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ABSTRACT

In this thesis, the author described a new genetic algorithm based on the idea: the
better design can be found at the neighbor of the current best design. The algorithm are
described, including the rebuilding process from Micro-genetic algorithm and the
different crossover and mutation formation. Some popular examples, including two
variable function optimization and simple truss models are used to test this algorithm. In
this study, the new genetic algorithm is proved as able to find the optimized results like
other algorithms. Besides, the author also tried to build one more complex truss model.
After tests, the new genetic algorithm can produce a good and reasonable optimized
result. Form the results, the rebuilding, crossover and mutation can do the work as
designed. At last, the author also discussed two possible points to improve this new
genetic algorithm: the population size and the algorithm flexibility. The simple result of
2D finite element optimization showed that the effectiveness could be better, with the

improvement of these two points.
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CHAPTER 1
INTRODUCTION
In this paper, a new continuous genetic algorithm will be described and tested. In the first
chapter, some background information is introduced to help understand the new genetic
algorithm. The background information includes the details of basic genetic algorithm and the
development of genetic algorithm.
1.1 The details of basic genetic algorithm
In this section, the formation of basic genetic algorithm from [2] is described. Basically, as shown
in [6], a standard genetic algorithm should have the following process:
1. The initial population with the fitness
2. Evaluate all the designs (fitness calculation)
3. If not converged, go to loop
3.1 Selection: select the individuals randomly from population as parents
3.2 Crossover and Mutation: produce the new individuals by crossover and mutation
3.3 Evaluate the new individuals (fitness calculation)
3.4 Replace some individuals with new designs

4. End the calculation if converged.



1.1.1 Design representations
Traditionally, binary coding is widely implemented in genetic algorithm: one certain of binary
string to present one variable. For example, to design one column, there are 15 kinds of formed
steel columns. A four-digit binary string is enough for this column. So Column No. 1 could be:
0 0 0 O (1.2)
And the last one could be:
1110 (1.2)

All the variables will be coded in the same manner. The total length of binary strings for
one design is shown as:

Ng =N, - N, (1.3)
Where Njis the total binary strings length of the design; N, is the number of variables; Nyis the
binary length of one variable.

The binary coding is extremely suitable for the discrete variables and has been proved
effective in practical calculation by [7]. In fact, for discrete variables, the genetic algorithm even
has the advantage over the gradient based optimization.

The discussion of the continuous variables for the new genetic algorithm is shown in chapter 2.
1.1.2 Crossover and mutation

The crossover and mutation are the soul of genetic algorithm to make the optimization process
like the natural evolution. For every iterations, the generation will operate the crossover and
mutation to find the better designs. In this way, the population is refreshed by the new and better

designs and will be dominated by one optimized design at the end of the calculation.



For the crossover, the most simple and widely used method is one point crossover. For

example, two designs, P;and P, are selected to operate the crossover and C; and C, are the

products, shown as follows:

Figure 1. Crossover Process
In this way, as the binary strings are changed, the combination of variables is changed. If
the crossover point is allowed to happen inside of one variable, this variable is changed as well.
Therefore, the basic idea of using crossover is to make the better combination from current
strings. Finally, the crossover will pull the population to the converged.
Mutation is used to maintain the diversity of the population and prevent the calculation pre-
convergence. It is very easy to operate mutation for the binary strings, shown as follows:
Mi=1 1 0 1
M,=1 0 0 1
Figure 2. Mutation Process
The second binary digit is mutated from 1 to 0.
In this way, mutation will create the new variable (the new string for one variable) from the

outside of the population, to increase the creativity and diversity.

1.1.3 Constraints handling

For the genetic algorithm, the penalty function is used to control the constraint violations.

Basically, the following equation is displayed as follows

O=W+V (1.4)



Where @ is the fitness; W is the objective; V is the penalty function.

There are many ways to form a penalty function. Static penalty, adaptive penalty and
dynamic penalty are the most widely used. All of these methods will add some values on the
objective, according to the responses of calculation.

The smallest fitness means the best design with small objective and little penalty.

This is the summary of traditional genetic algorithm. It will be a big help to understand the
rest of this paper.

1.2 The development of genetic algorithm
The genetic algorithm for structural optimization used to draw a number of attentions after [1]
and [2] descried its basic idea. In the past 25 years, the genetic algorithm was developed a lot.

The very initial researches used, like [2], the basic genetic algorithm to do the sizing
optimization of ten bar model, whose major efforts lied in describing and proving that the genetic
algorithm could find out the best designs.

Moreover, researches like [3] [4] [5] who published in 1990s began to focus on the discussion of
genetic algorithm parameters and trying more complex problems. [3], for example, tried to
discuss the formation of penalty function. In [4], the author provided “precision” and made a
continuous problem as a discrete one. Moreover, [4] also proved that the genetic algorithm can
solve a simple shape and topology problem.

In the 21 century, according to a number of researches studying structural optimization of
genetic algorithm, some bench marks such as 10 bar truss model and 18 truss model are used to
test the new algorithm. In this paper, some models will be tested for the new algorithm to

compare with other genetic algorithms. So more introductions and details are shown in chapter 3.



Moreover, researchers were likely to invent a better genetic algorithm for the continuous
variable problems. One of the most important studies is harmony search, [8] and [9]. In this
study, Geem built the genetic algorithm based on the idea of music harmony. Basically, for the
bench marks of truss like models, Geem found the optimized designs although the most of recent
studies had similar results. This part of discussion will be shown in chapter 3.

Besides, recently, researchers pay some attentions to topology optimization of two
dimensional (2D) finite element. One of them is [10], whose idea and algorithm are proved
successful to do some discrete topology optimization of 2D solid model.

1.3 Motivation of this research

In this study, a new genetic algorithm, based on the idea: better designs found in the neighbor of
the best design, is described and tested. The author believes that this algorithm is a good addition
of genetic algorithm map.

Moreover, in 25 years, genetic algorithm for structural optimization was improved, but all
the algorithms were focused on some simple models. This could limit the improvement of
genetic algorithm, so the author tried to show the more complex model in this study and use this
model to test the algorithm.

As right now, the genetic algorithm cannot optimize the 2D solid model with continuous
variables. In this study, the author also wants to discuss about the probability of the new genetic

algorithm doing this 2D solid optimization problem.



1.4 The structure of the rest of this paper

In chapter 2, the new genetic algorithm (New GA\) is described. In this section, the differences
between the new and the traditional one will be explained and discussed. In chapter 3, the new
genetic algorithm will be tested in some models. Some good functions and some simple bench
mark models are optimized. All the results will be analyzed and compared. In chapter 4, the new
complex truss model for test is described and the new algorithm will be used to optimize this

model. The results will be analyzed. In chapter 5, the conclusions and future work are discussed.



CHAPTER 2

THE FORMATION OF NEW GENETIC ALGORIHTM

The new genetic algorithm in this study is based on the idea that a better design found in the
neighbor of the best design. So the standard genetic algorithm mentioned in chapter one is
modified in two points.

2.1 The rebuilding based on micro genetic algorithm

The genetic algorithm cannot improve the design effectively at the latter part of computation. For
this problem, the mutation in the traditional genetic algorithm is invented to prevent the
convergence to the local optimum. However, another method for making the designs to jump
from the local optimum is discussed in [11]. This method called micro genetic algorithm was
adopted in this study. As described in [11], when the computation cannot improve the designs
effectively, the algorithm did not try to prevent the convergence but stopped the current
iterations, rebuilt the new population based on the current designs and restarted the genetic
algorithm process. In [12] and [13], the micro genetic algorithm is proved to be able to help the
optimization process by jumping out from the local optimal point. For example, in [13] the
author proved that micro genetic algorithm can solve a complex dynamic optimization problem
with a population of only five individuals.

Similarly, in this study, the idea of micro genetic algorithm is used and recreating the new
population called rebuilding. Every generation computed by the genetic algorithm is called one
iteration. When the convergence criterion is met, the population restarts. Then all of the
iterations between two restarts called one loop are optimizing.

After one loop ends, the new population is built by the best design of this loop. The basic
idea of rebuilding is to change every variable of the best design with a multiplier and, that is,

7



x'=c-xpP (2.1)
where, x* is variable Number i of the new design and x? is variable Number i of best design in
the previous loop. c is a multiplier, randomly selected from a number group N. In this study, we
recommend that the number group with the range r and the sparseness s, and the numbers in the
group are uniformly distributed controlled by these two parameters.

For example, if one number group has r = [—0.5,1.5] and s = 4, then
c € N={-0.5,0,0.51.0,1.5} (2.2)

When building the initial population for the first loop, the user could choose to provide a design
for rebuilding like gradient based optimization. This design can be regarded as the best design of
loop zero. Or, the initial population can be built randomly, like the standard genetic algorithm.

The best design of the previous loop will be included in the new built population to make
sure the computation is stable, which is called the elite strategy.
2.2 The new formation of mutation and crossover
In this study, the crossover and mutation is formed by the real values rather than binary coding.
2.2,1 Crossover
For crossover, two designs are selected randomly from the population. Some random variables in
one design are replaced by those of the other design, to form the new one, that is,

Xy = {x}, xt, o, xty o, X1}
Xy = {x?,xF, .., xF, o, x2} (2.3)

(el 2 2 1
Xnew = {X1) Xigy s X[y oes X }

where, X,and X,are the selected designs; X,,.,, is the new design; x;andx; are the variables of

Number k and [, respectively.



2.2.2 Mutation

For mutation, one design is selected randomly, whose random variables will be mutated in the
similar way with rebuilding:

m=m-xP (2.4)

The mutation process is:

{ Vi = 1 s Vs ¥ 0 e Y} 25)

Yoew = V1 o Vi s V)7 oo Un}
where, i means variable Number i is selected for mutation; y;"is the mutated value of the
selected variable; yl.”is the original value of the selected variable; m is the mutation multiplier
selected from a mutation number group M . The mutation humber group also has the range 7,
and the sparseness s,,. In this study, we recommend that 7,,as 0.0001 and s,, as 20.

2.2.3 The test for survival

After the new designs are produced, the fitness is calculated. For rebuilding, the designs will be
ranked via their fitness: larger fitness means worse design. For crossover and mutation, only if it
has a smaller fitness value than the worst fitness in the population does the new design survive

and replaces the current worst fitness individual.



2.3 The algorithm process

The algorithm details are shown below:

Step 1: Choose one start design for the program, or start with a random population

Step 2: Start the new loop:

Step 2.a: Create the new population, loop over all designs in the population:

For each design, every variable is built by (2.1), based on the start design or the previous loop
best designs.

Step 3: Start the new iteration:

Step 3.a: Operate the crossover for the current iteration:

For each time of crossover, two designs are selected randomly to produce a new design, as
described in 2.2.1. The new design fitness is calculated for the test of survival, as described in
2.2.3.

Step 3.b: Do mutation for the current iteration:

For each time mutation, one design is selected randomly and some random variables are mutated
by (2.4) to build one new design. The new design fitness is calculated for the test of survival, as
described in 2.2.3.

Step 4: End the current iteration: if maximum iteration number or other criterion is met; go to
step2; if not, go to step 3.

Step 5: End the current loop: if maximum loop or other criterion is met, go to step 6; if not, go to
step 3.

Step 6: Output the result.

10



CHAPTER 3
THE OPTIMIZATION OF FUNCTIONS AND SIMPLE TRUSS MODELS
In this section, there are two kinds of tests for the new genetic algorithm. Part one is the basic
function optimization with two variables. Part two is some simple popular truss models, also
used by other papers.
3.1 Two variables functions optimization
In this part, we used the new genetic algorithm to do function optimization. For plotting easily,
all functions have two variables.
3.1.1 Basic formation of functions optimization
The optimization program is built in the way discussed in section 2, but some points are valuable
to mention for the particular function optimization. First, the population size N,, is set as 10 to
ensuring the computation stable, instead of 4 or the square of variable number. The total loop
number N, is 50; the iteration number for one loop N; is 20; the probability of crossover P, and
mutation P, is 0.8 and 0.1, respectively.
So the total number of function evaluation can be calculated by the equation below:
Ne=N;-(N;-(P. +B,) + 1) N, (3.2)
For one run, the total evaluation number is about 9500 for the current genetic algorithm
formation. The start point is (-0.8,-0.8) for all four functions.
For rebuilding, the range r,, = [—2,2] and the sparseness s,, = 20. For mutation, the
range 1, = [0.999,1.001] and the sparseness s,, = 20.

As these are unconstrained optimization problems, no penalty functions are built.

11



3.1.2 Functions optimization results
The first function is:

F(xy,x;) = x2 + 2x5 — 0.3 cos(3mx;) — 0.4 cos(4mx,) + 0.7 (3.2)

The convergence history of this function is shown in figure 3. If 1.0 x 10~7 is the tolerance, the

program used about 30 loops to finish the convergence. The optimal point is (0.05, 0).

1E-02 \\

1E-05

1E-08

Function value

1E-11
0 10 20 30 40 50
Loop Number
Figure 3. Convergence of Function (3.2)
The second function is:
F(x,y) = —(cos(2mx) + cos(2.5mx) — 2.1) X (2.1 — cos(3my) — cos(3.5my)) (3.3)
The convergence history of this function is shown figure 4. Compared to the theoretical value in

table 1, the program used about 45 loops to find the optimum. The optimal point is (0.4388,

0.3856)

12



-16.00

-16.05

Function value

-16.10
0 10 20 30 40 50

Loop Number

Figure 4. Convergence of Function (3.3)

The third function is:

51x2 | 5 1
4 3x 62 +10(1-2)cos() +10  (34)

f(X' Y) = (y -

The convergence history of this function is shown in figure 5. Compared with the theoretical

value, the program used 45 loops to find the optimum. The optimal point is (3.1133, 2.2918).

(BN

oo
N > o

Function value
© oo
> uUo

o
w

0 10 20 30 40 50

Loop Number

Figure 5. Convergence of Function (3.4)

The forth function is:

fGoy) = (4= 210 +5) x? + 2y + (~4 + 42y (3.5)
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The optimization process for this function is shown below. It seems that the program used
25 loops for this test. The optimization map and function plot is shown below, as well. The

optimal point is (0, -0.7072)

-1

-1.01

-1.02

Function value

-1.03

-1.04

0 10 20 30 40 50
Loop Number

Figure 6. Convergence of Function (3.5)

All results for comparison are from [14]. From Table 1, the new genetic algorithm is able to
locate the optimum and is similarly effective with the standard genetic algorithm (SGA).

One could criticize that the new genetic algorithm depends on the start points, and if the
start points are totally wrong, the program could not find the optimum. In fact, the standard
genetic algorithm will face this challenge. For example, for the first function, in [14], the search
space is

—1.28 < xq,x, < 1.27 (3.6)
The search space is based on one’s guess. So it would become a problem if basic knowledge
tells us that the optimum lives in the region as

=128 < xq,x, < 127 (3.7)
When the search region is changed for the standard genetic algorithm, the population size and the
evaluation number could increase by 10 times. A large search domain could happen in a complex

and unknown structural optimization problem. So for both algorithms, the ability to find the
14



optimum quickly in a large search space is very important. A start point far from the optimum is
used to prove it.
Table 1

Summary of Function Optimization

. . Function L function
. theoretical minimum - Minimum -
Function minimum (SGA) evaluations (New GA) evaluations
(SGA) (New GA)
3.2 0 4.41E-06 4000 4.03E-06 5000
3.3 -16.09172 -16.09171 4000 -16.09172 8500
3.4 0.39789 0.39789 8000 0.39789 8500
35 -1.03163 -1.03163 6000 -1.03163 4250

For the final test of function optimization, the new genetic algorithm is used at (-128,-128)
as the start variables. The other parameters remain the same with the previous tests. The

convergence process is shown in figure 7.

1E+03
1E+02
1E+01
1E+00
1E-01
1E-02
1E-03
1E-04
1E-05
1E-06 E—

1E-07

Function value

0 10 20 30 40 50
Loop Number
Figure 7 Function (3.2) Convergence with Bad Start
Figure 8 showed the function (3.2) contour plot every ten loops. The x-axis and y-axis mean
two variables, respectively. The spots in the figure are the plots of all the individuals loops. The
figure at the upper-left corner has a very large domain, which indicates at the beginning of the

calculation, the program had to use some efforts to find the neighbor of the optimum. After 10
15



loops, the program just focused on finding the optimum in a small region, so the final four plots
have the same domain. It proved that the new genetic algorithm can locate and find the optimum

fast even if the start value is bad.
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Figure 8. Fucntion (3.2) indivaduals plots with bad start point
3.2 Sizing optimization for simple models
For the second part of this section, some popular structural models are used to test the new
genetic algorithm.

Basically, the structural optimization formation in this part is similar with the first part, but
there are some different points.

First, the population size N,, is different and calculated with the equation below:
N, = N2 (3.8)
In the (3.8), N, is the number of variables.

Second, the structural optimization is a constrained optimization so the penalty function is

important. In this study, the penalty function is:
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g9: =0, ifr; <7

9i = :—; =1 ifr>n (3.9)

P=%",cg {

where, c is penalty constant, set as 1000, in this study; r; is the structural response, like
displacement and stress; r, is the constraint values, allowable displacement or allowable stress.
So the penalty is a static penalty function.

3.2.1 Ten bar model

9 10
6| 360 in.

Figure 9. Ten bar model
The ten bar model is the first example to test the new genetic algorithm, shown in figure 9. As
the most popular model, it is analyzed by many researchers, such as Schmit and Farshi [15],
Schmit and Miura [16], Venkayya [17], Dobbs and Nelson [18], Rizzi [19], Khan and Willmert
[20], Lee and Geem [9].

Two cases are tested, case one: P, = —150kips, P, = 50kips and case two: P; =
—100kips, P, = 50kips. The bar model has simply ten sizing variables; the objective is the
total weight; for one member, the model is subjected to the stress constraint +25ksi and the
displacement is +2in or + 0.167ft.

The material density is 0.11b/in? and the elastic modulus is 10,000 ksi; each bar has the

minimum size of 0.1in?. The results for two cases are shown in table 2 and table 3:
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Table 2

Ten bar design comparison of case one

Method 1 2 3 4 5 6 7 8 9 10 Objective
Schmit &
Faships] 242 01 2335 1366 01 1969 1267 1254 2197 0.1 4691.84
NEW
SUMT 2355 01 2529 1436 01 197 1239 1281 2041 0.1 4676.96
[16]
CO['I'(';;' N 2355 0176 252 1439 01 1967 124 1286  20.41 0.1 4684.11
Ve’[‘i‘;"]yy 4 2519 0363 2542 1433 0417 3144 1208 1461 2926 0513 48956
Dobbs &
Nelson 2581 01 2723 1665 01 2024 1278 1422 2214 0.1 5059.7
[18]
Rizzi [19] 2353 01 2529 1437 01 197 1239 1283  20.33 0.1 4674.92
Khan &
Willmert 2472 01 2654 1322 0108 4835 1266 1378 1844 0.1 479252
[20]
Geem[9] 2325 0102 2573 1451 01 1977 1221 1261  20.36 01 4668.81
New 2462 011 2336 1374 01 094 1436 912  20.23 0.1 4514.4
algorithm

From the results, the new genetic algorithm is able to find the optimized design, like the other

algorithm. For both cases, the total model evaluations number is about 20,000.
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Table 3.

Ten bar design comparison with case two

Method 1 2 3 4 5 6 7 8 9 10 Objective
SChmit& 5343 01 2426 1426 01 01 838 2074  19.69 01 5089
Farshi [15] : : ' : : : : ' ' '
NEW
SUMT 3067 01 2376 1459 0.1 01 8578 2107 2096 01 5076.85
[16]
CO[T(';?'N 3057 0369 2341 1473 01 01 8547 2111 2077 01 5107.3
Ve’[‘i‘?]yy 4 3042 0128 2341 1491 01 01 869 21.08 2108 032 5084.9
Dobbs &
Nelson 305 01 2329 1543 01 021 7.649 2098 2182 0.1 5080
[18]
Rizzi [19] 3073 01 2329 1473 01 01 8542 2095 2184 01 5076.66
Khan &
Willmert 3098 01 2417 1481 01 0406 7547 2105 2094 0.1 5066.98
[20]
Geem[9] 3015 0102 2271 1527 0102 0544 7.541 2156 2145 0.1 5057.88
New 312 01 2288 1505 01 10326 578 2253  20.23 0.1 5032
algorithm

3.2.2 Seventeen bar model
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Figure 10. 17 bar model
The seventeen bar model is analyzed by Khot and Berke [21], Adeli and Kumar [24], Geem [9].
For designs, the objective is the total weight; the design variables are the member size for all of
the members; the stress constraint for every member is +50ksi and displacement constraint

is +2in.
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For one single load case, the load is in y direction and placed at node 9, which is —100Kkip.

The material density is 0.2681b/in? and the elastic modulus is 30,000 kis. The results are

shown in Table 4. The minimal size is 0.1in?.

Table 4.

Summary of 17 bar optimization

variables Khot & Berke [21] Adeli & Kumar [24] Geem [9] This study
1 15.93 16.029 15.821 15.89671
2 0.1 0.107 0.108 0.113516
8 12.07 12.183 11.996 12.19178
4 0.1 0.11 0.1 0.1
5 8.067 8.417 8.15 8.121617
6 5.562 5.715 5.507 5.581791
7 11.933 11.331 11.829 11.85274
8 0.1 0.105 0.1 0.1
9 7.945 7.301 7.934 7.977783
10 0.1 0.115 0.1 0.1
11 4.055 4.046 4.093 4.062786
12 0.1 0.101 0.1 0.1
13 5.657 5.611 5.66 5.650435
14 4 4.046 4.061 3.991059
15 5.558 5.152 5.656 5.574801
16 0.1 0.107 0.1 0.1
17 5.579 5.286 5.582 5.49158

From the result table above, the design produced by the new genetic algorithm is similar with

other algorithms. The total model evaluations number is about 20,000 in this study.
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3.2.3 twenty-two bar model

Figure 11. 22 bar model
The twenty-two bar model is shown in figure 11. The constraint conditions are the same with the
previous studies, but this study we consider three load conditions for one design. The load
conditions are shown in table 5.1, 5.2 and 5.3.
Table 5.1

Load condition 1 for 22 bar model

node X y z
1 -20 0 -5
2 -20 0 5
3 -20 0 -30
4 -20 0 -30

For the sizing optimization, the 22 members are parted as seven groups, shown in table 5 and the

results are shown in Table 6.
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Table 5.2

Load condition 2 for 22 bar model

Node X y z

1 -20 0

2 -20 -50 0

8 -20 -5 0

4 -20 -50 0
Table 5.3

Load condition 3 for 22 bar model

Node X y z
1 -20 0 35
2 -20 0 0
8 -20 0 0
4 -20 0 -35

Obviously, the results from this study are totally different from the previous two researches.
However, the model designed by other algorithms have a displacement, two times larger than the
displacement constraint. So it is unfair to compare these two results, but it is fair to say that the

new genetic algorithm can produce a feasible design.
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Table 6

Summary of 22 bar model optimization

Variable Member group Geem [9] This study
1 1234 2.588 5.4517953
2 5,6 1.083 2.15690557
3 7.8 0.363 0.1
4 9,10 0.422 0.9403604
5 11,12,13,14 2.827 4.56553742
6 15,16,17,18 2.055 6.42514959
7 19,20,21,22 2.044 4.93652054
Load case displacement displacement
Case 1 4.8828 2.00108994
Case 2 2.3064 1.02920926
Case 3 4.9212 2.00734688

3.2.4 Twenty-five bar model

Figure 12. 25 bar model
The 25 bar model, shown in figure 12 is very popular model for testing the GA and was analyzed
by Schmit and Farshi [15], Schmit and Miura [16], Venkayya [17], Dobbs and Nelson [18], Rizzi

[19], Khan and Willmert [20], Lee and Geem [9], Gallatly and Berke [21], Templeman and
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Winterbottom [22], Chao [23], Adeli and Kamal [24], John [25], Saka [26], Fadel and Clitalay
[27], Stander [28], Xu and Grandhi [29] and Lamberti and Pappalettere [30].
Table 7.1

Load condition 1 for 25 bar model

Node
1

20
-20

o o o ofx
o o &< <N~

2
3
6

Table 7.2

Load condition 2 for 25 bar model

Node x y z
1 1 10 -5
2 0 10 -5
3 0.5 0 0
6 0.5 0 0

The model is under two load conditions, shown in Table 7.1 and 7.2, so for each evaluation,
the model is analyzed twice for each load condition. The 25 members are parted as eight groups
to do the sizing optimization. The objective is total weight. For constraints, the displacement
constraint is placed on all the nodes in the three directions as 0.35 in.

The elastic modulus and the material density is 10,000ksi and 0.11b/in?, respectively. And

the minimum size is taken as 0.01in?
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Table 8.1

Summary of 25 bar model design, part one

Khan &

. Schmit & Venkayya . - Templeman
Variable Member Farshi [15] [17] Rizzi [19] Wl[lér(;”llert [22] Chao [23]
1 1 0.01 0.028 0.01 0.01 0.01 0.01
2 2345 1.964 1.964 1.988 1.755 2.022 2.042
3 6,7,8,9 3.033 3.081 2.991 2.869 2.938 3.001
4 10,11 0.01 0.01 0.01 0.01 0.01 0.01
5 12,13 0.01 0.01 0.01 0.01 0.01 0.01
6 14,15,16,17 0.67 0.693 0.684 0.845 0.67 0.684
7 18,19,20,21 1.68 1.678 1.677 2.011 1.675 1.625
8 22,23,24,25 2.67 2.624 2.663 2478 2.697 2.672
Table 8.2
Summary of 25 bar model design, part two
Adeli &
variable member Saka [20] Stander [22] Kamal Geem [9] This study
[24]
1 1 0.01 0.01 0.01 0.047 0.04778
2 2,345 2.085 2.043 1.986 2.022 1.97185
3 6,7,8,9 2.988 3.003 2.961 2.95 2.94177
4 10,11 0.01 0.01 0.01 0.01 0.01
5 12,13 0.01 0.01 0.01 0.01 0.01055
6 14,15,16,17 0.696 0.683 0.806 0.688 0.60812
7 18,19,20,21 1.67 1.623 1.68 1.657 1.61073
8 22,23,24,25 2.592 2.672 2.53 2.663 2.48596

According to the results in Table 8.1and 8.2, the design from the new genetic algorithm is similar
with other methods. So the new GA can find the optimized design in 20,000 evaluations of

models.
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3.3 Conclusions

For the function optimization, the new genetic algorithm was proved to be able to find the
optimum in an acceptable speed, compared with the other algorithms. Especially, the search
ability of the new genetic algorithm is proved as a great one, because it can search with a bad and
far away start point.

For the simple truss optimization part, similar with other results, the new genetic algorithm
can also find the optimized solution. In one example, the results in other algorithms obviously,
violated the constraint. As the result, for the basic models, the new genetic algorithm is
successful to produce the good results.

These bench mark models are not enough to test one genetic algorithm. There are two
problems on them: first, these models are displacement driven, which have the active
displacement constraint and very small stress. So stress constraint of the current optimization
problem is non-active one. Second, the current optimization is only sizing optimization. The
shape optimization is also a very important part in the optimization problems.

In the next section, we will introduce one complex model and try to optimize it in both of

sizing and shape optimization with the new genetic algorithm.
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CHAPTER 4

THE COMPLEX TRUSS MODEL

Like mentioned above, the widely used truss models can not cover all the needs for testing the
genetic algorithm. So a more complex truss model is described and used to test the new genetic
algorithm in this section.

4.1 The truss tower

In general, one possible design of the truss tower is shown in figure 13. It has a very simple
structure, with three levels and three rings formation. The limitation is simple, as well. Only the
height and the top radius are the fixed numbers. The total height of the tower is 20000 meters
(65615 feet). The radius of top ring means the distance of the vertex and the center point of the

top surface.

the truss tower

Figure 13. The truss tower model
For example, figure 14 shows the top surface of the truss tower. Obviously, the radius is from
vertex to the origin, fixed as 10000 feet. Expect for these two parameters, other values to form

this structure are based on shape or sizing variables, described in the next part.
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4.1.1 Optimization problem formation
Basically, one three level and three ring truss tower will be optimized as a sizing and shape
optimization. First, for sizing optimization, all the members will be optimized for their best
member area. For the symmetric property and convenient calculation, these members are parted
as several groups by position and levels. The look of the 3 level tower is shown in figure 13 to
make the member groups clear. From the figure 13, obviously, there are four member groups
(four colors) in one level, one vertical member (blue), two diagonal members (yellow and black)
and one ring (red). So in total, for 3 level and 3 rings tower, 12 groups of member size will be
optimized so there are 12 variables.

Moreover, as the height of the tower is extremely tall, buckling is a big issue. Considering
this issue, all the members are likely to be designed as a fractional one. In this study, the
fractional design is simplified as radius variable for the member group. So the member could be

designed with a larger radius than the solid radius to avoid the local buckling. The calculation
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about the local buckling will be showed in structural analysis part. In total for the sizing
optimization, 24 variables are optimized.

For shape optimization, two variables, the height and the ring radius in one level are
optimized considering the symmetric property. The height variable means the z-axis value of one
node on the level, and the radius, like described for top radius, is the distance between one vertex
and the center point. As the top radius is fixed and the level 0 (ground) radius is free to design,
one 3 levels, 3 rings tower, has 6 shape optimization variables. Therefore, for the simplest tower,
30 variables are to be optimized.
4.1.2 Structural parameters of the tower
In this section, the structural analysis about the truss tower is introduced, including the structural
parameters, the force formation and the analysis of local buckling.
First, as a truss model, truss finite element method is used for structural analysis. As mentioned,
the height and the top radius h = 65619f and R, = 10000f. The elastic modulus is E =
29000ksf. The material density is p = 0.492pcf. The ultimate stress for the material is o,, =
90ksi and the allowable stress is t, = 0.7.

There are three kinds of external forces applied on the tower, payload, self-weight and wind

load. The payload P = 4 x 1081b could be simply seen as the nodal forces, averagely distributed
at each nodes of the top ring. So for the 3 ring model, every top node will take B, = 2 as the

node forces.
The other two forces are applied on the members, so they could be replaced by equal nodal
forces based on the finite element method. Like other truss models, member weight is distributed

at two end points equally.
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The wind load is a very important part because of the tower height. Wind force is the
product of wind area and wind pressure.
As the member could be fractional, the wind area is calculated as:
A, =07-a R, Ly (4.1)
where A,, is wind are of one member; « is the cosine direction value between wind and member;
L,, i1s member length.
On the other hand, the wind pressure is simplified as the wind pressure of the middle point
of one member. So the wind pressure for this member is calculated as:
P, =05 p-v3 4.2)
where, B, is the wind pressure; p is the air density; v, is the wind speed.
The air density function is:
p=dg(1—pp-hy)" (4.3)
d, = 0.7647 x 10™* , as the air density constant on the ground; p,, = 0.68756 x 10~° and n =
4.2576 as the air density constants.
The wind speed is calculated by two functions because the top wind speed is at the

height hy, = 38000 feet. So the wind speed is given by:

vo(1+b(1—y)+c(1-7vy)?) y<1
Uy = 1 (4.4)
Vo ([1+e(1—y)f]g> y=1

Where v, is peak wind speed at h; . y is the ratio of member height and h. Other constants are

shown the table as:
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Table 9.

Summary of wind speed constant

wind speed
constant

value -1.4601 0.5202 160 1.6 0.25

b c e f g

The local stability analysis is different to the most structural optimizations. In general, the
member radius R;, only needs to meet Euler buckling equation. The critical force for a

compression column can be calculated by:

F, = m2El (4.5)

L2

Where F, is the critical force; L is column length and I is inertia moment.
In this study, as the member is fractional and not defined by any shapes, the Rankine
Gordon formula is used. By avoiding to calculate the inertia moment, the critical stress by

stability is:

F T2E
%= AT Whee (46

On the other hand, the allowable stress is given above,
0, = 0y, 4.7

According to the Rankine Gordon formula, we have

L =142 (4.8)

Omax Oa Oc

The allowable stress for local stability is

= Jc% (4.9)

L _
Ga - Umax - Og+0c
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Obviously, the allowable stress for compression member is the function of member radius.
In fact, there are two ways to improve the compression member if one is overstressed. The first
is to enlarge the size and the other one is to enlarge the radius.
4.2 optimization problem formation
The aim of this problem is to find the optimized design with acceptable stress and displacement.
The objective is the total weight, that is:

W=3%Lip (4.10)

Where, W is the objective; L; is one member length; p is material density.

Like the simple truss models, two kinds of constraints are applied, stress and node
displacement. For stress, the stress ratio value is calculated as:

R, =2 (4.11)

Oa
Where, R, is the stress ratio and the constraints for all the member is 0.7; a,,is the absolute value
of one member stress ratio; g, is the allowable stress and if the member is in compression, this
value is o% by the Rankine Gordon Formula.
For displacement constraint, the largest displacement will be monitored, and this constraint is
smaller than 600f. The two constraints are summarized in the table 10 below.
Table 10

Summary of Constraints

constraint stress ratio displacement
position all members maximum value
value 0.7 600 f
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4.3 The genetic algorithm formation

In this section, the new genetic algorithm is described for the truss tower. The crossover is the
same with that of the simple truss models. The mutation is programmed with these two
parameters: r,, = 0.0001 and s,,, = 20. The rebuilding has two parameters: r = [0.75,1.25]
and s = 20. The loop number N; = 20 and the iteration number N; = 100. The population size
is N, = 900.

As the truss tower is an unknown structure, the initial population is produced randomly.
Like the idea of rebuilding, when the region and the number of possible variables are given, all
the variables for the new population will be created randomly and easily.

Two penalty functions are used for displacement and stress. The penalty for displacement

penalty is created as:

P :{Cd(d_do)zldedO
d 0 ifd < d,

(4.12)
where, P,is displacement penalty; c, is the penalty constant for displacement, as 10'2; d is the
absolute value of the largest displacement. d, is displacement constraint.

On the other hand, the penalty function for stress is linear function

¢, - (R* = 0.7) ifR™ > 0.7
Pr={c, - (R*—0.5) ifR™ > 0.5 (4.13)
0 ifR* < 0.5

where, P is stress penalty of stress; RZ is the stress ratio; c;and c, are penalty constants by:c; =
50 - W, and ¢, = 0.01 - Wy,; W, is the weight with the smallest fitness from the previous loop
and the initial value is 1012,
As the result, the total value of stress penalty will be:
P =X1F (4.14)
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4.4 The result and discussion

4.4.1 The research on convergence plot

Figure 15 showed the total weight is improved by loops. In general, the objective is improved
loop by loop, from 2.39 x 102 to 6.7 x 101°. The loop 20 can improve the objective by 6% ,
from 7.1 x 101° to 6.7 x 101°. It means that at the end of calculation, the objective can be

improved effectively, indicating the convergence.

3.00E+12
2.50E+12
2.00E+12
1.50E+12

1.00E+12

Best design Objective

5.00E+11
0.00E+00
0 5 10 15 20
Loop number
Figure 15. Convergence of truss tower by loops
Figure 16 showed the iteration details of optimization. In this study, the penalty constant is

relatively large, so in this plot, the objective and fitness of the best design are very similar values.

It means that most searches are done in the feasible domain.
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Figure 16. Convergence of truss tower by iterations
When one new loop starts, the average fitness in the population is enlarged a lot. So perhaps the
rebuilding gave the new population some good variables but these good variables should be
recombined for the best design. It is the mutation and crossover to make the good variables
combine together and perhaps, to explore for the new variables to make the fitness smaller.

The loop 5 convergence plot, in figure 17 makes the argument above clearer. After the first
iteration, the crossover and mutation help to improve the objective by 10%. The effective
improvement lasts for 40 iterations. After that, the calculation is not effective and the population

could tend to be converged.
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Figure 17. Objective convergence in loop 5
So from the convergence plot, the new genetic algorithm, with rebuilding, and the new type of
crossover and mutation is able to optimize the complex truss model.

4.4.2 The structural plot

In this section, the tower shape plots are discussed. Figure 18 showed the best designs of loop 5,
10, 15, 20. Red bars are overstressed with R; > 0.85; green bars have the stress ratio as Ry =
0.5. So if the member color has some red and green the stress is in good domain. If R; < 0.2, the
member is colored by blue. If the member color is some blue and green, the member size is
wasted.

From the view of stress ratio basically all the designs are feasible and the design of loop 20
saves the largest amount of material. Because the columns as the largest weight contributors are
all in the good stress domain. Perhaps some diagonal members are in blue, as the stress ratio is
under 0.2. But their material cannot be saved because the other members in the same member

group have a high stress ratio. The stress of loop 20 design, in table 11 can prove it.
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Secondly, the tower shape are improved with iterations. The designs of loop 5 and loop 10

have very short columns.

Loop 5 design Loop 10 design

(@) (b)

Loop 15 design Loop 20 design

v

7
| \
‘ | !
AR

© (d)

Figure 18. Truss tower design by loops; (a) is loop 5 design; (b) is loop 10 design; (c) is
loop 15 design; (d) is loop 20 and final design

It is not a good idea because one short column means that the tower need another very long
column to reach the height. For the long column, thus, the allowable stress will decrease by a
large amount, by the Rankine Gordon formula.

The reason why the program preferred the short first level, could be to make a better
objective. As the penalty constants are large enough, most of designs have no violations of the

constraints. So the program tended to find the best way to cut the weight, the objective. Thus,
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when decreasing the first level height, the members with largest weight are shortened. But as the
program goes, the short level designs will die out because of the local stability.
Table 11

Stress Ratio by member group

Member Group Position Stress Ratio
1 level 1 blue 0.716228832
2 level 1 yellow 0.702230164
3 level 1 black 0.688775323
4 level 1 red 0.535007048
5 level 2 blue 0.714533597
6 level 2 yellow 0.701560233
7 level 2 black 0.714533597
8 level 2 red 0.702699349
9 level 3 blue 0.714825532
10 level 3 yellow 0.70569566
11 level 3 black 0.703717178
12 level 3 red 0.640835472

4.4.3 Conclusions
Basically, the new genetic algorithm can optimize the complex truss tower from a random initial
population. The rebuilding and the new formation of crossover and mutation can play the role as
designed.

The optimization result is reasonable, from the shape and stress point of view. Because most
of members, including all the columns are on the edge of the constraints and the tower shape is
good for horizontal members to stay in the tensile condition. In this way, their allowable stress

will not decrease.
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CHAPTER 5

CONLUSIONS AND FUTURE WORK

5.1 Conclusions

In this paper, the new genetic algorithm is described and discussed. The formation of this genetic
algorithm can present the basic idea: the better design found from the neighbor of the good
designs. Moreover, the operations of genetic algorithm including the rebuilding, mutation and
crossover are straightforward enough for others to build the new genetic algorithm

Some examples of two variable function optimization problems are tested for the new
genetic algorithm, which proves that the algorithm can do the simple function optimization
problems and can find the optimal solution with a bad start.

The simple truss model is used for testing the new algorithm as well. With most of results,
the new algorithm can be proved to find the same optimized designs with other algorithms.
Although there is one problem with different results, the results from the other algorithms could
not be correct. For the speed to find the optimized result, the new genetic could provide an
acceptable one, although most of the previous researches hardly had enough information to
compare.

One new model, the tall tower, is discussed in the last part of this study. This model is
complex as supposed to test the genetic algorithm. Additionally, as a sizing and shape
optimization problem, this model could cover all of needs for testing the performance of
optimization algorithm doing the truss model.

So in conclusion, the new genetic algorithm can do the optimization for the most of bench

mark models from the previous paper in the effective way.
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However, there is a lot of work to do, for this genetic algorithm or for the every kind of

genetic algorithm for structural optimization problems.

5.2 Future work

In fact, to do structural optimization research, the genetic algorithm is not a popular tool. [31]
described a lot about the advantages that a gradient based optimization has over a genetic
algorithm.

Basically, the fatal problem of the genetic algorithm is not able to find the optimized results
in an acceptable speed. This problem becomes more serious when considering a 2D topology
optimization problem. So the future work is to improve the speed of genetic algorithm to find the
optimized.

Based on the experiences of this study, there are two points to improve the effectiveness of
the genetic algorithm, which is the size of population and the usage of the genetic algorithm
flexibility. These two points are not studied deeply for genetic algorithm and perhaps are
necessary to understand thoroughly.

First, the size of population is extremely important for the effectiveness of the genetic
algorithm. In genetic algorithm, the individuals are picked randomly so the population size
should be large enough to make sure the computation stable. In other words, under the same
conditions, the algorithm should produce the similar results despite the noise, which means the
population controls the randomness for the whole computation. It could become the criterion of
population size.

Although lacking of researches on this topic in genetic algorithm, right now the population

size could be calculated conservatively.
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A 2D topology problem is built to discuss about the influence of these two improvement
ways. Generally, all the elements at the left are fixed and other three sides are free. There is one
point force at coordinate (30, 0), which is -10000. The 20 x 20 model has 400 elements will be
optimized with the thickness of every elements, so in total, this is a sizing (topology) problem

with 400 variables, figure 19.

-o initial geometry .. deflected shape

30

251

20

Figure 19. The initial design with stress ratio plot
For the new genetic algorithm if the value number is 400, the population size is about the square
of value number, 160000. As an algorithm with N; = 20 and N; = 50, the total number of model
evaluation is about 160,000,000. It is impossible to use the new genetic algorithm to do the 2D
topology optimization. However, if the population size is 400 other than 160000, the calculation
speed will increase dramatically.

In the previous study, the rebuilding, crossover and mutation is based on randomness and
has the same amount and probability to increase or decrease. However, in this study, to make the
program more effective, some information from the best design from the previous loop or

iteration is used, for example, the stress of every element.
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In this study, the stress ratio is used in the rebuilding. The new member thickness is calculated
by:

Qe = a5 T (5.1)
Where, a;lt,; is the new thickness of member M; aj'is the old thickness of member M. ¢ is the
multiplier from a number group: [0.8,0.85,0.9,0.95,1.0,1.05,1.1,1.15,1.2] a,, is the old member
stress ratio, which can be calculated by:

— Im (5.2)

Tm p
Where, a,, is the stress of member M and g, is the allowable stress.
In this way, the stress ratio will partly control the new variable, to produce more favorable
individuals, compared with randomly producing. The result is shown in the figure 20. In the plot,

if it is blue, the block has less thickness; if it is green, the block has more thickness. Therefore,

the design is reasonable.

Figure 20. Final result of 2D finite element optimization
The idea of flexibility, using the experiences of the previous designs could be regarded as the

good addition for the genetic algorithm.
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In fact, the model is not optimized very well. The effective and result could be better, if the
two improvement points, like the population size and the flexibility are studied deeply enough.

And the genetic algorithm will be used more widely if so.
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