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ABSTRACT  

   

The space environment comprises cosmic ray particles, heavy ions and high energy 

electrons and protons. Microelectronic circuits used in space applications such as 

satellites and space stations are prone to upsets induced by these particles. With transistor 

dimensions shrinking due to continued scaling, terrestrial integrated circuits are also 

increasingly susceptible to radiation upsets. Hence radiation hardening is a requirement 

for microelectronic circuits used in both space and terrestrial applications.  

This work begins by exploring the different radiation hardened flip-flops that have 

been proposed in the literature and classifies them based on the different hardening 

techniques. 

A reduced power delay element for the temporal hardening of sequential digital 

circuits is presented. The delay element single event transient tolerance is demonstrated 

by simulations using it in a radiation hardened by design master slave flip-flop (FF). 

Using the proposed delay element saves up to 25% total FF power at 50% activity factor. 

The delay element is used in the implementation of an 8-bit, 8051 designed in the TSMC 

130 nm bulk CMOS. 

A single impinging ionizing radiation particle is increasingly likely to upset multiple 

circuit nodes and produce logic transients that contribute to the soft error rate in most 

modern scaled process technologies. The design of flip-flops is made more difficult with 

increasing multi-node charge collection, which requires that charge storage and other 

sensitive nodes be separated so that one impinging radiation particle does not affect 

redundant nodes simultaneously. We describe a correct-by-construction design 

methodology to determine a-priori which hardened FF nodes must be separated, as well 
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as a general interleaving scheme to achieve this separation. We apply the methodology to 

radiation hardened flip-flops and demonstrate optimal circuit physical organization for 

protection against multi-node charge collection. 

Finally, the methodology is utilized to provide critical node separation for a new 

hardened flip-flop design that reduces the power and area by 31% and 35% respectively 

compared to a temporal FF with similar hardness. The hardness is verified and compared 

to other published designs via the proposed systematic simulation approach that 

comprehends multiple node charge collection and tests resiliency to upsets at all internal 

and input nodes. Comparison of the hardness, as measured by estimated upset cross-

section, is made to other published designs. Additionally, the importance of specific 

circuit design aspects to achieving hardness is shown. 
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CHAPTER 1 

INTRODUCTION 

The effect of soft errors in microelectronic devices was first studied in early 1970s 

[1]. It was predicted that cosmic rays would start upsetting the microcircuits due to heavy 

ion interactions when the feature sizes became small enough. Through 1970 and early 

1980s the physics of these phenomena was examined. May and Woods [2] determined 

that the errors in the microcircuits were caused by alpha particle emission due to the 

radioactive decay of uranium and thorium present in the package material. They referred 

to these errors as “soft errors” and this was the first account of radiation induced upsets 

on terrestrial micro devices. It was also discovered that the upsets were also caused by 

nuclear reaction generated neutrons and protons [3].  

1.1 Radiation Environment 

In 1980s research on single event effects (SEE) increased. Numerous methods were 

developed to harden the ICs against SEEs. Much of the research work was focused on 

errors observed in DRAMs, SRAMs, nonvolatile memories, latches and registers. In the 

1990’s, it was discovered that natural boron and isotope boron-10 present in boro-

phospho-silicate-glass (BPSG) used in the manufacturing process reacted with low 

energy neutrons present in the atmosphere to produce upsets in ICs [4] subsequently, 

BPSG was removed from most processes.   

1.1.1 Trapped Particles 

Charged particles that come into contact with the Earth’s magnetic field can become 

trapped in the near-Earth environment. These particles include electrons, protons, and 
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heavy ions. Fig 1.1 shows the space radiation environment. Electrons are very important 

components of the space environment because they inflict damage on spacecraft through 

spacecraft charging effects [6][7]. 

The trapped particle belts (Van Allen belts) consist of two regions of trapped particles, 

an inner belt centered at about 1.5 Earth radii, and an outer belt of particles at about 5 

Earth radii, separated by a region of reduced particle flux.  

Sources of radiation include the solar wind and transient solar events, cosmic ray 

particles from interplanetary space, and reaction products from cosmic ray collisions with 

the Earth’s atmosphere [8].  

1.1.1.1  Protons 

Energetic protons exist in the near-Earth environment and are one of the most 

prominent sources of orbital SEE. They range in energy from tens of keV to hundreds of 

MeV [8]. Protons with these energies are easily able to penetrate shielding and impinge 

 
 

Fig. 1.1. Particles in the space radiation environment [5]. 
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on electronics within spacecraft. The altitude at which proton flux peaks depends on the 

proton energy, with high energy (>30 MeV) protons being cut off by around 3.5 Earth 

radii, but lower energy protons existing throughout the slot region.  

1.1.1.2 Heavy Ions 

The heavy ions from space are trapped by the Earth’s magnetic field. The origin 

of these particles are cosmic rays, which are interstellar particles that drift into the solar 

system, become ionized by the solar wind and accelerated to 10’s of MeV/nucleon, and 

are subsequently trapped by the magnetosphere. Recent studies have shown high heavy 

ion (e.g. nickel and iodine) fluencies above 10
6
 particles/cm

2
 can damage electronic 

components through ionization processes [8].  

1.1.2 Transient Particles 

 In this section, we classify all particles in the near-Earth space environment that 

are not trapped in the magnetosphere. This includes particles introduced into the 

environment by solar events such as flares and coronal mass ejections (CMEs), as well as 

energetic ions incident from interstellar space. 

1.1.2.1 Solar Event Protons and Heavy Ions 

 Solar events can be broadly classified as being either gradual or impulsive. The 

gradual events produce particle flux that decays slowly over several hours or even days, 

and have been correlated to CMEs. These events are proton-rich and can produce high-

energy (>30 MeV) proton fluences higher than109
 protons/cm

2 accumulated over a few 

days. Gradual events are responsible for the majority of large proton fluence events, and 

occur at a frequency of about 10 per year during solar maximum conditions.  
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Impulsive events are of much shorter duration (hours at most), and are marked by 

increased fluences of heavy ions and low energy electrons. Impulsive events produce 

heavy ion fluences that can be orders of magnitude above the galactic cosmic ray 

radiation. These heavy ions have energies ranging from tens of MeV/nucleon to hundreds 

of GeV/nucleon [8][9]. 

1.1.2.2 Galactic Cosmic Rays 

 Solar event particles are observed only for a short time following an event, 

although following a large event increased levels of trapped particles are observed and in 

some cases can produce new trapped particle belts. In contrast, galactic cosmic rays 

(GCR) form a background component of radiation that shows a slow cyclical variation 

with solar activity. GCRs are composed of very highly energetic protons and heavy ions 

that come from outside the solar system.  

 Protons comprise about 83% of the GCR flux, He nuclei (alpha particles) account 

for 13%, 3% are electrons, and the remaining 1% are heavier nuclei [10]. Even though 

they are not very abundant, heavy ions are very important to SEE because they deposit 

the most energy per unit path length, as discussed in later sections. Beyond Fe, the heavy 

ion flux drops dramatically. This is important, because the energy deposited by an ion per 

unit path length depends on its atomic number. Ions heavier than Fe are more ionizing, 

but are much less abundant.  

GCRs that come into contact with the near-Earth environment encounter the 

Earth’s geomagnetic field. Because they are so energetic (tens of MeV/nucleon to 

hundreds of GeV/nucleon), they do not become trapped and are not significantly 

attenuated by spacecraft shielding. GCRs that hit the atmosphere form a cascade of 



5 

 

 

secondary particles. 

1.1.3 Secondary Particles 

 Secondary particles are produced when GCRs strike the Earth’s atmosphere and 

produce a shower of particles in the atmospheric environment. A radiation environment 

also exists in the Earth’s atmosphere, and although less harsh than the space environment, 

it can also produce SEE.  

 As highly energetic cosmic rays enter the upper atmosphere they interact with 

oxygen and nitrogen in the atmosphere and produce a shower of daughter products 

 
Fig. 1.2. Illustration of the terrestrial cosmic ray shower caused by the interaction of galactic cosmic rays 

with the Earth’s atmosphere [12]. 
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[11][12]. Some of the daughter products can reach all the way through the atmosphere to 

ground level, equivalent to passing through more than 13 feet of concrete [11]. A diagram 

of a cosmic ray shower is shown in Fig. 1.2. The daughter products primarily responsible 

for causing upsets in high-altitude and terrestrial electronics are neutrons and protons 

[12]. The fluxes of neutrons and protons have similar characteristics with respect to 

energy and altitude variation, with both populations extending to energies greater than 1 

GeV.  

1.1.4 Radiation Effects in Devices 

When a component is exposed to radiation, the radiation transfers some of its 

energy to the component materials, changing the localized material properties. This can 

affect component functionality, with the end result depending on the type of radiation, 

where the energy deposition occurred, and the type of component. 

1.1.5 Single Event Effects 

SEEs are caused by the impact of either heavy ions or energetic protons and 

neutrons that occur naturally in space or the atmosphere, on sensitive areas in 

microcircuits. These particles deposit ionizing energy into the circuit that cause a soft 

(i.e., a non-permanent) error or in some cases permanent damage to the circuit. In this 

section we look at the release of mobile carriers along the path of an incident particle and 

the collection of these carriers. 

1.1.5.1 Charge Deposition 

 As ionizing radiation passes through a target material electrons and holes are 

released along the path of ionizing particles. There are two primary methods by which 
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carriers are released, direct ionization by the incident particle, and ionization by 

secondary particles created by nuclear reactions between the incident particle and the 

target material.  

 When an energetic particle passes through a semiconductor material it frees 

charged carriers along its path as it loses energy. When all of its energy is lost, the 

particle comes to rest in the semiconductor, having traveled a total path length referred to 

as the particle’s range. The term linear energy transfer (LET) or dE/dx  is used to 

describe the energy loss per unit path length of a particle as it passes through a material. 

LET has the units of MeV − cm2/mg, because the energy loss per unit path length (in 

MeV/cm) is normalized by the density of the target material (in mg/cm3) as given by  

  𝐿𝐸𝑇 =
1



𝑑𝐸

𝑑𝑥
     (𝑀𝑒𝑉 − 𝑐𝑚2/𝑚𝑔), (1) 

where 𝜌 is the material density (2.42 g/𝑐𝑚3
 for silicon). The charge deposited through 

direct ionization sufficient to cause an upset depends on the individual device and circuit 

that has been struck as well as the strike location and trajectory. Direct ionization is the 

primary charge deposition mechanism for upsets caused by heavy ions, where we define 

a heavy ion as any ion with atomic number Z ≥ 2 (i.e., He and above, i.e., particles other 

than protons, electrons, neutrons, or pions).  

 Direct ionization by light particles usually does not produce a high enough charge 

density to cause upsets.  Protons and neutrons can both produce significant upset rates 

due to indirect mechanisms. As a high-energy proton or neutron enters the semiconductor 

lattice it may undergo an inelastic collision with a target nucleus. This may result in the 

emission of alpha (𝛼) or gamma (𝛾) particles and a recoiling daughter nucleus (e.g., Si 

emits 𝛼 -particle and a recoiling Mg nucleus) or a reaction, in which the target nucleus is 
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broken into two fragments (e.g., Si breaks into C and O ions), each of which can recoil. 

Any of these reaction products can now deposit energy along their paths by direct 

ionization. Because these particles are much heavier than the original proton or neutron, 

they can deposit high charge densities as they travel and therefore may cause an SEU.  

1.1.5.2 Charge Collection  

 The most sensitive semiconductor device structure is the reverse-biased junction.  

The collected charge (Qcoll) depends on the type of ion, its trajectory, and its energy over 

the path through or near the junction.  A reverse biased n+/p junction with a positive 

voltage on the n+ node is shown in Fig. 1.3. At the onset of an ionizing radiation event, a 

cylindrical track of electron-hole pairs with very high carrier concentration is formed 

along the path of the energetic ion’s passage. When the resultant ionization track 

traverses or comes close to the depletion region, carriers are rapidly collected by the 

electric field creating a large current/voltage transient at that node. 

 
Fig. 1.3. A schematic of a reverse-biased n+/p junction struck by an ion [13]. 
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As the ionizing radiation passes through the substrate, the depletion region is 

extended into a funnel deeper into the substrate [14]. This funnel greatly enhances the 

efficiency of the drift collection. The depth of the funnel is a function of substrate doping. 

This “prompt” collection phase is completed within a nanosecond and is followed by a 

phase where diffusion begins to dominate the collection process. Additional charge is 

collected as electrons diffuse into the depletion region on a longer time scale 

(nanoseconds) until all excess carriers have been collected, recombined, or diffused away 

from the junction area. The diffusion process is much slower and typically the total 

charge collected from diffusion is significantly less than that collected initially by prompt 

collection in the case of advanced technologies.  

The magnitude of the collected charge (Qcoll) depends on the size of the device, 

biasing of the various circuit nodes, substrate structure, device doping, the type of ion, its 

energy, its trajectory, the initial position of the event within the device, and the state of 

the device. The device’s sensitivity to this excess charge is defined primarily by the node 

capacitance (Cnode), operating voltage (Vnode), and the strength of feedback transistors, 

all defining the critical charge (Qcrit) required to trigger a change in the data state [15].   

 For simple isolated junctions, a soft error will be induced when a radiation event 

occurs close enough to a sensitive node such that Qcoll  > Qcrit and Qcrit has the form  

    Qcrit = Cnode ∗ Vnode 

Conversely, if the event results in a Qcoll <  Qcrit then the circuit will survive the event 

and no soft error will occur.  

1.1.6 Destructive and Non-Destructive SEEs 

 Single-event effects are broadly characterized as either non-destructive or 
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destructive SEE. SEEs that cause no observable physical effect or a temporary disruption 

of circuit operation (known as soft errors) are Non-Destructive. SEEs which cause 

permanent damage to the device or integrated circuit (known as hard errors) are 

Destructive. Table I lists the various sub categories of SEEs. Any of these effects can 

cause soft errors in space applications. A brief description of each kind of SEE is given 

below 

1) Single Event Transients (SET)  

The situation in which a single event charge collection happens at a combinational 

circuit node generating a temporary voltage glitch is called a single event transient as 

shown in Fig. 1.4(a). The SET generated depends on the circuit node logic state and 

diffusion type. The SET can propagate through combinatorial logic and if captured by a 

sequential circuit, can upset the IC architectural state. 

TABLE I 

 

VARIOUS SUB CATEGORIES OF SINGLE EVENT EFFECTS (SEE) [20] 

 

Acronym Result 

 

Effect Name Description 

SEU Non-Destructive Single Event Upset Switching of a digital logic 

state 

 

SET Non-Destructive Single Event Transient Voltage transient at circuit 

node 

 

SEMBU Non-Destructive Single Event Multiple Bit 

Upset 

Switching logic states of 

adjacent cells 

 

SEB Destructive Single Event Burnout High current condition in BJTs 

or Power MOSFETs 

 

SEGR Destructive Single Event Gate Rupture Destruction of Insulated Gate 

in power MOSFET 

 

SEL Destructive Single Event Latchup High current destruction of a 

n-p-n-p structure 
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2) Single Event Upsets (SEU)  

A single event upset is charge collection at a sequential circuit storage node 

upsetting the logic state directly as shown in Fig 1.4(b). This can be caused either by the 

direct ionization from a traversing particle or by the ionization produced by charged 

particles and recoiling nuclei emitted from a nuclear reaction induced near the 

microcircuit element. 

3) Single Event Multiple Bit Upsets (SEMBU)  

SEMBUs occur when there is multiple node charge collection (MNCC) across 

multiple circuit nodes which simultaneously collect charge deposited by the same 

ionizing radiation particle track. MNCC can span multiple microns, greatly complicating 

 
(a) 

 
(b) 

Fig. 1.4. Ionizing radiation induced charge collection at (a) a combinational circuit generating SET and (b) 

on a latch circuit causing a SEU. Either or both may upset IC architectural state in flip-flops. 
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the design and layout of hardened sequential circuit elements [21][22]. MBU probability 

is strongly dependent on node spacing, feature size, and supply voltage. As feature sizes 

shrink, MBUs are becoming more of an issue. The LET, range, track radius, and angle of 

incidence of the particle inducing upset are also important. In general, particles that 

deposit more energy, have a longer range, and have a larger radius are more likely to 

induce MBU.  Since a single event induces an MBU, the MBU fail pattern is typically 

contiguous and follows a trajectory. In accelerated experiments, care must be taken when 

taking data to ensure that adjacent bit errors caused by separate events are not to be 

considered MBUs. Statistical methods can be applied to sort out adjacent upsets that 

appear to be MBU as well as fast bitmapping, i.e., time stamping and rapid SRAM 

readout.  

Fig. 1.5 shows MNCC effect on SRAMs designed at Arizona State University in a 

90 nm process. Red cells indicate upset cells due to charge collection and MNCC regions 

are indicated in green. MNCC producing a multi-bit upset in a single EDAC word is 

trivially avoided in SRAMs by column interleaving, which has been standard practice for 

decades. 

4) Single Event Burnout (SEB) and Single Event Gate Rupture (SEGR)  

The charge track from an ion traversing a power MOSFET structure causes an 

avalanche breakdown between the n-epi and n+ substrate regions and produces a burnout 

and permanent damage at this interface [23]. 

SEGR is permanent damage causing rupture in dielectric gate materials due to 

avalanche breakdown caused by the traversal of a heavy ion [24]. 
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5) Single Event Latchup (SEL)  

Single event latchup is a CMOS Latchup caused by the collected charge. A SEL 

triggers a large supply currents that results when a parasitic silicon controlled rectifier p-

n-p-n structure is triggered into a regenerative forward bias [25]. Generally SER requires 

the device be powered down to turn off the SCR. If the current levels are high enough, 

permanent damage can result. 

1.2 Radiation hardening 

  Hardness against radiation can be achieved through a variety of methods. One 

method is by employing special processes in the fabrication of microelectronic circuits. 

This can involve variation in the substrate structures or doping profiles. All methods use 

specialized circuit design techniques. Through specific design techniques, it is possible to 

 
 

 
 

Fig. 1.5. MNCC effect on SRAMs in 90 nm process. Red cells indicate upset cells due to charge collection 

and MNCC regions are indicated in green 
 



14 

 

 

fabricate radiation hardened components using standard CMOS process flow known as 

radiation hardening by design (RHBD). 

1.2.1 Process Mitigation Techniques 

Substrate structures or doping profiles can have a large impact on reducing the 

critical charge, thus reducing SER. CMOS with buried implants can improve SER by 

reducing the size of the funnel formed, thereby reducing the amount collected by 

sensitive nodes. Following sections discusses some of these techniques. 

1.2.1.1 SOI substrate 

 Substrates incorporating a thin silicon layer on a thicker layer of buried oxide 

(Fig. 1.6) have been shown to reduce SER sensitivity  as compared with bulk silicon 

[27][28]. In SOI, the isolation provided by the isolation oxide improves the SER 

robustness since less charge is collected than the bulk counterpart, i.e., the track length is 

attenuated. 

 
Fig. 1.6. Cross-section of an SOI transistor [26]. 
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General Advantages of SOI 

 Eliminates latch-up. 

 Si volume reduction leads to large reduction in critical charge collection 

compared to bulk. 

 No funneling can occur 

1.2.1.2 Increasing the critical charge 

 SEE is a balance between charge collection and critical charge required for upset. 

If we increase the storage charge of a device its sensitivity to radiation can be reduced. 

Using either parasitic capacitance with back-end (metallization and inter-level dielectric) 

process tweaks or dedicated capacitor structures, critical charge can be increased. 

However, adding capacitance can have some negative effects on dynamic circuit response 

and dynamic leakage. The capacitors also require space, increasing the circuit area. 

1.2.1.3 RC - Hardening 

Any change which increases the critical charge while maintaining or reducing the 

collected charge will improve the SER performance of a device. A typical high-density 

SRAM cell consists of six transistors; two allowing data to be read and written to-and-

from the cell and four transistors making up the two cross-coupled inverters responsible 

for maintaining the data state.  

 As shown in Fig. 1.7, resistance can be added between the two inverters so that 

the time to flip the cell is increased [29], thus effectively allowing the pull-up/pull-down 

transistors more time to restore the data state. However, this approach affects the write 

time of the cell.  The latch or SRAM response is thus slowed so that it cannot respond to 
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the voltage pulse induced by a radiation event before the charge is removed. As the node 

capacitance scales down, the resistance must scale up. These approaches seem to be 

“running out of steam” at about the 0.25𝜇m node. 

1.2.2 Design Mitigation Techniques 

Soft errors caused by ionizing particles can be overcome by solely using circuit 

techniques i.e., RHBD [32][35].  Sequential circuit elements like latches, flip flops and 

registers are hardened to radiation by one of the two well known design techniques, 

namely hardening by redundancy and via temporal techniques. The principles involved in 

these two techniques are discussed in the following sections.  

1.2.2.1  Hardening by Redundancy 

Redundancy hardens by duplication or triplication of the circuit elements and 

voting out the upset state. Redundancy operates in a way that error propagation is 

blocked unless two or more circuit elements are simultaneously in error. The most 

common spatial redundancy technique for combinational logic is the triple modular 

redundancy (TMR) shown in Fig. 1.8 [31]. Logic is replicated three times and then 

connected to a majority gate. The majority voter schematic is shown in Fig. 1.9. The 

 

Fig. 1.7. Resistively hardened SRAM schematic [29]. 
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incorrect logic state resulting from the radiation strike at its input is voted out by the other 

two correct states.  

The clear penalty in this technique is the 3X increase in area. This is an expensive 

technique but it does reduce soft failure rates to near zero levels, providing the necessary 

reliability for long term mission critical applications. It is also straightforward to 

implement and validate. 

The DICE latch [32] shown in Fig. 1.10 is the most commonly used redundant 

structure, doubling the storage nodes in a configuration that requires two nodes be upset 

to change the state. However DICE latch based flip-flops have been shown to be 

susceptible to SET induced upsets [33], since input or clock errors are not mitigated. 

Moreover, they are increasingly susceptible to upset by MNCC, particularly on bulk 

technologies. The high DICE circuit density also makes it very difficult to provide 

adequate critical node spacing to avoid MNCC induced upsets. 

 
 

Fig. 1.8. Triple Modular Redundancy [30]. 
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1.2.2.2 Temporal Hardening 

Temporal hardening operates by essentially placing various types of low pass 

filters in the logic string. Various possible designs are described in [34]. One of the ways 

to achieve temporal filtering is to split the output of each combinational logic string into 

three branches, delay two of those branches by one and two delays, respectively, and then 

perform a majority vote on all three. Fig. 1.11 is a block diagram illustration for this 

technique. To be effective, the delay of each successive element must exceed the 

 

 
Fig. 1.9. Majority gate schematic. 
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Fig. 1.10. DICE latch schematic [32]. 
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maximum pulse width of the transient.  

Temporal hardening uses delay elements to filter upsets into time windows. A 

delay element is a circuit which delays the input signal by a particular duration. These 

approaches have been shown effective at mitigating SETs on the sequential circuit clock 

and control inputs as well as SEUs [34][35]. Delay based filters combine a C-element and 

a delay element to filter SETs of durations less than the delay element delay as shown in 

Fig 1.12. Since circuit delay reduces with scaling, a key difficulty in temporal hardening 

is generating a low power and area delay circuit, that itself does not produce limiting SET 

durations. For instance, when using current starved delay elements to measure SET 

durations, up to 3 ns SET durations (tSET) were experimentally measured [36]. Thus, 

reducing the delay element usage, size, and SET duration due to the delay elements 

 

 
 

Fig. 1.11. Temporally hardened circuit [30]. 
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Fig. 1.12. Combination of C-element and inverter chain delay element to filter incoming SETs.  
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themselves are key issues in temporal hardening. Temporal filtering the flip-flop (FF) 

inputs has demonstrated effectiveness when combined with a DICE latch at mitigating 

both SET and SEU [37]. 

1.3 Thesis contribution and organization 

The causes and IC effects of radiation on silicon were discussed in the previous 

sections. Radiation hardening is a requirement for microelectronic circuits, especially in 

aerospace applications, as they are prone to radiation induced upsets from high altitude or 

orbital neutrons and ions. The most common method to SEE harden VLSI circuits is to 

use hardened FFs. Chapter 2 classifies different hardened FFs that have been proposed 

and providing a brief description of the operating principle, advantages and drawbacks 

for each FF. It is shown that ad-hoc design approaches frequently leave “holes” in the 

hardness. 

Modern CMOS processes are designed to minimize gate delay, which is a key 

metric. In RHBD, temporal delay circuits must maximize delay. However, current 

starving or longer than minimum channel length devices in a delay element may also 

produce the limiting tSET, against which the delay element is used to protect the circuit. 

Chapter 3 addresses this issue by proposing a dual redundant delay element which does 

not adversely affect the worst-case SET duration on the IC. Each redundant element is 

slowed by reduced gate overdrive, and the lower swing of the drain nodes provides power 

savings. The delay element SET tolerance is demonstrated by simulations using it in a 

RHBD master slave FF. Using the proposed delay element saves up to 25% total FF 

power at 50% activity factor. The delay element incorporates redundancy to mask long 

transients, which would otherwise limit the circuit hardness. A FF layout using the 
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proposed delay element is used in synthesis and auto-place and route experiments to 

confirm overall power, performance, and density. It uses a multi-bit cell interleaving the 

constituent circuits of four FFs to be robust to MNCC.  

The design of FFs is made more difficult with increasing MNCC in advanced 

scaled fabrication processes, which requires that charge storage and other sensitive nodes 

be separated so that one impinging radiation particle does not affect redundant nodes 

simultaneously. In chapter 4, a correct by construction design methodology to determine 

a-priori which hardened FF nodes must be separated, as well as a general interleaving 

scheme to achieve this separation is described. Graph clustering approaches to determine 

effective node separation to protect against upset due to MNCC are demonstrated. The 

methodology is circuit simulation based, making it efficient and usable by circuit 

designers. The methodology is applied to radiation hardened flip-flops and optimal circuit 

physical organization for protection against MNCC is demonstrated. Example designs are 

presented to demonstrate the analysis and clustering for real flip-flop designs.  

In chapter 5, a new low power and area efficient radiation hardened flip-flop design 

is presented. The hardness is verified and compared to other published designs through 

the proposed methodology that comprehends MNCC and tests resiliency to upsets at all 

internal and input nodes. Comparison of the hardness, as measured by estimated upset 

cross-section, is made to two published designs. Additionally, the importance of specific 

circuit design aspects to achieving hardness is shown. The FF achieves a 31% power and 

35% area reduction compared to a previous design with similar hardness. 

Finally, the summary of this work and conclusions are presented in chapter 6. 
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CHAPTER 2 

RADIATION HARDENED FLIP-FLOPS 

This chapter explores the different radiation hardened FFs that have been proposed 

in the literature and tries to classify them based on different hardening techniques and the 

hardness afforded, e.g., to SEU only or to SET and SEU. Radiation strikes affect the 

sensitive nodes in the combinational logic, by generating voltage transients that propagate 

through the circuit. These SETs may sometimes be masked by the feed forward logic 

circuitry. However, if they are captured by a sequential element, the circuit logic state 

may change affecting its overall functionality. Sequential logic circuits are also 

vulnerable to radiation strikes that directly upset the storage node logic state (i.e., SEU) 

2.1 Radiation Hardened Flip-Flop Classification 

By analyzing the working principles of various designs available in the literature, 

radiation hardened FFs can be classified into two broad categories. One is temporal 

hardening and the other is hardening by redundancy, both of which were explained in 

chapter 1. Further, most FFs in each of these categories have similar hardening principles 

which are mostly improvements or combinations of certain hardening techniques. For 

instance many FFs utilize the four node redundant storage structure seen in DICE to 

achieve SEU hardness on storage nodes. This enables us to further classify FFs in each of 

these two broad categories based on common working principles. Some FFs incorporate 

hardening principles from both of the two broad categories, for instance the DF-DICE 

[37] latch utilizes temporal hardening to filter SETs on clock and D inputs and redundant 

storage structure of DICE for protection against SEUs. The original authors’ names are 

used throughout.  
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2.2 Redundant Non Self Correcting FFs 

FFs hardened by redundancy can be further classified into self-correcting and non-

self-correcting. Non-self-correcting FFs, as the name suggests, will not have mechanism 

to restore upsets on storage node states. Instead the incorrect storage node state is merely 

prevented from propagating. These circuits typically have redundant latches whose 

outputs are connected to a C-element or majority gate. If the storage node in one of the 

latches upsets due to particle strike, the C-element or majority gate inputs mismatch. In 

the former case, the C-element output tri-states, blocking the upset state from reaching 

the next stages. Three such FFs belong to this category, the prominent one being BISER 

proposed by Zhang [44]. The designs proposed by Yamamoto [45] and Masuda [46] are 

improved versions of BISER FF. 

2.2.1 Built In Soft Error Resilience FF 

Working principle: 

The first FF in this category is the Built-In Soft Error Resilience (BISER) [44]. It 

consists of two D-flip-flops joined with a C-element as shown in Fig. 2.1. A particle 

strike can happen either in the clock low or clock high phase and can upset one of the 

four latches. In the clock low phase latches LB and PH1 hold the stored logic value and 

hence are prone to SEUs, while LA and PH2 are not error-prone as they are transparent 

and driven by the preceding logic stages. If a particle strike flips the logic value stored in 

LB or PH1, the two inputs to the C-element will differ and the error will not propagate to 

the C-element’s output. Similarly in the clock high phase, latches LA and PH2 are 

holding the data and hence are prone to upsets while latches LB and PH1 are transparent. 
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Now upsets on LA or PH2 will be directly fed to C-element inputs, which again tri-states 

if they mismatch preventing the error from propagating further. 

The purpose of the keeper is to fight the leakage current in the C-element when 

both its pull-up and the pull-down paths are shut off, which occurs only when the content 

of one bi-stable circuits gets flipped by a particle strike. 

Advantages: 

Its layout area is slightly more than twice the standard D-FF layout which is 

relatively small as compared to other hardened FF designs, especially temporal FFs.  

Disadvantages: 

It is not hard to SETs on its D and clock inputs. A major flaw in this design is the 

exposed storage node at the output Q which may cause data from the next stage to write 

back and change the current FF state. Finally, it is not self-correcting.  

 

 

 
 

Fig. 2.1. BISER FF schematic [44]. 
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2.2.2 Bi-stable Cross-Coupled Dual Modular Redundancy FF 

Working principle: 

The bi-stable cross-coupled dual modular redundancy flip flop (BCDMR) [45] 

shown in Fig. 2.2 is an “improved” version of BISER. It has two C-elements connecting 

the master to the slave latches. There is an inverting delay element between the two 

master latches ML0 and ML1; hence their inputs will have opposite logic states, resulting 

in the C-elements CM0 and CM1 to have identical logic states at their inputs. Thus this 

design adds temporal protection to the D input. 

Similar to the BISER FF case, a particle strike can happen either in the clock low or 

clock high phase and can strike one of the four latches. In the clock low phase, the 

protection provided to upsets in latches SL0 and SL1 by C-elements CS0 and CS1 is 

similar to that in BISER. However, in the clock high phase, unlike BISER, the C-

elements CM0 and CM1 prevent upsets in ML0 and ML1, both in hold mode, from 

propagating further. The C-elements must have sufficient drive strength to flip the weak 

keeper. The keepers need not be strong as the two C-elements will rewrite the keeper if it 

flips.   

 

Fig. 2.2. Bi-stable cross-coupled dual modular redundancy (BCDMR) FF schematic [45]. 
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Advantages: 

It is hard to SETs on D-input. In the clock low phase, a delay filter circuit will be 

formed at the D-input, as latches ML0 and ML1 become transparent, connecting the 

delay element to one of inputs of C-elements CM0 and CM1.  

Disadvantages: 

It is not hard to SETs on clock inputs. This design also has the same flaw as the 

BISER design where it has exposed storage node at the output which may cause data 

from the next stage to write back and change the current FF state. This is a common error 

in academic papers but absolutely never occurs in real commercially shipping industry 

designs. Of course it makes the timing and power look better, but is prone to coupling 

noise induced failure. The area advantage of the BISER FF no longer holds for this FF, as 

it has a delay element, three additional C-elements, and three additional keepers. 

2.2.3 Bi-stable Cross-Coupled Dual Modular Redundancy FF with Adaptive 

Coupling  

Working principle: 

The FF [46] shown in Fig. 2.3 (top) is essentially BCDMR FF with the standard D 

latches replaced with master and slave latches of adaptive coupled flip-flop (ACFF) 

shown in Fig. 2.3 (bottom). Hence it is called BCDMR-ACFF. Its working principle is 

same as BCDMR except for the functioning of ACFF. The master latch has adaptive-

coupling (AC) element, comprised of PMOS and NMOS transistors connected in parallel 

with both their gates connected together. The reason for having the AC element in the 

master latch is as follows. 
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Let us assume that there is no AC element. Node F will be connected to node G 

and node FN will be connected to node GN. Now assume node G (or node F) to be at 

logic 1 and node GN (or node FN) to be logic 0. Due to the weak current drive of PMOS 

pass gate, logic 0 (D=0) cannot be written on node G (or node F). Now consider the case 

when the AC element is added to the master latch as shown in Fig. 2.3. Now if logic 0 

has to be written to node G, node BN should be at logic 1 and node B should be at logic 

0. This causes the NMOS transistor in the bottom AC element to turn on, resulting in the 

state of node F to be lowered to Vdd-Vt, when the current discharges through the F-B 

path. Due to the lowered potential on node F, the PMOS pass gate can now pull node F 

and hence node G towards logic 0. However, node F will not be completely discharged. 

When node G goes to logic 0 by charging node FN, node F will be completely discharged 

 

 

 

Fig. 2.3. BCDMR-ACFF (top) [46] and AC flip flop (below) [47] schematics. 

 

AC

AC

C C

AC

AC

C C

d

CLK

CLK

CLK

CLK

CLK

CLK CLK

CLK

D

DB

Q

QB

AC

ML0

ML1

SL0

SL1

CM0

CM1

CS0

CS1

KM KS

B F GN

BN FN G

AC

AC

CLK CLK

CLK CLK

D

ML0
SL0

B F GN

BN FN G

Q



28 

 

 

to 0V through the G-F path, as the NMOS in the AC element allows a strong discharge 

current. 

Advantages: 

This FF saves power as the ACFF operates with the single-phase clocking 

scheme. Power reduction is achieved by not using the local clock buffers and using pass 

transistors instead of transmission gates, which results in four fewer transistors than the 

standard transmission-gate FF. 

Disadvantages: 

As PMOS pass transistors have weak current drive and are used to write data into 

latch storage nodes, the SEU recovery time will be longer. Again since disruption  of the 

output jam latch is independent from a soft error, the lack of output buffering is 

unacceptable. The use of slave jam latches makes this design problematic on modern 

processes with high process variation. Moreover, using NMOS pull-ups and PMOS pull-

down transistors is generally banned for the same reasons.  

2.3 Redundant Self Correcting FFs 

In the self-correcting designs, upsets on storage node states are restored to original 

state by built-in circuit mechanisms. The restoration is due to positive feedback between 

storage nodes. Most FFs in this category base their design either on the four node storage 

structure seen in DICE or utilize C-elements. Hence, the self-correcting designs are 

further classified as the ones that utilize a DICE latch storage structure and the ones that 

utilize C-elements. The FFs proposed by Huang [48], Komatsu [49], Sheng Lin [51] and 

Omana [52] are self-correcting designs that utilize C-elements. The designs proposed by 

Hazucha [53], Jahinuzzaman [54], Blum [55] and Saihua Lin [56] are self-correcting 
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designs that incorporate DICE latch storage structure. The TMR FF proposed by 

Hindman [43] does data correction in the clock low phase and hence can also be 

categorized as self-correcting. 

2.3.1 Redundant Self Correcting C-Element Based FFs 

2.3.1.1 Three C-Elements Based Latch 

Working principle: 

Fig. 2.4 shows a hardened latch design using three C-elements [48]. There are 

three C-elements in the latch: CE1, CE2 and CE3. CE1 and CE2 constitute a “dual 

interlocked” keeper for two purposes. Firstly, they can be used as keepers when the latch 

is not transparent to keep the correct value. Secondly, they are used to mask the radiation-

induced SEU on the internal storage nodes N3 and N6. C-element CE3 is used to block 

soft errors from propagating through the latch. Consider an upset on node N3, when the 

latch is in hold mode. The C-element CE1 tri-states, and holds node N6 in its original 

state, eventually driving the node N3 to recover to its original state. Until that time, the 

C-element CE3 also tri-states and blocks the data from propagating further. 

 

 

 

Fig. 2.4. C-Element based latch schematic [48]. 
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Advantages: 

Its layout area is almost twice the standard D latch area, which is relatively small 

as compared to other hardened FF designs, especially temporal FFs. 

Disadvantages: 

This latch is not hard to SETs on data and clock inputs. With delay element 

between D1 and D2, the latch can mitigate SETs on D input. When the latch is in the hold 

mode, if node N6 (or N9) is upset due to particle strike, node N3 flips that causes CE1 (or 

CE3) to tri-state. There is no mechanism to restore node N6 to its original state and 

eventually, due to charge leakage nodes N6 and Q may switch to wrong state. Also, since 

the C-elements occupy only two polygon tracks, storage nodes will be in close vicinity 

making them vulnerable to multi-node charge collection. Consequently this latch is not 

really hard to all SEU or SET possibilities. Thus while small, it is also ineffective. 

2.3.1.2 Soft Error Hardened Latch 

Working principle: 

Fig. 2.5 shows the schematic for the soft error hardened (SEH) latch proposed in 

[49]. The latch operates by complementary clocks, CK and CKB. The circuit has two bi-

stable elements formed by transistors P1-N1 & P8-N2 and P1-N1 & P2-N8. DH, PDH 

and NDH are the three storage nodes in the circuit. When the latch opens, input data 

drives the DH, PDH and NDH. PDH and NDH have the same polarity as the input data 

while DH has inverted polarity.  

Consider the latch to be in the hold mode and the node DH to be at logic 1 state. 

As nodes PDH and NDH are complimentary to node DH, both will be in the logic 0 

states, turning on transistor P1 and holding node DH at logic 1. Now, if an upset on node 
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DH pulls it to logic 0, it will be pulled back to the logic 1 state through P1. Now consider 

the case when there is an upset on node PDH and pulls it to logic 1 state. The logic 0 state 

on node NDH will turn on P7, which then turns on N2 due to logic 1 state on node DH. 

Eventually transistor N2 pulls the node PDH back to logic 0. Similar analysis holds good 

for logic 1 to 0 upset on node PDH, where P8 would restore the logic 1 state as N3 would 

turn on due to logic 1 state on NDH. 

Advantages: 

As the circuit has 18 transistors, the layout area is small as compared to other 

hardened designs. 

Disadvantages: 

This latch is not hard to SETs on data and clock inputs. Also, as the circuit is 

small, the storage nodes will be in close vicinity making them vulnerable to multi-node 

charge collection. The extensive use of NMOS pull up and PMOS pull down transistors 

is problematic for robustness to process variation, which is more commonly encountered 

than soft errors. 

 

Fig. 2.5. Soft error hardened latch schematic [49]. 
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2.3.1.3 Schmitt Trigger Based Latch 

Working principle: 

A hardened latch design based on Schmitt trigger [51] is shown in Fig. 2.6. In this 

latch, node IN1 is connected to a Schmitt trigger that consists of six transistors. The 

Schmitt trigger provides tolerance to soft errors by obviously resisting a voltage change 

(since this is what Schmitt triggers are designed to do), i.e., hysteresis. When node IN1 is 

at logic 0 state, node NQ will be in logic 1 state, M6 is on, and node INT2 is charged. 

Consider the latch to be in the hold mode. Now, if there is a strike on node IN1 that 

changes its state from logic 0 to logic 1, to affect NQ, the charge at node INT2 has to be 

discharged. Thus the logic state on storage node NQ will be retained until the additional 

charge due to parasitic capacitance on node INT2 is fully discharged. During this time the 

inverter I2 driving node IN1 would restore it to the original state. Similarly if the strike 

on node IN1 changes its state from logic 1 to logic 0, to affect NQ, the charge at node 

INT1 has to be discharged. 

 

 

 

Fig. 2.6. Schmitt trigger based latch schematic [51]. 
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Disadvantages: 

This latch is not hard to SETs on D and clock inputs.  

2.3.1.4 Split Internal Node Latch 

Working principle: 

Fig. 2.7 shows a latch [52] design based on duplicating the nodes within the latch 

feedback loop. When CK = 1, D propagates to the output Q and is fed back to nodes 

INT1 and INT2 through inverters I1 and I2, respectively. Since both of these internal 

nodes assume the same logic value, only one of the series of two transistors, MN1-MN2 

or MP1-MP2, will be conducting. When CK = 0, the transmission gate is turned off and, 

consequently, the previous output value is maintained. In case of a strike affecting one of 

the latch feedback internal nodes INT1 or INT2, the C-element inputs mismatch and its 

output Q temporarily moves to a high impedance state, without changing its logical 

value.  

Disadvantages: 

This latch is not hard to SETs on D and clock inputs. The storage node is directly 

connected to the output (but this is easily fixed). When the latch is in the hold mode, an 

 

Fig. 2.7. Split internal node latch schematic [52]. 
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upset on node Q causes it to flip to a wrong logic state and there is no mechanism to 

restore it to the original state. Basically it splits the feedback node into two and the design 

is hard to upsets on them, but the hold node is unhardened. 

Advantages: 

No advantages are seen in this latch as it has the above mentioned design flaw.  

2.3.2 Redundant Self Correcting DICE Based FFs  

2.3.2.1 Quatro Latch 

Working principle: 

Fig. 2.8 shows a hardened SRAM design [54] consisting of ten transistors called 

the Quatro latch. Two access transistors, N5 and N6, connect the bit lines (BL and BLB) 

to the storage nodes A and B. If the stored bit is‘0’, the logic states at nodes A, B, C, and 

D will be ‘0’, ‘1’, ‘1’, and‘0’, respectively. Each of these nodes is driven by an NMOS 

and a PMOS transistor, their gates being connected to two different nodes. If an SET 

pulls down (up) a node voltage, the node voltage is restored by the ‘ON’ PMOS (NMOS) 

transistor connected to the node and driven by an unaffected node.  

 

Fig. 2.8. Ten transistor hardened latch schematic [54]. 
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Advantages: 

It is DICE latch with modifications.  

Disadvantages: 

The modifications from the DICE make the latch suffer than DICE. The latch is 

vulnerable to multiple node charge collection from a single particle strike, the worst case 

being two nodes at same potential (nodes A and D or nodes B and C) getting affected. 

Therefore, in order to reduce the possibility of upsets due to MNCC, the cell should be 

laid out by keeping the same potential nodes as physically apart as possible. 

2.3.2.2 Static DICE Based D Latch 

Working principle: 

 Fig. 2.9 shows another latch design based on DICE latch [56]. It essentially 

integrates tri-state inverters to a DICE latch which has Q, QN, QB and QBN as its storage 

nodes. In the clock high phase transistors P1-N1, P5-N5, P9-N9 and P13-N13 are on and 

 

 

Fig. 2.9. Soft error tolerant static D latch schematic [56]. 
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P3-N3, P7-N7, P11-N11 and P15-N15 are off, enabling the data to be written to the latch 

storage nodes. In the clock low phase, the latch is in the hold mode and P3-N3, P7-N7, 

P11-N11 and P15-N15 are on, turning the circuit to a DICE latch structure. In this phase, 

transistors P16-P15-N15-N16, P12-P11-N11-N12, P8-P7-N7-N8 and P4-P3-N3-N4 form 

the DICE structure. 

In the hold mode, consider the logic states on storage nodes Q, QN, QB, and QBN 

to be LHLH and due to particle strike assume the pattern changes to LLLH. Now, P12 

turns on trying to charge node QB to H and N4 turns off, leaving the node Q floating. The 

L state on node Q keeps transistor P8 on that eventually charges node QN to H, bringing 

the logic states on storage nodes back to LHLH. 

Advantages: 

This latch is similar in design to the latch described in section 2.3.2.1. It has 

relatively small area as compared to other hardened designs 

Disadvantages: 

It is not hard to SETs on D and clock inputs. As the storage nodes are in close 

vicinity, they are vulnerable to multi-node charge collection. 

2.3.3 Triple Mode Redundant FF 

Working principle: 

The last design [43] in the self-correcting category is shown in Fig. 2.10. It is the 

most robust of all the FFs seen so far but by far the largest. It has the normal D-FF 

replicated three times with a modified slave latch. The slave latch feedback path uses a 

majority gate driven by the other redundant copies. When the clock rises, the slave latch 

holds the data and the master latch is transparent. In this clock high phase, the state of the 
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slave latch is voted to be the same as the majority of the triple redundant copies. This 

provides the self-correcting feature, which allows clock gating, in the FF. Node NHA in 

the slave latch and nodes NHB and NHC from other two copies are fed to the majority 

gate. Similarly, nodes NHA NHB and NHC are fed to the majority gates in the other two 

latches. The added capacitive loading on the NHA node does not affect the circuit timing 

as the slave latch has the entire clock high phase to propagate the slave latch feedback 

signals.  

Advantages: 

It is hard to SETs on D and clock inputs. The circuits using this FF will have full 

commercial speed performance, except for slightly longer local routing. A variation of 

these FFs that have correcting master latches has been used extensively in FPGA based 

designs [63]. 

Disadvantages: 

Since the circuits using this FF are replicated three times there is a threefold 

increase in area and power as compared to the same unhardened circuits. 

 

 

Fig. 2.10. Triple Mode Redundant FF schematic [43]. 
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2.4 Temporal FFs 

Temporal designs’ working principle was explained in chapter 1. All temporal 

FFs utilize delay filters to filter SETs in time domain. As was shown in chapter 1, the 

delay filter combines a delay element with either a C-element or a majority gate and can 

filter SETs on clock, data and other control signals. For the delay filter to be effective the 

delay element delay should be more than the expected SET duration. 

The delay filter in Matush’s [35] design incorporates C-elements while that in 

Mavis’s [34] design incorporates majority voter. The designs proposed by Knudsen [39] 

and Naseer [37] although classified as temporal designs, utilize DICE redundant storage 

structure in their master and/or slave latches. The delay elements occupy most of the FF 

area and dissipate most of its power. Hence designing a low power area efficient delay 

element is essential to these designs - that is covered in chapter 3. 

 

 

 

Fig. 2.11. Temporal FF schematic [35]. 
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2.4.1 Four Delay Element FF 

Working principle: 

Fig. 2.11 shows a temporal FF [35] schematic comprised of two temporal latches 

acting as the master and slave. In this design, there are four delay elements, two for each 

latch. The latch uses dual redundancy, in the form of one delayed and one non-delayed 

node, driving the C-element storing the latch value. The delay assures that the effect of an 

SET on the hold nodes, or preceding nodes, does not flip the latch.  The first delay 

element, combined with the C-element, mitigates SETs at the pins D, CLK, and CLKN 

that are less than the delay element delay. The second delay element in the feedback loop 

protects the latch nodes, MSetup and SSetup, from SEUs. Without this delay, a hit on a 

logically high setup node would cause a low value to be fed back to the C-element, 

causing the C-element to tri-state. When tri-stated, the C-element cannot restore the setup 

node to the correct value. The second delay element allows the C-element to remove any 

charge collected on the setup nodes before it tri-states. The inverter INVBW between 

node MSetup and the slave latch input node SD2 prevents charge sharing failures.  

Advantages: 

This FF is very robust as it is hard to SETs on D and clock inputs and to SEUs on 

the storage nodes. 

Disadvantages: 

The drawback of this FF (and all temporal FFs) is the increased circuit size and 

power dissipation due to the delay elements. It has four delay elements. Delay elements 

are composed mostly of inverters driving two large capacitances with a buffer at the end. 
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The FF setup time increases by an additional delay element delay to account for an SET 

during the setup time. 

2.4.2 Temporal Latch Incorporating Majority Gate 

Working principle: 

Fig. 2.12 shows the temporal design [34] incorporating majority gate. It has a 

two-input MUX (multiplexer) with its output fed back to one of its input, the data fed to 

its other input, and the select line controlled by the clock signal. The MUX (UI) output is 

sampled using a majority gate (U2) along with sampling delays (U3 and U4) and then the 

majority of the sampled data is fed back to the input. An SET at the D-input passing 

through the MUX reaches the majority gate at three separate times t, t+δ and t+2δ. Hence 

at any given time, the majority gate sees the transient at only one of its inputs. The other 

two inputs will not have transients and hence the SET is voted out. By using the MUX at 

three separate times, the temporal latch is effectively replicated not in space, but in time. 

This temporal latch is also immune to transients occurring on the input clock node. Any 

clock transient momentarily switches the selected MUX input producing a possible 

transient at the MUX output. Since this is just the data input to the temporal sampling 

circuitry, it is eventually rejected by the voting circuitry. 

 

 

 

Fig. 2.12. Temporal latch employing majority gate [34]. 

 

d

2d

Majority  

Gate 

CLK

D

MUX 

OUT

U1
U2

U3

U4



41 

 

 

Advantages: 

This latch is hard to SETs on D and clock inputs and to SEUs on the storage 

nodes. 

Disadvantages: 

This latch has three delay elements and has greater circuit size and power 

dissipation than a conventional DFF, as well as a much larger the effective setup time. 

2.4.3 Temporal FF Incorporating DICE Latch 

Working principle: 

The temporal FF [39] shown in Fig. 2.13 comprises a temporal master latch 

discussed in section 2.4.2 and a DICE slave latch. As explained in previous section, the 

temporal latch is not susceptible to SEU or SET induced upsets on the D and CLK inputs. 

The temporal master latch generates three signals M0, MDb, and MDDb, which are 

combined by the feedback majority gate and connected to DICE slave latch. The fourth 

 

 

Fig. 2.13. Temporal FF schematic incorporating DICE latch [39]. 
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DICE input M1 is generated through a second majority gate. M0 and M1 have the same 

signal polarity while MDb and MDDb have opposite signal polarity. The PMOS pass 

transistors connect the master latch to the DICE slave latch. The DICE latch PMOS to 

NMOS ratio is sized to allow the PMOS to overcome the NMOS feedback. Two separate 

output inverters connected in parallel to drive a common output, splits the capacitive 

loading of the output inverter transistors across two of the DICE storage nodes, 

improving the clock to Q delay. 

Advantages: 

This latch is hard to SETs on D and clock inputs. The DICE slave latch 

replacement for a temporal slave latch results in reduced circuit area and power 

dissipation compared to other temporal designs. 

Disadvantages: 

It utilizes three delay elements in the master latch resulting in increased circuit 

size as compared to conventional FF designs. Since the clock closes the slave latch before 

the inputs are able to recover, the incorrect logic state is captured. 

2.4.4 DF-DICE Latch 

Working principle 

Fig. 2.14 shows a temporal latch [37] hard to SETs on input, clock and control 

signals as the incoming clock, data, preset and clear signals pass through the delay filter. 

This latch essentially has the DICE structure with preset and clear control signals 

integrated to the four standard PMOS-NMOS structures seen in DICE. CLKB1 and 

CLKB2 are the inverted version of the CLK signal. Nodes I1, I2, I3 and I4 are the DICE 

latch storage nodes. In the clock high phase, the latch is transparent, transmission gates 
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T1 and T2 are turned off and data is written on nodes I1 and I3. In the clock low phase, 

the latch holds the data as the transmission gates T1 and T2 are turned on completing the 

four node feedback structure of DICE latch. Now upsets due to particle strikes on any of 

the four storage node are restored by the self-correcting feature of the DICE latch. 

Advantages: 

This latch is hard to SETs on clock, data and control signals. Due to the DICE 

latch storage structure it is hard to SEUs on storage nodes. 

Disadvantages: 

This design uses four delay elements leading to increased area and power penalty. 

Also as the output of the C-element is a dynamic node, it can lose its state if left floating 

 

 
 

Fig. 2.14. DF-DICE latch schematic [37]. 
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for longer times. To overcome this problem, a weak inverter which provides feedback 

and maintains the output state should be used at the output node. 

2.5 Summary 

In the previous sections, the working principle, advantages and disadvantages of 

different hardened FFs were discussed and they were categorized based on common 

hardening principles. This classification can be better represented as a Venn diagram as 

shown in Fig. 2.15. The FFs in each category are represented by the first author names in 

the papers that proposed the designs. 

As seen in the diagram, hardening by redundancy and temporal hardening are the 

two major groups. Four designs that are temporally hardened combine delay elements 

either with C-element or majority gate to achieve hardness. Hence two subgroups can be 

seen inside temporal hardening. The designs by [Naseer] and [Matush] employ C-

 

Fig. 2.15. Venn diagram representation of FF classification. 

 

[Zhang]

[Yamamoto]

[Masuda]

[Huang]

[Komatsu]

[Sheng Lin]

[Omana]

[Hindman]

[Jahinuzzaman]

[Saihua Lin] 

[Naseer]

[Knudsen]

[Matush]

[Mavis]

Redundant

Temporal

Non Self 

Correcting

 Self 

Correcting

C-Element

DICE
C-Element

Majority 

Gate



45 

 

 

elements and designs by [Mavis] and [Knudsen] employ majority gate; hence they are put 

together in the sub groups named C-element and majority gate respectively. 

Hardening by redundancy is a much larger group consisting of twelve designs of 

which nine are self-correcting and three are non-self-correcting. Hence two subgroups 

comprise the redundancy group. The designs by [Yamamoto] and [Masuda] are improved 

versions of BISER FF which is proposed by [Zhang] and hence all three are put in the 

non-self-correcting group. The designs by [Jahinuzzaman], [Sainua Lin], [Naseer] and 

[Knudsen] are derived from classic self-correcting DICE latch, which forms a group of its 

own. The designs by [Huang], [Komatsu], [Sheng Lin] and [Omana] are self-correcting 

but employ C-elements. The design by [Hindman] is self-correcting but does not employ 

C-element or DICE latch; hence it is outside these groups but inside the self-correcting 

group. The designs by [Naseer] and [Knudsen] are temporally hardened but incorporate 

DICE structure for storage node protection and hence they are in the intersection of two 

broad categories.  

All temporal FFs by definition utilize a delay element. Measured SET pulse 

widths have varied significantly in different experiments [36]. Those relying on current 

starved delay elements (which ease these experiments by making the delay 

programmable) exhibit very large tSET. This presents a conflict in designing the delay 

elements, which must simultaneously achieve large delay but with high drive strength. 

In the next chapter we propose a RHBD delay circuit that does not increase worst-

case IC SET duration by providing redundant current starved delay paths. 
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CHAPTER 3 

TEMPORAL SEQUENTIAL LOGIC HARDENING BY DESIGN WITH A 

LOW POWER DELAY ELEMENT 

In the previous chapter, different temporal FFs were discussed which employed 

majority gate voters or C-elements coupled to delay elements. The delay element is a 

circuit that postpones the input by an amount at least exceeding the duration of the SET 

to be filtered.  

As mentioned in Chapter 1, RHBD delay elements, are comprised of CMOS 

circuits. Thus they can collect charge. The delay elements in a RHBD temporally 

hardened master slave flip-flop occupy nearly 80% of the area and consumes 80% of the 

active power [35]. Thus, reducing the delay element power is very desirable. However, it 

must not increase the design susceptibility to SETs. The SET duration is a function of the 

driving circuit’s ability to rapidly remove the charge [57]. This charge removal ability is 

severely impaired by current starved driving elements. For instance, SET durations up to 

3 ns [36] (Fig. 3.1) have been measured with temporal latches using current starved 

inverters far exceeding that for standard logic on those technology nodes. Consequently, 

using these delay circuit elements creates worst-case SET durations far in excess of what 

would otherwise occur on the IC. 

Since the MSFF setup time is increased by 2 tSET for hardened operation [35][39], it 

is important not to increase the design SET duration via the hardening approach itself. 

We attempt to address these issues with the low power, SET tolerant delay element 

proposed in this chapter. 
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3.1 Delay Element Possibilities 

 A delay element is a circuit that produces a digital output delayed by a specified 

amount of time. Delay elements can be broadly categorized as cascaded inverter based 

and voltage controlled (also known as current starved inverters). The important 

parameters that have to be considered while designing the delay element are its layout 

area, power dissipation and charge removing ability which determines the SET duration.  

3.1.1 Effect of Transistor Drive Strength on SET Duration 

Before looking into the different delay element possibilities, the charge removal 

ability of the transistor which determines the worst-case tSET of the circuit has to be 

understood. The current through the transistor is defined as its drive strength, i.e., 

proportional to the transistor width (W) and a function of the gate-to-source voltage (Vgs) 

that affects gate overdrive Vgs – VT, where VT is the transistor threshold voltage. Fig. 3.2 

illustrates these effects by simulating the SET duration tSET vs. transistor W/L and Vgs for 

 
 

Fig. 3.1. Measured SET durations with temporal latches using current starved inverters [36] 
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both PMOS and NMOS (see Figs. 3.2(a) and 3.2(b), respectively). The SET is induced by 

charge deposition to the transistor drains using a charge conserving Verilog-A charge 

collection model, as was used in [35]. The basic equivalence between transistor width 

and gate overdrive is evident for both PMOS and NMOS. In the worst-case, standard 

gates will have narrow devices, which may be stacked, producing a sub-minimum design 

rule equivalent W/L, yielding the worst-case tSET for a particular RHBD integrated 

circuit. Modern CMOS processes are designed to minimize gate delay, which is a key 

metric. However, current starving or longer than minimum channel length in a delay 

element will produce the limiting tSET, against which the circuit is hardened. 

3.1.2 Cascaded Inverter Based Delay Element 

Cascaded inverters shown in Fig. 3.3 (a) can function as a simple delay element 

that delays the input signal by an amount equal to their combined propagation delays. 

The propagation delay of an inverter depends upon the time taken to discharge/charge the 

  
(a)                                                         (b)  

 

Fig. 3.2. The variation of SET duration as of function of drive strength and gate bias for a (a) PMOS 

transistor and (b) NMOS transistor. 
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load capacitance. The load capacitance can be increased by adding additional gate 

capacitances by connecting the transistor gates at the inverter output nodes as shown in 

Fig. 3.3(b). The delay produced is directly proportional to the number of inverter stages. 

 Since the PMOS and NMOS transistors are never on simultaneously in steady-

state operation, the static power consumption in an inverter occurs only due to leakage 

currents and is generally small. Most of the power is consumed during switching. This 

dynamic power consists of two components. The major component is due to charging and 

discharging of the load capacitance. During a low-to-high transition, half of the power is 

dissipated in the PMOS transistor and the other half stored on the load capacitance. 

During a high-to-low transition, the stored energy in the load capacitance is discharged 

and dissipated in the NMOS transistor. This power depends quadratically upon VDD and 

linearly upon load capacitance CL and switching frequency f. The second component of 

dynamic power arises due to nonzero rise and fall times of the input signal, which results 

 
(a) 

 

 
 

(b) 

 

Fig. 3.3. (a) Cascaded inverter based delay element (b) and its variant which has additional capacitance at 

the intermittent nodes. 
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in both NMOS and PMOS transistors being on briefly.  

Since the inverters are driven from rail to rail, they provide maximum drain current 

through the transistors thereby maximizing the charge removing ability of this delay 

element. This does not adversely affect the SET duration of the circuit. 

3.1.3 Stacked Transistors Cascaded Inverter Based Delay Element 

This delay element has m series-connected NMOS and PMOS transistors in its 

pull-down and pull-up networks, respectively. Fig. 3.4 shows the two series- connected 

cascaded inverters. The gates to all of these transistors are connected to the input. 

Increasing the fan-in not only increases the effective discharging/charging resistance, but 

also increases the gate and diffusion capacitances, which contribute to more capacitance 

at the input and output respectively. Further, it increases the delay of the fan-in gate by 

presenting it a larger load capacitance. Consequently, more delay per unit area may be 

obtained by using a generalized inverter with m series-connected transistors than by using 

a chain of m simple inverters. An m-transistor cascaded inverter requires 4mN transistors, 

where N is the number of stages. 

 
 

Fig. 3.4.  Two transistors stacked cascaded delay element. 
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3.1.4 Voltage Controlled (Current Starved) Cascaded Inverter Delay Element 

This delay element (Fig. 3.5) consists of a cascaded inverter pair with an additional 

series-connected NMOS transistor in the pull-down path and PMOS transistor in the pull-

up path of each inverter which are controlled by global control voltages Vn and Vp 

respectively. There are three ways to change the delay of this circuit. First is by changing 

the transistor sizes. The second is by changing the fan-in similar to the series connected 

cascaded inverter case. The third way is to change the control voltages Vn and Vp. The 

delay is inversely proportional to the discharging drain current through the control 

transistor.  

This delay element requires 4N transistors, where N is the number of stages. If Vn 

and Vp connections are shared the total transistors required will be less than $N. If the 

control voltages are below VDD for NMOS and above 0 for PMOS, the transistor drain 

current will be limited; thereby weakening the charge removing ability of this circuit. The 

SET duration will be worse than the simple cascaded inverter for the same amount of 

deposited charge. SET durations up to 3 ns (Fig. 3.1) have been measured with temporal 

latches using this delay element [36]. 

 
 

Fig. 3.5. Voltage controlled cascaded inverter delay element. 
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3.1.5 Delay Elements Comparison 

In this section the tSET duration (the time taken by the circuit to remove the 

deposited charge), area occupied and energy dissipation of the three delay elements 

discussed in the previous sections are compared. The simulations and layouts are done in 

TSMC 90nm technology. 

All three delay elements were designed to produce a delay of 140ps. This required 

having 10, 4 and 2 stages of cascaded, stacked and current starved inverters respectively. 

The tSET durations of the three delay elements for deposited charges ranging from 10fF to 

50fF in steps of 10fF are plotted in Fig. 3.6. As evident from the graph, the cascaded 

inverter delay element has the shortest tSET duration as compared to the other two. Its tSET 

duration is about 750ps for 50fF deposited charge. The current through the stacked 

inverter delay element is less than the inverter chain delay element due to series transistor 

resistance, resulting in its tSET duration to be more than the inverter chain delay which is 

 
 

Fig. 3.6. Comparison of tSET durations for the three delay elements. 
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about 900ps for 50fF deposited charge. For the current starved inverter which has bias 

voltages Vp and Vn of 0.8 and 0.4V respectively, the currents through the pull up and pull 

down transistors are severely limited, resulting in a large tSET duration which is about 1.7 

ns for 50fF deposited charge.  

The delay elements’ areas and the energy dissipation per clock cycle are shown in 

Table 2.1. Since the cascaded inverter based delay element has ten back to back 

connected inverters, it occupies the highest area. This is followed by stacked inverter 

based design having four stages and current starved design having two stages, which 

respectively occupy 35% and 65% less areas as compared to the inverter based design. 

For the current starved delay element design, the circuit area to generate bias voltages Vp 

and Vn are not included in the total area computation.   

The energy/clock cycle of the cascaded inverter design is the highest due to ten 

charge/discharge cycles as it as ten stages. This is followed by stacked inverter and 

current starved designs which respectively dissipate 18% and 42% less energy as 

compared to the cascaded inverter design. Although the current starved inverter design 

has only two stages, it dissipates 60% energy of the cascaded inverter design due to the 

excessive crow bar current.  

TABLE 2.1 

 

DELAY ELEMENTS AREA AND ENERGY/CLOCK CYCLE COMPARISON 
 

Design Area (µ𝑚2) Energy/clock cycle (fJ) 

Cascaded Inverter 10.98 76.9 

Stacked Inverter 7.13 63.1 

Current Starved 3.84 44.5 
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3.2 Proposed Delay Element 

It was seen that in the current starved inverter design tSET durations were greater 

than 1 ns. These becomes the limiting tSET duration on the IC. In this section a dual 

redundant delay element is proposed which does not adversely affect the worst-case SET 

duration on the IC. Each redundant element is slowed by reduced gate overdrive, and the 
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Fig. 3.7. Proposed delay elements (a); its variant (b); and without dual redundancy (c). 
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lower swing of the drain nodes provides power savings. 

3.2.1 Circuit Design 

The proposed delay element circuit is shown in Fig. 3.7(a). This design has two 

identical redundant paths from the input to the output, evident as inverter output nodes A 

and B. The gate of the PMOS pass transistor is connected to the low supply rail (VSS) and 

the gate of the NMOS pass transistor is connected to high supply rail (VDD). Hence, both 

pass transistors are always turned on. 

Low swing is achieved at the output of the pass transistors, i.e., at nodes A1, A2, 

B1 and B2, since it is nominally VDD to VTP for the PMOS path and VSS to VDD – VTN 

through the NMOS path. These low swing nodes save power and are slow, additionally 

causing node Vout to be driven slowly by transistors PA1, NA2, PB1 and NB2. Fig. 3.7(b) 

shows a variant that has one less inverter, further reducing power dissipation and Fig. 

3.7(c) shows the delay element without redundancy. Fig. 3.8 shows the transient response 

of the delay element and its variant, whose pass transistors are sized to produce a delay of 

400 ps. 

3.2.2 Power Reduction 

The dynamic power in a delay element is directly proportional to the number of 

 
 

Fig. 3.8. The proposed delay element transient response producing a delay of 400 ps. 

Vin

Vout

400 ps
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driven nodes, their capacitances, and the voltage swing on those nodes. Hence, 

minimizing the power requires reducing these circuit parameters. The proposed delay 

element has only two diffusion nodes, A and Vout, for each path. The capacitance seen at 

node A is the sum of the diffusion capacitances of the two driving transistors and the pass 

transistors. The latter have reduced swing. The inverter and pass transistor lengths are 

increased to increase their delay, but PA1, PB1, NA2, NB2 are minimal so that SET 

duration due to charge collected at the output does not result in long SET durations at the 

output node Vout. 

3.2.3 SET Tolerance 

As discussed earlier, the delay elements comprise most of the temporally 

hardened FF area. With such a large physical cross-section, the delay element must thus 

itself cause SETs no worse than the standard logic, whose SETs it filters. In the proposed 

delay element, this hardness is achieved through the dual redundant delay paths. Charge 

collection occurs across reverse biased source/drain diodes in the MOS transistors. Hence 

referring to Fig. 3.7 (a), node A1, a P-type diffusion, can only be pulled high, and 

conversely, node A2, an N-type diffusion, can be only be pulled low, while nodes A and 

B can be pulled in either direction. A nodes and B nodes are spatially separated, so they 

cannot simultaneously collect charge from a single impinging particle.  

To demonstrate the efficacy of the redundant delay paths, we first examine the 

case where the delay element has no redundancy (see Fig. 3.7(c)), i.e., it has only one 

path from input to the output, where node C is driven low by a radiation strike. Node C2 

is pulled low through the pass transistor and turns off transistor NC2 and turning on PC1, 

driving Vout high for the SET duration (see Fig. 3.9(a)). Moreover, if the strike is at node 
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C2, the charge must be removed via the low swing path, resulting in a much longer SET 

duration than can occur in the standard (full swing) logic. 

In the proposed delay element, the output node Vout is driven by redundant 

parallel pull-up and pull-down transistors PA1, PB1 and NA2, NB2, respectively (see 

Fig. 3.7(a)). If a collected radiation strike charge pulls node A low and turns off transistor 

NA2, the output node is held by transistor NB2. A contention state does result between 

PA1 and NB2, but this is only during the SET. Fig. 3.9(b) shows node A pulled low by 

collected charge producing three different SET durations, and the output node remains 

 
 

(a) 

 
 

(b)  

 
 

(c) 

 

Fig. 3.9. Effect on delay element output due to simulated SETs of various LET: (a) on nodes X and C and 

(b) on node A.(c) SETs of same total charge on nodes A2, Y2, and C2. The redundancy eliminates the long 

SETs within the delay elements, which plagues current starved delay circuits. 
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static for the SET duration. Since node A2 can only be pulled low, a strike on node A2 

turns transistor NA2 off, but Vout remains strongly driven by NB2. Just as in the current 

starved inverter case, nodes A1, A2, B1 and B2 have very slow SET charge dissipation, 

as shown in Fig. 3.9(c). However, since there is a redundant path, the resulting very long 

SET duration does not significantly affect the delay element output timing. The proposed 

delay element thus provides a long delay without adversely affecting the worst-case SET 

duration of the IC. 

Referring to the alternate design in Fig. 3.7(b) an SET driving node X low, 

transistors NY2 and NZ2 are turned off and the output is held high for the duration of 

SET without contention. The effect on its output will be the same as an SET at the input 

(see Fig. 3.9(a)) as the transient propagates to the output. 

3.3 Delay Element Impact on a temporal Flip-Flop 

In this section, the proposed delay element is used in a temporal flip-flop to assess 

its power and size impact. The baseline FF [35] uses cascaded inverter delay elements. 

Both delay elements produce the same 400ps delay. Fig. 3.10 shows the temporally 

 

 
 

Fig. 3.10. Temporal FF [35] schematic using the proposed delay element. 
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hardened FF circuit. 

3.4 Flip-flop SET Tolerance 

To compare the FF SET mitigation, SETs depositing the same total charge are 

induced on each of the two flip-flops as shown in Figs. 3.11(a) and 3.11(b) for the 

 
(a) 

 
(b) 

 

Fig. 3.11. Waveforms showing the effect of two radiation hits on the MSFF using (a) the proposed delay 

element and (b) one lacking redundant paths at the low-voltage swing, current starved nodes. 
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proposed delay element (Fig. 3.7(a)) and one without redundant paths (Fig. 3.7(c)) 

respectively. As shown in Fig. 3.11(a), in the FF using the proposed delay element, node 

MdHold closely follows node MHold. Referring to Fig. 3.11(a), at 15.5 ns both the 

values on nodes MHold and MdHold are low and hence the C-element sets the node 

MSetup high. Thus, output node Q is able to capture a correct value at the rising edge of 

the clock at 17.5 ns. Without the redundancy, the long SET creates a fail, which is due to 

the delay element itself, producing abnormally long SETs when these nodes are struck, 

indicated by the oval on the last waveform in Fig. 3.11(b). 

3.5 Flip-flop layout 

Upset due to multi-node collection can be avoided by interleaving the constituent 

circuits across four standard cell rows [35], [39], [40]. This ensures that nodes which 

could cause upset due to multi-node collection are separated by at least one cell row. It 

was alleviated in [41] by simply adding empty space between the nodes, which 

essentially wastes the IC area.  

 

 
 

Fig. 3.12. Layout arrangement of the sub-blocks of Fig. 3.10 illustrating the constituent cell interleaving. 
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To determine the resulting amenability to auto place and route (APR), the FF is 

implemented in the 130 µm bulk CMOS process. The layout follows [40] interleaving 

four FFs in a multi-row, multi-bit cell (see Fig. 3.12). It occupies an area of 727 µm
2
 

(48.64 µm × 14.96 µm) 

3.5.1 Power Comparison 

As seen from Fig. 3.13, the proposed delay element saves energy over the same 

design using cascaded inverters. At activity factor () = 0.5 the baseline (cascaded 

inverter delay) design dissipates 86.81 fJ per clock cycle while the one with the proposed 

delay element dissipates 69.74 fJ per bit. Thus the proposed design dissipates 19.6% less 

power than the baseline circuit using inverter chain delay element.  

 

 
 

Fig. 3.13. Comparison of average energy consumption per clock cycle of the MSFF [35] using both the 

inverter chain and the proposed delay element. 
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3.6 8051 Implementations 

In the section 3.2, a low power, SET tolerant delay element was presented. In this 

section, the temporal FF [35] using both the proposed and the cascaded inverter delay 

elements are used in implementing a 8-bit, 8051 with 128 bytes of random access 

memory (RAM) designed in the TSMC 130nm bulk CMOS process to compare area, 

speed and power characteristics. All of the 128 bytes RAM is synthesized using FFs. 

3.6.1 Synthesis 

Encounter Library Characterizer (ELC) was used to characterize the FFs using 

layout extracted netlists to produce the liberty timing files.  The setup and hold times 

were modified to force an SET hard setup time of 800ps for the 400ps SET duration.  

Both 8051 versions use synchronous reset, 8 bit data, 128 byte RAM and 512 byte 

ROM. Cadence RTL Compiler (RC) was used for synthesis. The combinational standard 

cells used are the standard foundry 130 nm standard cell library, which are not TID 

hardened. To minimize power, the clock gating capability in RC was enabled, inserting 

clock-gaters in the clock trees. The timing for both 8051 versions is exactly the same as 

both designs use the same FF design except that one uses the proposed and the other uses 

the cascaded inverter delay elements, both of which produce the same delay. The 

maximum clock frequency at the nominal 1.2V VDD for both designs was determined to 

be 240 MHz, using Synopsys Primetime and post-layout extracted netlists.  

3.6.2 Auto Place and Route (APR) 

Both designs utilized Cadence Encounter as the APR tool and followed the 

standard (commercial flow) placement procedure. The foundry 130-nm process has eight 
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metal layers, with even numbered metal layers running vertically and odd numbered 

metal layers running horizontally. M2 to M6 were used for routing, with M7 and M8 

used only for top level power.  

3.6.3 Layout 

Fig. 3.14 shows the final layout of both 8051 designs. Since the two temporal FF 

versions have the same circuit design but different delay elements constrained to fit in the 

same FF layout area, the overall 8051 areas are exactly the same. The highlighted 

rectangles in Fig. 3.14 show the cell boundaries. The standard cells areas for both 

implementations are shown in Fig. 3.15. Table 3.1 shows the total standard cells 

utilization and metal densities. Of the total 8051 cell area, the FFs occupy 73%.  

 
Fig. 3.14. 8051 layouts of the two temporal versions. The data memory, which uses master-slave flip-flops, 

dominates the overall size. 

4-bit Temporal FF
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3.6.4 Comparison 

3.6.4.1 Timing and Area  

 

 
 

Fig. 3.15. Standard cells areas in both temporal designs 
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TABLE 3.1 

 

STANDARD CELLS AREAS FOR BOTH TEMPORAL DESIGNS 
 

Design Information Temporal 

Total Std Cells 10515 

Total Area (µ𝑚2) 0.478 

Cell Density (%) 76.42 

Total M2 routing density (%) 11.9 

Total M3 routing density (%) 17.2 

Total M4 routing density (%) 20.4 

Total M5 routing density (%) 23.7 

Total M6 routing density (%) 12.3 
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Table 3.2 shows the setup and hold times of both temporal designs as computed by 

Primetime. The final layout area of both designs is 0.478 µm2. The two temporal FFs 

with different delay elements have the same timing as both use the same circuit design 

and have the same drive strength. The critical path delays that determine the clock period 

are also shown.  

TABLE 3.2 

 

COMPARISON OF AREA, TIMING AND CLOCK FREQUENCY 
 

FF Setup time  

(ns) 

FF Hold time 

(ns) 

Critical path 

Delay (ns) 

Clock 

Frequency  

(MHz) 

 

1.131 

 

 

0.076 

 

 

4.16 

 

  

240 

 

 

 
 

Fig. 3.16. Average energy/clock vs. maximum operating frequency for the two 8051 implementations. 

Each curve has its maximum at 1.2V VDD, and each point is separated by 100 mV 
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3.6.4.2 Power 

A program to calculate the Fibonacci series, requiring approximately 5000 clock 

cycles, was used to compare the power dissipation of the designs, using circuit simulation 

(Cadence Ultrasim) of fully extracted netlists. As the supply voltage is scaled down, the 

FF dead time increases, which decreases the maximum operating frequency. This effect is 

exacerbated  as the delay element’s delay increases, very rapidly for the low-power delay 

element. Fig. 3.16 shows the maximum operating frequency versus energy per clock with 

VDD scaled down from 1.2 V until the FFs are unable to latch the correct input data. The 

inverter based and the proposed low power designs operate correctly to 0.9 V and 1.0 V, 

respectively. Both designs operate at a maximum frequency of 240 MHz (Table 3.2). 

From Fig. 3.16, it can be seen that the energy per clock by both temporal designs are 

56.89 pJ/clock and 46.63 pJ/clock respectively. Hence the 8051 using the proposed delay 

element dissipates 18% less power than the cascaded inverter based delay element. 
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CHAPTER 4 

METHODOLOGY TO OPTIMIZE CRITICAL NODE SEPARATION IN 

HARDENED FLIP-FLOPS 

From discussions in chapter 1, we understand that radiation hardening is a 

requirement for microelectronic circuits used in aerospace applications as they are prone 

to radiation induced upsets from high altitude neutrons and ions. The most common 

method to harden VLSI circuits is to use hardened FFs. In chapter 2, different FF 

hardening techniques were discussed. The design of these FFs is made more difficult with 

increasing multi-node charge collection (MNCC) in advanced scaled fabrication 

processes, which requires that charge storage and other sensitive nodes be separated so 

that one impinging radiation particle does not affect redundant nodes simultaneously. In 

this chapter we describe a correct by construction design methodology to determine a-

priori which hardened FF nodes must be separated, as well as a general interleaving 

scheme to achieve this separation. We apply the methodology to radiation hardened flip-

flops and demonstrate optimal circuit physical organization for protection against multi-

node charge collection. 

4.1 Multiple Node Charge Collection 

Soft error susceptibility increases as circuits areas diminish the critical charge 

required for an upset while the charge deposited by an ion is unchanged, since it is based 

on the physics of charge deposition and collection [58][59]. The likelihood of multiple 

node charge collection (MNCC) has increased dramatically with fabrication process 

scaling, since circuit nodes become more closely spaced. 
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4.1.1 Experimental Analysis 

MNCC results on a 90-nm SRAM designed with logic rules are shown in Fig. 4.1. 

 
(a) 

 
(b) 

 

Fig. 4.1. Experimentally measured SRAM multiple node upset extents in the (a) horizontal and (b) vertical 

directions. 
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The results are obtained after subjecting the SRAM test chip to ion broad beams at 

different LETs and orientations at the Texas A&M cyclotron as indicated in the figure. 

SRAM results can provide useful guidance for the hardening of other circuits. In 

particular, MNCC is easily analyzed using SRAMs. Moreover, the restoring current drive 

is similar to that in modern FFs which have NMOS feedback node transistor sizes very 

close to those in the logic rule SRAM cell: SRAM NMOS transistor sizes are W/L = 

190/100 nm, vs. 200/100 nm in the FFs.  

Referring to Fig. 4.1, the horizontal (along the N-well) and vertical (across the N-

well) simultaneous multiple bit upset (MBU) extents, due to MNCC are shown in Figs. 

4.1(a) and 4.1(b), respectively. Note that low LETEFF vertical extents are nearly all less 

than two standard cell heights (3.92 µm). 

4.1.2 MNCC Impact on FFs 

With a high likelihood of MNCC, SEU hardness requires placing storage nodes 

far enough apart so that simultaneous upset of such critical nodes is unlikely. Note that a 

single strike at the right solid angle (directly passing through the nodes) can always 

disturb multiple nodes—separation makes such strikes, which can impinge at any angle, 

less likely, but not impossible. Some designs have struggled through multiple iterations 

of design and broad beam testing to ensure adequate hardness [33]. Thus, a design 

method to analyze the hardness and provide guidance to the FF physical design would be 

very helpful.  



70 

 

 

4.2 Critical Node Separation Methodology  

4.2.1 Interleaving Circuit Blocks to Avoid MNCC 

The FFs we discussed in chapter 2 all utilize circuit redundancy and/or temporal 

filtering. In prior work, MNCC has been addressed by grouping the sensitive nodes and 

separating them. Warren, et al., utilized a brute-force approach, systematically increasing 

node separation (adding unused space) as indicated necessary by iterative design/beam 

testing results [33]. Providing larger critical node separation, while avoiding wasted area 

has been accomplished by interleaving the constituent circuits of multiple FFs [35][39]. 

In such multi-bit designs, the overall area is the same as the regular FF area, but 

additional metal routing is required. Excellent hardness is obtainable. However, such 

multi-bit FFs do slightly complicate the ASIC design methodology. 

4.2.2 SET Upset Simulation 

Radiation induced collected charge at a node gives rise to a SET or a SEU. Our 

goal is to determine the upset sensitivity of the FF nodes and their vulnerability to 

MNCC. We perform a rigorous analysis on the circuit nodes by simulating node upsets 

by inducing temporary voltage reversals first on all charge collecting FF nodes and then 

on all possible nodes pairs (to determine MNCC vulnerability). In this manner the effects 

of both SETs, caused by collection at internal clock or reset connected gate diffusions, as 

well as transients to the associated input, as well as SEUs, caused by collection at the 

storage nodes are analyzed. Note that an apparent SEU can be due to an SET—an 

example is inadvertent transfer from the slave to the master latch due to a clock node 

transient internal to the FF cell. 
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SETs are modeled using a SPICE voltage controlled resistor (VCR) element. The 

VCR is set to have negligible impedance when asserted and very high impedance 

otherwise. A SET-high pulse is generated by the VCR driving a node to VDD and 

similarly, a SET-low pulse is generated by driving the node to VSS (see Fig. 4.2). 

4.2.3 Simulation Based MNCC Collection Analysis 

Fig. 4.3 illustrates the proposed methodology. All transistor diffusions can collect 

charge except for those connected to power rails. We begin by identifying these non-

power diffusions. Nodes are grouped based on the following heuristics (see Fig. 4.4): 

First, all hardening element output nodes should be in different groups. In Fig. 4.4, group 

C has C-Element which is a hardening element. Other hardening elements include the 

outputs of delay, majority voting circuits, or DICE nodes. Second, nodes that are 

connected to each other via combinational logic should be in the same group. This 

follows intuitively—if one of the early stage nodes is hit, it may affect others, subsequent 

in the logic paths, with minimal delay. Thus, they may be treated as one “super-node”. In 

 
(a) 

 

(b) 

Fig. 4.2. Voltage Controlled Resistor (VCR) induced (a) high and (b) low SETs on the circuit nodes. 
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Fig. 4.4, nodes in groups A, B, and D contain combinational logic and fall into this case. 

 

  

 
 

Fig. 4.3. Flowchart illustrating the methodology 
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We begin the analysis by simulating node upsets on all FF nodes (N nodes). To 

account for all possible flip-flop states when a strike happens, the node flips induced at 

each node are induced at clock rising, clock high, clock falling and clock low as shown 

by windows A, B, C, D respectively (Fig. 4.5 (a)), for both the input logic states. The FF 

output depends on the master and slave hold nodes states, so for each of these conditions 

the master and slave hold nodes are initialized to each of the possible logic values as 

well. For each simulation run, the expected output for that case is computed by simply 

not inducing any upsets. Following the basic conditions shown in Fig. 4.5 (a), each node 

pair is simulated in each of the possible cases. An upset is flagged for runs with node 

flips that mismatch expected values. 

 

 

 

 
 

Fig. 4.4. Circuit node grouping in a hardened FF. Nodes connected by combinational logic are grouped 

together. 
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The analysis approach (pseudo-code) is: 

for each node ( N nodes) 

   for each clock states (low, rising, high, falling) 

      for each data inputs (logic 0, logic 1) 

         for each SETs on Node A (low, high) 

             for each Master latch hold node (logic 0, logic 1) 

     for each Slave latch hold node (logic 0, logic 1) 

         Run HSpice simulations  

  Record the Flip-Flop stored state 

if (FF output != Expected?) 

     Update node matrix showing upset (fail) 

else 

     Update node matrix showing no upset (pass) 

The analysis is extended to MNCC impact by simulating simultaneous temporary 

node voltage reversals on all of the possible collecting node pairs (Fig. 4.5 (b)). We select 

one pair at a time and induce SETs. Since nodes may collect positive or negative charge, 

i.e., for P-type or N-type diffusions, respectively, for each clock and data condition, all 

four combinations of node reversals are induced on node pairs, i.e., low-low, low-high, 

high-low and high-high A flip-flop containing N nodes has 
N
C2 total node pairs, changing 

the outermost loop to 

   for each node pair A & B (N choose 2 node combinations) 
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(a) 

 
(b) 

 

Fig. 4.5. SET simulations on (a) all FF nodes and (b) node pairs at windows A, B, C and D for both data 

inputs and for the master and slave nodes initialized to the stated values 
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Fig. 4.6 illustrates an example hardened MSFF failure to capture the expected 

output due to MNCC. For this FF, the output value Q is the compliment of MHold node. 

The FF input data is a logic one and hence after the clock rising edge, the correct output 

at Q is also a logic one. A high going, i.e., logic zero to logic one, charge collection 

induced dual SET combination on nodes MHold and MdHold at 2.5ns drives both Mhold 

and MdHold high, latching a zero at Q. The master latch pass transistors briefly try to 

restore MHold, but the loop feedback pushes it back to the wrong state as evident in the 

figure. 

The results of the node pair voltage upset simulations can be visualized as a lower 

diagonal matrix as shown in Fig. 4.7. A simulated but passing node pair (i.e., where the 

simulated MNCC caused no upsets) is marked in grey and failing node pairs (i.e., where 

 
 

Fig. 4.6. Waveforms showing data failing to capture the correct value when two high SETs are induced on 

nodes Mhold and Mdhold of a temporally hardened FF at 2.5 ns 
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the simulated collected charge upset the FF state) are indicated in black. The upper 

diagonal is symmetric, so need not be simulated. Squares represent the circuit groups, 

i.e., nodes that are laid out together. The following information can be obtained from the 

matrix:  

 Since nodes in the same group may affect each other via combinational logic paths, 

and thus may presumably be physically laid out in close proximity, squares along the 

diagonal should not have any failures. Failures along the diagonal indicate nodes 

should be moved to other groups or another grouping should be formed. 

 Non-diagonal groups can have failures. The coincidence of failures indicates which 

circuit groups should be separated from each other as they are prone to MNCC 

defeating their redundancy. For example, referring to Fig. 4.7, groups A-B and B-C 

may not be adjacent. 

 
 

Fig.  4.7. Node matrix showing failing node pairs marked in black and the passing node pairs marked in 

grey 
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 Group pairs which do not have failures may be adjacent. Again referring to Fig. 4.7, 

groups A-C, A-D, B-D and C-D are examples of legal adjacencies. 

4.2.4 Node Group Ordering 

Based on the information from the matrix, the circuit blocks ordering in the layout 

can be determined. The total possible group combinations for N groups is N!. A script 

has been written to find N! combinations and eliminate groups, which have illegal 

adjacencies, given the group names and the illegal adjacencies. The script gives the 

groups which have legal adjacencies. Of these, one which requires the least inter group 

metal routings will be the most efficient interleaving for the circuit’s layout.  

 The table in Fig. 4.7, has four groups and hence the total possible group 

combinations are 4!/2 = 12 (since the matrix is symmetric across the diagonal). Of these 

group pairs, A-B, B-C and A-C are illegal adjacencies. Hence all the group combinations 

with these adjacencies will be eliminated. The legal adjacencies obtained after running 

the scripts are ADCB, BADC and BDCA. Of these groups, the group with the least inter 

group routings will be the most efficient layout. 

4.3 Application to Radiation Hardened FF Designs 

In this section the critical node separation methodology is applied to three radiation 

hardened FFs whose functionalities were discussed in chapter 2. First is the commonly 

used DICE FF, second is the classical temporal FF proposed by Mavis et al., and lastly 

the temporal FF requiring fewer delay elements proposed by Matush et al. All 

simulations are done using post layout extracted spice netlists. 
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4.3.1 DICE Protected Master Slave FF 

Fig. 4.8 shows the DICE flip-flop [32] circuit and node grouping. The master and 

slave latches are identical, so only the master internals are shown. Since the DICE latch 

has four storage nodes, each has to be in different group. Each latch is divided into six 

groups as shown.  

The DICE is not hard to upset clock inputs, but with proper layout is hard to 

MNCC in the hold mode. Thus, node reversals were induced only within the clock high 

and clock low phases and not at the rising or falling edges. Fig. 4.9 illustrates the results. 

Fig. 4.9 shows that nodes in slave groups G, H, I, J, K and L have no failures with any of 

 
 

Fig. 4.8. DICE FF schematic and node grouping. The slave follows the master with internal nodes having 

the same naming convention (and order). 
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the master group nodes. Hence a simple layout arrangement to harden the DICE against 

MNCC interleaves the master nodes with the slave nodes, resulting in an ordering A-G-

B-H-C-I-D-J-E-K-F-L. Note however, the DICE elements are quite small, many 

occupying only two to four poly pitches. Thus, that the ordering does not guarantee that 

sufficient separation is achieved, only that it is improved.  

4.3.2 Majority Voter Based Temporal FF 

The methodology is applied to the temporal FF, (Fig. 4.10a) that uses majority 

voting in the feedback, with three unit delay elements per latch [34]. This FF 

functionality was discussed in chapter 2. The delay elements provide temporal filtering, 

whereby propagating voltage upsets of duration less than the delay element delay are 

 
 

Fig. 4.9. Matrix showing the response of the DICE FF after MNCC simulations with SETs induced only at 

clock high and low, i.e., in the hold state. 
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filtered and cannot propagate through the majority gate. Since the induced glitch appears 

at the majority gate inputs serially, an upset of the feedback loop is averted. Referring to 

 
(a) 

 
(b) 

Fig. 4.10 (a) Temporal FF with majority voting schematic and (b) the node matrix obtained after SET 

simulations. Note that the 2d delay element is produced with two series unit delays in the actual circuit, 

and hence has two collection nodes. 
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the schematic in Fig. 4.10 (a), circuit groups B and E have two delay elements connected 

in series and nodes Md21mhold and Sd21shold are respectively the intermediate nodes 

connecting the two delay elements. The delay elements combined with the majority voter 

protect the storage nodes Mhold and Shold against SEUs. This design is particularly 

interesting since it similarly protects against input SETs, e.g., those on CLK and D 

inputs, since they are also filtered in the feedback path. 

The initial node grouping is done by circuit analysis. Since the delay elements are 

hardening elements, they have to be in separate groups as mentioned in section 4.2.3. 

Groups A, B, D and E contain the delay elements. The majority voter, inverters and the 

mux in both the master and slave latches form a combinational logic and are thus grouped 

together, comprising groups C and F. The analysis results produce the matrix shown in 

Fig. 4.10(b). As required, there are no failures in the diagonal groups, indicating a correct 

grouping. To determine the group ordering for the layout, first the illegal adjacencies are 

determined. There are six groups to be interleaved and hence there are 15 possible group 

adjacencies. Referring to Fig. 4.10(b), the illegal adjacencies are found to be A-C, B-C, 

C-E, D-F and E-F. One legal ordering for the full FF is ADEBFC.  

4.3.3 Area Efficient C-Element Based Temporal FF  

Fig. 4.11(a) shows a temporal FF using Muller C-Elements [35] that was also 

discussed in chapter 2. It has six hardening elements: four delay elements and two C-

Elements, all of which are placed in separate groups. Combinational logic paths that feed 

into or are driven by these hardening elements are grouped as circuit groups A through F. 

The C-Element tri-states if the inputs mismatch. Hence, in both the master and slave 

latches, the combination of C-Element and delay element act as SET filters protecting 
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both the CLK and D inputs. The delay elements in the feedback paths protect nodes 

MSetup and SSetup against SEUs.  

Fig. 4.11(b) shows the node matrix obtained from the SET simulations depicting 

 

(a) 

 

(b) 

Fig. 4.11 (a) Temporal FF schematic using Muller C-elements and (b) node matrix of the response 

obtained after SET simulation methodology. 
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the MNCC vulnerability of all node pairs. Again, as required the groups (bold squares) 

along the diagonal have no failures. As in the previous case, there are six groups to be 

interleaved and hence 15 possible orderings. The legal group ordering is again 

determined by eliminating the illegal adjacencies found from the matrix, i.e., A-B, A-C, 

B-C, C-D, C-E, D-E, D-F & E-F. This leaves only four possible group orderings, namely 

C-F-A-D-B-E, C-F-A-E-B-D, C-F-B-D-A-E and C-F-B-E-A-D. Which of these orderings 

is best is chosen based on the one providing the least intergroup routing. 

4.4 Improved Matrix Representation 

Fig. 4.12 shows an improved representation of failures as compared to that shown 

in Fig. 4.7. Dots in the top left, top right, bottom right and bottom left correspond to 

failures at the clock rising edge, during clock high, at the clock falling edge and during 

 
 

Fig. 4.12.  Node matrix showing failing node pairs with black dots. Dots in the top left, top right, bottom 

right and bottom left reflect node pair failures during the clock rising edge, clock high, clock falling edge 

and clock low, respectively.  
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clock low, respectively. Noting the type of fail, i.e., clock high, low, or edge, aids in the 

design process allows more accurate hardness determination, e.g., SETs have a small 

time window in the rising/falling clock phase, while an upset that occurs in the clock high 

or low phase is sensitive ½ of the time. The matrix diagonal comprises the single node 

failures. Ideally, a hardened FF design would have none, leaving it susceptible only to 

upsets caused by MNCC.  

This new representation will be utilized in the circuit hardness analysis of a new 

FF that will be compared with few more FFs in chapter 5 

4.5 Non Rectangular Vertical Cell Interleaving 

As explained in section 4.2.1, interleaving circuit blocks is a very area efficient 

hardening technique against MNCC. Interleaving cells vertically has the added advantage 

of providing well separation between nodes, which has been shown to be very effective 

in SRAMs, where well crossing MBUs are much rarer than those in a single well. It is 

thus desirable to spatially separate critical nodes across wells and diffusions in the 

vertical axis. This vertical interleaving provides very effective protection against MNCC 

as the N-wells have the correct bias to collect diffusing charge in the P type substrate. 

Substrate charge cannot propagate to P type junctions in the N-wells and a very shallow 

angle is required to pass through two adjacent N wells, making PMOS MNCCs less 

likely. 

4.5.1 Vertically Interleaved Cell Layout and APR Compatibility 

Fig 4.13(a) shows the layout for the temporal FF (Fig. 4.11(a)). Only the M2 

connecting the circuit groups and well layouts are shown. Layers above M2 are not used. 
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The ordering C-F-B-E-A-D is chosen to provide critical node spacing by interleaving the 

master and slave circuits, each of which is separated into three sub-cells (cell A occupies 

two rows, to simplify the routing and optimize the cell footprint). This provides full 

 
(a) 

 

 
(b) 

Fig. 4.13. (a) Vertically interleaved temporal FF layout, showing the area savings as compared to 

rectangular cell (b) APR tool utilizing the area saved to abut standard cells. 
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multiple node collection separation of one N-well (providing at least 3.92 µm of critical 

node separation). The layout uses novel non-rectangular cells allowing standard cells to 

be placed into the gaps and standard APR tool flows are modified to effectively use the 

saved area, as shown in Fig. 4.13(b). The area saved is up to 20% versus a rectangular 

cell (Fig. 4.13(a)). The sub-cells fit in the smallest available standard cell height, at 7 M3 

tracks, 1.96 µm. The vertical M2 tracks used to connect the sub-circuits are shown. The 

M2 tracks are sparse and shared where possible to limit their impact on top level routing. 
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CHAPTER 5 

A REDUCED POWER AND AREA FLIP-FLOP WITH HIGH SOFT ERROR 

IMMUNITY 

In chapter 1 we saw how a single impinging ionizing radiation particle is increasingly 

likely to upset multiple circuit nodes and produce logic transients that contribute to the 

soft error rate. Consequently, hardening flip-flops to transients at the data and control 

inputs, as well as to single event upsets, due to either single or multi-node upsets is 

increasingly important.  

This chapter presents a low power and area efficient radiation hardened flip-flop 

design. The FF achieves a 31% power and 35% area reduction compared to a previous 

temporal design [35] with similar hardness. The hardness is verified and compared to 

other published designs (described in chapter 2), via the systematic simulation approach 

(described in chapter 4) which comprehends multiple node charge collection and tests 

resiliency to upsets at all internal and input nodes. Comparison of the hardness, as 

measured by estimated upset cross-section, is made to two FF designs. Additionally, the 

importance of specific circuit design aspects to achieving hardness is shown. 

5.1 Proposed Hardened Flip-Flop 

5.1.1 Hardened FF Circuit Approach 

Since the proposed design has four C-elements we abbreviate it as 4CE. Fig. 

5.1(a) shows the proposed 4CE FF circuit that is hard to upsets on D and CLK inputs as 

well as SEU. The design is based on [35] but halves the number of delay elements, 

significantly reducing the size and power dissipation. The master and slave latches are 
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hardened similarly. Referring to the master latch, upsets of the setup and hold nodes 

MSETUP and MHOLD, respectively, having duration less than delay element (δ) delay 

are filtered by the delay element and C-element combinations in the latch feedback path. 

The feed forward delay and C-element (CM1) combination comprise a delay filter 

that blocks the forward propagation of transients of duration less than δ to the MSETUP 

node. In the feedback path, a transient at MSETUP is filtered by the feedback C-element 

CM2, which keeps the transient from propagating to the other storage node, MHOLD. 

Consequently, transients at either the setup or hold node cannot propagate to upset the 

latch state, providing SEU mitigation. Since a transient at the hold node could also be due 

to a transient error on the D or clock input, i.e., a logic SET, those errors are also 

mitigated. The feedback C-element (CM2) is required since in its absence, an SET at 

node MSETUP can propagate around the feedback loop, tri-stating Muller C-element 

 
                                         (a) 

 
      (b)                                  (c) 

Fig. 5.1.(a) Initial proposed 4CE FF design with (b) C-Element and (c) delay element schematics. 
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CM1.When tri-stated, the C-element will fail to remove the charge to restore MSETUP. 

This would allow an upset to propagate when the δ delay is elapsed. 

Like any temporally hardened design, the FF has large setup time approximated 

by 2δ [39]. Basically, an SET of duration δ may occur near the end of the setup time, 

which is bounded by the δ delay to the setup node, adding a second δ time duration to 

tSETUP. 

The delay element and the C-element schematics are shown in Figs. 5.1(b) and 

5.1(c) respectively. The delay produced by the delay element exceeds 350ps in post-

layout simulations. It is difficult to produce long delays with minimal area and power, 

since delay 𝜏  is proportional to C/IDS. Moreover, an SET at any circuit node has a 

duration that is also set by the drive at that node [38]. Chapter 3 described different delay 

element variants. The delay element here uses transistor stacks to produce a long delay, 

but we force the SET restoring current to be equal to that of the cell library NAND and 

NOR gates. This is a compromise between the area, power, and SET duration to be 

mitigated—shorter delays reduce power consumption but negatively impact hardness. 

5.1.2 Design Details 

We targeted a foundry low standby power 90 nm seven track library for the 

design. Conventionally, FF circuit nodes are grouped to provide the smallest area by 

maximizing contiguous diffusions in the layout. The resulting circuit implementation of 

the proposed FF master latch with the best layout density is shown in Fig. 5.2(a). Note 

that conventionally, the D input should comprise the outermost devices on the stack, but 

this device ordering results in a less optimal layout. The C-element, multiplexer and tri-

state inverter have contiguous diffusions. However the three deep NMOS and PMOS 
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stacks provide very poor drive current. Analysis (explained later) showed that the 

reduced stack drive current made the MHOLD node vulnerable to upset.  

Fig. 5.2(b) shows a low SET of duration 300ps induced on MHOLD in the clock 

high phase with logic 0 on data input. At time t1, MHOLD node starts to recover to its 

original logic state (logic 1). However, due to the poor current drive provided by the three 

 

(a) 

 

(b) 

Fig. 5.2. (a) Initial proposed FF master latch circuit and (b) waveforms showing MHOLD node vulnerable 

to SET of duration 300ps. 
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stacked transistors, the recovery time is excessive (as shown by the slope in dotted lines). 

 
(a) 

 

(b) 

 

(c) 

Fig. 5.3. (a) Modified FF design that (b) removes the previous three stack transistors by adding an inverter 

before and after the C-Element to master and slave latches (c) and waveforms confirming the MHOLD 

node robustness to SET. 
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At time t2, the logic state (logic 0) on MHOLD node fully propagates to MDHOLD node 

after passing through the delay element. Moreover, at this time, the MHOLD node 

voltage is still below the switching threshold of the C-element. Since both C-Element 

inputs are at logic 0, its output (MSETUP) switches to the logic 1 state. Positive feedback 

drives node MHOLD back to logic 0, retaining the incorrect state. 

Fig. 5.3(a) shows a modified circuit implementing the same function, but with 

reduced stack depth. The three transistor stack is removed by adding an inverter 

subsequent to each C-element as shown in Fig. 5.3(b), resulting in a stack depth of at 

most two. The feedback loops now have four inversions, but the overall setup time, 

which is dominated by the delay elements, remains similar. Fig. 5.3(c) shows the 

MHOLD node now properly recovering under the same simulation conditions. At t2, due 

to better two deep stack current drive (evident by the improved slew rate), the MHOLD 

node voltage is sufficient to cause inputs of the C-element to be in opposite logic states, 

causing MSETUP node to remain at logic 0 state. The modified design thus protects 

MHOLD node against SEUs. The removal of the second delay element from both the 

master and slave latches reduces the FF energy per cycle at full activity factor by 31% as 

compared to that in [35] implemented on the same technology. 

5.2 FF Hardness Verification and Layout 

The circuit simulation based methodology described in chapter 4 is used to 

identify MNCC sensitive FF nodes. By determining which nodes can be grouped together 

without producing an upset due to MNCC, the layout can be optimized to provide high 

MNCC immunity.  
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The results of the single node upset analyses comprise the diagonal entries and 

dual fault simulations of the proposed FF comprise the lower triangular matrix shown in 

Fig. 5.4. All intermediate nodes, including diffusions within transistor stacks are analyzed 

and represented. We refer to nodes that when simultaneously upset can affect the FF state 

as critical nodes. 

5.2.1 Node Grouping Heuristics 

The FF nodes are divided into five groups CLK, A, B1, B2, and C as shown in 

Figs. 5.4 and 5.5. Details of the grouping approaches are described in [60]. Referring to 

Fig. 5.5, these groups correspond to the bold squares along the matrix diagonal and can 

 
 

Fig. 5.4. Matrix showing the failing node pairs in the proposed 4CE FF at different clock phases when SETs 

are simultaneously induced on each node pair. 
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have no upsets—single node vulnerabilities dominate the final FF SER. Since nodes in 

the same group are in close proximity, the likelihood of MNCC among them is high. 

Consequently, a node cannot be in the same group with another node if their combination 

causes an upset. 

MSETUP, SSETUP, MFDBKB, and SFDBKB are the FF storage nodes driven by 

the C-elements. The C-element is the crucial hardening circuit—if both its inputs are 

simultaneously incorrect its output may transition erroneously. Consequently, the gates 

driving each C-element input must be located in different groups (or minimally at 

opposite ends of one group). The gates driving the C-element driving node SSETUP in 

group A are placed in groups B1 and C. Similarly the gates driving the C-element driving 

node MFDBKB in group A are placed in groups B2 and C. For layout efficiency, the 

inverters in the feedback paths driven by nodes MFDBKB and SFDBKB (Fig. 5.3(a)) are 

merged with the pass gate transistors resulting in the final FF circuit in Fig. 5.5. The latch 

feedback multiplexers are comprised of two tri-state inverters as shown. 

 

 
 

Fig. 5.5. Proposed FF schematic showing node grouping to efficiently separate critical nodes based on the 

groupings in the double node upset matrix. 
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5.2.2 FF Layout and APR Compatibility 

Appropriate hardened FF layout is essential for MNCC robustness since it 

determines the critical node location and separation. Vertical separation is ideal, since it 

places N wells between the critical nodes. Since they are biased at VDD, N wells make 

good sinks for substrate charge. Charge tracks within the N wells are attenuated by the 

depth of the wells. 

From the matrix in Fig. 5.4, it can be seen that there are multiple critical node 

pairs, two such being SDHOLD-SSETUP and MDHOLD-MHOLD. Fig. 5.6 shows the 

critical node locations in the FF (color codes correspond to the matrix in Fig. 5.4). The 

separation distances between the critical nodes are shown in the upper triangular matrix 

in Fig. 5.4. For instance, the separation distance between SDHOLD and SSETUP is 

3.3 μm.  

The matrix indicates that blocks A and C cannot be adjacent as they have multiple 

critical node pairs. Hence blocks A and C are separated by the CLK block in the layout. 

 
 

Fig. 5.6. Proposed FF layout showing the sensitive nodes corresponding to the color coded nodes in the 

matrix. Note the middle block height is compressed for brevity. 
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Blocks A and C cannot be next to blocks B1 and B2 respectively, as the node SSETUP in 

block A fails with node SDHOLD in block B1, and nodes MSETUP, MSETUPP and 

MSETUPN fail with node MDHOLD in block B2. However, B1-A and B2-C 

combinations are possible by placing the MSETUP/SSETUP nodes at the far right end in 

blocks A and C layouts (Fig. 5.6), providing separation distance of at least 3.1 μm from 

 
(a) 

 
(b) 

 

Fig. 5.7. (a) Stick diagram representing the FF layout. (b) The metal routes connecting the blocks. 
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the MDHOLD/SDHOLD nodes. Blocks B1 and B2 are the layouts for the delay element 

shown in Fig. 5.1(c). Since the delay element is a combinational circuit, charge collection 

on any of its constituent diffusions will propagate to the output. Hence, these diffusions 

are clustered together and considered as one node. Fig. 5.7 is a stick diagram of the 

complete FF layout showing that metals 2 and 3 used to interconnect the FF blocks. All 

routes are kept within the cell borders, and care is taken to avoid blocking the standard 

cell pins above and below, as well as within of the CLK block. The proposed FF achieves 

an area reduction of 35% vs. that in [35] when implemented in this technology. 

A cartoon depicting FF placement in a final APR design is shown in Fig. 5.8. 

With minor APR flow modifications, standard cell gates can be automatically placed into 

the FF gaps using standard tools (e.g., Cadence Encounter). Noting that the CLK block 

may be adjacent to any other, a conventional single row height hardened design is 

possible. This layout places the constituent circuit groups in the order B1-A-CLK-C-B2. 

This is in contrast to the hardened design in [35] where a single row height layout 

compromised some critical node spacing [61]. 

5.3 Hardness Comparison 

We have shown the proposed FF to be hard to incoming SETs on the D and clock 

 
 
Fig. 5.8. FF placement in a synthesized design abutting standard cells. 
 



99 

 

 

inputs, direct upset of storage circuit nodes (SEUs), as well as to MNCC. In this section 

the proposed FF cross-section is estimated and compared to two hardened FFs using the 

circuit simulation based methodology. Both designs’ functionality were explained in 

chapter 2 and briefly repeated here for brevity. 

5.3.1 BISER FF 

Fig. 5.9 shows the BISER FF schematic [44] divided into its sensitive node 

groups. This design uses dual redundant standard D-FFs connected to a C-element. If one 

of the FFs is upset, the inputs to the C-element would mismatch causing it to tri-state 

protecting the stored state. The jam latch at the C-element output maintains the logic 

state. We modify the original design to buffer the C-element jam latch. This avoids 

exposing this storage node to coupling noise on the output node, which is more typical of 

commercial standard cell designs—note that when one D-FF has been upset, this latch 

state is critical—a noise failure would render the design soft. This change has a small 

(one poly pitch) impact on the BISER size. 

A possible group interleaving for the BISER FF layout is A-C-E-B-D. 

 

 

Fig. 5.9. BISER FF schematic showing sensitive node groups. The layout interleaves the groups to avoid 

simultaneous charge collection from single impinging radiation strike. 
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Interleaving the groups vertically as in the previous design is straightforward. The groups 

can also be interleaved inline. Fig. 5.10 shows the BISER dual fault analysis matrix. The 

upper triangle shows the separation distances between the upset node pairs expressed in 

µm for vertically interleaved node groups. Unlike the proposed 4CE FF, the BISER FF is 

not hard to upsets on clock inputs, hence CLK and CLKN nodes are not shown in the 

matrix. The number of failures is significantly greater than in Fig. 5.4. It can be noticed 

that the majority of failures occur in the clock rising edge, where the BISER FF is 

vulnerable to upsets in the setup time window.  

The BISER area is equal to two FFs and one latch. For the former, the designs of 

 

 
 

Fig. 5.10. Matrix showing single and two node failures in BISER FF to induced simulated SETs of δ 

duration. The upper triangle shows the separation distances between the upset node pairs expressed in µm 

for vertically interleaved node groups. 
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our commercial 7 track library are slightly altered. For instance, the slave latch input is a 

tri-state inverter rather than CMOS pass-gate. This reduces some transient errors due to 

back-writing from the slave to the master at a single poly pitch cost. The C-element jam 

latch combination fits into the same number of poly pitches as a library clocked latch. 

The BISER area is 15% smaller than our proposed 4CE FF design.  

5.3.2 Split Internal Node (SIN) FF 

Fig. 5.11 shows a FF schematic based on the hardened latch proposed in [52], 

with its sensitive nodes grouped. In this design, setup nodes are protected by dual 

redundant HOLD nodes. The feedback C-elements protect if one of the HOLD nodes is 

upset. However, setup node upsets are unprotected. Lacking delay elements, this design is 

also unprotected to input SETs. 

A possible vertical or inline group interleaving for the FF layout is A-E-C-D-B-F. 

Fig. 5.12 shows the dual fault analysis matrix. It can be seen that MSETUP and SSETUP 

nodes have failures to both single node upsets and to all two node upset combinations. 

 
 

Fig. 5.11. SIN FF schematic showing sensitive node groups with groups interleaved in the layout to avoid 

simultaneous charge collection from single impinging radiation strike. 
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Similar to BISER FF, the SIN FF is also not hard to upsets on clock inputs, hence CLK 

and CLKN nodes are not shown in the matrix. The table illustrates its poor upset 

tolerance. The distances shown in the matrix (Fig. 5.12) are for the vertical interleaving 

case. Due to small circuits’ sizes, the distances using horizontal interleaving are severely 

compromised. 

5.3.3 Cross-Section Comparison 

Circuit hardness is measured experimentally by determining the circuit upset 

cross-section , that is, the relative target area determined by 

𝜎 =
𝐸𝑟𝑟𝑜𝑟𝑠

𝐹𝑙𝑢𝑒𝑛𝑐𝑒
 . (1) 

where the fluence is measured in particles/(cm
2
·s). Broad beam testing is directional but 

ionizing particles causing upset in normal IC operation impinge from any direction (are 

 
 

Fig. 5.12. Matrix showing single and two node failures in SIN FF to induced simulated SETs of δ 

duration. The upper diagonal matrix shows the separation distance between the upset node pairs expressed 

in µm for vertically interleaved node groups. 
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isotropic). Secondaries from proton or neutron testing are also isotropic. The analysis 

thus assumes particles impinging from any direction. 

The tables generated by the analysis are used to analyze the hardness. The total 

FF cross section is computed by summing the individual node cross-sections as given by 

𝜎𝐹𝐹 =  ∑ 𝜎𝑁𝑂𝐷𝐸𝑖

𝑁
𝑖=0 . (2) 

If a node upsets when hit singly, its cross-section is computed by multiplying the 

node area with the sum of the timing window weights. The computation differs for 

clocked and hold modes. In the clocked mode, node reversals are considered for all the 

four clock phases i.e., rising (r), high (h), falling (f) and low (l) and the cross-section is 

given by 

𝜎𝑁𝑂𝐷𝐸𝑆𝑖𝑛𝑔𝑙𝑒−𝐶𝑙𝑜𝑐𝑘𝑒𝑑
=  𝑁𝑂𝐷𝐸𝐴𝑟𝑒𝑎 ∑ 𝑇𝑖𝑚𝑖𝑛𝑔 𝑊𝑖𝑛𝑑𝑜𝑤𝑤𝑒𝑖𝑔ℎ𝑡

𝑟,ℎ,𝑓,𝑙
𝑤𝑒𝑖𝑔ℎ𝑡 . (3) 

The cross-section computation in the hold mode, considers node reversals only for clock 

high and low phases as given by 

𝜎𝑁𝑂𝐷𝐸𝑆𝑖𝑛𝑔𝑙𝑒−𝐻𝑜𝑙𝑑
=  𝑁𝑂𝐷𝐸𝐴𝑟𝑒𝑎 ∑ 𝑇𝑖𝑚𝑖𝑛𝑔 𝑊𝑖𝑛𝑑𝑜𝑤𝑤𝑒𝑖𝑔ℎ𝑡

ℎ,𝑙
𝑤𝑒𝑖𝑔ℎ𝑡 . (4) 

We use 5% to 15% weights for rising and falling edge susceptibility and 30% to 45% 

weights for each of clock high and clock low, to account for the clock activity factor and 

SET capture window. This number should vary the clock activity factor. 

For the MNCC case (two node upsets) the cross section computation is illustrated 

in Fig. 5.13, where two nodes, A and B are sensitive to MNCC. Particle incidence is 

isotropic, but MNCC requires the incident ionizing radiation particle to pass through or 

near both nodes. Each node has a sensitive (collection) volume, which extends some 

distance below it, shown by the collection depth. This accounts for charge tracks that are 

below the node, where collection may also be due to diffusion. By centering a sphere at 
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node A, with a radius r defined by the distance to the collection volume of node B, the 

relative reduction in circuit cross-section  afforded by the critical node separation can be 

estimated. A node susceptible to upset by itself (i.e., a single node upset) can be upset 

from any angle. Thus, the single node hit  can be defined as proportional to the area of 

the surface of the sphere. The shaded box subtended by collection width in Fig. 5.13 is 

extended vertically to twice the collection depth to account for particles striking node B 

and being collected at node A (i.e., charge tracks in the opposite direction). This box 

defines the area on the sphere’s surface that a particle must pass through to cause MNCC 

upset via nodes A and B. Therefore, node separation affects the node  by  

𝜎𝑁𝑂𝐷𝐸𝑀𝑁𝐶𝐶
= (𝜎𝑆𝐼𝑀. 𝑊. 𝐷)/(4𝜋𝑟2), (5) 

where SIM is the simulated failure rate adjusted for the timing window given by either 

equation (3) or (4) depending on whether  is computed in the clocked or hold mode. 

The node separation is based on the physical design. Our initial designs used 

vertical interleaving, which can afford better hardness since the N wells collect charge 

 
 

Fig. 5.13. The effective cross section seen by an ionizing particle that simultaneously strikes two nodes A 

and B causing upset. Only a limited solid angle can pass through the collection region of both nodes, 

providing a straightforward estimate of the upset probability.  
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and thus mitigate diffusion in the substrate. For the MNCC cases and vertical 

interleaving, we chose r as 1, 2, 3, or 4 cell heights, based on the number of intervening 

cells. For inline separation the node distances can be lesser or greater than for vertical 

interleaving depending on the design. In most cases the constituent circuits are wider than 

they are tall, providing greater critical node separation. 

Table 5.1 shows the calculated cross-section reductions of all three FFs in both 

clocked and hold modes normalized to the unhardened standard cell library D-FF. 

Different timing window weights are used. Cross section reductions are shown for 

layouts which have groups interleaved both vertically and inline. The analysis is not 

adjusted for vertical interleaving, but SRAM results have consistently shown that well 

TABLE  5.1 

 

CROSS-SECTION REDUCTIONS OF FFS IN CLOCKED AND HOLD MODES FOR DIFFERENT TIMING WINDOW 

WEIGHTS NORMALIZED TO NORMAL D-FF 
 

DESIGN MODE 

TIMING WINDOW WEIGHTS (%) 

(RISING, HIGH,  

FALLING, LOW) 

CROSS-SECTION REDUCTION 

(%) 

INTERLEAVED  

(VERTICAL, INLINE) 

SIN Clocked 5,45,5,45 13.4, -0.1 

SIN Clocked 10,40,10,40 2.3, -14.1 

SIN Clocked 15,35,15,35 -7.6, -27.1 

SIN Hold 5,45,5,45 35.5, 26.4 

SIN Hold 10,40,10,40 44.5, 36.7 

SIN Hold 15,35,15,35 53.1, 46.4 

BISER Clocked 5,45,5,45 52.6, 75.1 

BISER Clocked 10,40,10,40 40.2, 62.4 

BISER Clocked 15,35,15,35 28.5, 50.2 

BISER Hold 5,45,5,45 69.9, 90.1 

BISER Hold 10,40,10,40 73.9, 91.3 

BISER Hold 15,35,15,35 77.8, 92.6 

4CE Clocked 5,45,5,45 97.7, 99.2 

4CE Clocked 10,40,10,40 97.8, 99.3 

4CE Clocked 15,35,15,35 98.0, 99.3 

4CE Hold 5,45,5,45 97.8, 99.3 

4CE Hold 10,40,10,40 98.1, 99.4 

4CE Hold 15,35,15,35 98.3, 99.5 
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crossing collection is considerably less probable [62]. 

The SIN and BISER designs are not hardened to input SETs. Consequently, the 

SIN FF shows poor improvements in the clocked mode where its hardness to upsets, 

i.e., -7.6% and -27.1%, is actually worse than the baseline unhardened D-FF. The SIN 

and the BISER FFs are harder to upsets in the hold mode as compared to the clocked 

mode, showing reductions of 26% to 53.1% and 70% to 92.6%, respectively for both 

layout designs. BISER FF provides almost 2xreduction in the hold mode compared to 

the SINF FF. For both the clocked and the hold modes, the proposed FF provides 

improvements of over 97% for vertical interleaving and over 99% for inline 

interleaving, thus exhibiting superior hardness as compared to the other two designs. 

The reduction for the SIN FF for inline interleaving is worse when compared to 

vertical interleaving as groups B, C, E and F (Fig. 5.11) are composed of only one 

inverter, providing negligible critical node separation. However for both BISER and the 

proposed FFs the inline is better owing to the layout aspect ratios. 
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CHAPTER 6 

CONCLUSIONS 

This work provides methodical design approaches to mitigate radiation effects on 

hardened by design flip-flops and also provides low power circuit design solutions.  

Different hardened FFs proposed in the literature were analyzed giving a brief description 

of the operating principle, advantages and drawbacks for each FF. 

Measured SET pulse widths have varied significantly in different experiments. 

Those relying on current starved delay elements exhibit very large tSET. This presents a 

conflict in designing RHBD FF delay elements, which must simultaneously achieve large 

delay but with high drive strength. We have proposed a novel RHBD delay circuit that 

does not increase worst-case IC SET duration by providing redundant current starved 

delay paths. If one delay path collects charge, the overall delay is only marginally 

increased, despite very slow transient dissipation by current starved transistors, since the 

redundant path discharges the output. FFs, using proven interleaved layout techniques, 

dissipate up to 19.6% less power than inverter chain delay based temporal FFs. Two 8-

bit, 8051s were designed in the TSMC 130 nm bulk CMOS process using two temporal 

FFs with two different delay elements. The first used an inverter chain based delay 

element, and the other the proposed delay element. The 8051 using the proposed delay 

element dissipates 18% less power than the cascaded inverter based delay element. 

Interleaving constituent circuit blocks provides excellent critical node separation, but 

has previously required multiple bit designs or wasted space in radiation hardened FFs. 

The circuit groups and their ordering have heretofore been determined through circuit 

inspection and experiment. We have presented systematic analysis methodology for 
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determining the susceptibility of FF nodes to upset due to both single and multiple node 

charge collection We identify the critical nodes as those that when simultaneously upset 

cause a circuit failure. We group these critical nodes so that no two are adjacent and 

algorithmically determine an optimal group ordering such that the sensitive nodes are 

separated by another circuit group. The efficacy of the methodology has been 

demonstrated on different radiation hardened FF designs. A limitation of the approach is 

that the constituent elements must have a finite number and be of reasonable size. For 

instance, the DICE FF presents difficulty on both counts.  

A new temporally hardened FF circuit that is both hard and energy efficient has been 

presented. The design achieves a 31% power and 35% area reduction compared to a 

temporal FF with similar hardness. Specific circuit design aspects and their importance in 

achieving hardness have also been described. The FF hardness was verified and 

compared to other designs by the proposed systematic upset simulations that quantify the 

susceptibility to upsets due to both single and multiple node charge collection. Different 

layouts to mitigate MNCC by providing the required separation between critical nodes 

have were proposed and quantitatively compared.  

Below is the summary of the contributions of this work: 

The major contributions include the developments of 

 A novel low power delay element that does not increase worst case IC SET 

duration and which saves 19% power as compared to inverter chain delay element  

 A systematic analysis methodology that determines the susceptibility of FF nodes 

to upset due to both single and multiple node charge collection. It identifies and 

provides efficient critical nodes separation in  radiation hardened FFs 
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 A new temporally hardened FF that saves 31% power and 35% area as compared 

to temporal FF with similar hardness 

Minor contributions of this dissertation include 

 Two 8051s designed in the TSMC 130nm bulk CMOS process using two 

temporal FFs, one using the proposed delay element and the other using cascaded 

inverter based delay element. The 8051 using the proposed delay element saves 

18% power than the cascaded inverter based delay element 

 Classifying different hardened FFs proposed in the literature based on the 

hardening techniques and providing a RHBD FF taxonomy giving a brief 

description of the operating principle, advantages and drawbacks for each FF 

 Applying the proposed methodology to different radiation hardened FF designs 

and determining their vulnerability to single and multi node upsets by computing 

circuit upset cross-section  

 Test structures of FFs using the proposed and inverter chain delay elements, D-

FF, BISER FF and the proposed FF for beam testing and comparing the upset 

cross-sections 
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