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ABSTRACT 

The shortest path between two locations is important for spatial analysis, location 

modeling, and wayfinding tasks. Depending on permissible movement and availability of 

data, the shortest path is either derived from a pre-defined transportation network or 

constructed in continuous space. However, continuous space movement adds substantial 

complexity to identifying the shortest path as the influence of obstacles has to be 

considered to avoid errors and biases in a derived path. This obstacle-avoiding shortest 

path in continuous space has been referred to as Euclidean shortest path (ESP), and 

attracted the attention of many researchers. It has been proven that constructing a graph is 

an effective approach to limit infinite search options associated with continuous space, 

reducing the problem to a finite set of potential paths. To date, various methods have 

been developed for ESP derivation. However, their computational efficiency is limited 

due to fundamental limitations in graph construction. In this research, a novel algorithm 

is developed for efficient identification of a graph guaranteed to contain the ESP. This 

new approach is referred to as the convexpath algorithm, and exploits spatial knowledge 

and GIS functionality to efficiently construct a graph. The convexpath algorithm utilizes 

the notion of a convex hull to simultaneously identify relevant obstacles and construct the 

graph. Additionally, a spatial filtering technique based on intermediate shortest path is 

enhances intelligent identification of relevant obstacles. Empirical applications show that 

the convexpath algorithm is able to construct a graph and derive the ESP with 

significantly improved efficiency compared to visibility and local visibility graph 

approaches. Furthermore, to boost the performance of convexpath in big data 

environments, a parallelization approach is proposed and applied to exploit 
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computationally intensive spatial operations of convexpath. Multicore CPU 

parallelization demonstrates noticeable efficiency gain over the sequential convexpath. 

Finally, spatial representation and approximation issues associated with raster-based 

approximation of the ESP are assessed. This dissertation provides a comprehensive 

treatment of the ESP, and details an important approach for deriving an optimal ESP in 

real time. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

The shortest path between two locations provides crucial information for spatial 

analysis, route planning, and location modeling. It has been used as a surrogate 

measurement of proximity and distance in spatial analysis and location modeling, such as 

for deriving service areas and assessing behavioral movements (Klamroth 2001a, Jones et 

al. 2010). Furthermore, shortest paths are fundamental knowledge for planning a route 

for human, robots, ships, and virtual objects (Lozano-Pérez and Wesley 1979, Fagerholt 

et al. 2000, Yap et al. 2011). If a movement occurs on a preexisting transportation 

network and network data is already available, network shortest path algorithms can 

provide the shortest path quickly and reliably. However, if the availability of this data is 

limited or movement is not restricted to a transportation network, the Euclidean straight 

line path between the given locations is commonly used as a stand-in for a true shortest 

path. Due to its simplicity and availability, the Euclidean straight line path has been 

widely utilized for assessment of proximity and spatial interaction, such as accessibility 

analysis in healthcare planning (Phibbs and Luft 1995, Fone et al. 2006, Higgs 2009, 

Jones et al. 2010, Cudnik et al. 2012).  

In continuous space, however, obstacles or barriers that influence movements 

must be taken into account. Assessment that does not consider these spatial nuisances 

when deriving the shortest path are biased and often unnavigable (Carling et al. 2012). 
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Deriving the shortest path that avoids obstacles in continuous space is a substantially 

more complex problem, since continuous space implies an infinite number of options 

possible for movement. The problem of deriving an obstacle-avoiding shortest path in 

continuous space has been referred to as the Euclidean shortest path (ESP) problem, and 

substantial research effort has been devoted to its formalization and solution techniques 

(Guibas and Hershberger 1989, Hershberger and Suri 1993, Mitchell 1999). It has been 

proven that transforming continuous space to a discrete network of obstacle vertices is an 

effective approach to derive the ESP (Wangdahl et al. 1974, Lozano-Pérez and Wesley 

1979, Viegas and Hansen 1985, de Berg et al. 2008). The visibility graph is the most 

prominent method for ESP derivation and involves the construction of a graph that 

connects all feasible vertices in a given area. Since Lozano-Pérez and Wesley (1979) 

initially proposed the visibility graph as a method for collision-free robot path planning, 

many have attempted to extend the procedure or improve the computational efficiency of 

the graph derivation process (Asano 1985, Welzl 1985, Asano et al. 1986, Rohnert 1986, 

Ghosh and Mount 1991, Pocchiola and Vegter 1996). Furthermore, the local visibility 

graph (Kim et al. 2004, Zhang et al. 2005), shortest path map (Mitchell 1999), and 

Voronoi diagram (Papadopoulou and Lee 1995) approaches have been proposed to solve 

the ESP problem for spatial analysis, robotics, shipping, location modeling, and more 

(Takahashi and Schilling 1989, Fagerholt et al. 2000, Klamroth 2001b, Zhang et al. 

2005).  

Unfortunately, most existing solution approaches for the ESP problem are 

computationally inefficient. To construct a graph for the ESP derivation, they have to 

evaluate all or most vertices for all obstacles in a given region, regardless of the location 
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of origin and destination points. As a result, deriving the ESP is computationally 

prohibitive, especially for large-sized spatial problems. Although the local visibility 

graph approach tries to filter out a portion of the obstacles using proximity-based filtering 

techniques (Kim et al. 2004, Zhang et al. 2005, Gao et al. 2011), it still requires 

considerable amount of computing resources and induces the possibility of errors in the 

resulting path. Therefore, a novel approach is required that is able to intelligently process 

obstacles and vertices for efficient construction of a graph while still guaranteeing 

inclusion of the ESP.  

In big data environment, even highly efficient methods may have degraded 

performance, since ESP derivation requires repeated, computationally intensive spatial 

operations. To overcome scale limitations in practice, advanced computing techniques are 

necessary to enhance the performance of the new algorithm. Parallelization techniques 

have been utilized in spatial analysis to address performance and scale concerns (Lanthier 

et al. 2003, Zhang 2010, Anselin and Rey 2012, Rey et al. 2013). Parallelization of 

processes is now mostly performed over multicore CPUs and General Purpose Graphics 

Processing Unit (GPGPU) environments, rather than supercomputers and grid computing 

systems (Zhang 2010, Xia et al. 2011, Anselin and Rey 2012). These techniques harness 

the power of multiple cores in CPUs or GPUs in either single or several machines to 

boost the performance of a given spatial analytical method.  

Although the ESP is based on vector representation of GIS data, it is possible to 

approximate the ESP under raster representation. The least cost path approach has been 

used to estimate of the ESP in robotics and video game raster environments (Mitchell 
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1988, Yap 2002, Nash et al. 2007, Daniel et al. 2010, Yap et al. 2011). The benefits of 

raster representation for path estimation and availability of the technique in many GIS 

software packages make its use rather common. At issue, however, is whether the ESP 

approximation in raster method is computationally prohibitive and/or is limited in the 

quality of the estimated path. Therefore, assessing how to address issues and differences 

between vector-based ESP and raster-based its approximation approaches is critical. 

1.2. Research objective 

Given the issues in derivation of the ESP using existing approaches, the major 

objective of this research is to develop a novel method that efficiently computes the ESP 

by intelligently evaluating given obstacles. This new algorithm will exploit spatial 

knowledge and GIS functionality to construct a graph that includes the ESP. Intelligent 

processing of given spatial information using GIS will be a key strategy of this algorithm. 

Furthermore, there are two secondary objectives of this research: utilizing high 

performance computing techniques, more precisely parallelization approaches, to address 

performance and scale issues in big data environment; and assessment and comparison 

between direct ESP derivation and raster-based ESP approximation.  

1.3. Organization of the research  

This research is structured as follows. In Chapter 2, a new algorithm for the ESP 

derivation is proposed. The ESP problem is formalized mathematically. Existing methods 

for the ESP derivation are reviewed, and their limitations are presented and analyzed. A 

new algorithm for the ESP derivation, referred to as the convexpath algorithm, is 
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proposed and its optimality is proved. The computational efficiency of visibility graph, 

local visibility graph, and convexpath is compared with an empirical application. 

Chapter 3 relaxes a limiting assumption of the convexpath algorithm for the 

utilization of convexpath for general ESP problems. The convexity assumption of 

convexpath, which limits the relative location of nodes in the resulting graph and 

obstacles, is relaxed to extend the applicability of convexpath. Line-polygon overlay is 

utilized for construction of a subgraph that guarantees the ESP. Two wayfinding 

applications are considered to assess the efficiency of improved convexpath.  

In Chapter 4, a spatial filtering technique is developed to enhance the 

performance of the convexpath algorithm in a high density obstacle environment. 

Although convexpath efficiently produces the ESP, high-density obstacle problems are 

computationally more demanding, and this results in the degradation of algorithm 

performance. A spatial filtering technique is proposed for improving computational 

efficiency while still guaranteeing derivation of the ESP. A wayfinding application 

results in ASU campus is presented for measuring the improvement.  

Chapter 5 develops a parallelized version of the convexpath algorithm to boost the 

computational performance of convexpath in a big data environment. The convexpath 

algorithm utilizes several computationally intensive spatial operators iteratively for 

derivation of the ESP. For parallelization, these steps are restructured. Efficiency gains 

from this parallelization approach are assessed in wayfinding applications with different 

obstacle settings.  
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In Chapter 6, raster representation for ESP approximation techniques are 

reviewed and compared to vector-based ESP derivation approaches. The least cost path 

ESP approximation is widely used for route planning of robots and virtual objects. 

Although the least cost path has several benefits, issues arise regarding to computational 

efficiency and approximation quality. Assessment is conducted with a wayfinding 

application using the convexpath algorithm and the least cost path approach.  

In the last chapter, Chapter 7, the research results of this dissertation are 

summarized and conclusions follow. Also, future research directions are suggested.  
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CHAPTER 2 

EFFICIENT MEASUREMENT OF CONTINUOUS SPACE SHORTEST DISTANCE 

AROUND BARRIERS* 

 

 

As mentioned in the previous chapter, the objective of this dissertation is 

developing a novel algorithm for the efficient derivation of the ESP. This chapter 

formalizes the ESP problem mathematically, and develops a new algorithm for the ESP 

derivation, providing essential proofs. The new method, convexpath algorithm, exploits 

spatial knowledge and GIS functionality to construct a graph efficiently.  

2.1. Introduction 

Proximity and distance are perhaps cornerstone features of spatial analysis. The 

appropriate distance measure or metric is essential for best reflecting movement behavior, 

closeness and general spatial relationships. One only need examine any spatial analysis 

text to observe the significance of distance as it is central to almost all developed and 

applied methods, models or approaches (e.g. Bailey and Gatrell 1995, Fischer and Getis 

1997, Church and Murray 2009, Anselin and Rey 2010, O'Sullivan and Unwin 2010, 

Rogerson 2010, de Smith et al. 2012). 

A key issue, of course, is how to measure distance. There are several widely used 

distance measures in spatial analysis: rectilinear, Euclidean, and network distance. 

                                                           
* This chapter represents a slightly revised version of a paper published in International Journal of 

Geographical Information Science, co-authored with Dr. Alan T. Murray.  
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Euclidean distance has continued to be a favorite because it is simple, intuitive and easy 

to apply. If detailed road network characteristics are important, then network based 

distance could be considered, especially in cases where actual movements or flows occur 

on a transportation system. However, network datasets are sometimes not available in 

certain situations. In developing countries or rural areas, network data could be 

incomplete, insufficient or non-existent (Yao et al. 2012). Moreover, there could be 

limitations in purchasing or acquiring such data. When this is the case, Euclidean 

distance is widely used as a surrogate for proximity, and in many cases it has proven 

sufficient with high correlation observed between Euclidean and actual distance (Phibbs 

and Luft 1995, Fone et al. 2006, Jones et al. 2010, Carling et al. 2012, Cudnik et al. 

2012). For rural areas, especially in developing countries, Euclidean distance is often the 

only possible choice because there is no existing road network data or actual movement is 

not restricted to roads (Stock 1983, Oppong and Hodgson 1994).  

Of course, Euclidean distance is limited in many ways when used as a proxy for 

network or actual travel distance as no generic metric would be expected to be accurate 

or correct in all or even most cases. The reasons are that local nuances are likely varying 

and also obstacles that hinder directions of travel exist, such as rivers, mountains, 

coastlines, etc. as well as airports, military installations, etc. Though there may be some 

exceptions, these obstacles generally do not allow travel through them. A generic metric 

like Euclidean distance would therefore be challenged to capture or approximate travel 

movement behavior with any degree of confidence as it ignores the existence of 

obstacles/barriers (Martin et al. 2002, Jordan et al. 2004).  
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Euclidean distance is important for many aspects of spatial analysis and planning. 

However, barriers are problematic and likely bias results in many ways, such as service 

areas of certain types of public facilities (Carling et al. 2012). To overcome drawbacks of 

Euclidean distance, extensions of this metric can reflect spatial patterns more 

representative of actual travel behavior. Measuring Euclidean distance in the presence of 

obstacles has been referred to as the Euclidean shortest path (ESP) in computational 

geometry (Guibas and Hershberger 1989, Hershberger and Suri 1993, Mitchell 1999). It 

is therefore a recognized problem, with considerable attention focused on its solution. 

What is lacking to date is a formal mathematical specification of the problem. Further, 

implementation in a GIS environment provides many operational and efficiency benefits 

to a range of spatial analytical methods that must rely on metrics like Euclidean distance.  

The aim of this paper is to formalize and solve the Euclidean shortest path 

problem to support various spatial analytical methods within a GIS environment. A 

mathematical problem formulation is presented to account for the presence of barriers. A 

solution technique based on the notion of a convex hull is introduced and operationalized 

in a commercial GIS. Empirical results are presented for analysis in an urban region. The 

paper ends with discussion and concluding comments. 

2.2. Background  

As mentioned previously, proximity and distance are central to virtually all spatial 

analytical methods. Bailey and Gatrell (1995), Fotheringham et al. (2000), de Smith et al. 

(2012), O'Sullivan and Unwin (2010) and Rogerson (2010) are popular texts illustrating 

the ubiquitous nature of proximity and distance in a range of spatial analysis approaches, 
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including spatial autocorrelation, geographically weighted regression, point pattern 

analysis, geocomputation, spatial interpolation, and exploratory spatial data analysis. A 

review of Church and Murray (2009) suggests that most location models are dependent 

on proximity and distance in some way as well. For many reasons the Euclidean metric is 

a popular and oft relied upon method for deriving proximity and distance. While there are 

many application domains that could be discussed, healthcare planning is one where there 

is much interest in the use and appropriateness of Euclidean distance in the analysis of 

accessibility (Phibbs and Luft 1995, Fone et al. 2006, Haynes et al. 2006, Jones et al. 

2010, Cudnik et al. 2012). Some have advocated the use of Euclidean distance in urban 

and/or rural settings (Phibbs and Luft 1995, Jones et al. 2010), while others have 

explored its appropriateness in various contexts (Martin et al. 1998, Martin et al. 2002, 

Jordan et al. 2004, Higgs 2009, Cudnik et al. 2012).  

Unobstructed travel is often assumed in most continuous space location models. 

Obstacles/barriers therefore present a problem because travel between two locations is 

dependent upon spatial structure. This means that approaches or models that ignore 

obstacles when they do in fact exist unintentionally introduce errors and/or biases in 

results, producing incorrect objective values and solutions that likely are not optimal. For 

example, in non-uniformly distributed rural area, Euclidean distance was found to cause 

sub-optimal service areas when compared with network distance and travel time (Carling 

et al. 2012). To address this, continuous space models must better represent a study 

region, and this requires travel obstacles to be explicitly considered (Klamroth 2001a, 

Bischoff and Klamroth 2007). Katz and Cooper (1981) were among the first to undertake 

such consideration in location modeling, introducing the barrier restricted Weber 
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problem. Subsequent work has followed to solve this problem (Aneja and Parlar 1994). 

Problem extension and solution has continued as well (Larson and Sadiq 1983, Batta et 

al. 1989, Klamroth 2001b). This location modeling work highlights the significance of 

obstacles/barriers. As GIS has various important roles in location modeling (Church 

2002, Murray 2010), a GIS-based approach that exploits spatial knowledge about 

obstacles in a solution approach is very appealing. Further, it provides context for which 

shortest distance paths likely are useful in broader modeling efforts. 

Research focused on Euclidean shortest paths emerged in computational 

geometry, with a number of solution techniques proposed that address obstacles/barriers. 

The most prominent approach is the visibility graph, which connects all mutually visible 

vertices in a given area (Lozano-Pérez and Wesley 1979). Extensive effort has been 

devoted to computational efficiency issues in the construction of the visibility graph 

(Welzl 1985, Asano et al. 1986, Ghosh and Mount 1991, Pocchiola and Vegter 1996, 

Kim et al. 2004, Zhang et al. 2005, Gao et al. 2011, Li et al. 2011). Another utilized 

solution approach for the ESP is the shortest path map, which discretizes an area based on 

shortest paths from a source point (Mitchell 1989, Hershberger and Suri 1993, Mitchell 

1996, Hershberger and Suri 1999). For the case where there are complex polygon 

barriers, Voronoi diagram (Papadopoulou and Lee 1998) and funnel sequence approaches 

(Ghosh and Mount 1991) have been developed. Most of these approaches are not 

implemented in GIS environments. Further, existing approaches typically deal with the 

entire region, making the methods inefficient in various ways. Even though some 

research has examined the local visibility graph for more efficient search (Kim et al. 
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2004, Gao et al. 2011, Li et al. 2011), its efficiency and potential for integration in GIS is 

not particularly promising. 

Euclidean distance is a relatively popular measure used in location and spatial 

analysis, but its appropriateness as a surrogate for actual travel distance/time is 

questionable when one considers obstacles/barriers that inhibit certain travel routes. 

Researchers have addressed various problem nuances and solution techniques. Further, a 

range of methods has been developed to solve the ESP. However, specialized 

computational geometry techniques for the ESP have limited efficiency when 

implemented for spatial analysis in a GIS environment. This is due to a lack of explicit 

mathematical specification of the problem, but also a lack of spatial perspective. 

2.3. Problem formalization  

As discussed previously, of interest in this chapter is mathematically formulating 

and solving the Euclidean shortest path (ESP) problem in the context of spatial analysis. 

This problem involves identifying the shortest distance/pathway between two locations 

that avoids all obstacles/barriers that impede travel. If there were no obstacles between 

points A and B, then Euclidean distance represents shortest length path. The presence of 

obstacles between A and B means that direct, straight line travel is not possible. The 

shortest distance/path between the two points that avoids crossing through any obstacle 

will necessarily involve a route comprised of one or more intermediate points. The issue 

then is to determine the necessary intermediate points. This is the so called ESP. While 

described in the literature, the ESP has not been explicitly formulated mathematically. 

Consider the following notation: 
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l = index of intermediate points 

(𝑥̃𝑙, 𝑦̃𝑙) = coordinates of intermediate point l 

p = number of intermediate points 

The decisions associated with the shortest path between A and B involve finding 

the number of intermediate points, p, and their location through which the path is to be 

routed. Formally, this is: 

Minimize ∑ √(𝑥̃𝑙−1 − 𝑥̃𝑙)2 + (𝑦̃𝑙−1 − 𝑦̃𝑙)2𝑝+1
𝑙=1                                                          (1) 

where  (𝑥̃0, 𝑦̃0) = (𝑥𝐴, 𝑦𝐴), (𝑥̃𝑝+1, 𝑦̃𝑝+1) = (𝑥𝐵, 𝑦𝐵) and (𝑥𝐴, 𝑦𝐴) and (𝑥𝐵, 𝑦𝐵) are the 

coordinates of points A and B, respectively. The straight line between two consecutive 

points, l and l+1, is required to not cross any obstacle. Without doubt, this is not a trivial 

problem, and not readily solvable as presented in (1). Locating a number of points in 

continuous space while satisfying several conditions is a formidable task. One must 

locate intermediate points without knowing the exact number of points. As this is a 

continuous space problem, anywhere in the given study region is a potential location for 

intermediate points except the interior of obstacles. Further, the constraining conditions 

are challenging to impose, as all intermediate points have to be located such that 

connected line segments avoid intersecting all obstacles.  

In a GIS environment, obstacles in a study region are represented as polygons. 

The formal specification of the obstacles is as follows: 
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k = index of obstacles (entire set K) 

Ω𝑘 = {(𝑥̂𝑘1, 𝑦̂𝑘1), (𝑥̂𝑘2, 𝑦̂𝑘2), (𝑥̂𝑘3, 𝑦̂𝑘3), … (𝑥̂𝑘𝑛𝑘
, 𝑦̂𝑘𝑛𝑘

)}  

𝑛𝑘 = number of polygon vertices describing obstacle k 

For a polygon, it is implicit that two consecutive vertices are connected by a 

straight line. Without loss of generality, assume a polygon obstacle, k, is between points 

A and B. With this, we can define Φ as the set containing all obstacle vertices as well as 

the points A and B, Φ = {(𝑥, 𝑦) ∈ Ω𝑘, (𝑥𝐴, 𝑦𝐴), (𝑥𝐵, 𝑦𝐵)}.  The significance of this 

observation is that the feasible continuous space for intermediate points can be reduced. It 

has been proven that the intermediate points (𝑥̃𝑙, 𝑦̃𝑙) of the shortest path will consist of 

points in Φ, that is (𝑥̃𝑙, 𝑦̃𝑙) ∈ Φ (Viegas and Hansen 1985). The search for intermediate 

points, therefore, can be limited to Φ. Thus, the problem now not only has a finite 

number of potential locations to consider, but only includes relevant portions of the study 

region. The difficultly is accounting for line segments between members of Φ that do not 

intersect the interior of Ω𝑘 for any obstacle k. That is, 𝑖, 𝑗 ∈ Φ such that 𝑖𝑗̅ ∩ 𝑖𝑛𝑡( Ω𝑘) =

∅ for any k, where 𝑖𝑛𝑡( ) is the interior region of an obstacle and 𝑖𝑗̅  is the line segment 

connecting vertex i directly to vertex j. 

An additional consideration is the regional boundary, and that it could inhibit 

travel. In general, it is assumed that travel outside the regional boundary is prohibited. 

Let 𝑅 = {(𝑥̅1, 𝑦̅1), (𝑥̅2, 𝑦̅2), … , (𝑥̅𝑚, 𝑦̅𝑚)}  represent the boundary of the study region 

defined by m vertices. This would need to be accounted for in Φ as well. Consider the 

following additional notation: 
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A, B = point of origin/destination  

Γ  = set of impeding obstacles 

Γ𝑅= set of impeding vertices in R 

Φ = set of all impeding vertices and origin and destination points  

𝑁𝑗  = set of vertices in Φ that can be connected to vertex j by an arc segment 

i, j = index of vertices in Φ 

𝛼𝑖𝑗 = distance from vertex i to j 

𝑍𝑖𝑗 = {
1 𝑖𝑓 𝑎𝑟𝑐 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

In general, Φ = {(𝑥, 𝑦) ∈ Ω𝑘 𝑘 ∈ Γ, (𝑥, 𝑦) ∈ Γ𝑅 , (𝑥𝐴, 𝑦𝐴), (𝑥𝐵, 𝑦𝐵)}. Also, 

particularly important in this notation is the set Γ, because it consists of only the obstacles 

that impede travel between given points A and B, not the entire set of obstacles in the 

study region. Impeding obstacles are not only those that directly inhibit a straight line 

segment, but also indirectly impeding obstacles that hinder possible pathways. Moreover, 

if there is any impeding portion of the regional boundary between points A and B or 

possible pathways, this is included in  Γ𝑅. By applying a restricted search method, 

irrelevant obstacles and insignificant portions of the regional boundary do not waste 

computing effort. An important issue here is techniques for detecting direct and indirect 

impeding obstacles and relevant regional boundary vertices, Γ and Γ𝑅, that utilize spatial 

knowledge.   
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For deriving the shortest path, a graph of the vertices in Φ, 𝐺, can be constructed 

by linking each vertex to members of the set Nj. The set Nj for each vertex in Φ consists 

of vertices that can be connected without intersecting the interior of obstacles or outside 

of the regional boundary. Thus, 𝐺 is a network that represents all feasible path segments 

to travel from A to B, among which Viegas and Hansen (1985) proved the shortest 

distance will be found. As will be evident in the next section, there are many graphs 𝐺 

that are possible. We are interested in the most efficient graph 𝐺∗, where 𝐺 ⊂ 𝐺∗. Such 

an efficient graph for the problem is shown in Figure 2.1a. The regional boundary 

contains 21 vertices, and three obstacles (16 vertices describe the obstacles). The 

resulting graph contains 13 arcs connecting 12 vertices. 

With the above pre-processing, notation, parameters and decision variables, a 

formulation of the ESP can be structured based on the graph 𝐺 (or 𝐺∗), for beginning and 

ending locations A and B. This amounts to a shortest path problem in a network: 

Minimize                                                   ∑ ∑ αijZiji∈Njj                                                (2) 

Subject to:                                                ∑ ZAj = 1j∈NA
                                               (3)             

                                                                  ∑ 𝑍𝑖𝐵𝑗∈𝑁𝐵
= 1                                             (4) 

                                             ∑ 𝑍𝑖𝑘𝑖∈𝑁𝑘
− ∑ 𝑍𝑘𝑗𝑗∈𝑁𝑘

= 0   ∀𝑘, 𝑘 ≠ 𝐴, 𝐵                       (5) 

                                                                  𝑍𝑖𝑗 = {0,1} ∀𝑖, 𝑗                                           (6) 

The objective function (2) is to minimize the total length of line segments that connect 

the given points, A and B. Constraint (3) and (4) stipulate flow from a point of origin, A, 

and to a point of destination, B. Constraint (5) ensures conservation of flow for each 
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intermediate vertex except the point of origin and destination. Constraint (6) limits 

decision variables to be binary. 

 

Figure 2.1. Line segments between obstacles and regional boundary vertices:  

(a) Graph 𝐺∗; (b) Visibility graph; (c) Local visibility graph  
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2.4. Potential solution approaches  

As mentioned previously, several solution approaches for the ESP have been 

developed. Perhaps the most popular methods are visibility graph and local visibility 

graph. A fundamental concept of the visibility graph is linking mutually visible vertices 

to each other. A visibility graph is constructed by evaluating whether a line segment is 

possible between each pair of vertices in the study region as well as beginning-ending 

points (Lozano-Pérez and Wesley 1979). Of course at issue is whether a straight line (line 

segment) between two points does not intersect any obstacle and remains in the study 

region. If so, such points are considered visible to each other, and the line segment is 

included as an arc of the visibility graph. With the visibility graph of nodes and arcs, VG, 

the shortest path can be determined using a shortest path algorithm. 

An important question is how VG relates to the above described problem, and its 

associated characteristics. In terms of resulting graphs, in general 𝑉𝐺 ≈ 𝐺. One major 

difference is that VG includes all vertices of the obstacles and the region boundary. Thus, 

Φ𝑉𝐺 = {(𝑥, 𝑦) ∈ Ω𝑘 𝑘 ∈ 𝐾, (𝑥, 𝑦) ∈ 𝑅, (𝑥𝐴, 𝑦𝐴), (𝑥𝐵, 𝑦𝐵)}, assuming only one origin-

destination pair for comparison purposes. It should be noted, however, that VG typically 

includes all considered origin-destination pairs, whereas the above problem description 

has been simplified for a single origin-destination pair. The significance of the VG 

distinction is that |Φ𝑉𝐺| > |Φ|. That is, the number of vertices in the VG is notably larger 

than 𝐺∗, because 𝐺∗ only requires impeding obstacles and relevant portions of the 

boundary. While there has been attention devoted to reducing the number of edges in VG 

(Rohnert 1986, Ghosh and Mount 1991, Pocchiola and Vegter 1996), all approaches 
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effectively utilize most vertices in the study region. What is new, unique and different in 

this research is the recognition that all obstacles and the entire regional boundary need 

not be considered when evaluating a given origin-destination pair. Spatial knowledge can 

be exploited to select only relevant obstacles and portions of the regional boundary. 

The comparative difference is highlighted in Figure 2.1b. Recall that there are 37 

vertices in total. Figure 2.1 suggests that for an origin-destination pair, VG is much larger 

than 𝐺∗. This is due to the substantially larger number of identified arcs. In this case, VG 

has 226 arcs (Figure 2.1b) while 𝐺∗ has only 13 arcs (Figure 2.1a).   

Another potential solution approach for the ESP is the local visibility graph and it 

differs in noteworthy ways from the visibility graph. A graph is generated in a similar 

fashion as the visibility graph, but the local visibility graph attempts to filter obstacles 

(see Zhang et al. 2005). By utilizing several spatial queries for a given origin/destination 

pair (Zhang et al. 2005, Gao et al. 2011, Li et al. 2011), the local visibility graph tries to 

exploit proximity-based information. Once relevant/impeding obstacles are identified, a 

local visibility graph, LVG, is generated by evaluating visibility between pairs of vertices. 

A significant concern, however, is how to detect relevant/impeding obstacles. Zhang et 

al. (2005) suggest a circle based search method for spatial query that can be applied for 

the ESP. A search circle is generated centered on the midpoint of two given points; its 

diameter is the Euclidean distance between the two points. Any obstacles intersecting the 

circle are considered relevant, forming the set Γ𝐿𝑉𝐺. Thus, Γ𝐿𝑉𝐺 ⊆ 𝐾. Most of the local 

visibility graph literature does not consider issues of intersection with the regional 

boundary. However, the set Γ𝑅
𝐿𝑉𝐺 of vertices in R within the search circle can be assumed 
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in order to remain consistent with the above discussion. Thus, Φ𝐿𝑉𝐺 = {(𝑥, 𝑦) ∈ Ω𝑘 𝑘 ∈

Γ𝐿𝑉𝐺 , (𝑥, 𝑦) ∈ Γ𝑅
𝐿𝑉𝐺 , (𝑥𝐴, 𝑦𝐴), (𝑥𝐵, 𝑦𝐵)}. The local visibility graph has a benefit of reduced 

size compared to the visibility graph, because |Φ𝐿𝑉𝐺| ≤ |Φ𝑉𝐺|. However, there are 

several drawbacks to the local visibility graph. First, the local visibility graph possibly 

violates a fundamental constraint of ESP by failing to detect indirectly impeding 

obstacles. Such a case can happen if the size of the obstacle is larger than the search 

circle. Second, the reduction in graph size is not necessarily substantial. Proximity-based 

filtering methods possibly select irrelevant obstacles for Γ𝐿𝑉𝐺. The likelihood increases as 

the distance between two points increases. In extreme cases, it is possible that the search 

circle covers most of the study region, if the origin and destination are on opposing sides 

of the region. All local visibility graph methods have similar limitations in detecting 

impeding obstacles (Gao et al. 2011, Li et al. 2011). Furthermore, the local visibility 

graph is equally limited in detecting impeding regional boundary vertices. In fact, there is 

not any discussion/recognition in most local visibility graph methods about regional 

boundary issues.  

Returning to the example shown in Figure 2.1, the comparative difference for the 

LVG can be seen.  Figure 2.1c depicts the LVG in this case with 94 arcs. This is fewer 

than the 226 arcs needed in the VG (Figure 2.1b) but more than the 13 arcs for G* (Figure 

2.1a).  

While the visibility graph and the local visibility graph are popular for solving the 

ESP, limited spatial knowledge is utilized. Further, in the latter case, significant problems 

could be encountered that would produce invalid results if the LVG is relied upon. It is 
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possible to exploit spatial knowledge, and GIS offers much potential for this as well as 

operational benefits for general usage and application in spatial analysis. 

2.5. Deriving an efficient graph 

In previous sections notation was defined associated with an efficient graph, 

𝐺∗, through which the optimal ESP can be found. Figure 2.1 supports efficiency 

inferences for the example problem, as 𝐺∗ is substantially smaller in size than the VG and 

LVG. In this section, details on how to efficiently find Γ and Γ𝑅, and derive 𝐺∗ using GIS 

functionality are provided. That is, we would like the smallest and most efficient graph 

possible, 𝐺∗. The most important consideration for efficient solution of the ESP is 

detecting direct and indirect impeding obstacles in the set Γ. Obstacles that impede a 

straight line segment can be easily found. However, more complex spatial knowledge is 

required to find indirect impeding obstacles. Also important is addressing impeding 

vertices on the regional boundary. 

The convex hull is an important concept in computational geometry. It can be an 

effective way to exploit spatial knowledge for filtering obstacles and regional boundary 

vertices. Assume there is a finite point set N. A convex hull is the intersection of all 

convex sets containing N, or the smallest and unique convex polygon that contains all 

points (see de Berg et al. 2008). By definition, the length of the boundary of a convex 

hull is the minimum possible. Further, we assume here that A and B are on the convex 

hull’s boundary. 

Theorem 1: The optimal Euclidean shortest path between two points separated by 

a single contiguous obstacle will be on the convex hull boundary. 
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Proof:  Consider two points, A and B, and obstacle k that impedes straight line 

travel between A and B., as shown in Figure 2.2. Without loss of generality, the regional 

boundary is ignored as it is sufficiently distant from these spatial objects and does not 

impact travel in any way. Suppose there exists a point outside the convex hull through 

which a shorter path exists, and A and B are on the hull. If this were true, the convex hull 

would not be the minimum length possible. This would contradict the definition of a 

convex hull, so is not possible. Alternatively, suppose there exists a point inside the 

convex hull through which a shorter path exists. Such a situation would necessarily create 

a non-convex path around the obstacle. By the triangle inequality, this would increase the 

distance traveled to get from A to B compared to the shortest distance on the convex hull. 

This too is a contradiction, so any point travelled through on the Euclidean shortest path 

must be along the convex hull when A and B are on the convex hull.  

 

Figure 2.2. Convex hull for two points and an obstacle 
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The significance of Theorem 1 is that an algorithm is possible for selectively 

identifying vertices and arcs to include in a graph through which the optimal Euclidean 

shortest path may be found. However, it should be noted that here we consider cases only 

that origin and destination points are on the convex hull’s boundary. Recall that Ω𝑘 =

{(𝑥̂𝑘1, 𝑦̂𝑘1), (𝑥̂𝑘2, 𝑦̂𝑘2), … , (𝑥̂𝑘𝑛𝑘
, 𝑦̂𝑘𝑛𝑘

)} reflects the vertices of obstacle k and Φ =

{(𝑥, 𝑦) ∈ Ω𝑘, (𝑥𝐴, 𝑦𝐴), (𝑥𝐵, 𝑦𝐵)}. Viegas and Hansen (1985) proved that the optimal 

Euclidean shortest path is comprised of arcs in VG obtained from . However, it is clear 

from Theorem 1 that a much smaller graph, 𝐺∗, is possible, one that includes the optimal 

Euclidean shortest path. Again, Figure 2.1 demonstrated empirically the comparative 

reduction in graph size possible. 

As the boundary of the convex hull contains the shortest path around an obstacle, 

it can be utilized for detecting indirectly impeding obstacles to be included in Γ. Let there 

be several obstacles between points A and B, as shown in Figure 2.3a. In this case, only 

k1 and k2 impede the straight path. However, the convex hull for each direct impeding 

obstacle intersects one or more other obstacles (Figure 2.3b). If hull line segments 

intersecting other obstacles are replace with associated convex hulls, a combined set of 

hulls results (Figure 2.3c and d). This then provides an approach for detecting direct and 

indirect impeding obstacles to be included in the set Γ (and Γ𝑅).  

F
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Figure 2.3. Combined set of multiple convex hulls: (a) Detection of direct impeding 

obstacles; (b) Separate convex hulls for each direct impeding obstacle; (c) Combined set 

of convex hulls for direct impeding obstacles; (d) Combined set of convex hulls for direct 

and indirect impeding obstacles.  

 

Based on convex hulls, an efficient algorithm for solving the ESP is proposed, 

referred to here as convexpath. Convexpath derives a graph 𝐺∗ enabling the shortest 

path/distance between two points to be found by utilizing a series of the convex hulls for 

impeding obstacles/vertices. The steps of the convexpath algorithm are detailed in Figure 

2.4. Convexpath evaluates an origin-destination pair using a straight line between them. 

If there are any obstacles intersecting the straight line, they are considered as directly 

impeding obstacles, and included in set Γ. A convex hull of origin-destination points and 
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each obstacle in Γ is generated in an iterative fashion. If any arc in the convex hulls 

intersects with another obstacle, that arc is substituted by an additional convex hull. If the 

obstacle is not in Γ, it is considered indirect impeding and included in Γ. Non-crossing 

line segments from the origin and destination to the vertices of the segment convex hull 

are added. This continues until there are no more impeding obstacles. If the initial straight 

line or arcs of the convex hulls intersect with the regional boundary, a boundary induced 

obstacle results. Boundary induced obstacles are considered impeding vertices, Γ𝑅. The 

vertices in Γ and Γ𝑅 define the resulting graph 𝐺∗, and with this the shortest path/distance 

is calculated using Dijkstra’s shortest path algorithm. The entire process is depicted as 

pseudo-code in Figure 2.5, and all operations in convexpath use standard GIS functions.  

 

 

Figure 2.4. Flowchart of G∗ generation 
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Figure 2.5. Pseudo code for the convexpath algorithm 

 

Theorem 2: The optimal Euclidean shortest path between two points with 

multiple obstacles inhibiting travel is contained in graph 𝐺∗. 

Proof: Lozano-Pérez and Wesley (1979) suggested (and Viegas and Hansen 1985 

give proof) that the shortest path from A to B goes through one or more vertices of 

obstacles 𝑘 ∈ 𝐾. Thus, the search may be limited to Φ = {(𝑥, 𝑦) ∈ Ω𝑘 𝑘 ∈

𝐾, (𝑥𝐴, 𝑦𝐴), (𝑥𝐵, 𝑦𝐵)}. What remains is to prove is that no vertices or arcs on the 

Euclidean shortest path have been omitted in 𝐺∗. Suppose vertex v is on the optimal 

shortest path, but 𝑣 ∉ 𝐺∗. Given A, B and obstacle k1, from Theorem 1 there would be 

two potential shortest pathways on the convex hull for {A, B, 𝑘1} if A to obstacle k1 is not 
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impeded by another obstacle. Call the last vertex on obstacle k1 for each pathway 𝛼 and 

𝛾. Note that 𝛼, 𝛾 ∈ 𝐺∗ by convex hull algorithm. If 𝛼𝐵̅̅ ̅̅  and 𝛾𝐵̅̅̅̅  do not intersect another 

obstacle, i.e. 𝛼𝐵̅̅ ̅̅ ∩ 𝑖𝑛𝑡(𝑘′) = ∅ and 𝛾𝐵̅̅̅̅ ∩ 𝑖𝑛𝑡(𝑘′) = ∅ for 𝑘′ ∈ 𝐾, then v cannot be on the 

shortest path due to the triangular inequality as 𝛼𝑣̅̅̅̅ + 𝑣𝐵̅̅̅̅ ≥ 𝛼𝐵̅̅ ̅̅  and 𝛾𝑣̅̅ ̅ + 𝑣𝐵̅̅̅̅ ≥ 𝛾𝐵̅̅̅̅ . 

Alternatively, if 𝛼𝐵̅̅ ̅̅ ∩ 𝑖𝑛𝑡(𝑘′) ≠ ∅ or 𝛾𝐵̅̅̅̅ ∩ 𝑖𝑛𝑡(𝑘′) ≠ ∅ for another obstacle 𝑘′′, then by 

Theorem 1 the shortest distance would be on the convex hull boundary for the 

intermediate vertex, B and the obstacle (e.g., {𝛼, 𝐵, 𝑘′′} and/or {𝛾, 𝐵, 𝑘′′}). Both cases 

contradict that vertex v, 𝑣 ∈ 𝐺∗, could be on the Euclidean shortest path as the 

convexpath algorithm accounts for all possible shortest path options through the 

combined convex hulls.  

There are many significant aspects of the convexpath algorithm. First, it is finite 

in terms of the number of operations required. It will terminate after a finite number of 

iterations. Second, the resulting graph, 𝐺∗, contains the optimal Euclidean shortest path. 

Finally, the convex hull based approach is very efficient. As only some of the vertices are 

utilized for the convex hulls, the size of the 𝐺∗ is smaller than 𝐺, as 𝐺∗ ⊆ 𝐺.  

The convexpath method exploits spatial knowledge to solve the ESP in a GIS 

environment. It finds Γ and Γ𝑅 efficiently and precisely, and generates a minimal sized 

graph 𝐺∗ for use in shortest path calculation. 

2.6. Application results 

To demonstrate the operational efficiency of the convexpath algorithm, a portion 

of the Tampa, Florida region is considered. The region is part of school districting work 

involving the author in an effort to reduce bus transportation costs. The interest here is 
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finding the optimal Euclidean shortest path (ESP) between an origin and destination. Six 

convex obstacles are in the interior of the regional boundary. The shortest distance 

between an origin and destination is sought that avoids obstacles. An origin and 

destination, the regional boundary, and obstacles are depicted in Figure 2.6. The 

convexpath, visibility graph, and local visibility graph approaches are implemented using 

C# .NET and ArcObjects 10. The analysis is carried on an Intel i5 personal computer 

(2.80GHz) with 12 GB memory. 

For assessment, a number of different origins and destinations are considered.  In 

total, the analysis examines 2,853 different origin-destination instances of the ESP. The 

results for the three methods are compared in terms of computing time and graph size 

(the number of vertices and arcs).  

To illustrate differences between the three methods, the shortest path/distance for 

the problem is presented in Figure 2.6 based on the convexpath approach. In this case, the 

convexpath algorithm identified the graph, 𝐺∗, as 16 vertices and 20 arcs in size. In 

contrast, the visibility graph approach found VG with 1,010 vertices and 33,104 arcs and 

the local visibility graph approach determined LVG to be 117 vertices and 919 arcs in 

size. In percentage terms, VG is over 6,000% and LVG is over 600% larger than 𝐺∗. Such 

differences in graph size have direct implications for computation. The total computing 

time required for the convexpath algorithm was 4.03 seconds, including graph 

identification and shortest path solution. In contrast, the visibility graph approach 

requires 6,231.79 seconds and the local visibility graph approach requires 61 seconds. 

Again, in percentage terms, this translates to over 150,000% more total computing time 
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for the visibility graph approach and over 1,400% more total computing time for the local 

visibility graph approach when compared to the convexpath algorithm. 

 

Figure 2.6. Application area, graph G∗ and shortest path 

 

Similar findings were observed for the other origin-destination pairs. Statistically, 

the 2,853 different cases are summarized based on observed minimum, mean and 

maximum values. This is reported for number of vertices, number of arcs, and total 

computing time. Figure 2.7 gives these findings for each method. In terms of graph size 

and computing time, the convexpath algorithm appears to perform well in most cases. 

The only exception is that there is a minimum case (Figure 2.7a) where graph size is the  
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Figure 2.7. Application results: (a) Minimum; (b) Mean; (c) Maximum 

 

same for the convexpath and local visibility graph approaches. Otherwise, the visibility 

graph always requires a larger graph and more time to process. For example, Figure 2.7b 
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illustrates that the visibility graph always had substantially larger graphs (33,270.8 arcs 

on average) and needed 6,042.5 seconds of total computing time on average. Whereas 

total computing time is 1.8 seconds on average for the convex path approach and 739.9 

seconds for the local visibility graph approach. One final point is that the local visibility 

graph approach is unable to correctly identify the shortest distance in 19 of the 2,853 

cases. This is due to the previously noted limitations associated with the proximity search 

circle.  

2.7. Discussion and conclusions  

The comparative results highlight substantial improvements in computational 

capabilities possible using the convexpath algorithm for solving the ESP optimally. The 

reason for this can be attributed to graph size, as the convexpath exploits spatial 

knowledge for intelligently detecting direct and indirect impeding obstacles as well as 

impeding regional boundary vertices, Γ and Γ𝑅. As a result, the graph through which a 

shortest path is found is significantly smaller than is possible using the visibility graph or 

local visibility graph approaches. By exploiting appropriate spatial knowledge in a GIS 

environment, the convexpath algorithm is able to solve the ESP efficiently and 

effectively.  

It was noted in the paper that the visibility graph approach typically solves the 

ESP for a set of origins and destinations simultaneously. In the application considered 

here, it would be possible to apply the visibility graph approach to all origin-destination 

combinations (2,853 in total) at the same time. Doing so would require approximately 

10,000 seconds, suggesting that spends about 3.47 seconds per case. Taking this into 
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account and summing the convexpath solution time for each of the 2,853 instances would 

total approximately 5,000 seconds. This is still about half of the total computation time 

compared to the visibility graph approach. For the local visibility graph approach, total 

computing time is approximately 2,083,585 seconds. Not particularly comparable to 

either of the other methods, and would not be a practical solution approach for large sized 

instance of the ESP. Moreover, the local visibility graph approach may not be able to 

actually find the optimal shortest path/distance in certain situations.  

The problem of finding the shortest path between two points in the presence of 

obstacles is referred to as the Euclidean shortest path (ESP) problem. Numerous solution 

approaches have been developed for this problem. However, the ESP has not been 

formally defined to date. To address this, a mathematical formalization of the ESP as a 

spatial optimization problem was presented in this research. A new solution approach for 

the ESP was developed, named convexpath. By utilizing convex hulls, the convexpath 

algorithm exploits appropriate spatial knowledge for identifying direct and indirect 

impeding obstacles as well as impeding vertices in the region boundary. The convexpath 

algorithm constructs a minimal sized graph, and as a result is very computationally 

efficient both to identify and solve for a shortest path. The application results highlighted 

this effectiveness.  
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CHAPTER 3 

EFFICIENT WAYFINDING IN COMPLEX ENVIRONMENT:  

DERIVATION OF A CONTINUOUS SPACE SHORTEST PATH* 

 

In Chapter 2, the convexpath algorithm is developed. However, it has one 

assumption that limits its applicability to general ESP problems: the convexity 

assumption. This chapter develops extension of the convexpath algorithm that relaxes the 

convexpath assumption. To address the issue regarding to the assumption, a line-polygon 

overlay operator is used to generate a subgraph that guarantees inclusion of the ESP.  

3.1. Introduction 

In many situations, wayfinding tasks are conducted in complex environments with 

obstacles that inhibit travel. Travel movement of the blind in an urban area, routing for 

shipping and robots, and emergency evacuation from building structures can be considered 

instances of such travel, and research effort has been devoted to deriving an efficient path 

across a landscape (Lozano-Pérez and Wesley 1979, Golledge et al. 1998, Fagerholt et al. 

2000, Qin et al. 2004, Kwan and Lee 2005, Bekker and Schmid 2006, Szymanski et al. 

2006, Guven et al. 2012). 

An important wayfinding task is finding the shortest path to a destination given 

the spatial configuration of an area. If movements were restricted to the transportation 

                                                           
* This chapter represents a slightly revised version of a paper presented in 6th ACM SIGSPATIAL 

International Workshop on Computational Transportation Science, co-authored with Dr. Alan T. Murray.  
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network, the shortest path can be calculated using various network shortest path 

algorithms, but this requires a network composed of nodes and arcs. If this is not the case, 

a different solution approach is required as there are infinite number of pathways to 

consider. Euclidean straight line travel is the most widely used estimation, because of 

simplicity of calculation and no need for auxiliary data. However, Euclidean straight line 

travel generally fails to capture spatial nuisances, including obstacles such as mountains, 

rivers, coastlines, building structures and so on. To account for this, an alternative 

approach for the derivation of a valid and meaningful shortest path is required. 

Finding the shortest path that avoids obstacles over continuous space is referred to 

as the Euclidean shortest path (ESP) problem in computational geometry (Guibas and 

Hershberger 1989, Hershberger and Suri 1993, Mitchell 1999). It is a well-known 

problem, with substantial attention having been paid to its solution. Most prominent are 

the visibility graph (Lozano-Pérez and Wesley 1979, Welzl 1985, Asano et al. 1986, 

Ghosh and Mount 1991, Pocchiola and Vegter 1996), local visibility graph (Kim et al. 

2004, Zhang et al. 2005, Gao et al. 2011, Li et al. 2011), shortest path map (Mitchell 

1999), and Voronoi diagram approach (Papadopoulou and Lee 1995, Papadopoulou and 

Lee 1998). However, existing solution techniques are limited in many ways due to the 

significant computational requirements necessary.  

Hong and Murray (2013a) proposed a new method for solving the ESP based on 

GIS functionality and spatial knowledge. Their method, the so called convexpath, 

exploits spatial knowledge by utilizing the notion of a convex hull. The convexpath 

algorithm constructs a series of convex hulls for an origin and destination to find 
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impeding obstacles, and in the process better focuses attention on good the spatial 

possibilities for a potential shortest path. It has significant computational advantages over 

existing methods, making it appealing for real time travel support environments. 

However, convexity assumption potentially limits more general utilization of the 

convexpath algorithm for wayfinding tasks.  

The aim of this research is to extend the convexpath algorithm for solving the ESP 

problem relaxing previous assumption of convexity. Optimality conditions for the new 

method are established, and details regarding implementation in a commercial GIS are 

given. Application results are presented to demonstrate the effectiveness of the approach. 

The paper ends with concluding comments. 

3.2. Background  

As mentioned in the previous section, the shortest path to a destination is an 

essential element in various wayfinding tasks. Route finding in robots and shipping 

requires the Euclidean shortest path for various reasons. For robots, Lozano-Pérez and 

Wesley (1979) proposed a method to calculate a collision-free shortest path using the 

visibility graph approach. Different solution techniques have been proposed, such as the 

‘MAKLINK’ graph using midpoints of free links of buffered polygonal obstacles (Habib 

and Asama 1991, Qin et al. 2004), pheromone signals (Szymanski et al. 2006) and the 

biomimetic ‘slime mold’ strategy (Bhattacharya and Gavrilova 2007) for micro robot 

swarms. For shipping, several shortest path strategies have been suggested: utilizing the 

visibility graph or its variations (Fagerholt et al. 2000); applying Voronoi diagrams 

(Bhattacharya and Gavrilova 2007); utilizing buffers and minimum bounding rectangles 
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of the obstacles (Tsou 2010); and dividing the given area by a square grid (Chang et al. 

2003, Bekker and Schmid 2006, Zhang et al. 2011). 

Efficient wayfinding in the interior of the large buildings also requires a shortest 

path. Although the structure of buildings confines movements inside, it can be considered 

continuous space. Wayfinding strategies for movements in buildings has pursued 

different approaches compared to the ESP, such as constructing pre-defined graphs based 

on a fixed sensor network (Guven et al. 2012), center points of doors and corridors (Lee 

et al. 2010) and centerlines of corridors and major doors (Kwan and Lee 2005).  

Wayfinding for the visually impaired can be divided into indoor and outdoor 

environments. For outdoor navigation, most approaches find the shortest path based on an 

existing network (Golledge et al. 1998, Loomis et al. 2001, Loomis et al. 2005, Wilson et 

al. 2007). In indoor environment, difficulty in self-positioning arises due to the 

impenetrability of a GPS signal through building materials. Therefore, many approaches 

have focused on new self-positioning strategies, such as RFID tags (Kulyukin et al. 

2006), Wi-Fi (Riehle et al. 2008) and ultrasound location systems (Ran et al. 2004, 

Riehle et al. 2008, Kurata et al. 2011). Limited work explicitly considers obstacle-

avoiding shortest paths. 

The ESP problem has been extensively studied in computational geometry, as 

noted previously, with a number of well-developed solution approaches proposed. The 

most widely utilized method is the visibility graph. It was proposed by Lozano-Pérez and 

Wesley (1979) for a collision-free shortest path, and subsequent research has been 

followed (Welzl 1985, Asano et al. 1986, Rohnert 1986, Ghosh and Mount 1991, 
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Pocchiola and Vegter 1996). The visibility graph consists of vertices of obstacles, the 

regional boundary and the given origin/destination points, with arcs connecting mutually 

visible vertices (Lozano-Pérez and Wesley 1979, de Berg et al. 2008). The construction 

of the visibility graph is done by evaluating all vertices, including the origin and 

destination points, in the given region (de Berg et al. 2008). Only mutually visible 

vertices and their arc are included in the resulting graph. There are several sweep-based 

algorithms that can improve the complexity of graph construction. Research on reducing 

the total number of resulting arcs in the visibility graph has been pursued (Rohnert 1986, 

Ghosh and Mount 1991, Pocchiola and Vegter 1996). However, the efficiency of the 

visibility graph is inevitably limited as it still has to consider most vertices in the region, 

regardless of the location. Not all obstacles nor the entire regional boundary actually 

impede potential pathways between vertices. There is substantial room for improving 

efficiency by filtering out irrelevant obstacles and/or portions of the regional boundary. 

The challenge is how to do this efficiently and effectively.  

The local visibility graph (LVG) approach results from such a consideration. By 

filtering out irrelevant obstacles, the local visibility graph tries to reduce the number of 

vertices considered in graph construction (Zhang et al. 2005). The local visibility graph is 

built only with select impeding obstacles for given intermediate points. Therefore, an 

important issue is techniques to filter out irrelevant obstacles. Proximity-based spatial 

knowledge has been utilized for the filtering process, such as static or dynamically 

changing search circles (Zhang et al. 2005, Gao et al. 2011, Li et al. 2011) and convex hull 

search (Kim et al. 2004). Although LVG methods archive some efficiency in graph 

construction, there are still several critical drawbacks or limitations as a solution approach 
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(Hong and Murray 2013a). First, the benefit of filtering obstacles is likely not significant 

for the LVG. Proximity-based filtering methods tend to include non-impeding obstacles, 

and this tendency increases as the distance between two points is increased. Second, it is 

possible that impeding obstacles are actually omitted, if the obstacles are larger than the 

search circles. Third, there is virtually no consideration of the regional boundary in the 

local visibility graph literature. Even though search methods can be easily extended to 

account for vertices of the regional boundary, such approaches still have similar 

limitations. 

3.3. Euclidean shortest path 

The ESP problem can be considered a spatial optimization problem for finagling 

the shortest path between two points. Hong and Murray (2013a)formalized this problem 

mathematically. Consider a region with a number of obstacles, a regional boundary, and 

points A and B. The shortest path between points A and B would be: 

Minimize ∑ √(𝑥̃𝑖−1 − 𝑥̃𝑖) + (𝑦̃𝑖−1 − 𝑦̃𝑖)

𝑝+1

𝑖=1

 

where (𝑥̃𝑙 , 𝑦̃𝑙) is the coordinate of intermediate vertices of the shortest path, with 

(𝑥̃0, 𝑦̃0) = (𝑥𝐴, 𝑦𝐴), (𝑥̃𝑝+1, 𝑦̃𝑝+1) = (𝑥𝐵, 𝑦𝐵). Let K denote the set of obstacles and Φ the 

set of vertices of K as well as origin/destination points. As Viegas and Hansen (1985) 

proved, the intermediate vertices of the shortest path will only consist of vertices of the 

obstacles. Also, vertices of the regional boundary, denoted as the set R, should be 

considered as well, because the regional boundary can impede potential pathways.  
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Of course only a portion of the vertices in the sets Φ and R will comprise the 

actual shortest path between the two points. An important issue then is a method for 

finding actual impeding obstacles and the relevant portions of the regional boundary. A 

GIS-based filtering method that exploits spatial knowledge can be utilized for pre-

processing. After appropriate and necessary vertices are found, a graph, 𝐺∗, can be 

constructed, and will contain the ESP. This approach is more computationally efficient 

than other potential solution techniques, such as the visibility graph and the local 

visibility graph. 

3.4. Convexpath algorithm  

Hong and Murray (2013a) proposed a new method based on the concept of 𝐺∗ for 

the ESP problem. They utilized the notion of a convex hull for finding impeding 

obstacles and significant portions of the regional boundary for constructing a graph 𝐺∗. 

The authors classified obstacles into three groups; direct impeding obstacles (DIOs), 

blocking a straight line path between two points; indirect impeding obstacles (IIOs) that 

obstruct potential pathways around DIOs; and boundary induced obstacles (BIOs) that 

consist of portions of the regional boundary blocking direct or indirect paths. They 

proved the ESP is always in the 𝐺∗. 

The graph 𝐺∗ is constructed using the following steps. First, generate a straight 

line between two given points, then evaluate obstacles with the straight line to find DIOs 

(Figure 3.1a). Second, create a convex hull for each DIO and origin and destination 

points. If any arcs in these convex hulls intersect DIOs, replace that arc with a new 

convex hull (Figure 3.1b). Third, any new obstacle intersecting arcs is designated as IIO, 
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and replaced by a new convex hull constructed from segment endpoints and the obstacle. 

Additionally, new line segments from the origin/destination points to vertices of the new 

convex hull are constructed. Repeat the third step until there are no intersections between 

arcs and obstacles (Figure 3.1c). Finally, convert resulting arcs to a graph 𝐺∗ (Figure 

3.1d). The ESP can be easily found using any of the shortest path algorithms applied to 

𝐺∗.  

 

Figure 3.1. Steps of the convexpath 
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There are several benefits of the convexpath algorithm (Hong and Murray 2013a). 

A major benefit is its computational efficiency. By utilizing spatial knowledge, 

convexpath can find the ESP with higher efficiency than other existing solution 

approaches. Furthermore, it is based on GIS functionalities, so it can be easily integrated 

in a variety of spatial analytical methods.  

However, the convexpath has one assumption that limits general utilization: the 

convexity assumption. Both origin and destination points have to be on the boundary of 

the resulting convex hulls. Such an assumption cannot hold in many wayfinding tasks. 

Therefore, a relaxation of the convexity assumption is important and necessary for 

broadly use and application.  

3.5. Improving the convexpath algorithm  

Let us assume there are two points and a single obstacle as shown in Figure 3.2. It 

is obvious the convexity assumption is not satisfied, and the convexpath algorithm cannot 

find the shortest path for the given points. We therefore propose an extension of the 

convexpath algorithm that relaxes the convexity assumption by dividing obstacles.  

Consider point A and B and a single obstacle satisfying the convexity assumption 

as in Figure 3.3. The obstacle can be divided by a straight line between two points 

(Figure 3.3a). If a convex hull for the origin/destination point and each divided obstacle is 

carried out, then further processing is possible. After eliminating convex hull segments 

that intersect with original obstacle, connect remaining feasible pairs of the convex hull 

vertices and the origin/destination points (Figure 3.3b). The resulting graph contains a 
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convex hull for two points and the undivided obstacle. Therefore such a graph will 

contain the shortest path.  

 

 

Figure 3.2. Violate convexity assumption  

 

 

Figure 3.3. Dividing approach  
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This approach can be applied for the abovementioned situation, with an extended 

straight line for complete division of an impeding obstacle like Figure 3.3. A convex hull 

is generated for each divided obstacle and the origin/destination points, and convex hull 

arcs that intersect original obstacle are removed. Finally, connect all feasible vertices of 

remaining convex hulls to construct the resulting graph, 𝐺𝑒∗. The graph 𝐺𝑒∗ will always 

contains the ESP for two points.  

Theorem 1: The optimal Euclidean shortest path between two points blocked by a 

single polygonal obstacle will be on 𝐺𝑒∗. 

Proof: Assume the two points and a single obstacle as in Figure 3.3 violating the 

convexity assumption. A series of convex hulls can be constructed using divided obstacle 

and two points by abovementioned steps. Vertices of the convex hulls form all possible 

pathways from the origin to the destination that is impeded by each sliced obstacle. 

Therefore, the graph 𝐺𝑒∗, which contains all feasible paths between those vertices, will 

contain the shortest path between two points. Suppose the obstacle vertex k, 𝑘 ∉ 𝐺𝑒∗, is 

forming one of the intermediate points of the ESP. If vertex k is between vertex a and b, 

𝑎, 𝑏 ∈ 𝐺𝑒∗, then k cannot be on the shortest path given the triangle inequality, 𝑎𝑘𝑏̅̅ ̅̅ ̅ > 𝑎𝑏̅̅ ̅. 

Q.E.D.  

The steps for deriving Ge* for multiple obstacles are detailed in Figure 3.4. 

Evaluate the obstacles with a straight line between two points, and find DIOs. Check 

whether the convexity assumption hold. If the assumption holds, follow the steps 

described in Hong and Murray (2013a) If not, select obstacles and divide them using an 

extended straight line between two points (Figure 3.4a). Then a convex hull for each  



44 

 

 

Figure 3.4. Steps of the extension of convexpath 

divided obstacle and either origin and destination point is generated. Boundary arcs of the 

convex hulls crossing the original DIOs are removed. Vertices of resulting convex hulls 

are linked to each other if feasible (Figure 3.4b). If any arc intersects a new obstacle, 

consider the obstacle an IIO, and substitute that arc with a new convex hull. Additional 
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arcs arc created from vertices of the newly created convex hull to origin and destination 

points (Figure 3.4c). For boundary-induced obstacles, every step is identical, except arcs 

that go outside of the regional boundary are eliminated from the resulting graph. Based 

on theorem 1 and theorems in Hong and Murray (2013a), the resulting graph Ge* can be 

considered as extended version of the graph G* for the multiple obstacles. It therefore 

contains an optimal shortest path between two points.  

The improved convexpath algorithm relaxes the convexity assumption by 

dividing violating obstacles. It finds relevant obstacles and constructs a graph Ge* 

enabling the ESP problem to be efficiently solving using GIS functionalities.  

3.6. Application 

The operational efficiency of the extension of the convexpath algorithm for 

solving the ESP is examined for two wayfinding situations: a campus area and an interior 

of a building. The campus area can be considered a continuous space with obstacles 

(buildings). The buildings of the Arizona State University (ASU) Tempe Campus are 

utilized for wayfinding tasks. There are 184 buildings, but after processing to include a 3-

feet buffer around each building polygon in order to avoid collisions, the number of 

obstacles to 179. For wayfinding in a building interior, a floor of an office building is 

used where a 1-feet buffer for every obstacle is applied. This results in 44 obstacles 

including walls, partitions and tables. The regional boundary is represented as obstacles 

in both cases. For each situation, three different wayfinding tasks are considered, and all 

6 cases violate any convexity assumptions. Origins, destinations, obstacles and the 

resulting shortest paths are depicted in Figures 3.5 and 3.6. The extended convexpath 
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algorithm is compared with the visibility graph and the local visibility graph approaches. 

The three methods are implemented using C# .Net and ArcObject 10. The analysis is 

conducted on an Intel i5 personal computer with 2.80 GHz CPU and 12GB memory.  

The number of vertices, arcs and computing time are compared. For the ASU campus 

area, the convexpath method required 220, 423 and 83 vertices, and 772, 1,554 and 461 

arcs. In contrast, the visibility graph needed 283,991, 284,122 and 284,057 arcs and 7,653 

vertices. As the visibility graph always utilizes all vertices in the region, the number of 

vertices for each case is identical, and the number of arcs is almost identical too. The 

local visibility graph contained 395, 1,837 and 833 vertices and 3,019, 22,731 and 10,423 

arcs for the corresponding O/D pairs. In terms of computing time, the convexpath 

algorithm derived the shortest path in 74, 499 and 33 seconds for the three problem 

instances. The visibility graph took 1,260,001, 1,250,813, and 1,255,407 seconds, which 

is approximately 348.7 hours. The local visibility graph required 2,287, 69,531 and 

13,468 seconds, respectively. In percentage term, the visibility graph takes about 250,810 

~ 3,810,397% and the local visibility graph 3,114 ~ 40,878% more time than the 

convexpath method for the individual wayfinding tasks. In the building interior cases, the 

overall tendency is similar. The convexpath algorithm needed 221, 243 and 223 vertices 

and 1,085, 1,190 and 982 arcs for the three problem instances. The visibility used all 

vertices in the region, total 612 including the origin and destination points for each case, 

and 7,241, 7,244 and 7,248 arcs. The local visibility graph for the interior cases required 

494, 541 and 494 vertices and 3,518, 4,151 and 3,669 arcs, respectively. Again in 

percentage terms, the visibility graph is 799 ~ 1,333% less efficient than the convexpath 
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and the local visibility graph requires 488 ~ 809% more computing time than the 

convexpath algorithm. 

 

 

Figure 3.5. Wayfinding cases of ASU campus area 

 

Figure 3.6. Wayfinding cases of building interior 
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3.7. Discussion and conclusions  

The results demonstrate substantial advances in computing capability using 

extended convexpath algorithm for optimally solving the ESP problem. The significance 

of such improvement is a capability to solve real world problems in real time. The 

convexpath method exploits spatial knowledge to find the DIO and IIO efficiently, and 

constructs a graph for path derivation simultaneously. The number of vertices has only a 

slight impact on the performance of the convexpath algorithm, unlike the visibility and 

the local visibility graphs. The visibility graph must consider all obstacle vertices and the 

regional boundary. Therefore its performance is greatly affected by the number of the 

vertices. The local visibility graph must also evaluate all vertices of selected obstacles. 

Even if the local visibility graph detects less obstacles (9 obstacles in Figure 3.7a) than 

the convexpath algorithm (20 obstacles in Figure 3.7b), resulting computing time is much 

larger, as the local visibility graph considers almost 10 times more vertices. However, the 

convexpath algorithm only considers relevant vertices of DIOs, IIOs and BIOs. As most 

real world wayfinding tasks correspond to complex environment, approaches that are not 

highly efficient will not be practical.  

While the visibility graph approach is able to solve an entire set of 

origin/destination pairs once. It still takes far more computing time than the total time 

required for the convexpath algorithm. In the case of the ASU campus, the convexpath 

algorithm only requires 0.07% percent of the computing time of the visibility graph for 

the three origin-destination pairs. In the case of the building interior environment, the 

convexpath algorithm needs approximately 30% computing time of the visibility graph, 
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due to vertices in the region. The local visibility graph also requires a large amount of 

computing time compared to the convexpath algorithm. For the interior environment, it 

requires almost 2 times more effort than the visibility graph.  

 

Figure 3.7. Comparison between convexpath and LVG 

 

The ESP is an essential element for various kinds of wayfinding tasks. Substantial 

research effort has been paid to its solutions. However, existing approaches have critical 

limitations. The convexpath method has significant computational advantage over 

existing techniques, but it is possibly limited by the convexity assumption. By 

strategically dividing obstacles, the extension of the convexpath method can be applied 

for general ESP problem solution without any limitations, and still remains as effective as 

the original convexpath method. The application results clearly demonstrate the 

performance superiority of the convexpath algorithm.  
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CHAPTER 4 

SPATIAL FILTERING FOR IDENTIFYING A SHORTEST PATH AROUND 

OBSTACLES* 

 

In Chapter 2 and 3, the convexpath algorithm is developed and extended to 

general ESP problems. In high obstacle densities, however, the efficiency of the 

convexpath algorithm can be degraded due to evaluation of non-impacting obstacles to 

the ESP. This chapter develops a spatial filtering approach to eliminate such obstacles 

from evaluation and graph construction, while still preserving the optimality guarantee of 

the resulting path discussed in Chapter 2. 

4.1. Introduction 

The shortest path between two points in continuous space around obstacles is 

fundamentally important for route planning, spatial analysis, and location modeling. It 

can be used for measuring proximity and distance, for deriving service areas and for 

studying behavioral movement (Hong and Murray 2013a, 2013b). The continuous space 

shortest path that avoids obstacles has been referred as the Euclidean shortest path (ESP) 

(Guibas and Hershberger 1989, Hershberger and Suri 1993, Mitchell 1999). It is a well 

recognized problem that continues to be of interest due to its practical relevance. Several 

solution techniques have been developed to solve the ESP, including visibility graph 

(Lozano-Pérez and Wesley 1979), local visibility graph (Zhang et al. 2005), shortest path 

                                                           
* This chapter represents a slightly revised version of a paper submitted to Computational Geometry: 

Algorithm and Applications, co-authored with Dr. Alan T. Murray and Levi J. Wolf. 
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map (Mitchell 1999), and Voronoi diagram (Papadopoulou and Lee 1995) to name a few. 

Solution approaches for the ESP focus on generating a graph through which a path can be 

formed. As the ESP is a continuous space problem, there is no pre-defined network. 

However, research has demonstrated that a network may be derived that contains the 

optimal shortest path (Wangdahl et al. 1974, Viegas and Hansen 1985, Mitchell 1999, de 

Berg et al. 2008), allowing for the transformation of a continuous space problem to one 

where travel occurs on a discrete network. While an important advance, this network 

based transformation for the ESP has limited capability for real-time shortest path 

identification due to fundamental limitations in efficient graph construction. An issue is 

that current approaches must consider all or most obstacle and boundary vertices in a 

given region, regardless of the location of the origin and destination. Although substantial 

attention has been devoted to enhance efficiency and filter out unnecessary obstacles, 

real-time assessment and route planning is generally not possible with these approaches. 

To address computational limitations, Hong and Murray (2013a, 2013b) proposed 

the convexpath algorithm to efficiently solve the ESP problem. The algorithm is based on 

derived spatial knowledge and geographic information system (GIS) functionality to 

efficiently generate a graph proven to contain the optimal ESP. The convexpath 

algorithm exploits spatial properties of convex hulls around an impeding obstacle, 

suggesting vertices and arcs to be included in a discrete graph. This approach is generally 

efficient, requiring minimal computing time. An exception, however, is the case when 

obstacle density is high, as the resulting graph tends to consider all obstacles. While still 

an improvement compared to alternatives like the visibility graph, near real-time response 
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and application may be limited when the number of obstacles is relatively high in a 

region.  

A spatial filtering technique is developed in this chapter to achieve greater 

efficiency for real-time path solution across continuous space with high obstacle density. 

The derived graph size and computing requirements are dramatically reduced as a result 

of this filtering approach yet optimality conditions are maintained. This paper is 

structured as follows. An overview of the problem and literature is given. The 

convexpath algorithm and important spatial operations are described. A new solution 

approach based on spatial filtering is then detailed. This is followed by empirical 

assessment to identify an ESP using a number of routing and planning settings. Finally, 

concluding comments are provided.  

4.2. Background 

The shortest path between two points reflects important information about 

behavior and movement but it is also a measure of proximity and distance. It is heavily 

relied upon in spatial analysis and is central to most metrics, test and models (Bailey and 

Gatrell 1995, Fotheringham et al. 2000, O'Sullivan and Unwin 2010, Rogerson 2010, de 

Smith et al. 2012). In healthcare planning, as an example, the shortest path is an indicator 

of accessibility to various services (Phibbs and Luft 1995, Fone et al. 2006, Higgs 2009, 

Jones et al. 2010, Cudnik et al. 2012). The most efficient or shortest path is therefore 

relied upon as a representative pattern of movement when actual behavior is not known, 

but also may be used in a predictive or prescriptive manner. Paths of travel (and distance) 

must undoubtedly take into account geographic obstacles/barriers to movement lest they 
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be biased, inaccurate or wrong (Klamroth 2001b, Bischoff and Klamroth 2007, Carling et 

al. 2012). Research has attempted to appropriately account for obstacles in order to 

eliminate potential errors or biases in analysis (Katz and Cooper 1981, Larson and Sadiq 

1983, Batta et al. 1989, Aneja and Parlar 1994, Klamroth 2001b), but challenges remain. 

The Euclidean shortest path through complex environments is an essential part of 

navigation. (Lozano-Pérez and Wesley 1979) suggested a method to derive a collision-

free shortest path using a visibility graph. Other approaches, such as pheromone signals 

(Szymanski et al. 2006), slime mold strategy (Schmickl and Crailsheim 2007) and the 

MAKLINK approach (Habib and Asama 1991), have also been developed to support 

robotic wayfinding. Several approaches have been detailed for trans-oceanic shipping, to 

estimate arrival times based on a shortest path avoiding various obstacles impeding a 

route. Approaches to address this include the visibility graph (Fagerholt et al. 2000), 

Voronoi diagrams (Bhattacharya and Gavrilova 2007), buffers and minimum bounding 

rectangles (Tsou 2010), and tessellation of the area using a square grid (Chang et al. 

2003, Bekker and Schmid 2006, Zhang 2010).  

Research on wayfinding in the interior of buildings as an aid to the visually 

impaired takes a somewhat different approach. For building interiors, most approaches 

assume a pre-defined (existing) network (Kwan and Lee 2005, Lee et al. 2010, Guven et 

al. 2012). Wayfinding for the visually impaired in outdoor environments tends to assume 

an existing network as well (Golledge et al. 1998, Loomis et al. 2005). Unfortunately, 

self-positioning technology such as GPS is not readily available inside most buildings 
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(Ran et al. 2004), and obstacle information is not generally known beyond architectural 

design.  

Most solution methods for the ESP rely on the visibility graph. The visibility 

graph was proposed by Lozano-Pérez and Wesley (1979)and subsequent research has 

suggested alternative graph generation techniques (Asano 1985, Welzl 1985, Asano et al. 

1986, Rohnert 1986, Ghosh and Mount 1991, Pocchiola and Vegter 1996). The visibility 

graph attempts to connect vertices of obstacles, regional boundary vertices, and origin 

and destination vertices. If two vertices are mutually visible (unobstructed), the vertices 

are connected by an arc and the arc (and vertices) is included in the resulting graph. It has 

been proven that the visibility graph includes the shortest path that avoids obstacles 

between any two points in the graph (Viegas and Hansen 1985, de Berg et al. 2008). 

While several improvements have been suggested in the literature (Welzl 1985, Ghosh 

and Mount 1991, Pocchiola and Vegter 1996), the efficiency of the visibility graph 

approach is limited for practical and/or real-time usage. The reason for this is that it must 

evaluate all or most vertex pair combinations in the region (Hong and Murray 2013a). To 

make the visibility graph approach more efficient, filtering techniques have been 

proposed. The local visibility graph, as an example, utilizes proximity-based filters to 

reduce the number of obstacles evaluated (Kim et al. 2004, Zhang et al. 2005, Gao et al. 

2011, Li et al. 2011). Unfortunately, the local visibility graph approaches remain 

computationally prohibitive and may omit the optimal ESP for an origin and destination 

pair (Hong and Murray 2013a).   
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Derivation of a graph has proven to be a necessary approach to solve the ESP in 

support of continuous space movement. While much progress has been made to more 

efficiently generate a graph in various ways, real-time navigation and wayfinding remain 

an elusive goal for ESP application, and continues to be an important area of research. 

Proposed in this chapter is an important step in this direction. An approach to 

substantially enhance efficiency in graph derivation is detailed that enables only 

necessary portions of a study region to be considered based on spatial knowledge and 

GIS functionality.  

4.3. Convexpath 

As noted above, a common approach for solving the ESP is the visibility graph. 

However, it is computationally intensive, limiting its usefulness for real-time navigation 

and wayfinding as well as making it ineffective in big data environments. To address 

these limitations, Hong and Murray (2013a) proposed an algorithm, referred to as 

convexpath, to derive a graph containing the ESP. The convexpath algorithm is more 

efficient than the visibility graph because it intelligently exploits spatial knowledge and 

GIS functionality. The notion of a convex hull is utilized in graph construction, 

effectively eliminating unnecessary vertices and edges from being evaluated and included 

in the graph when they are not part of the ESP. 

Consider the following definition (de Berg et al. 2008, Hong and Murray 2013a): 

Definition (convex hull): Given a set 𝑆 in 𝑅𝑛, the convex hull of 𝑆, denoted 𝐶𝐻(𝑆), is 

the collection of all convex combinations between elements in 𝑆. 
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In two dimensions this means that the convex hull is the smallest unique polygon 

that contains a specific set of objects and it constitutes the minimum bounding perimeter. 

A property of convex hulls is that for any two points 𝑣1 and 𝑣2 that lie on the boundary, 

𝑣1, 𝑣2 ⊂ 𝐶𝐻(𝑆) and 𝑣1, 𝑣2 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑆)) = ∅ where 𝑖𝑛𝑡(. ) is the function identifying 

the interior of a set, 𝑣1𝑣2̅̅ ̅̅ ̅̅ ∈ 𝐶𝐻(𝑆), the line segment 𝑣1𝑣2̅̅ ̅̅ ̅̅  is completely contained in the 

hull and no portion of the line segment extends beyond or outside of the hull. 

A property attributable to the convex hull as used to derive the ESP is the 

following theorem. 

Theorem 1: Given 𝑣𝑜 and 𝑣𝑑, origin and destination locations respectively, with 

straight line travel impeded by object k, the ESP lies on 𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘). 

Proof: Hong and Murray (2013a) detail a proof of this theorem. However, the 

minimal perimeter property discussed above is sufficient to prove the result. Given that 

the convex hull has the minimal perimeter enclosing the vertices, origin, and destination, 

paths on its boundary dominate all other paths exterior to the hull.∎ 

Also found in Hong and Murray (2013a) is an approach to derive the ESP for the 

case of multiple obstacles based on an iterative application of convex hulls to resolve any 

case where a hull boundary segment is impeded by obstacles in the region as well as the 

supporting proof of optimality. 

Hong and Murray (2013b) detailed an extension to account for a situation where 

an origin and/or destination vertex resides in the interior of any resulting convex hull. 

Given 𝑣𝑜 , 𝑣𝑑 , and 𝑘, then this is the case of 𝑣𝑜 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘)) ≠ ∅ and/or 𝑣𝑑 ∩
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𝑖𝑛𝑡(𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘)) ≠ ∅. Vector overlay can resolve this complication. Consider the 

following definition: 

Definition (line-polygon overlay): For some polygon 𝑘 and origin and destination points 

𝑣𝑜, 𝑣𝑑, the line-polygon overlay procedure splits a polygon into two or more disjoint, 

boundary-sharing faces with 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅  such that ∪𝑗 𝑓𝑗 = 𝑘. 

Line-polygon overlay is an algorithm helpful in the derivation of the ESP. Let a 

straight line segment l with end points 𝑣𝑜 and 𝑣𝑑, the origin and destination respectively, 

be obstructed by polygon 𝑘. This means that 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅. In addition, let either 𝑣𝑜 or 

𝑣𝑑 be contained within 𝐶𝐻(𝑘). It is assumed that 𝑣𝑜 and/or 𝑣𝑑 do not both lie on the 

resulting convex hull, so for some 𝑣𝑜 , 𝑣𝑑, and 𝑘, then 𝑣𝑜 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘)) ≠ ∅ 

and/or 𝑣𝑑 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘)) ≠ ∅. The line-polygon overlay operation then divides the 

polygon 𝑘 into multiple faces 𝑓𝑗 using line segment 𝑙 such that ⋃ 𝑓𝑗𝑗 = 𝑘 with face edges 

formed by 𝑙 (or segments of 𝑙, 𝑙 ⊆ 𝑙) and edges of 𝑘 (or segments of edges defining 𝑘) 

such that the convexpath algorithm can generate feasible paths using the faces instead of 

𝑘 itself. The algorithm detailed in Hong and Murray [26] to generate the ESP then 

constructs 𝐶𝐻(𝑣𝑜 , 𝑓𝑗) and 𝐶𝐻(𝑣𝑑 , 𝑓𝑗) for each face 𝑓𝑗 (or sub-polygon), ensuring that the 

resulting graph includes both 𝑣𝑜 and 𝑣𝑑. Any edge 𝑙′ on the identified hulls that intersects 

the interior of the obstacle, 𝑙′ ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅, is not included in the resulting graph. 

Theorem 2: Given 𝑣𝑜 and 𝑣𝑑 obstructed by object 𝑘 and that 𝑣𝑜 and/or 𝑣𝑑 do not 

lie on the convex hull, 𝑣𝑜 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘)) ≠ ∅ and/or 𝑣𝑑 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘)) ≠
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∅. The line-polygon overlay operation applied to polygon 𝑘 and line segment l defined as 

𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅  enables a graph to be derived containing the ESP.  

Proof: A full proof is provided in Hong and Murray (2013b). However, consider 

the case when 𝑣𝑜 ∈ 𝑖𝑛𝑡(𝐶𝐻(𝑘)) and/or 𝑣𝑑 ∈ 𝑖𝑛𝑡(𝐶𝐻(𝑘)). Without loss of generality, let 

the line 𝑙 between 𝑣𝑜 and 𝑣𝑑 divide 𝑘 into some finite countable set of faces 𝑓𝑗. By 

Viegas and Hansen (1985) we know that some collection of edges connecting vertices 

between vertices on 𝑓𝑗 will contain the ESP. Then, by Hong and Murray (2013a) we have 

that the shortest path around 𝑓𝑗 must lie on convexpath derived graph around them. 

However, the splitting line introduces new vertices into these obstacles at the 

intersections of 𝑙 and 𝑓𝑗. Therefore, we can use the convexpath graph around 𝑓𝑗 induced 

by the 𝑙 and remove all links between vertices introduced in the splitting process. As this 

procedure satisfies the conditions presented in Hong and Murray (2013a), it is guaranteed 

to produce a graph sufficient for the ESP to be both optimal and feasible for the obstacle 

being divided. 

Hong and Murray (2013b) prove that the convexpath graph for any set of 

obstacles 𝐾, where the convex hull for some obstacles contain 𝑣𝑜 and/or 𝑣𝑑, includes the 

ESP. The reason why this technique is needed is because no convex hull between the 

obstacle and the interior vertex will contain an edge connecting the interior vertex to the 

vertices of the polygon. To handle this, the central realization of the proof is that 𝑘 can be 

exchanged for ∪ 𝑓𝑗 , and the convexpath graph of ∪ 𝑓𝑗 is then sufficient for ESP 
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optimality.1 This is because ∪ 𝑓𝑗 derived using the dividing line 𝑙 is exactly the original 

obstacle 𝑘. Feasibility and optimality conditions for this case are identical to the original 

problem because the convexpath graph is valid for all 𝑓𝑗. That is, feasibility and 

optimality conditions are preserved because the polygon-line overlay procedure keeps all 

conditions sufficient for an ESP solution intact  

Using the above theorems, the convexpath algorithm derives a graph by 

iteratively constructing convex hulls around impeding obstacles and the origin and 

destination vertices. The graph expands incrementally by replacing obstructed arcs of a 

hull with a sub-convex hull. Hong and Murray (2013a, 2013b) proved that the resulting 

graph guarantees inclusion of the ESP. Empirical results have demonstrated that the 

convexpath algorithm is up to 60 times faster than visibility graph and local visibility 

graph approaches.  

4.4 Spatial filtering  

The convexpath algorithm is highly efficient for identifying a graph and finding 

the ESP compared to existing alternatives, particularly the visibility and local visibility 

graph approaches. However, performance tends to degrade as obstacle density increases 

because the graph expands in a way that ultimately includes obstacles that have no impact 

on ESP travel. Figure 4.1 illustrates this point; the graph generated using convexpath 

systematically expands to include all obstacles.  

 

                                                           
1 Post-processing is necessary to remove arcs that intersect the interior of obstacle k. 
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In Figure 4.1a, the graph that results from convex hulls around obstacles 𝑘1 and 

𝑘2 includes an arc that intersects obstacle 𝑘3. This requires more iterations of the 

convexpath algorithm to resolve infeasible arcs. Thus, the next iteration shown in Figure 

4.1b eliminates the intersecting arc with obstacle 𝑘3, replacing it with corresponding sub-

convex hulls, but in doing so introduces one or more arcs in the graph that are obstructed 

by obstacle 𝑘4. Figure 4.1c shows resolution of infeasible arcs in the graph with obstacle 

𝑘4, but new arcs are introduced that intersect with obstacles 𝑘5, 𝑘6 and 𝑘7. These are 

resolved in Figure 4.1d, identifying the graph that avoids all obstacles and includes the 

optimal ESP. While this process is theoretically correct and fundamentally sound, 

resolving arcs around obstacles 𝑘3, 𝑘4, 𝑘5, 𝑘6 and 𝑘7 has no actual impact on the ESP for 

the given origin and destination in this case. This suggests potential for improving 

convexpath efficiency if obstacles can be eliminated from consideration under certain 

conditions without impacting the validity of the resulting graph and optimality properties 

with respect to the ESP. 

Observation 1: A feasible path 𝑃̂ between 𝑣𝑜 and 𝑣𝑑 around obstacles 𝐾 satisfies 

the condition 𝑃̂ ∩ 𝑖𝑛𝑡(𝐾) = ∅. 

Observation 2: The optimal Euclidean shortest path 𝑃∗ is that path for which 

|𝑃∗| ≤ |𝑃̂| for all other feasible paths 𝑃̂ where |. | is the operator defining the length of 

the path. 
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Figure 4.1. Iterative convexpath graph construction process 

 

Thus, a path is the ESP if and only if Observations 1 and 2 are satisfied. Note that 

nothing in these sufficient conditions for solving the ESP suggests that all obstacles 

define/comprise the graph through which the optimal path will traverse. Rather, it is only 

necessary to implicitly or explicitly consider all paths and associated obstacles so long as 

these two conditions are satisfied at termination. The challenge therefore is developing an 
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approach that can filter out obstacles when they have no impact on the ESP, reflecting 

their implicit consideration. Interestingly, this is sort of the idea behind the local visibility 

graph approaches, like Zhang et al. (2005), Gao et al. (2011), and Li et al. (2011) who 

proposed proximity-based filtering methods to reduce obstacles in graph construction. 

While these approaches improve computational performance compared to visibility 

graph, they may exclude the ESP and are less efficient than convexpath (see Hong and 

Murray 2013a). To seek out and exploit efficiencies through spatial filtering, we detail an 

approach that enhances convexpath, maintaining its theoretical properties and optimality 

conditions. This new approach is referred to as convexpath-sf (convexpath-spatial 

filtering). 

The convexpath algorithm generates a graph of edges and vertices, 𝐺, through 

which the optimal ESP can be found. 𝐺 is obtained through an iterative process where an 

initial graph is found then expanded and/or modified strategically in subsequent 

iterations. Expansion and modification involves adding vertices, adding edges and 

removing edges. At any iteration 𝑡, graph 𝐺𝑡 is augmented, continuing the process until 

no arc intersects any obstacles (as illustrated in Figure 4.1). The initial graph, 𝐺0, consists 

of the origin and destination connected by the straight-line segment arc. Subsequent 

iterations involve replacing arcs that intersect obstacles with their corresponding sub-

convex hulls. By construction, 𝐺𝑡 is always a connected graph with one or more paths 

from 𝑣𝑜 to 𝑣𝑑, but some arcs may be infeasible if they intersect the interior of an obstacle. 
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The insight gained from the final graph in Figure 4.1d is that computational effort 

is being devoted to graph expansion/modification for arcs and obstacles that are actually 

irrelevant to the optimal ESP. For example, obstacle 𝑘7 does not impact or contribute to 

the ESP for travel between the given origin and destination. However, convex hulls were 

derived and arcs added/replaced to deal with this obstacle (see Figures 4.1a, 4.1b and 

4.1c). It may therefore be possible to filter out or eliminate obstacles in such cases. To 

develop a valid and efficient spatial filter, consider how convex hulls around obstacles 

help to spatially define potential shortest paths.  

Lemma 1: Given the convexpath graph 𝐺 for origin and destination points 𝑣𝑜 and 

𝑣𝑑, a set of identified obstacles 𝛹, and the set of all obstacles 𝐾 such that 𝛹 ⊆ 𝐾, there 

exists a shortest path 𝑃∗ ∈ 𝐺 that dominates all other possible paths around obstacles in 

the set 𝛹, i.e. a path exists in 𝐺 that satisfies Observations 1 and 2.  

Proof: The proof follows from Hong and Murray (2013a). If 𝐺 contains the 

shortest feasible path between 𝑣𝑜 and 𝑣𝑑, then the path discovered must only consider 

obstacles within 𝑘 ∈ 𝛹. Assume that there exists some shorter path 𝑃′ including obstacles 

𝑘 ∉ 𝛹 that is shorter than 𝑃∗. Consider the graph 𝐺 as composed of edges fully contained 

within 𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝛹) and edges forming the boundary of  𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝛹) itself. By 

Theorem 1, either some fully contained feasible path exists or a boundary path is the 

shortest feasible path. This implies no shorter path between 𝑣𝑜 and 𝑣𝑑 can exist outside 

𝐺, so 𝑃′ cannot exist and the assumption is contradicted. Thus, there must exist a path in 

𝐺 around obstacles in 𝑘 ∈ 𝛹 that satisfies Observations 1 and 2.
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With Lemma 1, it is not necessary to explicitly evaluate all obstacles as long as a 

feasible path has been identified. This establishes a spatial bound on the search space. 

Considering the boundary paths of 𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝛹) and the paths contained within 

𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝛹) in the convexpath graph 𝐺, either an interior path is feasible and shortest 

or a boundary path is feasible and shortest. If the interior path length is large, then 𝛹 can 

be thought of as one large composite obstacle and the shortest path is on the boundary of 

𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝛹). This means that the search space can be narrowed considerably, as either 

an interior path or a boundary path of 𝐺 will constitute a lower bound on all possible 

paths. 

Let us now consider the construction of a convexpath graph over all iterations. 

Given a graph 𝐺𝑡 at iteration t, let 𝛿𝑡
∗ be the current shortest path in the convexpath graph 

connecting the origin to the destination that does not intersect any currently identified 

obstacle 𝑘 ∈ 𝛹𝑡. Thus, 𝛿𝑡
∗ is a valid shortest travel route around the identified obstacles, 

and is a lower bound on the optimal ESP as well. This information is helpful for graph 

construction in subsequent iterations and offers potential as a spatial filter because an 

obstructed arc can be assessed in terms of its potential to contribute to the optimal ESP. 

Specifically, assume for iteration t that graph 𝐺𝑡 has a valid path 𝛿𝑡
∗ between 𝑣𝑜and 𝑣𝑑 

around the current set of obstacles 𝛹𝑡, where Ψ𝑡 ⊆ 𝐾. If 𝐺𝑡 includes an edge 𝑙 that 

intersects the interior of an obstacle 𝑘 such that 𝑘 ∉ 𝛹𝑡 then 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅. 

Accordingly, based on the convexpath algorithm, this edge must be replaced by a 

corresponding sub-convex hull, 𝐶𝐻(𝑣1, 𝑣2, 𝑘) where 𝑙 is defined as 𝑣1𝑣2̅̅ ̅̅ ̅̅ . However, if the 

edge 𝑙 is not part of 𝛿𝑡
∗, then, by definition, any path from the origin to the destination 
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that includes 𝑙 is longer than |𝛿𝑡
∗| and there is neither a reason to include edge 𝑙 nor a 

need to derive its corresponding sub-convex hull. Thus, a spatial filtering approach can 

be devised based on this insight. This holds for any iteration t.  

Theorem 3: Given 𝐺𝑡 and 𝐺𝑡+1 for origin 𝑣𝑜 and destination 𝑣𝑑, the length of the 

current shortest path 𝛿𝑡
∗ will not decrease as t increases. That is, |𝛿𝑡+1

∗ | ≥ |𝛿𝑡
∗|. 

Proof: For some iteration 𝑡, 𝐺𝑡 contains edges around identified obstacles 𝛹𝑡 such 

that 𝛹𝑡 ⊆ 𝐾. 𝛿𝑡
∗ is feasible for 𝛹𝑡. Assume 𝛿𝑡

∗ is still infeasible with respect to 𝑘 ∈ 𝐾, 

which means that 𝛿𝑡
∗ ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅  ∀𝑘. The next iteration, 𝑡 + 1, infeasible edge 𝑙 ∈ 𝛿𝑡

∗ 

(where 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅) is replaced with the boundary of 𝐶𝐻(𝑙, 𝑘)  and 𝑘 is added to 

𝛹𝑡+1 = 𝛹𝑡 ∪ 𝑘. Next, the algorithm constructs 𝐺𝑡+1 avoiding obstacles in 𝛹𝑡+1. There 

must then be some new shortest path 𝛿𝑡+1
∗  in 𝐺𝑡+1 that dominates all other obstacle 

avoiding paths by Lemma 1 and Hong and Murray (2013a). For each infeasible edge in 

𝛿𝑡
∗, the new feasible paths in 𝐺𝑡+1 cannot be shorter than their corresponding infeasible 

edges in 𝐺𝑡. This implies that the shortest path in the next iteration is some path in 𝐺𝑡+1 

and is at least as long as the current shortest path in 𝐺𝑡. That is, the length of the shortest 

path does not decrease as 𝑡 increases because infeasible arcs are replaced by their 

corresponding sub-convex hulls. ∎  

Due to this non-decreasing property, the shortest paths provide a spatial filter to 

identify obstacles for evaluation that is sufficient for optimality. The non-decreasing 

length of shortest paths in each iteration means that shortest paths keep being impeded by 

at least one obstacle until they become feasible. As the shortest paths are lower bounds 

for each iteration, it is computationally efficient to evaluate only obstacles that impede 
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shortest paths compared to evaluating all obstacles that impede any arc of the graph. This 

shortest path spatial filter is utilized to select only the obstacles that impede the shortest 

path at each iteration. Therefore, the total number of considered obstacles can be 

significantly reduced.  

With optimality guaranteed at each step of the process when the shortest path 

spatial filter is used, this provides an early termination criterion that guarantees both 

feasibility and optimality of the final ESP. The algorithm for deriving a graph containing 

the optimal ESP using spatial filtering follows. 

Algorithm: convexpath-sf 

1) Initialization. Given the region and set of all obstacles 𝑘 ∈ 𝐾. Set of discovered o

bstacles 𝛹 = ∅ and graph 𝐺 = ∅.  

2) Generate 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ , and add the arc and end points to 𝐺.  

3) Derive the shortest path 𝛿∗ from 𝑣𝑜 to 𝑣𝑑 in 𝐺. If arc 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅ for any 𝑙 ∈

𝛿∗, 𝑘 ∈ 𝐾, then add k to 𝛹. If nothing is added, terminate process. Optimal ESP f

ound.  

4) For all 𝑙 ∈ 𝐺 and 𝑘 ∈ 𝛹  such that 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅, replace 𝑙 in 𝐺 with 𝐶𝐻(𝑙, 𝑘). If

 any end point of 𝑙 (𝑙 = 𝑣1𝑣2̅̅ ̅̅ ̅̅ ) not on hull boundary, then split 𝑘 into faces 𝑓𝑗 usin

g line-polygon overlay and generate hulls for each face as detailed previously.  

5) Go to step 3.  

While implied above, a formal proof of convexpath-sf optimality is now given. 
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 Theorem 4: The convexpath-sf algorithm terminates at an optimum feasible 

shortest path.  

 Proof: Let the shortest path at the last iteration be 𝛿𝑡
∗ in graph 𝐺𝑡 identified by 

convexpath-sf. As discussed above, 𝛿𝑡
∗ is both feasible and the shortest path in graph 𝐺𝑡 

at iteration 𝑡. Then, assume that 𝐺𝑡 does not contain the optimal ESP, meaning that some 

feasible path 𝛿′ exists such that 𝛿′ ∉ 𝐺𝑡, |𝛿′| ≤ |𝛿𝑡
∗|, and 𝛿′ ∩ 𝑖𝑛𝑡(𝐾) = ∅ by 

Observations 1 and 2. In this case, if |𝛿𝑡
∗| = |𝛿′|, then 𝛿𝑡

∗ is equivalent in length to one of 

many possible optimal paths. By Theorem 3, this must be a lower bound on feasible path 

lengths, so convexpath-sf must have terminated at one of many potential ESPs and the 

assumption that 𝛿𝑡
∗ is not an ESP is untenable. If |𝛿′| < |𝛿𝑡

∗|, then 𝛿′ dominates 𝛿𝑡
∗. By 

Lemma 1, 𝛿′ must dominate all other feasible paths that exist in 𝐺𝑡 for 𝛹𝑡. However, 𝛿𝑡
∗ 

dominates all other feasible paths that exist in 𝐺𝑡 for 𝛹𝑡 ⊆ 𝐾. Thus, 𝛿′ cannot exist 

because, for any set of obstacles, 𝛿𝑡
∗ is the lower bound on all potential ESP lengths and 

must be shortest. 

 Put differently, the convexpath-sf algorithm finds a path that is both feasible and 

optimal by satisfying Observation 2 in each iteration and terminates as soon as 

Observation 1 is satisfied. However, it should be noted that 𝛿𝑡
∗ does not satisfy 

Observation 2 for all obstacles in 𝐾, but instead satisfies it for all paths around 𝛹𝑡, the 

obstacles identified up to that iteration. Each iteration’s shortest path, 𝛿𝑡
∗, provides a 

lower bound on the ESP, meaning Observation 2 is satisfied for 𝛹𝑡. But, Observation 1 is 

not satisfied until the last iteration, when 𝛿𝑡
∗ becomes feasible for all obstacles 𝑘 ∈ 𝐾. 

Because Observation 2 is always satisfied for path candidate 𝛿𝑡
∗ over obstacles 𝛹𝑡 and 
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|𝛿𝑡
∗| is non-decreasing according to Theorem 3, convexpath-sf satisfies both Observation 

1 and Observation 2 for all obstacles 𝑘 ∈ 𝐾 at termination. 

 Convexpath-sf can be contrasted with convexpath, illustrated in Figure 4.1. As 

shown in Figure 4.2, the graph constructed by convexpath-sf is significantly smaller than 

the unfiltered convexpath graph (Figure 4.1d). While the convexpath algorithm produces 

a graph with 124 edges, the convexpath-sf algorithm derives a graph with 18 edges, 

substantially smaller in size. As will be detailed below, this enhanced efficiency 

translates directly into faster computational processing. In this case, graph construction 

using convexpath-sf is over seven time faster. This substantial improvement is possible 

because the shortest path spatial filter explicitly considers only two obstacles, whereas 

convexpath evaluates all seven obstacles in ESP derivation.  

 

Figure 4.2. Resulting graph and ESP using the convexpath-sf algorithm 

 

As suggested, the efficiency of the convexpath algorithm is significantly 

improved by the spatial filtering method developed in this chapter. By reducing the 
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number of obstacles evaluated, the resulting graph and required computing time are 

notably smaller than convexpath. Furthermore, the shortest path spatial filter does not 

require significant additional computing time, as it uses existing spatial information in 

intermediate graphs.  

4.5. Application results 

To evaluate the efficiency of the convexpath-sf algorithm to support wayfinding, 

three different planning contexts are evaluated. To assess impacts of increased obstacles 

on performance, each planning context has a different number of obstacles. For the low 

obstacle density context, travel across Tampa, Florida considering six obstacles is 

utilized. The study area was also used in Hong and Murray (2013a). The medium-density 

case represents travel through a building interior, and was examined in Hong and Murray 

(2013b). This has 50 obstacles, including walls and tables. For the high density obstacle 

context, a portion of the Arizona State University campus is considered. There are 178 

buildings that impede travel. The three planning problems are shown in Figure 4.3, with 

an illustrative origin-destination pair given. To avoid any potential collision with an 

obstacle, a small buffer is applied to each obstacle, one foot for the medium and three feet 

for high density contexts. A total of 30 origin-destination pairs are considered for each 

travel context, with all cases encountering at least one impeding obstacle. 

The convexpath and convexpath-sf algorithms were implemented using Python. 

Derivation of the ESP for the origin-destination pairs in the various planning contexts on 

an Intel i5 personal computer (2.80 GHz) with 12 GB of RAM. In all cases the optimal 

ESP is found. 
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Comparative results for the two algorithms are summarized in Table 4.1, and 

average relative performance difference in percentage term is shown in Figure 4.4. The 

average number of obstacles, average number of arcs generated and average computing 

time is reported in Table 4.1 for the 30 different origin-destination paths to be found in 

the different obstacle density contexts. Table 4.1 indicates that convexpath evaluates 2.23 

obstacles, on average, in the low-density case in deriving the graph needed to find the 

ESP. This increases to 38.03 and 74.67 in the medium and high cases for convexpath. In 

contrast, convexpath-sf explicitly evaluates only 1.47, 4.80 and 9.63 obstacles, on 

average, for the three different contexts. The significance of this, of course, is that a 

smaller graph results requiring less computing time. In the high density case, as an 

example, 5104.13 arcs on average are included in derived graphs requiring some 208.88 

seconds using convexpath, whereas only 250.37 arcs on average are included in the graph 

requiring only 1.99 seconds using the spatial filtering algorithm (convexpath-sf). 

Comparative differences are shown in percentage terms in Figure 4.4 indicating that 

convexpath-sf explicitly assesses only 13.12% of the obstacles, generating 5.14% of the 

arcs needing 1% of the computing time. The performance trend is quite obvious in that as 

the number of obstacles increases, larger graphs and more computing time are required of 

the convexpath algorithm. The spatial filtering approach, however, is able to mitigate 

graph size growth and associated computational effort. This reduction is greatest in the 

higher density context, as suggested in Figure 4.4. Convexpath-sf requires 53.42% of the 

computing time in the low-density context, 10.25% in the medium-density context, and 

only 1% in the high density context.  
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Figure 4.3. Travel path planning contexts, each showing one origin-destination pair: 

(a) Low obstacle density; (b) Medium obstacle density; (c) High obstacle density 

Table 4.1. Average performance comparison of 30 origin-destination pairs  

using the convexpath and convexpath-sf algorithms 

 Convexpath Convexpath-sf 

Density Obstacles Arcs Time (sec) Obstacles Arcs Time (sec) 

Low 2.23 11.93 0.02 1.47 7.63 0.01 

Medium 38.03 2366.27 27.60 4.80 153.53 0.57 

High 74.67 5104.13 208.88 9.63 250.37 1.99 
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Figure 4.4. Average relative performance comparison of 30 origin-destination pairs in the 

different obstacle density contexts using the convexpath and convexpath-sf algorithms 

4.6. Discussion and conclusions  

The application results show that the convexpath-sf algorithm enhances 

capabilities for deriving the ESP in real time, especially in cases where a high density of 

obstacles is encountered. Table 4.1 and Figure 4.4 clearly show that the effectiveness of 

the filtering technique increases with increasing obstacle density. Most certainly, the 

convexpath-sf algorithm can derive an ESP in real time, even in high obstacle density 

cases. For the high density obstacle context, convexpath-sf derives the ESP (graph and 

solution) in less than 2 seconds for 20 of the 30 cases. For the medium obstacle density 

context, 21 of the origin-destination pairs took less than 0.6 seconds using the 

convexpath-sf algorithm.  
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Another noteworthy point is that convexpath-sf is less influenced by oddly-shaped 

obstacles. For example, the medium density obstacle set shown in Figure 4.3b has several 

long and curved obstacles. This can lead to additional computing due to the inclusion of 

more obstacles that must be explicitly evaluated. However, convexpath-sf is insensitive 

to obstacle shape.  

Another unique aspect of the convexpath-sf algorithm is its use of an identified 

shortest path in the resulting graph, regardless of feasibility, as a bound for the ESP. One 

might wonder why this approach focuses on deriving infeasible paths, which is unlike 

many other approaches. For example, operations research approaches commonly focus on 

bounding the problem by resolving the gap between a current feasible solution and the 

best possible infeasible solution. Branch and bound is such an approach, restricting the 

size of the problem search space by implicit consideration of unlikely branches. Through 

well-ordered evaluation, entire branches of a problem search tree can sometimes be 

pruned. At optimality, the upper and lower bound must converge. In contrast, the 

convexpath-sf algorithm is a different tact, focusing on the most promising path rather 

than worrying about finding an initial feasible solution.  

The Euclidean shortest path is essential for spatial analysis and wayfinding. 

Numerous solution techniques have been developed for the ESP, but are not capable of 

supporting real-time path derivation. Although the convexpath algorithm is a major 

advance, a high number of obstacles can limit its performance. To address this, a spatial 

filtering method was developed to improve computational processing. By utilizing 

shortest paths as a bounding filter, the convexpath-sf algorithm derives the ESP very 
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efficiently. Empirical results clearly support capabilities for real-time derivation of the 

ESP even when there is a high density of obstacles.  
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CHAPTER 5 

HIGH PERFORMANCE COMPUTING TO DERIVE  

AN OBSTACLE-AVOIDING SHORTEST PATH* 

 

In the previous chapters, the convexpath algorithm is developed and enhanced to 

provide solution for general ESP problem with improved efficiency. Still, the 

performance of convexpath can be limited in big data environment. This chapter develops 

a parallelized version of the convexpath algorithm to address performance and scale 

issues. Essential computationally intensive spatial operators are restructured to allow for 

parallelization.  

5.1. Introduction  

The shortest path in continuous space around obstacles provides essential 

information for spatial analysis, location modeling and wayfinding tasks. A simple case 

involving one obstacle is shown in Figure 1 where one is seeking the shortest possible 

path that avoids the obstacle. This path has been referred to as the Euclidean shortest path 

(ESP), and has attracted the attention of many researchers. Techniques such as visibility 

graph (Lozano-Pérez and Wesley 1979), local visibility graph (Zhang et al. 2005), 

shortest path map (Mitchell 1999) and Voronoi diagrams (Papadopoulou and Lee 1998) 

have been applied to solve the ESP problem to support robotics, shipping, location 

modeling, and more (Lozano-Pérez and Wesley 1979, Fagerholt et al. 2000, Klamroth 

                                                           
* This chapter represents a slightly revised version of paper submitted to International Journal of 

Geographic Information Science, co-authored with Dr. Alan T. Murray and Dr. Sergio J. Rey.  
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2001a). Methods to date for deriving the ESP utilize a graph in order to reduce 

combinatorial search space from infinite routing options to a finite, discretized set of line 

segments (Hong et al. 2014). However, the efficiency of existing methods is considerably 

limited by the need to evaluate most or all obstacle and region boundary vertices within a 

given area (Hong and Murray 2013a).  

To address these limitations, new methods for deriving the ESP more efficiently 

have been developed by Hong and Murray (2013a, 2013b) and Hong et al. (2014). These 

approaches exploit spatial knowledge and geographic information system (GIS) 

functionality to efficiently generate a graph that guarantees inclusion of the ESP. By 

utilizing the notion of a convex hull, together with intersection, vector overlay and spatial 

filtering, the approaches of Hong and Murray (2013a, 2013b) and Hong et al. (2014) 

explicitly consider only relevant obstacles impeding a given origin-destination pair, 

thereby enabling efficient construction of a smaller-sized graph. In big data 

environments, however, even such highly efficient methods can require considerable 

computing resources. This is particularly true for solving the ESP as computationally 

intensive spatial operators need to be repeatedly utilized. As a result, large data 

applications supporting navigation and wayfinding remain a challenge to solve. 

Advanced computing techniques offer potential to enhance the performance of new 

algorithms for deriving an ESP, possibly overcoming scale limitations encountered in 

practice.   
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Figure 5.1. Three cases of intersection: (a) no intersection  

(b) interior intersection (c) boundary intersection 

 

Parallelization techniques have proven useful for addressing various performance 

and scale issues in spatial analysis (Lanthier et al. 2003, Zhang 2010, Anselin and Rey 

2012, Rey et al. 2013). Computing architecture for parallelization has evolved from being 
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a feature of supercomputers and grid computation to relying on multicore CPUs, General 

Purpose Graphics Processing Unit (GPGPU) and virtual computing resources (Zhang 

2010, Xia et al. 2011, Anselin and Rey 2012). These methods of parallelization exploit 

the computing power of multiple CPU/GPU cores in either single or multiple machines to 

boost performance.  

In this chapter, a parallel computing technique is developed to enhance the 

performance of the convexpath algorithm of Hong et al. (2014) to solve the ESP. The 

parallel algorithm proves to significantly improve performance when compared to 

sequential implementation. The next section details the ESP and summarizes algorithms 

for solving it. A new parallelized solution approach is then introduced. Application 

results are presented, followed by discussion and concluding comments.   

5.2. Background 

The ability to derive a shortest path is fundamental for answering questions about 

movements, proximity and distance, and it is also essential for spatial analysis (see Bailey 

and Gatrell 1995, Fotheringham et al. 2000, O'Sullivan and Unwin 2010, Rogerson 2010, 

de Smith et al. 2012). Doing this accurately means that obstacles/barriers must be taken 

into account. Lozano-Pérez and Wesley (1979) presented a solution approach to derive a 

collision-free shortest path, and other research efforts have followed for robot path 

planning based on the ESP (Lozano-Perez 1987, Habib and Asama 1991, Szymanski et 

al. 2006, Schmickl and Crailsheim 2007). Similarly for trans-oceanic shipping, the ESP is 

utilized when considering obstacles like reefs, shoals, rocks, islands and other restrictions 
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that impede vessel travel (Fagerholt et al. 2000, Chang et al. 2003, Bekker and Schmid 

2006, Bhattacharya and Gavrilova 2007, Zhang et al. 2011). 

While attempts have been made to address obstacles in spatial analysis relying on 

a shortest path (Katz and Cooper 1981, Larson and Sadiq 1983, Batta et al. 1989, Aneja 

and Parlar 1994, Klamroth 2001a), major practical limitations exist. As a result, efficient 

problem solution remains a research challenge. Many of the widely-applied solution 

approaches depend on the visibility graph method. The visibility graph was suggested by 

Lozano-Pérez and Wesley (1979) and alternative graph generation techniques have been 

developed (Asano 1985, Welzl 1985, Asano et al. 1986, Rohnert 1986, Ghosh and Mount 

1991, Pocchiola and Vegter 1996). Although the visibility graph is guaranteed to contain 

the optimal ESP, practical application is limited. The reason for this is that all vertices in 

a given area, including the origin, destination and points defining obstacle boundaries, 

must be considered and included in the resulting graph. Research has focused on reducing 

the size of the derived graph, such as local visibility graph approaches using spatial 

filtering techniques (Kim et al. 2004, Zhang et al. 2005, Gao et al. 2011, Li et al. 2011). 

However, local visibility graphs remain computationally intensive to identify. Further, 

they may produce a graph that omits the optimal shortest path (Hong and Murray 2013a).  

Urban environments with many obstacles make derivation of an ESP a 

computationally intensive task, even when using a highly efficient method. Spatial 

analysis requiring substantial computation must contend with big data, requiring the use 

of parallelization approaches (Lanthier et al. 2003, Zhang 2010, Anselin and Rey 2012, 

Rey et al. 2013). Computing paradigms for parallelization have shifted from focusing on 
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supercomputers and grid computing to using multicore CPU and many-core GPGPU 

architectures on single or multiple machines (Zhang 2010, Xia et al. 2011, Rey et al. 

2013). Such parallelization boosts performance by undertaking many tasks concurrently. 

Strategies for parallelization can be categorized as task and data oriented (Barry 2006, 

Gong et al. 2013). Task parallelization decomposes processes into individual functions 

that are then conducted both independently and simultaneously. In contrast, data 

parallelization uses identical functions but separates data into multiple computing 

threads.  

Multicore CPU parallelization techniques utilize the power of multiple cores in a 

single CPU (Rey et al. 2013). Multicore CPU architecture has emerged to overcome 

several fundamental limitations of single core CPUs, utilizing a small number of 

coarsely-grained threads with shared memory (Zhang 2010, Gong et al. 2013). Multicore 

CPU parallelization has been used for spatial analysis, including agent-based simulation 

(Gong et al. 2013), LiDAR point cloud processing (Guan and Wu 2010), and thematic 

map classification (Rey et al. 2013).   

GPGPU architecture exploits a GPU’s numerical processing capabilities and 

applies them to general purpose problems, even though GPU architecture is intended to 

support 2D/3D visualization (Zhang 2010). Nvidia’s CUDA (Compute Unified Device 

Architecture) and AMD’s OpenCL (Open Computing Language) are the most widely 

used GPGPU frameworks. Of the two parallelization strategies, GPGPU is more suited to 

data parallelization (Xia et al. 2011, Rey et al. 2013). Spatial analysis applications such 

as interpolation and viewshed analysis (Xia et al. 2011), large scale spatial regression 
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(Zhang 2010) and thematic map classification (Rey et al. 2013) all have benefited from 

GPGPU parallelization in terms of performance and scalability.  

Parallelization techniques not only boost performance and help overcome scale 

problems (Guan and Wu 2010), but they also enable more realistic representation of real 

world processes compared to sequential processing (Openshaw and Turton 1999). 

However, complete reconstruction of existing algorithms is often required to achieve 

significant parallelization efficiencies.  

5.3. Shortest path derivation 

An efficient method for ESP derivation was recently proposed in Hong and 

Murray (2013a, 2013b) and Hong et al. (2014). The approach, referred to as the 

convexpath algorithm, utilizes spatial knowledge and GIS functionality to efficiently 

construct a graph through which the optimal path can be found. To reduce the size of the 

resulting graph, the convexpath algorithm explicitly accounts for only relevant obstacles 

for a given origin-destination pair by utilizing geometric properties of convex hulls along 

with spatial filtering. Convex hulls are constructed to simultaneously identify impeding 

obstacles and construct a graph through which the path will be routed. Spatial filtering is 

used to reduce the number of obstacles considered during graph construction. Similar to 

visibility graph approaches, it has been proven that the resulting graph of the convexpath 

algorithm is guaranteed to include the optimal ESP (Hong and Murray 2013a). However, 

the convexpath algorithm produces a graph that is significantly smaller in size compared 

to visibility graph (or other approaches) and requires substantially less computational 

effort to derive (Hong and Murray 2013a, 2013b, Hong et al. 2014). 
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The convexpath algorithm relies on four important spatial operators: interior 

intersection, convex hull, line-polygon overlay, and spatial filtering (Hong et al. 2014). 

Each operator is now defined and discussed. 

Definition (interior intersection): Given a polygon 𝑘, the interior of 𝑘, denoted 

𝑖𝑛𝑡(𝑘), is the open set bounded by the polygon edges but disjoint from the edges.  

The interior intersection operator is utilized to evaluate whether a polygon 

obstructs straight line travel between two points. Assume a pair of origin and destination 

points, 𝑣𝑜 and 𝑣𝑑, and an obstacle 𝑘 are given, as shown in Figure 1. At issue is whether 

the line segment formed by the origin and destination intersects the obstacle, or formally 

if  𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ ∩ 𝑘 ≠ ∅. There are three potential cases of intersection between the straight line 

and the obstacle. The first case is depicted in Figure 1a, where 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ ∩ 𝑘 = ∅. That is, 

straight line travel is not impeded. The second case is shown in Figure 1b, where 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ ∩

𝑘 ≠ ∅. In this case straight line travel is not possible. The third case is shown in Figure 

1c, where 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ ∩ 𝑘 ≠ ∅, but intersection occurs on the boundary of the obstacle. 

Technically, straight line travel is permissible along this boundary as one could be close 

but not exactly on the boundary. For this reason, the interior intersection operator is 

necessary to account for the third situation. Thus, interior intersection evaluates whether 

the interior of the obstacle intersects a line segment, allowing movement along an 

obstacle boundary. As a result, the case shown in Figure 1c results in  𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ ∩ 𝑖𝑛𝑡(𝑘) =

∅. Interior intersection therefore requires additional spatial assessment to separate 

boundary intersection from polygon interior intersection. The implication is that the 
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interior intersection operator requires additional computing time compared to the more 

generic intersection operator.  

Another important spatial operator is convex hull. The following definition is 

offered in Hong et al. (2014):  

Definition (convex hull): Given a set of objects 𝑆, the convex hull of 𝑆, denoted 

𝐶𝐻(𝑆), is the collection of all convex combinations, or the smallest convex set containing 

objects in 𝑆. 

The convex hull is a key operator in the convexpath algorithm. It is utilized to 

construct the shortest detour avoiding an obstacle for a given origin-destination pair. A 

convex hull is illustrated in Figure 2 for three spatial objects, 𝑣𝑜 , 𝑣𝑑 and k. Based on the 

minimum bounding property of a convex hull, Hong and Murray (2013a) proved that the 

ESP is on 𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘) when a single obstacle 𝑘 impedes the straight travel between 𝑣𝑜 

and 𝑣𝑑. This necessarily means that 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅. For multiple obstacles, relevant 

obstacles are identified by testing interior intersection with the convex hull. If an obstacle 

obstructs an edge on a convex hull, the edge is replaced by the sub-convex hull of an 

obstructed edge and corresponding obstacle. This involves adding vertices of the convex 

hull as well edges. A graph that contains the ESP is constructed by iteratively resolving 

obstructed arcs in the graph through the generation of sub-convex hulls. The convexpath 

algorithm therefore relies on the convex hull operator repeatedly in an application, 

potentially thousands or more times.  
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Figure 5.2. Convex hull for origin, destination and impeding obstacle 

 

A third spatial operator utilized in deriving an efficient graph that contains the 

ESP is line-polygon overlay. This is a special case of the more general vector GIS 

overlay. Consider the following definition:  

Definition (line-polygon overlay): Given the line defined by two points, 𝑣1𝑣2, ⃡         

that intersects polygon 𝑘 (𝑣1𝑣2 ⃡       ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅), line-polygon overlay splits 𝑘 into multiple 

disjoint faces 𝑓𝑗 defined by the boundary of k and segments of 𝑣1𝑣2, ⃡         such that ∪𝑗 𝑓𝑗 = 𝑘 . 

The line-polygon overlay operator is used in the creation of feasible graph arcs. 

Suppose we have origin and destination vertices 𝑣𝑜 and 𝑣𝑑, respectively, where 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ ∩

𝑖𝑛𝑡(𝑘) ≠ ∅. This situation is illustrated in Figure 5.3b, for the case shown in Figure 3a. 

The line segment is now used to divide obstacle 𝑘 into sub-obstacles, or faces, as 

depicted in Figure 5.3c. The reason that this overlay is necessary is because 

𝑖𝑛𝑡(𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘)) ∩ 𝑣𝑑 ≠ ∅, as shown in Figure 5.4a because 𝑣d is not on the boundary 
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of 𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘). This leads to a situation where 𝑣𝑑 is not connected to the derived graph, 

making a path from 𝑣𝑜 to 𝑣𝑑 impossible. To address this, Hong and Murray (2013b) 

detailed an algorithm to make use of line-polygon overlay to construct a feasible and 

valid graph based upon subdividing polygon k and removing infeasible potential arcs. 

The resulting graph made possible because of line-polygon overlay is shown in Figure 

5.4b. The obstacle is divided into two faces by line-polygon overlay operator using  𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅  

(Figure 5.3c). The resulting graph using faces and post-processing is given in Figure 

5.4b, making a path possible between 𝑣𝑜 and 𝑣𝑑 (and it is guaranteed to contain a shortest 

path).  

 

Figure 5.3. Line-polygon overlay: (a) Origin, destination and impeding obstacle  

(b) Interior intersection test of straight line and obstacle  

(c) Faces obtained by line-polygon overlay operator 
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Figure 5.4. Graph construction using line-polygon overlay  

(a) enclosed destination in convex hull  

(b) derived graph that include ESP between origin and destination 

 

The final operator to be noted is spatial filtering. 

Definition (spatial filtering): A process for implicitly considering obstacles in 

graph construction, spatial filtering excludes those obstacles 𝑘 ∈ 𝐾 that are deemed not 

capable of impacting the ESP based on spatial proximity criteria. 

The spatial filtering operator is used to reduce the number of obstacles whose 

vertices are explicitly incorporated in the graph through which a shortest path is derived. 

A number of approaches have been considered in the literature (Zhang et al. 2005, Gao et 

al. 2011, Li et al. 2011), often relying on a bounding rectangle or radius from an 

origin/destination. The spatial filtering approach utilized here is based on the work of 

Hong et al. (2014) who derived a process for identifying and evaluating potential graph 
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arcs and obstacles. Their process relies on a spatial filter based on shortest paths found at 

intermediate stages of the solution process. Hong et al. (2014) proved that among 

obstacles where 𝑖𝑛𝑡(𝑘) ∩ 𝐺 ≠ ∅ for 𝑘 ∈ 𝐾, only obstacles that impede the lower bound 

of the ESP, intermediate shortest paths, are necessary to evaluate at that stage of the 

algorithm. The reason is that these arcs constitute a graph containing the shortest possible 

path, but a given path could be infeasible if an arc intersects a yet to be considered 

obstacle. Therefore, a shortest path can be utilized as spatial filter to identify potential 

impeding obstacles. The spatial filter operator is illustrated in Figure 5.5. Assume that 

two obstacles, 𝑘1 and 𝑘2, are already considered impeding obstacles for a given origin-

destination pair, shown in Figure 5.5a. The graph for these two obstacles and the origin 

and destination are also shown, derived using interior intersection and convex hull 

operators. Given the graph, a shortest path can be found (Figure 5.5a). However, an 

obstacle, 𝑘3, impedes an arc on this shortest path. What is known is that this path is a 

lower bound on the optimal ESP, so resolving arc obstructions on this path offers the 

promise for a feasible path (Figure 5.5b). In contrast, obstacle 𝑘4 does intersect an arc in 

the graph, but it is not on the shortest path. Because of this, at this stage, it does not 

appear promising. At some further iteration of the algorithm it may become promising 

and if so will then get explicitly evaluated. This technique enables valid optimality 

bounds to be established, and with this it is possible to preclude some obstacles if there is 

no chance that they would influence the optimal ESP. More discussion of this point will 

be provided after the convexpath algorithm is introduced. 
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Figure 5.5. Spatial filter operator (a) Identifying potential impeding obstacle; 

(b) Derived graph and ESP 

 

The above spatial operators are utilized in an algorithm to derive a graph (and 

path) containing the ESP based Hong et al. (2014). 
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Algorithm (Convexpath): 

1) Given an origin and destination, 𝑣𝑜 and 𝑣𝑑 respectively, and set of all obstacles 𝑘

∈ 𝐾. Initialize graph 𝐺 = {𝑣𝑜 , 𝑣𝑑 , 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ }, set of identified obstacles, 𝛹 = ∅, and se

t of impeded arcs and obstacle, 𝛩 = ∅. 

2) Derive the shortest path between the origin and destination, 𝛿, in 𝐺. If  𝛿 ∩ 𝑖𝑛𝑡

(𝑘) ≠ ∅ for 𝑘 ∈ 𝐾, then 𝛹 = 𝛹 + 𝑘. Otherwise, 𝛿 is the optimal ESP.  

3) If 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅ for 𝑙 ∈ 𝐺 and 𝑘 ∈ 𝛹,  then add (𝑙, 𝑘) to 𝛩. If 𝛩 = ∅, then go to 

step 2. 

4) For all (𝑙, 𝑘) ∈ 𝛩, replace 𝑙 with 𝐶𝐻(𝑙, 𝑘). 𝐺 = 𝐺 + 𝑙′ for all 𝑙′ ∈ 𝐶𝐻(𝑙, 𝑘). If 

𝑣1 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑙, 𝑘)) ≠ ∅ and/or 𝑣2 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑙, 𝑘)) ≠ ∅ when 𝑙 = 𝑣1𝑣2̅̅ ̅̅ ̅̅ , then utili

ze line-polygon overlay to split 𝑘 into 𝑓𝑗 and construct convex hulls for each 𝑓𝑗.  

5) Go to step 3.  

 The convexpath algorithm constructs a graph through which the optimal ESP can 

be found. Construction begins with the origin and destination as nodes of the graph and 

then proceeds to add arcs. The shortest path that links origin and destination is derived 

from the graph. Any obstacle that obstructs any arc in the shortest path spatial filter is 

added to the identified obstacle set for graph construction. Arcs obstructed by identified 

obstacles are resolved by iterating over the set and deriving convex hulls to replace 

obstructed arcs. This process continues until no arc in the graph is obstructed by 

identified obstacles. The convexpath algorithm stops if the spatial filter does not find any 

impeding obstacle.  



90 

 

The convexpath algorithm produces a valid lower bound, the intermediate shortest 

path, for the optimal ESP at every iteration and utilizes it as a spatial filter. As proved in 

Hong et al. (2014), using this shortest path spatial filter for obstacle identification 

prevents evaluating obstructed arcs and obstacles that will never impact the optimal ESP. 

The significance of this is that many obstacles need not be explicitly evaluated while 

optimality is still guaranteed. As a result, the convexpath algorithm is able to derive the 

optimal ESP with notably smaller-sized graphs and, more importantly, needs less 

computing time. 

The convexpath algorithm has proven to be a superior approach for solving the 

ESP compared to approaches like the visibility and local visibility graph (Hong and 

Murray 2013a, 2013b, Hong et al. 2014). Empirical findings suggest results can be 

computed over 10,000 times faster while the number of arcs in derived graphs is less than 

0.03% of alternative approaches (i.e., visibility graph). In complex environments 

characteristic of an urban area with a large number of obstacles, however, even a highly 

efficient method can require considerable computing time. Derivation of the ESP in this 

case requires a large-sized graph with repeated application of computationally intensive 

spatial operators. Advanced computing techniques can address the challenges of complex 

environments in order to support large-scale wayfinding and navigation.  

5.4. Algorithm parallelization  

As mentioned in the previous section, the convexpath algorithm relies on four 

important spatial operators: interior intersection, convex hull, line-polygon overlay and 

spatial filtering. Advanced computing techniques show promise for overcoming scale 
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overhead due to repetitive utilization of certain operations. In particular, parallelization of 

spatial operators offers potential for algorithm improvement, especially in the context of 

navigation and wayfinding. In order for parallelization to be successful, steps and 

operations in the convexpath algorithm need to be analyzed in terms of computing 

requirements and supporting data structures. This may suggest useful restructuring 

strategies.  

The computing resource consumption of each major step in the convexpath 

algorithm was analyzed for a number of planning applications detailed later in the paper. 

In a sequential environment, most processing is associated with convex hull construction, 

requiring roughly 58% of total computing time. The convex hull operator is repeatedly 

applied a significant number of times over subsequent iterations for impeded arcs and 

their corresponding obstacles. Such repetitive utilization of this computationally intensive 

spatial function makes it the most significant computational bottleneck in the convexpath 

algorithm. Interior intersection also consumes considerable resources, requiring about 

27% of the total computing time. The interior intersection operator is applied for all arc 

segments in 𝐺 and identified obstacles in 𝛹 at every iteration, and there can be several 

thousand arcs in 𝐺. Collectively, 85% of computing time is devoted to two spatial 

operators (convex hull and interior intersection). A prime target for parallelization is 

therefore those functions in the convexpath algorithm where there is repeated utilization 

of these operators. Based on this analysis, the theoretical expectation for maximum 

performance gain can be calculated using Amdahl’s law (Amdahl 1967):  
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𝑆(𝑝) =
1

(1 − 𝛼) +
𝛼
𝑝

 

where 𝛼 is the parallelized portion of the process and 𝑝 is the number of processors 

utilized for parallelization. By parallelizing convex hull and interior intersection 

operators, 𝛼 would be 0.85, and the total computing time will be a function of the number 

of cores in a CPU available for use.  

While aspects of the convexpath algorithm are suitable for parallelization, 

significant performance increases are not likely to result from naive implementation of 

sequential steps in some simultaneous fashion. Parallel processing requires meaningful 

restructuring strategies. The major reasons for reconstruction are concurrent data 

modification, job distribution and overhead cost of parallelization. Concurrent editing 

(writing) of shared memory object is not allowed in parallel processing in order to 

prevent data corruption. Unlike the sequential case, results from multiple parallel 

processes cannot be stored in single data object. Rather, they need to be maintained 

separately. Successful parallelization will require the algorithm and data structure to 

efficiently recollect results after each iteration. Similarly, a strategy for efficiently 

distributing jobs to each subprocess also needs to be considered. Of course, initialization 

of subprocesses, distributing jobs and collecting results require additional computational 

effort. This represents computing overhead in this case. If overhead is significant, or the 

benefits of parallelization are minuscule, the effectiveness of parallel computing is 

degraded and may result in longer computing time than a sequential implementation. 
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Therefore, reducing overhead as much as possible, while maximizing efficiency gain, is 

essential.  

Parallelization of the convexpath algorithm is done here using Python’s official 

Multiprocessing library. The Multiprocessing library uses multiple cores in a single CPU, 

and generates subprocesses rather than threads to negotiate the limitations of the Global 

Interpreter Lock (GIL) (Rey et al. 2013). Jobs are divided up and then distributed to 

subprocesses. Once completed, subprocesses return the result. As mentioned earlier, to 

prevent data corruption, results from subprocesses need to be collected separately after 

parallel processing is completed.  

Based on the analysis of complexity, processing requirements during application 

and algorithm insights for convexpath, a parallel algorithm is proposed based upon 

reorganization and restructuring relative to major computing processes. 

Algorithm (Convexpath-parallel): 

1) Given an origin and destination, 𝑣𝑜 and 𝑣𝑑 respectively, and set of all obstacles 𝑘

∈ 𝐾. Initialize graph 𝐺 = {𝑣𝑜 , 𝑣𝑑 , 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ } and set of identified obstacles, 𝛹 = ∅.  

2) Derive the shortest path between the origin and destination, 𝛿, in 𝐺. If  𝛿 ∩ 𝑖𝑛𝑡

(𝑘) ≠ ∅ for 𝑘 ∈ 𝐾, then 𝛹 = 𝛹 + 𝑘. Otherwise, 𝛿 is the optimal ESP.  

3) Initialize set of 𝑝 queues for parallel processing, 𝑄. Divide 𝐺 into 𝑞 ∈ 𝑄. 

4) Parallel processing: repeat following step in each subprocess  

a. If 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅ for 𝑙 ∈ 𝑞 and 𝑘 ∈ 𝛹, then replace 𝑙 with 𝐶𝐻(𝑙, 𝑘). 𝑞 = 𝑞
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+ 𝑙′ for all 𝑙′ ∈ 𝐶𝐻(𝑙, 𝑘).   

b. If 𝑣1 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑙, 𝑘)) ≠ ∅ and/or 𝑣2 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑙, 𝑘)) ≠ ∅ when 𝑙 = 𝑣1𝑣2̅̅ ̅̅ ̅̅ ,

 then utilize line-polygon overlay to split 𝑘 into 𝑓𝑗 and construct convex hu

lls for each 𝑓𝑗. 

5) Collect results and generate new 𝐺, 𝐺 = ⋃ 𝑞𝑝𝑝  

6) If 𝐺 ∩ 𝑖𝑛𝑡(𝛹) ≠ ∅, go to step 3. Otherwise, go to step 2.  

 The steps that utilize the two most computationally burdensome spatial operators 

in convexpath are restructured to take advantage of parallel processing. The primary 

components of parallelization for convexpath are illustrated in Figure 6. The inputs are 

the intermediate graph 𝐺 and the explicitly evaluated obstacles 𝛹. Recall that the set 𝛹 is 

a byproduct of the spatial filtering operator. Multiple arcs are processed simultaneously, 

which leads to faster derivation of a new graph. First, arcs in 𝐺 are divided and 

distributed to queues for concurrent processing. The number of queues and subprocesses 

are determined by the number of cores in a CPU available for use, denoted 𝑝, and as 

mentioned above the number of subprocesses is a crucial factor that determines 

performance improvement of parallelization. The evaluated obstacle set 𝛹 is shared in 

memory to improve processing efficiency. In order to avoid unnecessary increases in 

overhead steps involving convex hull and interior intersection operators are integrated 

into a single parallel process. Each subprocess performs interior intersection tests for a 

given arc 𝑙 ∈ 𝑞 and 𝑘 ∈ 𝛹, then derives a convex hull, 𝐶𝐻(𝑙, 𝑘), and replace 𝑙 with 

𝐶𝐻(𝑙, 𝑘) in cases where 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅. Once the subprocesses are completed, an 
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updated graph 𝐺 is generated using the collected results from parallel process. Data 

structures are modified accordingly for parallel efficiency. This can be contrasted to what 

occurs during this stage of the algorithm in the sequential implementation of convexpath. 

As the sequential case only makes use of one processor, the queue consists of all graph 

arcs that must be evaluated individually. In Figure 5.6 this would mean only one 

subprocess, or p=1. 

This approach significantly reduces burdens associated with bottleneck operators, 

leading to notable decreases in total computing time for ESP derivation. Parallelization of 

the convexpath algorithm also facilitates analysis in complex urban environments. This 

efficiency gain is possible because of reconfiguration and data structure efficiency when 

applying spatial operators.  

 

Figure 5.6. Parallel processing steps of the convexpath-parallel algorithm 
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5.5. Computational results  

The effectiveness of convexpath-parallel is assessed for wayfinding in a high 

obstacle density urban environment. The initial area of focus is the Arizona State 

University campus in Tempe, Arizona. The campus has 179 buildings that represent 

obstacles to direct travel between an origin and destination (Figure 5.7). To avoid 

pedestrian contact with a building during travel, a 3-foot buffer is assumed for each 

building. In order to assess implications for computational processing, four additional 

applications are considered. These applications contain 500, 600, 700 and 800 obstacles, 

respectively, enabling evaluation as obstacle density increases. A total of 2,238 origin-

destination pairs are used to derive the optimal ESP across the five application instances. 

Every origin-destination pair has at least one or more impeding obstacles obstructing a 

direct (i.e. straight) path. The computational evaluation is carried out on an Intel i7 CPU 

(4 physical cores) with 8 GB memory running a Mac OSX 10.7.5 operating system. Both 

the convexpath (sequential) and the convexpath-parallel algorithms are implemented in 

Python 2.7.  

One origin-destination pair is shown in Figure 5.8, along with the derived graph. 

The optimal ESP is also included. The number of arcs in the graph is 723, and there were 

19 obstacles (out of 179) that were necessary to explicitly consider in its derivation. The 

convexpath algorithm derives this in 6.58 seconds, while the convexpath-parallel 

algorithm requires only 4.13 seconds. This is nearly a 40% reduction in computing time.  

 



97 

 

 

Figure 5.7. Arizona State University campus buildings (buffered) 

 

Figure 5.8. Generated graph using convexpath along with optimal ESP  

(ASU campus application) 
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A summary of the different origin-destination cases for convexpath and 

convexpath-parallel is given in Table 5.1. For the ASU campus, 239 different origin-

destination pairs were evaluated. On average, convexpath-parallel is 44% faster in 

deriving the ESP. Other applications were considered as well, increasing in the number of 

obstacles in order to assess computational performance as obstacle density increases. 

These results are also summarized in Table 5.1. For the 500 obstacle application, 630 

origin-destination pairs were evaluated. Average graph size increases and, on average, 

convexpath-parallel requires around 50% less computing time. Even better performance 

is seen for the 600, 700 and 800 obstacle applications, where computing time is 53.3%, 

53.6% and 52.2% less for convexpath-parallel. 

Table 5.1. Application summary 

Application 

(number of 

obstacles) 

Number 

of OD 

pairs 

Number 

of arcs 

(avg) 

Computing time (sec) 

 

Convexpath Convexpath-parallel 

179 239 472.67 6.63 3.70 

500 630 711.13 16.21 8.02 

600 637 1038.07 32.52 15.18 

700 635 1478.87 68.48 31.74 

800 97 2179.82 151.44 72.45 

 

While Table 5.1 reports average findings over the different applications, 

performance for each of the 2,238 ESP instances is summarized in Figure 5.9 and Table 

5.2. To evaluate effectiveness of parallelization as a function of ESP problem size, the 

number of arcs in the resulting graph and sequential computing time are shown in Figure 

5.9 to reflect the magnitude of obstacles encountered in each problem instance. In 

general, the convexpath-parallel algorithm reduces computing time by as much as 63.7% 
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compared to the sequential implementation of convexpath, making it some 2.75 times 

faster than sequential computation. The performance gain is higher for the cases that 

require identification of more arcs, therefore needing more computing time. Figure 5.9 

shows this general tendency of performance improvement, where the ratio of 

convexpath/convexpath-parallel computing time is plotted against the number of arcs in 

graph. Table 5.2 provides statistics of three computing time ranges, 0 to 1 second, 1 to 10 

seconds, and greater than 10 seconds for solution using the convexpath algorithm, and it 

shows improvement of efficiency gain over sequential computing time clearly. The 

optimal ESP is found within 1 second in 592 problem instances. The overhead costs are 

significant for 189 cases for this range, meaning that parallel implementation of 

convexpath takes more time to derive the ESP than sequential implementation. Excluding 

these cases, parallel computation requires at best 57.2% less computing time, and 

convexpath-parallel uses 20.9% less computing time on average. Convexpath takes 0.42 

seconds to derive the ESP, and in case of convexpath-parallel it takes an average of 0.32 

seconds.  

Performance gains for parallel computing are significant in the 694 OD pairs that 

take 1 to 10 seconds using convexpath. Although the variance of computing time 

reduction in Table 5.2 appears similar to the first time range, results are more clustered 

around lower computing times, and the convexpath-parallel algorithm requires 40.1% 

less time than the convexpath algorithm on average. A mean of 4.37 seconds and 2.5 

seconds are required for derivation of the ESP for convexpath and convexpath-parallel, 

respectively. As shown in Table 5.2, the 952 ESP instances that require more than 10 

seconds to be solved benefit substantially from parallel processing. Computing time 
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reductions converge to between 36% and 64% and convexpath-parallel requires 51.2% 

less time than convexpath on average. It typically takes 42.95 seconds to derive results 

using convexpath-parallel, while convexpath uses 91.87 seconds on average to solve 

identical problems.  

 

 

Figure 5.9. Scatterplot of sequential/parallel computing time ratio  

against the number of arcs in graph 
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Table 5.2. Summary of performance improvement  

 
Convexpath (sec) 

0 < t < 1 1 < t < 10 10 < t 

Number of OD pairs 592 694 952 

Number of cases that exceed overhead 189 3 0 

Min reduction in computing time (%) 0 4.3 35.8 

Max reduction in computing time (%) 57.2 57.5 63.7 

Average reduction in computing time (%) 20.9 40.1 51.2 

Average convexpath (sec) 0.42 4.37 91.87 

Average convexpath-parallel (sec) 0.32 2.5 42.95 

 

5.6. Conclusions and discussion 

Parallel processing significantly improves sequential computing for the 

convexpath algorithm, especially for ESP problems that need to address a large number 

of obstructions, thereby requiring longer computing time. Figure 5.9 and Table 5.2 show 

the effectiveness of parallelization as problem size increases. For example, parallelization 

reduces computing time more than 50%, or more than 2 times faster, in 62.2% of problem 

instances that require more than 10 seconds to solve, while only 5.2% of OD pairs that 

take less than 10 seconds show identical improvement. This tendency in efficiency gains 

is more clearly revealed in origin-destination pairs that need more than 100 seconds to 

derive the ESP, as 92.7% of these 220 cases can be solved less than 50% of convexpath 

computing time. When efficiency gain is viewed in terms of the number of arcs in a 

derived ESP graph, a similar tendency is revealed. The number of problem instances 

requiring more than 2,000 arcs to identify the optimal ESP is 352, and 85.5% of these 

cases take less 50% of convexpath computing time. Only 19% of the other 1,886 cases 

produce less than 2,000 arcs, but have a similar level of performance improvement. 
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Therefore, parallel computing can significantly improve performance for wayfinding and 

navigation tasks in complex urban area with large number of obstacles.   

The findings suggest that excessive overhead associated with convexpath-parallel 

is minimal. The fact that almost all problems with unacceptably high overhead are ones 

obstructed by 5 obstacles or fewer indicates a simple fact about the application of 

convexpath-parallel: these problems can be solved very rapidly using sequential 

convexpath, 0.17 seconds on average, so overhead from parallelization consumes a 

relatively large portion of computing time f. However, the additional computing time 

required by convexpath-parallel over sequential convexpath in these cases is quite small, 

only 0.04 seconds on average. Therefore, the issue of excessive overhead in very small-

sized ESP problems can be ignored and convexpath-parallel can be effectively applied to 

ESP problems of any size.  

Another noteworthy point is that the performance gain from parallelization is 

strongly influenced by hardware configuration, namely the number of CPU cores in use. 

Amdahl’s law suggests a theoretical expected maximum speed-up ratio for convexpath-

parallel of 2.76, as 𝛼 = 0.85 and 𝑝 = 4. This means convexpath-parallel would compute 

the ESP 2.76 times faster than convexpath in the best case. The application results 

summarized in Table 5.1 show the average ratio varies from 1.79 to 2.15, and the 

achieved maximum ratio is 2.75 (see Figure 5.9). Considering the influence of overhead 

cost for parallelization, the results are consistent with the theoretical expectation. 

Furthermore, the maximum and average computing time reduction will increase 

somewhat if the application is run on a system with many CPU cores. Although an 
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evaluation of general scalability is beyond the scope of this paper, an interesting future 

research question is to test the broader impacts of computing system configuration and 

hardware.  

Efficiently deriving the Euclidean shortest path is essential for spatial analysis, 

location modeling and path planning tasks. Several existing solution approaches have 

been developed, but lack capabilities for rapid real-time path derivation. The convexpath 

algorithm is proposed as a means to increasing the efficiency of ESP calculation, 

promising great potential for the development of practical real time path computation. In 

complex environments, however, a large number of obstacles continues to pose a 

significant computational burden for the convexpath algorithm when the computation is 

done sequentially, because of the use of computationally intensive spatial operators. In 

this research, parallelization is examined using a multi-core CPU in a single machine 

applied to the convexpath algorithm. Spatial operators involving tests of complex spatial 

relationships and resolving obstructions, currently the major bottlenecks in the derivation 

of the ESP in a sequential environment, benefit substantially from parallelization. The 

application results show that the parallelization approach is effective and scalable for 

wayfinding problems with a large number of densely-packed obstacles.  
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CHAPTER 6 

ASSESSING RASTER GIS APPROXIMATION  

FOR EUCLIDEAN SHORTEST PATH ROUTING* 

 

In the previous chapters, the obstacle-avoiding shortest path is derived based on a 

vector representation of the spatial problem using the convexpath algorithm. In contrast, 

raster representations have been used to approximate the ESP using the least cost path 

approach. Although raster-based approaches have benefits, they have issues regarding to 

computational efficiency and the quality of estimated path is not guaranteed. This chapter 

assesses the issues of the ESP approximation in raster representation.  

6.1. Introduction  

Planning routes to avoid obstacles in 2-dimensional space with no pre-defined 

network for movement is an essential operation for infrastructure planning, corridor 

alignment, robotic travel, simulation, and video gaming, among others (Lombard and 

Church 1993, Yap 2002, Ferguson and Stentz 2006, Daniel et al. 2010, Yap et al. 2011). 

Criteria for the desired path depends on the given problem context, but there are two 

prevailing solution approaches. One is that an efficient path is sought that avoids 

impenetrable obstacles, where efficiency is distance based. The second approach is that a 

path is sought that minimizes travel costs over/through a surface. Interestingly, these two 

approaches reflect vector and raster GIS views, respectively, as suggested in Figure 6.1.  

                                                           
* This chapter represents a slightly revised version of paper submitted to Transactions in GIS, co-authored 

with Dr. Alan T. Murray 
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Figure 6.1. Shortest path derivation: (a) vector-based approach; (b) raster-based approach  

 

Deriving a shortest path from a given origin to a given destination that avoids 

obstacles has attracted the attention of researchers in a range of disciplinary fields, 
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including computer science, computational geometry, planning, geography, and others 

(Lozano-Pérez and Wesley 1979, Batta et al. 1989, Zhang et al. 2005). There are many 

different naming conventions used to refer to this problem, but the most popular is the 

Euclidean shortest path (ESP) (Welzl 1985, Guibas and Hershberger 1989, Hershberger 

and Suri 1993). The ESP is typically viewed in terms of vector GIS, where vector objects 

(lines or polygons) reflect the obstacles to be avoided (Figure 6.1a). The goal then is to 

identify/construct a polyline based path of minimum length that does not intersect any 

obstacle. 

Finding a minimum cost path from a given origin to a given destination through a 

surface has also received substantial attention across most disciplines, including civil 

engineering and robotics (Lombard and Church 1993, Yu et al. 2003, Ferguson and 

Stentz 2006, Yap et al. 2011). The least cost path is usually viewed in raster GIS terms, 

where the region is represented by a regular grid surface with each cell in the grid storing 

a travel cost based attribute (Figure 6.1b). The goal in this case is to find a least cost path 

beginning at the origin that connects neighbor cells until the destination is reached, 

ideally avoiding cells that correspond to obstacles. 

While these two approaches, vector (ESP) and raster (least cost path), are related, 

they are fundamentally different in many ways. Most importantly, the ESP is not 

permitted to go through an obstacle that is to be avoided, whereas a least cost path may 

include any cell in a region. Nevertheless, the least cost path has been relied upon for 

solving ESP based problems, especially in robotics and video gaming (Mitchell 1988, 

Daniel et al. 2010, Yap et al. 2011). The major reason for this is the simplicity of 
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problem conception, but also the ease to attach high costs to obstacle cells as a way to 

discourage travel/routing through them (Jalbert and Dobson 1976). In contrast, the ESP is 

more mathematically complicated to express and requires specialized techniques for its 

solution.  

This paper focuses on the ESP and issues that may arise through least cost path 

approximation. A review of shortest path derivation methods in vector and raster 

environments is given. Computational and representation issues are then detailed. 

Comparative results follow, highlighting differences between the two basic approaches. 

The paper ends with concluding comments and discussion. 

6.2. Background 

As mentioned in the previous section, continuous space path planning can be 

approached two ways: the ESP in vector GIS and as a least cost path in raster GIS. The 

ESP in a vector GIS environment takes into account an origin, a destination and obstacles 

that are stored as vector objects, namely points, lines and polygons. Movement can occur 

anywhere in space except through the interior of lines/polygons designated as obstacles. 

The objective is to minimize the length of a polyline based path that links the origin and 

destination while avoiding obstacles. The ESP has been utilized for robot path planning 

(Lozano-Pérez and Wesley 1979, Szymanski et al. 2006), trans-oceanic shipping 

(Fagerholt et al. 2000, Bekker and Schmid 2006), and location optimization (Larson and 

Sadiq 1983, Klamroth 2001b)  
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An effective solution approach for the ESP involves the construction of a graph to 

limit the search space, reducing the problem from an infinite number of route possibilities 

to a finite number of nodes and line segments (a graph). Most popular has been the 

visibility graph approach suggested by Lozano-Pérez and Wesley (1979), with 

subsequent development to improve efficiency in graph derivation (see Asano 1985, 

Welzl 1985, Rohnert 1986, Ghosh and Mount 1991, Pocchiola and Vegter 1996). It has 

been proven that the visibility graph contains the optimal ESP (Viegas and Hansen 1985, 

de Berg et al. 2008), and is constructed by connecting mutually visible vertices of 

obstacles and the origin and destination. Given the graph, a shortest path algorithm may 

be employed to identify the optimal route. An issue with the visibility graph approach is 

computational processing because all vertices must be evaluated in graph construction, 

regardless of proximal relevance to the origin and destination. Local visibility extensions 

have been developed to address efficiency issues (Kim et al. 2004, Zhang et al. 2005), 

often employing proximity-based spatial filtering techniques to reduce the number 

vertices evaluated. However, local visibility graphs also require considerable computing 

time and may omit the optimal path (Hong and Murray 2013a).  

In a raster GIS environment, the least cost path has been utilized to identify a 

route through a continuous space from an origin to a destination (Goodchild 1977, Huber 

and Church 1985, Mitchell 1988, Lombard and Church 1993, Collischonn and Pilar 2000, 

Etherington and Holland 2013). Unique to raster GIS is the representation of space as a 

continuous surface, with a location corresponding to a cell that has a unique cost 

associated with traversing the cell. Thus, movement occurs as travel between two 

neighboring cells, beginning at the origin cell and ending at the destination cell. The goal 
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is then to identify a least cost path through the raster cost surface. This approach has been 

widely applied to infrastructure and corridor planning (Huber and Church 1985, Lombard 

and Church 1993, Lee and Stucky 1998, Yu et al. 2003), connectivity measurement 

(Douglas 1994, Etherington and Holland 2013), robotic travel (Mitchell 1988, Ferguson 

and Stentz 2006, Daniel et al. 2010), and virtual object path planning for video gaming 

and simulation (Yap 2002, Yap et al. 2011). Solution of a least cost path generally 

involves the construction of an implicit or explicit graph reflecting permissible movement 

between neighboring cells, with arc attributes representing a distance and travel cost 

through intervening cells (Huber and Church 1985, Collischonn and Pilar 2000, Church 

and Murray 2009). Once this is done, an optimal path can be identified using any shortest 

path solution approach. 

Of particular relevance in this chapter is that the least cost path approach has been 

utilized for addressing what is ultimately an ESP problem, especially in robotics and 

video gaming (Mitchell 1988, Ferguson and Stentz 2006, Nash et al. 2007, Daniel et al. 

2010, Yap et al. 2011). The reason for this is that a raster approach has many benefits 

(Nash et al. 2007): the raster grid itself is a simple and efficient structure; resolution of a 

raster may be modified; and, raster cells can be updated partially to reflect dynamic 

change. Additionally, availability of the least cost path approach in many commercial and 

open source GIS software packages expedite its utilization. At issue, however, is that 

travel cost in a raster is an approximation of the ESP, possibly good or possibly bad. 

While ease and accessibility have facilitated the adoption of the least cost path 

approach for solving the ESP in some planning contexts, there are important issues that 
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arise through such an approximation. First, there can be inherent representational error 

caused by raster grid structure. Cell size very much impacts path cost and quality, as 

noted in Huber and Church (1985) and Nash et al. (2007). Second, cell neighbor 

definition can also impact path quality. Huber and Church (1985) demonstrate that there 

are many possible definitions of cell neighbors where connections via arc segments are 

possible. Addressing this requires enhanced cell resolution and accounting for more 

connections between cell neighbors (Huber and Church 1985, Yap et al. 2011). Third, the 

treatment of obstacle cells is typically handled through the assignment of high costs so as 

to discourage travel/utilization (Jalbert and Dobson 1976, Huber and Church 1985), but 

this does not guarantee that obstacles cells will be excluded from a least cost path. 

Finally, spatial analysis and processing in a raster environment generally requires major 

computational resources. The number of cells in a raster layer as well as cell size have an 

implications for computing capabilities. In a resource-restricted environment under real 

time operating conditions, a high resolution raster may not be viable. Ultimately, the 

fundamental issue is whether these issues are significant in using a least cost path 

approach to approximate the ESP. 

6.3. Vector representation 

As mentioned in the previous section, the visibility graph approach is widely used 

for deriving the ESP. Unfortunately, computational processing requirements limit the 

applicability of the visibility graph. To address this, Hong and Murray (2013a, 2013b) 

and Hong et al. (2014) developed approaches for solving the ESP problem. The 

algorithm, convexpath, utilizes GIS functionality and exploits spatial knowledge to 
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efficiently construct a minimum-sized graph that includes the optimal ESP. Central to 

convexpath is convex hull and spatial filtering operations, enabling intelligent evaluation 

of obstacles and vertices. The result is a graph that is significantly smaller in size 

compared to the visibility graph while still guaranteeing the inclusion of the optimal ESP. 

Because of this, real time derivation is possible. 

Details of this solution approach are now provided, beginning with the convex 

hull in the context of the ESP. 

Definition (convex hull): For a set of objects 𝑆, the convex hull of 𝑆, 𝐶𝐻(𝑆), is 

the collection of all possible convex combinations of 𝑆. 

Given origin and destination points, 𝑣𝑜 and 𝑣𝑑, and an obstacle 𝑘 that impedes 

straight line travel between them, Hong and Murray (2013a) proved the ESP between two 

points, 𝑣𝑜 and 𝑣𝑑, is on the a convex hull for the origin, destination and obstacle, 

𝐶𝐻(𝑣𝑜 , 𝑣𝑑 , 𝑘). This constitutes the graph, with vertices of the hull representing nodes in 

the graph and line segments representing arcs in the graph. It is proven that the ESP will 

be in this graph, or rather along the convex hull when considering a single obstacle. In the 

case of multiple obstacles, convex hulls can be iteratively constructed to identify 

necessary vertices and arcs, giving a graph. Hong and Murray (2013a) proved that the 

resulting graph guarantees inclusion of the ESP.  

 The convexpath algorithm derives the graph and ESP as follows (Hong et al. 

2015):  

1) An origin and destination, 𝑣𝑜 and 𝑣𝑑 respectively, and set of all obstacles 𝑘 ∈ 𝐾 a
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re given. Graph 𝐺 = {𝑣𝑜 , 𝑣𝑑 , 𝑣𝑜𝑣𝑑̅̅ ̅̅ ̅̅ }, the set of identified obstacles, 𝛹 = ∅, and im

peded arc/obstacle set, 𝛩 = ∅, are all initialized.  

2) The shortest path between the origin and destination, 𝛿, in 𝐺 is derived (representi

ng a spatial filter). If 𝛿 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅ where 𝑘 ∈ 𝐾, then 𝛹 = 𝛹 + 𝑘. Else, 𝛿 is th

e optimal ESP.  

3) If 𝑙 ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅ where 𝑙 ∈ 𝐺 and 𝑘 ∈ 𝛹, then add (𝑙, 𝑘) to 𝛩. If 𝛩 = ∅, then go 

to step 2. 

4) For all (𝑙, 𝑘) ∈ 𝛩, substitute 𝑙 with 𝐶𝐻(𝑙, 𝑘). 𝐺 = 𝐺 + 𝑙′ for all 𝑙′ ∈ 𝐶𝐻(𝑙, 𝑘). If 

𝑣1 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑙, 𝑘)) ≠ ∅ and/or 𝑣2 ∩ 𝑖𝑛𝑡(𝐶𝐻(𝑙, 𝑘)) ≠ ∅ where 𝑙 = 𝑣1𝑣2̅̅ ̅̅ ̅̅ , then rep

lace k with faces j in 𝑓𝑗 ∈ 𝐿𝑃𝑂(𝑙, 𝑘).  

5) Go to step 3.  

 This algorithm relies on a number of spatial analytic operators available in GIS. 

The primary operators are 𝑖𝑛𝑡( ) (interior of a polygon), 𝐿𝑃𝑂( ) (line-polygon 

overlay) and spatial filtering. 

 Definition (interior): Given a polygon 𝑘, the interior of 𝑘, denoted 𝑖𝑛𝑡(𝑘), is the 

open set bounded by the polygon edges that are disjoint from the edges. 

This means that the interior is everything inside the polygon, but excludes the 

defining edges of the polygon. The interior is important for the ESP because travel is 

permitted along the boundary/vertex of an obstacle, but not through the interior of the 

obstacle. The feasibility of a potential travel arc is dependent upon not intersecting the 
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interior of an obstacle. Thus, generic intersection is not capable of separating the 

boundary from the interior. To address this, interior intersection is necessary. In the 

algorithm, interior intersection evaluates whether a line segment intersects the interior of 

an obstacle k. In cases where a line segment intersects the interior of an obstacle, it is not 

feasible and must therefore be replaced by a corresponding convex hull. 

Definition (line-polygon overlay): For a line segment defined by two points, 

𝑣1𝑣2̅̅ ̅̅ ̅̅ , such that 𝑣1𝑣2̅̅ ̅̅ ̅̅ ∩ 𝑖𝑛𝑡(𝑘) ≠ ∅, line-polygon overlay, 𝐿𝑃𝑂(𝑣1𝑣2̅̅ ̅̅ ̅̅ , 𝑘), divides 𝑘 into 

multiple disjoint faces 𝑓𝑗, defined by segments of 𝑣1𝑣2̅̅ ̅̅ ̅̅  and the boundary of the polygon 

where ∪𝑗 𝑓𝑗 = 𝑘. 

 Line-polygon overlay is a topological overlay operation in GIS. It is necessary in 

the algorithm because the convex hull properties assume that vertices 𝑣1 and 𝑣2 lie on the 

convex hull 𝐶𝐻(𝑣1𝑣2̅̅ ̅̅ ̅̅ , 𝑘) when 𝑣1𝑣2̅̅ ̅̅ ̅̅  intersects the interior of obstacle k. Thus, overlay 

enables the algorithm to effectively break up the polygon into faces so that the vertices 

will lie on the hull for each face. More details can be found in Hong and Murray (2013b). 

 A final point worth mentioning about the algorithm is the implicit spatial filtering 

possible, eliminating explicit evaluation of all vertices and/or obstacles. Hong et al. 

(2014) developed a spatial filtering technique that utilizes intermediate shortest paths as 

spatial filters for obstacle evaluation. Given a set of obstacles 𝑘 ∈ 𝐾 and some 

intermediate graph 𝐺, they proved that the intermediate shortest path is a lower bound on 

the optimal ESP. Given this, obstacles 𝑘 ∈ 𝐾 where 𝑖𝑛𝑡(𝑘) ∩ 𝐺 ≠ ∅ are only considered 

if they obstruct the intermediate lower bound path at that stage in the algorithm. The 

spatial filtering technique effectively limits evaluation of obstacles that never impact the 
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ESP. What is important, however, is that this is done in a manner that preserves ESP 

optimality properties of the resulting graph. 

 

Figure 6.2. Convexpath algorithm graph and path generation process: (a) initialize graph;  

(b) generate subgraph using line-polygon overlay;(c) evaluate obstacles obstructing arcs 

on shortest path spatial filter; (d) terminate process as no obstructions to shortest path   

 

The ESP graph and path derivation process is illustrated in Figure 6.2. The 

convexpath algorithm begins by initializing a graph containing origin and destination 
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points and a straight line linking them. Then, the shortest path between origin and 

destination points is derived given the intermediate graph (Figure 6.2a), in this case using 

Dijkstra’s algorithm. Any obstacle that obstructs the shortest path is added to the 

identified obstacle set, 𝛹. Every obstruction in 𝐺 caused by obstacles in 𝛹 is resolved by 

construction of convex hulls, 𝐶𝐻( ). If needed, line-polygon overlay, 𝐿𝑃𝑂( ), is 

applied (Figure 6.2b). Once all impediments are resolved for the current path, a new 

shortest path filter is identified from the graph (Figure 6.2c). In this case, obstacle 𝑘2 is 

evaluated as it impedes an arc on the spatial filter. These steps continue until no 

obstruction is found for the shortest path (Figure 6.2d). Obstacles that never impact the 

ESP, such as 𝑘1 and 𝑘3, are never explicitly evaluated. 

6.4. Raster representation  

The least cost path approach for solving the ESP relies on a raster representation 

of continuous space. Given the raster representation, deriving a least cost path requires a 

number of important details. First is assignment of an obstacle cost in cells containing all 

or part of an obstacle. Second is defining movement/travel between neighboring cells. 

Third is the derivation of travel costs associated with movement between neighboring 

cells. Finally, with the cost surface, a least cost path can be derived using any shortest 

path solution approach, such as Dijkstra’s algorithm. 

 An algorithm for identifying a least cost path is as follows: 

1) Given a raster surface, set of obstacles 𝑘 ∈ 𝐾, and origin and destination points, 

𝑣𝑜 and 𝑣𝑑, assign costs for cells containing all or part of an obstacle. 
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2) Define/create a graph reflecting feasible movement between neighboring cells. 

3) Derive costs on arcs for movement between neighboring cells. 

4) Solve for the least cost path. 

 This algorithm is fairly straightforward. An issue, however, is the many 

operational/analytical details that can impact the quality of the least cost path as an 

approximation to the ESP. The remainder of this section will examine these details, and 

discuss their implications for the ESP. 

Raster cell resolution/orientation 

As noted, the least cost path approach requires as input a raster representation of a 

study region. It is not uncommon that this raster surface is given, perhaps a byproduct of 

a USGS DEM (digital elevation model). If so, the orientation and cell size is already 

established. If not, then a surface would need to be generated. Decisions about orientation 

and cell size would therefore be needed. Irrespective, orientation and cell size are very 

important, with much potential to impact the identified least cost path in terms of 

efficiency/optimality. 

Figure 6.3 illustrates varying raster resolution in relation to the obstacles shown in 

Figure 6.1a. It is clear that accounting for obstacles in a raster surface can have different 

spatial impacts when the resolution of a cell is changed. Figure 6.3a, 6.3b, 6.3c, and 6.3d 

have a cell resolution of 60, 40, 30, and 20 feet, respectively. In general, the obstructed 

cells impede a larger area than the actual vector obstacles. The area of obstacle cells in 

Figure 6.3a is 234% larger than the polygonal obstacles (Figure 6.1a). However, the  
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Figure 6.3. Impact of raster resolution on obstacle representation:  

(a) 60 feet cell resolution; (b) 40 feet cell resolution;  

(c) 30 feet cell resolution; (d) 20 feet cell resolution 

 

spatial implication of this for path movement are pretty significant, altering 

feasible travel options, or even possibly producing infeasible path. In Figure 6.3a, low 

cell resolution results an enclosing the destination point. Although extreme travel cost is 

assigned to each obstacle cell to prevent moving through it, the least cost path approach 

will derive a path travel through some of the obstacle cells. However, such infeasible path 

may being considered as feasible if the path does not intersect any vector obstacles, and 
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Figure 6.3a is possibly an example of this vector-feasible path. The obstacle cell area in 

Figure 3b (40 feet cell resolution) is 164% larger, is 146% larger in Figure 6.3c (30 feet 

cell resolution), and is 123% larger in Figure 6.3d (20 feet cell resolution) than they 

actually are (Figure 6.1a). As cell size decreases, raster approximation of obstacles has 

less error and viable travel paths emerge. Clearly this has significant implications for path 

efficiency through the surface. 

Neighbor movement 

Possible travel movement in a raster layer is limited by the definition of neighbor 

relationships between cells (Huber and Church 1985). When a graph is constructed for 

path derivation, connection from a node, typically a centroid of a cell, to other nodes are 

allowed for neighboring nodes. There are several possible neighbor definitions for a grid 

structure, and this impacts the shape and length of the resulting path (Huber and Church 

1985). Figure 6.4 illustrates two commonly used neighbor definitions, namely the rook 

and queen’s case (Goodchild 1977, Van Bemmelen et al. 1993). The rook relationship 

(Figure 6.4a) is defined by cells sharing a non-zero length boundary. The square grid 

structure of a regular raster representation means that the rook case allows arc 

connections from the centroid of a given cell to at most four adjacent cells. The queen’s 

case (Figure 6.4b) allows both boundary and vertex sharing conditions in determining 

neighbors, resulting in a connection of up to eight adjacent cells. While continuous space 

movement is better approximated by the queen’s case, there remains approximation error. 

This can be reduced by using an extended neighborhood definition (see Huber and 

Church 1985), but doing so requires considerably more computing effort. 
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Figure 6.4. Different cell neighbor definitions: (a) rook case; (b) queen’s case 

 

Arc travel cost estimation 

The least cost path approach requires that arcs have an associated travel cost. This 

is a function of the length of the arc but also the cost attribute of the cells the arc 

traverses. Travel cost of an arc is typically derived as a weighted cost in proportion to the 

length and/or width of the arc through a given cell (Goodchild 1977, Huber and Church 

1985, Church and Murray 2009). To discourage travel through cells representing 

obstacles, extremely high costs are utilized (Jalbert and Dobson 1976, Huber and Church 

1985). How this is done is important, and impacts the travel cost of any arc between cells. 

In summary, the least cost path approach relying on a raster representation is 

utilized for ESP approximation in several areas. An important question remains about 

whether such an approximation is good and reliable in practice. 
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6.5. Study and empirical findings 

To assess the least cost path approximation for ESP routing, travel navigation 

across the Arizona State University (Tempe) campus (Figure 6.5) is considered. The 

Tempe campus has 178 buildings, each representing obstacles for travel between an 

origin and destination. The study examines 145 origin-destination pairs selected at 

random, and every pair has one or more impeding obstacles between them. The ESP 

(vector representation) is derived using the convexpath algorithm. The least cost path 

(raster representation) approximation is evaluated using ten different cell resolutions, 

ranging in size from 100 down to 10 feet, in intervals of 10 feet. The analysis is carried 

out on an Intel i5 CPU with 12 GB memory system. The convexpath algorithm is 

implemented in Python 2.7 using open source geospatial libraries. The least cost path 

approach is available in commercial GIS software, ArcGIS 10.1, and was utilized to 

identify all reported paths in raster representation. 

  

Figure 6.5. Arizona State University campus buildings 
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Figure 6.6. ESP and least cost path approximations 

 

A comparison of the paths identified for one origin-destination pair is shown in 

Figure 6.6. The ESP derived using the convexpath algorithm was 2,299.4 feet in length, 

taking 0.51 seconds to compute. The least cost path approximations, obtained using 

ArcGIS, ranged from 5,006.9 feet in length to 2,499.7 feet. Computing time using 

ArcGIS ranged from 5.9 to 165.7 seconds. Worth noting in Figure 6 is that the coarse 

resolution raster representations, 100, 90 and 80 ft cases, actually are infeasible because 

they route through one or more buildings. Further, the 70 ft path is routed through one or 

more obstacle cells (not shown), making it technically infeasible as it is supposed to 

avoid high cost obstacle cells, but the path actually does not intersect the interior of any 
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building. In general, Figure 6 provides an accurate and consistent highlight of our 

findings across different raster representations, irrespective of the origin-destination pair. 

Specifically, coarse raster resolutions are typically infeasible as they intersect buildings 

(obstacles). Secondly, the spatial variability of the identified paths is significant. Thirdly, 

spatial variability is not a good thing, as this always translates to less efficiency (an 

increase in path length). Finally, the solution times associated with raster approximation 

are considerably more than solving the ESP explicitly as a vector representation. 

A summary comparison across all 145 origin-destination pairs for the ten different 

raster representations is given in Figure 6.7. The three categories of feasibility are 

illustrated in Figure 6.7a: feasible path, vector-feasible path (infeasible in raster 

representation), and infeasible path (infeasible in both the raster and vector 

representations). In particular, Figure 6.7a shows the proportion of the three feasibility 

types for each raster cell resolution. For example, the 60 ft cell resolution paths were 

infeasible for 6.9% of the cases, vector-feasible for 13.8% of the cases (raster infeasible, 

but actually feasible with respect to the vector obstacles) and feasible for 79.4% of the 

145 origin-destination path routing cases. The trend, of course, is that the proportion of 

infeasible cases decreases as the raster representation moves from coarse to finer 

resolution. Summarized in Figure 6.7b is the average length of the identified path over 

the optimal ESP length (including only feasible path cases). The general tendency is that 

raster representation approximations identify paths that are significantly longer compared 

to the optimal ESP distance. This is expected as the raster representation is an 

approximation, but the magnitude of the difference is a high of 202.5% of the optimal 

ESP for the 100 and 90 ft instances down to a low of 107.8% for the 10 ft instances. 
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Finally, Figure 6.7c indicates the average computing time differences as a ratio of the 

least cost path computing time over the convexpath algorithm computing time. 

Computing time for the least cost path approach steadily increases as raster cell 

resolution increases. The least cost path approach takes 3,628% longer than the 

convexpath algorithm to derive a path in 100 feet cell resolution case, on average. This 

difference increases substantially as cell resolution increases.   
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Figure 6.7. Path comparisons:  

(a) portion of feasible, vector-feasible, and infeasible paths;  

(b) proportion of estimated length over the ESP (average); 

(c) percentage of the least cost path computing time over the convexpath algorithm 

 

6. Conclusions and discussion  

There are number of observations and insights to be gained from the empirical 

findings presented in the previous section. Coarse raster resolutions typically lead to the 

identification of paths that are spatially infeasible due to intersection with buildings 

(obstacles). This is evident in Figure 6, but also in the summary presented in Figure 7a. 

The spatial variability of identified feasible paths is significant. Figure 6 is very 

representative of what is found for essentially all origin-destination pairs, that vary 
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considerably. Of course this explains how so many derived paths can be far longer than 

the optimal ESP, because they are largely not efficient. An interesting argument for the 

use of a raster based solution approach is computational efficiency associated with raster 

GIS. The results demonstrate that this is not the case. Raster based processing always 

requires more solution time compared to the vector GIS solution approach utilized here, 

convexpath. 

One issue not addressed in this chapter is the impact of neighbor definition. On 

the one hand, extended neighborhood definitions would have likely been able to identify 

more efficient paths, at least for the fine resolution cases. However, there would have 

been a substantial price paid through the need for greater computational effort. 

Processing time could easily double or more, depending on the neighbor definition used. 

While not the focus of this paper, it is worth mentioning that no attempt was made 

to evaluate other commercial GIS packages. It may be that other packages, like GRASS 

GIS or IDRISI, may employ more computationally efficient processing functions. 

Nevertheless, raster cell resolution examined explicitly in the paper would not change. 

That is, we can expect similar or the same findings. 

Obstacle-avoiding shortest path planning is an essential operation for wayfinding, 

navigation, infrastructure planning and robotic travel. Numerous solution techniques have 

been developed based on vector and raster representation. On the vector GIS side, the 

convexpath algorithm derives the ESP efficiently using spatial knowledge and GIS 

functionality. On the raster GIS side, the least cost path approach is applied in order to 

approximate an ESP. A comparison of ESP and least cost paths was carried out, based on 
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examining a number of raster representations, each varying in spatial resolution. 

Although the least cost path approach has several benefits for resource-constrained 

environments, issues regarding path approximation quality and computing efficiency 

arise. The least cost path is sensitive to representation, and produces low quality shortest 

paths for coarse raster cell resolutions. Beyond this, no evidence is found that raster based 

representations enable more efficient route identification. In fact, the empirical results 

indicate that raster based processing is far more computationally demanding, in contrast 

to vector GIS approaches that require less than one second.   
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CHAPTER 7 

CONCLUSIONS 

 

7.1. Summary  

The obstacle-avoiding shortest path between two points in Euclidean space, or the 

ESP, is an essential element for spatial analysis, location modeling, and wayfinding. 

However, existing methods that have been widely used to derive the ESP have limited 

computational capability. In this research, we developed a novel spatial approach, the 

convexpath algorithm, which is able to derive the ESP with significantly improved 

efficiency compared to existing methods. We formulated the ESP problem 

mathematically and provided proofs for essential theorems for the convexpath algorithm. 

Moreover, we improved the applicability of convexpath by relaxing one restricting 

assumption of the convexpath algorithm. Next, to improve the efficiency of convexpath 

in high obstacle density environments, a spatial filtering technique that utilizes the 

intermediate shortest path as a spatial filter was developed. Empirical wayfinding 

applications demonstrated significant performance improvement in the ESP derivation. 

Furthermore, a parallelized version of convexpath was developed to boost the 

performance of the convexpath algorithm in big data environment, which showed 

noticeable efficiency gain. Additionally, performance and quality issues of raster-based 

ESP approximation were analyzed.  
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Chapter 2 proposed the convexpath algorithm with important theorems and their 

proofs. By utilizing spatial knowledge and GIS functionality, convexpath was able to 

construct smaller size graph, as it evaluated fewer obstacles and vertices compared to the 

visibility graph and local visibility graph. The key spatial operator of convexpath is 

convex hull construction. Also, it was proved that the convexpath algorithm guarantees 

the inclusion of the ESP in its resulting graph. Convexpath can derive the ESP with 

significantly improved efficiency over visibility and local visibility graph.  

Chapter 3 extended applicability of the convexpath algorithm to general ESP 

problems. The initial convexpath algorithm proposed in Chapter 2 had an assumption that 

limits location of origin, destination, and nodes of resulting graph at the boundary of 

resulting convex hulls. To address issues with enclosing non-convex obstacles, a line-

polygon overlay spatial operator was added to ensure that subproblems will always 

generate subgraphs that can be used to derive the ESP globally. With this spatial operator, 

the convexpath algorithm is able to derive the ESP for any discrete obstacle shape, size, 

or configuration.  

Chapter 4 improved the efficiency of the convexpath algorithm with the shortest 

path spatial filtering technique. Although the convex hull operator filters out irrelevant 

obstacles efficiently, it can include irrelevant obstacles in high obstacle density 

environments. The intermediate shortest path was utilized as spatial filter to eliminate 

unnecessary obstacles from evaluation. This enhanced convexpath with spatial filtering 

demonstrated significantly improved computational efficiency compared to convexpath 

without filtering technique.  
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Chapter 5 developed a parallelized version of the convexpath algorithm to address 

performance and scale issues. The convexpath algorithm was restructured for 

parallelization of computationally intensive spatial operators of convexpath. Harnessing 

the power of multicore CPUs in a single machine, parallelized convexpath showed 

significantly improved performance compared to the sequential convexpath.  

Chapter 6 assessed the issues of computational efficiency and quality of 

estimation for raster-based ESP approximation technique, compared to vector-based ESP 

computation. Although the least cost path approach for the ESP approximation has 

several benefits, comparison results showed that the quality of raster ESP approximation 

is sensitive to resolution. Moreover, computational efficiency poses a severe challenge to 

the applicability of the least cost based ESP approximation.  

7.2. Future work  

While much progress has been made in this research to understand and advance 

the capabilities of deriving and ESP with spatial approaches, there remains a number of 

important research challenges, especially in terms of applications of the convexpath 

algorithm.  

7.2.1. Developing GIS tool & library of the convexpath algorithm 

While the convexpath algorithm can compute the ESP with high efficiency, it is 

not yet readily available for potential end users. To improve its usability, it needs to be 

developed as a tool for commercial GIS package such as ArcGIS. Furthermore, 

developing and distributing the convexpath algorithm as an open source geospatial tool 

would benefit the geospatial community.  
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7.2.2. Commercial delivery drone system 

Recently, drones, which refer a range of small-sized unmanned aerial vehicles 

propelled by multiple rotors, have been utilized for various purpose. Commercial delivery 

of small products is one of potential economic use for drones. The convexpath algorithm 

can be applied to route planning of drones from a warehouse to customer’s location, as 

the movement of a drone is not restricted to a road network, while obstacles may still 

impede its movement. Optimization of commercial delivery system of drones would be 

able to structured using the convexpath algorithm.  

  



131 

 

BIBLIOGRAPHY 

 

Amdahl, G. M., 1967. Validity of the single processor approach to achieving large scale 

computing capabilities. In: Proceedings of the spring joint computer conference. 

Aneja, Y., and Parlar, M., 1994. Technical Note—Algorithms for weber facility location 

in the presence of forbidden regions and/or barriers to travel. Transportation 

Science, 28 (1), 70-76. 

Anselin, L., and Rey, S. J., 2010. Perspectives on spatial data analysis. In Perspectives on 

Spatial Data Analysis, 1-20. 

Anselin, L., and Rey, S. J., 2012. Spatial econometrics in an age of CyberGIScience. 

International Journal of Geographical Information Science, 26 (12), 2211-2226. 

Asano, T., 1985. An efficient algorithm for finding the visibility polygon for a polygonal 

region with holes. IEICE TRANSACTIONS (1976-1990), 68 (9), 557-559. 

Asano, T., Guibas, L., Hershberger, J., and Imai, H., 1986. Visibility of disjoint polygons. 

Algorithmica, 1 (1), 49-63. 

Bailey, T. C., and Gatrell, A. C., 1995. Interactive spatial data analysis: Longman 

Scientific & Technical. 

Barry, W., 2006. Parallel Programming: Techniques And Applications Using Networked 

Workstations And Parallel Computers. 2nd ed: Pearson Education. 

Batta, R., Ghose, A., and Palekar, U. S., 1989. Locating facilities on the Manhattan 

metric with arbitrarily shaped barriers and convex forbidden regions. 

Transportation Science, 23 (1), 26-36. 

Bekker, J., and Schmid, J., 2006. Planning the safe transit of a ship through a mapped 

minefield. ORiON: The Journal of ORSSA, 22 (1), 1-18. 

Bhattacharya, P., and Gavrilova, M. L., 2007. Voronoi diagram in optimal path planning. 

In: Voronoi Diagrams in Science and Engineering, 2007. ISVD '07. 4th 

International Symposium on, 9-11 July 2007. 

Bischoff, M., and Klamroth, K., 2007. An efficient solution method for Weber problems 

with barriers based on genetic algorithms. European Journal of Operational 

Research, 177 (1), 22-41. 

Carling, K., Han, M., and Håkansson, J., 2012. Does Euclidean distance work well when 

the p-median model is applied in rural areas? Annals of Operations Research, 201 

(1), 83-97. 



132 

 

Chang, K.-Y., Jan, G. E., and Parberry, I., 2003. A method for searching optimal routes 

with collision avoidance on raster charts. The Journal of Navigation, 56 (3), 371-

384. 

Church, R. L., 2002. Geographical information systems and location science. Computers 

& Operations Research, 29 (6), 541-562. 

Church, R. L., and Murray, A. T., 2009. Business site selection, location analysis, and 

GIS: Wiley. 

Collischonn, W., and Pilar, J. V., 2000. A direction dependent least-cost-path algorithm 

for roads and canals. International Journal of Geographical Information Science, 

14 (4), 397-406. 

Cudnik, M. T., Yao, J., Zive, D., Newgard, C., and Murray, A. T., 2012. Surrogate 

markers of transport distance for out-of-hospital cardiac arrest patients. 

Prehospital Emergency Care, 16 (2), 266-272. 

Daniel, K., Nash, A., Koenig, S., and Felner, A., 2010. Theta*: Any-angle path planning 

on grids. Journal of Artificial Intelligence Research, 39 (1), 533-579. 

de Berg, M., Cheong, O., and Van Kreveld, M., 2008. Computational geometry: 

algorithms and applications. 3rd ed: Springer. 

de Smith, M. J., Goodchild, M. F., and Longley, P., 2012. Geospatial analysis: a 

comprehensive guide to principles, techniques and software tools: Troubador 

Publishing. 

Douglas, D. H., 1994. Least-cost path in GIS using an accumulated cost surface and 

slopelines. Cartographica: the international journal for Geographic Information 

and Geovisualization, 31 (3), 37-51. 

Etherington, T. R., and Holland, E. P., 2013. Least-cost path length versus accumulated-

cost as connectivity measures. Landscape ecology, 28 (7), 1223-1229. 

Fagerholt, K., Heimdal, S., and Loktu, A., 2000. Shortest path in the presence of 

obstacles: An application to ocean shipping. Journal of the operational research 

society, 51 (6), 683-688. 

Ferguson, D., and Stentz, A., 2006. Using interpolation to improve path planning: The 

Field D* algorithm. Journal of Field Robotics, 23 (2), 79-101. 

Fischer, M. M., and Getis, A., 1997. Recent developments in spatial analysis: spatial 

statistics, behavioural modelling, and computational intelligence: Springer. 

Fone, D. L., Christie, S., and Lester, N., 2006. Comparison of perceived and modelled 

geographical access to accident and emergency departments: a cross-sectional 



133 

 

analysis from the Caerphilly Health and Social Needs Study. International 

Journal of Health Geographics, 5 (1), 16. 

Fotheringham, A. S., Brunsdon, C., and Charlton, M., 2000. Quantitative geography: 

perspectives on spatial data analysis: Sage. 

Gao, Y., Yang, J., Chen, G., Zheng, B., and Chen, C., 2011. On efficient obstructed 

reverse nearest neighbor query processing. In: Proceedings of the 19th ACM 

SIGSPATIAL International Conference on Advances in Geographic Information 

Systems. 

Ghosh, S. K., and Mount, D. M., 1991. An output sensitive algorithm for computing 

visibility graphs. SIAM Journal on Computing, 20 (5), 888-910. 

Golledge, R. G., Klatzky, R. L., Loomis, J. M., Speigle, J., and Tietz, J., 1998. A 

geographical information system for a GPS based personal guidance system. 

International Journal of Geographical Information Science, 12 (7), 727-749. 

Gong, Z., Tang, W., Bennett, D. A., and Thill, J.-C., 2013. Parallel agent-based 

simulation of individual-level spatial interactions within a multicore computing 

environment. International Journal of Geographical Information Science, 27 (6), 

1152-1170. 

Goodchild, M., 1977. An evaluation of lattice solutions to the problem of corridor 

location. Environment and Planning a, 9 (7), 727-738. 

Guan, X., and Wu, H., 2010. Leveraging the power of multi-core platforms for large-

scale geospatial data processing: Exemplified by generating DEM from massive 

LiDAR point clouds. Computers & Geosciences, 36 (10), 1276-1282. 

Guibas, L. J., and Hershberger, J., 1989. Optimal shortest path queries in a simple 

polygon. Journal of Computer and System Sciences, 39 (2), 126-152. 

Guven, G., Ergen, E., Erberik, M., Kurc, O., and Birgönül, M., 2012. Providing guidance 

for evacuation during emergency based on a real-time damage and vulnerability 

assessment of facilities. In: ASCE International Conference on Computing in 

Civil Engineering. 

Habib, M. K., and Asama, H., 1991. Efficient method to generate collision Free paths for 

an autonomous mobile robot based on new Free space structuring approach. In: 

IEEE/RSJ International Workshop on Intelligent Robots and Systems' 91. 

Haynes, R., Jones, A. P., Sauerzapf, V., and Zhao, H., 2006. Validation of travel times to 

hospital estimated by GIS. International Journal of Health Geographics, 5 (1), 

40. 



134 

 

Hershberger, J., and Suri, S., 1993. Efficient computation of Euclidean shortest paths in 

the plane. In: Foundations of Computer Science, 1993. Proceedings., 34th Annual 

Symposium on. 

Hershberger, J., and Suri, S., 1999. An optimal algorithm for Euclidean shortest paths in 

the plane. SIAM J. Comput., 28 (6), 2215-2256. 

Higgs, G., 2009. The role of GIS for health utilization studies: literature review. Health 

Services and Outcomes Research Methodology, 9 (2), 84-99. 

Hong, I., and Murray, A. T., 2013a. Efficient measurement of continuous space shortest 

distance around barriers. International Journal of Geographical Information 

Science, 27 (12), 2302-2318. 

Hong, I., and Murray, A. T., 2013b. Efficient wayfinding in complex environments: 

derivation of a continuous space shortest path. In: Proceedings of the Sixth ACM 

SIGSPATIAL International Workshop on Computational Transportation Science. 

Hong, I., Murray, A. T., and Rey, S. J., 2015. High Performance Computing to Derive an 

Obstacle-Avoiding Shortest Path.  

Hong, I., Murray, A. T., and Wolf, L. J., 2014. Spatial Filtering to Enhance Solution 

Efficiency in Euclidean Shortest Path Derivation.  

Huber, D. L., and Church, R. L., 1985. Transmission corridor location modeling. Journal 

of Transportation Engineering, 111 (2), 114-130. 

Jalbert, J. S., and Dobson, J. E. 1976. Cell-based land use screening procedure for 

regional siting analysis: Oak Ridge National Lab. 

Jones, S. G., Ashby, A. J., Momin, S. R., and Naidoo, A., 2010. Spatial Implications 

Associated with Using Euclidean Distance Measurements and Geographic 

Centroid Imputation. Health Services Research, 45 (1), 316-327. 

Jordan, H., Roderick, P., Martin, D., and Barnett, S., 2004. Distance, rurality and the need 

for care: access to health services in South West England. International Journal 

of Health Geographics, 3 (1), 21. 

Katz, I. N., and Cooper, L., 1981. Facility location in the presence of forbidden regions, I: 

Formulation and the case of Euclidean distance with one forbidden circle. 

European Journal of Operational Research, 6 (2), 166-173. 

Kim, D. S., Yu, K., Cho, Y., Kim, D., and Yap, C., 2004. Shortest paths for disc 

obstacles. Computational Science and Its Applications–ICCSA 2004, 62-70. 

Klamroth, K., 2001a. Planar Weber location problems with line barriers. Optimization, 49 

(5-6), 517-527. 



135 

 

Klamroth, K., 2001b. A reduction result for location problems with polyhedral barriers. 

European Journal of Operational Research, 130 (3), 486-497. 

Kulyukin, V., Gharpure, C., Nicholson, J., and Osborne, G., 2006. Robot-assisted 

wayfinding for the visually impaired in structured indoor environments. 

Autonomous Robots, 21 (1), 29-41. 

Kurata, T., Kourogi, M., Ishikawa, T., Kameda, Y., Aoki, K., and Ishikawa, J., 2011. 

Indoor-outdoor navigation system for visually-impaired pedestrians: Preliminary 

evaluation of position measurement and obstacle display. In: Wearable 

Computers (ISWC), 2011 15th Annual International Symposium on Wearable 

Computers. 

Kwan, M.-P., and Lee, J., 2005. Emergency response after 9/11: the potential of real-time 

3D GIS for quick emergency response in micro-spatial environments. Computers, 

Environment and Urban Systems, 29 (2), 93-113. 

Lanthier, M., Nussbaum, D., and Sack, J.-R., 2003. Parallel implementation of geometric 

shortest path algorithms. Parallel Computing, 29 (10), 1445-1479. 

Larson, R. C., and Sadiq, G., 1983. Facility locations with the Manhattan metric in the 

presence of barriers to travel. Operations Research, 652-669. 

Lee, J.-k., Eastman, C. M., Lee, J., Kannala, M., and Jeong, Y.-s., 2010. Computing 

walking distances within buildings using the universal circulation network. 

Environment and planning. B, Planning & design, 37 (4), 628. 

Lee, J., and Stucky, D., 1998. On applying viewshed analysis for determining least-cost 

paths on Digital Elevation Models. International Journal of Geographical 

Information Science, 12 (8), 891-905. 

Li, Z., Gao, Y., and Lu, Y., 2011. Continuous obstructed range queries in spatio-temporal 

databases. In: System Science, Engineering Design and Manufacturing 

Informatization (ICSEM), 2011 International Conference on. 

Lombard, K., and Church, R., 1993. The gateway shortest path problem: generating 

alternative routes for a corridor location problem. Geographical systems, 1 (1), 

25-45. 

Loomis, J. M., Klatzky, R. L., and Golledge, R. G., 2001. Navigating without vision: 

basic and applied research. Optometry & Vision Science, 78 (5), 282-289. 

Loomis, J. M., Marston, J. R., Golledge, R. G., and Klatzky, R. L., 2005. Personal 

guidance system for people with visual impairment: A comparison of spatial 

displays for route guidance. Journal of Visual Impairment & Blindness, 99 (4), 

219. 



136 

 

Lozano-Perez, T., 1987. A simple motion-planning algorithm for general robot 

manipulators. Robotics and Automation, IEEE Journal of robotics and 

automation, 3 (3), 224-238. 

Lozano-Pérez, T., and Wesley, M. A., 1979. An algorithm for planning collision-free 

paths among polyhedral obstacles. Communications of the ACM, 22 (10), 560-

570. 

Martin, D., Roderick, P., Diamond, I., Clements, S., and Stone, N., 1998. Geographical 

aspects of the uptake of renal replacement therapy in England. International 

Journal of Population Geography, 4 (3), 227-242. 

Martin, D., Wrigley, H., Barnett, S., and Roderick, P., 2002. Increasing the sophistication 

of access measurement in a rural healthcare study. Health & Place, 8 (1), 3-13. 

Mitchell, J., 1989. An optimal algorithm for shortest rectilinear paths among obstacles. 

In: Abstracts 1st Canadian Conference of Computational Geometry. 

Mitchell, J. S., 1988. An algorithmic approach to some problems in terrain navigation. 

Artificial Intelligence, 37 (1), 171-201. 

Mitchell, J. S. B., 1996. Shortest paths among obstacles in the plane. International 

Journal of Computational Geometry & Applications, 6 (3), 309-332. 

Mitchell, J. S. B., 1999. Geometric Shortest Paths and Network Optimization. In 

Handbook of Computational Geometry, eds. J. R. Sack and J. Urrutia, 633-702. 

New York: Elsevier. 

Murray, A. T., 2010. Advances in location modeling: GIS linkages and contributions. 

Journal of geographical systems, 12 (3), 335-354. 

Nash, A., Daniel, K., Koenig, S., and Felner, A., 2007. Theta*: Any-Angle Path Planning 

on Grids. In: Proceedings of the National Conference on Artificial Intelligence. 

O'Sullivan, D., and Unwin, D., 2010. Geographic Information Analysis: Wiley. 

Openshaw, S., and Turton, I., 1999. High Performance Computing and the Art of Parallel 

Programming: An Introduction for Geographers, Social Scientists and Engineers: 

Taylor & Francis. 

Oppong, J. R., and Hodgson, M. J., 1994. Spatial accessibility to health care facilities in 

Suhum District, Ghana. The Professional Geographer, 46 (2), 199-209. 

Papadopoulou, E., and Lee, D., 1995. Efficient computation of the geodesic Voronoi 

diagram of points in a simple polygon. Algorithms—ESA'95, 238-251. 



137 

 

Papadopoulou, E., and Lee, D., 1998. A new approach for the geodesic Voronoi diagram 

of points in a simple polygon and other restricted polygonal domains. 

Algorithmica, 20 (4), 319-352. 

Phibbs, C. S., and Luft, H. S., 1995. Correlation of travel time on roads versus straight 

line distance. Medical Care Research and Review, 52 (4), 532-542. 

Pocchiola, M., and Vegter, G., 1996. Minimal tangent visibility graphs. Computational 

Geometry, 6 (5), 303-314. 

Qin, Y.-Q., Sun, D.-B., Li, N., and Cen, Y.-G., 2004. Path planning for mobile robot 

using the particle swarm optimization with mutation operator. In: Machine 

Learning and Cybernetics, 2004. Proceedings of 2004 International Conference 

on. 

Ran, L., Helal, S., and Moore, S., 2004. Drishti: an integrated indoor/outdoor blind 

navigation system and service. In: Proceedings of the Second IEEE Annual 

Conference on Pervasive Computing and Communications. 

Rey, S. J., Anselin, L., Pahle, R., Kang, X., and Stephens, P., 2013. Parallel optimal 

choropleth map classification in PySAL. International Journal of Geographical 

Information Science, 27 (5), 1023-1039. 

Riehle, T., Lichter, P., and Giudice, N., 2008. An indoor navigation system to support the 

visually impaired. In: Engineering in Medicine and Biology Society, 2008. EMBS 

2008. 30th Annual International Conference of the IEEE. 

Rogerson, P. A., 2010. Statistical Methods for Geography: A Student's Guide. 2nd ed: 

Sage. 

Rohnert, H., 1986. Shortest paths in the plane with convex polygonal obstacles. 

Information Processing Letters, 23 (2), 71-76. 

Schmickl, T., and Crailsheim, K., 2007. A Navigation Algorithm for Swarm Robotics 

Inspired by Slime Mold Aggregation. In Swarm Robotics, eds. E. Şahin, W. 

Spears and A. T. Winfield, 1-13: Springer. 

Stock, R., 1983. Distance and the utilization of health facilities in rural Nigeria. Social 

Science & Medicine, 17 (9), 563-570. 

Szymanski, M., Breitling, T., Seyfried, J., and Wörn, H., 2006. Distributed Shortest-Path 

Finding by a Micro-robot Swarm. In Ant Colony Optimization and Swarm 

Intelligence, eds. M. Dorigo, L. Gambardella, M. Birattari, A. Martinoli, R. Poli 

and T. Stützle, 404-411: Springer. 



138 

 

Takahashi, O., and Schilling, R., 1989. Motion planning in a plane using generalized 

Voronoi diagrams. Robotics and Automation, IEEE Transactions on, 5 (2), 143-

150. 

Tsou, M.-C., 2010. Integration of a geographic information system and evolutionary 

computation for automatic routing in coastal navigation. Journal of Navigation, 

63 (2), 323. 

Van Bemmelen, J., Quak, W., Van Hekken, M., and Van Oosterom, P., 1993. Vector vs. 

raster-based algorithms for cross country movement planning. In: Autocarto 

Conference. 

Viegas, J., and Hansen, P., 1985. Finding shortest paths in the plane in the presence of 

barriers to travel (for any lp-norm). European Journal of Operational Research, 

20 (3), 373-381. 

Wangdahl, G. E., Pollock, S., and Woodward, J. B., 1974. Minimum-trajectory pipe 

routing. Journal of Ship Research, 18 (1) 

Welzl, E., 1985. Constructing the visibility graph for n-line segments in O (n2) time. 

Information Processing Letters, 20 (4), 167-171. 

Wilson, J., Walker, B. N., Lindsay, J., Cambias, C., and Dellaert, F., 2007. Swan: System 

for wearable audio navigation. In: 11th IEEE International Symposium on 

Wearable Computers. 

Xia, Y.-j., Kuang, L., and Li, X.-m., 2011. Accelerating geospatial analysis on GPUs 

using CUDA. Journal of Zhejiang University SCIENCE C, 12 (12), 990-999. 

Yao, J., Murray, A. T., Agadjanian, V., and Hayford, S. R., 2012. Geographic influences 

on sexual and reproductive health service utilization in rural Mozambique. 

Applied Geography, 32 (2), 601-607. 

Yap, P., 2002. Grid-based path-finding. In Advances in Artificial Intelligence, 44-55: 

Springer. 

Yap, P., Burch, N., Holte, R. C., and Schaeffer, J., 2011. Block A*: Database-Driven 

Search with Applications in Any-Angle Path-Planning. In: AAAI Conference on 

Artifitial Intelligent. 

Yu, C., Lee, J., and Munro-Stasiuk, M. J., 2003. Extensions to least-cost path algorithms 

for roadway planning. International Journal of Geographical Information 

Science, 17 (4), 361-376. 

Zhang, J., 2010. Towards personal high-performance geospatial computing (HPC-G): 

perspectives and a case study. In: Proceedings of the ACM SIGSPATIAL 



139 

 

International Workshop on High Performance and Distributed Geographic 

Information Systems. 

Zhang, J., Papadias, D., Mouratidis, K., and Manli, Z., 2005. Query processing in spatial 

databases containing obstacles. International Journal of Geographical 

Information Science, 19 (10), 1091-1111. 

Zhang, L., Zhang, L., Peng, R., Li, G., and Zou, W., 2011. Determination of the Shortest 

Time Route Based on the Composite Influence of Multidynamic Elements. 

Marine Geodesy, 34 (2), 108-118. 

 

 


