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ABSTRACT

Conventional fluid dynamics models such as the Navier-Stokes equations are

derived for prediction of fluid motion at or near equilibrium, classic examples being the

motion of fluids for which inter-molecular collisions are dominant. Flows at equilibrium

permit simplifications such as the introduction of viscosity and also lead to solutions that

are single-valued. However, many other regimes of interest include “fluids” far from

equilibrium; for example, rarefied gases or particle-laden flows in which the dispersed

phase can be comprised of granular solids, droplets, or bubbles. Particle motion in

these flows is not typically dominated by collisions and may exhibit significant memory

effects; therefore, is often poorly described using continuum, field-based (Eulerian)

approaches. Non-equilibrium flows generally lack a straightforward counterpart to

viscosity and their multi-valued solutions cannot be represented by most Eulerian

methods. This strongly motivates different strategies to address current shortcomings

and the novel approach adopted in this work is based on the Conditional Quadrature

Method of Moments (CQMOM). In CQMOM, moment equations are derived from the

Boltzmann equation using a quadrature approximation of the velocity probability density

function (PDF). CQMOM circumvents the drawbacks of current methods and leads to

multivariate and multidimensional solutions in an Eulerian frame of reference. In the

present work, the discretized PDF is resolved using an adaptive two-point quadrature in

three-dimensional velocity space. The method is applied to computation of a series of

non-equilibrium flows, ranging from simple two-dimensional test cases to fully-turbulent
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three-dimensional wall-bounded particle-laden flows. The primary contribution of the

present effort is on development, application, and assessment of CQMOM for predicting

the key features of dilute particle-laden flows. Statistical descriptors such as mean

concentration and mean velocity are in good agreement with previous results, for both

collision-less and collisional flows at varying particle Stokes numbers. Turbulent statistics

and measures of local accumulation agree less favorably with prior results and identify

areas for improvement in the modeling strategy.

ii



ACKNOWLEDGMENTS

I would like to acknowledge the guidance, patience, and support of my committee

chair member and adviser, Dr. Kyle Squires, and the members of my committee. My

gratitude also extends to Dr. Rodney Fox at the University of Iowa for his willingness

to collaborate in implementing the methods which he greatly helped pioneer. I would

also like to thank the engineering department for providing funding for my research and

travels, and for giving me the opportunity to instruct courses at the university.

This dissertation would not have been possible without my family and role

models encouraging me to lead the path of a scientist and engineer, and by giving me

motivational support and the occasional nutritional home-cooked meal. Finally, I would

like to thank my friends, colleagues, and lab mates for inspiration, mutual support,

and insightful discussions, and the members of StackExchange community for their

invaluable assistance in C++, MATLAB, and LATEX source code related details.

iii



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. MODELING - BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . 6

A. Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

B. Drag Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C. Stokes Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

D. Knudsen Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. Fluid Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Dispersed Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Collision Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Dispersed Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E. Phase Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1. Lagrangian phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Eulerian phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Hydrodynamic Constraints . . . . . . . . . . . . . . . . . . . . . . 25

III. EULERIAN METHODS - BACKGROUND . . . . . . . . . . . . . . . . . . 26

iv



CHAPTER Page

A. Particle Trajectory Crossing . . . . . . . . . . . . . . . . . . . . . . . . . 26

B. Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . . . 29

1. PDF Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2. PDF bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C. Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

D. Discretized Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

E. Quadrature Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F. Micro and macro scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

G. Viscosity Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV. MULTI-VALUED EULERIAN MODEL . . . . . . . . . . . . . . . . . . . . 48

A. Moments of a PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B. Moment and Distribution Properties . . . . . . . . . . . . . . . . . . . . . 50

1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C. Moment Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

D. Quadrature-Based Moment Methods . . . . . . . . . . . . . . . . . . . . . 55

E. Moment Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1. PD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2. Wheeler Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

F. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

v



CHAPTER Page

1. Velocity Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2. Root-mean-square . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3. Moment Corruption . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4. Moment Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 76

G. DQMOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1. Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2. Granular kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . 79

3. Transport Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V. CQMOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A. Multivariate Conditional Inversion . . . . . . . . . . . . . . . . . . . . . . 81

B. Spatial flux scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1. Flux Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2. Dimension Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3. Convection Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4. Slope limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5. Non-Uniform Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. Volume-averaging error . . . . . . . . . . . . . . . . . . . . . . . . 101

7. CFL Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C. Optimal Moment Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D. Time Iteration Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



CHAPTER Page

E. Source Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

1. Inter-Particle Collisions . . . . . . . . . . . . . . . . . . . . . . . . 113

2. Operator Splitting Technique . . . . . . . . . . . . . . . . . . . . . 118

3. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 120

F. High Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . 121

G. Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VI. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A. Free Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

1. Moment Misalignment . . . . . . . . . . . . . . . . . . . . . . . . . 126

2. Grid Sensitivity to Numerical Diffusion . . . . . . . . . . . . . . . . 128

B. Free Jet Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

1. Limiter Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2. Under-Representation Errors . . . . . . . . . . . . . . . . . . . . . 135

3. Crossing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 138

5. Non-Uniform Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6. Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C. Taylor-Green Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

1. Collisionless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

D. TBL Flow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

vii



CHAPTER Page

E. Channel Flow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 154

1. Threshold Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 155

2. Instantaneous Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3. 1-Node Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4. 2-Node Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

VII. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

viii



LIST OF FIGURES

Figure Page

1 Volume Fraction (M0) of Spherical Monodisperse Particles as a Function

of Number Density (q) and Diameter (Lp) . . . . . . . . . . . . . . . . . . 14

2 Collision Intensity Function, Sc(τ c) Shown as Solid Line. Ensures Very

Low Frequency Collisions Approach Zero Intensity Instead of −∞ . . . . . 18

3 Methods Most Suitable For Kn Number Regimes (Adapted From 1, 2) . . . 20

4 Fluid Streamlines and Particle Trajectory Crossing . . . . . . . . . . . . . 27

5 Particle Volume Fractions for a Very Sparse Flow (Collisionless, Kn →

∞) with (a) Hydrodynamic Model Showing Unrealizable PTC, and (b)

DPS Model Showing Realizable PTC3 . . . . . . . . . . . . . . . . . . . . 29

6 Example of Experimentally Obtained PDF of Particle Diameter f(ξ1) . . . 34

7 The x-velocity (v1) 1-D PDF Distribution Represented (a) Continuously

and By (b) β = 3 Approximation . . . . . . . . . . . . . . . . . . . . . . . 39

8 The Molecular (and Granular) Microscale and Macroscale Relationships

Within Various Knudsen Regimes . . . . . . . . . . . . . . . . . . . . . . 43

9 Velocity Distributions for Various Macroscale Gradients . . . . . . . . . . 47

10 1-D Adaptive β-Point Inversion Algorithm Flowchart . . . . . . . . . . . . 66

11 Near Zero Temperature Induced Inversion Instabilities. M (2) Values

Shown for the Lowest Four Samples Only. . . . . . . . . . . . . . . . . . . 74

ix



Figure Page

12 Example Visualization of a 3-D Velocity Space for Discretized PDFs.

Nested Moment Inversion Produces Nodes for Two Conditional

Sequences, b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

13 Example 3-D PDF Discretization With Conditional Nodes for Two

Different Conditional-Splitting Inversion Sequences, b . . . . . . . . . . . 87

14 Visual Representation of minmod Slope Limiter . . . . . . . . . . . . . . . 99

15 Visual Representation of K = 32 Optimal Moments for X = 3 and β = 2 . 106

16 Speedup of CQMOM Algorithm Through CPU Parallelization . . . . . . . 122

17 Numerical Diffusion of One Free Jet in 2-D Along Jet Centerline in 40 ×

40 domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

18 Numerical Diffusion of Single Jet at Time Step t = 1600. Columns Are

Volume Fraction (M0), x-Velocity (Uα), and y-Velocity (V α) . . . . . . . . 128

19 x-y Planar Contours of Collisionless Free Jet Crossing on Uniform Grid.

Slope Limiters: minmod (d-f); Otherwise superbee . . . . . . . . . . . . 131

20 Early Evolution of the superbee Limiter at Time Step t = 200 . . . . . . 132

21 Numerical Diffusion From minmod Limiter at Time Steps t = 400

(First Row) and t = 1400 (Second Row). Columns Are Moments (M ),

x-Velocity (Uα), and y-Velocity (V α) Respectively . . . . . . . . . . . . . 134

x



Figure Page

22 Numerical Diffusion From superbee Limiter at Time Steps t = 400

(First Row) and t = 1400 (Second Row). Columns Are Moments (M ),

x-Velocity (Uα), and y-Velocity (V α) Respectively . . . . . . . . . . . . . 135

23 x-y Planar Contours of Collisionless Triple Jet Crossing on Uniform Grid

With minmod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

24 Comparison of M0 Between Single Jet and Dual Crossing Jets for Both

Slope Limiters (Log Scale) . . . . . . . . . . . . . . . . . . . . . . . . . . 137

25 Symmetrical x-y Planar Contours of Collisionless Free Jet Crossing with

Reflective/Periodic x-Sidewalls and superbee Slope Limiter . . . . . . . 139

26 x-y Planar Contours of Collisionless Free Jet Crossing on Non-Uniform

Grid: minmod (First Row) vs. superbee (Second Row) . . . . . . . . . . 140

27 x-y Planar Contours of Free Jet Crossing With Isotropic Collisions . . . . . 141

28 x-y Planar Contours of Free Jet Crossing With Dense Isotropic Collisions . 142

29 x-y Planar Contours of Free Jet Crossing With Anisotropic Collisions . . . 143

30 Taylor-Green Flow Field Vectors Spanning {Lx, Ly} = {1, 1},

Equation (130) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

31 x-y Planar Contours of Collisionless T-G Flow. Each Row Represents

n =1k,2k,3k,5k Time Steps Respectively . . . . . . . . . . . . . . . . . . 146

32 TBL domain and boundary conditions . . . . . . . . . . . . . . . . . . . . 148

xi



Figure Page

33 Instantaneous Wall-Normal Velocity at Half-Span, St=4, Without

Inter-Particle Collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

34 Instantaneous wall-normal cell-averaged velocity in a wall-parallel plane

at y ≈ 0.31, St=4, without inter-particle collisions. . . . . . . . . . . . . . 150

35 CQMOM (Eulerian) particle instantaneous cell-averaged velocity at

half-span, St=16, with inter-particle collisions. Opacity indicates densityM 151

36 Spanwise-Averaged and Time-Averaged Particle Volume Fraction M (0)

for St=16 Without Inter-Particle Collisions at x ≈ 24. . . . . . . . . . . . . 152

37 Spanwise-Averaged and Time-Averaged Particle Streamwise Velocity

〈v1〉 for St=16 at x ≈ 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

38 Time and Span Averaged Erroneous Results . . . . . . . . . . . . . . . . . 156

39 All Six “Simple” x and y Moment Fields and Volume Fraction . . . . . . . 159

40 Correlation Between Particle Volume Fraction and Fluid Velocity . . . . . . 160

41 Collisionless 1-Point Quadrature, z and t-Averaged Statistics. . . . . . . . . 161

42 Streamwise Velocity z and t-Averaged Statistics. Without and With

Isotropic Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

43 Volume Fraction z and t-Averaged Statistics. Without and With Collisions . 165

44 Collision Frequency (1/τ c) z and t-Averaged . . . . . . . . . . . . . . . . 165

45 RMS z and t-Averaged Statistics. Left Column is Collisionless and Right

Column With Isotropic Collisions . . . . . . . . . . . . . . . . . . . . . . 167

xii



LIST OF TABLES

Table Page

1 Categories of Multiphase Flows4 . . . . . . . . . . . . . . . . . . . . . . . 3

2 Select Categories of Physical Phenomena . . . . . . . . . . . . . . . . . . 4

3 Example Applications and Technologies . . . . . . . . . . . . . . . . . . . 4

4 Knudsen Number Regimes4 . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Phase Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Thresholds For Wheeler Inversion . . . . . . . . . . . . . . . . . . . . . . 65

7 Conditional sequences b = [d1, d2, d3] for Flux-Splitting Path [x1, x2, x3] . . 91

8 Conditional Dimension Stepping Sequence R = 3, D = 3 . . . . . . . . . 94

9 Optimal Moment Permutations for X =3 Dimensional State Space With

β = 2-Point Quadrature, E(m, d) . . . . . . . . . . . . . . . . . . . . . . . 105

10 Example Optimal Moment Counts, K . . . . . . . . . . . . . . . . . . . . 107

11 Optimal Ordered Moment Counts of Varying X for β = 2 . . . . . . . . . 111

12 Collision Terms Up to 4th-Order . . . . . . . . . . . . . . . . . . . . . . . 117

13 Comparison of DNS and CQMOM Solver Variables and Equations . . . . . 123

14 CQMOM Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiii



NOMENCLATURE

A Threshold Ratio of Distances Between Abscissas, Equation (60)

A Area [L2]

b Conditional-Splitting Inversion Sequence [d1, ..., dX ], Equation (86)

B Maximum Number of Multidimensional Nodes, Defining the Resolution of N

B Adaptive (1...β) Number of Nodes In Single Dimension

CD Drag Coefficient, Equation (5) [−]

c Speed of Sound In a Fluid, ∝ ρ−0.5
f , Equation (14) [LT−1]

C Collision Term of the PDF Transport Equation (37)

C Collision Term of the Moment Transport Equation (122)

CFL Numerical Stability Condition, Equation (109)

d Spatial Dimension Index (1, ..., D)

D Order of the Spatial Dimension, 1 ≤ D ≤ 3

D Drag Source Term, Equation (49)

E Scientific Exponential Notation, XEY ≡ X × 10Y

E Exponent Index Function for Moment Construction, Table 9

e Natural Log Base, ≈ 2.71828

ew The Coefficient of Restitution, Equation (128)

F Second Order Tensor for Inelastic Collisions, Equation (120)

f Probability Density Function (PDF), Equation (31)

F Force Per Unit Volume on Particles [MLT−2]

g Gravitational Acceleration Vector [LT−2]

G Net Moment Convection Function at a Single Cell Face, Equation (98)

H Moment Convection Function at a Single Cell Face, Equation (96)

h Test Function for Gaussian Quadrature, Equation (93)

xiv



I Identity Matrix

I ID Matrix Indicating Occupied Nodes of N(t,x)

K Total Quantity of Moments in the Vector SetM , Equation (56)

Kn Knudsen Number, Equation (14)

L Macroscopic Length Scale, Equation (12) [L]

Lp Particle Diameter [L]

l Multiplicity of d’th Abscissa, Equation (45)

Lc Mean Free Path, Equation (14) [L]

LV Edge Length of a Finite Cell Volume [L]

mp Mass of a Single Particle, Equation (7) [M]

M
(γ)
l1l2l3

3-D Velocity Moment
∫
vl11 v

l2
2 v

l3
3 f , Equation (45)

M Optimal Moment Set of Length K

M0
∗ Maximum Close-Packed Volume Fraction, Equation (18)

Ma Mach Number, Equation (14)

N Maximum: Quantity, Sample Count, or Time-Step Index

n Time Step Index

N Node Vector (Row of Matrix N), Equation (88)

N ≡ {v̂1, ..., v̂D, ξ̂1..., ξQ,φ} ≡ {U ,V ,W ,φ}, Column Matrix of Abscissas and
Single Weight, Equation (39) and (54)

P 2-Point Abscissa Proximity Ratio (Vector), Equation (61)

P CQMOM Flux Path Total Permutation Count, Table 7

p CQMOM Flux Path, Table 7

Pr Prandtl Number, Equation (16)

q Quantity of Particles Per Unit Volume (Number Density) [L−3]

Q Length of ξ: Dimension of the Internal State Space Excluding Particle Velocities

R Real Numbers State Space

xv



r Runge-Kutta Internal Iteration Index, 1, ..., R, Table 8

R Runge-Kutta Order, Table 8

Re Reynolds Number, = ρVL/µ, Equation (6)

RMS Root-Mean-Square of Velocity Fluctuations,
√
v′2, Equation (70)

Sc Collision Intensity, Equation (23)

s Volume Fraction Ratio to Maximum Close-Packed Factor M0/M0
∗, Equation (18)

s0 Particle Radial Distribution Function, Equation (18)

St Stokes Number, Equation (12)

T Thermal Temperature [◦K]

t Time [T]

U x-Velocity Abscissas Vector, Length B, Equation (54) [LT−1]

u Fluid Velocity [LT−1]

U Characteristic Fluid Velocity Scale [LT−1]

V y-Velocity Abscissas Vector, Length B, Equation (54) [LT−1]

v̂ Matrix of Velocity Abscissas, v̂d,α ≡ {UT ,V T ,W T}, With Row α and Column d
for Node and Dimension Respectively, Equation (39) [LT−1]

v ≡ {v1, v2, v3}, Particle Velocity Vector of All D Dimensions [LT−1]

V Characteristic Particle Velocity Scale, Equation (109) [LT−1]

W z-Velocity Abscissas Vector, Length B, Equation (54) [LT−1]

W Vector of Weight Threshold Values, Equations (57) and (59)

∆x Cell Width, Distance Between Both Faces, x+ 1
2
− x− 1

2
, Equation (103)

X ≡ D +Q, Total Dimension of PDF Internal State Space, Table 11

x 1st Spatial Dimension, x1 (Streamwise Coordinate) [L]

x Spatial Coordinate Vector, {x, y, z} [L]

y 2nd Spatial Dimension, x2 (Wall-normal Coordinate) [L]

z 3rd Spatial Dimension, x3 (Spanwise Coordinate) [L]

xvi



Greek:

α Quadrature Node Index, 1, ..., β

β Maximum Quadrature Node Count in Single Dimension

δ Dirac Delta Function

ε Relaxation Factor

η Spatial Volume [L3]

ηp Single Particle Volume, Equation (34) [L3]

Λ Vector of Optimal Equilibrium Moment Set, Equation (122)

γ ≡ l1 + l2 + l3 + ..., Moment Order, Sum of Abscissa Multiplicities/Exponents.
Equation (45)

κ Time Coefficient, Equation (127)

λ ≡ ∆t
∆x

, Ratio of Time Step to Cell Spacing, Equation (110) [TL−1]

µ Dynamic Viscosity [ML−1T−1]

ν Kinematic Viscosity [L2T−1]

ω Elasticity (1 + ew)/2, Equation (16)

Ω State Space for Variable Determined by Subscript, Equation (30)

φ Volume Fraction, “Weight” in PDF [−]

ψ Total Particle Volume Contained Within a Finite Volume Element [L3]

ρ Density [ML−3]

σ Standard Deviation of Distribution Function (PDF)

Θ Granular Temperature, Equation (65), [L2T−2]

τ Response Time [T]

θ Temperature Covariance Matrix, Equation (66)

Υ Inter-Particle Collision Model Constant 0 < Υ ≤ 3/2, Equation (16)

ξ Vector of Internal States in f Excluding Velocity, Equation (30)

ζ ≡ {v, ξ}, Vector of Length X for all Internal States in f

xvii



Other:

∗̄ (Overbar) Time-Averaged Quantity

〈∗〉 (Angle Brackets) Cell-Averaged Quantity

∗̇ (Over Dot) Time Derivative

∗̂ (Hat) Abscissa; Discrete Value of a Continuous Variable

∗ (Bold) Vector or Matrix

| ∗ | Absolute Value or Vector Magnitude

+= Addition Assignment Operator

−= Subtraction Assignment Operator

/= Division Assignment Operator

:= Imperative Assignment Operator(∗
∗

)
Binomial Operator, Equation (114)

{∗, ∗, ...} Elements of a Vector

∗′ (Prime) Unsteady Fluctuation, Equation (71)

: Colon Operator Signifies Integer Range, i : j ≡ {i, i+ 1, ..., j − 1, j}

Subscript/Superscript:

a Spatial Coordinate Index for Finite Cell Discretization in Dimension d

c Collision Attribute

eq Related to the Maxwell-Boltzmann Equilibrium Distribution, Equation (122)

f Fluid Phase Attribute

g Grid/Mesh Attribute

` Left Side of a Cell Face, Equation (96)

m Moment Index 0...K − 1, Table 9

p Particle Phase (Drag) Attribute

r Right Side of a Cell Face, Equation (97)

s Slip Velocity, of Particle Relative to Carrier Fluid, Equation (4)

xviii



τ Related to Friction (Velocity), Equation (1)

T Vector or Matrix Transpose

xix



I. INTRODUCTION

For many decades now, computational fluid dynamics (CFD) has been

offering alternative insights to experiments that are financially expensive or

technologically/physically prohibitive. Numerical models are capable of verifying

and reproducing observations of complex physical phenomena and ultimately have

advanced predictive capabilities in a wide range of science and engineering applications.

However, the limitations of computing technology at the present necessitate the usage

of simplifying assumptions to maintain practical computational costs. Furthermore,

numerical discretization techniques are needed to convert the complexity of “continuous”

physical systems into manageable mathematical constructs. Consequently, various

techniques often lead to multiple solution methods and their applicability and versatility

may be restricted to certain ranges of problems, but simultaneously optimized for that

unique limited range. When multiple models are capable of describing the same physical

system, such as a multiphase flow, they should (hopefully) arrive at the same results, but

selecting the appropriate model depends on its accuracy vs. computational costs.

Essentially there are two ways to model a fluid: as a collection of Lagrangian

particles or as an indefinitely divisible Eulerian continuum.5 For example, the Eulerian

formulation of Navier-Stokes equations have shown excellent predictive capabilities

of hydrodynamic fluids at equilibrium (such as Newtonian fluids) where the concepts

of viscosity and incompressibility are generally valid simplifying assumptions.

Hydrodynamic fluid behavior is dominated by chaotic inter-molecular collisions,
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which need not be fully-resolved in order to make useful predictions. Alternately,

Lagrangian discrete particle simulation (DPS) models provide fully-resolved solutions

that track individual particles undergoing free-body motion. Lagrangian methods have

played a major role in modeling sparse particle dispersions; however, DPS will remain

computationally prohibitive for very dense particle populations encountered in many

modern engineering applications for the foreseeable future.

Both of these models are optimal in their own regimes, but there still remains a

gap in CFD capabilities for models that are accurate and efficient at moderately dense

non-hydrodynamic “fluids”. Such phases are not strictly dominated by inter-particle

collisions, but are dense enough that a fully-resolved Lagrangian model is extremely

computationally expensive. Therefore, the focus of the current research is to implement a

novel Eulerian modeling strategy that is applicable for both dilute single-phase fluids and

dispersed phases of multiphase flows. The main challenges are that non-hydrodynamic

fluids are generally highly compressible, lack a straightforward counterpart to viscosity,6

and experience prevalent self-diffusion.

“Particles” comprising a dilute phase may consist of either molecules or

quasi-particle bodies such as granular solids, liquid droplets, or even gas bubbles.

Therefore, the term “particle” throughout this work pertains to the smallest bodies/entities

considered in the simulation. Both molecules within a single-phase fluid and small

quasi-particle bodies exhibit similar behavior and share concepts in Kinetic Theory. One

main difference is that during collisions, molecules are typically perfectly elastic (hard

2



spheres) while macroscopic granular particles are inelastic/dissipative7 and may undergo

other macroscopic phenomenon such as aggregation and breakage.

Multiphase flows are commonly encountered and are composed of a mixture of two

(or more) phases – typically a hydrodynamic fluid (gas or a liquid) carrier flow with

a second dispersed granular phase of (solid, gas, or liquid) “particles.” The dispersed

phase exhibits a distinct surface interface that distinguishes the particle bodies from

the carrier flow, e.g. dust particles in air, air bubbles in water, oil droplets in water, etc.

By definition, the dispersed phase is comprised of macroscopic particles that are not

materially connected, while the carrier fluid occupies the gaps in-between the particles.

It is common to describe non-hydrodynamic fluids or dispersed phases as rarefied, dilute,

and/or sparse. The ability to implement an Eulerian model which can realize the diverse

Table 1. Categories of Multiphase Flows4

Gas-liquid flows Gas-droplet flows
Separated flows
Bubbly flows

Gas-solid flows Gas-particle flows
Pneumatic transport
Fluidized beds

Liquid-solid flows Slurry flows
Hydrotransport
Sediment transport

Liquid-liquid flows Immiscible flows
Three-phase flows Bubbles in a slurry flow

Droplets and particles in a gaseous flow

microscale interactions of molecules/particles while still offering predictive capabilities

of macroscopic flow structures, is a highly attractive engineering goal for modeling

single-phase and multiphase flows alike.

3



As described by Table 1, many different two and three phase flows are prevalent

in engineering applications. Cases involving rarefied single phase fluids or dispersed

phases such as aerosols/droplets/sprays,8–12 bubbles,13, 14 precipitates,15, 16 or

dust/powders/soot17–23 exhibit many real-world physical phenomena as listed in Table 2.

Table 2. Select Categories of Physical Phenomena

Collisions Inter-particle and (in)elastic
Nucleation/cavitation Particle production
Growth or evaporation12 Diameter change
Coalescence/Aggregation Particle combining
Breakage24 Particle splitting
Body forces Gravity, magnetic, etc.
Fluid drag force one-way fluid coupling
High mass loading25, 26 two-way fluid coupling

Predicting these desired fluid-particle properties is beneficial in a variety of

industrialized processes, technologies, and scientific research fields, of which some are

listed in Table 3. Very small scales are also applicable, such as modeling blood cells

suspended in plasma or the industrial synthesis of nanoparticles.27 The ability to employ

Table 3. Example Applications and Technologies

Propulsion systems: Thrusters28 or rockets
Rarefied gas aerodynamics: High altitude flight or low orbit
Astrophysics: Interstellar clouds,7 galaxies
Dust clouds:21 Volcanoes, Rotorcraft brownout
Combustion:12 Atomization or gasification
Pneumatic transport: Evacuated tubes
Material processing: Spray drying
Fluidized beds:29 Reactors or heat transfer
Pollution (exhaust) control: Scrubbers, cleaners, filtration systems

accurate simulations of these physical phenomena may reduce engineering research and

design costs as well as the overall design-time. Machinery developed solely to carry-out
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these processes related to rarefied gases or particle-laden flows are typically large-scale

where small efficiency improvements may induce large cost savings. Particle-laden

(gas-solid) flows are of particular interest in the present work and will be focused upon

almost exclusively. Therefore, the fluid-particle drag forces and inter-particle collision

phenomena will be described in great detail. The family of novel Eulerian formulations

known as Quadrature-Based Moment Methods (QBMM) are explored in the current

work, and compared to the legacy Lagrangian formulation, DPS. Firstly, the Quadrature

Method of Moments (QMOM)8, 30–32 will be introduced as the foundation for a more

sophisticated, multi-dimensional and multivariate formulation known as Conditional

Quadrature Method of Moments (CQMOM).
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II. MODELING - BACKGROUND

Before describing the QBMM model, a set of constants, non-dimensional values, and

concepts must be introduced. These constants describe single phase and/or multiphase

flows, in Eulerian and/or Lagrangian frameworks, and can outline the limitations imposed

by the different model assumptions.

A. Reynolds Number

The Reynolds number is the ratio of momentum to viscous effects that describes

whether a fluid flow is laminar or turbulent. For boundary layers and channel flows, the

Reynolds number of the carrier flow is typically defined using two different length scales:

either the boundary layer thickness (Lδ) or the channel half height (Ly

2
) respectively.

Additionally, the velocities will often be non-dimensionalized using the friction velocity,

uτ =
√
ν ∂u1
∂y

at the wall.18, 19 This also suggests defining a new Reynolds number (Reτ )

using the friction velocity,

Reτ =
uτL

νf
(1)

It is common to assume that uτ = 1, L = Ly

2
= 1, and then Reτ is chosen and

typically ranges from 150-700 in channels flows from previous work. These values play

an important role in non-dimensionalizing the velocity profile, where the wall coordinate,

y+, is computed by one of two methods,

y+ =
yuτ
νf

=
yReτ
L

(2)
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and the velocity is normalized by the friction velocity too,

u+ =
u

uτ
(3)

Now the non-dimensional y+ and u+ values may be conveniently used directly in the

numerical simulation. Notice that the convenient choice of uτ = 1 ensures that u+ = u.

B. Drag Force

The dispersed particles (in both DPS and QBMM models) are coupled to the carrier

flow through a particle-fluid drag that allows the particle acceleration to be computed.

Currently the drag is only one-way coupled because the particles do not affect the fluid

through mass loading. The derivation for the particle drag begins by assuming the

particles are spherical bodies traveling through a viscous fluid, and is simplified with the

following approximation,4

F =
1

2
ρfACD|u− v|(u− v) (4)

where ρf is the carrier fluid density, A = 1
4
πLp

2 is the projected frontal area of a sphere

(circular area) of particle diameter Lp, and u−v ≡ vs is the relative slip velocity between

the fluid and particle. The drag coefficient CD is commonly modeled by,

CD =


24

Rep

(
1 + 0.15Re0.687

p

)
, Rep < 1000

0.44, Rep ≥ 1000

(5)
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where the dispersed particle Reynolds number, Rep, is defined by,

Rep ≡
ρf
µf
|vs|Lp =

|vs|Lp
νf

(6)

and νf ≡ µf/ρf is the kinematic viscosity of the carrier fluid. Note that Rep is a scalar

computed from the relative velocity vector magnitude, therefore, only one CD exists for

each particle.

Next, the concept of the particle response time due to drag and inertia is introduced.

If the single force acting the particle is a fluid drag force, then the acceleration (dv
dt

) is

determined from Equation (4) and Newton’s second law of motion by4

mp
dv

dt
=
CD
2

πLp
2

4
ρf (vs)|vs| (7)

where mp is the mass of a single particle. Substituting Rep and dividing Equation (7) by

spherical particle mass mp = 1
6
ρpπLp

3 produces,

dv

dt
=

18µf
ρpLp2

CDRep
24

(u− v) (8)

With the assumption of Stokes drag at low particle Reynolds numbers, the term CDRep
24
≈

1, and all the terms may be condensed into a single value τ p, which is the particle drag

response time related directly to the Stokes number, St. This value depends on the particle

inertia and the influence that the fluid imposes on the particle through the Stokes drag
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force. The particle response time encompasses all variables from Equation (8),

dv

dt
=

1

τ p
(u− v) (9)

Therefore,

τ p =
4ρpLp

3ρfCD|vs|
≈ ρpLp

2

18ρfνf
(10)

Note that the right-most term of Equation (10) is an approximation arising from the

Stokes drag assumption (small Rep). If τ p is using the Stokes flow assumption, then it is a

scalar value with no dependency on velocity, and by further assuming that u is constant,

then Equation (9) becomes a first-order ODE and the solution to this ODE with a particle

starting at rest v(t0) = 0 is,4

v = u(1− e−t/τp) (11)

This ODE assumption is useful in QBMM for applying source terms in a PDE using

operator splitting techniques. Additionally, τ p is the time required for the particle to reach

63% ( e−1
e

) of the free stream velocity, u. In other words, τ p characterizes the lag time

inherent in inertial particles based on the influence of drag from the carrier fluid.

C. Stokes Number

Following from the derivation of particle drag in the previous section, another crucial

constant that requires introduction is the Stokes number, St. This non-dimensional value

characterizes the relationship between the carrier and dispersed phases; more precisely it
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represents the ratio of dispersed particle and carrier fluid response times,

St ≡ Particle response time
Fluid response time

=
τ p
τ f

=
τ pU

Lf
(12)

where τ f ≡ Lf

U
is the characteristic fluid response time, U is a characteristic fluid velocity

(such as the maximum fluid velocity), and Lf is a characteristic fluid length scale (such

as a channel half-span or a vortex diameter). The Stokes number is critical because it

describes the responsiveness of dispersed particles to follow the carrier fluid behavior,

and it determines the regime for which the particle velocities may deviate from the fluid

velocities (St ≥ 1). This typically occurs when the particle density is larger than the fluid

density, ρp � ρf . Conversely, when the particle motion does indeed follow the carrier

fluid very closely (St� 1) then the particle and fluid velocities are the same, v = u.

D. Knudsen Number

The non-dimensional Knudsen number (Kn) represents the importance of

particle-particle collisions relative to free transport. It is therefore proportional to the

particle collision time (Kn ∝ τ c) and may be used to characterize fluid phases and

dispersed phases alike. In other words, the “particles” in general may pertain to fluid

molecules separated only by vacuum or to a dispersed phase of granular particles which

could be contained within a carrier medium.

The mean free path, Lc, is the average distance a particle travels before colliding

with another. To determine the frequency of collisions (1/τ c), consider a straightly

moving particle which will collide with any other particle’s center that lies closer than
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the diameter of the particle (Lp). This creates a cylinder with radius Lp (the circular area

is the collisional cross-section) along the motion axis and its projected cylindrical volume

is πLp2vc.4, 7 The cylinder grows in length at the rate of vc =
√

8Θ/π, which is the mean

relative velocity to the other particles (not to be confused with the speed of sound, c) and

depends on the kinetic (thermal) energy or phase temperature, Θ. The collision frequency

is then estimated by multiplying the projected cylindrical volume by the particle number

density, q,

τ c =
1

Collision frequency
=

1

qπLp2vc
(13)

For a granular fluid phase, Θ is appropriately termed the granular temperature,1, 7, 33 from

Kinetic Theory for Granular Flows (KTGF). An analogy can be made to the absolute

temperature, T , for molecular fluids in kinetic theory: Θ ⇔ kBT/mp, where kB is

the Boltzmann constant. When the ratio kB/mp → 1 and becomes unitless33 then the

“temperature” is no longer in Kelvin, but has units of velocity squared, [L2T−2], and is

favorable for describing granular phase velocity statistics. More usage of this value is

described later in Section §F. Temperature and Section §1. Inter-Particle Collisions.

1. Fluid Phase

The molecular fluid phase Knudsen number, Knf , describes the ratio of the

molecular mean free path to a characteristic length scale,34 L. Note that the molecular

mean free path in a gas is typically one or two orders of magnitude larger than the

molecular diameter, with molecular velocities on the order of hundreds of meters per

second. Liquids have a significantly smaller mean free path, usually on the order of the
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molecular diameter, which often makes them incompressible.5 Therefore, an appropriate

characteristic length scale (L) for Knf might be the length of a macroscopic body

immersed in the flow field, which could even be the diameter of a dispersed particle4

(L = Lp).

Knf ≡
Lc
L
≈ µf
ρfcL

=
Ma
Re

(14)

As Kn → 0 the regime approaches the hydrodynamic limit, i.e. a “true fluid”, that

is appropriately modeled by a single-valued Eulerian model due to its dense particle

population dominated by collisions, and the particle speed distribution is Maxwellian.35

Conversely, Kn → ∞ is the “free molecular” rarefied/dilute gas, collisionless, Knudsen

limit that Lagrangian methods are well-suited for because the particle velocity distribution

can become very sophisticated, i.e. difficult to describe with a continuous function or

polynomial, and so a piecewise approach is appropriate. However, the transition region

of finite Knudsen number, Kn ≈ O(1), between those limits is of particular interest in

the current work. Four unique regimes are classified for the Knudsen number based on

the characteristics of the Mach number in relation to the Reynolds number as listed in

Table 4.

Table 4. Knudsen Number Regimes4

Regime Name Knudsen range Mach and Reynolds relation
Continuum Kn < 10−3 Ma < 0.01

√
Re

Slip flow 10−3 < Kn < 0.25 0.01
√

Re < Ma < 0.1
√

Re
Transitional flow 0.25 < Kn < 10 0.1

√
Re < Ma < 3Re

Free molecular flow Kn > 10 Ma > 3Re
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2. Dispersed Phase

Alternatively, a dispersed phase Knudsen number, Knp, relies on a larger length

scale related to fluid structures or flow geometry. For low Mach numbers (Ma < 1), the

dispersed-phase Knudsen number is approximated as,1

Knp ≈
τ c
√

Θ

Lf
=

√
πLp

12s0M0Lf
(15)

where
√

Θ is taken to be the average particle velocity, and by rearranging this equation to

solve for the collision time yields,1, 36

τ c =
ΥLp

12s0M0

√
π

Θ
(16)

where 0 < Υ ≤ 3/2 is a model constant that corresponds to 1/Pr in the elastic limit

(ω = 1) known as the ES-BGK model.1 For the regular BGK model, simply Υ = 1 is

adequate. Let M0 be the particle volume fraction specifically for monodisperse spherical

particles,

M0 =
πLp

3N
6η

(17)

where N is the number of particles contained within a finite volume η. The volume

fraction will not typically be able to reach unity and is limited (0 ≤ M0 ≤ M0
∗) by

the maximum packing factor M0
∗ for the given shape of particles.

Figure 1 plots the volume fraction of Equation (17) and leads to an important

realization about the three coupled variables that determine the collision strength: volume
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Figure 1. Volume Fraction (M0) of Spherical Monodisperse Particles as a
Function of Number Density (q) and Diameter (Lp)

fraction M0, number density q = N /η, and particle diameter Lp. Equation (17) provides

conversion between all three variables, where any two of them can be used to compute

the 3rd, and thus any two are sufficient to determine the collision effects. The red dotted

curve in Figure 1 represents a constant quantity, 12τc
Υ

√
Θ
π

, in Equation (16), and explains

that by adjusting the particle diameter and volume fraction in conjunction, the collision

frequency remains unchanged. In a DPS model, typically the particle diameter and

particle number density are provided for closure; however, the volume fraction and

particle number density provide an alternative description that may be more applicable

to an Eulerian continuum approach.
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Collision effects are exemplified at very high packing factors, M0 → M0
∗ and this is

handled by the radial distribution model s0 term1, 37

s0(s) =
2− s

2(1− s)3
(18)

where s = M0/M0
∗ is a packing factor ratio and M0

∗ ≈ 0.63 is a good approximation

for the maximum volume fraction of close-packed spheres.1 A nearly equivalent radial

distribution function is proposed as,37–39

s0 =
1

1−M0

+
3M0

2(1−M0)2
+

(M0)2

2(1−M0)3
(19)

These collision models are only suited for particles of similar properties

(monodisperse) and consequently, more complex (polydisperse) inter-particle collisions

may require additional modeling considerations, especially between particles of varying

mass and/or diameter. Equation (16) appears in the collision model of the current work

and its implementation is described in §1. Inter-Particle Collisions.

3. Collision Intensity

It is important to realize that the collision frequency is better suited for numerical

purposes because it approaches zero, 1/τ c → 0, for a collisionless state, which arises

commonly. Additionally, high frequencies remain far from causing precision overflow

issues. The same does not hold true for τ c, which easily becomes infinite when no

collisions are present, and runs the risk of division by zero or other unintended and
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ill-defined numerical side-effects. This motivates the usage of 1/τ c exclusively in the

numerical approach.

However, a problem becomes apparent when attempting to perform averages on

these collision times or frequencies. Let 〈τ c〉 ≡
∑N

i=1 τ c,i be a spatial average over N

total cells, then it should be obvious that,

〈τ c〉 6=
〈

1

τ c

〉−1

(20)

In other words, the values are not linearly related and will produce different statistical

results depending on whether time or frequencies are employed. One solution that ensures

consistency between both approaches is to first take the natural logarithm (base e),

− 〈log τ c〉 =

〈
log

1

τ c

〉
= ˜〈Sc〉 (21)

which guarantees the same linear result, ˜〈Sc〉, regardless of whether time or frequency

values are used. This is a desired trait for performing statistical summations and the value

e
˜〈Sc〉 is bounded by the two non-negative extremes,

〈
1

τ c

〉−1

≤ e
˜〈Sc〉 ≤ 〈τ c〉 (22)

However, both time and frequency approaches still produce infinite values when τ c → ∞

or 1/τ c → 0, because − log (∞) = log (0) = −∞. Therefore, an alternative approach

is needed that can provide a meaningful statistical descriptor of the collision intensity
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without destroying the entire average when any local cell is in a collisionless state (or

close to it, τ c � 1).

Assuming that S̃c indicates the magnitude or intensity of collisions in some manner,

let the actual collision intensity be defined as

Sc(τ c) = log

(
1 +

1

τ c

)
(23)

where the frequency appears directly and an additional 1 has been added to ensure that

the collisionless state is consistent with zero intensity (Sc = 0), and that the intensity

always remains positive, Sc ≥ 0. This intensity is only slightly different from the simple

logarithm value, S̃c, with the greatest deviation occurring in the limit τ c →∞,

lim
τc→0

Sc → S̃c (24)

but guarantees a numerically well-defined value that is readily deployable into a

numerical code. The curve of Equation (23) is plotted in Figure 2 and it is straightforward

to approximate the statistical collision frequency using the spatially averaged collision

intensity,

1

〈τ c〉
≈ e〈Sc〉 − 1 (25)

Whenever a spatially averaged collision frequency or time, 〈τ c〉, is mentioned in the

current work’s results, it has been computed using Equation (25). To summarize, the

values of S̃c are more exact than Sc, but ill-defined at very low frequencies, such that
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Figure 2. Collision Intensity Function, Sc(τ c) Shown as Solid Line. Ensures
Very Low Frequency Collisions Approach Zero Intensity Instead of −∞

˜〈Sc〉 → −∞ destroys the average if even one cell in the ensemble experiences a

collisionless state locally. The approximated collision intensity is not exact at low

frequencies, 〈Sc〉 ≈ ˜〈Sc〉, but offers an alternative representation that is highly accurate at

high collision frequencies and provides a useful value for comparisons between statistical

analyses.

Lastly, as a side note, the function log (1 +X) has a known numerical deficiency for

very small X where 1 + X is rounded to exactly 1. This is probably not a critical issue,

but many libraries offer a log1p(X) function (or similar) to handle this by essentially

assuming that

log1p(X) ≡ log (1 +X) ≈ X
∣∣∣
X≈0

(26)

for small X .
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4. Dispersed Flow

The average distance between dispersed particles determines whether the flow is

dilute or dense.4 A dilute dispersed particle phase is dominated by drag and lift forces

from the carrier phase, while a dense medium is dominated by inter-particle collisions.

Comparing the particle drag response time with the collision time produces a ratio,

τ p
τ c
⇒ qπρpLp

4vc
18µf

⇒ 〈ρp〉Lpvc
3µf

(27)

where the bulk density 〈ρp〉 = (ρpπ
Lp

3

6
)q is the product of the mass of a single spherical

particle and the number density q. A dilute flow is characterized by a ratio less than unity

in Equation (27).4 The quantity τp
τc

is useful for plotting to determine which regions of the

flow are dominated by drag or collisions. Note that τ p is typically a constant, and so the

field is simply a scaled value of 1/τ c (which does vary significantly locally).

E. Phase Properties

The previous background sections described many constants (all non-dimensional)

that are used throughout this work and are summarized in Table 5. To summarize, two

Table 5. Phase Constants

Name Abbr. Description
Reynolds number Re Laminar vs. turbulent carrier flow
Stokes number St Fluid drag vs. particle inertia dominance
Knudsen number Kn Particle-particle collisions vs. free transport
Mach number Ma Convective vs. diffusive dominant transport
Prandtl number Pr Momentum vs. thermal diffusion rate

primary approaches – Lagrangian and Eulerian – are available for solving phases,5, 40
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and both approaches offer predictive capabilities optimized for certain Knudsen number

regimes. The Lagrangian approach best describes sparsely dispersed phases (Kn �

1), and the N-S equations only describe hydrodynamic fluids (Kn < 0.1), but the

no-slip condition is actually more strict (Kn < 0.001).5 The Boltzmann equation

offers solutions for all Knudsen numbers, and so too do the Quadrature-Based Moment

Methods (QBMM). However, QBMM offers a computationally less expensive approach

that bridges the modeling gap between the two Kn extremes, capable of modeling fluids

with finite Knudsen number, Kn ≈ O(1). Figure 3 depicts the entire range of Knudsen

numbers (similar to Table 4) and summarizes which approaches are most suitable per

regime.

Figure 3. Methods Most Suitable For Kn Number Regimes (Adapted From 1, 2)

A hydrodynamic fluid phase is well-suited to an Eulerian model such as the

Navier-Stokes (N-S) equation where the fluid molecules are closely spaced and the

molecular motion is dominated by collisions (Kn � 1). The basic assumption in

these approaches is that the molecules collide so frequently that they share information

rapidly and will always attempt to remain at maximum entropy (equilibrium). Therefore,

all molecules share stochastic behavior within a small finite cell volume and can be
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described with a minimal set of cell-averaged variables. One example can be seen in

the N-S equation where a single bulk velocity replaces all the thousands of molecular

velocities contained within a finite cell volume. The bulk velocity is obtained by spatially

averaging the ensemble of particle velocities contained within the cell. Another quantity,

the time averaged drift velocity, can filter out the small random fluctuating molecular

motion. Since the fluid is at the hydrodynamic limit (Kn � 1), each molecule’s drift

velocity should be nearly identical and is therefore also nearly equal to the bulk velocity.

More details can be found in Section §F. Micro and macro scales. Conversely, a more

sparsely distributed phase approaching the Knudsen limit (Kn � 1), behaves as a

rarefied/granular gas where collisions are infrequent. If a carrier fluid is present then the

dispersed particle motion becomes dominated by other influences such as the momentum

exchange between the carrier and dispersed phases.

1. Lagrangian phase

Historically, the Lagrangian method has been widely employed because it offers

a more straightforward/intuitive mathematical implementation. Point particles may be

tracked by their free-body motion under forces such as gravity, fluid drag, and other

body forces, F . This numerical approach is known as Discrete Particle Simulation

(DPS), and each particle individually retains its own state variables such as diameter,

velocity, acceleration, etc., but most distinguishably, the exact position, x, is stored and

no grid/mesh is required (other than for an Eulerian carrier fluid). The high detail of this

fully-resolved method allows it to be considered a Direct Numerical Simulation (DNS)
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for the particle phase,3 and is applicable to any Knudsen number though not optimal at

small Kn.

External forces exerted on a single particle can be summed using a free-body

approach to determine the particle acceleration,

∂vd
∂t

=

∑
F d

mp

(28)

Newton’s second law of motion will determine the particle’s acceleration ( ∂
∂t
vd), and

is then integrated to compute the change in particle velocity (∆v) and integrated once

more to determine displacement (∆x) at every time step. For sparse particle distributions

this is an optimal and highly accurate procedure because of its piecewise characteristics;

however, under conditions of dense particle dispersions (many particles per cell) this

procedure is computationally expensive and when including inter-particle collisions

may become computationally prohibitive. Additionally, the states of the particles in the

ensemble may become highly redundant and computationally wasteful. Furthermore,

instantaneous binary collision models33, 38, 41 become invalid at high densities and more

complicated for inelastic deformable particles. The solution time step size must also

become extremely small to resolve high inter-particle collision frequencies. Lastly, CPU

load balancing in High Performance Computing (HPC) applications becomes an added

challenge when modeling unsteady non-uniformly distributed particle concentrations

(clustering)26 with DPS.

22



2. Eulerian phase

Designing an Eulerian model capable of describing particles of a non-hydrodynamic

phase is a desirable goal for its aforementioned applications in the fields of science and

engineering. However, such a model requires considerable numerical erudition; for one,

the fictive particles are treated as population densities instead of discrete point-particle

entities. In an Eulerian model, the spatial domain is divided into finite volumes called

cells or elements that comprise a spatially discretized mesh or grid. These cells are

typically orders of magnitude larger than the fluid molecules or dispersed-phase particles

such that the cell contains a large sample size for a bulk average. The Navier-Stokes

equations are an example of a single-valued Eulerian model where a single instance

of each state variable is stored for each cell. A single-valued or monokinetic field42

specifically reserves only one velocity vector, v = {v1, v2, v3}, per cell. This reduces

the overall amount of information because the fluid molecule properties are inherently

spatially averaged over the cell volume. Consequently, the detailed properties of any

single molecule/particle are lost, but this is typically a safe assumption because the

information pertaining to a huge number of particles is superfluous and unnecessary

for making useful models and/or predictions. Instead, some overarching/macroscopic

descriptors effectively encompass the neglected information. These include cell-averaged

quantities such as pressure, temperature, viscosity, thermal conductivity, etc.43 that

greatly reduce computational costs without sacrificing too much accuracy. Any number of

particle properties (degrees of freedom) such as velocity,42, 44, 45 diameter,46 temperature,

23



angular rotation, etc. may be included in the list of internal state variables pertaining to

the population of particles.

A multiphase model that utilizes an Eulerian framework for both the carrier flow

and dispersed phase is called an Eulerian-Eulerian or two-fluid model. This offers

an immediate advantage because both phases can share the same grid and/or solution

discretization. Furthermore, if the particle phase has similar momentum properties as

the carrier fluid, St � 1, then both fluids may share the same velocity field and a

simplified “multi-species” approach need only track the diffusion of each species’ volume

fractions. However, for larger Stokes number flows (St > 1) where the dispersed

particle velocities may no longer match those of the fluid velocities, or in the case of a

rarefied fluid (Kn � 1), QBMM offers a solution to overcome the obstacles described in

Section §III. EULERIAN METHODS - BACKGROUND.

In conclusion, the computational requirements of an Eulerian model are largely

dependent upon the cell-count of the mesh and mostly independent of the particle

population/concentrations. Eulerian models provide good CPU load-balancing in

HPC applications even in the presence of highly non-uniform distributions of particle

concentrations. However, extremely rarefied gases or very dilute particle phases will not

benefit greatly when using a QBMM model where a Lagrangian model may be optimal.

Eulerian models are optimized for describing dense populations that can benefit from

exploiting statistical averages and the continuum limit,4 i.e. “information overload” is

avoided by retaining statistical descriptors only.
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3. Hydrodynamic Constraints

It is important to ascertain the minimum scale at which the hydrodynamic

assumption is valid for an Eulerian fluid.34 In the hydrodynamic limit (Kn � 1), an

infinitesimal volume, η, should contain approximately N ≈ 104 molecules for good

statistical averaging, and a single mole (1023 molecules) of gas at standard conditions

occupies about 22 liters of volume; therefore, the infinitesimal volume limit for a

hydrodynamic gas is4

η ≈ 22 · 10−3 104

1023
≈ 10−21[m3] (29)

which corresponds to a cube with a side length of approximately 0.1 microns. Keep

in mind that for applications operating on similarly small length scales (such as

micro-channels) a hydrodynamic formulation for the carrier-fluid itself may be

inaccurate, especially for rarefied gases.
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III. EULERIAN METHODS - BACKGROUND

An Eulerian approach uses a type of Cellular Automata system, exhibiting

sites (cell-centers) connected by lines (mesh), several state variables defined at each

cell-center, update rules based upon both local and neighboring cell information, and

assumes the discretized medium is “continuous”. The continuum limit assumption

neglects the fine details of noise and chaos at the smallest scales (such as the molecular

level) and assumes that the cell averaged values are smooth and infinitely divisible at

any point between the cell centers. More specifically, a finite-volume (FV) method

numerically discretizes the cells into finite volumes and the cell-centers inherit

spatially-averaged state values. This reduction in information can significantly lessen

computational costs (and “information overload”), but imposes certain limitations

upon the model. Theoretically, the Navier-Stokes equations could be substituted

by a Lagrangian molecular dynamics (MD) model to achieve the same results, but

the computational requirements are presently prohibitive for large scale geometries,

especially for liquids.5 Eulerian FV approaches offer statistically averaged information

that provides adequate modeling capabilities in many hydrodynamic fluid applications,

but requires extra consideration for non-hydrodynamic phases, specifically the

discretization of velocity phase space.

A. Particle Trajectory Crossing

Considering the case of a multiphase flow with a low inertia particles (St � 1), the

dispersed particles will rarely deviate from the fluid streamlines because their velocities,
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v(t,x) ≡ {v1, v2, v3}, obediently conform to the carrier fluid velocity, u(t,x) ≡

{u1, u2, u3}, dominated by drag forces. Therefore, collisions also occur very rarely

and the particle velocity field may be considered “identical” to the fluid velocity field

(v ≡ u). Alternatively, in the case where the particle inertias are large (St > 1), the

particles may begin to deviate from the fluid streamlines and a unique particle velocity

field must be distinguished from the carrier fluid velocity field, v 6≡ u. In other words, the

particle phase is given a velocity state (v) that differs from the carrier-fluid velocity (u),

and so additional governing equations are required for closure of v.

Figure 4 depicts the onset of particle trajectory crossing (PTC), that is, when

particles do not collide, but pass in close proximity to one another and cross paths. A

finite cell volume may be orders of magnitude larger in size than the distance between

the particles, and any attempt to isolate these unique particle velocities through mesh

refinement is impractical, i.e. it is not feasible to assume that each cell would contain

no more than one unique particle at any time. Consequently, the velocities of each

 

 

 

v dv 

dt 

Figure 4. Fluid Streamlines and Particle Trajectory Crossing
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particle must somehow be retained if PTC is to be captured properly, and the fundamental

assumption of a single-valued Eulerian model must be reconsidered. A single-valued

(monokinetic) velocity field is insufficient at describing the multivalued nature of

interpenetrating particles that may exist within a single cell. A probability density

function (PDF) is one method of defining a diverse ensemble of particle velocities (or

any state for that matter). If the variance (σ2) of the velocity statistics (which measures

the diversity of particle motion in a given cell volume) is zero, σ2 = 0, then all the

particles move at the same velocity and a single-valued assumption is valid. However,

diverse particles within close proximity to one another (σ2 > 0) will require a multivalued

velocity state space to retain the important diversity.

A hydrodynamic model benefits from a monokinetic cell-averaged velocity field

(even with a non-zero velocity variance) because the particles are collision-dominated

and these collisions restrict the movement of particles; conversely, sparse dispersions of

particles are not nearly as spatially confined by collisions and may exhibit substantial

particle displacements appearing as self-diffusion at the macroscale. Additionally, the

macroscopic values such as: pressure, temperature, and especially viscosity, lose their

significance in the presence of strong PTC, i.e. a non-hydrodynamic phase, Kn > O(1).

Figure 5 shows a domain in which two right-bound incoming collisionless (Kn �

1) particle jets are aimed to cross paths with the goal being to create a large velocity

variance (σ2 > 0) at their intersection. Figure 5(a) shows the inadequacies associated

with a single-valued Eulerian model where the two very different y-velocities become

averaged to exactly zero at the intersection, resulting in a delta shock solution; see also
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(a) DPS (b) Eulerian 1-point

Figure 5. Particle Volume Fractions for a Very Sparse Flow (Collisionless,
Kn→∞) with (a) Hydrodynamic Model Showing Unrealizable PTC, and (b) DPS

Model Showing Realizable PTC3

Kah et al.12 This might be expected for a hydrodynamic fluid, but not for a sparse fluid!

Figure 5(b) on the other hand, employs a collisionless Lagrangian DPS model that

easily predicts the correct physical solution at the intersection of the two sparse jets. An

adequate Eulerian model must retain multiple instances of the velocity vector within each

cell (known as a multi-valued model) similar to how the DPS method stores velocities

for each individual particle, and the derivation of such a method is described in the next

sections.

B. Probability Density Function

To effectively model the transport of any quantity as a continuous state, the

accommodating theoretical framework must be carefully selected. A fluid model must be

capable of retaining an adequate range of information necessary to describe the details of

a possibly diverse and complex particle population describing the medium. A probability

density function (PDF), f , of a particle ensemble offers the ability to represent all of the

diversity for any particle attribute(s). f can be an exact description of the discrete particle
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ensemble by employing piecewise Delta functions22 equivalent to a Lagrangian/DPS

framework, but more importantly, for very large populations the continuum limit

assumption allows the PDF to be described by a smooth polynomial or some general

continuous function. The PDF may have any number of desired variables, i.e., degrees of

freedom, f(t,x;v, ξ), where t is time, x is the position vector, v is the particle velocity

vector, and the vector ξ contains any additional optional values, of length Q, necessary to

encompass desired internal states such as particle diameter (Lp), pressure, temperature

(T ), angular velocity, etc. Numerically, time and position (t,x) are discretized by a

time-step and mesh respectively, therefore, they are considered external parameters of

the function f , while the other state vectors (v, ξ) remain independent coordinates of

the PDF’s internal state space. For clarity, a semicolon is used to distinguish the external

from the internal coordinates in the function parameter list, and the external coordinates

are implied when omitted. Note that the discretized grid cell volumes must be small

enough to resolve mesoscale gradients, but large enough to contain an adequate ensemble

of particles for good statistical sampling. Then the continuum limit assumption ensures

that any infinitesimal point in-between the cell centers has a well-defined value also.5

The state spaces (Ω) are the domains which encompass the respective state vector

coordinates and are denoted by a matching subscript,

x ∈ Ωx ≡ RD v ∈ Ωv ≡ RD ξ ∈ Ωξ ≡ R+Q (30)
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where D is the total spatial dimension being modeled. Note that for velocity v and spatial

coordinate x, the domain includes all real numbers RD, but for vector ξ, individual

domains may only extend to positive real values R+ being appropriate for particle

diameters (Lp), Kelvin temperatures (T ), absolute pressures, etc.

To summarize, the function f offers a detailed description of any number of

desired particle attributes. The parameters to the function act as input coordinates of

the state-space, and the corresponding probability of finding particles matching all the

specified input coordinates is returned by f(...). Therefore, the function f represents a

density of every possible coordinate set lying in the domain Ω and must be integrated over

any/all coordinates to obtain the desired cumulative/total statistic. The units chosen for

f are commonly: particle population number, volume,47 or mass (all per unit volume

of all state spaces). In the present work the particle volume is chosen because when

integrated properly it lends itself to units of “volume fraction” (φ), which keeps the

values non-dimensional and always ranging from 0-1. In conclusion, the actual units of

f(t,x;v, ξ) are “total particle volume (ψ) per unit spatial volume dx per unit volume dv

per unit volume dξ at time t”. Note that the term “volume” is not limited solely to spatial

volumes because it also applies to internal coordinate volumes of the respective internal

state-spaces Ω.

1. PDF Integration

More explanation is required to describe the different ways in which the PDF may

be integrated because it has a diverse set of internal coordinates. By convention, the entire
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state-vector containing all the sub-vectors is defined as {t,x; ζ}. These correspond to the

time coordinate t, spatial coordinate x, and an internal state-vector ζ which includes the

previously described vectors ζ ≡ {v, ξ}. Together, these vectors comprise the complete

and equivalent coordinates for the density function f of a particle population,

f(t,x; ζ) ≡ f(t,x;v, ξ) (31)

It is also appropriate to say the units of f are defined as the “volume of particles per unit

volume dx per unit volume dζ”. To request the particle volume fraction from f , one

simply needs to integrate f with respect to the internal coordinates v and ξ; yielding the

particle volume fraction at event (t,x) contained between the integrated limits [v, v+dv],

and [ξ, ξ + dξ],

φ(t,x) =

∫ ξ+dξ

ξ

∫ v+dv

v

f(t,x;v, ξ)dvdξ (32)

where φ(t,x) is the volume fraction, obtained by integrating over the internal state space

(v, ξ), but not over the external state space (t,x). In this case φ(t,x) is a volume fraction

(or particle volume per unit spatial volume) at location x at time t (but other units are also

appropriate/possible).

Subsequently, further integration of φ(t,x) over coordinate dx can be carried out to

obtain the actual volume of particles, ψ, contained within a spatial volume between limits
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[x, x+ dx].

ψ(t)

∣∣∣∣
x

=

∫
Ωx

φ(t,x)dx ≡
∫

Ωx

∫
Ωv

∫
Ωξ

f(t,x;v, ξ)dvdξdx (33)

Given that a finite cell volume is defined by the edge lengths (dx ≡ dx1 · dx2 · dx3). The

units of ψ(t)|x are described as “volume of all particles contained between locations x

and x + dx at time t”. The particle number density may be approximated by dividing the

volume fraction φ by the volume of a single particle (ηp),

q(t)

∣∣∣∣
x

=

∫
Ωx

φ(t,x)

ηp(t,x)
dx ≈ ψ(t)

ηp(t)

∣∣∣∣
x

(34)

where the approximation on the right only holds in the case that the particles are

monodisperse, i.e. particle volume ηp is constant within dx.

It is possible to bound the limits of integration to capture the probabilities of

particles that lie within certain intervals of desired traits. For clarity, a 3-D example

is shown below which obtains the volume fraction of particles with any velocity and

any diameter, by choosing the maximum extent of the limits of integration for each

corresponding space’s “volume”: dv ≡ dv1...dvD or dξ ≡ dξ1...dξQ. In this example

D = 3 and Q = 1 (i.e. particle diameter as ξ1),

φ(t,x) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(t,x;v, ξ)dv1dv2dv3dξ1 (35)
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while t and x remain as external coordinates to the function φ(t,x). The limits of

integration can be restricted independently as required.

2. PDF bins

The continuous nature of the analytical PDF represents only a theoretical smoothed

representation of a particle distribution, but in reality the particles are discrete such

that the actual physical PDF will not be perfectly continuous. Experimentally, a PDF is

obtained by measuring the unique particle properties and is limited by the measurement

resolution. A polydisperse particle phase in which the particle diameters (ξ1) vary may

be plotted as a histogram with a finite number of bins as shown in Figure 6. This typical

Figure 6. Example of Experimentally Obtained PDF of Particle Diameter f(ξ1)

distribution, f(ξ1), for particle diameters may be obtained by sieving with screens of

varying fineness.48 Thus the width of the bins is determined by the experimental sieving

equipment. Similarly, other experimental measurements (velocity, temperature, pressure,

etc.) will exhibit similar resolution restrictions on the corresponding PDF’s. Probability

distributions exist for all of the internal state space dimensions and experimental
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measurements can produce corresponding histograms.Typically these distributions are

normal (Gaussian), log-normal, or Rosin-Rammler.20

C. Boltzmann Equation

In the present work, only the particle velocities are being tracked, such that ξ = {}

is empty, and the particle diameters are assumed equal (monodisperse particle phase);

therefore, f(t,x;v) describes the desired degrees of freedom (the input coordinates)

sufficient for the current purposes.

ζ ≡ v = {v1, v2, v3} (36)

Ludwig Boltzmann presented a PDF transport equation in 1872 which is valid for a

function, f , with any degree of freedom. This fundamental kinetic governing equation is

known as the Boltzmann Equation,7, 41 and the specialized version for f(t,x;v) is given

as,

∂f

∂t
+ v

∂f

∂x
+

∂

∂v
· (v̇f) = C (37)

The PDF is the central component within the Boltzmann equation, and it provides

the foundation upon which many Eulerian CFD transport models operate. Even the

DPS formulation is a method of solving the Boltzmann equation! Furthermore, the

Navier-Stokes equations can be derived from the Boltzmann equation by assuming

a single-valued velocity field. However, a useful Eulerian model for large Knudsen

or Stokes numbers must make no assumption that restricts the continuous phase to a
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single-valued solution. A multi-valued Eulerian solution is the motivation of this work

and a highly desirable capability. If the coordinates of f are restricted to velocity and

particle size, then the equation is known as the Williams equation.11, 12, 49, 50 If instead

f is normalized to represent particle population, the equation is termed a population

balance equation (PBE).24, 47, 51 Solving the complete continuous Boltzmann equation

is an extremely difficult mathematical procedure and certain assumptions about f will

make the kinetic equation manageable to solve numerically. One method is to employ a

quadrature decomposition that discretizes the distribution f into a set of node points.

D. Discretized Nodes

Suppose that a set of attributes are desired to represent all internal degrees of

freedom for a single particle such that a vector, {v̂1, v̂2, v̂3, ξ̂, ...}, sufficiently describes

the particle within a cell at time and position, t,x, (which are external parameters). Let

the corresponding PDF have the same input coordinates and an associated output weight

such that φ = f(v̂1, v̂2, v̂3, ξ̂1, ...). One method of discretizing f is to store these arbitrary

inputs with their corresponding output weight, thus forming a node,

{ζ̂;φ} ≡ {v̂1, v̂2, v̂3, ξ̂, ...;φ} (38)

Now if f is a very diverse PDF, then one should consider storing multiple instances of

these nodes to increase the resolution of the internal state space and encompass a better

representation of the distribution. Let these node vectors be grouped to form a row-matrix
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representation,



U V W ξ1 Weight

1 v̂1,1 v̂2,1 v̂3,1 ξ̂1,1 ... φ1

2 v̂1,2 v̂2,2 v̂3,2 ξ̂1,2 ... φ2

...
...

...

B v̂1,B v̂2,B v̂3,B ξ̂1,3 ... φB



Internal variables (1...D, 1...Q)

Node, α

= N (39)

where each row, α = 1, ...,B, describes a single “node” (instance of the multi-valued

representation), and each column vector, {U ,V ,W , ξ1, ...}, describes a dimension of

the internal state space from: 1, ...,X . The total degrees of freedom, X ≡ D + Q,

represents the total dimension of the internal state space of f . The final column (X + 1)

is reserved to store the weights, φ, which are the probability densities associated with

finding a particle with the attributes in that same row, φα = f(v̂1,α, v̂2,α, v̂3,α, ξ̂1,α, ...).

The discrete instances of the coordinates (denoted by the hat) are called abscissas and

multiple instances of the nodes are stored where B is the customizable number of allotted

nodes. Let this multi-valued node representation of f be termed matrix N(t,x) which

exists for every coordinate in the mesh. Consequently, B defines the resolution of the

discretized PDF, and a total of B · (X + 1) variables will be stored in N.

In essence, the discretized values in N represent Dirac delta functions that

can be used to construct f in a piecewise manner. Unlike a direct solver (DPS), a

quadrature-based discretization of a phase space into only B total nodes may be very
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sparse,52 B � N , compared to the actual diversity present within the cell’s population

containing N particles, but nonetheless is still very capable of predicting flows. In fact,

the nodes are most effective when they are representative of a large number of particles.

Retaining at least B = 2 nodes allows particles to cross paths (PTC), which is why

flows with large Stokes number require a multi-valued (B > 1) approach. Increasing

the number of nodes, B > 2, will allow for more diversity within any cell, because

it effectively allows for more bins of a histogram or a more refined representation of

the particle population. In the present work, a two node system (β = 2) is considered

for each dimension (B = βD), known as a 2-point quadrature approximation, and its

implementation is described throughout the remainder of the paper.

It should also be mentioned that the choice of Dirac delta functions as the quadrature

basis is made for simplicity, and a more complex Multi-Gaussian (MG)53–55 quadrature

method is also possible in Extended QMOM (EQMOM). In an MG approach, the nodes

are represented by Gaussian distribution functions in the velocity phase space.

E. Quadrature Approximation

In its continuous form, the PDF is extremely difficult to solve in a Partial Differential

Equation (PDE) such as Equation (37), but as explained in the previous section, nodes

in matrix N provide a discretized representation of f which is a starting point for a

numerical approach. Employing β-point quadrature approximations to represent the

polynomial f , effectively reduces the PDF to a set of abscissas and weights as depicted in

Figure 7. Recall that the choice of this basis function is entirely for simplicity, and is by

38



no means limited only to Dirac Delta functions. Essentially, a quadrature process exists

(see Section §E. Moment Inversion) that elects representative node points to describe the

diverse population.
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Figure 7. The x-velocity (v1) 1-D PDF Distribution Represented (a)
Continuously and By (b) β = 3 Approximation

One process of representing a continuous function f into β number of discrete

points, is known as a β-point Gaussian Quadrature. This method automatically situates

the abscissas and weights to best retain the area under the curve and the general shape of

the curve. As β → N , the quadrature approximation fully resolves the state-space for N

particles in the ensemble. However, for very large N , a continuum limit assumption can

be made to treat the PDF as a continuous function. This is advantageous because if the

continuous form of f is a polynomial of order 2β−1 or smaller, then the β-point Gaussian

quadrature approximation of the polynomial is exact and saves computational costs.

Otherwise the quadrature representation attempts to approximate the shape of higher

order polynomials, f , to the best of its abilities. The abscissas correspond to the zeros

of a Hermite polynomial of order β, and in general these are the zeros of an orthogonal

polynomial where the unknown weighting function is the PDF.56
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Let v̂ be the abscissa matrix (see Equation 39), and let each dimension of velocity be

represented by a column vectors: U ,V , andW such that,

{v̂1,α, v̂2,α, v̂3,α} ≡ {Uα, V α,Wα} (40)

with associated weight φα. Figure 7 (b) shows an example of the x1-dimension of the

velocity space, where β = 3 instances of Uα comprise the discretized PDF. Not depicted

are the x2 and x3 dimensional abscissas V and W which could also have up to β = 3

abscissas each.

F. Micro and macro scales

The renowned hydrodynamic fluid assumption operates on the concept that the

microscale motion can be disregarded without greatly sacrificing the ability to predict the

macroscale behavior. For a molecular fluid, the microscale velocity, v, is that pertaining

to stochastic Brownian molecular motion or temperature, and appears directly in the

Maxwell-Boltzmann distribution. Fluctuations at the microscale are small enough

(compared to the macroscopic velocity) that microscale transport (self-diffusion57, 58)

caused by the Brownian motion can usually be neglected in the hydrodynamic limit

(Kn � 1), especially for a liquid. In fact, for isotropic systems, the average motion

is zero because there is no preferred direction for the particles to move, but the mean

square displacement does increase very slowly over time, resulting in some self-diffusion7

many orders of magnitude smaller than the fluid length scales of interest. Essentially,

collision-dominated particles remain locally confined even when exhibiting very large and
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random instantaneous velocities. One way to distinguish the prominence of self diffusion

is to consider a drift velocity v̄ of the i’th particle as the time average velocity over a

large enough time period (∆t = t1 − t0 ≈ LV /U) such that the microscale fluctuations in

v after numerous collisions are filtered out,

v̄i =
1

∆t

∫ t1

t0

vi(t)dt =
xi(t1)− xi(t0)

∆t
(41)

Alternately, the spatial displacement of the i’th particle, ∆xi, over the same time period,

∆t, can also determine the drift velocity.

As an example, consider that a molecular fluid in hydrostatic equilibrium at rest

would exhibit v̄i ≈ 0 even if |vi| � 0 at high temperature, T . Consider another

variable, the bulk velocity, 〈v〉, as the spatially averaged value over a small volume, η,

that encompasses a large ensemble of N particle velocities,

〈v〉 =
1

η

∫
vi(x)dx =

1

N

N∑
i=1

vi (42)

This bulk velocity would also be nearly zero, 〈v〉 ≈ 0, for the same hydrostatic

example fluid. Notice that v̄i is a temporal average of a single particle and 〈v〉 is a spatial

average of an instantaneous particle ensemble, yet both are nearly zero. This leads to an

interesting conclusion for the collision-dominated hydrodynamic fluid: if the particles are

indeed dominated by collisions, not only must all particles in the ensemble have nearly

the same drift velocity, but their drift velocities must also nearly equal the instantaneous
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bulk velocity,

〈v〉 ≈ 1

N

N∑
i=1

v̄i ≈ v̄i (43)

because N is a large sample size of stochastic particles. It then follows that the PDF of

particle drift velocities (residing within volume η) is approximately a Delta function,

f(v̄) = δ(v̄ − 〈v〉), yet the instantaneous f(v) could be a Maxwell-Boltzmann

distribution for a molecular fluid. Therefore, a hydrodynamic fluid benefits by not directly

resolving the microscale velocities, and instead encompasses the microscale behavior into

simplified scalar quantities such as fluid viscosity (µ), temperature (T ), and pressure.

All of these assumptions are still valid when the fluid undergoes bulk macroscopic

currents, i.e. 〈v〉 6= 0, and the first row of Figure 8 depicts all the distributions and

variables so far described in the hydrodynamic limit (Kn � 1). In order to safely neglect

self-diffusion, the Brownian motion must be very small,4 i.e. the drift velocities must be

nearly the same as the bulk velocities per Equation (43). Conversely, when collisions

are negligible or infrequent, the drift velocity and fully resolved velocities become

synonymous, vi ≡ v̄i, when there are no collisions (or other external forces) to alter

the particle trajectories. If PTC is indeed dominant, then the particles are less spatially

constrained such that |v̄i − 〈v〉| � 0. In other words, v̄ from Equation (41) may vary

widely for individual particles contained within a small volume η. As a consequence,

the instantaneous f(v) may be any arbitrary non Maxwell-Boltzmann distribution,

and the drift velocities, f(v̄), are no longer confined to a Delta function either. When

self-diffusion becomes prevalent, f(v) is dictated by the terms on the left hand side of
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Figure 8. The Molecular (and Granular) Microscale and Macroscale
Relationships Within Various Knudsen Regimes

Equation (37), therefore the real challenge is in determining the macroscopic behavior of

these sparse particle concentrations characterized by Kn > O(1).

In conclusion, as Kn → ∞, it is insufficient to simply describe the macroscopic

behavior with the bulk velocity, v 6= 〈v〉, and the concept of hydrodynamic viscosity

breaks down. In fact, v must be represented using a PDF of the velocity state-space

and a collision model must replace the viscosity assumption. However, the concepts

of temperature and pressure retain much of the same meaning in the granular sense.1

QBMM attempts to resolve the microscale motion with a multi-valued velocity field and

offers a collision model that can seamlessly operate in any Knudsen regime.
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G. Viscosity Limitations

The viscosity of a hydrodynamic fluid is related to the momentum transfer caused

by collisions between molecules. The viscosity of a gas is proportional to the mean

relative molecular speed, density, and the mean free path as, µf ≈ |vc|ρfLc, respectively.

However, as the density increases, the mean free path decreases proportionally, therefore

viscosity is actually independent of density and pressure.58 Furthermore, it is known

that the molecular speeds in a fluid at the hydrodynamic limit (Kn � 1) and at thermal

equilibrium exhibit a Maxwell-Boltzmann distribution.7 The velocity-space distribution

corresponding to the Maxwell-Boltzmann distribution is the Gaussian distribution,

f eq(v), which arises from the stochastic behavior of the particles.33, 43 For a given

variance (σ2) in a PDF, entropy is maximized by a Gaussian distribution centered about

the mean velocity, and a system of collision-dominated particles left unperturbed will

naturally return to that velocity distribution over time. Maximum entropy is attained more

quickly when Kn → 0 because the increased frequency of collisions provide a rapid

mechanism for the diffusion of information,

lim
Kn→0

f(v)→ f eq(v) (44)

As a result, the Gaussian distribution is a steady-state solution to the Boltzmann

equation,52 and any deviation from equilibrium, f(v) 6= f eq(v), will introduce unsteady

effects that depend on the strength of the collision term. Note that Kn = 0 is a theoretical
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limit in which the molecules would always be in contact (colliding) like a tightly packed

solid where information is shared instantaneously; a physical impossibility.

At the opposite extreme, two unique scenarios will produce a Knudsen limit

“fluid” (Kn → ∞). Either the particles are extremely sparse or they do not exhibit

variance (σ2 = 0); both cases are collisionless (τ c → ∞). However, an extremely

important realization is that the velocity PDF distribution will always seek to return to

the steady-state Gaussian distribution of maximum entropy, f eq(v), regardless of the

Knudsen number! The limiting factor is the collision frequency that allows information

between particles to be shared and diffused, and this frequency dictates the duration

required to reach the steady-state Gaussian distribution. The collision time, τ c, represents

the average time between collisions and is therefore proportional to the Knudsen number

(τ c ∝ Kn) and inversely proportional to the collision frequency (1/τ c). In other words,

as Kn increases, the distribution, f , can remain further from equilibrium for longer

durations because the mechanism for returning to equilibrium (collisions) becomes a

less dominant factor. Accordingly, a collision model which is valid for any Kn may

be derived by assuming that the particles will always attempt to achieve the maximum

entropy distribution, f eq(v), albeit more slowly when τ c is larger. As will be shown later

in Equation (118), the collision model does indeed depend inversely upon τ c.

The inter-molecular collisions are directly responsible for the viscosity in

hydrodynamic fluids and to demonstrate this, consider the most basic isotropic case.

For isotropic collisions, the steady-state Gaussian distribution should be observable

at any scale that encompasses an adequately large ensemble of molecules. Consider a
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finite volume with non-dimensional width ∆x2 = 1 in the y direction, and the random

molecular velocity u1 with standard deviation σ = 0.1 in the perpendicular x direction.

Figure 9(a) shows the random distribution of molecular velocities along the cell’s entire

spatial dimension from y = 0 to y = 1 at hydrostatic equilibrium. The right side of

Figure 9(a) shows the corresponding histogram distribution of molecular velocities of

the entire cell and the red curve is an exact Gaussian distribution. Note that zooming-out

further to encompass a larger domain would yield the same self-similar distribution.

Now consider the next case of a 2-D Couette flow where a gradient ∂u1
∂y
6= 0 is

present. One would expect that the molecular velocities will quickly conform to their

neighbors due to localized momentum transfer, i.e. the Gaussian distribution may be

more pronounced at the smallest scales, but the velocity gradient will be very apparent at

larger scales when zooming-out. In other words, the distribution, f(u1), across the entire

cell from y = 0 to y = 1 becomes flattened as shown in Figure 9(b), and even though it

may still be symmetrical it does not provide the maximum entropy that only a Gaussian

distribution can. Next, consider also a Poiseuille flow in which the fluid experiences a

macroscale second-order gradient∇2u = ∂2u1
∂y2
6= 0. In this case, the cell’s velocity

distribution becomes skewed as shown in Figure 9(c) and f(u1) is no longer self-similar

because it depends on the spatial scale. Both flows are examples of non-equilibrium

distributions, f(u) 6= f eq(u), that will cause an unsteady response if left unperturbed

as the molecules attempt to return to maximum entropy. In conclusion, the tendency of

molecules to seek the maximum entropy distribution (Gaussian) is manifested as viscosity

and this phenomenon is the source of the viscous shear force. A perturbation method has

46



0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4
Equilibrium

y

u
1

-0.4 -0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2
Gaussian

u
1

P
ro
b
(u
1
)

(a) Gaussian equilibrium velocity distribution, feq(v)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1
 u  0

y

u
1

-0.5 0 0.5 1
0

0.05

0.1

0.15

0.2
Flattened

u
1

P
ro

b
(u

1
)

(b) 1st-order gradient produces an unsteady flattened distribution

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1
 u2  0

y

u
1

-0.5 0 0.5 1
0

0.05

0.1

0.15

0.2
Skewed

u
1

P
ro

b
(u

1
)

(c) 2nd-order gradient produces an unsteady skewed distribution

Figure 9. Velocity Distributions for Various Macroscale Gradients

been developed as a collision model based purely upon these statistical mechanics and

may also be extended to both sparser flows, Kn > O(1), and granular particles alike with

reasonable effectiveness. More details about this collision source term are described in

Section §1. Inter-Particle Collisions.
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IV. MULTI-VALUED EULERIAN MODEL

As previously introduced for a multiphase flow, if the fluid-particle relationship is of

a low Stokes number (St � 1), the dispersed particle trajectories (and thus velocities)

will closely adhere to the carrier flow streamlines. Conversely, if the relationship is of

a higher Stokes number (St > 1), the larger inertia of the particles will allow them to

stray and diverge from the path of the fluid streamlines. This can lead to PTC which

cannot be represented by a single-valued, monokinetic, Eulerian model in which only

one (cell-averaged) instance of each velocity variable is present (β = 1 node).1

The Quadrature-Based Moment Methods (QBMM) overcome this issue by allowing

multiple nodes of particles to be present at each discretized location in space, i.e. a

multi-valued field. The Lattice Boltzmann Method (LBM) is similar to QBMM, but

LBM uses fixed abscissas while varying only the weights and has shown success in

discretizing the velocity state space.6, 27, 43, 44, 52, 59, 60 QBMM provides additional flexibility

because it allows the abscissas to shift their values as needed and their quantity is

adaptable depending on the desired PDF resolution. Another general tool is Monte Carlo

simulation,6 but this randomized “brute force” approach can be expensive, and DPS may

even fit into this category. Lastly, Smoothed Particle Hydrodynamics (SPH) is another

contender for dispersed phases that is quite useful for modeling free surfaces.27

A. Moments of a PDF

The motivation behind the QBMM family is to develop a system of transport

governing equations61 using Equation (37) for the continuous PDF, f . However, a
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few simplifying assumptions must first be made to discretize f into a set of nodes

which are appropriate for numerical modeling. Information about the PDF’s exact

curve is representable through a Gaussian quadrature approximation, but “moments”

of f also retain useful information about the PDF. These moments are constructed by

weighting/skewing the integration of f as shown in Equation (45) by using multiples of

the internal state variables as factors.

Let D=3 and Q=0 describe a PDF with exclusively three particle velocity

components, v, such that the PDF is fully described as f(t,x;v). The velocity moment

M
(γ)
l1,l2,l3

will be defined as,

M
(γ)
l1,l2,l3

(t,x) =

∫
vl11 v

l2
2 v

l3
3 f(t,x;v)dv =

∫
hl1,l2,l3 f(t,x;v)dv (45)

where the subscript integers l1, l2, l3 ≥ 0 (of which there are X = D + Q subscripts

in total) represent the arbitrary multiplicities of the dth abscissa which define the test

function hl1,l2,l3 = vl11 v
l2
2 v

l3
3 =

∏X
d=1 v

ld
d for construction of the moment set; see

Equation (93). The sum of the multiplicities, γ = l1 + l2 + l3 + ... =
∑X

d=1 ld, is simply the

order of the moment (written in the superscript). Limiting the choices of l1, l2, l3 strictly

to integers produces a Gaussian Quadrature52 which is the highest accuracy representation

available, as opposed to choosing non-integers.47, 62 Note that a simple moment is defined

as having only one nonzero l1, l2, or l3, otherwise it is known as a mixed moment when at

least two indices are non-zero.
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B. Moment and Distribution Properties

Each moment describes a specific feature of the original detailed PDF, f(t,x;v, ...)

exactly. M (0) describes the “area under the curve”, M (1) is the mean, M (2) describes the

energy (thus also the variance), M (3) pertains to the skew,63 and higher orders represent

Kurtosis. The higher orders do not have standard names and may not always represent

physically intuitive values, but may provide useful information describing details about

the shape of the PDF. Theoretically, a sufficiently large set of moments should be able

to describe any arbitrarily sophisticated PDF. Therefore, a moment set, vectorM(t,x),

offers an alternative representation of the information contained in f(t,x; ...).

Additionally, the variance and granular temperature (σ2 ≡ Θ) are identical, so

both are inherently positive and describe how spread-out the distribution f is. The Dirac

Delta function uniquely has zero variance (Θ = 0) where all the particles conform to a

single value. Equation (46)1 describes up to the 2nd-order simple velocity moments of

f(t,x;v),

M
(0)
000 ≡M (0) ≡

∫
Ωv

f(v)dv = 〈φ〉

M
(1)
l1l2l3
≡M

(1)
d ≡

∫
Ωv

vdf(v)dv = 〈φ〉 〈vd〉

M
(2)
l1l2l3
≡M

(2)
d ≡

∫
Ωv

v2
df(v)dv = 〈φ〉

(
Θd + 〈vd〉2

)
(46)

where 〈φ〉 ≈
∑β

α=1 φα is the sum of all discrete node weights and 〈vd〉 ≡ M
(1)
d /M

(0)
d is

the cell-average velocity in dimension d. The simplified notation with a single subscript

d uniquely identifies a simple moment of order γ in dimension d where only the vd
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component of v appears as a product on f(v) over the entire velocity state space,

Ωv. Granular temperature vector Θ, described in Equation (65), corresponds to the

D total components of the diagonals of the velocity covariance tensor, θ, described in

Equation (66).

1. Limitations

An Eulerian representation of particles has some inherent limitations as compared

to the “pinpoint” accuracy of a Lagrangian method. Since the Eulerian particles are

contained within the finite cells of a mesh/grid, the local f inherently describes the

ensemble of N particles contained in that cell. Consequently, even if the computational

power were available to describe each particle with a its own node (β = N ), the exact

particle positions are still unknown. In other words, the velocity distribution f(t,x;v)

could be known exactly for all v, but the particle positions themselves are not precisely

defined like in a DPS model, and are only as resolved as the cell center location, being

contained somewhere within the bounds of the local cell dimensions: [x,x+ dx].

Furthermore, the state of any represented Eulerian particle has the ability to

influence neighboring cells through convection/flux transport terms of the governing

equation. In fact, particles may exist partially among multiple neighboring cells

simultaneously while transitioning between them in a probabilistic continuum limit

description. The continuum approach mandates that the particle probability gradually

shifts from one cell to another during Eulerian transport (depending on the CFL number),

and is best at modeling high concentrations of particles.
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C. Moment Transport

The main purpose and motivation behind utilizing moments is for their ability to

be transported through space and evolved over time with a set of hyperbolic PDE’s.

More specifically, each moment has a unique transport equation (derived from the

Boltzmann Equation), effectively creating the mass, momentum, energy, and higher order

conservation equations needed to evolve the PDF (f ) as an Eulerian continuum. The

moment transportation equations are obtained by multiplying both sides of the Boltzmann

Equation (37) by the abscissas v̂ raised to the l1, l2, l3 exponents, and then integrating

both sides44 as demonstrated in Equation (45). This yields an integro-differential

equation,

∂

∂t
M

(γ)
l1,l2,l3

+
∂

∂x1

M
(γ+1)
l1+1,l2,l3

+
∂

∂x2

M
(γ+1)
l1,l2+1,l3

+
∂

∂x3

M
(γ+1)
l1,l2,l3+1 =

l1v̇1M
(γ−1)
l1−1,l2,l3

+ l2v̇2M
(γ−1)
l1,l2−1,l3

+ l3v̇3M
(γ−1)
l1,l2,l3−1 + C

(γ)
l1,l2,l3

(47)

where the dependance on (t,x) is always implied and suppressed on M (γ)
l1,l2,l3

(t,x).

Any subscripts (multiplicities) resulting in -1 are assumed zero by convention. Notice

that the convection terms have all acquired an additional multiple of vd which increases

their moment order by one (γ+1). On the right-hand side, moments of order γ-1 result

from the state-space acceleration42 (v̇ = dv
dt

) terms which have lost one order of vd and

gained an l1,l2, or l3 multiple due to the derivative taken with respect to v. For simplicity,
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Equation (47) can be generalized as

∂
∂t
M (γ)+ ∇x ·M (γ+1) = lv̇ ·M (γ−1) + C(γ)

Unsteady Convective Acceleration Source

(48)

where the vector l ≡ {l1, l2, l3} contains the permutation of integer exponents, v̇ ≡

{v̇1, v̇2, v̇3} is the acceleration vector, and the operation lv̇ ≡ {l1v̇1, l2v̇2, l3v̇3} is the

element-wise scalar multiplication of the two vectors. Let the M (γ−1) drag/gravity/body

acceleration term be written as D, and let C represents the source term due to collisions.

Both of their implementations are described in detail in Section §E. Source Terms.

Additional moment sink/source terms may be added here as well, but are beyond the

scope of this work. Note that the source terms may use a numerical operator-splitting

technique64 so they need not be added verbatim into the PDE as Equation (48) suggests.

Given the general formula by Equation (47), any number of moment transport

equations may be constructed. Notice the dilemma however; regardless of the number

of equations constructed, closure can never be achieved because each γ’th equation

always contains γ + 1 moments. This is where the previously described quadrature

approximation will provide closure50 while simultaneously applying the convective/flux

term,∇x ·M (γ+1), constructed using the set of abscissas and weights.

Since the zero-order moment, M (0), represents the “mass” (area under the f curve) a

transport equation for M (0) acts as a continuity equation. Any first order moment M (1) =
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∫
vdf(t,x;v)dv (of which there are D permutations of d possible) is representative of

mean particle momentum, while the second order moments M (2) =
∫
vd1vd2f(t,x;v)dv

(of which there are 2 · D = 6 permutations of d1, d2 possible) are representative

of kinetic energy, and so forth. The set of 3-D moment transport equations (up to 5th

order) are listed in Equation (49). The number listed to the right indicates the number

of permutations of {l1, l2, l3}, that sum to γ, however, not all permutations are needed for

the optimal moment set. A detailed description of the optimal moment selection can be

found in Section §C. Optimal Moment Set. The first three moment equations represent

mass, momentum, and energy conservation65 respectively,

∂
∂t
M

(0)
0,0,0 + ∂

∂x
M (1) = 0 (Mass Continuity: 1)

∂
∂t
M

(1)
l1,l2,l3

+ ∂
∂x
M (2) = D

(1)
l1,l2,l3

(Momentum: 3)

∂
∂t
M

(2)
l1,l2,l3

+ ∂
∂x
M (3) = D

(2)
l1,l2,l3

+ C
(2)
l1,l2,l3

(Energy: 6)

∂
∂t
M

(3)
l1,l2,l3

+ ∂
∂x
M (4) = D

(3)
l1,l2,l3

+ C
(3)
l1,l2,l3

(3rd-Order: 10)

∂
∂t
M

(4)
l1,l2,l3

+ ∂
∂x
M (5) = D

(4)
l1,l2,l3

+ C
(4)
l1,l2,l3

(4th-Order: 15)

∂
∂t
M

(5)
l1,l2,l3

+ ∂
∂x
M (6) = D

(5)
l1,l2,l3

+ C
(5)
l1,l2,l3

(5th-Order: 21)

...

(49)

The unsteady term, ∂
∂t
M

(γ)
l1,l2,l3

, is solved at each time step while the remaining terms

are either known or closed by the quadrature assumption. Recall that D(γ)
l1,l2,l3

is the

drag/gravity/body force term, and C(γ)
l1,l2,l3

is the collision term which are both described

in section §E. Source Terms. In conclusion, the moment-space (M ) provides a working
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PDE for temporal and spatial transport of the moment quantities, and a collision model.

The next section provides a numerical discretization that unifies the moments and PDF.

D. Quadrature-Based Moment Methods

The quadrature approximation8 simplifies f(v, ξ) into a sum of weighted Dirac delta

functions, δ,

f(v, ξ) ≈
β∑

α=1

φαδ[v̂α − v]δ[ξ̂α − ξ] (50)

where v̂α ≡ {Uα, V α,Wα} is the set of velocity abscissas pertaining to node index

α containing all D = 3 dimensions of the velocity, and φα is the scalar weight

associated with each set of abscissas v̂α. Likewise, vector ξ̂α are the abscissas of any

additional internal coordinates. Note that all of these values are also typically dependent

upon the external coordinates (t,x). Methods that use this approximation are called

quadrature-based moment methods (QBMM). Numerically, it is convenient to store

the equivalent information in a node matrix N as described in Equation (39); in fact,

Equation (50) provides the approximate mapping N→ f(v, ξ).

The multivariate case has been presented, and it is straightforward to add more

variables to ξ if needed. Additionally, a larger total number of nodes, β, will increase

the accuracy of the represented diversity of the integral of f . The total required number

of transport equations required for closure depends upon which internal variables are

present in the phase space. Recall that the moment setM is determined by integrating the

function f over the vectors v and ξ as shown in Equation (45). Conveniently, integrating

the Dirac delta functions simply returns the abscissas, v̂α and ξ̂α, when integrated over
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the entire domain. Also recall that ζ ≡ {v, ξ}, thus the general quadrature approximation

for any internal vector ζ is,

M
(γ)
l1,l2,l3,...

=

∫
Ωζ

f(ζ) hl1,l2,l3,...(ζ) dζ ≈
β∑

α=1

φα

X∏
d=1

ζ̂
ld
d (51)

where hl1,l2,l3,...(ζ̂) = U l1V l2W l3 ... is the test function, defined also in Equation (93),

which returns the product of all the components in ζ̂ raised to their integer powers

l1, l2, l3, ... respectively. See Equation (45) for the specific case with only velocity

abscissas. Note that after integration, the state variables receive hats to indicate they are

no longer continuous but are instead discrete abscissas defining the coordinates of the

Dirac Delta functions.

In the current work, vector ξ is empty and consequently ζ = v. Various 3-D

ordered moments may be constructed by applying varying integer exponents l1, l2, l3

to the individual components of v̂α ≡ {Uα, V α,Wα}, thus the exact Equation (45) is

approximated by

M
(γ)
l1,l2,l3

≈
β∑

α=1

φαU
l1
αV

l2
αW

l3
α γ = 0, 1, 2, ... (52)

The proper choice for values of the exponents are dependent upon which QMOM model

is used. For CQMOM, Section §C. Optimal Moment Set will describe how to determine

which {l1, l2, l3} permutations are required to use the optimal system of moment transport

equations effectively. Numerically, Equation (52) defines a mapping from nodes to

56



moments which can be written as N → M . Any number of ordered moments may

be generated from this mapping, defining the process known as moment construction in

Equation (52). If these moments are to be useful later, one must aim to retain an adequate

quantity of moments as to provide a sufficient description of the desired features of f .

Below are some examples of this numerical mapping being used to construct typical

moments from 2-point quadratures,

(a) M
(0)
0,0,0 = φ1 + φ2 (b) M

(2)
0,2,0 = φ1V

2
1 + φ2V

2
2

(c) M
(1)
1,0,0 = φ1U1 + φ2U2 (d) M

(6)
3,1,2 = φ1U

3
1V 1W

2
1 + φ2U

3
2V 2W

2
2

(53)

where (a) {0, 0, 0} represents the total “mass” (volume fraction), (b) {0, 2, 0} is the

particle y-direction kinetic energy, (c) {1, 0, 0} is the particle x-momentum, and (d)

{2, 1, 2} is a 6th-order moment with no intuitive physical meaning, but nonetheless may

retain required information to adequately represent f as a quadrature.

The detailed makeup of matrix N is shown in Equation (39) by concatenating D

abscissa columns together with one weight column, N ≡ {v̂,φT} ≡ {U ,V ,W ,φ}.

This local matrix set of nodes N(t,x) exists for each grid point in the mesh at a distinct

time, but the (t,x) notation is suppressed for clarity. Expanded specifically for the D = 3
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and Q = 0 case, the weights and abscissas are stored as,

N ≡



N 1

N 2

...

NB


≡



U1 V 1 W 1 φ1

U2 V 2 W 2 φ2

...

UB V B WB φB


≡
[
U V W φ

]
≡
[
v̂1 v̂2 v̂3 φ

]
(54)

Considering N as a row matrix, each row (α = 1, ...,B) contains a single “node”,

Nα ≡ {Uα, V α,Wα, φα}, which is a complete set of abscissas and weights, and α is

the node/row index. Furthermore, let v̂α represent the α’th instance (row α of N) of a

velocity vector,

v̂α ≡ {v̂1,α, v̂2,α, v̂3,α} (55)

The maximum quantity of moments, K, will match the number of abscissas and

weights being tracked, such that

K = (D +Q+ 1) ·B (56)

ensuring adequate closure in the mapping N → M and its inverseM → N, described

in the next section. Note also that the computational requirements grow drastically with

each additional variable or node corresponding to a total of K transport equations.
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E. Moment Inversion

The previous section defined how to use a node matrix to construct a moment vector

N → M , but it is necessary to also define the inverse transformation which will map

the moments back to their respective set of nodes,M → N, in a stable and efficient

manner. This process known as “moment inversion” is mathematically sophisticated,

highly non-linear, and sensitive to instabilities; thus numerous researchers have given

the problem great consideration over many decades and improved its stability. Still,

the inversion process can become computationally expensive for very large sets of

moments/nodes. In general, the number of variables inM and N must match for proper

closure.

Consider the β = 2 node quadrature; the first four (2β) moments are extremely

useful and capable of approximately describing the distribution f by its total weight,

mean, variance, and skew. For example, a 1-D, 2-point, x-dimension inversion may

be performed in which the four unknowns (two abscissas and two weights) are solved:

{M (0)
000,M

(1)
100,M

(2)
200,M

(3)
300} → {φ1, φ2, U1, U2}. Retaining a larger moment set (including

the higher order moments) allows for the description of f with more nodes, if so desired,

but the added information from each additional higher order moment becomes less

significant while the computational costs become exponentially larger. Described in

the next section, are two different noteworthy implementations of the moment inversion

method: the PD Algorithm and the Wheeler Algorithm.
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1. PD Algorithm

The Product-Difference (PD) Algorithm66 is an older procedure of inverting a

one-dimensional moment set, and applicable to QMOM8, 16, 67, 68 for solving a population

balance equation (PBE). It finds the eigenvalues of a real symmetric tridiagonal matrix,

but a severe limitation is that it can only be applied to monovariate quadratures69 and fails

under certain conditions.70 With some modifications and assumptions, it is also applicable

to bivariate quadratures,42 but cannot typically be used for higher dimension (2D and 3D)

internal spaces.71

2. Wheeler Algorithm

The 1-D Wheeler algorithm62 (MATLAB source code published by Yuan et al.44)

is employed in the present work within CQMOM, and is also only capable of inverting

a set of 1-D moments. CQMOM however, takes advantage of the Wheeler algorithm

by applying a nested sequence of 1-D inversions in each dimension, allowing 2-D and

3-D simulations to be performed. The basic idea involves solving the eigenvalues of a

real symmetric tridiagonal matrix to determine the best fit of abscissas and weights that

can describe a 1-D subset of the optimal moment setM . Efficient formulations for this

common type of eigenvalue problem are readily available.72 The Wheeler algorithm also

offers improved stability when dealing with very small weights φ ≈ 0 which are very

sensitive to division by zero, and maintaining realizable non-zero weights at all times.

Firstly, the algorithm checks a priori whether the total “mass”, M (0), is large enough

to attempt any β > 1 inversion. This is the first threshold value,W1 ≥ 0, that is
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user-defined and problem-dependent,

M (0) ≥W1 (57)

If this equality is not satisfied, then only β = 1 node is allotted to represent the moment

set and that single node is given the average velocity 〈v̂d〉 and weight 〈φ〉,

〈v̂d〉 := M
(1)
d /M (0)

〈φ〉 := M (0)

(58)

of the applicable dimension d. This helps reduce the amount of algebra that is performed

on very small values which may suffer from numerical round-off error and prevents

ill-conditioned situations. If the minimum weight M (0) ≥ W1 is satisfied, then the

moment-inversion is first performed assuming a maximum total of β = B nodes.

However, before accepting the results of the first inversion, the weights and abscissas go

through a quality control test. If the resulting nodes are deemed unsuitable by the test,

then the total node count is reduced by 1, such that β = B − 1, and the inversion process

is repeated to find a new set of weights and abscissas until β = 1 is reached.

The second quality control check is performed on the relative weights of each node

to ensure that they are similar in order of magnitude. The fraction resulting from the

smallest weight divided by the largest weight yields the weight ratio,

min(φ1, ..., φB)

max(φ1, ..., φB)
≥WB (59)
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Note that each B-point quadrature inversion may have a its own unique ratio,

W2, ...,Wβ , where B = 2, ..., β. If the relation is not satisfied, at least one of the nodes

in the set is considered “negligible” because its weight is significantly smaller than the

largest weight of another node. Neglecting abscissas helps ensure that f is represented

efficiently and reserves room for a possibly more significant weight that may arise in the

future.

Next, a test is performed after the inversion to ensure that the abscissa coordinates

are not too close together or “redundant”. The first test is only applicable to β ≥ 3, and

uses the ratio of the smallest and largest distances between any two abscissas,

min(∆v̂d,1, ...,∆v̂d,B)

max(∆v̂d,1, ...,∆v̂d,B)
≥ AB (60)

where A is the 3rd user-defined threshold value, and ∆v̂d,α = |v̂d,α1 − v̂d,α2| represents

all possible combinations of the difference between node α1 and α2 where α1 6= α2 and

α2 = 1, ..., B. Note that this check should be performed among similar abscissas only,

i.e. do not compare velocity abscissas to particle diameters, temperatures, etc., which may

operate at entirely different scales with different units. Each B-point quadrature inversion

may have a its own unique ratio A3, ...,Aβ , where B = 3, ..., β to offer more flexibility.

Lastly, and specifically for a 2-point inversion, another “redundancy” check ensures

that the two abscissas remain distinct enough to avoid ill-conditioned matrices that may

lead to nearly singular matrix inversions. If the two abscissas are too close together then

they should be reduced into a single-node representation. This final threshold known as
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the abscissa proximity ratio, P, is determined by the ratio of the larger abscissa divided

by the smaller one,

1 ≤ max

(
v̂d,1
v̂d,2

,
v̂d,2
v̂d,1

)
≤ P (61)

If the condition in Equation (61) is satisfied, then a 2-point quadrature is ill-conditioned

and a very simple 1-point quadrature should be attempted instead. Note that abscissas

of opposite signs will always succeed regardless of how similar their magnitudes are.

The proximity ratio (P > 1) must be chosen depending on the problem. For the 2-D

Taylor-Green flow a value of P = 1.05 was sufficient to prevent asymmetries. See

Section §A. Multivariate Conditional Inversion for more details about multidimensional

inversions where P is a vector.

Simplifying the quadrature representation to fewer nodes will reduce the spread

of a PDF and impact the statistics. In particular, forcing a 1-point assumption instead

of a 2-point quadrature representation will reduce the RMS slightly. To determine how

large the effect is, consider a 2-point representation with equal weights of φ1 = φ2,

which yields the largest spread possible for two arbitrary abscissas v̂d,1 and v̂d,2. Then

assume that the two velocities are at their maximum distinctness, v̂d,2 = Pv̂d,1 according

to the proximity ratio assumption, which will generate the largest possible error. The

lower order moments, M (0) and M (1), of these two different representations (β = 1 vs.

β = 2) are identical, and only the higher order moments M (2), M (3), etc. will be affected.

Substituting those node values into the equation for the second order moment of a 2-point
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quadrature produces,

M
(2)
β=2 = φ1v̂

2
d,1 + φ2v̂

2
d,2 = φ1v̂

2
d,1(1 + P2) (62)

By then substituting a single average velocity, v̂d,1+v̂d,2
2

, and total weight for the equivalent

1-point approximation and calculating M (2) again,

M
(2)
β=1 = (φ1 + φ2)

(
v̂d,1 + v̂d,2

2

)2

=
φ1

2
v̂2
d,1(1 + P)2 (63)

the ratio of Equation (62) and Equation (63) can be taken. This reveals that the 2-point

representation (numerator) will always yield a larger M (2) than the 1-point representation

(denominator),

M
(2)
β=2

M
(2)
β=1

=
2(1 + P2)

(1 + P)2
≥ 1 (64)

As P → 1, the error vanishes and the two representations become equivalent (although

the two abscissas are perfectly redundant and singular). However, even for fairly large P,

the relative error remains small, thus making it a very useful assumption for drastically

improving the stability of the CQMOM inversion algorithm.

Through this “process of elimination” any redundant, ill-conditioned, and/or

negligible nodes will flag the entire set of weights and abscissas as “unsuitable” and then

attempt to perform a lower order 1 ≤ β ≤ B inversion. Once the threshold criteria of

Wα is met in Equations (57) and (59), and A of Equation (60), or no further reduction is

possible, i.e. having reached β = 1 (single node), then the inversion is complete. Note

64



that in the case of β = 1 being reached, the “inversion” is simplified by Equation (58)

needing only the first two moments.

To summarize, these four user-defined threshold values exist to allow the

problem-dependent accuracy and error to be balanced:

Table 6. Thresholds For Wheeler Inversion

W1 Minimum weight required to attempt any β > 1 moment inversion
W2...β Minimum weight ratio required to keep additional α’th node
A Minimum ratio of distances between abscissas (valid for β ≥ 3 nodes)
P Minimum ratio between two abscissas (valid for β = 2 nodes only)

Using small threshold values makes the process more likely to reward additional

nodes, but if the moments contain errors caused by numerical diffusion, then the nodes

can be detrimentally exhausted to represent that error. Therefore, it is advantageous to

maintain threshold values that are small enough to retain important flow features (such

asW1 being 1E−3 times smaller than the maximum initial weight), but large enough that

spurious errors are neglected. Values ofW2 ≈ 1E−2 and 1.01 ≤ P ≤ 1.3 have shown

great success in the present work.

3. Algorithm

To summarize the 1-D inversion process, Figure 10 depicts a flowchart showing the

general process of reducing the order of the α-point inversion until a suitable set of nodes

is obtained, as described previously. Both these preemptive and corrective strategies help

minimize the likelihood of ill-conditioned inversions and resulting abscissas. The CFL

number may also be used as another consideration to determine whether an abscissa is

erroneously large.
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Figure 10. 1-D Adaptive β-Point Inversion Algorithm Flowchart

F. Temperature

When all the particles in an ensemble possess the same state value then their PDF

has zero variance (σ2 = 0); therefore, f is a single Dirac Delta function and is fully

represented by a 1-point quadrature. As the diversity of a distribution increases, so too

does the variance, and the PDF “spreads-out” (σ2 > 0). At some point, a quadrature

representation will require two nodes (or more) to describe the PDF sufficiently. If the

PDF represents velocity space, then a non-zero variance may cause particles to experience

collisions if the particle concentration is dense enough. By convention, a granular

temperature has units of velocity squared so it is synonymous with the variance, Θ ≡ σ2.
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The scalar granular temperature, Θeq, can be used as an approximation for an

isotropic collision state, by using the average of all D temperature components: Θeq =

1
D

∑D
1 Θd.33, 36, 44, 45 The granular temperature in dimension d may also be obtained from

the first three simple moments: mass, momentum, and energy,

σ2
d = Θd =

M
(2)
d

M (0)
−

(
M

(1)
d

M (0)

)2

(65)

as previously described by Equation (46) for M (2)
l1l2l3

and M (1)
l1l2l3

. As M (2)
d →

(M
(1)
d )2/M (0) the distribution approaches Dirac Delta distribution, adhering to the limit

of M (2)
d = (M

(1)
d )2/M (0) exactly, while all other forms where Θd > 0 will result in

M
(2)
d > (M

(1)
d )2/M (0). This is a very important constraint for ensuring realizability

and that the moment set retains a physical meaning. It is also the cause of numerical

instabilities that are discussed in Section §3. Moment Corruption.

1. Velocity Covariance

A temperature also exists for every combination of dimensions (mixed moments) and

can be fully represented by the D × D velocity covariance matrix, θ, shown for D = 3

below,52

θ =


M

(2)
200/M

(0) − 〈v1〉2 M
(2)
110/M

(0) − 〈v1〉 〈v2〉 M
(2)
101/M

(0) − 〈v1〉 〈v3〉

M
(2)
110/M

(0) − 〈v1〉 〈v2〉 M
(2)
020/M

(0) − 〈v2〉2 M
(2)
011/M

(0) − 〈v2〉 〈v3〉

M
(2)
101/M

(0) − 〈v1〉 〈v3〉 M
(2)
011/M

(0) − 〈v2〉 〈v3〉 M
(2)
002/M

(0) − 〈v3〉2

 (66)
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where {〈v1〉 , 〈v2〉 , 〈v3〉} are the cell-averaged particle velocities. The cell-averaged node

vectors can be determined directly from the set of optimal moments,M , by,



〈v1〉

〈v2〉

〈v3〉

〈φ〉



T

=



M
(1)
1,0,0/M

(0)

M
(1)
0,1,0/M

(0)

M
(1)
0,0,1/M

(0)

M (0)



T

=



M
(1)
1 /M (0)

M
(1)
2 /M (0)

M
(1)
3 /M (0)

M (0)



T

(67)

Additionally, the diagonals of the matrix, θ, are the previously defined temperature

vector, Θd ≡ θd,d. Some collision models work on a simplifying assumption that only

requires the diagonals for scalar equilibrium granular temperature (Θeq), and is obtained

by averaging the diagonals of the covariance matrix, θ.

Θeq =
1

D

D∑
d

θd,d =
tr(θ)

D

D=3⇒ (θ1,1 + θ2,2 + θ3,3)

3
(68)

which is expanded specifically in 3-D to,36, 39

Θeq =
1

3

{(
M

(2)
200

M (0)
− 〈v1〉2

)
+

(
M

(2)
020

M (0)
− 〈v2〉2

)
+

(
M

(2)
002

M (0)
− 〈v3〉2

)}
(69)

If the individual components θd,d vary greatly, then this simplified equilibrium granular

temperature (Θeq) may not be a good assumption for some models. Note that θd,d ≥ 0,

so each of the D diagonal terms of the matrix that appear in Equation (69) must be

non-negative.
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2. Root-mean-square

Recall that the “root-mean-square” (RMS) is defined as,

RMS =
√
v′2 (70)

where,

v′(t) = v(t)− v (71)

is the instantaneous velocity fluctuation at a given sample time. The time-averaged

velocity is v = 1
N
∑N

n=1 v(tn), where N is the number of time samples and n is

the time index. The RMS depends on the square of the velocity fluctuation, (v′)2, to

prevent cancellation between positive and negative velocities during averaging. Consider

temporarily the “mean-square” (RMS2) to suppress the square root in the following

derivation,

RMS2 = v′2 = (v − v̄)2 (72)

which has units of velocity squared, a mass-less kinetic energy. A simpler form of the

RMS2 can be computed to aid in post-processing. Squaring both sides of Equation (71)

and then time-averaging yields,

v2 = (v′ + v)2

v2 = v′2 + 2v′v + v2

v2 = v′2 + v2

(73)
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because 2v′v ⇒ 2vv′ ⇒ 0 and v2 ⇒ v2. This new alternate form for the RMS may be

more suitable for numerical post-processing,

RMS =
√
v′2 =

√
(v − v̄)2 ≡

√
v2 − v̄2 (74)

since it requires tracking only the velocity (v) and velocity squared (v2) during

time-sampling. This implementation of Equation (74) for a DPS population or a

DNS fluid field is straightforward, however, the CQMOM particle field requires

some additional consideration. The Eulerian particle field contributions to the

RMS are twofold: one is the typical cell-averaged velocity deviation, and the 2nd

is the contribution due to positive variance in the PDF. Moments are representative

of cell-averaged quantities that represent a multitude of fictive particles, and the

cell-averaged velocity is explicitly defined as,

〈vd〉 =

(
M

(1)
d

M (0)

)
=

(∑B

α=1 φαv̂d,α∑B

α=1 φα

)
(75)

and the cell-averaged square of the velocity is,

〈v2
d〉 =

(
M

(2)
d

M (0)

)
=

(∑B

α=1 φαv̂
2
d,α∑B

α=1 φα

)
(76)

Notice that 〈vd〉
2
6= 〈v2

d〉 and depend uniquely upon the first and second order moments

respectively (both also require the zero order moment). In fact, it is guaranteed that

〈vd〉
2
≤ 〈v2

d〉 because during PTC the cell-average velocity may shrink toward zero
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when oppositely signed velocities interfere destructively, i.e. cancel-out. Conversely,

〈v2
d〉 = M

(2)
d /M (0) represents the total kinetic energy divided by the total mass and

ensures that all quadrature nodes within a cell are added constructively (no canceling

occurs). Furthermore, the difference between the two yields the cell-localized PDF

variance, 〈v2
d〉 − 〈vd〉

2 = σ2
d ≥ 0 such that the RMS – sans the “root-mean” – receives

a contribution simply from the instantaneous velocity diversity present in the spatial

average (no time-averaging required).

To conclude, the computation of the RMS2
d for DNS (where 〈vd〉 is known directly),

DPS, or in a moment-based method are written explicitly as,

RMS2
d = 〈v2

d〉 − 〈vd〉
2

=
1

N

N∑
n=1

(n)〈
v2
d

〉
−

(
1

N

N∑
n=1

(n)

〈vd〉

)2

=

1

N

N∑
n=1

(n)(2)

Md

(n)(0)

M

−

 1

N

N∑
n=1

(n)(1)

Md

(n)(0)

M

2

(77)

where N is the total sample count at the different time step samples n. Notice that 〈v2
d〉 −

〈vd〉
2

appears similar to a time-averaged version of the granular temperature Θ defined in

Equation (65).

3. Moment Corruption

Given a realizable moment set,M , the Wheeler inversion algorithm will yield

realizable nodes, i.e. positive weights. However, since the flux computations directly alter

the moments, each individual moment in the set is susceptible to different magnitudes of

truncation errors when applying higher order discretization schemes for the convective
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term (see results in Section §1. Moment Misalignment). When a moment set slowly

becomes misaligned, unrealizable, or unphysical, this is known as moment corruption,

and sometimes small errors in the moment set can lead to large errors in the inverted

nodes. Corruption threatens the stability of the solver and so it is important to check

that the moment set is valid before attempting an inversion and that the resulting nodes

obtained from the inversion are also feasible. In the worst cases, a very large unphysical

velocity abscissa may be produced during inversion, which may compromise the

simulation as the CFL condition may be violated and its treatment is described in Section

§7. CFL Condition.

Recall from Equation (65) that the standard deviation σ2
d in dimension d is related to

the granular temperature, Θd = σ2
d, and is an extremely important value which must equal

zero for a quadrature exactly represented by a single Dirac Delta function. Therefore, this

gives a constraint for the first three moments,

M
(2)
d ≥

(
M

(1)
d

)2

/M (0) (78)

If the equality of Equation (78) is violated then the moment set is unphysical. If the

error is small it may simply be due to round-off error, but in a more severe case it can

be caused by larger errors in the flux scheme. In the event that Θd < 0 occurs, a 2-point

inversion may produce unphysical abscissas or possibly negative weights, however, the

Wheeler algorithm checks for this violation before attempting it. Problems arise in the

collision term (C) which relies directly on the square root of the variance and would yield
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an imaginary standard deviation if (σ2
d < 0). This type of error is detectable and easy to

correct by simply assuming σ2
d = 0 in the case of small round-off errors.

Furthermore, if the temperature is positive, but extremely small, 0 < Θd � 1,

this poses an ill-conditioned system for the moment inversion process, specifically when

also accompanied by a non-zero skew.50 In fact, the smaller Θd → 0 is, the more

ill-conditioned the inversion becomes. This has been termed the “frontier” of the moment

set by Chalons et al.,50 and occurs whenever two abscissas approach the same value,

v̂d,1 → v̂d,2, for β ≥ 2. Yuan et al.44 employed a numerical cutoff value in their

algorithm described in §2. Wheeler Algorithm; however, an alternative detection method,

the “Abscissa Proximity Ratio” (also described in the same section) also helps prevent

singularity instability conditions.

Test cases have shown that the inversion process can yield abscissas larger than

what should be physically possible. When the skew is exactly zero such that the PDF is

a symmetric Gaussian then a 2-point inversion is well-behaved regardless of temperature

since equal weight (half the total M (0)) is given to both abscissas. However, when

the PDF is nearly a Dirac Delta (Θd ≈ 0) and a non-zero skew is also imposed, the

inverted PDF exhibits a very long tail where one abscissa is located very near the mean

(M (1)/M (0)) and the other abscissa is a very large unphysical distance from the mean

with a small weight. Figure 11 shows sample 1-D inversions involving the equal and
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opposite abscissas with slightly skewed weights given by Equation (79).

U1 φ1

U2 φ2

 =

−0.4 0.05

0.4 0.045

 (79)

{M (0),M (1),M (2),M (3)} = {0.095,−0.002, 0.0152,−0.00032} (80)

By varying only the M (2) moment and displaying the 2-point inversion results in
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Figure 11. Near Zero Temperature Induced Inversion Instabilities. M (2) Values
Shown for the Lowest Four Samples Only.

Figure 11, the instability located near zero temperature is clearly illustrated. By fixing

the other moments, the total weight (M (0) = φ1 + φ2), mean momentum (M (1) =

φ1U1 + φ2U2), and 3rd order moment (M (3) = φ1U
3
1 + φ2U

3
2) are preserved. For
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large temperatures (and small skew), the weights are fairly evenly distributed where an

inflection point is visible occurring as the skew transitions from negative to positive.

Zero-skew is represented by a horizontal line where both weights are equal (φ1 = φ2).

The instability occurs in the limit M (2) → (M (1))2/M (0), which is the value required

for zero temperature. Figure 11 shows that approaching this value results in one abscissa

located near U1 = 0, while the second abscissa is located near U2 = −0.5, larger

in magnitude than either of the two original abscissas present in Equation (79). In

other words, a very small temperature may result in a very large abscissa, and this is

detrimental even if the associated weight, φ2 ≈ 0.003, is small.

Specifically for multidimensional CQMOM (see Section §V. CQMOM), an

erroneously large velocity abscissa may violate the CFL condition, but more importantly

may adversely impact all subsequent nested conditional inversions on the same “branch”

(see Figure 13) for other dimensions. When the temperature reaches exactly zero, the

2-point inversion simply reduces to a single node as the PDF is a Dirac Delta function.

The best course of action when encountering extremely small (or negative) temperatures

is to perform only a 1-point inversion, which preserves M (0) and M (1), while redefining

M (2) and M (3) accordingly, i.e. during moment reconstruction the higher order moments

(M (2) and M (3)) are automatically repaired to represent zero temperature and zero skew.

This method is effective at increasing the stability of the simulation, but at the cost of

reducing the range of PDF’s that can be accommodated. Note that the Wheeler inversion

weight ratio threshold (W1) could prevent this erroneous abscissa from forming, but

again, it might then prevent legitimate abscissas from forming too. A threshold weight
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ratio ofW1 ≈ 5E−2 would suffice in this case (Figure 11), which produces very stable

simulation results, but is sometimes too restrictive in turbulent flows. A reliable (though

not versatile) method of detecting erroneous velocity abscissas is to check that they

remain well under the CFL limit.

4. Moment Correction

Some methods exist to correct moment sets, but they are limited in applicability

to PDF’s which are known to be log-normal distributions. Wright10 demonstrates how

to repair a moment set to adhere to a log-normal distribution that best describes an

equilibrium distribution. It is capable of using the lower-order moments, which are more

critical of maintaining physical meaning, to correct the higher order moments which

are more easily corrupted and less vital to maintaining the physical solution. McGraw1

also published a scheme to repair a moment set into a realizable quadrature, however,

neither of these methods are applicable to the general situations where abscissas may

be negative. Other arbitrary distributions such as bimodal functions63 occurring in PTC

cannot be readily corrected in that manner, but ensuring that M (0) ≥ 0 and the equality

in Equation (78) are both met, are two quality-control tests applicable to any moment set.

Section §3. Moment Corruption describes in significant detail how moment corruption

may be detected and resolved, especially for the 2-point case.

Lastly, a collision source term (C) should have the natural effect of restoring a

moment set to a Gaussian equilibrium distribution while preserving the “mass” and mean

velocity. Therefore, a simulation with a collision model should exhibit improved stability.
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A carrier fluid drag source term (D) may generate instabilities in a dispersed phase by

encouraging the formation of small granular temperatures in the velocity-space PDF. It

does so by attempting to align each of the diverse particle node velocity vectors to match

that of the fluid field, effectively reducing the temperature toward zero; however, this also

reduces instabilities by guiding erroneous abscissas toward proper values (near the fluid

velocity value).

G. DQMOM

Direct QMOM (DQMOM) reduces computational requirements because it avoids

the need for the moments entirely and directly tracks the abscissas and weights,13, 68 thus

removing the moment-inversion algorithm. Consequently, this simplification prevents

PTC from being realized, but this method is effective and efficient for low Stokes number

flows while still allowing multiple classes of particles to be tracked. DQMOM is usually

only capable of modeling monovariate cases, with some exceptions.71 Typically the

particle diameter73 (ξ1 = Lp) is assigned to the single variable. Mathematically DQMOM

is equivalent to QMOM,74 though limited in applicability. For example, a monovariate

model (where ξ ≡ ξ1 is scalar) requires a very minimal number of equations for closure.

In fact, only the 2β lowest order moment equations are required, where β is the total

number of classes being tracked.

DQMOM has further limitations because it can only be used to transport passive

variables in ξ such as particle diameter, temperature, etc., not the particle velocity v,

which is non-passive, and requires another unique governing equation entirely. A separate
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kinetic theory can be used to describe the velocity transport47, 48 of each class individually.

So although multiple classes of particles may exist where each has its own velocity, the

individual velocity fields all act independently, preventing PTC from occurring within a

single class. Adding another β ·D variables at each grid point accommodates the particle

velocity vector for each particle class. In total, β · (D + 2) variables are required at each

grid point to store β classes in a D-dimensional velocity space (the additional two are

from the weight and single non-velocity abscissa of each class).

1. Derivation

The moments do not appear in the final implementation of DQMOM, but they are

required for the derivation. Since only one internal variable exists for this DQMOM

example (Q = 1), it suffices to use a single subscript to define the moment M (γ)
l1

(where

γ ≡ l1 is implied) computed over all particle classes (of which there are β total classes).

The general Equation (52) can be applied by assuming l2 = 0 and l3 = 0. Specifically,

selecting the first 2β integer values starting at 0 for l1 produces the greatest accuracy

(Gaussian quadrature). For example, the first four moments (up to third-order) for a

β = 2-point quadrature, would yield

M
(0)
0 = φ1 + φ2 ; M

(1)
1 = φ1ξ1 + φ2ξ2

M
(2)
2 = φ1ξ

2
1 + φ2ξ

2
2 ; M

(3)
3 = φ1ξ

3
1 + φ2ξ

3
2

(81)

Note that this setup is independent of the number of spatial dimensions in the model,

but for a 2-D example these first four moments will suffice. These moments are also
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applicable in the original QMOM. As discussed, the velocity vector remains an external

variable to simplify the moment setup, i.e. only one subscript is required to describe a

moment, which is the abscissa for the one internal variable ξ, e.g. particle diameter. The

particle velocity vectors v are left as externalized variables which are conditioned by the

diameter, i.e. drag force depends on particle size. Therefore, the particle velocity field

will be guided by the fluid velocity vectors u through the drag force and any other forcing

functions such as stress, collisions, etc. The particle volume fraction in a cell (φ) and the

diameter of the particles (ξ), both will influence the particle velocity evolution. In return,

the particle velocity will convect the particle diameter and weight correspondingly.

2. Granular kinetic theory

One method of handling an externalized particle velocity field is to employ the

granular kinetic theory transport equation. For class α and spatial dimension d (use

Einstein Summation for dimension k), the general equation is

ραηp,α

[
∂

∂t
(qαv̂d,α) +

∂

∂xk
(qαv̂d,αv̂k,α)

]
= qαFd,α + qαραηp,αgd (82)

where F α is the fluid-particle interaction force vector on a single particle and ηp,α is the

volume of a single particle in class α. This transport equation will predict the particle

velocity field evolution. Using the relation φα ≈ qαηp,α, Equation (82) may be rewritten

as

∂

∂t
(φv̂d,α) +∇x · (φv̂d,αvα) =

qαFd,α
ρα

+ φgd (83)
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Closure equations for the drag force can be found in Section §B. Drag Force.

3. Transport Equations

Recall that DQMOM reduces CPU usage by tracking the abscissas and weights

(ξ and φ) directly and without the need for the moments explicitly. In the specific case

where there is no production, breakage, aggregation, or collisions, the RHS becomes 0,

and the conservation equations reduce to

∂φα
∂t

+∇x · (φαvα) = 0 (84)

∂φαξα
∂t

+∇x · (φαξαvα) = 0 (85)

These transport equations are representations of those in the original QMOM approach,

where Equation (84) corresponds to the zero-order moment and Equation (85) to the first

order moment, but at no point is a moment-inversion necessary, and so the moments may

be disregarded entirely.
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V. CQMOM

Conditional QMOM (CQMOM) is an extremely powerful model because it can

theoretically accommodate any number of nodes (β > 1) for a multivariate internal

space (X > 1). It accomplishes this task by selectively performing a sequence of nested

1-D moment inversions with a “dimensional-splitting” formulation, henceforth termed

“conditional-splitting”. Each unique 1-D inversion demands a subset of 2β moments, and

the union of all the subsets is the complete optimal moment set,M . Additionally, the

optimal moment set is efficient because the 1-D inversions overlap by sharing many of the

same core moments.

A. Multivariate Conditional Inversion

A multivariate moment inversionM → f(v, ξ) is possible through a set of multiple

(nested) 1-D inversions, i.e. a “conditional-splitting” technique. The splitting is defined

by the conditional inversion sequence vector b = [d1, d2, d3, ..., dX ], that describes which

order to perform the full multivariate inversion in. Note that the square bracket notation

indicates a sequence vector. The current work uses the trivariate, 3-D case (D = 3 and

Q = 0), where six different permutations of the conditional inversion sequence exist,

[1, 2, 3] ; [1, 3, 2] ; [2, 1, 3] ; [2, 3, 1] ; [3, 1, 2] ; [3, 2, 1] (86)

Choosing a proper multidimensional conditional sequence is not a trivial task, but

the simplest example performs a velocity moment inversion in the x,y,z dimensions

consecutively (in that specific order), denoted as b = [1, 2, 3] ≡ [x, y, z]. With X
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elements, the vector b has X ! possible permutations. Therefore, the jump from 2-D to

3-D adds significantly more computations, and Q > 0 even more so. Note that a 2-D

simulation is much simpler, since only two permutations exist: [1, 2] ; [2, 1]. Performing

a multidimensional (3-D) moment inversion consists of computing three 1-D inversions45

in the d1 then d2 then d3 direction, denoted byM
[d1,d2,d3]−−−−−→

[d1]

N . The centered superscript

on
[d1]

N indicates the first conditional dimension in the sequence, b = [d1, d2, d3], and its

importance is described in a later section.

To begin the multidimensional inversion, first the d1 dimension is inverted to obtain

a quadrature representation of PDF f(vd1), i.e. nodes. Second, the d2 velocities are

computed on the condition that d1 nodes are known, f(vd2|vd1), noting that this must

be repeated for all B1 nodes that exist in f(vd1). Lastly, the d3 moment inversion is

computed on the conditioned nodes of d1 and d2, yielding f(vd3|vd1 , vd2), again being

repeated for all B1 and B2 nodes in f(vd2 |vd1). This implies that an inversion performed

on an optimal moment set,M , will produce different nodes depending on the conditional

sequence, b. The first depth dimension (d1) will only have up to B1 nodes, while the 2nd

depth dimension (d2) may have up to B1B2, and the 3rd depth (d3) up to B1B2B3.

Consider also that the number of nodes in each dimension d can range between

1 ≤ Bd ≤ β, implying that Bd is adaptive and may grow/shrink as necessary

to accommodate the moment set in each dimension individually. Thus, Bd = 1

indicates that the PDF has zero variance (Θd = 0) in dimension d, thus only a single

instance of abscissa and weight are required for complete description of the particle

phase velocity in that dimension. This adaptive approach will improve the efficiency
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of the solver by only considering additional nodes Bd > 1 when necessary, but

being restricted up to a total of Bd = β when completely exhausting the node count

in that dimension. The total number of 1-D inversions is flexible between the range

D, ...,B, at a minimum when all D instances of Bd = 1 and at a maximum when

all Bd = β respectively. Thus, a full multivariate inversion may produce up to a

maximum of B = βX nodes. Herein lies some of the variability in the computational

requirements. Non-diverse PDF’s with zero variance require only a single node in each

dimension, d, (a Dirac Delta function) whereas regions with large variance in multiple

dimensions may exhaust all B nodes. Figure 12(a) demonstrates an example of a fully

exhausted 2-point quadrature in 3-D, totaling B = 8 nodes computed following

conditional sequence b = [1, 2, 3] ≡ [x, y, z]. For both nodes computed in the

x-dimension, {(U, φ)1, (U, φ)2}, two more nodes result in the y-dimension for both,

{(V , φ)11, (V , φ)12, (V , φ)21, (V , φ)22}, then two more nodes in the z-dimension for each

of those {(W,φ)111, (W,φ)112, (W,φ)121, (W,φ)122, (W,φ)211, (W,φ)212, (W,φ)221,

(W,φ)222}.

Alternatively, Figure 12(b) demonstrates a partially exhausted quadrature

representation which was computed following conditional sequence b = [3, 1, 2] =

[z, x, y]. Note that the first z-inversion resulted in two nodes, {W 1, φ1,W 2, φ2}, thus two

more x-inversions were performed in the 2nd dimension, one for each conditional z-node.

The first x-inversion produced two more nodes, {U11, φ11, U12, φ12}, but the second

x-inversion only produced one node, {U21, φ21}. Lastly, the y-inversion is performed

on all three previously computed conditional nodes to solve f(v2|v3, v1). The first
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(a) b = [1, 2, 3], fully exhausted with Bd = β = 2
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(b) b = [3, 1, 2], partially exhausted with various 1 ≤ Bd ≤ 2

Figure 12. Example Visualization of a 3-D Velocity Space for Discretized PDFs.
Nested Moment Inversion Produces Nodes for Two Conditional Sequences, b
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inversion produced two nodes, {V 111, φ111, V 112, φ112}, the second produced one node,

{V 121, φ121}, and the third produced two nodes {V 211, φ211, V 212, φ212}. Altogether, five

nodes have been allocated by this adaptive process, which is less than reserved maximum

B = 8.

The discretized 3-D PDF depicted in Figure 12(a), specifically for conditional

sequence b = [1, 2, 3], is represented mathematically by a summation of Dirac delta

functions22 that covers all conditional nodes,44

[1]

f(v) ≈
β1∑
α1

β2∑
α2

β3∑
α3

φα1φα1,α2φα1,α2,α3δ(v1−Uα1)δ(v2− V α1,α2)δ(v3−Wα1,α2,α3) (87)

where d1=1 corresponds to the first dimension that the inversion was performed in, i.e.

represented by α1 and β1. It is further demonstrated by Equation (87) that not all B nodes

are required (unless Bd = β for all d) and any unused nodes can simply retain a weight

of zero with any arbitrary abscissa. At most, B non-zero values are obtainable from f(v)

and only specifically when v = v̂, where v̂ = {Uα1 , V α1,α2 ,Wα1,α2,α3} is a vector of

abscissas such that f(v̂) = φα1φα1,α2φα1,α2,α3 returns the non-zero weight. Therefore,

these 3-D abscissas and corresponding weights can be mapped, f(v̂) → N, similar to

Equation (50) by a discretized node matrix shown in Equation (88), whereNα is a single

row of N from Equation (54), and the linearized node index, α = β2(α1 − 1) + β(α2 −

1) + (α3 − 1), ensures that each node receives a unique index ranging from 1, ...,B and

stems from a tree structure framework.
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Nα =



Uα

V α

Wα

φα



T

=



Uα1

V α1,α2

Wα1,α2,α3

φα1φα1,α2φα1,α2,α3



T

for α = 1, ...,B (88)

In fact, the conditional-splitting method is best viewed as tree structure which is

depicted in Figure 13(a), where each row corresponds to the dimensions d1, d2, and d3.

Each complete branch extending from the root to the bottom represents a complete 3-D

node, and is a visual representation of Equation (88). For any other conditional sequence

[d1, d2, d3], the U , V , and W will swap rows accordingly to match. Furthermore, for

cases with a larger number of nodes (β > 2), additional branches would be necessary at

each juncture. The benefit of this tree architecture is that the available branches are only

used when necessary, i.e. adaptive quadrature. If one node suffices (Bd = 1) to explain

the particle phase within a dimension d, then the computations/inversions of unused

branches are ignored entirely. This same logic applies to all levels of the architecture tree,

thus it is possible to have as few as one complete node (which still needs a minimum of

D = 3, 1-D inversions), and up to B = 8 conditional nodes when all available nodes

are exhausted (up to B1 = B2 = B3 = β = 2). Another tree structure is shown in

Figure 13(b) corresponding to the visual example in Figure 12(b), which has fewer nodes

(Bd = 1) for some inversions. Therefore, some of the nodes are unused and given zero

weight for those rows in N.
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(a) Tree structure depicting the quadrature nodes of f(v̂)→ {N1, ...,NB}, for
conditional sequence b = [1, 2, 3] with βd = 2
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(b) Tree structure depicting the quadrature nodes of f(v̂)→ {N1, ...,NB}, for
conditional sequence b = [3, 1, 2]

Figure 13. Example 3-D PDF Discretization With Conditional Nodes for Two
Different Conditional-Splitting Inversion Sequences, b

Lastly, one more topic must be addressed regarding the abscissa proximity ratios,

Pd, which are relevant when a Bd = 2-point inversion is performed in dimension d.

The values obtained from earlier inversions (those with smaller depths in the nesting)

are shared among all the successively nested (higher depth) inversions. If the lower

depth inversions are ill-conditioned then negative effects will cascade to the larger depth

inversions and increase the likelihood of ill-conditioned inversions. As such, the Pd
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values should be most stringent at the lower depths and relaxed at higher depths; in

fact, the final depth need not be restricted at all (PX=1). For example, the 3-D turbulent

channel flow was able to avoid ill-conditioned situations by using {P1,P2,P3} ≈

{1.1, 1.05, 1.0}, but with a CFL check could go even lower than {1.01, 1.01, 1.0}.

To summarize, CQMOM offers a multivariate inversion that maps moments into

nodes,M
[d1,d2,d3]−−−−−→

[d1]

N . Figures 12 and 13 show visual and tree structure representations

of a CQMOM 3-D inversion for two different conditional sequences, [1, 2, 3] and

[3, 1, 2]), where Equation (87) represents the 3-D nodes mathematically and Equation (88)

describes the various discretized representations of the important information resulting

from the multidimensional inversion process. The 3-D node set,
[d1]

N can now be used to

perform moment convection in the d1 direction of the transport equations, as is described

in the next section.

B. Spatial flux scheme

This section is devoted to describing the multidimensional flux scheme which is a

sophisticated portion of the CQMOM algorithm and is coupled with the results of the

inversion process. Node matrix N(t,x) is used directly in the flux term to reconstruct the

moments for their transport between cells.

1. Flux Splitting

The quadrature representation of f obtained through conditional moment inversion

in the previous section must provide closure to the convective term of Equation (48),

appearing as∇x · M (γ+1), and is computed by constructing the higher order moment,
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M (γ+1) with Equation (52) while simultaneously applying the flux term in dimension d1,

written as,
[d1]

N
xd1−−→M . M (γ+1) is effectively constructed by increasing the corresponding

abscissa multiplicity by one (ld1+= 1).42 To calculate the entire multidimensional

convection however, a flux-splitting method is chosen because it provides 1-D convection

at fractional steps that cover all D dimensions. Additionally, a full multidimensional

inversion provides N to close the moment transport equation,44 before convecting the

moments in a single dimension, d1. Fortunately, D = 3 is the maximum dimension for

a physical velocity-space that applies to the flux-splitting scheme, i.e. Q > 0 plays no role

in the flux-splitting.

Recall that a full multidimensional inversion,M
[d1,d2,...,dX ]−−−−−−−→

[d1]

N , produces a

X -dimensional node set,
[d1]

N , which is conditioned first by dimension d1 (indicated

by the superscript). The first condition dimension is particularly important because it

is the least susceptible to numerical error and corruption that occurs from successive

nested inversions that rely on higher order mixed moments. Therefore, it is sometimes

beneficial to use the first dimension’s velocity for the convection term but this

convention can be limiting and is not mandatory. As is described further in section §3.

Convection Term, M (γ+1) gains a multiplicity of one for the velocity in dimension d1.

Consequently, only a maximum of β unique velocities (v̂d1,α1) are present for convecting

the moment information, regardless of the total number of nodes (B) occupied in the

multidimensional PDF. Therefore, it may be useful to perform the inversion in the

convection dimension last in the sequence to obtain up to B unique velocities with which

to convect the moments during construction of M (γ+1).
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The time iteration scheme uses the closed flux term construction to update the new

moment set,
[d1]

M , which has just undergone flux in the single dimension, d1, matching the

superscript. Therefore, a complete notation for an “inversion-flux pair” operation is of the

form,

M
[d1,d2,d3,...]−−−−−−→

[d1]

N
xd1−−→

[d1]

M (89)

This full inversion and single dimension flux reconstruction must be repeated

consecutively for all D dimensions to complete the multidimensional flux-splitting that

fully evolves the moment set from time step n to n+ 1,

(n)

M
[1,...]−−→

[1]

N
x1−→

[1]

M
[2,...]−−→

[2]

N
x2−→

[2]

M
[3,...]−−→

[3]

N
x3−→

[3]

M →
(n+1)

M (90)

After the x1-inversion is completed, the moments are convected only in the x1 dimension

of the flux-splitting scheme. The subsequent dimensions (x2 and x3) are convected in

successive inversions. Note that the first dimension of the conditional inversion sequence,

b = [d1, ...], must match the flux dimension, xd1 , that immediately follows. Together,

the conditional-splitting provides a multivariate inversion and the flux-splitting provides

multidimensional convection, creating a complete path, from
(n)

M →
(n+1)

M as shown in

Equation (90). It should also be noted that the split nodes
[d]

N and moment vectors
[d]

M are

merely intermediate temporary placeholders, denoted by a tilde in Equation (91),

(n)

M
[1,...]−−→ Ñ

x1−→ M̃
[2,...]−−→ Ñ

x2−→ M̃
[3,...]−−→ Ñ

x3−→ M̃ →
(n+1)

M (91)
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Consequently, the final resulting moment set
(n+1)

M is a single completed time-step,

containing values from a multidimensional flux-splitting path.

It should be apparent that many different sequence choices are valid for the complete

path. Different sequences will produce different results, i.e. any single path is dependent

upon the conditional sequences b = [d1, d2, d3, ...], so a standard unifying method must be

employed. To ensure equality and a unique solution, all possible paths (p in P ) must be

computed then averaged together. In 3-D, there are D! = 6 conditional permutations of

b from Equation (86), and there are P = (D − 1)!D = 8 unique paths for a flux-splitting

sequence [x1, x2, x3] ≡ [x, y, z].

Table 7. Conditional sequences b = [d1, d2, d3] for Flux-Splitting Path [x1, x2, x3]

d ↓ p=1 2 3 4 5 6 7 P=(D-1)!D

x1 [1, 2, 3] [1, 2, 3] [1, 2, 3] [1, 2, 3] [1, 3, 2] [1, 3, 2] [1, 3, 2] [1, 3, 2]
x2 [2, 1, 3] [2, 1, 3] [2, 3, 1] [2, 3, 1] [2, 1, 3] [2, 1, 3] [2, 3, 1] [2, 3, 1]
x3 [3, 1, 2] [3, 2, 1] [3, 1, 2] [3, 2, 1] [3, 1, 2] [3, 2, 1] [3, 1, 2] [3, 2, 1]

Each column of Table 7 represents a unique conditional path, p. For simplicity,

the sequence of the dimensions [x1, x2, x3] ≡ [x, y, z] (rows of Table 7) will remain

fixed; consequently, this may give preferential treatment to certain dimensions of the flux

computations that may produce asymmetries in symmetrical flows, which is a known

side-effect of numerical flux-splitting methods.64 A proposed fix is described later in

Section §2. Dimension Stepping. Note that the flux-splitting process is independent of β

and Q, and depends on the PDF’s total spatial dimension, D. Equation (92) shows the list

of paths from Table (7) that will complete just one time step evolution of the moments.

All P = 8 paths must be computed and the 8 resulting sets,
[3]

M , must be averaged
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together to obtain
(n+1)

M .

(n)

M



[1,2,3]−−−→
[1]

N
x1−→

[1]

M
[2,1,3]−−−→

[2]

N
x2−→

[2]

M
[3,1,2]−−−→

[3]

N
x3−→

[3]

M p=1

[1,2,3]−−−→
[1]

N
x1−→

[1]

M
[2,1,3]−−−→

[2]

N
x2−→

[2]

M
[3,2,1]−−−→

[3]

N
x3−→

[3]

M p=2

[1,2,3]−−−→
[1]

N
x1−→

[1]

M
[2,3,1]−−−→

[2]

N
x2−→

[2]

M
[3,1,2]−−−→

[3]

N
x3−→

[3]

M p=3

[1,2,3]−−−→
[1]

N
x1−→

[1]

M
[2,3,1]−−−→

[2]

N
x2−→

[2]

M
[3,2,1]−−−→

[3]

N
x3−→

[3]

M p=4

[1,3,2]−−−→
[1]

N
x1−→

[1]

M
[2,1,3]−−−→

[2]

N
x2−→

[2]

M
[3,1,2]−−−→

[3]

N
x3−→

[3]

M p=5

...

[1,∗,∗]−−−→
[1]

N
x1−→

[1]

M
[2,∗,∗]−−−→

[2]

N
x2−→

[2]

M
[3,∗,∗]−−−→

[3]

N
x3−→

[3]

M p

...

[1,3,2]−−−→
[1]

N
x1−→

[1]

M
[2,3,1]−−−→

[2]

N
x2−→

[2]

M
[3,2,1]−−−→

[3]

N
x3−→

[3]

M p=P



→
(n+1)

M (92)

Equation (92) may first appear to suggest that a total of D(D − 1)!D inversion-flux

pairs are required, but notice that some of the inversions are identical. For example, in

dimension x1, the first four paths (p = 1, ..., 4) all begin with the same b = [1, 2, 3]

inversion sequence first, while the last four paths (p = 5, ..., 8) use inversion sequence

b = [1, 3, 2]. In fact, every xd row in Table 7 only has (D − 1)! unique inversion

sequences: [d, ∗, ∗] where all permutations will generate all possible paths. Therefore,

it is useful to conceptualize the paths as a tree structure rather than a table. Furthermore,

it is beneficial to store the results of operation: M
[1,2,3]−−−→

[1]

N
x1−→

[1]

M , and reuse them for

all paths that share that same first inversion sequence, [1, 2, 3]. This optimization reduces

the total number of inversion-flux pairs from D(D − 1)!D to only
∑D

d=1 (D − 1)!d.
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2. Dimension Stepping

Per Table 7 and Equation (92), the dimension sequence of the flux-splitting is always

[x1, x2, x3]. This order gives preferential treatment to the dimensions and if kept the same

for every time step may introduce asymmetries into the solution. In general, the sequence

should be able to change as [xd1 , xd2 , xd3 ], where d1, d2, and d3 are any permutation of the

sequence [1, 2, 3]. One method to achieve perfect symmetry is to compute every possible

sequence and average them together; this however would be extremely costly and so a

common alternative is proposed next.

To improve the physical solution symmetry, the sequence must be incremented

or “stepped” after each time step iteration so that no sequence is favored over another.

Start by selecting an initial sequence [xd1 , xd2 , xd3 ] ≡ [x1, x2, x3] ≡ [x, y, z] for the

first iteration, then increment each dimension by one and modulate any value which

exceeds D by subtracting D from it, i.e. for the second iteration, [x2, x3, x1] ≡ [y, z, x],

and so forth for any additional iterations. Additionally, if a multi-step scheme such as

Runge-Kutta is employed, the stepping can occur within the R iterations. For example,

a 3rd-order Runge-Kutta (R = 3) method in 3-D space could step as proceeds, where

n is the time step index starting at 0, and r = 0...(R − 1) is the iteration index for an

R’th-order Runge-Kutta scheme (or any similar scheme which has multiple iterations per

time step). Table 8 can be modified for any order time iteration scheme. This dimension

stepping of the flux-splitting sequence can significantly improve symmetry in flow
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Table 8. Conditional Dimension Stepping Sequence R = 3, D = 3

n r Sequence
0 0 [x, y, z]

1 [y, z, x]
2 [z, x, y]

1 0 [y, z, x]
1 [z, x, y]
2 [x, y, z]

2 0 [z, x, y]
1 [x, y, z]
2 [y, z, x]
...

solutions, but does not remedy the asymmetries entirely, as can be confirmed with a 2-D

Taylor-Green flow simulation.

3. Convection Term

This method was described by Desjardins et al.42 in 1-D, and the 3-D extension is

described below. Let h be the test function which provides the product of exponentiated

velocities such that,

h(m,v) =
D∏
d=1

v
E(m,d)
d = vl11 v

l2
2 v

l3
3 (93)

where the function E(m, d) returns the single exponent for the corresponding abscissa,

based on the m’th moment index and d’th dimension of v, as described by Table 9. Let h

be the vector containing all m = 0, ..., K − 1 of these combinations of exponents on the

velocity abscissa vector, v,

h(v̂) = {h(0, v̂), h(1, v̂), ..., h(K − 1, v̂)} = {v̂0
1v̂

0
2v̂

0
3, v̂

1
1v̂

0
2v̂

0
3, ...} (94)
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Then it follows that the summation of these velocity products multiplied by the weight,

φα, for all nodes, constructs the entire moment set, N → M , just as Equation (52) does

(quadrature approximation),

M =

∫
Ωv

h(v)f(v)dv ≈
B∑
α=1

φαh(v̂α) (95)

whereM(t,x) contains the K optimal moments from Table 9. At any single face, there

exists the positive velocity (right-bound),H+, and negative velocity (left-bound),H−,

convective moments,36, 42

H+(d,N) =
B∑
α=1

max(v̂d,α,`, 0) φα,` h(v̂α,`) (96)

H−(d,N) =
B∑
α=1

min(v̂d,α,r, 0) φα,r h(v̂α,r) (97)

where the subscripts ` and r denote the left or right side of the face respectively. The

summations include all α nodes from 1...B, and in fact, Equations (96) and (97) are

moment construction formulas similar to Equation (52), but with one extra multiple of

v̂d,α, where d is the dimension that the convection is being considered in. In fact,H can

be thought of as a vector of moments, M (γ+1), one element for each optimal transport

equation in Equation (49). Note that the positive velocity flux is determined by the

reconstructed node at the left face, `, and the negative velocity flux is determined by

the reconstructed node at the right face; in correspondence with the upwind scheme’s
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shock treatment64 and appropriate slope limiter.45 At no point canH+
m andH−m both

be non-zero, only one of the fluxes can exist for each index m. The net flux on a single

face,G, partly describes the transformation,
[d]

N
xd−→ M , and is calculated as the sum of

Equations (96) and (97),

G(d,N`,Nr) = H+(d,N`) +H−(d,Nr) (98)

This convection function,G, represents a vector of the computed convective terms,

∂
∂x
M (γ+1), that appears in all transport Equations (49), and must be computed at

each face. Furthermore, each face is shared by two neighboring cells so those two

cells also share an instance ofG because any flux leaving one cell must enter the

neighboring cell, and vice versa. This “equal and opposite” consideration is useful for

code optimization to prevent redundant calculations, where only the sign (+/-) ofG needs

to be opposite between the two neighboring cells. For a Cartesian mesh (and mandatory

for a flux-splitting method) it is advantageous to perform the flux computations in one

d dimension for all the cells before switching to the next dimension. This optimization

works well when cycling through the entire domain consecutively as it only requires that

twoG vectors be stored in memory simultaneously.
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Rewritten for completeness, the numerical convective scheme becomes,

G(d,N`,Nr) =

∫
v̂+
d,`h(v̂`)f(v̂`)dv̂ +

∫
v̂−d,rh(v̂r)f(v̂r)dv̂

≈
B∑
α=1

v̂+
d,α,`h(v̂α,`)φα,` +

B∑
α=1

v̂−d,α,rh(v̂α,r)φα,r (99)

where the convection velocities v+ and v− will increase the multiplicity of the

constructed moment by one. Depending which direction the velocity is going determines

which neighboring node is to be used; therefore, at most only one of the two is nonzero,

i.e. v+v− = 0.

v+ = max(v, 0) v− = min(v, 0) (100)

The min and max functions ensure that the right-bound (positive velocity) and left-bound

(negative velocity) fluxes are being applied properly, i.e. that v+ ≥ 0 and that v− ≤ 0.

This is better handled with an “if-statement” condition in a source code context; however,

it is still advantageous to sum the negative and positive components separately as shown

(computeH− andH+ separately before adding them together) otherwise numerical

round-off error is far more likely to create asymmetries in a symmetrical flow if both

positive and negative quantities are added immediately into one sum.

4. Slope limiter

An upwind slope limiter is introduced45, 51 during face reconstruction (only

applicable at 2nd-order accurate and higher spatial flux schemes) to prevent the moments

from becoming negative and to ensure that they remain Total Variation Diminishing
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(TVD) which prevents spurious oscillations and preserves monotonicity.64

minmod(X, Y ) = sign(X)

(
1 + sign(XY )

2

)
min(|X|, |Y |) (101)

The minmod limiter attempts to use the slope (|X| or |Y |) which is smaller in steepness,

or uses zero slope (reducing to a first-order assumption) if they have opposite signs. In

the flux context, the two slopes are neighboring both sides of a cell center. To actually

determine the proper slope about the cell-center (Na), it is implemented as,

∂

∂x
Na = minmod

(
Na −Na−1

xa − xa−1

,
Na+1 −Na

xa+1 − xa

)
(102)

where a is the cell-center index along the desired spatial dimension, d, and xa − xa−1

is the distance between two neighboring cell-centers, not to be confused with ∆xa =

xa+ 1
2
− xa− 1

2
which is the cell width or distance between both faces. Distinguishing the

cell dimensions in this manner allows for non-uniform (rectilinear) grid distributions to be

modeled. The slope ∂
∂x
Na exists about the cell center of each a’th cell.

Special consideration is required whenever unused nodes exist in N (such that fewer

than B nodes are occupied) because unoccupied nodes (those with zero weight, φα = 0)

should be ignored entirely. When a higher order flux scheme attempts to operate between

two neighboring cells having differing inversion sequences, the unoccupied nodes in

N must not be used to compute adjoining slopes related to the flux at cell faces. To

account for this, a matrix I(t,x) may store an ID (such as an integer value) describing
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which nodes are occupied in N(t,x), and if two neighboring cells differ, then a simple

zero-order flux scheme should be applied, ∂
∂x
Na = 0. For more information, see the

numerical implementation of variable “ndx” in Yuan et al.44

Figure 14 depicts an example of the minmod slope limiter and the reconstruction

at the left (`) and right (r) face sides. The cell centers lie at the locations (xa,Na),

which is halfway (∆xa
2

) between the two cell faces, shown as vertical dotted lines. As

defined, minmod always chooses the slope, ∂
∂x
Na, that is lesser in steepness or chooses

a zero slope at local maximums or minimums. Once the slopes, ∂
∂xd
Na are computed in
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Figure 14. Visual Representation of minmod Slope Limiter

dimension d about the a’th cell centers (for all abscissas and weights in N individually),

99



they are used to construct the values at the left and right faces per Equation (103),

Na− 1
2
,r = Na − ∆xa

2
∂
∂xd
Na

Na+ 1
2
,` = Na + ∆xa

2
∂
∂xd
Na

(103)

Note that each cell can determine the reconstruction at the right side of the left face,

xa− 1
2
,r, and the left side of the right face, xa+ 1

2
,`, using the cell half-width ∆xa

2
which

is the distance from the cell center to either face. These reconstructions at the faces are

used in functionH(d,N) of Equations (96) and (97). Whether the positive or negative

H is chosen depends on the velocity at that single face (which requires the reconstruction

from two different cell centers), then the net flux across that single face appears in the

convective term,G(d,Na+ 1
2
,`,Na+ 1

2
,r) of Equation (98).

Another prominent scheme is the superbee slope limiter64 which is capable of

significantly reducing the numerical diffusion at sharp discontinuities where minmod may

severely limit the allowable shock slopes.

superbee(X, Y ) = maxmod

(
minmod(X, εY ), minmod(εX, Y )

)
(104)

The limiter remains TVD in general,64 but the coefficient, 1 ≤ ε ≤ 2, may be chosen less

than 2 to relax the method, where ε = 1 recovers the minmod limiter. In the current work,

ε = 1.5 was chosen.
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5. Non-Uniform Grid

The previous formulations are compatible with a non-uniform grid. In the present

work, many test case simulations involving a rectilinear grid were skewed using a

hyperbolic tangent curve applied in the y-direction only, and achieved using,

ya− 1
2

= Ly

(
1−

tanh
(
εg
[
1− a

N

])
tanh(εg)

)
(105)

where N is the number of cells that span the channel half-width, Ly, and εg is the

skewing coefficient, where εg → 0 reduces back to a uniform grid distribution and

a larger value of εg produces smaller cell widths near the wall (a = 0). Note that

by employing a factor of 2 on a, such that
[
1− 2a

N

]
in Equation (105), produces a full

channel profile with full width 2Ly spanning N cells.

6. Volume-averaging error

An error is inherent in a finite-volume (FV) method for moments simply from

performing a cell volume average.44 Consider a 1-D first-order flux scheme such that

a β = 1-point quadrature (single weight and abscissa) uses 1-D linear piecewise

interpolation, φ(x) ≡ φ + x∇φ and v(x) ≡ v + x∇v, where φ and v indicate the

cell-center values and the 1-D slopes (∂φ
∂x

= ∇φ, ∂v
∂x

= ∇v) define a line as a function

of scalar position x. Then the moments of a linearly interpolated cell quantity are given

as,

M
(γ)
∆x =

1

∆x

∫ ∆x/2

−∆x/2

φ(x)v(x)γdx (106)
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Solving that equation for the first four moments yields,

M
(0)
∆x = φ

M
(1)
∆x = φv +

1

12
∇φ∇v(∆x)2

M
(2)
∆x = φv2 +

1

12
∇v(φ∇v + 2∇φv)(∆x)2

M
(3)
∆x = φv3 +

1

4
v∇v(φ∇v +∇φv)(∆x)2 +

1

80
∇φ∇v3(∆x)4

(107)

Notice that the first term in each line is the correct value, but all the extra terms (that

depend on ∆x) are errors caused by nonzero interpolation slopes,∇φ 6= 0 or∇v 6= 0.

Although a zero-order flux scheme eliminates the averaging errors, it is too numerically

diffusive (1st-order accurate); in fact, a 1st-order (2nd-order accurate) scheme is

recommended.53 Reducing the slopes is also not practical, but reducing the size of ∆x

will help reduce the errors. Consider also that these errors will impact the corresponding

PDF representation. For example, the variance computed from Equation (65) of these

cell-averaged moments of Equation (107) is,

σ2
∆x =

(∇v∆x)2

12

(
1−

(
∇φ∆x√

12φ

)2
)

(108)

Therefore, the variance is positive, resulting entirely from both errors in M (1)
∆x and M (2)

∆x

being slightly different in value. A single node (Dirac delta function) was given in the

original node configuration that constructed the moment set, and should have a zero

variance. In other words, the very act of representing the nodes with a non-constant
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piecewise interpolation (linear or otherwise), misaligns the moments in the cells even

before any flux/transportation occurs. Moment alignment is discussed further in the

results Section §1. Moment Misalignment.

7. CFL Condition

The Courant-Friedrichs-Lewy (CFL) condition ensures that during a single time step

the solution does not change too rapidly. This is critical when computing the transport

of states through finite cells, especially where the numerical stability of hyperbolic

differential equations is concerned.64 If the CFL number is too large, the values might

overshoot and lead to spurious oscillations and instabilities, which is detrimental. A TVD

method is extremely important for maintaining non-negative state quantities, e.g. “mass”,

M (0) and energy, M (2), etc. The 1-D definition of the CFL number for any cell in the

mesh is

1 ≥ CFL ≥ V∆t

∆x
(109)

where V is the characteristic velocity scale for the particle phase (or fluid phase,

depending which aspect is under consideration) within a finite cell of width ∆x, and

a time step size of ∆t (which does not necessarily need to remain constant throughout

the simulation). Given satisfactory initial conditions and only drag forces with no other

external driving forces, the dispersed particle velocity scale will always be less than or

equal to the carrier fluid velocity scale, V ≤ U. Generally, the larger of the two velocities

will be the limiting factor in the CFL condition. Let λ represent the ratio of the time step
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size and cell width,

λ ≡ ∆t

∆x
≤ CFL

V
(110)

If ∆t is constant and the mesh is static (such that the cell spacings ∆x do not change over

time) then it is computationally advantageous and efficient to compute λa = ∆t
∆xa

(at

cell index a) for the entire mesh during initialization because λa appears directly in the

convective term of most PDE transport equations and the local CFL condition is readily

tested by,

λaVa ≤ CFL (111)

which is a necessary, but not always sufficient condition for numerical stability.64 During

implementation within the current work however, it was shown that the CFL condition

perfectly predicted the ∆t stability criteria that prevented the formation of negative

weights in a 1st-order time and spatial accurate CQMOM model of a free jet crossing

(β = 2, D = 2).

Recall that the CQMOM convective term includes up to α = 1, ...,B unique velocity

abscissas, v̂α, for closure (see Section §1. Flux Splitting). Therefore, each velocity

abscissa must satisfy the CFL condition individually, or rather, it suffices to check that

the largest velocity abscissa at a single grid point meets the condition. Let maxα(∗)

return the largest value present among all nodes, and maxa(∗) be the largest value across

spatial index a. Then for the multidimensional case (d = 1, ..., D), the CFL restriction is

limited by the maximum local particle velocity at the local grid spacing summed across
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all dimensions,

∆t

[
max
a

(
D∑
d=1

maxα(v̂d,α,a)

∆xd,a

)]
≤ CFL (112)

C. Optimal Moment Set

All of the inversion sequences performed during flux-splitting require a subset of 2β

moments for the 1-D Wheeler β-point inversion. The optimal moment set,M , contains

the union of all subsets that are required for closure. In the present work, this optimal

moment set vector has length K = 32 in X = 3 dimensional internal space (D = 3, Q =

0) with β = 2-point quadrature, defined generally by,44

K = (X + 1)βD (113)

where K is also the number of elements in the node matrix N that provides a

multidimensional quadrature representation of the PDF. The K corresponding moments,

M
(γ)
l1,l2,l3

, are stored and evolved via the transport equations listed in Equation (49),

providing a complete closed mapping and vice versa,M ↔ N. Table 9 lists the

optimal combinations of l1, l2, l3 that construct all the 0th, 1st, 2nd, and 3rd order optimal

moments, and some of the 4th and 5th order moments,44 providing K total moments.

Table 9. Optimal Moment Permutations for X =3 Dimensional State Space
With β = 2-Point Quadrature, E(m, d)

m : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
γ : 0 1 2 3 4 5

(d=1) l1 0 1 0 0 2 1 1 0 0 0 3 2 2 1 1 1 0 0 0 0 3 3 1 1 0 0 2 1 1 3 1 1
(d=2) l2 0 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 3 2 1 0 0 1 3 0 3 1 1 2 1 1 3 1
(d=3) l3 0 0 0 1 0 0 1 0 1 2 0 0 1 0 1 2 0 1 2 3 1 0 0 3 1 3 1 1 2 1 1 3
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Table 9 also shows an extremely useful index conversion, because the linearized

index m allows the moment set to be stored/referenced as a 1D vector, M (γ)
[m]

⇔M
(γ)
l1,l2,l3

, instead of using the multidimensional indices, {l1, l2, l3}. From a

numerical/computational standpoint, this is advantageous and more efficient than

attempting to store varying length vectors in a multi-dimensional array. Furthermore,

the look-up table function E(m, d) is easily implementable corresponding to the dth row

and mth column per Table 9. Note that the set of K = 32 moments in Table 9 involves

only the optimal moments of order up to γ ≤ 5, and is valid only for exactly X = 3

dimensions of the internal state space and β = 2 node quadrature. If a different number

are required, the table must be reconstructed to define all optimal index permutations

(l1, l2, l3, l4, ...) with the custom total K determined by Equation (113).

Figure 15. Visual Representation of K = 32 Optimal Moments for X = 3 and
β = 2

Determining the optimal moment set is a matter of combining all the moment

subsets of pertinent 1-D inversions, i.e. the union of all subset produces the optimal

set,M . Figure 15 offers a graphical representation of Table 9. The zero order moment,

{l1, l2, l3} = {0, 0, 0}, (purple colored) is the “cornerstone” of the moment set and is
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the total weight (area under the PDF); the green moments are the “simple” moments

because only one of the indices (l1, l2, or l3) is non-zero; the blue moments are “mixed”

moments that contain two non-zero indices; and the red moments are fully-mixed with all

non-zero indices (l1, l2, l3 6= 0). Core moments are those indicated by the hatch shading

and exhibit l1, l2, l3 < β for all indices. The total dimension X describes the number of

“arms” in the figure, while the number of nodes, β, describes the “thickness” of each arm

and 2β is the “length” of each arm. This arm length is significant because each subset of

2β = 4 adjacent moments (in a straight line) provides a 1-D moment β-point inversion.

Many of the inversions share the core moments among the different X number of “arms.”

As an example, the moment subset, {M (1)
010,M

(2)
011,M

(3)
012,M

(4)
013}, is conditioned on the

y-dimension where l2 = 1 and provides a z-dimension inversion where l3 = 0, 1, 2, 3.

In fact, there are exactly X · βX−1 unique inversions possible within the optimal moment

set and all of these inversion subsets share the βX core moments .

Figure 15 also calls-out a few selected moments for reference.

Table 10. Example Optimal Moment Counts, K

X = 1 1 2 2 3 2 4 3 5 3 4
β = 2 3 2 3 2 4 2 3 2 4 3
K = 4 6 12 27 32 48 80 108 192 256 405

For comparison, Table 10 lists the moment count, K, needed for various internal

state-space dimension X of the PDF given various β-point quadrature representation. The

values of the single case employed in the current work are shown in the bold column, and

some of the other columns have been implemented in previous works,44 but CQMOM
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offers the ability to go beyond K > 4. As can be seen, the number of moments and thus

transport equations and nested inversion sequences quickly grows with the addition of

more nodes and dimensions. To date, these higher order CQMOM sets, K > 48, have not

been tested for numerical feasibility/stability.

Recall that in Table 9, only some of the 3-D moment permutations are retained for

the higher order moments γ ≥ 4. Higher order moments are more prone to numerical

errors and it is thus desirable to operate with the lowest order moments possible. In other

words, first exhaust all the lower order permutations (core moments) before considering

higher order permutations which are also only pertinent to one respective dimension. It is

possible to achieve the total of K moments (needed for closure of N) without extending

the permutations of the mixed moments beyond the core moments in more than one

dimension. To demonstrate this, let X=D+Q be the total internal dimensions of the

PDF, then a generalized moment, M (γ)
l1,l2,l3,l4,...

, has X internal dimensions represented

by the multiset of exponents (written in the subscripts) and their summation produces the

moment order, l1+l2+l3+l4+... = γ. An optimal moment will have permutations limited

to the set {0, 1, 2, ..., 2β − 1}, which extends exactly to the maximum value needed for a

1-D inversion. Furthermore, some additional restrictions may apply to the multiplicity of

each element. Multiplicity is defined as the number of times that an element is repeated

within the multiset. An optimal moment will have only one element larger than or equal

to l1, l2, l3, l4 ≥ β, meaning that only one dimension extends beyond the core set of

moments. Then the total number of moment permutations is given by a combinatorics
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approach with binomial notation,

(
X

L1,L2, ...

)
≡ X !

L1!L2!...
(114)

where X is the total number of dimensions, and Li are the multiplicities of elements in

l ≡ {l1, l2, l3, l4, ...}, which are themselves also multiplicities (of the abscissas used to

generate moments).

For example, to determine the number of optimal fourth order moments, M (4), let

β = 2 and X be the arbitrary length of multiset l, then its elements must always sum to

γ = 4. Apply Equation (114), but allow only one 2 or 3 element to exist in the multiset,

and fill the remaining elements with 1’s or 0’s to achieve l1 + l2 + l3 + l4 + ... = 4. It should

be apparent that three types of multisets are then possible, those involving the elements

{3, 1, 0, ..., 0}, {2, 1, 1, 0, ..., 0}, and {1, 1, 1, 1, 0, ..., 0}, each having their own set of

unique permutations and always summing to γ = 4. Then the number of permutations

from each multiset may be summed together to obtain the total quantity of permutations,

and is represented mathematically as,

(
X

1, 1,X − 2

)
+

(
X

1, 2,X − 3

)
+

(
X

4,X − 4

)
(115)

If a negative factorial is encountered then the entire binomial term is considered zero. The

last integer values in the denominators represent the multiplicity of 0’s, which is simply

the total dimension minus the multiplicity of all other elements. Expanding the values
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of Equation (115), a single non-repeated digit (multiplicity of one) reduces to 1! in the

denominator and can be ignored, but each repeated digit (multiplicity greater than one,

Li > 1) will appear in the denominator of Equation (115). Note that the 3rd multiset

term has four 1’s, yielding the “4!” value, and therefore must have a multiplicity of X − 4

for the 0’s. Additionally, the 3rd term is non-zero only when X ≥ 4, so as to ignore any

negative factorials.

X !

(X − 2)!
+

X !

2!(X − 3)!
+

X !

4!(X − 4)!
(116)

Thus, the quantity of 4th-order moments M (4)
l1,l2,l3,l4,...

depends on the number of

nodes (β) and dimensions available, i.e. the length of multiset {l1, l2, l3, l4, ...}, which

is X . Table 11 lists the quantities of optimal moments (given a fixed β = 2), for unique

permutations of the multiset and the general expression is given in the 2nd column. The

last row of Table 11 lists the expected total number of optimal moments (K) required for

closure of N, and is recovered by summing all quantities of unique ordered moments in

the previous rows. This β = 2 case agrees with the totals listed previously in Table 10.

As a final note, it is worth mentioning that it is not mandatory for β to be equal in

all dimensions, as it has been so far described. Instead, each dimension could receive

a distinguished node count, βd, for customizing the resolution of the PDF in each

dimension. For example, in a 3-D boundary layer flow the wall-normal particle velocities

(v2) will exhibit more diversity than either the streamwise or spanwise velocities (v1 and

v3); therefore, adding an extra node in only the wall-normal direction may be beneficial,

e.g. {β1, β2, β3} = {2, 3, 2}, as opposed to requiring a full 3-point quadrature in all
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Table 11. Optimal Ordered Moment Counts of Varying X for β = 2

X = D +Q =

γ Expression 1 2 3 4 5 6

0
(X
X

)
1 1 1 1 1 1

1
( X
X−1

)
1 2 3 4 5 6

2
( X
X−1

)
+
( X

2,X−2

)
1 3 6 10 15 21

3
( X
X−1

)
+
( X
X−2

)
+
( X

3,X−3

)
1 4 10 20 35 56

4
( X
X−2

)
+
( X

2,X−3

)
+
( X

4,X−4

)
0 2 9 25 55 105

5
( X

2,X−3

)
+
( X

3,X−4

)
+
( X

5,X−5

)
0 0 3 16 51 126

6
( X

3,X−4

)
+
( X

4,X−5

)
+
( X

6,X−6

)
0 0 0 4 25 91

7
( X

4,X−5

)
+
( X

5,X−6

)
+
( X

7,X−7

)
0 0 0 0 5 36

8
( X

5,X−6

)
+
( X

6,X−7

)
+
( X

8,X−8

)
0 0 0 0 0 6

Sum: K = (X + 1)βX 4 12 32 80 192 448

dimensions which would be far more costly. However, the dimension containing the

largest node count would need to be inverted last in the multidimensional sequence, and

the previous formulations will need to be extended to account for unique values of βd.

D. Time Iteration Scheme

An improved order of time-accuracy is available using the 2nd order Runge-Kutta

Strong-Stability-Preserving (RK2SSP)45, 75 scheme defined as,

(1)

M a :=
(n)

M a −
∆t

∆xd,a

[
G(d,

(n)

Na+ 1
2
,`,

(n)

Na+ 1
2
,r)−G(d,

(n)

Na− 1
2
,`,

(n)

Na− 1
2
,r)

]
(2)

M a :=
(1)

M a −
∆t

∆xd,a

[
G(d,

(1)

Na+ 1
2
,`,

(1)

Na+ 1
2
,r)−G(d,

(1)

Na− 1
2
,`,

(1)

Na− 1
2
,r)

]
(n+1)

M a :=
1

2

[
(n)

M a +
(2)

M a

] (117)
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where a is the spatial index in a single dimension, and the overscript value (n) is the time

step, while overscripts (1) and (2) are placeholders for internal Runge-Kutta iterations.

This formulation requires that the entire CQMOM operation be carried out during

iteration (1), where all (D − 1)!D flux paths must be performed using Equation (92), then

proceed to repeat the entire operation again for iteration (2). Note that the full domain

set of moments
(n)

M must be memorized while
(2)

M may overwrite
(1)

M . In the final step of

Equation (117), the initial and final moments are averaged together. Although this process

doubles the computational requirements compared to a first-order time accurate scheme,

it provides second-order accurate time resolution. Higher order R-K methods could be

employed by extending the format of Equation (117).

E. Source Terms

Included in the moment transport equation are the additional source terms, D and C,

that may be added to the RHS of the equation to model additional particle interactions.

Some of the terms may deal directly with the abscissas and weights (N) while others deal

with the moments (M ), but they can both be applied using operator-splitting technique as

described in Section §2. Operator Splitting Technique. Firstly, the acceleration term has

many contributing factors such as drag, gravity, or other body forces, all of which may be

grouped together into a generic net acceleration source term D that deals exclusively with

the nodes, N and must be repeated once in each flux dimension, 1, ..., D. Secondly, the

inter-particle collision term, C, deals with the moments exclusively and thus must only be

applied once per timestep, typically after the flux-splitting is complete in all dimensions.
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These source terms are optional, and it is important to consider that they may operate

on very different time scales as compared to the flux scheme’s CFL condition, and that

the stability of the model may be compromised. First, the collision model operates at

the time scale τ c, which may become very small in dense regions experiencing high

granular temperature. As τ c → 0, the collision term, C, allows for drastic changes inM

within a single time step, thus the model stability is at stake if the time step size, ∆t, is

not sufficiently small. Similarly, the drag term, D, influences particles at the timescale τ p

and low inertia particles may respond rapidly to changes in the carrier fluid. Introducing

a relaxation time coefficient, κ, that exponentially approaches a “steady-state” solution,

can help remedy these issues. For example, it can prevent slow moving particles from

accelerating past the fluid speed (overshooting).

1. Inter-Particle Collisions

A source term may be added to the Boltzmann equation to model inter-particle

collisions76 from a statistical mechanics viewpoint; see Section §G. Viscosity Limitations.

One approach for modeling the collision effects is the Bhatnagar-Gross-Krook (BGK)

approximation.51, 77 The concept assumes a mean free-path treatment that replaces a

collision integral with a collision relaxation time, τ c, from Equation (16). The difference

between f and f eq can be considered a perturbation method, and the source term is

amplified by the increased collision frequency,

C =
1

τ c

(
f eq(v)− f(v)

)
(118)
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where the multivariate Gaussian1, 33, 44, 45 distribution, f eq(v), is computed by copying

many features from f(v),

f eq(v) =
M (0)

(2πΘeq)D/2
exp

(
−|v − 〈v〉|

2

2Θeq

)
(119)

The “mass”, M (0), mean velocity, 〈v〉, and equilibrium temperature, Θeq, are all obtained

from f(v). However, f eq(v) by definition has zero skew and equal variance in all

directions: Θeq. In other words, f eq is the “equivalent” representation of f with maximum

entropy, centered symmetrically about the mean velocity, 〈v〉, with variance Θeq in all

dimensions.

In the special case that the multidimensional variance of f(v) is zero (Θeq = 0)

then f(v) = f eq(v) = δ is the same Delta function and the collision term is null. This

follows since no particles are crossing trajectories and they all move uniformly with the

same velocity, which also corresponds to the lowest entropy state possible. It is important

to realize that the collision term, C, attempts to transform f(v) into f eq(v), but the rate

at which this occurs depends on 1/τ c; thus is also characterized by the Knudsen number.

The more frequent the collisions (τ c → 0), the more rapidly the velocity distribution can

return to an equilibrium Gaussian distribution of maximum entropy. A truly collisionless

state (τ c → ∞) is also possible in the rarefied limit M (0) → 0, and also nullifies the

collision source term.

Although f eq(v) pertains to the random motion of perfectly elastic (ω = 1) fluid

molecules, it does have some basis for use in the motion of granular particles too. Recall
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that granular particles differ from their molecular counterparts in that they are inelastic

and dissipative,7 and a time-independent Maxwellian function is no longer a solution to

the Boltzmann equation, but can serve as a starting point for a perturbation expansion.78

The assumption that ω ≈ 1 for granular particles is made for simplification, but inelastic

models are also currently available1, 36, 44 using the function, f̃ eq(v),

f̃ eq(v) =
M (0)

[det(2πF)]D/2
exp

(
−1

2

(
vi − 〈vi〉

)(
F−1

)
ij

(
vj − 〈vj〉

))
(120)

where the repeated Latin subscripts imply summation of the various dimensions. The

second order tensor, F, is given by,1

F = Υω2ΘeqI +
(
Υω2 − 2Υω + 1

)
θ (121)

The moments of f eq are constructed similarly to Equation (45), but depend on the

equilibrium distribution instead,

C
(γ)
l1,l2,l3

= M (0)Λ
(γ)
l1,l2,l3

=

∫
vl11 v

l2
2 v

l3
3 f eq(t,x;v)dv (122)

Mass and momentum conservation (during elastic and inelastic collisions alike) ensures

that the zero and first order moments of f and f eq are identical, while a sink/source term,

C
(γ)
l1,l2,l3

, will appear only in the 2nd-order and higher moment transport Equations (49).

It should be noted that the kinetic theory collision approximation will be accurate for the

2nd-order moment, but higher order moments may be poorly modeled for a distribution
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far from equilibrium.1 The total weight, M (0), remains a factor on all Λ
(γ)
l1,l2,l3

terms

and so it is kept as an external coefficient. Each of these elastic collision terms may be

approximated as follows for isotropic collisions,

Λ
(0)
0,0,0 = 1

Λ
(1)
l1,l2,l3

= 〈v1〉l1 〈v2〉l2 〈v3〉l3

Λ
(2)
l1,l2,l3

=
(
Θeq + 〈v1〉2

)
δl1,2 +

(
Θeq + 〈v2〉2

)
δl2,2 +

(
Θeq + 〈v3〉2

)
δl3,2+

〈v1〉 〈v2〉 δl1,l2 + 〈v1〉 〈v3〉 δl1,l3 + 〈v2〉 〈v3〉 δl2,l3

Λ
(3)
l1,l2,l3

= ...

(123)

Table 12 shows the full terms expanded up to the 5th order moments (γ ≤ 5)

required for vector C (of length K = 32) and they become sophisticated. These equations

also includes the notation that is compatible with anisotropic collisions. To obtain the

more generic isotropic collision formulas of Equation (123), ignore the off-diagonal terms

of the covariance matrix (θ1,2 = θ1,3 = θ2,3 = 0), and replace the diagonal terms with the

scalar equilibrium temperature (θ1,1 = θ2,2 = θ3,3 = Θeq). The isotropic assumption relies

on the single condensed scalar temperature, Θeq, obtained by averaging all dimensional

granular temperatures into one, as described in Equation (68). Consequently, an isotropic

collision model may cause undesired results in regions that are highly anisotropic. In

other words, the isotropic simplification provides a mechanism for momentum transfer

to occur between different dimensions by equalizing the collisions in all directions, but
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Table 12. Collision Terms Up to 4th-Order

Λ
(0)
0,0,0 = 1 Λ

(3)
3,0,0 = 3 〈v1〉 θ1,1 + 〈v1〉3

Λ
(1)
1,0,0 = 〈v1〉 Λ

(3)
2,1,0 = 2 〈v1〉 θ1,2 + 〈v2〉 θ1,1 + 〈v1〉2 〈v2〉

Λ
(1)
0,1,0 = 〈v2〉 Λ

(3)
2,0,1 = 2 〈v1〉 θ1,3 + 〈v3〉 θ1,1 + 〈v1〉2 〈v3〉

Λ
(1)
0,0,1 = 〈v3〉 Λ

(3)
1,2,0 = 2 〈v2〉 θ1,2 + 〈v1〉 θ2,2 + 〈v1〉 〈v2〉2

Λ
(2)
2,0,0 = θ1,1 + 〈v1〉2 Λ

(3)
1,1,1 = 〈v1〉 θ2,3 + 〈v2〉 θ1,3 + 〈v3〉 θ1,2 + 〈v1〉 〈v2〉 〈v3〉

Λ
(2)
1,1,0 = θ1,2 + 〈v1〉 〈v2〉 Λ

(3)
1,0,2 = 2 〈v3〉 θ1,3 + 〈v1〉 θ3,3 + 〈v1〉 〈v3〉2

Λ
(2)
1,0,1 = θ1,3 + 〈v1〉 〈v3〉 Λ

(3)
0,3,0 = 3 〈v2〉 θ2,2 + 〈v2〉3

Λ
(2)
0,2,0 = θ2,2 + 〈v2〉2 Λ

(3)
0,2,1 = 2 〈v2〉 θ2,3 + 〈v3〉 θ2,2 + 〈v2〉2 〈v3〉

Λ
(2)
0,1,1 = θ2,3 + 〈v2〉 〈v3〉 Λ

(3)
0,1,2 = 2 〈v3〉 θ2,3 + 〈v2〉 θ3,3 + 〈v2〉 〈v3〉2

Λ
(2)
0,0,2 = θ3,3 + 〈v3〉2 Λ

(3)
0,0,3 = 3 〈v3〉 θ3,3 + 〈v3〉3

Λ
(4)
3,0,1 = 3θ1,1θ1,3 + 3θ1,3 〈v1〉2 + 3 〈v1〉 〈v3〉 θ1,1 + 〈v1〉 〈v3〉 〈v1〉2

Λ
(4)
3,1,0 = 3θ1,1θ1,2 + 3θ1,2 〈v1〉2 + 3 〈v1〉 〈v2〉 θ1,1 + 〈v1〉 〈v2〉 〈v1〉2

Λ
(4)
1,3,0 = 3θ1,2θ2,2 + 3θ1,2 〈v2〉2 + 3 〈v1〉 〈v2〉 θ2,2 + 〈v1〉 〈v2〉 〈v2〉2

Λ
(4)
1,0,3 = 3θ1,3θ3,3 + 3θ1,3 〈v3〉2 + 3 〈v1〉 〈v3〉 θ3,3 + 〈v1〉 〈v3〉 〈v3〉2

Λ
(4)
0,3,1 = 3θ2,2θ2,3 + 3θ2,3 〈v2〉2 + 3 〈v2〉 〈v3〉 θ2,2 + 〈v2〉 〈v3〉 〈v2〉2

Λ
(4)
0,1,3 = 3θ2,3θ3,3 + 3θ2,3 〈v3〉2 + 3 〈v2〉 〈v3〉 θ3,3 + 〈v2〉 〈v3〉 〈v3〉2

Λ
(4)
2,1,1 = 2θ1,2θ1,3 + θ1,1θ2,3 + θ2,3 〈v1〉2 + 2 〈v1〉 〈v2〉 θ1,3 + 2 〈v1〉 〈v3〉 θ1,2

+ 〈v2〉 〈v3〉 θ1,1 + 〈v2〉 〈v3〉 〈v1〉2

Λ
(4)
1,2,1 = 2θ1,2θ2,3 + θ1,3θ2,2 + θ1,3 〈v2〉2 + 2 〈v2〉 〈v3〉 θ1,2 + 2 〈v1〉 〈v2〉 θ2,3

+ 〈v1〉 〈v3〉 θ2,2 + 〈v1〉 〈v3〉 〈v2〉2

Λ
(4)
1,1,2 = 2θ1,3θ2,3 + θ1,2θ3,3 + θ1,2 〈v3〉2 + 2 〈v2〉 〈v3〉 θ1,3 + 2 〈v1〉 〈v3〉 θ2,3

+ 〈v1〉 〈v2〉 θ3,3 + 〈v1〉 〈v2〉 〈v3〉2

Λ
(5)
3,1,1 = 6 〈v1〉 θ1,2θ1,3 + 3 〈v2〉 θ1,1θ1,3 + 3 〈v3〉 θ1,1θ1,2 + 3 〈v1〉 θ1,1θ2,3

+3 〈v2〉 θ1,3 〈v1〉2 + 3 〈v3〉 θ1,2 〈v1〉2 + 〈v1〉 θ2,3 〈v1〉2

+3 〈v1〉 〈v2〉 〈v3〉 θ1,1 + 〈v1〉3 〈v2〉 〈v3〉
Λ

(5)
1,3,1 = 6 〈v2〉 θ1,2θ2,3 + 3 〈v2〉 θ1,3θ2,2 + 3 〈v3〉 θ1,2θ2,2 + 3 〈v1〉 θ2,2θ2,3

+ 〈v2〉 θ1,3 〈v2〉2 + 3 〈v3〉 θ1,2 〈v2〉2 + 3 〈v1〉 θ2,3 〈v2〉2

+3 〈v1〉 〈v2〉 〈v3〉 θ2,2 + 〈v1〉 〈v2〉3 〈v3〉
Λ

(5)
1,1,3 = 6 〈v3〉 θ1,3θ2,3 + 3 〈v2〉 θ1,3θ3,3 + 3 〈v3〉 θ1,2θ3,3 + 3 〈v1〉 θ2,3θ3,3

+3 〈v2〉 θ1,3 〈v3〉2 + 〈v3〉 θ1,2 〈v3〉2 + 3 〈v1〉 θ2,3 〈v3〉2

+3 〈v1〉 〈v2〉 〈v3〉 θ3,3 + 〈v1〉 〈v2〉 〈v3〉3
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treating all dimensions equally in collision strength when they actually exhibit quite

different temperatures, Θd 6= Θeq, may yield unphysical results.

Finally, the full quadrature approximation of the collision term from Equation (118)

depends linearly upon the difference between the equilibrium moments, M (0)Λ
(γ)
l1,l2,l3

, and

the actual moments, M (γ)
l1,l2,l3

,

C
(γ)
l1,l2,l3

=
1

τ c

[
(M (0)Λ

(γ)
l1,l2,l3

)−M (γ)
l1,l2,l3

]
(124)

Note that the 0th and 1st-order collision terms are identical to their respective moments,

M (0)Λ(γ) ≡ M (γ) for 0 ≤ γ ≤ 1. Therefore, the collision term, C, will cancel-out

(and has no effect) until the 2nd-order or higher moment transport equations. This is

representative of the mass and momentum conservation of (in)elastic collisions. For

elastic collisions, energy is also conserved; however, since the energy is being transferred

between dimensions using the average value Θeq, the individual 2nd-order moments are

not necessarily conserved.

2. Operator Splitting Technique

To improve the stability of the moment transport equations and help ensure the

realizability of the moment set, the contributions from source terms D and C are not

directly added into the moment equations as shown in Equation (49), instead, both of

these source terms are applied separately from the typical flux scheme. The convective

term updates the moments in the PDE per Equation (117); however, before converting the
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nodes back into moments withG, the drag term is applied while the nodes N are in the

proper format described directly by f(v̂).

The operator splitting technique will apply the acceleration source term, D, by

influencing the abscissas directly.42 A first-order ODE assumption allows an exponential

relaxation to alter the velocities,

(n+1)

φα :=
(n)

φα

(n+1)

v̂α := κp
(n)

v̂α + (1− κp)(
(n)
u + ...)

(125)

where n is the time step index, u is the carrier fluid velocity, τ p is the particle response

time defined in Equation (10), and κp = e−∆t/τp is the particle drag time coefficient.

Therefore, the particle velocity v will tend toward u in an exponentially decaying manner

dependent upon the time coefficient that describes how “laggy” the particle is (Stokes

number). Note that the new weight
(n+1)

φα remains unchanged. This method is applicable

for any net drag/gravity/body forces desired within the D term. An example specifically

for the drag/gravity only case in 3-D is,

(n+1)

U := κp
(n)

U + (1− κp)(
(n)
u1 + τ pg1)

(n+1)

V := κp
(n)

V + (1− κp)(
(n)
u2 + τ pg2)

(n+1)

W := κp
(n)

W + (1− κp)(
(n)
u3 + τ pg3)

(n+1)

φ :=
(n)

φ

(126)
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where g is the gravitational acceleration vector. U , V ,W , and φ are vectors of length

B containing all node info from N; see Equation (54). However, only the relevant

dimension d is applied during each inversion-flux pair operation in CQMOM. It is then

straightforward to add additional acceleration terms into Equation (126) as needed.

Next, the same ideology is applicable for the collision source term vector, C, applied

to the moments,M , using the exponential solution to a first-order differential equation,

(n+1)

M :=
(n)
κc

(n)

M + (1−
(n)
κc)

(n)

C (127)

The collision time, τ c defined in Equation (13), influences the particle collision time

coefficient, κc = e−∆t/τc , locally since it depends upon the local zero order moment, M0.

Again, the exponential decay ensures that the moments will not overshoot and become

negative because 0 ≤ κ ≤ 1. The zero and first order moments are not changed, but

all the higher order moments are updated each time step per Table 12 (Fox et al.), using

Equation (127).

3. Boundary Conditions

Many types of boundary conditions are possible in QMOM. Typically the nodes,

N, are altered or restricted to conform to certain desired conditions (using the operator

splitting technique) by applying the conditions after updating the abscissas and weights

due to the acceleration term, but before reconstructing the moment set (which also

performs the convective term of the moment transport). Periodic boundaries simply copy
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the node values from the first internal cells to a ghost layer at the other end of the domain

for the respective boundary.

Reflective boundaries allow particles to “bounce” off of boundary walls with little

added complexity. Consider a Cartesian grid with a planar wall in the xz-plane such that

particles contacting the wall will have their y-velocity reflected. By copying the velocities

on the wall boundary (where location y0 is a ghost layer) and negating the velocity which

is perpendicular to the wall, the neighboring adjacent cells (at y1) will begin to experience

a positive variance (Θ2 > 0) when the wall-normal velocity V is reflected back (for all

nodes). The ghost layer is set according to,36, 39



U

V

W

φ


y0

:=



U

−ewV

W

φ/ew


y1
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where ew is the coefficient of restitution7 and ew = 1 for perfectly elastic reflections. Note

that two nodes will immediately be exhausted near reflective boundaries and may make

it difficult to model any additional physical phenomenon that is occurring on top of the

reflection unless more nodes are allotted (β > 2).

F. High Performance Computing

The DNS fluid solver was converted from FORTRAN into C++ and merged with the

CQMOM solver natively written in C++ based on the MATLAB 3-D Wheeler inversion
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provided by Yuan et al.44 The CQMOM algorithm responds well to CPU parallelization

when delegating work by spatial domain decomposition. This also ensures that the

mathematics described thus far are wholly applied to every single cell, because each CPU

receives a local domain which is part of the global domain topology and information is

transferred between the internal boundaries shared by any two neighboring CPU’s. The

Message Passing Interface (MPI) protocol was employed in the current work. The only

pertinent information that requires sharing are the node matrices, N, and indices, I, of the

ghost layer(s) after the inversion process and before reconstructing the values at the cell

faces with the slope limiters. A 2nd-order accurate flux scheme requires two ghost layers

at each internal boundary. It was observed in the current work that identical results are

obtainable independent of CPU count on a 3-D rectilinear grid. The speedup is significant

and the computations show good scalability to parallelization. The present code can run

1 2 4 8
1

2

4

8

N CPUs


 t

1
/ 


 t
N

 

 

CQMOM

Ideal

Figure 16. Speedup of CQMOM Algorithm Through CPU Parallelization

on any grid which is divisible into N equally sized domain partitions (same number of

cells), including dimensions of non-uniformly distributed cells. Figure 16 shows the
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speedup obtained for the 3-D channel CQMOM code only, with isotropic collisions

enabled and running on N = 1, 2, 4, and 8 CPU’s. At most, the full internal 3-D grid,

64 × 64 × 64, was divided into N = 8 partitions of 32 × 32 × 32, each having two

ghost layers on all 6 boundary faces. This could very easily be divided into more smaller

partitions given the availability of better hardware.

Table 13. Comparison of DNS and CQMOM Solver Variables and Equations

Velocity D BDD
Pressure 1
Weights BD

Moments BD(D + 1)
Transport Eqs. D BD(D + 1)
Permutations 1 (D − 1)!D

Table 13 compares the number of variables and equations required to solve the DNS

carrier fluid vs. the CQMOM particle phase respectively. The costs for CQMOM are

multiplied because each permutation must repeat the conditional moment inversion for

all D dimensions and perform the flux term in all D dimensions to close the flux term per

Equation (52).44 However, when β < B (for each dimension) the costs are somewhat

reduced.

G. Solution Algorithm

In summary, the CQMOM solution algorithm is given in Table 14 and lists the

overarching procedure as executed in the current work’s numerical source code. Each

indentation signifies a nested “for” loop that is repeated as indicated, and the tilde terms

(M̃ and Ñ) are temporary placeholders with scope inside the path p loop only.
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Table 14. CQMOM Solution Algorithm

1. Apply initial conditions to abscissas (v̂, ξ) and weights (φ) in N(t0,x)

2. Apply all §3. Boundary Conditions to N,

3. Initialize the moments over entire domain (t0,x), N→M , Equation (52)

4. Main time index loop (tn), for n in 0:N

A. Initialize
(r=0)

M =
(n)

M

B. Runge-Kutta iteration loop, for r in {1:R = 2},

i. Initialize the running sum,
(r)

M = 0

ii. Loop through all flux paths, for p in {1:P}, Equation (92)

a. Initialize the temporary placeholder, M̃ =
(r−1)

M

b. Flux-splitting loop, for dimension d in [xd1 , xd2 , xd3 ], Equation (91)

• Determine sequence vector b from Table 7 for dimension d and path p

• Conditional-splitting loop, for dimension i in b, Figure 12

◦Wheeler inversion in dimension i, M̃ → Ñ, Figure 10

• Apply body force terms to Ñ in dimension d, Equation (126)

• Apply §3. Boundary Conditions to Ñ

• Share ghost layer(s) of Ñ between neighboring CPU’s (HPC only)

• Reconstruct Ña± 1
2

at cell faces in dimension d using §4. Slope limiter

• Compute convective moments,H±
a± 1

2

(d, ...), Equation (96)

• Compute FV spatial flux terms,Ga± 1
2
(d, ...), Equation (98)

• Advance flux term, M̃−= ∆t
∆xd

(Ga+ 1
2
−Ga− 1

2
), Equation (117)

c. Add the result to the running sum,
(r)

M+=M̃

iii. Average the running sum by total P path permutations,
(r)

M/=P

iv. Advance
(r)

M by ∆t due to collision term C, Equation (127)

C. Finalize RK SSP average,
(n+1)

M = [
(n)

M +
(r=R)

M ]/2, Equation (117)

5. Save results
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VI. RESULTS

A variety of simulations were performed in the present work, all of which focused

on the multivalued velocity field of particles corresponding to the PDF, f(t,x;v). At

most, β = 2 node quadratures are possible in each dimension for all cases. The 2-D cases

employ the full 3-D solver by ignoring one of the dimensions, which ensures consistency

in the software methodology and is mathematically equivalent.

A. Free Jet

To demonstrate the capabilities of CQMOM operating at very large Knudsen

numbers, a free jet flow in a vacuum is modeled, i.e. the Stokes number can be considered

infinite, with no carrier flow or drag force present. A 40 × 40 grid covering a domain

of length 1 × 1 is used to demonstrate the effects of numerical diffusion. The minmod

and superbee slope limiters are compared by viewing the first four x moments,

{M (0),M
(1)
100,M

(2)
200,M

(3)
300}, and the x and y velocity abscissas v̂ = {U, V } along

the diagonal centerline of the jet, seen as the dashed cross-section in Figure 17(a).

The 3-D solver is still employed for consistency by ignoring any z moments or

z-direction inversions. Free jets in the following cases showed the best results when using

W={1E−3, 1E−2}. The abscissa proximity ratio was left unrestricted (P=1.0) to test the

robustness of the solver.

Figure 17(a-b) depict the volume fraction in a 2-D plane, starting with the inlet

boundary condition at the south face with inlet volume fraction M0 = 0.05, nine cells

wide, and moving diagonally with velocity {U, V } toward the outlet at the east face.
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The time step size is chosen to be much smaller than the CFL condition in all the 2-D

simulations by the following convention,

∆t =
min(∆xd,a)

4V2D
(129)

where min(∆xd,a) is the scalar value of the smallest ∆x in any dimension among all the

cells in the domain. Ideally, the moments and velocities will remain constant from inlet

to outlet, therefore, the inlet conditions provide the “true” solution that can be used as a

reference point to measure relative errors. Recall that the reconstruction between cells is

only first-order accurate when neighboring node sets are different (I), but this had little or

no effect on the accuracy of the single jet. This was verified in a case which ignored I and

was fully second-order accurate and showed identical results.

1. Moment Misalignment

Instead of setting the velocity scale to exactly unity (V = 1.0), an inlet velocity of

{U, V } = {0.97, 0.97} is now chosen to highlight the non-linear effects of numerical

round-off errors that lead to moment misalignment. Notice from Figure 17(c) that all the

moments degrade/diffuse in concert, and in fact, the relative error of all the moments in

M degrade identically as shown in Figure 17(d). Therefore, their relationships (such as

U = M (1)/M (0)) retain extremely high accuracy even when suffering from significant

degradation caused by numerical diffusion. This retained alignment of moments is a

very powerful feature of moment methods, but it is also delicate because discriminatory

errors (which affect different moments unequally) lead to misaligned moments that
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Figure 17. Numerical Diffusion of One Free Jet in 2-D Along Jet Centerline in
40× 40 domain
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create instabilities in the velocities as described further later. When the velocity abscissas

only contain small round-off errors that misalign the moments during construction, the

relative error between transported moments still remains very small and random (machine

precision) as depicted in Figure 17(e-f). The percent relative errors are on the order

of 1E−14, (which is 1E−16 true relative error), and coincides exactly with the double

machine precision employed. Furthermore, the errors are identical in both dimensions,

owing to the symmetry in the solver.

2. Grid Sensitivity to Numerical Diffusion
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Figure 18. Numerical Diffusion of Single Jet at Time Step t = 1600. Columns
Are Volume Fraction (M0), x-Velocity (Uα), and y-Velocity (V α)

Choosing the velocities {U, V } = {1, 1} exactly ensures that all the moments

are equal in value, M (0) = M
(1)
100 = M

(2)
200 = M

(3)
300, and any effects of misalignment

are absent. In fact, any velocity values which are exactly representable in binary (no

round-off, such as 0.5) retain their initial values exactly, completely independent of the

numerical diffusion errors inM . This has been verified for the single jet case and is

shown in Figure 18 by comparing two different N × N sized grids. In the absence of
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moment misalignment, these cases can be used to isolate the grid sensitivity to numerical

diffusion only. The jets have inlet widths of 9 and 15 cells for N = 40 and N = 100

respectively. The superbee limiter is far superior at preserving sharp discontinuities

(shocks) compared to minmod. However, even the coarsest mesh with the least accurate

slope limiter still produces exact results for the velocity throughout the entire domain,

{U, V } = {1.0, 1.0} exactly! Since only 1-point quadrature is needed for the single-jet

case, only the first node (α = 1) is non-zero and the unused nodes (entirely zeros)

are hidden for clarity. In summary, the velocities maintained their exact inlet values,

regardless of the slope limiter or fineness of the mesh, which was possible due to perfect

moment alignment.

B. Free Jet Crossing

Next, a second jet is introduced into the 2-D planar 100 × 100 grid covering a

domain of length 1 × 1. An inlet boundary condition of two particle jets is located on

the south boundary with initial velocity v̂ = {1, 1} and v̂ = {−1, 1} respectively so

that their trajectories will cross. Just as before, the incoming jets are perfectly collimated

and experience no collisions; therefore, the Knudsen number is infinite at the inlets

(and remains so for the collisionless case even at the intersection). An inlet volume

fraction of M0 = 0.05 is chosen arbitrarily for a collisionless case. The jet-crossing

case introduces an intersection region that drastically affects all the moment fields in

M . At the intersection’s very center, the even-ordered x-moments double in size while
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odd-ordered x-moments cancel perfectly, and the surrounding radius contains skewed

mixtures that depend upon which of the two jets is dominant.

First, results for a uniform grid with equal cell-spacings ∆xd in all dimensions, d,

are provided. As expected, the bimodal distribution occurring at the intersection of the

jets is realizable using 2-point quadrature with CQMOM, allowing for the multivalued

velocities to be retained. Perfect symmetry is achievable in the solution when the initial

conditions are also symmetric. The vector plots skip every other grid point and may not

appear perfectly symmetric, even when they are.

A restrictive example3 is shown in Figure 19(a-c) which intentionally limits the

number of nodes to β = 1, preventing any PTC or variance (σ2 = 0). When β = 1, then

only “mass” and mean momentum are considered, resulting in a non-physical delta shock

where the mean x-momentum of zero, 〈v1〉 = 0, is given to all the particles of the cell,

causing an accumulation of mass in those cells that is transported upward, 〈v2〉 = 1. This

result is closer to a physical solution that might be expected for a hydrodynamic fluid at

Kn � 1, as demonstrated experimentally by Keshavarz et al.,79but is not the expected

result for a collisionless rarefied fluid, Kn → ∞. Kah et al.12 show a jet crossing of a

turbulent aerosol spray exhibiting the same phenomenon.

1. Limiter Comparison

To capture PTC, a 2-point quadrature approach is required at minimum and shown in

Figure 19(d-f) with the minmod slope limiter. Notice that the x-momentum, M (1)
100, at the

intersection decreases to zero because the two jets cancel one another, while the energy,
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(a) M0 (b) M (1)
100 (c) {U ,V }

(d) M0 (e) M (1)
100 (f) {U ,V }

(g) M0 (h) M (1)
100 (i) {U ,V }

Figure 19. x-y Planar Contours of Collisionless Free Jet Crossing on Uniform
Grid. Slope Limiters: minmod (d-f); Otherwise superbee

M
(2)
200, doubles in magnitude. Numerical diffusion is clearly noticeable farther from the

inlet, amplified by the 2-D diagonal motion of the jet. The inlet concentration, M (0) =

0.05, uses a step function to test the shock-preserving capabilities. The mass, momentum,

and higher order moments all exhibit similar effects of numerical diffusion.

In an attempt to reduce the numerical diffusion, the superbee slope limiter is

also applied, shown in Figure 19(g-i). This improved limiter is capable of preserving

sharper shocks, and the coefficient ε = 1.5 was employed (see section §4. Slope limiter).
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Notice also that fewer 2-point quadratures are required when comparing Figure 19(f) and

Figure 19(i) because less mass has been expelled by numerical diffusion away from the

jets, i.e. the vector field has a narrower more accurate representation of the jets. The peak

mass, M (0), at the outlet boundary suffered a 22.5% loss with the minmod limiter and

exhibits noticeable spreading; however, the superbee limiter only suffered a 3.5% loss

and a qualitatively sharper edge. The results in Figure 19 confirm the previous results of

others42, 44 and also add a new improved shock treatment.
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Figure 20. Early Evolution of the superbee Limiter at Time Step t = 200

132



The volume fraction along the diagonal centerline of the right-moving jet in

Figure 20(a) shows the early (t = 200) forefront of the large “mass” shock (y ≈ 0.13)

before it reaches the intersection. Notice in Figure 20(d-e) however, that the velocity

abscissas are already determined far in advance, up to y ≈ 0.65, far beyond the

forefront of the large “mass” shock. In actuality the real shock is far ahead of the apparent

“mass” of particles, and Figure 20(b) indicates this by showing an equivalent log plot

of Figure 20(a). An extremely small “mass” of particles, on the order of M0 ≈ 1E−72,

is being convected far ahead of the jets, yet still perfectly retains the exact velocity

abscissas. This “colonization” of the domain lays the foundation for the abscissas far

before any significant amount of “mass” occupies it. However, since the “mass” is well

below the weight threshold (M0 � W1), only a simple 1-point quadrature inversion

is performed in those cells, e.g. U1 = M
(1)
100/M

(0), and only the lowest two moments

are required. The slope discontinuity at y ≈ 0.3 in Figure 20(b) is the shift as the

right-moving jet relinquishes dominance to the left-moving jet as shown in Figure 20(c)

near x=0.5. Therefore, the log plot does not show M
(1)
100 or M (3)

300 beyond y ≈ 0.3 because

they become negative where the left-moving jet is dominant, but are exactly the same

magnitude as M0 and M (2)
200 and retain the exact velocity abscissas, V = −1.0. Beyond

the forefront of the shock (y > 0.65) the nodes still retain their untouched zero-valued

initial conditions, which also do not appear on a log scale plot.

Figure 21 depicts the further evolution of the right-moving jet at two different time

steps (t = 400 and 1400), once right at the initiation of the jet crossing and once after the

jet has crossed completely and exited the domain at the east outlet. The onset of the jet
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Figure 21. Numerical Diffusion From minmod Limiter at Time Steps t = 400
(First Row) and t = 1400 (Second Row). Columns Are Moments (M ), x-Velocity

(Uα), and y-Velocity (V α) Respectively

intersection occurs in Figure 21(a) and Figure 22(a) near y ≈ 0.25, where the odd ordered

moments interfere destructively and the even ordered moments interfere constructively,

causing the two pairs of moments to separate in value, and the odd ordered moments may

become negative. This significant difference between moments immediately causes the

inversion to return a 2-point quadrature of the PDF. Therefore the values of U1 and U3 are

nonzero (the zeros of the other unused nodes, Uα, are hidden for clarity). The linearized

subscript index shown here is that of Equation (88).
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Figure 22. Numerical Diffusion From superbee Limiter at Time Steps t = 400
(First Row) and t = 1400 (Second Row). Columns Are Moments (M ), x-Velocity

(Uα), and y-Velocity (V α) Respectively

2. Under-Representation Errors

Notice that Figure 20(d), Figure 21(b,e,f), and Figure 22(b) contain rare occurrences

of outlier velocity abscissas which are clearly not -1, 0, or 1. These are erroneous

values occur in cells which experience PTC, but whose weights are too small to be

given a 2-point quadrature, thus a 1-point quadrature inherits the averaged velocity.

Unfortunately, cells lying at the interface between regions of 1-point and 2-point

quadratures will commonly suffer from this phenomenon (and may benefit from special

treatment or consideration to mitigate these effects in future work). This 1-to-2-point
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interface is unavoidable if a 1-point quadrature simplification is to be used in regions with

very low weights. TheW1 threshold determines where the cutoff is made and where the

interface will occur. It should be chosen small enough that the errors at the interface do

not readily affect the solution. The oversimplification of a PDF into 1-point quadrature

may cause the single abscissa to acquire strange values. For example, if the M (1)
100 value

decreases because it has experienced flux cancellation from the neighboring cells, but

M (0) grows in value, then the moments become misaligned for a 1-point representation

and the resulting inverted single velocity U1 = M
(1)
100/M

(0) acquires the cell-average

value, which is different in magnitude than either of the 2-point quadrature velocities

would be, and explains the observed outlier abscissas.

(a) M0 (b) M (1)
100 (c) M (2)

200

Figure 23. x-y Planar Contours of Collisionless Triple Jet Crossing on Uniform
Grid With minmod

Lastly, in an attempt to illustrate the limitations of a 2-point quadrature, three

jets with unique x-velocities, (v1 is 1, 0, and -1 respectively), are directed to intersect

simultaneously with y-velocity v2 = 1. In the intersection region, the three distinct

velocities will be forcibly reduced into two (β = 2) distinct velocities that conserve mass,

momentum, and energy. It is reasonable to expect that only two distinct jets will emerge
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from the intersection with decreased x-velocity (|v̂1| < 1). Obviously, this is not the

correct physical solution, and it resembles the results of Figure 19(a-c) that is restricted

based on an inadequate β-point limitation. Employing β = 3 nodes should results in

the proper expected solution because the PDF at the intersection will be fully resolved

(consisting of three delta functions).

3. Crossing Errors

Figure 24 shows a direct comparison of the numerical diffusion of M0 taken from

Figure 18(a), Figure 21(d), and Figure 22(d), indicating that the jet loses some cohesion

after passing through the intersection as compared to the single jet case which did not

pass through an intersection. The moments degrade noticeably more when passing
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Figure 24. Comparison of M0 Between Single Jet and Dual Crossing Jets for
Both Slope Limiters (Log Scale)

through the jet intersection because it introduces large slopes and an irregular convex
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bulge in all the moment fields. Additionally, small errors occur at the 1-to-2-point

quadrature interfaces due to under-representation as described previously, and these are

present in the jet-crossing case. Consequently, the jet is never perfectly recovered after

passing through the intersection and the M0 computed using minmod is only 97.9%

as large after the dual crossing as compared to the single jet. For superbee, 99.5%

of M0 is recovered. However, the velocity abscissas are retained with extremely small

error because all the moments inM were on the same order and the curved shock

was similar in shape such that moment alignment was maintained extremely well. The

worst velocity abscissa errors in Figure 21(e) and Figure 22(e) were nearly identical

at 0.154% and 0.159% respectively, ignoring velocity outliers which appear rarely and

are usually insignificant in weight (M0 < W1). However, if the flux error in M (3)

or M (2) were much different than the error in M (1) or M (0) (hypothetically speaking)

then the flux scheme would selectively introduce more error to certain moments and

lead to moment misalignment. The superbee limiter may be marginally more likely

to introduce moment misalignment because it allows for larger slopes (steeper shocks)

than the conservative minmod method (see Section §6. Volume-averaging error), but

superbee also provides drastically reduced numerical diffusion of the moments.

4. Boundary Conditions

Next, the boundary conditions were tested by imposing a “reflective wall” treatment

at the west and east x borders of the domain. As can be seen in Figure 25(a-c), the free

jets are reflected back into the domain, having their x-velocities perfectly reversed at
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(a) M0 (b) M (1)
100 (c) {U ,V }

Figure 25. Symmetrical x-y Planar Contours of Collisionless Free Jet Crossing
with Reflective/Periodic x-Sidewalls and superbee Slope Limiter

the sidewalls, since ew = 1. This creates two more regions of strong PTC before both

jets exit at the north (Neumann) boundary. Interestingly, when replacing the reflective

walls with periodic boundary conditions, the exact same indistinguishable results are

observed as in Figure 25(a-c)! This is because the wall boundary effectively mirrors the

internal boundary layer onto the ghost layer, which is the same (for a symmetrical case)

as copying the values from one end of the domain to the ghost layer at the other end. In

other words, the reflective wall ghost layer acts as an “inbound” mirror image of whatever

is “outgoing” from the domain at the boundary (when ew = 1).

5. Non-Uniform Grid

To further test the versatility of the FV methods, a non-uniform grid stretched with

a hyperbolic tangent skew (εg = 2) in the y-direction only, was employed; see Section

§5. Non-Uniform Grid. The results in Figure 26 show that the moment transport through

the non-uniform cells performs as expected. Numerical diffusion is increased compared

to the uniform grid in Figure 19 because the cells are larger and the diagonal jet motion is

not aligned with the staggering of the grid. The first case employed the minmod limiter,
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(a) M0 (b) M (1)
100 (c) {U ,V }

(d) M0 (e) M (1)
100 (f) {U ,V }

Figure 26. x-y Planar Contours of Collisionless Free Jet Crossing on
Non-Uniform Grid: minmod (First Row) vs. superbee (Second Row)

Figure 26(a-c), and the second case the superbee limiter, Figure 26(d-f), still showing

improved shock preservation. This was a critical test before implementing CQMOM

in boundary layer and channel flows that both feature a similar non-uniform grid in the

wall-normal direction. Note that the vector plots skip every other cell to improve visual

clarity of the arrows. A worthwhile goal for future work will be to implement a CQMOM

flux scheme for an unstructured grid.

6. Collisions

One of CQMOM’s advantages is its powerful stochastic modeling collision term,

which operates over an extremely wide range of length scales, time scales, and arbitrary

Knudsen numbers. The collision term is implemented for the crossing of two free jets

in the current work. This is a very powerful test of the method because Kn = ∞ at
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the inlets and Kn ≈ O(1) at the jet intersection for sufficiently large particle volume

fractions because it experiences a large temperature, Θ > 0. The particle diameter is

Lp = 3.5714E−3 for all the cases and two different perfectly elastic collision models have

been tested: isotropic and anisotropic.

(a) M0 (b) M (1)
100 (c) M (2)

200

(d) M0 (e) M (1)
100 (f) M (2)

200

Figure 27. x-y Planar Contours of Free Jet Crossing With Isotropic Collisions

First, the effects of isotropic collisions are considered and shown in Figures 27

and 28. To moderate the collision strength at the jet intersection, the particle volume

fraction, M (0), is adjusted at the inlets and particle diameter is held constant. The two

rows of Figure 27 represent inlet volume fractions of 1E−4 and 1E−3 respectively, while

Figure 28 uses 5E−2. Larger particle volume fractions result in a smaller Kn and more

frequent isotropic collisions as seen by comparing Figure 27 and 28; the higher volume

fractions have more prominent collision effects.
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(a) M (0)
0 (b) M (1)

100 (c) M (1)
010

(d) M (2)
200 (e) 1/τ c

Figure 28. x-y Planar Contours of Free Jet Crossing With Dense Isotropic
Collisions

A noticeable effect of the elastic isotropic collision model is that collisions occur in

all dimensions, even those which initially have very little temperature. For example, in

the 2-D jet case, both jets share the same y velocity, therefore Θ2 = 0, while collisions

are very prominent in the x-direction, Θ1 � 0, at the jet intersection. Consequently,

the average of these produces the isotropic temperature, Θeq, which induces collisions

in the y-direction while decreasing the collision strength in the x-direction, effectively

transferring energy from the x to the y dimension. Figure 28(d) demonstrates the loss of

x-energy at the jet intersection. This is a realistic result because particles often exchange

energy between dimensions after an “off-center” collision.4, 7 Even for the 2-jet case in

a perfect vacuum with perfectly homogenous collimated jets in which every particle

has identical velocity, the isotropic assumption is still appropriate. As a consequence,
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backscattering will occur at the jet intersection during isotropic collisions. Figure 28

shows prominent backscattering and a wide dispersion of particles in every direction;

an astounding result for the limited 2-point quadrature. The collision frequency, 1/τ c, is

shown in Figure 28(e) and it demonstrates the wide range of Knudsen numbers present

in the domain, where larger values indicate stronger collisions that depend on both

temperature and volume fraction. Experimental comparisons of high Knudsen number

dual underexpanded free jets are shown by Fujimoto et al.80 for various orientations,

however, the jets in the lab experiment are not collimated.

(a) M0 (b) M (1)
100 (c) M (2)

200

(d) M0 (e) M (1)
100 (f) M (2)

200

Figure 29. x-y Planar Contours of Free Jet Crossing With Anisotropic
Collisions

The anisotropic model will have a less pronounced effect of backscattering;

therefore, the isotropic model may actually provide better results for comparisons with

real experiments because backscattering is an expected stochastic non-homogenous
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physical behavior. Figure 29 shows anisotropic results, with inlet volume fractions of

5E−3 and 5E−2 in the two rows respectively. The numerical stability was better for the

anisotropic collision model compared to the isotropic model.

C. Taylor-Green Flow

The Taylor-Green (T-G) flow was an excellent case for testing symmetry,

and directly led to the development and implementation of the improved stepping

method (see Section §2. Dimension Stepping). This T-G flow uses a carrier fluid

with a time-independent velocity field to drive the particles by drag force only. This

zero-divergence (∇ · u = 0) 2-D velocity field is shown in Figure 30 and defined by,

u1(x, y) = −U cos(2π
x

Lx
) sin(2π

y

Ly
)

u2(x, y) = U sin(2π
x

Lx
) cos(2π

y

Ly
)

(130)

where the domain lengths {Lx, Ly} = {1, 1} in the present work. Just as in the free jet

cases, a 100×100 grid is employed for a β = 2-point quadrature, and the boundaries

are all periodic. The initial condition of particle concentration consists of a symmetrical

multidimensional Gaussian distribution placed at the center of the central vortex (at the

exact center of the domain) with peak volume fraction M (0) = 5E−2. Each vortex acts as

a centrifuge that forces particles away, and in-between the vortices are stagnation points

where particles may accumulate and/or remain dormant.
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Figure 30. Taylor-Green Flow Field Vectors Spanning {Lx, Ly} = {1, 1},
Equation (130)

1. Collisionless

The collisionless T-G case is expected to quickly exhaust the 2-point quadrature

because the particle velocities will be very diverse at the local scale where a bimodal

representation of the PDF may be inadequate. However, the method’s robustness

and ability to maintain symmetry are revealed. Figure 31 lists four different rows

corresponding to four different time steps (n =1k, 2k, 3k, 5k respectively), and each

column represents the mass, x-momentum, and y-energy respectively. The thresholds

and parameters were St=2.5, P=1.2,W1=1E−4,W2=8E−3. The main mass of particles

in Figure 31(a-c) is initially centrifuged outward, while particles lying along the square

edges connecting the stagnation points (around the center vortex), form “strips” of

particles that begin moving parallel to the square edges; Figure 31(d-f). The 2-point
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(a) M0 (b) M (1)
100 (c) M (2)

020

(d) M0 (e) M (1)
100 (f) M (2)

020

(g) M0 (h) M (1)
100 (i) M (2)

020

(j) M0 (k) M (1)
100 (l) M (2)

020

Figure 31. x-y Planar Contours of Collisionless T-G Flow. Each Row Represents
n =1k,2k,3k,5k Time Steps Respectively
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quadrature realizes this and the wave-front of centrifuged outward moving particles

passes through, leaving behind masses of “strips” and stagnation points; Figure 31(g-i).

The wavefront continues outward until it reaches the periodic boundaries and begins the

journey inward back toward the center, at which point it begins to overlap with itself near

the corners of the domains, Figure 31(j-l).

D. TBL Flow Simulation

A DNS fluid solver models the incompressible gas-phase carrier flow, and the

dispersed particle phase is being modeled in two different ways: Lagrangian (DPS) and

an Eulerian (CQMOM) treatment. A Reynolds number of Reτ = 2800 is chosen based on

the boundary layer non-dimensional thickness. The full 3-D mesh contains 800×128×98

structured cells with overall non-dimensional lengths of, L1 × L2 × L3 = 80× 6× 4 and

is shown in Figure 32. For comparative purposes, the two particle phases run concurrently

and do not interact with one another, and both particle treatments are one-way coupled

to the same fluid field. The Stokes number (St), initial homogenous volume fraction,

M (0), and inter-collision states (enabled/disabled) are identical between the Eulerian

and Lagrangian particle simulations to enable appropriate side-by-side comparisons.

For the initial condition, 32 million (N = 32E6) monodisperse DPS particles are

seeded randomly throughout the domain with particle diameter Lp = 3.57E−3. This

allows for approximately three DPS particles per cell, but the mesh is non-uniform in

the wall-normal direction so that ratio may vary widely. Conversely, the CQMOM field

receives a homogenous particle volume fraction in all cells matching the average DPS
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concentration given by M0 =
πL3

pN
6L1L2L3

= 3.94E−4, ensuring that the collision model

provides the proper influence of collisions for comparisons between DPS and CQMOM.

Figure 32. TBL domain and boundary conditions

The two Eulerian phases exploit the same 3-D structured Cartesian boundary layer

mesh, oriented in the streamwise x-direction, wall-normal y-direction, and spanwise

z-direction. The initial condition volume fraction for the Eulerian particles is maintained

constant at the x = 0 flow inlet. All methods employ periodic spanwise boundaries,

and the upper y boundary employs a Neumann boundary condition for the two Eulerian

phases. The lower y = 0 boundary acts as an elastic reflective wall for both particle

phases, and enforces a no-slip condition for the carrier-fluid phase.

Two separate cases are considered - the first uses “lighter” particles (St = 4) while

neglecting inter-particle collisions. Figure 33 shows an instantaneous snapshot over about

25% of the extent of the streamwise domain for the carrier fluid and both models of the

particle phase, at the same instant in time. The shear from the no-slip condition on the

wall creates complex vortical structures in the boundary layer. The figure shows that the
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(a) DNS Carrier-fluid u2 (Eulerian)

(b) CQMOM particles 〈v2〉 (Eulerian)

(c) DPS particles 〈v2〉 (Lagrangian)

Figure 33. Instantaneous Wall-Normal Velocity at Half-Span, St=4, Without
Inter-Particle Collisions.

lighter particles depicted follow the fluid flow field fairly closely with the largest velocity

discrepancies occurring in regions of rapid change (large velocity gradients) or small

localized perturbations, owing to the inertia-induced particle lag. Importantly, the figure

also shows good, qualitative agreement between the Lagrangian and Eulerian models of

the particle motion, in turn providing a useful validation of the Eulerian-based approach

for predicting dispersed phase properties under one-way coupled fluid drag.

Both the Lagrangian and Eulerian particle treatments exhibit large regions of

correlated motion that is driven by the interaction of the particles with the motion of the

fluid flow. The wall-normal particle velocity in Figure 34(b-c) are about half as large as

those in the fluid shown in Figure 34(a), though they all exhibit very similar structure

owing to the fairly responsive particles. An important validation of CQMOM is realized

as the two particle models are in good qualitative agreement with one another, more so

than they are in agreement with the fluid field.
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(a) Carrier-fluid u2

(b) Eulerian particles 〈v2〉

(c) Lagrangian particles 〈v2〉

Figure 34. Instantaneous wall-normal cell-averaged velocity in a wall-parallel
plane at y ≈ 0.31, St=4, without inter-particle collisions.

The second case employs “heavier” larger-inertia particles, St=16, that result

in greater PTC, and an inter-particle collision model is enabled. As will be observed

for these larger inertia particles, the fluid and particle velocities can deviate more

significantly than for the smaller Stokes number case, and the particle field is less

susceptible to responding to small scale structure perturbations of the fluid field.
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(a) Particle wall-normal velocity 〈v2〉

(b) Particle streamwise velocity 〈v1〉

Figure 35. CQMOM (Eulerian) particle instantaneous cell-averaged velocity at
half-span, St=16, with inter-particle collisions. Opacity indicates densityM

Instantaneous snapshots are available for selected 2-D planes within the

computational domain. Figure 35 shows nearly the entire streamwise domain (20 ≤

x ≤ 80 ) with an opacity mask indicating the volume fraction M (0). Note that the mask

is identical for both (a) and (b) in the figure. Contour colors which are more transparent

(white) indicate regions of lower particle volume fractions, M (0) → 0. The dispersion

and accumulation of particles through interaction with the turbulent carrier flow quickly

leads to sparse regions with M (0) ≈ 0 and higher concentration regions where M (0)

achieves at least three times its initial condition value. A strong correlation between

concentration and wall-normal velocity is visible in Figure 35(a) indicating that particle

uplift disperses the particles leaving behind low concentration structures. Additionally,

regions where velocities become superimposed (e.g. both nodes are being exhausted

and PTC exists) will often exhibit higher concentrations because the interpenetrating

particles are compounded, similar to what is also seen in the test case Figure 19(d) at the

jet intersection.

The DPS instantaneous visualizations have difficulty describing the overarching

structure when cells are devoid of any DPS particles, in which case zero velocity is
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Figure 36. Spanwise-Averaged and Time-Averaged Particle Volume Fraction
M (0) for St=16 Without Inter-Particle Collisions at x ≈ 24.

assumed for that cell. However, cells which are devoid of Lagrangian particles do not

contribute to the velocity samples to avoid artificially lowering the Lagrangian statistics,

where an undefined particle velocity (assumed to be zero) would detrimentally lower the

averages. The quantized nature of discrete particle counts ranging from 0-8 typically,

produces “noisy” instantaneous results. One advantage that Eulerian methods offer over

sparse Lagrangian methods, is that they guarantee all cells will contain an instantaneous

unquantized/analog probability value, generally providing smoother contours, though

shocks are still possible. To overcome these issues in sparse DPS plots, spatial-averages

(spanwise) and time-averages are employed as shown in Figure 36. Very similar profiles

are exhibited throughout the entire domain, 0 ≤ x ≤ 80. The time average consists of

330 samples which were captured every 15 time steps, and the spanwise average consists

of all 98 spanwise cells. The particle volume fraction comparison of Figure 36 shows

that the two models are in qualitative agreement, with the largest discrepancy located

nearer to the wall. This is largely due to the need for more statistical DPS samples. It

is also possible that the CQMOM model is over-exhausted in the wall-adjacent cells,
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which are always fully exhausted to represent an incoming and oppositely outgoing

wall-normal velocity, leaving no additional nodes for extra velocity diversity. If more

than β unique prominent velocities seek representation in the PDF they become averaged

together similar to what is depicted in Figure 19(a-c), where a β = 1-point quadrature is

attempting to model the diversity of a bimodal PDF.

Figure 37. Spanwise-Averaged and Time-Averaged Particle Streamwise Velocity
〈v1〉 for St=16 at x ≈ 30.

Figure 37 plots the law of the wall, comparing the DPS and CQMOM streamwise

particle velocities in the wall-normal plane (spanwise and time averaged). The two

particle phase models match closely in the non-collision case, both deviating together

from the carrier fluid velocity (blue line). This is a very promising result for CQMOM as

the model shows excellent agreement with DPS streamwise velocities.

Wall time usage costs were tracked for the three different phase solvers and

the fluid solver required about 4% of the computational costs, DPS about 3%, and

CQMOM approximately 92%. However, when collisions were enabled, the costs
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for DPS increased fivefold, while the costs for CQMOM remained nearly constant

(decreasing to 81% of total). Costs associated with collisional DPS solvers tends to

increase almost exponentially with population, while CQMOM costs will remain

nearly constant, independent of population density. Although CQMOM does impose

an expensive initial overhead cost, adding additional particles or complexity such as

periodic/reflective/Neumann boundaries, adds very little additional computational

cost. This is advantageous for CQMOM in simulations with significantly denser and

non-uniformly distributed particle concentrations.

E. Channel Flow Simulation

Analyzing the statistical aspects of the channel flow provides a reduced dataset

that reveals underlying physics that are useful for comparison against other methods.

Spatial averages are performed along the spanwise dimension (z) and time-averages are

taken until a steady-state solution is reached. The simulation initial conditions consist of

introducing the CQMOM particles with a homogenous volume fraction and are given the

same initial instantaneous monokinetic velocities of the DNS carrier fluid field. After the

CQMOM statistics converge once, the statistics are restarted once more to remove any

artifacts from the initial transient behavior. The statistics shown below are those obtained

from a second convergence. The fluid has a Reynolds number of Reτ = 200 and the

particle phase Stokes number is St = 2.5. The channel domain spans non-dimensional

lengths of {L1, L2, L3} = {2π, 2, π} in the streamwise, wall-normal, and spanwise

dimensions, respectively, in terms of the channel half-height being unity, L2/2 = Lf = 1.
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The grid contains 64 × 64 × 64 internal cells (excluding ghost layers), making it readily

applicable for domain decomposition in parallel computing.

1. Threshold Sensitivity

This section provides results that are erroneous in nature due to Wheeler algorithm

thresholds which are too large (stringent), specifically,W2 & 5E−2 and P & 1.2.

The minimum weight,W1 = 1E−4, was less sensitive to instabilities or changes in the

solution, and employing smaller values (W1 = 1E−6) did not significantly improve the

results. In general, larger thresholds offer a more conservative approach that provides

increased stability because the localized PDF more cautiously tends toward a 1-point

quadrature when the authenticity of the PDF is questionable. However, if these thresholds

are too large then the PDF is too confined and cannot adequately represent the velocity

diversity that may be necessary to mimic important physical features (PTC). In other

words, the model may tend toward a monokinetic field too easily when it should retain

significant granular temperatures and skew.

To demonstrate this, the particle volume fraction, M (0), is plotted in Figure 38(a)

both spanwise and time averaged. It is observed through animations that a vast majority

of particles quickly accumulate near the wall, gathering into fewer cells and reaching five

to ten times their initial homogenous volume fraction. Then the particles reflect off the

wall and tend to stagnate near y ≈ 0.1 with mean wall-normal velocity approximately

zero, 〈v2〉 ≈ 0. This dominating presence of particles creates a “barrier” structure

that remains relatively dormant near y ≈ 0.1 after having reflected off the wall once.
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Additionally, this high-concentration barrier impedes the movement of particles from

passing through it in the wall-normal direction, and continues to accumulate particles.

The PDF quadrature in the y-direction becomes narrow (smaller variance in v2) and the

barrier’s large weight dominates the field locally. Figure 38(b) supports the appearance

of a local maximum in density at y ≈ 0.1 by illustrating that the average wall-normal

velocity (v2) is negative above and positive below it.

(a) M0 (b) 〈v2〉

Figure 38. Time and Span Averaged Erroneous Results

Reduced threshold values help overcome the problem, and those results are provided

in Section §4. 2-Node Statistics. Thresholds ofW2=1E−2 orW2=8E−3 significantly

reduce accumulation errors resulting from the erroneously narrow PDF’s shown above,

but does result in more occurrences of erroneously large abscissas that must be captured

and prevented by the CFL enforcement. Moreover, allowing P → 1 had the most

significant improvement upon the ability of particles to accumulate directly at the wall.
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Smaller values (P = 1.01) allow for more accumulation of particles, whereas larger

values (P & 1.2) tend to produce those erroneous effects seen in Figure 38.

Lastly, a mere 2-point quadrature assumption is somewhat limiting for a collisionless

turbulent case in which the actual particle velocities of the PDF may be extremely diverse

and sparse. At best, a 2-point quadrature can represent a bimodal distribution with

considerable accuracy; however, it is possible that a trimodal (or higher) distribution is

necessary near the wall. If more nodes are required than available (β > B), which is

probable for a collisionless case with large St, then the 2-node assumption (B = 2)

will artificially reduce the strength of PTC that could otherwise be physically possible.

Over-exhausting the nodes can lead to an over-accumulation of particles as described

earlier by Figure 19(a-c), though not manifesting itself as a delta shock, but instead like

the erroneous accumulation encountered in Figure 38 or Figure 23. To summarize, an

undesired feature exists that allows for the erroneous “clumping” or accumulation of

particles whenever the model is unable to represent the necessary variance in a discretized

PDF. This mechanism occurs either when there are insufficient nodes available (β),

or when the PDF is reduced to a 1-point quadrature for stability reasons – caused by

numerical diffusion in the flux term that leads to moment misalignment. Either way, it

is reasonable to say that the solution will have suffered from some type of erroneous

accumulation of particles after a large number of time steps have elapsed. Once these

particles gain a considerable “mass” (and momentum) they become increasingly

dominant over the lesser features of the flow.

157



2. Instantaneous Fields

Recall that 2-point quadrature in 3-D velocity space operates with K = 32 moment

fields in CQMOM, comprising the vectorM . It is compelling that these field quantities

are capable of transporting themselves independently by numerical hyperbolic PDEs and

still remain aligned. Figure 39 illustrates the six “simple” x and y moments and density

in a wall normal plane at z = Lz/2. The relationship between these fields yields valuable

information about the PDF. For example, if the second-order moment is large, and the

first-order moment is small, this indicates that significant PTC is occurring in that region.

In Figure 39(g), the high density “arms” are visible near the walls with far lower density

structures near the centerline.

The length scales of the particle field structures are larger than that of the fluid

structures because St > 1. Comparing the CQMOM density field against the fluid

streamwise velocity field shows a strong correlation. It is expected that regions of high

velocity will be devoid of particles since they tend to accumulate in regions of lower

carrier fluid velocity. Figure 40 illustrates a wall-parallel plane located at near the wall,

y ≈ 0, and confirms that the regions of higher particle concentration pertain to lower fluid

velocities. Observing the instantaneous particle concentrations in Figure 40(b) from the

wall-normal perspective near the wall highlights the utility of moment methods and its

unique ability to model the dispersed phase as an Eulerian continuum.

The results from81 were run with a very similar fluid solver, but with a DPS

treatment of the dispersed particles, providing a useful comparison for the CQMOM

158



(a) M100 (b) M010

(c) M200 (d) M020

(e) M300 (f) M030

(g) M000

Figure 39. All Six “Simple” x and y Moment Fields and Volume Fraction
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(a) fluid streamwise velocity field u1

(b) CQMOM particle volume fraction M0

Figure 40. Correlation Between Particle Volume Fraction and Fluid Velocity

results. The buildup of density near the walls is an effect of turbophoresis, the tendency

of particles to migrate in the direction of decreasing turbulence.82 Kuerten et al.82

and Sardina et al.83 determined that larger Stokes number generally increases the

accumulation of collisionless particles at the wall (due to turbophoresis) up until a certain

point.
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3. 1-Node Statistics

A simplified 1-point quadrature restriction was imposed (B = 1) to test the initial

capabilities of the solver at St = 2.5. This method is not be able to capture PTC because

the PDF is a single (3-D) Delta function, but it may be able to approximate some of the

cell-averaged quantities and will be a useful baseline result for comparison with the

2-point quadrature results in the next section. Consequently, the collision term, C, will

always be null and a “collisionless” 1-node case has no real significance. The 1-node

assumption is bound to introduce artificial collisions merely by restricting the velocities

to 1-point quadratures. Figure 41 shows that the 1-point quadrature has difficulty with the
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Figure 41. Collisionless 1-Point Quadrature, z and t-Averaged Statistics.
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near-wall behavior and this is to be expected because the physical particles near the wall

have a very complex PDF and experience significant PTC. Interestingly, the cell velocities

and RMS values directly at the wall boundary are seemingly accurate, but the neighboring

cell shows a discontinuity in all the measured quantities. This is because an unphysically

large over-accumulation of M0 occurs directly at the wall and momentum conservation

dictates such a discontinuity in velocity too. Once the particles move toward the wall,

they cannot escape because the 1-point simplification does not provide any wall-normal

convective velocity back toward the flow centerline. The particles move on a one-way

path toward the wall where they remain trapped.

The shapes and trends of the RMS profiles are very similar to previous results81

(collisionless St = 2.6), but the CQMOM magnitude is too small for RMS1 and

too large for RMS2 and RMS3. This indicates that the DPS results correctly retain a

better anisotropic velocity PDF with variances that can vary widely in each dimension.

Obviously, the 1-node CQMOM case cannot capture any variance, and the RMS values

are strictly resulting from the time-dependent fluctuations of the mean velocity, 〈v〉,

which does not match the fluid exactly because the particles have a slower response time.

Furthermore, to confirm that the CQMOM solver is behaving as expected, a single test

case in the limit St → 0 was performed, and CQMOM accurately predicts the exact same

dispersed phase statistics matching the carrier fluid (in both velocity and RMS) even for a

2-point quadrature case.
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4. 2-Node Statistics

A 2-point quadrature assumption is the minimum requirement for realizing PTC

(σ2 > 0) so that the particle velocities are multivalued within a cell. Stable results

were obtained for statistical analysis using threshold vectors: P={1.05, 1.02, 1.0} and

W={1E−6, 9E−3}. The following statistics compare the collisionless case with the

elastic (ω=1) isotropic collision case, using two different Stokes numbers (St=0.5 and

St=2.5). Spanwise and time-averaged statistics were selected to provide a compacted

form of the overall flow behavior and so that they can be compared to DPS results in

previous literature.18, 23, 81, 82, 84
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Figure 42. Streamwise Velocity z and t-Averaged Statistics. Without and With
Isotropic Collisions

Figure 42 depicts the streamwise velocity profile plot for comparing the DNS carrier

fluid and the CQMOM dispersed particles. The carrier fluid’s viscosity enables the

streamwise fluid momentum to readily transfer between the wall and the centerline in the
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wall-normal direction, producing a typical law-of-the-wall profile with no-slip condition.

The dispersed particles do not have that same restriction and are able to move much faster

in the streamwise direction at the wall. As expected, the heavy particles (St = 2.5) do

not follow/mimic this fluid profile too closely. The larger Stokes number yields the most

deviation from the fluid and flattest streamwise velocity profiles, where the change in

velocity between maximum and minimum is less reduced. In the collisionless case, this is

due to the increased random distribution of particles that retain memory of their previous

trajectories at larger Stokes number. For the collisional case, the profile is even flatter

because momentum is more quickly transferred between particles in the wall-normal

direction and slip at the wall is prevalent. Frequent inter-particle collisions and decreased

drag effectiveness allow for increased momentum transfer in the wall-normal direction

that generates the “flatter” streamwise velocity profile. Therefore, particles are prevented

from reaching the full speed of the carrier fluid at the centerline while showing increased

particle velocity at the wall. Even with the 2-node limitation (which seems to be the

most restrictive in the wall-normal dimension), CQMOM still produces convincing mean

streamwise velocity profiles that agree with previous works. Recall that the mean velocity

is obtained from the moment fields: 〈vd〉 ≡M
(1)
d /M (0).

The volume fraction is fairly uniform as depicted in Figure 43, with some

accumulation at the wall, but not as pronounced as the results of Vance et al.81 Enabling

the collisions tends to decrease the particle accumulation at the wall, and larger Stokes

number increases the uniformity of the concentration distribution. The 3-D turbulent

channel flow was much less susceptible to ill-conditioned inversions when P > 1.05, but
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Figure 43. Volume Fraction z and t-Averaged Statistics. Without and With
Collisions

this hindered the accumulation of particles at the wall. Values as low as P=1.0001 were

also tested and yielded better physical results. The collisionless St=0.5 case shows a local

minimum in concentration near the wall. This is not a physical result, but is most likely

due to the over-exhaustion of nodes.
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The collision frequency plotted in Figure 44 depends on the density and granular

temperature (which is related to the average RMS in all dimensions). The St=0.5 case

generally exhibited larger collision frequency at the steady-state, mainly due to the

larger shear in the (steeper) v1 profile, which generates a larger RMS1. The larger Stokes

number has a spike in collisions directly at the wall due to the larger density present

there. Initially the collision frequency is larger during the transient period, but then the

v1 profile eventually flattens and the collisions become less frequent to maintain the

steady-state solution.

Lastly, the RMS results are plotted. The streamwise fluctuations (RMS1) are

the largest because the corresponding velocities (u1 and v1) are also the largest. It is

generally known that the spanwise fluctuations (RMS3) are larger than the wall-normal

fluctuations (RMS2)18, 81 and CQMOM confirms this trend. CQMOM is also able to

reproduce large RMS values near the wall which are larger than the fluid RMS. This is

possible in the streamwise dimension because the particle phase is allowed to slip at the

wall and more PTC leads to increased RMS1. However, compared to DPS, CQMOM

generally under-predicts the RMS1 magnitudes while it over-predicts both the RMS2

and RMS3, suggesting that CQMOM may have difficulty maintaining highly anisotropic

multidimensional PDF’s. This may be partly due to the thresholds of the inversion

method which intentionally restrict the PDF to increase stability by preventing the

formation of spurious abscissas. Although the RMS values predicted by CQMOM

generally differ in magnitude compared to DPS results, the qualitative trends are similar.
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In conclusion, it is likely that the quadrature nodes are over-exhausted, especially at

the wall in the wall-normal direction where a 2-point quadrature (bimodal) PDF may be

insufficient. CQMOM shows better numerical stability and agrees more favorably with

DPS results when the isotropic collisions are enabled. The collision term offers at least

one advantage in that the velocity PDF will naturally return to an equilibrium (Gaussian)

distribution which a 2-point quadrature assumption is more capable of representing. The

equilibrium distribution is simpler to represent than the sophisticated velocity PDF’s that

are possible far from equilibrium. Furthermore, the multidimensional BGK collision

model provides a “redistribution effect” where highly anisotropic regions attempt to

become isotropic by redistributing energy from dimensions with more variance to

dimensions with less variance. It is a great achievement that this level of predictability is

possible with only a 2-point quadrature. It will be worthwhile in future work to measure

the solution sensitivity to PDF refinement by using 3-point quadrature especially in the

wall-normal direction.
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VII. SUMMARY

Numerous research efforts have focused on developing Quadrature-Based Moment

Method models, but it has not yet seen wide-spread use in applications, especially in

3-D. Legacy methods such as the N-S equations (Kn � 1) or Lagrangian methods

(Kn � 1) are optimal for their respective Knudsen regimes, but QBMM models have

been demonstrated to predict dispersed particle phase flows as an Eulerian continuum

in finite Knudsen (Kn ≈ O(1)) regimes of single and dispersed phases, as well as in

large Stokes number regimes (St > 1) of multiphase flows. Traditional multi-species

diffusion models are only applicable at St � 1, but QBMM offers a two-fluid

(Eulerian-Eulerian) formulation for arbitrary Stokes number. Lagrangian particle-tracking

models (DPS) offer hybrid Eulerian-Lagrangian solutions for multiphase flows which are

easily capable of realizing PTC. However, DPS is computationally prohibitive for large

particle populations, challenging due to the load balancing of non-uniformly distributed

concentrations (clustering), and has difficulty modeling collisions in high concentration

dispersions. In general, CQMOM does not have those shortcomings and can realize

particle trajectory crossing (PTC) which is a vital requirement for generating physical

solutions in non-hydrodynamic fluids or dispersed multiphase flows.

In the present work, CQMOM has been demonstrated to model multivalued (β = 2)

multidimensional (D = 3) velocity field flows which extend beyond the capabilities of

previous QMOM models. An abscissa proximity ratio (P) is suggested to improve the

stability of CQMOM, especially applicable in higher dimensional velocity space (D = 3).
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Implementation of the Wheeler inversion algorithm and second-order accurate upwind

spatial flux and temporal schemes were successful. The superbee slope limiter was

implemented with great success and offers better shock preservation than the minmod

limiter from previous works. A non-uniform grid spacing was also successfully modeled

and the results behaved as expected for an Eulerian formulation, which was a critical

step toward modeling boundary layer and channel flows within a rectilinear grid. Some

major obstacles were overcome during the computational model design phase and many

optimizations were successfully added into a high-performance C++ code, including

parallelization through domain decomposition. 2-D free jet cases were carried out with

compelling results demonstrating that the 2-node assumption offers useful predictive

capabilities despite its limitations on the PDF, especially with the collision model

enabled. Additionally, 2-D intersecting free jets and Taylor-Green flows both revealed

that a dimension-stepping scheme improved the flow symmetry.

Both collisionless and collisional (isotropic) particles were tested. Dispersed particle

phases were modeled in two different particle-laden turbulent flows that were simulated

with two varying Stokes numbers. The first case was a turbulent boundary layer that

offered direct comparisons between CQMOM and a DPS model, and it showed great

agreement in instantaneous volume fraction and velocity fields. The second simulation

was a turbulent channel flow that offered statistical comparisons with a DNS fluid solver

that also showed good agreement in the time-averaged velocity fields with “flatter”

streamwise profiles for the dispersed particles than for the fluid phase. The wall-normal

direction showed signs of node over-exhaustion, indicating that possibly more nodes are
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required, β > 2 in the y-direction. Wall-normal density and RMS profiles suffered as a

result, but still showed qualitative agreement with previous works.

Future work may benefit from implementing two-way coupling schemes for high

mass loading on the fluid, adding additional nodes (β ≥ 3), expanding the internal state

space to include other attributes such as particle diameter (polydisperse, Q > 0), reducing

the inherent errors in higher order FV flux schemes that yield moment misalignment,

broadening the flux schemes to encompass unstructured grids, and extending the

quadrature nodes beyond simple Dirac delta functions (EQMOM).
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