. In the unreinforced OPC matrix, the only mechanism of strain energy 

dissipation is crack extension. The significantly higher KIC
S

 of the iron-based binder, even 

for the unreinforced case, as compared to the OPC binder could be attributed to the crack 

bridging and/or deflection effects of the ductile, unreacted metallic iron particles in the 

matrix, many of them which are elongated as can be observed from the micrographs in 

Figure 6-3. The strong reinforcing phase (the unreacted metallic particles) imposes a 

closing pressure on the crack thereby bridging the cracks and the elastic incompatibility 

and debonding between the metallic particle-carbonate matrix interfaces contributes to 

crack deflection. The influence of the unreacted iron particles in improving the crack 

resistance and toughness is augmented by the toughening mechanisms due to the 

incorporation of fibers, as can be noticed from Figure 6-7. Beyond a certain volume 

fraction of fibers, further toughness enhancement is negligible for the iron-based binders 

because the distribution of the unreacted iron particles and the fibers in the matrix is 

expected to be sufficient for crack bridging/deflection. However, as expected, an increase 

in fiber volume fraction, in the ranges reported in this study, enhances the toughness of 

the OPC-based binder system, the reasons for which are well documented (Tassew and 

Lubell 2014; Banthia and Sheng 1996; Gopalaratnam and Gettu 1995; Reis 2006; 

Bakhshi, Barsby, and Mobasher 2014; Banthia et al. 2014).  
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Figure 6-7: (a) Fracture toughness, and (b) critical crack tip opening displacements of 

iron carbonate and OPC-based binders 

The critical crack tip opening displacements (CTODC), which indicates the limit beyond 

which unstable crack propagation begins is shown in Figure 6-7(b) as a function of the 

fiber volume fraction for both the binders. A rather uniform increase in CTODc with fiber 

volume fraction is observed for both the binders.  The unstable crack propagation 

threshold limit (CTODC) for the unreinforced iron-based control binder is found to be 

about three times higher as compared to that of the corresponding OPC paste, also 

attributable to the reasons described earlier. The difference in CTODC between the two 

binder types reduce to a certain extent as fibers are incorporated.  The KIC and CTODC 

values of the two binders indicate that the iron-based binder yields significantly improved 

crack resistance and ductility than the conventional OPC systems due to the presence of 

unreacted metallic iron powder surrounded by a carbonate matrix (Das, Stone, et al. 

2014; Das, Souliman, et al. 2014). 

The KIC-CTODC relationships of the two binders are compared in Figure 6-8(a), where an 

increase in the fracture toughness is observed with an increase in the critical opening size 

of the crack. While the increase in KIC
S
 is proportional to an increase in CTODc for the 

(a) (b)
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OPC binders, for the iron-based binder, the increase in KIC
S
 is not prominent beyond a 

certain CTODc value (or fiber volume fraction, since CTODc-fiber volume fraction 

relationships are linear for both the binder systems as shown in Figure 6-7(b)). The 

reason for this observation was provided earlier. The critical crack length (ac) values 

obtained from TPFM are shown in Figure 6-8(b), as a function of the fiber volume 

fraction. The critical crack length increases with increase in fiber volume for both the 

binders as expected. In unreinforced binders, the iron-based system has a higher critical 

crack length owing to the contribution from elongated, elastic iron particles. However, at 

a higher fiber volume fraction, the critical crack lengths for both the binders are 

comparable even though KIC
S
 and CTODc are higher for the iron-based binder. This 

shows that, in the iron-based systems, beyond a certain fiber volume fraction, 

enhancement in fracture properties are negligible for reasons explained earlier (even 

though the performance is much better than the corresponding OPC systems). This aspect 

is investigated in further detail through the use of resistance curves in the following 

section.  

 

Figure 6-8: (a) Fracture toughness-critical crack tip opening displacement relationship; 

(b) Variation in critical crack length with change in fiber dosage for iron carbonate binder 

and OPC 

(a) (b)
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6.3.3.3 Matrix and fiber effects on the strain energy release rates 

In order to explore the influence of matrix (including the unreacted, elongated iron 

particles) and the fibers on the fracture response, this section utilizes the resistance curves 

(R-curves) (Das, Aguayo, et al. 2014; Mobasher 2011; Wecharatana and Shah 1983; 

Chengsheng, Barzin, and Surendra P. 1990; Mai and Hakeem 1984; Sakai and Bradt 

1986; Arino and Mobasher 1999).  R-curves are developed here by making use of the 

multiple loading-unloading cycles in the load-CMOD plots as shown in Figure 6-5. R is 

defined as the strain energy rate required for crack propagation and it is an increasing and 

convex function for quasi-brittle materials.  The contribution from both the elastic and 

inelastic strain energies are considered in the development of the R-curve, which makes it 

beneficial in obtaining a better understanding of the matrix and fiber effects. The elastic 

component is calculated from the unloading compliances whereas the inelastic CMOD is 

used to calculate the inelastic strain energy release rate. The total strain energy release 

rate (GR) is given as (Mobasher 2011; Wecharatana and Shah 1983; Mai and Hakeem 

1984; Sakai and Bradt 1986; Arino and Mobasher 1999; Das, Aguayo, et al. 2014): 

                                 

2 ( )

2 2

inelastic
R elastic inelastic

CMODP C P
G G G

t a t a


   

 
                    (6-3)                                          

Here C is the unloading compliance, t is the thickness of the specimen, P is the applied 

load, and a is the crack length.  

A compliance-based approach (Mobasher 2011; Das, Aguayo, et al. 2014; Wecharatana 

and Shah 1983) is used in this study to develop the resistance curves. This approach is 

based on the assumption that stable crack propagation leads to an increase in compliance.  

Three parameters were obtained for each loading-unloading cycle (Figure 6-5): the 



116 

  

compliance, the load at the initiation of the unloading, and inelastic CMOD, which is the 

residual displacement when the sample is unloaded. The unloading compliance is used to 

solve for the effective crack length (a0+a, where a is the crack extension) using a 

non-linear equation described in (Mobasher 2011; Das, Aguayo, et al. 2014). The 

compliance and the inelastic CMOD are then plotted as functions of the crack length and 

the relationships differentiated to obtain the rate terms in Equation 6-3.  

Figure 6-9 shows the R-curves for both the binder systems at all levels of fiber 

reinforcements. The R-curves comprise of a region where the resistance increases with 

crack length denoting the formation of a process zone and an energy plateau denoting 

steady-state crack extension. The location of the transition point between the two regions 

depends on the matrix type and fiber volume as can be observed from Figure 6-9. The 

unreinforced OPC system shows almost negligible resistance whereas the corresponding 

iron-based system demonstrates some resistance to crack formation and growth, 

attributable to the reasons described elsewhere in this study. The use of fiber 

reinforcement improves the crack growth resistance of OPC systems, but the overall 

resistances are significantly lower than those of the iron-based binder systems.  
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Figure 6-9: Resistance curves for the unreinforced and fiber reinforced iron-based and 

OPC binder systems 

It is instructive to separate the elastic and inelastic components of the strain energy 

release rate to obtain further insights on the relative influence of matrix (and the discrete 

phases in it) and the fiber reinforcement on the fracture response of these widely different 

material systems. The results are presented in Figure 6-10(a) and (b) for the iron- and 

OPC-based binder systems respectively. The elastic component of the strain energy 

release rate corresponds to the energy release rate due to incremental crack growth 

whereas the inelastic component corresponds to effects such as permanent deformation 

caused due to crack-opening. An important observation from these figures is that the 

contribution of the elastic component to the overall strain energy release rate is found to 

be higher than the inelastic component for the iron-based binder systems (both 

unreinforced and reinforced) whereas for the OPC systems, the contribution of inelastic 

component is higher. It is also found that both the elastic and the inelastic components 

increase with increase in crack extension for the fiber-reinforced iron-based system 

whereas  for the fiber-reinforced OPC systems, the elastic component remains relatively 

constant with crack extension and the increase in total strain energy is mainly due to 

increase in the inelastic component. The higher contribution of the elastic component in 

the iron-based systems is attributed to the presence of a stronger matrix along with the 

presence of elastic metallic iron particles that provide crack growth resistance through the 

mechanisms described earlier. On the contrary, the brittle OPC matrix cracks easily, and 

consequently the load is carried almost completely by the fibers. The fibers bridge the 

crack and energy dissipation is obtained through crack opening, which is reflected in the 

form of increased inelastic strain energy with increasing crack extension. The R-curve 
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response is consistent with the values of fracture parameters (KIC
S
 and CTODC) of these 

binders. The fracture toughness of the iron-based systems was found to be much higher 

than the OPC systems whereas the CTODC values demonstrated less of a difference. The 

same trends are reflected in the R-curves: about an order of magnitude higher crack 

growth resistance (elastic contribution) observed for the iron-based systems than the OPC 

systems and comparatively lesser improvement (about 60% higher) in the crack-opening 

resistance (inelastic contribution).  

 

 

Figure 6-10: Elastic and inelastic components of crack growth resistance with varying 

crack extension for (a) iron Carbonate binder and (b) OPC paste for different fiber dosage 

 

6.3.4 Use of Digital Image Correlation (DIC) to Determine KIC and CTODc 

DIC is a very useful non-contact optical method to measure displacement fields 

(Krottenthaler et al. 2013; Rossol et al. 2013; Yuan et al. 2014; Ghorbani, Matta, and 

Sutton 2014; Tominaga et al. 2014). DIC has been employed in several studies, including 

those of the authors, to evaluate fracture responses of several materials (J. Chen et al. 

2010; Yates, Zanganeh, and Tai 2010; Nunes and Reis 2012a; Roux, Réthoré, and Hild 

(a) (b)
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2009; Das, Aguayo, et al. 2014). To demonstrate the effectiveness of this method for the 

novel iron-based binder systems, two representative iron carbonate binders (0% and 1% 

fiber volume fraction) are used here for the extraction of fracture parameters through 

DIC. Figure 6-11(a) shows the load-CMOD response for the fiber-reinforced iron-based 

binder, where the points P1-to-P3 correspond to three different stages of crack extension, 

i.e., in the pre-peak, near-peak, and post-peak stages. The compliance value obtained by 

unloading at approximately 95% of the peak load in the post-peak region is used for the 

determination of KIC
S
 and CTODC using TPFM, which is required in order to compare 

with the corresponding values obtained using the DIC technique. The horizontal u-

displacement fields (along the crack opening direction) are obtained from image 

correlation by employing VIC-2D software
TM

 (commercially available, developed by 

Correlated Solutions). Figure 6-11(b) shows the plot of the crack opening, denoted by the 

horizontal displacement, and the crack extension, denoted by the jump in the 

displacement above the notch, which can be extracted from the DIC data (Das, Aguayo, 

et al. 2014). As can be observed here, the CTOD and a values can be determined 

directly using the DIC method without instrumenting the crack for precise measurements.  

A threshold value of 0.005 mm is set to qualify the displacement-jump as contributing to 

crack extension. The crack extension corresponding to 95% of the peak load in the post-

peak region is used to determine the DIC-based fracture toughness parameters using a set 

of simplified expressions as shown later.  
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Figure 6-11: (a) Load-CMOD response for iron carbonate binder with 1% fiber volume 

fraction, and (b) horizontal (u) displacement field represented as a 3D surface plot 

The 2D displacement fields for the iron-based binder are shown in Figure 6-12 for three 

different CTOD values which were selected as shown in Figure 6-11(a). Figure 6-12(a), 

(c) and (e) show the 2D crack opening displacements, corresponding to the points P1 , P2 

and P3 of Figure 6-11(a) whereas Figure 6-12(b), (d) and (f) shows the corresponding 

horizontal displacements as 3D surface plots. Figure 6-12(a) corresponds to the case 

where only a very small load is applied to the specimen (Point P1 in Figure 6-11(a)), and 

the values of both CTOD and crack extension are zero, as shown by the uniform 

horizontal displacement fields above the notch as well as a flat surface plot (Figure 

6-12(b)). Figure 6-12(c) corresponds to 95% of the peak load in the post-peak zone (Point 

P2 in Figure 6-11(a)). A displacement jump is clearly visible above the notch in both the 

2D displacement field (Figure 6-12(c)) and the 3D surface plots (Figure 6-12(d)). Beyond 

this point, the crack extension is found to be unstable (a large increase in CTOD and 

crack extension). Figure 6-12(e) shows the displacement field corresponding to Point P3 

in Figure 6-11(a).  The CTOD and a values are very high in the post-peak zone.   

CTOD

Δa

(a) (b)
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Figure 6-12: Horizontal displacement fields and the 3D surface plots for unreinforced and 

reinforced (1% fiber volume fraction) iron-based binders corresponding to: (a) and (b) 

pre-crack stage: P1 (CMOD: 0.0009 mm, Load: 91.4 N, a =0 mm, CTOD=0 mm); (c) 

and (d) stable crack growth stage: P2 (CMOD: 0.0263 mm, Load: 1172 N, a =3.95 mm, 

CTOD=0.0096 mm); (e) and (f) unstable crack-propagation stage: P3 (CMOD: 0.2019 

mm;  Load: 633.8 N; a =18.58 mm; CTOD=0.156 mm). 
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Horizontal displacement (mm)
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To determine KIC and CTODC from the DIC data, values at 95% of the peak load in the 

post-peak zone are considered. KIC for a notched beam in three-point bending can be 

determined as (Nunes and Reis 2012a; Gdoutos 2006; P. Zhang et al. 2013) as: 

                                                        3/2
[ ]

eff

IC

aPL
K F

bd d
                                                 (6-4)                                                                       

The geometry function F(aeff/d) is given as:     

1/2 3/2 5/2 7/2 9/2[ ] [2.9( ) 4.6( ) 21.8( ) 37.6( ) 38.7( ) ]
eff eff eff eff eff effa a a a a a

F
d d d d d d

      (6-5)                          

 where the effective crack length, 0effa a a  .  

The CTODC and KIC values are also calculated using the TPFM for comparison and are 

reported in Table 6-1. For the iron-based binders, there is a good correlation between the 

KIC and CTODc values obtained from the contact and non-contact methods, establishing 

the use of DIC-based techniques as a viable means for non-contact sensing of structural 

damage parameters.  

Table 6-1: Comparison of the KIC and CTODc values determined using TPFM and DIC   

 

 

6.4 Conclusions 

This study has evaluated the flexural fracture response of a novel iron-based binder and 

compared it with the performance of OPC-based matrices which are the most common 

and cheapest of the available ceramic matrices. The iron-based binder was prepared by 

Specimen composition 

KIC (MPa.mm
0.5

) CTODc (mm) 

TPFM DIC TPFM DIC 

Iron carbonate (Control) 31.40 33.56 0.0062 0.0040 

Iron carbonate (Vf=1.0%) 52.53 54.14 0.0089 0.0096 
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the aqueous carbonation of metallic iron powder (which contained particles of large 

aspect ratios also) along with other chosen minor ingredients. Microstructural studies 

showed a dense reaction product intermixed with pores and unreacted, elongated iron 

particles. The flexural strength, fracture toughness (KIC
S
), and the critical crack tip 

opening displacement (CTODc) of the iron-based binders were significantly higher than 

those of the OPC matrices, for both the unreinforced and glass-fiber reinforced systems. 

The improved performance of the iron-based binder systems were attributed to the 

presence of the elastic, unreacted metallic particles that facilitate crack bridging and 

deflection. The use of glass fibers was found to enhance the toughness of OPC-based 

systems as is well known. For the iron-based binders, up to a certain fiber volume 

fraction, toughness enhancement was observed. The benefits were negligible beyond that 

because a further increase in fiber volume was not required to ensure crack 

bridging/deflection in the presence of elongated iron particles. The KIC
S
 and CTODc 

values for the iron-based binders were also obtained through a non-contact digital image 

correlation method, which provided comparable fracture parameters as those determined 

from the TPFM.  

R-curves, developed using a compliance-based approach, were used to explore the 

relative influence of the matrix and the fibers on the fracture response of the novel binder 

systems. The iron-based binder systems showed significantly higher strain energy release 

rates than the OPC-based binder at all fiber loadings. The elastic (corresponding to the 

energy release rate due to incremental crack growth) and inelastic (permanent 

deformation caused due to crack-opening) components of the strain energy release rate 

were separated. It was found that the elastic component of the strain energy release rate 



124 

  

was higher than the inelastic component for iron-based binders, attributable to the 

superior effects of the unreacted metallic particulate phase that provide crack growth 

resistance. For the fiber reinforced OPC system, the energy dissipation is obtained 

through crack opening only, which resulted in an increased contribution of the inelastic 

component towards the total strain energy release.  The results from this study has 

established the improved flexural and fracture performance of a novel and sustainable 

composite material.  
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Chapter 7 Crack-propagation and Strain-localization in Novel iron Carbonate 

binder using Digital Image Correlation 

7.1 Introduction  

While previous chapters described the material development, characterization, 

compressive, flexural strength and fracture behavior, the study presented in this chapter 

investigates the fundamental reasons for the beneficial fracture performance of these 

binder systems through the evaluation of the fracture process zone (FPZ), defined as a 

complex localized zone of energy dissipation containing the main crack as well as 

various branches of secondary and micro-cracks. The development of the FPZ in the iron-

based binder systems will be significantly different from those of OPC-based systems due 

to the differences in the material microstructure, especially the presence of iron particles. 

The influence of fiber reinforcement in these systems is also explored with respect to its 

synergistic action with the matrix response, which also is very different from those of 

OPC-based systems.  

By extending the evaluation of the fracture responses, the tensile constitutive behavior of 

the novel iron-based composite binder is extracted from resistance curves. The maximum 

fracture energy is compared with the cohesive toughness of a unit tensile stress-crack 

width model (Suzuki and Sakai 1994; Mobasher, Bonakdar, and Bakhshi 2015) to predict 

the tensile response. The differences in tensile response between OPC and iron-based 

binder systems are elucidated. Results are further investigated for the strain localization 

and crack propagation behavior of the novel binder using the Digital Image Correlation 

technique,.  Adoption of suitable analytical models for tensile response, and comparison 
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with OPC systems are expected to provide useful insights that aid in the development of 

guidelines for widespread use of this material.   

7.2 Experimental program 

7.2.1 Materials, Mixtures and Specimen Preparation 

Metallic iron powder with a median particle size of 19 µm was used as the major starting 

material in this study. The iron powder was obtained from an industrial shot-blasting 

facility in Phoenix, AZ. The elongated and angular iron particles provide beneficial 

increased reactivity due to higher surface-to-volume ratio of the particles. The other 

additives used in the binder formation included Class F fly ash and metakaolin 

conforming to ASTM C 618, and limestone powder (median particle size of 0.7 µm) 

conforming to ASTM C568. Here fly ash was added as a silica source to potentially 

facilitate iron silicate formation  and limestone, to provide nucleation sites for reaction. 

Further details on mixture proportioning of this novel binder material can be found in 

previous chapters.  Unlike, traditional OPC based binders, water serves only as an agent 

of mass transfer in the iron-based binder systems and the reaction product is not a 

hydrate. In order to reduce the water demand and to maintain the cohesiveness of fresh 

mixture, a clay phase (metakaolin) was added. An organic reducing agent/chelating agent 

(Oxalic acid in this case) was also added to facilitate better dissolution of the metallic 

iron and enhance its reactivity. For comparison purposes, commercially available Type 

I/II OPC conforming to ASTM C150 was used to prepare conventional cement paste.  

The binder component used in this study includes 60% iron powder, 20% fly ash, 8% 

limestone, 10% metakaolin and 2% oxalic acid by mass. These proportions were arrived 

at based on strength and porosity of several trial mixtures as described in detail in an 
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earlier chapters. The mixing procedure involves initial dry mixing of all the constituents 

and then addition of water to form a uniform cohesive mixture. A mass-based water-to-

powder ratio of 0.24 was used to provide a cohesive and uniform mixture. Since water is 

not chemically combined in the reaction products, this value was chosen from a 

rheological perspective.   

Prismatic beams of size 127 mm (length) x 25.4 mm (depth) x 25.4 mm (width) were 

prepared in polypropylene molds and the samples were placed inside clear plastic bags in 

a 100% CO2 environment under normal temperature and pressure for 24 hours. The 

beams were then demolded and kept in a 100% CO2 environment for 5 more days. The 

bags were refilled with CO2 every 12 hours in order to maintain CO2-saturation. After 

carbonation, the samples were placed in air for 4 days for evaporation of moisture from 

the samples. These carbonation and air-curing durations are also arrived at based on a 

previous study shown in previous chapters. For comparison purpose, companion OPC 

beams of same size were prepared using a water-to-cement ratio of 0.40 which is 

common for moderate-strength concrete for infrastructural applications. The beams were 

demolded after 24 hours and placed in a moist chamber (>98% RH and 23±2
o
C) for a 

total of 28 days. The fiber-reinforced binders were prepared by adding 0.5% and 1.0% 

alkali-resistant glass fibers (25 µm diameter and 10 mm long) by volume to the blends 

while mixing. The fiber reinforced iron-based and the OPC binders were cured in the 

same way as their non-reinforced counterparts.  

7.2.2 Cyclic Three-point Bending Test for Evaluation of Fracture Properties 

Three point bending test was performed on notched beams (notch depth-to-beam depth 

ratio of 0.15). The beams were tested in a closed-loop flexural testing setup. Several 
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loading-unloading cycles were employed, and the compliances were used to determine 

the fracture resistance. Crack mouth opening displacement (CMOD), measured using a 

clip gauge, was used as the controlling signal during loading cycles whereas load-

controlled mode was employed during unloading cycles. The tests were run 

monotonically under CMOD-controlled mode for evaluation of the zone of strain 

localization through non-contact measurement using digital image correlation (DIC). 

7.2.3 Digital Image Correlation (DIC) for Evaluation of Fracture Process Zone 

DIC is an optical speckle-tracking non-contact measurement method to obtain full-field 

surface displacements through successive post-processing of digital images taken at 

specific intervals of time. The principle and applications of DIC are well documented 

(Krottenthaler et al. 2013; Rossol et al. 2013; Yuan et al. 2014; Ghorbani, Matta, and 

Sutton 2014; J. Chen et al. 2010; Yates, Zanganeh, and Tai 2010b; Nunes and Reis 2012; 

Das, Aguayo, et al. 2014; Das, Hendrix, et al. 2015; Das, Aguayo, et al. 2015b). The 

surfaces of the beams were speckled to create random patterns. A CCD (Charged-Couple 

Device) camera was used to record images every 5 seconds. After collection of all the 

images, a suitable region of interest (ROI) was chosen for analysis, as shown in Figure 

7-1(a). The 2D displacement fields are obtained from correlation between the subsets of 

images from the deformed and undeformed state as shown in Figure 7-1(b). The 

horizontal (u) and vertical (v) displacement fields in the surface analysis region are then 

computed by minimization of the correlation coefficient (C) (Yates, Zanganeh, and Tai 

2010b; Das, Aguayo, et al. 2014). The image processing and analysis operations were 

carried out using a commercial software (VIC-2D 
TM

).      
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Figure 7-1: (a) Three-point bend specimen showing the analysis region for displacement 

field mapping, and (b) schematic of mapping of points in DIC 

 

The Lagrangian strain fields are then obtained from the displacement fields as given in 

Equation 7-1 to 7-3 (Hjelmstad 2007; Sutton, Orteu, and Schreier 2009a; Das, Aguayo, et 

al. 2015b): 
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While the crack tip opening displacement (CTOD) and the crack extension 

(corresponding to the load and CMOD pertaining to that time step) can be quantified 

from the results of u-displacement fields (Nunes and Reis 2012; Das, Aguayo, et al. 

2014; Das, Aguayo, et al. 2015b; Das, Hendrix, et al. 2015), the in-plane Lagrangian 

strain field calculated from the displacement fields, particularly its component exx that 

corresponds to the crack opening direction, provides important information on strain 

localization at the tip of the crack.  
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7.3 Results and discussions 

7.3.1 Cyclic load-CMOD response of notched beams 

The representative load-CMOD responses of control and fiber reinforced iron-based 

binder are shown in Figure 7-2(a). Multiple loading-unloading cycles are employed in 

order to determine compliance based resistance (R) curves which are used in the present 

study to determine the tensile stress-strain responses which are discussed in detail later. A 

significant improvement in the flexural strength and post-peak response is clearly visible 

in Figure 7-2(a) for the iron carbonate binder when 1% glass fiber by volume is added. 

Figure 7-2(b) shows the peak flexural loads for OPC and iron-based binder at different 

fiber loadings.  The control iron-based binder shows significantly higher peak flexural 

load than the OPC paste, which can be attributed to presence of unreacted metallic iron 

particle inclusions surrounded by strong carbonate matrix in the iron-based binder as is 

explored in previous chapters. The peak flexural load increases with incorporation of 

fiber in both the systems but the iron-based binder shows more pronounced increase in 

flexural peak load due to  the synergistic effect of the iron carbonate matrix (including 

the unreacted iron particles) and the fibers on the flexural response. Figure 7-2(c) shows 

the total fracture energy, calculated using Hillerborg’s work-of-fracture method as shown 

in Equation 7-4 (Roesler et al. 2007; Das, Aguayo, et al. 2015b), for the OPC and iron-

based novel binder.  
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


                                                      (7-4) 

In Equation 7-4, W0 is the area under the load-CMOD curve, 0 is the CMOD at failure, 

D is depth of the beam, a0 is the notch depth, t is the beam thickness, and PW is the self-

weight of the beam.  Total fracture energy, a reflection of post-peak performance and 
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crack-tolerance of materials, is found to be significantly higher in iron-based binder than 

OPC in both control and fiber-reinforced states for the reasons explained earlier. For 

instance, at 1% fiber volume fraction, the fracture energy is about 4 times higher for the 

iron-based binder. The peak loads and fracture energies shown here provide an indication 

of the performance improvement attainable by the novel iron carbonate binder system as 

compared to the conventional OPC-based systems.  

 

Figure 7-2: (a) Representative Load-CMOD responses for iron carbonate binder with and 

without fiber reinforcement, (b) peak flexural loads for the OPC and iron carbonate 

binders, and (c) total fracture energy of OPC and iron carbonate binders used in this 

study. The error bars represent one standard deviation of peak load or fracture energy 

obtained from four replicate specimens. 

(a) (b)

(b)
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7.3.2 Strain energy release rates (R-curves)  

While the superior performance of iron-based binder as compared to OPC is established 

as shown in previous chapter using a two-parameter fracture model, this section shows 

the strain energy release rates for ease of reference in the context of determination of 

tensile stress-strain response using strain energy-based inverse analysis.  

Compliance-based determination of (Mobasher 2011b; Das, Aguayo, et al. 2014; Das, 

Hendrix, et al. 2015; Wecharatana and Shah 1983) strain energy release rate is based on 

the assumption that stable crack propagation leads to an increase in compliance. The 

elastic component is calculated from the unloading compliances whereas the inelastic 

CMOD is used to calculate the inelastic strain energy release rate. The total strain energy 

release rate (GR) is given as: 
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Here ‘C’ is the unloading compliance, ‘t’ is the thickness of the specimen, ‘P’ is the 

applied load, and ‘a’ is the effective crack length calculated by substituting values of 

unloading compliance in a nonlinear equation. The unloading compliance and inelastic 

CMOD is expressed as a function of effective crack length using polynomial fit and the 

functions are differentiated with respect to ‘a’ to obtain the different terms in Equation                     

7-5.  

R-curves for the OPC and iron-based binders are shown in Figure 7-3(a). In the 

unreinforced states, the OPC system shows very little crack growth resistance, consistent 

with the extremely brittle nature of a hydrated OPC paste, whereas the iron-based binder 

exhibits significantly higher resistance. Incorporation of fibers improves the resistance 
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for the OPC matrix although the resistance values are still lower as compared to the fiber-

reinforced iron-based binder for the reasons explored earlier. Figure 7-3(b) and (c) show 

the separated contributions of elastic and inelastic components to the total strain energy 

release rates for the different binders. The elastic component of the strain energy release 

rate can be attributed to incremental crack growth whereas the inelastic component arises 

from effects such as permanent deformation caused due to crack-opening (Das, Aguayo, 

et al. 2014; Das, Aguayo, et al. 2015b). The elastic component is found to be dominant in 

the iron-based binder systems, whether reinforced or not, whereas the inelastic strain 

energy release rate, i.e., the result of energy dissipation by crack opening is dominant for 

the OPC systems.  The higher elastic strain energy release rate in iron-based binder is 

attributed to the presence of unreacted elastic elongated iron particles in the carbonate 

matrix. On the other hand, the OPC paste, because of its brittleness, shows almost 

negligible contribution from the matrix and almost all the resistance is provided by the 

fibers (inelastic resistance). The maximum values of strain energy release rates are used 

in an inverse analysis procedure (Section 3.4) to calculate the tensile constitutive 

response of OPC and iron-based binding systems. In the case of iron-based binder, the 

presence of a stronger matrix phase (unreacted elastic iron particles surrounded by the 

carbonate reaction products) will likely enhance the tensile strength, as will be elaborated 

in detail later.     
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Figure 7-3: (a) Total strain energy release rates for the unreinforced and fiber reinforced 

iron-based and OPC binder systems; (b) and (c) elastic and inelastic components of 

maximum strain energy release rates for iron-based binder and OPC paste respectively. 

7.3.3 Characterization of Fracture Process zone (FPZ) in the novel binder systems 

This section examines the fracture process zone, the zone of micro-cracking ahead of the 

crack tip, in the selected binder systems to elucidate the differences in the crack 

propagation mechanism influenced by the matrix type (OPC or iron-based) and the 

presence of fiber reinforcement. The fundamentally different fracture response 

demonstrated by the iron carbonate binder is explained through a detailed 

characterization of FPZ.  

 

(b) (c)

(a)
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7.3.3.1 Determination of width and length of FPZ 

The width of the localized region can be expected to provide useful information on the 

fracture mechanism of the material. In the present study, the width of the localized region 

is used to compare the fracture characteristics of OPC and iron-based binder in both 

control and fiber-reinforced states. In addition, the width of localized zone is used as a 

“gage-length” for the determination of post-peak tensile strain, as explained in a 

forthcoming section. The process of determination of width of localized region using the 

Lagrangian strain profiles from DIC is explained below.  

Figure 7-4(a) shows a monotonic load-CMOD response of unreinforced iron-based 

binder. Figure 7-4(b) shows a typical surface strain field ( xxe ), calculated from the 

surface displacement field at 95% of the peak load in the post-peak regime from which 

the localized strain concentration above the notch can be identified easily.  Figure 7-4(c) 

shows the strain profile at a height of 2.5 mm above the notch as a function of its position 

in the X-direction. In order to determine the width of the localized zone, the surface strain 

profile is fitted as a normal distribution function using  as the fitting parameter as 

shown in Equation 7-6: 
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This fitting parameter  is a measure of the spread of the strain-localized zone. The FPZ 

width can be considered to be equal to 4 since 95% of the values of the normal 

distribution function are within ±2 of the mean value. A similar approach has been used 

elsewhere (Das, Aguayo, et al. 2015b; Skarżyński, Kozicki, and Tejchman 2013; 

Skarżyński and Tejchman 2013). The FPZ widths reported here are used only for 
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comparison since it is highly influenced by the image resolution; a higher image 

resolution resulting in a smaller FPZ width (Skarżyński, Kozicki, and Tejchman 2013). 

The length of FPZ is measured as the extent of strain localization in the crack extension 

direction. The localized zone is considered to be terminated when the strain along the 

crack extension direction is lower than 20% of the strain at the tip of the notch.   

 

Figure 7-4: (a) Monotonic load-CMOD response of unreinforced iron carbonate binder; 

(b) Localized zone above the notch obtained from DIC; and (c) horizontal normal strain (

xx ) profile across the localized zone for the iron-based binder at the location denoted 

by L in (b).  

 

 

7.3.3.2 FPZ features and the influence of matrix type and the presence of fiber 

reinforcement  

Figure 7-5(a) and (b) show the FPZ for the unreinforced OPC and iron carbonate binders. 

A qualitative indication of FPZ widths is also obtained from these figures, with the iron-

based binder showing a wider FPZ. The results are extracted at 95% of the peak load in 

the post-peak region.  The width of FPZ decreases with increase in distance from the 

crack (notch) tip for both the binders. Figure 7-5(c) shows that rate of reduction of FPZ 

width is also very similar for both the unreinforced binders. Figure 7-6(a) and (b) show 
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the FPZ for the fiber-reinforced (1% by volume) OPC and iron carbonate binders. An 

observation of the local strain levels show that the strains are higher in the fiber-

reinforced systems as compared to those in the unreinforced pastes shown in Figure 7-5. 

This can be attributed to the increased strain capacity of the fiber-reinforced systems. In 

addition, the strain in the iron-based binder is slightly lower than that of the 

corresponding OPC system due to the increased spread of FPZ in the former case as can 

be noticed from Figure 7-5 and Figure 7-6. Another distinctive feature in the fiber-

reinforced binders is the rather uniform localized strain distribution as a function of 

distance above the notch tip as seen in Figure 7-6(c), attributable to the fiber bridging 

effect.  

The quantified average values of FPZ length, width and area in both the OPC and iron-

based (unreinforced and fiber-reinforced) systems are shown in Figure 7-7(a), (b) and (c) 

respectively. The FPZ width profiles are numerically integrated with respect to the height 

above the notch to quantify the area of FPZ. The width and area of FPZ for both the 

unreinforced and reinforced iron-based binders are found to be higher than that of the 

corresponding OPC binder whereas the length of FPZ is the same for both the binder 

systems. The higher width of FPZ in the iron-based system can also be related to the 

higher inelastic strain energy release rates in such systems as was shown earlier. On the 

other hand, the FPZ lengths in iron-based and OPC binders corresponding to 95% of the 

peak load in the post-peak regime are almost similar although the iron-based binder 

showed a higher elastic strain energy release rate, which is a measure of resistance 

against incremental crack-growth. This behavior can be attributed to the increased load 
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carrying capacity of iron-based binder (four-to-six times stronger than the OPC binder) 

being the dominant contributor to strain energy release rates.  

 

Figure 7-5: (a) and (b) Strain localization above the tip of the notch in unreinforced OPC 

and iron-based binders respectively, and (c) width of FPZ as a function of distance from 

the notch tip for both the binders. The data is for 95% of the peak load in the post-peak 

region.  

A comparison between the FPZ characteristics of the unreinforced and fiber-reinforced 

binders reveals that the length, width and area of FPZ are lower in fiber-reinforced 

binders. Incorporation of fibers reduces strain localization as the fibers resist the spread 

of the zone of micro-cracking in the crack-opening and extension directions. The fiber-

reinforced systems are shown to exhibit higher inelastic strain energy release rates as 

compared to the unreinforced systems even when the spread of localized region is 

reduced. This can be attributed to the fact that higher strain energy release rate in the 

fiber-reinforced systems is facilitated not just through the spread of the zone of micro-

cracking in the matrix, but also through the increased strain capacity in the systems. The 

ultimate tensile strains extracted from an inverse analysis is shown in a later section to 

prove this point. While the spread of the localized zone is found to be the dominant 

mechanism in overall inelastic energy dissipation in unreinforced systems, the increase in 

strain capacity due to the crack-bridging effect of fibers becomes the dominant 
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contributor to the inelastic energy release rates in the fiber-reinforced systems, thereby 

facilitating relatively uniform spread of FPZ above the notch. Similarly, the elastic 

component of strain energy release rate (Figure 7-3(b)) is found to be the dominant 

contributor to the overall increase in strain energy release rate of iron-based binders 

containing fiber reinforcement in spite of reduction in the FPZ length. This is attributed 

to the elastic component of strain energy release rate being proportional to square of load 

term (Equation 7-5), and thus the higher load carrying capacity of the fiber-reinforced 

iron-based binders dominates the FPZ length on their relative influences on the elastic 

strain energy release rates. 

 

Figure 7-6: (a) and (b) Strain localization above the tip of the notch in fiber-reinforced 

reinforced OPC and iron-based binders respectively, and (c) width of FPZ as a function 

of distance from the notch tip for both the binders. The data is for 95% of the peak load in 

the post-peak region.  
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Figure 7-7: Comparison of: (a) width of FPZ, 7 mm above notch; (b) length of FPZ, and 

(c) area of FPZ. For both the binder types, the FPZ characteristics are determined at 95% 

of the peak load in the post-peak regime.  

 

Figure 7-8(a) and (b) depict the variation in the width of FPZ with increase in CMOD and 

crack extension respectively. Both the binders exhibit initiation of localized zone at 

similar values of CMOD. Full width of FPZ develops at a lower value of CMOD for the 

unreinforced OPC binder as compared to the iron-based binder, signifying its brittleness 

which is also reflected in the rapid extension of crack (Figure 7-8(b)) after the formation 

of FPZ. The increased resistance to cracking of the iron-based binder as compared to the 

OPC binder can also be noticed from the fact that, at a given FPZ width, the crack 

extension is always lower for these binders. The higher crack growth resistance of iron-
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based binders  can be attributed to the presence of unreacted iron particulate inclusions in 

the strong carbonate matrix of the iron-based novel binders, as was shown earlier in 

previous chapters. Figure 7-8(c) shows the variation in FPZ width with applied load. The 

general trends suggest that the FPZ width increases initially as the load increases and the 

full width of process zone is developed at or close to the peak load, beyond which the 

width remains almost constant. Here also, superior performance of iron-based binders is 

reflected in the form of significantly lower rates of increase in FPZ width with increase in 

load.  

 

Figure 7-8: Variation of width of FPZ with changes in: (a) CMOD, (b) crack extension, 

and (c) load.  
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7.3.4 Extracting the tensile constitutive response from strain energy release rates 

The previous sections on strain energy release rates and quantification of FPZ have 

indicated the fracture performance of unreinforced and fiber-reinforced novel iron-based 

binders vis-à-vis OPC binders.  In this section, the tensile constitutive relationships for 

these binders are developed since they better represent the material behavior than the 

flexural response which fails to account for the presence and growth of cracks in the pre-

peak regime. The tensile constitutive response is back-calculated from maximum strain 

energy release rates through a potential energy approach using a crack-face bridging 

model (Suzuki and Sakai 1994; Mobasher, Bonakdar, and Bakhshi 2015).   

7.3.4.1 Crack-face bridging model and contribution to toughening due to closing 

pressure 

Several micro-fracture mechanisms, responsible for toughening in quasi brittle materials, 

take place at the FPZ ahead of the crack-tip and at crack-face contact regions in the 

crack-opening direction. Among them, crack-face bridging is a dominant mechanism that 

contribute to rising crack growth resistance (R) curves (Shah 1995; Mobasher 2011b). In 

this study, a model for crack-face bridging (Suzuki and Sakai 1994) is employed to 

determine the tensile stress-strain response from the R-curves through an inverse analysis 

(Suzuki and Sakai 1994; Mobasher, Bonakdar, and Bakhshi 2015).   
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Figure 7-9: (a) Cohesive stress distribution for a unit bridging stress at a=ac when the FPZ 

length is fully developed, and (b) stress-crack width relationship (Suzuki and Sakai 1994) 

 

The present study uses a phenomenological power function expression (Suzuki and Sakai 

1994) of stress-crack width relationship as shown in Figure 7-9, represented as: 

0

0
( ) (1 )nb

b b b

b

w
w

w
                                                (7-7) 

0

0
( ) ( )q

b b

b

x
w x w

l
                                                  (7-8) 

Where b is the crack-face bridging stress, bw  is the crack-opening displacement, 0

b is 

the critical bridging stress, 0

bw is the maximum crack opening displacement, 0
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bridging zone length calculated as: 0

0( )b c cl a a a      and ‘q’ and ‘n’ are the two 

constants reflecting the shape and distribution of the crack-face bridging tractions. The 

values of ‘q’ and ‘n’ are taken as 0.6 and 3.0 respectively based on the work of Suzuki 

and Sakai (Suzuki and Sakai 1994).  For a unit value of 0

b or tensile strength, the 

cohesive toughness can be computed using potential energy approach by integrating the 

0

b

b

0

bl

x

bridging length: 

Crack tip

Crack

( )b x

0

b

b

Crack width, w 

( )b w

(a) (b)



144 

  

toughening through crack-face bridging over the entire bridging length given as 

(Schapery 1975; Mobasher, Bonakdar, and Bakhshi 2015): 
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The toughening energy due to crack closure (GR), attributed to crack-face bridging, is 

given as: 

max
( )R R ICG G G                                            [7-10] 

Where 
maxRG is the maximum value of strain energy release rate, and ICG is the critical 

strain energy given as: 
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Here, E is the initial plane stress-based stiffness and ICK is the critical stress intensity 

factor calculated using the two-parameter fracture model. The tensile strength can be 

quantified as the ratio of the toughening energy due to crack closure from the resistance 

curve, RG  (Equation 7-10) to the toughening energy due to unit tensile strength 

(Equation 7-9): 
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The tensile stress-strain response can be thus calculated assuming elastic response in the 

pre-peak region and using the concept of a characteristic length in the post-peak region. 

The post-peak tensile strains beyond the elastic regime are obtained by implementing an 
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average value of crack opening displacement ( bw ) distributed over a gage-length. The 

gage-length is quantified using digital image correlation as the average width of strain 

localization along the height of the beam, at 95% of the peak load in the post-peak 

regime, since the width remains almost constant beyond that loading state. 
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7.3.4.2 Comparison of tensile behavior of control and glass fiber-reinforced OPC and 

iron-based novel binder 

Figure 7-10 shows the back-calculated tensile stress-strain relationships for the OPC and 

iron-based binders. Figure 7-10(a) shows the tensile stress-strain relationship of the two 

binders in the unreinforced state. It is observed that the iron carbonate binder has a 

substantially higher tensile strength, tensile modulus, and ultimate tensile strain as 

compared to to the OPC binder because of the stronger matrix with unreacted ductile 

metallic iron particulate inclusions facilitating crack bridging and/or deflection through 

imposition of closing pressure on the crack. The elastic incompatibility and debonding 

between metallic particle-carbonate matrix interface contributes to crack. The effect of 

glass fibers on the extracted tensile stress-strain response of  these systems are shown in 

Figure 7-10(b). Incorporation of fibers increases the tensile strength and ultimate tensile 

strain in both the systems although the elastic modulus remain relatively unchanged, 

which is along expected lines. The ultimate tensile strains are improved by an order of 

magntiude or more with the incorporation of fibers. The fiber-reinforced iron-based 

binder shows significantly higher tensile strength and ultimate tensile strain as compared 
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to fiber-reinforced OPC binder. In the fiber-reinforced iron-based binder, the presence of 

stronger particulate-reinforced matrix (due to unreacted iron particles) improves the 

performance of the matrix which is further augmented by the crack-bridging effect of 

fibers, wheareas in OPC binder, the brittle matrix fails very quickly and the load is 

completely carried by the fibers resulting in significantly lower tensile strength and 

ductility.  

 

Figure 7-10: Tensile stress-strain response for OPC and iron carbonate binder: (a) 

unreinforced binder, (b) fiber-reinforced composites. Note that the strain axes scales are 

different.  

Figure 7-11(a) shows the extracted tensile strength of these binders at different fiber 

loading levels. Tensile strength increases with increase in fiber volume fractions for both 

the systems with the trend being more pronounced in the iron-based binder. The 

unreinforced iron-based binder is 5-6 times stronger than the OPC binder, attributable to 

the reasons described earlier. The trend remains the same for the fiber-reinforced systems 

also. The ultimate tensile strains (Figure 7-11(b)) for the iron-based binder are also found 

to be significantly higher as compared to OPC signifying better post-peak performance of 

iron-based systems. It should be noted here that higher tensile toughness of iron-based 

binder, shown in Figure 7-11(c) is the reason for the higher FPZ area as compared to the 

(b)(a)
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OPC binder in the unreinforced state (Figure 7-7(c)) whereas the significantly higher 

tensile toughness of the fiber-reinforced iron-based binder resulted in a decrease in the 

FPZ area. The latter signifies the dominant effect of crack-bridging mechanism in the 

fiber-reinforced system. Fiber volume fraction does not seem to impact the elastic 

modulus of both the binder systems as the fibers are expected mainly to contribute to the 

post-peak response of the materials and hence the initial stiffness remains relatively 

unchanged. Iron-based binders exhibit higher value of elastic modulus as compared to 

that of OPC-based binders which can be attributed to the presence metallic iron 

particulate inclusions.    

 

(a)

(c)

(b)
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Figure 7-11: Comparison between OPC and iron carbonate binder (control and fiber 

reinforced): (a) tensile strength, (b) ultimate tensile strain and (c) tensile modulus 

Figure 7-12 depicts the stress-crack width relationships in these binder systems. The 

general trend suggests that the crack becomes wider beyond the peak load with a 

concomitant reduction in the load capacity. Figure 7-12(a) depicts the stress-crack width 

relationship for the two binders in the unreinforced state. For any specific crack-width 

value, the iron-based binder, which has a strong matrix with unreacted metallic iron 

particle inclusions, can withstand significantly higher stress than OPC, which is brittle in 

nature. Figure 7-12(b) shows the stress-crack width responses for the glass fiber-

reinforced binders. Incorporation of fibers improves the stress tolerance level of both the 

binders as expected although the iron-based fiber-reinforced systems still exhibit 

significantly higher stress tolerance corresponding to a given c crack width due to strong 

matrix-glass fiber synergy which has been elaborated in the previous chapter.   

 

Figure 7-12: Stress-crack width relationships for OPC and iron carbonate binder: (a) 

unreinforced, and (b) fiber-reinforced composites. Note that the crack width axes scales 

are different.  

 

 

(b)(a)
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7.3.5 Correlation of back-calculated tensile parameters with strain energy release rates 

and width of FPZ  

This section presents the relationship between the back-calculated tensile parameters and 

the strain energy release rates and FPZ width. Figure 7-13(a) and (b) show that the 

maximum strain energy release rates increase linearly with both the tension-softening 

area and the tensile strength.  Figure 7-13 (c) and (d) shows the relationship between the 

FPZ width and ultimate tensile strain and inelastic strain energy release rates for the 

unreinforced and fiber-reinforced systems respectively. For both unreinforced and fiber 

reinforced binders, an increase in the ultimate tensile strain is also demonstrated as an 

increase in the width of FPZ since a significant amount of energy is dissipated through 

the spread of FPZ. From the perspective of strain energy release rates, this is reflected as 

an increase in the inelastic strain energy release rate. But a comparison between the 

unreinforced and fiber-reinforced binder systems reveals that the use of fibers reduces the 

width of FPZ although the inelastic strain energy release rate and the ultimate tensile 

strains are noted to increase. This behavior is attributed to the dominant crack-bridging 

mechanism of fibers which increases the strain capacity of the composite as compared to 

unreinforced binders and resists spread of microcracking. Although the iron particulates 

provide microstructural reinforcement to the matrix through angular and elongated shape 

resulting in significantly improved fracture response as compared to OPC, its crack-

bridging capability is not as efficient as fibers with significantly higher aspect ratio.  
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Figure 7-13: The maximum strain energy release rate in unreinforced and fiber reinforced 

binders as a function of: (a) area under softening portion of tensile stress-strain curve, and 

(b) tensile strength; Inelastic strain energy release rat and ultimate tensile strain as a 

function of FPZ width for: (c) unreinforced, and (d) fiber-reinforced OPC and iron 

carbonate binders. . 

 

7.4 Conclusions 

This chapter presents the fundamental difference in crack-propagation mechanism and 

the effects of fiber-reinforcements in the novel iron-based binder and OPC hardened 

paste through characterization and evaluation of the fracture process zone and its 

correlation with strain energy release rates. The characterization of the localized region is 

done in terms of length, width and area of the fracture process zone, measured through 

digital image correlation. The width of localized region above notch for iron-based binder 

(b)(a)

(c)
(d)
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is found to be consistently higher as compared to OPC binder in both control and fiber-

reinforced states which can be attributed to the presence of unreacted metallic iron 

particle inclusions in the microstructure of iron-based binder that enables the material to 

undergo higher amount of inelastic deformation through crack-bridging and deflection 

resulting in higher fracture-resistance as compared to OPC which is established in our 

previous study. The width of localized region reduced with incorporation of fibers in the 

iron-based binder systems, similar to the phenomenon observed in the fiber reinforced 

OPC systems, due to the fiber-bridging effect that increases the strain capacity of the 

material. The distribution of the width of localized region along height above the notch 

was more uniform as compared to control binders as fibers help uniform distribution of 

localized strain along height reducing the amount of crack extension. For any given width 

of localized zone, the iron-based binders exhibited lower amount of crack extension and 

higher flexural load capacity signifying superior mechanical properties of iron-based 

binder as compared to traditional OPC. Results of this comprehensive study establish the 

effectiveness of using glass fibers in the novel iron-based systems.  

Tensile stress-strain response for iron-based novel binders was back-calculated from 

strain energy release rates, measured using unloading compliances, using a crack-face 

bridging model. The tensile strength of control and fiber-reinforced iron-based binders 

was significantly higher than that of control and fiber-reinforced OPC counterparts 

respectively due to metallic particle inclusions in the iron-based binder. Ultimate tensile 

strains and the Young’s modulus values were also higher in iron-based binder for the 

same reason. The stress-crack width relationships of the binders suggest that for any 

value of crack width in the deformation process during the test, the iron-based binders 
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show significantly higher stress capacity as compared to OPC reinforcing overall findings 

of this chapter. Area under softening portion of the tensile stress-strain curve and the 

tensile strengths correlate well with the total strain energy release rates. The inelastic 

strain energy release rate and ultimate tensile strain capacity increased with increase in 

the width of strain-localization for both the binder systems in unreinforced and fiber-

reinforced states separately since increased spread of the zone of micro-cracking 

facilitates improved energy dissipation. Incorporation of fibers results in reduction in the 

spread of FPZ in both the fiber reinforced systems as compared to unreinforced binders 

which can be attributed to the dominant effect of crack-bridging mechanism of fibers that 

arrests spread of the micro-cracking zone in fiber-reinforced binder systems.   
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Chapter 8 Nano-mechanical Properties of Carbonate Reaction Product in Iron-

Carbonate Binder 

8.1 Introduction 

In order to develop a deep understanding of the relative contribution of different distinct 

phases to the overall bulk mechanical behavior of iron-based binder systems,  application 

of micromechanics becomes crucial with a view to  provide valuable information towards 

the material design of heterogeneous materials. While the pore structure of the material is 

important in dictating the transport behavior and thus the durability characteristics, the 

mechanical properties of a heterogeneous material are also influenced significantly by the 

individual phase amounts (both solids and pore) and their properties. The individual 

phase elastic properties can be obtained through the use of nanoindentation experiments, 

as has been well documented for cement-based materials (G. Constantinides, Ulm, and 

Van Vliet 2003; Sorelli et al. 2008; Mondal, Shah, and Marks 2007; Zhu et al. 2007; 

Pelisser et al. 2013; C. Hu and Li 2014; Hughes and Trtik 2004; Davydov, Jirásek, and 

Kopeckỳ 2011). Micromechanical homogenization models are in turn necessary to 

estimate the composite properties at the macro-scale. The response of the heterogeneous 

material at the micro-scale is averaged through analytical models, generally based on 

Eshelby’s method (Eshelby 1957; Mori and Tanaka 1973; Hori and Nemat-Nasser 1993), 

that replace the microscopically inhomogeneous strains and stresses by homogeneous 

values. The successful implementation of this approach demands accurate quantification 

of the phase volume fractions. The development of empirical models to determine the 

reaction product and pore volume fractions based on simple stoichiometric equations in 

highly heterogeneous systems containing complex multiple phases such as such as Iron-
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based binder is unlikely to yield satisfactory results. In light of the above, this study 

multiple schemes for identification and quantification of multiple solid phases. The pore 

volume fraction is quantified using MIP and image analysis is employed on a series of 

BSE micrographs on plane-polished samples to quantify the volume fraction of unreacted 

iron particles. The volume fractions of other phases (fly ash and clayey matrix phase) are 

assumed to be equal to their initial volume fractions and the remaining volume fraction is 

assigned to Iron carbonate reaction product. The microscale properties are upscaled using 

mean field homogenization schemes such as Mori-Tanaka method (Mori and Tanaka 

1973; Miled, Sab, and Le Roy 2011; G. K. Hu and Weng 2000; C. C. Yang and Huang 

1996; C. C. Yang 1997; da Silva, Němeček, and Štemberk 2013) to extract the 

homogenized Young’s modulus, which is validated through macro-scale experiments. 

Linking the microstructure and micromechanical properties of a heterogeneous material, 

and using this information to predict the macroscopic mechanical performance, provides 

efficient means of optimizing the material design and mechanical behavior of the novel 

iron-based binder.  

8.2 Experimental Program 

8.2.1 Materials, Mixtures and Specimen Preparation 

Metallic Iron powder with median particle size of 19 µm is used as the main starting 

material in this study. The binder component used in this study includes 60% iron 

powder, 20% fly ash, 8% limestone, 10% metakaolin and 2% oxalic acid by mass. These 

proportions were arrived at based on strength and porosity of several trial mixtures as 

described in detail in previous chapters. The mixing procedure involves initial dry mixing 

of all the constituents and then addition of water to form a uniform cohesive mixture. A 
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mass-based water-to-powder ratio of 0.24 was used to provide a cohesive and uniform 

mixture. Since water is not chemically combined in the reaction products, this value was 

chosen from a rheological perspective.   

Cylindrical specimens of size 32.5 mm diameter x 65 mm long were prepared in Harvard 

miniature compaction apparatus molds and the samples were demolded immediately and 

placed inside clear plastic bags in a 100% CO2 environment under normal temperature 

and pressure for 4 days. The bags were refilled with CO2 every 12 hours in order to 

maintain CO2-saturation. After carbonation, the samples were placed in air for 4 days for 

evaporation of moisture from the samples. These carbonation and air-curing durations are 

also arrived at based on a previous study detailed previously. 

A cubical piece of 4 mm side length was cut from in between the core and the surface of 

the cylindrical sample using a diamond saw. The sample was ultrasonically cleaned, 

rinsed with isopropyl alcohol and dried to remove debris from sectioning/handling. The 

sample was then encapsulated using a two-part epoxy and vacuum impregnated at 95 

KPa followed by an overnight cure at room temperature. Coarse grinding steps were 

accomplished using silicon carbide (SiC) abrasive discs to planarize and remove 

deformations caused by sectioning. Successive polishing steps were carried out using 

smaller sized abrasives, and completed using 0.04 µm colloidal silica suspension to 

ensure a very smooth surface. Thus, the sample was prepared for nanoindentation. 

8.2.2 Nanoindentation 

The nanoindentation measurements were carried out on the polished sample in a 

commercial nanoindenter (Nanoindenter XP-II, Agilent) using a Berkovich tip. 

Indentations were carried out at initially at 10 µm spacing in a grid on an area 
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approximately 250 µm x 250 µm in. All the indentation locations were carefully selected 

prior to testing to ensure that the pores or cavities are not encountered in the process. 

Thus the indentation experiments were carried out mostly only on the solid phases, which 

resulted in no spurious peaks in the modulus frequency distribution curves. The depth of 

penetration was chosen to be 500 nm which is smaller than characteristic size of 

unreacted inclusions in order to avoid phase-interactions during penetration.  The contact 

stiffness for the Berkovich indenter is given as: 

 2 T c
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                                                        [8-1] 

In Equation 8-1,   is a constant (1.034 for Berkovich indenter), ch  is the penetration 

depth and TE  is the reduced elastic modulus, given as: 
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  and E are the Poisson’s ratio and Young’s modulus of the sample, and i and iE are 

the Poisson’s ratio and Young’s modulus of the indenter (for diamond, i =0.07 and iE = 

1141 GPa) respectively.  

Continuous stiffness measurement (CSM) technique (Oliver and Pharr 2004; Li and 

Bhushan 2002; Moody et al. 1998) was employed here to measure the contact stiffness, 

S. While the traditional Oliver-Pharr methodology (Oliver and Pharr 1992) measures the 

contact stiffness only at the point of unloading, the CSM technique allows measurement 

of contact stiffness at any point of the loading curve corresponding to any depth of 

penetration. CSM is accomplished by imposing a harmonic excitation of constant 

amplitude and frequency to the normally increasing load on the indenter. For any 

excitation frequency, the displacement response of the indenter and the phase angle are 
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measured continuously as a function of the penetration depth. The contact stiffness, as a 

function of penetration depth, is obtained by solving for the in-phase and out-of phase 

portions of the response which are described in detail in (Li and Bhushan 2002). For any 

contact stiffness S corresponding to penetration depth ch , the reduced elastic modulus, TE  

can be calculated from Equation 8-1 which can then be used in Equation 8-2 to obtain the 

Young’s modulus of the sample as a function of penetration depth. A constant Poisson’s 

ratio of 0.20 is used since the effect of variation of Poisson’s ratio in the range 0.18-0.22 

has been reported to be insignificant on the value of calculated Young’s modulus for 

similar systems (Sorelli et al. 2008; da Silva, Němeček, and Štemberk 2013). 

8.2.3 Mercury Intrusion Porosimetry (MIP) 

The pore structure of the iron-based binder was evaluated using mercury intrusion 

porosimetry (MIP) to examine the pores in the smaller size ranges that is not accessible 

using XRT. A porosimeter that can detect minimum pore diameter of 0.0036 µm was 

employed for this study. This test was performed in two steps: (i) evacuation of gasses 

and filling the sample holder with mercury in the low-pressure run that increases the 

pressure from ambient to 345 kPa, and (ii) intrusion of mercury into the sample at high 

pressure (maximum pressure of 414 MPa). A solid–liquid (pore wall-mercury) contact 

angle of 130° and a mercury surface tension of 485 mN/m were used to interpret the 

results using Washburn equation (Moon, Kim, and Choi 2006; Rakesh Kumar and 

Bhattacharjee 2003; Das, Stone, et al. 2014e) 
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8.3 Results and discussions 

8.3.1 Intrinsic nano-mechanical properties of component phases using Nanoindentation 

For the classification of different phases present in novel iron-based binder and 

quantification of Young’s modulus of different phases, a statistically significant number 

of indentations were performed on carefully chosen solid regions in the paste (based on a 

250 m x 250 m grid) through microscopic observation of the indentation locations. 

This ensures that the material microstructure within each interaction volume can be 

estimated with a high degree of confidence, and the validity of isotropicity and 

homogeneity within the interaction volume can be ensured, which is absolutely important 

in interpreting indentation results of heterogeneous materials (Trtik, Münch, and Lura 

2009). Penetration depths of up to 500 nm were employed to ensure that the measured 

elastic properties are not influenced by the sample preparation process that could 

introduce surface effects. Representative load-penetration depth plots to identify the 

phases of differing stiffness (the methodology to assign phases is explained below) are 

presented in Figure 8-1(a). The elastic modulus values as a function of penetration depth 

were calculated using the CSM technique described in the experimental program section 

and representative curves are shown in Figure 8-1(b). For all the measurements, average 

elastic modulus in a penetration depth range of 200-to-300 nm is computed and used for 

further analysis. The mean Young’s modulus, along with a phase quantification 

procedure described later, is used in a homogenization scheme for quantification of bulk 

Young’s modulus of the iron-based binder.   
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Figure 8-1: (a) Load-penetration depth curves for different phases in the novel iron-based 

binder, and (b) Elastic modulus as a function of the penetration depth for the distinct solid 

phases 

The experimental probability density functions (PDFs) are obtained from experimental 

measurements by employing a bin size (b) of 5 GPa which is presented in Figure 8-2 

(symbols). Seven characteristic peaks are observed in the histogram. Statistical 

deconvolution (G. Constantinides et al. 2006; Jiří Němeček, Šmilauer, and Kopecký 

2011; da Silva, Němeček, and Štemberk 2013) is applied to the elastic modulus 

histogram to obtain individual phase elastic properties. Assuming Gaussian distribution 

for all the seven phases (which is a reasonable assumption based on the data points in 

Figure 8-2, the theoretical probability distribution function (pdf) is given as: 
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Here, x represents the elastic modulus, fr is the volume fraction of the r
th 

phase, and r 

and sr are the mean and standard deviation of the r
th

 phase The deconvolution algorithm 

involves random seeding using a Monte Carlo simulation and minimization of quadratic 

deviations between the experimental and theoretical PDFs to find the relevant parameters 

(a) (b)
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for the Gaussian distribution functions. More details on the deconvolution algorithms can 

be found in (G. Constantinides et al. 2006; Jiří Němeček, Šmilauer, and Kopecký 2011; 

da Silva, Němeček, and Štemberk 2013).  

Figure 8-2 also shows the deconvoluted PDFs for the seven different phases. Visual 

observation of the microstructure at the indented locations, along with an understanding 

of the phases present in iron-based novel binder based on past studies, was used for the 

assignment of the deconvoluted peaks to the individual peaks.  The phase with the 

highest elastic modulus can be attributed to the unreacted pure iron particles, while the 

phase with the lowest elastic modulus can be attributed to the clayey matrix phase 

incorporating metakaolin and fine limestone powder. Peaks in the range 25-60 MPa 

corresponds to iron carbonate phase that is formed through dissolution of iron from the 

particles into the matrix and reaction with externally supplied carbon dioxide. The 

density of iron carbonate phase reduces as the distance from iron particles increases. 

Thus, three characteristic iron carbonate peaks (low density, medium density and high 

density) are obtained. The component microstructural phases to the two remaining 

deconvoluted peaks of the elastic modulus distribution are assigned to fly ash and 

impure/oxidized iron particles. The peak corresponding to the lower among the two peaks 

corresponds to the unreacted fly ash particles. Similar values for this phase have been 

reported in (J. Němeček, Šmilauer, and Kopeckỳ 2009; Jiří Němeček, Šmilauer, and 

Kopecký 2011). The other peak at approximately 180 GPa corresponds to partially 

reacted/oxidized iron particles. A detailed comprehensive evaluation of the 

microstructure was carried out towards attributing all these component phases.  The 

deconvolution results are presented in Table 8-1.  



161 

  

 

Figure 8-2: Deconvoluted component peaks for the seven distinctly identifiable 

microstructural phases in the solid component of the paste. The area under each 

deconvoluted peak is the fraction of that respective solid phase in all solids in the paste.   

 

Table 8-1: Elastic properties of individual solid phases obtained through deconvolution 

PEAK NO E (GPa) Phases 

1 11.67  ± 4.93 Clayey matrix phase 

2 30.3 ± 7.8 Low density Carbonate 

3 44.11 ± 11.5 Medium density Carbonate 

4 58.28 ± 8.26 High Density Carbonate 

5 71.65 ± 13.45 Fly ash 

6 179.9 ± 11.43 Impure/partially reacted Iron 

7 215.2 ± 7.013 Pure Iron 

 

8.3.2 Homogenization methods for elastic property prediction 

Homogenization procedures are applied to heterogeneous materials such as cementitious 

systems to determine the homogenized elastic properties using individual phase 

properties (e.g., determined from nanoindentation) and phase amounts to be used in 

material design. Mean field homogenization techniques are based on Eshelby’s tensors 

(Eshelby 1957)to determine the average stresses and strains in inclusions embedded in an 

elastic matrix. The homogenization method employed in this study is Mori-Tanaka 



162 

  

method (Mori and Tanaka 1973). The analytical schemes of this model has been well 

documented (Mori and Tanaka 1973; Miled, Sab, and Le Roy 2011; G. K. Hu and Weng 

2000; C. C. Yang and Huang 1996; C. C. Yang 1997; da Silva, Němeček, and Štemberk 

2013). 

8.3.2.1 Determination of volume fractions to be used in the homogenization schemes 

The mean-field homogenization schemes that are used for the estimation of macro-level 

properties requires precise input in terms of phase volume fractions. Here the pore 

volume fraction after 4 days of carbonation is quantified using MIP as detailed in 

previous chapter on pore and microstructural characterization of iron carbonate binder. 

The total unreacted iron volume fraction is calculated through image analysis on a series 

of SEM images under backscattered mode on plane polished surfaces. The chosen images 

are processed and analyzed using ImageJ©, a freely available image analysis software. 

The grey-scale images were converted to binary image by thresholding to separate the 

iron from the remaining phases. The threshold limits were chosen based on grey level 

histogram.  

 

Figure 8-3: (a) original grey-scale image ; (b) binary thresholded image (Iron particles are 

shown in black) 

 

(a) (b)
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Figure 8-3(a) shows one such grey-scale BSE image and Figure 8-3(b) shows binary 

thresholded image of image in Figure 8-3(a). The black phase in the thresholded image 

corresponds to the iron particles which are easily identifiable in the grey scale image as 

the bright particles in the microstructure. It should be noted that, BSE SEM images show 

good contrast between unreacted/partially reacted iron, pore and the other solid phases (at 

the resolution considered), which makes it suitable for determination of iron volume 

fraction. Thus, the volume fraction of iron particles in the iron-based binder is directly 

used in the homogenization schemes for elastic property prediction. However, 

identification and quantification of other different solid phases in the iron-based binder is 

challenging due to the low absorption contrast of these different solid phases in the 

available x-ray energy range. Hence, the volume fraction of fly ash is assumed here as the 

volume fraction originally added while combined volume fraction of metakaolin and 

limestone is attributed to the clayey matrix phase. The remaining volume fraction is 

assigned to iron carbonate reaction product. The volume fractions of different phases and 

their measurement procedures are detailed in Table 8-2. Again, low-density, medium-

density and high-density iron carbonate is not easily distinguishable in the BSE SEM 

images for the reasons explained earlier. Hence, various combinations of volume 

fractions (shown later in Table 8-3) of low, medium and high density iron carbonate are 

used to predict the bulk elastic property.   

Table 8-2: Volume fractions of phases 

Phases vol. fractions measurement method 

Porosity 0.1986±0.0041 MIP 

Total iron content 0.113±0.014 Image analysis (BSE) 

FA 0.276 Originally added 

Clayey matrix 0.22 MK and LS originally added 

total Iron Carbonate 0.1924 Remaining volume fraction 
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8.3.2.2 Mean-field homogenization method 

Mori-Tanaka method has been used for determination of effective properties in cement-

based materials (da Silva, Němeček, and Štemberk 2013; Sorelli et al. 2008; C. C. Yang 

1997). It considers a discrete spherical inclusion embedded in an infinitely extended 

homogeneous reference medium (matrix). In this method, the homogenized bulk and 

shear moduli for two-phase materials can be quantified from the individual phase 

properties as given in Equation 8-4 and Equation 8-5. The individual phase shear and 

bulk moduli are obtained from their elastic modulus and Poisson’s ratio.  
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Here i is the number of inclusions; fi is the volume fraction of i
th

 inclusion; ki and kref are 

the bulk moduli for the i
th

 inclusion and reference material respectively; µi and µref are 

shear moduli for the i
th

 inclusion and reference material respectively and ref and ref are 

given in Equation 8-6 and Equation 8-7 (da Silva, Němeček, and Štemberk 2013; G. 

Constantinides et al. 2006).  
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From homogenized bulk and shear modulus, the homogenized Young’s modulus can be 

calculated as (da Silva, Němeček, and Štemberk 2013; G. Constantinides et al. 2006): 
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A seven-step homogenization is performed as shown in Figure 8-4. In Step I, unreacted 

pure iron is the inclusion in high density iron carbonate matrix, and these two phases are 

homogenized. In Step II, partly reacted iron is incorporated into the homogenized (step-I) 

medium. In Step III, homogenized medium from step-II is added as inclusion to the 

medium-density iron carbonate. In Step IV, homogenized medium from step III is 

incorporated into the low-density iron carbonate matrix. Step V includes, inclusion of 

homogenized medium from step-IV into the clayey matrix phase. Step VI involves 

inclusion of fly ash in the homogenized medium from step-V. In step VII pores are added 

as inclusions in homogenized medium from step VI to obtain final homogenized Young’s 

modulus. 
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Figure 8-4: Schematic illustration of the multi-step homogenization process using Mori-

Tanaka method 

8.3.2.3 Homogenization results 

Table 8-3 reports the homogenized Young’s modulus for novel iron-based binder 

computed using the Mori-Tanaka approach. Table 8-3 also shows various combinations 

of volume fractions of low, medium and high density iron carbonate to evaluate the effect 

of relative volume fractions of these three types of carbonates on the overall 

homogenized Young’s modulus. Group-1 in Table 8-3 assigns all the iron carbonate 

phase as low-density iron carbonate and all the iron particles as partially reacted/ 

oxidized iron particles, thus serving as a lower limit for the homogenized Young’s 

modulus. On the other hand, group-21 assigns all the iron carbonate phase as high-

density iron carbonate and all the iron particles as pure unreacted iron particles implying 
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the upper limit for the homogenized Young’s modulus. The Mori-Tanaka approach 

predicts Young’s modulus in the range 32.46 (Lower limit) – 38.15 GPa (Upper limit).  

Table 8-3: Mean field homogenization Results 

 

Group 

Volume % of total carbonate 

product 

Volume % of total 

Iron remaining 
Predicted 

homogenized 

Young’s 

modulus 

 (GPa) 

Low 

density 

Iron 

Carbonate 

Medium 

density 

Iron 

Carbonate 

High 

density 

Iron 

Carbonate 

Partly 

Reacted 

Iron 

particles 

Pure 

Iron 

particles 

1 100 0 0 100 0 32.46 

2 100 0 0 50 50 32.58 

3 100 0 0 0 100 32.98 

4 50 30 20 100 0 33.9 

5 50 30 20 50 50 34.23 

6 50 30 20 0 100 34.46 

7 40 40 20 100 0 34.26 

8 40 40 20 50 50 34.54 

9 40 40 20 0 100 34.77 

10 33.33 33.33 33.33 100 0 34.75 

11 33.33 33.33 33.33 50 50 35.16 

12 33.33 33.33 33.33 0 100 35.27 

13 20 40 40 100 0 35.33 

14 20 40 40 50 50 35.61 

15 20 40 40 0 100 35.88 

16 20 30 50 100 0 35.55 

17 20 30 50 50 50 35.76 

18 20 30 50 0 100 36.16 

19 0 0 100 100 0 37.46 

20 0 0 100 50 50 38.04 

21 0 0 100 0 100 38.15 

 

8.3.3 Experimental elastic property  

Three point bending tests were done on prismatic beams of size 25.4 mm x 25.4 mm x 

102.6 mm under center-point displacement controlled mode. The tensile elastic modulus 
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was extracted from the flexural load-deflection data using a moment-curvature-based 

inverse analysis methodology (C. Soranakom and Mobasher 2007; Chote Soranakom and 

Mobasher 2008; Mobasher, Bakhshi, and Barsby 2014; Mobasher et al. 2014) described 

in detail in this section. 

8.3.3.1 Determination of tensile behavior of blends through back calculation using 

analytical tension model 

Simplified tri-linear tension model and elastic-perfectly-plastic compression model are 

used generally for fiber reinforced and textile reinforced cementitious composites (C. 

Soranakom and Mobasher 2007; Chote Soranakom and Mobasher 2008; Mobasher, 

Bakhshi, and Barsby 2014; Mobasher et al. 2014) as shown in Figure 8-5 (a) and (b) 

respectively. The constant tensile strength ( cst ) at the end of generalized tri-linear 

tension model, adopted for fiber-reinforced composites only (C. Soranakom and 

Mobasher 2007; Chote Soranakom and Mobasher 2008; Mobasher, Bakhshi, and Barsby 

2014; Mobasher et al. 2014). Hence, this tensile model is essentially a bilinear one for 

unreinforced control mortars ( 0cst  ). The material parameters, shown in Figure 8-5, 

are: tensile stiffness E, first crack tensile strain
cr , cracking tensile strength

cr cr E  , 

post-cracking modulus
crE , which is negative for strain-softening behavior and ultimate 

tensile strain 
tu which is equal to transition strain 

tr as the material is unreinforced. The 

compression model describes an initial linear response before the yield point ( ,cy cy  ) is 

reached. Beyond the yield point the material maintains constant yield stress (

cy cr E   ) up to the ultimate compressive strain (
cu ).  
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Figure 8-5: Simplified (a) compression and (b) tension model for strain-softening 

cementitious materials 

  

All the parameters are normalized with respect to two main material parameters Young’s 

modulus (E) and first crack tensile strain ( cr ) as shown in Table 8-4.  

 

 

Table 8-4: Back calculation model parameters (C. Soranakom and Mobasher 2007; Chote 

Soranakom and Mobasher 2008; Mobasher, Bakhshi, and Barsby 2014; Mobasher et al. 

2014) 

 

Normalized tensile strain: trn

cr





  

Constant post peak stress level: 0cst

crE





   

Post-crack modulus: crE

E
   

Compressive yield strain: cy

cr





  

Tensile strain at bottom fiber: t

cr





  

Compressive strain at top fiber: c

cr





  

cr

E

cE E

cr cr E 

, 0crE E    

cst cr E 

trn cr  tu tu cr 
t

t

cy cr 
cu cu cr 

c

c

cy cr E  

(b)(a)
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The normalized maximum tensile strain parameter  is linearly related to the normalized 

compressive strain at top fiber   as follows: 

_t bottom

cr





 ; 

_c top

cr





 ; cr cr

kd d kd

 



 or 

1

k

k
 


                [8-9] 

The normalized stress-strain responses can be defined using the above normalized 

parameters as follows (C. Soranakom and Mobasher 2007; Chote Soranakom and 

Mobasher 2008; Mobasher, Bakhshi, and Barsby 2014; Mobasher et al. 2014): 

0
( )

0

c
cu

cr

cu

for

for
E

for

  
 

   


 

  
 

   
  

;    

0 1

11 ( 1)( )
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t
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forE
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
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   
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  

   [8-10] 

Kirchhoff hypothesis of plane section remaining plane is applied here. The strain 

distribution is assumed to be linear and the shear deformations are ignored. The stress 

distributions across the cross section of the beam in three stages of tensile strain (

0
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0

c
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cr
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for
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
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   
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  

   [8-10) 

are obtained in closed form (C. Soranakom and Mobasher 2007; Chote Soranakom and 

Mobasher 2008; Mobasher, Bakhshi, and Barsby 2014; Mobasher et al. 2014). The 

moment capacity of the beam for the imposed tensile strain is obtained based on the 

forces and centroidal distances in the stress profile (C. Soranakom and Mobasher 2007; 

Chote Soranakom and Mobasher 2008; Mobasher, Bakhshi, and Barsby 2014; Mobasher 

et al. 2014). The moment iM   and curvature i at any stage i  corresponding to tensile 
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strain level   are normalized with respect to cracking moment and curvature 

respectively in order to obtain normalized moment and curvature. 

i

cr

M
M

M
   ;   21

6
cr crM bd E                                     [8-11] 

i

cr





   ;  

2 cr
cr

d


                                               [8-12] 

The location of neutral axis, k , moment capacity, M  , and the curvature,   are obtained 

in closed form and shown in appendix section for the three stages of tensile strain level, 

  (Stage I: 0 1  ; stage II: 1     and stage III: tu    ). The first stage 

represents linear elastic behavior and it is terminated by initiation of tensile cracking 

which shifts the neutral axis towards the compression zone. In the second and third stage 

there are two possibilities: (i) elastic compression zone or (ii) plastic compression zone. 

All these possibilities are incorporated in the model in order to develop the moment-

curvature relationship. The load-deflection response can be quantified from moment 

distribution and moment-curvature relationship employing crack-localization rules (C. 

Soranakom and Mobasher 2007; Chote Soranakom and Mobasher 2008; Mobasher, 

Bakhshi, and Barsby 2014; Mobasher et al. 2014). The deflection at mid-span can be 

calculated using double integration of curvature distribution or by closed form 

expressions obtained through moment-area method (C. Soranakom and Mobasher 2007; 

Chote Soranakom and Mobasher 2008; Mobasher, Bakhshi, and Barsby 2014; Mobasher 

et al. 2014) which are shown as follows: 
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           21

12
cr crL                        (elastic)                              [8-13] 

   2 2 2
8 12

u p u cr
u P P

cr

L M L
L L L L

M

 
      (Deflection-softening)       [8-14] 

 

Where L is the length of the beam and LP represents length of the plastic zone under 

three-point bending. The model parameters (Table 4) are selected in order to obtain 

simulated load-deflection response that fits to the experimental flexural load-deflection 

behavior. The fitting parameters, thus obtained, quantify the tensile modulus, tensile 

strength and ultimate tensile strain corresponding to experimental load-deflection data. 

The bilinear version of the tension model (considering 0cst  ) is used to quantify 

tensile behavior in a later chapter. The current study uses only linear elastic part of the 

tension model to calculate tensile stiffness of iron-based binder from flexural load-

deflection data.   

8.3.3.2 Quantification of tensile Young’s modulus using inverse analysis and 

comparison with predicted homogenized Young’s modulus 

Four replicate beams were tested to obtain flexural load-deflection data. The tests were 

terminated at about 90% of the peak load, calculated previously as reported in previous 

chapters. The linear load-deflection data is fitted with simulated load-deflection in order 

to obtain optimal fitting parameter E. The tensile Young’s modulus is found to be 33.4 ± 

2.27 GPa which falls well within the upper and lower limits of the macro-scale estimates 

of homogenized elastic modulus using two approaches. Hence the experimental Young’s 

modulus is in good agreement with those predicted using mean field microstructural 

homogenization. Results of this comprehensive study establish the material property-
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microstructure link for novel iron-based binder using a combination of MIP, Image 

analysis, statistical nanoindentation and mean-field homogenization models.    

8.4 Conclusions 

This study reports the individual intrinsic phase elastic properties determined using 

statistical nanoindentation technique. Seven distinct phases are identified. The iron 

carbonate reaction product is further classified as low-density, medium-density and high-

density iron carbonate. The individual elastic properties are also quantified. Since the 

BSE SEM images did not have absorption-contrast to reliably identify the solid phases 

other than bright iron particles in the iron-based binder, the volume fractions of relatively 

inert phases such as fly ash and clayey matrix phase are assumed to be same as initial 

volume fractions of such materials added. The porosity is experimentally determined 

using MIP and image analysis is used on a series of BSE SEM images to calculate 

volume fraction or total iron particles. In addition, different combinations of volume 

fractions of low-density, medium-density, high-density iron carbonate product, 

unreacted/partly reacted iron particles are employed to quantify lower/upper limits of 

homogenized Young’s modulus and to evaluate the effect of such variations in volume 

fractions on the overall homogenized property.  The individual phase elastic properties 

determined using nanoindentation along with the pore volume fraction from MIP and 

solid phase volume fractions from different methods were used in multi-step 

micromechanical mean-field homogenization model (Mori-Tanaka method) to determine 

a homogenized Young’s modulus of the composite material. The homogenized Young’s 

modulus was found to be in good agreement with the experimental macro-scale Young’s 

modulus. The study described here, linking the microstructure and properties of a highly 
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heterogeneous material (at the microscale), and the use of upscaling models to predict the 

bulk elastic response, is expected to lead to better material design of iron-based binder, 

which currently relies greatly on experimentally obtained bulk mechanical response. 
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Chapter 9 High-temperature Resistance of Iron Carbonate Binder 

9.1 Introduction 

Resistance to fire related hazards is one of the important factors for the wide spread 

acceptance of a material for structural applications. Concrete containing ordinary 

Portland cement (OPC) is one of most commonly used construction materials. Thus, it 

has attracted a lot of investigation in the recent past on its resistance to high temperature 

incidents such as fire (U. Schneider 1988; Naus 2006; Phan et al. 1997). These studies 

have mainly focused on the residual compressive strength and showed that Portland 

cement concrete performs very poorly at high temperature. It starts to lose its 

compressive strength after the critical exposure temperature of approximately 600°C. 

This loss has been attributed to the decomposition of calcium hydroxide (CH) to calcium 

oxide and water and consequent volume expansion after cooling due to the rehydration of 

calcium oxide (Georgali and Tsakiridis 2005). Also explosive spalling occur between the 

temperature 480 and 510°C which reduces the load bearing capacity of the concrete 

structure substantially (Chan, Peng, and Anson 1999). Also, due to evaporation of water 

at around 100-110 °C, porosity increases and thus it lowers the residual strength (Demirel 

and Keleştemur 2010).  

Supplementary cementitious materials such as blast furnace slag, flyash and silica fume, 

which are considered as alternative to OPC, have been shown to exhibit superior 

performance in terms mechanical strength in many cases. They are either used as 

activated binder or in blended form with OPC. Resistance of alkali-activated Fly ash 

towards fire has also been investigated (Dias, Khoury, and Sullivan 1990). It has been 

found that fly ash-based binder has superior resistance to high temperature relative to 
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OPC. Fly ash showed remarkably higher compressive strength (40% of reference 

samples) up to temperature of 600° C. In a similar study (Sarshar and Khoury 1993), it 

was found that mixes where OPC is partially replaced by fly ash showed more stability at 

600°C as compared to OPC paste. OPC paste lost about 52% of its initial strength 

whereas OPC blended with FA paste just lost 30 % of its strength. It has also been 

observed that OPC samples started spalling after 600° C but nothing of that sort was 

observed for fly ash samples (Sarker, Haque, and Ramgolam 2013). Alkali activated 

slags also offers remarkable potential as fire resistant material as observed by various 

researchers. High degree of stability even at as high temperature as 1000°C is shown in 

the literature (Temuujin et al. 2011). The presence of highly condensed gel product, low 

chemically bounded water and absence of CH were attributed to this superior 

performance (W.-C. Wang, Wang, and Lo 2014; Temuujin et al. 2011). Further studies 

by researchers (Zuda et al. 2007) showed that alkali activated slag has improved thermal 

properties such as thermal diffusivity and thermal conductivity due to refine pore 

structure. Research have shown that silica fume doesn’t perform well as a fire resistant 

(Hertz et al. 2005).  It has been observed that OPC with silica fume showed explosive 

spalling at a heating rate as low as 1° C/min and found that parameters such as increased 

moisture content, reduced permeability, and decreased tensile strength increased the rate 

of spalling (Hertz et al. 2005). However it was suggested (Morsy, Shebl, and Rashad 

2008) that inclusion of metakaolin with SF can improve the resistance to fire. The best 

dosage of SF was concluded to be in the range of 10 to 15 % by volume of cement. But 

there is no standard procedure to study the high temperature effects testing on the 

alternate binder material. With a view to develop a novel sustainable carbon-negative  
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binder, an explicit study was carried out as explained in previous chapters to explore the 

possibility of carbonating waste iron powder to produce an acceptable binder.  While 

previous chapters on mechanical behavior of iron-based novel binder confirmed 

acceptable mechanical behavior of iron-based binder for structural applications, the 

current chapter evaluates the résistance of this novel binder towards high temperature and 

provides valuable information durability characteristics of this novel iron-based binder at 

elevated temperatures. This chapter aims at substantiating the characteristics of the IC at 

high temperatures and explores the possibility of using this novel binder for high 

temperature applications. 

 

 

9.2 Experimental Program 

9.2.1 Materials, Mixtures and Specimen Preparation 

A metallic iron powder generated as by-product of shotcreting facility with a median 

particle size of 19.03 µm, is used as chief raw material. They are elongated and angular in 

shape. Other materials such as Class F fly ash and metakaolin conforming to ASTM C 

618, and limestone powder (median particle size of 0.7 µm) conforming to ASTM C 568 

were also used for binder synthesis. For minimizing of water demand and obtaining 

necessary cohesiveness metakaolin was used. An organic reducing agent/chelating agent 

for metal cations (oxalic acid, in this case) was also used. Commercially available Type 

I/II OPC conforming to ASTM C 150 was used to prepare cement pastes to act as a  as 

the baseline system to compare the properties of the novel iron-based binder systems. The 

mix proportion of the iron-based binder mixture used in this study consists of 60% iron 
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powder, 20% fly ash, 8% limestone, 10% metakaolin, and 2% organic acid by mass 

which was established as the best mixture by the authors in their previous works. This 

combination demonstrated the highest compressive strength and lowest porosity among a 

series of trial mixtures prepared as part of material design studies. The mixing procedure 

involves initial dry mixing of all the starting materials and then adding water to obtain a 

uniform cohesive mixture. A mass-based water-to-solids ratio (w/s)m of 0.24 was used to 

attain a cohesive mix, which also was arrived at based on several preliminary studies.  

Prismatic specimens of size 127 mm (length) x 25.4 mm (depth) x 25.4 mm (width) were 

prepared in polypropylene molds and immediately placed inside clear plastic bags filled 

with 100% CO2 in room temperature inside a fume hood. The samples were demolded 

after 1 day of carbonation in order to attain enough strength so as to open the molds 

without breaking the specimen. After demolding, the beams were placed again in a 100% 

CO2 environment for another 5 days. The bags were refilled with CO2 every 12 hours or 

so to maintain saturation level. After the respective curing durations of CO2 exposure, the 

samples were placed in air at room temperature to allow the moisture to evaporate for 4 

days.  Companion OPC mixtures of the same size as mentioned above were prepared 

with a water-to-cement ratio (w/cm) of 0.40, which is common for moderate-strength 

concretes in many buildings and infrastructural applications. The OPC beams were 

demolded after 1 day and were kept in a moist chamber (>98% RH and 23±2 °C) for a 

total of 28 days.  In order to investigate the high temperature effect on OPC and IC, 

besides ambient temperature the paste and mortar specimens were heated up to 300, 600 

and 800°C in furnace with 3-5°C heating rate and kept at the target temperature for two 
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hours. After exposure to elevated temperatures the specimens were allowed to cool to the 

room temperature inside the furnace.  

9.2.2 Determination of Flexural Strength using three-point bending test 

The flexural strengths of both iron-based and OPC binders were determined using 

standard center-point loading as per ASTM C293/293M-10, on beams having a span of 

101.6 mm. The three-point bend tests on prismatic beams were performed under mid-

span deflection-controlled mode. For each mixture four replicate beams were tested. 

9.2.3 Thermogravimetric analysis (TGA) 

A Perkin Elmer STA 6000 simultaneous thermal analyzer was used for thermo-

gravimetric analysis (TGA). The analyzer was programmed to increase the temperature 

from 30°C to 995°C at a rate of 15°C/minute in a N2 environment. The samples for TGA 

were taken from the beam samples. Samples from both surface as well as core of the 

cylindrical specimens were analyzed in order to assess the influence of different elevated 

temperatures on iron carbonate binder.  

9.2.4 Mercury Intrusion Porosimetry (MIP) 

To evaluate the changes in pore structure, MIP was performed on small samples of oven 

dried novel iron-based binder samples using a porosimeter that can generate a maximum 

pressure of 414 MPa and evaluate a minimum pore diameter of 0.003 μm. The test was 

performed in two steps: the low pressure step removes the gases and fills the sample 

holder with mercury. The test is then carried out up to 345 KPa. The high pressure step 

reaches pressures of up to 414 MPa. The contact angle and surface tension values 

employed were 130° and 0.485 N/m respectively. 
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9.2.5 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectra of the activated pastes were obtained using an ATI Mattson Genesis FTIR 

spectroscope with a single reflection attenuated total reflectance diamond crystal 

attachment. The spectra of the reaction products before and after each temperature were 

obtained in the wavenumber range of 4000 to 400 cm−1 at a resolution of 1 cm−1.  

9.2.6 X-ray diffraction (XRD) 

XRD was performed on samples to determine phase composition of novel iron-based 

binder at different temperatures. The XRD patterns of powdered samples were evaluated 

using High Resolution X-ray Diffractometer (PANALYTICAL X’PERT PRO) in the 2

range of 10-90° with an increment of 0.05°. 

9.2.7 Scanning Electron Microscopy and Electron Microprobe 

Microstructural study of the iron-based systems before and after high temperature 

exposure was carried out using a Philips XL30 Field Emission Environmental scanning 

electron microscope (FESEM). Prismatic cube samples of size 10 mm x 10 mm x 10 mm 

was cut from the beam samples using a diamond saw and the small samples were 

mounted to the stub with epoxy resin for FESEM. A suitable combination of grinding and 

polishing is applied to achieve a level of flatness which eliminates the errors. The 

microstructural study was carried out on the sample near the surface of the beam sample. 

The elemental mapping was performed using JEOL JXA-8530F Hyperprobe (Electron 

Microprobe).    
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9.3 Results and Discussions 

9.3.1 Flexural Strength and Pore-structure 

Figure 9-1(a) presents the results of flexural strength of novel iron-based binder and OPC 

paste at different temperatures. It is observed that at room temperature, iron-based binder 

has much higher strength (approximately 85 %) as compared to OPC. But as the 

temperature increased to 300°C, a major loss in strength was observed for iron-based 

binder (around 84 % of its initial strength) whereas OPC gained strength (by around 

34.87%) although at 300°C iron-based binder shows almost similar strength as compared 

to OPC. The strength gained in the OPC can be attributed to the autoclaving effect 

(Rashad et al 2014) which increased the rate of product formation. The pore structure of 

OPC also supports the diffusion of steam for autoclaving effect. On the other hand, the 

strength loss in iron-based binder at 300°C was attributed to the decomposition of 

carbonate binding complex (carbonate-oxalate-cancrinite) (Olysych et al. 2011; Das, 

Souliman, et al. 2014). This loss in strength is also reflected in the form of about 20% 

reduction in bulk density which is presented in Figure 9-1(b). At 600°C, there was a 

slight increase in the strength for iron-based binder whereas OPC lost its strength by 42 

%. The loss in strength in OPC can be attributed to the decomposition of CH at around 

500 °C and the subsequent rehydration of calcium oxide which leads to increase in 

volume by 44% (U. Schneider 1988). The degradation of the CSH gel product may also 

contribute to the strength loss. On the other hand, slight increase in strength in iron-based 

binder may be attributed to temperature-induced crystallization process which is 

evaluated later in this chapter. At 800°C, the residual strength of iron-based binder 

increased significantly by 68 percent when compared to residual strength at 600°C 
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whereas OPC lost almost all its mechanical strength. Strength loss for OPC can be 

attributed to the total decomposition of gel product (Andiç-Çakır, Çopuroğlu, and 

Ramyar 2015) whereas significant increase in strength in iron-based binder is likely to be 

caused by increase in crystallinity and formation of denser structure at 800°C which are 

evaluated later in this chapter.  At 800°C, iron-based binder exhibits about 2.7 MPa 

which is about 5 times higher as compared to that of OPC.   

 

Figure 9-1: (a) flexural strength of novel iron-based binder and OPC paste; (b) bulk 

density of iron-based binder at different temperatures 

 

Mercury intrusion porosimetry (MIP) is performed on the iron-based binder samples at 

different temperatures in order to assess effect of pore structure on strengths at elevated 

temperatures. Samples were collected approximately 5 mm under the surface of the 

prismatic beams used for flexural strength evaluation. Figure 9-2 shows the MIP 

intrusion curves and the differential plots at different temperatures. Results suggest that 

the total volume of mercury intruded increased significantly when the temperature was 

increased from 20 °C to 300 °C. The volume remained almost same when the 

temperature was increased from 300 °C to 600°C and the volume reduced by 20% as 

compared to that at 600°C when the temperature was increased from 600 °C to 800°C. 

(a) (b)
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Figure 9-3 shows evolution of porosity, evaluated using MIP, as the temperature is 

increased 20 °C to 300 °C. Porosity remains almost invariant of temperatures at the range 

of 300 °C to 600°C and beyond 600°C the porosity starts decreasing. These results are in 

line with the flexural strengths observed in iron-based binder at different temperatures 

(Figure 9-1(a)).  

 

Figure 9-2: Pore-structure information evaluated using MIP at (a) room temperature; (b) 

300°C; (c) 600°C; (d) 800°C 

 

The differential intrusion plots are also shown in Figure 9-1 for different temperatures 

with a view to understand the effect of elevated temperatures on the pore-size that 

provides valuable qualitative comparison of densification as the temperature is increased. 

The quantified critical pore diameters at different temperatures are shown in Figure 9-3. 

(a)

(c)

(b)

(d)

RT 300°C

800°C600°C
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The critical pore diameter increases slightly as the temperature is increased from 20 °C to 

300 °C. But, beyond 300 °C, critical pore diameter decreases significantly. At 600 °C, the 

critical pore diameter dropped from 0.28 micron to 0.12 micron and at 800 °C the 

diameter even further reduced to 0.02 micron. It gives an indication that the degree of 

crystallinity increases as the temperature is increased from 300 to 600°C. It increases 

even more at 800°C which is also responsible for significant increment in strength with 

increase in temperature at that range.   

 

Figure 9-3: Variation of porosity and critical pore diameter with varying exposure-

temperature 

9.3.2 Extent of thermal decomposition using TGA 

Thermogravimetric analysis is performed on iron-based binder samples at different 

temperatures to evaluate stability of different phases in iron-based novel binder at 

elevated temperatures. Thermal stability of the reaction product especially iron carbonate 

complex is critical towards its mechanical behavior at elevated temperatures which is 

evaluated here.  Figure 9-4 shows TG and DTG plots for samples exposed to different 

temperatures. The TG curves suggest that the total weight remaining increases as the 

sample exposure-temperature is increased. The maximum amount of increase is observed 
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when the exposure-temperature is increased from room temperature to 300 °C. Total 

weight remaining increased from 80% for room temperature sample to about 96% for the 

sample exposed to 300°C implying a significant amount to thermal decomposition of iron 

carbonate complex reaction product. It is also reflected in the form of drastic increase in 

porosity (Figure 9-3) due to decomposition of iron carbonate oxalate reaction product as 

the exposure-temperature is increased from room temperature to 300 °C.  

 

Figure 9-4: TG and DTG curves for iron-based binder samples exposed to (a) room 

temperature; (b) 300°C; (c) 600°C; (d) 800°C 

 

At room temperature, three distinct peaks were observed. The peak around 110 °C  

represents the evaporable water, the one at 300 °C (Das, Souliman, et al. 2014; Olysych 

et al. 2011) represents thermal decomposition of carbonate-oxalate-cancrinite and the one 

(a)

(c)

(b)

(d)

RT 300°C

800°C600°C
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at around 750 °C is attributable to decomposition of calcium carbonate. All the peaks are 

strong and distinct at room temperature. 

As the temperature was elevated to 300 °C, the peak at 110°C became nonexistent and 

the peak at 300°C lost its intensity significantly as compared to room temperature. This 

can be attributed to the fact that the water is evaporated and the iron carbonate complex is 

decomposed leaving the trace amount in the system. Table 9-1 shows that the weight loss 

in the temperature range 250-400°C decreased from 9% to 0.14% which represents the 

decomposition of iron carbonate complex. At 300 °C, the calcite peak is still present in 

the system as calcium carbonate is expected to be decomposed at higher temperatures. 

Table 9-1 shows that the binder retains calcium carbonate when the sample is heated 

from room temperature to 300 °C.   

For the sample exposed to 600°C, the major change was observed for the peak at around 

750 °C. The peak at around 750 °C, which corresponds to thermal decomposition of 

calcite, reduced its intensity significantly implying almost complete decomposition of 

calcite present in the system (faster decomposition of calcite due to presence of organic 

acid). Table 9-1 shows only trace amount of calcite (0.07%) remaining in the system. 

Figure 9-4(c) shows the iron carbonate peak but it is insignificant considering only trace 

amount (0.15%) of weight loss corresponding to that temperature range as shown in 

Table 9-1.  

At 800 °C, the iron carbonate complex and calcium carbonate complex has totally 

decomposed although some trace amounts are left in the system as shown in Table 9-1. 

Hence, it is most likely that some crystalline iron oxides are formed after decarbonation 
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of iron carbonate which is responsible for increase in strength. This aspect is evaluated in 

detail using FTIR and XRD spectra as reposted in the forthcoming sections. 

Table 9-1: Quantitative analysis using TGA for samples exposed to different 

temperatures 

Percent weight loss (250 to 400 °C) 
Percent limestone powder remaining 

(%) 

20°C 300°C 600°C 800°C 20°C 300°C 600°C 800 

9.05 0.14 0.15 0.04 4.85 4.841 0.07 0.05 

 

9.3.3 Evaluation of effect of elevated temperature using FTIR 

Figure 9-5 shows the FTIR spectra of Iron-based binder subjected to different 

temperatures in order to evaluate evolution of reaction product as the temperature is 

increased. Overall, three distinct peaks are observed in the spectra that is needed to be 

evaluated here. The peak at around 1410-1425 cm
-1

 represent stretching of the carbonate 

(C-O) bond whereas the peak at  860-880 cm
-1

 represents out of plane bending of C-O 

bond (Smith 1998; Miller and Wilkins 1952). The peak observed at around 930-1060 cm-

1 represents the asymmetric stretching of Si-O-Si bond present in fly ash (Smith 1998; 

Miller and Wilkins 1952; Rovnaník, Bayer, and Rovnaníková 2013).  

At room temperature, peaks corresponding to stretching and out of plane bending of C-O 

bond (inorganic carbonate) are present indicating presence of iron carbonate and calcite 

in the system although they are not individually differentiable through this process. A 

broad peak corresponding to asymmetric stretching of Si-O-Si is also present. The 

broadness of the peak (higher width) signifies presence of structural disorder in the 

silicate network and thus, amorphous nature of silicates at room temperature (Dimas, 

Giannopoulou, and Panias 2009; Smith 1998).    
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When the temperature is increased to 300 °C, the intensity of carbonate peaks (1424 and 

875 cm
-1

) relative to silicate peak (1048 cm
-1

) is reduced which can be attributed to 

complete thermal  decomposition of iron carbonate reaction product as was confirmed by 

TGA results in the previous section. Hence, the carbonate peaks for the sample exposed 

to 300 °C represents presence of mainly calcium carbonate as was found in TGA results. 

The broad silicate peak corresponding to amorphous silica is still present at 300 °C. 

At 600 °C, the carbonate (C-O) peaks disappear due to complete decarbonation as was 

found in TGA results in the previous section and the width of the silicate peak is reduced 

significantly as compared to that in lower temperatures. This reduction in width can be 

attributed to the increase in polymerization of silica species and decrease in variability of 

the Si species which is reflected in the form of slight increasing tendency of flexural 

strength as the exposure-temperature is increased from 300°C to 600°C.  

The carbonate peak is absent for the sample at 800 °C as all the carbonates are 

decomposed well below that temperature as confirmed by TGA. The width of the peak 

for Si-O-Si is reduced further as the temperature is increased from 600 to 800°C implying 

conversion of more free amorphous silica into relatively more polymerized silica. 

Another important observation from the FTIR spectra is that the silicate peak becomes 

narrower and more symmetric as the exposure temperature is increased after 

decarbonation of iron carbonate (beyond 300°C). These results imply reduction in the 

amount of amorphous silica and formation of relatively more crystalline silica species 

resulting in increased flexural strength relative to the strength at 300°C. It should be 

noted that the crystalline phases generally show characteristic peaks at wavenumbers 

lower than 750 cm
-1

. Hence any possible formation of crystalline product due to thermal 
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decomposition is not detectable using FTIR spectra with minimum wavenumber higher 

than 750 cm
-1

. This aspect is evaluated further using XRD spectra for more insight on the 

evolution of reaction product and possible formation of crystalline products at higher 

temperatures as presented in the forthcoming section.  

 

Figure 9-5: FTIR spectra for iron-based binder samples exposed to different temperatures 

9.3.4 X-ray diffraction (XRD) analysis of materials after exposure to elevated 

temperature 

XRD is done on the samples subjected to various temperatures in order to evaluate 

elemental compositions/ possible formation of new compounds at different temperatures 

that is responsible for the mechanical behavior shown in Figure 9-1.  

At room temperature, siderite, which is naturally occurring iron carbonate mineral, is 

found predominantly as expected. In addition, peaks corresponding to calcite are also 

visible. One peak each of quartz and magnetite (Fe3O4) is also present. While waste iron 
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powder from shot blasting facility is expected to contain some oxidized iron particles 

(Fe3O4), fly ash contains trace amount of quartz which is captured here at room 

temperature sample. 

When the temperature is increased from room temperature to 300°C, iron carbonate 

decomposes in presence of oxygen and forms magnetite (Fe3O4) (Koziol 1999). 

3 2 3 4 26 3FeCO O Fe O CO                                    [9-1] 

 

Formed magnetite is further oxidized to γ-Fe2O3 (Lepp 1957)  

3 4 2 2 34 6Fe O O Fe O                                   [9-2] 

 

The above oxidation reaction is thermodynamically favorable above 200°C (Lepp 1957). 

That’s why mixture of both Fe3O4 and γ-Fe2O3 are present in the XRD spectra for the 

sample exposed to 300°C. Again, decomposition of iron carbonate results in drastic 

reduction in flexural strength. Besides, peak corresponding to calcite is also detected in 

the XRD spectra at 300°C which is in line with the TGA results presented in the previous 

section.   

Starting at 375°C γ-Fe2O3 is oxidized further to α-Fe2O3, which is hematite. In addition, 

at temperatures above 575°C magnetite is also directly oxidized to form hematite (Lepp 

1957). 

3 4 2 2 34 6Fe O O Fe O                                   [9-3] 

 

The sample exposed to 600°C shows both magnetite and hematite in the XRD spectra. 

Both magnetite and hematite are crystalline in nature and hence it justifies strength-

increment with increasing temperature. Sample exposed to 800°C also shows both 
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magnetite and hematite in the XRD spectra. But, the number of peaks corresponding to 

hematite is higher at 800°C as compared to that found at lower temperatures implying 

increase in crystallinity. Again, increase in number of peaks corresponding to quartz at 

800°C implies polymerization of free silica at elevated temperature which supports the 

earlier hypothesis on polymerization of silica (reduction in full-width at half-maximum 

(FWHM) of silicate peak) at elevated temperatures identified by FTIR spectra (Figure 

9-5). Another interesting finding is that the FWHM of the peaks corresponding to Fe3O4 

and Fe2O3 reduces (as can be seen from Figure 9-6) as the temperature is increased from 

300°C to 800°C implying significantly higher crystallinity at higher temperature which is 

reflected in the form of significant increase in flexural strength. The XRD spectra for 

sample exposed to 800°C matches well with that of α-Fe2O3 nanoparticles (hematite) 

(Dar and Shivashankar 2014).  

 

Figure 9-6: XRD spectra for iron-based binder samples exposed to different temperatures 
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9.3.5 Microstructural Evaluation 

Figure 9-7(a) shows micrograph of sample at room temperature. The bright particles are 

the iron particles. It was confirmed in the previous chapter on pore- and micro-structural 

characterization through EDS that the reaction product (light gray phase around iron 

particles) contains iron, carbon and oxygen as the major component, followed by silica, 

aluminum, and calcium. The results from TGA, and XRD also confirms formation of iron 

carbonate as the major reaction product in the system as shown in the previous sections 

of this chapter.  Denser reaction product formation around unreacted angular iron particle 

is distinctively visible in the micrograph. While the carbonate reaction product helps to 

bind all the materials together, unreacted iron is likely to facilitate microstructural 

reinforcement in the binder thereby exhibiting superior mechanical behavior. When the 

sample is exposed to 300° C, the denser light grey phases around unreacted iron particles, 

seen at room temperature, are converted to porous black phases as can be seen in Figure 

9-7 (b) which is attributed to decomposition of iron carbonate as was confirmed through 

TGA and XRD results. Not significant distinct difference is visible between the samples 

at 300° C and 600° C except the fraction of black phases in the micrograph is reduced to 

some extent. At, 800° C the black phases around the iron particles vanished and the 

microstructure looks denser which is reflected in the form of increased flexural strength 

due to polymerization of silica and formation of crystalline phases such as hematite at 

elevated temperatures as confirmed by FTIR and XRD spectra.   
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Figure 9-7: Evolution of microstructure with increasing exposure-temperature 

 

Figure 9-8 shows elemental maps (using electron microprobe coupled with EDS) of 

samples exposed to various temperatures. The elemental maps of Iron confirms that the 

bright (white) phases in the microstructure are iron particles.  Among all the elements, 

carbon is found to be most sensitive to elevated exposures which is expected, considering 

decarbonation of iron carbonate and calcium carbonate being major difference caused by 

exposure to elevated temperatures, established here using TGA, FTIR and XRD data.  

The elemental maps corresponding to 300° C shows black region around iron particles 

signifying thermal decomposition of iron carbonate formed around iron particles. But, all 

other areas, except on the iron particle and the area around iron particles, show presence 

of carbon from calcite.  Thermal decomposition of calcite at 600° C and 800° C, which is 

established using TGA, FTIR and XRD, is also evident in the form of reduction of 
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fraction of carbon in the maps as the temperature is increased. Si maps show that Si is 

relatively dispersed at room temperature and 300° C. But, it forms pockets and dispersion 

is significantly reduced at 600° C and 800° C which supports that fact that amorphous 

silica is polymerized here to form these distinct agglomerations as was found using FTIR 

and XRD spectra. Distinct pockets of alumina is found in the maps corresponding to 

room temperature and 300° C. But, the distribution is slightly diffused at 600° C and 

800° C. While the elemental maps for Ca show presence of Ca in distinct pockets at room 

temperature and 300° C, Ca is significantly diffused entirely in the microstructure, except 

the iron particles which is attributed to thermal decomposition of calcite at 600° C and 

800° C established using TGA, FTIR and XRD.   
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Figure 9-8: Elemental maps using electron microprobe at different temperatures 
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9.4 Conclusions 

This chapter reports effect of various elevated temperatures on the mechanical behavior 

and microstructure of novel iron-based binder. While novel iron-based binder shows 

significantly higher flexural strength as compared to OPC paste at room temperature, 

iron-based binder loses its strength significantly at 300° C due to thermal decomposition 

of iron carbonate although it still shows similar strength as OPC. Complete loss of iron 

carbonates at 300° C, confirmed using TGA and XRD spectra, has been established to be 

the cause of strength-loss at 300° C. Porosity, measured using MIP, increased 

significantly at 300° C as compared to that at room temperature due to decomposition of 

iron carbonate.   While flexural strengths of OPC paste and novel iron-based binder are 

almost similar at 300° C, OPC loses about 70% of its strength at 800° C. On the contrary, 

iron-based binder gains about 80% strength as compared to its strength at 300° C due to 

formation of crystalline products such as magnetite and hematite after decomposition of 

iron carbonate as confirmed with XRD spectra. Thus, at 800° C, novel iron-based binder 

exhibits a flexural strength which is 2 times and 5 times higher as compared to that of 

OPC paste at room temperature and 800° C respectively. Results of this comprehensive 

study establish effects of various elevated temperatures on strength and microstructure of 

novel iron-based binder. 
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Chapter 10 Effect of Metallic Particulate Reinforcement in OPC 

10.1 Introduction 

Large quantities of metallic iron powder are generated as bag-house dust waste during the 

electric arc furnace (EAF) manufacturing process of steel and from shot-blasting 

operations of structural steel sections, which are generally landfilled at large economic 

and environmental expenses (Das, Souliman, et al. 2014).  Potential use of this waste 

material as a partial replacement of ordinary portland cement (OPC) in concretes can help 

develop a beneficial pathway for the utilization of this material, and at the same time 

reduce the consumption of OPC, thereby resulting in sustainable cementitious 

composites. Past studies have investigated the use of several metallic waste materials in 

concrete (Azeez et al. 2013; Y.-C. Kan, Pei, and Chang 2004; Maslehuddin et al. 2013; 

Rai et al. 2002). Improved mechanical and durability properties as compared to 

conventional concrete have been reported.  The use of waste iron powder as a partial 

replacement of sand (~20% by volume) in concrete has been shown to increase 

compressive and flexural strengths (Ismail and AL-Hashmi 2008).  Previous studies have 

also shown that the inclusion of iron aggregates in heavyweight concrete increases the 

fracture toughness (Y.-C. Kan, Pei, and Chang 2004; Y. C. Kan, Yang, and Pei 2012). A 

recent study by the authors has reported the beneficial effect of carbonation of metallic 

iron powder to form a binding material akin to OPC paste, which demonstrated increased 

fracture properties as compared to the OPC paste. This study intends to evaluate the 

potential application of waste iron powder in OPC mortars towards the development of 

sustainable cementitious composites. It is anticipated that the elongated iron particulates 
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will fundamentally alter the crack propagation mechanism in these composites, to deliver 

microstructure-designed tough and economical OPC-based composites.  

In this chapter, the influence of iron particulates on fracture behavior of OPC mortars has 

been explored through compliance-based strain energy release rates (Das, Aguayo, et al. 

2014; Mobasher 2011; Wecharatana and Shah 1983; Das, Hendrix, et al. 2014) and a 

concomitant evaluation of the fracture process zone (FPZ), which is a complex localized 

zone at the tip of the advancing crack, containing the main crack as well as various 

branches of secondary cracks and micro-cracks. FPZ in quasi brittle materials has been 

shown to provide valuable information on fracture behavior of such materials (Shah 

1985; Kobayashi et al. 1985; Shah 1995a; Mobasher 2011). Several experimental 

techniques are available to quantify the geometric characteristics of FPZ including:  high 

speed photography (Bhargava and Rehnström 1975), acoustic emission (Haidar et al. 

2005; Carpinteri and Lacidogna 2003; Maji, Ouyang, and Shah 1990), scanning electron 

microscopy (SEM) (Mindess and Diamond 1980; Hadjab.S, Chabaat, and Thimus 2007; 

Nemati 1997; X. Hu and Wittmann 1990), laser-speckle interferometry (Jia and Shah 

1994; Horii and Ichinomiya 1991), and digital image correlation (DIC) (Das, Aguayo, et 

al. 2014; Das, Hendrix, et al. 2014; Yates, Zanganeh, and Tai 2010; Nunes and Reis 

2012a; Roux, Réthoré, and Hild 2009; Skarżyński, Syroka, and Tejchman 2011; 

Skarżyński, Kozicki, and Tejchman 2013; Skarżyński and Tejchman 2013; Das, Aguayo, 

et al. 2015). In this study, digital image correlation (DIC), a non-contact digital speckle-

tracking method for determination of surface displacement and strains through image 

correlation (Das, Aguayo, et al. 2014; Das, Hendrix, et al. 2014; Yates, Zanganeh, and 

Tai 2010; Nunes and Reis 2012a; Roux, Réthoré, and Hild 2009; Skarżyński, Syroka, and 
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Tejchman 2011; Skarżyński, Kozicki, and Tejchman 2013; Skarżyński and Tejchman 

2013; Das, Aguayo, et al. 2015), is used to obtain direct measurements of the localized 

zone to better understand crack propagation in iron particulate-reinforced mortars. The 

relationship between FPZ and tension-softening response has motivated the extraction of 

tensile parameters of the composite from flexural load-deflection through the use of an 

analytical tension model (Das, Aguayo, et al. 2015; Mobasher, Bakhshi, and Barsby 

2014; Mobasher et al. 2014; C. Soranakom and Mobasher 2007; Chote Soranakom and 

Mobasher 2008). The experimentally determined strain energy release rates, visual 

surface strain fields and the geometric features of the FPZ, and the back-calculated tensile 

properties of the composites are related to provide a fundamental understanding of the 

influence of the presence and content of metallic particulate reinforcement on the strain 

localization and crack-propagation behavior of the composite mortars.  

10.2 Experimental program  

10.2.1 Materials and mixture proportions 

Commercially available Type I/II ordinary portland cement (OPC) conforming to ASTM 

C 150 is the main material used in this study. The particulate reinforcement used in this 

study is a metallic waste iron powder having a median particle size of 19 µm, obtained 

from an industrial shot-blasting operation. The particle size distributions of OPC and iron 

powder are shown in Figure 10-1. The iron powder consists of 88% Fe and 10% Oxygen 

(due to some amount of atmospheric oxidation) along with trace quantities of Cu, Mn, 

and Ca. The mortar mixtures were prepared using silica sand that had an average particle 

size of 0.6 mm.  
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Figure 10-1 : Particle size distributions (PSD) of metallic iron powder and OPC. The iron 

powder used here is coarser than the OPC.  

Four different mortar mixtures were proportioned with a water-to-cement ratio by mass 

(w/c)m of 0.50, and a constant aggregate (sand) volume of 50%. The four mortar mixtures 

contained 0, 10, 20, and 30% of metallic waste iron powder by volume respectively as a 

replacement of OPC. The mortar mixes were cast in 50 mm cubes for compressive 

strength test and 250 mm x 50 mm x 50 mm prismatic members for flexural strength. For 

fracture tests, 330 mm x 75 mm x 25 mm beams were casted.  For each of these tests, 

four replicate specimens were prepared. The samples were demolded after one day and 

placed in moist environment (RH>98%) at a temperature of 23 ± 2
o
C until the desired 

age of testing. Companion paste samples were also prepared and kept in sealed containers 

for pore and micro-structural evaluation.   

10.2.2 Strength and pore structure evaluation  

The compressive strengths were obtained in accordance with ASTM C 109 and flexural 

strength (in three-point loading) in accordance with ASTM C293/293M-10.  The pore 

structure of the plain and particulate-reinforced paste samples was evaluated using 

mercury intrusion porosimetry (MIP). A porosimeter that can detect minimum pore 
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diameter of 0.003 µm was employed for this study. This test was performed in two steps: 

(i) evacuation of gasses and filling the sample holder with mercury in the low-pressure 

run that increases the pressure from ambient to 345 kPa, and (ii) intrusion of mercury into 

the sample at high pressure (maximum pressure of 414 MPa).  The contact angle and 

surface tension used for the analysis were 130° and 0.485 N/m respectively. Even though 

the matrix type influences the contact angle, this aspect was not considered in this study. 

The pores in the porous media are assumed to be cylindrical in shape. The procedure of 

extraction of pore-structure features from MIP data is described in detail elsewhere (Das, 

Aguayo, et al. 2014; Das, Stone, et al. 2014e, -; Moon, Kim, and Choi 2006; Ghafari et 

al. 2014; Sánchez-Fajardo, Torres, and Moreno 2014; Carniglia 1986).  

10.2.3 Scanning electron microscopy for microstructural evaluation 

Microstructural evaluation of OPC-iron powder blended system was carried out using a 

Philips XL30 field emission environmental scanning electron microscope (FESEM). 

Small pieces from the core of the paste samples were cut using a diamond saw. A suitable 

combination of grinding and polishing was employed to achieve a level of flatness 

appropriate for microstructural evaluation. Prior to polishing, the sample was 

ultrasonically cleaned, rinsed with ethyl alcohol and dried to remove any debris from 

sectioning/handling. An epoxy encapsulation and vacuum impregnation procedure was 

then implemented, followed by overnight curing of the sample at room temperature. In 

order to planarize and remove deformations caused by sectioning, silicon carbide (SiC) 

abrasive discs were used. Successive polishing steps were carried out using smaller sized 

abrasives, and final polishing was done using 0.04 μm colloidal silica suspension. The 

polished sample was then imaged under FESEM in the backscattered mode.   
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10.2.4 Three point bending test and digital image correlation for evaluation of fracture 

behavior 

Three-point bend tests were performed on notched beams of size 330 mm x 76 mm x 25 

mm (span of 305 mm and notch depth of 19 mm) as shown in Figure 10-2. Four replicate 

beams were tested for each mixture. The beams were tested in a closed loop testing 

machine under crack mouth opening (CMOD) controlled mode. CMOD was measured 

continuously using a clip gauge. The beams were loaded in a force-controlled mode until 

a load of 100 N after which they were subjected to displacement (CMOD) controlled 

mode. The CMOD-controlled stage was terminated at a constant CMOD value of 0.038 

mm for all samples and load-controlled stage was initiated for unloading. The beams 

were unloaded to 50 N at a constant rate of 556 N/mm before shifting to the CMOD-

controlled stage again. Thus, subsequent loading (CMOD-controlled) and unloading 

(load-controlled) cycles were employed until a terminal CMOD of 0.18 mm was reached. 

The loading-unloading cycles in the load-CMOD response were required to determine 

compliance-based resistance (R) curves, which are presented in detail in a forthcoming 

section.     

 

Figure 10-2: Experimental setup for closed loop CMOD-controlled three-point bending 

test 
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Digital image correlation (DIC) was performed on the notched beams undergoing loading 

and unloading for direct determination of fracture process zone (FPZ), which is expected 

to provide insights into the crack propagation behavior of particulate reinforced OPC 

systems. DIC is a non-contact speckle-tracking optical method for measurement of 

displacement field on the specimen surface. In this method, the correlation between the 

subsets of images from the deformed and undeformed state is determined in order to 

calculate the displacement fields. The fundamentals and application of DIC to the study 

of cementitious systems has been well-documented (Das, Aguayo, et al. 2014; Das, 

Hendrix, et al. 2014; Yates, Zanganeh, and Tai 2010; Nunes and Reis 2012a; Roux, 

Réthoré, and Hild 2009; Skarżyński, Syroka, and Tejchman 2011; Skarżyński, Kozicki, 

and Tejchman 2013; Skarżyński and Tejchman 2013; Das, Aguayo, et al. 2015). The 

beam surface was speckled with random black-and-white patterns to provide adequate 

contrast. A CCD camera was used to capture images every 5 seconds during the test 

using VIC-snap
TM

 software. After the test, the digital images were correlated to obtain 

strain and displacement fields using VIC-2D
TM

 software (Das, Aguayo, et al. 2014). The 

strain and displacement fields are used to extract important features such as crack-

extension, length and width of FPZ as described later in this chapter.    

10.3 Results and discussions 

10.3.1 Microstructure of particulate-reinforced OPC binder 

In order to investigate the distribution of iron particles in the OPC mortar matrix, 

microstructural analysis was carried out on polished samples after a hydration age of 28 

days. Figure 10-3(a) and (b) show backscattered electron (BSE) images of the mortar 

microstructure with 30% iron powder by volume, at different magnifications. Figure 10-3 
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(a) shows the general view of microstructure where the bright (high density) iron 

particles and the matrix consisting of the reaction products (gray phase) and pores (black) 

are shown. The higher magnification image (Figure 10-3(b)) shows elongated iron 

particles which are likely to improve the fracture performance of OPC systems through 

mechanisms such as crack bridging and deflection, which are evaluated in greater detail 

later in this chapter.  The matrix cracks observed at higher magnifications (Figure 

10-3(b)) are generated while cutting/grinding of the samples for microscopy, and should 

necessarily be considered only as sample preparation artifacts.    

 

Figure 10-3:  BSE image showing distribution of iron particles in a paste containing 30% 

by volume of iron particles: (a) at 100X (Scale bar indicates 200 µm), and (b) at 250X 

(Scale bar indicates 100 µm).  The cracks observed in these pastes are a result of the 

cutting and sample preparation method for imaging.  

10.3.2 Strength and pore-structure as a function of iron powder volume fraction 

Figure 10-4(a) shows the total porosity and the average pore diameter of the plain and 

iron powder modified binder systems after 28 days of hydration. The porosity and 

average pore diameter are found not to be influenced significantly by the incorporation of 

iron powder in these systems, despite reduction in the OPC contents. In other words, the 

hydration of cement is not adversely affected by the presence of iron powder. It is well 

known that iron is passive in alkaline media, and thus, does not interfere with cement 

(a) (b)
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hydration. It also needs to be noted here that the mortar mixtures were proportioned at a 

constant water-to-cement ratio, and thus, while the OPC content reduced through iron 

incorporation, the water content was also lowered. The average pore diameter and 

porosity for all four mixtures are within a relatively narrow range of 0.0151-to-0.0162 

m and 34-to-37% respectively. Figure 10-4(b) shows the compressive and flexural 

strengths of 28-day moist-cured plain OPC and iron powder incorporated mortars. All the 

mortars show similar compressive strengths irrespective of the level of OPC replacement 

by iron powder, which can be attributed to the similar pore structure features as shown in 

Figure 10-4(a). While compressive strengths remain roughly unaltered with iron powder 

inclusion, the flexural strength is observed to increase slightly with increase in iron 

powder volume fraction, which can likely be attributed to the mostly elongated iron 

particles (See Figure 10-3) serving as micro-reinforcement in the matrix. Strength and 

pore structure results shown in this section indicate that waste iron powder can be 

incorporated in cementitious systems without compromising any of the pertinent 

mechanical properties. The forthcoming sections specifically highlight the beneficial 

impacts of these particulate reinforcing materials on the crack propagation and energy 

release response of cementitious systems.  
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Figure 10-4: Relationship between iron powder volume fraction and: (a) porosity and 

average pore diameter, and (b) compressive and flexural strengths of the mortars after 28 

days of hydration  

10.3.3 Beneficial enhancement in the fracture response through particulate inclusions 

In this section, the fracture behavior of metallic powder reinforced OPC mortar systems 

is evaluated using an effective crack approach (Shah 1995a; Mobasher 2011). The 

dominant crack-propagation mechanism in such particulate reinforced composite systems 

is also evaluated using surface strain mapping.   

The representative cyclic load-CMOD responses of the plain and iron particulate 

incorporated OPC mortars are shown in Figure 10-5(a). Here, multiple loading-unloading 

cycles are employed in order to obtain unloading compliances at various stages in the 

post-peak regime which is used to obtain the resistance (R) curves. The peak flexural 

load increases with increase in iron powder volume fraction as expected, the reasons for 

which were elucidated earlier. The enhancement in peak load is in line with the iron 

powder content up to a replacement level of 20%, beyond which the enhancement is not 

very pronounced. The area under the load-CMOD curve, which is a measure of the 

material toughness, also increases with an increase in iron powder content. Figure 10-5(b) 

depicts the residual loads at a CMOD value of 0.16 mm. An increase in residual load with 

(a) (b)



207 

  

increasing iron powder content is observed, signifying better post-peak response and 

crack-tolerance. Similar to the peak load, the enhancement in residual load is also not 

very prominent beyond an iron powder volume fraction of 20%. While the above results 

might indicate that replacing OPC by 20% of metallic iron powder (by volume) provides 

(near-) optimal results in terms of maximum and residual load capacities, this is strictly 

not correct when true fracture parameters are considered; an aspect which is elucidated in 

detail in the remainder of the chapter.  

 

Figure 10-5: Representative: (a) Load-CMOD response; (b) residual load at CMOD 0.16 

mm of blended mortars with different iron powder volume fraction 

 

3.3.1 Strain energy release rates and the influence of metallic particulate 

reinforcement 

This section presents the effect of metallic iron particulate reinforcement on fracture 

behavior of mortars in terms of strain energy release rates, and brings out the 

fundamental differences in crack propagation imparted by the inclusion of iron powder. 

The R-curves are obtained based on the assumption that stable crack propagation results 

in an increase in compliance. Contribution of both elastic and inelastic strain energies are 

considered in the development of the R-curves. The elastic components are calculated 

(a) (b)
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from the unloading compliances whereas inelastic CMOD is employed to calculate the 

inelastic component of strain energy release rate. The total strain energy release rate (GR) 

is given as (Das, Aguayo, et al. 2014; Mobasher 2011; Wecharatana and Shah 1983; Das, 

Hendrix, et al. 2014): 

                                 

2 ( )

2 2

inelastic
R elastic inelastic

CMODP C P
G G G

t a t a


   

 
                [10-1]                                           

Here C is the unloading compliance, t is the thickness of the specimen, P is the applied 

load, and a is the crack length. The unloading compliances and inelastic CMOD values 

are obtained from cyclic load-CMOD responses (Figure 10-5(a)). The unloading 

compliances are used to obtain crack extension (Δa) values corresponding to each 

loading-unloading cycle, as described in (Das, Aguayo, et al. 2014). The unloading 

compliances and inelastic CMOD values are then plotted as a function of crack-extension 

(Δa) and the relationships are differentiated in order to obtain the rate terms in Equation                  

10-1.   

Figure 10-6(a) shows the R-curves for the plain OPC mortar and those incorporating 

different amounts of iron powder. All the R-curves comprise of two regions: one where 

the strain energy release rate increases with increase in crack extension, denoting the 

development of a fracture process zone at the tip of the propagating crack, and the other, 

an energy plateau where strain energy release rate remains relatively constant, signifying 

steady-state crack extension after near-complete development of the fracture process 

zone. The results suggest that the maximum strain energy release rate (or, in other words, 

a quantification of the fracture resistance) increases with increase in iron powder content. 

The crack bridging/deflection effects of the elongated iron particles, shown in the 

micrographs in Figure 10-3 , resists crack extension, contributing to this observation. The 
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crack deflection effect of elongated iron particles can also be observed from the smaller 

crack extension values corresponding to initiation of the energy plateau, as the iron 

powder content is increased. The steady-state crack propagation is reached at much lower 

crack extension when iron powder is incorporated in the OPC mortars since these 

particles help dissipate a significant amount of energy through increase in tortuosity of 

the microcracks in the process zone thereby resulting in reduction in crack-extension. 

Incorporation of 30% by volume of metallic iron powder in place of OPC yields 

approximately 34% increase in the strain energy release rate, signifying significantly 

improved fracture-response as compared to pure OPC mortars.  

Figure 10-6(b) depicts the contribution of elastic and inelastic components of strain 

energy release rate separately in order to bring out the fundamental differences in crack-

propagation imparted by iron particles and the influence of particulate volume fraction in 

the mortar. The elastic component corresponds to energy release rate due to incremental 

crack growth and it is a reflection of elastic property of the material (Mobasher 2011; 

Das, Aguayo, et al. 2014; Shah 1995a). On the other hand, inelastic component 

corresponds to permanent deformation due to crack opening. The trends in this figure 

suggest that the elastic component of strain energy release rate increases significantly as 

the iron powder volume fraction is increased whereas a reduction is noticed in the 

inelastic component. Increase in elastic component with increase in iron powder content 

can be attributed to microstructural strengthening of the mortar matrix through iron 

particulate reinforcement. For the plain OPC mortar, the inelastic component of strain 

energy release rate is dominant – i.e., the dominant mechanism of energy release is crack 

opening. Incorporation of 10% of iron powder by volume increases the elastic component 
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and decreases the inelastic component, but the inelastic component still is dominant. 

Further increase in iron powder content alters the trend, with the elastic component, i.e., 

energy release due to incremental crack growth, being dominant than the energy release 

through crack opening. At a 30% iron powder content, the elastic component is 50% 

larger than the inelastic component of strain energy release rate. The comparative 

analysis of the contributions of elastic and inelastic strain energy release rates shows that 

by incorporating 20% or more of iron powder by volume in the OPC mortar matrix, 

significant resistance to cracking is obtained. The microstructural strengthening 

facilitated by the iron particles also results in an increase in tensile properties of the 

system as is shown in the following section.   

 

Figure 10-6: (a) Strain energy release rates, and (b) separated elastic and inelastic 

components of strain energy release rates, as a function of iron powder volume fraction. 

 

10.3.4 Tensile properties of the composite mortars  

It is generally more convenient to experimentally extract the flexural response of 

cementitious systems than their tensile response. However, the flexural behavior is not 

completely indicative of the material’s response to cracking since the presence and 

growth of the crack in the pre-peak regime is ignored. Tensile constitutive relationships 

(b)(a)
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provide a more accurate representation of the material behavior. In this section, tensile 

material properties (tensile strength, modulus, and ultimate strain) are extracted from 

flexural load-deflection data using closed-form moment-curvature equations for a strain 

softening material (Chote Soranakom and Mobasher 2008; Chote Soranakom and 

Mobasher 2007). The procedure adopted here is adequately described in detail in 

(Mobasher, Bakhshi, and Barsby 2014; Mobasher et al. 2014; C. Soranakom and 

Mobasher 2007; Chote Soranakom and Mobasher 2008). The tensile parameters also 

relate well to the characteristics of the process zone at the tip of the advancing crack as 

will be elucidated in detail later.  

Figure 10-7(a) shows the bilinear tension model adopted in this study for the extraction of 

tensile stress-strain response of iron powder-based particulate composites. The material 

parameters involved in this model for strain softening materials are tensile stiffness E, 

first cracking tensile strain cr, tensile strength cr = Ecr and post-cracking modulus Ecr = 

E, with - <  < 0, and ultimate tensile strain tu = cr. The compression model 

describes an initial linear response until the yield point (cy, cy) is reached. Beyond the 

yield point, the material maintains a constant stress cy = crE, where E = Ec, the 

compressive modulus, and cr = cy. The tensile parameters are normalized with respect 

to either of the two intrinsic material parameters: E or cr, to define a closed-form 

solution for the moment-curvature response and the load-deflection calculation. The 

normalized parameters are obtained based on a best-fit optimization procedure to the 

experimental load-deflection data. More details can be found in (Mobasher, Bakhshi, and 

Barsby 2014; Mobasher et al. 2014; C. Soranakom and Mobasher 2007; Chote 

Soranakom and Mobasher 2008) .  
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Figure 10-7: Simplified: (a) tension, and (b) compression models for strain-softening 

cementitious materials (Mobasher, Bakhshi, and Barsby 2014; Mobasher et al. 2014; C. 

Soranakom and Mobasher 2007; Chote Soranakom and Mobasher 2008) 

 

Figure 10-8(a) shows the experimental flexural load-deflection data used to extract the 

tensile parameters. The corresponding tensile stress-strain responses obtained using the 

procedure detailed above are shown in Figure 10-8(b). Both tensile strength and ultimate 

tensile strain increases with an increase in iron powder volume fraction, the reasons for 

which were explained earlier.  The increase in tensile strength is observed to be 

proportional to the content of iron powder in the mortars. An increase in tensile 

toughness, most notably the post-peak toughness, is also observed with increase in iron 

powder content.  
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Figure 10-8: (a) Flexural load-deflection curves, and (b) extracted tensile stress-strain 

responses for plain and iron powder incorporated mortar mixtures.  

  

Figure 10-9(a)-(c) quantifies the changes in tensile strength, ultimate tensile strain and 

tensile modulus as a function of the iron powder volume fraction for the mortars studied. 

All the tensile parameters, as would be expected, increase with increase in iron powder 

volume fraction. The elastic modulus of the composite increases because of the presence 

of metallic iron which has a higher E value. While the relationship between tensile 

strength and iron powder volume fraction is found to be linear, non-linear relationships 

exist between the iron powder content and the ultimate tensile strain or elastic modulus. 

Ultimate tensile strain goes up by more than 50% when 30% of iron powder by volume is 

incorporated into the mortars, but the corresponding increase in elastic modulus and 

tensile strengths are 15% and 25% respectively. Thus it can be stated that the impact of 

metallic particulate incorporation is in enhancing the tensile toughness of the composite 

rather than the strength or stiffness, even though the latter parameters are also enhanced, 

notwithstanding the substantial levels of OPC replacement.   
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Figure 10-9: Relationships between iron powder volume fraction and: (a) tensile strength, 

(b) tensile modulus, and (c) ultimate tensile strain of the OPC-iron powder composite 

mortars    

10.3.5 Strain localization in composite mortars  

While the earlier section on strain energy release rates indirectly pointed to the 

fundamental differences in crack propagation mechanism imparted by the iron particles, 

this section focuses on the identification and direct measurement of fracture process zone 

(FPZ) at the tip of the advancing crack and its features using digital image correlation 

(DIC). Since the fracture energy and the tension softening response of cementitious 

systems are related to the characteristics of FPZ, proper quantification of the FPZ features 

– length, width, and area – helps better understand the influence of iron powder 

incorporation on crack extension (propagation) and strain localization.  

(b)

(c)

(a)
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10.3.5.1 Determination of crack-extension and geometric features of FPZ 

Digital image correlation (DIC) is a non-contact optical method for the direct 

measurement of strain and displacement fields (Das, Aguayo, et al. 2014; Das, Hendrix, 

et al. 2014; Yates, Zanganeh, and Tai 2010; Nunes and Reis 2012a; Roux, Réthoré, and 

Hild 2009; Skarżyński, Syroka, and Tejchman 2011; Skarżyński, Kozicki, and Tejchman 

2013; Skarżyński and Tejchman 2013; Das, Aguayo, et al. 2015). DIC has been shown to 

be an effective tool to understand the fracture behavior of cementitious materials (Das, 

Aguayo, et al. 2014; Das, Aguayo, et al. 2015; Nunes and Reis 2012a; Das, Hendrix, et 

al. 2014; Skarżyński, Kozicki, and Tejchman 2013). Several time-and-CMOD stamped 

images of the analysis region (Figure 10-2) are used to calculate the displacement fields. 

The horizontal (u) and vertical (v) displacement fields in the analysis region are 

computed by minimization of the correlation coefficient (C) using VIC-2D software
TM

. 

Figure 10-10(a) shows a representative load-CMOD response and a typical horizontal 

displacement field (3D plot) for a composite mortar. The crack extension is measured as 

the extent of displacement jump at x=0 mm with a threshold displacement jump value of 

0.005 mm to qualify the jump as contributing to crack extension. The process of 

quantification of crack extension has discussed in detail elsewhere (Das, Aguayo, et al. 

2014). The X-component of the Lagrangian strain field (xx), given in Equation                            

10-2 (Sutton, Orteu, and Schreier 2009; Hjelmstad 2005; Das, Aguayo, et al. 2015), 

corresponds to the crack opening direction.  

                                                          

2 2
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
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Hence xx is used to quantify the inelastic region at the tip of the crack. Figure 10-10 (b) 

shows the strain (xx) corresponding to 95% of the peak load in the post-peak regime for 

the mixture containing 30% iron powder and Figure 10-10(c) shows the  strain profile 

along the line ‘L’ marked in Figure 10-10(b). Here 95% of the peak load is chosen since 

full width of FPZ (i.e., in the x-direction) is developed at that loading state (Shah 1995a; 

Das, Aguayo, et al. 2015; Skarżyński, Syroka, and Tejchman 2011) and it is considered 

to be the critical limit beyond which unstable crack propagation starts (Shah 1995a; 

Mobasher 2011; Das, Aguayo, et al. 2014). The surface strain profile is fitted using a 

normal distribution function (Equation 10-3). The standard deviation, , is the fitting 

parameter. Since 95% of the values of the normal distribution function falls within ±2 

of the mean value, the width of FPZ at the considered distance from the notch can be 

taken as 4. A similar approach has been successfully adopted in a recent publication 

(Das, Aguayo, et al. 2015).   

2
1

21
( , )

2

x

f x e 
 

 
  

                                               [10-3] 

 

It should be noted that the width of fracture process zone determined using DIC is greatly 

influenced by the image resolution (Skarżyński, Kozicki, and Tejchman 2013). Hence, 

the FPZ characteristics presented in this study are used only to compare the fracture 

response of mortars containing different volume fractions of metallic particulate 

reinforcement. Length of FPZ is also an important parameter that determines the cohesive 

stress distribution in the FPZ. Length of FPZ is determined directly from the strain fields 

based on the extent of strain localization in the direction of crack growth. In this study, 

the FPZ is considered to be terminated when the local strains are lower than 20% of the 
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maximum strain at the tip of the notch. As in the case of FPZ width, the FPZ length is 

also specimen size- and-geometry dependent.   

 

Figure 10-10: (a) Load-CMOD response with a representative horizontal displacement 

field shown as a 3D plot in the inset, (b) Lagrangian strain (xx) field at 95% of the peak 

load in the post-peak regime, and (c) experimental strain profile 2.5 mm above notch and 

the fitted normal distribution curve to obtain width of FPZ for the 30% iron powder 

containing mortar. 

10.3.5.2 Influence of iron powder incorporation on the FPZ in particulate composite 

It has been shown earlier that the incorporation of iron powder results in increase in strain 

energy release rates and that the dominant mechanism shifts from one of inelastic 

permanent deformation to elastic incremental crack growth. The energy release rate 

during crack propagation in quasi-brittle materials is dependent on the characteristics of 

the FPZ at the tip of the advancing crack. Therefore this section deals with a 

quantification of the FPZ characteristics as a function of the metallic powder content in 

the mortar. Figure 10-11 shows the Lagrangian strain fields (a1-to-d1) and the 

corresponding displacement fields (a2-to-d2) for the plain and iron powder incorporated 

mortars. Qualitative observation of the strain fields show increasing FPZ lengths and 

relatively unchanged widths with increasing iron powder content. Crack extension, 

calculated through tracking the displacement jump with a threshold limit of 0.005 mm, 
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are also shown visually in Figure 10-11(a2-to-d2) using the horizontal displacement 

fields, calculated using DIC. 

 

Figure 10-11: Lagrangian strain (ϵxx) fields (a1-to-d1) and displacement (x-direction) 

fields (a2-to-d2) corresponding to 95% of the peak load in the post-peak regime showing 

length and width of FPZ and the crack extension from the displacement jumps. The 

images labeled a, b, c, and d corresponds to 0%, 10%, 20%, and 30% of iron powder 

replacing OPC respectively, in the mortars.   

 

Figure 10-12 (a) shows the quantified lengths and widths of FPZ corresponding to 95% 

of the peak load at the post peak regime, at a location 4 mm above the notch, as a 

function of volume fraction of iron powder. The length of FPZ increases with an increase 

in the iron powder content while the width remains relatively unaffected (Figure 10-11 

a1-d1). The increasing FPZ length is an indication of energy dissipation through micro-
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cracking, crack arresting and deflection in the direction of crack driving force, aided by 

the presence of metallic particulate reinforcement which impedes the extension of the 

main crack.  This can be easily noticed from Figure 10-6(b) that clearly depicts an 

increase in the elastic component of strain energy release rate when the iron powder 

content is increased. The relatively unchanged width of FPZ can be linked to that fact 

that, while the total strain energy release rates increase considerably with iron powder 

content, the inelastic component, signifying crack opening undergoes only modest 

changes (Figure 10-6(b)). Thus, as a fraction of the energy release rate, the inelastic 

component is reduced with increasing metallic particulate content, but its magnitude is 

unaffected in the range of particulate volumes considered in this study. The quantitative 

descriptors of FPZ show that they are well-related to the trends in energy release rates.  

Figure 10-12(b) shows the FPZ area and crack extension as a function of iron powder 

content in the mortar. FPZ widths are determined at every 1 mm height above the notch 

and the values are numerically integrated to obtain the total FPZ area at 95% of the peak 

load in the post-peak regime. The FPZ area increases significantly with increase in iron 

powder volume fraction, contributed primarily by increased FPZ lengths, as shown in 

Figure 10-12(a). The crack extension corresponding to 95% of the peak load decreases as 

the iron powder content is increased. This is because significant amount of strain energy 

is released through mechanisms that resist the extension of the main crack, which is 

manifested through an increase in the FPZ length. Beyond an iron powder content of 

20%, the increase in FPZ area and the reduction in crack extension are not substantial 

even though the elastic component of the strain energy release rate was noted to further 

increase. The increase in elastic strain energy release rate can be attributed to the increase 
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in peak load with increasing iron powder content. Note that the elastic component of the 

strain energy release rate is proportional to the square of the load (Equation                 

10-1).  

 

Figure 10-12: Relationship between volume fraction of iron powder and: (a) FPZ length 

and width, and (b) FPZ area and crack extension.   

10.3.5.3 Correlating FPZ characteristics with tensile properties of the composites 

 It was mentioned earlier that the tensile response of quasi-brittle materials are related to 

the characteristics of the FPZ. The prevous section also showed that the FPZ 

characteristics (its length, in partiular) can be adequately related to the elastic strain 

energy release rate. Figure 10-13(a) quantifies these relationships as a function of iron 

powder content for the composite mortars investigated here. The elastic component of 

strain energy release rate and the tensile modulus increases linearly with increase in FPZ 

length at 95% of the peak load in the post-peak regime. The reasons for such observations 

have been explained in detail before.  Figure 10-13(b) relates the FPZ area to total strain 

energy release rate and the area under the tension softening part of the predicted tensile 

stress-strain curves. Maximum strain energy release rate increases with increase in FPZ 

area as expected, again for the reasons explained earlier. FPZ has been reported in several 

(a) (b)
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publications to be responsible for softening nature of tensile stress-strain curve in quasi-

brittle materials (Das, Aguayo, et al. 2015; Mihashi and Nomura 1996; H. H. Chen and 

Su 2013). Hence, it is not surprising that the area under softening (post-peak) portion of 

the tensile stress-strain curve, a measure of post-peak tensile toughness, is well-correlated 

to FPZ area. The incorporation of metallic particulate inclusions increases the tensile 

strength and tensile modulus, but as discussed earlier, the largest impact is on the ultimate 

tensile strains, which results in the post-peak toughness being significantly impacted.  

 

Figure 10-13: Relationships between: (a) FPZ length and the elastic component of strain 

energy release rate and tensile modulus, and (b) FPZ area and maximum strain energy 

release rate and area under softening portion of tensile stress-strain curve. The FPZ 

lengths and are correspond to 95% of the peak load in the post-peak region.  

 

The study reported in this chapter has shown that metallic iron particulates can be used as 

an OPC replacement material without compromising the strength of the material, yet 

significantly improving its fracture response. While conventional fiber reinforcement is 

used in OPC systems to attain such beneficial fracture behavior, the use of metallic iron 

particulate reinforcement helps achieve similar results at significantly reduced OPC 

contents in the cementitious systems, thereby contributing the cause of sustainability also. 

(b)(a)
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10.4 Conclusions 

The influence of elongated metallic iron particulate (a waste material obtained from EAF-

based steel production and shot-blasting of structural steel sections) reinforcement on the 

crack propagation response of cementitious mortars has been elucidated in this work. 

Mortars containing up to 30% of iron powder as a replacement of OPC by volume 

demonstrated comparable or better mechanical and pore-structure features as that of 

control mortars. R-curves, extracted from cyclic load-CMOD response, showed that the 

maximum strain energy release rate increased with iron powder content, thereby 

signifying better crack-tolerance. When the strain energy release rate was separated into 

its elastic and inelastic components, it was observed that the elastic component (attributed 

to incremental crack growth in the direction of crack propagation) increased with iron 

powder content while the inelastic component (attributed to permanent deformation due 

to crack opening) remained relatively unchanged. The dominant energy release rate 

controlling mechanism switched from inelastic to elastic between iron powder volume 

fractions (replacing OPC) of 10 and 20%.  

Digital image correlation (DIC) was used to identify and measure the geometric features 

of the fracture process zone (FPZ) in the composite mortars. The FPZ widths (in the 

crack opening direction) remained relatively unchanged whereas the length (in the 

direction of crack extension) was found to increase with increase in iron powder content. 

The quantified FPZ features are in line with the elastic and inelastic components of strain 

energy release rates. Flexural load-deflection relationships were used to back-calculate 

important tensile parameters such as tensile strength, tensile modulus, and ultimate 

tensile strains of the composite mortars. All the tensile parameters increased with 



223 

  

increase in iron powder content; an increase of 50% in the ultimate tensile strain when 

30% of OPC was replaced by iron powder being the most significant. Thus the major 

impact of metallic particulate incorporation is in enhancing the tensile toughness of the 

composite rather than the strength or stiffness, even though the latter parameters are also 

improved, notwithstanding the substantial levels of OPC replacement. The FPZ lengths 

and areas were well correlated to the area under softening (post-peak) portion of the 

tensile stress-strain curve, a measure of post-peak tensile toughness. This study has 

shown that the use of waste metallic iron particulate reinforcement as replacement for 

OPC results in comparable strengths and vastly improved crack propagation (fracture) 

response of these composites. The results demonstrated here are similar to those attained 

by the use of small volumes of fiber reinforcement, with the added advantage of OPC 

reduction, thus ensuring significant sustainability benefits also to these composites. 
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Chapter 11 Summary and Conclusions 

Detailed experimental results and analysis on the synthesis and mechanical properties of 

a unique binder system that utilizes the carbonation of metallic iron powder for 

cementation properties is investigated. The key aspects of the study are: 

 Waste iron powder in combination with commonly used concrete ingredients such 

as fly ash, limestone powder, and metakaolin as minor components can be 

carbonated to produce a binding material with acceptable properties for a wide 

range of construction applications. In addition, this route of binder formation is a 

method of CO2 minimization both in terms of CO2 trapping in the form of 

carbonate formation as well as provision of an alternate structural binder that 

helps reduce portland cement consumption. 

 The compressive strength of the binder systems were significantly influenced by 

the fly ash content. While limestone in the chosen range did not influence the 

strength at lower fly ash contents, the synergistic effects were evident at higher fly 

ash contents. Metakaolin primarily influenced the processing of the binder by 

providing cohesion to the mixtures. CO2 exposure duration and air curing duration 

were also found to be influential on the mechanical properties of the binder. 

 The mixture proportions and carbonation duration for novel iron-based binder was 

established based on carbonation efficiency, studied using TGA, for optimal 

mechanical performance.  

 Fundamental characterization of pore- and micro-structure of a novel iron-based 

complex binder system has been done. Increasing the carbonation duration from 1 

to 4 days significantly reduced the total pore volume in the iron carbonate binder 



225 

  

as determined by MIP. This was in turn reflected in the compressive strength of 

the binders, while the critical pore size remained relatively unchanged.  

 A comparison with the pore structure of 28-day cured OPC pastes showed that the 

overall pore volume was lower in iron carbonated binders; however, the critical 

pore sizes were larger. 

 Secondary and backscattered imaging revealed many of the important features of 

the microstructure of this novel binder material. The influence of carbonation on 

the reaction product formation on iron particle surfaces was established. A dense, 

heterogeneous microstructure was obtained after carbonation. The reaction 

product analysis using TGA and XRD confirmed formation of iron carbonate. 

 The flexural strength, fracture toughness (KIC
S
), and the critical crack tip opening 

displacement (CTODc) of the iron-based binders were significantly higher than 

those of the OPC matrices, for both the unreinforced and glass-fiber reinforced 

systems. The improved performance of the iron-based binder systems were 

attributed to the presence of the elastic, unreacted metallic particles that facilitate 

crack bridging and deflection. 

 The iron-based binder systems showed significantly higher strain energy release 

rates than the OPC-based binder at all fiber loadings. It was found that the elastic 

component of the strain energy release rate was higher than the inelastic 

component for iron-based binders, attributable to the superior effects of the 

unreacted metallic particulate phase that provide crack growth resistance.  

 The surface strain profiles, obtained from DIC, are utilized to locate and quantify 

the region of strain localization. The width and area of localized region above the 
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notch for iron-based binder was consistently higher than the OPC binder in both 

control and fiber-reinforced states. This was attributed to the major improvement 

in post-peak strain capacity of the iron-based binder, quantified through inverse 

analysis, thereby facilitating higher amount of inelastic deformation and thus 

better resistance to crack-propagation. 

 The individual intrinsic phase elastic properties in the novel iron-based binder 

system was determined using statistical nanoindentation technique. Seven distinct 

phases were identified. The iron carbonate reaction product was further classified 

as low-density, medium-density and high-density iron carbonate. The individual 

elastic properties are also quantified.  

 The individual phase elastic properties determined using nanoindentation along 

with the pore volume fraction from MIP and solid phase volume fractions from 

different methods were used in multi-step micromechanical mean-field 

homogenization models (Mori-Tanaka method) to determine a homogenized 

Young’s modulus of the composite material. The homogenized Young’s modulus, 

was found to be in good agreement with the experimental macro-scale Young’s 

modulus. 

 The effect of various elevated temperatures on the mechanical behavior and 

microstructure of novel iron-based binder is also elucidated. While novel iron-

based binder showed significantly higher flexural strength as compared to OPC 

paste at room temperature, iron-based binder lost its strength significantly at 300° 

C due to thermal decomposition of iron carbonate although it still shows similar 

strength as OPC. Complete decomposition of iron carbonate at 300° C, confirmed 
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using TGA and XRD spectra, has been established to be the cause of strength-loss 

at 300° C for iron-based binder.  

 While OPC paste lost about 70% of its strength at 800° C,  iron-based binder 

gained about 80% strength as compared to its strength at 300° C due to formation 

of crystalline products such as magnetite and hematite after decomposition of iron 

carbonate as confirmed by XRD spectra. Thus, at 800° C, novel iron-based binder 

exhibits a flexural strength which is 2 times and 5 times higher as compared to 

that of OPC paste at room temperature and 800° C respectively. 

 Fracture response of mortars containing up to 30% of iron powder as a 

replacement of OPC was evaluated inspired by the findings of the beneficial 

influence of elongated metallic iron on the crack propagation response of iron-

based binder. R-curves showed that the maximum strain energy release rate 

increased with iron powder content, thereby signifying better crack-tolerance. 

 The FPZ widths (in the crack opening direction) measured using DIC remained 

relatively unchanged whereas the length (in the direction of crack extension) was 

found to increase with increase in iron powder content. The quantified FPZ 

features are in line with the elastic and inelastic components of strain energy 

release rates. 
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