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ABSTRACT 

 

 The atomic force microscope (AFM) is capable of directly probing the mechanics 

of samples with length scales from single molecules to tissues and force scales from pico 

to micronewtons. In particular, AFM is widely used as a tool to measure the elastic 

modulus of soft biological samples by collecting force-indentation relationships and 

fitting these to classic elastic contact models. However, the analysis of raw force-

indentation data may be complicated by mechanical heterogeneity present in biological 

systems. An analytical model of an elastic indentation on a bonded two-layer sample was 

solved. This may be used to account for substrate effects and more generally address 

experimental design for samples with varying elasticity. This model was applied to two 

mechanobiology systems of interest. First, AFM was combined with confocal laser 

scanning fluorescence microscopy and finite element analysis to examine stiffness 

changes during the initial stages of invasion of MDA-MB-231 metastatic breast cells into 

bovine collagen I matrices. It was determined that the cells stiffen significantly as they 

invade, the amount of stiffening is correlated with the elastic modulus of the collagen gel, 

and inhibition of Rho-associated protein kinase reduces the elastic modulus of the 

invading cells. Second, the elastic modulus of cancer cell nuclei was investigated ex situ 

and in situ. It was observed that inhibition of histone deacetylation to facilitate chromatin 

decondenstation result in significantly more morphological and stiffness changes in 

cancerous cells compared to normal cells. The methods and results presented here offer 

novel strategies for approaching biological systems with AFM and demonstrate its 

applicability and necessity in studying cellular function in physiologically relevant 

environments. 
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1 INTRODUCTION 

In studying classical physics, it is extremely common to reduce complex problems 

to a very simple analytical case. This presents a challenge for studying biological 

systems, which are heterogeneous by nature, contain intricate machinery, fall in a 

mesoscopic length scale which is too small for classical mechanics or ensemble averages, 

too large for quantum mechanics, and are not time-independent. Recent breakthrough 

discoveries such as the elasticity of the cell’s environment affecting stem cell 

differentiation1 and promoting the malignant phenotype of cancer cells2 warrant a 

quantitative, physical sciences-based approach to emergent biological phenomena. 

Atomic force microscopy (AFM) has emerged as a critical technique in the quantitative 

study of cell mechanics, as the cells’ response to external forces and deformations may be 

directly measured and correlated to biological processes. This dissertation is an extension 

of existing AFM methods for studying the mechanical properties of cells to include a 

first-order correction for biphasic mechanical heterogeneity and is used to measure elastic 

moduli of cells and nuclei embedded in some environment. 

In §2, I introduce known key concepts in physical biology and mechanobiology 

which serve as motivation for the dissertation and provide background for some of the 

measurements performed in the lab. For example, the key components inside and outside 

of the cell which govern the mechanics, such as the cytoskeleton, extracellular matrix 

(ECM) and environment, nucleus, and how these contribute to key processes associated 

with cancer development. §3 discusses AFM and how it is used to collect 

microrheological data on soft matter, including the basic instrumentation, calibration, and 
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data analysis methods. Here, the AFM is also compared with other techniques commonly 

used to study cell mechanics under a variety of conditions. 

As previously mentioned, mechanical heterogeneity is a challenging aspect of 

physical biology, and most existing models for interpreting raw AFM data do not account 

for this. §4 demonstrates a first principles solution to a bonded two-layer elastic 

indentation problem and how it may be applied to the analysis of AFM data and also the 

design of AFM experiments to minimize or maximize the effects of subsurface 

mechanical heterogeneities. The knowledge gained in §4 lead to the studies on biological 

systems of interest in §5 and §6. 

§5 correlates AFM, confocal laser scanning microscopy (CLSM), and finite 

element analysis (FEA) to demonstrate how the mechanical properties of metastatic 

MDA-MB-231 breast carcinoma cells are altered when they are invading into a bovine 

collagen I matrix. The field standard is to use AFM to measure the mechanics of cells 

that are adhered to some 2D substrate such as glass, however this limitation is broken by 

the novel analytical tools developed in §4 and §5. The results presented here serve as a 

potentially key piece of information regarding the mechanisms for cancer cell invasion in 

vivo, and serve as a foundation for similar indentation-based rheometry studies of cells 

embedded in some complex environment. 

§6 employs the qualitative model from §4 to study the mechanics of the cell 

nucleus in situ. As described in §2 and §5, the phenotype of the cell will vary depending 

on the substrate it is cultured in, the mechanical properties of the nucleus depend heavily 

on its environment as well, for example buffer conditions and physical anchoring, and 

thus should be studied in a physiologically relevant context to obtain meaningful results. 
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The nuclear elasticities of normal and cancerous cells are compared and the effects of 

pharmacological inhibitors to relax the structure of chromatin are measured with AFM 

and fluorescence microscopy. 
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2 PHYSICAL BIOLOGY AND CELL MECHANICS 

 

 

Figure 2-1: Eukaryotic cell. This image was obtained from OpenStax College, Biology3 

textbook and is licensed under Creative Commons 3.0. 

 

The eukaryotic cell is the fundamental building block for animal life and is the 

link between understanding molecular machinery at the nanoscale and the emergent 

biological properties at the tissue scale. Cells have the capability to produce and expend 

energy, metabolize smaller organic molecules, produce their own proteins and small 

molecules to perform various functions, proliferate, and communicate with others to 

collectively form multicellular organisms. A simplified illustration of a eukaryote is 

shown in Figure 2-1, although not illustrated (and impossible to illustrate) are the 

countless number of smaller molecules that perform the required signaling within and 
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outside of the cell, expression of single genes, locomotion, replication of genes, synthesis 

of ATP, and other functions of the cell. This chapter will discuss the relevant biology 

needed to understand how cells resist and undergo stresses and strains, migrate on 2D 

surfaces and in 3D environments, sense and transduce mechanical cues from their 

environments, and how the mechanics of the cells is related to cancer metastasis. 

 

Cytoskeleton 

 The dominant cellular component to resisting deformation and performing 

mechanical work is the cytoskeleton, of which there are three types: actin filaments, 

intermediate filaments, and microtubules. These are similar in several aspects: each are 

composed of smaller subunits which nucleate to form long polymer chains, they may 

dissemble and reassemble at very fast rates, and they provide physical stability for the 

cell4. 

 Actin is localized throughout the cell, but the actin cortex is the prominent 

structure for cell migration and establishing cell shape as well as serving an integral role 

in forming adhesions, motility, exerting cellular traction forces, and receiving 

extracellular signals4–6. Filamentous f-actin is self-assembled in a cell by monomeric, 

globular g-actin subunits into a double-helical structure; both the atomic structures of g-

actin momomers7 and f-actin filaments8 were discovered in 1990 using X-ray 

crystallography. The diameter of an actin filament is 6-8 nm and the Young’s modulus is 

1.3-2.5 GPa9. The filament formation process is highly dependent on ATP – (globular) 

g-actin with ATP is hydrolyzed into ADP shortly (but not immediately) after the g-actin 

subunit binds to an (filamentous) f-actin filament10. Actin filament formation is a 
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concentration-dependent nucleation process4 and the critical concentration for actin 

polymerization is roughly ten times higher at the “pointed” end where actin (with 

monomers bound to ADP) is being depolymerized compared to the “barbed” end where 

the actin fiber is being elongated by more monomers of actin (bound to ATP)6, providing 

the basic mechanism for cell “treadmilling” where a cell moves by simply 

depolymerizing actin at one and end polymerizing actin at the other. 

 Myosin II is a motor protein from the myosin superfamily which enables cells to 

generate force via binding to and pulling on actin filaments. The myosin II protein 

consists of a 150nm linear double strand of α-helices at the C-terminus (the “heavy 

chain”) and two smaller unwrapped head groups at the N-terminus (the “light chain”)4. 

Like actin, myosin can form thick filaments called myofibrils with many heads by 

additional wrapping of the heavy chain with other myosin molecules4. The myosin II 

light chain binds with the actin filament and contains a binding site for ATP. Once ATP 

is bound, myosin II will hydrolyze the ATP into ADP and produce a “power stroke” by 

which the myosin II head will bind to another region of the actin filament and release 

ADP, thus changing the relative position of the myosin II chain and actin filament and 

generating a contractile force4. This single-molecule process may be multiplied between 

large numbers of actin and myosin filaments into tissue-scale muscle contraction in 

structures called sarcomeres4 or stress fibers in non-muscle cells, which is the focus of 

this work. 

 Actin is involved in many complex cellular processes, for example the initial 

polarization of the cell for directionality to exerting the final traction forces to propel 

motion, and there is a large (>100) amount of genes which regulate actin filament 



7 

 

assembly and disassembly and actin binding proteins to perform this (for example, see4). 

Actin filaments may be crosslinked together by various actin binding proteins. Some 

examples of this include the Arp2/3 complex which binds to the side of an existing actin 

filament and serves as a starting point for a new actin filament, thus creating a 

“branching” effect5. Two other examples (there are many more) are α-actinin and filamin, 

which bind to actin filaments on the sides on both ends thus crosslinking two strands (α-

actinin for parallel strands, filamin for angled strands)4,5. The actin cytoskeleton and 

cortex play a role in cell elasticity – treating cells with drugs targeting actin filament 

formation and stability will result in decreased cellular stiffness11,12. 

 Several actin binding proteins which connect the actin cytoskeleton with 

extracellular space through integrins and are thus heavily implicated in cell migration and 

adhesion have been reviewed by Le Clainche and Carlier6. Integrins are a family of 

heterodimer (consisting of various α and β subunits to bind different proteins) 

transmembrane proteins which link the intracellular cytoskeleton and extracellular 

matrix, and when they are clustered together produce so-called focal adhesion sites4. As 

integrins connect the cell with its extracellular space, it is widely used in a number 

signaling cascades. Vinculin and talin are two large proteins (116 kDa and 270 kDa, 

respectively) which connect the actin cytoskeleton with β-integrins (as well as bind with 

each other) and thus play a role in forming adhesions with a substrate. Vinculin has been 

identified as a key component for cell mechanosensing with both the extracellular matrix 

via integrins13 as well as to other cells in cadherin complexes14. 

 Microtubules are another cytoskeletal component that are analogous to actin in 

several ways: tubulin subunits are composed of heterodimers (α tubulin and β tubulin) 
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which polymerize to form microtubule filaments in a rate-limiting fashion, α tubulin 

contains GTP or GDP and is capable of hydrolysis affecting polymerization rates, there 

are plus and minus ends indicating the direction of polymerization, there are many 

microtubule associate proteins for crosslinking multiple strands and for facilitating 

assembly and disassembly, and microtubule structure adds mechanical stability to a cell4. 

The inner diameter of a microtubule is 14 nm, the outer diameter is 25 nm, and the 

Young’s modulus is 1.9 GPa9. In mammalian cells, microtubules originate from the 

centrosome located near the nucleus and play key roles for subcellular organelle 

organization, intracellular trafficking, and formation of the mitotic spindle during cell 

division4. Of the cytoskeletal filaments, microtubules have the highest persistence length 

and thus have the highest stiffness15, however they do not form crosslinked structures as 

actin filaments do. When microtubule structure is disrupted with drugs such as 

nocodazole, it has been demonstrated that the stiffness of cells will decrease16. 

 Intermediate filaments are a class of cytoskeletal polymers which form bundles by 

twisting (more similar to myosin bundle formatting as opposed to actin or microtubules) 

and include nuclear lamins located inside the nuclear envelope, vimentin, keratins which 

contribute to cell mechanical strength, as well as many others4. 

 

Extracellular Matrices 

 Cells do not exist in a vacuum, and petri dishes and culture flasks do not exist in 

vivo. The extracellular matrix refers to the environment of the cell which contains a 

diverse cocktail of crosslinked proteins in a scaffold (or gel) as well as other secreted 

molecules which forms connective tissue in vivo. Extracellular matrices are produced and 
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aligned by fibroblasts (or chondroblasts for cartilage, and osteoblasts for bone). One 

family of ECM components are glycosaminoglycan molecules, which have long sugar 

chains and occupy a large amount of volume relative to the mass and are hydrophilic, 

thus producing a hydrogel like structure when they are covalently linked together into 

proteoglycan structures4. These proteoglycans interact with both the cell and molecules 

secreted into the ECM, thus are very important in cell signaling pathways4. Another 

prominent component is fibronectin, which is a large dimer glycoprotein which binds to 

integrins making it critical for cell adhesion, and also can crosslink to form fibrils which 

can produce tension-mediated adhesions with the cell (more binding sites are uncovered 

when the fibrils are stretched)4. 

 Collagen is the most abundant protein family (and accounts for ~25% protein 

mass in humans) in the ECM and are composed of long, stiff triple-helical structure 

composed of three collagen α chains4. Collagen molecules are secreted by the cell and 

may crosslink and assemble into fibrils which have a diameter on the order of 10-100 nm, 

and these fibrils may assemble into fibers which have diameters on the order of 1 µm4. 

There are many types of collagen, some of which do not form fibrils, however the most 

abundant is collage I which is ~90% of collagen in humans and is fibril forming4. There 

is a high degree of interplay between the cell and collagen matrices (as discussed in the 

next section, and a simple illustration is given in Figure 2-2) as the cells may degrade, 

produce, and realign collagen and thus cell functions such as motility are mediated by the 

surrounding collagen matrix. 
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Figure 2-2: Cell-ECM junctions. This image was obtained from OpenStax College, 

Biology3 textbook and is licensed under Creative Commons 3.0. 

 

 The mechanical properties of biological polymer gels such as ECM and 

cytoskeleton networks are currently an active area of research. On the single molecule 

level, the mechanics and elasticity are governed by polymer physics. Many bulk polymer 

gels (for example actin, collagen, fibrin, as well as others) have been shown to 

experimentally exhibit non-linear elasticity for large deformations such that their shear 

modulus begins to rapidly increase for high values of strain17. Several explanations for 

this phenomenon have been proposed, for example the strain stiffening is caused when 

the force regime switches from entropic (low strain) to enthalpic (high strain)17, also 

randomly oriented polymer networks may transition from a bending-dominated response 

at low strain to a nonaffine stretching-dominated response at high strain18. These models 
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have been compared and reviewed by van der Giessen et. al.19. Biopolymer gels also 

behave differently from classical elastic materials in that they exhibit a “negative normal 

stress” when undergoing parallel shear, meaning as a deformation is applied in one 

direction, there will be a surface stress pulling the gel closer together20. Brown et. al. 

demonstrate that fibrin exhibits similar properties from length scales ranging from single 

molecules to tissues and propose that the cause is a combination of the protein unfolding 

regime (as opposed to the thermal fluctuation small strain regime) and a loss of water in 

the gel due to the new accessibility of hydrophobic protein domains as determined by 

examining the volume changes during strain21. Collagen and fibrin matrices may also 

undergo plastic deformations under large amount of strains whereby the length of fibrils 

in the matrix are permanently extended, thus delaying the onset of strain-stiffening to 

higher values of strain when the fibrils begin to stretch22. At the tissue scale (consisting of 

many cells and ECM at different densities), there are large deviations in the measured 

elastic moduli spanning 101-105 Pa for human fat tissue to spinal cord tissue, 

respectively23. 

 Reconstituted collagen I gels are often used as a model system to investigate cell 

motility in 3D and the stiffness is tunable by adjusting protein concentration. Collagen I 

gels form a scaffold-like structure of fibrils with pore size negatively correlating with the 

relative concentration of collagen I protein in the gelling solution24. The properties of the 

gels depend on the species origin of the collagen – bovine collagen I forms more fibrils 

with a diameter of approximately 60 nm, whereas rat tail collagen I form fibrils with a 

diameter of about 20 nm24. Therefore, when the same weight concentration of collagen is 

used, the rat tail collagen I gels will have a larger number of more crosslinked fibrils and 
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is stiffer than bovine collagen I gels at the same concentration24. Additionally, the 

temperature at which the collagen gels form fibrils have an influence – rat tail collagen I 

gels at higher temperatures (up to 37°C) contain thinner, more sparse and crosslinked 

fibrils compared to gels formed at lower temperatures (down to 4°C) where the fibril 

numbers are fewer but thicker24. Another model system that is widely used to examine 

cell behavior is Matrigel, which is essentially a basement membrane explant (containing 

mostly laminin, collagen IV, as wells as additional proteases, growth factors, and other 

proteins) on which cells grow into structures that resemble the structures in which they 

grow in vivo25. Matrigel has been shown to have an elastic modulus between 

0.1-0.5 kPa26,27. 

 Cell behavior on substrates with elasticity on the same magnitude as in vivo may 

be studied on materials other than reconstituted ECM. Polyacrylamide (PA) gels are 

frequently used as an inexpensive, tunable elastic substrate on which ECM proteins may 

be bound such that cells may naturally adhere to the soft gel28. Monodisperse foam gels 

of gelatin or PA with spherical pores may be produced by a microfluidic device to 

engineer a periodic, structured cell growth substrate with the added benefit of 3D 

dimensionality29,30. There are also many other schemes to produce substrates for cell 

mechanobiology studies using microfabricated topographies (for example by silicon 

etching, soft lithography, etc) and these have been recently reviewed31. 

 

Mechanobiology 

 Mechanobiology is a relatively new subfield at the interface of biology and 

physical sciences. From a fundamental physics standpoint, there are limited ways in 
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which cells may communicate information, for example via diffusion, electrical signals, 

or mechanical signals, which is the primary focus of this field and this dissertation. One 

physical concept related to this is tensegrity, which considers the cell’s cytoskeleton a 

collection of mechanical elements (springs, supports) that transmit information 

immediately when a force or deformation is applied to the cell surface or an interior 

element (for example, via an integrin or cadherin molecule which is bound to the 

cytoskeleton), thus activating a cascade of biochemical reactions.32 

 Transmembrane integrin proteins and focal adhesions play a heavy role in 

communication between the cell and its environment. For example, focal adhesion kinase 

is a widely studied protein that exists at focal adhesion sites (binding with talin and 

paxillin, which in turn bind to the integrins) and can relay signals to other proteins by 

phosphorylating (or activating) them4. One family of proteins which can be activated at 

focal adhesion sites is the Rho GTPase family (GTPase proteins are typically referred to 

as inactive when bound to GDP and active when bound to GTP and able to transfer a 

phosphate group, thus can act as switches), which has been linked to cell division, 

morphology, polarity, motility, adhesion, and gene expression4,33,34. Members of this 

family include (but are not limited to) Rho, Rac, and Cdc42 (as well as numerous 

isoforms, for example RhoA), and these have been strongly implicated in actin regulation 

in the cell; for example, Rac may induce actin polymerization and lamellipodia 

formation, Cdc42 can provide directionality for cell migration, and Rho can control 

assembly and contraction of actomyosin34 and recruits actin and integrins to an adhesion 

site4. RhoA activates ROCK, which in turn can lead to stress fiber contraction via myosin 

light chain phosphorylation33. 
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 The mechanisms allowing cell motility on rigid 2D surfaces (e.g. a petri dish) has 

been thoroughly studied in the past century. Cells may form either lamellipodia (sheet-

like protrusions) or filopodia (spike-like protrusions) in the direction of migration by 

assembling actin filament networks and are connected to the substrate4,5. This allows the 

cells to generate traction on the new adhesion for forward motion as it depolymerizes the 

cytoskeleton at the trailing edge4,5, known as treadmilling. Myosin plays a large role in 

allowing cells to generate traction forces in the leading edge, as well as applying a 

contractional force in the rear of the cell to help generate forward motion4. 

 The mechanisms for cell motility in a physiological 3D environment contain a 

higher amount of complexity compared to migration in 2D, and while the process is 

similar in some ways, the cells must behave differently as there is no rigid surface on 

which to generate traction forces and there is an extracellular matrix that requires 

navigating through. 

For single cell motility in 3D, there are two modes of motility that have been 

proposed in literature: mesenchymal motility, where the cell is elongated, and 

amoeboidal motility, where the cell adopts a more rounded shape (these are also 

sometimes referred to as lamellipodial and lobopodial motility, respectively). Friedl and 

Wolf have reviewed the physical characteristics of cancer cells undergoing both modes of 

motility35,36. Mesenchymal motility is similar to the mechanism for 2D migration above – 

the cells form strong adhesions with the ECM and can generate traction forces for 

forward motion while remodeling the ECM either by contractile forces or proteolytic 

digestion of the ECM with matrix metalloproteinases (MMP)35. Amoebodial motility 

occurs when the cells cannot form tight adhesions with the ECM and are thus unable to 



15 

 

generate tractional forces for forward motion, therefore the cells rely on actomyosin 

contraction for propulsion through the ECM either by exerting large forces to remodel the 

ECM for migration or exerting large forces on the cell body to deform to “squeeze” 

through ECM35. Intracellular pressure is significantly higher in cells undergoing 

lobopodial motility than lammelipodial motility and is significantly higher in the anterior 

(front) direction of motility compared with the posterior (rear)37. This observed 

intracellular pressure gradient is nullified when cells are treated with inhibitors targeting 

myosin contractility37. 

 Rho and Rac GTPases have been shown to play a crucial role in the 

differentiation of mesenchymal versus amoeboidal mode for motility in 3D. Yamazaki et. 

al. demonstrated that knocking down Rac1 in HT1080 fibrosarcoma cells results in more 

of the cell population undergoing Rho/ROCK based amoebodial mode and fewer focal 

adhesions in 2D, whereas knocking down RhoA results in a larger population in 

mesenchymal mode38. Yamada et. al. observed similar results for cells in lamellipodial 

(polarized Rac) versus lobopodial (non-polarized Rac, high RhoA) migration in 3D and 

suggest the cells will switch between the modes depending on the elastic behavior of the 

ECM39. 

 The elasticity of the biological microenvironment plays a crucial role in cell 

mechanics. Janmey et. al. demonstrated that the spreading area, Young’s modulus as 

measured with AFM, and amount of total f-actin sedimentation will increase with the 

stiffness of fibronectin-coated PA surfaces with a substrate saturation value of 

approximately 20 kPa40. It should be noted that the fibroblasts are very thin (maximum 

height ~1.5 µm, protrusion heights on the order of 100 nm) and sharp AFM probes were 
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used in this study with maximum indentation depth of 400 nm40, therefore the 

measurements were most likely most sensitive to the cell cytoskeleton at relatively small 

distances from the basal surface. When MDCK cells and fibroblasts are seeded on 

fibronectin coated PDMS micropillar arrays with varying spring constants, the cell 

projected area and total traction force exerted by the cells will scale linearly with the 

pillar spring constant until a saturation value of ~150 nN/µm is achieved (equivalent 

Young’s modulus of ~90 kPa)41. Additionally, when PDMS pillars with anisotropic 

stiffness are used, cells will prefer to align along the axis of higher stiffness whereas cells 

will have a more random orientation on an isotropic surface41,42. 

Higher levels of cellular function (i.e. gene expression and regulation) may be 

dramatically altered by simply varying the elasticity of the microenvironment. In a 

seminal work, Engler et. al. demonstrated that mesenchymal stem cells differentiate 

differently when seeded onto PA gels of varying stiffness and myosin II inhibition 

removed the dependence of the microenvironment stiffness on the stem cell fate1. 

Recently Swift et. al. demonstrated that lamin A, an intermediate filament inside the 

nuclear envelope which stabilizes the nucleus and controls gene expression, of 

mesenchymal stem cells is expressed higher when on surfaces with higher elastic 

modulus and that stem cell fate may be altered by adjusting lamin A levels, indicating 

that mechanotransduction from ECM stiffness is part of a complicated gene regulatory 

network involving the mechanical coupling between the microenvironment and 

lamin-A43 (for example, via myosin II). It has been demonstrated that stem cell 

differentiation via substrate elasticity is also regulated by vinculin, a mechanosensing 

protein localized at adhesion sites, via knock-down experiments44. It has been recently 
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proposed that the porosity of the substrate may contribute to the phenotype of stem cells 

as transmembrane proteins will tether and transmit signals differently45, however more 

recent studies examining this shows that protein tethering may have no contribution46. 

Cell shape has also been demonstrated to have a large role in the differentiation of 

mesenchymal stem cells – cells that are grown on micropatterened surfaces will 

differentiate differently depending on the aspect ratio of the pattern, and the effects of the 

surface patterns may be altered by using drugs that affect actomyosin activity, 

microtubule stability, and α5β1 integrin blockers47. 

 

Nuclear Mechanics 

 The nucleus is the most prominent eukaryotic organelle and the location of DNA 

and transcription. The nucleus contains a membrane or envelope which is a double 

phospholipid bilayer with pores allowing for transport, its own cytoskeleton along the 

nuclear wall composed of intermediate filaments lamin A/B/C (similar to how cells have 

an actin cortex), and transmembrane proteins such as nesprin which couple the nuclear 

lamin with the exonuclear cytoskeleton (similar to how integrins connect the cell 

cytoskeleton to the extracellular matrix)48. Each cell contains about two meters of linear 

DNA which needs to be compressed by histones and DNA binding proteins across 

several magnitudes in length, first in nucleosomes consisting of several base pairs, then 

chromatin which are fibers of DNA containing millions of base pairs and interact with 

distant regions of the genome and also nuclear lamins, and finally into chromosomes 

containing on the order of one hundred million base pairs48. Chromatin structure is 

fibrous much like the cytoskeleton, and the structure and packing density of the 



18 

 

chromatin alters gene expression – heterochromatin refers to more dense regions of 

chromatin where transcription does not occur, while euchromatin refers to regions where 

the DNA is more accessible and transcription occurs48. 

 The mechanical properties of extracted nuclei have been closely examined in 

recent years. Current literature suggests that nuclear mechanics is governed by an 

interplay of lamins and chromatin. Lamins A/C have been previously shown to contribute 

positively to the elastic stiffness of nuclei49,50. Mutations in lamin A/C has been linked to 

a large number of diseases, and mutations in some of the genes involved in nuclear 

mechanotransduction have also been linked to disease51. Discher et. al. demonstrated that 

human mesenchymal stem cells which are lamin A/C deficient are much more 

deformable than fibroblast nuclei and becomes less deformable as the stem cells begin to 

differentiate52. In addition, nuclei are shown to be less deformable when the chromatin 

structure is condensed and long deformations to nuclei show irreversible disruption in 

chromatin architecture52. The authors conclude that lamin A/C contributes largely to the 

elastic properties of the nucleus and non-condensed chromatin the viscous component 

and that chromatin plasticity of the nucleus in non-differentiated stem cells is key for the 

cell to form their final phenotype. Heterogeneous, or condensed chromatin has been 

shown to positively correlated with nuclear stiffness and negatively correlated with 

nuclear diffusion rates when studied with a marker for cellular pluripotency, and the 

nuclear stiffness is reduced cells are stripped of divalent cations or treated with a histone 

deacetylase inhibitor53. Decondensation of the heterochromatin54 and the presence of 

divalent cations will affect the size of extracted nuclei, also affecting the stiffness of 

extracted nuclei55. It has also been recently shown that actin stress fibers will regulate the 
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size and shape of the nucleus, as well as location of heterochromatin56, and that 

embryonic stem cells display negative Poisson’s ratios during certain transitional stages 

where the heterochromatin is decondensed57. 

 Nuclear stiffness is also an important feature for cell motility in 3D. The nucleus 

is reported to be the stiffest organelle present inside of the cell52,58, therefore either ample 

space is needed for the nucleus to move throughout an ECM scaffold (the pore size must 

be large enough), or the nucleus must undergo high deformation in order to move 

throughout the scaffold. Wolf et. al. demonstrate a physical relation between 3D motility 

arrest as a function of nuclear size, collagen I matrix pore size (but not stiffness), and 

presence of an MMP inhibitor and identify maximum nuclear deformation relative to the 

ECM pore size as a limiting factor24. It was also shown that cell mechanotransduction 

pathways involving ROCK and integrins play a key role in nuclear movement during cell 

migration in 3D to propel the cells forward and that cells expressing lamin A/C require 

MMP activity to degrade the matrix, whereas lamin A/C deficient cells do not require 

MMP activity24. During lobopodial migration where nuclear deformation is observed, the 

nucleus may also serve to compartmentalize the cell into low pressure (posterior) and 

high pressure (anterior) regimes in a nesprin-3 dependent manner such that the nucleus 

acts as a piston for maintaining the pressure gradient in a moving cell37. 

 

Cancer Mechanobiology 

 As cell mechanics plays the prominent role in motility, some anatomical fields 

where mechanobiology must be strongly considered include embryogenesis, wound 

healing, and cancer. One of the original six “hallmarks” of cancer as dubbed by Hanahan 
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and Weinberg in 2000 is metastasis, the process by which cells disseminate from the 

primary tumor, invade into the surrounding tissue, and form secondary tumors at distant 

locations in the body59 (the total amount of hallmarks was revised later in 2011 to ten60). 

However, this is not the only hallmark in which exclusively the mechanical properties of 

cells play a role in – mechanotransduction induced changes in the stiffness of the nuclear 

envelope (via lamin A) may lead to genomic instability and enhanced mutation rates43. 

The physical process of metastasis has been recently reviewed by Wirtz et. al.61 and 

includes the epithelial-to-mesenchymal transition from the primary tumor, tissue invasion 

and intravasation into the vasculature system, adhesion to blood vessel wall and 

extravasation out of the vasculature, and finally growth of a secondary tumor. 

Focal adhesion kinase has been shown to be upregulated in some cancers and its 

downstream effects include the epithelial-to-mesenchymal transition, as well as Rho 

GTPase signaling and invasion62. The tumor microenvironment is stiffer than healthy 

tissue (~4.0 kPa compared to ~0.2 kPa for tumour and normal mammary tissue, 

respectively), in a seminal paper Weaver et. al. linked this increase in stiffness to a cell’s 

progression to a malignant phenotype by enhanced extracellular signal-regulated kinases, 

ROCK activity, certain focal adhesion kinase phosphorylation, and vinculin2. 

Mesenchymal epithelial cells were shown to form normal luminal structures on soft 

(~0.2 kPa) substrates, however on stiffer substrates would exhibit malignant and 

mesenchymal features2. It has also been demonstrated that cancer cells will stiffen their 

microenvironment (for example, via lysyl oxidase) to enhance integrin signaling and 

induce the progression into a malignant phenotype in vivo (inhibition of lysyl oxidase 

results in less malignant tumors)63. This presents a conundrum in that metastasis and 
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malignancy in cells is promoted by stiffer extracellular matrices, however cell motility is 

often inhibited when the matrix crosslinking density is too high (for example, Wolf et. 

al.24). 

 In addition to lysyl oxidase inhibition, cancerous cells may be reverted to a 

normal phenotype by functionally blocking β1 integrins64 and epidermal growth factor 

receptor65, thus altering the chemical and mechanical signaling pathways associated with 

the extracellular environment. When these are blocked and the phenotype is reversed, 

cancer cells undergo similar coherent angular motion patterns required to form luminal 

structures in 3D (additionally, E-cadherin inhibition results in loss of normal motion 

patterns for luminal formation)66. 
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3 ATOMIC FORCE MICROSCOPY FOR SOFT MATTER 

MICRORHEOLOGY 

 

Scanning probe microscopy with atomic resolution was first developed in the 

early 1980s by Binnig et. al. with the development of the scanning tunneling microscope 

(STM)67, a machine capable of producing topographic images with atomic resolution by 

employing knowledge of a controlled tunneling current in vacuum and accurate 

piezoelectrics for positioning. Gerd Binnig and Heinrich Rohrer were awarded half of the 

Nobel Prize in Physics in 1986 for the development of the STM. The atomic force 

microscope was first proposed along with a prototype demonstration by Binnig et. al. in 

198668. The purpose of the original AFM was to provide high resolution topographical of 

insulator samples, as the already existing STM was only capable of imaging conductive 

surfaces. Since then, the AFM has undergone several instrumental improvements, such as 

the addition of an optical lever to detect cantilever deflection distances69 (the original 

AFM used an STM probe to detect cantilever deflections). In 1992, Tao et. al. used the 

AFM as a nanoindenter to determine the elastic properties of cow tibia, the first 

biological sample, and observed stiffness variations at high resolution70. 

 The AFM is capable of performing indentation-based rheology across many 

different time (ms-s), length (nm-µm), and force scales (pN-µN). In order to extract 

material properties of the sample, some the force-indentation data from the AFM must be 

fit to some contact model. There are many different strategies for fitting AFM 

force-indentation data depending on assumptions made regarding the sample. This 

chapter will provide the relevant background for collecting and analyzing raw AFM data 
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to extract quantitative mechanical properties, including calibration and elastic contact 

theory, and will also discuss how the AFM compared with similar experimental 

microrheology techniques often used in cell mechanics, and also simulations. In this 

dissertation, the Asylum MFP-3D is used for the vast majority of measurements, 

therefore description of the theory will be biased towards that specific instrument. 

 

Instrumentation 

 

 

Figure 3-1: Schematic of AFM instrumentation. (A) Zoom out, showing the photodiode 

for detecting deflection signals and the full cantilever which is moved in the z-direction at 

the base. (B) Zoom in, showing the magnitude of deflection and indentation as detected 

by the optical lever. 

 

 Figure 3-1 shows a basic schematic of the AFM instrumentation. For indentations 

into soft matter, it is assumed that the tip is much stiffer than the sample and therefore all 

deformations are constrained to the sample. The indentation depth, δ, is given by 
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 𝛿 = 𝑧 − 𝑑 (3-1) 

where z is the relative distance of the cantilever base reported by the piezoelectric and d 

is the cantilever deflection distance 

 𝑑 = 𝑆𝑂𝐿Δ𝑉 (3-2) 

With SOL being the inverse optical lever sensitivity (OLS) and ΔV being the change in 

voltage as reported by the photodiode. The force experienced by the cantilever F is given 

by 

 𝐹 = 𝑘𝑑 
(3-3) 

where k is the spring constant of the cantilever. Calibration of the OLS and spring 

constant is further discussed below. 
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Figure 3-2: Schematic of an AFM force-indentation curve on a PDMS gel. The 

base:crosslinker ratio is 45:1, resulting in a gel that is approximately 60 kPa and the tip 

has a sphere glued on with diameter ~10µm. The PDMS was plasma cleaned to make the 

surface hydrophilic and the measurement was performed in buffer to minimize adhesion. 

(i) non-contact region, (ii) contact point, (iii) contact region. Red is the extension 

(loading) curve, moving from left to right, and blue is the retraction (unloading) curve, 

moving from right to left. The black line in (ii) represents the contact point. 

  

 Figure 3-2 demonstrates an example force-indentation curve generated by AFM. 

The cantilever is lowered to the sample using piezoelectrics in the AFM head in an open-

loop or closed-loop mode. In the case of the Asylum MFP-3D, there is a capacitive 

sensor inside the AFM head that reports the z-position of the cantilever. In closed-loop 

mode, there are feedback electronics which will adjust the piezo speed using the 

capacitive sensors, however in open-loop mode the speed is not adjusted using electronic 

feedback, resulting in potentially faster but less accurate speeds. When the probe comes 
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into contact with the sample, the cantilever will begin to bend and the deflection signal 

will increase as the laser position on the photodiode moves. When the probe is moved 

away from the sample, the deflection signal will drop back to the baseline level. If there 

is adhesion between the tip and the sample, the deflection signal may dip below the 

baseline level on both the extension and retraction segments of the curve. In an ideally 

elastic sample, the extension and retraction curves will perfectly overlay, however if there 

is some plastic deformation, creep, or viscoelastic contribution from the sample, then the 

segments will not overlay. 

 

Calibration 

 As mentioned previously, the raw data which the AFM collects is a voltage from 

the photodiode and this voltage must be translated into a usable quantity, such as force. In 

order to collect accurate force data from the AFM, it is imperative that the cantilever 

spring constant k assumed in the experiment is as close to the actual value as possible, 

and the OLS is well calibrated such that the actual deflection of the cantilever is properly 

calculated. 

 The simplest method for calibration the OLS is to indent a rigid surface to receive 

a z-piezo versus photodiode voltage curve, assume ∆𝑧 = ∆𝑑, and then calculate the 

inverse OLS as the cantilever bending distance divided by the photodiode voltage. This 

procedure is highly dependent on the intensity of the laser and positioning on the 

cantilever, thus must be recalculated each time the laser moves or the media of cantilever 

changes (such as moving from air to liquid due to the refractive index change). 
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 Determining the spring constant of a cantilever mounted in the AFM is not a 

trivial process and is a currently active area of research. The most widely used method for 

spring constant calibration is the thermal tuning method71. The cantilever is assumed to 

be a 1D simple harmonic oscillator under weak thermal fluctuations and under the 

equipartition theorem, the vibrational energy of each degree of freedom is given by71: 

 
1

2
𝑘𝐵𝑇 =

1

2
𝑘〈𝑞2〉 

(3-4) 

where kB is the Boltzmann constant, T is the temperature, k is the cantilever spring 

constant, and q is the oscillator displacement. In practice, the mean square oscillator 

displacement 〈𝑞2〉 is determined by performing a frequency sweep and calculating the 

integral of the power spectrum of the first vibrational mode in the frequency domain71. 

The cantilever displacement is related to the voltage from the photodiode by 

 〈𝑞2〉 = 〈𝑉2〉𝑆𝑂𝐿
2𝜒2 

(3-5) 

Where SOL is the inverse OLS (units of distance divided by voltage) and χ is the “kappa 

factor” (despite having a different symbol) which compensates for dynamic oscillations 

versus static bending and the positioning of the laser on the cantilever and is further 

discussed later in this section. The power spectrum is fit to a Lorentzian72  

 
𝑃(𝑓) = 𝐵 +

𝐴1𝑓1

(𝑓2 − 𝑓1
2)
2
+ (
𝑓𝑓1
𝑄1
)
2 

(3-6) 

to compute the background amplitude B, first mode amplitude peak A1 in units of voltage, 

resonance frequency f1, and quality factor Q1 (related to the width of the resonance), thus 

the area is 
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 〈𝑉2〉 = ∫ 𝑃(𝑓)𝑑𝑓 =
𝜋𝐴1𝑓1𝑄1
2

∞

0

 
(3-7) 

 As alluded to previously, there must be some correction factors included into the 

calculation. Butt and Jaschke discussed discrepancies in using the OLS as computed in 

the supported regime (cantilever in contact with a hard surface as in standard OLS 

calibration) versus the freely oscillating regime (cantilever is not in contact with a surface 

as in a thermal noise calculation) and calculated correction factors for the oscillation 

amplitude of freely oscillating cantilevers versus supported cantilevers for each 

vibrational mode73. In the case of the Asylum MFP-3D, the optical lever for detecting 

cantilever deflection uses a very relatively large light source (as opposed to a focused 

laser beam), thus some errors need to be considered when the light spot size has similar 

length scale to the cantilever. Walters et. al. introduced a scaling term to the inverse OLS 

of 1.09 to account for this in the calibration of short cantilevers using the first vibrational 

mode74. Proksch et. al. formalized the definition of the kappa factor χ as the ratio of the 

sensitivities of the freely oscillating cantilever and supported cantilever and calculated 

the values of χ for different rectangular cantilever lengths and spot sizes75. When χ=1.09 

(the case of an infinitely small spot size at the end of a long cantilever), the effective 

correction factor (0.842) is very similar to that given by Butt and Jaschke73 (0.817) for 

the first vibrational mode of rectangular cantilevers. χ will decrease as the cantilever 

becomes shorter relative to the size of the laser spot and will increase as the laser spot is 

moved off the end of the cantilever and is typically greater than 1.00 for common 

cantilever and laser dimensions75. 
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Thus, the final form of the spring constant from the thermal noise method is given 

by 

 𝑘 =
2𝑘𝐵𝑇

𝜋𝐴1𝑓1𝑄1𝑆𝑂𝐿
2𝜒2

 
(3-8) 

 Other comparable methods for the calibration of rectangular cantilevers are the 

Sader method76 which relies on knowledge of the cantilever dimensions, resonance 

frequency, and quality factor, and the Cleveland method77 which relies on adding a mass 

to the end of the cantilever and observing changes in resonance. The thermal noise 

method gives very similar (within 10%) results to the Sader and Cleveland method for 

rectangular cantilevers72,75. For the calibration of triangular cantilevers, different 

correction factors are required78. A 15% systematic error in spring constant calibration 

using the thermal method has been recently obtained across multiple instruments79 and is 

generally regarded as the normal error in spring constant determination. 

 

Analyzing Force-Indentation Data 

 Once the AFM force-indentation data is collected, one common analysis 

technique is to fit the curve with some kind of model to determine mechanical properties 

of the sample. The simplest parameter to determine is the Young’s modulus E, which is a 

single parameter describing the elasticity, or resistance to deformation, of the sample. 

This also requires some prior knowledge of the compressibility of the sample, or the 

Poisson ratio ν. Sneddon presents a simple method for determining the force-indentation 

response for a generic indenter described by some function f(r), and also presented 

solutions for some common indenter shapes80. 



30 

 

 

 

Figure 3-3: Axisymmetric elastic indentation problem. 

 

The force-indentation response on an elastic material has the form 

 𝐹(𝛿) =
𝐸

(1 − 𝜐2)
𝜆(𝛿) 

(3-9) 

Where F is the force, δ is the indentation depth, and λ is some function describing the 

shape of the indenter and has the units of distance squared in this context. For parabolic 

(Hertz) and conical (Sneddon) indenters, λ is a power-law function with base δ and 

exponents 3/2 and 2, respectively81. For each tip shape f(r), the function λ(δ) may be 

derived, as well as the relationship between δ and a, the contact radius between the probe 

and the sample using Sneddon’s procedure in Appendix 1. The various quantities are 

displayed in Figure 3-3. 

Some tip shapes that are commonly used to analyze AFM force-indentation data 

are a parabolic tip shape (Hertz model), conical tip shape (Sneddon model), hyperbolic 
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tip shape, and a blunted cone. For a parabolic indenter, Sneddon’s procedure provides the 

same result as the Hertz model80,82: 

 𝑓𝐻(𝑟) =
𝑟2

2𝑅
 (3-10) 

 𝑎𝐻 = √𝑅𝛿 (3-11) 

 𝜆𝐻 =
4

3
√𝑅𝛿3 

(3-12) 

Thus, the Hertz model is 

 𝐹𝐻 =
4

3

𝐸

(1 − 𝜐2)
√𝑅𝛿3 

(3-13) 

For a conical indenter, the solution provides the same result as the Sneddon model80: 

 𝑓𝑆(𝑟) = 𝑟 cot 𝜃 
(3-14) 

 𝛿 =
1

2
𝑎𝑆𝜋 cot 𝜃 

(3-15) 

 𝜆𝑆 =
2𝛿2

𝜋 cot 𝜃
 (3-16) 

Thus, the Sneddon model is 

 𝐹𝑆 =
2𝛿2

𝜋 cot 𝜃

𝐸

(1 − 𝜐2)
 

(3-17) 

For a hyperbolic indenter, the solution is as follows83,84: 

 𝑏𝐻𝑦 = 𝑅 cot 𝜃 
(3-18) 

 𝑓𝐻𝑦(𝑟) = 𝑏𝐻𝑦 cot 𝜃 [√
𝑟2

𝑏𝐻𝑦
2 + 1 − 1] (3-19) 

 

 𝛿 =
𝑎𝐻𝑦 cot 𝜃

2
[
𝜋

2
+ tan−1 (

𝑎𝐻𝑦

2𝑏𝐻𝑦
−
𝑏𝐻𝑦

2𝑎𝐻𝑦
)] 

(3-20) 
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𝜆𝐻𝑦 =
𝑎𝐻𝑦
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𝑅
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(3-21) 

For a blunted cone, Briscoe85 derived a model for a tip shape which is parabolic at the 

end and transitions to a cone at a specific distance, the model is given by: 

 𝑏𝐵 = 𝑅 cos 𝜃 
(3-22) 

 

𝑓𝐵(𝑟 < 𝑏𝐵) =
𝑟2

2𝑅
 

𝑓𝐵(𝑟 ≥ 𝑏𝐵) = (𝑟 − 𝑏𝐵) cot 𝜃 +
𝑏𝐵
2

2𝑅
 

(3-23) 

 𝛿 =
𝑎𝐵
tan 𝜃

[
𝜋

2
− sin−1 (

𝑏𝐵
𝑎𝐵
)] 

(3-24) 

 𝜆𝐵 =
2

tan𝜃
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2

2
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𝜋
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𝑏𝐵
2
√𝑎𝐵2 − 𝑏𝐵

2} 
(3-25) 

For the blunted cone and hyperbolic models, the result is not a convenient closed-form 

equation. Fitting force-indentation curves to these models requires some numeric tools to 

first determine the indentation depth and contact radii, and then they may be fit to the 

curves. For a tip which is spherical at the end and transitions to a cone at the point at 

which the first derivative is smooth (sphero-conical tip), the model is derived in 

Appendix 1. 

 There are several different strategies for determing the contact point and fitting 

the force-indentation curves, as reviewed by Lin and Horkay81 depending on whether 

there is a priori knowledge of the contact point or if the contact point should be a 

parameter of the fitting algorithm. The location of the contact point plays a heavy role in 
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the subsequent elasticity analysis as demonstrated by Crick and Yin where apparent 

Young’s moduli differed significantly with 100 nm errors of the contact point 

determination86. Lin and Horkay classify contact point algorithms depending on whether 

or not the point (δ=0, F=0) need to lie in the raw dataset as fully constrained for both 

points, semi-constrained for one variable, or unconstrained for neither81. Manually 

determining the contact point is often very difficult due to various additional long and 

short-range interaction adhesive or repulsive forces, but is also difficult because the 

amount of force required for small indentations of soft matter may be on the same order 

of magnitude of the noise threshold in AFM indentations. Many automated methods exist 

for contact point determination, but most have some form of limitation depending on the 

type of data (for example non-linear, adhesive, high noise, etc.)81. 
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Figure 3-4: Demonstration of the linearized fit method. (A) Simulated force-indentation 

curve of a sphere indenting into a soft elastic material, following exactly the Hertz model. 

(B) force2/3-indentation curve showing a linear slope, which is directly computed into a 

Young’s modulus for a Hertzian indenter, there is identically no error in the computed 

Young’s modulus if the zero force is correctly identified. (C) Error in the Young’s 

modulus of a sphero-conical indenter if the contact point is chosen incorrectly, stars 

represent fits from the linearized method and plus signs represent a least squares method. 

Errors are induced when the contact point (F=0, δ=0) is not chosen properly, but are 

minimized with the linearized fit method. 

 

Guo and Akhremitchev introduce a method to reduce errors from contact point 

uncertainty by first linearizing the data and performing a regression for the slope of the 

force as a function of indentation (in other words, focus only on the relative change of 

force with respect to indention as opposed to absolute values) as a way to minimize errors 
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from contact point determination87. This method of regression has also been applied to 

AFM studies on the elasticity of mammalian cells by Ros et. al. in a piecewise fashion88  

and by Engler et. al. to analyze force-indentation curves of layered PDMS and 

Drosophila myocardial layers89. Figure 3-4A and Figure 3-4 B show a simulated Hertzian 

force-indentation curve and the subsequent linearized curve used to find the Young’s 

modulus. The piecewise depth-dependent linearized regression method may be 

implemented by considering changes in the force with respect to indentation depth: 

 ∆𝐹(𝛿) =
𝐸

(1 − 𝜈2)
∆𝜆(𝛿) 

(3-26) 

λ is a exactly a power law function for parabolic (Hertzian) and conical (Sneddon) 

indenters and may otherwise be approximated as a power law function for small 

piecewise segments of the data, thus 

 ∆𝜆(𝛿) → 𝐴∆𝛿𝐵 
(3-27) 

Once the exponent in the power law is known, the force may be linearized by 

 ∆𝐹1 𝐵⁄ (𝛿) = [
𝐸𝐴

(1−𝜈2)
]
1 𝐵⁄

∆𝛿  (3-28) 

The slope of F may be taken with respect to δ, which will produce a constant value (the 

intercept of the linear fit will be discarded as the contact point is semi-constrained) 

 
∆𝐹1 𝐵⁄ (𝛿)

∆𝛿
= [

𝐸𝐴

(1 − 𝜈2)
]
1 𝐵⁄

= 𝐶 (3-29) 

Therefore, the Young’s modulus for a small piecewise bin of indentation data is 

approximated as 

 𝐸 =
𝐶𝐵(1 − 𝜈2)

𝐴
 (3-30) 
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For indenters that follow exact power-law behavior, such as the Hertz and Sneddon 

models, there will identically be no error in E if the zero force is correctly identified. For 

indenters that are not true power laws but are approximated as such, for example the 

sphere-conical or Briscoe models, the zero distance must be approximated due to the 

point at which the tip transitions into a cone need to be known. Figure 3-4C shows fits for 

the Young’s modulus of a simulated sphero-conical curve when contact point errors (both 

in F and δ) are introduced. When the contact point is underestimated, the fits have a very 

small error because the zero force is known in this situation, whereas if the contact points 

are overestimated the errors increase. When simple least squares are used, errors in the 

Young’s modulus increase harshly with errors in the contact point. This is because the 

linearized fit is only semi-constrained to the contact point, whereas a least-squares 

method is fully constrained to the contact point. 

 The error standard error from the fitting method may also be approximated. To 

first order this error, SE, is 

 𝑆𝐸
2 = (

𝜕𝐸

𝜕𝐴
)
2

𝑆𝐴
2 + (

𝜕𝐸

𝜕𝐵
)
2

𝑆𝐵
2 + (

𝜕𝐸

𝜕𝐶
)
2

𝑆𝐶
2 (3-31) 

Where SA, SB, and SC are the standard errors from the regression methods used. Solving 

the partial derivatives from Eq. (3-30) yields 

 𝑆𝐸
2 = (

𝐸

𝐴
)
2

𝑆𝐴
2 + (𝐸 ln 𝐶)2𝑆𝐵

2 + (
𝐵𝐸

𝐶
)
2

𝑆𝐶
2 (3-32) 

SA and SB will be very small for small indentation bins and virtually zero for exact power 

law relationships, so SC will be the dominant term when analyzing experimental data 

unless very large binning intervals for non-power law functions are used. 
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 Special care of the force-indentation data must be taken if there is adhesion 

between the probe and the sample due to an increased contact radius. There are several 

models to quantitatively account for adhesion, these have been recently reviewed by Lin 

et. al.81. 

Because the method is compatible for small segments of indentation data, this 

method may be used to determine the depth-dependence of the elastic force-indentation 

data to extract information regarding sample heterogeneity. Kasas et. al. demonstrated 

that the technique may be used to produce a “stiffness tomography” of the sample where 

certain regions have enhanced contrast due to elasticity variations90. Sokolov et. al. report 

on cell heterogeneity in the form of a extracellular brush of glycoproteins which may be 

detected using colloidal AFM probes and fit to entropic polymer models to determine 

length and grafting density91. 

 Corrections to the elastic contact models to account for a rigid substrate have been 

derived (for example, the case of a thin soft layer resting on a glass coverslip). 

Dimitriadis et. al. solved the elastic contact model on a thin layer for a parabolic indenter 

by using the method of images for both a thin layer adhered and non-adhered to a rigid 

substrate92. Gavara and Chadwick made similar corrections for a conical indenter on an 

adherent thin elastic layer with ν=0.593. Both of these solutions have the benefit of being 

closed-form equations which do not require expensive or tricky numeric techniques. 
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Figure 3-5: Comparison of AFM with bulk indentation rheometry on polyacrylamide 

gels. The concentration of acrylamide is 5% and bis-acrylamide is 0.2% and Poisson’s 

ratio assumed to be 0.45. (A) Force-indentation curves collected with a LRCH-750 

spheroconical tip on a JPK NanoWizard II in closed-loop, red shows an averaged curve 

while blue is all of the data. (B) Force-indentation curves collected by an Anton-Paar 

MCR302 rheometer with a 9.53 mm diameter bead glued to the measuring system. 

Thicknesses of the PA gels are shown. All of the data is fit with the described models, 

Dimitriadis92 refers to the non-bonded case as the gel is not bonded with the substrate. 

The SEM image of the AFM probe is provided by Team Nanotec. 

 

 An example of a simple problem is shown in Figure 3-5, where a PA gel is probed 

by AFM and the same gel is measured in a bulk rheometer. In the case of the AFM, the 

tip radius is less than the total indentation depth, therefore care must be taken to ensure 

the correct model is used to fit the data. In the case of the bulk rheometry data, the gels 

are very thin compared to the size of the bead indenter, therefore care must be taken to 

ensure the data is fit to the proper model (in this case, the PA is not bound to the substrate 

so the non-bonded model by Dimitriadis92 is used). When the proper models are used, the 

rheometer results are self-consistent and also agrees very closely with the AFM results 

(however, it should be noted that there is generally a 15% error in AFM force data from 

calibration). 
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 Another example is shown in Figure 3-6, where a soft (3% acrylamide, 0.1% bis-

acrylamide) PA gel is indented with an LRCH-750 AFM probe with sphero-conical 

geometry. The PA gel is prepared as described in §6 (with water instead of DPBS) and 

without further addition of fibronectin, and the measurement was performed in DPBS at 

25°C. Different values for the Young’s modulus are produced when different models are 

used to analyze the data. When the Hertz (Eq. (3-13) and Sneddon (Eq. (3-17) are used, 

there is a large dependence on the depth. However, when the model which best represents 

the shape of the tip is used, in this case the sphero-conical model (as shown in §5, also 

Appendix A) the depth-dependent apparent Young’s modulus gives a more constant 

value over the entire indentation. When the fits are global and over the entire force-

indentation curve (as opposed to binning the force into indentation bins), the resulting 

values for Young’s modulus from the fits are 0.94, 0.72, and 0.94 kPa for the sphero-

conical model, Hertz model, and Sneddon models, respectively. 
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Figure 3-6: Force-indentation curve of a polyacrylamide gel with an LRCH-750 probe. 

The probe and SEM image are provided by Team Nanotec, the radius is 795 nm, the half-

angle is approximately 20°, and spring constant ~0.13 N/m from the thermal tuning 

method. The fits assume ν=0.5. The AFM is an MFP-3D BIO, the velocity is 2 μm/s 

(closed loop), trigger force 50 nN, contact point chosen manually, and fit using the 

linearization method described in this chapter. The force is on the left axis, where the fits 

are on the right axis. 

 

Atomic Force Microscopy Applications in Cell Mechanics  

 Quasistatic indentation-based microrheometry with an AFM is a very common 

established technique to measure elastic moduli for cells that have been adhered to some 

substrate. For example, Lim et. al. observed differences using AFM indentations between 

cancerous and non-cancerous mammary epithelial cells and also observed apparent 

stiffening at higher loading rates and correlated this with stress fiber bundling94. Ros et. 

al. used AFM indentation to examined mechanical differences of esophageal cell lines as 

they progressed from healthy to dysplastic phenotypes and observed a correlated 
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softening88. Nikkhah et. al. observed that the stiffness of breast epithelial cells has a 

slight dependence on the composition of the growth medium95. Janmey et. al. 

demonstrated with AFM indentation experiments that fibroblasts will adapt their stiffness 

to match their microenvironment under a certain threshold40. Plodinec et. al. performed 

AFM mapping across heterogeneous breast cancerous and healthy tissue regions and 

deconvoluted mechanical responses from the cells as well as the extracellular matrices96. 

 AFM may also be used to create a “force clamp” in which a constant force or 

deformation is applied by a cantilever and the other is measured as a function of time. For 

example, Hyman et. al. used an AFM force clamp on mitotic HeLa cells to demonstrate a 

very large increase in intracellular pressure against an AFM cantilever during metaphase, 

and decrease during anaphase and demonstrated an interplay of osmotic pressure 

regulated by the actomyosin cortex contributing to the increase in pressure97. The spring 

constant of the cantilever may be used to modulate the local stiffness environment of a 

live biological sample to observe cellular response, Fletcher et. al. demonstrated a 

method using positional feedback loops to dynamically adjust the apparent spring 

constant of the cantilever to observe cell response to a changing stiffness98 and use been 

used to examine the dependence of strain-rate in cell tensional response99. 

 In addition to calculating static elastic moduli of samples, it may also be used to 

determine the viscoelastic moduli including the storage and loss components. This 

methodology was introduced by Käs et. al. by performing a series expansion on the Hertz 

model to introduce terms from small fluctuations in the indentation depth100. When the 

cantilever is oscillated, the force response will have some phase lag on a viscoelastic 

sample and the storage modulus is proportional to the cosine of the phase lag and the loss 
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modulus is proportional to the sine of the phase lag (a phase lag of zero is an elastic 

sample, 90° phase lag corresponds to a fluid with no elasticity). The method has been 

extended to use a conical indenter101 and the process for determining the drag force of the 

cantilever (or instrument response function) has been further refined102. This method has 

been employed to observe power-law structural damping behavior of cells101,102 whereby 

both the storage and loss moduli increase with increasing frequency and differences in 

the viscoelastic behavior between healthy and cancerous cells has been recently observed 

by Janshoff et. al. with cells having higher loss tangent at higher frequencies103. 

 

Related Techniques for Cell Mechanical Measurements 

 In addition its widespread commercial availability, AFM has the benefit of 

directly calculating the cells’ mechanical response to external pressure, and the indenter 

geometry and location of indentation may be optimized to increase contrast of the 

location that is being studied. However, there are many aspects of cell mechanics which 

the AFM cannot address and experimental and theoretical limitations. As mentioned 

previously, while AFM can provide some information regarding the viscoelastic 

properties of cells, there are some instrumentation limits in determining the loss modulus 

due to varying cantilever spring constants. AFM is an active measurement method which 

needs to apply pressure directly to the top of the sample, thus cannot be used if the cell is 

too deeply embedded in some environment or is otherwise inaccessible. Very recently, 

Yamada et. al. demonstrated intracellular pressure measurements of cells in 3D 

microenvironments by penetrating the cell membrane with a microelectrode and showed 

an increase in intracellular pressure in the front edge of cells undergoing lobopodial 
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motility37. Passive methods which do not directly apply force to the sample and instead 

rely on optical microscopy may be used to determine effective material properties. A 

number of various techniques for examining the mechanical properties of whole cells, as 

well as single molecules and larger molecule complexes have been reviewed by several 

groups104–106. 

 Another active cell mechanics measurement method is known as magnetic 

twisting cytometry, whereby magnetic beads are adhered to the outside of a cell, a strong 

magnetic field is applied to magnetize the ferromagnets, and a perpendicular magnetic 

field is applied to twist the beads with forces in the nanonewton range107. By examining 

the displacement field around the cell when the calibrated magnetic twisting force is 

applied, accurate microrheology data may be obtained108. Because the twisting force is 

purely a shear force on the membrane (unlike AFM which can only apply pressure in the 

normal direction), it may be used to study various mechanotransduction pathways in a 

cell, for example stretch-activated ion channels109. 

Cell mechanics of cells in suspension or adhered to a substrate may also be 

measured with micropipette aspiration110. A micrometer sized pipette is placed against a 

cell and a vacuum pressure is applied, forcing the cell to move into the suction volume – 

the amount the cell is displaced may be correlated with the amount of pressure applied. 

This method is also very useful for studying the rate dependence of deformation and may 

be applied to various viscoelastic models to determine the solid-like or liquid-like 

behavior of the cell105, and has also been used to study elastic and viscoelastic 

contributions of cell nuclei52. Like AFM, micropipette aspiration requires the probe to 

form direct contact with the sample, so the applicability in 3D environments is limited. 
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 Particle tracking microrheology is a technique in which sample mechanical 

properties are extracted by examining the diffusion of a particle within a viscoelastic 

fluid. The method is based on the time-dependent Einstein-Stokes equation and the 

relationship between the diffusion rate from thermal noise, the complex modulus of the 

medium, and the displacement111. Once the diffusion displacements and times are known, 

the storage modulus and loss modulus may be deconvoluted (additionally, model-free 

results may be generated by simply comparing diffusion displacements versus time). This 

method has been widely used with both endogeneous probes112 and probes that are 

ballistically injected113 into the cell (for example fluorescent microspheres) and has been 

recently extensively reviewed by Wirtz114. Results from particle tracking rheology and 

AFM indentation-based rheology have been shown to differ significantly with AFM 

having elastic moduli orders of magnitude higher, however this may be due to the particle 

tracking having little to no influence on the cell cortical rigidity, whereas AFM 

indentations may be directly probing the cortex115. Because this is an optical far-field 

technique and direct physical access to the cell is not needed, this method may be used to 

study mechanics of cells in a 3D environment116. 

 In addition to using optical lasers for viewing of fluorescence molecules, lasers 

may be used to generate mechanical forces on dielectric particles that are either much 

larger than the wavelength of light (demonstrated by conservation of momentum of 

scattering photons) or much smaller than the wavelength of light (demonstrated by dipole 

scattering and movement along the laser’s intensity gradient)117. The technique has a rich 

history; it was first demonstrated in 1970 with multiple beams118, the single-beam optical 

trap was demonstrated in 1986119 and was applied to directly manipulate whole cells and 
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viruses in 1987120,121. Like the AFM, several methods are available for calibrating both 

the positions and trapping force magnitudes of optical trapping (or tweezing) and several 

rely simply on understanding the contributions thermal energy fluctuations inside of the 

optical trap, these methods have been recently reviewed117. Single molecules may be 

attached to beads subject to optical tweezing, producing a form of force spectroscopy 

which has a resolution on the femtonewton scale122. Single cell mechanics may also be 

studied by using force spectroscopy by attaching a bead to a cell and pulling the cell apart 

via optical tweezing123, and this method is capable of reaching very large non-linear 

cellular deformations124. 

 In addition to optical trapping, lasers may be used in another creative way to 

study cell mechanics via optical stretching. By applying light beams on either side of a 

soft dielectric sample, the sample will be stretched along the axis of the beams due to 

light reflection on interfaces of varying refractive index and conservation of momentum 

of photons125. The optical stretcher is capable of forces on the order of hundreds of 

piconewtons with sufficient laser power, and performing the assay on cells in suspension 

does not contribute significantly to cell death126. The method has been applied to 

mammalian breast cells of varying stages of metastatic progression and has demonstrated 

that the more metastatic cells (MDA-MB-231) are more deformable than cells which are 

not as aggressive (MCF-7, MCF-10A)127. One key difference between this method and 

AFM is that the cells are in suspension, whereas AFM can only measure cells that are 

adherent – however, cells in suspension have been demonstrated to have an intact actin 

cytoskeleton, including an actin cortex, but no stress fibers as adherent cells have126. 
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Very recently, a technique has been developed by Guck et. al. to measure the 

mechanical deformation resistance of cells in suspension in a microfluidic device with at 

a very rapid rate (>100 cells/second)128. A similar technique has been developed by 

Di Carlo et. al. in 2012129. Cells are flowed at a controlled rate into a small microfluidic 

channel and non-laminar flow causes the cells to compress – the cells are quickly imaged 

under shear flow, producing high-throughput cell size and deformation data. This 

technique has been used to differentiate cells in various cell cycle phases, and has the 

potential to be combined with other high-throughput techniques such as fluorescence-

activated cell sorting or other flow cytometry techniques. 

As previously discussed, AFM may be used to study a cell’s response to changes 

in environmental stiffness by employing a force clamp. Another platform to study this is 

a by creating an array of PDMS posts for cells to grown on, whereby the effective 

stiffness of the post may be tuned by adjusting the physical dimensions (length, diameter) 

and cell adhesion proteins may be readily attached130,131. Additionally, the traction forces 

generated by cells may be quantitatively measured with this technique by determining the 

deflection of the pillars with optical microscopy. The actual measurements are made with 

non-invasive far-field microscopy, however the microenvironment of the cells is 

physically constrained by pillars. 

 

Computation Techniques for Soft Matter Rheology 

 Methods of interpreting data from cell mechanics measurements using analytical 

classical elastostatics has many severe drawbacks. Only relatively simple situations have 

analytical solutions, for example infinite materials and spherical inclusions, and typically 
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these must be purely elastic, homogeneous, and isotropic. Even qualitatively simple 

problems, for example elastic indentation into a layered material132, do not have simple 

closed-form equations that may be readily used for data analysis. The equations 

governing elastic theory to determine stress and strain relationships are differential 

equations (for example, Appendix 1 for time-independent conditions in cylindrical 

coordinates) and thus the solution is determined by the boundary conditions. Hence, finite 

element analysis is used in situations where analytical tools do not work. The finite 

element method is a very robust tool for solving boundary value problems, and can 

simulate virtually any imaginable geometry as well as complex load or deformation 

conditions. 

 The key assumption of the finite element method is that the continuum problem 

may be replaced by a discretized version. A mesh for the object is generated containing 

nodes (points) and elements (connections between the nodes) using a predetermined 

shape (for example, a triangle for 2D or tetrahegon for 3D) and corresponding shape 

function. Because the shapes of the mesh elements are well known, the solution to the 

differential equation becomes straightforward as they are easily differentiable and 

integrated. Thus the complicated differential equation is reduced to a simple matrix 

equation 𝑭 = 𝑲𝒙 where F and x are one-dimensional arrays of nodal information and K 

is a two-dimensional matrix which contains all information regarding imposed boundary 

conditions, solutions to the shape functions, and details of the differential equation (e.g. 

sample stiffness). Key parameters to control during finite element modeling are the mesh 

sizes and incremental step sizes, as poor choices in these may lead to numeric instability. 
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As the problem is reduced to matrix operations, the run-time of the analysis may scale 

very poorly with the number of nodes (or mesh size) in the system. 

 One novel technique for modeling dynamic cell rheology is the subcellular 

element model133–135. Here, cells are represented by a cluster of nodes connected by 

springs resembling a Morse potential containing repulsive short-range forces and weakly 

attractive long-range forces. The internodal potentials may be adjusted depending on the 

model, for example intracellular versus intercellular nodes. The node positions are 

updated throughout time using the Langevin equation with some added damping factor 

until equilibrium is reached, however it may be generally used to model non-equilibrium 

processes present in cell biology. Hence, it may be used as a mesh-free viscoelastic solid 

model and a 3D mesh of Kelvin-Voigt springs with the dissipative elements grounded to 

the environment. Microrheology simulations may be performed on the subcellular 

element model and a viscoelastic power-law behavior is observed133. Emergent 

multicellular behavior such as embryonic tissue organization and single cell invasion 

have also been modeled using the subcellular element model134. 

 While the subcellular element model contains a Morse potential to contain weak 

long-range adhesion, it may also be adjusted to use simple Hookean springs in a lattice 

spring model133. However, one drawback is only 1D normal forces are considered in this 

framework. The distinct lattice spring model136 is an extension to this where shear springs 

may also be considered in addition to normal springs. These shear springs allow a more 

formal definition of the emergent solid’s Poisson’s ratio and Young’s modulus, which is 

somewhat difficult to tune in classic lattice spring models by increasing the amount of 

crosslinking. One drawback of the shear spring is that they contain a negative spring 
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constant for Poisson ratios higher than 0.25, thus lead to very instable solutions for 

incompressible solids. 
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4 ANALYSIS OF AFM FORCE-INDENTATION DATA ON 

HETEROGENEOUS SAMPLES 

 

This chapter details a study on analyzing force-indentation curves on 

heterogeneous samples. This is an adaption from a manuscript in preparation by Bryant 

L. Doss (BLD) and Robert Ros (RR). The theoretical framework, finite element 

simulations, and experiments were developed and performed by BLD. This work was 

supported by a grant from the National Cancer Institute (U54CA143862) awarded to RR. 

 

Introduction 

 AFM is a very commonly used technique to investigate the elasticity of biological 

and other soft matter samples. Once the raw force-indentation data is obtained, generally 

the goal is to approximate the sample as being elastic with some Young’s modulus. 

However, as detailed in §3, biological samples fall very short of the assumptions made in 

classical elasticity theory80,82: deformations are often large compared to the size of the 

sample, the samples are not infinite, homogeneous, isotropic, linearly elastic half-spaces, 

and temporal effects also play a role. The Poisson ratio of the material is also generally 

unknown and cannot be determined from AFM alone, but is typically approximated to 

~0.5 for biologic materials137 to represent an incompressible material (although this may 

not be exactly true). 

 Previous studies have attempted to address the deviations from these assumptions 

in soft matter. Dimitriadis et. al. demonstrated corrections to the Hertz model for samples 

with finite thickness both adhered and non-adhered to a stiff substrate using a method of 
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images approach92, and later Gavara and Chadwick demonstrated similar finite thickness 

corrections for the Sneddon model93. For heterogeneous samples with non-stiff 

substrates, much less deterministic work has been published. Kosta et. al. developed a 

finite element analysis method for two-layered samples138 based on Eshelby’s theory, but 

their presented theory is not generalized for all problems. Vargas-Pinto et. al. showed 

with finite element analysis and experiments on live cells that sharper AFM probes are 

more sensitive to the top layer of the sample than colloidal beads11. Akhremitchev et. al. 

also showed finite thickness corrections for multiple tip shapes for various elastic 

foundations83 using the same theory that is employed in this work. 

 

Theory 

 In 1970, Dhaliwal and Rau132 developed an extension to Sneddon’s 1965 work80 

for a generalized solution to the Boussinesq problem for an elastic layer adhered to 

another elastic foundation using the elastic equilibrium equations. The end result is a 

Fredholm Integral Equation of the Second Kind 

 𝜙(𝑡) +
𝑎

ℎ𝜋
∫ 𝐾(𝑥, 𝑡)
1

0

𝜙(𝑥)𝑑𝑥 = −
𝐸1𝑎

2(1 − 𝜈1
2)
[𝛿 − 𝛽(𝑡)] 

(4-1) 

 𝐹 = −4∫ 𝜙(𝑡)𝑑𝑡
1

0

 
(4-2) 

 𝜙(1) = 0 
(4-3) 

where a is the contact radius between the probe and the sample, δ is the probe indentation 

depth, h is the distance from the top of the first layer to the interface with the second 

layer (height of the first layer), E1 is the Young’s modulus and ν1 is the Poisson ratio of 
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the first layer, F is the applied force of the probe, and β is a function describing the 

axisymmetric shape of the tip defined by f: 

 𝛽(𝑡) = 𝑡 ∫
𝑓′(𝑟)

√𝑡2 − 𝑟2

𝑡

0

𝑑𝑟 
(4-4) 

where 0<r<1 and the kernel K is smooth across the entire interval and is defined by 

 𝐾(𝑥, 𝑡) = 2∫ 𝐻(2𝑢) cos (
𝑎

ℎ
𝑡𝑢) cos (

𝑎

ℎ
𝑥𝑢) 𝑑𝑢

∞

0

 
(4-5) 

 𝐻(𝑢) = −
𝑑 + 𝑔(1 + 𝑢)2 + 2𝑑𝑔𝑒−𝑢

𝑒𝑢 + 𝑑 + 𝑔(1 + 𝑢2) + 𝑑𝑔𝑒−𝑢
 

(4-6) 

 𝑑 =
(3 − 4𝜈1) − 𝜇(3 − 4𝜈2)

1 + 𝜇(3 − 4𝜈2)
 

(4-7) 

 𝑔 =
1 − 𝜇

𝜇 + 3 − 4𝜈1
 

(4-8) 

 𝜇 =
𝐸1(1 + 𝜈2)

𝐸2(1 + 𝜈1)
 

(4-9) 

with E2 and ν2 being the Young’s modulus and Poisson ratio for the bottom layer, 

respectively. The relationship between δ and a will not be the same as it is in the case of 

indenting a half-space and must be determined numerically using Eq. (4-3). An illustration 

of the two-layer indentation problem is demonstrated in Figure 4-1A. 
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Figure 4-1: Elastic indentation problem on a bonded two-layer material. (A) Cartoon 

illustrating the physical dimensions of the problem, including the tip shape and substrate 

properties. (B) Theoretical force-indentation curves generated from Eqs. (4-1)-(4-9) 

showing how the substrate effects can affect the force response of an AFM probe. In 

these examples, E1=1 kPa, E2=1 kPa, 2.5 kPa, or 0.25 kPa for the case of the 

homogeneous, E2>E1, and E1>E2, respectively, h=9 µm, the tip is parabolic with R=5 µm, 

and ν1=ν2=0.5. (C) Piecewise depth-dependent fits using the Hertz model of the force-

indentation curves. In the homogeneous case, the Hertz model provides a constant 

Young’s modulus for all indentation depths, but the two-layer case is non-uniform over 

indentation depths and differs from the value E1=1 kPa. 

 

Eq. (4-1) may be solved using either a series expansion132 or directly by a numeric 

algorithm such as the Nyström method139 as done in the present work. Eq. (4-3) is solved 

by using the MATLAB built-in function fzero. Example force-indentation curves and 

their piecewise depth-dependent fit for a parabolic (Hertz model) indenter are shown in 

Figure 4-1 B, C. 
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To determine E1 given h and E2, the MATLAB built-in function fminsearch is 

used by minimizing differences in the depth-dependent 𝐸 between the experimental data 

and numeric solution until convergence is reached within a specified tolerance. The 

protocol detailed in Appendix C demonstrates another method for performing the 

deconvolution. 

This approach may also be used in the case of samples with finite thickness and a 

rigid substrate by setting µ=0. The results are similar to that shown by Dimitriadis et. 

al.92 but differ from the case given by Gavara and Chadwick93. However, due to the 

formulation, errors arise when δ→h. 

 One drawback from directly solving the above is that it is computationally 

expensive to simultaneously solve Eqs. (4-1), (4-2), and (4-3), as well as rather 

cumbersome and complex to employ as a routine algorithm for data analysis. From the 

above equations, when the Poisson ratios are fixed, the problem may be reduced to two 

generalized parameters a/h and E1/E2 as normally F∝E1 so the lone E in Eq. (4-1) may be 

neglected. Hence, it is feasible to rewrite the above equations into simpler, closed-form 

equations for specified ν, ν2, and f. The following dimensionless parameters γ and α are 

introduced  

  𝛼 = 𝑎/ℎ (4-10) 

 𝛾 = 𝑙𝑜𝑔10(𝐸1/𝐸2) (4-11) 

The logarithm and base is chosen out of numeric convenience such that -1<γ<1 for an 

order of magnitude elastic mismatch, γ>0 for all mismatches, and γ is symmetric about E1 

and E2. We may approximate corrections to the homogeneous force-indentation equations 
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in a two-dimensional Taylor series approach (for numeric details see Appendix B). For 

the Hertz model, 

  𝛼𝐻 = √𝑅𝛿/ℎ 
(4-12) 

 𝐹𝐻 ≈
16𝐸1√𝑅𝛿

3 2⁄

9
exp (

−2.20𝛼𝐻𝛾 − 0.02𝛼𝐻
2𝛾 − 1.90𝛼𝐻𝛾

2

+1.21𝛼𝐻
3𝛾 + 3.19𝛼𝐻

2𝛾2 − 0.90𝛼𝐻𝛾
3) (4-13) 

where R approximates the probe radius and v=v2=0.5. For the Sneddon model, 

  𝛼𝑆 = 2𝛿 tan𝜃 /(𝜋ℎ) (4-14) 

 𝐹𝑆 ≈
8𝐸1𝛿

2 tan 𝜃

3𝜋
exp (

−2.20𝛼𝑆𝛾 − 0.02𝛼𝑆
2𝛾 − 1.90𝛼𝑆𝛾

2

+1.13𝛼𝑆
3𝛾 + 3.62𝛼𝑆

2𝛾2 − 0.90𝛼𝑆𝛾
3) 

(4-15) 

where θ approximates the cone half-angle and v1=v2=0.5. It should be noted that the 

contact radius a will not be the same as in the homogeneous case, however it is sufficient 

for approximating the perturbations to the force-indentation response. For α=0 or γ=0, the 

equations reduce to the homogeneous case. 

 

Materials and Methods 

Sample Preparation 

 Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) gels were vigorously 

mixed at described ratios and degassed under vacuum. Small droplets of the mixture were 

added to a 22 mm glass coverslip is spun using a home-built spin-coater to spread the 

mixture into a thin layer (typically 15-50 µm, depending on rotation speed). The mixture 

was allowed to cure at 65°C for at least 4 hr. Once polymerized, the PDMS thickness was 

measured using an inverted confocal laser scanning microscope (MicroTime 200, 

PicoQuant, Germany) with z-piezo positioning (Physik Instrumente, Germany) to 

measure the distance between intensity peaks in the reflected laser light due to changes in 
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refractive index. Prior to indentation experiments, the PDMS is plasma cleaned in O2 to 

make the surface hydrophilic. 

 

Atomic force microscopy indentation 

 Indentation experiments were performed using an MFP-3D (Asylum Research, 

California) in closed-loop mode. A borosilicate microsphere with diameter 10 µm (Duke 

Standards) is glued (Norland Optical Adhesive) to a tipless cantilever with high spring 

constant (ACT-TL, AppNano, k=42.42 N/m from the thermal tuning method71,75) and 

cured with UV light. Measurements were performed at 25°C in phosphate buffered saline 

and the loading rate was 1 µm/s. 

 

Finite element analysis 

 Finite element modeling and simulations were performed using ANSYS 

Workbench 14.0. The models were axially symmetric around the center of the tip and 

sample to increase computational efficiency. The AFM tip was modeled as with 

dimensions similar to those used in the experiment and Young’s modulus on the order of 

GPa. The tip had a triangular mesh size of 100 nm and the contact between the tip and 

sample was assumed to be frictionless. The top layer of the material had a triangular 

mesh size of 250 nm and tapered to larger values at a distance of 5 µm from the tip. Both 

layers were modeled as an Ogden 1st order solid (α1=2, identical to Neo-Hookean solid) 

with radius 100 µm and Poisson ratio of 0.48. The combined height of the top and bottom 

layers was 100 µm with a fixed support on the bottom boundary. The top layer and 

bottom layer were bonded together such that there was no separation between the 
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elements. All elements had midside nodes. The AFM tip was lowered into the sample in 

increments of several nanometers and a force-indentation response is computed. A 

screenshot of an indentation is shown in Figure 4-2A. 

 

Data analysis 

 Force-indentation data was analyzed using home-built routines in MATLAB. The 

integral transform equations (4-1)-(4-9) are solved using a combination of the Fredholm 

Integral Equation of the Second Kind program written by Atkinson and Shampine139 and 

the built-in fzero routine in MATLAB, producing a theoretical force-indentation curve 

given the tip shape, elastic properties of the top and bottom layers, and height of the top 

layer. The Young’s modulus wass computed in a depth-dependent piecewise fashion 

using the linearization method (explained in §3). 

 

Results 

 Force-indentation curves generated using finite element modeling, the integral 

transform method Eqs. (4-1)-(4-9), and the series approximation for a parabolic indenter 

Eq. (4-13) are shown in Figure 4-2B, along with the homogeneous case calculated from 

the Hertz model in Eq. (3-13). Each method shows a distinct difference from the 

homogeneous case, and the three methods for heterogeneous case all show strong 

agreement in their deviation from the homogeneous case. We next tested the accuracy of 

how the observed force from the two-layer method differs from the force of the 

homogeneous case of the integral transform method and the series approximation for both 

parabolic and conical indenters with finite element analysis for a large amount of elastic 
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mismatches, which is shown in Figure 4-3. Because the series expansion is centered 

about the homogeneous case α=0 and γ=0, we expect that the results of the series 

approximation will be very much in agreement with the integral transform method for 

small values of α and γ, as the coefficients determined in the series expansion are based 

on the results of the integral transform method. We observed that the series 

approximation begins to diverge from the integral transform solution approach around 

|α|>0.5 and |γ|>0.5, thus the series expansion approach yields good agreement for α<0.5 

and |γ|<0.5. We also observe that for the values tested, the integral transform method 

shows high agreement with the finite element simulations except for small deviations for 

parabolic indenters and low γ (the case of an elastic material bonded to a rigid substrate). 

 We next tested the ability of the integral transform and series approximation 

methods to deconvolute the Young’s moduli of the two layers from force-indentation 

curves generated with finite element analysis. The force-indentation curves from finite 

element analysis, along with the depth-dependent apparent Young’s moduli from Eq. 

(3-13) and the two-layer theory are shown in Figure 4-4. For the indentation depths and 

elastic mismatches tested, the minimization method by comparing the apparent Young’s 

modulus in each bin with a generated force-indentation curve from theory was capable of 

separating the Young’s modulus of the top and bottom layer when one is already known 

along with the height of the first layer. Therefore, only one parameter (E1, E2, or h) is 

computed from each force-indentation curve as opposed to fitting a single curve to 

multiple parameter (E1, E2, and h). Figure 4-4A and Figure 4-4C perform the 

deconvolution using the integral transform method, while Figure 4-4B employs the series 

approximation as the elastic mismatch falls within the acceptable values of α and γ. 
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 We next tested how errors propagate using the fitting procedure, as the method is 

dependent on knowing the Young’s modulus of either layer to determine the modulus of 

the unknown layer. In Figure 4-5, we generated a collection of force-indentation curves 

from theory and performed the 1-parameter deconvolution while imposing incorrect 

values for the known layer and observe how these translate into errors for the layer which 

we are trying to determine. For determining the top layer in the case of E2>E1 (Figure 

4-4A), errors in E2 to not become large errors in E1 for smaller values of α, but become 

on the same order for deep indentations or shallow layer heights around α=0.5. For 

determining the top layer in the case of E2<E1 (Figure 4-4C), errors in the determining the 

top layer are small for small α, but are approximately on the same order as the error for 

the known layer around α=0.25 and become much higher for larger α. Errors are 

extremely large when attempting to determine the Young’s modulus of the bottom layer 

when small errors in the top layer are imposed, as shown in Figure 4-4B and Figure 4-4D, 

especially in the case of E2>E1. For deep indentations or shallow layer heights, it is 

reasonable to determine the bottom layer in the case of E2<E1. Larger errors in 

determining the Young’s modulus of the bottom layer are not unexpected as the probe is 

always in contact with the top layer thus the signal from the force-indentation response 

should generally be dominated by the Young’s modulus of the top layer except in the 

case of E1>>E2. 

 To help understand how the bottom layer contributes to the force-indentation 

signal from the top layer, we wanted to see how the elastic mismatch and contract radii 

terms contribute to the signal. Figure 4-6 shows the contour lines of the effect on the 

force for the two-layer model for large values of elastic mismatch and α describing the 
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contact radius, indentation depth, and layer height. It can be seen that in the regime of a 

stiff substrate, the signal saturates for E2>>E1 and the dominant term is α. In the regime 

of a softer substrate, the dominant term is the elastic mismatch and the effects are felt for 

even small values of α. 

 

 

Figure 4-2: Finite element analysis on two-layer bonded samples compared with theory. 

(A) Screenshot of the axisymmetric elastic indentation using ANSYS Workbench 14.0. 

The mesh element lengths are ~100 nm for the tip, ~250 nm for the first layer of the 

elastic substrate which tapers to a larger value at a distance of 5 µm from the bottom of 

the tip, and ~1.5 µm for the second layer. The colorbar shows the deformation of each 

node from the initial position and can be used to visualize the “indentation field”. (B) 

Force-indentation curves generated with finite element, the integral transform theory 

Eqs. (4-1)-(4-9), and the two-layer empirical series approximation Eq. (4-13). E1=1 kPa, 

E2=0.4 kPa, h=9 µm, the tip is spherical with R=5 µm, and ν=ν2=0.48 for the integral 

transform and finite element, and 0.5 for the series approximation as required. The black 

curves shows the case for a homogeneous indentation with E1=1 kPa. 
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Figure 4-3: Comparison of finite element, integral transform, and series approximation 

for two-layer samples. (A), (C), and (E) show values for the parabolic (Hertz) indenters, 

and (B) and (D) show values for conical (Sneddon) indenters, (A) and (B) show values 

for α=0.1, (C) and (D) show values for α=0.25, and (E) shows values for α=0.5. For high 

values of α and γ, the series approximation diverges from the integral transform and the 

finite element results. A conical indenter with α=0.5 is not shown because an extremely 

deep indentation with δ>h is required, and the two-layer theory is not valid for these 

indentation depths. 
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Figure 4-4: Two-layer theory for deconvoluting top and bottom layer elastic moduli. The 

force-indentation curves that are fit are generated using finite element analysis. For all 

cases, E1=1 kPa, h=4.5 µm, the tip is spherical with R=5 µm, and ν1=ν2=0.48, and (A) 

E2=0.1 kPa, (B) E2=0.4 kPa, and (C) E2=10.0 kPa. The fits for the Young’s moduli are 

overlayed with the force-indentation curve in red. Black shows the fit using the standard 

Hertz model, blue shows the fit for E1 using the layered theory with known E2, and green 

shows the fit for E2 using the layered theory with known E1. (A) and (C) are fit using the 

integral transform Eqs. (4-1)-(4-9), and (B) is fit using the series approximation Eq. 

(4-13). The bin from 400-500 nm is skipped due to a mesh artefact visible in the force-

indentation curve. 
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Figure 4-5: Error propagation of the two-layer theory when correcting for the effects 

elastic mismatch. Deconvoluting the moduli requires knowledge of one layer to 

determine the other, however if there is an error in the assumed modulus of one layer, the 

error will propagate to the calculation of the unknown layer. A theoretical force-curve is 

generated using integral transform method Eqs. (4-1)-(4-9) and it is deconvoluted using 

different parameters. (A) and (B) show the case of a stiffer bottom layer, and (C) and (D) 

show the case of a softer bottom layer. (A) and (C) show the case of determining E1 with 

an assumed E2, and (B) and (D) show the case of determining E2 with an assumed E1. 

The x-axis depicts an error in the assumed modulus, and the y-axis is the corresponding 

error in the calculated modulus. Blue shows α=0.1, green shows α=0.25, and red shows 

α=0.5. These graphs show under which conditions an error in the assumed modulus can 

lead to a divergent error in the calculated modulus. For all cases, E1=1kPa, the tip is 

spherical with R=5µm, ν1= ν2=0.48, (A and B) E2=4.0 kPa, (C and D) E2=0.25 kPa, 

(blue) h=24 µm, (green) h=9 µm, (red) h=4.5 µm, the indentation depths are 1 µm, and 

the fits use a 100 nm bin. 
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Figure 4-6: Image depicting contour lines of the two-layer model in elastic mismatch and 

α. For a stiffer substrate (E2>E1), the signal saturates for defined α. For a softer substrate, 

the dominant term is (E2<E1), the dominant term is the elastic mismatch and substrate 

effects are seen for smaller α. Image was generated using the integral transform two-layer 

model with a parabolic indenter. 

 

 

Figure 4-7: Force-indentation curves and 2-layer elasticity fits on thin PDMS gels. The 

base:crosslinker ratio was 22.5:1, resulting in a ~360 kPa gel, and the probe radius is 

5 µm. (A) raw force-indentation data for two gels with different thickness (15.1 µm is red 

and 43.6 µm is blue) and the corresponding fits using the 2-layer model (black). (B) The 

force-indentation curves (red, left axis) and corresponding depth-dependent apparent 

Young’s modulus (right axis) using the standard Hertz model (black), and the 2-layer 

corrected models (15.1 µm is green and 43.6 µm is blue). With the correction, the moduli 

converge on the same flat line, however up to 35% error is observed without this 

correction. 
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 AFM force-indentation experiments were conducted on thin PDMS gels a using 

borosilicate bead with diameter 10 µm which were deposited onto glass coverslips via 

spincoating, and the thickness was measured using back-reflected laser light from 

confocal microscopy. The force-indentation curves collected from the thin PDMS gels 

are shown in Figure 4-7A overlaid with the theoretical force-indentation curves produced 

using the integral transform equations (this is needed as µ=0 for a stiff substrate so the 

series expansion is not valid) and shows very strong agreement. Figure 4-7B shows the 

depth-dependent apparent Young’s modulus from the curves on thin PDMS. When the 

correction derived from the theory is not applied, the apparent Young’s modulus 

increases with indentation depth, however when the correction is applied to both gels, 

they show agreement in Young’s modulus as well as relatively constant apparent 

Young’s modulus with indentation depth. The results here also agree strongly with the 

bonded thin layer model developed by Dimitriadis et. al.92. Thus, the two-layer model is 

capable of explaining results from both finite element simulations as well as experiments 

on ideal PDMS elastomers. 

 

Discussion 

 We have extended the work of Dhaliwal and Rau132 to examine AFM indentations 

on bonded two-layer materials in length and elasticity scales comparable to those seen in 

soft matter experiments. In addition to solving the integral transform equations, we have 

simplified the model to a Taylor series equation and have shown that both the integral 

transform method and series approximation for small α and γ agree with finite element 
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analysis (Figure 4-3). These models may be used to deconvolute the Young’s modulus 

from force-indentation curves generated with finite element analysis using a 1-parameter 

minimization method (Figure 4-4), as well as experimental data on thin layers of PDMS 

(Figure 4-7). 

 From these results, the model shows several predictions of how AFM indentations 

on heterogeneous materials will behave. In the case of E1<E2 (a soft elastic material 

bonded to a more rigid substrate), the dominant term affecting how the substrate affects 

the force-indentation response is α, the dimensionless parameter describing the ratio of 

the contact radius to the layer height. When the substrate is extremely rigid compared to 

the top layer (E1<<E2) the signal saturates and the parameter γ that describes the 

mismatch in elastic moduli loses significance. The model does not predict asymptotic 

behavior, thus it is unable to determine the force-indentation response when the probe 

indents and makes contact with the second layer and does not predict the appropriate 

response when the indentation depth is very near to the second layer (δ greater than or 

equivalent to h) 

 In the case of E1>E2 (the top layer is more rigid than its substrate), the dominant 

term in the change to the force-indentation response is the elastic mismatch γ. The effects 

of the substrate are noticed in the force-indentation response at even small indentation 

depths relative to the layer height. The physical explanation of this is that when the top 

layer is more rigid and is indented it will push onto the bottom layer, and the deformation 

in the bottom layer will be much larger than the case of E1<E2. As such, the model still 

holds reasonable accurate for large values of δ with respect to h. 
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 This model may serve as a guideline for how to interpret and design indentation 

experiments on complex samples. For example, when performing measurements on cells 

on a glass petri dish, you may minimize the substrate effects by minimizing α, such as by 

not indenting deep or choosing a tip with a small contact radius. If performing an 

indentation experiment of cells on a very soft matrix or hydrogel, the substrate effects 

will need to be taken into account, otherwise the force-indentation response received 

from indenting on the cell may actually be more representative of the underlying soft 

substrate. If the parameter of interest in the experiment is the substrate (bottom layer) 

elasticity, then the probe of choice should depend on the elastic mismatch – for a softer 

bottom layer, a probe with larger contact radius will give a stronger signal, however for a 

stiffer bottom layer, the errors propagate very poorly, however a probe with small contact 

radius could penetrate through to the stiff bottom with very low effects from the two-

layer model, which is an approach that will be detailed further in §6. 
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5 CORRELATING CONFOCAL MICROSCOPY AND AFM 

INDENTATION REVEALS METASTATIC CANCER CELLS STIFFEN 

DURING INVASION INTO COLLAGEN I MATRICES 

 

This chapter details experiments regarding AFM indentations on MDA-MB-231 

cells as they invade into bovine collagen I matrices. This is an adaptation of a manuscript 

that has been submitted for publication, “Correlating confocal microscopy and atomic 

force indentation reveals metastatic cancer cells stiffen during invasion into collagen I 

matrices” by Jack Rory Staunton (JRS), Bryant L. Doss (BLD), Stuart Lindsay (SL), and 

Robert Ros (RR). The experiments were conducted by JRS and BLD. Cell culture was 

performed by BLD, also acknowledging cell culture support from Nethmi Ariyasinghe 

and Mark Linhart. The lab protocol for producing bovine collagen I gels and seeding 

cells for invasion was developed by JRS. Finite element modeling was performed by 

BLD. Development of analytical tools was performed by BLD (as in §4). Data was 

analyzed by BLD and JRS. The manuscript was written by JRS, BLD, SL, and RR. RR 

and SL conceived and RR designed the experiments. We acknowledge the LeRoy Eyring 

Center for Solid State Science at Arizona State University for assistance with electron 

microscopy. This work was supported by a grant from the National Cancer Institute 

(U54CA143862). 

 

Introduction 

 As detailed in §2, cells obtain a drastically different phenotype when cultured in 

3D environments compared to 2D substrates. Cell migration is a key function in cancer 
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metastasis. Cancer cells have been shown to be able to use multiple modes of motility 

depending on the local properties of the microenvironment. 

MDA-MB-231 metastatic breast cancer cells are widely studied as a model 

system for cancer cell invasion into ECM-like materials. Chavrier et. al. observe 

MDA-MB-231 cells invade into Matrigel in a rounded morphology relying on actin 

contractility to deform the matrix, and actomyosin or β1 integrin inhibitors will reduce 

invasion140. Using 3D traction force microscopy, Koch et. al. observed that 

MDA-MB-231 exhibit larger contractility and higher local strain energy in a collagen 

matrix than their healthy counterparts, develop a more spindle-like morphology, and 

invade more efficiently than MCF-7 cells141. Kamm et. al. demonstrated with 

mitochondria-tracking microrheology that MDA-MB-231 cells exhibit more solid-like 

behavior in 3D compared to 2D116. Reinhart-King et. al. show that MDA-MB-231 cells 

form “tracks” in a collagen gel that will allow for migration of non-invasive MCF-10A 

cells and that its motility is dependent on a combination of ROCK activity, MMP 

activity, and collagen concentration142. These cells have also been shown to have a higher 

invasion speed in collagen networks that have been isotropically prealigned143. As such, 

actomyosin activity via Rho/ROCK pathways have been closely linked to MDA-MB-231 

motility and inhibition of these pathways lead to suppressed invasion in randomly aligned 

collagen gels but not prealigned gels144 and in vivo145. 

Despite these advances in imaging cells in 3D environments, direct mechanical 

measurements of cells in a 3D environment are rare (there are several techniques for this 

discussed in §3). Petrie et. al. recently demonstrated that invasive cells have distinct 

intracellular pressure differences in the leading and retracting edges of cells undergoing 
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lobopodial migration in 3D and showed that these are much higher than the 2D case37. To 

our knowledge, AFM has not been used to study the local mechanical properties and 

response to external deformation of cells in 3D environments. Here, we present a 

framework for quantitatively determining the apparent Young’s modulus of cells 

invading into bovine collagen I matrices. Included in this framework are analytical tools 

such as an updated tip geometry models and solutions to the 2-layer problem (discussed 

in §4). Finite element simulations and confocal laser scanning microscopy are used to aid 

in the quantitative analysis and deconvolution of the collagen response from the cell 

response. Using these, we perform AFM force-indentation experiments to demonstrate a 

significant stiffening of cells as they begin to invade into 3D collagen matrices, and also 

study the effects of environments with different stiffnesses as well as inhibition of ROCK 

on the force response. 

 

Materials and Methods 

Collagen preparation 

Thin (~100 µm) layers of bovine collagen I (Nutragen, Advanced Biomatrix) 

were polymerized on functionalized glass bottom petri dishes (World Precision 

Instruments). Glass was activated using a procedure similar to that shown by Pelham and 

Wang146. First, glass was ultrasonicated in ethanol and Millipore water for 10 minutes 

each, then dried with N2. Following this, the glass was plasma cleaned (Harrick Plasma) 

using O2 gas for 5 minutes. Surfaces were then incubated in room temperature in 1% (3-

Aminopropyl)triethoxysilane in ethanol for 30 minutes, washed with ethanol and 

Millipore water, incubated in room temperature in 0.5% glutaraldehyde in 1x DPBS for 
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60 minutes, washed several times with Millipore water, then dried vertically in a laminar 

flow cabinet. Collagen I stock solutions (6.1 mg∙ml-1) were mixed on ice with 10x DPBS, 

0.1 M NaOH, and Millipore water at a ratio of 32:4:3:1 to form a 4.88 mg/mL gel. To 

form 2.44 mg/mL gels, the collagen was diluted with water and the amount of NaOH was 

halved. 200 µL of the mixed solution was pipetted onto the glass and spread around the 

surface with the pipette tip. The collagen was incubated for 90 minutes at 37°C and 5% 

CO2 in a humidified incubator. After 90 minutes, 37°C 1x DPBS was gently added to the 

collagen surfaces. Collagen was stained with 0.02 mg/mL Atto 465 NHS in DPBS for 30 

minutes (stock solutions were suspended at 2 mg∙ml-1 in DMSO), then washed several 

times in DPBS. 

 

Cell Culture and Sample Preparation 

MDA-MB-231 metastatic breast cancer cells (ATCC) were cultured at 37 °C and 

5% CO2 in 1× DMEM containing 4.5 mg∙ml-1 D-glucose and L-glutamine supplemented 

with 10% FBS. During passaging, adherent cells were dislodged from the culture flasks 

using Cellstripper™. For cell samples with ROCK inhibition, the growth medium was 

supplemented with 10 µM Y-27632 at the time the cells were seeded on the surfaces 

(stock Y-27632 was solubilized in Millipore water at a concentration of 10 mM). Cells 

were seeded on top of fully polymerized collagen I gels or glass-bottom dishes measuring 

in complete growth medium and 6−96 hours before measuring. For experiments of cells 

in collagen, the cell membranes were stained immediately before measuring using 2.5 

µg/ml CellMask™ Deep Red Plasma membrane stain in HBSS for 30 minutes (stock 

solutions were suspended at 1 mg/mL in DMSO), then washed several times with HBSS. 
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Cell measurements and staining were performed at 37°C in 1x HBSS containing CaCl2 

and MgCl2. For experiments with ROCK inhibition, HBSS was supplemented with 10 

µM Y-27632. 

 

Atomic force microscopy and confocal fluorescence microscopy 

The AFM and confocal fluorescence measurements were performed on a 

combined system consisting of an Asylum Research MFP-3D-BIO AFM and a Picoquant 

Microtime 200 confocal laser scanning microscope88,147 as in §4. The objective used was 

an Olympus LUMFL60X microscope objective (water, 60x, 1.1 NA, 1.5mm WD), and 

two pulsed laser diodes (470nm, 640nm) were used for the excitation source with a dual-

band dichroic (Chroma 467/638rpc). Confocal scans are taken in 60x60 µm areas at 

256x256 pixels. Team Nanotec LRCH-750 AFM probes (k~0.15 N/m) were used as in 

Figure 5-1, and spring constants were determined using the thermal tuning method. The 

AFM tip was aligned in the confocal volume and confocal fluorescence images were 

scanned in lateral and axial planes. AFM data used for elasticity nanotomograms was 

recorded by collecting force-indentation curves along a 40 µm line with one curve every 

2 µm in the plane perpendicular to the cantilever direction. The approach and retraction 

velocity was ~3 µm/s in open-loop mode and the trigger force ranged from 15−35 nN. 

For cells plated on glass, each cell is indented 4 times in force-volume mode over a 

4 µm2 area in the central nuclear region. 
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Figure 5-1: Scanning electron microscope image of an LRCH-750 tip after the 

indentation experiments. The pictured tip has a measured half-angle of 18.8°, apex radius 

of 695 nm, and tip height ~15 µm. Image was taken with an XL30 ESEM-FEG at the 

LeRoy Eying Center. 

 

Finite element analysis 

Finite element analysis was performed using ANSYS Workbench 14.0 as in §4 

unless otherwise indicated. The cell was modeled as a spherical inclusion bonded to the 

collagen with a different Young’s modulus but otherwise similar material properties. The 

tip had a triangular mesh size of 50 nm and the contact between the tip and sample was 

assumed to be frictionless. The cell and collagen mesh had an element length of 500 nm 

(unless otherwise noted) within 20 µm from the tip, which then tapered up to 1 µm. The 

Poisson ratios of the cell and the collagen were set to 0.45. 

 

Data analysis 

Data analysis was performed using MATLAB. Contact points are determined 

using an automated method unless otherwise noted (see rotation_minimum.m, Appendix 

D). Mann-Whitney U testing is performed with the built-in ranksum command in 

MATLAB (two-sided, approximate for large n). Boxplots are produced using MATLAB 
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built-in function with whisker lengths 1.5 times the interquartile range. ANOVA testing 

is performed using MATLAB function anovan. Images are exported from PicoQuant 

SymphoTime measuring software and merged using ImageJ. Plots are generated in 

MATLAB and annotations and color adjustments are made in Inkscape and Adobe 

Illustrator. 

Cells and collagen were assumed to be incompressible at the length scale of AFM 

indentation (νcell=νcollagen=0.5)148, however experiments performed on both bulk ECM 

demonstrate νcollagen>0.5 presumably due to water flux21 thus some systematic errors may 

arise from this choice. AFM force-indentation curves are fit assuming a sphero-conical 

tip geometry (Eqs. (5-1)-(5-5), see Appendix A for derivation). The fitting procedure is 

the linearized method introduced in §3, and unless otherwise noted, the indentation 

depths used for fitting is fixed to 0.25-2.50 μm. 

To determine the Young’s modulus of partially embedded cells, the two-layer 

deconvolution technique is applied. The average pericellular collagen (bottom layer) 

Young’s modulus (𝐸2) is determined using Eqs. (5-1)-(5-5) for each cell (from 3 curves 

and distance 4−12 µm from the cell on each side if available) and the cell (top layer) 

height ℎ is estimated from the axial confocal fluorescence micrograph recorded before 

the indentations. The average apparent Young’s modulus of the cell determined using 

Eqs. (5-1)-(5-5) from a set of 3-4 experimental force-indentation curves from the highest 

part of the cell’s apical surface. The cell Young’s modulus is then corrected by 

multiplying by the correction factor determined for the tip shape, indentation depth, and 

cell height (shown in Figure 5-3E). To determine the Young’s modulus of cells on glass, 
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the force-indentation data is fit using Eqs. (5-1)-(5-5) and the result is averaged over 4 

curves per cell. 

To determine the Young’s modulus of fully embedded cells, a single experimental 

force-indentation curve over the highest part of the cell’s central region is used. The 

curve over the cell is fit using Eqs. (5-1)-(5-5) piecewise in 250 nm intervals to calculate 

the depth-dependent apparent Young’s modulus. Finite element models are generated - 

the invasion depth and diameter of the cell is estimated from the axial confocal 

micrograph, and the Young’s modulus of the collagen is determined from force-

indentation curves of pericellular collagen in the same way as partially embedded cells. 

The cell’s Young’s modulus is initially guessed based on the experimental data, and an 

indentation by a rigid (~GPa) probe with geometry similar to that of the experimentally 

used AFM probe is then simulated using finite element analysis, producing a simulated 

force-indentation curve. The simulated curve is fitted in an identical manner to the 

experimental curve and the results are compared. Simulations are repeated using 

subsequent finite element models models in which the depth of the cell is adjusted by 

hand in 0.25 µm increments and the Young’s modulus of the cell is adjusted by hand in 

0.1 kPa increments until the experimental and simulated depth-dependent apparent 

Young’s modulus differ minimally. 

 

Results 

Spatially correlated AFM indentation and confocal laser scanning fluorescence 

 To determine the Young’s moduli of single cells embedded in hydrogels, we use a 

combined AFM and confocal fluorescence microscope setup (Figure 5-2A). The 
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alignment of the AFM tip with the laser focus allows precise determination of the 

location of the indentation in the confocal scans. MDA-MB-231 breast cancer cells were 

seeded on top of bovine collagen I matrices and subsequently measured after times 

ranging 6−96 hr, during which time a majority of cells invaded the collagen either 

partially or fully. 2D confocal scans are conducted in lateral (Figure 5-2B) and axial 

(Figure 5-2C) planes. AFM indentations with large sphero-conical tips were then 

conducted in the axial plane to generate spatially co-registered elasticity nanotomograms 

(Figure 5-2D) using force-indentation data and piecewise apparent Young’s modulus on 
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the collagen (Figure 5-2E) and cellular (Figure 5-2F) regions. The tomogram shows a 

clear mechanical contrast between the cell and the gel. 

 

 

Figure 5-2: Overview image of the combined AFM indentation with confocal 

fluorescence microscopy for indenting cells partially embedded in collagen. (A) 

Schematic of the AFM and confocal microscopy setup. The microscopy objective scans 

in all three dimensions, the AFM sample stage scans in X and Y, and the cantilever 

moves in the Z direction. The AFM probe and laser from the confocal microscope are 

aligned. (B) Lateral and (C) axial confocal fluorescence images of an MDA-MB-231 cell 

in collagen I. The cell membrane and collagen are fluorescently labeled as described in 

Methods. (D) Elasticity nanotomogram from fitting data of all force-indentation curves 

along the lateral confocal image in (C). (E), (F) Force-indentation curves and respective 

depth-dependent apparent Young’s modulus fits for data collected on collagen and the 

cell, respectively. Scale bars: 10 µm. 
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Elastic modulus determination of heterogeneous samples 

 To determine the Young’s modulus from indentations using the AFM tips with 

large apex radius, we derived an elastic contact model for a sphero-conical tip using 

Sneddon’s procedure80 that contains a sphere of radius R which smoothly transitions into 

a cone with half angle θ (see Figure A-1, and Appendix A for full derivation) and also 

solve the two-layer equations in §4 (Figure 5-3A). The resulting equations are: 

 𝑏 = 𝑅 cos 𝜃 
(5-1) 

 
𝛿(𝑎 ≤ 𝑏) =

1

2
𝑎ln (

𝑅 + 𝑎

𝑅 − 𝑎
) 

(5-2) 

 
𝛿(𝑎 > 𝑏) =  𝑎ln (

𝑅 + 𝑎

√𝑅2 − 𝑏2 + √𝑎2 − 𝑏2
) + 𝑎 cos−1 (

𝑏

𝑎
) cot 𝜃 

(5-3) 

 
𝐹(𝑎 ≤ 𝑏) =

𝐸

(1 − 𝜈2)
[
1

2
(𝑎2 + 𝑅2)ln (

𝑅 + 𝑎

𝑅 − 𝑎
) − 𝑎𝑅] 

(5-4) 

 

𝐹(𝑎 > 𝑏) =
𝐸

(1 − 𝜈2)
[𝑎2 cot 𝜃 cos−1 (

𝑏

𝑎
)

+ 𝑏 cot 𝜃√𝑎2 − 𝑏2 − 𝑎𝑅 + √(𝑅2 − 𝑏2)(𝑎2 − 𝑏2)

+ 𝑎2 ln (
𝑅 + 𝑎

√𝑅2 − 𝑏2 + √𝑎2 − 𝑏2
)

−
𝑅2

2
ln(

𝑎2𝑅2 − (𝑏2 − √(𝑅2 − 𝑏2)(𝑎2 − 𝑏2))
2

𝑏2(𝑅 + 𝑎)2
)] 

(5-5) 

The sphero-conical model is similar to the blunted cone developed by Briscoe85 shown in 

Eqs. (3-22)-(3-25). The sphere-conical tip geometry does not follow exact a power-law, 

but is approximated and fit using least-squares as one for a given indentation depth (for 

example in SI units, when R=695E-9, θ=18.8°, δ ranges from 0.25E-6 to 2.50E-6, then 
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A=1.289E-4, B=1.357 with r2=0.9996). To test the validity of this model, we performed 

finite element simulations with a modeled sphero-conical tip to determine if using these 

equations to fit the force-indentation data will reproduce the imposed Young’s modulus 

in the simulation. Figure 5-3B shows the sphero-conical model’s accuracy in fitting finite 

element simulations compared to the Hertz and Sneddon models, where the sphero-

conical model accurately computes the value of the imposed modulus for both deep and 

shallow indentations (with the exception of some numeric dips due to meshing). 

Accuracies of the sphero-conical model, along with r2 values, are shown in Table 5-1. As 

in §4, the effects of the substrate in the force-indentation response are corrected for and 

demonstrated using finite element simulations in Figure 5-3C, D. For practical use of the 

two-layer model, a table of correction values are calculated for the tip used in the 

experiment to very quickly compute the substrate-corrected Young’s modulus, as shown 

in Figure 5-3E. When knowledge of the substrate (collagen) elastic modulus and cell 

height are known, the apparent modulus from the curve on cell is simply multiplied by a 

small factor interpolated from the table. For all of the untreated cells analyzed in this 

work, only a fraction (<10%) have correction factors that are larger than 15% which is an 

often cited error in AFM cantilever calibration. 

 As noted in §4, this two-layer correction generally only holds for indentation 

depths which are smaller than the layer height, and is generally only valid for δ<h. For 

indentations beyond the first layer, other techniques such as finite element analysis are 

required to study asymptotic behavior. 
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Figure 5-3: Schematic and demonstration of the fitting methods developed for this work. 

(A) Illustration depicting a sphero-conical tip indenting into a bonded two-layer elastic 

half-space. (B) Force-indentation curve of a sphero-conical tip (R=750nm, θ=22.5°) 

indenting into a homogeneous elastic half-space (E1=E2=4.4 kPa, ν1= ν2=0.47, displayed 

in black, right axis) generated with finite element analysis (red, left axis) and the 

corresponding piecewise depth-dependent fits using the sphero-conical model (blue, right 

axis), Hertz model (green), and Sneddon model (purple). (C) Force-indentation curve 

from finite element analysis (red) and piecewise depth-dependent fits for the Young’s 

modulus using the sphero-conical model with (blue) and without (green) substrate 

correction and the imposed modulus of the top layer (black). For this simulation, 

h=10 µm, E1=4.4 kPa, ν1=0.47, E2=1.5 kPa, ν2=0.49. (D) Similar to (C) with h=10 µm, 

E1=4.4 kPa, ν1=0.47, E2=14.4 kPa, ν2=0.44. (E) Young’s modulus correction values 

calculated for the cell experiments using a sphero-conical tip with radius 695nm, 

θ=18.8°, indentations 0.25-2.50 μm for various layer heights and apparent layer 

mismatches (in this case, E1 is the apparent modulus from fitting the top layer without 

correction and E2 and h are independently measured experimental values). 



81 

 

 Linearized Fit Least Squares Fit 

 0.25-2.50 μm 1.00-5.00 μm 0.25-2.50 μm 1.00-5.00 μm 

Hertz -37.6%, 0.9964 -31.3%, 0.9992 -29.2%, 0.9941 -31.3%, 0.9994 

Sneddon +51.9%, 0.9145 +12.5%, 0.9408 +153.8%, 0.9381 +75.1%, 0.9612 

Sphero-

conical 

-10.0%, 0.9986 +0.9%, 0.9988 -6.7%, 0.9994 -4.1%, 0.9997 

Table 5-1: Errors in the apparent calculated Young’s modulus from the imposed 

simulation Young’s modulus and r2 values from fitting the finite element simulated curve 

using linearized (used in this work) and least squares routines, along different indentation 

intervals, and with different tip geometry models. There are no contact point errors due as 

it is exactly known. The simulated tip is sphero-conical with R=695 nm, θ=18.8° and the 

mesh size of the sample is 500 nm. The sample is very large (height, width 100 μm) and 

is flat, homogeneous, elastic, and isotropic. 

 

Cells display significant stiffening during initial invasion into collagen 

MDA-MB-231 breast cancer cells were seeded on top of fully polymerized 

bovine collagen I matrices with Young’s moduli ranging 0.1−6 kPa (Figure 5-4). While 

collagen I gels are very porous, the raw force-indentation data on collagen using a probe 

with radius 695nm is readily fit by the models derived for this work with high r2 (Figure 

5-5). In some gels, it is observed that there is a stiffer top layer and then a softer 

underlying collagen layer (Figure 5-5C, D), presumably due to humidity changes during 

polymerization. Finite element simulations of indentations of elastic materials with 

varying element mesh sizes show negligible artifacts when it is similar to or less than the 

probe radius (Figure 5-6). 

To quantify a cell’s embeddedness, we define the “Degree of Invasion” (DoI) as 

the height difference between the collagen and apical cell surfaces (determined from the 

contact points of the force-indentation curves) divided by the cell height (determined 
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from confocal microscopy) and subtracted from one (Figure 5-8). After some time, the 

cells began to invade into the collagen gels, however no differences were seen in the 

stiffness or partial embeddedness of cells as a function of time (Figure 5-7), however 

cells more readily invaded into softer collagen gels (Figure 5-8B). For partially 

embedded cells, force-indentation curves on pericellular collagen are fitted to 

approximate the Young’s modulus of the collagen underneath the cell and the height of 

the cells from confocal microscopy are used to determine the correction of the Young’s 

modulus from curves on cells (Figure 5-3E). Figure 5-8C shows the apparent Young’s 

moduli of partially embedded cells as a function of the invasion depth, binned into three 

similarly populated groups. Cells 0−50% embedded (DoI<0.50) had Young’s modulus of 

0.74±0.29 kPa (median ± median absolute deviation for all unless otherwise noted), 

similar to the observed moduli of cells on glass (p=0.61, Mann-Whitney U test for all p 

values). Cells 50−75% embedded (0.50<DoI<0.75) had median Young’s modulus of 

0.99±0.38kPa, significantly stiffer (34%, p=0.018) than cells 0−50% embedded. Cells 

75−100% embedded (DoI>0.75) had median Young’s modulus of 1.34±0.49 kPa, 

significantly stiffer again (35%, p=0.039) than cells 50−75% embedded. 

In some invading cells, we observed bright fluorescence from the collagen 

directly around the cell, indicating the cell has remodeling the collagen by displacement 

(Figure 5-9A). During the measurements and analysis, it is assumed the local collagen 

stiffness is uniform, however this is not necessarily true and is not detectable underneath 

the cell with AFM. To address the possibility that the stiffening is due merely to the 

support from the surrounds matrix, we used finite element analysis to simulate 

indentations into model systems of a round elastic cell embedded in an elastic gel with 
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some additional collagen “shell” (Figure 5-9B) and analyzed the simulation data using 

the same procedure as experimental data. As the simulated cell is displaced into the 

matrix and the collagen shell is assumed equal to collagen, a small amount apparent cell 

stiffening is observed (~6% for DoI=0.50 to 0.93, Figure 5-9C). If the collagen shell is 

assumed to be much more rigid than the surrounding collagen (up to 8 times), additional 

slight stiffening is also observed (~3% for Eshell=0.75 kPa to 6.00 kPa, Figure 5-9D). The 

amount of stiffening due to varying geometric constraints is much less than observed 

experimentally and well within cantilever calibration errors79. Because the artifacts 

quantified with finite element analysis are much smaller than the amount of stiffening 

observed experimentally, the cell stiffening is a change in phenotype in response to 

activity in the 3D environment. 

 

 

Figure 5-4: Histograms of Young’s moduli of pericellular bovine collagen I from 

hydrogels formed at different initial collagen concentrations.   
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Figure 5-5: Force-indentation values and fits of bovine collagen I. (A)  (blue) Force-

indentation curves on collagen (4.88 mg/mL) from an experiment aligned at the contact 

point, and (red) the average force-indentation curve using the mean indentation at 0.1 nN 

force intervals (method 2 from149). (B) The average force-indentation curve (red, right 

axis) from (A) fit using the methods in this paper along the entire curve (green, right axis) 

and the resulting Young's modulus shown from fitting along 250 nm indentation intervals 

(blue, right axis, error bars show error in regression method from the single average 

curve). (C, D) same as (A, B) but for 2.44 mg/mL collagen. Inset in (C) shows a YZ 

confocal image from 2.44 mg/mL collagen, showing some mechanical heterogeneity in 

the collagen gel where it appears brighter and stiffer in (D) at the top boundary of the gel 

and softer inside of the gel. 

 



85 

 

 

Figure 5-6: Effect of the mesh size on finite element simulations. The indenting probe is 

sphero-conical with R=695 nm and θ=18.8° and the sample is flat. The right image shows 

a zoom-in on the black square in the left image. For mesh sizes less than the probe radius, 

neglible errors are seen. 

 

 

 

Figure 5-7: Effect of time in stiffness and degree of invasion of MDA-MB-231 cells in 

collagen I. (A) Stiffness and (B) degree of invasion of partially invaded MDA-MB-231 

seeded on collagen I matrixes at various time points. From left to right, t ≤ 24 hr (n=74), 

24 hr<t ≤ 48 hr (n=50), and t>48 hr (n=40). 
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Figure 5-8: Young’s moduli of MDA-MB-231 cells on glass and partially embedded in 

collagen I hydrogels.  (A) Schematic defining the degree of invasion (DoI) quantifying 

the amount of cell embedding. (B) Box plot showing the DoI for different stiffness bins 

of collagen I gels, number of replicates are shown underneath. (C) Box plot showing the 

corrected cell Young’s modulus at various stages of partial invasion. P-values are 

calculated using the Mann-Whitney U test. 

 

 



87 

 

 

Figure 5-9: Finite element modeling of AFM force-indentation curves on cells partially 

embedded in ECM. (A) XY and YZ confocal fluorescence images of a partially 

embedded cell. Green arrows indicate some observed collagen remodeling and high 

intensity around the cell. (B) Finite element model of a partially embedded cell with a 

collagen “shell” for collagen displaced by the cell (here, R=695 nm, θ=18.8°, DoI=0.93, 

cell diameter=14 μm, Ecell=0.75 kPa, Ecollagen=Eshell for the colored lines). (C) Corrected 

cell Young’s modulus versus degree of invasion for different collagen Young’s moduli; 

at most, 6% stiffening is observed between DoI=0.5 and DoI=0.93 for these parameters. 

Dashed line represents apparent Young’s modulus from flat substrate with E=0.75 kPa, 

which is lower due to meshing artifacts. (D) Cell Young’s modulus versus collagen shell 

stiffness (collagen shell thickness=1μm, Ecell=Ecollagen=0.75 kPa, no correction is used); 

stiffening is slightly more pronounced in more deeply embedded cells, but is 3% at most. 
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ANOVA testing revealed the two strongest predictors for cell stiffness were the 

degree of invasion and the local collagen stiffness, compared with the time after seeding, 

collagen concentration, and cell heights (however, time was shown to have some effect, 

but we could not directly find a correlation -- we believe this may be because more time 

allows cells to invade into stiffer collagen gels). We then binned the data by both the 

cells’ invasion depth and local collagen stiffness (Figure 5-10C). On soft collagen 

(Ecol.<1 kPa), cells 50−100% embedded (DoI>0.5) were significantly stiffer (58% 

increase in median, p=1.1E-3, all values are shown in Table 1) than cells 0−50% 

embedded (DoI<0.5).  On stiff collagen (Ecol.>1 kPa), cells 50−100% embedded were 

60% stiffer (p=3.9E-3) than cells 0−50% embedded. For both DoI ranges, the cell and gel 

stiffness correlate. 

 

Rho/ROCK is responsible for some observed stiffening 

As discussed in §2, the Rho GTPase is heavily implicated in cell motility in 3D, 

and is responsible for actomyosin contraction. Several studies of MDA-MB-231 cells in 

3D demonstrate that invasion may be inhibited by blocking Rho/ROCK activity140,144,145. 

We hypothesized the stiffening may be due to increased actomyosin contractility 

resulting in a more rigid cytoskeleton. 
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Figure 5-10: Young’s moduli of partially embedded cells is ROCK dependent. (A, B) 

Lateral confocal fluorescence image of cells (A) untreated and (B) treated with 10 µM 

Y-27632. (C) Box plots of Young’s moduli of cells (number of replicates are shown 

underneath) of untreated and treated with 10 µM Y-27632 on glass and partially 

embedded in collagen, binned by both DoI and pericellular collagen stiffness. All 

Young’s moduli are determined by fitting the indentation from 0.25−2.5 µm and 

corrected to account for the influence of the collagen substrate. P-values are calculated 

using the Mann-Whitney U test. 
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We repeated the measurements on cells treated with Y-27632, a ROCK inhibitor. 

ROCK inhibited cells obtained an elongated morphology, indicating the inability to 

contract actomyosin filaments (Figure 5-10B, compared to Figure 5-10A). ROCK 

inhibition significantly reduced the Young’s moduli of cells on glass (51%, p=2.39 E-7); 

cells embedded 0-50% on soft collagen (31%, p=0.10) and stiff collagen (33%, p=3.6E-

3); and cells embedded 50-100% on soft collagen (43%, p=2.6E-5) and stiff collagen 

(39%, p=0.02) (Figure 5-10C). On soft collagen, 50−100% embedded cells were 30% 

stiffer (compared to 58%) than 0−50% embedded cells (p=8.0E-3), and on stiff collagen, 

50−100% embedded cells were only 47% (compared to 60%) stiffer than 0−50% 

embedded cells. (p=9.2E-5). This demonstrates that ROCK-mediated contractility may be 

vital for the cell stiffening during invasion which we observed. 

 

Cells fully embedded in collagen display similar stiffening  

To determine the Young’s modulus of cells fully embedded in collagen (Figure 

5-12A), simulations of indentations were performed using finite element models (Figure 

5-12,C-E) with geometry determined from the axial confocal micrographs. Each cell’s 

position and imposed Young’s modulus were iteratively adjusted until the simulated 

force-indentation curve resulted in a depth-dependent apparent Young’s modulus that 

differed minimally from the depth-dependent apparent Young’s modulus fit from the 

experimental force-indentation curve, as illustrated in Figure 5-12,D-G. Only cells at 

invasion depths ≤3.5µm could be analyzed using this method due to the decreased 

mechanical contrast observed (Figure 5-11). 13 cells were analyzed with this approach 
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(despite 64 total cells being measured, only 13 could be quantified); with 3 stiff (>10kPa) 

outliers omitted, the median Young’s modulus was 1.5±0.4 kPa (Figure 5-13). This is 

much stiffer than cells which have not begun to invade and is similar to those that have 

nearly fully embedded into the collagen gels. 

However, we note that the finite element models are very simplified versions of 

the physical system, which will contain remodeled or spatially heterogeneous collagen, 

non-spherical cells, and general experimental noise, thus small deviations between the 

experimental and simulated data is not unexpected, however good agreement between the 

two are seen. 

 

 

Figure 5-11: Demonstration of mechanical contrast from finite element simulations of 

embedded cells. The tip is modeled as sphero-conical with apex radius 745 nm and half-

angle 18.81°, the cell Young’s modulus is 2.0 kPa, the collagen Young’s modulus is 0.3 

kPa (Poisson ratio for both is 0.45), and the radius of the cell is 6.5 µm. As the cell is 

moved from on top of the collagen gel with 1 µm protrusion (red) to 5 µm embedded 

(teal), both the maximum value of the depth-dependent apparent Young’s modulus and 

the slope of the transition decreases with increased invasion depth. This effect is referred 

to as mechanical contrast, and this contrast is lost as the cell becomes too deeply 

embedded or the Young’s modulus of the cell and collagen become too similar. 
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Figure 5-12: Determination of the Young’s modulus of MDA-MB-231 cells fully 

embedded in collagen. (A) Axial confocal fluorescence micrograph of a cell that has fully 

invaded into collagen. (B) Elasticity nanotomogram of the cell, also showing the AFM 

probe size to scale. (C) Axisymmetric finite element simulation of an indentation on a 

fully embedded cell. Color scale represents the total deformation from a 3 µm 

indentation. Scale bars are 10 µm for all. (D, E) Experimental (red) and simulated (blue) 

force-indentation curves from points (I, on the cell) and (ii, on the collagen). (F, G) 

Apparent Young’s modulus calculated from the experimental (red) and simulated (blue) 

force-indentation curves shown above. 
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Figure 5-13: Ten fully embedded cells with the experimental force-indentation curves 

and depth-dependent fits (red) overlayed with the finite element simulation (blue) from 

ANSYS. For each cell, the physical dimensions and elasticity parameters of the sample 

are given. The tip is sphero-conical with the same geometry as in the experiment. The 

depth-dependent bin size is 250 nm and contact points are chosen manually. 
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Substrate 

Degree of 

Invasion 

(DoI) 

Number  

of cells 

Young’s Modulus of the Cell  

[kPa] 

(mean ± s.e.m.) 
(median ± 

m.a.d.) 

U
n

tr
ea

te
d

 

Glass 0 64 0.86 ± 0.8 0.63 ± 0.27 

Col E<1 kPa < 0.5 16 0.64 ± 0.10 0.65 ± 0.29 

Col E>1 kPa < 0.5 45 0.97 ± 0.09 0.84 ± 0.37 

Col E<1 kPa > 0.5 71 1.13 ± 0.08 1.03 ± 0.42 

Col E>1 kPa > 0.5 32 1.70 ± 0.21 1.35 ± 0.68 

All Fully 

Embedded 

10 1.4 ± 0.2 1.5 ± 0.4 

+
 1

0
 µ

M
 Y

-2
7
6
3
2

 Glass 0 64 0.43 ± 0.02 0.36 ± 0.08 

Col E<1 kPa < 0.5 16 0.45 ± 0.03 0.45 ± 0.10 

Col E>1 kPa < 0.5 55 0.62 ± 0.04 0.56 ± 0.11 

Col E<1 kPa > 0.5 34 0.64 ± 0.05 0.58 ± 0.12 

Col E>1 kPa > 0.5 19 0.84 ± 0.05 0.83 ± 0.17 

Table 5-2: Young's moduli of MDA-MB-231 cells for different invasion depth, collagen 

stiffnesses, and treatments. 

  

Discussion 

 The Young’s moduli for all cells depending on collagen stiffness, degree of 

invasion, and presence of Y-27632 have been tabulated in Table 5-2 with the results for 

cells on glass and cells that have been fully embedded. 

 The behavior of single cells has been shown to be drastically different in 3D 

environments than on 2D surfaces (see §2 for more details), and it is also established that 

cancer cells may switch between different modes of motility. Recent work by Chavrier et. 

al. demonstrate that MDA-MB-231 cells invading into Matrigel do so in a rounded cell 
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mode by employing actomyosin contractility, and in order to generate force for forward 

propulsion there is observed contractility in the rear of the cell in actomyosin rich 

uropods140. Here, as our cells are invading vertically downward into collagen gels and 

cells use rear contraction, and AFM is probing the top (rear) of the invading cells, it is 

possible that this contributes to the observed stiffening thereby corroborating the rounded 

cell invasion model. Another related previous study by Petrie et. al. demonstrated that 

MDA-MB-231 cells have large intracellular pressure increases during lobopodial 

migration, and that the pressure is larger in the leading edge than trailing edge and both 

are larger than the case of cells on 2D substrates37. Our AFM experiments demonstrate a 

similar effect as the cells are stiffening during the initial stages of invasion, although it is 

assumed the trailing edge is being indented with AFM. 

 While AFM studies on cells grown on rigid 2D substrates has provided many 

novel and useful insights, extending the same types of measurements to cells in 3D 

systems is critical and little is known. The techniques presented here show the ability to 

deconvolute the mechanical response from heterogeneous elastic materials, despite large 

mismatches in elastic moduli and degrees of invasion of the cells the collagen. It was 

observed that cells significantly stiffen during invasion into collagen matrices, and this 

stiffening is enhanced on stiffer collagen gels and may be reduced by pharmacological 

inhibition of ROCK. As conventional wisdom gained from cells on 2D surfaces suggests 

that the highly deformable properties of cancer cells more readily allow invasion, our 

observed result demonstrates that this is not necessarily the case in 3D as the cells 

dramatically stiffen. The experimental and theoretical framework presented here may 

also be more generally applied to a wide range of soft matter elasticity problems with 
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some inclusion, including (but not limited to) studies of other cell types on or embedded 

in various types of ECM. 
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6 MECHANICAL PROPERTIES OF CANCER CELL NUCLEI IN SITU 

 

This chapter details experiments regarding the mechanical properties of cancer 

cell nuclei in situ. This project was performed in close collaboration with Stuart 

Lindsay’s (SL) lab (Subhadip Senapati, Brendan Sullivan) at Arizona State University. 

Nuclei are extracted from the cells by the Lindsay lab, and the cell lines were all acquired 

from the Lindsay lab. Experiments were performed by Bryant L. Doss (BLD) with 

assistance from Nethmi Ariyasinghe in the Robert Ros (RR) lab. Data was analyzed by 

BLD. This work was supported by a grant from the National Cancer Institute 

(U54CA143862) awarded to SL and RR. 

 

Introduction 

 The study of nuclear mechanics has many applications, from stem cell 

differentiation and reprogramming52,53,57 to limits in single cell motility in 3D 

environments (for a more detailed discussion, see §2). 

 The cell nucleus is central to understanding the transformation of healthy cells 

into cancerous cells. The nuclei of cancer cells have dramatic morphological changes 

from normal cell nuclei, such as changes in the size, geometry, and amount of 

heterochromatin aggregation150. Many of these shape alterations may contribute to 

abnormal gene expression as the access to certain genes by the transcriptional machinery 

is different. 

 Recently, direct measurements of nuclear mechanics have been performed using a 

variety of conditions and techniques. The role of chromatin compaction on nuclear 
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stiffness has been studied on isolated nuclei using micropipette aspiration and showed 

that nuclear swelling, chromatin decondensation, and increased deformability all occur 

under low concentrations of divalent cations55. Micropipette aspiration has also been used 

to study nuclear stiffness in differentiating stem cells and lamin-A deficient cells (here 

both condensed chromatin and lamin-A correlate positively with nuclear stiffness)52. 

Optical stretching has demonstrated nuclei with condensed chromatin are more rigid 

compared to less condensed chromatin and drug treatment with the histone deacetylase 

(HDAC) inhibitor trichostatin-A may decondense chromatin and soften nuclei53. 

AFM has recently been used to probe nuclear mechanics in situ by milling 

“nanoneedles” from AFM tips using a focused ion beam and correlating the force-

indentation with 3D confocal fluorescence microscopy151, where it was shown that 

metastatic T24 bladder cells have softer nuclei than healthy RT4 cells. Similar 

experiments on HT1080 fibrosarcoma cells have been performed by Wolf et. al. where 

different probe geometries and cantilever spring constants were used152, where it was 

determined that there is an incompressible region of chromatin that may be probed by 

cantilevers with high spring constants and this region is compromised by treatment with 

HDAC inhibition. AFM has also been used to demonstrate negative Poisson’s ratio in the 

nuclei of differentiating stem cells57. 

Much like whole cells, the mechanical properties and function of cell nuclei are 

heavily dependent on the environment of the nucleus. As nuclear mechanics is governed 

by an interplay of lamins and chromatin (and also perhaps the cell microenvironment43), 

both need to be intact for a physiologically relevant picture. In this study, our goal is to 

develop methods using AFM to extract quantitative mechanical information of cell nuclei 
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in situ. We applied these methods, as well as fluorescence imaging, to cancer and healthy 

cell nuclei of two organs: esophageal lines EPC2 (healthy) and CP-D (cancer), and colon 

lines FHC (healthy) and RKO (cancer). EPC2 (normal) and CP-D (high grade dysplasia) 

nuclei have distinct differences in nuclear volume (CP-D is larger) and smoothness of 

chromatin153. AFM measurements using soft cantilevers and shallow indentations reveal 

that EPC2 cells are stiffer than the CP-D cells, demonstrating cell softening during cancer 

progression88, however nuclear stiffness was not determined. 

 

Materials and Methods 

Cell Culture and Sample Preparation 

Isolated nuclei were provided on ice by Stuart Lindsay’s lab in TE buffer (10 mM 

Tris, ~0.1 mM EDTA) and were obtained using detergent extraction with NP-40. Isolated 

nuclei were attached to glass bottom petri dishes. A small volume of poly-L-lysine (0.1% 

w/v, Sigma-Aldrich) was added to a glass bottom petri dish and allowed to incubate for at 

least several hours at room temperature, then was washed extensively with DPBS (no 

CaCl2, no MgCl2). Nuclei were diluted in the same DPBS buffer and added to the 

functionalized petri dish for measurements. 

EPC2 and CP-D esophageal cells were cultured in Keratinocyte-SFM (Life 

Technologies) with the provided supplements. RKO cells were cultured in EMEM 

supplemented with 10% FBS. FHC cells are cultured in DMEM:F12 supplemented with 

10mM HEPES, 10ng/mL cholera toxin, 0.005mg/mL insulin, 0.005mg/mL transferrin, 

100ng/mL hydrocortisone, and 10% FBS. All growth media contains 1x penicillin-

streptomycin (all culture materials from Life Technologies). Trichostatin-A (TS-A, 
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Sigma-Aldrich) was solubilized in DMSO and cells were treated for 24 hours at 1µM 

concentration unless noted otherwise. All whole cell experiments were performed in 

HBSS buffer containing 25mM HEPES and divalent cations CaCl2 and MgCl2 unless 

otherwise noted. Fluorescence experiments with EDTA were performed in HBSS with 

5 mM EDTA, 25 mM HEPES, no CaCl2, and no and MgCl2. For AFM measurements, 

cells were seeded onto glass bottom petri dishes (World Precision Instruments) in full 

growth media until and allowed to adhere for two days before exchanging into buffer and 

measuring. 

 Fibronectin-coated PA gels were produced by a standard published protocol154. 

Acrylamide and bis-acrylamide gels were mixed at ratios described in the text using 

DPBS in place of water and were stamped on an APTES and glutaraldehyde 

functionalized glass petri dish using an untreated glass coverslip. Following 

polymerization, 0.2 mg/mL sulfo-SANPAH was conjugated with the PA gel for 20 

minutes in UV light. The gels were washed in 50 mM HEPES at pH 8.5 buffer several 

times, and 0.1mg/mL fibronectin was added to the buffer and allowed to incubate 

overnight. After washing several times with full growth media, RKO cells were seeded 

and allowed to adhere for 36 hours before measuring. 

Nucleic acids were fluorescently labeled with SYTO-9 (Life Technologies). Cells 

are incubated immediately before measuring at a concentration of 200 nM in measuring 

buffer for 20 min, then washed extensively with the measuring buffer. 
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Atomic force microscopy and fluorescence microscopy 

 The combined atomic force microscope and confocal laser scanning microscope 

system is described elsewhere88,147 (also §4, §5). The AFM probes used were either Team 

Nanotec LRCH-750 sphero-conical probes (R~795 nm, k~0.13 N/m), Aspire CCS 

conical silicon probes (k~0.7 N/m), or AppNano SHOCON-200 (k~0.3 N/m). A constant 

loading rate of ~3 µm/s was used, and the trigger point was variable (~15 nN for 

LRCH-750 probes, 75-150 nN (EPC2, CP-D) or ~10 nN (RKO, FHC) for sharp probes 

for deep indentations). 

AFM measurements and confocal microscopy on live cells were performed at 

37°C. Widefield fluorescence measurements were performed on an Olympus IX71 at 

room temperature. AFM measurements of isolated nuclei were performed at 25°C in 

DPBS (no CaCl2, no MgCl2). 

 

Data Analysis 

 AFM data was analyzed using the methods described in §3 with indentation 

depths defined in the main text. Data was analyzed using MATLAB. Nuclear areas from 

widefield fluorescence are determined using ImageJ. Statistical testing was performed by 

Mann-Whitney U test. Plots were generated in MATLAB and annotations and color 

adjustments are made in Inkscape. 

 Nuclear sizes distributions were produced by fitting the nucleus to an ellipse in 

ImageJ, the effective diameter d is calculated 𝑑 = √4𝐴 𝜋⁄ , where A is the area. Heights 

(diameters) of isolated nuclei were determined by comparing the contact point of the 

nucleus and the contact point of glass in the AFM force-indentation data. 
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 Fitting of AFM data on cells with the double-contact model is described in the 

results and discussion section. 

 

Results and Discussion 

Mechanics Extracted Nuclei and In Situ Nuclei Differ Drastically 

 Directly probing the mechanics of cell nuclei is difficult because of the presence 

of the surrounding cell which may distort the force-response from the nucleus. Therefore, 

it is beneficial to first extract and isolate the nucleus before performing AFM indentation 

experiments to remove any effects from the cell. 
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Figure 6-1: Young's modulus of RKO cells and isolated nuclei. (A) Confocal 

fluorescence (YZ on left, XY on right) images of RKO cells stained with SYTO-9 for 

nucleic acids. (B) Young’s modulus of RKO cells and isolated nuclei. For shallow 

indentations, the indentation bin is 0.25-2.50 µm, and for deep indentations the bin is 

2.00-4.00 µm, and for isolated nuclei the bin is from 100nm to the trigger. (C) Effective 

diameters of nuclei inside live cells and isolated nuclei. The live cell diameters are 

determined by widefield fluorescence, and the isolated nuclei diameters are determined 

from the sample topography from AFM contact points. 

 

 We performed AFM indentation using LRCH sphero-conical probes with large 

radii (~795 nm) experiments on live RKO cells and isolated nuclei which were adhered to 

a glass petri dish functionalized with poly-L-lysine. Confocal fluorescence imaging 

(Figure 6-1A) demonstrates that the volume of the RKO nuclei in live cells is very large 

compared to the overall volume of the cell, and that the nucleus is very near the apical 

surface of the cell. Thus, AFM indentations on live RKO cells directly above the nucleus 
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should be primarily probing the mechanical properties of the nucleus. Additionally, as the 

fluorescence signal comes from a nucleic acid stain, the localization of dye in the nucleus 

is very heterogeneous indicating dense regions of heterochromatin. The results of the 

AFM indentation experiments and resulting Young’s moduli are shown in Figure 6-1B. 

As the indentation depth increases, the average stiffness of the nuclei increases from 

0.58±0.18 kPa (median ± median absolute deviation unless otherwise noted) to 

1.14±0.38 kPa, presumably because the nuclear mechanics are probed more than the 

cytoplasmic mechanics. However, AFM indentations on isolated nuclei result in a 

dramatically higher Young’s modulus of 19.10±10.08 kPa. 

 Additionally, the diameters of the nuclei inside live cells and isolated nuclei 

differed drastically, as shown in Figure 6-1C. The nuclei diameters of live cells 

(measured with widefield fluorescence) was 11.5±0.7 µm, while the diameters of the 

isolated nuclei (measured from the AFM topography) was 7.1±0.7 µm. Additionally, the 

stiffness of isolated nuclei was determined be the negatively correlated with nuclear 

diameter. 

 There are several explanations for these dramatic differences in stiffness and 

morphology observed between live cell nuclei and extracted nuclei. If volume from water 

was lost from the nucleus during extraction, then this would explain the correlation 

between the diameter and Young’s modulus as the intranuclear pressure is much higher. 

The nuclei are “glued” to the petri dishes using poly-L-lysine, thus it is possible that this 

procedure introduces a large amount of prestress in the nucleus which would be observed 

with AFM. The buffer for measuring the stiffness of the RKO isolated nuclei is stripped 

of divalent cations MgCl2 and CaCl2, and the buffer for live cells contains these divalent 
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cations, and the addition of divalent cations is shown to increase nuclear stiffness55, 

however despite this the nuclei still have over and order of magnitude larger elastic 

modulus than the nuclei in situ. 

 Recent studies have shown that the mechanics cell nucleus is governed by the 

properties of the whole cell, including actomyosin contracility56 and even the 

extracellular matrix through distant mechanotransduction pathways43. Because of this, 

any study of nuclear mechanics should include the entire cell as it is necessary for a 

physiologically relevant picture. 

RKO cells have a very accessible nucleus due to its large volume compared to the 

whole cell volume, however EPC2 and CP-D cells do not have this benefit, and the 

nucleus may be buried under a thick layer of cytoskeleton and cytoplasm. Thus, 

additional tools must be developed to extract nuclear mechanical properties and 

deconvolute from the cytoplasm. 

 

Figure 6-2: Schematic of the double contact model assumed in this work. Here, the tip 

shape is conical resulting in a small contact radius a. The bottom layer is not detectable in 

the force response until the probe makes contact. 
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AFM Indentation Rheology of In Situ Nuclei 

 In order to determine the elasticity of nuclei which are deeply embedded in the 

cells, the effects of the surrounding cytoplasm and cytoskeleton must be subtracted from 

the overall force response. The two-layer model derived in §4 cannot work in this case, as 

the previously derived model can only be used to determine the effects of the substrate on 

the indentation into the top layer and is not asymptotic to indentations on the bottom 

layer. However, several key concepts were introduced in the development of the two-

layer model: in the case of the bottom layer being stiffer than the top layer, and in the 

case of indenter geometries with low contact radii, the force response from indentation 

does not differ too dramatically from the homogeneous case. Therefore, in these cases 

there is very little strain on the bottom layer unless the probe forms contact with the 

bottom layer (or the top layer is at an incompressible limit). It was also demonstrated that 

there is very poor mechanical contrast regarding the stiffness of the bottom layer when it 

is stiffer than the top layer (unless the contact radius is unusually high, about 10x stiffer 

is the saturation point). These insights suggest the feasibility of a “biopsy” type 

measurement for subsurface elasticity shown in Figure 6-2, where the probe is pushed 

through the top layer into the bottom layer and a simple double contact model is 

assumed: 

 𝐹(𝛿 < ℎ) =
𝐸1𝑎1

2𝜋 cot 𝜃

2(1 − 𝜐12)
 

(6-1) 

 
𝑎1 =

2𝛿

𝜋 cot 𝜃
 

(6-2) 
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Which is Sneddon’s model and identical to Eqs. (3-15), (3-17). However, when the probe 

is indented through to the bottom layer, the force response may be approximated as 

 𝐹(𝛿 > ℎ) =
𝐸1(𝑎1

2 − 𝑎2
2)𝜋 cot 𝜃

2(1 − 𝜐12)
+
𝐸2𝑎2

2𝜋 cot 𝜃

2(1 − 𝜐22)
 

(6-3) 

 
𝑎2 =

2(𝛿 − ℎ)

𝜋 cot 𝜃
 

(6-4) 

This naïve double contact model is continuous and twice differentiable at δ=h and E1=E2, 

satisfying the necessary boundary conditions. The key assumptions to this model are that 

the low contact radius results in little change from Sneddon’s model and the stiffer 

bottom layer results in little to no strain in the bottom layer until the probe comes into 

contact, so if these conditions are not met then the model is not viable and may be 

inaccurate. These assumptions also make the model poor for predicting the behavior of 

the force-indentation response at the transition region (δ≈h) as some deviations are 

expected. 

 Practically, this model may be fit on the force-indentation data using least-squares 

method. However, due to consideration in contact point errors (discussed in §3), we apply 

this method by performing a least-squares fit on the results from a depth-dependent fit of 

the data applying a conical contact model with 500 nm indentation bins (identical to 

performing a least-squares regression on the slope of F1/2 data along indentation bins). 

The first 500 nm and last 250 nm of the force-indentation curve are omitted from the 

least-squares fit to remove small indentation artifacts of sharp probes and potential glass 

effects. 
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Figure 6-3: Demonstration of using a sharp probe to probe subsurface elasticity. 

Schematic of the experiment is shown in (A), a cell is grown on a fibronectin conjugated 

PA gel (5% acrylamide, 0.3% bis-acrylamide, E=7.6±0.2 kPa, mean±s.t.d.) and indented 

with a sharp AFM probe (SHOCON-200, θ~20°). (A) shows the force-indentation curves 

on only the PA gel and on the cell, both are aligned to the contact point of the cell. (B) 

shows the depth-dependent fit of the data in green and the theory fit using Eq. (6-1)-(6-4) 

and the resulting PA gel stiffness from the fit. (C) and (D) are similar to (A) and (B) with 

another cell. The resulting Young’s modulus of the PA gel underneath the cells was 

found to be 7.3±0.4 kPa (n=7). 

 

We next tested the feasibility of this model using a model system of RKO cells 

cultured on an ideally elastic PA gel conjugated with fibronectin to allow cell adhesion. 

While the cell is very mechanically heterogeneous, the PA gel is not and serves as a good 

platform for determining whether the elastic modulus of the bottom layer may be 

properly deconvoluted. 
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Figure 6-3 shows the results of the AFM force-indentation experiments on the 

system along with the fits using the above theory. The elastic modulus of the PA gel (5% 

acrylamide, 0.3% bis-acrylamide) is 7.6±0.2 kPa (mean±std) determined from force-

indentation curves over gel regions with no cells. The deep force-indentation curves on 

the cells are deconvoluted and the resulting modulus is 7.3±0.4 kPa (n=7), showing 

strong agreement between the experimental data and the naïve theory. However, the 

heights that are determined from fitting the experimental data show deviations in the 

height of the sample compared to determining the sample height from the contact points – 

fits from the model predicts that the samples are 470 nm shorter on average than the 

results from the contact points. This may due to several factors, including the bin size 

used in the regression for the depth-dependent fits (500 nm in this case), general errors in 

contact point determination for sharp AFM probes, or non-linearities in the force-

response that were assumed negligible. 

It should also be noted that contact point determination is particularly critical and 

difficult under the conditions of these experiments. Because the indentation depths must 

be extremely deep, and it is assumed E1<<E2, the spring constant of the AFM probe must 

be relatively high and is typically not ideal for determining sample properties of the soft 

top layer. The elastic response of the top layer may be on the same order of the noise 

level of stiff cantilevers, thus serious contact point errors may occur. 

Figure 6-3 B, D also demonstrate transition regions in the fits from the soft elastic 

layer to the stiff substrate. When the layer height is shorter and the elastic mismatch is 

larger, the slope of the transition is much higher (Figure 6-3B). However, for taller first 

layers and lower elastic mismatches, the slope is much more gradual (Figure 6-3D). 
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Because both parameters are fit in the model, it is important that the apparent Young’s 

modulus begins to plateau at sufficient depths into the second layer, otherwise large 

errors in the regression may occur. 

 

 

Figure 6-4: Deep indentations on CP-D and EPC2 cells showing nuclear stiffness. (A) 

Average force-indentation curves computed using method 2 from 149 with CP-D in blue 

and EPC2 in red. (B) Boxplot showing the Young’s modulus for the top (E1) and bottom 

(E2) layers fit using the theory described here with number of replicates at the bottom. P-

values are calculated from the Mann-Whitney U test. 

 

We applied this method to EPC2 (healthy) and CP-D (high grade dysplasia) 

esophageal cells. A CCS conical probe (θ~15°) with high spring constant (k~0.7 N/m) 

was used to indent the cells extremely deep. The force-indentation curves, along with the 

average force-indentation curve, is shown in Figure 6-4A, showing the CP-D cells are 

stiffer at deep indentations. The resulting force-indentation curves were fit with the above 

theory to determine the Young’s modulus of the nuclei underneath the cytoplasm. CP-D 

cells were found to have a top layer Young’s modulus 3.82±1.17 kPa and bottom layer 

14.93±5.23 kPa. EPC2 cells were found to have a top layer Young’s modulus 
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3.19±1.06 kPa and bottom layer 9.27±4.78 kPa. The Young’s modulus of the bottom 

layer (presumably the nucleus in this system) were significantly different (p=1.4E-4), 

with the cancerous CP-D nuclei being stiffer than EPC2 nuclei. This result, however, is in 

contrast with previous AFM studies of esophageal cells where the CP-D cells were found 

to be much softer than EPC2 cells88, however this study featured a much softer AFM 

cantilever, shallow indentations, and were fit using the Hertz model. CP-D cells are 

known to have a more heterogeneous chromatin structure with more dense regions of 

heterochromatin compared to EPC2 cells153, thus our result corroborates theories 

correlating nuclear stiffness with chromatin condensation52,53. 

 

HDAC Inhibition Effects Cancerous but not Normal Cells 

 As previously discussed, chromatin structure has been shown to play a large role 

in nuclear stiffness. The HDAC inhibitor TS-A has been used previously in nuclear 

mechanics measurements to reduce the stiffness of the nucleus by decondensing the 

chromatin structure53,152. Treatment of TS-A has also been demonstrated by Chalut et. al. 

to reduce the nuclei “fractal dimension”, which is an order parameter describing how 

heterogeneous the chromatin distribution in the nucleus is (when the chromatin structure 

is decondensed, the distribution becomes much more homogeneous)53. Because the 

amount of condensed heterochromatin is associated with cancer cells, we wanted to see if 

there are differences in the mechanical properties of the nucleus in situ between the 

healthy and cancerous cell lines after treatment with TS-A. 

 Figure 6-5 shows widefield fluorescence images of the four cell lines when 

treated with TS-A and the empty vehicle controls. The two cancerous cell lines, CP-D 
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and RKO, show drastic morphological changes, whereas the normal cell lines EPC2 and 

FHC display minimal changes. 

 Figure 6-6 shows AFM force-indentation data on the nuclei using a 

SHOCON-200 pyramidical tip with intermediate spring constant (k~0.3 N/m), as well as 

the resulting fits for E1 and E2 using the theory described above. Table 6-1 shows the 

results of the fits on all of the curves for all three parameters E1, E2, and h. With the softer 

cantilever, the EPC2 and CP-D were found to have similar nuclear stiffness, and EPC2 

cells are shown to have a stiffer E1, which is consistent with literature. The cancer cell 

lines RKO and CP-D display drastic differences in the force response and resulting E2 

compared to the normal cell lines, indicating the cancer lines respond to the HDAC 

treatment whereas the healthy cells show much less response. The cancer cells are shown 

to have much lower E2, indicating that the nuclear stiffness has drastically decreased, 

which is consistent with other work in literature where chromatin decondensation will 

result in less rigid nuclei53,55. However, as demonstrated in Figure 6-5 and the fits for h in 

Table 6-1, the morphology of the whole cells was altered drastically by the presence of 

TS-A, therefore the change in force response at deep indentations may not be truly 

indicative of nuclear mechanical changes but rather deviations from the strong 

assumptions made in the model derivation. In the case of CP-D cells, when fitting to the 

double-contact model reveals a similar h value, the values for E2 are similar as well, 

indicating that the cell morphology is the driving change in the change in Young’s 

modulus as opposed to the decondensation of chromatin. This may indicate that the value 

of E2 obtained from these fits is not indicative of the cell nucleus, but rather the 

cytoplasmic stiffness that is typically assumed to be E1. 
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Figure 6-5: Fluorescence images of cells treated with Trichostatin-A. Left column shows 

control (DMSO empty vehicle) and right column are cells after 24 hours in 1 µM TS-A. 

Scale bar is the same (50 µm) for all images. 
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Figure 6-6: Force data on nuclei in situ on cells treated with TS-A. The left column 

shows average force-indentation curves from each of the cell lines with and without TS-

A. The right column shows box plots of the resulting fits of E1 and E2 using the theory 

derived in this chapter. For all cases, red is control (DMSO empty vehicle) and blue is 

treated with TS-A (24 hr, 1 µM). 
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Cell 

Line 

Time 

[hr] 

TS-A 

[nM] 

Number 

of Cells 

n 

Young’s Modulus  

[kPa] (median ± m.a.d.) 

E2 Depth 

[μm] (median 

± m.a.d.) 

h 
E1 E2 

CP-D 

2 
0 64 2.35 ± 0.58 11.00 ± 3.51 5.1 ± 1.4 

300 63 2.09 ± 0.58 9.58 ± 3.23 5.0 ± 1.3 

24 
0 64 2.95 ± 1.09 7.98 ± 4.71 4.3 ± 1.8 

1000 60 4.53 ± 2.38 1.99 ± 1.15 1.2 ± 0.6 

EPC2 

2 
0 64 3.34 ± 0.96 10.32 ± 4.32 3.1 ± 1.0 

300 63 2.81 ± 0.72 9.79 ± 3.32 4.2 ± 1.4 

24 
0 64 3.46 ± 0.91 10.55 ± 4.39 3.7 ± 1.4 

1000 63 2.53 ± 0.96 10.46 ± 4.59 3.9 ± 1.3 

RKO 24 
0 64 0.73 ± 0.16 2.03 ± 0.98 3.2 ± 0.8 

1000 64 0.46 ± 0.09 1.12 ± 0.34 6.3 ± 3.0 

FHC 24 
0 64 0.66 ± 0.32 1.76 ± 0.58 2.7 ± 0.8 

1000 37 0.73 ± 0.38 2.09 ± 0.78 2.5 ± 0.6 

Table 6-1: Results from fitting the AFM force-indentation curves to the double-contact 

model. The force-indentation data was collected using a SHOCON-200 probe. 

 

Conclusions 

 The cell nucleus is the most critical organelle of the cell as it is the location where 

genetic information is stored and the center for transcription, thus abnormal deformations 

or mechanics may contribute to human disease such as cancer. Other studies have shown 

that nuclear mechanics is regulated by the cell’s cytoskeleton and the cell’s 

microenvironment43. Thus, studying the nucleus in situ provides the best understanding 

of the cellular and nuclear response to external forces and deformations. We demonstrate 

that the properties of isolated nuclei differ drastically from in situ, showing that the 
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applications of nuclear mechanics may be hindered by various steps in the preparation of 

the samples. 

 In this work, we have developed a theoretical framework for determining the 

elastic modulus of an embedded material by performing a deep indentation on the sample 

with a probe with small contact radius and performing a naïve deconvolution. We 

demonstrated on a model experimental system of cells cultured on PA that the method 

provides an accurate description of the subsurface elastic modulus. The method was 

applied to determine the nuclear elastic modulus for several cell lines. When these cell 

lines are treated with HDAC inhibition, the chromatin structure relaxes and decondenses, 

and the nuclear properties of the cancerous cell lines are affected dramatically compared 

to the normal cells. Additional experiments must be conducted to ensure that the 

assumptions made in the double-contact model are representative of the experimental 

reality, as highlighted by the AFM results of the CP-D cells when treated with TS-A, as 

well as other strategies to affect the elasticity of the nucleus (for example EDTA 

treatment, disruption of the lamin or actomyosin network, or adjusting the 

microenvironment of the cell). Dynamic rheology may also be used to determine the 

viscous response of the nuclear components compared with the elastic response. 
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7 CONCLUSIONS AND OUTLOOK 

This dissertation has presented novel methods and applications of AFM on 

heterogeneous biological systems. §4 introduced the analysis of force-indentation data on 

heterogeneous samples and demonstrated the accuracy with FEA and experiments. §5 

and §6 demonstrate applications of the theoretical framework on two mechanically 

heterogeneous biological systems: cells embedded in ECM and cell nuclei in situ. 

While this dissertation was primary focused on the elastic response of soft matter, 

there is still many properties extracted from direct indentations that contribute to the final 

force-response, for example temporal effects, plasticity, or non-incompressible Poisson’s 

ratios. Fortunately, the combined AFM/CLSM microscope is capable of addressing all of 

these, either by standalone dynamic rheology or indentations with some embedded 

fluorescent nanoparticles to observe deformation fields and how they deviate from the 

elastic case. While these properties are not known, the possibility of directly addressing 

them is an exciting outlook. 

§4 is a novel contribution to the field of indentation-based rheometry. Several 

groups have studied the effects of a stiff substrate on the elastic response of a thin layer 

during an indentation83,92,93, however the framework presented here is much more general 

and works for any tip geometry and elastic mismatch. The two-layer effects are most 

pronounced when the bottom layer is softer than the top layer and this effect must be 

taken into account when designing AFM indentation experiments. Combing this fact, 

along with the double-contact model demonstrate in §6 to determine the elasticity of 

deeply embedded objects and maximizing mechanical contrast using the knowledge 
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gained from §4, this dissertation provides a key advancement regarding indentation 

rheometry. 

The biological results presented offer new concepts for studying cell phenotype in 

complex environments. It was determined in §5 that MDA-MB-231 cells become stiffer 

as they invade in collagen I matrices, and in §6 it was demonstrated that cell nuclei in situ 

have drastically different elastic properties compared with isolated nuclei. However, most 

current AFM-based research on these are on cells adhered to petri dishes or nuclei 

extracted from cells. These experiments and analysis are much easier, however we have 

demonstrated that they are missing key elements which drastically alter the properties of 

the system, thus the applicability is limited. While measurements in 3D is gaining 

traction in recent years and the need for studies of cells in 3D environments is becoming 

very apparent, the research presented in this dissertation is a large step forward in 

extending the capabilities of AFM to work for cells embedded in complex 

microenvironments. 

The cell mechanics presented here raise the possibility for future studies. For 

example from §5, while ROCK is implicated in the pathways involved in cell stiffening, 

exact causes and contributions not exactly known -- other GTPase pathways, collagen 

realignment or MMP digestion of the collagen, nuclear or stress fiber positioning, or the 

dynamics of collective cell invasion may also play a large role. In addition, only one 

(highly metastatic) cell line was investigated, however cells from different organs or 

containing different mutations are likely to behave differently, thus the result is not yet 

general. The “next generation” of experiments related to this have recently begun in the 

Ros lab and are already delivering promising new results. 
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In §6 (and in literature), nuclear stiffness is shown to be correlated with chromatin 

condensation. However, the nuclear lamin structure is anchored to the cell cytoskeleton, 

and gene expression has been shown in literature to be correlated with extracellular 

stiffness, thus there is a complex mechanotransduction network that regulates nuclear 

properties. Using AFM to directly probe nuclear mechanics as the environment changes 

is an exciting prospect and may lead to new concepts for mechanobiology. 

Albert Einstein is attributed with, “everything should be made as simple as 

possible, but no simpler.” Complexity and heterogeneity are hallmarks of biological 

systems, attempting to simultaneously address all aspects at once is a monumentally 

challenging task, however reducing the problem to simpler components leads to results 

which may be generalized an applied. Here, classical elasticity theory has also been 

extended to biphasic heterogeneous materials at the cost of simplicity, although it is 

necessary for understanding these systems. 
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APPENDIX A 

SNEDDON’S PROCEDURE AND DERIVATION OF SPHERO-CONICAL PROBES 

FOR ELASTIC INDENTENTATION 

 

For an axisymmetric indentation on an elastic, homogeneous, isotropic half-space, 

the stress-strain relationships are80 

 𝜎𝑧𝑧 = (2𝜇 + 𝜆)
𝜕𝑢𝑧
𝜕𝑧

+ 𝜆 (
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝑟
𝑟
) 

(A1) 

 𝜎𝑟𝑧 = 𝜇 (
𝜕𝑢𝑟
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑟
) 

(A2) 

Where σ is the stress, u is the strain, and µ and λ are Lamé constants, and the boundary 

conditions are 

 𝑢𝑧(𝑟, 0) = 𝛿 − 𝑓 (
𝑟

𝑎
) , 0 ≤ 𝑟 ≤ 𝑎 

(A3) 

 𝜎𝑧𝑧(𝑟, 0) = 0, 𝑟 > 𝑎 
(A4) 

 𝜎𝑟𝑧(𝑟, 0) = 0, 𝑟 ≥ 0 
(A5) 

Eq. (A3) states that the displacement is equal to the difference in the indentation depth δ 

and shape function of the indenter f(r), while Eqs. (A4-A5) describe the surface forces of 

the elastic medium inside and outside of the contact radius a of the indenter. For a 

bonded two-layer problem, additional boundary conditions are employed stating there is 

no difference in stress or displacement for any component on either side of the 

boundary132. Sneddon demonstrated the solution to Eqs. (A1-A5) demonstrated that the 

force and indentation depths may be analytically calculated by solving the following 

equations80: 
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 𝛽(𝑡) = 𝑡 ∫
𝑓′(𝑟)

√𝑡2 − 𝑟2

𝑡

0

𝑑𝑟 
(A6) 

 𝛿 = 𝛽(1) 
(A7) 

 𝐹 =
2𝐸𝑎

(1 − 𝜈2)
(𝛿 − ∫ 𝛽(𝑡)𝑑𝑡

1

0

) (A8) 

using 

 
𝑑

𝑑𝑡
∫

𝑥

√𝑡2 − 𝑥2

𝑡

0

𝑑𝑥 = 1 
(A9) 

 

 

Figure A-1: Geometry of the sphero-conical indenter. 

 

 For this derivation, all integrals are solved using Wolfram Mathematica. Using 

Eqs. (A6-A8), the Hertz model may be computed by using a parabolic tip shape function. 

For a sphero-conical tip, we define f(r) as follows: 

 𝑏𝑆𝐶 = 𝑅 cos 𝜃 
(A10) 

 

𝑓𝑆𝐶(𝑟 ≤ 𝑏𝑆𝐶) = 𝑅 − √𝑅2 − 𝑟2 

𝑓𝑆𝐶(𝑟 ≥ 𝑏𝑆𝐶) = (𝑟 − 𝑏𝑆𝐶) cot 𝜃 + 𝑅 − √𝑅2 − 𝑏𝑆𝐶
2
 

(A11) 

 We need to make transform r to the radius normalized to the contact radius such 

that 0<r<1. Next, we solve for β in two separate regimes: 
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 𝛽(𝑡; 𝑡 ≤ 𝑏𝑆𝐶/𝑎) = 𝑡∫
𝑓′𝑆𝐶(𝑟𝑎)

√𝑡2 − 𝑟2

𝑡

0

𝑑𝑟 =
1

2
𝑎𝑡ln (

𝑅 + 𝑎𝑡

𝑅 − 𝑎𝑡
) 

(A12) 

 

𝛽(𝑡; 𝑡 > 𝑏𝑆𝐶/𝑎) = 𝑡∫
𝑓′𝑆𝐶(𝑟𝑎)

√𝑡2 − 𝑟2

𝑏𝑆𝐶 𝑎⁄

0

𝑑𝑟 + 𝑡∫
𝑓′𝑆𝐶(𝑟𝑎)

√𝑡2 − 𝑟2

𝑡

𝑏𝑆𝐶 𝑎⁄

𝑑𝑟

= 𝑎𝑡ln

(

 
𝑅 + 𝑎𝑡

√𝑅2 − 𝑏𝑆𝐶
2 +√𝑎2𝑡2 − 𝑏𝑆𝐶

2

)

 

+ 𝑎𝑡 cos−1 (
𝑏𝑆𝐶
𝑎𝑡
) cot 𝜃 

(A13) 

Once β is known, we can solve for the indentation depth: 

 𝛿(𝑎 ≤ 𝑏𝑆𝐶) = 𝛽(1) =
1

2
𝑎ln (

𝑅 + 𝑎

𝑅 − 𝑎
) 

(A14) 

 

𝛿(𝑎 > 𝑏𝑆𝐶) = 𝛽(1)

=  𝑎ln

(

 
𝑅 + 𝑎

√𝑅2 − 𝑏𝑆𝐶
2 +√𝑎2 − 𝑏𝑆𝐶

2

)

 

+ 𝑎 cos−1 (
𝑏𝑆𝐶
𝑎
) cot 𝜃 

(A15) 

Next, we solve for the force: 

 

 

 

𝐹(𝑎 ≤ 𝑏𝑆𝐶) =
2𝐸𝑎

(1 − 𝜈2)
(𝛿 − ∫ 𝛽(𝑡; 𝑡 ≤ 𝑏 𝑎⁄ )𝑑𝑡

1

0

)                     

=
𝐸

(1 − 𝜈2)
[
1

2
(𝑎2 + 𝑅2)ln (

𝑅 + 𝑎

𝑅 − 𝑎
) − 𝑎𝑅] 

(A16) 
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𝐹(𝑎 > 𝑏𝑆𝐶) =
2𝐸𝑎

(1 − 𝜈2)
(𝛿 − ∫ 𝛽(𝑡)𝑑𝑡

1

0

) 

=
2𝐸𝑎

(1 − 𝜈2)
(𝛿 − ∫ 𝛽 (𝑡; 𝑡 ≤

𝑏𝑆𝐶
𝑎
) 𝑑𝑡

𝑏𝑆𝐶 𝑎⁄

0

−∫ 𝛽 (𝑡; 𝑡 >
𝑏𝑆𝐶
𝑎
)

1

𝑏𝑆𝐶 𝑎⁄

𝑑𝑡) 

=
𝐸

(1−𝜈2)
[𝑎2 cot 𝜃 cos−1 (

𝑏𝑆𝐶

𝑎
) + 𝑏𝑆𝐶 cot 𝜃√𝑎2 − 𝑏𝑆𝐶

2 − 𝑎𝑅 +

√(𝑅2 − 𝑏𝑆𝐶
2)(𝑎2 − 𝑏𝑆𝐶

2) + 𝑎2 ln (
𝑅+𝑎

√𝑅2−𝑏𝑆𝐶
2+√𝑎2−𝑏𝑆𝐶

2
)−

𝑅2

2
ln(

𝑎2𝑅2−(𝑏𝑆𝐶
2−√(𝑅2−𝑏𝑆𝐶

2)(𝑎2−𝑏𝑆𝐶
2))

2

𝑏𝑆𝐶
2(𝑅+𝑎)2

)]  

 

(A17) 

Thus, λSC is the terms in square brackets in Eqs. (A16-17). 
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APPENDIX B 

DERIVATION OF TWO-LAYER EMPIRICAL SERIES APPROXIMATION FOR 

PARABOLIC AND CONICAL INDENTERS 

 

The force of an indentation on a two-layer material is approximated as 

 

 𝐹 ≈ 𝐹0𝑒
𝜉(𝛼,𝛾) 

(B1) 

 

𝜉 = (𝜉𝛼𝛽𝛼𝛾 +
1

2
𝜉𝛼𝛼𝛽𝛼

2𝛾 +
1

2
𝜉𝛼𝛽𝛽𝛼𝛾

2 +
1

6
𝜉𝛼𝛼𝛼𝛽𝛼

3𝛾

+
1

4
𝜉𝛼𝛼𝛽𝛽𝛼

2𝛾2 +
1

6
𝜉𝛼𝛽𝛽𝛽𝛼𝛾

3 +⋯) 

(B2) 

where 𝐹0 is the force of the homogeneous case. The exponential function was chosen for 

two reasons: the corrected force does not become negative, and it provides a better fit for 

the series expansion, as 𝜉 takes a sigmoidal shape. The subscripts in 𝜉 indicate partial 

derivatives. Only the cross-terms matter as both an elastic mismatch and layer height are 

required for the two-layer theory to be applicable. γ was chosen as a base-10 logarithm so 

that the magnitude of γ would be less than 1 for two orders of magnitude in the substrate. 

The values for 𝜉 are shown in Figure B-1. The partial derivatives are calculated from this 

using the finite difference method with accuracy order 4 and meshes of 0.05 in 𝛼 and 

0.20 in γ. 
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Figure B-1: Solution to the integral transform equations for ξ used in the series 

approximation. α and γ are adjusted and the series expansion is centered around (0,0). 

The coefficients in the series approximation are computed using the finite difference 

method. 
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APPENDIX C 

PROTOCOL FOR TWO-LAYER CORRECTION USING MATLAB 
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Two-layer analysis protocol 
Last update: 2015-04-20 BLD 

 

Requirements 

MATLAB (R2012a and R2013b confirmed works) 

The AFM analysis package in the Ros lab 

The Fie software package for solving Fredholm Integral 

Equations of the Second Kind 

[http://dl.acm.org/citation.cfm?id=1377601, Atkinson, K.E. & 

Shampine, L.F. Algrorithm 876: Solving Fredholm Integral 

Equations of the Second Kind in MATLAB. ACM Trans. 

Math. Softw. 34, 21 (2008)] 

 

 

Theory, Introduction 

Standard analysis of AFM data (e.g. the Hertz model) assumes 

elastic homogeneity in the sample, however this is rarely true 

with biological samples. 

 

Sneddon [Sneddon, Int. J. Eng. Sci. 3, 47-57 (1965)] originally 

solved the axisymmetric elastic indentation problem for a homogeneous sample for an 

indenter shape that simply follows some function f(r). These are derived from elastic 

equilibrium conditions, and assume an infinite, homogeneous, elastic, isotropic half-

space and frictionless tip-sample interaction. 

 

Dhaliwal and Rau [Dhaliwal and Rau, Int. J. Engng. Sci. 8, 854-856 (1970)] extended 

this solution using the same assumptions, however now it is a bonded (no-slip) two-layer 

material, as shown in the cartoon. 

 

The equations are: 

 

 𝜙(𝑡) +
𝑎

ℎ𝜋
∫ 𝐾(𝑥, 𝑡)
1

0

𝜙(𝑥)𝑑𝑥 = −
𝐸1𝑎

2(1 − 𝜈12)
[𝛿 − 𝛽(𝑡)] (1) 

 𝐹 = −4∫ 𝜙(𝑡)𝑑𝑡
1

0

 (2) 

 𝜙(1) = 0 (3) 

 𝛽(𝑡) = 𝑡 ∫
𝑓′(𝑟)

√𝑡2 − 𝑟2

𝑡

0

𝑑𝑟 (4) 

 𝐾(𝑥, 𝑡) = 2∫ 𝐻(2𝑢) cos (
𝑎

ℎ
𝑡𝑢) cos (

𝑎

ℎ
𝑥𝑢) 𝑑𝑢

∞

0

 (5) 

 𝐻(𝑢) = −
𝑑 + 𝑔(1 + 𝑢)2 + 2𝑑𝑔𝑒−𝑢

𝑒𝑢 + 𝑑 + 𝑔(1 + 𝑢2) + 𝑑𝑔𝑒−𝑢
 (6) 

 𝑑 =
(3 − 4𝜈1) − 𝜇(3 − 4𝜈2)

1 + 𝜇(3 − 4𝜈2)
 (7) 

http://dl.acm.org/citation.cfm?id=1377601
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 𝑔 =
1 − 𝜇

𝜇 + 3 − 4𝜈1
 (8) 

 𝜇 =
𝐸1(1 + 𝜈2)

𝐸2(1 + 𝜈1)
 (9) 

 

It’s a bit of an equation dump, but the strategy for solving is to numerically solve (1) and 

(3) to determine the contact radius, then when that is known solve (1) and (2). When the 

integral term in (1) is zero (e.g. if h=inf or µ=1), then it is identically reduced to the 

homogeneous case derived by Sneddon. 

 

The strategy for correcting for the substrate will be this: build up a table of “scaling 

values” from solving the above equations for a force-curve and fitting for the Young’s 

modulus. 

 

So in the experiment, if we know the height of the top layer and Young’s modulus of the 

bottom layer, we can interpolate from the scaling values to correct the Young’s modulus 

we normally get from fitting the curve on the two-layer sample. 

 

The program dhaliwal_rau generates a force-indentation curve on a two-layer 

material. Instructions to run it are in dhaliwal_rau.m. It is nice to make some curves 

and fit them to see how the force response changes when the parameters are adjusted.  

 

Procedure 

1. Build a table of correction values 

You will need to know the indenter geometry (type, radius, half-angle), need to use a 

fixed indentation depth for the fitting (e.g. 0-1µm), and need some guess at the Poisson 

ratio for both layers (0.5, 0.5?). 

For example, to make a correction table for a bead indenter with radius 5µm, the sample 

heights range from 4µm to 30µm, the mismatches span an order of magnitude in each 

direction, the Poisson’s ratios are both 0.5, and the indentation bin is 0-1µm, then run the 

following: 
 

[V,X,Y]=twolayer_correction_table('parabolic',2.7e-

6,1,logspace(-1,1,21),4e-6:1e-6:20e-6,0,1e-6,0.5,0.5); 

 

This will make the table. More instructions for the parameters are in the file 

twolayer_correction_table.m. 

 

2. Apply the table of correction values 

The scaling value may be computed with (mu is the mismatch, h is the sample height): 

 
scale=interp2(X,Y,V,mu,h); 

 

Multiply the E value you get from normal fitting by this, and you have corrected for the 

substrate. 
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MATLAB function headers 
dhaliwal_rau.m 
function [fc, as]=dhaliwal_rau(E1,nu1,E2,nu2,h,r,theta,type,mesh) 
% Input parameters -- SI units [Pa,m,radians]: 
%  E1: the Young's modulus of the top layer 
%  nu1: the Poisson's ratio of the top layer 
%  E2: the Young's modulus of the bottom layer 
%  nu2: the Poisson's ratio of the bottom layer 
%  h: the height of the top layer 
%  r: the radius of the indenter probe (does not matter for conical) 
%  theta: the half-angle of the indenter probe, units are radians 
%  type: the indenter probe geometry type, supported types: 
%       parabolic: Hertz model 
%       conical: Sneddon model 
%       hyperbolic: a hyperbola 
%       briscoe: Briscoe's blunted cone model 
%       spherocone: sphrical tip, transitions to cone continuosly 
%       cylindrical: a cylinder 
%       sphere: a sphere 
%  mesh: indentation points at which the forces will be calcualated 
% Output parameters -- SI units [m,Pa]: 
%  fc: force-indentation curve, fc.ext is a n-by-2 array 

[indentation,F] 
%  as: contact radius, n-by-2 arrray [indentation,a] 

 

 
twolayer_correction.m 
function [V, X, Y]=twolayer_correction_table (type, r, theta, mus, hs, 

d_min, d_max, nu1, nu2) 
% Input parameters -- SI units [Pa,m,radians]: 
%  type: the indenter probe geometry type, supported types: 
%       parabolic: Hertz model 
%       conical: Sneddon model 
%       hyperbolic: a hyperbola 
%       briscoe: Briscoe's blunted cone model 
%       spherocone: sphrical tip, transitions to cone continuosly 
%       cylindrical: a cylinder 
%       sphere: a sphere 
%  r: the radius of the indenter 
%  theta: the half-angle of the indenter 
%  mus: array of elastic mismatches to build the table from 
%  hs: array of heights to build the tables from 
%  d_min: minimum indentation depth 
%  d_max: maximum indentation depth 
%  nu1: top layer Poisson's ratio 
%  nu2: bottom layer Poisson's ratio 
% Output parameters -- SI units [m,Pa]: 
%  V: table of correction values, size is length(hs)-by-length(mus) 
%  X: mus 
%  Y: hs' 

 

 

dd_fit.m 
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function [E, X, r2]=dd_fit(curve, contact, r, theta, nu, binning, type, 

min_ind, max_ind) 
% Input parameters:  
%  curve: the force curve 
%  contact: the contact point 
%  r: the tip radius 
%  theta: axisymmetric semi-vertical tip angle   
%  nu: Poisson ratio 
%  binning: bins for depth-dependent analysis 
%  type: the indenter probe geometry type, supported types: 
%       parabolic: Hertz model 
%       conical: Sneddon model 
%       hyperbolic: a hyperbola 
%       briscoe: Briscoe's blunted cone model 
%       spherocone: sphrical tip, transitions to cone continuosly 
%       cylindrical: a cylinder 
%       sphere: a sphere 
%  min_ind: Minimum indentation depth 
%  max_ind: Maxiumum indentation depth 
% Output parameters 
%  E: the depth-dependent Young's modulus 
%  X: the indentation value so plot(X,E) works 
%  r2: the r^2 value from the fit 

 

 

Examples 
Example 1: Generate a simulated force-indentation curve of a Hertz model indenter on 

two-layer material with E1=1kPa, E2=3kPa, h=10µm, R=5µm, ν1=ν2=0.5, indentation 

depth up to 2µm with 10nm mesh, then perform a depth-dependent fit: 
fc=dhaliwal_rau(1e3,0.5,3e3,0.5,10e-6,5e-

6,0,'parabolic',0:1e-8:2e-6); % first simulate the curve 

E=dd_fit(fc,0,5e-6,0,0.5,250e-9,'parabolic') % then fit it 

 

Example 2: Two-layer correction for an experiment with a constant probe with radius 

2.7µm, constant indentation depths from 0-500nm, and the heights and E2 values are 

measured independently. Mismatches are an order of magnitude at most, heights range 

from 4-20µm. Poisson’s ratio is always assumed to be 0.5. 

Step 1: Build up a table of correction values 
[V,X,Y]=twolayer_correction_table('parabolic',2.7e-

6,1,logspace(-1,1,21),4e-6:1e-6:20e-6,0,500e-9,0.5,0.5); 

Step 2: Fit the force-indentation curve for the top layer, and bottom layer, set the height 
E1=dd_fit(fc1,contact1,2.7e-6,1,0.5,500e-

9,'parabolic',0,500e-9); 

E2=dd_fit(fc2,contact2,2.7e-6,1,0.5,500e-

9,'parabolic',0,500e-9); 

h=15e-6; 

Step 3: Apply the correction 
E1_adjusted=E1*interp2(X,Y,V,E1/E2,h); 

E1_adjusted is the substrate-corrected Young’s modulus for the top layer. 
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APPENDIX D 

SELECT MATLAB PROGRAMS FOR FORCE-INDENTATION CURVE ANALYSIS 
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dd_fit.m 

 
% dd_fit.m 

% 

% Depth-dependent force curve fitting 

% Input parameters:  

%  curve: the force curve 

%  contact: the contact point 

%  r: the tip radius 

%  theta: axisymmetric semi-vertical tip angle   

%  nu: Poisson ratio 

%  binning: bins for depth-dependent analysis 

%  type: the indenter probe geometry type, supported types: 

%       parabolic: Hertz model 

%       conical: Sneddon model 

%       hyperbolic: a hyperbola 

%       briscoe: Briscoe's blunted cone model 

%       spherocone: sphrical tip, transitions to cone continuosly 

%       cylindrical: a cylinder 

%       sphere: a sphere 

%  min_ind: Minimum indentation depth 

%  max_ind: Maxiumum indentation depth 

% Output parameters 

%  E: the depth-dependent Young's modulus 

%  X: the indentation value so plot(X,E) works 

%  r2: the r^2 value from the fit 

  

function [E, X, r2] = dd_fit(curve, contact, r, theta, nu, binning, type, 

min_ind, max_ind) 

  

if nargin < 9 

    min_ind = 0; 

    max_ind = 1000; 

end 

  

% Pre-process the force curve, truncate the baseline and shift 

% everything to zero 

index = get_index(curve.ext(:,1),contact); 

index2 = get_index(curve.ext(:,1),contact + max_ind); 

ext = curve.ext(index:index2, :); 

ext(:,1) = ext(:,1) - min(ext(:,1)) + eps; 

ext(:,2) = ext(:,2) - min(ext(:,2)) + eps; 

% ext(:,2) = ext(:,2) - ext(1,2) + eps; 

fc = curve; 

fc.ext = ext; 

index3 = get_index(fc.ext(:,1), min_ind); 

ext2(:,1) = ext(index3:end,1); 

ext2(:,2) = ext(index3:end,2); 

fc.ext = ext2; 

ext = ext2; 

  

% Initialize storage for contact radii and lambda terms 

as = []; 

lams = []; 

  

if length(ext) < 3 

    E = NaN; 

    r2 = NaN; 

    return 

end 
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% Iterate over indentation depths 

for i=1:length(ext) 

    d = ext(i,1); 

    if strcmp(type,'parabolic') 

        a = sqrt(r*d); 

        lam = (4/3) * sqrt(r) * d^(3/2); 

    elseif strcmp(type,'conical') 

        a = 2*d/(pi*cot(theta)); 

        lam = (1/2) * a^2 * pi * cot(theta); 

    elseif strcmp(type,'hyperbolic') 

        f = @(a) real(d - (a*cot(theta)/2) * (pi/2 + atan(a/(2*r*cot(theta)) - 

r*cot(theta)/(2*a)))); 

        a = sqrt(r*d); 

        a = fzero(f,a); 

        z = r*cot(theta)/a; 

        lam = (a^3/r)*(z^2 + (z/2)*(1-z^2)*(pi/2 + atan(1/(2*z)-(z/2)))); 

    elseif strcmp(type,'briscoe') 

        b = r * cos(theta); 

        m = 1/2; 

        n = 1; 

        f = @(a) real((ext(i,1) + (a/r)*((a^2-b^2)^(1/2)-a) - ... 

                 (n*a/tan(theta))*((pi/2)-asin(b/a)))); 

        a = sqrt(r*ext(i,1)); 

        a = fzero(f,a); 

        lam = 2 * (a*d - (m*a^2/tan(theta))*(pi/2 - asin(b/a)) ... 

            - a^3/(3*r) + ((a^2-b^2)^(1/2))*(m*b/tan(theta)+(a^2-b^2)/(3*r))); 

    elseif strcmp(type,'rico') 

        b = r * cos(theta); 

        m = sqrt(2)/pi; 

        n = 2^(3/2)/pi; 

        f = @(a) real((ext(i,1) + (a/r)*((a^2-b^2)^(1/2)-a) - ... 

                 (n*a/tan(theta))*((pi/2)-asin(b/a)))); 

        a = sqrt(r*ext(i,1)); 

        a = fzero(f,a); 

        lam = 2 * (a*d - (m*a^2/tan(theta))*(pi/2 - asin(b/a)) ... 

            - a^3/(3*r) + ((a^2-b^2)^(1/2))*(m*b/tan(theta)+(a^2-b^2)/(3*r))); 

    elseif strcmp(type,'spherocone') 

        b = r*cot(theta) / sqrt(1+cot(theta)^2); 

        f = @(a) real(ext(i,1) - ((1 <= b/a) * (1/2)*a*log((r+a)/(r-a)) ... 

            + (1 > b/a) * (a*log((r+a)/(sqrt(r^2-b^2)+a*sqrt(1-(b/a)^2))) + 

a*acos(b/a)*cot(theta)))); 

        a = sqrt(r*ext(i,1)+1e-9); 

        a = fzero(f,a); 

        lam = (1<=b/a) * ((1/2)*(a^2+r^2)*log((r+a)/(r-a))-r*a) + ... 

              (1> b/a) * (2*a)*(ext(i,1)-(b*r/(2*a)+(b^2-

r^2)/(4*a)*log((r+b)/(r-b))+(1/2)*a*cot(theta)*acos(b/a)-

(1/2)*b*cot(theta)*sqrt(1-b^2/a^2)+1/(4*a)*(-2*a*sqrt((1-b^2/a^2)*(r^2-

b^2))+2*a*r-2*b*r-b^2*log((r+b)/(r-b))+2*a^2*log((r+a)/(sqrt(r^2-b^2)+a*sqrt(1-

b^2/a^2)))+r^2*log((a^2/b^2*(b+r)^2*(r+b^2/a-sqrt((r^2-b^2)*(1-b^2/a^2)))*(r-

b^2/a+sqrt((r^2-b^2)*(1-b^2/a^2))))/((a+r)^2*(r^2-b^2)))))); 

    elseif strcmp(type,'lin-nh') 

        a = sqrt(r*d); 

        lam = 20/(9*pi) * pi * (a^5-15*r*a^4+75*r^2*a^3) / (5*r*a^2-

50*r^2*a+125*r^3); 

    elseif strcmp(type,'cylindrical') 

        a = r; 

        lam = 2 * a * d; 

    elseif strcmp(type, 'parabocone') 

        b = r * cot(theta); 

        f = @(a) real(ext(i,1) - ((1 < b/a) * (a^2/r) ... 

            + (1 > b/a) * (a^2/r * (1-sqrt(1-b^2/a^2)) + 

a*acos(b/a)*cot(theta)))); 
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        a = sqrt(r*ext(i,1)); 

        a = fzero(f,a); 

        lam = (1<=b/a) * (2 * a * (d - a^2/(3*r))) ... 

            + (1> b/a) * (2 * a * (d - a^2/(3*r)*(1-sqrt(1-

b^2/a^2)+b^2/a^2*sqrt(1-b^2/a^2)) + 1/2*a*(b/a*sqrt(1-b^2/a^2)-

acos(b/a))*cot(theta))); 

    elseif strcmp(type, 'dimitriadis-bonded') 

        height = 5.1e-3; 

        a = sqrt(r*d); 

        a0 = -(1.2876 - 1.4678*nu + 1.3442*nu^2)/(1-nu); 

        b0 =  (0.6387 - 1.0277*nu + 1.5164*nu^2)/(1-nu); 

        c = sqrt(r*d)/height; 

        lam = (4/3) * sqrt(r) * d^(3/2) * (1 - 2*a0*c/pi + 4*a0^2*c^2/(pi^2) - 

8/(pi^3)*(a0^3+4*pi^2*b0/15)*c^3 + 16*a0/(pi^4)*(a0^3+3*pi^2*b0/5)*c^4); 

    elseif strcmp(type, 'dimitriadis-nonbonded') 

        height = -contact; 

        a = sqrt(r*d); 

        a0 = -0.347 * (3-2*nu)/(1-nu); 

        b0 =  0.056 * (5-2*nu)/(1-nu); 

        c = sqrt(r*d)/height; 

        if c > 1 

            disp('warning: chi > 1') 

        end 

        lam = (4/3) * sqrt(r) * d^(3/2) * (1 - 2*a0*c/pi + 4*a0^2*c^2/(pi^2) - 

8/(pi^3)*(a0^3+4*pi^2*b0/15)*c^3 + 16*a0/(pi^4)*(a0^3+3*pi^2*b0/5)*c^4); 

    end 

    as = [as real(a)]; 

    lams = [lams real(lam)]; 

     

end 

max_ind = ext(end,1); 

nbins = max(floor(max_ind/binning - min_ind/binning),1); 

  

for i=1:nbins 

    % Find first point, last point 

    first = get_index(fc.ext(:,1), binning*(i-1)+min_ind); 

    last = get_index(fc.ext(:,1), binning*i+min_ind); 

    % Fit the model data to a power-law 

    [fitobj,gof] = fit_power1(fc.ext(first:last,1), lams(first:last)'); 

    A = fitobj.a; 

    B = fitobj.b; 

    % Linearize the experimental data 

    ext_lin = ext(first:last,:); 

    ext_lin(:,2) = ext_lin(:,2).^(1/B); 

    % Fit linearized curve to a y=mx+b 

    [fitobj2,gof2] = fit_poly1(ext_lin(:,1), ext_lin(:,2)); 

    C = fitobj2.p1; 

    % Calculate the Young's modulus 

    E(i) = C^(B) * (1-nu^2) / A; 

  

    % Optional: plot the linear fit versus the linearized curve 

%     plot(ext_lin(:,1), ext_lin(:,2), 'Color', 'red') 

%     hold on 

%     plot(ext_lin(:,1), ext_lin(:,1).*fitobj2.p1 + fitobj2.p2, 'Color', 

'blue'); 

     

    % Calculate the error from fitting 

    sa = gof.a_se; 

    sb = gof.b_se; 

    sc = gof2.p1_se; 

    dF = abs(fc.ext(first,2) - fc.ext(last,2)); 

    s1(i)=E(i)^2*sa^2/A^2; 
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    s2(i)=E(i)^2 * log(C)^2*sb^2; 

    s3(i) = 0; 

    %s3(i)=E(i)^2*log(dF)^2*sb^2/B^2; 

    s4(i)=B^2*E(i)^2*sc^2/C^2; 

    s(i) = sqrt(s1(i) + s2(i) + s3(i) + s4(i)); 

  

    % Optional: Adjust the E until residual (RMSE) is minimized 

%     Ei = E(i); 

%     points = 10000; 

%     for j=-points:points 

%         Et = Ei + Ei*j*.0004; 

%         ext_predicted = [ext(first:last,1) (Et/(1-nu^2)).*lams(first:last)']; 

%         residual = sqrt(sum((ext_predicted(:,2)-ext(first:last,2)).^2)); 

%         resids(j+points+1,:) = [Et residual]; 

%     end 

%     [~,j] = min(resids(:,2)); 

%     Et = resids(j,1); 

%     E(i) = Et; 

     

    % Calculate r2 

    Favg = mean(fc.ext(first:last,2)); 

    Fpred = E(i)./(1-nu.^2).*lams(first:last)'; 

    Fpred = Fpred - (mean(Fpred)-mean(fc.ext(first:last,2))); 

    sstot = sum((fc.ext(first:last,2) - Favg).^2); 

    ssres = sum((fc.ext(first:last,2) - Fpred).^2); 

    r2(i)=(1-ssres/sstot); 

%     plot(fc.ext(first:last,1), fc.ext(first:last,2)); 

%     hold on 

%     plot(fc.ext(first:last,1).*1e6, Fpred.*1e9); 

end 

  

X = min_ind+binning/2:binning:max_ind-binning/2; 

  

% Optional: plot the results 

% x = min_ind+binning/2:binning:max_ind-binning/2; 

% E = E(1:end) .* 1e-3; 

% x = x(1:end) .* 1e6; 

% s = s(1:end) .* 1e-3; 

% errorbar(x,E,s,'LineWidth',1); 

% set(gca, 'FontSize', 12) 

% xlabel('Indentation (\mum)') 

% ylabel('Apparent Youngs Modulus (kPa)') 

% %hold all 

% E = E * 1e3; 

% fc.ext(:,1) = fc.ext(:,1) * 1e-6; 

% fc.ext(:,2) = fc.ext(:,2) * 1e-9; 

  

% Optional: plot results with force curve in plotyy style 

% x = min_ind+binning/2:binning:max_ind-binning/2; 

% E = real(E); 

% for i=length(x):-1:1 

%     if E(i) < 0 

%         E(i) = []; 

%         x(i) = []; 

%         s(i) = []; 

%     end 

% end 

% E = E(1:end) .* 1e-3; 

% x = x(1:end) .* 1e6; 

% s = s(1:end) .* 1e-3; 

% fc.ext(:,1) = fc.ext(:,1) * 1e6; 

% fc.ext(:,2) = fc.ext(:,2) * 1e9; 
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% [ax,h1,h2] = plotyy(fc.ext(:,1),fc.ext(:,2),x,E, ... 

%             @(x,y)plot(x,y,'LineWidth',3,'Color','red'), ... 

%             @(x,E)errorbar(x,E,s,'LineWidth',3,'Color','blue')); 

% axis(ax(1),[eps max(fc.ext(end,1)) eps max(fc.ext(:,2))]) 

% %axis(ax(1),[eps max(fc.ext(end,1)) eps 100]) 

% % axis(ax(1),[0 10 0 16]) 

% axis(ax(2),[eps max(fc.ext(end,1)) min(E)-max(s) max(E)+max(s)]) 

% % axis(ax(2),[eps max(fc.ext(end,1)) 0 20]) 

% % axis(ax(2),[0 10 0 1.5]) 

% set(get(ax(1),'XLabel'), 'String', 'Indentation (\mum)', 'FontSize', 14) 

% set(get(ax(1),'YLabel'), 'String', 'Force (nN)', 'FontSize', 14) 

% set(get(ax(2),'YLabel'), 'String', 'Apparent Youngs Modulus (kPa)', 

'FontSize', 14) 

% set(ax(1), 'YTickMode', 'auto', 'FontSize', 12, 'box','off') 

% set(ax(2), 'YTickMode', 'auto', 'FontSize', 12) 

% hold all 

% E = E * 1e3; 

% fc.ext(:,1) = fc.ext(:,1) * 1e-6; 

% fc.ext(:,2) = fc.ext(:,2) * 1e-9; 

  

% Optional: reconstruct the piecewise force curve and plot it and get sse 

% ext_predicted = []; 

% for i=1:nbins 

%     first = get_index(fc.ext(:,1), min_ind+binning*(i-1)); 

%     last = get_index(fc.ext(:,1), min_ind+binning*i); 

%     ext = fc.ext(first:last,:); 

%     ext_pred = [ext(:,1) (E(i)/(1-nu^2)).*lams(first:last)']; 

%     ext_pred(:,2) = ext_pred(:,2) - (mean(ext_pred(:,2))-mean(ext(:,2))); 

%     ext_predicted = [ext_predicted; ext_pred]; 

%     sse(i) = sum(abs(ext_pred(:,2)-ext(:,2)))/length(ext(:,1)); 

% end 

% fc2 = zero_contact(curve,contact); 

% plot(fc2.ext(:,1)*1e6, fc2.ext(:,2)*1e9, 'LineWidth', 3, 'color', 'red') 

% hold on 

% plot(ext_predicted(:,1)*1e6, ext_predicted(:,2)*1e9, 'LineWidth', 3, 'color', 

[0 .5 0]); 

% set(gca, 'FontSize', 12) 

% xlabel('Indentation [\mum]') 

% ylabel('Force [nN]') 

  

% Optional: plot the a's to see contact radius as a function of 

% indentation depth 

% plot(fc.ext(:,1)*1e6, as'*1e6, 'LineWidth', 4); 

% xlabel('Indentation [\mum]', 'FontSize', 14); 

% ylabel('Contact Radius [\mum]', 'FontSize', 14); 

% set(gca, 'FontSize', 12) 

  

  

end 
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dhaliwal_rau.m 

% dhaliwal_rau.m 

% Bryant L. Doss, Robert Ros 

% 

% Designed in MATLAB R2012a, also works in MATLAB R2014a. 

% PREREQUISITE: Fie package by Atkinson, Shampine for solving 

% Fredholm Integral Equations of the Second Kind in MATLAB, to obtain 

% see the references 

%  

% Generates a force curve for a two-layer system (top layer defined by E1, 

% nu1, height h; bottom layer defined by E2,nu2, height extends to -Inf). 

% Relavent literature for the procedure: 

% I.N. Sneddon, Int. J. Eng. Sci. 3 47-57 (1965) 

% R.S. Dhaliwal and I.S. Rau, Int. J. Engng. Sci. 8, 854-856 (1970) 

% B.B. Akhremitchev and G.C. Walker, Langmuir 15, 5630-5634 (1999) 

% K.E. Atkinson and L.F. Shampine, ACM Trans. Math. Softw. 34, 21 (2008) 

% 

% The tip shape has several options -- 'parabolic' for standard Hertzian 

% indenter, 'conical', 'hyperbolic', 'briscoe', and 'spherocone'. r is the 

% tip apex radius and theta is the axisymmetric cone angle 

% 

% Input parameters -- SI units [Pa,m,radians]: 

%  E1: the Young's modulus of the top layer 

%  nu1: the Poisson's ratio of the top layer 

%  E2: the Young's modulus of the bottom layer 

%  nu2: the Poisson's ratio of the bottom layer 

%  h: the height of the top layer 

%  r: the radius of the indenter probe (does not matter for conical) 

%  theta: the half-angle of the indenter probe, units are radians 

%  type: the indenter probe geometry type, supported types: 

%       parabolic: Hertz model 

%       conical: Sneddon model 

%       hyperbolic: a hyperbola 

%       briscoe: Briscoe's blunted cone model 

%       spherocone: sphrical tip, transitions to cone continuosly 

%       cylindrical: a cylinder 

%       sphere: a sphere 

%  mesh: indentation points at which the forces will be calcualated 

% Output parameters -- SI units [m,Pa]: 

%  fc: force-indentation curve, fc.ext is a n-by-2 array [indentation,F] 

%  as: contact radius, n-by-2 arrray [indentation,a] 

% 

% Example: Hertz model indentation, 1kPa+10um top layer, 10kPa bottom, 

%          both are incompressible, bead radius is 2.5um, every 10nm to 1um 

% f=dhaliwal_rau(1e3,0.5,1e4,0.5,10e-6,2.5e-6,1,'parabolic',0:10e-9:1e-6); 

% plot(f.ext(:,1),f.ext(:,2); 

  

  

function [fc, as] = dhaliwal_rau(E1,nu1,E2,nu2,h,r,theta,type,mesh) 

  

% Sanity checks 

if E1 < 0 

    E1 = 1.0; 

end 

if E2 < 0 

    E2 = 1.0; 

end 

  

% The function H converges very fast, set the maximum 

max = 1e15; 
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if mesh(1) == 0 

    mesh = mesh(2:end); % get rid of 0 meshpoint 

end 

  

% Define parameters and functions 

mu = (E1./(2.*(1+nu1))) ./ (E2./(2.*(1+nu2))); 

b = ((3-4.*nu1)-mu.*(3-4.*nu2)) ./ (1+mu.*(3-4.*nu2)); 

c = (1-mu) ./ (mu+3-4.*nu1); 

H = @(x) -(b+c.*(1+x).^2+2.*b.*c.*exp(-x)) ./ ... 

          (exp(x)+b+c.*(1+x.^2)+c.*b.*exp(-x)); 

  

as(1,:) = [0 0]; % array for 2-layer contact radii 

a0s(1,:) = [0 0]; % array for homogeneous contact radii 

curve(1,:) = [0 0]; % array for force-indentation curve 

  

for i=1:length(mesh) % iterate over the mesh 

    % Optional: display progress 

%     disp(['Indentation step: ' num2str(mesh(i))]) 

  

    % Find the supported type, get beta and a0 (initial guess at contact) 

    if strcmp(type, 'parabolic') 

        f = @(x,a) (a.^2./(2.*r)).*x.^2; 

        beta = @(t,a) a.^2.*t.^2./r; 

        a0 = sqrt(r.*mesh(i)); 

         

    elseif strcmp(type, 'conical') 

        f = @(x,a) x .* cot(theta); 

        beta = @(t,a) (1/2) * pi * t * a * cot(theta); 

        a0 = 2 * mesh(i) * tan(theta) / pi; 

         

    elseif strcmp(type, 'hyperbolic') 

        f = @(x,a) r.*cot(theta).^2.*(sqrt(a.*x./(r.*cot(theta).^2) + 1) - 1); 

        beta = @(t,a) t.*a.*cot(theta).*atan(a.*t.*tan(theta)./r); 

        a0 = sqrt(r.*mesh(i)); 

        afn = @(a) real(mesh(i) - (a.*cot(theta)./2) * (pi/2 + 

atan(a./(2.*r.*cot(theta)) - r.*cot(theta)./(2.*a)))); 

        a0 = fzero(afn,a0); 

         

    elseif strcmp(type, 'spherocone') 

        b = r*cot(theta) / sqrt(1+cot(theta)^2); 

        beta = @(t,a) (t <= b./a) .* (1/2).*a.*t.*log((r+a.*t)./(r-a.*t)) ... 

            + (t > b./a) .* (a.*t.*log((r+a.*t)./(sqrt(r^2-

b^2)+sqrt(a.^2.*t.^2-b^2))) + a.*t.*acos(b./(a.*t))*cot(theta)); 

         

        % Use a0 of hyperbolic function 

        a0 = sqrt(r.*mesh(i)); 

        afn = @(a) real(mesh(i) - (a.*cot(theta)./2) * (pi/2 + 

atan(a./(2.*r.*cot(theta)) - r.*cot(theta)./(2.*a)))); 

        a0 = fzero(afn,a0); 

        afn = @(a) real(mesh(i) - ((1 <= b/a) * (1/2)*a*log((r+a)/(r-a)) ... 

            + (1 > b/a) * (a*log((r+a)/(sqrt(r^2-b^2)+sqrt(a^2-b^2))) + 

a*acos(b/a)*cot(theta)))); 

        a0 = fzero(afn,a0); 

         

    elseif strcmp(type, 'briscoe') 

        b = r * cos(theta); 

        m = 1/2; 

        n = 1; 

        beta = @(t,a) (t <= b./a) .* (a^2.*t.^2./r) ... 

            + (t > b./a) .* (a.^2.*t.*(-sqrt(t.^2-b^2./a.^2)+t)./r + 

a.*t.*acos(b./(a.*t))*cot(theta)); 
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        a0 = sqrt(r.*mesh(i)); 

        afn = @(a) real((mesh(i) + (a/r)*((a^2-b^2)^(1/2)-a) - ... 

                 (n*a/tan(theta))*((pi/2)-asin(b/a)))); 

        a0 = fzero(afn,a0); 

         

    elseif strcmp(type, 'cylindrical') 

        beta = @(t,a) a*t*0; 

        a0 = r; 

     

    elseif strcmp(type, 'parabocone') 

        b = r * cot(theta); 

        beta = @(t,a) (t <= b ./ a) .* (a^2.*t.^2./r) ... 

            + (t > b./a) .* ((a.^2.*t.*(t - sqrt(t.^2 - (b.^2/a.^2))) ./ r) + 

a.*t.*acos(b./(a.*t))*cot(theta)); 

        a0 = sqrt(r.*mesh(i)); 

         

    elseif strcmp(type, 'sphere') 

        beta = @(t,a) (1/2).*a.*t.*log((r+a.*t)./(r-a.*t)); 

        a0 = sqrt(r.*mesh(i)); 

         

    % These are more experimental, basically this has some information 

    % regarding sample geometry as well... 

    elseif strcmp(type, 'sphere-sphere') 

        q = 8e-6; 

        beta = @(t,a) (1/2).*a.*t.*log((r+a.*t)./(r-a.*t)) + 

(1/2).*a.*t.*log((q+a.*t)./(q-a.*t)); 

        a0 = sqrt(r.*mesh(i));     

    elseif strcmp(type, 'spherocone-sphere') 

        b = r*cot(theta) / sqrt(1+cot(theta)^2); 

        q = 7e-6; 

        beta = @(t,a) (t <= b./a) .* ((1/2).*a.*t.*log((r+a.*t)./(r-a.*t)) + 

(1/2).*a.*t.*log((q+a.*t)./(q-a.*t))) ... 

                    + (t  > b./a) .* 

(a.*t.*log(((q+a.*t).*(r+a.*t))./((sqrt(r.^2-b.^2)+sqrt(a.^2.*t.^2-

b.^2)).*(sqrt(q.^2-b.^2)+sqrt(a.^2.*t.^2-b.^2)))) +  

a.*t.*(acos(b./(a.*t)).*cot(theta)-(1/2).*log(q.^2-a.^2*t.^2)+log(sqrt(q.^2-

b.^2)+sqrt(a.^2.*t.^2-b.^2)))); 

        afn = @(a) real(mesh(i))-real(beta(1,a)); 

        a0 = fzero(afn,eps+sqrt(r.*mesh(i))); 

         

         

    else 

        disp('Type not supported') 

        return 

    end 

    % End probe selection 

     

    % Populate a0 array, scale a0 based on previous meshpoint 

    % This is just handy for speeding up the computation quite a bit 

    a0s(i+1,:) = [mesh(i) a0]; 

    if i > 2 

        a0 = a0 * as(i,2)/a0s(i,2); 

    end 

     

    % Define some functions for the Fie call 

    K = @(x,t,a) 2.*quadv(@(u)H(2.*u).*cos(a.*t.*u./h).*cos(a.*x.*u./h), 0, 

max, 1e-9); 

    lam = @(a) -h .* pi ./ a; 

    rhs = @(t,a) lam(a) .* ((-E1 .* a) ./ (2 .* (1 - nu1^2))) .* (mesh(i) - 

real(beta(t,a))); 
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    % Optional: add some adhesion, this is not really proven to be correct 

%     G = 5e-4; 

%     rhs = @(t,a) lam(a) .* ((-E1 .* a) ./ (2 .* (1 - nu1^2))) .* (mesh(i) - 

real(beta(t,a)) + sqrt(2.*G.*pi.*a.*(1-nu1.^2)/E1)); 

     

    % Define some more functions for the Fie call 

    phifn = @(a) Fie(lam(a), eps, 1, 1, @(x,t)K(x,t,a), @(x)rhs(x,a), 1e-13, 

1e-10); 

    getlast = @(t) t.x(end); 

     

    if strcmp(type, 'cylindrical') % for cylindrical probe, a=a0 always 

        a = a0; 

    else 

        % find the contact radius by finding root of the Fie call 

        a = fzero(@(x) getlast(phifn(x)), a0, optimset('TolX', 1e-10)); 

    end 

     

    % Now that a is known, solve for F 

    phi = phifn(a); % use Fie with known a 

    F = 4 * -trapz(phi.s, phi.x); % calculate F 

    as(i+1,:) = [mesh(i) a]; % populate a 

    curve(i+1,:) = [mesh(i) F]; % populate curve 

     

end 

  

fc.ext = curve; % return the force curve 

  

end 
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rotation_minimum.m 

 
% rotation_minimum.m 

% Automatic contact point determination 

  

% Basically introduce a virtual deflection then pick the "minimum point 

% forcescale/lengthscale is the virtual deflection magnitude, this can be 

% optimized somehow (for future work?) 

  

% Input parameters -- SI units [Pa,m,radians]: 

%  incurve: the force-curve structure 

%  degree: amount of rotation 

% Output parameters -- SI units [m,Pa]: 

%  contact: the contact point 

  

function contact = rotation_minimum (incurve, degree) 

    if nargin < 2 

        degree = 3; 

    end 

     

    forcescale = (incurve.ext(end,2) - incurve.ext(1,2)) / degree; 

    lengthscale = incurve.ext(end,1) - incurve.ext(1,1); 

     

    % Basically fabricate a virtual deflection for the enitre curve 

    scale = forcescale / lengthscale; 

    rotcurve = incurve; 

    rotcurve.ext(:,2) = rotcurve.ext(:,2) - rotcurve.ext(:,1) * scale; 

     

    % Find the minimum in the rotated curve, which is our contact         

    % point 

    [~, index] = min(rotcurve.ext(:,2));         

    contact = rotcurve.ext(index,1); 

     

    % Optional: plot 

%     plot(incurve.ext(:,1),incurve.ext(:,2), 

rotcurve.ext(:,1),rotcurve.ext(:,2)); 

%     hold on 

%     plot(contact, incurve.ext(index,2), 'kx', 'LineWidth', 2); 

     

end 

 

 


