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ABSTRACT 

Currently in the US, many patients with cancer do not benefit from the 

population-based screening, due to challenges associated with the existing cancer 

screening scheme. Blood-based diagnostic assays have the potential to detect diseases in 

a non-invasive way. Proteins released from small early tumors may only be present 

intermittently and get diluted to tiny concentrations in the blood, making them difficult to 

use as biomarkers. However, they can induce autoantibody (AAb) responses, which can 

amplify the signal and persist in the blood even if the antigen is gone. Circulating 

autoantibodies is a promising class of molecules that have potential to serve as early 

detection biomarkers for cancers. This Ph.D thesis aims to screen for autoantibody 

biomarkers for the early detection of two deadly cancer, basal-like breast cancer and lung 

adenocarcinoma. First, a method was developed to display proteins in both native and 

denatured conformation on protein array. This method adopted a novel protein tag 

technology, called HaloTag, to covalently immobilize proteins on glass slide surface. The 

covalent attachment allowed these proteins to endure harsh treatment without getting 

dissociated from slide surface, which enabled the profiling of antibody responses against 

both conformational and linear epitopes. Next, a plasma screening protocol was 

optimized to significantly increase signal to noise ratio of protein array based AAb 

detection. Following this, the AAb responses in basal-like breast cancer were explored 

using nucleic acid programmable protein arrays (NAPPA) containing 10,000 full-length 

human proteins in 45 cases and 45 controls. After verification in a large sample set (145 

basal-like breast cancer cases / 145 controls / 70 non-basal breast cancer) by ELISA, a 

13-AAb classifier was developed to differentiate patients from controls with a sensitivity 
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of 33% at 98% specificity. Similar approach was also applied to the lung cancer study to 

identify AAbs that distinguished lung cancer patients from computed-tomography 

positive benign pulmonary nodules (137 lung cancer cases, 127 smoker controls, 170 

benign controls). In this study, two panels of AAbs were discovered that showed 

promising sensitivity and specificity. Six out of eight AAb targets were also found to 

have elevated mRNA level in lung adenocarcinoma patients using TCGA data. These 

projects as a whole provide novel insights on the association between AAbs and cancer, 

as well as general B cell antigenicity against self-proteins.  
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CHAPTER 1 

INTRODUCTION 

1.1  Cancer screening and early detection 

1.1.1  Overview 

According to cancer statistics, in 2014, it is estimated that 1,665,540 people in the 

US were diagnosed with cancer, and 585,720 died of the disease (Siegel et al., 2014). 

Over 55% lung cancer were diagnosed as metastatic disease with a 5 year survival rate as 

low as 4%. Similar observation was found for many other types of cancer as well. In 

ovarian cancer, over 60% cancers were found as distant metastasis, only 15% were 

detected as localized lesions (Siegel et al., 2014). When diagnosed early, patients will 

receive treatments when tumors were confined as local diseases, which could drastically 

increase the chances of being cured. And the 5 year survival will be much higher. 

Screening for early stage cancer has the potential to reduce the disease morbidity and 

mortality, to improve the disease prognostication, and to facilitate better disease 

classification. Currently, in the US, population based cancer screenings are practiced to 

detect breast, cervical, colon, prostate and lung in defined populations. Generally, they 

are older people (e.g. >50 year in breast cancer) who might be historically exposed to 

certain type of environmental carcinogens (e.g. smoking history for lung cancer). 

In some cases, implementation of the cancer screenings has been proven to 

successfully reduce the disease specific mortality. According to the results from several 

randomized controlled trials, mammography screening was associated with 15-20% 

breast cancer related mortality (Calonge et al., 2009). Low-dose computed tomography 

(LD-CT) contributed a 20% reduction in lung cancer specific mortality (Aberle et al., 
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2011). These results are highly encouraging for developing screening methods that can 

benefit broader population.  

Multiple factors contribute to these success. First of all, for both lung cancer and 

breast cancer, currently, effective treatment options are available. When diagnosed early, 

removing the tumor plus estrogen receptor targeted therapy demonstrated high curing rate 

and low recurrence in luminal A subtype of breast cancer, which comprises 40% of total 

breast cancer cases (Parker et al., 2009). In lung cancer, most early stage resectable 

diseases can be cured by surgery or surgery followed by chemotherapy (Ginsberg and 

Rubinstein, 1995). Furthermore, according to Surveillance, Epidemiology, and End 

Results Program (SEER), the life time risk of developing lung cancer is 6.8% among men 

and women, whereas for breast cancer, it is 12.3% among women. The high prevalence 

of such diseases justifies the effectiveness of these screening programs, as the risk of 

having false positives would be relatively lower than other rare cancers.  

On the contrary, in prostate cancer, multiple studies showed very limited benefit 

yet high risk of overdiagnosis and overtreatment as a result of  screening using the 

prostate specific antigen (PSA) test (Andriole et al., 2012; Schroder et al., 2012). It is 

estimated that over 10 years, approximately 15-20% men will have prostate biopsy 

triggered by a PSA test (Schroder et al., 2009). About 30% men who have biopsy will 

have unpleasant experience, such as pain, infection, fever etc (Rosario et al., 2012). The 

subsequent treatment of diagnosed prostate cancer have also been associated with serious 

complications. Adequate evidence shows that approximately 0.5% men will die within a 

month after prostate cancer surgery. And the treatment also leads to long term adverse 

effects, including urinary inconsistence and erectile dysfunction in 20 to 30% men who 
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had these treatments (Chou et al., 2011). More importantly, PSA test have also been 

shown to have limited ability to discern indolent from aggressive disease, resulting in 

substantial overdiagnosis and overtreatment (Bill-Axelson et al., 2011). Thus US 

preventative services task force currently recommend against it (Moyer, 2012).  

 

Figure 1-1.  Representation of the outcome of a clinical diagnostic test 
 

1.1.2  Basic statistics for biomarker 

To measure the performance of a diagnostic test, sensitivity and specificity are 

often used. Briefly, sensitivity is a measure of the proportion of positive tests in patients 

who actually have the diseases, while specificity is the opposite that measures the 

proportion of negative test in healthy population. In figure 1-1, sensitivity is represented 

Disease

Present Absent

Test

Positive a b

Negative c d
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by a/(a+c); and specificity is represented by d/(b+d). Sensitivity is also often times 

referred as true positive rate, and specificity is referred as 1 - false positive rate. By 

varying the test threshold for positive calls, an increase in sensitivity usually leads to a 

decrease in specificity. To reflect the situation in the actual clinical settings, positive 

predictive value (PPV) is introduced. It measures the proportion of true positives from all 

individuals that have positive test, representing the probability of having the disease 

when an individual is diagnosed positive. In figure 1, PPV is represented by a/(a+b).  

1.1.3  Challenges with population screen for cancer 

It is important to list out several concerns associated with the current screening 

scheme in general. First, current cancer screen only focuses on high risk population. The 

screening tests were only proven to be effective in recommended populations that usually 

are subjected to very stringent requirements (age, gender, history of smoking, etc.) (Table 

1-1). For example, Screening of lung cancer is carried out by LD-CT in population who 

are between 55 to 80 years old with substantial smoking history (Aberle et al., 2011). 

Mammography also showed limited ability in detecting cancers with dense breast tissue, 

which is also associated with younger age. Population not covered by the proposed 

inclusion criteria may benefit from novel tests that are both efficient and accurate in 

detecting the disease. As an example, women younger than 50 years old have a higher 

probability of getting triple negative breast cancers (Foulkes et al., 2010), which are the 

most aggressive subtype of breast cancer (Dent et al., 2007), but they are not strongly 

recommended for routine mammography screening (USPSTF, 2009). It is mainly because 

mammography has low sensitivity in detecting these tumors that are usually associated 

with dense breast tissues (Dogan et al., 2010; Dogan and Turnbull, 2012). Novel 
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diagnostic assays targeting such population would have great potential to improve the 

disease outcomes.  

Every screening or diagnostic test has false positive detection. When a diagnostic 

test does not have a perfect 100% specificity in the designated population, there will be 

cases of positive diagnosis in healthy individuals. Such proportion will be amplified 

when the prevalence of the disease is low. The positive predictive value can be calculated 

using the formula below. 

𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ∗ (1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
 

For example, considering a disease with 0.01% prevalence in general population, even a 

test with 70% sensitivity and 99% specificity will result in only approximately 0.7% 

positive predictive value, meaning from 1000 people screened positive for the disease, 

only 7 of them actually has it, the rest are all false positives. As individuals with positive 

screening test have a greater tendency to be subjected to more invasive tests, usually 

tissue biopsy, this high proportion of false positives will lead to many unnecessary 

biopsies. According to the intervention arm of the randomized, controlled Prostate, Lung, 

Colorectal, and Ovarian Cancer Screening Trial (PLCO), after 14 tests (span 3 years of 

screening) of various cancer types, the cumulative probability of a subject having at least 

1 false-positive test was 60.4% for men and 48.8% for women (Croswell et al., 2009). 

The cumulative risk of having an invasive procedure for women was 12.3% after 4 tests,   
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and 22.1% after 14 tests. For men, the probability is 17.2% after 4 tests, and 28.5% after 

14 tests (Croswell et al., 2009). 

Overdiagnosis is also a concern related to cancer screening, especially for prostate 

cancer. Most of the time, it refers to the detection of lesions with no malignant potential. 

Individuals with overdiagnosed cancers may experience all possible adverse effect from 

the subsequent invasive tests and potential treatments while not receiving any benefit 

from the screening. Overdiagnosis often leads to unnecessary follow up tests and 

treatments. Studies also showed the correlation between cancer diagnosis and suicide 

behavior with relative risk between 1.6 to 2.0 (Baade et al., 2006; Lu et al., 2013). On the 

other hand, overdiagnosis could also mean the detection of a slow-growing lesion that 

would not reach lethality before the individual die of a competing cause of death. A 

special yet frequent case is that a significant fraction of patients with advanced cancer 

continue to be screened for new cancers. Study estimated that 8.9% women with 

advanced cancer still receive routine screening mammography. And 15% of men with 

advanced cancer diagnosis still receive PSA test (Sima et al., 2010). 

Except for Pap smear test used for cervical cancer screening, other screening 

methods highly rely on imaging technology (Table 1-1). Both mammography and low-

dose CT depend on X-ray, which put patients under risk of radiation exposure that could 

potentially cause DNA damage and mutation. This will increase risk of developing 

cancer. Colonoscopy and sigmoidoscopy are used to screen colon cancer, but themselves 

are both considered invasive as they could lead to potential complications like perforation 

and tears in the linings of colon (Imperiale et al., 2000; Lieberman et al., 2000). 
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In this setting, there is intense effort in the search for non-invasive biomarkers 

that can detect early disease and monitor for disease progression and recurrence. With the 

advent of molecularly-targeted therapeutics, biomarkers that can describe biological 

subtypes of cancer may also be useful for predicting responses to therapeutic 

interventions and side effect profiles.  
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1.2  Blood-based diagnostic biomarker for cancer 

1.2.1  Overview 

An ideal screening test should be performed non-invasively in ready to access 

samples, such as blood. Traditional biomarker discovery strategy highly relied on 

knowledge-based, hypothesis-driven testing. By understanding the genetic and molecular 

alterations underlying the cancer pathogenesis, one can make reasonable projections of 

detecting the altered molecular events in blood samples. For example, with the 

knowledge that cancer is a disease caused by genomic mutation, several groups attempted 

to look for circulating DNA molecules carrying the mutation in serum. Circulating DNA 

carrying KRAS and BRAF mutation can be found in blood of patients with colorectal 

cancer (Bettegowda et al., 2014; Thierry et al., 2014).  

The above strategy can only query a small fraction of potential candidates based 

on the existing knowledge. As a disease with complex etiology, cancer presents great 

heterogeneity that it is still far from being fully characterized. An alternative strategy 

relies on the recent development in genomics and proteomics, which enables high 

throughput profiling of complex biological specimen. This allows us to carry out 

unbiased systematic screening in order to identify disease-associated biomarkers. 

Technological advancement in the field of mass spectrometry, protein arrays, next 

generation sequencing, and cell sorting have facilitated innovative studies on markers that 

could benefit the early diagnosis of cancer. To achieve this, one needs to compare level 

of biomarker candidates between patients and disease-free controls usually matched by 

demographic characteristics to the cases. Differentially presented features can then be 

selected and further evaluated of their association with the disease.  
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1.2.2  Literature review of blood based cancer biomarker 

Many studies had focused on early detection biomarkers of various types of 

cancers by applying genomics or proteomics approaches. Biomolecules from various 

sources have been investigated to search for markers of potential diagnostic and 

prognostic values. Pietrowska et al. developed an classifier consisted of three spectral 

components to differentiate patients from healthy controls with 83% sensitivity and 85% 

specificity by focusing on low molecular weight serum proteins (Pietrowska et al., 2009). 

Abd Hamid et al. reported a monogalactosylated triantennary structure containing α1,3-

linked fucose had a 2 fold increase in breast cancer patients, and a pilot glycoproteome 

signature of α1-acid glycoprotein, α1-antichymotrypsin and haptpglobin β-chain may 

mark the onset of metastatic breast cancer (Abd Hamid et al., 2008). Hyung et al. 

discovered 6 serum protein biomarkers that potentially can predict breast cancer’s 

responses to neo-adjuvant chemotherapy using liquid chromatography-tandem MS 

method (Hyung et al., 2011). Besides protein and glycan biomarker, circulating miRNAs 

were also reported to associate with breast cancers in their early stages (Heneghan et al., 

2010; Zhao et al., 2010). Huang et al measured plasma level of 12 miRNAs in patients 

with advanced colorectal neoplasia, and found that miR29a and miR92a are elevated in 

patients’ plasma (Huang et al., 2010). However, the detection of miRNA in blood 

samples suffers from its instability and the use of appropriate reference gene set (Berger 

and Reiser, 2013). Circulating tumor cells (CTCs) could also be an indicator of cancer 

progression (Mostert et al., 2009), but due to the heterogeneity of CTCs and its rareness 

in blood (1 CTC in 106~107 leukocytes) (Hong and Zu, 2013; Mostert et al., 2009), 

enrichment and investigation of CTCs have been extremely difficult.  
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1.2.3  Challenges in biomarker study 

With this great amount of publications in biomarker field, very few of these 

reported markers are successfully adopted in real-time clinical applications. This fact 

reflects significant challenges faced by biomarker research and development. A summary 

of several review articles here will bring up the causes and possible solutions to this 

issue.  

1.2.3.1  Disease heterogeneity 

Disease heterogeneity may contribute to the irreproducibility and low sensitivity 

of reported biomarkers. It is now well accepted that many diseases, including cancer, 

arising in the same organ, sharing similar symptoms and histological alterations, may 

comprise multiple subtypes of the disease. Molecular profiling revealed that breast cancer 

consists of at least 7 subtypes, which differs in their molecular mechanism, 

aggressiveness, responses to treatment as well as prognosis (Perou et al., 2000). TCGA 

analysis of non-small cell lung cancer revealed a comprehensive mutation spectra, 

corresponding to large variations in disease etiology. The prevalence of certain driver 

mutations could be as low as 1% of the patients. As these subtypes had distinct tumor 

driving profile, it is reasonable to expect different markers associated with each subtype. 

Hence, the sensitivity of each individual marker is capped by the prevalence of that 

subtype it associates with in the studied cohort (Wallstrom et al., 2013). Very few 

previous biomarker studies in cancer had addressed the issue of the disease heterogeneity. 

As the subtype distribution may vary from study to study the sensitivity of a subtype 

specific marker could be affected by the subtype’s prevalence in the patient cohort, 

making it difficult to interpret and repeat the results.  
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1.2.3.2  Intended use sample 

As pointed out by many, groups that perform biomarker discovery experiments 

usually are lack of access to clinically relevant samples. Many studies were conducted 

using convenient samples that are not in early stage disease, or having been exposed to 

treatments, or not having properly matched control subjects. The justification usually is 

that after the proof of concept experiment, it will be much easier to get funding that will 

support the access to source with better samples. However, when the initial sample sets 

used are not intended for disease diagnosis, it is highly possible that ‘biomarkers’ derived 

from these studies are irrelevant. To address this fundamental issue, researchers need to 

use patient/control samples that reflect their ‘intended use’, that is to say these samples 

should represent the population that will be focused on when the biomarker assay is 

implemented. 

1.2.3.3  High dimensional data 

The new era of large scale molecular profiling of genomics, epigenomics, 

transcriptomics, proteomics or metabolomics of diseases enables the search for 

biomarkers in all possible candidate pools. However, most biospecimens are only 

available in relatively small numbers. Thus, many studies relied on few specimens while 

screening in thousands of analytes. Such high dimensionality is generally statistically 

underpowered to conclude the performance of a biomarker candidate. For example, when 

a single feature is tested significant to differentiate two groups with (p<0.05), the 

probability of the feature to be a false positive is less than 0.05. However, when such 

comparison was performed in parallel at a large scale, the probability of making incorrect 

significant conclusion will get inflated. This will dramatically increase the risk of 
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overfitting. To avoid this problem, we can use statistical adjustment, such as false 

discovery rate (FDR), Benjamini-Hochberg adjustment, Bonferroni method, to correct for 

the over-promising p value. Sometimes, it is difficult to estimate the human variation. 

Another approach proposes to test the selected biomarkers again in an independent 

sample set in a blind fashion. This is the most stringent way to evaluate the performance 

of markers selected from a screening study. Markers that cannot survive such procedure 

may imply that they are chosen by chance due to sample variation. 

1.2.4  A five-phase strategy to develop and assess a cancer screening test  

To facilitate the development of biomarker-based screening tools for cancer early 

detection, Pepe et al. proposed a five-phase guideline to achieve clinical utility (Table 1-

2) (Pepe et al., 2001).  

The first phase is to identify leads for potentially useful biomarkers and prioritize 

them using assays that are both reliable and reproducible. Sensitivity and specificity of 

each individual biomarker candidate should be calculated, and Receiver operator 

characteristic (ROC) curve can be used to assess the marker’s general ability to 

differentiate disease from controls. To determine required sample sizes, they suggested 

that computer simulations of hypothetical data generated by biologically plausible models 

could be used. By varying the number of cases and controls, the sample sizes can be 

determined in order to select a reasonable proportion of biomarkers for further study. In 

this phase, a list of candidate biomarkers should be identified, and ideally, it is necessary 

to  perform a confirmatory study with the use of an independent set of well-controlled 

samples. 
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The second phase aims to develop the clinical assay that can differentiate patients 

with cancer from cancer free subjects in a simple and reproducible approach, so that it 

can be carry out for wide spread screening. And the sensitivity (TPR) and specificity (1-

FPR) for the clinical biomarker assay should also be estimated at this stage. To achieve 

this, ideally, both cases and controls should well represent the target screening 

population. This means that control subjects should better be recruited through a 

population based study, because convenient control samples may differ systematically 

from the intended screening population. They may be referred to the clinic for some 

health reasons instead of being randomly chosen. In this phase, the effect of demographic 

factors, such as age, sex, smoking behavior, on biomarkers should also be assessed. 

Similarly, factors of disease characteristics, such as stage, tumor grade, node status, 

histology etc. should also be examined for their potential effects on biomarker in patients.  

Once the performance of the clinical assay is confirmed in phase 2, it is then 

necessary to evaluate how early the biomarker will appear. Phase 3 aims to assess the 

capacity of biomarker assay to detect pre-diagnostic disease using prospectively and 

Table 1-2.  Five phases of biomarker development 

Phase Objectives 

Phase 1 - Preclinical Exploratory To identify potentially useful biomarkers 

Phase 2 - Develop clinical biomarker 
assay To estimate sensitivity, specificity 

Phase 3 - Retrospective and Longitudinal To evaluate the biomarker's capacity of 
detecting preclinical disease 

Phase 4 - Prospective screening To determine the detection rate and the 
false referral rate 

Phase 5 - Cancer control To estimate the reduction in cancer 
mortality 
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longitudinally collected samples. If the biomarker in cases appears to deviate from 

controls months or years prior to clinical diagnosis, it shows high potential for screening. 

Otherwise, if the marker only appears to change close to the time of diagnosis, there is 

little promise. Once a marker presents promising performance specific criteria for a 

positive test should be defined for phase 4. Proper algorithms for combinations of 

biomarkers should also be developed.  

Phase 4 is carried out in a prospective setting where the screening test is applied 

to the target population in order to determine the proportion of screened subjects who test 

positive and have the disease. In this phase,a positive test will lead to definitive 

diagnostic procedures and potential treatments. At phase 3, information on cancer stage 

and characteristics at time of detection cannot be obtained. As a prospective study, such 

characteristics can be examined in phase 4. However, since only subjects with a positive 

screening test are referred for further invasive diagnostics, false negatives cannot be 

identified. Therefore, neither sensitivity nor specificity can be estimated from this phase. 

Instead, it is possible to evaluate positive predictive value and the proportion who are 

tested positive but do not have the disease. 

The final phase assesses whether the population can benefit from the screening 

test. It is also possible that even if cancer can be detected early by the screening test, 

there may still be limited overall benefit for the screened population. In another word, 

early detection may not contribute to the extension of patients’ life span. A related 

concept is lead-time bias, which refers to the observed longer survival as a result of 

earlier detection can not reflect the actual benefit of the early detection, the patients may 

eventually die at the same time with or without being screened. Several factors need to be 
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taken into consideration. For example, whether the treatment strategy is effective for the 

screen-detected tumor. False positive results associated with the screening that leads to 

unnecessary invasive procedures and stress. Whether the screening test will lead to 

overdiagnosis of un-significant cancer that will eventually self regress. More importantly, 

whether the cancer can be diagnosed early enough so that effective treatment can be 

applied. In the case of ovarian cancer early detection using CA125, the biomarker does 

not appear in the blood early enough to detect the disease at a time when we can 

successfully intervene. To demonstrate the effectiveness, the study should be conducted 

ideally as a randomized trial with one arm of population undergone screening, and the 

other arm not. The ultimate assessment will be the life span of subjects after entering the 

study. 
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1.3  Cancer autoantibodies 

1.3.1  Cancer patients can develop autoantibodies against tumor 

The detection of tumor-shed proteins in serum when tumor is still at early stage as 

previously described may be a challenging task. Proteomics-based approaches to 

distinguish cancer-bearing patient sera from healthy control sera have been challenged by 

the difficulty in identifying small quantities of protein fragments within complex protein 

mixtures, protein instability, and natural variations in protein content within patient 

populations. One great challenge facing the search for blood based early detection 

markers is the extremely low concentration of target molecules/cells shed from the cancer 

tissues in early stage of cancer development. Sometimes, the process is so slow that it 

takes years for the tumor specific markers to increase to an amount detectable by a 

clinical assay. It has been estimated that ovarian cancer could grow occult for 10 years 

before it can be detected by clinically available CA125 assay (Hori and Gambhir, 2011; 

Lutz et al., 2008). On the other hand, since the abundance of various proteins in blood 

sample could be distributed at a scale of 10 orders of magnitude, the few most abundant 

proteins will potentially be overwhelmingly represented in the spectra of detected 

proteins, masking the lower abundant peptides. As an example, plasma protein 

biomarkers detected by human proteome organization (HUPO) project were among the 

most abundant molecules in the range of μg/ml to mg/ml (Figure 1-1). Thus, it is 

necessary to consider alternative approaches.  

The immune system of our human body mounted a thorough surveillance to 

recognize nonself invaders from self. It is realized through the adaptive immune 

responses by generating target specific B cells / T cells. This highly resembles an 
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intelligent security system, which can detect and destroy a wide variety of infections. 

Antibodies are produced by B cells to specifically bind to their target molecules. This 

binding event could either neutralize the pathogenicity of the invader, or trigger antibody 

dependent cytotoxicity in which such responses will also be memorized when the 

infection has been removed. Compared to other proteins in the human blood, antibodies 

have many appealing features as potential biomarkers. First, although tumor proteins may 

circulate in low concentration potentially due to their low shedding amount, rapid 

degradation/clearance in blood, their corresponding antibody responses are likely to 

remain strong. Antibodies are also not subject to common types of proteolysis that affects 

other proteins, making them highly stable in serum samples. In fact, their half life in 

blood is over 7 days, so there are limited daily fluctuations, making it easy to collect. 

Finally, there are many well-developed secondary reagents for their detection. These 

features make them an ideal repertoire to mining for potential cancer biomarkers.  
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To accomplish the specific recognition, the immune system requires complex 

mechanisms to distinguish foreign from self. B cells and T cells involved in adaptive 

immune response will be deleted or undergone anergy, rendering tolerance to molecules 

that the immune system will encounter in routine circulation. However, this is not always 

the case in that sometimes the immune system responds to self-derived antigens. It might 

be due to their location, abundance, altered post-translational modification or mutations. 

Cancer patients have been observed to produce antibodies to self-proteins that are 

expressed by their tumors (Figure 1-2). The specific mechanism of which the 

immunogenicity develops is still unclear, and might differ among cases.  

 
Figure 1-2.  Dynamic protein concentration range in human plasma sample. Figure is 
adapted with permission from Surinova Silvia et al. 2011. 
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To identify the specific targets of B cells and T cells from tumors may help us 

identify potential biomarkers for diagnosis, prognosis and classification of cancer. It 

could also help us understand the immune regulation on cancer progression. These 

cancer-associated antigens may also serve as potential immunotherapy targets.   

1.3.2  Efforts in searching for cancer associated autoantibodies 

Over the past two decades, serological analysis of cancer yielded a list of 

autoantibody biomarkers in several separate studies. In breast cancer, AAb to HER2/neu 

was first discovered in 1997 by Disis et al. In that study, they analyzed antibody response 

to HER2 protein in 107 newly diagnosed breast cancer patients and 200 volunteer blood 

 
Figure 1-3.  Schematic representation of the development of autoantibody responses 
against tumor associated antigens (TAA). Figure is adapted with permission from 
Solassol Jerome et. al. 2011  
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donors, and detected anti-HER2 antibodies in 11% patients, 0% controls. They also 

demonstrated that 20% patients with HER2 positive tumors had antibodies (Disis et al., 

1997). In one study, using mini protein array, a panel of seven antigens (c-myc, cyclin 

B1, IMP1, Koc, p53, p62, and survivin) were shown to be able to distinguish different 

cancers (breast, colorectal, gastric, hepatocellular, lung and prostate) from healthy 

controls with sensitivities from 0.77-0.92, and specificities from 0.85-0.91 (Koziol et al., 

2003), but these markers still have not been independently validated by different groups. 

Chapman and colleagues tested AAb responses to a panel of six antigens (p53, c-myc, 

HER2, NY-ESO-1, BRCA2 and MUC1) using 97 patients with primary breast cancer and 

94 normal controls. Their results indicated 64% of patients respond to at least one of the 

six antigens, while the specificity was 85% (Chapman et al., 2007). However, although 

the specificities of individual protein can reach as high as 91-98%, their sensitivities were 

relatively low in early stage breast cancer. Desmetz et al. found the combination of five 

autoantibody biomarkers (FKBP52, PRDX2, PPIA, HSP60 and MUC1) can significantly 

discriminate primary breast cancer (AUC = 0.73) and carcinoma in situ (AUC = 0.80) 

from healthy controls among women under the age of 50 (Desmetz et al., 2009). The 

same group recently reported in a separate study that using five markers (GAL3, PAK2, 

PHB2, RACK1 and RUVBL1), they discriminated early stage breast cancer from healthy 

individuals (Lacombe et al., 2013). With a panel of five antigens (RBP-Jk, HMGN1, 

PSRC1, CIRBP and ECHDC1), Mange et al predicted DCIS to invasive breast carcinoma 

(IBC) transition (Mange et al., 2012). Our group also discovered a signature of 28 

autoantigens that can discriminate malignant breast cancer from benign breast disease 

(Anderson et al., 2011a). However, none of these studies distinguished subtypes. Given 
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the distribution of different subtypes, these previously reported biomarkers would 

presumably perform the best in ER+ breast cancer.  

Autoantibodies are also extensively searched in lung cancer. Using 2D gel 

electrophoresis, western blotting and mass spectrometry identification, Pereira-Faca et al. 

discovered that AAb to 14-3-3 theta was significantly higher in cancer sera (p=0.0042). 

The combined performance of 14-3-3 theta with annexin I and protein gene product 9.5 

(PGP9.5) gave a sensitivity of 55% at 95% specificity (AUC=0.838) (Pereira-Faca et al., 

2007). Qiu et al. conducted a protein microarray study to measure AAb responses in sera 

from 85 pre-diagnostic lung cancer patients and 85 matched controls. In addition to 

annexin I and 14-3-3 theta, laminin receptor 1 (LAMR1) were also identified to show 

high reactivity in lung cancer patients’ sera. The panel achieved 51% sensitivity and 82% 

specificity (Qiu et al., 2008). He et al. detected AAb responses to alpha-enolase in 26 of 

94 non small cell lung cancer patients’ sera, while only in 1 of 60 healthy controls’, and 

none of the controls subject with small cell lung cancer (n=15), gastrointestinal cancer 

(n=18), or Mycobacterium avium complex infection of lung (n=9). Similar to above 

studies, they also reported a panel of three markers (alpha-enolase, carcinoembryonic 

antigen and cytokeratin 19 fragment) enhanced sensitivity for the diagnosis of NSCLC 

(He et al., 2007). Recently, Chapman and colleagues developed an autoantibody assay, 

named EarlyCDT®-lung test, to aid early detection of lung cancer. This test included a 

panel of seven antigens (p53, NY-ESO-1, CAGE, GBU4-5, SOX2, HuD, and MAGEA4) 

or a panel of six antigens (p53, NY-ESO-1, CAGE, GBU4-5, Annexin I and SOX2). In 

one study, they demonstrated the utility of these panels in 776 and 836 individuals with 

high risk of lung cancer. The seven-AAb panel give a sensitivity of 41% at 91% 

31 



specificity, while the six-AAb panel gave a sensitivity of 39% with a specificity of 89% 

(Chapman et al., 2012). However, currently there is limited number of studies that 

focused on distinguishing lung cancer patients from benign controls within the LD-CT 

test positive population.   

32 



1.4  Emerging technologies for profiling autoantibody responses 

The greatest challenge associated with using AAb as biomarkers is their low 

prevalence in cancer patients (sensitivity), reflecting the nature of cancer as a 

heterogeneous disease. Different molecular subtypes of diseases, even when they share 

the same pathological diagnosis, may produce subtype-specific biomarkers.  This gives 

rise to an apparently low sensitivity for each biomarker, which will only identify those 

samples that came from individuals who match the molecular diagnosis that produces that 

biomarker.  For example, if a molecular subtype is present in 20% of a disease 

population, then even when a biomarker for that subtype behaves perfectly, it will only 

detect that 20% of cases who have that molecular subtype. Its sensitivity for the disease is 

effectively capped at 20%. Moreover, the interaction between patients’ immune system 

and the tumor may vary from person to person. This in turn may result in different AAb 

responses even within a subtype. The reported sensitivity of a single antigen is typically 

5-20%. To build an effective diagnostic test, it has been demonstrated that by 

simultaneously analyzing multiple markers and combining them into a panel,  higher 

sensitivity can be achieved (Anderson and LaBaer, 2005). Proteomic scale profiling of 

AAb responses may provide the potential of identifying panels of antigens that can be 

utilized in diagnosing and detecting cancers (Surinova et al., 2011). 

To identify serum antibody biomarkers, many high-throughput screening assays 

have been developed. Due to the advances in immune-proteomics in the past decade, 

many new disease associated antibody markers have been discovered. Here, several 

widely used technologies for antibody profiling are summarized below. 
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1.4.1  SEREX 

Serological screening of recombinant cDNA library using phage display 

(SEREX) was first developed 20 years ago, and it had facilitated the identification of 

hundreds of new AAbs (Scanlan et al., 2002). To perform SEREX, a cancer related 

cDNA library is first reverse transcribed from RNA of cancer tissues or cell lines, and 

then constructed into λ-phage vectors. Proteins are expressed recombinantly in E. coli. 

These clones that displays individual tumor peptides are transferred to nitrocellulose 

membranes and incubated with serum samples from cancer patients and healthy controls 

(Figure 1-3A). Antigens that are specifically detected in cancer patients are then sub-

cloned and sequenced. Using this method, thousands of tumor associated antigens had 

been discovered, including the cancer testis antigen NY-ESO-1 and SSX2 in esophagus 

cancer and melanoma (Chen et al., 1997; Sahin et al., 1995), NY-BR-1 to NY-BR-7 in 

breast cancer (Jager et al., 2001), NY-CO-37 and NY-CO-38 in colon cancer (Scanlan et 

al., 1998). After the initial discovery, specific phage clones can be produced to develop 

immunoassays to obtain sensitivity and specificity values, but the identification of the 

cancer specific clones involves extensive screening and characterization of each serum 

sample against the library. Although size of the library could be as high as 106, the 

construction of the initial cDNA library retains the biased level of each mRNA. Genes 

overexpressed could be over-represented. When cancer specific antigens are expressed at 

low level, they may not even be displayed during the screening. More importantly, the 

library usually contains substantial amount of reverse transcribed cDNAs from frame 

shift events and non-coding RNA, the resulted candidate list may not be relevant to the 

disease. Additionally, antigens expressed by E. coli system might not be in their native 
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conformation, particularly, they may not have proper mammalian post-translational 

processing. The subsequent verification has to be performed individually, which involves 

substantial amount of labor-intensive experiments. 

1.4.2  SERPA 

Serological proteomic analysis (SERPA) was proposed to overcome above 

shortcomings of SEREX technology (Seliger and Kellner, 2002) (Figure 1-3B). In this 

approach, in order to identify disease-associated AAbs, thousands of proteins in complex 

cell lines or tissue specimens are first separated based on their sizes and isoeletric point 

using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Then proteins are 

transferred onto membranes and incubated with patients or healthy controls’ serum 

samples. Spots that only react with patients serum sample can be tracked back to the 

location on the original protein gel. The corresponding spot will be analyzed by mass 

spectrometry to determine the protein identity. This method is relatively reproducible, but 

requires large amount of serum samples. As an antigen discovery platform, it lacks the 

desired throughput and dynamic range (Anderson and LaBaer, 2005).  
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1.4.3  Protein microarray 

Protein array technology was first invented more than a decade ago by MacBeath 

et al (MacBeath and Schreiber, 2000). Using micro spot arrayer, individual protein 

samples can be spotted at proteomic scale onto single glass slides. It opens up the 

possibility of testing antibody responses simultaneously against thousands of protein 

 
Figure 1-4.  Scheme for SEREX and SERPA. A. Scheme for SEREX. Figure is 
adapted with permission from Anderson, et al. 2005 (Anderson and LaBaer, 2005). 
B. Scheme for SERPA. Figure is adapted with permission from Seliger, Barbara et 
al. 2002 (Seliger and Kellner, 2002).  
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targets. Inspired by this idea, many different protein array platforms have been 

developed.  

An early form of protein array expanded the phage display technology by 

combining a biopanning process to enrich cancer specific antigens and a protein array 

spotted with the selected phage clones (Wang et al., 2005) (Figure 1-4). To achieve this, a 

tumor cDNA library is first constructed into T7 phage vectors similar to SEREX. Instead 

of transferring on to membranes, the phage library is incubated with serum samples from 

healthy controls to eliminate the non-cancer related antigens from the library. The cleared 

library is then incubated with patients’ sera to enrich for cancer specific antigens. The 

resulting library can be used to transfect E. coli. to reach monoclonality and to propagate. 

Single phage clones each bearing a single cancer peptide can be spotted on a coated glass 

slide by a robotic arrayer. These arrays can be used to test autoantibody responses in 

cases and controls. Clones that react preferentially with cases can be selected and 

sequenced to confirm the protein identity. The advantage of this technology is that the 

phage clones printed on array are pre-selected to react with cancer patients’ sera while 

not healthy controls. However, peptides carried by phage are usually short, and due to the 

nature of cDNA library, many non-coding sequence had also been selected, making it 

difficult to interpret the result. The pre-selection process could also overlook the possible 

situation where some AAb that exists in controls’ sera may be elevated in cancers. The 

first negative selection step may be too conservative. 
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The most widely used is the recombinant protein array, which uses purified 

proteins expressed by bacteria, yeast, or insect cells. This approach has been 

comprehensively explored to display individual proteins from various species to study 

 
Figure 1-5.  Phage display protein array used to screening autoantibody for prostate 
cancer. Figure is adapted with permission from Wang, Xiaoju et al. 2005 (Wang et 
al., 2005). 
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infectious disease, autoimmune disease, as well as cancer. Zhu et. al. reported a protein 

array containing more than 17,000 purified human proteins expressed by yeast (Fan et al., 

2014). A widely used commercially available protein array is Protoarray® manufactured 

by Thermo Scientific (Yang et al., 2011a). These proteins are produced and purified in a 

high-throughput way from Sf9 insect cell line, which is the closest to mammalian 

expression system adopted by groups manufacturing purified protein arrays. Purified 

proteins were then spotted on a nitrocellulose membrane under 4°C. This approach 

allows the rapid identification of disease-associated antibodies. Since the protein identity 

of each spot is known, the corresponding sensitivity and specificity can be directly 

calculated using the fluorescent signal. Generally, very small amount (microliters) of 

serum sample is required. However, this approach mainly depends on the success of 

protein purification. Although the process has been optimized to be conducted in a high-

throughput way, it is still not a trivial procedure that involves substantial labor and cost in 

order to ensure the protein purity and quality (Qiu and LaBaer, 2011). One major 

challenge for this technology is that printed arrays have limited shelf life that proteins 

will typically lose their function after a few weeks. This type of protein array has to be 

stored at low temperature and dry condition (Romanov et al., 2014). In addition, protein 

yields from the high throughput purification preps could vary widely from spot to spot, 

and 90% purity is usually considered satisfactory. Both potentially add extra layers of 

uncertainty during the plasma AAb profiling. 

To retain the native features of proteins from tumor, tumor cell lysates can be 

fractionated by liquid based chromatography to separate various protein species. The 

fractionated cell lysates can then be printed onto a membrane or microarray, which can 
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be probed with patients or controls’ sera (Qiu et al., 2004). Advantages of this approach 

include the preservation of protein characteristics from native cancer tissue, and the array 

potentially displays the entire cancer proteome. However, the protein identity has to be 

determined in order to develop a clinically validated assay. Generally, this can be 

achieved by sensitive mass spectrometry. But as each fraction may contain a spectrum of 

proteins with a large range of concentrations, the immunogenic component may be at 

very low level, which could be below the detection limit. Another disadvantage is the 

difficulty to control proteins’ orientation on array. 
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1.5  Cell-free protein microarrays 

1.5.1  Nucleic Acid Programmable Protein Array 

To extend the protein array shelf life, and to circumvent the tedious and 

troublesome protein purification process, there were several attempts to develop 

platforms that take the advantage of cell free expression system by printing DNA that 

encode the end protein product.  

 

Inspired by the high-throughputness of protein array and the cell free expression 

system, our group developed a platform that coupled DNA plasmid immobilization and 

 
Figure 1-6.  Scheme for plasma screening using NAPPA and representative images 
of array probed with plasma from patient or healthy donors. 
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in vitro transcription and translation, called nucleic acid programmable protein array 

(NAPPA) in 2004 (Ramachandran et al., 2004). Proteins of interest were encoded by the 

printed plasmids on each spot. A fusion protein product with a n-terminal or c-terminal 

tag can then be transcribed and translated using a cell free expression system. Affinity 

reagent that can capture the protein product through interacting with the tag was also co-

spotted with the DNA plasmid (Figure 1-5). The current printing chemistry adopted by 

NAPPA relies on bovine serum albumin (BSA) to drastically increase DNA-binding. 

Capture anti-GST antibody and BSA are coupled to the amine-coated glass slide through 

bis(sulfosuccinimidyl)suberate (BS3), an amine-to-amine cross-linker that is 

homobifunctional, water-soluble, non-cleavable and membrane impermeable. 

To manufacture NAPPA, it requires the access to a large collection of cloned and 

well-annotated cDNA resource. In our case, DNASU (http://dnasu.org) provides us a 

great collection of cDNAs from multiple species (Seiler et al., 2014). Target proteins of 

interest were cloned robotically in a high-throughput way using the Gateway cloning 

technology. And they are stored under -80°C as form of glycerol stocks. Currently, over 

200,000 individual cDNA clones are available to the public through DNASU from over 

700 species, ranging from virus, prokaryotes to human. Currently, DNASU holds over 

74,000 plasmids that contain human genes representing around 13,000 unique proteins. 

NAPPA displays proteins that are freshly produced in a human milieu without the 

extensive processing during protein purification. The in situ produced proteins were 

maintained under physiological condition until assayed within hours and presumably 

contains proper mammalian post-translational modifications including but not limited to 

phosphorylation, glycosylation. This enables the high-throughput analysis of protein 
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functions. In fact, NAPPA had already been demonstrated to display functional protein 

that can be used for testing protein-protein interaction (Yu et al., 2015), post-translational 

modification (Yu et al., 2014b), enzymatic activity (Yu et al., 2014b), as well as antibody 

profiling in complex biological samples (Anderson et al., 2015; Anderson et al., 2011a; 

Miersch et al., 2013; Montor et al., 2009; Yu et al., 2014a).  

1.5.2  Other cell-free protein array platforms 

Similar to NAPPA, Protein in situ array (PISA) was developed to display proteins 

by in situ transcribing and translating the corresponding immobilized cDNA template. 

Proteins were then captured through the interaction between a double (His)6-tag fused to 

the protein and nickel ion-affinity nitrilotriacetic acid ligands on the slide surface (He et 

al., 2008). Another method adapted mRNA display technology to the protein production 

in order to cross-link the nascent protein with the puromycin linked DNA (Tao and Zhu, 

2006). In this approach, DNA templates were firstly amplified by PCR, and transcribed in 

situ to mRNA. mRNA products were then hybridized with a single-stranded DNA 

modified with biotin and puromycin. The hybridized RNA-DNA complexes were printed 

on a streptavidin-coated slide. When proteins were translated, ribosomes would stall at 

the RNA-DNA hybrid section, and puromycin would allow proteins cross-link to the 

DNA oligos which were immobilized onto the slide through the binding of streptavidin 

and biotin.  

A challenge associated with cell free protein array technologies is that during in 

vitro transcription translation, proteins were easy to diffuse to adjacent spots. Recently, 

our group also developed a newer generation of NAPPA which prints in 

photolithographically etched discrete silicon nanowells (Takulapalli et al., 2012). Protein 
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expression in confined wells dramatically reduced protein diffusion and cross-spot 

binding. Array density increased from 2,500 to 24,000.  
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1.6  Project Overview 

The goal of this doctoral dissertation is to study the autoantibody profiles of basal-

like breast cancer and lung cancer using immune-proteomics approach, and to assess 

possible clinical applications of the identified AAbs to the detection of the diseases. To 

achieve this goal, specific objectives were set as follows: 

i) Develop and optimize current plasma screening strategy using NAPPA 

platform. 

a. Optimize traditional NAPPA to increase signal to noise ratio when 

probing complex plasma samples.  

b. Adapt new surface protein capture chemistry that uses HaloTag and 

HaloTag ligand covalent interaction. 

c. Apply the platform to detect antibody responses against both 

conformational and linear epitopes in plasma samples. 

ii) Conduct the most comprehensive proteomics-scale screen of autoantibody 

responses to 10,000 human proteins in basal-like breast cancer 

a. High throughput screening of AAb responses in basal-like breast cancer 

patients and controls plasma sample to identify disease associated AAb 

candidates. 

b. Verify the association of these candidate AAbs to BLBC in larger sample 

set using clinically relevant ELISA assay. 

c. Investigate the association between AAb responses and protein 

expression, mutation, patients survival. 
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iii) Profile autoantibody responses to 10,000 human proteins in non-small cell 

lung cancer 

a. High throughput screening of AAb responses in plasma samples from lung 

adenocarcinoma patients and controls with matched smoking history to 

identify disease associated AAb candidates. 

b. Verify the responses of these candidate AAbs in larger sample set using 

clinically relevant ELISA assay. 

c. Compare the responses of these candidate AAbs between cancer patients 

and patients with CT positive benign pulmonary nodules using clinically 

relevant ELISA assay. 

Based on the results of this dissertation project, all objectives have been successfully 

achieved. The scientific contributions of the research are the following: 

i) A method was developed to increase the signal to noise ratio of profiling 

complex plasma samples on NAPPA array. Specifically, E. coli lysate was 

used to pre-block plasma samples to reduce background binding of circulating 

antibody. And Hela cell lysate in vitro protein expression system were applied 

to display higher level of proteins on array, increasing the signal of antibody 

detection. In addition, a method to display denatured proteins on array was 

developed, allowing the profiling of antibodies against hidden linear epitopes. 

ii) In the study of AAb responses in basal-like breast cancer, AAbs to 26 proteins 

were initially identified to associate with basal-like breast cancer using 

NAPPA displaying over 10,000 human proteins. 13 of them were confirmed 

in a larger sample set with a combined sensitivity of 33% at 98% specificity. 
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AAb to MN1 and TP53 proteins were also found to relate to worse prognosis. 

This panel has potential to improve the detection of BLBC after further 

validation in larger independent cohorts. 

iii) The profiling of AAb responses in 40 patients with lung adenocarcinoma and 

40 controls revealed tumor-associated antigens involved in embryonic 

morphogenesis process and organ development. Further evaluation of 19 

antigens by ELISA confirmed two panels of AAbs that can differentiate lung 

cancer patients from smoker controls as well as CT positive benign controls 

respectively.  
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CHAPTER 2 

DEVELOPMENT OF A VERSATILE PROTEIN MICROARRAY ENABLING 

ANTIBODY PROFILING AGAINST DENATURED PROTEIN 

2.1  Abstract 

Purpose: We aim to develop a protein microarray platform capable of presenting both 

natural and denatured forms of proteins for antibody biomarker discovery. We will 

further optimize plasma screening protocols to improve detection. 

Experimental design: We developed a new covalent capture protein microarray 

chemistry using HaloTag fusion proteins and ligand. To enhance protein yield, we used 

HeLa cell lysate as an in vitro transcription translation system (IVTT). E. coli lysates 

were added to the plasma blocking buffer to reduce non-specific background.  These 

protein microarrays were probed with plasma samples and autoantibody responses were 

quantified and compared with or without denaturing buffer treatment. 

Results: We demonstrated that protein microarrays using the covalent attachment 

chemistry endured denaturing conditions. Blocking with E. coli lysates greatly reduced 

the background signals and expression with IVTT based on HeLa cell lysates 

significantly improved the antibody signals on protein microarrays probed with plasma 

samples. Plasma samples probed on denatured protein arrays produced autoantibody 

profiles distinct from those probed on natively displayed proteins.  

Conclusions and clinical relevance: This versatile protein microarray platform allows 

the display of both natural and denatured proteins, offers a new dimension to search for 

disease-specific antibodies, broadens the repertoire of potential biomarkers, and will 

potentially yield clinical diagnostics with greater performance.   
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2.2  Introduction 

Antibodies are the products of the human adaptive immune response, which 

usually targets antigens from foreign pathogens in order to neutralize or destroy them.  

Disease-specific antibodies have great clinical utilities. The diagnosis and clinical 

evaluation of numerous infectious and autoimmune diseases rely on profiling serum 

antibodies against specific antigens.  One special class of disease-specific antibodies is 

called autoantibody because it targets self-proteins. In autoimmune diseases, AAbs play 

critical roles during disease pathogenesis. The discovery of AAbs in cancers against 

tumor associated antigens has generated great interest because of their potential use as 

early detection biomarkers (Piura and Piura, 2011). The detailed mechanisms of how 

certain proteins become TAAs and trigger the immune response are still unclear, but the 

development of AAbs may relate to tumor antigen overexpression, mutation, or altered 

post-translational modification which will be further discussed in chapter 3 and 4. As 

AAbs are the responses of our body to the aberrant nature of cancer, they may serve as 

indicators of tumor initiation, treatment response, or disease prognosis (Piura and Piura, 

2011). Circulating AAbs are easy to access, very stable, and highly specific, making them 

particularly useful as potential serum cancer biomarkers. 

The human immune system generates antibodies against both conformational and 

linear epitopes. Conformational epitopes are recognized by antibodies when the epitope 

domain is properly folded and may include amino acids from distant parts of the linear 

polypeptide brought together by secondary and tertiary folding. In contrast, linear 

epitopes comprise a single linear peptide, usually 7 amino acids long (Larman et al., 

2011). Linear epitopes may sometimes be buried inside a folded protein, preventing them 
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from detection by antibodies. AAbs have been linked to both conformational and linear 

epitopes (Kim et al., 1994; Schwartz et al., 1999).  

Protein microarrays displaying full-length human proteins enable screening 

humoral immune responses against thousands of antigens in parallel to search for disease-

specific AAb biomarkers (Kijanka and Murphy, 2009; Ramachandran et al., 2008c), 

including cancer (Anderson et al., 2011a; Nam et al., 2003; Qiu et al., 2004) and 

autoimmune diseases (Hueber et al., 2002).  Conventional protein microarrays present 

proteins produced in and purified from bacteria, insect cells or yeast, which are then 

displayed on glass slides through various attachment chemistries including: amine 

reactive chemistry, anti-tag antibodies; and hydrophobic interactions (nitrocellulose 

coated slides) (Hurst et al., 2009; MacBeath and Schreiber, 2000; Ramachandran et al., 

2004; Ramachandran et al., 2008b; Zhu et al., 2001). Low signals and high backgrounds 

have plagued detection sensitivity and specificity on protein microarrays probed with 

serum. This is particularly true in the case of AAbs where the responses to self-proteins 

are often weaker than those to foreign invaders. The backgrounds may be associated with 

the methods for protein production and/or the printing conditions.  

Signals of AAb responses are usually related to the amount of immobilized 

proteins and the mechanism of epitope presentation. In this study, we aim to improve the 

detection of AAbs on microarrays by reducing background and improving specific 

signals. Protein microarrays generally display folded or semi-folded proteins, which 

could obscure some linear epitopes buried within the proteins. These protein microarrays 

may fail to identify AAbs that recognize such epitopes. There is a need to develop a 

platform that displays antigens in both native and denatured states. 
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To this end, we developed a versatile protein microarray platform capable of 

presenting proteins for antibody and AAb screening in both native and denatured states, 

as needed, that is based on our Nucleic Acid Programmable Protein Array (NAPPA) 

platform. NAPPA in its standard format expresses epitope-tagged proteins just-in-time 

from printed cDNA and captures them to the surface with an anti-tag antibody.  Proteins 

on NAPPA are expected to be properly folded by virtue of the chaperone proteins used 

during expression and have been demonstrated to display appropriate protein-protein 

interactions and enzymatic activities (Ramachandran et al., 2004; Ramachandran et al., 

2008b).  
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2.3  Materials and methods 

2.3.1  Detection of plasmid DNA and expressed proteins on HaloTag protein array 

Printed plasmid DNA was detected by staining the arrays with PicoGreen. Protein display 

was detected essentially as described using rabbit anti-HaloTag antibody (Promega) 

followed by Alexa Fluor 647 labeled goat anti-rabbit IgG (Invitrogen) (Ramachandran et 

al., 2008b; Ramachandran et al., 2008c).  

2.3.1  Blocking of plasma samples with E.coli lysates 

To make E. coli lysates, overnight DH5α culture in LB media was pelleted at 5000g for 

15min, and re-suspended in PBS with 0.2% Tween 20. Sonication was performed at 20 

kHz, power intensity level 4 for 600 cycles of 1 sec on and 1 sec pulse. The lysates were 

then boiled at 99˚C for 5min and centrifuged for 10min at 13000g. The supernatant was 

collected as the blocking buffer.  

For plasma blocking experiments, plasma samples were blocked with 5% milk in E.coli 

lysate blocking buffer for 2.5 h before applied on to the expressed protein arrays.  

2.3.3  Protein microarray denaturation 

Expressed slides were treated with the denaturing buffer (125mM Tris-HCl, 2% SDS, 

100mM β-mercaptoethanol, pH 6.8) at 37˚C for 30min with gentle rocking. Control 

slides were incubated with 125mM Tris-HCl, pH 6.8.  
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2.4  Results and Discussion 

2.4.1  Develop of protein array platform to display denatured proteins 

Standard NAPPA is a useful platform for displaying conformational epitopes; 

however, it was not clear if it could withstand denaturation.  Indeed, after treatment of a 

standard NAPPA array with 125 mM Tris-Cl, 2% SDS, 100mM β-mercaptoethanol at 

37℃ for 30 min with mild agitation, we were unable to detect the protein using a protein 

specific antibody that recognizes a linear epitope, presumably because the protein was 

released from the slide surface (Figure 2-1B).  

To solve this problem, we switched the immobilization chemistry from affinity 

capture to the covalent linkage between HaloTag and its ligand. HaloTag is a modified 

haloalkane dehalogenase developed to covalently bind to halogenated alkanes (Hurst et 

al., 2009). We hypothesized that protein microarrays with covalent immobilization 

chemistry would withstand harsh denaturation treatment without losing proteins from the 

slide surface. 

To test this hypothesis, we designed and constructed pJFT7-nHalo vector that 

bears a Gateway™ death cassette next to an N-terminal fusion HaloTag protein (Figure 

2-2). This vector has a T7 promoter and an encephalomyocarditis virus (EMCV) internal 

ribosome entry site (IRES) sequence upstream of the gene of interest. We then transferred 

69 genes from our DNASU repository from donor vector (pDONR221) to pJFT7-nHalo 

through Gateway™ LR reactions. DNA was miniprepped using a customized protocol as 

described (Ramachandran et al., 2008b).  
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Figure 2-1.  HaloTag protein arrays can withstand harsh denaturing conditions. A. 
Picogreen staining of printed DNA (Left) and anti-HaloTag antibody detection of 
HaloTagged protein display (Right). The color scale for all protein array images is shown 
on right. B. Detection of p53 using an anti-p53 antibody on protein arrays where proteins 
were immobilized by GST/ anti-GST or HaloTag / HaloTag ligand with or without 
denaturation. 
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To manufacture protein microarrays, for each gene, the printing mix of BSA, 

HaloTag ligand, BS3 and DNA plasmid was prepared at concentrations of 3.7 mg/ml, 0.5 

mM, 5 mM and ~1000 ng/µl, respectively, at a final volume of 30 µl. DNA samples were 

incubated overnight at 4℃ before arrayed onto aminosilane coated slides by Genetix 

QArray2 with 350 µm solid pins. Each protein was fused to the n-terminal HaloTag. Just-

in-time, in vitro expressed proteins were immobilized in situ to co-spotted HaloTag 

ligand that was linked to the slide surface using the amine chemistry. Picogreen staining 

of printed DNA and anti-HaloTag antibody detection of expressed proteins were carried 

out subsequently for quality control (Figure 2-1A).  

 
Figure 2-2. Vector Map of pJFT7-nHalo 
 

In order to determine whether the protein microarrays displaying protein captured 

via covalent linkage would survive harsh washing conditions, we treated the slides with 

denaturing conditions and detected p53 using DO-1 monoclonal anti-p53 antibody, which 
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recognizes a normally exposed linear epitope QETFSDLWKL on p53 (Stephen et al., 

1995). As a control, we did the exact same treatment on standard NAPPA which uses 

anti-GST antibody as the capture reagent. Similar p53 levels were detected in both 

denatured and non-denatured HaloTag-based protein microarrays, whereas p53 signal 

disappeared after denaturation on GST-tag NAPPA (Figure 2-1B).  

2.4.2  E.coli lysate pre-block plasma reduces non-specific binding 

During serum screening experiments, approximately 10% of samples show 

generalized background signals on all features with intensities that correlate with the 

serum sample (data not shown).  Such background signals are particularly evident on 

features with DNA, and less on features with printing buffer only, and they do not 

correlate with the amount of displayed protein. To address this issue, we tested the 

possibility of using E. coli lysates as a blocking reagent for plasma, because it has been 

reported to reduce background signal (Vigil et al., 2011) (Figure 2-3A). We selected a 

plasma sample known to have high background and probed two identical NAPPA slides 

displaying around 2000 full-length human proteins as well as a domain of the Epstein-

Barr virus nuclear antigen (EBNA) as a positive control. (In our experience, about 90% 

of individuals have sero-reactivity to EBNA (Ramachandran et al., 2008a). The proteins 

on the slides were produced by in vitro transcription and translation (IVTT) using rabbit 

reticulocyte lysate as a source of ribosomes. One of them was probed with plasma pre-

blocked with E. coli lysate, the other one without blocking served as control. In the right 

panel of Figure 2-3A, the EBNA signal is shown in red. Although the “true signal” 

represented by the EBNA response was unchanged, the background signal on the other 

proteins was significantly reduced when blocked with E. coli lysate. We speculated that 
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trace amounts of bacterial proteins carried over through the DNA miniprep might 

contribute to this background in individuals who had immune responses to these E. coli 

proteins. 

2.4.3  Evaluate Hela IVTT system in serum antibody detection 

A common system used for the coupled transcription and translation of proteins 

has been rabbit reticulocyte-based IVTT mix (Promega), which has the advantage of 

using mammalian ribosomes and chaperones for protein production.  This system is 

highly efficient, and has succeeded at producing thousands of different proteins, leading 

to the identification of disease-specific antibodies in cancers and infectious disease 

(Anderson et al., 2011a; Montor et al., 2009; Wright et al., 2012).  A new mammalian 

cell free expression system derived from cultured human HeLa cells (HeLa IVTT; 

Thermo Scientific) was made available recently. We found that E. coli lysate blocking 

also worked with HeLa cell lysates (Figure 2-4). We also compared its performance with 

rabbit IVTT for plasma autoantibody detection after blocking plasma with E. coli lysate. 

We probed the same plasma sample onto two identical protein microarrays expressed 

with either rabbit IVTT or HeLa IVTT. Arrays expressed with HeLa IVTT gave much 

higher EBNA response (Figure 2-3B). The signal to noise ratio (EBNA signal intensity: 

median signal intensity of all spots on one slide) was calculated for each system and 

compared. As indicated in Figure 2-3B, we achieved a 7 fold increase of signal to noise 

ratio in the HeLa IVTT. Furthermore, some AAbs showed reactivity only on the HeLa 

IVTT expressed slide. Signal intensities for proteins IFT81, MKL1, MRPL28, SOX17 

(red dots) were greater than the background in the HeLa IVTT expressed slide, but they 

were hidden in the background on the rabbit IVTT expressed slide (Figure 2-3C).  
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Figure 2-3.  Optimization of the plasma screening protocol by blocking plasma samples 
with E.coli lysate and using HeLa IVTT expression system. A. Blocking plasma with 
E.coli lysate before probing onto arrays could reduce background signals. Two identical 
arrays were probed with the same plasma sample. Left, plasma pre-blocked by E.coli 
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lysate; right, no pre-blocking. Plots of antibody response signal intensity of all protein 
spots are shown on the right: top, plasma pre-blocked by E.coli lysates; bottom, no pre-
blocking. B. HeLa IVTT improved the detection of antibody response. Zoomed-in images 
of antibody response to EBNA on NAPPA arrays expressed by either Rabbit IVTT or 
HeLa IVTT are shown on the left. Experiment condition was the same as that in Figure 
2A, with plasma pre-blocked by E.coli lysate. Signal to noise ratio plot of EBNA 
antibody responses is shown on the right. C. Plots of antibody response signal intensity of 
all protein spots. Increased autoantibody responses against several human proteins when 
using HeLa IVTT expressed NAPPA arrays were detected (shown in red dots).  

 

We then applied the optimized AAb screening protocol to evaluate the effect of 

denaturation on AAb detection. AAb profiles for the same plasma sample on denatured 

and non-denatured HaloTag NAPPA arrays were compared. For each condition, an 

additional “mock-expressed” slide, which used HeLa IVTT lacking T7 polymerase (thus 

incapable of expressing proteins), was used as a negative control to accurately measure 

background signals unrelated to protein expression. AAb responses were calculated by 

subtracting spot intensities on slides without protein expression from those on slides with 

expression. Spots with calculated signals less than 0 were set to 0. We detected AAb 

response changes against several proteins when comparing denatured and non-denatured 

slides. The AAb response against TPD52 (red dots) was lower in the denatured slide 

(Figure 2-5A; suggesting a conformational epitope), whereas AAb responses against 

MYC and CCNA1 (green dots) were higher (suggesting linear epitopes). Images of 

antibody responses to CCNA1 on both denatured and non-denatured HaloTag protein 

microarrays are shown in Figure 2-5B as an example (AAb response to TPD52 and MYC 

are shown in the Figure 2-6). It is obvious that AAb responses to CCNA1 were much 

stronger when the protein was denatured. Denaturation of proteins may expose hidden 

linear epitopes as well as unfold conformational epitopes that only exist in the non-
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denatured form. TPD52 may lose its epitope after denaturation, whereas MYC and 

CCNA1 may gain their epitopes through denaturation. The adaptation of HaloTag to 

protein microarrays not only maintains its utility for studying of proteins where 

conformational presentation is needed, but also, more importantly, enables applications 

where denatured proteins are preferred. Combining the information from both natural and 

denatured protein microarrays may increase both the diagnostic sensitivity and the 

number of potential biomarkers, as more responses can be discovered.  

 
Figure 2-4.  Blocking plasma with E. coli lysate can reduce background signal on HeLa 
IVTT expressed protein array. A. Left, plasma pre-blocked by E.coli lysate; right, no pre-
blocking. B. Signal to noise ratio plot of two conditions in A. Background was 
represented by median signal intensity of all spots on one slide. Feature color represents 
an artificial color scheme to indicate signal intensity (red > yellow > green > blue). 
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2.5  Conclusion 

In conclusion, we have developed a protein microarray platform where proteins 

are covalently linked to the matrix. We demonstrated that protein microarrays using the 

HaloTag and its ligand immobilization chemistry could survive denaturing buffer 

condition and produce distinct AAb response profiles from the non-denatured protein 

microarrays when probed with plasma samples. We recognize that more work needs to be  

done to analyze the differences of AAb profiles systematically between denatured and 

native protein microarrays using a larger sample size and determine its utility in 

identifying AAb biomarkers with better clinical performance. We believe that this 

method can easily extend beyond AAbs detection in cancers to automimmune and 

infectious diseases.  Moreover, covalent attachment of proteins on the matrix for 

denaturation can also be adapted to other types of protein microarrays.   
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Figure 2-5.  NAPPA using covalent capture chemistry enables the detection of AAb 
against denatured proteins. A. AAb response profile against proteins on denatured 
NAPPA was different from that on non-denatured NAPPA. Red squares, AAb response 
decreased after denaturation. Green dots, AAb response increased after denaturation. B. 
An example of different AAb response between the native protein array and the 
denatured protein array. NAPPA requires transcription of cDNA by T7 polymerase into 
mRNA before translation. T7 polymerase was not added to arrays labeled with “not 
expressed” to assess non-specific background signals. 
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Figure 2-6. Different AAb response to TPD52 and MYC between native protein array 
and denatured protein array. 
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CHAPTER 3 

PLASMA AUTOANTIBODIES ASSOCIATED WITH BASAL-LIKE BREAST 

CANCERS 

3.1  Abstract 

Background: Basal-like breast cancer (BLBC) is a rare aggressive subtype of breast 

cancer that is less likely to be detected through mammographic screening. Identification 

of circulating markers associated with BLBC could have promise in detection and 

management of this deadly disease. 

Methods: Using samples from the Polish Breast Cancer study, a high-quality population-

based case-control study of breast cancer, we screened 10,000 antigens on protein arrays 

using 45 BLBC patients and 45 controls, and identified 748 promising plasma 

autoantibodies (AAbs) associated with BLBC. ELISA assays of promising markers were 

performed on a total of 145 BLBC cases and 145 age-matched controls. Sensitivities at 

98% specificity were calculated and a BLBC classifier was constructed.  

Results: We identified a 13-AAbs (CTAG1B, CTAG2, TP53, RNF216, PPHLN1, 

PIP4K2C, ZBTB16, TAS2R8, WBP2NL, DOK2, PSRC1, MN1, TRIM21) that 

distinguished BLBC from controls with 33% sensitivity and 98% specificity. We also 

discovered a strong association of TP53 AAb with its protein expression (p=0.009) in 

BLBC patients. In addition, MN1 and TP53 AAbs were associated with worse survival 

(MN1 AAb marker HR=2.25 95%CI= 1.03-4.91 p=0.04; TP53, HR=2.02, 95%CI 1.06-

3.85, p=0.03). We did not find that AAb levels differed significantly by demographic 

characteristics. 
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Conclusions: These AAbs warrant further investigation in clinical studies to determine 

their value for further understanding the biology of BLBC and possible detection. 
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3.2  Introduction 

Despite significant improvements in early detection by routine mammography, 

breast cancer remains a global health challenge (Jemal et al., 2011). Current screening 

mammography detects only 70% of breast cancers (Esserman et al., 2009). Breast tumors 

associated with high breast density and highly proliferative cancers are frequently not 

detected by screening (Esserman et al., 2007; Tamimi et al., 2007). Therefore, there is an 

urgent need for biomarkers that can detect potentially invasive breast cancer in their early 

stages. 

It is well established that breast cancer is heterogeneous, comprising multiple 

molecular subtypes with unique clinical and molecular characteristics that impact 

prognosis, response to treatment and risk of recurrence (Sorlie et al., 2001; Sorlie et al., 

2003). This heterogeneity affects biomarker discovery, requiring both larger sample sizes 

and different statistical approaches from traditional methods of evaluation (Wallstrom et 

al., 2013). We have previously shown that patients with HER2 negative breast cancer 

developed AAbs against survivin, but not patients with HER2-enriched breast cancer 

(Anderson et al., 2008). Unique plasma protein signatures have also been reported in 

other breast cancer subtypes (Gonzalez et al., 2011; Li et al., 2012). Notably, as the 

sensitivity of a subtype-specific biomarker can never exceed the prevalence of that 

subtype in the population where it is tested, biomarkers might reveal very different 

performance as the proportions of different subtypes vary in populations. For disease 

subtypes that are rare in the overall population, it is essential to limit the sample 

heterogeneity to discover biomarkers with significant sensitivity for clinical use.   
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Basal-like tumor is a breast cancer subtype associated with African American 

ethnicity, BRCA1/2 mutation and younger age (Rakha et al., 2008). It has about 80% 

overlap with triple negative breast cancer (TNBC) (Foulkes et al., 2010), a clinical 

pathological subtype characterized by negative tissue staining of estrogen receptor (ER), 

progesterone receptor (PR), and the absence of human epidermal growth factor receptor 2 

(HER2) amplification (Foulkes et al., 2010; Reis-Filho and Tutt, 2008). The basal 

subtype includes expression of epidermal growth factor receptor (EGFR) or basal 

cytokeratin 5/6 (CK5/6) and has worse prognosis than other patients with TNBC (Cheang 

et al., 2008). This five marker subtyping (ER-, PR-, HER2-, and either EGFR+ or 

CK5/6+) is highly correlated with basal-like disease defined by gene expression profiling 

(Cheang et al., 2008; Metzger et al., 2012).  

Current screening mammography has limitations in detecting basal-like tumors, 

which is often diagnosed at advanced stage with poor prognosis (Dent et al., 2007). 

Basal-like breast cancer is under-diagnosed by routine mammography and more 

frequently detected as interval breast cancer (Collett et al., 2005; Sihto et al., 2008). 

Detection is compromised partly by the high proliferation rate of basal-like subtype and 

lack of common suspicious radiological features (Dogan et al., 2010; Dogan and 

Turnbull, 2012; Yang et al., 2008). Dent et al. reported that patients with TNBC are less 

likely to be first detected by mammography or ultrasound than patients with other breast 

cancers (19.6% versus 36%), and they are more likely to have grade III tumors at time of 

diagnosis (Dent et al., 2007). Moreover, basal-like breast cancer often occurs in women 

less than 50 years old, who are not recommended for routine mammography (Calonge et 
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al., 2009). Thus, a relatively young population with basal-like tumors might benefit from 

a molecular test for the disease. 

In practical terms, molecular diagnostic tests for cancer detection in apparently 

healthy individuals are best performed on accessible samples, like plasma. However, the 

biomarker concentration is often low because of limited secretion by a small number of 

cancer cells in the pre-clinical stage, of which only a fraction is distributed into the large 

plasma volume (Anderson and Hunter, 2006; Lutz et al., 2008). One strategy to amplify 

signal is to exploit the ability of the immune system to detect the presence of tumor cells 

through the generation of AAbs to either the cancer cells or products they release 

(Anderson and LaBaer, 2005; Anderson et al., 2011a; Anderson et al., 2010; Goodell et 

al., 2006; Hanash et al., 2011; Mange et al., 2012; Wang et al., 2005; Xu et al., 2014). 

AAbs are easier to detect and have been observed years before the clinical diagnosis of 

tumor (Lu et al., 2012; Qiu et al., 2008). In addition to early detection, AAbs in the blood 

may also help distinguish different disease subtypes or predict clinical course.  

We have previously identified specific antibodies in diseases (Anderson et al., 

2011b; Anderson et al., 2010; Miersch et al., 2013; Montor et al., 2009; Wright et al., 

2012) by using nucleic acid programmable protein arrays (NAPPA), which display 

thousands of freshly-produced full-length human proteins on glass slides without the 

need of protein purification (Ramachandran et al., 2004; Ramachandran et al., 2008b). In 

particular, we previously discovered 28 AAb biomarkers for breast cancer (Anderson et 

al., 2011a) with sensitivities in the 10-30% range and specificities from 80-100% in a 

blinded study. However, that sample cohort was a mixed population of predominantly 

women with ER+/PR+ breast cancer potentially limiting the use of those markers in 
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subtypes like basal-like or HER2-enriched breast cancer. Here, we aimed to identify 

basal-like specific AAbs by profiling humoral immune responses of basal-like patients 

against 10,000 human proteins.  
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3.3  Materials and methods 

3.3.1  Study samples 

Subjects were selected from a population-based breast cancer case-control study 

of 2386 cases and 2502 age and study site matched controls, between ages 20 and 74 

years who resided in Warsaw or Łódź, Poland from 2000-2003 (Garcia-Closas et al., 

2006). Pathology for all the study cases was reviewed centrally as previously described to 

provide standardized classification. Basal-like subtype was defined by PAM50 signature 

when mRNA expression profiles are available (n=18); the rest (n=127) were identified by 

immunohistochemical (IHC) staining for the five markers (ER, PR, HER2, CK5/6, 

EGFR) as previously described (Sherman et al., 2007; Yang et al., 2007). Luminal A, 

Luminal B, and HER2-enriched subtypes were classified using PAM50 signature. We 

identified 145 cases with tumor tissues and plasma samples available (Sun et al., 2014). 

Similar to previous reports (Nielsen et al., 2010), we observed an 80% concordance rate 

between the five-IHC marker panel and mRNA expression profiles. Each case was 

individually matched on age (5 years) and study site with population based controls. To 

determine the specificity of AAbs identified for BLBC, we selected an additional set of 

age-matched non-basal cases (age matched to sample sets 2 and 3) classified by mRNA 

expression profiles (30 Lum A, 22 LumB and 18 HER2). All subjects provided informed 

consent and the study was approved by IRB boards in Poland and NCI.  

3.3.2  Protein array experiments 

Open reading frames were obtained from DNASU (https://dnasu.org/). Production 

of the protein array and array quality control experiments were performed as previously 

described (Festa et al., 2013; Wang et al., 2013).  In brief, arrays displaying 10,000 
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human proteins (distributed evenly on five array sets) were manufactured. A common 

control plasma sample was repeated in every experiment to assess reproducibility. 

Consistency among experiments was determined with scatter plots comparing spot 

intensity measurements of the same plasma sample tested on different experiments. 

Specifically, Slides were incubated with SuperBlock (Pierce) at room temperature for 1 h 

with rocking. To express proteins, 160 μl 1-Step Human Coupled in vitro Expression 

system (Thermo) was injected into HybriWell (Grace BIO-LABS) sealed slides and 

incubated in the incubator (EchoTherm) for 1.5 h at 30°C for protein expression and 0.5 h 

at 15°C for protein capture. Expressed slides were rinsed with de-ionized water and dried 

by centrifugation at 4°C, 1200 rpm for 3 min. Plasma antibody profiling was then 

performed on HS 4800™ Pro hybridization station (Tecan). Plasma samples were diluted 

at 1:50 in 5% milk prepared with 100% E.coli lysate, and incubated for 3 h at room 

temperature before hybridized with protein arrays (Wang et al., 2013). Slides with 

displayed proteins were placed in the hybridization chamber of Tecan HsPro and 

programed with 1 h blocking with 5% milk-PBST (0.2% Tween), 16 h of plasma sample 

hybridization at 4°C followed by 3 times wash with 5% milk-PBST (0.2% Tween). Then 

slides were incubated with Dylight649 labeled goat anti-human IgG (Jackson 

ImmunoResearch Laboratories) at 23°C for 1 h. Slides were then washed, dried and 

scanned by Tecan scanner under consistent settings. To minimize technical variation 

from array production and sample handling, we grouped BLBC cases and matched 

controls, and probed the two samples from each pair side by side on consecutively 

printed protein arrays (blinded to case-control status as needed by the experimental 

design).  
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3.3.3  Protein array image analysis and quantification 

We measured spot intensity of the scanned slides using ArrayPro Analyzer 

(MediaCybernetics). Raw intensity values were normalized by subtracting the 

background signal for the slide, which was estimated by the first quartile of signal 

intensity in spots with no printed DNA, and dividing by the median of background-

subtracted intensity from non-control spots. In addition, to capture diffused signal (ring) 

that cannot be quantified by the image analysis software, one researcher qualitatively 

examined all images to identify and confirm positive responses, which was described 

previously (Figure 3-2) (Montor et al., 2009). Briefly, the researcher adjusted raw images 

to extreme contrast and brightness using ArrayPro Analyzer, and graded each spot at a 

scale of 0 to 5 based on ring’s intensity and morphology.  

3.3.4  Generating AAb target protein sets for enrichment analysis 

To identify positive AAb responses for enrichment analysis using the quantitative 

data, we developed cutoff calculated by mean plus 3 times standard deviation of all spots 

in sample set 1. Spots with higher intensity than the cutoff were recorded as AAb positive 

(Table S2). Spots were excluded from analysis when they were affected by diffused 

signal from neighboring EBNA spots.  

To perform GSEA and Gene Ontology (GO) term analysis, we used data from 

both quantitative and visual analysis. For quantitative analysis, we selected proteins with 

positive AAbs observed in at least 2 samples regardless of disease status, resulting in 253 

proteins; for visual analysis, we selected proteins with positive AAbs observed in at least 

3 samples regardless of disease status, resulting in 871 proteins. 
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3.3.5  Gene set enrichment analysis (GSEA) 

GSEA was performed using GSEA Preranked package (Subramanian et al., 

2005). Antigenicity scores of each individual peptide window with default size were 

calculated using B cell epitope prediction tools from Immune Epitope Database And 

Analysis Resource (IEDB; http://tools.immuneepitope.org/main/html/bcell_tools.html). 

Specifically, for each protein in each method, cutoff of 1.0 was used to assign whether a 

peptide window is antigenic. Then, we calculated the ratio between number of antigenic 

peptide windows and total number of peptide windows. This ratio was used as a score to 

quantify predicted overall antigenicity of each protein. Other protein properties, such as 

isoelectric point, protein length, aromaticity, fraction of helice, fraction of sheets, and 

fraction of turns were obtained using biopython tools (Bio.SeqUtils.ProtParam). GSEA 

was performed on AAb target protein sets against each of the above properties. Proteins 

were ranked in decreasing order of metric associated with each protein property. 

Normalized enrichment scores and P values were calculated based on 10,000 

permutations. More details are provided in the Supplementary Materials. Parameters that 

differed from default settings were set as follows, and kept consistent throughout the 

analysis. 

producer_class xtools.gsea.GseaPreranked 

param collapse false 

param scoring_scheme classic 

param nperm 10000 

param set_max 800 
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3.3.6  Gene Ontology cellular component analysis 

We calculated numbers of shared gene symbols between proteins displayed on 

screening array (reference set) and each GO cellular component term. The same 

procedure was applied to both quantitatively and visually selected protein sets. 

Specifically, 6317 gene symbols from protein array, 178 quantitatively selected proteins, 

and 613 visually selected proteins were successfully mapped to GO terms of cellular 

component. GO terms represented by more than 100 genes on our protein array without 

apparent overlap were included for enrichment/depletion analysis and pie chart 

construction (Figure S8). P values were calculated by two-sided Fisher exact test, and 

adjusted multiple testing by Benjamini-Hochberg method. 

3.3.7  Antigen selection for focused array 

Using the normalized array data from the screening, we calculated sensitivity at 

95% specificity based on data generated from printing batch 1 of each array set, area 

under receiver operating characteristic curve (AUC), partial AUC above 95% specificity 

(pAUC), as well as Welch’s t test P value for each tested protein antigen. In addition, we 

designed a novel metric, named K, to measure antigens with strong antibody responses in 

a fraction of BLBC patients while remain consistent in controls. K is calculated using the 

formula below. 

𝐾𝐾 =
𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0.975) − 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0.800)

𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0.975) − 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0.025) 

where 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denote the empirical quantile functions of normalized 

data from cases and controls, respectively. For antibodies with the same classification 

74 



performance, a high K value indicated greater separation of sero-reactivity of positive 

cases and negative controls. 

We created focused protein arrays for stringent evaluation of antigens that met at 

least one of the following criteria (The corresponding metric values for each protein are 

listed in Table S4): 1). Antigens ranked in approximately top 2% of antigens on each 

array set based on any of these metrics: sensitivity at 95% specificity (n=228), AUC 

(n=185), pAUC (n=197), or P value of Welch’s t test (n=197). 2). Antigens with K > 1.2 

and sensitivity at least 15% at 95% specificity (n=63). 3). Antigens presented greater 

prevalence in cases than that in controls by visual analysis (n=198). Specifically, 

frequency in cases minus frequency in controls is greater than or equal to 2, and 

frequency in cases divided by frequency in controls is greater than or equal to 1.5. 4). 

Antigen presented in greater prevalence in controls than that in cases by visual analysis 

(n=16). Specifically, frequency in controls minus frequency in cases is greater than or 

equal to 5, and frequency in controls divided by frequency in cases is greater than 1.5. 

Accounted for proteins selected by multiple methods, totally 748 proteins were included 

for manufacturing focused array. 

3.3.8  Power analysis for the biomarker discovery 

We calculated the power for antigen selection using a homogeneous disease 

model and a heterogeneous disease model (Miersch et al., 2013). Using each model and 

Monte Carlo simulation, we calculated the proportion of markers with 20% sensitivity 

and 95% specificity that met criteria 1 or 3 in above section “Antigen selection for 

focused array”. The visual inspection criterion was not considered in the power analysis. 

Under the homogeneous disease model, 95% of markers with 20% sensitivity and 95% 
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specificity met the selection criteria, and 5% of non-markers with 5% sensitivity at 95% 

specificity met the criteria.  Under the heterogeneous model, 73% of markers and 6% of 

non-markers met the criteria. Hence, nearly all such markers with 20% sensitivity and 

95% specificity would be selected by our screening process if basal-like subtype is 

homogeneous, and if it is itself heterogeneous, our process would still be expected to 

select 73% of these markers. 

3.3.9  Antigen selection for ELISA verification 

Protein antigens were selected for subsequent ELISA verification when they 

showed higher prevalence in basal-like breast cancer (BLBC) in sample set 1 based on 

visual analysis. Specifically, they had to meet all of the following criteria: 1). their 

frequency in BLBC minus frequency in controls is greater than or equal to 3; 2). 

frequency in cases divided by frequency in controls is greater than or equal to 2; and 3). 

frequency in cases is greater than or equal to 4. Totally, eighty-two unique proteins met 

these criteria and we successfully developed programmable ELISA assay for 71 of them. 

Two pairs of samples (PBCS-1243, PBCS-2930; PBCS-1754, PBCS-1325) were not 

measured in ELISA verification experiments due to limited amount of plasma at the time 

of experiment. 

3.3.10  ELISA assays 

ELISA assays were performed to verify selected AAb responses towards protein 

antigens using freshly produced human proteins as previously described (Ramachandran 

et al., 2008a). Specifically, 96-well highbind ELISA plates (Corning) were coated with 

goat anti-GST antibody (GE Healthcare) at 10 μg/ml in 0.2 M sodium bicarbonate buffer 

pH9.4 overnight at 4°C 1 day prior to experiment. All high-throughput liquid handling 
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were performed using a BioMek NxP Laboratory Automation Workstation (Beckman 

Coulter). On the next day, 40 μg/ml DNA plasmids encoding protein antigens were 

expressed using 1-Step Human Coupled in vitro Expression system (Thermo) at 30°C for 

1.5 h. At the same time, coated plates were washed 3 times with PBST (0.2% Tween) and 

blocked with 5% milk PBST (0.2% Tween) at room temperature for approximately 2 h. 

Expressed antigens were then diluted at 1:50 and incubated in ELISA plates at room 

temperature (RT) with shaking at 500 rpm for 1 h, in order to capture expressed antigens. 

After the incubation, plates were washed 5 times with PBST (0.2% Tween). Plates were 

then incubated with 1:300 diluted plasma samples at RT with shaking at 500 rpm for 1 h, 

and washed 5 times again with PBST (0.2% Tween). After incubated with 1:8000 diluted 

HRP-conjugated goat anti-human IgG (Jackson ImmunoResearch Laboratories), plates 

were developed with 1-Step Ultra TMB - ELISA Substrate (Thermo scientific). Reaction 

was stopped with addition of 2 M sulfuric acid after 15 min. OD450 was measured by 

Envision Multilabel Plate Readers (PerkinElmer). Expression of antigens was confirmed 

by using anti-GST (Cell Signaling) and HRP-conjugated anti-mouse IgG (Jackson 

ImmunoResearch Laboratories). All measurements in the training and testing sets were 

performed in duplicates. ELISA relative absorbance of each plasma sample-antigen 

reaction was calculated using OD450 of expressed antigens over the median OD450 of all 

antigens measured for that sample. The median value was used to normalize systematic 

background of each plasma sample. Subjects were excluded from analysis when failed 

quality control. During ELISA training and blinded testing, one pair of samples (PBCS-

1243, PBCS-2930) was not measured for TP53, CTAG1B, CTAG2, RNF216, SNRK, 

and PSRC1 AAb responses due to limited amount of plasma at the time of experiment. 
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3.3.11  Statistical analysis 

Frequencies of tumor characteristics and demographics between cases were 

compared using chi-square tests. Associations with known breast cancer risk factors were 

determined using multivariable logistic regression models as previously described 

(Garcia-Closas et al., 2006). 

ROC analysis was performed without feature selection (to avoid over fitting) 

using leave-one-out cross validation. The 13-AAb classifier was developed by classifying 

samples as positive if they exceeded antigen-specific cutoffs for at least 2 of the 13 

antigens. Antigen-specific cutoffs were set to achieve 98% classifier specificity by 

adjusting the specificity at the antigen level to 98.7%. In this cross validation, for a given 

antigen-level specificity, we calculated the cutoffs for each antigen using the remaining 

samples and used these cutoffs to classify the held-out sample. The ROC curve was 

calculated by adjusting the antigen-level specificity. 95% confidence intervals of ROC 

curve and AUC were estimated by bootstrapping within BLBC or controls. 

To determine AAb responders from ELISA analysis, we categorized subjects as 

responders to specific antigens of interest using 95-percentile cut-point using data from 

control subjects. This method was used to determine the association of AAb responses 

with tissue abundance of TP53 protein, as well as the overall survival. 

To analyze the mRNA expression level of the candidate AAb targets, data set 

were generated by TCGA using Illumina HiSeq, and obtained from UC Santa Cruz 

Cancer Genome Browser (https://genome-cancer.ucsc.edu/) 

(TCGA_BRCA_exp_HiSeqV2-2013-12-18). All intensities were normalized by 
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subtracting mean of each mRNA from each sample. P values were calculated using 

ANOVA comparing basal-like subtype with other subtypes and normal tissue 

respectively, and were adjusted for multiple comparisons by Sidak correction. 

The Kaplan-Meier (KM) method was used to generate survival curves for 

categories of the AAb responders/non-responders (Kaplan and Meier, 1958). HR and 

95% confidence intervals (CI) associated with AAb markers adjusted for age, tumor size, 

grade, and node status, were estimated using Cox proportional hazard models (Cox, 

1972). Survival analysis was performed using Stata/SE v11.2 for Windows (College 

Station, TX).  
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3.4  Results 

3.4.1  Sample tumor characteristics and risk factors  

Evaluation of established breast cancer risk factors for 145 basal-like cases and 

145 healthy controls showed early age at menarche to be protective for breast cancer, 

positive family history of breast cancer, history of benign breast disease and ever having 

a screening mammogram associated with increased breast cancer risk (Table 3-1). These 

samples were randomly divided into three groups for the biomarker discovery and 

validation (Figure 3-1; Table 3-2). Samples included in the screen of 10,000 proteins 

(sample set 1) were more likely to be of higher grade and less likely to be node positive 

compared to sample set 2 and 3 (Table 3-2). Parity did not show a protective association 

that has been noted to be protective for ER-positive breast cancers but not ER-negative 

breast cancers(Yang et al., 2011b). 
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Figure 3-1. Overview of study design. 
 

3.4.2  Characterizing the global autoantibody response in patients with basal-like 

breast cancer and healthy individuals 

We performed a comprehensive profiling of plasma AAbs against 10,000 full-

length human proteins in sample set 1, 45 patients with basal-like disease and 45 age- 

collection site- matched healthy individuals (Figure 3-1). Array production was quality-

controlled to achieve consistent high level protein display (Figure 3-3B). The average 

Pearson correlation coefficient among all technical repeats across all experiments was 

0.98 (SD=0.01) (Figure 3-3D; Figure 3-4). Duplicate spots on the same array, which were 
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situated away from each other to avoid local effects, revealed minimal within-slide 

variation, with an average for all QC experiments of 0.98 (SD=0.01) (Figure 3-3E).  

 
Figure 3-2. Representative array images for “ring” structure surrounding spots. “Ring” 
was considered as positive response during visual image analysis. 
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Table 3-1. Established breast cancer risk factors in the Polish Breast Cancer Study 
(basal-like, n=145; controls, n=145)a. 
  Basal-like   Controls           

  N % N % ORb 95% CIb p p-trend 

Education level                   

   Less than high school 56 39% 49 34% 1         

   High school 53 37% 58 40% 0.47 0.22 0.99 0.05   

   Some tech training or college  11 8% 12 8% 0.32 0.1 1.08 0.07   

   College degree 23 16% 26 18% 0.51 0.19 1.32 0.16   

   Missing 2   0             

Age at menarche                   

   < 12 54 38% 28 20% 1         

    13 31 22% 34 24% 0.33 0.15 0.75 0.01   

    14 37 26% 43 30% 0.32 0.15 0.69 0.003   

    15 14 10% 23 16% 0.11 0.04 0.33 0.0001   

   ≥ 16 7 5% 15 10% 0.16 0.05 0.53 0.003 0.0001 

   Missing 2   2             

No. of full-term births                   

   nulliparous 20 14% 37 26% 1         

    1 46 32% 65 45% 1.89 0.46 7.82 0.38   

    2 58 40% 33 23% 1.41 0.4 5 0.59   

   ≥ 3 21 14% 10 7% 1.13 0.29 4.42 0.86 0.81 

   Missing 0   0             

Age at first full-term birth among parous women                  

   < 20 37 26% 37 26% 1         

   20-24 69 48% 65 45% 0.82 0.29 2.33 0.71   

   25-29 27 19% 33 23% 0.73 0.22 2.43 0.61   

   ≥ 30 12 8% 10 7% 1.04 0.24 4.6 0.96 0.5 

   Missing 0   0             

Menopausal status                   

   Pre-menopausal 50 34% 65 45% 1         

   Post-menopausal 95 66% 80 55% 9.54 1.96 46.46 0.01   

   Missing 0   0             

Age at menopause among post-menopausal women                  
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   < 45 64 45% 77 53% 1         

   45-49 28 20% 24 17% 1.09 0.33 3.6 0.89   

  ≥ 50-54 51 36% 44 30% 1.78 0.57 5.59 0.32 0.06 

   Missing 2   0             

Hormone replacement therapy use among post-menopausal               

   Never 70 82% 52 69% 1         

   Current/recent use 7 8% 10 13% 0.17 0.05 0.64 0.01   

   Past use 4 5% 5 7% 0.32 0.06 1.82 0.2   

   Ever used E or P alone 4 5% 8 11% 0.06 0.01 0.33 0.001   

   Missing 13   16   0.58 0.21 1.62 0.3   

Current BMI among pre-menopausal                    

   < 25 22 42% 29 43% 1         

   25 - < 30 19 36% 23 34% 1.19 0.43 3.25 0.74   

   ≥ 30 12 23% 15 22% 0.9 0.28 2.97 0.87 0.94 

   Missing                   

Current BMI among post-menopausal                   

   < 25 34 35% 25 30% 1         

   25 - < 30 26 27% 31 37% 0.47 0.18 1.2 0.11   

   ≥ 30 36 38% 27 33% 0.73 0.28 1.95 0.54 0.2 

   Missing 0   0             

Family history of breast cancer in first-degree relatives                 

   No 121 83% 139 96% 1         

   Yes 24 17% 6 4% 7.65 2.52 23.23 0.0003   

   Missing 0   0             

History of benign breast disease                   

   No 118 83% 130 91% 1         

   Yes 24 17% 13 9% 3.11 1.25 7.74 0.01   

   Missing 3   2   1.99 0.21 19.02 0.55   

Ever had a screening mammogram                   

   No 69 49% 79 54% 1         

  Yes 73 51% 66 46% 2 1.03 3.88 0.04   

  Missing 3   0             

a145 cases and 145 age-site matched controls in models after excluding missing. 
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bOdds ratios (OR) and 95% confidence intervals (CI) calculated using logistic regression 
models adjusted for all covariates.
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Figure 3-3. Protein array screening. Protein array was quality controlled by both DNA 
staining with picogreen (A), and anti-GST staining of in vitro produced proteins (B). C. 
Scatterplot of signal intensity measures of protein displays of two protein arrays produced 
in one single print batch. D. Scatterplot of signal intensity measures of two identical 
protein arrays probed with the same plasma sample. E. Scatterplot of signal intensity 
measures of two replicate spots with one array. 
 

We first assessed the AAb immune responses in these 45 patient and control pairs 

using the quantified fluorescent intensity data for each feature. The median numbers of 

AAb responses per plasma sample across our basal-like and healthy sample sets were 14 

and 17, respectively, with no statistical difference. The range for all samples was 1-121 

(Figure 3-5A). AAbs against EPCAM (23.3%), AMY2A (20%), DPAGT1 (17.8%), 
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SLC10A1 (16.7%), GHRHR (16.7%), STMN4 (16.7%), RPSA (15.6%), RBPJ (14.4%), 

SSB (14.4%) were among the 22 proteins (0.2% of all proteins tested) with an overall 

prevalence above 10% among all 90 samples tested. AAbs against 876 proteins (7.6% of 

all proteins tested) were observed in at least one plasma sample.  

 
Figure 3-4.  Array screening reproducibility. A. Representative images of the same 
plasma sample probed on identical protein arrays on different days. B. Heatmap of 
Pearson correlation coefficients between any two identical protein arrays probed with the 
same plasma sample on different days. 
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In parallel, we visually analyzed all images to document diffused signals that 

could not be accurately quantified by the image analysis software (Figure 3-2). The 

median numbers of AAb responses per plasma sample across our basal-like and healthy 

sample sets were 107 and 88, respectively, with no statistical difference. The range for all 

samples was 36-188 (Figure 3-5B). AAbs against ODF2 (100%), AMY2A (97%), RBPJ 

(78%), LENG1 (73%), CSF3 (63%), EPCAM (56%), POLDIP3 (54%), DGCR14 (53%) 

had overall prevalence above 50% among all 90 samples tested, and presented similar 

prevalence in both basal-like cases and controls. AAbs against 172 proteins (1.5% of all 

proteins tested) had overall prevalence above 10% among all 90 samples tested. AAbs 

against 2701 proteins (23.6% of all proteins tested) were observed in at least one plasma 

sample. 

 
Figure 3-5.  AAb response counts per sample are similar between BLBC and controls. A. 
Boxplot of AAb counts per sample using data from quantitative analysis. B. Boxplot of 
AAb counts per sample using data from visual analysis. (ns: not significant based on 
Wilcoxon Rank-Sum test) 
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Figure 3-6. GSEA analysis of AAb targets against predicted antigenicity. Proteins were 
ranked in decreasing order by ratios of antigenic peptide windows predicted using Chou 
and Fasman beta turn prediction (A, E), Karplus and Schulz flexibility scale (B, F), 
Emini surface accessibility scale (C, G), or Parker Hydrophilicity Scale (D, H). NES: 
Normalized Enrichment Score. Higher absolute value of NES indicates stronger 
association. 
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Figure 3-7.  GSEA analysis of AAb protein targets against their biochemical properties. 
Proteins were ranked in decreasing order by protein length, isoelectric point, aromaticity, 
or fractions of secondary structures using AAb targets selected by either visual analysis 
(A-F) or quantitative analysis (G-L). Aromaticity and fraction of helices appeared 
negatively associated with the observed antigenicity. 

92 



 

93 



Figure 3-8. GO cellular component analysis. Note that numbers do not add up to total, 
because: 1. There are overlapping genes among GO terms; 2. Only top GO terms were 
used to construct the pie chart (see Supplementary Materials). *significantly enriched 
(BH adjusted P<0.05). †significantly depleted (BH adjusted P<0.05). 
 

In order to determine if there were common protein properties that may contribute to 

autoimmune responses, we assessed the association between AAb responses and their 

target proteins’ properties, such as protein length, isoelectric point, aromaticity and 

fractions of predicted secondary structures, as well as predicted antigenicity by common 

algorithms. Gene set enrichment analysis (GSEA) indicated significant over 

representation of protein array discovered AAb target proteins in proteins predicted with 

high antigenicity (Figure 3-6). We also observed AAb responses are positively associated 

with protein length, isoelectric point, and fraction of turns, and negatively associated with 

aromaticity, fraction of α helice (Figure 3-7). Gene Ontology cellular component analysis 

indicated that AAb target proteins identified by visual analysis were significantly 

enriched in nucleus and centrosome; while significantly depleted in plasma membrane, 

extracellular region and endoplasmic reticulum membrane (Figure 3-8).  

3.4.3  Identification of candidate AAb biomarkers for basal-like breast cancer 

In order to find which AAbs behaved as biomarkers, we took two complementary 

approaches, using focused protein arrays and ELISA. To design the focused array, 

quantified intensity data for each protein in sample set 1 were analyzed by multiple 

statistical tests with the goal of eliminating uninformative proteins and selecting antigens 

with higher reactivity in basal-like cases. This allowed us to reduce the number of 

biomarker candidates such that each antigen could be studied in duplicate on the focused 

array, reducing both cost and the risk of overfitting (Anderson et al., 2011a; Wallstrom et 
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al., 2013). The statistical filters included but were not limited to: sensitivity at 95% 

specificity (228 proteins); area under receiver operating characteristic curve (AUC; 185 

proteins); partial AUC above 95% specificity (pAUC; 197 proteins); p value for Welch’s 

t test (197 proteins). In addition, by visually analyzing array images, we also observed 

antigens with higher prevalence of AAb responses in basal-like disease than that in 
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Figure 3-9. Heatmap of plasma AAb responses against selected proteins based on 
quantitative analysis in sample set 1 (basal-like, n=45; controls, n=45). This figure 
displays the log2-transformed normalized intensity data of 565 proteins selected from the 
screening study to be included on the focused array. For graphical purposes (to avoid 
having the outliers drive the display), heatmap constrains log2-transformed values to lie 
between +/- 3. Individual spots are z-transformed and clustered using Euclidean distance. 
 

healthy controls. At individual protein levels, TP53 (basal-like: 24%; healthy: 4%), 

RNF216 (basal-like: 22%; healthy: 4%) were among the AAb targets that were 

significantly associated with basal-like disease. We selected 748 antigens based on the 

above analysis (Figure 3-9; Figure 3-10), produced a set of focused arrays, and probed it 

with sample set 2 (Table 3-2). Fourteen antigens with sensitivities above 10% at 98% 

specificity and K>0.9 were selected for the blinded test (Table 3-3).  

Table 3-3. List of 14 antigens selected from focused array experiments. Individual 
sensitivities were determined at 98% specificity (Sample set 2: basal-like, n=50; controls, 
n=50). 

Antigen 
 

Sensitivity Specificity K 

CTAG1B  0.280 0.980 84.425 
TP53  0.200 0.980 1.046 

CTAG2  0.200 0.980 54.890 
TAS2R8  0.180 0.980 1.042 
LMO4  0.160 0.980 0.928 

KCNIP3  0.160 0.980 0.948 
PVRL4  0.140 0.980 1.280 

POU4F1  0.120 0.980 3.270 
ZBTB16  0.120 0.980 1.558 
CCDC68  0.120 0.980 1.052 
PPHLN1  0.120 0.980 0.949 
TSGA13  0.120 0.980 0.917 
TRIM21  0.120 0.980 2.309 
WBP2NL  0.120 0.980 1.378 
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Figure 3-10. Heatmap of plasma AAb responses against selected proteins based on visual 
image analysis in sample set 1 (basal-like, n=45; controls, n=45). This figure displays the 
visual analysis of 205 proteins selected from the screening study to be included on the 
focused array. Spots are ordered first by decreasing ring (grade >= 1) prevalence across 
all subjects, then by decreasing mean ring grade across all subjects. Proteins towards the 
right end showed higher AAb responses in controls. 
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In parallel, we also selected 82 antigens that showed the most differential 

prevalence in sample set 1 between basal-like cases and controls from the visual analysis 

to verify the same samples by programmable ELISA. We successfully developed 

programmable ELISA assay for 71 of them. From these, 15 antigens with sensitivities 

above 10% at 98% specificity and K>0.9 (Table 3-4) were selected. Combining these two 

sources and accounting for duplication, AAbs against 26 unique proteins were identified 

for a subsequent blind test by ELISA.  

Table 3-4. List of 15 antigens selected from ELISA verification. Individual sensitivities 
were determined at 98% specificity. (Sample set 1: basal-like, n=43; controls, n=43). 

Antigen Sensitivity Specificity K 

SNRK 0.209 0.977 2.261 
RNF216 0.163 0.977 4.950 

MN1 0.163 0.977 2.109 
CTAG2 0.140 0.977 8.544 
DYRK3 0.140 0.977 4.798 

TP53 0.140 0.977 8.932 
BCL2 0.140 0.977 10.584 

SSMEM1 0.140 0.977 6.851 
PIP4K2C 0.116 0.977 8.732 

KRT8 0.116 0.977 1.460 
DOK2 0.116 0.977 2.924 

CTAG1B 0.116 0.977 12.712 
RNF32 0.116 0.977 1.354 
JUNB 0.116 0.977 2.679 
PSRC1 0.116 0.977 2.212 

 

3.4.4  Blind test of AAb biomarkers for basal-like breast cancer 

To test these 26 candidate antigens, a training study using ELISA was performed 

using sample sets 1 and 2, in order to set threshold values for each antigen. We then 

blindly tested their performance using an independent and untouched sample set 3 (Table 

99 



3-2, Figure 3-1). In the training set, 16 antigens showed sensitivity above 5% at 98% 

specificity (Table 3-5). Plasma antibodies against CTAG1B and CTAG2 proteins 

demonstrated the best ability to differentiate patients from controls. In the test set, all 26 

antigens were assessed using cutoff values defined in the training study. In summary, 

antibodies against TP53, CTAG1B, PPHLN1, WBP2NL, DOK2 showed sensitivities 

above 5% at 98% specificity in both training and test phases. AAbs against CTAG2 

showed lower specificity (96%) in the test phase, but its sensitivity remained at 18% 

(Table 3-5).  

3.4.5  An AAb signature for diagnosing basal-like breast cancer 

To evaluate the diagnostic performance of the candidate biomarkers as a panel, 

we combined ELISA results of all basal-like patients and healthy controls (Table1, 

sample sets 1-3). We included all antigens with a minimum sensitivity of 5% at 98% 

specificity, yielding 13 antigens that met our inclusion criteria (Table 3-6).  The 13 AAb 

classifier has an AUC of 0.68, which was calculated using leave-one-out (LOO) cross 

validation (Table 3-6). The receiver operating characteristic (ROC) curve was computed 

under LOO cross validation by varying the cutoff values in the prediction model (Figure 

3-11). The plasma AAb model predicted basal-like patients from healthy controls at a 

sensitivity of 33% and a specificity of 98%. 
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Table 3-5.  Training and test statistics for potential BLBC autoantibody biomarkers. 

Antigen 

Training (Sample sets 1&2: basal, 
n=95; healthy, n=95) 

 
  Blinded Test (Sampel set 3: 

basal, n=50; healthy, n=50) 

sensitivity specificity cutoffsa 
 

  sensitivity                               specificity 

CTAG1B 0.213 0.979 1.606    0.200 1.000 
CTAG2 0.191 0.979 1.149    0.180 0.960 
TRIM21 0.158 0.979 1.208    0.140 0.860 
RNF216 0.110 0.978 1.369    0.043 0.956 

MN1 0.105 0.979 1.311    0.060 0.920 
PIP4K2C 0.105 0.979 1.200    0.020 1.000 

TP53 0.084 0.979 3.171    0.200 1.000 
ZBTB16 0.084 0.979 1.393    0.040 0.980 
DOK2 0.074 0.979 1.164    0.060 1.000 

PPHLN1 0.063 0.979 3.394    0.080 1.000 
TAS2R8 0.063 0.979 1.064    0.080 0.940 
SSMEM1 0.063 0.979 1.562    0.060 0.960 
DYRK3 0.063 0.979 1.462    0.040 0.940 
KRT8 0.053 0.979 1.645    0.060 0.960 
LMO4 0.053 0.979 1.199    0.020 0.980 

WBP2NL 0.053 0.979 1.991    0.060 0.980 
JUNB 0.042 0.979 1.165    0.020 0.960 

TSGA13 0.042 0.979 1.313    0.020 0.980 
PVRL4 0.042 0.979 0.899    0.020 0.920 

CCDC68 0.042 0.979 2.438    0.000 0.940 
BCL2 0.042 0.979 1.160    0.000 1.000 
SNRK 0.032 0.979 4.127    0.020 0.960 
PSRC1 0.032 0.979 1.372    0.120 0.960 

KCNIP3 0.032 0.979 0.973    0.000 0.960 
POU4F1 0.032 0.979 0.992    0.080 0.940 
RNF32 0.021 0.979 1.445    0.040 0.980 

aELISA relative absorbance at 98 percentile of controls. 
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Table 3-6. 13-AAb classifier. 

Antigen Sensitivitya Specificity Cutoffb 

CTAG1B 0.208 0.979 1.606 
CTAG2 0.188 0.979 1.176 

TP53 0.124 0.979 3.171 
RNF216 0.088 0.978 1.459 
PPHLN1 0.083 0.979 3.448 
PIP4K2C 0.076 0.979 1.201 
ZBTB16 0.069 0.979 1.925 
TAS2R8 0.069 0.979 1.178 
WBP2NL 0.069 0.979 2.120 

DOK2 0.069 0.979 1.164 
PSRC1 0.063 0.979 1.461 
MN1 0.062 0.979 1.687 

TRIM21 0.055 0.979 5.509 
aIndividual sensitivities were determined at 98% specificity. (basal-like, n=145; control, 
n=145). 
bAntigen-specific cutoffs of ELISA relative absorbance used in the 13-AAb classifier. A 
sample was classified as positive if it exceeds the cutoff value for two or more antigens. 
 

Table 3-7. Performance of 13 AAbs in multiple breast cancer subtypes. (Basal-like, 
n=145; luminal A, n=30; luminal B, n=22; her2-enriched, n=18; controls, n=145). 

Antigen 
Sensitivity 

Specificity 
basal-like luminal A luminal B Her2-enriched 

CTAG1B 0.208 0.033 0.045 0.056 0.979 
CTAG2 0.188 0.000 0.000 0.000 0.979 

TP53 0.124 0.033 0.000 0.056 0.979 
RNF216 0.088 0.133 0.095 0.000 0.978 
PPHLN1 0.083 0.100 0.182 0.000 0.979 
PIP4K2C 0.076 0.100 0.091 0.111 0.979 
ZBTB16 0.069 0.000 0.000 0.000 0.979 
TAS2R8 0.069 0.000 0.000 0.056 0.979 
WBP2NL 0.069 0.100 0.091 0.000 0.979 

DOK2 0.069 0.133 0.091 0.056 0.979 
PSRC1 0.063 0.033 0.045 0.056 0.979 
MN1 0.062 0.100 0.000 0.056 0.979 

TRIM21 0.055 0.033 0.000 0.056 0.979 
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Figure 3-11.  ROC curve of the 13-AAb classifier. 95% confidence interval was also 
computed (yellow). 
 

3.4.6  AAb response in other breast cancer subtypes 

We then examined the specificity of these top markers in basal-like subtype 

compared with other breast cancer subtypes. Specifically, we assayed AAb responses 

against the 13 proteins in plasma samples from 30 Luminal A, 22 Luminal B, and 18 

HER2-enriched patients by ELISA (Table 3-2). Results indicated that AAbs targeting 

CTAG1B, CTAG2 and TP53 were significantly higher in basal-like patients’ plasma 

(Figure 3-12; Table 3-7) relative to other breast cancer subtype
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Figure 3-12.  AAb responses in various breast cancer subtypes. 
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3.4.7  TP53 AAb response and TP53 protein levels 

Because disease-specific AAbs are usually associated with presence of the 

corresponding antigens in the tumor tissue (Reuschenbach et al., 2009), we examined the 

protein level of TP53 in the same basal-like population used for this study. This allows 

direct comparison of AAb response and protein levels. Immunohistochemistry staining of 

TP53 was available on tumor sections from 79 basal-like patients using tissue 

microarrays. We divided these 79 patients into two groups based on their antibody 

response to TP53, namely greater or lower than the 95 percentile of the healthy controls. 

We found a significant association between TP53 protein levels and AAb responses 

(p=0.009). Specifically, 16 out of 54 patients with positive TP53 staining in their tissue 

sections also had positive TP53 AAb responses; while only 1 out of 25 patients with 

negative staining of TP53 proteins in their tissue sections had positive TP53 AAb 

responses (Table 3-8). 

Table 3-8. Relationship between TP53 AAb response and TP53 tissue IHC score in 
basal-like breast cancers. 

TP53 IHC 
TP53 AAb    

non-response   response   
N %   N % Pa 

Negative 24 39   1 6   
Positive 38 61   16 94 0.009 
aP-value calculated from Fisher’s exact test 

 

For the remaining 12 AAb biomarkers, using TCGA breast cancer data we found 

CTAG1B, RNF216 and PSRC1 to show significantly elevated mRNA levels in BLBC 

compared with other subtypes (Cline et al., 2013) (Figure 13). Other markers did not 

show any significant changes in mRNA expression from TCGA.
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Figure 3-13.  mRNA expression levels of candidate biomarkers in breast invasive 
carcinoma grouped by subtypes (TCGA). P values were obtained using ANOVA 
comparing basal-like subtype with other subtypes and normal tissue respectively, and 
only significantly higher mRNA levels in basal-like disease were labeled (*:P<0.05, **: 
P<0.01, ***: P<0.001, ****: P<0.0001). P values were adjusted for multiple 
comparisons by Sidak correction. A. CTAG1B mRNA; B. CTAG2 mRNA; C. TP53 
mRNA; D. RNF216 mRNA; E. PPHLN1 mRNA; F. PIP4K2C mRNA; G. ZBTB16 
mRNA; H. TAS2R8 mRNA; I. WBP2NL mRNA; J. DOK2 mRNA; K. PSRC1 mRNA; 
L. MN1 mRNA; M. TRIM21 mRNA. 
 

3.4.8  TP53 AAb response and TP53 mutation 

Mutation could provide another plausible source of targets of immune 

responses(Reuschenbach et al., 2009; Soussi, 2000). We then evaluated whether mutation 

in the TP53 gene was associated with AAb development. TP53 mutation information was 

available for 21 basal-like patients from our study cohort. Among them, 16 had mutations 

in the TP53 gene. However, none of them had AAb responses higher than 95 percentile 

of healthy controls, whereas 1 out of 5 patients with wildtype TP53 gene had an AAb 

response against TP53 protein. Therefore, we did not observe significant association 

between TP53 mutation and its AAb responses in our study cohort of patients with basal-

like breast cancer (Table 3-9).  

Table 3-9. Relationship between TP53 AAb response and TP53 mutation in basal-like 
breast cancers. 
  TP53 autoantibody    
  non-response   response   

  N %   N % P* 
TP53 mutation           
Negative 4 20   1 100   
Positive 16 80   0 0 0.238 
aP-value calculated from Fisher’s exact test 
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3.4.9  AAbs and overall survival in basal-like breast cancer 

To address whether a humoral immune response against these antigens can 

predict clinical outcome, 13 antigens with at least 5% sensitivity at 98% specificity were 

evaluated by Kaplan-Meier analysis comparing overall survival in patients with elevated 

AAbs and those without (Table 3-6). Basal-like cases were divided into two groups based 

on their antibody level to each antigen, greater or lower than the 95 percentile of the 

healthy controls. The results indicated that AAbs against TP53 and MN1 proteins were 

associated with overall survival. Patients with AAbs against TP53 protein presented 

worse prognosis than those without responses (p=0.03) (Figure 3-14A). Patients with 

AAbs against MN1 protein also presented worse survival than those without responses 

(p=0.04) (Figure 3-14B). After adjustments for age, menopausal status, grade, node status 

and tumor size, there was attenuation of results. Nonetheless, although not significant, 

they were still related to worse outcome (Table 3-10). We did not observe any association 

between survival and AAb responses in the remaining 11 antigens. 

Table 3-10. Hazard ratios for 2 antigen AAb responses that are significantly associated 
with survival amongst 145 basal like breast cancers. 

Antigen 
non-response response Univariate   Multivariateb 

alive/deada alive/deada HR (95% CI) P   HR (95% CI) P 
MN1 95/30 9/8 2.25 (1.03-4.91) 0.04   2.13 (0.86-5.25) 0.10 
TP53 84/23 20/13 2.02 (1.06-3.85) 0.03   1.5 (0.70-3.20) 0.30 

anote N may not sum to 145 due to missing data 
bMultivariate models adjusted for age, menopausal status, grade, node status, and tumor size  
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Figure 3-14.  Overall survival of BLBC patients stratified by AAb responses. A. TP53 
(P=0.03); B. MN1 (P=0.04). 
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3.5  Discussion 

We have performed the largest biomarker discovery screen from women with 

basal-like breast cancer. The Polish Breast Cancer Study enabled the investigation of this 

low prevalence subtype with a large cohort of well-characterized samples to address the 

challenges associated with disease heterogeneity in biomarker studies. By using a highly 

reproducible protein microarray platform that tested about proteins encoded by half of the 

human genome, we estimate that most adults produce in the range of 50-250 antibodies 

against self-antigens, which did not differ significantly between cases and controls.  

Our results were further confirmed by strong enrichment of proteins predicted 

with high antigenicity. We also observed both positive and negative association between 

autoantigenicity and various antigen properties. In particular, proteins in nucleus and 

centrosome were highly enriched in AAb targets. These results may provide insights for 

studying autoimmunity. Nevertheless, hypothesis driven researches are needed to further 

our knowledge. 

From ~10,000 human proteins, we identified 13 AAbs preferentially enriched in 

basal-like disease when compared to healthy individuals; six of which passed a blinded 

test, representing the first verified blood biomarkers for basal-like breast cancer. 

Sensitivities ranged from 6% to 21% at 98% specificity, which are typical for AAbs. An 

AAb signature was constructed and that predicts basal-like disease with 33% sensitivity 

at 98% specificity. We further confirmed the specificity of CTAG1B, CTAG2 and TP53 

AAb biomarkers to basal-like relative to other breast cancer subtypes, confirming the 

hypothesis that different cancer subtypes are likely to have unique biomarkers.  
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Significant effort has focused on searching for tissue biomarkers for TNBC; 

however, tissue markers are precluded from use in early detection (Cabezon et al., 2013; 

Koziol et al., 2003; Liu et al., 2014). Li et al. used antibody arrays to identify 29 plasma 

proteins that differentiated TNBC from healthy controls; although, the study had a 

relative small sample size (TNBC, n=28, Healthy, n=28)(Li et al., 2012). Serological 

analysis of breast cancer, without attention to subtype, has yielded a number of candidate 

AAb biomarkers.(Desmetz et al., 2009; Koziol et al., 2003; Lacombe et al., 2013) Most 

of these are awaiting validation, although one has been tested in an unblinded study 

(Lacombe et al., 2013). Using a study with 155 breast cancer cases, 77 benign cases and 

53 healthy controls, we also described a signature of 28 AAbs that discriminated 

malignant breast cancer from benign breast disease in a blinded verification study 

(Anderson et al., 2011a). We included these reported biomarkers in this study; however, 

no AAbs against these antigens survived the selection criteria as markers for basal-like 

breast cancer. Presumably, most of the reported AAb biomarkers for these studies 

without subtyping would perform best in ER+ breast cancer.  

By testing ~10,000 human proteins, we obtained an unbiased picture of the AAb 

responses in basal-like patients at the proteome level. The NY-ESO-1 antigen, the protein 

product of CTAG1B or CTAG1A gene, was first discovered in esophageal cancer by 

serological analysis of expression cDNA libraries (Chen et al., 1997). This is the first 

demonstration of AAb against NY-ESO-1 protein as biomarkers in basal-like patients’ 

plasma samples, which emerged as the best performer with 20.8% sensitivity at 98% 

specificity in basal-like patients. In a recent targeted study, Ademuyiwa et al. observed 

elevated protein levels of NY-ESO-1 and the elicitation of antibodies in 
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TNBC(Ademuyiwa et al., 2012). This observational study did not include controls nor 

any validation, but they found that 8 out of 11 patients with detectable NY-ESO-1 protein 

in TNBC tissue had positive plasma AAb reactivity. CTAG2 AAb was the second best 

performer from our study with 18.8% sensitivity at 98% specificity, which is not 

surprising considering the 91% sequence homology between coding region of CTAG2 

and CTAG1B.  28 out of 32 (88%) patients with AAb responses against CTAG2 protein 

also had positive responses against CTAG1B protein, using the 98 percentile of controls 

as cutoff. TP53 AAb has been reported in many different cancers including breast cancer 

with varying prevalence (Reuschenbach et al., 2009). However, its performance in basal-

like subtype has never been assessed before. Here, we demonstrated that TP53 AAb has a 

sensitivity of 12.4% at 98% specificity in basal-like tumors, compared with 3% 

sensitivity at 98% specificity in 70 patients with other breast cancer subtypes. 

Additional markers had less sensitivity than the three discussed above. PPHLN1 

encodes periphilin-1, which is involved in epithelial differentiation (Kazerounian and 

Aho, 2003) and induces AAbs in both gastric cancer and breast cancer (Line et al., 2002). 

PSRC1 encodes the mitotic proline/serine rich coiled-coil protein 1 (Jang et al., 2008) 

and has AAbs included in a classifier for ductal carcinoma in situ to invasive breast 

carcinoma transition (Mange et al., 2012).  AAbs to TRIM21, an E3 ubiquitin ligase that 

promotes p27 degradation, were initially associated with autoimmune rheumatic disease 

(Ghillani et al., 2011), but their appearance in cancer patients’ sera was observed in 

subsequent studies (Kuboshima et al., 2006; Vazquez-Del Mercado et al., 2013). It also 

participates in destabilization of TP53 protein according to a recent study (Reddy et al., 

2014). 
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The importance of disease heterogeneity on biomarker studies has only recently 

been emphasized (Wallstrom et al., 2013). We specifically designed this study using 

well-characterized plasma samples from a specific breast cancer subtype and statistical 

approaches that account for heterogeneous diseases. We have evaluated our validated 

biomarkers in patients with other breast cancer subtypes in order to determine their 

selectivity. Our results confirmed subtype specific biomarker performance and the 

advantage of biomarker discovery on a more homogeneous patient population. 

Specifically, we found that AAbs against CTAG1B, CTAG2 and TP53 proteins had 

significant selectivity towards basal-like subtype.  

Interestingly, AAbs against TP53 and CTAG1B proteins have also been reported 

in patients with tumors from other organ sites, such as ovarian cancer(Anderson et al., 

2010; Soussi, 2000; Stockert et al., 1998), colorectal cancer(Reuschenbach et al., 2009; 

Scanlan et al., 1998; Soussi, 2000), and lung cancer(Boyle et al., 2011; Reuschenbach et 

al., 2009; Soussi, 2000; Stockert et al., 1998). The rare occurrence of these two AAbs in 

other breast cancer subtypes (LumA, Lum B, HER2-enriched) may indicate the potential 

of AAbs as an indication of common underlying molecular mechanism of the 

development of basal-like disease and cancers from other organ sites. For example, it is 

well accepted that basal-like breast cancer and ovarian cancer share many common 

molecular features, including but not limited to BRCA1 inactivation, RB1 loss and 

CCNE1 amplification, MYC amplification, high frequency of TP53 mutation(Koboldt et 

al., 2012). According to the Cancer Genome Atlas (TCGA), transcriptomic profiles of 

basal-like tumors are also correlated with that of lung cancer as well as serous ovarian 

cancer (Koboldt et al., 2012). Improved understanding of the shared underlying 
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mechanism among different cancer types may help transfer the knowledge of treatment 

strategy among these cancers. Moreover, biomarkers that are selective for molecular 

subtypes may prove useful in clinical management.  

The mechanism of AAb generation remains unclear. Possible explanations 

include high protein abundance in tumor tissues and mutations. Immunohistochemical 

staining of TP53 and CTAG1B proteins in previous studies indicated their increased 

tissue levels in TNBC (Ademuyiwa et al., 2012; Grigoriadis et al., 2009; Hamai et al., 

2011; Rakha et al., 2007). In this study, we had both tissue microarray data and AAb data 

for TP53 for the same subjects. We found that nearly all of the patients who developed 

antibodies had elevated protein levels compared with the controls suggesting that 

elevated TP53 protein levels might be necessary for AAb responses. However, there were 

38 patients with positive IHC score who did not develop TP53 antibodies, indicating that 

other factors, such as tumor microenvironment, antigen processing machinery, and 

genetic background, may also contribute to the development of AAbs (Vesely et al., 

2011). For the remaining biomarkers reported in this study, except for RNF216 and 

PSRC1, we did not find any evidence of elevated mRNA levels in basal-like tumors 

compared with other subtypes using TCGA data, although this does not rule out the 

possibility that protein levels could be altered or that individual changes could have 

occurred at the single patient level. Detailed study comparing tumor antigen levels and 

AAb responses at single patient resolution would help clarify this puzzle.  

There are inconclusive reports on whether specific TP53 mutations were 

associated with AAb development (Davidoff et al., 1992; Soussi, 2000). We knew both 

the TP53 mutation status and AAb responses to wildtype TP53 protein for a subset of 21 
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patients and did not find any relationship. Given that the number of patients used for this 

comparison is relatively small, additional studies are needed to fully address this 

association. Furthermore, AAbs could also rise against specific TP53 mutant protein, 

only by examining wildtype TP53 protein might not reflect the actual AAb responses. 

In some reports, AAb responses predicted clinical outcomes in cancer patients 

(Gnjatic et al., 2010; Mange et al., 2012). We did a survival analysis by stratifying our 

patients into AAb responders and non-responders, and compared their overall survival. 

By doing this, we, for the first time, found that AAbs against TP53 and MN1 proteins are 

associated with a reduced prognosis in basal-like patients. Reduced survival of TP53 

AAb-positive patients has been reported in studies of other cancers (Reuschenbach et al., 

2009). In basal-like tumors, elevated TP53 protein levels have been associated with 

worse prognosis (Rakha et al., 2007). MN1 encodes meningioma 1, a probable tumor 

suppressor protein of unknown function. MN1 mRNA is a negative prognostic marker in 

acute myeloid leukemia (AML) (Langer et al., 2009; Metzeler et al., 2009). Moreover, 

low MN1 protein levels associate with better treatment response (Schwind et al., 2011). If 

elevated MN1 contributes to AAb development, this would be consistent with our 

observation of reduced overall survival in basal-like patients. In addition, Andreu et al. 

had also demonstrated that stromal accumulation of AAbs could promote neoplastic 

progression by activating Fcγ receptors on myeloid cells, providing evidence for AAb 

induced cancer progression (Andreu et al., 2010). 

With further validation, these markers might contribute to the improved detection 

of basal-like breast cancer, an aggressive breast cancer subtype that afflicts younger 

women (Dent et al., 2007) who are not recommended for routine mammography 
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(Calonge et al., 2009). Given the poor prognosis of basal-like subtype, early intervention 

is likely to be beneficial. Blinded studies on independent cohorts are already underway 

through the Early Detection Research Network. The additional of independent markers 

and screening modalities would also contribute to a diagnostic test with better 

performance. 

Aside from phosphorylation, these protein arrays displayed proteins with only 

limited post translational modifications (PTM). Distinct alterations in PTMs have been 

found between cancer and healthy controls (Arnold et al., 2011; Blixt et al., 2010; 

Whelan et al., 2009). Disease-specific AAbs targeting aberrant PTMs had also been 

reported previously (Tomaino et al., 2011; Wandall et al., 2010). While this limitation is 

not unique to our protein array platform, we are actively working to address this 

challenge and hope to profile antibodies against proteins with disease-relevant PTMs at 

the proteome level in the future. We are also working to expand our antigen repertoire 

from current 10,000 to cover even greater percentage of the proteome. 
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3.6  Conclusion 

In summary, we have performed the largest proteomic screen using NAPPA 

technology and identified 13 AAb biomarkers associated with BLBC. With further 

validation, these markers might contribute to improved detection of BLBC, an aggressive 

subtype that afflicts younger women where mammography is less sensitive (Domingo et 

al., 2014; Foulkes et al., 2010; Kirsh et al., 2011). Our analysis of AAbs associated with 

BLBC represent promising markers for early detection for several reasons: 1) they may 

be detectable at early stages, 2) their sensitivity is not dependent on visualization, so the 

fact that young women have poorly imaged dense breasts is not a limitation, and 3) blood 

testing can be performed repeatedly without risk of radiation exposure or expensive 

techniques such as MRI, making this a good approach for young women and those who 

may require frequent testing.  Future work in clinical and prospective observational 

studies is needed to determine the value of these markers for early detection, prognosis 

and response to treatment.   

 

  

117 



CHAPTER 4 

COMPARATIVE STUDY OF AUTOANTIBODY RESPONSES BETWEEN 

LUNG ADENOCARCINOMA AND BENIGN PULMONARY NODULE 

4.1  Abstract 

The reduction in lung cancer mortality associated with CT screening has led to its 

increased use and a concomitant increase in the detection of benign pulmonary nodules. 

Many of these individuals undergo unnecessary, costly and invasive procedures. 

Therefore, there is a need for companion diagnostics that stratify individuals with 

pulmonary nodules into high risk or low risk groups. Lung cancers can trigger host 

immune responses and elicit antibodies against tumor antigens. The identification of 

these antibodies and their corresponding antigens may expand our knowledge on cancer 

immunity, leading to early diagnostics or even benefit immunotherapy. Previous studies 

were mostly performed in the context of comparing cancers and healthy (smoker) 

controls. We have performed one of the first studies in understanding humoral immune 

response in cancer patients, patients with benign nodules and healthy smokers.  

We first profiled sero-reactivity to 10,000 full-length human proteins in 40 

patients with early stage lung cancer and 40 smoker controls using nucleic acid 

programmable protein arrays (NAPPA) to identify candidate cancer specific AAbs. 

Seventeen antigens showing higher reactivity in lung cancer cases relative to controls 

were subsequently selected for evaluation in a large sample set (n=264) using enzyme-

linked immunosorbance assay (ELISA). A 5-AAb classifier (TTC14, BRAF, ACTL6B, 

MORC2, CTAG1B) was developed that can differentiate lung cancers from smoker 

controls with a sensitivity of 30% at 89% specificity. We further tested AAb responses in 
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subjects with CT positive benign nodules (n=307), and developed a 5-AAb panel (KRT8, 

TTC14, KLF8, BRAF, TLK1) with a sensitivity of 30% at 88% specificity. Interestingly, 

mRNA levels of 6 AAb targets (TTC14, BRAF, MORC2, CTAG1B, KRT8, TLK1) were 

also found to increase in lung adenocarcinoma tissues based on TCGA data set.  

We believe that these antibodies warrant future validation using a larger sample 

set and / or longitudinal samples individually or as a panel. They could potentially be part 

of companion molecular diagnostics modalities that will benefit subjects undergoing CT 

screening for lung cancer. 
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4.2  Introduction 

Lung cancer has long been the leading cause of cancer deaths in the United States, 

with more than 150,000 deaths in year 2014 (Siegel et al., 2014). 5 year survival rate of 

lung cancer overall is only 17%, and 57% of lung cancers are diagnosed at advanced 

stage with 5 year survival rate as low as only 4%(Siegel et al., 2014). Currently, low-dose 

computed tomography (CT) scans are used to screen populations with extensive smoking 

history between 55 and 74 years old (Bach et al., 2012). CT scan had been proved to 

effectively reduce lung cancer mortality by 20%, but many from the millions of 

pulmonary nodules identified by CT remained undiagnosed as malignant or benign (Li et 

al., 2013). According to the National Lung Screening Trial (NLST), only 3.6% of the 

nodules detected by CT were confirmed to have lung cancer (Aberle et al., 2011), 

suggesting high false positive rate. Therefore, there is a need for diagnostic tests that 

differentiate malignant from benign nodules, improving the diagnostic performance when 

combined with CT screening. Practically, tests for such markers should rely on readily 

accessible samples, like plasma or sputum, because they are likely to be performed on 

individuals undergoing screening. Tremendous efforts have been spent on the 

identification of proteins, circulation tumor cells, circulating tumor DNAs, and 

circulating miRNA for this purpose (Hennessey et al., 2012; Hofman et al., 2011; Krebs 

et al., 2012).  

The concentration of many molecular markers in blood tends to be very low 

because it relies upon secretion by cancer cells, which are few in number in the pre-

clinical stage (Hori and Gambhir, 2011). Typically, only a fraction of the secreted 

biomarker gets distributed to the plasma where the biomarker gets diluted in a large 
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volume in blood (Anderson and Hunter, 2006; Lutz et al., 2008). An alternative strategy 

is to exploit the ability of the immune system to detect the presence of tumor cells 

through the generation of autoantibodies (AAb)(Anderson et al., 2011a; Goodell et al., 

2006; Wang et al., 2005). These responses of the adaptive immune system against target 

tumor antigens effectively amplify the signals from the minute amount of tumor proteins 

released from cancer tissue (Anderson and LaBaer, 2005; Hanash et al., 2011). AAbs 

have been observed years before the clinical diagnosis of tumor (Lu et al., 2012; Qiu et 

al., 2008). Therefore, blood AAbs could serve as a good repertoire for early detection 

biomarker discovery. 

Here, we reported one of first study focusing on comparing plasma AAb 

responses in lung adenocarcinoma (ADC) patients with heavy smoker subjects (SMC), as 

well as with benign nodules (BNC). We started with an unbiased screen for cancer-

specific antibodies in patients with the adenocarcinoma subtype non-small cell lung 

cancer (NSCLC) and age, gender, smoking matched controls, using nucleic acid 

programmable protein arrays (NAPPA) displaying ~10,000 full length human proteins. 

Candidate lung cancer specific antibodies were further assessed in an independent set of 

cases and controls, including subjects with benign pulmonary nodules. 
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4.3  Materials and methods 

4.3.1  Characteristics of plasma samples 

A total of 434 plasma samples were obtained from NYU (Table 4-1) with 137 

lung adenocarcinoma, 127 controls with smoking history, and 170 benign pulmonary 

nodules (granuloma, n=47; emphysema, n=50; stable nodules, n=73). In the discovery 

sample set for protein array experiment, 40 patients with lung adenocarcinoma were 

matched to 40 cancer free controls by age, gender and smoking history. 38 out of 40 

patients from the discovery samples had stage I disease. For validation purpose, 

additional 97 patients with lung adenocarcinoma of different stages (47% stage I) and 87 

controls as well as 170 patients with CT positive benign lung disease were included.  

4.3.2  Protein array experiments 

Open reading frames were obtained from DNASU (https://dnasu.org/). Production 

of the protein array and array quality control experiments were performed as previously 

described (Festa et al., 2013; Wang et al., 2013).  In brief, arrays displaying 10,000 

human proteins (distributed evenly on five array sets) were manufactured. A common 

control plasma sample was repeated in every experiment to assess reproducibility. 

Consistency among experiments was determined with scatter plots comparing spot 

intensity measurements of the same plasma sample tested on different experiments.  

4.3.3  Protein array image analysis and quantification 

The scanned protein array images were examined using ArrayPro Analyzer 

(MediaCybernetics). To capture real antibody responses that cannot be quantified by the 

image analysis software, two researchers qualitatively examined all images to identify 

and confirm positive responses, which were described previously (Montor et al., 2009). 
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Briefly, raw images were adjusted to extreme contrast and brightness using ArrayPro 

Analyzer (MediaCybernetics), and each spot was graded at a scale of 0 to 5 based on 

ring’s intensity and morphology.  

Table 4-1.  Sample information 

Characteristics 
  Discovery   Validation 

  LC SC P   LC SC P BC P 

Subjects   40 40     97 87   170   

Age (years)   74 (66-77) 70 (64-76) 0.3355   70 (62-77) 63 (57-70) 0.0002 65 (59-71) 0.0008 

Gender       1       1   0.6076 

  Male   19 (48) 19 (48)     39 (40) 35 (40)   74 (44)   

  Female   21 (52) 21 (52)     58 (60) 51 (59)   95 (56)   

  No data   0 0     0 1 (1)   1 (<1)   

Smoking history                     

  Status       0.5542       0.1087   0.0329 

    Never   0 0     11 4   11   

    Former   28 31     63 60   102   

    Current   5 9     15 22   49   

    No data   7 0     8 1   8   

  Pack-year   29 (7-45) 26 (8-46) 0.9115   29 (10-45) 30 (19-46) 0.4032 29 (17-45) 0.4469 

Nodules                   <0.0001 

  Size (cm)   1.5 (1.3-1.8) −     2.3 (1.4-3.2) −   0.4 (0.6-1.0)   

Stage                     

  IA   37 −     31 −   −   

  IB   1 −     15 −   −   

  IIA   2 −     24 −   −   

  IIB   0 −     3 −   −   

  IIIA   0 −     20 −   −   

  IIIB   0 −     4 −   −   

 

4.3.4  Candidate selection 

Protein antigens were selected for subsequent ELISA confirmation when they 

showed higher prevalence in lung adenocarcinoma based on visual analysis. Specifically, 

they had to meet all of the following criteria: 1). Their frequency in ADC minus 
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frequency in SMC is greater than or equal to 2; 2). Frequency in ADC divided by 

frequency in SMC is greater than or equal to 1.4. Totally, 57 protein antigens were 

selected. 

4.3.5  Pathway Analysis 

Gene Ontology term enrichment analysis was performed using Cytoscape with 

ClueGo plugins on all 57 proteins with customized reference of all proteins displayed on 

our protein array. Gene symbol was used as identifier for the analysis. Node size was set 

proportional to number of genes observed. Node color was coded to reflect Benjamini-

Hochberg adjusted p value. 

4.3.6  ELISA assays 

ELISA assays were performed to verify selected AAb responses towards protein 

antigens using freshly produced human proteins as previously described (Ramachandran 

et al., 2008a). In brief, 96-well highbind ELISA plates (Corning) were coated with goat 

anti-GST antibody (GE Healthcare) at 10 μg/ml in 0.2 M sodium bicarbonate buffer 

pH9.4 overnight at 4°C 1 day prior to experiment. All high-throughput liquid handling 

were performed using a BioMek NxP Laboratory Automation Workstation (Beckman 

Coulter). See Supplementary Materials and Methods for additional details. 

4.3.7  Statistics and Data Analysis 

To combine AAbs into panels, we used the 98 percentiles of the relative 

absorbance of either smoker control subjects (Panel I) or benign control subjects (Panel 

II) as cutoffs. A sample is called positive for lung adenocarcinoma if the AAb responses 

to one of the panel candidates exceed its corresponding cutoff.  
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A heatmap was developed to display differential AAb responses of 17 selected 

targets in lung cancer patients and smoker controls using the confirmation ELISA results. 

The heatmap color was scaled according to each AAb, and constructed using the gplots 

package in R. 

To determine AAb responders from ELISA analysis, we categorized subjects as 

responders to specific antigens of interest using 98-percentile cutoff using data from 

benign subjects. This method was used to determine the association of AAb responses 

with cancer stage, age, nodule size and smoking history.  

A multivariate logistic regression model was constructed to study the association 

of AAb responses to age, nodule size and smoking history. To adjust for lung cancer 

status and better assess the relationship between tumor size and AAb responses, we 

constructed another model with lung cancer status as an additional variable. We then 

applied the same method to analyze the association of AAb responses to tumor size, node 

status, and tumor stage among lung cancer patients. 

To compare TCGA mRNA expression levels between lung adenocarcinoma and 

normal tissues, we used one-sided Welch’s t test. The TCGA lung adenocarcinoma data 

were generated by Illumina HiSeq, and obtained from UC Santa Cruz Cancer Genome 

Browser (https://genome-cancer.ucsc.edu/) TCGA_LUNG_exp_HiSeqV2-2014-08-22. 

All intensities were normalized by subtracting the mean value of each mRNA from each 

sample.  
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4.4  Results 

4.4.1  Identification of candidate AAbs associated with lung adenocarcinoma 

To identify lung adenocarcinoma-associated candidate AAbs, we first performed 

comprehensive profiling of antibodies against 10,000 full-length human proteins in 

plasma samples from 40 patients with lung adenocarcinoma and 40 heavy smoker 

controls on NAPPA. Based on the array data, we selected 57 antigens whose AAb 

responses were differentially presented in lung cancer patients compared to smoker 

controls (Figure 4-1, materials and methods). A gene ontology enrichment analysis of 

these 57 candidate AAb targets revealed their involvement in embryonic morphogenesis, 

organ development, kinase signaling, and intermediate filament cytoskeleton (Figure 4-

2A). We then assessed these selected candidates by ELISA using the same samples. 

Based on ELISA, 17 antigens were confirmed to elicit differential AAb responses in lung 

cancer patients, and included for subsequent analysis (Figure 4-2B). 
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Figure 4-1.  Overview of Study Design. 
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Figure 4-2. Summary of lung cancer associated antigens discovered from protein array 
screening. A. GO enrichment analysis of lung cancer associated AAb targets selected 
from protein array screening. Term embryonic morphogenesis has 20 genes, whereas the 
rest of the node has 5 genes each. B. Heatmap of differential AAb responses in lung 
cancer compared to smoker controls. 
 

4.4.2  Validation in lung cancer patients versus healthy smoker controls 

To verify the levels of these 17 AAbs in lung cancer patients, we measured these 

AAbs in 184 additional plasma samples from 97 cases and 87 controls. In addition, we 

also included TP53 and CTAG1B proteins as possible candidates according to previous 
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publications (Lam et al., 2011). Sero-positivity cutoffs of individual AAbs were set at 98 

percentile of the ELISA absorbance in the 87 control samples. AAbs to TTC14, BRAF, 

and CTAG1B had sensitivity above 5% at 98% specificity when comparing lung cancer 

patients with smoker controls (Table 4-2). In addition, Sensitivities of AAbs to TTC14, 

BRAF, ACTL6B, MORC2 and CTAG1B were above 5% at 98% specificity in the entire 

sample set (Table 4-3). Further analysis of these 5 antigens using a standardized cutoff 

for each antigens of a relative absorbance greater than or equal to the 98 percentile of the 

relative absorbance in smoker controls, revealed a 5-AAb panel (panel I) with 30% 

sensitivity and 89% specificity. 

Table 4-2.  Discovery and validation statistics of selected AAbs. 

Antigen 

Discovery 
(ADC, n=40; SMC, 

n=40) 
  

Validation 
(ADC, n=97; SMC, 

n=87) 
  

Validation 
(ADC, n=97; BNC, 

n=170) 
Sensitivity Specificity   Sensitivity Specificity   Sensitivity Specificity 

TTC14 17.5% 97.5%   11.3% 97.7%   5.2% 97.6% 
VPS72 17.5% 97.5%   0.0% 97.7%   2.1% 97.6% 

CTTNBP2NL 15.0% 97.5%   3.1% 97.7%   2.1% 97.6% 
TSPYL2 15.0% 97.5%   2.1% 97.7%   1.0% 97.6% 
ACTL6B 15.0% 97.5%   3.1% 97.7%   2.1% 97.6% 
ACVR2B 15.0% 97.5%   4.1% 97.7%   2.1% 97.6% 

BRAF 12.5% 97.5%   5.2% 97.7%   6.2% 97.6% 
KLF8 12.5% 97.5%   1.0% 97.7%   5.2% 97.6% 
BAT4 12.5% 97.5%   0.0% 97.7%   0.0% 97.6% 

C12ORF50 10.0% 97.5%   2.1% 97.7%   2.1% 97.6% 
IQCE 10.0% 97.5%   4.1% 97.7%   4.1% 97.6% 

CSPP1 7.5% 97.5%   1.0% 97.7%   0.0% 97.6% 
KRT8 7.5% 97.5%   0.0% 97.7%   7.2% 97.6% 

MORC2 7.5% 97.5%   4.1% 97.7%   1.0% 97.6% 
FAM76A 7.5% 97.5%   1.0% 97.7%   2.1% 97.6% 

NF2 5.0% 97.5%   2.1% 97.7%   2.1% 97.6% 
TLK1 5.0% 97.5%   4.1% 97.7%   6.2% 97.6% 
TP53 2.5% 97.5%   3.1% 97.7%   4.1% 97.6% 

CTAG1B 2.5% 97.5%   9.3% 97.7%   3.1% 97.6% 
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4.4.3  Classification of lung cancer versus benign controls 

To test whether these 17 AAb together with AAb against TP53 and CTAG1B can 

differentiate lung cancer from benign disease identified by CT screening, we analyzed the 

AAb responses against these antigens from 267 plasma samples by ELISA. As above, 

cutoffs of individual AAb were set at 98 percentile of the relative absorbance in benign 

controls. KRT8, TTC14, KLF8, BRAF, TLK1 were confirmed for their association to 

lung cancer patients compared with benign controls (Table 4-2). They also had overall 

sensitivity above 5% at 98% specificity (Figure 4-3; Table 4-4). Further analysis of these 

5 antigens using a standardized cutoff for each antigens of a relative absorbance greater 

than or equal to the 98 percentile of the relative absorbance in benign controls, revealed a  

5-AAb panel (panel II) with 30% sensitivity and 88% specificity. Sensitivities of 

individual AAb using subjects with different benign lung nodules were also assessed 

(Table 4-5). 

Table 4-3. Sensitivity and specificity of individual AAb from panel I. 

Antigen 
Overall (LC, n=137; SC, n=127) 

Sensitivity Specificity 
TTC14 12.4% 97.6% 
BRAF 8.0% 97.6% 

ACTL6B 5.1% 97.6% 
CTAG1B 5.1% 97.6% 
MORC2 5.1% 97.6% 
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Table 4-4. Sensitivity and specificity of individual AAb from panel II. 

Antigen 
Overall (LC, n=137; BC, n=170) 

Sensitivity Specificity 
KRT8 8.8% 97.6% 
TTC14 8.0% 97.6% 
KLF8 7.3% 97.6% 
BRAF 6.6% 97.6% 
TLK1 5.8% 97.6% 

 
 

 
Figure 4-3.  AAb responses of individual AAb from panel II. 
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4.4.4  Effect of patient and disease characteristics on AAb positivity 

We compared clinical risk factors of smoking history, tumor size and age to the 

AAb responses. Using the defined cutoff derived from panel II, there are no significant 

differences in age (P=0.677) or smoking history (P=0.718) between AAb responders and 

nonresponders (Figure 4A). Whereas tumor size was found to be significantly associated 

with AAb responses (P=0.036), but when adjusted for disease status, it is no longer 

significant (P=0.858). This result indicates that the AAb panels provide additional  

Table 4-5. Sensitivity of individual AAb using various benign lung nodules as control 
samples. Specificity was set at 98%. 

Antigen   ADC vs 
Granuloma   ADC vs 

emphysema   ADC vs stable 
nodule 

TTC14   7.3%   13.1%   12.4% 
BRAF   10.2%   5.8%   8.0% 

ACTL6B   2.2%   4.4%   2.9% 
CTAG1B   5.1%   2.9%   2.9% 
MORC2   2.2%   2.2%   0.7% 

CTTNBP2NL   1.5%   12.4%   2.2% 
VPS72   5.8%   5.8%   2.2% 
IQCE   4.4%   4.4%   4.4% 
TLK1   12.4%   4.4%   6.6% 

ACVR2B   2.2%   5.1%   1.5% 
TSPYL2   8.8%   2.9%   6.6% 

TP53   6.6%   1.5%   4.4% 
CSPP1   4.4%   2.9%   2.2% 

C12ORF50   1.5%   1.5%   1.5% 
NF2   1.5%   2.2%   9.5% 

KLF8   10.9%   10.9%   7.3% 
FAM76A   6.6%   4.4%   5.8% 

BAT4   8.8%   1.5%   4.4% 
KRT8   9.5%   4.4%   10.2% 

 

information on lung cancer status and that the observed AAb responses are independent 

of the two known risk factors. In addition, we also analyzed the AAb responses among 

lung cancer patients and compared that with patients’ characteristics including smoking 
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history, tumor size, node status, and tumor stage. No significant association was observed 

between these factors and AAb responses (Figure 4-4B). To assess this at individual AAb 

level, we observed that TTC14 AAb has higher prevalence in stage I lung cancer, 

whereas AAb against BRAF has higher prevalence in stage II and III (Table 4-6, Table 4-

7).  

Table 4-6. Positivity of individual autoantibody from panel I by stage. 

Stage 
Number 

of 
Samples 

TTC14 
Positive(%) 

BRAF 
Positive(%) 

ACTL6B 
Positive(%) 

CTAG1B 
Positive(%) 

MORC2 
Positive(%) 

Panel I 
Positive(%) 

I 84 15.5% 6.0% 6.0% 6.0% 6.0% 32.1% 
II 29 3.4% 13.8% 10.3% 3.4% 3.4% 20.7% 
III 24 8.3% 12.5% 8.3% 8.3% 8.3% 33.3% 

 

Table 4-7. Positivity of individual autoantibody from panel II by stage. 

Stage 
Number 

of 
Samples 

KRT8 
Positive(%) 

TTC14 
Positive(%) 

KLF8 
Positive(%) 

BRAF 
Positive(%) 

TLK1 
Positive(%) 

Panel II 
Positive(%) 

I 84 9.5% 10.7% 7.1% 4.8% 6.0% 32.1% 
II 29 3.4% 3.4% 3.4% 10.3% 3.4% 17.2% 
III 24 12.5% 4.2% 12.5% 8.3% 8.3% 37.5% 

 

4.4.5  Correlation of AAb targets and their mRNA level 

We further investigated the tissue mRNA levels of protein antigens from both 

panels using TCGA data (Collisson et al., 2014). 6 out of 8 proteins showed significantly 

increased expression in lung adenocarcinoma tissues compared to normal tissue (Figure 

4-5). This orthogonal analysis confirmed our discovery of these AAbs’ association with 

lung adenocarcinoma. 
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Figure 4-4.  Multivariate analysis of clinical factors and AAb responses. A. Analysis of 
smoking history, AAb responses and nodule size in lung cancer and benign control. B. 
Analysis of smoking history, stage and AAb responses in lung cancer cases. (A and B, 
Smoking is measured by pack-year on the vertical axis. Nodule size is presented by circle 
diameter.) 
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Figure 4-5.  mRNA expression level of AAb targets from both panels (TCGA). Only 
mRNA levels in lung adenocarcinoma (ADC) and solid tissue normal (normal) were 
graphed. 
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4.5  Discussion 

Using an immuno-proteomics approach, we profiled antibody responses in 

healthy heavy smoker controls and lung cancer patients. Bioinformatics analysis revealed 

significantly enriched pathways related to embryonic morphogenesis, organ development 

(including lung development) and receptor signaling and serine/threonine kinase 

pathways. The performance of a subset of antibodies was confirmed by ELISA using an 

expanded sample set including subjects with benign nodules, with sensitivities ranging 

from 5-10% at 98% specificity. We reported a 5-AAb panel (TTC14, BRAF, ACTL6B, 

MORC2, CTAG1B) that has 30% sensitivity at 89% specificity to distinguish lung cancer 

from high risk controls with smoking histories. A comparison of AAb responses between 

lung cancer and patients with CT positive pulmonary nodules revealed a related but 

different 5-AAb panel (TTC14, BRAF, KLF8, TLK1, KRT8) with a sensitivity of 30% at 

88% specificity. Although these panels require further validation, they do provide 

information on the complementarities of these informative antigens. Further analysis 

revealed that AAbs do not associate with lung cancer stage. To our knowledge, this is one 

of the first studies that applied an immuno-proteomics approach on the identification of 

specific antibodies that might help stratify subjects with positive CT nodules into benign 

lung disease controls and lung adenocarcinoma patients. To ensure accurate estimations 

of responses when analyzing ELISA results, we also estimated the background associated 

with the supporting reagent for each plasma sample, which provides the most rigorous 

assay in similar studies. 

Overall, our results are comparable with several validation studies reported by 

Chapman et al.(Boyle et al., 2011; Lam et al., 2011; Macdonald et al., 2012). The early 
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CDT-lung assay could differentiate patients with various subtypes of lung cancer from 

healthy controls at 49% sensitivity and 93% specificity (Macdonald et al., 2012), while 

sensitivity of adenocarcinoma alone was 25.6% at 88% specificity (Lam et al., 2011). 

Our previous study demonstrated AAb responses to Annexin I, 14-3-3 Theta and LAMR1 

with a performance of 51% sensitivity at 82% specificity in lung cancer patients prior to 

the onset of symptoms and diagnosis (Qiu et al., 2008). Among the few studies that 

examined patients with CT positive pulmonary nodules, using multiple reaction 

monitoring mass spectrometry assay, Li, et al. reported a 13-protein classifier, which 

when coupled with CT scan, can improve negative predicted value, but independent 

validation presented a less attractive sensitivity and specificity (Li et al., 2013). 

There are reports of marker panels with higher sensitivities for lung cancer; 

however, these studies have used less stringent study design and limited sample numbers.  

For example, Farlow et al. reported a biomarker panel that can differentiate NSCLC from 

controls at 88% sensitivity and 87% specificity (Farlow et al., 2010), and in a subsequent 

paper by the same group, they improved the diagnostic performance to 94% sensitivity 

and 97% specificity in the same patient cohort by adding several AAb markers(Murray et 

al., 2010). However, they used a limited number of control samples in the former study 

without any information on smoking history and no information on the controls was 

included on the follow up study. Wu et al. reported a phage-peptide detector that had over 

92% sensitivity and 92% specificity for NSCLC (Wu et al., 2010). Patients involved in 

this study mainly had stage III/IV lung cancer, and control subjects were not matched by 

smoking, weakening their use as early detection markers. Moreover, all of the reported 

biomarkers above require further independent validation in larger sample sets. 
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In addition to the 17 AAbs identified in the protein array screening, we also 

evaluated two core AAbs (TP53, CTAG1B) reported in previous studies with 10-15% 

sensitivity in lung cancer (Lam et al., 2011; Macdonald et al., 2012; Shan et al., 2013). 

However, we did not observe specific AAb responses to TP53 in our patient cohort, 

although we have readily detected TP53 AAb responses in basal-like breast cancer and 

ovarian cancer (data not shown). CTAG1B AAb was among panel I (vs. smoker controls), 

but not panel II (vs. benign lung disease controls). Specifically, very few studies 

addressed AAb responses to CTAG1B and TP53 in early stage adenocarcinoma with 

benign lung disease as control samples. According to a previous report, TP53 AAb 

frequency appeared to be higher in squamous cell lung cancer and small cell lung cancer 

than that in adenocarcinoma, where it increased along with cancer stage (Lam et al., 

2011). It is also possible that the lower AAb responses could be due to the effect of 

smoking as suggested (Palmer et al., 2005).   

We were interested to find the association of lung adenocarcinoma with AAb 

against BRAF. The involvement of BRAF in progression of different types of cancer has 

been well studied (Davies et al., 2002; Pao and Girard, 2011). BRAF encodes a serine-

threonine kinase that transduces regulatory signals from RAS to MAPK in the growth 

factor receptor signaling pathway (Davies et al., 2002). AAbs against BRAF protein have 

been reported in melanoma patients (Fensterle et al., 2004). Patients with Rheumatoid 

Arthritis also found to have BRAF AAb, but the association is under debate (Charpin et 

al., 2010; Li et al., 2011). It is also mutated in 10% of lung adenocarcinoma (Collisson et 

al., 2014). It is possible that BRAF’s over expression in lung adenocarcinoma contributed 

to both its AAb level and advance of the disease. Unfortunately, tumor tissue 
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corresponding to the patient samples with BRAF AAb was not available to test this.  

Mutation in BRAF might also be a cause of its humoral immune responses. However, 

further study comparing its protein expression, mutation and AAb responses in the same 

patient is required to clarify these projections. 

ACTL6B belongs to the chromatin remodeling brain-specific BAF (bBAF) 

complex (Olave et al., 2002). It acts as a transcription coactivator during postmitotic 

neural development and dendritic outgrowth (Yoo et al., 2009). KLF8 is a member of the 

KLF family of transcription factors. A recent study reported its role in promoting breast 

cancer metastasis and invasion through activating MMP9 and MMP14 (Lu et al., 2014; 

Wang et al., 2011). KRT8 has been reported to elicit AAb responses in lung cancer with a 

sensitivity of 4% and a specificity of 100% (Macdonald et al., 2012). Here, we have also 

found that AAbs against KRT8 protein are elevated in lung cancer patients. And further, 

our result indicated that this AAb is associated with lung cancer in population with 

pulmonary nodules with a sensitivity of 8.6% at 98% specificity. Mutations in MORC2 

were found in colorectal cancer patients (Tuupanen et al., 2014). TTC14 is a protein that 

contains tetratricopeptide repeat domain, which was known as a scaffold protein that 

mediates protein-protein interaction (Allan and Ratajczak, 2011). TLK1 encodes a 

nuclear serine/threonine kinase, which involves in chromatin assembly during S phase of 

cell cycle (Li et al., 2007).  

It is still not clear what factors determine the development of these humoral 

immune responses. Assuming AAb responses were linked to tissue overexpression of its 

protein target, only a small fraction of patients with the overexpressed protein will 

develop AAb responses at detectable level. We also examined the mRNA level of these 
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AAb targets in TCGA lung adenocarcinoma data set (Collisson et al., 2014). mRNA 

expressions of 6 out of the 8 proteins in both panels were significantly increased in lung 

adenocarcinoma tissues. This finding not only suggested that the development of AAbs in 

lung adenocarcinoma might be a result of protein overexpression, but also orthogonally 

verified the association of these AAbs to lung adenocarcinoma.  

Strengths of this study include the use of a large number of plasma samples from 

adenocarcinoma of NSCLC with primarily stage I disease matched with smoker controls 

as well as controls with CT positive benign lung disease. We also used highly 

reproducible protein arrays for high-throughput screening of AAb candidates, which 

revealed informative pathways related to developmental processes and kinase signaling. 

To evaluate these AAbs’ performance, we used more clinically relevant ELISA assays in 

large sample sets. Our results were also consistent with TCGA mRNA expression data.  
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4.6  Conclusion 

In summary, we have performed an immune-proteomic screening of AAb 

responses using protein arrays, and identified two panels of AAb that can potentially 

differentiate lung adenocarcinoma from smoker controls as well as CT positive benign 

lung disease. BRAF, as a putative oncogene, was also found to elicit humoral immune 

responses in lung cancer patients. For this study, we focused on markers with high 

specificity so that high risk subjects with a positive CT screen and a positive serum test 

should get more invasive test such as needle biopsy for their timely cancer diagnosis. On 

the other hand, autoantibody markers with high sensitivity in CT positive population will 

help reduce false negatives to prevent the wrongly exclusion of subjects that have the 

disease, which will in turn reducing false positive diagnostics from CT screening. To 

achieve this in the future, we will be focusing on combining existing markers with our 

panel to achieve high sensitivity. Future studies using mutated antigens or post-

translationally modified antigens may benefit the identification of better performance 

markers. The use of longitudinal samples to track antibody changes may also improve 

marker performance. We believe an integrated panel of markers of different molecular 

types reflecting the physiological state changes from benign lung diseases / healthy 

smokers to lung cancers will be necessary to make an impact on the reduction of CT false 

positivity. 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

5.1  Summary 

The work presented in the preceding chapters described the method development 

and optimization of protein microarray technology, and subsequently applying the 

method to discover autoantibody biomarkers in basal-like breast cancer and lung cancer. 

The conclusion and contribution for each project is summarized here. 

The research described in chapter 2 sought to develop a protein microarray 

platform that is capable to display proteins in either their native or denatured 

conformation, allowing the binding of antibodies against either conformational or linear 

epitiopes. We first optimized our traditional plasma screening protocol to reduce the 

background binding of immunoglobulin. Switching from the old rabbit reticulocyte lysate 

to Hela cell lysate in vitro transcription and translation system, we demonstrated a higher 

antibody signal, as well as the ability to detect more antibody responses from plasma 

sample. We then successfully showed that by adapting the covalent linkage between 

HaloTag ligand and HaloTag to replace the traditional NAPPA chemistry, the protein 

products can endure harsh treatment of detergent and reducing agent without getting 

dissociated from the slide, indicating successful covalent immobilization. After probing a 

set of human plasma samples on either denatured protein array or native array, we also 

observed distinct antibody responses. This work presented the first protein microarray 

that is versatile to endure detergent wash. As a prove of concept, it can be used for 

antibody detection. 
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Chapter 3 described the largest proteomic scale screening of autoantibodies that 

are associated with basal-like breast cancer, an aggressive subtype of breast cancer that is 

often missed by routine mammography. The autoantibody profile of 45 BLBC cases and 

45 controls revealed strong association between B cell antigenicity and protein properties, 

such as lower fraction of helice, lower aromaticity, and higher fraction of turns. Cellular 

localization analysis of the autoantigens revealed enrichment in nucleus, centrosome, and 

depletion in endoplasmic reticulum membrane, extracellular region. From the screening 

and subsequent verification, 26 antigens were select for blind validation. AAb against 

CTAG1B, CTAG2, TP53, WBP2NL, PPHLN1, DOK2 were confirmed in independent 

sample set. A combined analysis showed a 13-AAb classifier that can differentiate BLBC 

from controls with a sensitivity of 33% and a specificity of 98%. In addition, we also 

observed association of AAb responses with protein expression and survival.  

AAb to CTAG1B, CTAG2 and TP53 have also gone on to a national validation 

trial of 80 candidate markers from 15 different research groups in their ability to detect 

triple negative breast cancer from matched controls. They are the only three markers that 

are validated in that study. In combination with CA125, these markers demonstrated a 

sensitivity of 35% at 95% specificity. At this cutoff level, women who test positive are 

seven times more likely to have BLBC and would benefit from mammography. 

Advanced studies to test this in longitudinal/pre-diagnostic samples are now underway. 

In chapter 4, we carried out another large scale immunoproteomic screening of 

AAbs associated with lung adenocarcinoma. Using matched smoker controls as well as 

subjects with benign lung nodules detected by CT, we discover and verified the AAb 

responses that can differentiate lung cancer from each control group. Specifically, panel I 
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(TTC14, BRAF, ACTL6B, MORC2, CTAG1B) classified lung adenocarcinoma from 

smoker controls with 30% sensitivity and 89% specificity; whereas panel II (TTC14, 

BRAF, KLF8, TLK1, KRT8) classified lung adenocarcinoma from benign nodules with 

30% sensitivity and 88% specificity. Further analysis of their mRNA levels using TCGA 

data revealed elevated  expression of TTC14, BRAF, MORC2, CTAG1B, TLK1, KRT8 

gene in lung adenocarcinoma, which suggested the contribution to their AAb responses. 

5.2  Future Directions 

The success in developing the versatile protein microarray using HaloTag 

technology enabled the potential to profile antibody responses against both 

conformational and linear epitopes. However, we haven’t applied it to perform any large 

scale biomarker discovery. There is still more work needs to be done to analyze the 

differences of AAb profiles systematically between denatured and native protein 

microarrays using a larger sample size and determine its utility in identifying AAb 

biomarkers with better clinical performance. We believe that this method can easily 

extend beyond AAbs detection in cancers to automimmune and infectious diseases. 

Moreover, covalent attachment of proteins on the matrix for denaturation can also be 

adapted to other types of protein microarrays. These findings had motivated our lab to 

switch the capturing chemistry from traditional antibody dependent to HaloTag 

technology by transferring all human genes to the HaloTag vector. 

The results in chapter 3 and 4 showed the discovery of several novel 

autoantibodies associated with cancer. A limitation of both studies is, although we 

screened for proteins encoded by ~50% of the human genome, these arrays do not display 

many proteins with post translational modifications that might also be important AAb 
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targets for distinguishing cases from controls (Blixt et al., 2010; Tomaino et al., 2011; 

Wandall et al., 2010; Whelan et al., 2009). Moreover, given that we performed this 

analysis in case-control study design, it is unclear how early these markers are present 

with respect to clinical diagnosis. According to the 5 phase biomarker development 

guideline (Pepe et al., 2001; Surinova et al., 2011). future studies evaluating these 

markers in longitudinal samples to track antibody changes may also improve marker 

performance. In addition, prospective cohorts are needed to determine the value of these 

markers for early detection, prognosis and response to treatment.  
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