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ABSTRACT  

   

In this thesis, the author described a new genetic algorithm based on the idea: the 

better design can be found at the neighbor of the current best design. The algorithm are 

described, including the rebuilding process from Micro-genetic algorithm and the 

different crossover and mutation formation. Some popular examples, including two 

variable function optimization and simple truss models are used to test this algorithm. In 

this study, the new genetic algorithm is proved as able to find the optimized results like 

other algorithms. Besides, the author also tried to build one more complex truss model. 

After tests, the new genetic algorithm can produce a good and reasonable optimized 

result. Form the results, the rebuilding, crossover and mutation can do the work as 

designed. At last, the author also discussed two possible points to improve this new 

genetic algorithm: the population size and the algorithm flexibility. The simple result of 

2D finite element optimization showed that the effectiveness could be better, with the 

improvement of these two points. 
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CHAPTER 1 

INTRODUCTION 

In this paper, a new continuous genetic algorithm will be described and tested. In the first 

chapter, some background information is introduced to help understand the new genetic 

algorithm. The background information includes the details of basic genetic algorithm and the 

development of genetic algorithm.  

1.1  The details of basic genetic algorithm 

In this section, the formation of basic genetic algorithm from [2] is described. Basically, as shown 

in [6], a standard genetic algorithm should have the following process: 

1. The initial population with the fitness 

2. Evaluate all the designs (fitness calculation) 

3. If not converged, go to loop 

3.1 Selection: select the individuals randomly from population as parents 

3.2 Crossover and Mutation: produce the new individuals by crossover and mutation 

3.3 Evaluate the new individuals (fitness calculation) 

3.4 Replace some individuals with new designs 

4. End the calculation if converged.  
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1.1.1  Design representations 

Traditionally, binary coding is widely implemented in genetic algorithm: one certain of binary 

string to present one variable. For example, to design one column, there are 15 kinds of formed 

steel columns. A four-digit binary string is enough for this column. So Column No. 1 could be: 

                                                             0 0 0 0                                                      (1.1) 

And the last one could be: 

                                                             1 1 1 0                                                     (1.2) 

        All the variables will be coded in the same manner. The total length of binary strings for 

one design is shown as: 

                                                            𝑁𝐵 = 𝑁𝑣 ∙ 𝑁𝑏                                                     (1.3) 

Where 𝑁𝐵is the total binary strings length of the design; 𝑁𝑣is the number of variables; 𝑁𝑏is the 

binary length of one variable.  

        The binary coding is extremely suitable for the discrete variables and has been proved 

effective in practical calculation by [7]. In fact, for discrete variables, the genetic algorithm even 

has the advantage over the gradient based optimization.  

The discussion of the continuous variables for the new genetic algorithm is shown in chapter 2.  

1.1.2  Crossover and mutation  

The crossover and mutation are the soul of genetic algorithm to make the optimization process 

like the natural evolution. For every iterations, the generation will operate the crossover and 

mutation to find the better designs. In this way, the population is refreshed by the new and better 

designs and will be dominated by one optimized design at the end of the calculation. 
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        For the crossover, the most simple and widely used method is one point crossover. For 

example, two designs, 𝑃1and 𝑃2 are selected to operate the crossover and 𝐶1 and 𝐶2 are the 

products, shown as follows:  

𝑃1: 1 1 0 1
𝑃2:  1 0 1 1

 

 
𝐶1: 1 1 1 1
𝐶2:  1 0 0 1

 

        Figure 1.  Crossover Process      

 

        In this way, as the binary strings are changed, the combination of variables is changed. If 

the crossover point is allowed to happen inside of one variable, this variable is changed as well. 

Therefore, the basic idea of using crossover is to make the better combination from current 

strings. Finally, the crossover will pull the population to the converged. 

        Mutation is used to maintain the diversity of the population and prevent the calculation pre-

convergence. It is very easy to operate mutation for the binary strings, shown as follows: 

𝑀1 = 1 1 0 1 

𝑀2 = 1 0 0 1 

        Figure 2. Mutation Process 

The second binary digit is mutated from 1 to 0.  

        In this way, mutation will create the new variable (the new string for one variable) from the 

outside of the population, to increase the creativity and diversity.  

1.1.3  Constraints handling 

For the genetic algorithm, the penalty function is used to control the constraint violations. 

Basically, the following equation is displayed as follows 

                                                         ∅ = W + V                                                           (1.4) 



  4 

Where ∅ is the fitness; 𝑊 is the objective; 𝑉 is the penalty function. 

        There are many ways to form a penalty function. Static penalty, adaptive penalty and 

dynamic penalty are the most widely used. All of these methods will add some values on the 

objective, according to the responses of calculation.  

        The smallest fitness means the best design with small objective and little penalty. 

        This is the summary of traditional genetic algorithm. It will be a big help to understand the 

rest of this paper. 

1.2  The development of genetic algorithm 

The genetic algorithm for structural optimization used to draw a number of attentions after [1] 

and [2] descried its basic idea.  In the past 25 years, the genetic algorithm was developed a lot.  

        The very initial researches used, like [2], the basic genetic algorithm to do the sizing 

optimization of ten bar model, whose major efforts lied in describing and proving that the genetic 

algorithm could find out the best designs.  

Moreover, researches like [3] [4] [5] who published in 1990s began to focus on the discussion of 

genetic algorithm parameters and trying more complex problems. [3], for example, tried to 

discuss the formation of penalty function. In [4], the author provided “precision” and made a 

continuous problem as a discrete one. Moreover, [4] also proved that the genetic algorithm can 

solve a simple shape and topology problem.  

        In the 21st century, according to a number of researches studying structural optimization of 

genetic algorithm, some bench marks such as 10 bar truss model and 18 truss model are used to 

test the new algorithm. In this paper, some models will be tested for the new algorithm to 

compare with other genetic algorithms. So more introductions and details are shown in chapter 3. 
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        Moreover, researchers were likely to invent a better genetic algorithm for the continuous 

variable problems. One of the most important studies is harmony search, [8] and [9]. In this 

study, Geem built the genetic algorithm based on the idea of music harmony. Basically, for the 

bench marks of truss like models, Geem found the optimized designs although the most of recent 

studies had similar results. This part of discussion will be shown in chapter 3. 

        Besides, recently, researchers pay some attentions to topology optimization of two 

dimensional (2D) finite element. One of them is [10], whose idea and algorithm are proved 

successful to do some discrete topology optimization of 2D solid model.  

1.3  Motivation of this research 

In this study, a new genetic algorithm, based on the idea: better designs found in the neighbor of 

the best design, is described and tested. The author believes that this algorithm is a good addition 

of genetic algorithm map. 

        Moreover, in 25 years, genetic algorithm for structural optimization was improved, but all 

the algorithms were focused on some simple models. This could limit the improvement of 

genetic algorithm, so the author tried to show the more complex model in this study and use this 

model to test the algorithm.  

        As right now, the genetic algorithm cannot optimize the 2D solid model with continuous 

variables. In this study, the author also wants to discuss about the probability of the new genetic 

algorithm doing this 2D solid optimization problem.  
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1.4 The structure of the rest of this paper 

In chapter 2, the new genetic algorithm (New GA) is described. In this section, the differences 

between the new and the traditional one will be explained and discussed. In chapter 3, the new 

genetic algorithm will be tested in some models. Some good functions and some simple bench 

mark models are optimized. All the results will be analyzed and compared. In chapter 4, the new 

complex truss model for test is described and the new algorithm will be used to optimize this 

model. The results will be analyzed. In chapter 5, the conclusions and future work are discussed.  

.  
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CHAPTER 2 

THE FORMATION OF NEW GENETIC ALGORIHTM 

The new genetic algorithm in this study is based on the idea that a better design found in the 

neighbor of the best design. So the standard genetic algorithm mentioned in chapter one is 

modified in two points. 

2.1  The rebuilding based on micro genetic algorithm 

The genetic algorithm cannot improve the design effectively at the latter part of computation. For 

this problem, the mutation in the traditional genetic algorithm is invented to prevent the 

convergence to the local optimum. However, another method for making the designs to jump 

from the local optimum is discussed in [11]. This method called micro genetic algorithm was 

adopted in this study. As described in [11], when the computation cannot improve the designs 

effectively, the algorithm did not try to prevent the convergence but stopped the current 

iterations, rebuilt the new population based on the current designs and restarted the genetic 

algorithm process. In [12] and [13], the micro genetic algorithm is proved to be able to help the 

optimization process by jumping out from the local optimal point. For example, in [13] the 

author proved that micro genetic algorithm can solve a complex dynamic optimization problem 

with a population of only five individuals.  

        Similarly, in this study, the idea of micro genetic algorithm is used and recreating the new 

population called rebuilding. Every generation computed by the genetic algorithm is called one 

iteration. When the convergence criterion is met, the population restarts. Then all of the 

iterations between two restarts called one loop are optimizing. 

        After one loop ends, the new population is built by the best design of this loop. The basic 

idea of rebuilding is to change every variable of the best design with a multiplier and, that is, 
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                                                                𝑥𝑖
𝑛 = 𝑐 ∙ 𝑥𝑖

𝑏                                                   (2.1) 

where, 𝑥𝑖
𝑛 is variable Number 𝑖 of the new design and 𝑥𝑖

𝑏 is variable Number 𝑖 of best design in 

the previous loop. 𝑐 is a multiplier, randomly selected from a number group 𝐍. In this study, we 

recommend that the number group with the range 𝑟 and the sparseness 𝑠, and the numbers in the 

group are uniformly distributed controlled by these two parameters.  

For example, if one number group has 𝑟 = [−0.5,1.5] and 𝑠 = 4, then 

                                                     𝑐 ∈  𝐍 = {−0.5,0,0.5,1.0,1.5}                              (2.2) 

When building the initial population for the first loop, the user could choose to provide a design 

for rebuilding like gradient based optimization. This design can be regarded as the best design of 

loop zero. Or, the initial population can be built randomly, like the standard genetic algorithm. 

        The best design of the previous loop will be included in the new built population to make 

sure the computation is stable, which is called the elite strategy.  

2.2  The new formation of mutation and crossover 

In this study, the crossover and mutation is formed by the real values rather than binary coding. 

2.2,1  Crossover 

For crossover, two designs are selected randomly from the population. Some random variables in 

one design are replaced by those of the other design, to form the new one, that is, 

                                                {

𝑋1 = {𝑥1
1, 𝑥𝑘

1, … , 𝑥𝑙
1, … , 𝑥𝑛

1}

𝑋2 = {𝑥1
2, 𝑥𝑘

2, … , 𝑥𝑙
2, … , 𝑥𝑛

2}

𝑋𝑛𝑒𝑤 = {𝑥1
1, 𝑥𝑘

2, … , 𝑥𝑙
2, … , 𝑥𝑛

1}

                                    (2.3) 

where, 𝑋1and 𝑋2are the selected designs; 𝑋𝑛𝑒𝑤 is the new design; 𝑥𝑘
1and𝑥𝑙

1 are the variables of 

Number 𝑘 and 𝑙, respectively.  
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2.2.2  Mutation 

For mutation, one design is selected randomly, whose random variables will be mutated in the 

similar way with rebuilding: 

                                                            𝑥𝑖
𝑚 = 𝑚 ∙ 𝑥𝑖

𝑝
                                                  (2.4) 

The mutation process is: 

                                                {
𝑌1 = {𝑦1, … , 𝑦𝑖

𝑝, … , 𝑦𝑗
𝑝, … , 𝑦𝑛}

𝑌𝑛𝑒𝑤 = {𝑦1, … , 𝑦𝑖
𝑚, … , 𝑦𝑗

𝑚, … , 𝑦𝑛}
                           (2.5) 

where, 𝑖 means variable Number 𝑖 is selected for mutation; 𝑦𝑖
𝑚is the mutated value of the 

selected variable; 𝑦𝑖
𝑝
is the original value of the selected variable; 𝑚 is the mutation multiplier 

selected from a mutation number group 𝐌 . The mutation number group also has the range 𝑟𝑚 

and the sparseness 𝑠𝑚. In this study, we recommend that 𝑟𝑚as 0.0001 and 𝑠𝑚 as 20. 

2.2.3  The test for survival 

After the new designs are produced, the fitness is calculated. For rebuilding, the designs will be 

ranked via their fitness: larger fitness means worse design. For crossover and mutation, only if it 

has a smaller fitness value than the worst fitness in the population does the new design survive 

and replaces the current worst fitness individual.  
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2.3  The algorithm process 

The algorithm details are shown below: 

Step 1: Choose one start design for the program, or start with a random population 

Step 2: Start the new loop: 

Step 2.a: Create the new population, loop over all designs in the population: 

For each design, every variable is built by (2.1), based on the start design or the previous loop 

best designs. 

Step 3: Start the new iteration: 

Step 3.a: Operate the crossover for the current iteration: 

For each time of crossover, two designs are selected randomly to produce a new design, as 

described in 2.2.1. The new design fitness is calculated for the test of survival, as described in 

2.2.3. 

Step 3.b: Do mutation for the current iteration: 

For each time mutation, one design is selected randomly and some random variables are mutated 

by (2.4) to build one new design. The new design fitness is calculated for the test of survival, as 

described in 2.2.3. 

Step 4: End the current iteration: if maximum iteration number or other criterion is met; go to 

step2; if not, go to step 3. 

Step 5: End the current loop: if maximum loop or other criterion is met, go to step 6; if not, go to 

step 3. 

Step 6: Output the result. 
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CHAPTER 3 

THE OPTIMIZATION OF FUNCTIONS AND SIMPLE TRUSS MODELS 

In this section, there are two kinds of tests for the new genetic algorithm. Part one is the basic 

function optimization with two variables. Part two is some simple popular truss models, also 

used by other papers.  

3.1  Two variables functions optimization 

In this part, we used the new genetic algorithm to do function optimization. For plotting easily, 

all functions have two variables. 

3.1.1  Basic formation of functions optimization 

The optimization program is built in the way discussed in section 2, but some points are valuable 

to mention for the particular function optimization. First, the population size 𝑁𝑝 is set as 10 to 

ensuring the computation stable, instead of 4 or the square of variable number. The total loop 

number 𝑁𝑙 is 50; the iteration number for one loop 𝑁𝑖 is 20; the probability of crossover 𝑃𝑐 and 

mutation 𝑃𝑚 is 0.8 and 0.1, respectively.  

          So the total number of function evaluation can be calculated by the equation below: 

                                           𝑁𝑡 = 𝑁𝑙 ∙ (𝑁𝑖 ∙ (𝑃𝑐 + 𝑃𝑚) + 1) ∙ 𝑁𝑝                                  (3.1) 

For one run, the total evaluation number is about 9500 for the current genetic algorithm 

formation. The start point is (-0.8,-0.8) for all four functions.  

        For rebuilding, the range 𝑟𝑛 = [−2,2] and the sparseness 𝑠𝑛 = 20. For mutation, the 

range 𝑟𝑚 = [0.999,1.001] and the sparseness 𝑠𝑚 = 20. 

        As these are unconstrained optimization problems, no penalty functions are built.  
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3.1.2  Functions optimization results 

The first function is: 

      F(𝑥1, 𝑥2) = 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1) − 0.4 cos(4𝜋𝑥2) + 0.7               (3.2) 

The convergence history of this function is shown in figure 3. If 1.0 × 10−7 is the tolerance, the 

program used about 30 loops to finish the convergence. The optimal point is (0.05, 0). 

 

        Figure 3. Convergence of Function (3.2) 

The second function is: 

F(x, y) = −(cos(2πx) + cos(2.5πx) − 2.1) × (2.1 − cos(3πy) − cos(3.5πy)) (3.3) 

The convergence history of this function is shown figure 4. Compared to the theoretical value in 

table 1, the program used about 45 loops to find the optimum. The optimal point is (0.4388, 

0.3856) 
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        Figure 4. Convergence of Function (3.3) 

The third function is: 

      f(x, y) = (y −
5.1𝑥2

4𝜋2 +
5

𝜋
x − 6)2 + 10 (1 −

1

8𝜋
) cos(𝑥) + 10           (3.4) 

The convergence history of this function is shown in figure 5. Compared with the theoretical 

value, the program used 45 loops to find the optimum. The optimal point is (3.1133, 2.2918). 

 

        Figure 5. Convergence of Function (3.4) 

The forth function is: 

            f(x, y) = (4 − 2.1𝑥2 +
𝑥4

3
) 𝑥2 + 𝑥𝑦 + (−4 + 4𝑦2)𝑦2                       (3.5) 
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        The optimization process for this function is shown below. It seems that the program used 

25 loops for this test. The optimization map and function plot is shown below, as well. The 

optimal point is (0, -0.7072) 

 

        Figure 6. Convergence of Function (3.5) 

All results for comparison are from [14].  From Table 1, the new genetic algorithm is able to 

locate the optimum and is similarly effective with the standard genetic algorithm (SGA).  

        One could criticize that the new genetic algorithm depends on the start points, and if the 

start points are totally wrong, the program could not find the optimum. In fact, the standard 

genetic algorithm will face this challenge. For example, for the first function, in [14], the search 

space is 

                                                −1.28 ≤ 𝑥1, 𝑥2 ≤ 1.27                                                 (3.6) 

The search space is based on one’s guess. So it would become a problem if  basic knowledge 

tells us that the optimum lives in the region as 

                                               −128 ≤ 𝑥1, 𝑥2 ≤ 127                                                   (3.7) 

When the search region is changed for the standard genetic algorithm, the population size and the 

evaluation number could increase by 10 times. A large search domain could happen in a complex 

and unknown structural optimization problem. So for both algorithms, the ability to find the 
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optimum quickly in a large search space is very important. A start point far from the optimum is 

used to prove it. 

Table 1 

Summary of Function Optimization 

Function 
theoretical 

minimum 

minimum 

(SGA) 

Function 

evaluations 

(SGA) 

Minimum 

(New GA) 

function 

evaluations 

(New GA) 

3.2 0 4.41E-06 4000 4.03E-06 5000 

3.3 -16.09172 -16.09171 4000 -16.09172 8500 

3.4 0.39789 0.39789 8000 0.39789 8500 

3.5 -1.03163 -1.03163 6000 -1.03163 4250 

 

        For the final test of function optimization, the new genetic algorithm is used at (-128,-128) 

as the start variables. The other parameters remain the same with the previous tests. The 

convergence process is shown in figure 7. 

 

        Figure 7 Function (3.2) Convergence with Bad Start 

        Figure 8 showed the function (3.2) contour plot every ten loops. The x-axis and y-axis mean 

two variables, respectively. The spots in the figure are the plots of all the individuals loops. The 

figure at the upper-left corner has a very large domain, which indicates at the beginning of the 

calculation, the program had to use some efforts to find the neighbor of the optimum. After 10 
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loops, the program just focused on finding the optimum in a small region, so the final four plots 

have the same domain. It proved that the new genetic algorithm can locate and find the optimum 

fast even if the start value is bad. 

  

        Figure 8.  Fucntion (3.2) indivaduals plots with bad start point 

3.2  Sizing optimization for simple models 

For the second part of this section, some popular structural models are used to test the new 

genetic algorithm.  

        Basically, the structural optimization formation in this part is similar with the first part, but 

there are some different points. 

        First, the population size 𝑁𝑝 is different and calculated with the equation below: 

                                                          𝑁𝑝 = 𝑁𝑣
2                                                              (3.8) 

In the (3.8), 𝑁𝑣 is the number of variables.  

        Second, the structural optimization is a constrained optimization so the penalty function is 

important. In this study, the penalty function is: 

1-10 11-20 21-30 

31-40 41-50 

Plot with Loop Number: 
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                                             P = ∑ 𝑐 ∙ 𝑔𝑖      {
𝑔𝑖 = 0,          𝑖𝑓𝑟𝑖 ≤ 𝑟0

𝑔𝑖 =
𝑟𝑖

𝑟0
− 1   𝑖𝑓 𝑟𝑖 > 𝑟0

𝑛
𝑖=1                       (3.9) 

where, 𝑐 is penalty constant, set as 1000, in this study; 𝑟𝑖 is the structural response, like 

displacement and stress; 𝑟0 is the constraint values, allowable displacement or allowable stress. 

So the penalty is a static penalty function.  

3.2.1  Ten bar model 

 

        Figure 9. Ten bar model 

The ten bar model is the first example to test the new genetic algorithm, shown in figure 9. As 

the most popular model, it is analyzed by many researchers, such as Schmit and Farshi [15], 

Schmit and Miura [16], Venkayya [17], Dobbs and Nelson [18], Rizzi [19], Khan and Willmert 

[20], Lee and Geem [9].  

        Two cases are tested, case one: 𝑃1 = −150𝑘𝑖𝑝𝑠, 𝑃2 = 50𝑘𝑖𝑝𝑠 and case two: 𝑃1 =

−100𝑘𝑖𝑝𝑠, 𝑃2 = 50𝑘𝑖𝑝𝑠. The bar model has simply ten sizing variables; the objective is the 

total weight; for one member, the model is subjected to the stress constraint ±25ksi and the 

displacement is ±2in or ± 0.167ft.  

        The material density is 0.1𝑙𝑏/𝑖𝑛2 and the elastic modulus is 10,000 ksi; each bar has the 

minimum size of 0.1𝑖𝑛2. The results for two cases are shown in table 2 and table 3: 
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Table 2 

Ten bar design comparison of case one 

Method 1 2 3 4 5 6 7 8 9 10 Objective 

Schmit & 

Farshi [15] 
24.29 0.1 23.35 13.66 0.1 1.969 12.67 12.54 21.97 0.1 4691.84 

NEW 
SUMT 

[16] 

23.55 0.1 25.29 14.36 0.1 1.97 12.39 12.81 20.41 0.1 4676.96 

CONMIN   

[16] 
23.55 0.176 25.2 14.39 0.1 1.967 12.4 12.86 20.41 0.1 4684.11 

Venkayya 

[17] 
25.19 0.363 25.42 14.33 0.417 3.144 12.08 14.61 29.26 0.513 4895.6 

Dobbs & 

Nelson 

[18] 

25.81 0.1 27.23 16.65 0.1 2.024 12.78 14.22 22.14 0.1 5059.7 

Rizzi [19] 23.53 0.1 25.29 14.37 0.1 1.97 12.39 12.83 20.33 0.1 4674.92 

Khan & 

Willmert 

[20] 

24.72 0.1 26.54 13.22 0.108 4.835 12.66 13.78 18.44 0.1 4792.52 

Geem [9] 23.25 0.102 25.73 14.51 0.1 1.977 12.21 12.61 20.36 0.1 4668.81 

New 

algorithm 
24.62 0.11 23.36 13.74 0.1 0.94 14.36 9.12 20.23 0.1 4514.4 

 

From the results, the new genetic algorithm is able to find the optimized design, like the other 

algorithm. For both cases, the total model evaluations number is about 20,000. 
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Table 3.  

Ten bar design comparison with case two 

Method 1 2 3 4 5 6 7 8 9 10 Objective 

Schmit & 

Farshi [15] 
33.43 0.1 24.26 14.26 0.1 0.1 8.388 20.74 19.69 0.1 5089 

NEW 
SUMT 

[16] 

30.67 0.1 23.76 14.59 0.1 0.1 8.578 21.07 20.96 0.1 5076.85 

CONMIN   

[16] 
30.57 0.369 23.41 14.73 0.1 0.1 8.547 21.11 20.77 0.1 5107.3 

Venkayya 

[17] 
30.42 0.128 23.41 14.91 0.1 0.1 8.696 21.08 21.08 0.32 5084.9 

Dobbs & 

Nelson 

[18] 

30.5 0.1 23.29 15.43 0.1 0.21 7.649 20.98 21.82 0.1 5080 

Rizzi [19] 30.73 0.1 23.29 14.73 0.1 0.1 8.542 20.95 21.84 0.1 5076.66 

Khan & 

Willmert 

[20] 

30.98 0.1 24.17 14.81 0.1 0.406 7.547 21.05 20.94 0.1 5066.98 

Geem [9] 30.15 0.102 22.71 15.27 0.102 0.544 7.541 21.56 21.45 0.1 5057.88 

New 

algorithm 
31.2 0.1 22.88 15.05 0.1 1.0326 5.78 22.53 20.23 0.1 5032 

 

3.2.2  Seventeen bar model 

 

        Figure 10. 17 bar model 

The seventeen bar model is analyzed by Khot and Berke [21], Adeli and Kumar [24], Geem [9]. 

For designs, the objective is the total weight; the design variables are the member size for all of 

the members; the stress constraint for every member is ±50ksi and displacement constraint 

is ±2in. 
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        For one single load case, the load is in y direction and placed at node 9, which is −100kip. 

The material density is 0.268𝑙𝑏/𝑖𝑛2 and the elastic modulus is 30,000 kis. The results are 

shown in Table 4. The minimal size is 0.1𝑖𝑛2. 

Table 4.  

Summary of 17 bar optimization 

variables Khot & Berke [21]  Adeli & Kumar [24] Geem [9] This study 

1 15.93 16.029 15.821 15.89671 

2 0.1 0.107 0.108 0.113516 

3 12.07 12.183 11.996 12.19178 

4 0.1 0.11 0.1 0.1 

5 8.067 8.417 8.15 8.121617 

6 5.562 5.715 5.507 5.581791 

7 11.933 11.331 11.829 11.85274 

8 0.1 0.105 0.1 0.1 

9 7.945 7.301 7.934 7.977783 

10 0.1 0.115 0.1 0.1 

11 4.055 4.046 4.093 4.062786 

12 0.1 0.101 0.1 0.1 

13 5.657 5.611 5.66 5.650435 

14 4 4.046 4.061 3.991059 

15 5.558 5.152 5.656 5.574801 

16 0.1 0.107 0.1 0.1 

17 5.579 5.286 5.582 5.49158 

 

From the result table above, the design produced by the new genetic algorithm is similar with 

other algorithms. The total model evaluations number is about 20,000 in this study. 
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3.2.3  twenty-two bar model 

 

 

        Figure 11. 22 bar model 

The twenty-two bar model is shown in figure 11. The constraint conditions are the same with the 

previous studies, but this study we consider three load conditions for one design. The load 

conditions are shown in table 5.1, 5.2 and 5.3.  

Table 5.1 

Load condition 1 for 22 bar model 

node x y z 

1 -20 0 -5 

2 -20 0 -5 

3 -20 0 -30 

4 -20 0 -30 

 

For the sizing optimization, the 22 members are parted as seven groups, shown in table 5 and the 

results are shown in Table 6. 
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Table 5.2 

Load condition 2 for 22 bar model 

Node x y z 

1 -20 -5 0 

2 -20 -50 0 

3 -20 -5 0 

4 -20 -50 0 

 

Table 5.3 

Load condition 3 for 22 bar model 

Node x y z 

1 -20 0 35 

2 -20 0 0 

3 -20 0 0 

4 -20 0 -35 

 

Obviously, the results from this study are totally different from the previous two researches. 

However, the model designed by other algorithms have a displacement, two times larger than the 

displacement constraint. So it is unfair to compare these two results, but it is fair to say that the 

new genetic algorithm can produce a feasible design.  
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Table 6 

Summary of 22 bar model optimization 

Variable Member group Geem [9] This study 

1 1,2,3,4 2.588 5.4517953 

2 5,6 1.083 2.15690557 

3 7,8 0.363 0.1 

4 9,10 0.422 0.9403604 

5 11,12,13,14 2.827 4.56553742 

6 15,16,17,18 2.055 6.42514959 

7 19,20,21,22 2.044 4.93652054 

Load case  displacement displacement 

Case 1  4.8828 2.00108994 

Case 2  2.3064 1.02920926 

Case 3  4.9212 2.00734688 

 

3.2.4 Twenty-five bar model 

 

        Figure 12. 25 bar model 

The 25 bar model, shown in figure 12 is very popular model for testing the GA and was analyzed 

by Schmit and Farshi [15], Schmit and Miura [16], Venkayya [17], Dobbs and Nelson [18], Rizzi 

[19], Khan and Willmert [20], Lee and Geem [9], Gallatly and Berke [21], Templeman and 
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Winterbottom [22], Chao [23], Adeli and Kamal [24], John [25], Saka [26], Fadel and Clitalay 

[27], Stander [28], Xu and Grandhi [29] and Lamberti and Pappalettere [30]. 

Table 7.1 

Load condition 1 for 25 bar model 

Node x y z 

1 0 20 -5 

2 0 -20 -5 

3 0 0 0 

6 0 0 0 

 

Table 7.2 

Load condition 2 for 25 bar model 

Node x y z 

1 1 10 -5 

2 0 10 -5 

3 0.5 0 0 

6 0.5 0 0 

 

        The model is under two load conditions, shown in Table 7.1 and 7.2, so for each evaluation, 

the model is analyzed twice for each load condition. The 25 members are parted as eight groups 

to do the sizing optimization. The objective is total weight. For constraints, the displacement 

constraint is placed on all the nodes in the three directions as 0.35 𝑖𝑛.  

        The elastic modulus and the material density is 10,000𝑘𝑠𝑖 and 0.1𝑙𝑏/𝑖𝑛2, respectively. And 

the minimum size is taken as 0.01𝑖𝑛2 
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Table 8.1 

Summary of 25 bar model design, part one 

Variable Member 
Schmit & 

Farshi [15] 

Venkayya 

[17] 
Rizzi [19] 

Khan & 

Willmert 

[20] 

Templeman 

[22] 
Chao [23] 

1 1 0.01 0.028 0.01 0.01 0.01 0.01 

2 2,3,4,5 1.964 1.964 1.988 1.755 2.022 2.042 

3 6,7,8,9 3.033 3.081 2.991 2.869 2.938 3.001 

4 10,11 0.01 0.01 0.01 0.01 0.01 0.01 

5 12,13 0.01 0.01 0.01 0.01 0.01 0.01 

6 14,15,16,17 0.67 0.693 0.684 0.845 0.67 0.684 

7 18,19,20,21 1.68 1.678 1.677 2.011 1.675 1.625 

8 22,23,24,25 2.67 2.624 2.663 2.478 2.697 2.672 

 

Table 8.2 

Summary of 25 bar model design, part two 

variable member Saka [20] Stander [22] 

Adeli & 

Kamal 

[24] 

Geem [9] This study 

1 1 0.01 0.01 0.01 0.047 0.04778 

2 2,3,4,5 2.085 2.043 1.986 2.022 1.97185 

3 6,7,8,9 2.988 3.003 2.961 2.95 2.94177 

4 10,11 0.01 0.01 0.01 0.01 0.01 

5 12,13 0.01 0.01 0.01 0.01 0.01055 

6 14,15,16,17 0.696 0.683 0.806 0.688 0.60812 

7 18,19,20,21 1.67 1.623 1.68 1.657 1.61073 

8 22,23,24,25 2.592 2.672 2.53 2.663 2.48596 

 

According to the results in Table 8.1and 8.2, the design from the new genetic algorithm is similar 

with other methods. So the new GA can find the optimized design in 20,000 evaluations of 

models. 
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3.3 Conclusions 

For the function optimization, the new genetic algorithm was proved to be able to find the 

optimum in an acceptable speed, compared with the other algorithms. Especially, the search 

ability of the new genetic algorithm is proved as a great one, because it can search with a bad and 

far away start point.  

        For the simple truss optimization part, similar with other results, the new genetic algorithm 

can also find the optimized solution. In one example, the results in other algorithms obviously, 

violated the constraint. As the result, for the basic models, the new genetic algorithm is 

successful to produce the good results.  

        These bench mark models are not enough to test one genetic algorithm. There are two 

problems on them: first, these models are displacement driven, which have the active 

displacement constraint and very small stress. So stress constraint of the current optimization 

problem is non-active one. Second, the current optimization is only sizing optimization. The 

shape optimization is also a very important part in the optimization problems.  

        In the next section, we will introduce one complex model and try to optimize it in both of 

sizing and shape optimization with the new genetic algorithm.  
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CHAPTER 4 

THE COMPLEX TRUSS MODEL 

Like mentioned above, the widely used truss models can not cover all the needs for testing the 

genetic algorithm. So a more complex truss model is described and used to test the new genetic 

algorithm in this section. 

4.1  The truss tower 

In general, one possible design of the truss tower is shown in figure 13. It has a very simple 

structure, with three levels and three rings formation. The limitation is simple, as well. Only the 

height and the top radius are the fixed numbers. The total height of the tower is 20000 meters 

(65615 feet). The radius of top ring means the distance of the vertex and the center point of the 

top surface.  

 

        Figure 13. The truss tower model 

For example, figure 14 shows the top surface of the truss tower. Obviously, the radius is from 

vertex to the origin, fixed as 10000 feet. Expect for these two parameters, other values to form 

this structure are based on shape or sizing variables, described in the next part.  
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        Figure 14. Top ring 

4.1.1  Optimization problem formation  

Basically, one three level and three ring truss tower will be optimized as a sizing and shape 

optimization. First, for sizing optimization, all the members will be optimized for their best 

member area. For the symmetric property and convenient calculation, these members are parted 

as several groups by position and levels. The look of the 3 level tower is shown in figure 13 to 

make the member groups clear. From the figure 13, obviously, there are four member groups 

(four colors) in one level, one vertical member (blue), two diagonal members (yellow and black) 

and one ring (red). So in total, for 3 level and 3 rings tower, 12 groups of member size will be 

optimized so there are 12 variables.  

        Moreover, as the height of the tower is extremely tall, buckling is a big issue. Considering 

this issue, all the members are likely to be designed as a fractional one. In this study, the 

fractional design is simplified as radius variable for the member group. So the member could be 

designed with a larger radius than the solid radius to avoid the local buckling. The calculation 
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about the local buckling will be showed in structural analysis part. In total for the sizing 

optimization, 24 variables are optimized.  

        For shape optimization, two variables, the height and the ring radius in one level are 

optimized considering the symmetric property. The height variable means the z-axis value of one 

node on the level, and the radius, like described for top radius, is the distance between one vertex 

and the center point.  As the top radius is fixed and the level 0 (ground) radius is free to design, 

one 3 levels, 3 rings tower, has 6 shape optimization variables. Therefore, for the simplest tower, 

30 variables are to be optimized.  

4.1.2 Structural parameters of the tower 

In this section, the structural analysis about the truss tower is introduced, including the structural 

parameters, the force formation and the analysis of local buckling.  

First, as a truss model, truss finite element method is used for structural analysis. As mentioned, 

the height and the top radius ℎ = 65619𝑓 and 𝑅𝑡 = 10000𝑓. The elastic modulus is 𝐸 =

29000𝑘𝑠𝑓. The material density is 𝜌 = 0.492𝑝𝑐𝑓. The ultimate stress for the material is 𝜎𝑢 =

90𝑘𝑠𝑖 and the allowable stress is 𝜏𝑎 = 0.7. 

        There are three kinds of external forces applied on the tower, payload, self-weight and wind 

load. The payload 𝑃 = 4 × 108𝑙𝑏 could be simply seen as the nodal forces, averagely distributed 

at each nodes of the top ring. So for the 3 ring model, every top node will take 𝑃𝑛 =
𝑃

3
 as the 

node forces.  

        The other two forces are applied on the members, so they could be replaced by equal nodal 

forces based on the finite element method. Like other truss models, member weight is distributed 

at two end points equally.  
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        The wind load is a very important part because of the tower height. Wind force is the 

product of wind area and wind pressure. 

         As the member could be fractional, the wind area is calculated as: 

                                                         𝐴𝑤 = 0.7 ∙ 𝛼 ∙ 𝑅𝐿 ∙ 𝐿𝑚                                         (4.1) 

where 𝐴𝑤 is wind are of one member; 𝛼 is the cosine direction value between wind and member; 

𝐿𝑚 is member length.  

        On the other hand, the wind pressure is simplified as the wind pressure of the middle point 

of one member. So the wind pressure for this member is calculated as: 

                                                           𝑃𝑤 = 0.5 ∙ 𝜌 ∙ 𝑣𝑚
2                                                 (4.2) 

where, 𝑃𝑤 is the wind pressure; 𝜌 is the air density; 𝑣𝑚  is the wind speed. 

The air density function is:  

                                                       𝜌 = 𝑑𝑎 ∙ (1 − 𝜌𝑏 ∙ ℎ𝑚)𝜂                                         (4.3) 

𝑑𝑎 = 0.7647 × 10−4 , as the air density constant on the ground; 𝜌𝑏 = 0.68756 × 10−5 and  𝜂 =

4.2576 as the air density constants. 

        The wind speed is calculated by two functions because the top wind speed is at the 

height ℎ𝑠 = 38000 𝑓𝑒𝑒𝑡. So the wind speed is given by: 

                                       𝑣𝑚 = {
𝑣0(1 + 𝑏(1 − 𝑦) + 𝑐(1 − 𝑦)2)          𝑦 ≤ 1

𝑣0 (
1

[1+𝑒(1−𝑦)𝑓]
𝑔)                                    𝑦 ≥ 1

               (4.4) 

Where 𝑣0 is peak wind speed at ℎ𝑠 . 𝑦 is the ratio of member height and ℎ𝑠. Other constants are 

shown the table as: 

 

 

 



  31 

Table 9.  

Summary of wind speed constant 

wind speed 
constant 

b c e f g 

value -1.4601 0.5202 160 1.6 0.25 

 

        The local stability analysis is different to the most structural optimizations. In general, the 

member radius 𝑅𝐿 only needs to meet Euler buckling equation. The critical force for a 

compression column can be calculated by: 

                                                                𝐹𝑐 =
𝜋2𝐸𝐼

𝐿2                                                               (4.5) 

Where 𝐹𝑐 is the critical force; 𝐿 is column length and 𝐼 is inertia moment. 

        In this study, as the member is fractional and not defined by any shapes, the Rankine 

Gordon formula is used. By avoiding to calculate the inertia moment, the critical stress by 

stability is: 

                                                        𝜎𝑐 =
𝐹

𝐴
=

𝜋2𝐸

(𝐿/𝑅𝐿)2                                                    (4.6) 

On the other hand, the allowable stress is given above,  

                                                               𝜎𝑎 = 𝜎𝑢                                                                 (4.7) 

According to the Rankine Gordon formula, we have  

                                                           
1

𝜎𝑚𝑎𝑥
=

1

𝜎𝑎
+

1

𝜎𝑐
                                                     (4.8) 

The allowable stress for local stability is  

                                                      𝜎𝑎
𝐿 = 𝜎𝑚𝑎𝑥 =

𝜎𝑐∙𝜎𝑎

𝜎𝑎+𝜎𝑐
                                                  (4.9) 
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        Obviously, the allowable stress for compression member is the function of member radius. 

In fact, there are two ways to improve the compression member if one is overstressed. The first 

is to enlarge the size and the other one is to enlarge the radius.  

4.2  optimization problem formation 

The aim of this problem is to find the optimized design with acceptable stress and displacement. 

The objective is the total weight, that is: 

                                                        𝑊 = ∑ 𝐿𝑖 ∙ 𝜌𝑛
𝑖=1                                                              (4.10) 

Where, 𝑊 is the objective; 𝐿𝑖 is one member length; 𝜌 is material density.  

        Like the simple truss models, two kinds of constraints are applied, stress and node 

displacement. For stress, the stress ratio value is calculated as: 

                                                                   𝑅𝑠 =
𝜎𝑚

𝜎𝑎
                                                               (4.11) 

Where, 𝑅𝑠 is the stress ratio and the constraints for all the member is 0.7; 𝜎𝑚is the absolute value 

of one member stress ratio; 𝜎𝑎 is the allowable stress and if the member is in compression, this 

value is 𝜎𝑎
𝐿 by the Rankine Gordon Formula.  

For displacement constraint, the largest displacement will be monitored, and this constraint is 

smaller than 600𝑓. The two constraints are summarized in the table 10 below. 

Table 10 

Summary of Constraints 

constraint stress ratio displacement 

position all members maximum value 

value 0.7 600 f 
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4.3  The genetic algorithm formation 

In this section, the new genetic algorithm is described for the truss tower. The crossover is the 

same with that of the simple truss models. The mutation is programmed with these two 

parameters: 𝑟𝑚 = 0.0001 and 𝑠𝑚 = 20. The rebuilding has two parameters: 𝑟 = [0.75,1.25] 

and 𝑠 = 20. The loop number 𝑁𝑙 = 20 and the iteration number 𝑁𝑖 = 100. The population size 

is 𝑁𝑝 = 900. 

        As the truss tower is an unknown structure, the initial population is produced randomly. 

Like the idea of rebuilding, when the region and the number of possible variables are given, all 

the variables for the new population will be created randomly and easily.  

        Two penalty functions are used for displacement and stress. The penalty for displacement 

penalty is created as: 

                                                      𝑃𝑑 = {
𝑐𝑑 ∙ (𝑑 − 𝑑0)2 𝑖𝑓 𝑑 ≥ 𝑑0

0                    𝑖𝑓𝑑 ≤ 𝑑0
                           (4.12) 

where, 𝑃𝑑is displacement penalty; 𝑐𝑑 is the penalty constant for displacement, as 1012; 𝑑 is the 

absolute value of the largest displacement. 𝑑0 is displacement constraint. 

On the other hand, the penalty function for stress is linear function 

                                            𝑃𝑠
𝑛 = {

𝑐1 ∙ (𝑅𝑠
𝑛 − 0.7)                   𝑖𝑓𝑅𝑠

𝑛 > 0.7 

𝑐2 ∙ (𝑅𝑠
𝑛 − 0.5)                  𝑖𝑓𝑅𝑠

𝑛 > 0.5

0                                           𝑖𝑓𝑅𝑠
𝑛 ≤ 0.5

                 (4.13) 

where, 𝑃𝑠
𝑛 is stress penalty of stress; 𝑅𝑠

𝑛 is the stress ratio; 𝑐1and 𝑐2 are penalty constants by:𝑐1 =

50 ∙ 𝑊𝑏 and 𝑐2 = 0.01 ∙ 𝑊𝑏; 𝑊𝑏 is the weight with the smallest fitness from the previous loop 

and the initial value is 1012. 

        As the result, the total value of stress penalty will be: 

                                                                𝑃𝑠
𝑡 = ∑ 𝑃𝑠

𝑖𝑛
𝑖                                                    (4.14) 
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4.4 The result and discussion 

4.4.1 The research on convergence plot 

Figure 15 showed the total weight is improved by loops. In general, the objective is improved 

loop by loop, from 2.39 × 1012 to 6.7 × 1010. The loop 20 can improve the objective by 6% , 

from 7.1 × 1010 to 6.7 × 1010. It means that at the end of calculation, the objective can be 

improved effectively, indicating the convergence.  

 

        Figure 15. Convergence of truss tower by loops 

Figure 16 showed the iteration details of optimization. In this study, the penalty constant is 

relatively large, so in this plot, the objective and fitness of the best design are very similar values. 

It means that most searches are done in the feasible domain. 
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        Figure 16. Convergence of truss tower by iterations 

When one new loop starts, the average fitness in the population is enlarged a lot. So perhaps the 

rebuilding gave the new population some good variables but these good variables should be 

recombined for the best design. It is the mutation and crossover to make the good variables 

combine together and perhaps, to explore for the new variables to make the fitness smaller. 

        The loop 5 convergence plot, in figure 17 makes the argument above clearer. After the first 

iteration, the crossover and mutation help to improve the objective by 10%. The effective 

improvement lasts for 40 iterations. After that, the calculation is not effective and the population 

could tend to be converged. 
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        Figure 17. Objective convergence in loop 5 

So from the convergence plot, the new genetic algorithm, with rebuilding, and the new type of 

crossover and mutation is able to optimize the complex truss model. 

4.4.2  The structural plot 

In this section, the tower shape plots are discussed. Figure 18 showed the best designs of loop 5, 

10, 15, 20. Red bars are overstressed with 𝑅𝑠 ≥ 0.85; green bars have the stress ratio as 𝑅𝑠 =

0.5. So if the member color has some red and green the stress is in good domain. If 𝑅𝑠 ≤ 0.2, the 

member is colored by blue. If the member color is some blue and green, the member size is 

wasted.  

        From the view of stress ratio basically all the designs are feasible and the design of loop 20 

saves the largest amount of material. Because the columns as the largest weight contributors are 

all in the good stress domain. Perhaps some diagonal members are in blue, as the stress ratio is 

under 0.2. But their material cannot be saved because the other members in the same member 

group have a high stress ratio. The stress of loop 20 design, in table 11 can prove it.  
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        Secondly, the tower shape are improved with iterations. The designs of loop 5 and loop 10 

have very short columns.  

 

 (a)                                                            (b)  

 

                                         (c)                                                            (d) 

        Figure 18. Truss tower design by loops; (a) is loop 5 design; (b) is loop 10 design; (c) is 

loop 15 design; (d) is loop 20 and final design 

        It is not a good idea because one short column means that the tower need another very long 

column to reach the height. For the long column, thus, the allowable stress will decrease by a 

large amount, by the Rankine Gordon formula.  

        The reason why the program preferred the short first level, could be to make a better 

objective. As the penalty constants are large enough, most of designs have no violations of the 

constraints. So the program tended to find the best way to cut the weight, the objective. Thus, 
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when decreasing the first level height, the members with largest weight are shortened. But as the 

program goes, the short level designs will die out because of the local stability. 

Table 11 

Stress Ratio by member group 

Member Group Position Stress Ratio 

1 level 1 blue 0.716228832 

2 level 1 yellow 0.702230164 

3 level 1 black 0.688775323 

4 level 1 red 0.535007048 

5 level 2 blue 0.714533597 

6 level 2 yellow 0.701560233 

7 level 2 black 0.714533597 

8 level 2 red 0.702699349 

9 level 3 blue 0.714825532 

10 level 3 yellow 0.70569566 

11 level 3 black 0.703717178 

12 level 3 red 0.640835472 

 

4.4.3  Conclusions 

Basically, the new genetic algorithm can optimize the complex truss tower from a random initial 

population. The rebuilding and the new formation of crossover and mutation can play the role as 

designed.  

        The optimization result is reasonable, from the shape and stress point of view. Because most 

of members, including all the columns are on the edge of the constraints and the tower shape is 

good for horizontal members to stay in the tensile condition. In this way, their allowable stress 

will not decrease. 
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CHAPTER 5 

CONLUSIONS AND FUTURE WORK 

5.1  Conclusions 

In this paper, the new genetic algorithm is described and discussed. The formation of this genetic 

algorithm can present the basic idea: the better design found from the neighbor of the good 

designs. Moreover, the operations of genetic algorithm including the rebuilding, mutation and 

crossover are straightforward enough for others to build the new genetic algorithm 

        Some examples of two variable function optimization problems are tested for the new 

genetic algorithm, which proves that the algorithm can do the simple function optimization 

problems and can find the optimal solution with a bad start.  

        The simple truss model is used for testing the new algorithm as well. With most of results, 

the new algorithm can be proved to find the same optimized designs with other algorithms.   

Although there is one problem with different results, the results from the other algorithms could 

not be correct. For the speed to find the optimized result, the new genetic could provide an 

acceptable one, although most of the previous researches hardly had enough information to 

compare.  

         One new model, the tall tower, is discussed in the last part of this study. This model is 

complex as supposed to test the genetic algorithm. Additionally, as a sizing and shape 

optimization problem, this model could cover all of needs for testing the performance of 

optimization algorithm doing the truss model. 

        So in conclusion, the new genetic algorithm can do the optimization for the most of bench 

mark models from the previous paper in the effective way.  
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        However, there is a lot of work to do, for this genetic algorithm or for the every kind of 

genetic algorithm for structural optimization problems.  

5.2  Future work 

In fact, to do structural optimization research, the genetic algorithm is not a popular tool. [31] 

described a lot about the advantages that a gradient based optimization has over a genetic 

algorithm.  

        Basically, the fatal problem of the genetic algorithm is not able to find the optimized results 

in an acceptable speed. This problem becomes more serious when considering a 2D topology 

optimization problem. So the future work is to improve the speed of genetic algorithm to find the 

optimized.  

        Based on the experiences of this study, there are two points to improve the effectiveness of 

the genetic algorithm, which is the size of population and the usage of the genetic algorithm 

flexibility. These two points are not studied deeply for genetic algorithm and perhaps are 

necessary to understand thoroughly.  

         First, the size of population is extremely important for the effectiveness of the genetic 

algorithm. In genetic algorithm, the individuals are picked randomly so the population size 

should be large enough to make sure the computation stable. In other words, under the same 

conditions, the algorithm should produce the similar results despite the noise, which means the 

population controls the randomness for the whole computation. It could become the criterion of 

population size.  

         Although lacking of researches on this topic in genetic algorithm, right now the population 

size could be calculated conservatively.  
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        A 2D topology problem is built to discuss about the influence of these two improvement 

ways. Generally, all the elements at the left are fixed and other three sides are free. There is one 

point force at coordinate (30, 0), which is -10000. The 20 × 20 model has 400 elements will be 

optimized with the thickness of every elements, so in total, this is a sizing (topology) problem 

with 400 variables, figure 19. 

 

        Figure 19. The initial design with stress ratio plot 

For the new genetic algorithm if the value number is 400, the population size is about the square 

of value number, 160000. As an algorithm with 𝑁𝑙 = 20 and 𝑁𝑖 = 50, the total number of model 

evaluation is about 160,000,000. It is impossible to use the new genetic algorithm to do the 2D 

topology optimization. However, if the population size is 400 other than 160000, the calculation 

speed will increase dramatically.  

        In the previous study, the rebuilding, crossover and mutation is based on randomness and 

has the same amount and probability to increase or decrease. However, in this study, to make the 

program more effective, some information from the best design from the previous loop or 

iteration is used, for example, the stress of every element.  
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In this study, the stress ratio is used in the rebuilding. The new member thickness is calculated 

by: 

                                                        𝑎𝑛+1
𝑚 = 𝑎𝑛

𝑚 ∙ 𝑐𝑠 ∙ √𝜏𝑚                                           (5.1) 

Where, 𝑎𝑛+1
𝑚  is the new thickness of member M; 𝑎𝑛

𝑚is the old thickness of member M. 𝑐𝑠 is the 

multiplier from a number group: [0.8,0.85,0.9,0.95,1.0,1.05,1.1,1.15,1.2] 𝜎𝑚 is the old member 

stress ratio, which can be calculated by: 

                                                                 𝜏𝑚 =
𝜎𝑚

𝜎𝑎
                                                       (5.2) 

Where, 𝜎𝑚 is the stress of member M and 𝜎𝑎 is the allowable stress. 

        In this way, the stress ratio will partly control the new variable, to produce more favorable 

individuals, compared with randomly producing. The result is shown in the figure 20. In the plot, 

if it is blue, the block has less thickness; if it is green, the block has more thickness. Therefore, 

the design is reasonable.  

 

        Figure 20. Final result of 2D finite element optimization 

The idea of flexibility, using the experiences of the previous designs could be regarded as the 

good addition for the genetic algorithm.  
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        In fact, the model is not optimized very well. The effective and result could be better, if the 

two improvement points, like the population size and the flexibility are studied deeply enough. 

And the genetic algorithm will be used more widely if so. 
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