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ABSTRACT 
   

Driver distraction research has a long history spanning nearly 50 years, 

intensifying in the last decade. The focus has always been on identifying the distractive 

tasks and measuring the respective harm level. As in-vehicle technology advances, the 

list of distractive activities grows along with crash risk. Additionally, the distractive 

activities become more common and complicated, especially with regard to In-Car 

Interactive System. This work's main focus is on driver distraction caused by the in-car 

interactive System. There have been many User Interaction Designs (Buttons, Speech, 

Visual) for Human-Car communication, in the past and currently present. And, all related 

studies suggest that driver distraction level is still high and there is a need for a better 

design. Multimodal Interaction is a design approach, which relies on using multiple 

modes for humans to interact with the car & hence reducing driver distraction by 

allowing the driver to choose the most suitable mode with minimum distraction. 

Additionally, combining multiple modes simultaneously provides more natural 

interaction, which could lead to less distraction. The main goal of MMI is to enable the 

driver to be more attentive to driving tasks and spend less time fiddling with distractive 

tasks. Engineering based method is used to measure driver distraction. This method uses 

metrics like Reaction time, Acceleration, Lane Departure obtained from test cases. 
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CHAPTER 1 

INTRODUCTION 

1.1 Why Driver Distraction Is A Major Problem? 

Driving is the coordinated operation and movement of a vehicle, such as a car, 

truck, or bus. It’s is a common activity for many people, making driving safety an 

important issue in everyday life. Driving in traffic is more than just knowing how to 

operate the mechanisms, which control the vehicle; it requires knowing how to apply the 

rules of the road (which govern safe and efficient sharing with other users). A driver must 

have physical skills to be able to control direction, acceleration, and deceleration and the 

mental skills in avoiding or successfully handling an emergency-driving situation. An 

effective driver also has an intuitive understanding of the basics of vehicle handling and 

can drive responsibly. Over the 20 years from 1980 to 2000, the number of licensed 

drivers in the U.S. increased 23.7%, from about 154.0 million to 190.6 million. Total 

annual mileage traveled annually in the U.S. increased 28.9% from 1990 to 2000 and 

reached 2,767 billion miles in 2000 (USDOT, 2000). 

Since 2009, the U.S. Department of Transportation (USDOT) has launched a 

variety of creative campaigns to raise awareness about the dangers of distracted driving 

such as “One Text or Call Could Wreck It All.” Despite of all the safety improvements in 

road and vehicle design, the total number of fatal crashes is still increasing. Motor 

vehicle-related fatalities increased from 33,186 in 1950 to 42,387 in 2000 (Wang, 

Knipling, & Goodman, 1995). The growing number of fatalities demonstrates that driving 

safety represents a persistent and critical issue and would affect millions of people across 

the world. Although most motor-vehicle crashes are attributed to multiple causes, driver 
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error represents a dominant one because drivers are responsible for operating vehicles 

and avoiding crashes (Lee, 2006). Compared to 34.9% for roadway factors and 9.1% for 

vehicle factors, driver errors contribute to 92.9% of crashes (Treat et al., 1977). For 

example, rear-end collisions that comprise approximately 30% of all crashes and roadway 

departure crashes, which cause the greatest number of fatalities have been largely 

attributed to the inability of drivers to detect hazards and control the vehicle properly 

(The National Safety Council, 1996). Most of these performance breakdowns result from 

the impairments of driver’s attention. Four major categories of attention impairments 

include Alcohol, Fatigue, Aging, and Distraction (Yulan Liang, 2009). Alcohol 

contributes to approximately 40% of fatalities in US highway (Lee, 2006). Fatigue is 

often cited in the accidents involving young drivers and truck drivers because these 

drivers tend to adopt risky strategies to drive at night and/or lack good-quality sleep (Lee, 

2006). Aging results in longer response time to hazards and a more narrow field of 

attention in old drivers (Ball & Owsley, 1993; Owsley et al., 1998). Compared with the 

above three impairments, distraction, the fourth impairment, is the impairment that has 

become increasingly important with the introduction of in-vehicle technology (e.g., 

navigation systems, cell phones, and internet) and has drawn increasing attention from 

human factor researchers and policy makers in the area of transportation safety (Yulan 

Liang, 2009). 

Distractions can compromise driver's mental skills. Drivers talking on a phone 

exhibit greater impairment than drivers who were suffering from alcohol intoxication. 

Music could also affect driver's concentration adversely. Distracted driving is the act of 

driving while engaged in other activities—such as looking after children, texting, talking 
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on the phone or to a passenger, watching videos, eating, or reading—that take the driver’s 

attention away from the road. All distractions compromise the safety of the driver, 

passengers, bystanders and those in other vehicles. According to the USDOT, "text 

messaging while driving creates a crash risk 23 times higher than driving while not 

distracted." Despite these statistics, more than 37% of drivers have admitted to sending or 

receiving text messages while driving, and 18% admit doing so regularly. Driver 

distraction diverts driver’s attention away from the activities critical for safe driving 

toward a competing activity (Lee, Young, & Regan, 2008). It contributes to 13-50% of all 

crashes, resulting in as many as 10,000 fatalities and $40 billion in damages each year 

(Lee, 2006). In the 100-Car Study, driver inattention contributed to nearly 80% of the 

crashes and 65% of the near-crashes (Klauer et al., 2005). Distraction has been identified 

as an emerging road safety issue and is also being increasingly ranked by road safety 

authorities around the world as a significant contributing factor to road trauma alongside 

speeding, drink-driving and fatigue (Klauer et al., 2005). 

 

1.2      Distraction-Affected Crashes 

 A distraction-affected (D-A) crash is any crash in which a driver was identified as 

distracted at the time of the crash (NHTSA, 2013). Table 1 provides information on 

crashes, drivers, and fatalities involved in distraction-affected crashes.  

Table 1. Fatal Crashes, Drivers In Fatal Crashes, And Fatalities, 2011 

 Crashes Drivers Fatalities 
Total 29,757 43,668 32,367 

Distraction-
Affected (D-A) 

3,020 
(10% of total 

Crashes) 

3,085 
(7% of total 

Drivers) 

3,331 
(10% of total 

Fatalities) 
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Table 2. People Killed In Distraction-Affected Crashes, By Person Type, 2011 

Occupant Non-occupant 
Driver Passenger Total Pedestrian Pedal-cyclist Other Total 

2024(61%) 812(24%) 2836(85%) 408(12%) 58(2%) 29(1%) 495(15%) 
 

In 2011, an estimated 2,217,000 people were injured in motor vehicle traffic crashes 

(Table 3). The number of people injured in a distraction-affected crash in 2011 was 

estimated at 387,000 (of which, 17% of all the injured people are from distraction-

affected crashes. Over the past five years, the estimated number of people injured in 

distraction-affected crashes has fallen from 448,000 to 387,000, a 14-percent decline 

(compared to an 11% decline in the number of people injured overall during this time 

period). However, the percentage of injured people in distraction-affected crashes as a 

portion of all injured people has remained relatively constant. 

Table 3. Estimated Number Of People Injured In Crashes And D-A Crashes 

Year Overall Distraction 
Estimate (% of Total Injured) 

2007 2,491,000 4,48,000(18%) 
2008 2,346,000 4,66,000(20%) 
2009 2,217,000 4,48,000(20%) 
2010 2,239,000 4,16,000(19%) 
2011 2,217,000 3,87,000(17%) 
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Table 4. Estimated Number Of Drivers And People Injured In D-A Crashes 

Distraction-Affected 
Injury Crashes 

Distracted Drivers in 
Distraction-Affected Injury 

Crashes 

People Injured in Distraction-
Affected Injury Crashes 

260000(17% of all 
injury crashes) 

266000(10% of all drivers in in 
injury crashes) 

387000(17% of all injured 
people) 

 

Table 5 provides information for all police-reported crashes from 2007 through 2011 

including injury crashes, and property- damage-only (PDO) crashes for the year. During 

this time period, the percentage of injury crashes that were distraction-affected fluctuated 

slightly, but remained relatively constant. 

Table 5. Motor Vehicle Traffic Crashes And Distraction-Affected Crashes By Year 

Crash by Crash Severity Overall Crashes Distraction-Affected 
Crashes 

2007 
 
 

Injury Crash 1,711,000 309,000 (18%) 
PDO Crash 4,275,000 689,000 (16%) 

Total 6,024,000 1,003,000 (17%) 
2008 

 
Injury Crash 1,630,000 314,000 (19%) 
PDO Crash 4,146,000 650,000 (16%) 

Total 5,811,000 969,000 (17%) 
2009 

 
Injury Crash 1,517,000 307,000 (20%) 
PDO Crash 3,957,000 647,000 (16%) 

Total 5,505,000 959,000 (17%) 
2010 Injury Crash 1,542,000 279,000 (18%) 

PDO Crash 3,847,000 618,000 (16%) 
Total 5,419,000 900,000 (17%) 

2011 Injury Crash 1,530,000 260,000 (17%) 
PDO Crash 3,778,000 563,000 (15%) 

Total 5,338,000 826,000 (15%) 
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Table 6 describes 2011 fatal crash data for distraction-affected crashes by driver age.  

The age group, 15-19 years, is the group with the largest proportion of drivers who were 

distracted. Both methods of looking at age illustrate the increased prevalence of 

distracted younger drivers in fatal crashes but spread across all ages and conditions. 

Table 6. Drivers Involved In Fatal Crashes By Age, 2011 

 Total Drivers Distracted Drivers 
Age Group # % Of total # % Total drivers % Distracted drivers 

Total 43,668 100 3,085 7 100 
15-19 3,212 7 344 11 11 
20-29 10,160 23 790 8 26 
30-39 7,401 17 505 7 16 
40-49 7,376 17 464 6 15 
50-59 6,783 16 434 6 14 
60-69 4,144 9 251 6 8 
70+ 3,815 9 270 9 9 

 

With respect to the vehicles driven by distracted drivers, the distribution of vehicles 

among distracted drivers is similar to the distribution of vehicles among all drivers (Table 

7). The victims of distraction-affected crashes vary little from the victims of crashes 

overall. Thus Distraction-Affected Crashes are not in particular to vehicle type. 

Table 7. Drivers Involved In Fatal Crashes By Vehicle Type, 2011 

 Total Drivers Distracted Drivers 
Vehicle Type # % of total # % total drivers %distracted drivers 

Total 43,668 100 3,085 7 100 
Passenger Car 17,335 40 1,316 8 43 
Light Truck 16,643 38 1,235 7 40 
Motorcycle 4,741 11 265 6 9 

Large Truck 3,568 8 202 6 7 
Bus 243 1 20 8 1 
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In conclusion, 

• Ten percent of fatal crashes in 2011 were reported as distraction-affected crashes. 

• Seventeen percent of injury crashes in 2011 were reported as distraction-affected 

crashes. 

• In 2011, 3,331 people were killed in crashes involving distracted drivers and an 

estimated additional 387,000 were injured in motor vehicle crashes involving 

distracted drivers. 

• Of those people killed in distraction-affected crashes, 385 died in crashes in 

which at least one of the drivers was using a cell phone (12% of fatalities in 

distraction-affected crashes) at the time of the crash. Use of a cell phone includes 

talking/listening to a cell phone, dialing/texting a cell phone, or other cell-phone-

related activities. 

• Eleven percent of all drivers 15-19 years old involved in fatal crashes were 

reported as distracted at the time of the crashes. This age group has the largest 

proportion of drivers who were distracted. 

• In 2011, 495 non-occupants were killed in distraction-affected crashes. 

 

1.3      NHTSA 

 The percentage of drivers text-messaging or visibly manipulating hand-held 

devices increased significantly for a second year in a row from 0.9 percent in 2010 to 1.3 

percent in 2011, while driver hand-held cell phone use stood at 5 percent in 2011 (Figure 

1). These results are from the National Occupant Protection Use Survey (NOPUS), which 

provides the only nationwide probability-based observed data on driver electronic device 
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use in the United States. The NOPUS is conducted annually by the National Center for 

Statistics and Analysis of the National Highway Traffic Safety Administration. 

 

Figure 1. Increase In Drivers Manipulating Hand-Held Devices 

Motor vehicle drivers are increasingly using electronic devices while driving for 

activities such as calling or sending text messages (texting) from cell phones, watching 

video, or searching the Internet. Automakers are also incorporating electronic devices 

into standard vehicle design, including dashboard Internet and satellite connections. 

Because these devices are integrated into everyday life, drivers mistakenly assume they 

can be used safely while operating a motor vehicle. Despite their dissimilarities, each of 

the devices distracts a driver’s attention (some more than others), posing a highway 

safety hazard. The National Highway Traffic Safety Administration (NHTSA) reported 

that 5870 persons died (16% of all fatalities) and an estimated 515 000 individuals were 

injured in police reported crashes involving driver distraction in 2009. The General 

Estimates System estimated that 21% of all reported injury crashes involved distracted 
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driving. Using naturalistic driving data (with cameras tracking driving behavior), the 

Federal Motor Carrier Safety Administration found that while dialing a mobile phone, 

drivers of light vehicles (cars, vans, and pickup trucks) were 2.8 times as likely as non-

distracted drivers to have a crash or near crash, and commercial truck drivers were 5.9 

times as likely. This research supports earlier findings that young drivers who text spend 

up to 400% more time with their eyes off the road than drivers who do not text, have 6-

fold greater odds of a collision, and in simulated driving have impaired lateral and 

forward vehicle control.  

Hence, NHTSA has long recognized the potential safety problems associated with 

driver distraction from use of in-vehicle technologies while driving. As a result, NHTSA 

has conducted a variety of research activities to examine and understand the implications 

of various forms of driver distraction and identify appropriate methodologies to assess the 

safety implications of distraction resulting from the use of in-vehicle technologies. Initial 

NHTSA research highlighted the complexity of the problem and the difficulties in 

establishing a direct link between distraction and crashes. 

 

1.4      NHTSA Recommendations 

 Ongoing and future research will focus on applying NHTSA’s research tools and 

methods to better understand the relationship between in-vehicle technologies, distraction 

and the increased risk of a crash. NHTSA’s efforts are also directed at developing 

technological solutions for mitigating the potential for distraction-related crashes through 

systems that ease the workload of distractive tasks and thus prevent drivers of potential 

crash situations. The prevalence of distraction as a risk factor could increase as new 
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technologies proliferate the market. It is important, therefore, that policies and programs 

are developed and implemented to manage existing and emerging risks associated with 

driver distraction. The following are the counter-measures recommended by NHTSA to 

be taken by future researchers: 

• A carefully designed study of the prevalence of driver involvement in distracting 

activities within the vehicle should be undertaken. This information, combined 

with the epidemiological data, will enable an initial assessment of the magnitude 

of the problem to be made. 

• An inventory of existing and emerging technologies and services which can be 

accessed on-board the vehicle or through portable devices within the vehicle 

should be compiled. The potentially distracting effects of these technologies and 

services should be established where these have not already been established. 

• Research is required to better understand drivers’ willingness to engage in 

potentially distracting tasks while driving, the factors that influence this 

willingness and under what conditions drivers engage in distracting tasks. 

• There is currently little knowledge regarding how drivers use in-vehicle 

technologies: whether they use them in the manner intended by the designer; and 

at what point (or threshold) and under what conditions they become a distraction. 

• Research needs to be conducted into whether and how individual difference 

factors such as age, gender, driving skill and experience influences the ease with 

which drivers are distracted. 

• To complement the above activities, research is needed to identify and quantify 

the distracting effects of objects and events occurring outside the vehicle. 
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• No research, to the knowledge of the NHTSA, has examined the potentially 

distracting effects of portable devices used by pedestrians and other road users 

(e.g., mobile telephones, pedestrian navigators) to access information and services 

when negotiating their way through the road system. 

• The most effective way to minimize technology-based distraction is to design the 

Human Car Interaction (HCaI) ergonomically. In Europe, North America and 

Japan, draft standards have already been developed which contain performance 

based goals which must be reached by the HCaI so that the in-car technologies do 

not distract or visually entertain the driver while driving (e.g., the European 

Statement of Principles for Driver Interactions with Advanced In-vehicle 

Information and Communication systems). It is important that relevant authorities 

closely monitor the development of these standards and that local vehicle 

manufacturers and system developers are encouraged to refer to these standards in 

designing their systems. 

• The operation of certain devices including mobile phones and route guidance 

systems often involves associated tasks such as accessing written information, 

which can further distract the driver. There is a need for research to develop the 

HCaI so that it eliminates the need for these associated tasks. 
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1.5     Our Perspective On Driver Distraction 

• Distraction is very serious and costly problem both in life and in dollar. 

• However, Distraction is also a very complex problem to solve as per NHTSA 

recommendation. 

• Chapter 2 will show a small side of this complexity - such as sources of 

distraction, accident risks, cognitive load and driver behavior detection. 

 

1.6      State Of Art 

Traditional Human-Car Interaction was fundamentally a driver maneuvering a car 

at a given time and no other devices. Now the connected car experience has introduced 

lot of other features such as Wi-Fi connectivity, Phone connectivity and External GPS. 

Technically now, the driver is operating a vehicle with one or more devices 

simultaneously.  First and foremost, the driving task can be divided into three classes: 

primary, secondary and tertiary (Geiser, 1985). Primary tasks describe how to maneuver 

the car, e.g. control the speed or checking rearview mirror. The steering wheel is the 

primary controller and the pedals are the earliest control devices introduced in a car. So 

far, these devices have stayed largely unaffected but the additional controls shortcuts are 

often mounted on the modern-day steering wheels and that can be considered as a 

fundamental part of the car. Secondary tasks are functions that increase the safety of the 

driver, the car, and the environment, e.g. setting turning signals, lane change warning, 

activating the windshield wipers. Tertiary tasks are all functions concerning 

entertainment and information systems. Even though the computing power of systems 

integrated with the car is analogous to current mobile phones or even desktop computers, 
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interacting with these systems is very dissimilar. HCaI is subjected to different 

constraints that generally do not apply to HCI (Kern, Schmidt, 2009). The comparison 

between these two is given in Table 8 below. 

Table 8. Comparison Between HCaI And HCI 

Human-Car Interaction (HCaI) Human-Computer Interaction 

(HCI) 

Every task has precedence in car: primary task, 

secondary task, and tertiary task. 

There are no such restrictions 

while interacting with 

computers. 

A driver has to share his attention between the 

primary task and other non-driving-related 

activities. 

User is able to provide his full 

attention to a computer system 

in a desktop environment 

Computer input and output devices can’t be used as 

it demands high attention mental as well as 

physical. 

Devices like mouse, keyboards 

for input and large information-

rich displays for output 

If the driver does not pay full attention to the 

primary task, dangerous situation may arise. 

There are no such risk related to 

user’s safety 

A driver is not free to choose body movements as 

he is buckled up in the driver’s seat. 

In a desktop environment, the 

user is more or less free to 

choose with which body part he 

wants to interact with the 

computer 
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Two-handed operations are not acceptable; for 

safety reasons, one hand should always remain on 

the steering wheel [European Communities 2007]. 

The environmental conditions 

while using a desktop computer 

do not affect human computer 

interaction in a critical way.  

HCaI is always used in context, where the current 

driving situation greatly affects the interaction. For 

example, interacting with an infotainment system 

under high traffic and noisy conditions might result 

in higher work load for the driver. 

A user might be disturbed by 

environmental noise or light 

conditions, but it is unheard that 

this has ever put the user or 

others in his vicinity in a 

dangerous situation. 

In-car voice interaction has many challenges like 

environment noise, hardware limitations and 

response time.    

There are no such limitations 

regarding noise or response time 

at home while interacting with 

computer on voice recognition. 

HCaI is also affected by outdoor environment use 

cases such as engine noise, extreme sunlight or 

extreme dark, vibrations, snow, fog, and rain. 

HCI mostly takes place in indoor 

environment, which controlled 

and stable. 

The discussion in this work centers on the limited areas of in-car environment, 

which affects the driver in terms of distraction. The areas of the in-car controls can be 

defined as instrument cluster, steering wheel, infotainment display, climate and media 

controls, car system controls, rear and front mirror controls, front passenger side auxiliary 

display controls, and real display controls. The scope area of the work is given in the 

Figure 2 below. The Figure below was a great influence in designing MMI. 
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Figure 2. In-Car Environment Project Scope 

 The 360-degree review is about knowing the automotive domain for HCaI and 

analyzing the features, technology and interaction design of most of the car categories 

such as Economy cars, Premium cars, Sports cars and Luxury cars. Toyota Avalon comes 

under Premium Cars category. This category of cars comes under compact, mid-large, 

and large-family cars. This class of the cars is very much influenced by technology and it 

comes overloaded with lots of features and functionality. The consumer is ready to pay 

for extra feature like ADAS, voice recognition, and fancy instrument cluster or 

infotainment. So automakers are ready to do more for this segment and outsourcing of the 

infotainments and ADAS loaded with features has become common. The Table 9 is an 

example of Toyota Avalon Analysis. 
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Table 9. Toyota Avalon In-Car Interaction Design Analysis 

Figure 3. T.A. 1  Figure 4. T.A. 2  Figure 5. T.A. 3  Figure 6. T.A. 4 

    

Analysis- 

• Touch display in CS with 2 manual control knobs and 10 small buttons besides. 

• Small secondary display for climate controls with preferred grouping but small 

buttons 

• IC with gauges and small digital display containing too much information 

  



  27 

CHAPTER 2 

BACKGROUND 

2.1 What Is Driver Distraction? 

 The American Automobile Association defines driver distraction as occurring 

“when a driver is delayed in the recognition of information needed to safely accomplish 

the driving task because some event, activity, object or person within or outside the 

vehicle compelled or tended to induce the driver’s shifting attention away from the 

driving task” (Stutts et al., 2001). Crash data analysis reveals that any distraction has the 

potential to cause or contribute to a crash. Thus, rolling down a window, adjusting a 

mirror, tuning a radio or dialing a cell phone have all been identified as fundamental 

factors in crashes. Many distracting activities that drivers engage in can involve more 

than one of these components (e.g., visually searching for a control to manipulate). 

Recent concerns about the potential safety implications of technology based distractions 

focus on the nature and magnitude of demands some of these devices can place on 

drivers. Based on an analysis of NHTSA crash data, the major components of inattention-

related police reported crashes include 

• “Distraction” (attending to tasks other than driving, e.g., tuning the radio, 

speaking on a phone, looking at a billboard, etc.), 

• “Looked but did not see” (e.g., situations where the driver may be lost in thought 

or was not fully attentive to the surrounds) 

• Situations where the driver was drowsy or fell asleep. 

All together, these crashes account for approximately 25 percent of police reported 

crashes. Distraction was most likely to be involved in rear-end collisions in which the 
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lead vehicle was stopped and in single vehicle crashes (NHTSA). Crashes in which the 

driver “looked but did not see” occurred most often at intersections and in lane-

changing/merging situations. To provide additional detail about sources of distraction, 

Wierwille and Tijerina (1996) searched police report narratives for a set of crashes from 

North Carolina. They identified 2,819 crashes in which the driver’s attention was diverted 

and found that the majority of these (55.5%) involved distraction due to a source inside 

the vehicle, including objects, interacting with another person or animal, or interacting 

with instrumentation, including the radio or a wireless phone. The accelerating rate of in-

vehicle technological developments has extended NHTSA’s interest to incorporate a 

wider range of these technologies in its planning of research, and public 

information/outreach. The technological advancement that has taken place has created 

new alliances and competition among the automotive, computer, World Wide Web and 

wireless industries. The outcome has been a new generation of pioneering technologies, 

characterized by portability, convenience and a variety of functionality that can allow a 

user the broadest access to communications and informational resources in a mobile 

setting. It is this flexibility that has raised the concern of NHTSA within the context of 

driving, where cutting-edge technology is being made available to the driving public as 

well as the commercial driver, either as OEM (Original Equipment Manufacturer) or 

aftermarket systems and devices. Concern over this subject, among media, states, and the 

public, has been growing in light of recent announcements of new initiatives to bring 

computer functionality to the automobile, including access to the world wide web, 

availability of e-mail services, and the ability to “conduct business” and “e-commerce” 

while driving. Industry estimates of widespread use of these services imply general 
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availability at reasonable prices in the near future. The potential for unfavorable safety 

consequences of using these systems and services by drivers emphasizes the significance 

of understanding the relationship between device design, the associated demands of these 

systems and how they interact with the elements that influence drivers’ inclination to 

engage in secondary tasks while driving. It is the ambiguity of these relationships and the 

need to develop effective countermeasures to tackle the problem of driver inattention that 

serves as a basis for NHTSA’s continued efforts in this area. 

 

2.2 Sources Of Driver Distraction 

 According to the National Highway Traffic Safety Administration (NHTSA) there 

are four distinct, although not mutually exclusive, forms of driver distraction: visual, 

auditory, biomechanical (physical) and cognitive. Visual distraction occurs when the 

driver neglects to look at the road and instead focuses his/her attention on another visual 

target for a period of time, can be described as “eye-off-road”. Auditory distraction 

occurs when the driver focuses their attention on auditory signals rather than on the road 

environment, “ears-off-road”. Biomechanical distraction occurs when drivers remove one 

or both hands from the steering wheel to physically manipulate an object, “hands-off-

road”. Cognitive distraction includes any thoughts that absorb the driver’s attention to the 

point where they are unable to navigate through the road network safely, “mind-off-

road”. The trend toward increasing use of In-Vehicle Interactive Systems (IVISs) is 

critical because IVISs induce distraction. And any of the above type of distraction can 

lead to larger lane variation, slower response to hazards, more abrupt steering control and 

less efficient visual perception than attentive driving. Moreover, the four types of 
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distraction can occur in combination and interact with each other. Cognitive distraction is 

the hardest to study. The NHTSA in the United States has attempted to categorize these 

sources of driver distraction under the following 13 headings:  

1. Eating or drinking; 

2. Outside person, object or event; 

3. Adjusting radio, cassette, or CD; 

4. Other occupants in vehicle; 

5. Moving object in vehicle; 

6. Smoking related; 

7. Talking or listening on mobile phone; 

8. Dialing mobile phone; 

9. Using device/object brought into vehicle; 

10. Using device/controls integral to vehicle; 

11. Adjusting climate controls; 

12. Other distractions; and 

13. Unknown distraction 
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Figure 7. Driver Distraction Model 

This model would be developed under 3 states – Stable (Normal driving conditions like a 

straight road), Dynamic (Taking a turn or Curved road) and Emergency (Accidents). 

GPS 
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2.3 Exposure Assessment 

According to the US National Highway Traffic Safety Administration (NHTSA), 

in 2008, nearly 11% of drivers—approximately one million individuals—used a mobile 

device at some time. Additionally, 35-50% of drivers admit to cell phone use while 

driving, while 90% of drivers fear those who do. Some foods and drinks can lead to 

dangerous distractions. McKeel Hagerty, president of Hagerty Classic Insurance 

Company, did a study to find out which foods were the worst to try to consume while 

driving. Coffee was the top offender because of its tendency to spill even if in a cup with 

a travel lid. Hot soup was second followed by tacos and chili. Hamburgers and barbecued 

food came in fifth and sixth. Eating while driving is not only dangerous, it’s messy and it 

means you’re not watching the road. According to a Health Day poll from November 

2011(Most U.S. Drivers Engage in 'Distracting' Behaviors: Poll, By Amanda Gardner), 

most adults who drive admit to engaging in distracted driving behaviors. This poll, which 

included 2,800 American adults, found that: 

• Approximately 86% of drivers have admitted to eating or drinking while driving. 

• Approximately 37% of drivers have texted while driving at least once, while 18% 

of drivers have said they have formed the habit of doing it often. 

• Approximately 41% of adult drivers have set or changed a GPS system while 

driving, and 21% do it “more frequently.” 

• Approximately 36% of adult drivers have used a map as road guidance while 

driving. 
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• At least 1 out of every 5 drivers have admitted to combing or styling their hair 

while driving. 

• Approximately 14% of drivers have applied makeup while driving. 

• Approximately 13% of adult drivers have browsed the Internet while driving. 

Data from this poll also revealed that younger drivers have a greater tendency to be 

involved in distracted driving than older individuals. Additionally, males have a greater 

tendency to engage in distracted driving activities, including driving while drowsy, after 

drinking alcohol, while reading a map, using a GPS system, or using the Internet. 

Hazard assessment - A study in 2013 estimated the following risks of a crash or near-

crash among novice drivers: 

Table 10. Hazard Assessment Of Crash Risks Associated With Distraction Factors 

Activity Odds ratio 

Dialing a cell phone 8.3 

Reaching for a cell phone 7.1 

Sending or receiving text messages 3.9 

Reaching for an object other than a cell phone 8.0 

Looking at a roadside object 3.9 

Eating 3.0 

Interaction with radio (or head unit) 1.0 

 

Among experienced drivers, dialing a cell phone is estimated to increase the risk of a 

crash or near crash by odds ratio 2.5. 
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2.4 History Of Driver Distraction Research 

In September 2010, the NHTSA released a report on distracted driving fatalities 

for 2009. The NHTSA considers distracted driving to include the following distractions: 

other occupants in the car, eating, drinking, smoking, adjusting radio, adjusting 

environmental control, reaching for objects in car, and cell phone use. The report stated 

that 5,474 people were killed and 448,000 individuals were injured in motor vehicle 

crashes involving distracted drivers in 2009. Approximately 995 deaths of those 

individuals were drivers distracted by cell phones. The report does not state whether this 

is an under or over representation of the level of cell phone use amongst drivers, or 

whether there is a causal relationship. The NHTSA states that 80% of accidents and 16% 

of highway deaths are the result of distracted drivers. The National Safety Council (NSC) 

estimates that 1.6 million (25%) crashes annually are due to cell phone use, and another 1 

million (18%) traffic accidents are due to text messaging while driving. These numbers 

equate to one accident every 24 seconds attributed to distracted driving by cell phone use. 

The NSC also reported that speaking on a cell phone while driving reduces focus on the 

road and the act of driving by 37%, irrespective of hands-free cell phone operation. The 

US Department of Transportation estimates that reaching for a cell phone distracts a 

driver for 4.6 seconds, or the equivalent of the length of a football field, if the vehicle is 

traveling 55 miles per hour. It has been shown that reaching for something inside the 

vehicle increases the accident risk by 9 times. Texting while driving increases the risk of 

an auto accident by 23 times. 

Driving with a dog or any pet can be very dangerous. An uncaged or unharnessed 

animal can be a constant distraction. According to a national study by AAA (American 
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Automobile Association), 31 percent of the people that responded admitted to being 

distracted by their dogs. Fifty-nine percent of people that were surveyed had participated 

in at least one distracting behavior while driving with their dog. Eighty percent of 

respondents said they'd driven with their pets, and only 17 percent said they used any 

form of pet restraint. The AAA Foundation for Traffic Safety found that looking away 

from the road for only two seconds doubles a driver's risk of being in a crash. 

A 2003 study of U.S. crash data states that driver inattention is estimated to be a factor in 

20–50 percent of all police-reported crashes. Driver distraction has been determined to be 

a contributing factor in estimated 8–13 percent of all vehicle crashes. Of distraction-

related accidents, cell phone use may range from 1.5 to 5 percent of contributing factors, 

according to a 2003 study. "Outside person, object, or event" (commonly known as 

rubbernecking) is the most reported cause of distraction related accidents, followed by 

"adjusting radio/cassette player/CD." "Using/dialing cell phone" is the eighth most 

reported cause of distraction-related accidents, according to the study. 

According to the article "NHTSA distracted driving guidelines" in the August 

2013 Motor Age magazine issue, the NHTSA released voluntary guidelines covering the 

use of in-car infotainment and communication devices, that have some bearing on 

connected car technologies and In-Car Interactive System. "Proposed items include 

disabling manual text entry and video-based systems prohibiting the display of text 

messages, social media or Web pages while the car is in motion or in gear. NHTSA 

heavily relied on the input provided by Alliance of Automobile Manufacturers and 

drafted Guidelines to eliminate crashes attributable to driver distraction The NHTSA 

Guidelines recommend that devices be designed so that tasks can be completed by the 
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driver while driving with glances away from the roadway of 2 seconds or less and a 

cumulative time spent glancing away from the roadway of 12 seconds or less in a series 

of 1.5-second glances. In 2011, according to the NHTSA, 1/3 of the accidents caused by 

distracted driving. Driving and eating is very distracting. A correspondent for the Boston 

Globe, Lucia Huntington, stated, "Distracted driving is the cause of many of today’s 

traffic accidents. In a world of ever-extending commutes and busy schedules, eating 

while operating a vehicle has become the norm, but eating while behind the wheel proves 

costly for many drivers. Soups, unwieldy burgers, and hot drinks can make steering a car 

impossible. Although the danger of eating while driving are apparent and well known, 

drivers ignore them repeatedly, accounting for many crashes and near-misses." During a 

study done by NHTSA, the NHTSA blames "inattentive driving" for 80% of all car 

accidents. 2.1 percent of the total were daydreaming, personal hygiene, and eating. The 

location of where people live also causes people to eat and drive. Now that people are 

now living in the suburbs, this has caused a longer commute to work for some. A study 

done by Toyota found that truck drivers manage their lives out of their trucks. With this 

fast-paced life style everyone is always on the move, finding time for food can be 

difficult, but saving time is not worth risking your life or someone else’s. 

A study by Monash University found that having one or more children in the car 

was 12 times more distracting than talking on a mobile phone while driving. 

According to David Petrie of the Huntington Post, Children in the back seat are the worst 

distraction for drivers. While the focus on texting while driving is laudable, it has failed 

to address long-standing issues. In both cases an incoming call and a crying child create a 

situation where the driver should pull over and not attempt to multitask. 



  37 

 A study by AAA found that talking to a passenger was as distracting as talking on 

a hands-free mobile phone. 

Today's youth is being accused for most of the distracted driving, but really adults 

are at fault too. More than 600 parents and caregivers were surveyed in two Michigan 

emergency rooms while their children, ages 1–12 years were being treated for any reason. 

During this survey, almost 90% of drivers reported engaging in at least one technology-

related distraction while driving their children in the past month. The parents who 

disclosed using the phone—hand held or hands free—while driving were 2.6 times likely 

to have reportedly been involved in a motor vehicle crash. The escalating annual rate of 

fatalities from distracted driving corresponds to both the number of cell phone 

subscriptions per capita, as well as the average number of text messages per month. From 

2009 to 2011, the amount of text messages sent increased by nearly 50%. 

 Distracted driving offenders are more likely to report driving while drowsy, going 

20 miles per hour over the speed limit, driving aggressively, not stopping at a red light or 

stop sign, and driving while under the influence of alcohol. The American Automobile 

Association (AAA) reports that younger drivers are overwhelmingly more likely than 

older drivers to text message and talk on cell phones while driving. However, the 

proportion of drivers aged 35-44 who reported talking on cell phones while driving is not 

significantly lower than those drivers aged 18-24 who reports doing so. 

 

2.5 Accident Risk Assessment 

 In 2011, Shutko and Tijerina reviewed a large naturalistic study of in field 

operational tests on variety of vehicles and concluded that: 
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• Most of the collisions and near misses that occur involve inattention as a 

contributing factor. 

• Visual inattention (looking away from the road ahead) is the single most 

significant factor contributing to crash and near crash involvement. 

• Cognitive distraction associated with listening to, or talking on, a handheld or 

hands-free device is associated with crashes and near miss events to a lesser 

extent than is commonly believed, and such distractions may even enhance safety 

in some instances. 

Distracted driving is responsible for many deaths that could otherwise be 

prevented, especially in the younger generation of drivers. Throughout the United States, 

over 3,000 deaths and 416,000 injuries annually can be attributed to distracted driving. 

To further illustrate the seriousness of this “epidemic,” driving while texting is about 6 

times more likely to result in an accident than drinking while driving. Not only is 

distracted driving more likely to result in an accident, but the risk of injury requiring 

hospital visitation is 3-5 times greater than the rate for other accidents. 

 

2.6 Cognitive Load 

Cognitive distraction is the most challenging of the four sources (visual, physical, 

audio and cognitive) of distraction to evaluate because of the problems associated with 

observing what a driver’s brain (as opposed to hands, ears or eyes) is doing. 

Additionally, changes in driving performance coupled with cognitive distraction have 

been shown to be qualitatively different from those associated with visual distraction 

(Angell et al., 2006; Engström, Johansson, & Östlund, 2005). For example, visual 
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distraction has been shown to increase the variability of lane position, whereas cognitive 

distraction has been shown to decrease the variability of lane position (Cooper, Medeiros-

Ward, & Strayer, in press). Figure 8 presents a framework for understanding the 

relationship between cognitive workload, cognitive distraction, and crash risk. 

 

Figure 8. Relationship Between Cognitive Workload, Distraction And Crash Risk 

As attention is diverted from the task of driving, the crash risk increases. Proxies of crash 

risk include increased brake reaction time (Brown, Lee, & McGehee, 2001; Caird, 

Willness, Steel, & Scialfa, 2008; Horrey & Wickens, 2006), failure to scan for potential 

hazards in the driving environment (Taylor et al., 2013), failure to notice objects in the 

line of sight (Strayer & Drews, 2007), and failures to stop at controlled intersections 

(Strayer, Watson, & Drews, 2011). Logically, the basic measures of most driver 

distraction research focus on the principal task of driving. These often include analyses of 

steering, throttle, and brake inputs, as well as their effects on lateral and longitudinal 

control. Unexpectedly, the effects of cognitive distraction on these primary measures are 

somewhat subtle and often contradictory. Indeed, two highly cited meta-analyses of 

cognitive distraction indicated that it does not reliably affect basic lateral or longitudinal 

control, but that it does reliably degrade reaction time measures (Caird et al., 2008; 
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Horrey & Wickens, 2006). Driver cognitive distraction (e.g., hand-free cell phone 

conversation) can lead to unapparent, but detrimental, impairment to driving safety. 

Detecting cognitive distraction represents an important function for driver distraction 

mitigation systems. A study (Yulan Liang, John D. Lee, 2014) discovered 19 distraction 

indicators (continuous measures of driver visual behavior and driving performance 

summarized) and defined cognitive distraction using the experimental condition (i.e., ‘

distraction’ as in the drives with the secondary task, and ‘no distraction’ as in the 

drives without the secondary task). Table 11 represents these 19 indicators, divided into 

three groups based on their correlation and meaning—eye movement temporal measures, 

eye movement spatial measures, and driving performance measures. 

Table 11. 19 Distraction Indicators 

Groups Distraction Indicators 

Eye Movement 

Temporal 

Measures 

Blink frequency 

Mean and 

Standard 

Deviation 

(SD) of: 

Fixation duration 

Pursuit duration 

Pursuit distance 

Pursuit direction 

Pursuit speed 

Percentage of the time spent on performing pursuit 

movements in each time window 

Eye Movement 

Spatial Measures 

Mean and 

SD of: 

Horizontal fixation location coordinates 

Vertical fixation location coordinates 
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Driving 

Performance 

Measures 

SD of steering wheel position 

Mean steering error 

SD of lane position 

 

 Behavioral studies have shown that engaging in a secondary task, such as talking 

on a mobile phone, disrupts driving performance (Marcel Just, 2008). There have been 

previous studies inspecting the impact of concurrent auditory language comprehension on 

the brain activity associated with a replicated driving task. The results show that language 

comprehension performed parallel with driving draws mental resources away from the 

driving and produces deterioration in driving performance, even when it does not involve 

holding or dialing a phone. 

A persistent issue about the human mind concerns the knack to do two things 

concurrently - multitasking. As technological and informational abilities of our 

environment rise, the number of available information streams increases, and hence the 

opportunities for complex multitasking increase.  In particular, multitasking of driving 

and conversing on a cell phone is technologically available, but intuitively seems 

dangerous in some circumstances (Marcel Just, 2008). Although driving becomes 

sufficiently cognitively automated (Schneider, 1999) to permit experienced drivers to 

perform other tasks at the same time, such as carrying on a conversation, a large number 

of behavioral studies have now shown that performing another cognitive task while 

driving an actual or virtual car substantially degrades driving performance.  

Recent studies have also shown that simulated driving performance is also disrupted by 

conversations using hands-free devices (Treffner and Barrett, 2004 and a number of 
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research), and epidemiological studies of real-world accidents suggest that users of 

hands-free phones are just as likely to have an accident as users of hand-held devices 

(Redelmeier and Tibshirani, 1997; McEvoy et al., 2005). In their meta-analysis of recent 

dual-task driving studies, Horey and Wickens (2006) concluded that the costs to driving 

performance resulting from a secondary simulated conversation task were equivalent for 

hand-held and hands-free devices. 

We have developed a 4-level Driver Distraction model (Figure 8) that classifies the 

various tasks in driving related tasks or not and if it is internal or externally occurring. 

Normal driving itself can be considered a multi-task (Marcel Just, 2008), requiring the 

integration of information not only from multiple visual inputs (e.g., the road ahead, the 

rear-view mirror, the instrument display) and other sensory modalities (e.g., the sound of 

other vehicles and proprioceptive information about the stability of the vehicle on the 

road), as well as the coordination of multiple behavioral outputs (e.g., steering, braking, 

acceleration). The consequences of multitasking on brain activation have been examined 

in several previous neuroimaging studies and they suggest that two concurrently-

performed complex tasks draw on some shared, limited resource, and thus the resources 

available for performing each component task are diminished in the concurrent situation 

relative to when the task is performed alone (Marcel Just, 2008). 

 

2.6.1 Driver Workload 

 NHTSA’s first major effort in this area was the Truck Driver Workload 

Study, conducted between 1992 and 1995 (Tijerina, 1996; Tijerina et al., 1996). 

Because of the potential for diverting the driver’s attention away from the 
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driving task, NHTSA recognized the need for a set of methods that could be used 

to assess the safety implications of in-vehicle devices. The major objectives of 

this research program were to establish the relationship between workload and 

safety and to develop workload assessment methods for determining the safety 

implications of the use of in vehicle technologies while driving. One major 

conclusion of this work was that the development of a quantitative model to 

predict crash incidence as a function of driver workload measures was not 

feasible. Among the difficulties are the complexity and multiplicity of factors 

involved in determining driver workload and crash causation and the limitations 

of existing crash databases with respect to identifying crashes that were caused by 

driver distraction associated with in-vehicle technologies. Because of these 

difficulties, it was concluded that workload assessment is best considered as a 

relative assessment made in comparison to other tasks or baselines. Open-road 

driving was considered to be a baseline in terms of driving task workload, while 

tuning a radio was considered to be the upper boundary of acceptable workload 

for a secondary task since it is a well established and accepted  “distraction.” A 

second conclusion of this work was the demonstration that visual allocation 

measures, including glance duration, number of glances, and total glance time 

away from the road scene can be used to assess the driver’s workload associated 

with in-cab devices. In addition, lane-keeping measures, such as lane exceedance 

frequency were also introduced as safety-relevant performance measures. This 

study found that 2- and 4-line messages such as those used in their testing could 

have a substantial effect on visual scanning behavior (e.g., increased time looking 
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away from the road scene, shortened glances to the road while reading text) and 

on lane keeping performance (greater incidence of unplanned lane exceedences). 

Drivers involved in cell phone dialing tasks were observed to have lane 

exceedences on 27% of the trials. Finally, results indicated that visual scanning, 

as measured by mirror sampling, was cut by almost 50 % on average when the 

driver was engaged in dialogue as compared to open road driving without 

dialogue. The tools developed in this project are widely used by many researchers 

as the most appropriate way to assess workload and the consequent potential for 

distraction associated with the use of in-vehicle technologies. Following that, 

NHTSA published “An Investigation of the Safety Implications of Wireless 

Communications in Vehicles,” (Goodman, et al., 1997). The report assessed the 

current state of knowledge with respect to the impact of wireless phone use while 

driving and explored the broader safety implications of phone use while driving. 

With respect to the question of whether wireless phone use while driving 

increases crash risk, the report concluded that the use of wireless phones did 

increase the risk of a crash, “at least in isolated cases. And the outcome of this 

project was to encourage changes in data collection methods to improve our 

ability to estimate the magnitude of the safety problem and to assist the public, the 

states, and industry in making informed decisions about how and when to 

combine wireless phone use with driving. 

 Most recently NHTSA has conducted three experimental studies 

addressing questions relating to the distraction potential associated with route 

navigation systems. These included a destination entry study and an individual 
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differences study, which at the time was being considered as a “recommended 

practice” for evaluating the acceptability of navigation systems. 

 There was another research on Individual Driver Differences. The 

objective of this study was to determine whether individual differences in driver 

abilities would influence the speed with which they interact with in-vehicle 

technologies. The results were interpreted as support for the conclusion that 

drivers who differ in temporal (i.e., time dependent performances) and spatial 

(i.e., ability to visualize and manipulate objects in space) abilities will respond 

differently to in-vehicle technologies along safety-relevant dimensions.

 Research by Horberry and colleagues (in press), however, failed to reveal 

any interaction between the complexity of the driving environment (by increasing 

the number of billboards and advertisements placed on the roadside and the 

number of buildings and on-coming traffic.) and two in-vehicle distracter tasks: 

operating an in-car entertainment system and conversing on a hands-free mobile 

phone. Results revealed that interacting with the entertainment system and mobile 

phone affected driving performance, by decreasing mean speed, increasing speed 

variability and decreasing responses to a pedestrian hazard. However, no 

interaction between the distracter tasks and environment complexity was revealed, 

suggesting that driving performance while interacting with the in-car devices was 

not further degraded by increased complexity in the traffic environment. It is 

possible that increasing the number of objects that are not central to the driving 

task has little effect on increasing the demands of the driving task because drivers 

simply ignore anything not essential to the driving task when under increased load 
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(e.g., when performing a secondary task). Lee et al. (2001) used a driving 

simulator to examine the effects of a speech-based email system (in which email 

messages were accessed, read and replied to using only voice commands) on 

drivers’ attention and their reaction time to a braking lead vehicle. When 

interacting with the speech-based email system, regardless of the complexity of 

the system, drivers’ reaction time to the braking vehicle was 30% longer than 

when not interacting with the system. Moreover, this 30% increase in reaction 

time translated into a 3.5 to 38.5% increase in collisions and 27.3 to 80.7% 

increase in collision velocity. Interaction with the speech-based email system also 

increased drivers’ self-reported workload levels and this was highest for the 

complex email system. Another research suggests that simply listening to radio 

broadcasts while driving can impair driving performance, resulting in more lane 

deviations, particularly under complex driving conditions (Jancke et al., 1994). 

Also, while several studies have found that tuning the radio is less distracting than 

dialling or talking on a mobile phone (McKnight & McKnight, 1993; Strayer et 

al., 2002) or operating a navigation system (Tijerina et al., 1998), numerous other 

studies have found that tuning a radio degrades driving performance more than 

holding a simple conversation on a mobile phone, particularly when driving in 

adverse conditions (Briem et al., 1995; Wikman et al., 1998). 

 The automotive industry is actively working to adopt speech recognition 

technology into in-vehicle devices to allow true hands free operation, including 

the capability to control the numerous functions of these systems. At the same 

time text-to-speech processing is also becoming available for automotive use. The 
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safe operation of these technologies is predicated on the assumption that voice-

activated and speech-based interfaces will be sufficient for preventing significant 

distraction for drivers performing increasingly complex transactions while 

driving. However, this assumption is not well tested and some studies even 

suggest the opposite (as elaborated earlier in Chapter 1 section 3 and later 

explained in section 9 of this chapter). 

 

2.6.2 Compensatory Behavior 

 One fundamental question concerning the influence of in-vehicle devices 

on driving performance is whether and how drivers self-regulate their driving to 

compensate for any decrease in attention to the driving task. Surprisingly, very 

little research has been conducted to exclusively address this issue. It is important 

to identify, however, that not all changes in driving performance associated with 

non-driving tasks are indicative of driver impairment, and research suggests that 

drivers do engage in a range of deliberate and unconscious compensatory 

behaviors in order to attempt to maintain an adequate level of safe driving 

(Haigney et al., 2000). Compensatory or adaptive behavior can occur at a number 

of levels ranging from the strategic (e.g., choosing not to use a mobile phone 

while driving) to the operational level (e.g., reducing speed) (Poysti, Rajalin & 

Summala, 2005). At the highest level, drivers can choose to moderate their 

exposure to risk by preferring not to engage in a potentially distracting task while 

driving. Research has shown, for example, that older drivers’ driving 

performance is impaired to a greater degree than younger drivers when using a 
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mobile phone and this results in compensatory behavior at the highest level; many 

older drivers choose not use a mobile phone while driving (Alm & Nilsson, 1995; 

Lamble, Rajalin & Summala, 2002). At the operational level, several studies have 

shown that drivers attempt to lessen workload and moderate their exposure to risk 

while interacting with in-vehicle devices. They do this through a number of 

means: decreasing speed (Alm & Nilsson, 1990; Burns, Parkes, Burton, Smith & 

Burch, 2002; Haigney et al., 2000; Rakauskas, Gugerty & Ward, 2004), 

increasing inter-vehicular distance (Jamson, Westerman, Hockey & Carsten, 

2004; Strayer & Drews, 2004; Strayer, Drews & Johnston, 2003), changing the 

relative amount of attention given to the driving and non-driving tasks in response 

to changes in the road environment (Brookhuis, de Vries & de Waard, 1991; 

Chiang Brooks & Weir, 2001), and accepting a temporary degradation in certain 

driving tasks (e.g., by checking mirrors and instruments less frequently) 

(Brookhuis et al., 1991; Harbluk, Noy & Eizenmann, 2002). 

 Several on-road and simulator studies have found that drivers tend to 

decrease their mean speed and the standard deviation of accelerator travel 

decreased when engaging in a secondary task (Young, K. & Regan, M. (2007)). 

An increase in following distance by 12 percent (Strayer and Drews 2004) is 

another compensatory behavior that has been displayed by drivers while they are 

interacting with in-vehicle devices.  

 Generally, based on the above research, the potential for an in-vehicle 

device to distract drivers can be induced by the design of the interface for the 

device. With respect to mobile phones, there is proof that the task of having to 
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physically manipulate the phone does adversely affect driving. However, the task 

of speaking on the phone has also been indicated to have a significant negative 

impact on driving performance irrespective of the phone type used. In addition, 

the use of voice input technology to enter destination information into route 

guidance systems appears to have a lesser effect on driving performance than does 

the use of visual-manual entry systems to perform this task. Similarly, guidance 

systems that present navigation instructions using audio output appear to be more 

usable and less distracting than systems that present information via a visual 

display, especially if the display is a intricate map. 

 Another factor, often closely related to interface design, which can 

influence the distraction potential of a secondary task, is the complexity of the 

task. For example, the familiarity of a destination address, or the level of 

difficulty or emotionality of a phone conversation can affect the cognitive 

demands that the task places on the driver and hence its potential to distract the 

driver from the driving task. Rakauskas and colleagues (2004) examined the 

relationship between level of conversation difficulty and driver distraction using a 

naturalistic conversation task And the results indicated, although the use of the 

phone degraded driving performance, the level of conversation difficulty did not 

differentially affect driving performance in terms of mean speed, speed or steering 

variability, or subjective mental workload. One explanation why this study failed 

to demonstrate an effect of conversation difficulty when numerous other have 

done so, may be that naturalistic conversations require less cognitive effort than 
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the verbal reasoning and mathematical tasks used in previous studies and, thus, 

are less sensitive to effects of increasing difficulty.  

 

2.6.3 Conclusion 

 Research has shown that the design of a device, the complexity of the 

driving environment and driver characteristics, such as age and driving experience 

level, the emotionality and/or complexity of the secondary task being executed 

can all influence the potential for non-driving tasks to distract drivers. Hence it 

was recommended that research should attempt to determine how frequently 

drivers engage in certain distracting activities, how long they typically engage in 

them, and under what conditions they usually engage in them. Further research is 

needed to obtain information about drivers’ subjective assessments of the degree 

of distraction imposed by particular devices and their perceived ability to cope 

with these distractions. Studies examining whether and how practice and training 

can reduce the interference associated with performing secondary tasks while 

driving are urgently required and to establish the most ergonomic way to design 

In-Vehicle Interactive Systems so that they decrease distraction. 

 

2.7 Driver Behavior Detection And Support 

 Although drivers benefit from these devices, it is also critical for drivers to avoid 

distraction and direct an acceptable level of attention to the road. A promising strategy to 

minimize the effect of distraction is to develop intelligent in-vehicle systems, namely 

adaptive distraction mitigation systems, which can provide real-time assistance or 
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retrospective feedback to reduce distraction based on driver state/behavior, as well as the 

traffic context (Lee, 2009; Toledo et al., 2008). Such systems must accurately and non-

intrusively detect whether drivers are distracted or not. Detecting driver distraction 

depends on how distraction changes driver behavior compared to the normal driving 

without distraction, which can depend on the type of distraction. Visual distraction relates 

to whether drivers look away from the road (i.e., on-road or off-road glances) and can be 

determined by momentary changes of drivers’ eye glances. A general algorithm that 

considers driver glance behavior across a relatively short period could detect visual 

distraction consistently across drivers. Detecting cognitive distraction is much more 

complex than visual distraction because the signs of cognitive distraction are usually not 

readily apparent, are unlikely to be described by a simple linear relationship, and can vary 

across drivers. Detecting cognitive distraction likely requires an integration of a large 

number of indicators (e.g., eye gaze measures) over a relatively long time and may need 

to be personalized for different drivers (Liang et al., 2007b). The challenge is how to 

integrate performance measures in a logical manner to quantify complex, even unknown, 

relationship between drivers’ cognitive state and distraction indicators. Data mining 

methods that can extract unknown patterns from a large volume of data present an 

innovative and promising approach to this end. 

There are five types of measures for driver inattention detection:  

1. Measures e.g., SSS (Stanford Sleepiness Scale), KSS (Karolinska 

Sleepiness Scale) 

2. Driver biological measures e.g., EEG (Electroencephalogram), ECG 

(Electrocardiogram) 
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3. Driver physical measures e.g., PERCLOS (proportion/percentage of time 

in a minute that the eye is 80% closed), Gaze direction 

4. Driving performance measures/ Engineering based e.g., steering wheel 

angle, yaw angle, reaction times etc. 

5. Hybrid measures. 

 

 2.7.1    Driver Biological Measures 

 Cognitive distraction can be measured through a variety of physiological 

techniques. Among these, direct measures of brain activity may be the most 

compelling. One approach that shows high promise is to use time-locked signals 

of Electroencephalographic (EEG) activity, referred to as Event-Related Brain 

Potentials (ERPs). This technique provides a window into the brain activity that is 

associated with responses to imperative driving events (e.g., brake lights on a lead 

vehicle). Using this technique, Strayer & Drews (2007) found that the brain 

activity associated with processing the information necessary for the safe 

operation of a motor vehicle was suppressed when drivers were talking on a cell 

phone. However, this method is frowned upon, as it is very intrusive and is 

impossible to incorporate in real life. 

 

 2.7.2 Driver Physical Measures 

 The most commonly used driver physical data for driver cognitive 

distraction are eye movements. Azman et al. found that mouth and eyes are 

correlated to each other when a person is thinking or cognitively distracted and 
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they could be used to detect driver’s cognitive distraction. In human science and 

psychology studies, it has been proved that mouth movement is a good indicator 

of a human’ s state of mind and when a person is thinking, his/her mouth and 

eyes are moving together. Mouth movement can also be thought of a form of 

body language. Body language can be used to obtain information about whether a 

person is distracted or not. Two important conclusions from their study are: (1) 

mouth and eye movements are highly correlated to each other; and (2) right eye is 

more correlated to mouth movement either from eye’ s height or width 

compared to the left eye. Victor et al.  found that cognitive distraction causes 

drivers to concentrate their gaze in the center of the driving scene, as defined by 

the horizontal and vertical standard deviation of gaze distribution, and diminishes 

drivers’ ability to detect targets across the entire driving scene. Fletcher and 

Zelinsky obtained information such as eye gaze direction, eye closure, and blink 

detection, as well as head position. Figure 9 shows glance frequency of drivers 

performing various distractive tasks at hazard locations. 
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Figure 9. Glances At Hazard Locations 

 

 2.7.3 Driving Performance Measures/ Engineering Based 

 A change in the mental state can induce the change in driving 

performance. Many studies prove the fact that compared to the attentive drivers 

the distracted ones steer their car in a different way; the same applies for throttle 

use and speed. Some lines of evidence show that drivers adjust their behavior 

according to cognitive demand of secondary tasks. 

 Drivers tend to increase the distance to the leading vehicle in the car-

following scenario when they engage in cognitively demanding secondary tasks. 

This suggests that drivers may compensate for the impairments that secondary 

tasks have imposed as elaborated earlier. Wollmer et al. introduced a technique 

for online driver distraction detection that used LSTM (Long Short Term 

Memory) recurrent neural nets to continuously predict the driver’s state based 
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on driving and head-tracking data. The measured signals include steering wheel 

angle, throttle position, speed, heading angle, lateral deviation, and head rotation. 

These links between driving performance and cognitive state show that driving 

performance measures are good candidates to predict cognitive distraction. This 

method will be explained in detail later in this report. 

 

 2.7.4 Hybrid Measures 

 In one of the above study, driver physical measures and driving 

performance measures were combined to detect driver distraction in real time. 

Comparing support vector machines SVM to traditional logistic regression 

models, the results showed that the SVMs models performed better. Machine-

learning techniques were used to detect driver cognitive distraction based on the 

standard deviations of eye gaze, head orientation, pupil diameter, and average 

heart rate RRI (R-R Interval). The eye and head parameters were obtained using 

faceLAB, whereas the RRI data came from ECG. Sathyanarayana et al. detected 

distraction by combining motion signals from the leg and head with driving 

performance signals using a k-nearest neighbor classifier, the driving performance 

signals adopted including vehicle speed, braking, acceleration, and steering angle. 

 Among all of these measures, eye movements are one of the most 

promising ways to assess driver distraction. While most of the eye movements 

parameters were obtained by faceLAB or SmartEye, these systems are not 

common in vehicles today, owing to their higher price for installation into a 
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vehicle. At the same time there are limits in the process of extracting eye 

movements’ parameters. The limitations are - 

1. Complex calibration: Before each experimental drive, the calibration of 

the gaze vector with the simulator screen must be verified. After that, in 

the process of the experiment eye tracker must be calibrated to every 

participant and the calibration takes 5 to 15 min. After the complex 

calibration, the tracking error was approximately 5% of visual angle for 

most participants. 

2. Driver restriction: The participants cannot wear glasses or eye make-up 

because these conditions can negatively affect tracking accuracy. 

3. Environmental restriction: Eye trackers may lose tracking accuracy 

when vehicles are traveling on rough roads or the lighting conditions are 

variable. 

4. Time delay: The Seeing Machines’ faceLAB eye tracking system 

takes approximately 2.6 s to transfer camera image to numerical data. 

These requirements limit the application of cognitive distraction system using eye 

movements parameters obtained from faceLAB or SmartEye; therefore, up till 

now, this scheme is only for research offline. More robust and real-time eye 

tracking techniques are needed to make these detection systems become a reality. 

While driving performance parameters could be obtained in real time from CAN-

Bus directly, driving performance measures are used in this study for cognitive 

distraction detection. In this method, the characteristic parameters could be 

directly extracted without depending on other sensors, and system real-time 
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performance and robustness are improved. A significant finding of this study is 

that even though subjects preferred distinct alarms for different driver warning 

systems, their objective performance showed no difference in reaction times and 

accuracy of responses to a single versus multiple alarms for the different driver 

warning systems. This is an important finding since it implies that if performance 

is unaffected, automotive manufacturers can customize the alerting schemes of 

driver warning systems to the customers’ desires, or use a simple master alerting 

scheme for vehicles where cost savings are important. However, these results are 

only applicable to aural alerting schemes and this work should be extended to 

include integration with visual and haptic alerts. While not unexpected, the results 

that demonstrate that low reliability can dramatically (and negatively) influence 

human performance further highlight the need for the development of highly 

reliable intelligent warning systems. While intelligent driving warning systems 

can serve as an additional protection to drivers in times of urgent or emergent 

events, as demonstrated in this study, decreased system reliability can 

dramatically increase incorrect responses to these systems. If there is a high 

incidence of false alarms for intelligent warning systems, drivers might be better 

served by not having such intelligent aids at all. 

 

2.8 Problems In Measurement Of Driver Performance 

1. The misuse of the term distraction (and possible misdirection of effort), 

2. Driving performance measures and statistics that are either undefined or 

poorly defined (to be resolved by an SAE practice), 
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3. The workload of the driving task is not quantified, 

4. The demand characteristics of in-vehicle tasks are not quantified, 

5. Too often, standards specify only measurement methods, not compliance 

criteria. 

These are the problems derived from the study by Green A. Paul, 2010. 

 

2.8.1    The Misuse Of The Term Distraction 

Driver distraction and workload are often used interchangeably, but are 

not the same. Part of the problem is defining what is the problem. As has been 

stated before (Oberholtzer, Yee, Green, Eoh, Nguyen, and Schweitzer, 2007; 

Green, 2008), in the popular press but also in the scientific literature, the term “

distraction” is often used to describe the topic addressed here. Distraction 

generally refers to something that attracts and retains attention, whereas workload 

or overload refer to the individual and aggregate demands of the tasks a driver 

performs. In practice, sometimes the consequences of both are the same, but 

nonetheless distraction persists as the label for both phenomena, probably because 

it is easier to get attention and funding. The naming/identification of the problem 

is important because of its implications for what one thinks the problem is and 

which performance measures should be collected. Keep in mind that there is just 

something compelling about answering a ringing phone, keeping a phone 

conversation going, responding to a text message, or completing an in-vehicle 

task such as entering a destination. When these tasks are conducted while driving, 

they become a safety issue. 
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2.8.2    Driving Performance Measures And Statistics That Are Either Undefined 

Or Poorly Defined 

Richard P. Feynman, the Nobel prize-winning physicist at Caltech, in his 

well-known textbook Feynman Lectures on Physics (volume 1, page 2-1), said, 

“Observation, reason, and experimentation make up what we call the scientific 

method.” Following the scientific method involves creating a hypothesis to 

explain a phenomenon, collecting observable, quantifiable data in experiments to 

test the hypothesis, and using reasoning to interpret the results. Those quantifiable 

data, measurements, must be repeatable and reliable. The lack of such measures 

has been a major problem for driving research and engineering, especially for 

work on distraction/overload. A few examples from Savino (2009), his master's 

thesis, make the point. Savino reviewed the refereed human factors literature 

relating to driving, with the goals of determining the names used to identify 

common driving performance measures and statistics and how they were defined. 

He examined every issue of Human Factors and Ergonomics from 2000 to 2005, 

as well as the HFES and Driving Assessment Conference Proceedings, and other 

references. He did not examine SAE or ISO standards, as those interested in the 

research were familiar with their content. Overall, Savino examined 498 

references, of which 111 were relevant to his research. The terms initially being 

considered for driver performance measurement are: accelerator response time, 

accelerator to brake transition time, brake response time, steering wheel reversal, 

distance gap, time gap, headway time, headway distance, time to collision, lane 

departure, lane change, lateral lane position, and time to line crossing. However 
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the problem of undefined or inconsistently defined measures is quite serious, 

making automotive human factors engineering and research appear second-rate, 

and makes it difficult to consistently assess the effects of distraction. What would 

chemistry be like if there were ten different names for acidity, the pH value could 

be computed three different ways, and when used, the authors did not identify 

how the acidity/pH characteristic, or whatever they called it, was determined? 

 

2.8.3    The Workload Of The Driving Task Is Not Well Quantified. 

To date, the demand of the primary driving task in most studies is 

typically described in general terms, for example, as demanding, or in some 

studies, as low workload and high workload. Other times, it is measured, but no 

single or even small set of measures or statistics is consistently used in the 

majority of studies. As an example, one of the author's studies (Tsimhoni, Green, 

and Watanbe, 2001) evaluated the effects of workload on Head Up Display 

(HUD) use in a driving simulator. Workload was manipulated by varying the 

radius of the curve driven, with the implication being that smaller radius curves 

represented a higher workload. However, there was no direct measurement of 

workload. Keeping in mind that what is low, moderate, or high workload is 

relative. For example, at a certain place, moderate traffic is when a driver sees 

another vehicle and in another, it is when traffic is moving. Fortunately, ISO is 

developing a procedure for peripheral detection. This lack of consistent and 

reliable measures to quantify test conditions also does not reflect favorably on 

automotive human factors work. Workload depends primarily on road geometry, 
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traffic, visibility, and the road surface condition, each of which can be quantified. 

Commonly, traffic volume is described in terms of Level of Service, which maps 

traffic volume into letter grade categories of A through F, where A corresponds to 

excellent driving conditions and F to failing conditions. 

 

2.8.4    The Demand Characteristics Of In-Vehicle Tasks In Question Are Not 

Well Quantified. 

A topic of significant debate in the literature is what levels of task 

demands (especially visual, cognitive, and psychomotor) are excessive. However, 

because tasks are only described qualitatively, a quantitative answer is unlikely to 

appear. However, there are few tasks used as benchmarks consistently across 

experiments. The Alliance of Automobile Manufacturer guidelines uses manual 

radio tuning as a benchmark, but across studies, the total time for that task varies 

by a factor or six, hardly a stable value (Shah and Green, 2003). Furthermore, it is 

unknown how much demand is too much, either on a single scale or in 

combination. Under what circumstances is a visual demand of 6.0 excessive? That 

of course will depend on the workload of the primary task, the duration of the 

secondary tasks, and the cognitive, auditory, and psychomotor demands of the 

task as well. Of course, since these have yet to be quantified in a common manner 

in the automotive literature, there is no direct, quantitative answer to the excessive 

visual demand question just posed. 
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2.8.5    Too Often, Standards Specify Only Measurement Methods, Not 

Compliance Criteria 

Standards, guidelines, rules, and regulations fall into two categories, 

design oriented and performance oriented. Design oriented specifications identify 

specific physical characteristics for some feature and may specify values for it, 

such as a bumper height, a minimum acceptable contrast ratio for a letter, or a 

minimum intensity for a sound, say a warning. Performance specifications 

identify how well a system should do in a test, such as the maximum load on 

some body part in a crash, or the maximum allowable time for drivers to perform 

certain tasks while driving. There are numerous standards, guidelines, rules and 

regulations that relate to driver distraction. This is a reflection of the complexity 

of producing a product that is manufactured internationally and sold in many 

jurisdictions, where many organizations have a rightful say in safety. Of all the 

specified criteria what is excessively distracting, a performance characteristic, is 

left for the manufacturer or supplier to determine. Not providing criteria, leaving 

up to the user to determine what is distracting, has some interesting consequences. 

The major automakers with a human factors staff have the capability to decide 

what is excessive, but where there is no performance criterion, there is no 

incentive to conduct these tests, so they may not do it. In the organizations with 

few or no human factors staff, they lack appropriate performance criteria, and 

accordingly will not perform the evaluation unless required to do so. To put it 

plainly, if there is no performance criterion for distraction testing, tests for 

distraction will not be conducted. 
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2.8.6    Conclusion 

There is a need to develop a unified model/theory of driver distraction that 

encompasses the different sources of distraction emanating from within and 

outside of the vehicle. A set of standardized experimental protocols is needed to 

allow for more accurate comparisons of results across studies to be made and to 

facilitate communication between researchers. Research is needed to establish 

what methods and measurement techniques are most sensitive to the differential 

effects of in-vehicle technologies on driving performance. Research is needed to 

identify and quantify the distracting effects of objects and events occurring 

outside the vehicle and further examine whether and how external events combine 

with internal events to distract the driver. 

 

2.9 The Case Of MMI 

Mobile phones are but one example of portable devices that provide a wide range 

of features that are carried into automobiles. They supplement information and driver 

assistance systems are now becoming common. Each of these systems and their 

functionalities is being provided for a valid purpose, and together, they increase 

complexity of vehicle operation. With recent advancement in vehicle safety systems, 

transforming vehicles from human-controlled passive devices into human-centric 

intelligent/ active systems is possible. With many more tasks for the driver to do, these 

systems could also collectively reduce safety and usability. The function of these added 

systems is something drivers must now learn and will use while driving. These systems 
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can be distracting and their use overwhelming if improperly designed. Those doing the 

work of designing are sometimes so close to those evaluations that they may not be aware 

of the larger problem of growing total vehicle complexity. (Green, 2004) Moreover, 

because of the focus on very specific interface issues, engineers are not aware of the 

larger shortcomings of current work, which may fall below the quality of research and 

engineering being done in other industries. 

 

2.9.1 According To The Crash Literature, Has In-Car Interactive System Use 

Led To Crashes? 

There are numerous predictions concerning when various In-Car 

Interactive System systems will achieve various levels of market penetration in 

motor vehicles (Cole and Londal, 2000; Richardson and Green, 2000; Green, 

Flynn, Vanderhagen, Ziomek, Ullman, and Mayer, 2001; Frost and Sullivan, 

2002). Although such predictions tend to be a bit optimistic, widespread use of In-

Car Interactive System has occurred for some systems and will occur for others. 

At the present time, the use of cell phones while driving is common, with about 

3% of all drivers being on the phone at any given time. Similarly, navigation 

systems are also becoming more common. It is only a matter of time before text 

messaging, email, and Internet access become widespread. In-Car Interactive 

System can have significant benefits, allowing drivers to make better use of their 

time and to support driving in a variety of ways. However, the concern is that 

some tasks, when performed under some situations, can pose a significant risk to 

drivers, passengers, and other road users. There is a growing body of evidence 
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that the use of In-Car Interactive System is associated with crashes. Surprisingly, 

distraction-related crashes tend to be relatively more likely during the daytime, in 

good weather; conditions which are favorable to safe driving. When compared 

with all other crashes in which the driver is not impaired by alcohol or fatigue, 

rear-end collisions of all types tend to be much more common. In some analysis, 

intersection and run-off road crashes become relatively more common. The crash 

literature makes three key points: 

1. There are crashes in which In-Car Interactive System use has been a 

contributing factor. 

2. In crashes where In-Car Interactive System use is a contributing factor, 

drivers become so engrossed in the in-vehicle task that they lose sight of 

the driving task. 

3. Crashes associated with In-Car Interactive System use are relatively 

more likely to occur in benign conditions (in good weather on good 

roads). 

 

2.9.2 According To The Human Performance Literature, Why And How Do In-

Car Interactive System-Related Crashes Occur? 

Numerous studies in the literature examine multitasking while driving. Of 

these, at least 50 concern the use of phones, although many others concern 

navigation systems and with abstract tasks. There are a significant number of on-

the-road studies (e.g., Brown, Tickner, and Simmonds, 1969; Brookhuis, de Vries, 

and de Waard, 1991; Tijerina, Johnston, Parmer, Winterbottom, and Goodman, 
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2000; Nunes and Recarte, 2002; Zylstra, Tsimhoni, Green, and Mayer, in 

preparation), though most have been conducted in the controlled context of a 

driving simulator (e.g., Nilsson and Alm, 1991; McKnight and McKnight, 1993; 

Nowakowski, Friedman, and Green, 2001; Strayer and Johnston, 2001; Tsimhoni, 

Smith, and Green, 2002; Uchida, Asano, and Hashimoto, 2002). (See Goodman, 

Bents, Tijerina, Wierwill, Lerner, and Benel, 1997, for a partial summary of the 

phone-related studies.) Although one can always pick at individual studies and 

find occasional flaws, the overwhelming abundance of evidence is irrefutable. 

Depending on the study, using In-Car Interactive System can increase following 

distance and variability, lane variance, lane departure, response time to a lead 

vehicle braking, steering entropy, and so forth. In a study about driver overload, 

referring to Wickens’ multiple resource theory (Horrey and Wickens, 2003) as the 

scientific basis for what occurs. They suggest that driving demands visual, 

cognitive, and manual resources of specific types to process specifically coded 

information. In-vehicle tasks also have resource demands and those demands can 

exceed the capacity of the resources available, leading to overload. Unfortunately, 

this quite elegant explanation does not predict what drivers will do in response to 

that overload. All too often, drivers allow the primary task, driving, to degrade. 

Other explanations refer to cognitive capture, where drivers get locked into a task 

until it is completed (though some switching between tasks may occur in the 

process). Capture clearly occurs within secondary tasks. For example, if a person 

is talking on a phone and hears a call-waiting signal, they might ask the first 

person to hold, connect the second person, ask them to hold, and then complete 
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the first call. They do not switch back and forth continuously. Similarly, if a 

person is working on a computer, say editing a document, and they receive an 

incoming email message, they might, if it was high priority, stop to answer the 

email message, but they will not type a line in the document, then a word in the 

email message, etc., switching back and forth. This is because the task-switching 

restart costs are high in much of the same way there are costs associated with an 

interrupt service routine for a multitasking computer. Task capture is accentuated 

by interfaces with short time outs. So, if the driver does not continue to interact 

with the secondary task for a short period of time, they must start the task over 

from the beginning. When drivers are engaged in performing these combined 

tasks, their scanning behavior is disrupted and they fail to look where they should 

for the desired duration. For visual manual tasks, such as destination entry, drivers 

spend too much time looking inside the vehicle and not looking at the road. In the 

case of cell phone conversations, drivers are observed to be looking at the sky 

much more often, not at the road, traffic, or road signs (Recarte and Nunes, 2000; 

McCarley, Vais, Pringle, Kramer, Irwin, and Strayer, 2001; Harbluk, Noy, and 

Eizenman, 2002; Strayer, Drews, and Johnston, 2003). As is commonly observed, 

the more difficult the thought, the more people shut off visual input because input 

processing interferes with the cognitive operation. In conversation, people look 

away from others, and sometimes even close their eyes. This is counterproductive 

to driving safely. This loss of road-related visual input may occur because of 

inappropriate prioritization of the secondary task, with drivers giving that task 

inordinate attention. For example, in an UMTRI laboratory study, drivers would 
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answer a ringing phone in 1 to 4 seconds after it began to ring, even in situations 

where the workload was nontrivial and driving safety was emphasized in the 

instructions (Nowakowski, Friedman, and Green, 2001). There is something about 

a ringing phone that compels people to immediately answer it, even though in 

many cases it could be a telemarketing call. The behavior to answer a ringing 

phone and engage in a conversation is so ingrained that is extremely unlikely that 

any amount of public awareness, education, or training will alter that highly 

reinforced behavior. For other tasks such as destination entry, there are similar 

problems. Again, once people initiate a task, they try to continue to perform it 

until completion. That does not mean they never look back at the road, but it is 

extremely rare for people to abandon the secondary task. Good design considers 

not how people should behave, but how they actually behave, whether or not is it 

desired, good, or even logical. The human performance literature makes these key 

points: 

1. The many studies of how people multitask when they drive consistently 

find that multitasking while driving does not promote safety. 

2. Use of In-Car Interactive System can lead to problems in one of three 

ways: 

a. Drivers need to look at the device a great deal to use it, so they 

have less time to devote to the road and either do not see hazards 

or see them too late. 

b. The act of thinking about the in-vehicle task changes driver-

scanning patterns, pulling their gaze away from the road. 
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c. Completing in-vehicle tasks is very compelling, so drivers 

initiate and continue in-vehicle tasks even at their peril, and 

experience momentary overload when they do so. 

 

2.9.3 Why Are In-Car Interactive System Different From Other In-Vehicle 

Tasks? 

The aggregate risk of using a In-Car Interactive System device is the 

product of duration of each use times the frequency of use (Wierwille, 1995; 

Wierwille and Tijerina, 1996); that is, exposure. Task completion times for non-

In-Car Interactive System devices such as headlights, windshield wipers, and so 

forth are quite short, about 3-5 seconds (Wierwille, Hulse, Fischer, and Dingus, 

1988). In contrast, task times for In-Car Interactive System devices can be 20, 40, 

or 60 seconds or more (Green, 1998), which is an order of magnitude increase. 

Furthermore, creeping functionality has significantly increased task times for 

systems such as climate control and entertainment. Operations in some cases no 

longer require a single button press, but navigation through a menu hierarchy. 

What makes these tasks particularly egregious is the amount of time that drivers 

seemed to be preoccupied by them. One could argue this is not a smart (or crash-

risk minimizing) way for drivers to behave, but it is nonetheless how drivers 

behave. 
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2.9.4 If There Is An In-Car Interactive System Related Crash, Who Is 

Responsible? 

Automobile design and operation has a long history of regulation. 

According to the principle of strict liability, “people are responsible for damages 

their actions or products cause, regardless of any fault on their part… Those 

engaged in the stream of commerce with respect to products should reasonably 

foresee that some people will misuse the product and should design the product so 

that injury does not occur.” Thus, In-Car Interactive System devices can create 

risk to drivers and other road users and in some cases should not be used while 

driving. Although it is ultimately the driver’s decision when to use In-Car 

Interactive System devices, legally, many, including OEMs and suppliers, under 

the principle of strict liability, share responsibility for driver safety. 

 

2.9.5 For Whom Should In-Car Interactive System Be Designed? 

The legal literature refers to the “ordinary, prudent person”, not engineers 

or computer techies. This is particularly important when considering usability, so 

that a first-time user can successfully complete a desired task without assistance. 

In terms of safety, ISO guide 51 (International Standards Organization, 1997) 

talks about design for expected use and misuse. Engineers need to design systems 

for how people actually use them, not how the engineers would like them to be 

used. It is well known that people often do not read the owner’s manuals. Many 

are not computer literate, and phone and car literacy may be issues as well 

(Thimbleby, 1993). Although a vehicle might be targeted to a particular market 
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segment, it must be operable by drivers of all types. Vehicles are designed to suit 

a wide anthropometric range, should accommodate well-known variants in age 

and need to suit both the manual and intellectual capabilities of drivers. A vital 

element of the legal discussion is what constitutes foreseeable use and misuse. 

Using a lawnmower as a ceiling fan is not foreseeable. However, people will 

participate in phone calls and use GPS in almost any circumstances if left free to 

do so. 

 

2.9.6 Motivation Behind MMI 

A meta-analysis of 125 studies confirmed that cell phone conversations 

while driving were associated with impaired reaction time and showed no 

differences in risk between hands-free and handheld phones. According to the 

Highway Loss Data Institute, the benefits of banning the use of handheld phones 

are outweighed by the increased use of similarly distracting hands-free devices. 

The institute found no significant reductions in traffic crashes in states that 

enacted handheld cellular phone bans relative to states that had not. In a recent 

NHTSA study, it was found that glance frequency and duration were smallest for 

the voice-activated system and that the percentage of time the eyes were off the 

road was smallest for the voice-activated system. The results suggested that using 

voice commands to enter information or select device functions is less distracting 

than visual/manual destination entry while driving. Subjective assessments also 

favored voice over visual/manual methods. Older drivers were no more distracted 



  72 

than younger drivers by the voice input, while the visual/manual interface was 

more distracting for older than for younger drivers.  

 The current technology in market for speech recognition has reached its 

peak and is perfect but for quiet environments where there is minimal disturbance. 

Such is not the case in vehicles, but it is improving and may someday achieve 

perfect fidelity. In cars, the environment is brutal. There are a number of 

disturbances like engine noise, traffic noise, passengers talking, and media player. 

And hence, it’s still hard to incorporate speech recognition in cars. Other recent 

reports (by Forbes, J.D. Power, AAA) have shown that voice recognition in the 

car is one of the biggest complaints, Anyone who has ever used voice recognition 

in a car knows that it can range from frustratingly inconsistent to utterly useless 

and concluded that automotive voice-recognition technology should receive a 

"failing grade." The most recent annual Initial Quality Study, which focuses on 

problems new car buyers experience in the first 90 days of ownership, found that 

23 percent of reported issues were related to infotainment, and a third of these 

problems were caused by voice recognition. This was because, unlike voice 

recognition on portable devices, the technology has to contend with lots of road 

and engine noise inside a moving car. 

 While some argue, voice recognition can be frustratingly inconsistent, 

when it works it's great to be heard. It is the UI that is distracting and not the 

speech recognition per se. And its not that people do not want speech recognition 

in vehicles, they do not want speech recognition that fails or a bad UX design. 

Modifying individual behavior is often difficult, especially when the public gains 
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satisfaction from mobile communications. Design changes can often more 

effective because they do not simply rely on individual compliance. 

Manufacturers, therefore, have a obligation to improve safety and improving their 

in-vehicle devices User Interface. 

(AAA Foundation for Traffic Safety, 2011) After new speech-based in-vehicle 

technologies and infotainment systems proliferated, there were prevailing 

assumptions that: “hands-free” = safe and, 

• Public: 66% say driver use of hand-held devices is unacceptable; 56% say 

hands-free is acceptable 

• Policymaker: 41 States + DC ban texting while driving; 0 ban hands-free 

devices 

• Industry: In-vehicle speech-based technologies and infotainment systems 

are often marketed as safe by virtue of being hands-free.  

 

Figure 10. Research By AAA Foundation, 2011 
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The AAA Foundation for Traffic Safety set out in 2011 to study this issue and 

investigate potential sources of cognitive distractions for drivers. And the results 

indicated: 

• There are significant impairments to driving that stem from the diversion 

of attention from the task of operating a motor vehicle, and that the 

impairments to driving are directly related to the cognitive workload of 

these in-vehicle activities. 

• Moreover, compared to the other activities studied (e.g., listening to the 

radio, conversing with passengers, etc.) we found that interacting with the 

speech-to-text system was the most cognitively distracting. This clearly 

suggests that the adoption of voice-based systems in the vehicle may have 

unintended consequences that adversely affect traffic safety. 

 

Figure 11. Cognitive Distraction Scale 
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There are 5 categories of Cognitive Distraction ranging from 1 to 5. Radio 

handling, book on tape, etc. are recognized as Category-1 level of cognitive 

distraction. Category-2 is passenger talking, operating handheld and hands-free 

cell phone. Category-5 is for complex Math problems.  The speech-to-text based 

system that was evaluated in the research was associated with a Category-3 level 

of cognitive distraction. And the system used was perfect fidelity speech-

recognition system and there was no requirement to review, edit, or correct 

garbled speech-to-text translations. Given the current trends toward more voice 

commands in the vehicle, this Category-3 level of cognitive distraction is 

troubling. The belief that if the eyes were on the road and the hands were on the 

steering wheel then voice-based interactions would be safe appears to be 

unjustified. 

Thus, speech is not the solution as there are 2 problems: 

1. It’s too difficult and expensive to implement. 

2. Even if it is implemented perfectly it’s still a distraction, as elaborated 

above. 

Hence, there is a need for other modes for Human-Car-Interaction, which can be 

used when speech is a distraction or an impediment. 

Another study by Shinar and colleagues (2005), focused on whether 

repeated experience conversing on a mobile phone led to a learning effect, 

whereby drivers became better able to share the phone and driving tasks, thus 

reducing the effects of the secondary task on driving performance. The research 

argued that participants are not given the opportunity to interact with the device 
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over a number of trials and, therefore, any learning effects, whereby drivers learn 

to effectively time-share the non-driving and driving tasks, are not assessed. Over 

the course of the five sessions, the negative effects of the phone tasks on driving 

performance diminished, such that, on several of the driving measures, there was 

no difference between performance in the distraction and no-distraction 

conditions. The results of this research suggest that those studies which examine 

the effects of mobile phone use over a limited number of trials and/or use artificial 

and demanding phone tasks, such as math solving tasks, may be overestimating 

the detrimental effects of mobile phone use on driving performance. Clearly, 

further research is needed in this area before any firm conclusions can be drawn. 

And thus as another mode, we have decided to introduce “Learning mode” where 

the driver will get acquainted to the in-car interactive system. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction To Multimodal Interaction 

Human Voice Interaction also known as Natural Language Interaction does not 

solely involves speech as the source of sharing information. There is an intertwined 

cooperation of various other modalities that can be characterized as verbal, para-verbal 

and non-verbal. The modality includes a variety of communication methods for the 

expression of intent, the implementation of action and perception to the feedback, such as 

speech, eye contact, facial expressions, lips movements, hands movements, gesticulation, 

heads movements, body’s posture, touch etc. Researchers have proven that speech-based 

interaction with in-vehicle information systems demands attention and can distract 

drivers and degrade safety (AAA, 2011). Designers should recognize that speech-based 

interaction draws upon some of the same cognitive resources as driving does and, so, can 

distract drivers just as visual displays and manual controls can. Subjective measures of 

workload and distraction suggest that increasing the complexity of a speech-based 

interface may impose a greater cognitive load. In-Car Infotainment System is becoming a 

standard feature in today’s cars. When designing cars, automotive engineers need to 

consider including infotainment system for navigation, communication and entertainment 

purposes.  However, it can be argued that attaining perfection in speech-recognition is not 

the answer but what we need is a Multi-modal Interaction. Multimodal interfaces are a 

natural and safe means of communication and can help in preventing and recovering from 

speech recognition errors due to inaccurate speech recognition. Multimodal interfaces are 

recognized to be inherently flexible, and to provide an especially ideal interface for 
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accommodating both the changing demands encountered during mobile use and also the 

large individual differences present in the population – a clear requirement for universal 

access. These interfaces can be designed to support simultaneous use of input modes, to 

permit switching among modes to take advantage of the modality best suited for a task, 

environment, or user capabilities, or to “translate” information from one mode to another 

in order to expand accessibility for users with selective limitations. Since it is important 

that any mobile interface serving field tasks be flexible and to minimize demands on 

users’ attention, one major theme explored in the present paper is whether a flexible 

multimodal interface may be well suited for assisting users in self managing their 

cognitive load and improving overall performance as the complexity of field tasks and 

related communications increase.  

 

3.2 Multimodal In-Car Enhanced Interaction System 

Multimodal Interaction is a new term when used in context of automobiles but has 

been widely used in HCI. Identifying new modes of interaction is different than human 

computer interaction modes due to the cognitive and environment challenge with 

automobiles.  

The identified modes are as follows: 

• Visual 

• Touch 

• Speech Input 

• Learning Text 

• Learning Voice 
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 The first mode “Visual” can be simply understood as exact virtualization of 

hardware on the infotainment screen. User is allowed to give input as speech or touch the 

application icon, based on that either the action is performed or hardware image is 

displayed. This gives user the flexibility to use any car system without taking eyes off the 

road for too long and hence, minimizing distraction. 

 The second mode “Touch” allows user to physically touch an icon present on the 

infotainment screen.  

 The third mode “Speech Input”, as the literal meaning suggests is nothing but 

interaction with the car using speech. For a speech input user can expect to have a speech 

output. As mentioned before researchers have proved that speech recognition increases 

the cognitive load, the solution would be to keep the grammar as simple as possible. 

Providing all the necessary commands but not natural language speaking.  

 Fourth mode “Learning Text” allows user to get trained with regards to placement 

of icons and recognizing every icon by sight. Below every icon is a one word descriptive 

text that will give the user an idea of what the icon does and the command used in speech 

recognition. 

 Fifth mode “Learning Voice” allows user to get trained with respect to the 

multimodal functionality and experiencing less cognitive challenge. For example: The 

user said play track 15 by Enrique but this command is not acceptable by the dialogue 

system but system will check all possible options and will speak back to the user. IF user 

touches any icon then system will echo the speech command corresponding to that icon. 

This way user will get to learn the commands. This mode can be turned on and off as per 

the user convenience. Figure 12 represents the architecture of MMI. 
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Figure 12. Architecture Of MMI 

 

3.3 MMI User Interface 

Our main goal is to reduce distraction by minimizing driver’s time interacting 

with the car system. Hence our MMI System is a hierarchical structure that requires 1 

click per screen and at most 4 clicks to perform an operation correctly (except for data 

entry which can be limited to when the car is not moving). As the human eye perceives 

images faster than text, we have designed an easy-to-eyes icon layout, that is – large size, 

clear meaning and supporting text if needed, that requires minimum thought process. 

-    Voice + Text + 
Icon + Action 
Performed 
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There is a Home icon at the bottom of every screen. In actuality, this icon would be 

implemented as a built-in button in the hardware itself. On clicking on the home button, 

the screen will go back to the home screen. We can have a similar Interface for 

Landscape Orientation. 

Table 12. MMI User Interface 

No. Figure Description 

1 

 

Figure 13. Home Screen 

This is the landing screen of the 

application. Driver can choose any 

of the icons: Media, Car, Climate, 

Maps, Phone for specific 

functionality. Learning mode 

button is to enable or disable 

learning mode. When learning 

mode is on, you get talkback and 

icon titles as features. This can be 

easily turned off.  
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2 

 

Figure 14. Media Screen 

Displays the almost exact replica 

of the actual radio system in the 

car. It will same functionality as 

the one below. 

3 

 

Figure 15. Climate Controls 

Displays the car climate controls 

as represented in the car. There are 

controls for A/C, Heater, FAN and 

air circulation modes. 
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4 

 

Figure 16. Car Controls 

Icons Windows and Wipers lead to 

another screen with their 

respective functionality. Low and 

High buttons are for low and high 

beam lights of the car. 

5 

 

Figure 17. Windows Screen 

Displays the 4 sets of up and down 

controls of the windows in the car. 
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6 

 

Figure 18. Wipers Screen 

Displays various functions related 

to wipers like water mode, 1, 

intermittent, low mid high and 

OFF. 

7 

 

Figure 19. Map Controls 

Displays icons to screens for View 

Map (Map), Go To (Route 

guidance from current location to 

given address), Favorites (All 

favorite locations by driver), 

Previous (History), Home (Route 

guidance from current location to 

initially set home address) and 

Search (Displays another screen 

with options to search). 
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8 

 

Figure 20. View MAP Screen 

Displays the map with your current 

location. 

9 

 

Figure 21. Goto Screen 

Displays interface to enter the 

destination address in street #, 

name, city and state format. The 

text field at the top displays the 

address being set. And on clicking 

go, the screen shown will be the 

map with route guidance. 
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10 

 

Figure 22. Search Screen 

Displays 4 options to search – 

Restaurants, Café, Shopping and 

Gas Stations. On clicking any of 

these icons, the map screen will be 

shown with the selected type of 

places nearby. 

11 

 

Figure 23. Previous Screen 

Displays the history, that is all 

previously visited, searched or 

used locations. 
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12 

 

Figure 24. Favorite Screen 

Displays list of all locations 

marked as favorite by driver. The 

favorite locations can be marked 

by visiting the view map screen. 

13 

 

Figure 25. Phone Screen 

This screen has 2 options – Dial 

and contacts. One can either dial or 

select a contact from the list to 

call. 
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14 

 

Figure 26. Dial Screen 

Displays a number pad with text 

field at the top displaying the 

currently typed phone number. 

You can call the number and to 

end the same call click on end. 

15 

 

Figure 27. Contacts Screen 

Displays all contacts present in the 

directory. 
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16 

 

Figure 28. Display Contact Screen 

Displays details like – Full Name, 

Image, Phone number and email id 

of the person selected. There is an 

option to call the person and the 

end the call here as well. 
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CHAPTER 4 

THE EXPERIMENT 

4.1 Scientific Based Methods: Defining Our Metrics 

4.1.1 Lane Departures 

The number of lane departures per unit of time or trial is a very common 

safety statistic. If drivers are distracted, they are more likely to depart the lane 

(Zhang and Smith, 2004). However, what is most critical is that this measure was 

rarely defined and when it was, the definition was imprecise. Contrast the 

definition of Jenness, Lattanzio, O'Toole, and Taylor, 2002 (page 594) of a lane 

departure beginning when “the automobile crossed the white sidelines on the 

roadway,” with that of Blanco, Hankey, and Chestnut, 2005 (page 1977) as 

beginning “when the vehicle's tire came into contact with the lane marker.” So, 

there are two aspects that need to be defined, what part of the lane is considered 

the boundary and what part of the vehicle is considered to have departed. Thus, 

there are at least two candidate criteria for a lane departure, (1) the outer edge of 

the exterior mirror passes over the midline of the lane marking, and (2) the front 

tire touches the inside edge of the lane marking. The first criterion is the most 

crash relevant. The second is easier to detect (when using a side-mounted 

camera). Simple math suggests there is a one to four inch difference between the 

two criteria.  
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4.1.2 Time-To-Line Crossing 

Time-to-line crossing, a key safety measure, reflects the safety margin for 

lateral control. When drivers are distracted, the minimum time-to-line crossing 

over a time window decreases (Jamson, Westerman, Hockey, and Carsten, 2004). 

Time-to-Line is basically how long it takes the vehicle to reach the lane boundary. 

There are actually at least three different ways time-to-line crossing can be 

defined: (1) as lateral distance divided by lateral velocity, (2) as an expression that 

includes lateral acceleration, and (3) as the complete trigonometric solution that 

considers the radius of curvature of the vehicle's path and the radius of curvature 

of the road. Of the values provided by the three expressions, the first two of which 

are approximations, and all three can differ considerably. (See Godthelp, 1984; 

Van Winsum, Brookhiuis, and de Waard, 2000).  

 

4.1.3 Headway 

The more closely the driver follows a vehicle ahead, the more likely a 

crash (Ervin, Sayer, LeBlanc, Bogard, Mefford, Hagan, Bareket, and Winkler, 

2005). Of the various types of crashes, rear-end collisions are much more likely 

when drivers are distracted (Wang, Knipling, Goodman, 1996). The Highway 

Capacity Manual (Transportation Research Board, 2010), headway refers to the 

time difference between when two successive vehicles pass by the same point on 

a road. Generally, it is the front bumper to front bumper difference. However, the 

problem is not just that the name headway is inconsistently used, but the intended 

use is uncertain because it is not defined. Savino (2009) found 10 definitions for 
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distance headway and 18 definitions for time headway in the literature. The 

definition of Strayer, Drews & Crouch, 2003, page 27, is typical. Following 

distance as “the distance between the pace car and the participant's car.” Not 

specifying the points on the vehicle leads to ambiguity. Figure 29 shows the 

following distance at hazard locations for different distractive tasks. The figure 

below shows the drivers indulged in compensatory behavior while performing 

distractive tasks by increasing following distance to avoid accidents. Distractions 

that are of “mind/ear-off-road” nature show significantly larger headway than the 

other 2 (visual, manual). 

 

Figure 29. Following Distance At Hazard Locations 
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4.1.4 Acceleration, Velocity, Brake 

As previous studies indicate, if the driver is distracted, then there is an 

abrupt change in brake, acceleration and velocity. The driver compensates by 

reducing his speed and after completing the distractive tasks, aligns back to the 

speed achieved prior to the distraction. This can also indicate the duration of 

distraction. 

 

4.1.5 Steering Wheel 

As stated previously, if the driver is distracted, the occurrence of lane 

departure is prominent. And after the distractive task is over, the driver will adjust 

his position in the lane again. In case of no distractions, except for turns, drivers 

have been observed to maintaining their lane position and requiring minimum 

steering wheel adjustment. Hence deviations from the baseline value would 

suggest the need for driver to compensate. 

 

4.1.6 Response Time 

 We measure this metric manually. The Driver is asked to click a 

certain numbered icon on the screen while driving at normal conditions. This step 

is repeated 5 times for each UI. And, any deviation in those readings without any 

other modifications in the experiment should indicate distraction occurrence and 

larger the response time, longer the distraction. All the readings can be analyzed 

by taking average of all readings for each case. Figure 30 shows reaction times at 

hazard locations for various distractive tasks. 
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Figure 30. Reaction Times At Hazard Locations 

 

4.2 Test Cases 

4.2.1 User Interface 

For this study, to test the User Interface of the in-car Interactive System, 

we tested an abstract layout of icons of varying sizes, orientation and number of 

icons while driving, to effectively calculate driver response time. Our goal was to 

evaluate the effect of our minimalist design on driver distraction as well as to 

measure the effects of icon size and number, screen size and orientation. 

 

Our Null hypothesis: Minimalist design has no effect on driver distraction. 

Alternate hypothesis: A minimalist design has minimum distracting effect on the 

 driver. 
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And our secondary hypothesis:  

1. There is no difference between Portrait and Landscape orientation 

2. There is no difference between 8 icons and 4 icons 

3. There is no difference between small screen and larger screen size 

A combination of the above dimensions will be tested in the driving environment. 

That is: 

1. Portrait, Small screen size, 4 icons 

2. Portrait, Small screen size, 8 icons 

3. Portrait, Large screen size, 4 icons 

4. Portrait, Large screen size, 8 icons 

5. Landscape, Small screen size, 4 icons 

6. Landscape, Small screen size, 8 icons 

7. Landscape, Large screen size, 4 icons 

8. Landscape, Large screen size, 8 icons 

  The figures below represent the above user interfaces. 
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Figure 31. 4 Icons Landscape 

 

Figure 32. 4 Icons Portrait 
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Figure 33. 8 Icons Portrait 

 

Figure 34. 8 Icons Landscape 
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CHAPTER 5 

DATA ANALYSIS & RESULTS 

5.1 Experiment Details 

 The HyperDrive Simulator was used for this experiment. It is explained in details 

later in the Appendix Section. The volunteers (within the development team) were asked 

to drive on a previously programmed route, with possible driving tasks like left turns at a 

signal, pedestrians crossing, curved road and following a car. 

 

Figure 35. Route Overview 

The driver was asked to maintain speed between 40–50mph (for better analysis of 

results), maintain lane when they are not distracted, to follow any preceding car without 

overtaking and follow all traffic rules. At the starting point, the user would start from the 

lane to the right of the centerline. The volunteers were given few minutes to get 

acquainted with the driving environment. Then the 2 drives – with smaller screen size 

and larger screen size were monitored closely. The volunteers’ reaction time (from the 

number being said to the driver clicking the number) was also noted for both. For each 

UI, the driver was asked to click a specific icon 5 times. 
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Figure 36. Starting Point 

The first complex driving task was a left turn. The driver would have to stop at the 

intersection and wait for the green light and then make a turn while following another car 

also making the same turn. There were other cars at the intersection, all following traffic 

rules. 

 

Figure 37. Left Turn 

The curved road is the 2nd complex driving task. At the start of this path, the preceding 

vehicle is taken out and another car joins the roadway. 
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Figure 38. Curved Road 

Following a car is the 3rd task. The driver will have to follow the red car. There is also 

another left turn for the driver, whereas the red car will opt to go straight. 

 

Figure 39. Follow Car    Figure 40. Left Turn 

Pedestrian crossing is the last task. Here to measure reaction time more effectively, we 

have pedestrians crossing the road suddenly. The driver then proceeds forward and 

reaches the goal. 
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Figure 41. Pedestrian Crossing  Figure 42. Goal 

The Driving Simulator is an important part of this project. The images below are 

the various UI’s of our application in their actual setup inside the simulator dashboard. 

 

Figure 43. 4 Icons Landscape Small 
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Figure 44. 8 Icons Landscape Small 

 

Figure 45. 4 Icons Portrait Small 
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Figure 46. 8 Icons Portrait Small 

 

Figure 47. 4 Icons Landscape Large 
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Figure 48. 8 Icons Landscape Large 

 

Figure 49. 4 Icons Portrait Large 
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Figure 50. 8 Icons Portrait Large 

 

5.2 Experiment Data & Analysis 

 Our experiment data shows that our minimalist design was well within the 

NHTSA’s criteria. That is, each screen should take less than 2 seconds and the 

cumulative task time should be no more than 2 x 6 screens = 12 seconds. The data thus 

proves our design causes minimal driver distraction, disproving our null hypothesis, with 

distractive task time as low as 0.71 seconds per screen to 0.98 seconds. 

After the set of experiment we analyzed, the data shows there is no significant difference 

between the different orientations, screen and icon sizes and number of icons and all of 

them fall within the NHTSA norms. There were 2 types of data obtained – Driver 

Response Time and Driving Simulation metrics. The response times were closely 

monitored and noted manually using a stopwatch and excel spreadsheet to note the 

values. The order of UI’s tested was same as the order of the figures above from Figure 
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43 – 50. The driving simulation metrics was recorded by the Simulation system by 

programming it prior to the experiment. All possible metrics which could be used in 

identifying distraction and its risk factor was separated out in an excel spreadsheet. Since 

the simulator records every data and action per microsecond, we are unable to display all 

of the data and only specific parts will be shows. Rest of the data and statistical analysis 

is included in the Appendix or as attachments.  

Table 13. Sample Data 

# Average 
Response time 

1 0.71175 

2 0.7675 

3 0.79625 

4 0.80875 

5 0.8235 

6 0.86425 

7 0.88925 

8 0.9295 

9 0.931 

10 0.985 
 

The above table shows that for each person the response time can very minutely, 

depending on how attentive and how quick the driver was. But every user’s average was 

in the same range for all UI’s. Refer figure 51 for the comparison of some of the drivers’ 

response times. 
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Figure 51. Range Of Average Response Time Per Person 

The Figures 52 - 57 below represent a snippet of the Driving Simulation Records in 

regards to various metrics – Lane Position, Velocity, Acceleration, Brake, Steer, Subject 

Engine RPM, Headway Distance and Time-to-Collision. The above metrics data are 

displayed for each driver – comparing their drive using Small screen size (Blue) and 

Larger screen size (Red). And a comparison of a select few drivers with regards to each 

metrics depicting how different their driving is from others. The small screen UI was first 

tested and the large screen later. Hence the Red curve might show less variances and 

more controlled and steady driving than the blue curve. 

 Figure 52 shows the comparison of lane position values between small screen and 

large screen UI’s throughout both drives. The deviation from the center of the lane was 

recorded in this sample. And both the graphs are quite matching. 
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Figure 52. Lane Position 

 Figure 53 shows velocity variations in the experiment. And the graph below 

shows that the change or distraction does not affect the velocity significantly. However, 

in the 2nd drive, it seems that the driver was comfortable enough to go on a higher speed 

than the previous one. And the figure below also shows that the driver was cautious in the 

1st drive and hence there aren't many sharp changes. 
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Figure 53. Velocity 

 Figure 54 is a comparison between the acceleration values recorded. Again, 

acceleration being related to velocity shows a same tendency and both the curves are 

quite similar. 

 

Figure 54. Acceleration 
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 Brake also being related to acceleration and velocity, Figure 55 shows the same 

result. Also proves that during the 2nd time the driver drove less carefully. 

 

Figure 55. Brake 

Figure 56 is a comparison of the steering angle recorded in the experiment. This graph 

shows the closest match of curves. Thus the change in UI’s didn’t affect driver’s ability 

to be consistent in steering. Even the curved road section, from 91 – 131 approx. on the 

horizontal axis, and the 2 left turns show the almost same variation.  

 

Figure 56. Steer 
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 Figure 57, metric - headway, is also an exact match except for the last part. Since 

the driver was going on a faster speed than the 1st drive, they would have completed their 

experiment a bit sooner. Hence the lag between the 1st and 2nd curves. 

 

Figure 57. Headway Distance 

 The figures from 58 – 63 are combination of select 4 drivers’ complete records for 

each metric. The graphs show more similarities than differences in the curves. Some of 

the differences might be a result of personal preference and drivers’ own judgment.  

 

Figure 58. Lane Position Comparison 
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Figure 59. Velocity Comparison 

 

Figure 60. Acceleration Comparison 
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Figure 61. Brake Comparison 

 

Figure 62. Steer Comparison 
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Figure 63. Headway Distance Comparison 

 

5.3 Results 

 The above data and analysis clearly show the average response of time of most 

drivers for any icon is below 2 seconds and ranging from as low as 0.71 seconds to 0.98 

seconds. Hence we have achieved a minimalist design with least driver distractions and 

conforming to NHTSA’s Guidelines. Also, there is no significant difference in the 4 

icons or 8 icons, Large screen size or smaller screen size and between Landscape and 

Portrait orientation. There are certain variations in the above data but otherwise they are 

similar. Most prefer Landscape to Portrait, Large screen size to small screen size and 4 

icons to 8 icons. 

0 

50 

100 

150 

200 

250 

1 41 81 121 161 201 241 281 321 361 401 441 

HeadwayDist 1 2 3 4 



  115 

CHAPTER 6 

DISCUSSION 

6.1 Conclusion 

The above results clearly show there is hardly any difference between the screen 

sizes 7” and 10”. Some drivers did not even notice the difference. Thus, the screen sizes 

of 8” + / - 2” hardly shows any difference. 

There was no change in the reaction times between portrait or landscape. 

However, many people personally preferred Landscape orientation. It may because in the 

past all the screen orientations of technology have been landscape. For e.g. Computers, 

Television, Radio and Media Players. Hence this preference might stem out from the 

drivers own experience and comfort rather than its effect. 

There was also no significant change in using 4 icons or 8 icons. Though some 

drivers preferred 4 icons because it was easy to concentrate on just 4 icons and others 

preferred 8 since it didn’t affect their reaction and they could fit more icons on the screen. 

Hence, 6 +/- 2 number of icons is an effective design with an average of less than 2 

second response time per screen and even less than a second with more experience. 

We can effectively conclude that 8” +/- 2” screen size with either or portrait or 

Landscape with an adjustable screen holder and 6 +/- 2 number of icons per screen will 

reduce the distraction time. Also it was observed that the driver hardly took their eyes of 

the road as the screen was placed in such a position that could be seen from the corner of 

our eyes and not obstructing road view. Thus the driver can perform tasks while having 

their eyes on the road most of the time. 
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6.2 Future Work 

• This above work was conducted only on a limited small number of 

participants. More test cases and more participants should definitely show 

more accurate results. 

• Comparing 8 icons and 24 icons can further extend this study. This should 

show a significant change if not huge. 24 icons can delay the response time a 

lot than just 8. Also in this work, the order of icons was serialized. Hence the 

drivers had prior idea where the icons were located and could focus on the 

particular area, for e.g. if 4 was said then they would immediately look at the 

bottom right corner where they expect 4 to be. Thus this shows learning the 

positions or experience helps in reacting faster. Future research can also be 

done on 5 times vs. 20 times the UI was tested. This should show a slight, 

gradual reduction in the response time that depicts the use of learning mode 

and the effect of experience. However to check that further experimentation 

should be done by randomizing the order each time, a comparison between 

novice and expert drivers in using the In-Car Interactive System. 

• There is also a need to check the difference between normal and emergency 

conditions. This work focused on considering normal situations where there 

was no need for special attention. The commands were not given when the 

user was taking a left turn, stopping or such emergency and complex situation. 

This study could also bring to light as to how many opt to do the distractive 

task even with the possibility of crashing and who all choose to delay their 

response time to be safe. 
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• The position we placed our screen was right next to the steering wheel. 

However there could be further research concerning to this case. Future 

researchers can change the position by placing it at the bottom or angling it 

more to the driver. There is further scope for many such test cases to be 

considered and tested before implementing MMI. 

• The Driver Distraction model previously described shows 2 levels of driver 

distraction – internal & external and Driving-related and Driving-nonrelated. 

We can further extend it by having another level emergency and normal 

mode. Depending on that the drivers can be tested in various situations. 

• The UI we presented is based on a concept called Minimalist design. The term 

minimalism is also used to describe a trend in design and architecture, 

wherein the subject is reduced to its necessary elements. Minimalistic design 

has been highly influenced by Japanese traditional design and architecture. 

Architect Ludwig Mies van der Rohe adopted the motto "Less is more" to 

describe his aesthetic tactic of arranging the necessary components of a 

building to create an impression of extreme simplicity—he enlisted every 

element and detail to serve multiple visual and functional purposes; for 

example, designing a floor to also serve as the radiator, or a massive fireplace 

to also house the bathroom. Designer Buckminster Fuller adopted the 

engineer's goal of "Doing more with less", but his concerns were oriented 

toward technology and engineering rather than aesthetics. The concept of 

minimalist architecture is to strip everything down to its essential quality and 

achieve simplicity. The idea is not completely without ornamentation; but that 
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all parts, details and joinery are considered as reduced to a stage where no one 

can remove anything further to improve the design. 

• We can further extend the design by considering its Golden Ratio - A ratio 

within the elements of a form, such as height to width, approximating 0.618. 

The golden ratio is found throughout nature, art and architecture. Pinecones, 

seashells, and the human body all exhibit the golden ratio into their paintings. 

Stradivari utilized the golden ratio in the construction of his violins. The 

Parthenon, the Great Pyramid of Giza, Stonehenge, and the Chartres Cathedral 

all exhibit the golden ratio. While manifestations of the golden ratio in early 

art and architecture were likely cause by processes not involving knowledge 

of golden ratio, it may be that these manifestations result from a more 

fundamental, subconscious preference for aesthetic resulting from the ratio. A 

substantial body of research comparing individual preferences for rectangles 

of various proportions supports a preferences for the ratio in past experiments 

resulted from experimenter bias, methodological flaws, or other external 

factors. Whether the golden ratio taps into some inherent aesthetic preference 

or is simply an early design technique turned tradition, there is no questions as 

to its past and continued influence on design. Consider the golden ratio when 

it is not at the expense of other objectives. Geometrics of a design should not 

be contrived to create golden ratios, but golden ratios should be explored 

when other aspects of the design are not compromised. 

• By implementing such standards, which might seem farfetched, we can 

achieve a level of comfort and familiarity between the Driver and In-Car 
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Interactive System. As previously stated, more drivers preferred Landscape 

orientation simply because it was a more familiar concept to perceive than 

portrait, we can achieve a perfect design by combining MMI, Minimalist 

design and Golden Ratio in our HCaI. 
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APPENDIX A 

CONSENT FORM 
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Title of Investigation: Modeling and Measuring Cognitive Load to Reduce Driver 

Distraction in Smart Cars 

This document is to certify that I, ________________________________________, 

hereby freely agree to participate as a volunteer in a (research study, experiment, 

program, etc.) as an authorized part of the educational and research program of the 

Arizona State University under the supervision of Tanvi Jahagirdar 

 

• The research project has been fully explained to me by Tanvi, and I understand this 

explanation, including what I will be asked to do.  A copy of the procedures of this 

investigation and a description of any risks, discomforts and benefits associated with 

my participation has been provided and discussed in detail with me. 

 

• I have been given an opportunity to ask questions, and all such questions and 

inquiries have been answered to my satisfaction. 

 

• I understand that I am free to decline to answer any specific items or questions in 

interviews or questionnaires. 

 

• I understand that all data will remain confidential with regard to my identity. 

 

• I understand that participation in this research project is voluntary and not a 

requirement or a condition for being the recipient of benefits or services from the 

Arizona State University or any other organization sponsoring the research project. 
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• I understand that the approximate length of time required for participation in this 

research project is (15 minutes). 

 

• I understand that if I have any questions concerning the purposes or the procedures 

associated with this research project, I may email to tjahagir@asu.edu 

 

I understand that it will not be necessary to reveal my name in order to obtain 

additional information about this research project from the principal 

investigator(s). 

 

• I understand that if I have any questions or concerns about the treatment of human 

subjects in this study, I may email to tjahagir@asu.edu 

 

Although this person will ask my name, I understand that all inquiries will be kept 

in the strictest confidence. 

 

• I UNDERSTAND THAT I AM FREE TO WITHDRAW MY CONSENT AND 

DISCONTINUE MY PARTICIPATION AT ANY TIME. 

 

Date _______________ 

_________________________________________________________________ 

Signature of Subject 
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APPENDIX B 

DRIVING SIMULATOR 
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 The Driving Simulation Setup consists of 2 simulation systems. One is a small 

screen version, where a designer can build his simulation and test it before deploying it 

on the main, large screen version. The small version is a replica of the main simulator 

only to a lesser level. Its driving components are similar to that of videogame set. 

 The Main Simulator is an exact replica of a car with all basic functionalities and 

the features of the small version simulator. The design tools for the driving simulator are 

also easy to learn and implement. 

 

Figure 64. Driving Simulator Setup 

  To support 4 types of screens – 7” Portrait, 7” Landscape, 10” Portrait and 10” 

Landscape, built a screen holder (Figure 65). 
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Figure 65. Screen Holder 

 Since, We wanted the screen to be slightly angled to the driver and at a height, 

which does not result in total visual distraction. Thus it was affixed at a height that could 

be seen from the corner of our eye, without losing visual on the road. To angle it towards 

the driver, the support between the back and front was cut of different lengths. And a 

base for the screens to rest on was fixed at the bottom. However, it was observed that at 

that height, the 10” would obstruct the road view slightly. Hence another beam was 

attached horizontally at the bottom to support the 10” portrait mode. Thus all screens 

were at similar lengths, despite their varying sizes. Nailing a toggle bolt to the rear 

support and a wire used to hold the car dashboard and screen holder together supported 

this entire structure.  

Base for 
Small 
screen size 

Base for 
Large 
screen size 

Cut Portion to 
accommodate 
Dashboard 
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APPENDIX C  

DATA COLLECTED 
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[Consult Attached Files] 

 
  



  132 

APPENDIX D 
 

STATISTICAL ANALYSIS 
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 Statistics is the study of the collection, analysis, interpretation, presentation, and 

organization of data. Statistics deals with all aspects of data including the planning of 

data collection in terms of the design of surveys and experiments. Two main statistical 

methodologies are used in data analysis: descriptive statistics, which summarizes data 

from a sample using indexes such as the mean or standard deviation, and inferential 

statistics, which draws conclusions from data that are subject to random variation (e.g., 

observational errors, sampling variation). Standard statistical procedure involves the 

development of a null hypothesis, a general statement or default position that there is no 

relationship between two quantities. Rejecting or disproving the null hypothesis is a 

central task in the modern practice of science, and gives a precise sense in which a claim 

is capable of being proven false. What statisticians call an alternative hypothesis is 

simply a hypothesis that contradicts the null hypothesis. 

 Statistical analysis is a component of data analytics. In the context of business 

intelligence (BI), statistical analysis involves collecting and scrutinizing every single data 

sample in a set of items from which samples can be drawn. Statistical analysis is 

fundamental to all experiments that use statistics as a research methodology. Most 

experiments in social sciences and many important experiments in natural science and 

engineering need statistical analysis. Statistical analysis is also a very useful tool to get 

approximate solutions when the actual process is highly complex or unknown in its true 

form. Example: The study of turbulence relies heavily on statistical analysis derived from 

experiments. Turbulence is highly complex and almost impossible to study at a purely 

theoretical level. Scientists therefore need to rely on a statistical analysis of turbulence 

through experiments to confirm theories they propound. In social sciences, statistical 
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analysis is at the heart of most experiments. It is very hard to obtain general theories in 

these areas that are universally valid. In addition, it is through experiments and surveys 

that a social scientist is able to confirm his theory. 

Statistical analysis can be broken down into five discrete steps, as follows: 

• Describe the nature of the data to be analyzed. 

• Explore the relation of the data to the underlying population. 

• Create a model to summarize understanding of how the data relates to the 

underlying population. 

• Prove (or disprove) the validity of the model. 

• Employ predictive analytics to run scenarios that will help guide future actions. 

The goal of statistical analysis is to identify trends. A retail business, for example, might 

use statistical analysis to find patterns in unstructured and semi-structured customer data 

that can be used to create a more positive customer experience and increase sales. 

Calculation of the test statistic requires four components: 

• The average of the sample (observed average) 

• The population average or other known value (expected average) 

• The standard deviation (SD) of the sample average 

• The number of observations.  

With these four pieces of information, we calculate the following statistic, t: 

t = 
(observed-expected)

SDobserved × (number of observations in sample  number of observations-1)
 

A single sample t-test (or one sample t-test) is used to compare the mean of a single 

sample of scores to a known or hypothetical population mean. So, for example, it could 
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be used to determine whether the mean diastolic blood pressure of a particular group 

differs from 85, a value determined by a previous study. 

Requirements 

• The data is normally distributed 

• Scale of measurement should be interval or ratio 

• A randomized sample from a defined population 

• Null Hypothesis 

H0: M - µ = 0, where M is the sample mean and µ is the population or hypothesized 

mean. As above, the null hypothesis is that there is no difference between the sample 

mean and the known or hypothesized population mean. 

Equation: 

t = 
M - µ

ΣΧ2  - ( ΣΧ2  N)
(N - 1) (N)

 

 Suppose that you've collected data from two samples of animals treated with 

different drugs. You've measured an enzyme in each animal's plasma, and the means are 

different. You want to know whether that difference is due to an effect of the drug – 

whether the two populations have different means. Observing different sample means is 

not enough to persuade you to conclude that the populations have different means. It is 

possible that the populations have the same mean (i.e., that the drugs have no effect on 

the enzyme you are measuring) and that the difference you observed between sample 

means occurred only by chance. There is no way you can ever be sure if the difference 

you observed reflects a true difference or if it simply occurred in the course of random 
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sampling. All you can do is calculate probabilities. The P value is a probability, with a 

value ranging from zero to one, that answers this question (which you probably never 

thought to ask): In an experiment of this size, if the populations really have the same 

mean, what is the probability of observing at least as large a difference between sample 

means as was, in fact, observed? 

 The confidence interval (CI) of a mean tells you how precisely you have 

determined the mean. In statistics, the number of degrees of freedom (df) is the number 

of values in the final calculation of a statistic that are free to vary. The standard deviation 

(SD) quantifies variability. It is expressed in the same units as the data. The Standard 

Error of the Mean (SEM) quantifies the precision of the mean. It is a measure of how far 

your sample mean is likely to be from the true population mean. It is expressed in the 

same units as the data. For example, you measure weight in a small sample (N=5), and 

compute the mean. That mean is very unlikely to equal the population mean. The size of 

the likely discrepancy depends on the size and variability of the sample. If your sample is 

small and variable, the sample mean is likely to be quite far from the population mean. If 

your sample is large and has little scatter, the sample mean will probably be very close to 

the population mean. Statistical calculations combine sample size and variability 

(standard deviation) to generate a CI for the population mean. As its name suggests, the 

CI is a range of values. To interpret the confidence interval of the mean, you must assume 

that all the values were independently and randomly sampled from a population whose 

values are distributed according to a Gaussian distribution. If you accept those 

assumptions, there is a 95% chance that the 95% CI contains the true population mean. In 

other words, if you generate many 95% CIs from many samples, you can expect the 95% 
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CI to include the true population mean in 95% of the cases, and not to include the 

population mean value in the other 5%. The unpaired t test compares the means of two 

unmatched groups, assuming that the values follow a Gaussian distribution. The unpaired 

t test assumes that the two populations have the same variances (and thus the same 

standard deviation). The paired t test compares the means of two matched groups, 

assuming that the distribution of the before-after differences follows a Gaussian 

distribution. The paired t test assumes that you have sampled your pairs of values from a 

population of pairs where the difference between pairs follows a Gaussian distribution. 

Note that the paired t test, unlike the unpaired t test, does not assume that the two sets of 

data (before and after, in the typical example) are sampled from populations with equal 

variances. The pairing should be part of the experimental design and not something you 

do after collecting data. Prism tests the effectiveness of pairing by calculating the Pearson 

correlation coefficient, r, and a corresponding P value. If the P value is small, the two 

groups are significantly correlated. This justifies the use of a paired test. If this P value is 

large (say larger than 0.05), you should question whether it made sense to use a paired 

test. Your choice of whether to use a paired test or not should not be based solely on this 

one P value, but also on the experimental design and the results of other similar 

experiments. The results of a paired t test only make sense when the pairs are 

independent – that whatever factor caused a difference (between paired values) to be too 

high or too low affects only that one pair. Prism cannot test this assumption. You must 

think about the experimental design. For example, the errors are not independent if you 

have six pairs of values, but these were obtained from three animals, with duplicate 

measurements in each animal. In this case, some factor may cause the after-before 
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differences from one animal to be high or low. This factor would affect two of the pairs, 

so they are not independent. The values used for paired and upaired tests are absolute 

values. The results of the t-test for the lanepos metric are - 

1. Without Distraction: 

P Value And Statistical Significance:  

• The two-tailed P value equals 0.5323 

• By conventional criteria, this difference is considered to be not statistically 

significant.  

Confidence interval: 

• The hypothetical mean is 0.00000  

• The actual mean is 0.01371  

• The difference between these two values is 0.01371 

• The   95% confidence interval of this difference: 

• From -0.02947 to 0.05690  

Intermediate values used in calculations: 

• t = 0.6254 

• df = 246 

• standard error of difference = 0.022 

Mean - 0.01371 

SD - 0.34458 

SEM - 0.02192 

N -  247  
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2. Distraction With Smaller Screen: 

P value and statistical significance:  

• The two-tailed P value equals 0.0004 

• By conventional criteria, this difference is considered to be extremely 

statistically significant.  

Confidence interval: 

• The hypothetical mean is 0.00000  

• The actual mean is 0.07839  

• The difference between these two values is 0.07839 

• The   95% confidence interval of this difference: 

• From 0.03533 to 0.12145  

Intermediate values used in calculations: 

• t = 3.5858 

• df = 246 

• standard error of difference = 0.022 

Mean - 0.07839 

SD - 0.34359 

SEM - 0.02186 

N - 247     
 

3. Distraction With Larger Screen: 

P value and statistical significance:  

• The two-tailed P value equals 0.0005 
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• By conventional criteria, this difference is considered to be extremely 

statistically significant.  

Confidence interval: 

• The hypothetical mean is 0.00000  

• The actual mean is -0.07749  

• The difference between these two values is -0.07749 

• The   95% confidence interval of this difference: 

• From -0.12079 to -0.03419  

Intermediate values used in calculations: 

• t = 3.5277 

• df = 214 

• standard error of difference = 0.022  

Mean -  (-0.07749) 

SD - 0.32208 

SEM - 0.02197 

N - 215      
 

4. Unpaired T Test Results For Smaller Screen 

P value and statistical significance:  

• The two-tailed P value equals 0.7031 

• By conventional criteria, this difference is considered to be not statistically 

significant.  

Confidence interval: 

• The mean of Distractive minus Non-Distractive equals 0.00795 
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• 95% confidence interval of this difference: From -0.03302 to 0.04892  

Intermediate values used in calculations: 

• t = 0.3813 

• df = 492 

• standard error of difference = 0.021  

 Distractive Non-Distractive   

Mean 0.26394 0.25599 

SD 0.23297 0.23049 

SEM 0.01482 0.01467 

N 247        247        

 

5. Unpaired T-Test Results For Larger Screen 

P value and statistical significance:  

• The two-tailed P value equals 0.8395 

• By conventional criteria, this difference is considered to be not statistically 

significant.  

Confidence interval: 

• The mean of Distractive minus Non-Distractive equals -0.00422 

• 95% confidence interval of this difference: From -0.04515 to 0.03670  

Intermediate values used in calculations: 

• t = 0.2027 

• df = 460 

• standard error of difference = 0.021  
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 Distractive Non-Distractive   

Mean 0.25177 0.25599 

SD 0.21468 0.23049 

SEM 0.01464 0.01467 

N 215        247        

 

6. Paired T-Test Results For Smaller Screen Vs. Larger Screen 

P value and statistical significance:  

• The two-tailed P value equals 0.3290 

• By conventional criteria, this difference is considered to be not statistically 

significant.  

Confidence interval: 

• The mean of Small minus Large equals 0.02065 

• 95% confidence interval of this difference: From -0.02096 to 0.06226  

Intermediate values used in calculations: 

• t = 0.9783 

• df = 214 

• standard error of difference = 0.021  

 Small      Large   

Mean 0.26394 0.25177 

SD 0.23297 0.21468 

SEM 0.01482 0.01464 

N 247        215        
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The Figure 66 below shows the graphical representation of the 3 sets of data 

analyzed above. The green curve is for Non-Distractive drive, blue and red curves 

for smaller screen and larger screen Distractive drives. From the graph below we 

can conclude that there is slight change but the deviation is small and the 3 curves 

trace a similar trendline. 

 

Figure 66. Statistical analysis 

 

Conclusion: 

 Thus the above analysis shows that our distractive task causes minimum driver 

distraction and the variation between the constraints like small and large screen size, 

landscape and portrait orientation and 4 or 8 icons is insignificantly small (since p value 

is considerably small with CI = 95%). 
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