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ABSTRACT 

Composite materials are finally providing uses hitherto reserved for metals in 

structural systems applications – airframes and engine containment systems, wraps for 

repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-

to-weight ratios, are durable and resistant to environmental effects, have high impact 

strength, and can be manufactured in a variety of shapes. Generalized constitutive models 

are being developed to accurately model composite systems so they can be used in 

implicit and explicit finite element analysis. These models require extensive 

characterization of the composite material as input. The particular constitutive model of 

interest for this research is a three-dimensional orthotropic elasto-plastic composite 

material model that requires a total of 12 experimental stress-strain curves, yield stresses, 

and Young’s Modulus and Poisson’s ratio in the material directions as input. Sometimes 

it is not possible to carry out reliable experimental tests needed to characterize the 

composite material. One solution is using virtual testing to fill the gaps in available 

experimental data. A Virtual Testing Software System (VTSS) has been developed to 

address the need for a less restrictive method to characterize a three-dimensional 

orthotropic composite material. The system takes in the material properties of the 

constituents and completes all 12 of the necessary characterization tests using finite 

element (FE) models. Verification and validation test cases demonstrate the capabilities 

of the VTSS. 
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NOMENCLATURE 

iF   = Tsai-Wu Yield Function Coefficient  

45

i j 
 =  Stress 45° from the i-j Material Coordinate System Plane 

2J  = Second Invariant of the Deviatoric Stress Tensor  

kk   = Trace of the Stress Tensor 

   = State Variable Controlling the Influence of Hydrostatic Stress Effects
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1 INTRODUCTION 

1.1 Motivation for Research and Overview 

Composite materials are finally providing uses hitherto reserved for metals in 

structural systems applications – airframes and engine containment systems, wraps for 

repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-

to-weight ratios, are durable and resistant to environmental effects, have high impact 

strength, and can be manufactured in a variety of shapes. Generalized constitutive models 

are being developed to accurately model composite systems so they can be used in 

implicit and explicit finite element (FE) analysis. These models require extensive 

characterization of the composite material as input. The particular constitutive model of 

interest for this research is the three-dimensional orthotropic elasto-plastic composite 

material model being implemented in LS-DYNA as MAT213 (R. K. Goldberg et al., 

2014; Hoffarth et al., 2014). The input for this model includes a total of 12 experimental 

stress-strain curves, yield stresses, and Young’s Modulus and Poisson’s ratio in the 

material directions. Sometimes it is impractical to carry out reliable experimental tests 

needed to characterize the composite material. One solution is using virtual testing to fill 

the gaps in available experimental data. 

1.2 Literature Review 

The major focus of this research is using virtual tests for characterization of 

composite materials. The intent of most current virtual testing suites is for use as a design 

tool, modeling the damage and failure mechanisms of composite materials through 

multiscale analysis. The multiscale analysis ranges from micromechanical analysis of the 
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constituent properties to modeling entire structural components. Depending on the 

method, the process of homogenization or localization between the different length and 

time scales can be complex and add significant computation time. 

There are numerous composite homogenization and localization techniques. The 

earliest, most simplistic method being the rule of mixtures (Voigt, 1890). As composites 

gained popularity, more refined methods emerged, including Eshelby’s formula (Eshelby, 

1957) and Aboudi’s generalized method of cells (Aboudi, 2004). However, these 

methods are more restrictive than the fully numerical methods, such as the finite element 

method. 

The particular component of multiscale analysis pertinent to this research is 

homogenizing constituent level analysis to obtain structural level properties. One 

computational approach is the Hill-Mandel condition, which requires the variation of 

work be equivalent between the macroscopic volume average of the RVE and locally on 

the macro-scale (Hill, 1963; Suquet, 1985). Furthermore, for an RVE with kinematic 

boundary conditions, the macroscopic stress tensor is equivalent to the volume average of 

the microscopic stress tensor (Coenen, Kouznetsova, & Geers, 2012). This formulation 

and the results from Melro et al. (Melro, Camanho, & Pinho, 2012) indicating that a 

‘volumetric homogenization’ produces accurate results for the response of composite 

materials is the basis for Okereke and Akpoyomare (Okereke & Akpoyomare, 2013) 

implementing this homogenization technique within their virtual testing framework.  

One example of integrating homogenization and localization techniques into a 

multiscale design and analysis suite is ImMAC developed by Bednarcyk et al., which 
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supports nonlinear micromechanics integrated within higher scale FE analysis 

(Bednarcyk, NASA Glenn Research Center, & United States, 2012). Using the 

generalized method of cells at the micro scale to model the nonlinear deformation and 

damage of the composite, the need to implement a complex model to handle this response 

at higher levels is avoided. However, this leads to using five levels of scale for the 

simulations, significantly increasing the computation time. 

A Virtual Testing Software System (VTSS) has been developed to address the 

need for a less restrictive method to characterize a three-dimensional orthotropic 

composite material. The system takes in the material properties of the constituents and 

completes all 12 of the necessary characterization tests using FE models. One way in 

which the method is less restrictive is the assumption of a perfect fiber-matrix interface. 

This common assumption allows for increased computational efficiency. For example, 

Duschlbauer et al. present computation simulations of reinforced composites using unit 

cell based periodic microfield and extended Mori-Tanaka mean field approaches 

assuming a perfect fiber-matrix interface (Duschlbauer, BÖhm, & Pettermann, 2006). An 

extended Mori-Tanaka approach is necessary because previous attempts of modeling 

non-spherical reinforcements (e.g., fibers) indicated that the method is only applicable for 

aligned reinforcement. However, the new extended method developed provides good 

agreement with the periodic unit cell approach for the effective composite properties 

presented. While this indicates that the computationally inexpensive extended Mori-

Tanaka approach is applicable for this particular composite, it is only one test case and 

the authors suggest it is only applicable for most purposes. Another limitation comes 
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from the short fibers with planar random orientation formulation, both contributing to 

increased computation time. 

The approximation of perfect fiber-matrix interface removes the need for further 

testing to characterize the cohesive elements used by a number of the virtual testing suites 

to model this interface. Davies and Ankersen investigate virtual testing of composite 

structures using cohesive interface elements between components (Davies & Ankersen, 

2008). This allows for modeling of delamination or debonding, but requires additional 

testing to determine an accurate representation of these cohesive elements. A local/global 

analysis is implemented where the course mesh of the entire structure has areas of interest 

meshed much finer. This requires applying tractions/displacements at the boundaries. 

While this lends itself to computational efficiency, especially with parallel processing, 

because the analysis of each region can be separated, the authors acknowledge there is no 

proof to the validity of this approach. 

Llorca et al. present an integrated design strategy, which includes a multiscale 

simulation strategy where the analysis ranges from the micromechanics of an RVE to the 

computational mechanics of structural components (LLorca et al., 2011; Llorca, 

González, Molina-Aldareguía, & Lópes, 2013). Cohesive elements are used to model the 

fiber-matrix interaction within the RVE, allowing for a more accurate representation of 

damage and failure mechanisms in the composite. However, this adds another level of 

complexity with difficult testing needed to characterize the constituent materials.  

Another framework that includes cohesive elements is presented by Yang et al., 

which implements multi-scale analysis within an augmented-finite element method (A-
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FEM) (Yang, Cox, Fang, & Zhou, 2010). The advantage of A-FEM over X-FEM is that 

the elements utilize only standard FE shape functions as opposed to the partition-of-unity 

used in X-FEM, resulting in seamless integration with FE programs. The key distinction 

from the previous cohesive elements and those used by Yang et al. is the ability to split 

into separate elements. This allows for a more accurate modeling of composite cracking, 

which is a common observed damage mode. However, this adds significant computation 

time to the simulation along with the aforementioned difficult constituent characterization 

testing.  

Another simplification within the VTSS approach is the uniform fiber placement. 

While typical manufacturing procedures result in randomly placed fibers, the response in 

virtual testing can be insensitive to fiber randomness. This was the case for the predicted 

peak strength comparison reported by Yang et al. using the A-FEM (Yang et al., 2010). 

The idea of balancing modeling approximations and computational efficiency is 

present in all virtual testing suites. One example is seen in FEAMAC, developed at 

NASA Glenn Research Center by Bednarcyk et al., which justifies modeling failure 

through a reduction in stiffness as opposed to complete separation of the fiber and matrix 

interface due to the fiber dominated nature of the failure mechanism observed in a 

longitudinal tensile test (Bednarcyk et al., 2012). In this way, the addition of unnecessary 

complexity to the model to enhance already representative analysis is avoided. This 

general idea is the basis for excluding multiscale analysis from the VTSS. Replicating 

experimental testing with explicit modeling of the constituents is expected to be 

representative of the material behavior for the required composite material 
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characterization. This is investigated through test cases comparing results from the VTSS 

against available experimental and computed data. 

One test case replicates the results presented by Okereke and Akpoyomare, which 

includes experimental data to validate their virtual framework for characterizing 

composites (Okereke & Akpoyomare, 2013). The framework presented by Okereke and 

Akpoyomare is limited to the elastic response of continuous unidirectional composites. 

Also, the Monte Carlo style geometric model generation algorithm and the periodic 

boundary conditions significantly increase the required computational time. Further 

discussion on this, and other, test cases is contained in the following section. 

1.3 Thesis Objectives 

The focus of this research is to develop the VTSS, verify, and validate the method 

using different test cases. The purpose of the first test case is to determine if the 

approximations have a significant impact on the results of the elastic engineering 

constants. As previously mentioned, most of the current virtual testing suites are used as 

design tools, therefore, only a limited number are used to characterize engineering 

constants (Duschlbauer et al., 2006; Okereke & Akpoyomare, 2013). The boron-

aluminum composite test results from the virtual testing framework developed by 

Okereke and Akpoyomare were selected for reproduction by the VTSS because both 

formulations use continuous unidirectional fiber composite geometry. The virtual 

framework has limitations including overly restrictive boundary conditions, isotropic 

constituent materials, and that it is limited to an elastic analysis. 
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It is necessary to complete a second test case to demonstrate capabilities of the 

VTSS to incorporate plasticity with anisotropic constituent materials to produce the other 

portion of the MAT213 input – stress-strain curves. The T800S/3900-2B [P2352W-19] 

BMS8-276 Rev-H-Unitape manufactured by Toray and used by Boeing in its 787 

Dreamliner airplane is used for this test case. Toray describes T800S as an intermediate 

modulus, high tensile strength graphite fiber. The epoxy resin system is a toughened 

epoxy combined with small elastomeric particles to form a compliant interface or 

interleaf between fiber plies to resist impact damage and delamination. After completing 

the necessary tests using the VTSS, the results are compared against MAC/GMC along 

with the limited baseline experimental data available from tests completed at Wichita 

State University (Raju & Acosta, 2010). In addition, this test case also includes an 

investigation of modeling plasticity in the matrix using a von Mises plasticity model 

versus a polymer plasticity model, which accounts for hydrostatic stress effects.  
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2 COMPOSITES 

2.1 Characterization 

The testing required to characterize a three-dimensional orthotropic material 

behavior, with specific consideration for MAT213 input, is discussed in this section. 

MAT213 theoretical details are detailed in a companion paper (R. K. Goldberg et al., 

2014). The generalized Hooke’s Law for 3D orthotropic materials is shown in Eqn. (2.1). 
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  (2.1)  

The engineering constants contained in Eqn. (2.1) are part of the input for 

MAT213. Tension, compression, and shear tests in all material directions and planes are 

necessary to determine these parameters. MAT213 also requires additional input in the 

form of stress-strain curves to determine the yield function coefficients for the Tsai-Wu 

yield surface defined in Eqn. (2.2). 
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where 
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  (2.3)  

and the off-diagonal yield function coefficients are defined as 

 

 
2

4545

2 1
( ) , 1,2,3, 3

2

i j

ij ii jj kki ji j

F F
F F F F i j k i





          (2.4)  

 The full stress-strain curve for each test corresponding to the stress components of 

the yield function coefficients shown in Eqns. (2.3) and (2.4) are needed to describe the 

hardening properties of the composite as it varies with effective plastic strain. The 12 

tests and the associated MAT213 input required to characterize an orthotropic composite 

material is summarized in Appendix A. 

While many of these tests are prescribed by ASTM standards (D30 Committee, 

2007, 2008, 2011, 2013, 2014), even these tests can still be difficult to complete. An 

example of this is the through-thickness tension test. Because most composite 

applications are driven by the strength-to-weight savings of the material, it is not 

common to manufacture composites thick enough to allow for tension testing in the 

through-thickness direction using a dogbone specimen. Therefore, many approaches 

(Adams, 2009; Karkkainen, Moy, & Tzeng, 2009; Vali-shariatpanahi, 2009) suggest 

slight modifications to the ASTM (D30 Committee, 2007) including further reduction of 
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the cross-sectional area in the gage length, beveling specimen ends to increase the contact 

surface area for the epoxy, and using notches in the grips and specimen, among others. 

However, again due to the size of the specimen, it can be difficult to accomplish the 

associated manufacturing procedures without introducing delamination or other flaws 

into the material. This example illustrates the difficulty of experimental testing and how 

virtual testing is often a necessary supplemental tool for material characterization. 

2.2 Plasticity Model 

An important component of the virtual testing is modeling plasticity. One of the 

most common plasticity models, von Mises plasticity, is initially used to describe 

plasticity in the matrix for the second test case. For von Mises plasticity, plastic yielding 

begins when the deviatoric elastic strain-energy reaches a critical value (Neto, Periæ, & 

Owen, 2009, p. 162). Because of this formulation, the von Mises yield function is solely 

dependent on the deviatoric component of the stress. It will never predict yielding for a 

purely hydrostatic stress state. 

Although appropriate to describe plasticity in many metals, not all materials 

follow von Mises plasticity. Some materials are hydrostatic stress state dependent and 

inclusion of these effects in the plasticity model is necessary to accurately model the 

material response. Therefore, a polymer plasticity model that accounts for these effects is 

investigated (R. Goldberg, Roberts, & Gilat, 2005). The Drucker-Prager yield criterion, a 

pressure-dependent model, is the basis for the inelastic potential function shown in Eqn. 

(2.5). 

 2 kkf J     (2.5)  
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where J2 is the second invariant of the deviatoric stress tensor, σkk is the trace of the stress 

tensor, and α is a state variable controlling the influence of hydrostatic stress effects. The 

theoretical details of this polymer plasticity model are not presented here. Rather, this 

introduction illustrates the incorporation of hydrostatic stress effects, distinguishing it 

from von Mises plasticity. The second test case includes a comparison of the results from 

both plasticity models described in this section against experimental data to determine 

which is more accurate in modeling plasticity in the matrix of the T800S/3900 composite 

material. 
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3 VIRTUAL TESTING METHODOLOGY & VTSS SYSTEM 

Testing methodology for a two-phase unidirectional composite material is 

discussed in this section. The basic architecture of a continuous unidirectional fiber 

composite is shown in Figure 3.1. 

1

2

3

 

 

(a) 

a

a

2r

 

 

(b) 

Figure 3.1 (a) Single Ply of a Continuous Unidirectional Laminated Composite and (b) 

Unit Cell 

A typical cross-section used in a test is shown in Figure 3.2. 
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(b) 

Figure 3.2 (a) Typical Stack of Unit Cells in a Test (Shown With 2 Rows and 7 Columns) 

and (b) Plan View Showing Length of the Specimen 
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The parameters shown are input into the VTSS to characterize the geometry of the 

test specimen. 

3.1 Finite Element Analysis 

A quasi-static finite element analysis is carried out. The elements used to mesh 

the composite include wedge elements, used in the fibers, and hexahedral elements, used 

in the fibers and matrix. 

3.2 Test Procedures 

The boundary condition details for each of the 12 tests necessary to characterize a 

general orthotropic material are described in this section. A displacement controlled 

analysis is carried out for each test. The applied displacement is determined as to produce 

a similar total strain as the available computed and experimental data when available. The 

visual depiction in Figure 3.3 is supplemented by a written description for each test. The 

finite element models with the boundary conditions displayed are used for the off-axis 

tests due to the difficulty of visually representing the test without the entire model. For 

the remaining tests, smaller representative models are used. Although the fibers are 

shown only on the front face, they are continuous. The faces with applied boundary 

conditions are highlighted in a light red and the applied boundary conditions themselves 

are a darker shade of red. The tension and compression test procedures are identical with 

the exception of the direction of the applied displacements. 
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3.2.1 Tension/Compression Test – 1-Direction 

Nodes on the front face are fixed in the 1-direction. Nodes at the middle of this 

face are also fixed in the 2 and 3-directions. Displacements are applied to the nodes on 

the back face in the 1-direction. 

3.2.2 Tension/Compression Test – 2-Direction 

Nodes on the right face are fixed in the 2-direction. Nodes at the middle of this 

face are also fixed in the 1 and 3-directions. Displacements are applied to the nodes on 

the left face in the 2-direction. 

3.2.3 Tension/Compression Test – 3-Direction 

Nodes on the top face are fixed in the 3-direction. Nodes at the middle of this face 

are also fixed in the 1 and 2-directions. Displacements are applied to the nodes on the 

bottom face in the 3-direction. 

3.2.4 Pure Shear Test – 1-2 Plane 

Nodes on the right face are pinned. Displacements are applied to the nodes on the 

left face in the 1-direction. 

3.2.5 Pure Shear Test – 2-3 Plane 

Nodes on the top face are pinned. Displacements are applied to the nodes on the 

bottom face in the 2-direction. 

3.2.6 Pure Shear Test – 1-3 Plane 

Nodes on the top face are pinned. Displacements are applied to the nodes on the 

bottom face in the 1-direction. 
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Because of the formulation of the models, the entire test specimen is modeled for 

the off-axis tests, similar to a physical tension test with a clamped section on either side 

(referred to as displacement and pinned sections). 

3.2.7 Off-Axis Test – 45°, 1-2 Plane 

Nodes in the pinned section are fixed in all directions. Displacements are applied 

at 45° to the 1-direction in the 1-2 plane. 

3.2.8 Off-Axis Test – 45°, 2-3 Plane 

Nodes in the pinned section are fixed in all directions. Displacements are applied 

at 45° to the 2-direction in the 2-3 plane. 

3.2.9 Off-Axis Test – 45°, 1-3 Plane 

Nodes in the pinned section are fixed in all directions. Displacements are applied 

at 45° to the 1-direction in the 1-3 plane. 
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Figure 3.3 Boundary Conditions for (1) Tension/Compression Tests in the (a) 1, (b) 2, 

and (c) 3-directions, (2) Pure Shear Tests in the (a) 1-2, (b) 2-3, and (c) 1-3 Planes, and 

(3) Off-Axis Tests in the (a) 1-2, (b) 2-3, and (c) 1-3 Planes 
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3.3 Post-Processing 

The method used to compute the homogenized response of the composite is a 

simple volumetric averaging of the results from the finite element analysis. One 

requirement of this method is that the post-processed section is volumetrically 

representative of the entire specimen. The post-processed region is taken as the thickness 

of the test specimen in the direction perpendicular to the applied loading as close to the 

center of the test specimen and sufficiently far away from the applied boundary 

conditions (similar to establishing the gage length of a specimen used for experimental 

testing). The stress and strain results are averaged using Eqn. (3.1) and are used to 

calculate the necessary homogenized material properties. 
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 (3.1) 

where 

hP   is the homogenized material property 

te   is the number of different element types 

n
te   is the number of elements in the jth element type  

iP   is the material property for the ith element calculated from the stresses and strains 

averaged over the total number of integration points for the element 

iV   is the volume of the ith current element  
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4 NUMERICAL RESULTS 

The results from the VTSS test cases for a two-phase unidirectional composite 

material are compared against available experimental and computed data and discussed in 

this section. 

4.1 Test Case 1: Virtual Framework for Prediction of Full-field Elastic Response of 

Unidirectional Composites 

The available boron-aluminum composite results from the virtual framework 

developed by Okereke and Akpoyomare are replicated using the VTSS and reported in 

the subsequent sections. 

4.1.1 Material Properties 

The tests are completed using the assumption that the fiber and matrix are linear, 

elastic with engineering constants shown in Table 4.1. 

Table 4.1 Material Properties used in Boron-Aluminum Tests 

Engineering 

Constant 

Fiber 

(Boron) 

Matrix 

(Aluminum) 

E (GPa) 379.3 68.3 

ν 0.1 0.3 

G (GPa) 172.4 26.3 
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4.1.2 Composite Geometry 

Using the information provided in the report for the FEM Big framework, the 

parameters needed to define the VTSS specimen geometry are calculated. With a volume 

fraction of 47%, window size of 100 m2, and 27 fibers, the fiber radius is calculated as 

0.744 m and the length of each side of the unit cell is 1.925 m. The overall test 

specimen included 5 rows and columns to approximate the 100 m2 window size. 

4.1.3 Homogenized Material Properties 

Completing each test as described in the Test Procedures section allows for the 

following comparisons between the VTSS results and those presented by Okereke and 

Akpoyomare, shown in Table 4.2 
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Table 4.2 Comparison of Predictions of the Effective Elastic Properties of Boron-

Aluminum Composite 

Elastic 

Constants 

(GPa) 

Experiment 

(Kenaga) 

FEM 

Small 

FEM 

Big 

FEM Sun 

(Square/ 

Hexagonal) 

Analytical 

(Hashin 

and 

Rosen) 

Semi-

Empirical 

(Chamis) VTSS 

11E  216.0 215.0 214.0 215.0/215.0 215.0 214.0 214.3 

22E  140.0 141.0 134.0 144.0/136.5 139.1 156.0 142.4 

33E  - 141.0 135.0 - - - 142.4 

12  0.290 0.195 0.196 0.19/0.19 0.195 0.200 0.196 

13  - 0.195 0.194 - - - 0.195 

23  - 0.255 0.302 0.29/0.34 0.310 0.310 0.247 

12G  52.0 51.9 52.0 57.2/54.0 53.9 62.6 54.3 

13G  - 52.0 52.8 - - - 54.3 

23G  - 45.0 49.4 45.9/52.5 54.6 43.6 46.1 
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4.2 Test Case 2: T800S/3900 Tests 

The homogenized engineering stress-strain curves produced by the VTSS are 

compared against computed and experimental data of the T800S/3900 composite when 

available. The computed data is from the Micromechanics Analysis Code based on the 

Generalized Method of Cells (MAC/GMC) software. The experimental data is from the 

aforementioned tests completed by Raju and Acosta at Wichita State University (WSU). 

The availability of experimental data for the tests necessary to produce the input for 

MAT213 is summarized in Table 4.3. 

Table 4.3 Availability of Experimental Data for MAT213 Input Tests 

Test Experimental Data 

Tension Test (1-Direction) Available 

Tension Test (2-Direction) Not available 

Tension Test (3-Direction) Use transverse isotropy 

Compression Test (1-Direction) Available 

Compression Test (2-Direction) Not available 

Compression Test (3-Direction) Use transverse isotropy 

Pure Shear Test (1-2 Plane) Available 

Pure Shear Test (2-3 Plane) Not available 

Pure Shear Test (1-3 Plane) Use transverse isotropy 

Off-Axis Test (45°, 1-2 Plane) Not available 

Off-Axis Test (45°, 2-3 Plane) Not available 

Off-Axis Test (45°, 1-3 Plane) Use transverse isotropy 
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For the tests where experimental data is available, three samples were tested by 

WSU. Each sample is included in the stress-strain curves comparing the results. For the 

tests where experimental data is not available, the stress-strain curve from the virtual 

finite element test is compared against the MAC/GMC results. 

4.2.1 Material Properties 

The orthotropic composite test cases are completed using the assumption that the 

fiber (transversely isotropic) is linear, elastic and the matrix (isotropic) is elasto-plastic. 

As identified in other virtual testing suites (LLorca et al., 2011), the characterization 

process of the constituent materials included gathering available properties for the fibers 

(Torayca, 2003) and additional testing for the matrix. Optimization of the matrix material 

properties was completed through correlating the results from MAC/GMC to the 

available WSU experimental data (R. K. Goldberg, 2013). The results for the engineering 

constants are shown in Table 4.4. 
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Table 4.4 Material Properties used in T800S/3900 Tests 

Engineering 

Constant 

Fiber 

(psi) 

Matrix 

(psi) 

E1 (psi) 4(107) 5(105) 

E2, E3 (psi) 2.25(107) 5(105) 

ν12, ν13 0.2 0.35 

ν23 0.25 0.35 

G1 (psi) 1.5(107) 1.85(105) 

G2, G3 (psi) 1.5(107) 1.85(105) 

 

The assumed elasto-plastic behavior with strain hardening for the matrix is 

defined using a stress-strain curve in Figure 4.1.  
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Figure 4.1 Assumed Stress vs. Strain Curve for the Matrix 

4.2.2 Composite Geometry 

The unit cell was determined from the aforementioned Torayca data sheet for the 

graphite fiber and the assumption of a fiber volume fraction of 54%. The resulting unit 

cell is repeated as needed for the overall specimen geometry for each test. For the 

available WSU tests, the VTSS specimen geometries were identical to the experimental 

geometries, which were as follows. 

4.2.2.1 Tension Tests 

Because of the formulation of the VTSS, it is only necessary to model the gage 

length, which was 2 in. with a width of 0.5 in for the tension tests. These dimensions 

were based on ASTM D 3039 (D30 Committee, 2014). The layup consisted of two plies 

([0°]2 stacking sequence). 
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4.2.2.2 Compression Tests 

The specimen geometry for the compression tests was dictated by the requirement 

of a Split-Hopkinson Pressure Bar (SHPB) apparatus that the specimen reach equilibrium 

at an early stage during the test. With this and manufacturing considerations in mind, a 

0.25 in. cube was used for the compression tests. 

4.2.2.3 Shear Tests 

The WSU V-notch rail shear test was completed using a 3 in. by 2.22 in. 

specimen with a layup consisting of 12 plies ([0°]12 stacking sequence). A test case was 

completed to determine if the inclusion of the notch was necessary for the VTSS shear 

tests. The geometry for both models, one with a v-notch and one without (labeled 

‘simple’), is shown in Figure 4.2. 
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(a) 

 

(b) 

Figure 4.2 Side View of (a) V-Notch and (b) Simple Geometries for Shear Tests 

Using isotropic steel properties for both the fiber and matrix constituents, quasi-

static, displacement controlled tests were completed and the results shown in Figure 4.3. 
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Figure 4.3 Stress vs. Strain  12 12 vs.    

The results show that the geometry has no effect on the results for this test case. 

Therefore, the VTSS shear tests were completed using specimen without notches. 

4.2.2.4 Off-Axis Tests 

No experimental data is available for the off-axis tests. For the virtual tests, the 

specimen dimensions used are the same as those used in the tension tests. 

4.2.3 Convergence Study 

A convergence study was completed for each test to determine the appropriate 

meshing parameters. The set of parameters (depicted in Figure 4.4) varied in the study 

include α, dx-y, and dz, where 
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  is the angle of one slice 

x yd   is the standard element length in the x-y plane 

zd  is the standard element length in the z-direction 

 

 

Figure 4.4 Unit Cell Mesh Parameters 

Three different sets of parameters (labeled coarse, medium, and fine meshes) 

were used for the convergence study. Due to the transverse isotropy of the overall 

composite material, it is unnecessary to complete all 12 tests typically required to 

characterize an orthotropic material. Only the mesh parameter sets for the necessary tests 

are shown in Table 4.5. 
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Table 4.5 Mesh Parameter Sets 

Test 

ID 

Coarse Mesh Medium Mesh Fine Mesh 

α (°) dx-y (in) dz (in) α (°) dx-y (in) dz (in) α (°) dx-y (in) dz (in) 

T1 45 0.008 0.100 22.5 0.004 0.0500 15 0.003 0.033 

T2 45 0.008 0.050 22.5 0.004 0.0250 15 0.003 0.017 

C1 45 0.008 0.025 22.5 0.004 0.0125 15 0.003 0.008 

C2 45 0.008 0.025 22.5 0.004 0.0125 15 0.003 0.008 

S12 45 0.008 0.300 22.5 0.008 0.2250 22.5 0.004 0.150 

S23 45 0.008 0.300 22.5 0.008 0.2250 22.5 0.004 0.150 

O12 45 0.008 0.100 22.5 0.004 0.0500 15 0.003 0.033 

O23 45 0.008 0.025 45 0.008 0.0100 22.5 0.008 0.010 

 

Information on the resulting model sizes is summarized in Table 4.6, which 

includes the number of nodes, elements, and degrees of freedom (DOFs) comprising each 

model. 
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Table 4.6 Mesh Size Information 

Test 
ID 

Coarse Mesh 

Nodes Elements DOFs 

T1 12,453 13,440 37,359 

T2 25,003 25,920 75,009 

C1 11,099 11,760 33,297 

C2 11,099 11,760 33,297 

S12 159,995 172,800 479,985 

S23 159,995 172,800 479,985 

O12 35,557 35,564 106,671 

O23 141,696 124,500 425,088 

Test 
ID 

Medium Mesh 

Nodes Elements DOFs 

T1 85,321 89,600 255,963 

T2 204,309 207,360 612,927 

C1 91,749 94,080 275,247 

C2 91,749 94,080 275,247 

S12 436,335 483,840 1,309,005 

S23 436,335 483,840 1,309,005 

O12 219,802 220,744 659,406 

O23 318,816 332,000 956,448 

Test ID 

Fine Mesh 

Nodes Elements DOFs 

T1 276,830 286,944 830,490 

T2 532,735 544,320 1,598,205 

C1 247,328 255,192 741,984 

C2 247,328 255,192 741,984 

S12 1,336,629 1,382,400 4,009,887 

S23 1,336,629 1,382,400 4,009,887 

O12 670,692 672,976 2,012,076 

O23 631,548 660,960 1,894,644 

 

Convergence is established with the fine models, shown in Appendix B. Only the 

fine mesh results (labeled ‘VTSS’) are used to compare against available computed and 

experimental data in the following section. 



 

31 

 

4.2.4 Test Details and Results 

The finite element models were analyzed using both LS-DYNA© and ABAQUS©. 

However, the results were nearly identical from each FE software package. Therefore, 

only one data set is included for the FE results, labeled ‘VTSS’. 

4.2.4.1 Tension Test – 1-Direction 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes on the opposite face (to the supported face) in the 1-direction in ten equal steps 

of 0.004 in starting with an initial displacement of 0.004 in. The resulting applied 

displacement in the final step, 0.04 in, is used to produce a similar total strain as the 

available computed and experimental data. 

 

Figure 4.5 Boundary Conditions for Tension Test (1-Direction) 

The test details and results for the fine mesh are discussed below. 
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Table 4.7 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  0.4 in 

rowsn  1 

columnsn  4 

 

Table 4.8 Model Size Information 

Category for entire model Value 

Total number of nodes 276,830 

Total number of elements 286,944 

Number of C3D6 elements in fiber 40,992 

Number of C3D8 elements in fiber 163,968 

Number of C3D8 elements in matrix 81,984 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.6.  
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(a) (b) 

 

(c) 

Figure 4.6 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 

The homogenized engineering stress-strain curve is plotted along with the 

available computed and experimental data in Figure 4.7. 

 

Figure 4.7 Stress vs. Strain  11 11 vs.    
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The stress  11  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.8. 

 

Figure 4.8 Stress  11  Distribution in the Post-Processed Region 

The strain  11  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.9.

 

Figure 4.9 Strain  11  Distribution in the Post-Processed Region 
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4.2.4.2 Tension Test – 2-Direction 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes on the opposite face (to the supported face) in the 2-direction in ten equal steps 

of 0.006 in starting with an initial displacement of 0.006 in. The resulting applied 

displacement in the final step, 0.06 in, is used to produce a similar total strain as the 

available computed and experimental data. 

 

Figure 4.10 Boundary Conditions for Tension Test (2-Direction) 

The test details and results for the fine mesh are discussed below. 
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Table 4.9 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  0.1 in 

rowsn  10 

columnsn  1 

 

Table 4.10 Model Size Information 

Category for entire model Value 

Total number of nodes 2,079,385 

Total number of elements 2,177,280 

Number of C3D6 elements in fiber 311,040 

Number of C3D8 elements in fiber 1,244,160 

Number of C3D8 elements in matrix 622,080 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.11. 
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(a) (b) 

 

(c) 

Figure 4.11 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 

The homogenized engineering stress-strain curve is plotted along with the 

available computed data in Figure 4.12. 

 

Figure 4.12 Stress vs. Strain  22 22 vs.    
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 The stress  22  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.13. 

 

Figure 4.13 Stress  22  Distribution in the Post-Processed Region 

The strain  22  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.14.

 

Figure 4.14 Strain  22  Distribution in the Post-Processed Region 
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4.2.4.3 Tension Test – 3-Direction 

This test is not necessary because of the transverse isotropy of the composite 

material (same as the tension in the 2-direction test). 

4.2.4.4 Compression Test – 1-Direction 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes on the opposite face (to the supported face) in the 1-direction in ten equal steps 

of 0.0005 in starting with an initial displacement of 0.0005 in. The resulting applied 

displacement in the final step, 0.005 in, is used to produce a similar total strain as the 

available computed and experimental data for the tension test in the same direction. 

 

Figure 4.15 Boundary Conditions for Compression Test (1-Direction) 

The test details and results for the fine mesh are discussed below. 
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Table 4.11 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  0.25 in 

rowsn  7 

columnsn  7 

 

Table 4.12 Model Size Information 

Category for entire model Value 

Total number of nodes 247,328 

Total number of elements 255,192 

Number of C3D6 elements in fiber 36,456 

Number of C3D8 elements in fiber 145,824 

Number of C3D8 elements in matrix 72,912 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.16. 
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(a) (b) 

 

(c) 

Figure 4.16 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 

The homogenized engineering stress-strain curve is plotted along with the 

available computed data in Figure 4.17. 

 

Figure 4.17 Stress vs. Strain  11 11 vs.    
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 The stress  11  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.18. 

 

Figure 4.18 Stress  11  Distribution in the Post-Processed Region 

 The strain  11  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.19.

 

Figure 4.19 Strain  11  Distribution in the Post-Processed Region 
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4.2.4.5 Compression Test – 2-Direction 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes on the opposite face (to the supported face) in the 2-direction in ten equal steps 

of 0.00075 in starting with an initial displacement of 0.00075 in. The resulting applied 

displacement in the final step, 0.0075 in is used to produce a similar total strain as the 

available computed and experimental data for the tension test in the same direction. 

 

Figure 4.20 Boundary Conditions for Compression Test (2-Direction) 

The test details and results for the fine mesh are discussed below. 

  



 

44 

 

Table 4.13 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  0.25 in 

rowsn  7 

columnsn  7 

 

Table 4.14 Model Size Information 

Category for entire model Value 

Total number of nodes 247,328 

Total number of elements 255,192 

Number of C3D6 elements in fiber 36,456 

Number of C3D8 elements in fiber 145,824 

Number of C3D8 elements in matrix 72,912 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.21. 
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(a) (b) 

 

(c) 

Figure 4.21 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 

The homogenized engineering stress-strain curve is plotted along with the 

available computed data in Figure 4.22.  

 

Figure 4.22 Stress vs. Strain  22 22 vs.    



 

46 

 

 The stress  22  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.23. 

 

Figure 4.23 Stress  22  Distribution in the Post-Processed Region 

 The strain  22  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.24.

 

Figure 4.24 Strain  22  Distribution in the Post-Processed Region 
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4.2.4.6 Compression Test – 3-Direction 

This test is not necessary because of the transverse isotropy of the composite 

material (same as the compression in the 2-direction test). 

4.2.4.7 Pure Shear Test – 1-2 Plane 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes on the top face in the 1-direction in twenty equal steps of 0.01 in starting with 

an initial displacement of 0.00002 in. The resulting applied displacement in the final step, 

0.2 in, is used to produce a similar total strain as the available computed and 

experimental data. 

 

Figure 4.25 Boundary Conditions for Pure Shear Test (1-2 Plane) 

The test details and results for the fine mesh are discussed below. 
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Table 4.15 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  3.0 in 

rowsn  60 

columnsn  12 

 

Table 4.16 Model Size Information 

Category for entire model Value 

Total number of nodes 1,336,629 

Total number of elements 1,382,400 

Number of C3D6 elements in fiber 230,400 

Number of C3D8 elements in fiber 921,600 

Number of C3D8 elements in matrix 230,400 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.26. 
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(a) (b) 

 

(c) 

Figure 4.26 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 

The homogenized engineering stress-strain curve is plotted along with the 

available computed and experimental data in Figure 4.27.  

 

Figure 4.27 Stress vs. Strain  12 12 vs.    
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 The stress  12  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.28. 

 

Figure 4.28 Stress  12  Distribution in the Post-Processed Region 

 The strain  12  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.29.

 

Figure 4.29 Strain  12  Distribution in the Post-Processed Region 
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4.2.4.8 Pure Shear Test – 2-3 Plane 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes on the left face in the 2-direction in twenty equal steps of 0.0018 in starting 

with an initial displacement of 0.000034 in. The resulting applied displacement in the 

final step, 0.034 in, is used to produce a similar total strain as the available computed 

data. 

 

Figure 4.30 Boundary Conditions for Pure Shear Test (2-3 Plane) 

The test details and results for the fine mesh are discussed below. 
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Table 4.17 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  3.0 in 

rowsn  60 

columnsn  12 

 

Table 4.18 Model Size Information 

Category for entire model Value 

Total number of nodes 1,336,629 

Total number of elements 1,382,400 

Number of C3D6 elements in fiber 230,400 

Number of C3D8 elements in fiber 921,600 

Number of C3D8 elements in matrix 230,400 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.31. 
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(a) (b) 

 

(c) 

Figure 4.31 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 

The homogenized engineering stress-strain curve is plotted along with the 

available computed data in Figure 4.32.  

 

Figure 4.32 Stress vs. Strain  23 23 vs.    
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 The stress  23  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.33. 

 

Figure 4.33 Stress  23  Distribution in the Post-Processed Region 

 The strain  23  distribution plotted on the deformed shape of the final step of 

analysis is shown in Figure 4.34.

 

Figure 4.34 Strain  23  Distribution in the Post-Processed Region 
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4.2.4.9 Pure Shear Test – 1-3 Plane 

This test is not necessary because of the transverse isotropy of the composite 

material (same as the pure shear in the 1-2 plane test). 

4.2.4.10 Off-Axis Test – 45°, 1-2 Plane 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes in the displacement section in the test direction (45°) in ten equal steps of 

0.0066 in starting with an initial displacement of 0.0066 in. The resulting applied 

displacement in the final step, 0.066 in, is used to produce a similar total strain as the 

available computed data. 

 

Figure 4.35 Boundary Conditions for Off-Axis Test (45°, 1-2 Plane) 

The test details and results for the fine mesh are discussed below. 
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Table 4.19 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  4.5 in 

TABL  1.25 in 

rowsn  2 

columnsn  14 
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Table 4.20 Model Size Information 

Category for entire model Value 

Total number of nodes 670,692 

Total number of elements 672,976 

Number of C3D6 elements in fiber 95,952 

Number of C3D8 elements in fiber 384,528 

Number of C3D8 elements in matrix 192,496 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.36. 

  

(a) (b) 

 

(c) 

Figure 4.36 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 
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The homogenized engineering stress-strain curve is plotted along with the 

available computed data (Goldberg, 2013) in Figure 4.37.  

 

Figure 4.37 Stress vs. Strain     45 ,1 2 45 ,1 2
 vs.  

     

The stress   45 ,1 2


   distribution plotted on the deformed shape of the final step 

of analysis is shown in Figure 4.38. 
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Figure 4.38 Stress   45 ,1 2


 
 Distribution in the Post-Processed Region 

 The strain   45 ,1 2


 
 distribution plotted on the deformed shape of the final step 

of analysis is shown in Figure 4.39. 

 

Figure 4.39 Strain   45 ,1 2


   Distribution in the Post-Processed Region 
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4.2.4.11 Off-Axis Test – 45°, 2-3 Plane 

A displacement controlled analysis is carried out. Displacements are applied to 

the nodes in the displacement section in the test direction (45°) in ten equal steps of 

0.0061 in starting with an initial displacement of 0.0061 in. The resulting applied 

displacement in the final step, 0.061 in, is used to produce a similar total strain as the 

available computed data for the tension test in the 2-direction, because the response of 

this test should be similar due to the transverse isotropy. 

 

Figure 4.40 Boundary Conditions for Off-Axis Test (45°, 2-3 Plane) 

The test details and results for the fine mesh are discussed below. 
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Table 4.21 Model Parameters 

Parameter Value 

a   0.03737 in 

fiberr  0.01549 in 

L  0.075 in 

TABL  1.25 in 

rowsn  14 

columnsn  121 

 

Table 4.22 Model Size Information 

Category for entire model Value 

Total number of nodes 631,548 

Total number of elements 660,960 

Number of C3D6 elements in fiber 218,880 

Number of C3D8 elements in fiber 220,880 

Number of C3D8 elements in matrix 221,200 

 

The elements used in generating the homogenized material properties for the test 

are shown in red in Figure 4.41. 
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(a) (b) 

 

(c) 

Figure 4.41 Section View of (a) x-y (b) x-z and (c) z-y Planes of the Elements used in 

Computing the Homogenized Material Properties 

The homogenized engineering stress-strain curve is plotted in Figure 4.42.  

 

Figure 4.42 Stress vs. Strain     45 ,2 3 45 ,2 3
 vs.  

     
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The stress   45 ,2 3


 
 distribution plotted on the deformed shape of the final step 

of analysis is shown in Figure 4.43. 

 

Figure 4.43 Stress   45 ,2 3


   Distribution in the Post-Processed Region 

 The strain   45 ,2 3


   distribution plotted on the deformed shape of the final step 

of analysis is shown in Figure 4.44. 
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Figure 4.44 Strain   45 ,2 3


 
 Distribution in the Post-Processed Region 

4.2.4.12 Off-Axis Test – 45°, 1-3 Plane 

This test is not necessary because of the transverse isotropy of the composite 

material (same as the pure shear in the 1-2 plane test). 

4.2.5 Polymer Plasticity Model Tests 

The aforementioned polymer plasticity model, which accounts for hydrostatic 

stress effects, is implemented as a user-defined material (umat) in LS-DYNA. 

4.2.5.1 Test Details 

Plane stress models are analyzed using implicit analysis to test the umat. The 

schematic of the tension test FE model is shown in Figure 4.45. 
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Figure 4.45 Schematic of Tension Test FE Model 

Node 1 is pinned. The remaining nodes on the Node 1-2 side are rollers fixed in 

the x-direction. Displacements are applied to the nodes on the Node 3-4 side in the x-

direction. 

The schematic of the shear test FE model is shown in Figure 4.45. 

 

Figure 4.46 Schematic of Shear Test FE Model 

 Nodes on the Node 1-2 side are pinned. Displacements are applied to the nodes on 

the Node 3-4 side in the y-direction. 
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4.2.5.2 Verification Tests 

To verify the umat, the PR520 composite material results (R. Goldberg et al., 

2005) are replicated using the reported material constants listed in Table 4.23. 

Table 4.23 PR520 Matrix Polymer Plasticity Model Material Constants 

Modulus 

(GPA) 

Poisson's 

Ratio 

D0 

(1/sec) n 

Z1 

(MPA) 

Z0 

(MPA) q α1 α0 

3.54 0.38 1x106 0.93 753.82 396.09 279.26 0.126 0.568 

 

Shell elements with element formulation (ELFORM) 12 – plane stress (x-y plane) 

are used. The shell thickness is taken as 0.1 in. The results from the umat along with the 

experimental and computed results presented in the paper are shown in Figure 4.47.  
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(a) 

 

(b) 

Figure 4.47 (a) Tension and (b) Shear PR520 Matrix Test Results 
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4.2.5.3 Validation Tests 

To validate the umat, the T800S/3900 matrix is used with material constants 

calculated using the procedure detailed in the associated report (R. Goldberg et al., 2005). 

The results are shown in Table 4.24. 

Table 4.24 T800S/3900 Matrix Polymer Plasticity Model Material Constants 

Modulus 

(Msi) 

Poisson's 

Ratio 

D0 

(1/sec) n 

Z1 

(Msi) 

Z0 

(Msi) q α1 α0 

0.5 0.35 1.8x106 0.33 4.21 4.01 179.8 0.423 0.423 

 

As evidenced in Table 4.3, experimental data is only available for tension in the 

1-direction and pure shear in the 1-2 plane tests. For this reason, these tests were selected 

for comparison between the umat results and the provided experimental and computed 

data. The tests are completed using the polymer plasticity model for the matrix and the 

VTSS formulation outlined in the Test Details and Results section. The stress-strain 

curve for the von Mises (J2) and polymer plasticity models is shown in Figure 4.48. 
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Figure 4.48 Stress vs. Strain Curve for Tension in the 1-Direction Test 
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5 CONCLUSIONS 

The results from the VTSS show good agreement with the elastic constants in the 

verification test case. It is evident that the difference in fiber placement between the two 

approaches (random in the virtual framework formulation and uniform in the VTSS) does 

not significantly impact the results. When comparing the FEM Big and VTSS results, all 

engineering constants, with the exception of ν23, are within 7% of each other. The 

difference between the FEM Big and FEM Small results for ν23 is also significantly larger 

compared to the other engineering constants. Furthermore, the value for ν23 from the 

VTSS results is much closer to that of the FEM Small result. From the close proximity of 

the results, it is clear that the associated extensive constraints implemented by the virtual 

framework is unnecessary to accurately predict the engineering constants of the 

composite material. 

The VTSS was able to successfully validate the available experimental and 

computed results for the T800S/3900 composites and fill-in necessary gaps. For example, 

the off-axis 2-3 plane test is very difficult to complete and there is no experimental data 

available. The analytical approach makes the assumption that it is the same as the tension 

in the 2-direction test. As shown by the stress-strain curve generated by the VTSS for the 

off-axis 2-3 plane test, the yield stress is actually lower than in the tension in the 2-

direction test. In this way, further accuracy in the stress-strain input curves is provided by 

the VTSS. 

The polymer plasticity model was successfully validated using a plane stress 

model for the PR520 matrix. The slight difference in results for the shear test can likely 
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be attributed to the difficulty of producing a pure shear stress state in a finite element test. 

This was not an issue for the standalone program used to generate the computed results 

presented in the report because the formulation allows for directly prescribing the stress 

state. Using the polymer plasticity model for the T800S/3900 matrix showed good 

agreement between the stress-strain curves for the von Mises (J2) and polymer plasticity 

models for the tension test case. However, the pure shear test case failed to converge, 

indicating that the calculation of the material constants was not representative of the 

composite material. Physical testing of the constituents is required to use the polymer 

plasticity model for the T800S/3900 composite. Convergence in the tension case is 

expected because the only change from the von Mises plasticity models is in the matrix 

material model, and the fibers carry the majority of the stress in the 1-direction tension 

test. 

5.1 Future Work 

The VTSS is currently limited to unidirectional laminated composite 

architectures. The immediate focus for future work of this research topic would be 

extending the geometry capabilities. Developing support for angle-ply composite 

architectures would allow for further validation tests using the available experimental 

data from WSU. 

Another limitation of this method is the absence of damage. The focus of many 

available virtual testing suites is this component, which can be added to increase the 

accuracy of the model.   
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APPENDIX A 

REQUIRED TEST AND RESULTING INPUT FOR MAT213 
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Test Resulting Input for MAT213 

Tension (1-direction) 

Tension stress-strain curve  11 11 vs. T T   

Yield strain  11

T

y
  and optionally yield stress 

 11

T

y
  

Elastic Poisson’s ratio  12 13,   

Plastic Poisson’s ratio  12 13,p p    

Tension (2-direction) 

Tension stress-strain curve  22 22 vs. T T   

Yield strain  22

T

y
  and optionally yield stress 

 22

T

y
  

Elastic Poisson’s ratio  23  

Plastic Poisson’s ratio  21 23,p p    

Tension (3-direction) 

Tension stress-strain curve  33 33 vs. T T   

Yield strain  33

T

y
  and optionally yield stress 

 33

T

y
  

Plastic Poisson’s ratio  32 31,p p    

  



 

77 

 

Compression (1-direction) 

Compression stress-strain curve  11 11 vs. C C   

Yield strain  11

C

y
  and optionally yield stress 

 11

C

y
  

Compression (2-direction) 

Compression stress-strain curve  22 22 vs. C C   

Yield strain  22

C

y
  and optionally yield stress 

 22

C

y
  

Compression (3-direction) 

Compression stress-strain curve  33 33 vs. C C   

Yield strain  33

C

y
  and optionally yield stress 

 33

C

y
  

Shear(1-2 plane) 

Shear stress-strain curve  12 12 vs.    

Yield strain  12 y
  and optionally yield stress 

 12 y
  

Shear (2-3 plane) 

Shear stress-strain curve  23 23 vs.    

Yield strain  23 y
  and optionally yield stress 

 23 y
  
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Shear (1-3 plane) 

Shear stress-strain curve  31 31 vs.    

Yield strain  31 y
  and optionally yield stress 

 31 y
  

Off-axis tension (45°, 1-2 plane) 

Off-axis tension stress-strain curve 

 1 2 1 2

45 45 vs.   
 

Yield strain  1 2

45 y
   and optionally yield stress 

 1 2

45 y
   

Off-axis tension (45°, 2-3 plane) 

Off-axis tension stress-strain curve 

 2 3 2 3

45 45 vs.   
 

Yield strain  2 3

45 y
   and optionally yield stress 

 2 3

45 y
   

Off-axis tension (45°, 1-3 plane) 

Off-axis tension stress-strain curve 

 1 3 1 3

45 45 vs.   
 

Yield strain  2 3

45 y
 

 and optionally yield stress 

 2 3

45 y
 
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APPENDIX B 

CONVERGENCE STUDY STRESS-STRAIN CURVES 
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(1a) (1b) 

  

(2a) (2b) 

  

(3a) (3b) 
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(4a) (4b) 

(1) Tension Tests in the (a) 1 and (b) 2-directions, (2) Compression Tests in the (a) 1 and 

(b) 2-Directions, (3) Pure Shear Tests in the (a) 1-2 and (b) 2-3 Planes, and (4) Off-Axis 

Tests in the (a) 1-2 and 2-3 Planes 

 


