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ABSTRACT 

The prevalence of renewable generation will increase in the next several decades 

and offset conventional generation more and more. Yet this increase is not coming 

without challenges. Solar, wind, and even some water resources are intermittent and 

unpredictable, and thereby create scheduling challenges due to their inherent 

“uncontrolled” nature. To effectively manage these distributed renewable assets, new 

control algorithms must be developed for applications including energy management, 

bridge power, and system stability. This can be completed through a centralized control 

center though efforts are being made to parallel the control architecture with the 

organization of the renewable assets themselves—namely, distributed controls. Building 

energy management systems are being employed to control localized energy generation, 

storage, and use to reduce disruption on the net utility load. One such example is 

VOLTTRONTM, an agent-based platform for building energy control in real time. In this 

thesis, algorithms developed in VOLTTRON simulate a home energy management 

system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch 

strategies are implemented to reduce energy charges from overall consumption ($/kWh) 

and demand charges ($/kW). Dispatch strategies for implementing storage devices are 

tuned on a month-to-month basis to provide a meaningful economic advantage under 

simulated scenarios to explore algorithm sensitivity to changing external factors. 

VOLTTRON agents provide automated real-time optimization of dispatch strategies to 

efficiently manage energy supply and demand, lower consumer costs associated with 

energy usage, and reduce load on the utility grid.   
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Chapter 1. Introduction 

Fossil fuels have long been the mainstay of the energy economy. In 2012, fossil 

fuels made up about 80% of the resources used to meet the energy demand and account 

for 70% of electricity generation (IEA, 2014). Yet future projections indicate that 

renewable resources such as solar photovoltaic (PV), wind, and hydro-electric energy 

will increase in prevalence in the United States and across the world (Ellabban, Abu-Rub, 

& Blaabjerg, 2014). This increase in renewable energy generation is often purported to be 

the result of declining costs and reduced environmental impact (Ellabban, Abu-Rub, & 

Blaabjerg, 2014). 

Yet the advantages to renewables come with a few challenges. Much of these 

challenges stem from renewable resource intermittency and hence the inability to control 

output. For example, solar PV energy generation is highest on clear days with dips in 

power output with intermittent cloud cover, and wind energy generation fluctuates with 

changing wind conditions. These factors create variability on how much power is 

available for consumption at any given time. Electric utility companies must provide 

sufficient operating reserve to maintain power reliability and mitigate renewable 

intermittency. This is sometimes known as bridge power, which is provided by 

generation or storage assets to “bridge” periods of change in the system net load caused 

by dramatic decreases (or increases) in power output from renewables, power output 

from conventional sources (as in the case of a unit failure), or spikes in demand. The 

intermittency associated with on-site power generation, as with rooftop solar PV on 
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households, can be mitigated through localized storage, controlling inverter power 

output, and load management. 

Household loads change throughout the day with typical peaks occurring in the 

morning and evening as residents wake up, leave for work/school and return home from 

work/school, respectively. Greater changes occur on smaller minute-to-minute intervals. 

This higher-resolution data is suitable for capturing changes in large loads, such as in 

summer months when air conditioning units switch on and off. These fluctuations may be 

more pronounced when looking at the aggregate demand of multiple buildings. These 

aggregate effects are translated to the electric utilities and prompt the utilization of 

“peaker plants” that are used only periodically during the year to provide power during 

periods of high demand. These units often have a higher cost of energy than typical base 

loading stations. Utilities commonly apply differential rate structures to prompt users to 

reduce their usage during times when demand is peaked. Users can take advantage of 

changing rates and employ demand response control mechanisms to reduce power usage 

in high-cost periods of day, or move power usage from high-cost period to low-cost 

periods in a practice known as load shifting. 

Energy storage devices and advanced energy management devices have facilitated 

the effort to shift loads to different times of day (Nottrott, Kleissl, & Washom, 2013). 

Demand response helps users reduce cost during peak times and if implemented on a 

larger scale, could help reduce pre-set time-of-use (TOU) costs. Several storage devices 

featuring electrochemical, flywheel, pumped hydro-electric, and compressed air 

configurations can be used to store excess energy production when it is available and then 
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offload energy as needed to meet demand (Koohi-Kamali, et al., 2013). Load shifting 

involves scheduling times when deferrable loads operate to off peak times when non-

deferrable load is relatively low. Controlling these two factors forms the basis of 

renewable resource control algorithms and technology. 

This paper develops, implements, and tests the efficacy of dispatch strategies for a 

solar-storage energy management system implemented on a single household with the 

objective to reduce energy costs and shave the net household peak load. These goals are 

accomplished by implementing a set of control algorithms within a multi-agent 

environment called VOLTTRON™. Simulations are implemented using data read to-

from file with the software architecture and interfaces developed for application in a run-

time environment on an operational system. 
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Chapter 2. Background 

2.1 High Penetration Renewables 

Considering the multiplicity of factors involved in the highly complex 

infrastructure of today’s power systems, integrating renewable resources is challenging 

and takes considerable time and effort. Numerous studies have been focused on the 

subject resulting in a vast compilation of literature sources. The ultimate goal of these 

studies is to effectively control the way renewable energy is harvested, distributed, and 

transmitted such that utility generation costs are reduced and the overall consumption of 

non-renewable resources is decreased. 

Although higher renewable penetration has the potential to reduce dependence on 

fossil fuels (conserve non-renewable energy), they do not necessarily reduce energy 

demand (Yalcintas & Kaya, 2009). Power consumption (energy demand) is dependent on 

the efficiency and number of devices using electricity at any given time. It is suggested 

that retrofitting inefficient or constructing more efficient buildings should accompany, or 

precede, increased penetration of renewable power sources (Yalcintas & Kaya, 2009). 

Yalcintas & Kaya provide evidence that the payback time of retrofitting can be 

significantly less than the payback time associated with PV solar array installation, 

depending on what retrofitting options are available (2009). Consequently, it can be 

reasoned that reducing the instantaneous energy demand of buildings will also reduce the 

required initial investment of renewable power generation sources, providing shorter 

overall payback times. 
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When cost effective, higher renewable penetration will be realized either by 

centralized or distributed renewable power generation. Centralized generation assets 

require large PV arrays or wind farms where large amounts of power can be generated 

and transmitted to off-site locations or stored in large energy banks. Distributed 

generation assets commonly include small-to medium-sized residential and commercial 

PV arrays and wind mills where power is generated on-site and may then be used on-site 

or sent back to the utility if the energy generation output exceeds local power 

consumption. However, challenges to distributed generation may arise when trying to 

implement large amounts of distributed renewable power sources such as: higher 

installation costs associated with specialized technology, custom engineering, 

development of interconnection standards, control and protection hardware, and 

maintaining synchronization with the utility grid (Bauzid, et al., 2015). 

2.2 Building Energy Systems 

Research initiatives have been driven by environmental concerns and Government 

regulations such as those that have recently been imposed in Europe regarding net-zero 

energy buildings (NZEBs) (Kylili & Fokaides, 2015). This legislation calls for buildings 

to reduce energy usage by 20% by the year 2020 (European Union, 2010). Similar goals 

have also been set in California which aims to reduce energy usage by 20% in residential 

buildings by 2020 and in commercial buildings by 2030 (Deng, Wang, & Dai, 2014). 

Broadly, a NZEB is a building with significantly reduced energy needs (Cawley, Pless, & 

Torcellini, 2009). With enough renewable energy generation and more efficient building 
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design, net zero energy sites can be made into net positive sites. Four definitions of 

NZEBs, adapted from (Torcellini, et al., 2006), are given as follows: 

1. Net Zero Energy Site: Energy generated on-site is at least as great as the 

amount of energy the site uses over a one year period.  

2. Net Zero Source Energy: Annual energy generated is equal to the amount of 

annual energy used in reference to the source. In these cases, the energy 

imported and exported is multiplied by a multiplication factor to account for 

energy losses incurred during conversion, storage, and transmission. 

Conditions for a net zero energy site may be reached when a site is not net 

zero in source energy, and vice versa, depending on the source of energy and 

associated losses. 

3. Net Zero Energy Costs: The credit of generating energy on site is equal to or 

greater than the cost to buy energy from the utility over the course of one year. 

4. Net Zero Emissions: The amount of emission-free energy produced in one 

year is equal to or greater than the amount of energy generated in one year 

from emission producing sources.  

To handle distributed power sources, microgrid power structures have emerged as 

a viable energy control network (Bauzid, et al., 2015). Cox & Considine define 

microgrids as a “group of devices with self-management, and optionally storage, 

generation, and consumption of energy” (2013). Energy distribution can be controlled 

such that energy requirements from the larger grid system (if connected) remain 

relatively constant (Bauzid, et al., 2015). A microgrid structure could consist of a single 
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NZEB or the integration of several NZEBs. Ideally, following the “Net Zero Energy Site” 

definition, a microgrid structure could operate independently of the larger grid system 

and function normally in the case of a black-out condition. In any case, microgrid 

networks utilizing renewable energy control try to handle three levels of power 

fluctuations including: 

 Power Arbitrage (hours): shifting certain loads to different times to take 

advantage of differences in TOU rates. 

 Bridge Power (minutes): relating to power intermissions where back-up systems 

may need to be turned on or loads need to be reduced to handle instances of 

decreased power generation or power generation failure. This may be resulting 

from sudden power disruptions due to clouds and other objects passing over PV 

arrays and sudden changes in wind speeds for wind turbines (Beaudin, et al., 

2015) 

 Power Quality control (seconds): relating to brief power intermissions where 

voltage and frequency fluctuate and a fast response time is required to maintain 

system stability and keep voltage and frequency levels within tight tolerances. 

Power stability is critical in applications such as large datacenters that are 

sensitive to even small voltage fluctuations or changes in frequency. 

Handling power fluctuations in most situations requires some sort of back up 

storage device. Several options for storage systems exist such as pumped hydro-storage, 

compressed air, electrochemical, superconducting magnetic, hydrogen, flywheels, 

capacitors, and supercapacitors (Beaudin, et al., 2015). Each of these have different 
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advantages and disadvantages which can be readily found in literature (Beaudin, et al., 

2015) (Koohi-Kamali, et al., 2013). Different devices are better suited to meet different 

arbitrage, bridge power, and power quality requirements.  

The ability to utilize power arbitrage has more to do with device capacity than 

response time. On the other hand, bridge power and power quality control are more 

reliant on device response time. Storage device functions relating to arbitrage include 

renewables capacity firming, renewables contractual time of production payments, 

smoothing macroscale wind variations, peak shaving, central generation capacity, and 

TOU cost management (Beaudin, et al., 2015). These only require response times 

measured in minutes or hours making pumped hydro-storage and compressed air viable 

storage options (Schoenung, 2001). Managing bridge power requirements require 

response times in the minutes to seconds range to handle functions such as transmission 

congestion relief, demand charge management, spinning reserves, providing 

uninterruptible power supply, and for emergency back-up systems (Beaudin, et al., 2015). 

To manage power quality, device response times are measured in terms of 

seconds and portions of duty cycles and handle functions like smoothing microscale 

generation assets like wind turbines, removing effects of intermittent clouds on PV, and 

other stochastic factors that affect frequency and voltage (Beaudin, et al., 2015). Since 

the response time for bridge power and power quality are smaller, devices such as 

batteries, flywheels, and capacitors are better suited (Schoenung, 2001). Pepermans et al. 

also suggests energy security issues relating to the natural variability of renewable 
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distributed power sources that then require more extensive back-up systems to maintain 

grid stability and power quality delivered to loads (2005). 

Many residential and commercial units employ rooftop PV array panels to 

generate electricity. In 2014 there was a 30% increase in PV installations resulting in 

over 600,000 homes and businesses having on-site solar with total capacity reaching 

6,201 MWdc (GTM Research/SEIA U.S. Solar Market Insight, 2014). These installations 

provide residential and commercial buildings with renewable power during the daytime 

and can offset the costs of loads that are on during the daytime, such as HVAC units. 

They can also provide opportunity for other deferrable loads to be turned on during the 

daytime when there is extra PV power. Although on the decline, the greatest hindrance to 

implementing such systems is the initial cost of PV system installation, which at the end 

of 2014 was $3.48/Wdc for residential units and $2.25/Wdc for commercial units (GTM 

Research/SEIA U.S. Solar Market Insight, 2014).  

Although they add to the initial investment and increase maintenance costs of 

renewable energy generation systems, storage devices may provide more power stability 

and power arbitrage opportunities. Extra renewable energy generated can be stored for 

later use or energy from the grid can be stored when the cost of energy is low. Despite 

these advantages, it is not always cost effective to implement energy storage. This is 

particularly true in winter months when rate structures are fairly constant. However, as 

many electrochemical batteries are seeing a reduction in price and increase in capacity, 

particularly lithium based technologies, more batteries may be used in home energy 

management systems (Yoshino, 2014). Johnson et al. points out that in order for batteries 
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to be utilized most effectively, a 90% reduction in initial cost must be realized (2011). 

However, other ancillary uses, such as back-up storage and power regulation may justify 

their use (Johnson, Lilienthal, & Shoechle, 2011). 

Strategies for energy management have included controllers that manage when 

various loads are on and off. Many such devices can be programmed by the user based on 

their personal preferences while other “smart” devices such as the NEST thermostat 

(www.nest.com) utilize learning algorithms to adjust load settings to optimize user 

comfort and reduce overall energy demand. Such devices are often stand-alone units and 

only have control over single loads. A household energy management system may collect 

data from multiple loads, on-site power generators and online sources to handle power 

distribution. In contrast, centralized energy management systems used by utilities are not 

capable of managing individual loads. Rather, utilities monitor system-wide variations in 

demand and respond automatically or manually by reducing energy generation or by 

bringing additional energy generation assets online. Utilities also manage energy by 

providing varying rate structures and incentives for users to reduce their overall load, 

load variability, or both. 

Although microgrid networks and household energy management systems aim at 

reducing local reliance on the utility grid, there are also economic opportunities for 

distributed energy sources and microgrid networks (Rahimi & Ipakchi, 2012). Recently, 

terms such as “Transactive Energy” have been used to lump the movement from 

centralized utility networks to distributed energy networks. The term transactive energy 

refers to the utilization of energy as a commodity with market value. Energy is bought 
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and sold among different parties that either produce, consume, store, or transport energy 

within an energy based economy (Cazelet, 2014). Similar to monetary economics, energy 

related services can either be paid for in advance, or in real time. When paid in real-time, 

pricing variability depends on the supply and demand of energy (Cazelet, 2014). In 

addition to energy transactions, in a transactive energy market there needs to be an 

exchange of information between systems, devices, and users for purposes of enrollment, 

scheduling, monitoring and control (Rahimi & Ipakchi, 2012). It is projected that 

transactive energy market strategies will be deployed over the next several years, but will 

not reach maturity for several decades (Cazelet, 2014). 

2.3 Electricity Rate Structures 

 Implementation of distributed renewable resources put increased strain on utility 

companies as energy sales decrease and power stability concerns increase (Hledik, 2014). 

Consequently, utility companies are seeking new ways to increase their revenue. One 

option utility companies have implemented is to increase their fixed service charges. This 

is of less concern to users who already face substantial energy costs, but to those with 

relatively small energy costs, or are implementing renewable resource generation 

facilities, this is problematic (Hledik, 2014). For NZEB sites measured by cost, higher 

fixed charges will require more generation sources to offset utility charges. Such charges 

also provide little incentive to reduce overall demand. 

Most utilities offer basic rate plans that have a constant rate throughout the day. 

The average rate of electricity in the U.S. in 2013 was $10.1/kWh (U.S. Energy 

Information Association, 2015). Often these rates will increase or decrease depending on 
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the season with summer days incurring higher rates. To influence users to reduce their 

energy use during times of high demand, utility companies often offer time of use (TOU) 

“peak time” rates. These rates vary from different utilities and have different associated 

times with many utilities offering multiple rate structure options. Utility companies 

determine these rates based on fairly predictable daily regional demand fluctuations and 

on historical trends. During these peak times, or times of higher load, the power company 

must supply more power to meet increased demand providing incentive for many users to 

reduce their load during peak times. This type of rate structure provides incentive for 

users to employ renewable resources to reduce the amount of required energy from the 

grid during peak times and even sell back energy to the utility company if such options 

are available (Ratnam, Weller, & Kellett, 2015). 

Commercial and industrial buildings also face demand charges resulting from 

sudden, and often drastic, increases in power consumption as large machines are turned 

on. Demand charges involve a monthly charge based on peak usage over 15 minute 

intervals (Nottrott, Kleissl, & Washom, 2013). On utility bills, these charges are usually 

separate from charges associated with total energy usage. Residential units may also start 

facing demand charges as utility companies try to reduce the maximum required output 

on their generation facilities (Hledik, 2014) 

2.4 Real Time Operation 

With PV and other renewables being generated and stored on site, loads can be 

shifted to mitigate the load spikes incurred on and managed by utility companies. These 

demand response mechanisms are the focus of many control algorithms implemented in 
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renewable resource management technologies. Many utility companies employ a 

supervisory control and data acquisition (SCADA) system to manage energy transmission 

and distribution (Mehta & Reddy, 2015). This type of system provides a hierarchal 

control network usually consisting of three levels. The first, or lowest level consists of 

instrumentation and control devices; the second level consists of remote terminal units 

(RTUs) that collect data and control local equipment; and the third level consists of a 

master terminal unit (MTU) that sends commands, collects and stores data, and interfaces 

with the operator (Nan, Eusgeld, & Kroger, 2013). This type of system is ideal for 

microgrid applications as it allows for localized control and distributed generation 

networks. Nan, Eusgeld, & Kroger suggests an agent based model to simulate the 

interactions occurring within the system and discusses vulnerability issues that arise 

when elements of the system are disrupted (2013). A similar system implementing 

programmable logic controllers is described by Figueiredo & Sa da Costa, in this system 

energy waste is minimized using a predictive controller developed in Matlab 

(www.mathworks.com) (2012). 

Another method of control that is decentralized utilizes agent based modeling. 

Agent based modeling and Multi-Agent Systems (MAS) in and of themselves do not rely 

upon a centralized control mechanism to function (Lockemann, Kirn, & Herzog, 2006). 

They are capable of interacting and responding to non-deterministic environments 

without requiring information about the entire system as a whole (Lockemann, Agents, 

2006). Such a network may be ideal for distributed renewable resource generation 

networks reliant upon stochastic weather conditions. According to Yoo, et al., 
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“Compared to the conventional centralized control, multi-agent systems (MASs) 

have strengths to distribute computational burden to local agents and can consider 

the characteristics of individual entities by using intelligent algorithms. The 

agents can obtain information by monitoring local systems and spontaneously 

communicating with other agents. The agents can make a decision on behalf of 

microgrid entities with artificial intelligence through negotiating and cooperating 

with other agents.” (2013) 

Lagorse, Paire, & Miraoui also suggests that an agent based design that implements a 

“bottom-up” approach is more flexible than a centralized “top-down” approach because it 

requires less adjustment when new elements are added (2010). MAS are also more 

suitable for transactive energy markets where agents within a microgrid structure bid for 

energy resources according to their needs and cost structures (Olivares, Canizares, & 

Kazerani, 2011).  

 The flexibility and modularity of multi-agent systems has inspired the 

development of a platform called VOLTTRON specifically designed to support multi-

agent based microgrid control. VOLTTRON was developed at Pacific Northwest 

National Laboratory (PNNL) to provide an environment to build interconnected power 

grids on a localized scale. According to Akyol, et al., “the intended use of VOLTTRON 

is in the distribution system for managing distributed generation, demand-response, and 

plug-in electric vehicles” (2012). VOLTTRON allows for multiple agents to 

communicate via an information exchange bus (IEB) to publish and subscribe to 

information regarding their current status and needs. Although written in Python™ 
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(www.python.org), VOLTTRON is language agnostic and utilizes ZeroMQ™ 

(www.zeromq.org) to allow diversity in agent developmental languages such that agents 

can be written in languages other than python and still communicate via the IEB (Haack, 

et al., 2013).  

Agents within the VOLTTRON framework can be classified under one of three 

general groups: platform agents, cloud agents, and control agents. Platform agents are 

those that are embedded in the platform itself and perform service for other agents. Cloud 

agents interact with remote applications such as online weather services like Weather 

Underground (www.wunderground.com). Control agents interface with devices such as 

PV arrays and employ Modbus and BACNET device drivers (Haack, et al., 2013). 

When a device has an energy need, it publishes that need on the IEB along with a 

priority for meeting that need. Three priority levels exist within the VOLTTRON 

framework, namely HIGH, LOW, and LOW PREEMPT. Energy requests with HIGH 

priority receive first rights to available energy. Such requests can come from non-

deferrable loads such as lighting or kitchen appliances. When energy is requested from 

these loads, energy is immediately supplied to the load and other loads with lower 

priority may be turned off. Requests with LOW priority, such as an HVAC unit may be 

asked to wait to be turned on if they have not been activated yet, but once an on cycle has 

started, cannot be turned off. Requests with LOW PREEMPT priority can be turned off at 

any time when preempted by a HIGH priority request (Pacific Northwest National 

Laboratory, 2014). Requests with LOW PREEMPT priority may come from devices like 

a PEV, electric water heater, or pool pump. Priority can also be determined based on 



 

 

16 

circumstance. For example, if a PEV battery is depleted and it is early in the morning, a 

request to charge the PEV may have a higher priority. A microgrid network in such a 

configuration allows for loads within a single unit, or across multiple units to be 

regulated to maintain a more even system-wide energy demand. 

2.5 Summary 

 Renewable penetration is increasing at a steady pace and will continue to do so 

for several decades. With increased renewable penetration will come increased building 

efficiency and incentives to retrofit inefficient buildings and install distributed renewable 

resource generators. Distributed generation facilities will bring with them added 

complexity as utility companies struggle to provide adequate infrastructure and power 

system stability. Utilities compensate increased maintenance costs with various rate 

structures and demand charges adding economic strain on many energy users. To reduce 

this strain, the goal of many energy management systems is to become less reliant on the 

utility grid and provide more even load profiles. Several countries have employed 

initiatives for NZEBs to be implemented. These buildings will feature efficient 

appliances and construction and on site renewable generation technology to offset energy 

demands and costs imposed by the utility grid. 

 In addition to efficient buildings and renewable generation facilities, real-time 

control schemes are being implemented to reduce and stabilize energy demand. SCADA 

systems implement a hierarchal control network with multiple units receiving and 

transmitting information about local energy demand and system performance. Although 

effective, MAS may provide a better solution to handle complex distributed load 
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networks. VOLTTRON is a MAS designed to support microgrid networks by 

implementing a priority based IEB to exchange information regarding energy needs and 

environmental conditions. It is the goal of this study to demonstrate some of the basic 

capabilities of VOLTTRON in developing control agents and simulating how the agents 

would respond to varying load conditions to reduce user costs associated with power 

consumption and demand charges. 
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Chapter 3. Methodological Approach 

The main objectives of this study are to (1) increase renewable resource 

utilization, and (2) reduce the delivered cost of energy to the user. Simulations of real 

time operation of a home energy management system are performed using the 

VOLTTRON software platform. Time series solar PV and load data is read from file, 

processed using the energy management control schemes developed herein, with results 

including control actions that address study objectives. Sensitivity analyses are performed 

on various model parameters (e.g., time-of-use electricity rates) to examine the efficacy 

of control schemes under different scenarios for a residential rate-payer. Control 

algorithm efficacy is evaluated on technical and economic merits between a reference 

case—solar PV with no intelligent controls—and a study case that includes additional 

equipment for battery storage, solar PV curtailment, load control, and a household energy 

management system with computational agents and control logic developed on 

VOLTTRON.  

3.1 Case Study Dataset 

3.1.1 Load and Solar PV Dataset 

Load data is obtained from Pecan Street (Pecan Street Inc., 2014). The Pecan 

Street database contains hourly, 15-minute, and one-minute resolution data on a variety 

of end loads and renewable energy generators for households in Austin, Houston, Dallas, 

and other parts of Texas along with Boulder, CO and San Diego, CA. One minute 

resolution is collected for a large 4518 square foot home and a PV array in the year of 
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2014. The home utilizes several devices that potentially use large amounts of energy such 

as a pool pump, and a plug-in electric vehicle (PEV).  

3.1.2 Case Study Rate Structure 

Pecan Street does not provide information regarding utility rates or demand 

charges. Because utility rate data is not provided, a hypothetical rate scheme is 

constructed. As TOU rates are of most interest in this study a 50% increase in utility 

charges is applied during peak hours. The values associated with this rate scheme are 

given in Table 1. On-Peak hours are specified as occurring from 1:00 PM to 7:00 PM 

during weekdays of summer months starting in May and extending through October. 

Winter months (November through April) do not implement peak times and have a 

constant “flat” rate throughout the entire day. The rate structure presented also allows 

energy to be “credited” back to the user. For simplicity in analysis purposes, the value of 

energy credit is equal to the TOU cost of energy. 

Table 1. Off and On Peak TOU Utility Rates ($/kWh). 

TOU Rate Period 

Winter 

(flat) 

Summer 

(Off-Peak) 

Summer 

(On-Peak) 

0.12 0.16 0.24 

 

3.2 Energy Balance and Cost Equations 

3.2.1 Energy Balance Equations 

 Energy transfer within the battery is simulated according to a series of energy 

balance equations represented in Equations 1 and 2. The battery state of charge (SOC) is 
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also calculated based on remaining battery levels and the maximum energy capacity of 

the battery according to Equation 3.  

𝐸𝑑𝑖𝑠 =
𝑡×𝑃𝑏𝑎𝑡

√𝜂
      (1) 

𝐸𝑐ℎ𝑎𝑟 = 𝑡 × 𝑃𝑏𝑎𝑡 × √𝜂    (2) 

𝑆𝑂𝐶 =
𝐸𝑟𝑒𝑚

𝐸𝑚𝑎𝑥
× 100     (3) 

where 

𝐸𝑑𝑖𝑠 = Energy Discharged from the battery (kWh) 

𝐸𝑐ℎ𝑎𝑟 = Energy charged into the battery (kWh) 

𝐸𝑟𝑒𝑚 = Energy in battery at any given time (kWh) 

𝐸𝑚𝑎𝑥 = Maximum amount of energy that can be stored in battery (kWh) 

t = time duration of interval (hr) 

𝑃𝑏𝑎𝑡 = Battery Load (- if discharging, + if charging) (kW) 

𝜂 = Battery round-trip efficiency 

SOC = Battery state of charge (%) 

3.2.2 Cost and Rate Equations 

 Power consumption and its associated costs are also calculated according to 

Equations 4 – 9. These calculations assume there is no cost in operating the battery or the 

PV array and that energy supplied by them is of zero cost when it is discharged. It should 

be noted, however, that there is a cost associated with charging the battery from the grid. 

𝑃𝑛𝑒𝑡 = 𝑃ℎ + 𝑃𝑏𝑎𝑡 − 𝑃𝑝𝑣     (4) 

𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑡 × 𝑃ℎ × 𝑅     (5) 
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𝐶𝑝𝑣 = 𝑡(𝑃ℎ − 𝑃𝑝𝑣) × 𝑅    (6) 

𝐶𝑏𝑎𝑡 = 𝑡 × 𝑃𝑛𝑒𝑡 × 𝑅     (7) 

𝑅𝑛𝑒𝑡,𝑝𝑣 =
𝐶𝑝𝑣

𝑡×𝑃ℎ
      (8) 

𝑅𝑛𝑒𝑡,𝑏𝑎𝑡 =
𝐶𝑏𝑎𝑡

𝑡×𝑃ℎ
     (9) 

where 

𝑃𝑛𝑒𝑡 = Net Load (kW) 

𝑃ℎ  = Household Load (kW) 

𝑃𝑝𝑣  = Available Photovoltaic Power (kW) 

𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = Control Cost without PV or Battery ($) 

R = TOU Rate or Utility Credit depending on load relationship to zero ($/kWh) 

𝐶𝑝𝑣 = Cost using only PV to supplement ($) 

𝐶𝑏𝑎𝑡 = Cost using PV and Battery to supplement ($) 

𝑅𝑛𝑒𝑡,𝑝𝑣 = Net Rate of Use using only PV to supplement ($/kWh) 

𝑅𝑛𝑒𝑡,𝑏𝑎𝑡 = Net Rate of use using PV and battery to supplement ($/kWh) 

3.2.3 Battery Characteristics 

The battery is assumed to be ideal in that charge and discharge rates and 

temperature do not affect battery efficiency, and there is no battery capacity degradation 

over time. This assumption results in the roundtrip efficiency and nominal voltage 

remaining fixed at 90% and 24 V respectively. Battery capacities are represented in kWh 

after a unit conversion from Amp-hours (Ah) as shown in Equation 10. Charge rates are 

presented as a percentage of the battery capacity (C) available to be discharged in a single 
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hour. For example, a charge rate of 1C would charge the entire capacity (0 – 100%) of 

the battery in one hour, a charge rate of .5C would charge the battery in two hours. 

𝑘𝑊ℎ =
𝐴ℎ×𝑉

1000
      (10) 

Where 

V = Nominal Battery Voltage 

3.3 VOLTTRON Agent Development 

VOLTTRON provides several examples and templates for developing agents 

including a step by step user guide to install the VOLTTRON platform and develop a 

simple agent (Pacific Northwest National Laboratory, 2014). Five agents are developed 

that together provide the necessary data input (monitoring and sensing), control logic, and 

data output (control signal) for energy management and bridge power applications as 

applied to the simulated single-family home. These agents communicate with each other 

and with a master home energy management system (HEMS). In the VOLTTRON 

framework, a scheduler agent would represent the HEMS and would make decisions 

regarding resource allocation. Functions of these agents are described below: 

1. Load Agent: This agent is designed to retrieve the amount of power being 

consumed at a pre-determined interval. Data input resolution when collecting 

for days and years are one minute and 15 minutes respectively. The load is 

assumed to be constant over the interval specified, resulting in an effectual 

average for that time frame. After reading in from file one instance of power 

consumption (in kW) the agent publishes its needs to the VOLTTRON IEB. 

The agent subscribes to any offers to handle the load published by other 
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agents. In simulation, the load agent makes a series of decisions based on the 

offers received. In general, these decisions consist of using any available PV 

and supplementing any remaining load requirements from other sources such 

as the battery or from the grid. 

2. PV Agent: This agent is designed to retrieve the amount of power available 

from the PV array over the same interval periods as the Load agent and is 

assumed to be constant over that interval. The agent also subscribes to 

published needs regarding load and battery availability. The PV agent offers 

to first meet any immediate loads and then offers remaining PV to the battery 

or to the grid, depending on simulation configurations. Offers to the load 

agent and battery agent are then published to the IEB. 

3. Grid Agent: This agent is designed to retrieve and publish TOU rate data at 

each interval. In simulation, the grid is assumed to be an infinite source 

capable of meeting any energy requirement at any time. Consequently, the 

grid agent does not offer any power to other agents. It is assumed that any 

remaining or requested energy needs can and will be met by the utility grid. 

4. Battery Agent: This agent is designed to represent a simple lithium-ion battery 

where energy is stored and discharged to meet load requirements. The agent 

subscribes to information concerning current power demand, rates, and solar 

PV availability. Based on the SOC of the battery and the specified battery 

dispatch strategy applied, the battery agent offers stored energy to satisfy 

energy demands or attempts to reduce peak loads. If an energy offer is 
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accepted, the battery discharges its energy to meet the demand until the 

battery SOC reaches its minimum allowable limit or it is constrained by the 

applied dispatch strategy. The amount of energy dispensed over one time 

interval is given in Equation 1. The battery is allowed to request energy to 

restore its SOC according to dispatch constraints and energy availability in 

accordance with Equation 2. SOC is calculated according to Equation 3. The 

simulated charge controller is designed to keep the SOC between 20% and 

100%. 

5. Data Agent: This agent is designed for debugging and analysis purposes and is 

not required for the other agents to operate correctly. As such, the agent only 

subscribes to data from other agents and does not publish any messages on the 

IEB. Rather, the agent collects information regarding the current load, PV 

power, rates, and the resulting distribution of energy to various agents. At 

each time interval, it performs a series of calculations to determine data 

concerning load, overall costs, and rates (see Equations 1-9). Upon 

performing calculations, data is stored in a .csv file for analysis. 

In simulation, these agents read from a file, in an actual physical system, they 

interface and control physical components. Figure 1 provides a comparison between the 

simulation architecture and how it would relate to an actual system. 
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Figure 1. Simulated and Actual System Comparison. 

3.4 Simulation Parameters 

Several simulations are conducted to examine the efficacy of the agent structure 

and control logic under different situations and to compare results with those already 

found in literature. Each agent shares usage of a settings file where case study parameters 

are specified and dispatch strategies can be altered and implemented. 

3.4.1 Static Simulation Parameters 

 

 

Table 2 provides a summary of the static parameters the agents in VOLTTRON 

employ throughout all simulation runs. The HEMS is intended to exploit these 

parameters and maximize their overall effectiveness or, in the case of demand charges, 

reduce their effects. The size of the PV array is intended to produce a net-zero annual 

load (e.g. NZEB-site). Demand charges in Austin, TX range between $5.15/kW in the 

winter and $6.15/kW in the summer (Austin Energy). For simplicity in simulation, 

demand charges remain constant throughout the year at $6.00/kW. 
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Table 2: Constant Parameters. 

Parameter 
PV array 

size (kW) 

Utility 

Credit ($) 

Demand 

Charge 

($/kW) 

Value 21 
TOU 

Rate 
6.00 

 

3.4.2 Battery Dispatch Strategies 

To model different scenarios for how to best implement energy storage, four 

dispatch strategies are implemented as shown in Table 3. Simulations are ran during first 

week, starting with the first Sunday, of January, April, July, and October to utilize 

profiles in all four seasons. During each season, a reference simulation is run that does 

not implement any kind of battery storage and relies exclusively on solar PV power to 

reduce energy usage. For comparison, simulations for 3 different battery sizes are ran as 

well. Battery sizes include a 26 kWh, 13 kWh, and a 6.5 kWh battery capable of meeting 

100%, 50% and 25% annual peak load respectively for one hour. 

Table 3. Dispatch Strategies Summary. 

CASE 
Charging 

Strategy 

Discharging 

Strategy 

BASE None None 

1A Grid and Solar PV TOU Peak time 

1B Grid and Solar PV Peak Shaving 

2A Solar PV Only TOU Peak time 

2B Solar PV Only Peak Shaving 
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The main objective of these strategies is to optimize allocation of renewable 

resources using a battery and to reduce overall user cost. Reducing cost is measured in 

terms of (1) reducing energy usage during peak hours and (2) reducing demand charges. 

Dispatch strategies are optimized by strategically controlling how a battery is charged 

and discharged. The strategies implemented in this study are given below: 

 Charging Strategies: The battery charge controller is configured to provide two 

options for charging the battery. These options include charging exclusively from 

solar PV and charging from both solar PV and the grid. Charging from the grid is 

constrained to occur between the hours of 7:00 PM and 5:00 AM when solar PV 

is least likely to be available. The charging rate of the battery when charging from 

the grid is such that the battery can be charged to 80% of its total capacity in 10 

hours (~.056C). The remaining 20% of available capacity is charged via PV 

power if available. 

 Discharging Strategies: the battery is discharged in one of two ways, it is (1) 

allowed to discharge at any rate during TOU peak hours of the day and (2) only 

allowed to discharge when power consumption exceeds a certain level. Option (1) 

is intended to focus mainly on reducing overall cost while option (2) is intended 

to shave off peak loads and reduce demand charges. Option (2) utilizes a rolling 

consumption limit based on the cumulative distribution function for each month 

of the year. The limit is set such that the battery will discharge for the top 25% of 

peak loads in that month. For reference, cumulative distribution and probability 

density functions for each month are given in appendix A. When the net energy 
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usage after solar PV is utilized exceeds this limit, the battery is allowed to 

discharge at a rate that will bring the energy usage down to that limit. 

3.4.3 Evaluation 

Control algorithm efficacy is evaluated using several technical and economic 

merits: energy cost reduction, peak load reduction, load factor increase, and load 

curtailment, versus the reference case. 

 Energy Cost Reduction: Evaluated in terms of the percent savings over the 

course of one year and during a one week time frame in each season 

 Peak Load Reduction: Evaluated in terms of the difference between the 

reference peak load and the new peak load along with the percent reduction in 

peak load 

 Load Factor Increase: Evaluated as the ratio of the average load over the peak 

load 

 Load Curtailment: Evaluated in terms of the reduction of instantaneous power 

consumption every minute and total reduction of energy over one week and 

one year 

 Reference Case: Evaluated as the net load when load curtailment only occurs 

as a result of PV power 
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Chapter 4. Results and Analysis 

4.1 Reference Profiles 

 Figure 2 shows load and solar PV profiles of the case study household over the 

course of one year with data resolution of every day. Figure 2 also shows the rate profile 

over the course of one year using a 50% rate increase during On-Peak hours. In summer 

months there is significantly more load than during winter months. It can also be 

observed that there is more available solar PV during the summer than during the winter.  

 

Figure 2. Annual Load and PV (top) and Rate Profile (bottom). 

 

Table 4 gives the total energy used, average load, and total solar PV energy provided 

over the entire year. Energy use charges ($/kWh) and demand charges ($/kW) are also 

shown for a reference case without solar PV or batteries. The PV array size is sized to 

meet the annual energy requirements of the house. In this case, energy usage costs are 

negative but demand charges are not sufficiently reduced, as expected, because the load 

and solar profiles do not match exactly. 
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Table 4. Case Study Annual Load and Cost Summary. 

Energy 

usage 

(kWh) 

PV 

Energy 

(kWh) 

Average 

Load 

(kW) 

Peak 

Load 

(kW) 

Load 

Factor 
Cost ($) 

Demand 

Charges 

($) 

Total 

($) 

        

33351.3 33359.48 3.81 26.39 0.14 -256.89 1041.44 610.98 

 

 Demand Charges are calculated based on the average energy usage over a 15-

minute interval. Figure 3 provides a comparison between the load every minute and the 

load used for demand charges. In this example, the demand charge would be based off 

the 12.78 kW average load occurring between 5:00 PM and 5:15 PM. 

 

Figure 3. Load Profile at Different Time Resolutions. 

4.3 Battery Dispatch Strategy Optimization Analysis 

Appendix B provides figures for all dispatch strategies implemented. Table 5 

provides a summary of the loads, costs, and demand charges for each season without 

renewables or battery implementation. Figure 4 provides examples of the load and PV 

profile for each week in each season. From Table 5, it is apparent that loads, consumption 

costs, and demand charges are higher during the summer than during other months. 

Demand charges take up a larger portion of the total cost during non-summer months. 
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Table 5. Loads and Costs without Renewables or Battery Storage. 

Season Load 
Peak 

Load 

Load 

Factor 

Usage 

Cost 

Demand 

Charge 

Total 

Cost 

       
Winter 510.91 63.80 0.29 61.31 63.80 125.11 

Spring 500.41 95.87 0.19 60.05 95.87 155.92 

Summer 1122.47 131.30 0.31 206.90 131.30 338.20 

Autumn 621.27 72.57 0.26 114.93 87.13 202.06 

 

 

 

 

Figure 4. Weekly Profiles at 15-minute Resolution. 
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Appendix C contains a summary of dispatch strategies implemented in each 

season for each battery size.  

Table 6 provides a summary of the strategies for each season, with the dispatch 

strategy listed (e.g., 2B) that resulted in the lowest demand charges. In nearly all cases, 

peak shaving strategies produced the lowest demand charge. The exception occurs during 

the summer with a battery size of 6.5 kWh. In this instance, there was very little 

reduction in demand charges for all dispatch strategies because the battery is undersized. 

Larger storage resulted in increased demand charge reduction and reduced total costs.  

Table 6. Cost and Demand Charge Summaries. 

Battery 

Size 

(kWh) 

Season 
Dispatch 

Strategy 

Peak 

Load 

(kW) 

Load 

Factor 

Usage 

Cost ($) 

Demand 

Charge 

($) 

Total 

Cost ($) 

        - Winter BASE 10.37 0.09 18.02 63.80 81.82 

- Spring BASE 13.18 -0.14 -36.99 81.06 44.07 

- Summer BASE 18.63 0.03 8.74 114.58 123.33 

- Autumn BASE 11.80 0.00 -5.59 72.57 66.98 

        
26 Winter 1B 4.12 0.22 18.60 25.34 43.94 

26 Spring 1B 7.81 -0.24 -37.69 48.03 10.34 

26 Summer 1B 11.81 0.05 7.64 72.66 80.30 

26 Autumn 1B 9.67 0.01 -4.42 59.46 55.04 

        
13 Winter 2B 7.38 0.12 18.21 45.40 63.60 

13 Spring 2B 12.57 -0.15 -37.65 77.33 39.69 

13 Summer 1B 18.63 0.03 6.73 114.58 121.31 

13 Autumn 2B 6.87 0.01 -3.98 42.27 38.29 

        
6.5 Winter 2B 10.26 0.09 17.94 63.09 81.03 

6.5 Spring 2B 13.18 -0.14 -37.21 81.06 43.85 

6.5 Summer 1A 18.63 0.03 6.30 114.58 120.88 

6.5 Autumn 1B 9.67 0.00 -5.01 59.46 54.44 
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Figure 5 shows the load, net load, PV energy, and net rates when applying battery 

dispatch strategies throughout the entire year. The annual simulation uses a 26 kWh 

battery and dispatch strategy 1B. Net loads and associated net rates are consistently lower 

throughout the year and rates with energy credit available are consistently lower than 

rates when energy crediting is unavailable. 

 
Figure 5. Net Load Profile with Dispatch Strategies. 

Table 7 and Table 8 provide summaries of the Load and Cost characteristics for the entire 

year using dispatch strategy 1B and a 26 kWh Battery. It is observed that there is an 

increase in overall usage and usage costs but a reduction in peak loads and demand 

charges. Total cost is $310.36 less when using dispatch strategies.  

Table 7. Annual Net Usage Summary. 

Dispatch 

Strategy 

Net Usage 

(kWh) 

Net Average 

Load (kW) 

Net Peak 

Load (kW) 

Net Load 

Factor 

 
    

BASE -9.11 0.00 22.06 0.00 

1B 163.16 0.02 17.82 0.00 
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Table 8. Annual Net Cost Summary ($). 

Dispatch 

Strategy 

Usage 

Cost ($) 

Bought 

($) 

Credit 

($) 

Max 

Demand 

Charge ($) 

Total 

Demand 

Charge ($) 

Total 

Cost ($) 

 
      

Base -218.73 2409.09 2627.81 135.64 1067.66 848.94 

1B -197.96 2280.28 2478.24 109.60 736.54 538.58 
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Chapter 5. Discussion and Conclusion 

The analysis performed in this study demonstrated the efficacy of various 

dispatch strategies at managing household generation, storage, and use to reduce energy 

charges associated to consumption ($/kWh) and demand ($/kW). VOLTTRON was 

implemented in a real-time simulation environment to test dispatch strategies for total 

load reduction and peak shaving. Simulations were performed using VOLTTRON to 

model four dispatch strategies against a base case (no storage and no intelligent control). 

These dispatch strategies were run annually with three battery sizes with specific data 

drawn from a one-week period in each of the four seasons in a year for a case study 

household in Texas.  

The simulations showed that without adequate battery storage, the implementation 

of advanced dispatch strategies has minimal effect on reducing total energy costs to the 

user. Stated differently, increased storage capacity supported by algorithms that 

intelligently charge and discharge storage to reduce TOU net load and shave peak 

demand periods reduce total energy cost. The optimal size of the PV array and battery 

storage system is dependent on the electricity rate structure and the costs of installing and 

operating the solar-storage system; this is planned for future work. 

 When total installed storage capacity was low, dispatch strategies were found to 

have only a minor effect on reducing demand charges when compared to the base case. In 

most dispatch scenarios, particularly those with reoccurring load peaks, the battery 

reserve was exhausted before all the peak loads were reduced. Since Demand charges are 

applied to the highest demand period during any singular 15-minute interval in a month, 
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peak shaving efforts are only effective if all intra-day peak loads in a month are similarly 

reduced below a specified value (e.g., 12 kW). This is a challenging task because peak 

load values increase (or decrease) during a month and hence require a priori knowledge 

of potential peaks in the entire month through historical datasets, forecasting, or learning 

algorithms to adjust demand charge targets (e.g., 12 kW) as loads increase (or decrease). 

In this study, monthly peak shave targets were set using complete information of 

upcoming peaks, and battery was dispatched during any 15-minute load period that 

would be in excess of 75% of the monthly peak load, meaning that all loads were, at 

most, 25% lower than the peak load for the month. This peak shaving target was updated 

monthly. The demand reduction is more pronounced when larger solar-storage systems 

are used because the storage is better able to handle all the peak loads that may occur 

throughout the month. 

 When evaluated over an entire year, dispatch strategies play a significant role in 

reducing demand charges. Although some dispatch strategies that charge from the grid 

during off-peak hours may increase energy usage costs, these costs can be outweighed by 

effective arbitrage use and demand charge reduction strategies. The benefits of a large 

storage system are greater if demand charge rates are higher. 

 Weekly load factors under each battery size and dispatch strategy were found to 

have a marginal affect when compared to the base case, and this affect varied based upon 

time of year. To effectively increase load factors, the household energy management 

system should use solar PV to charge the battery and then discharge the battery in early 

evenings to reduce peak demand. Power factor will be another performance metric 
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considered in future work with existing results synthesized over the entire year to offer 

comparison of PV size, battery size, and dispatch strategy across the typical year as 

seasons change.  

Future work will also use other features of VOLTTRON such as load scheduling 

and device actuation (i.e., demand response). The next phase of work will deploy control 

technics in the simulated environment to a physical environment in a demonstration 

home. Eventually, this work will lead to handling loads across multiple homes within a 

neighborhood or microgrid network. VOLTTRON will manage which loads are on at any 

given time to ensure more a more even and predictable load profile and collectively 

reduce user costs. 
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APPENDIX A 

MONTHLY NORMAL AND CUMULATIVE DISTRIBUTION PLOTS 
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Figure A. Monthly Cumulative Distribution Functions 
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Figure B. Monthly Probability Density Functions  
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APPENDIX B 

OUTPUT FROM WEEK-LONG DISPATCH STRATEGY SIMULATIONS 
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Figure B.1. Winter – Base 
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Figure B.2. Spring – Base 
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Figure B.3. Summer – Base 
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Figure B.4 Autumn – Base 
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Figure B.5. Winter – 1A – 26 kWh Battery 
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Figure B.6. Winter – 1B – 26 kWh Battery 
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Figure B.7. Winter – 2A – 26 kWh Battery 
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Figure B.8. Winter – 2B – 26 kWh Battery 
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Figure B.9. Spring – 1A – 26 kWh Battery 
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Figure B.10. Spring – 1B – 26 kWh Battery 
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Figure B.11. Spring – 2A – 26 kWh Battery 
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Figure B.12. Spring – 2B – 26 kWh Battery 
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Figure B.13. Summer – 1A – 26 kWh Battery 
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Figure B.14. Summer – 1B – 26 kWh Battery 
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Figure B.15. Summer – 2A – 26 kWh Battery 
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Figure B.16. Summer – 2B – 26 kWh Battery 
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Figure B.17. Autumn – 1A – 26 kWh Battery 
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Figure B.18. Autumn – 1B – 26 kWh Battery 
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Figure B.19. Autumn – 2A – 26 kWh Battery 
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Figure B.20. Autumn – 2B – 26 kWh Battery 
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Figure B.21. Winter – 1A – 13 kWh Battery 
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Figure B.22. Winter – 1B – 13 kWh Battery 
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Figure B.23. Winter – 2A – 13 kWh Battery 
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Figure B.24. Winter – 2B – 13 kWh Battery 
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Figure B.25. Spring – 1A – 13 kWh Battery 
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Figure B.26. Spring – 1B – 13 kWh Battery 
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Figure B.27. Spring – 2A – 13 kWh Battery 
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Figure B.28. Spring– 2B – 13 kWh Battery 
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Figure B.29. Summer – 1A – 13 kWh Battery 
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Figure B.30. Summer – 1B – 13 kWh Battery 
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Figure B.31. Summer – 2A – 13 kWh Battery 
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Figure B.32. Summer – 2B – 13 kWh Battery 
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Figure B.33. Autumn – 1A – 13 kWh Battery 
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Figure B.34. Summer – 1B – 13 kWh Battery 
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Figure B.35. Summer – 2A – 13 kWh Battery 
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Figure B.36. Summer – 2B – 13 kWh Battery  
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Figure B.37 – Winter – 1A 6.5 kWh Battery 
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Figure B.38 – Winter – 1B 6.5 kWh Battery 
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Figure B.39 – Winter – 2A 6.5 kWh Battery 
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Figure B.40 – Winter – 2B 6.5 kWh Battery 
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Figure B.41 – Spring – 1A 6.5 kWh Battery 
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Figure B.42 – Spring – 1B 6.5 kWh Battery 



 

 

87 

 

Figure B.43 – Spring – 2A 6.5 kWh Battery 
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Figure B.44 – Spring – 2B 6.5 kWh Battery 
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Figure B.45 – Summer – 1A 6.5 kWh Battery 
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Figure B.46 – Summer – 1B 6.5 kWh Battery 
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Figure B.47 – Summer – 2A 6.5 kWh Battery 
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Figure B.48 – Summer – 2B 6.5 kWh Battery 
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Figure B.49 – Autumn – 1A 6.5 kWh Battery 
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Figure B.50 – Autumn – 1B 6.5 kWh Battery 
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Figure B.51 – Autumn – 2A 6.5 kWh Battery 
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Figure B.52 – Autumn – 2B 6.5 kWh Battery 
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APPENDIX C 

COST AND DEMAND CHARGE SUMMARIES FOR ALL WEEK-LONG 

SIMULATIONS 
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Table C.1 Dispatch Strategy Load and Cost Summary – 26 kWh Battery 

Season 
Dispatch 

Strategy 

Peak 

Load 

(kW) 

Load 

Factor 

Usage 

Cost ($) 

Demand 

Charge 

($) 

Total 

Charge 

($) 

       
Winter Base 10.37 0.09 18.02 63.80 81.82 

Winter 1A 10.37 0.09 19.19 63.80 82.99 

Winter 1B 4.12 0.22 18.60 25.34 43.94 

Winter 2A 10.37 0.09 19.24 63.80 83.04 

Winter 2B 6.67 0.14 18.70 41.03 59.74 

       
Spring Base 13.18 -0.14 -36.99 81.06 44.07 

Spring 1A 13.18 -0.14 -36.51 81.06 44.54 

Spring 1B 7.81 -0.24 -37.69 48.03 10.34 

Spring 2A 13.18 -0.14 -36.44 81.06 44.62 

Spring 2B 8.18 -0.23 -37.96 50.33 12.37 

       
Summer Base 18.63 0.03 8.74 114.58 123.33 

Summer 1A 18.63 0.03 6.52 114.58 121.10 

Summer 1B 11.81 0.05 7.64 72.66 80.30 

Summer 2A 18.63 0.03 6.16 114.58 120.75 

Summer 2B 13.56 0.04 5.84 83.40 89.24 

       
Autumn Base 11.80 0.00 -5.59 72.57 66.98 

Autumn 1A 11.80 0.00 -6.65 72.57 65.92 

Autumn 1B 9.67 0.01 -4.42 59.46 55.04 

Autumn 2A 11.80 0.00 -5.71 72.57 66.85 

Autumn 2B 9.67 0.01 -4.02 59.46 55.43 
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Table C.2 Dispatch Strategy Load and Cost Summary – 13 kWh Battery 

Season 
Dispatch 

Strategy 

Peak 

Load 

(kW) 

Load 

Factor 

Usage 

Cost ($) 

Demand 

Charge 

($) 

Total 

Charge 

($) 

       
Winter Base 10.37 0.09 17.97 63.80 81.77 

Winter 1A 10.37 0.09 18.82 63.80 82.62 

Winter 1B 7.38 0.12 18.51 45.40 63.91 

Winter 2A 10.37 0.09 18.65 63.80 82.45 

Winter 2B 8.47 0.11 18.25 52.11 70.36 

       
Spring Base 13.18 -0.14 -36.99 81.06 44.07 

Spring 1A 13.18 -0.14 -36.77 81.06 44.29 

Spring 1B 12.57 -0.15 -37.36 77.33 39.97 

Spring 2A 13.18 -0.14 -36.82 81.06 44.24 

Spring 2B 12.57 -0.15 -37.65 77.33 39.69 

       
Summer Base 18.63 0.03 8.74 114.58 123.33 

Summer 1A 18.63 0.03 7.34 114.58 121.92 

Summer 1B 18.63 0.03 6.73 114.58 121.31 

Summer 2A 18.63 0.03 7.26 114.58 121.84 

Summer 2B 18.63 0.03 7.96 114.58 122.55 

       
Autumn Base 11.80 0.00 -5.59 72.57 66.98 

Autumn 1A 11.80 0.00 -6.93 72.57 65.64 

Autumn 1B 6.87 0.01 -3.96 42.27 38.31 

Autumn 2A 11.80 0.00 -7.31 72.57 65.26 

Autumn 2B 6.87 0.01 -3.98 42.27 38.29 
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Table C.3 Dispatch Strategy Load and Cost Summary – 6.5 kWh Battery 

Season 
Dispatch 

Strategy 

Peak 

Load 

(kW) 

Load 

Factor 

Usage 

Cost ($) 

Demand 

Charge 

($) 

Total 

Charge 

($) 

       
Winter Base 10.37 0.09 17.97 63.80 81.77 

Winter 1A 10.37 0.09 18.37 63.80 82.17 

Winter 1B 10.26 0.09 18.01 63.09 81.10 

Winter 2A 10.37 0.09 18.24 63.80 82.04 

Winter 2B 10.26 0.09 17.94 63.09 81.03 

       
Spring Base 13.18 -0.14 -36.99 81.06 44.07 

Spring 1A 13.18 -0.14 -36.96 81.06 44.09 

Spring 1B 13.18 -0.14 -37.08 81.06 43.98 

Spring 2A 13.18 -0.14 -37.05 81.06 44.01 

Spring 2B 13.18 -0.14 -37.21 81.06 43.85 

       
Summer Base 18.63 0.03 8.74 114.58 123.33 

Summer 1A 18.63 0.03 6.30 114.58 120.88 

Summer 1B 18.63 0.03 8.52 114.58 123.10 

Summer 2A 18.63 0.03 7.71 114.58 122.30 

Summer 2B 18.63 0.03 8.80 114.58 123.39 

       
Autumn Base 11.80 0.00 -5.59 72.57 66.98 

Autumn 1A 11.80 0.00 -6.96 72.57 65.60 

Autumn 1B 9.67 0.00 -5.01 59.46 54.44 

Autumn 2A 11.80 0.00 -6.95 72.57 65.62 

Autumn 2B 9.67 0.00 -4.24 59.46 55.21 

 


