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i 

ABSTRACT 

Computational thinking, the creative thought process behind algorithmic design 

and programming, is a crucial introductory skill for both computer scientists and the 

population in general. In this thesis I perform an investigation into introductory computer 

science education in the United States and find that computational thinking is not 

effectively taught at either the high school or the college level. To remedy this, I present a 

new educational system intended to teach computational thinking called Genost. Genost 

consists of a software tool and a curriculum based on teaching computational thinking 

through fundamental programming structures and algorithm design. Genost’s software 

design is informed by a review of eight major computer science educational software 

systems. Genost’s curriculum is informed by a review of major literature on 

computational thinking. In two educational tests of Genost utilizing both college and high 

school students, Genost was shown to significantly increase computational thinking 

ability with a large effect size. 
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1. INTRODUCTION 

The United States and many other countries around the world are currently experiencing 

a revolution in STEM (Carnevale, STEM: Science, Technology, Engineering, Math, 

2011). STEM is an acronym that stands for “Science, Technology, Engineering and 

Math”, and the STEM revolution refers to the explosion in the first world job market for 

careers requiring STEM skills. The STEM revolution is not affecting only the job market; 

in fact, STEM skills, and the products and services that these skills provide, are now 

integrated into the life of the average first world citizen, in some ways deeply so 

(Carnevale, STEM: Science, Technology, Engineering, Math, 2011) (Cowen, 2013). 

 

This thesis is about STEM, and its creation was prompted by the elevation of STEM 

abilities to their current position of importance in people’s lives. In this introduction, we 

will begin by reflecting on the current status of STEM. Our reflection will show that the 

STEM revolution has prompted a great need for students to be taught a skill (or perhaps 

better put, a “paradigm”) known as computational thinking. We will define what 

computational thinking is, why it is important, and why we ought to be teaching it to all 

students. We will conclude this introduction with an outline of the rest of the thesis. 

 

1.1. THE STATUS OF STEM 

STEM skills are currently in very high demand (Carnevale, STEM: Science, Technology, 

Engineering, Math, 2011) (BurningGlass, 2014). However, it has been noted by many 

that this demand is not being filled, prompting many to warn of an impending “STEM 

crisis” (CSTA Curriculum Improvement Task Force, 2006) (President's Council of 
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Advisors on Science and Technology, 2012). The root of this putative crisis is the 

upcoming high demand for STEM jobs, paired with a worrying lack of qualified 

graduates to fill these jobs. 

 

In this section we will investigate the claims above. We will also argue that the “STEM 

crisis” is more properly called a “computer science crisis”, as the impending high demand 

for STEM skills, as well as some broader predicted trends, are deeply intertwined with 

computer science. 

 

1.1.1. The Demand for STEM 

It has been argued by many that there is currently a great demand for STEM skills, which 

will only increase in the near future. In a report by Georgetown University’s Center on 

Education and the Workforce, United States jobs requiring STEM skills are projected to 

grow at a 17% rate through the year 2018, compared to a 10% growth rate for US 

occupations as a whole throughout that time period (Carnevale, STEM: Science, 

Technology, Engineering, Math, 2011). Another report by Burning Glass Technologies, a 

company focusing on workforce development and trend prediction, states that for every 

new graduate with a 4-year STEM degree there are 2.5 entry-level job postings that this 

graduate could fill, with 5.7 million postings in all for 2013. This creates a 26% salary 

premium for STEM degree holders over non-STEM degree holders (BurningGlass, 

2014). These statistics, and others like them, lead many to conclude that the demand for 

STEM degree holders will continue for the foreseeable future. 
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1.1.2. The STEM Crisis 

Despite the large upcoming demand for STEM degree holders, current educational trends 

have led some to declare that this demand will not be filled. This phenomenon has been 

called the “STEM crisis.” 

 

There are two aspects to the STEM crisis: first, that there are not enough STEM majors 

being produced (CSTA Curriculum Improvement Task Force, 2006) (President's Council 

of Advisors on Science and Technology, 2012) (CBI, 2013) (Rothwell, 2014), and 

second, that those STEM majors who are being produced do not have adequate skills to 

perform the jobs they will be asked to fill (House of Lords Select Committee on Science 

and Technology, 2012) (Gross, 2014) (CBI, 2013). 

 

Many sources claim that there are not enough STEM majors to fill the large upcoming 

demand. For example, the Computer Science Teachers Association (CSTA) noted in 

2005 that there would be an anticipated shortage of 1.5 million qualified candidates for 

CS and IT jobs by 2012 (CSTA Curriculum Improvement Task Force, 2006). This 

prediction was somewhat borne out; a 2012 executive report prepared by the United 

States President’s Council of Advisors on Science and Technology declared that, based 

on current economic projections and graduation rates, there would be a shortfall of 1 

million STEM degree holders over the next decade (President's Council of Advisors on 

Science and Technology, 2012).  

Many of the businesses that wish to hire STEM majors report trouble doing so. In the 

CBI / Pearson Education and Skills Survey for 2013, which surveyed 294 firms, 39% of 
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firms surveyed reported having difficulty recruiting workers with the STEM skills they 

needed (CBI, 2013). Furthermore, a report by the Brookings Institute declares that STEM 

job positions take nearly twice as long to fill as positions that do not require STEM skills 

(Rothwell, 2014). 

 

In addition to the above problems, individuals pursuing or graduating with STEM majors 

are reported to not possess the skills adequate to perform 21st century STEM jobs.  An 

oft-cited 2012 report on STEM education by the United Kingdom’s House of Lords notes 

that students entering college do not possess the skills they need to succeed in STEM 

subjects – for example, these students do not possess the math skills needed for first-year 

college math courses (House of Lords Select Committee on Science and Technology, 

2012). If students are entering college unprepared to handle STEM challenges, it does not 

appear that colleges are providing them this preparedness; a 2014 paper presented at 

IEEE’s Global Engineering Education Conference notes that STEM graduates “lack the 

numeracy skills needed to succeed in the workplace” (Gross, 2014). The effect of this can 

be seen in another statistic reported by the aforementioned CBI / Pearson report: 48% of 

firms report having their workers undergo “basic remedial training” in literacy, 

numeracy, and technical skills (CBI, 2013). 

 

These statistics, and many more like them, contribute to the widespread belief that the 

United States and other countries are entering a “STEM crisis”, and that immediate action 

must be taken to avert this. 
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1.1.3. The STEM Crisis is a CS Crisis 

As mentioned above, STEM stands for “Science, Technology, Engineering and Math”. 

Career fields designated as “STEM jobs” have been noted to include “medicine and 

dentistry; … biological sciences; veterinary science, agriculture and related subjects; 

physical sciences; mathematical sciences; computer science; engineering; technologies; 

and architecture, building and planning” (House of Lords Select Committee on Science 

and Technology, 2012). 

It might be believed that the “STEM crisis” affects all these fields, and to some extent it 

does. However, inspection of the data reveals that the STEM crisis is really a computer 

science crisis. The job growth, current and upcoming, is overwhelmingly in CS-related 

jobs; there are broad trends that are bringing a need for CS abilities to jobs across the 

market (not just STEM!); and despite all this, CS enrollment and graduation are on the 

decline. 

 

Let us first consider the aforementioned explosive job growth in STEM fields. According 

to a report by the Bureau of Labor Statistics, between 2010 and 2020 62% of all newly 

created jobs (not just newly created STEM jobs, but all newly created jobs) will require 

some CS skills. This same report also notes that by 2020, 50% of all STEM jobs will be 

CS related1 (K-12 Computer Science Education: Unlocking the Future of Students, 

2012). This trend is reiterated by Stanford University’s Elizabeth Stark, who notes that 

                                                           
1 The BLS report cited here notes that their definition of STEM excludes jobs in the medical profession; if 
these jobs were included, these number might be lower. However, it could also be argued that, with the 
increasing computerization of the medical fields, CS skills will be just as important in medicine as 
elsewhere. 
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“[b]y 2018, there will be nearly three times as many job openings requiring computer 

science knowledge [as] qualified applicants” (Stark, 2013). The CS flavor of the STEM 

crisis is summarized by Code.org’s Hadi Partovi who, relying on data from the BLS and 

NSF, declares that “[c]omputer science is the only STEM field where there are more jobs 

than students” (Partovi, 2014). 

 

Looking beyond STEM jobs, we can find trends and forces that are quickly making 

computer science skills an important factor – perhaps even a necessity – across all 

industries. As contended by Carnevale’s STEM report, as well as Jeannette Wing, in her 

seminal Computational Thinking article, computers have invaded every industry, not just 

the hard sciences but the social sciences and even the humanities; we now need 

individuals to work with these computers (Carnevale, STEM: Science, Technology, 

Engineering, Math, 2011) (Wing J. M., Computational Thinking, 2006). This demand for 

STEM skills across the workforce is further evinced by the fact that, in the UK, almost 

half of all STEM graduates end up taking a job in what is considered a non-STEM field 

(House of Lords Select Committee on Science and Technology, 2012). 

 

Tyler Cowen, an economist and professor nominated by The Economist as one of the 

most influential economists in the last decade2, wrote Average is Over in 2013 on 

precisely this subject. In this book he concludes that the future of all industries will 

involve massive integration with computers (he goes further and predicts that we will see 

similar integration with our personal and social lives) (Cowen, 2013). Qua Cowen, these 

                                                           
2 http://www.economist.com/blogs/freeexchange/2011/02/economics 

http://www.economist.com/blogs/freeexchange/2011/02/economics
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trends are inevitable, and he declares that “[w]hether we will remain a middle class 

society or not depends firstly on how many people will prove to be effective working 

with intelligent machines” (Cowen, 2013). 

 

From this information we can conclude that the upcoming need for STEM is 

predominantly a need for CS. Yet despite these upcoming needs, computer science 

education has been on the decline. Multiple sources report that CS enrollment is 

decreasing (Hu, 2011) (Carter, 2006). Other sources indicate that students are losing 

interest in pursuing CS majors (Wagstaff, 2012) (Blum, 2007).  

 

Taken together, the high demand for CS skills, paired with the decrease in student pursuit 

of CS as a major, leads to the conclusion that the STEM crisis is in reality a CS crisis, 

and that – while we should not ignore the other STEM fields – CS is the one we may 

want to focus on addressing the most. 

 

1.1.4. A Response to the STEM Crisis 

It is important to acknowledge that not everyone accepts the existence or severity of the 

STEM crisis. In an influential article for the IEEE, Robert Charette argues that 

misinterpretations of job data, incorrect or inaccurate estimations, optimistic predictions 

and other errors are causing many to believe in a crisis when there is none (Charette). 

According to Charette – and others who argue among similar lines – there is no 

impending shortfall of engineers which requires drastic action to correct. 

 



 

 
 

 

8 

Despite not believing that the future will be rife with unfilled STEM positions, Charette 

does share common ground with many of those cited above when he declares that 

“everyone needs a solid grounding in science, engineering, and math. In that sense, there 

is indeed a shortage – a STEM knowledge shortage” (Charette). 

 

Whether one agrees with the CS shortfall predictions or not, there does seem to be broad 

agreement that certain aspects of STEM – which, as we argue above, are really certain 

aspects of CS – are becoming necessary skills for all individuals, whether they work in a 

STEM field or not. 

 

In the next section we will argue that these skills overlap considerably with a set of skills 

currently rising to prominence in CS education, which are collectively known as 

“computational thinking”. 

 

1.2. COMPUTATIONAL THINKING 

Computational thinking refers to a skill, a set of skills, or even an entire paradigm of 

thought, depending on the source and the way in which the term is being used. The term 

“computational thinking” and the ideas it represents are not new, but it has risen to 

considerable prominence following a 2006 IEEE article by Jeannette Wing, the 

President’s Professor of Computer Science at Carnage Mellon University. This article, 

appropriately entitled “Computational Thinking”, launched a discussion within the 

computer science community which continues to this day. 
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In this section we will analyze many aspects of this discussion, beginning with an attempt 

to define exactly what computational thinking is. We will consider some specific 

components of computational thinking, and review why computational thinking is 

important both for CS students and for everyone. We will conclude this section with a 

discussion of the difference between computational thinking and programming. 

 

1.2.1. The Definition of Computational Thinking 

In order to discuss computational thinking, we must first get an idea of what it 

specifically is. Jeannette Wing is responsible for beginning the ongoing discussion of 

computational thinking, and the most concise definition of computational thinking she 

provides is as follows: “Computational Thinking is the thought processes involved in 

formulating problems and their solutions so that the solutions are represented in a form 

that can be effectively carried out by an information-processing unit” (Wing J. M., 

Computational Thinking, 2006) (Wing J. M., Computational Thinking: What and Why?, 

2010). By this definition, computational thinking is a critical thinking and heuristic 

reasoning skill, but one specifically involved with formulating both problems and 

solutions in a computable form. 

 

Despite the name, computational thinking does not literally mean “thinking like a 

computer” (Wing J. M., Computational Thinking: What and Why?, 2010) (Gouws, 2013) 

. Wing and others note that “thinking like a computer” implies mechanization of thought, 

while computational thinking is heuristic, and perhaps even creative, in its approach to 

transforming and solving problems (Wing J. M., Computational Thinking, 2006). 
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Computational thinking does rely on the fact that a problem, ultimately, must be 

implemented in a mechanical setting (a computer), and the solution must be output from 

this mechanical setting; but between the problem statement and its implementation in a 

program lies a wealth of heuristics, creative thought and transformation, and it is that 

ground between problem statement and compiled program which computational thinking 

covers. 

 

1.2.2. Components of Computational Thinking 

In the previous section we provided a brief high-level definition of computational 

thinking. In this section we will describe four specific (but still somewhat high-level) 

components of computational thinking. These are not the only components of 

computational thinking, but their frequent inclusion in computational thinking related 

literature suggests that they are the most important ones. 

 

The four components are as follows: 

 

1. Ability to Read and Understand Algorithms 

As computational thinking is fundamentally involved with the creation and 

evaluation of algorithms, the ability to read and understand algorithms is a crucial 

prerequisite of computational thinking. This skill involves understanding an 

algorithm qua algorithm – understanding it as an entity separate from the specific 

context that it operates in. 
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2. Ability to Engage in Abstraction 

This is commonly cited as by far the most fundamental skill involved with 

computational thinking, and it is at the base of most if not all other skills 

involved. The ability to engage in abstraction involves (but is not limited to) the 

ability to generalize, compartmentalize, move between levels of abstraction, and 

understand and apply recursion. 

 

3. Ability to Decompose a Problem into Solvable Processes 

This skill may be roughly thought of abstraction applied to the problem domain. It 

involves the ability to identify the pertinent aspects of a problem, the ability to 

transform a problem from one domain to another, and the ability break down a 

problem into subproblems. It also involves the ability to identify which 

computable processes can solve problem components, and the ability to combine 

these processes to create algorithms. 

 

4. Ability to Evaluate the Quality of a Solution 

If computational thinking deals with formatting and transforming problems, and 

creating solutions, that are computable, then the ability to evaluate the quality of 

the resulting algorithm ought to also be part of the skillset. This component 

involves not just evaluating the correctness of an algorithm, but also its elegance, 

cleanliness, optimization, generality, and reliability, among other things. 
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These items are described variously in (Hu, 2011) (Wing J. , 2006) (Wing J. M., 

Computational Thinking: What and Why?, 2010) (James J. Lu, 2009). A more 

comprehensive treatment of these items will be provided in Section 2. 

 

1.2.3. Computational Thinking is not Programming 

In a list of misconceptions about computational science compiled by the CSTA, the very 

first misconception is the idea that computer science should equal programming (CSTA 

Curriculum Improvement Task Force, 2006). If computational thinking is at the root of 

computer science, then it should be similarly believed that computational thinking and 

programming are two different skillsets. This point is forcefully made by Wing, who 

declares quite simply that “[c]omputational thinking is not computer programming” 

(Wing J. M., Computational Thinking, 2006). 

 

Before we proceed, we ought to properly define programming as precisely as we have 

defined computational thinking. In this thesis, “programming” refers to the act of 

transforming an algorithm from an idea into some symbolic notation which can be 

executed on a computer. This can include writing code in Java or C, or it can include 

writing an algorithm in a visual programming environment such as Scratch3 or Microsoft 

VPL4. In a more abstract sense, it can even refer to writing natural language step-by-step 

instructions for use by a human “computer”. The important part is that the development 

of the algorithm precludes the practice of “programming” – put simply, programming is 

                                                           
3 http://scratch.mit.edu/ 
 
4 https://msdn.microsoft.com/en-us/library/bb483088.aspx 

http://scratch.mit.edu/
https://msdn.microsoft.com/en-us/library/bb483088.aspx
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algorithm transcription. Others refer to this act as “coding”; in this thesis, “coding” and 

“programming” will refer to the same act that we have just defined. 

 

If computational thinking and programming are two separate skillsets, how do they 

relate? It was noted previously that computational thinking is the ground between a 

problem definition and the implementation of an algorithm. Programming is involved 

only in the implementation stage – in other words, programming begins where 

computational thinking ends. Programming, when thought of this way, is a rote, or 

mechanical process; this contrasts with computational thinking, which is a creative, 

heuristic process (Wing J. M., Computational Thinking, 2006). Instead of thinking that 

they are equivalent, computational thinking ought to be thought of as the “parent” of 

programming – computational thinking skills produce a computable algorithm, while 

programming implements the algorithm in solid form. 

 

The misconception that computational thinking and programming are the same thing can 

be harmful to student education. Wing warns that in teaching computer science “we do 

not want people to come away thinking they understood the concepts because they are 

adept at using the tool” – in other words, only teaching students how to program, 

combined with the misconception that programming and computational thinking are the 

same thing, can result in students who believe they have mastered skills that they really 

haven’t (Wing J. M., Computational Thinking and Thinking about Computing, 2008). 

Learning how to use a programming language is like learning how to use a tool; learning 
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computational thinking, on the other hand, creates students who are “not merely tool 

users but tool builders” (Valerie Barr, 2011). 

 

This is an important point to make and will be used to support evaluations of computer 

science education, as well as decisions in creating a new computational thinking-based 

educational system, later in the thesis. 

 

1.2.4. Computational Thinking is Important for CS Students 

Having defined computational thinking, we may now consider its utility for computer 

science education. Unsurprisingly, this utility is argued to be quite high. 

 

A joint report by the ACM and CSTA notes that “[c]omputer science education is 

strongly based upon the higher tiers of Bloom’s cognitive taxonomy, as it involves 

design, creativity, problem solving, analyzing a variety of possible solutions to a 

problem, collaboration, and presentation skills” (Wilson, 2010). Design, creativity, and 

problem solving are exactly what computational thinking teaches; if this is true, then a 

strong foundation in computational thinking skills will prepare students to learn the 

higher levels of computer science. This is corroborated by Mohtadi, who notes that when 

computational thinking skills are taught systematically, students are able to internalize 

and gain a deeper understanding of mathematical and programming / engineering 

concepts very quickly (Mohtadi, 2013). Additionally, James Lu, a professor at Emory 

University’s Mathematics & Computer Science department, declares that computational 

thinking education prepares students to learn programming (James J. Lu, 2009). 
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To sum it up, computational thinking skills are simply “indispensable in [the] modern 

engineering practice” (Mohtadi, 2013), and are therefore highly important for all students 

of that practice to learn. 

  

1.2.5. Computational Thinking is Important for Everybody 

While computational thinking has considerable utility for computer science students, the 

benefits of computational thinking are usually argued to be much broader: Wing notes 

that “[i]f computational thinking will be used everywhere, then it will touch everyone 

directly or indirectly” (Wing J. M., Computational Thinking and Thinking about 

Computing, 2008). In other words, these skills are not just beneficial for computer 

scientists, they are beneficial for everybody.  

 

A commonly argued point is that computational thinking education teaches problem 

solving skills and critical thinking skills that are invaluable to the modern world (Stark, 

2013) (Carey, 2010) (Wilson, 2010) (Wing J. , 2006). Steve Jobs describes it as a liberal 

art that teaches people how to think (Jobs, 1995). Jeannette Wing and others have gone so 

far as to declare it the “4th R”, along with the traditional “3 R’s” of reading, writing, and 

arithmetic (David Barr, 2011) (Wing J. M., Computational Thinking, 2006). These 

arguments all hold that computational thinking is a fundamental skill that everyone ought 

to have familiarity with. 

 

Many of the articles that examine computational thinking often investigate its utility in 

non-STEM career fields. The idea that the fundamental skills of computer science could 
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be valuable in career fields outside of computing is not a new one; Donald Knuth made 

the argument in 1985 that computational thinking overlaps with thought patterns used in 

other careers (Knuth D. , 1985). 

 

The most common career area said to benefit from computational thinking skills is the 

sciences, a claim that is not surprising when one considers the enormous role that 

computers now play in scientific work. Wing notes that computational thinking has, in 

recent years, “become the ‘third pillar’” of scientific research, “along with theory and 

experimentation” (Wing J. M., Computational Thinking: What and Why?, 2010). 

However, the sciences are not the only career fields said to utilize and benefit from 

computational thinking. 

 

Alan Bundy notes that computational thinking is influencing research across all 

disciplines – not just the sciences, but also the humanities (Bundy, 2007). Barr and 

Stephenson show that computational thinking concepts can be utilized even in social 

studies and language arts fields (mostly having to do with big data) (Valerie Barr, 2011). 

In her Computational Thinking paper, Wing lists many of the specific careers that 

computational thinking already influences: 

 

Computational thinking has also begun to influence disciplines and professions 

beyond science and engineering. For example, areas of active study include 

algorithmic medicine, computational archaeology, computational economics, 

computational finance, computation and journalism, computational law, 

computational social science, and digital humanities. Data analytics is used in 

training Army recruits, spam and credit card fraud detection, recommendation and 

reputation services, and personalizing coupons at supermarket checkout. (Wing J. 

M., Computational Thinking: What and Why?, 2010) 
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This section and the one preceding it make the argument that computational thinking is a 

highly valuable skill not just for computer scientists but for everyone. If this is the case, 

then it follows that computational thinking is a subject that ought to be broadly and 

universally taught. 

 

1.3. THESIS OUTLINE 

In Section 1.2 we established the importance of introductory computational thinking 

education. Our recognition of this importance motivated us to create a new educational 

system to teach introductory computational thinking. Our new system is made up of a 

software tool and a curriculum, both of which were designed by utilizing lessons learned 

through the evaluation of other educational systems and methods of teaching introductory 

computer science. This new system is called “Genost”. This thesis is dedicated to 

introducing Genost, explaining the thought that went into its development, and describing 

our testing to determine whether Genost effectively teaches computational thinking. We 

will divide the remainder of this thesis up into five sections. 

 

In Section 2, we will perform a review of introductory computer science education and 

the systems that are used as part of introductory CS education, in order to determine the 

effectiveness of both traditional and newer educational systems in teaching computational 

thinking skills. This review will be divided up into four major sections. 

First, in Sections 2.1 and 2.2, we will perform an expanded investigation into 

computational thinking in education, and the four specific components of computational 

thinking that we mentioned earlier. Second, in Section 2.3, we will review current 
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practices in introductory computer science education in the United States. Third, in 

Section 2.4, we will review some of the new computer science educational software 

systems and investigate their usability, educational value, and the degree to which they 

teach computational thinking. Finally, at the end of Section 2.4, we will review the 

lessons learned from the previous sections, and based on these lessons describe the 

qualities that an ideal computer science educational software system might have. 

 

In Section 3 we will describe the software and curriculum that comprise our new Genost 

system. In this section we will describe each part of Genost, along with our goals in 

developing this part, the ways we attempted to implement these goals, and our 

justifications for the goals and our implementation of them. 

 

In Section 4 we will describe the two tests that we performed of the Genost software and 

its ability to teach computational thinking skills. We will describe the recruitment criteria, 

time allotted, test environment and the data collected from each test. 

 

In Section 5 we will present the results of the two tests, and our analysis of these results. 

 

Finally, in Section 6 we will conclude the thesis, and present our ideas on future 

improvements to the Genost software. 
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2. REVIEW OF COMPUTER SCIENCE EDUCATION 

In this section we will perform a review of introductory computer science education, 

focusing on the quality of both traditional and newer forms and methods of introductory 

education, and the degree to which these systems teach computational thinking. This 

section will be divided into four subsections. 

 

- The first section will be a deeper investigation into computational thinking, 

focusing first on whether computational thinking skills are broadly teachable. 

Following this, we will perform an expanded look at the four major components 

of computational thinking described earlier and an investigation into how these 

four components ought to be taught as part of introductory computer science 

education. 

 

- Second, we will perform a review of introductory computer science education in 

American high schools and colleges, focusing on the degree to which these 

classes teach computational thinking. We will also look at the general poor 

performance of these educational programs, and consider some of the reasons that 

these programs may be performing poorly. 

  

- Third, we will review many newer educational software systems, like Alice5 or 

Scratch, which are designed to be used in introductory computer science  

                                                           
5 http://www.alice.org/index.php 

http://www.alice.org/index.php
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education. This review will consider the general quality of these systems, their 

pros and cons, and what takeaways we can glean from our evaluation of these 

systems. 

 

- Finally, we will reflect on the lessons learned from the preceding sections, and 

using these lessons, discuss the composition of the ideal introductory computer 

science educational system focused on teaching computational thinking. 

 

2.1. EDUCATIONAL GOALS OF INTRODUCTORY COMPUTATIONAL 

THINKING EDUCATION 

As we have argued in Section 1.2, computational thinking is an important skill for both 

computer scientists and individuals in general. Computational thinking is, however, a 

very rich subject, and it is not realistic, or necessary, to teach every aspect of it in full 

depth as part of introductory education. For introductory education, only the most 

fundamental and important concepts ought to be taught. This section will investigate the 

educational objectives that might be involved in teaching introductory computational 

thinking education. 

 

2.1.1. Is Computational Thinking Teachable? 

Before beginning to consider specific educational goals in introductory computational 

thinking education, we ought to first consider whether computational thinking skills are 

in fact able to be effectively taught in the first place. Most authors that write about 

computational thinking and education, such as Jeannette Wing, Valerie Barr or Chris 
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Stephenson, appear to assume that computational thinking skills are in fact teachable. 

However, a relatively well-cited paper by Saeed Dehnadi and Richard Bornat appears to 

bring this assumption into question.  

 

Bornat and Dehnadi’s paper, written in 2006, describes an attempt to devise a test by 

which students could be separated into two groups: those who had an “aptitude” for 

programming and those who did not (Dehnadi, 2006).This paper claims to have 

discovered such a test, which consists of providing an exam full of simple programming 

questions to students, and then grading these not based on actual correctness, but the 

degree to which student answers display a “consistent mental model” (to use a phrase 

from the paper). This paper defines a consistent mental model as a model of how a 

program should execute that is consistent across multiple programming questions 

(utilizing different programs per question). Dehnadi and Bornat directly correlate the 

degree to which this consistency is displayed with ultimate performance in introductory 

computer science classes. 

 

This result is notable for us because the “consistent mental model” discussed by Dehnadi 

and Bornat sounds very much like a computational thinking skill. Dehnadi and Bornat 

argue that students displaying a “consistent mental model” have internalized the crucial 

idea that computers are literal machines, that they execute their algorithms the same way 

every time, regardless of the input or context. This appears to relate very closely to items 

1 (Ability to Read and Understand Algorithms) and 2 (Ability to Engage in Abstraction) 

discussed in Section 1.2.2. 
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It is worth noting that Dehnadi and Bornat’s paper was not published in a peer-reviewed 

journal6; despite this, it garnered a respectable number of citations in its draft form7, 

many of them supportive (see (Robins, 2010) for an example of this). This reaction may 

be explained by considering the following notion: if the “programming aptitude test” is 

viable, then this means that the computational thinking skills required to learn and work 

as an effective computer scientist are, to some degree, innate, or at least not teachable. 

 

What are we to make of this? Is computational thinking, to some degree, not teachable? 

This conclusion, and the paper that ventures it, is treated with skepticism by Alan Kay, 

who posits that Dehnadi and Bornat “could be right, but there is nothing in the paper that 

substantiates it” (Kay, 2008). Kay describes similar work in introductory science classes 

which found that, despite a pretest having the apparent ability to predict students grades 

in these classes, students could be taught skills to improve their performance on this 

pretest that also resulted in higher performance in the class itself (Kay, 2008). 

 

More notable than Kay’s commentary, however, is the fact that Bornat has retracted the 

paper (Bornat, 2014). In this retraction Bornat declares that, upon further investigation, 

the “aptitude test” could to some degree predict pass/fail in Bornat’s programming class, 

but could not predict performance beyond that; more importantly, he notes that this 

predictive phenomenon does not divide students into those who can and those who 

                                                           
6 http://retractionwatch.com/2014/07/18/the-camel-doesnt-have-two-humps-programming-aptitude-
test-canned-for-overzealous-conclusion/ 
 
7 https://scholar.google.com/scholar?cites=887892586020755938 

http://retractionwatch.com/2014/07/18/the-camel-doesnt-have-two-humps-programming-aptitude-test-canned-for-overzealous-conclusion/
http://retractionwatch.com/2014/07/18/the-camel-doesnt-have-two-humps-programming-aptitude-test-canned-for-overzealous-conclusion/
https://scholar.google.com/scholar?cites=887892586020755938
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cannot program. Putting it quite bluntly, he declares “Dehnadi didn’t discover a 

programming aptitude test” (Bornat, 2014). 

 

The overwhelming assumption is that computational thinking skills are teachable. 

Bornat’s retraction removes a possible challenge to this consensus. We will proceed from 

here in agreement with this assumption, that computational thinking is a teachable 

skillset. The next question that must be confronted, then, is what skills must be taught. 

 

The next four sections will each be dedicated to discussing the four aforementioned skills 

that are part of and fundamental to the computational thinking skillset. To review, these 

skills are: 

 

1. Ability to Read and Understand Algorithms 

2. Ability to Engage in Abstraction 

3. Ability to Decompose a Problem into Solvable Processes 

4. Ability to Identify the Quality of a Solution 

 

As previously mentioned, these skills are not necessarily the only skills involved in 

computational thinking, though we argue that they are the most important ones. These 

skills are also not perfectly discrete or separate from one another: they intertwine, and are 

involved with one another. It may be better to think of these as facets of computational 

thinking, different ways of looking at a unified whole. 
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For each skill or facet, we will investigate what the ability is, why it is important to 

computational thinking, some specific instances in which this skill is exercised, and any 

other pertinent notes. 

 

2.1.2. Ability to Read and Understand Algorithms 

The ability to read and understand algorithms is defined as follows: students possessing 

this skill are able to read an algorithm encoded in some form (plain English, pseudocode, 

or some programming language) and “translate” the algorithm from its encoded, 

contextual form into a more general, cognitive set of processes. In order for students to 

properly claim they have understood an algorithm, they must mentally grasp the “idea” 

behind it. 

 

This is an important skill to possess and is absolutely fundamental to computational 

thinking (James J. Lu, 2009). If computational thinking focuses on creating algorithms, 

then in order to learn computational thinking students first must be able to read 

algorithms. In this way, reading algorithms is the basic literacy of computational 

thinking, and serves as a prerequisite for all other computational thinking skills. This 

ability does not come naturally to everybody – the CSTA notes that novice students tend 

to not understand algorithms, or to treat them as inscrutable standalone processes that 

magically work “right” (CSTA Curriculum Improvement Task Force, 2006). In order for 

students to ever create their own algorithms, they must have a strong ability to read 

existing algorithms and understand both the general “idea” behind the whole algorithm, 

as well as the “point” of each step. 
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Important components of this skill are listed below. 

 

1. Students must have a firm grasp of what an algorithm actually is – and what it is 

not. The formal, scientific definition of “algorithm” is an open question (Buss, 

2001); nevertheless students may be (and routinely are) taught a practical 

definition which consists of the following characteristics: 

 

- An algorithm is finite – it has a finite number of steps. 

- Each step of an algorithm is clearly and precisely defined. 

- An algorithm takes zero or more items as input and produces some output. 

The output produced is directly related to the input provided. 

- The steps of an algorithm are effective – they can be performed by the human 

brain in finite time. 

 

The definition above is taken from (Knuth, 1997). Using this definition, students 

should be able to understand the characteristics of an algorithm and identify steps 

in algorithms they are reading that violate the above conditions. 

 

2. Students must have a solid, immutable understanding of the literality of 

algorithms and their execution. This is implied in the definition of an algorithm, 

but is important – and misunderstood – enough to warrant its own object. Students  
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absolutely must understand that algorithms do exactly what they say they do, and 

nothing more whatsoever. Authorial intent does not matter; only the code written 

down matters. 

 

3. Students must understand the way in which algorithms execute – starting from a 

precise entrance point and proceeding step by step. Steps are never skipped, 

unless the algorithm skips them in a well-defined manner; steps are never 

repeated, unless the algorithm repeats them in a well-defined manner. Again, this 

is implied in the definition of an algorithm, but is commonly misunderstood and 

leads to much confusion. 

 

4. Students should be able to read the symbolic representation of an algorithm and 

understand each individual step. In other words, whatever language represents the 

algorithm (English, pseudocode or code proper) students must be able to read that 

language. This literacy need not be exhaustive, but before being asked to utilize a 

specific concept in their own algorithms, students ought to be able to read that 

concept when it is encoded in a language. 

 

5. Given the general understanding of the characteristics of an algorithm reported in 

1, 2 and 3, and the ability to read a specific encoding of an algorithm in 4, 

students should be able to combine these skills and understand the “idea” behind a 

specific instance of an algorithm. This understanding should be achieved on many 

levels – students should understand the idea and purpose of each individual step, 
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the idea and purpose behind certain well-defined groups of steps, and the idea and 

purpose behind the algorithm as a whole. 

 

Jeannette Wing notes that the understanding of algorithms is the most basic form of 

abstraction (Wing J. M., Computational Thinking: What and Why?, 2010). The 

abstraction she refers to is the ability to, among other things, separate the general idea of 

an algorithm from its context – for example, to see that a sorting algorithm will sort 

whatever data it is given, no matter the size or content, so long as this data is of the type 

the algorithm will accept. 

 

2.1.3. Ability to Engage in Abstraction 

The ability to engage in abstraction is a skill which, appropriately, must be understood 

somewhat abstractly. The most concise definition may be that given by Lu, who notes 

that abstraction is generalizing information and principles from specifics (James J. Lu, 

2009). While this definition is formally accurate, it hides the richness of abstraction in 

computational thinking. Wing helps show this richness when she states that “[a]bstraction 

is used in defining patterns, generalizing from instances, and parameterization. It is used 

to let one object stand for many. It is used to capture essential properties common to a set 

of objects while hiding irrelevant distinctions among them” (Wing J. M., Computational 

Thinking: What and Why?, 2010). 

 

The importance of abstraction to computational thinking is hard to overstate. Wing calls 

this the “most important and high level thought process” in computational thinking (Wing 
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J. M., Computational Thinking: What and Why?, 2010), and declares “[t]he essence of 

computational thinking is abstraction.” (Wing J. M., Computational Thinking and 

Thinking about Computing, 2008). This importance stems from the fact that abstraction 

is, to some degree, present in virtually all other skills and modes of thinking which fall 

under the definition of “computational thinking.” It is required to read and understand 

algorithms, and it is required at every step of algorithm creation. 

 

Computational thinking is an inherently layered paradigm (Wing J. M., Computational 

Thinking and Thinking about Computing, 2008). Abstraction comes into play at all of 

these layers. Specific uses of abstraction at these different layers are listed below. 

 

1. Abstraction is involved in the basic creation and understanding of what an 

algorithm is. To even understand a particular algorithm we must abstract, and 

realize that an algorithm is a set of instructions independent of the real world 

circumstances in which it executes. These instructions gain context and meaning 

once they are applied to the real world; but the algorithm itself need not depend 

on this context. (Wing J. M., Computational Thinking and Thinking about 

Computing, 2008) (Wing J. M., Computational Thinking: What and Why?, 2010) 

 

2. Abstraction is required to understand the fundamental structures of a 

programming language outside of their specific implementations. For example, 

we must use abstraction to understand the idea of “loop” outside of any specific 

implementation thereof. It is clear that when encountering and solving a problem, 
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CS students must know what tools are available to them, how they can be 

combined; this is the abstraction we are talking about. (Gouws, 2013) 

 

3. Abstraction is involved in the analysis of a problem that we wish to solve with an 

algorithm. We must abstract a problem out of its real world circumstances to 

some degree in order to begin breaking it down and solving it (Wing J. M., 

Computational Thinking: What and Why?, 2010). 

 

4. Once a problem has been abstracted out of its circumstances, we must abstract 

still further when breaking this problem down into processes. At each point we 

abstract away the irrelevant parts of a problem and encapsulate what remains into 

a subproblem. This abstracting process is repeated, often multiple times, in the 

breakdown process. Abstraction is also used in building a program up into a 

complete algorithm, as we solve subproblems and combine these solutions into 

larger solutions, and eventually into a single algorithm (Wing J. M., 

Computational Thinking: What and Why?, 2010). 

 

These are only a few of the layers that abstraction is used on. We believe that they are 

some of the most fundamental ones and the ones that introductory students ought to be 

explicitly taught to work on. 

 

There are other concerns involved with the abstraction skill. Aside from simply being 

able to abstract, Wing notes, students should also know how to identify which abstraction 
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is best out of multiple options (Wing J. M., Computational Thinking and Thinking about 

Computing, 2008). Furthermore, in addition to being able to properly identify which 

information is important and generalizing it, students should also have the skill to identify 

information that is not as important, which can be ignored and abstracted away (Wing J. 

M., Computational Thinking: What and Why?, 2010).  

 

2.1.4. Ability to Decompose a Problem into Solvable Processes 

The ability to decompose a problem into solvable processes is, in essence, the general 

approach that one takes when designing an algorithm based on a problem statement. 

There are two important components to this skill: first, the decomposition (“break down”) 

of the problem into subproblems, and second, the creation of solution processes and the 

combination (“build up”) of these processes into a final algorithm. Both of these 

processes are iterative – one breaks down a problem into subproblems (abstracting along 

the way), and then breaks those subproblems down further, until one reaches a point 

where each subproblem may be easily modeled and solved. One then iterates back up, 

combining the solution processes into a final algorithm. Every step of this ability involves 

modeling: Hu notes that “[a] model allows transforming data from one representation to 

another to make the data better understood or more “easily” manipulated”, and this is 

what we are doing as we both break down and build up (Hu, 2011).  

 

The skill to decompose problems and solve subproblems with processes is fundamental to 

computational thinking. Wing notes in her initial computational thinking paper that 

“[c]omputational thinking is reformulating a seemingly difficult problem into one we 
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know how to solve, perhaps by reduction, embedding, transformation, or simulation” 

(Wing J. M., Computational Thinking, 2006). The modeling aspect of this is also 

important: Dave Moursund considers “developing models…of problems that one is trying 

to study and solve [as the] underlying idea” of computational thinking (Moursund, 2013). 

Michael Resnick notes that this iterative modeling and transformative process is central 

to creative thinking (Resnick, 2007). Finally, Mohtadi notes that this skill is important not 

just in computational thinking but in all engineering disciplines, declaring that the skills 

of “reformulating seemingly difficult problems, reduction, embedding, [and] 

transformation…are indispensable in modern engineering practice” (Mohtadi, 2013). 

 

Like the ability to read and understand algorithms, or the ability to abstract, this is a 

general skill which must be taught (Hu, 2011). The items below are some specific ways 

that this skill must be taught. 

 

1. Students must be able to initially model a problem: that is, to abstract it out of its 

specific circumstances and generalize it to the extent that it can begin to be broken 

down. A large part of this is simply choosing an appropriate model, which Hu 

notes is crucial for learning this skill (Hu, 2011). 

 

2. After modeling the problem, students must transform or decompose it to the point 

where it is solvable using simple processes, using techniques Wing describes like 

“reduction, embedding, transformation, or simulation” (Wing J. M., 

Computational Thinking, 2006).  
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There are two separate classes of techniques that deserve further elaboration, 

which we will describe as “transformation” and “decomposition”: 

 

a. Transformation refers here to converting or narrowing a problem from one 

form to another. It is a one-to-one process: one problem is transformed 

into a newer problem, usually by noting that if we can solve the 

transformed problem, then we can solve the original (in other words, we 

abstract the “real problem” away from the less important details). 

Challenges here include not just transforming the problem but 

transforming it correctly. 

 

b. Decomposition refers to breaking a problem down into subproblem. This 

tends to involve identifying ‘submodels’ that, when put together, make up 

a single problem model. This is a one-to-many process: problems are 

broken down and one problem is turned into multiple, smaller problems 

which, when solved, can have their solutions put together to create a 

solution for the original problem. Challenges here include breaking down 

the problem in an intelligent, clean and well thought out manner. 

 

3. Students must have the ability to select and build a solution process for a 

subproblem, once the subproblem is small enough to have a discrete solution 

applied to it. 
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4. Students must have the ability to combine two or more solution processes to make 

a “superprocess” – that is, a single algorithm that implements both subprocesses. 

This is very similar to the decomposition process and in practice is often a direct 

reverse. 

 

This skill, like the others, is really a special form of abstraction; in this case, it is 

abstraction as relates to problems and problem spaces. 

 

2.1.5. Ability to Identify the Quality of a Solution 

The final skill we are considering brings the element of quality evaluation into the 

computational thinking skillset. Individuals possessing this ability are able to accurately 

evaluate various facets of quality in regards to the steps of the computational thinking 

process. It has been noted by Lu and others that this is most definitely a computational 

thinking skill (James J. Lu, 2009) (Orni Meerbaum-Salant, Habits of Programming in 

Scratch, 2011). 

 

The importance of judging computational thinking products for quality is fairly 

straightforward: Donald Knuth declares on the seventh page of the first volume of his 

seminal Art of Computer Programming that "[i]n practice, we not only want algorithms, 

we want good algorithms” (Knuth D. , 1985).  Wing also weighs in on the matter, noting 

that after solving a problem, we ought to ask: is our solution good enough? She goes on 

to describe that computational thinking involves “judging a problem not just for 
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correctness and efficiency but for aesthetics, and a system’s design for simplicity and 

elegance” (Wing J. M., Computational Thinking, 2006). 

 

One fundamental part of this ability is the recognition that a problem may have multiple, 

and sometimes infinite, solutions. Much like the understanding of what an algorithm 

actually is, the understanding that algorithms may have multiple solutions is very basic, 

yet also may not be understood by novices. Stephenson and Barr note this as a highly 

important skill for computer scientists (Valerie Barr, 2011). 

 

After understanding that algorithms may have multiple solutions, the next question is: 

which of these solutions are the best (and how do we judge this)? This question accounts 

for the remainder of the ability to identify the quality of a solution. 

 

There are many different parts of the algorithm creation process involved in 

computational thinking that can be judged for quality. These parts include (among 

others): 

 

-  The initial modeling of the problem statement. 

- The breakdown of the problem into subproblems 

- The solution processes created to solve these subproblems 

- The combination of these subprocesses into a single solution algorithm. 
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Furthermore, there are many different kinds of quality that we can evaluate. These 

include (among others): 

 

- The ability to determine whether a solution does, in fact, solve the problem. 

 

- The ability to gauge whether a solution is optimized – is our implementation the 

best possible one for this solution? 

 

- The ability to evaluate the cleanliness of the solution – is this solution free from 

extraneous steps, unnecessary actions, etc.? Is it easily understood by others? 

 

- The ability to evaluate the generality of a solution – could it be easily extended, if 

needed? Could it be easily adapted to solve a similar problem? 

 

- The ability to gauge the reliability of a solution – does it depend on many 

different assumptions? Can it break easily? 

 

It is important to note that this skill does not ask for students to be able to judge quality 

objectively, or assign a cardinal value to the quality of a solution – such things are 

impossible. Students with this ability should simply be able to cogently and persuasively 

argue for the quality of a particular solution and its ordinal superiority (or inferiority, or 

equivalency) to other solutions. 
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2.1.6. Introductory Computational Educational Goals – Conclusion 

The above four subsections 2.1.2 – 2.1.5 described some of the specifics of the four 

computational thinking goals which we and others have identified as important for 

introductory computational science education. We note again that these goals intertwine 

with one another and cannot properly be taught as separate, discrete ideas – instead, it 

might be more effective to teach them as part of a unified curriculum focusing on 

algorithm development. 

 

In Section 2.1 we have provided a rough sketch of what fundamental computational 

thinking education should consist of. In the next section, we will briefly justify why 

computational thinking ought to be taught as an introductory class – that is, as the very 

first computer science class that a computer science student (or anyone) should take. 

Following this we will present a review of both traditional and newer introductory 

computer science education and analyze the degree to which these offer an education like 

the one described in section 2.1. 

 

2.2. THE NEED FOR INTRODUCTORY COMPUTATIONAL THINKING 

EDUCATION 

Up to this point we have spoken of introductory education – but the question may be 

asked: why ought the computational thinking skills we have described be taught in a 

student’s first computer science class? This section will make the argument for dedicating 

a student’s first computer science class to computational thinking – and only 

computational thinking. 
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2.2.1. Introductory Computer Science Education Ought to Involve Computational 

Thinking 

As has been argued many times above, computational thinking is a foundational concept 

(Wilson, 2010) which is fundamental for learning higher topics in computer science – for 

example, programming (James J. Lu, 2009). If this is the case, then it ought to be 

introduced as being among the first topics a student learns in their CS career.  

 

The National Academy of Engineering study “Educating the Engineer of 2020: Adapting 

Engineering Education to the New Century” that the skills that are a part of 

computational thinking should be taught as the first thing in the curriculum (Committee 

on the Engineer of 2020, Phase II, Committee on Engineering Education, National 

Academy of Engineering, 2005). Wing concurs, declaring that an introductory 

computational thinking course ought to be taught to all college freshmen, both computer 

science and non-computer science (Wing J. M., Computational Thinking, 2006). 

 

Some argue that computational thinking ought to be introduced even earlier. Stephenson 

and Barr declare: 

It is no longer sufficient to wait until students are in college to introduce these 

concepts. All of today’s students will go on to live a life heavily influenced by 

computing, and many will work in fields that involve or are influenced by 

computing. They must begin to work with algorithmic problem solving and 

computational methods and tools in K-12. (Valerie Barr, 2011) 

 

Even if one does not believe that high school students should be introduced to 

computational thinking principles (whether they are interested in CS or not), if one 

accepts the arguments above then it follows that high school students who do take 
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computer science classes should be learning computational thinking, just as freshmen 

college students do. 

 

There are additional reasons to support introductory CS courses containing computational 

thinking education. For example, the previously mentioned Executive Report to the 

United States President notes that “high-performing students frequently cite uninspiring 

introductory courses as a factor in their choice to switch majors” (President's Council of 

Advisors on Science and Technology, 2012). We will argue in section 2.3 that most 

existing introductory computer science education is focused mostly on learning 

programming languages; bringing computational thinking into these introductory courses 

may make these courses far more exciting and inspiring for students, solving to some 

degree the problem identified by the executive report. 

 

These are the arguments for bringing computational thinking education into introductory 

computer science courses. The next section will argue that not only should these ideas be 

present in introductory education: they should be the only ideas present. 

 

2.2.2. Introductory Computer Science Education Ought to ONLY Involve 

Computational Thinking (and not Formal Syntax) 

In this section we will argue that introductory computer science education should consist 

only of computational thinking education, teaching skills such as the four described 

above. This section is in truth an argument against the current introductory education 

focus on learning a formal programming language like Java or C (for evidence of this 
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heavy focus, see section 2.3). There are many reasons to exclude learning a formal 

programming language in introductory computer science courses, which we will discuss 

in this section. 

 

We are not arguing here that nothing which may be described as a “programming 

language” ought to be taught in introductory computer science – our own Genost 

solution, which we will describe below, as well as Alice, Scratch, or other newer 

educational software, feature simplified programming languages which can and perhaps 

should be used in introductory education. We are arguing against the use of formal, 

complex, text-based languages such as Java or C, which have traditionally been used in 

introductory education. 

 

As has been noted in Section 1.2.3, computational thinking is not programming. These 

are two separate subjects. James Lu has argued that computational thinking education 

ought to come before programming education. He argues this by noting that 

programming serves a role in computer science similar to the role that proofs play in 

mathematics – that is, programming is a skill that opens the door to higher topics. Before 

students learn to write formal proofs in mathematics, they learn a host of simpler, more 

fundamental skills, including arithmetic and logic. By this analogy, programming ought 

to come only after students have learned the fundamental skills of computational 

thinking. Lu states that programming is therefore very important to computer science 

students – but it ought not to serve as their “first encounter” with the field (James J. Lu, 

2009). 
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Malan states that teaching programming in introductory education may actually be 

harmful to student education. He states: 

 

In the first weeks of an introductory course (for majors or non-majors), too often 

do semicolons and their syntactical cousins delay, if not downright discourage, 

students’ appreciation and mastery of more fundamental programmatic constructs 

(e.g. conditions, loops, variables, etc.) as well as logic itself. We daresay that 

languages like Java challenge students to master programmatic overhead before 

programming itself: students must become masters of syntax before solvers of 

problems. (David J. Malan, 2007). 

 

The arguments presented above show that introductory computer science education ought 

to focus on computational thinking alone, and not attempt to teach a formal programming 

language. This argument may be taken further by noting that if computational thinking is 

to be treated as a general skill and taught to everyone, then introductory computer science 

education has even more reasons to be free from learning a programming language. Non-

CS students taking an introductory computer science class will have a different set of 

needs, both short-term and long-term, to CS students. These non-CS students will have 

little or no need to learn Java. While they may need a skill that may be called 

“programming”, this skill won’t look like traditional programming (CSTA Curriculum 

Improvement Task Force, 2006). It may look instead more like the visual programming 

of Scratch or VPL, or something else entirely. This upcoming paradigm shift may already 

be seen in the advent of service-oriented programming, in which programmers, instead of 

coding a program from scratch, cobble an algorithm together using preexisting services 

(Yinong Chen, 2014) (W.T. Tsai, 2008). In fact, visual “drag and drop” software like 
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Oracle SOA Suite8 already exist and are being used in the industry to allow individuals 

without traditional CS skills to build service-oriented algorithms (Yinong Chen, 2014). 

Individuals using the SOA suite do not need the ability to code in traditional languages, 

but they still do require computational thinking abilities. 

 

In light of this, we declare that the purpose of teaching non-CS students computational 

thinking is not to teach them to “think like a computer scientist”. Rather, as stated by Barr 

and Stephenson, “the ultimate goal should [be] … to teach them to apply these common 

elements to solve problems and discover new questions that can be explored within and 

across all disciplines” (Valerie Barr, 2011). 

 

The statements presented in this section argue that introductory computer science 

education should consist of computational thinking, and nothing else. In the next two 

sections, we will investigate both traditional and newer forms of introductory computer 

science education, with a focus on the degree to which they offer computational thinking. 

The traditional systems will be found to offer almost no computational thinking 

education; and as a result, we will show, they have very poor results. The newer systems 

are mixed in their usefulness for teaching computational thinking education: some 

approaches are good, others are not so good. We will investigate these approaches and 

describe them accordingly.  

 

                                                           
8 http://www.oracle.com/us/products/middleware/soa/suite/overview/index.html 

http://www.oracle.com/us/products/middleware/soa/suite/overview/index.html
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2.3. REVIEW OF TRADITIONAL INTRODUCTORY COMPUTER SCIENCE 

EDUCATION 

In “Computational Thinking - What it Might Mean and What we Might Do About It”, 

Chenglie Hu notes that “[w]e seem confident that whatever we teach in computing 

promotes computational thinking. But why is this true? We struggle to answer this 

question” (Hu, 2011). Do our current methods of teaching computer science in college 

and high school promote computational thinking? This section will examine that 

question. 

 

In order to determine whether current introductory computer science education in the 

United States teaches computational thinking, we have performed a review of both 

introductory college computer science education and high school computer science 

education offered in the US. We will first present these reviews, describing our 

methodology and results. We will then argue that these reviews show that current 

methods of introductory computer science education do not effectively teach 

computational thinking skills. 

 

Following this, we will describe the current poor results of computer science education. 

We will argue that these poor effects are attributable to lack of computational thinking 

content in introductory content, among other things. 
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2.3.1. Review of Introductory Computer Science Education in United States Colleges 

In order to determine the degree to which introductory computer science education in 

college teaches computational thinking skills, we performed a review of introductory 

computer science classes taught at United States colleges. For this review, we 

investigated the curricula of these introductory classes for both the top 25 colleges 

overall, and the top 25 colleges for computer science, as ranked by US News9. 

 

2.3.1.1. Course Selection Criteria 

For each college on both of these lists, we selected the courses that served as the 

introductory computer science course for this college’s computer science major. Our 

selection criteria were as follows: 

 

1. The course should be part of the track for a computer science (CS) degree. We did 

not consider introductory education for other computer-related degrees, such as 

computer science engineering (CSE), computer engineering (CE), computer 

information science (CIS), etc., if the introductory education for those degrees 

differed from the computer science degree. 

  

                                                           
9 The listing for the top 25 overall colleges can be found at 
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-universities/data, and 
was accessed on 11/29/2014. The listing for the top 25 colleges for computer science can be found at 
http://www.usnews.com/education/best-global-universities/search?country=united-
states&subject=computer-science, and was accessed on 11/29/2014 

http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-universities/data
http://www.usnews.com/education/best-global-universities/search?country=united-states&subject=computer-science
http://www.usnews.com/education/best-global-universities/search?country=united-states&subject=computer-science
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2. The course should be part of the bachelors of science track. We did not consider 

introductory education for minor tracks, master’s degrees, doctoral degrees, 

certificates, etc., if the introductory education for these tracks differed from the 

BS track. 

 

3. The course should be required. We did not consider optional courses or electives. 

 

4. The course should be taken in the first year, i.e. it should be what one would call a 

100-level class (note that the designation “100-level class” does not necessarily 

mean the course number was itself between 100 and 199!) We did not consider 

higher level courses. 

 

5. The course should be presented as a fundamentals course. We did not consider 

courses which were presented as specialized courses. 

 

6. When colleges had multiple tracks for a bachelor’s degree in computer science, 

we tried to choose courses that were required for all tracks. Usually, the same first 

year introductory course was taught between all the tracks. When it was not, we 

either investigated all the introductory courses, or chose the course that appeared 

to be the most general-purpose. 

 

The selection of courses was done by reviewing information publically available on the 

college’s website. Most colleges had between one and three courses selected for review. 
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For each course, we attempted to find a curriculum, syllabus, or course calendar available 

online. If these resources were not available online, or they were out of date (all resources 

used were from 2010 or later; most were from the most recent provision of the course, in 

Fall 2014) we contacted the professor responsible for the most recent provision of the 

course, and requested access to a syllabus or curriculum. In cases where we did not hear 

back from the professor, we skipped the review of that course. 

  

2.3.1.2. Course Information / Data Collected 

For each course that we were able to retrieve a syllabus, curriculum or calendar for, we 

reviewed the information provided in this syllabus and recorded the following: 

 

1. A brief description of the course overall 

2. A brief description of how the course taught computational thinking skills 

3. The primary tool or language used in the course (e.g. Java, Scratch, etc.) 

4. A numeric rating, ranging from 0 – 5, of the degree to which the course taught 

computational thinking skills. 

 

The numeric rating described above used a scale of our own design. The scale description 

is as follows: 

 

0) A zero rating indicates that the course is a survey of many different subjects or 

fields in computer science. Courses with this ratings attempt to provide an 
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“overview of the computer science career field”, and does not attempt to teach 

either a language or computational thinking ideas. 

 

1) A one rating indicates that the course is focused entirely on teaching a formal 

programming language, like Java or C. Computational thinking concepts are not 

specifically discussed. 

 

2) A two rating indicates that the course is focused mostly on teaching a formal 

programming language, like Java or C. Some computational thinking ideas are 

discussed, but they are discussed solely within the context of the programming 

language being taught, and not as separate, language-independent concepts. 

 

3) A three rating indicates that the course is a mixture of learning a formal 

programming language, and learning computational thinking ideas in abstract. 

Newer software, such as Scratch or Alice, may be used. 

 

4) A four rating indicates that the course has the majority of its focus on learning 

computational thinking ideas in abstract. A formal language may be involved, but 

learning this language is not the focus of the course. Newer software, such as 

Scratch or Alice, may be used. 

 

5) A five rating indicates that the course is entirely focused on teaching 

computational thinking ideas, and students are not asked to learn any formal 
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programming language syntax. Newer software, such as Scratch or Alice, may be 

used. 

 

Some of the data collected, most importantly the numeric rating, may be found in 

Appendix A. We have also downloaded copies of all curricula that we utilized as part of 

this study, and these are available upon request. 

 

2.3.1.3. Course Review Results 

The results of this survey can be seen in the table below. 

 

Table 1 

Review of introductory computer science education in US colleges 

 
Top 25 Colleges 

Overall 

Top 25 Colleges for 

Computer Science 

Number of Colleges 

Reviewed 
26 25 

Number of Courses Selected 50 42 

Number of Courses Selected 43 38 

Number / Percent of 

Courses Rated 0 
1 / 2.33% 0 / 0% 

Number / Percent of 

Courses Rated 1 
16 / 37.21% 11 / 28.95% 

Number / Percent of 

Courses Rated 2 
19 / 44.19% 18 / 47.37% 

Number / Percent of 

Courses Rated 3 
6 / 13.95% 8 / 21.05% 

Number / Percent of 

Courses Rated 4 
0 / 0% 0 / 0% 

Number / Percent of 

Courses Rated 5 
1 / 2.33% 1 / 2.63% 

Average Rating 1.79 2 
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We actually reviewed 26 individual colleges off of the top 25 overall list, because two 

colleges were tied for 25th place. From these 26 colleges, 51 courses were selected and 

reviewed, with a rounded average of 2 courses selected per college. Of those 51 courses, 

we were unable to retrieve recent curricula for 7 of them. 

 

There were no ties for the top 25 colleges for CS, and so only 25 colleges were reviewed. 

From these 25 colleges, 43 courses were selected and reviewed, with an average of ~1.6 

courses selected per college. Of those 43 courses, we were unable to retrieve recent 

curricula for 4 of them. 

 

The average rating for the top 25 colleges overall was 1.79. The average rating for the top 

25 colleges in computer science was 2. 

The following table summarizes the tools that were used by these classes. Note that some 

courses used multiple tools. 
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Table 2  

The tools used by the reviewed colleges 

 Top 25 Colleges Overall 
Top 25 Colleges for Computer 

Science 

Formal Languages 

Java 14 14 

Python 12 10 

C++ 7 8 

C 4 2 

HTML / CSS / 

JavaScript 
3 3 

LISP / Racket 3 0 

PHP 2 2 

OCAML 2 0 

MATLAB 1 1 

SCALA 1 0 

Newer Educational Systems 

Scratch 2 2 

Karel the Robot 1 1 

 

2.3.1.4. College Review Conclusion 

These results indicate three things. 

 

1. These colleges do not effectively teach computational thinking in their 

introductory computer science education.  

 

The average ratings for both colleges were on the low end of the scale – 1.79 for 

the top 25 overall colleges, and 2 for the top 25 computer science colleges. The 

overwhelming majority of courses were rated as 0, 1 or 2, which indicates that 

computational thinking is at best taught within the context of a programming 

language (a 2 rating), or not taught at all (0 or 1). For the top 25 colleges overall, 
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83.73% of courses surveyed were rated with a 0, 1 or 2; for the top 25 computer 

science colleges, 76.32% of courses surveyed were rated with a 0, 1 or 2. 

 

2. Colleges overwhelmingly use formal programming languages in their 

introductory computer science education. 

 

As can be seen in Table 2, the vast majority of tools used in these introductory 

courses are formal programming languages. Only 3 courses from either the top 25 

overall colleges or the top 25 computer science colleges use tools that are not 

formal programming languages – two courses use Scratch, and one course uses 

Karel the Robot10. Of the languages used, Java is used the most among both sets 

of colleges, followed by Python and C++. 

 

3. The top 25 computer science colleges are only slightly better at teaching 

computational thinking than the top 25 overall colleges. 

 

The average rating for the top 25 computer science colleges (2) is slightly higher 

than the average rating for the top 25 colleges overall (1.79) – but only slightly. 

The percentage of courses rated 1 is lower for the top 25 CS colleges than in the 

top 25 overall colleges (by roughly 8 percentage points), while the percentage of 

courses rated 2 and 3 is higher (by roughly 3 percentage points and 7 percentage 

                                                           
10 http://karel.sourceforge.net/ 

http://karel.sourceforge.net/
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points respectively). However, the number of courses rated 4 and 5 are exactly the 

same in both groups. 

The tools used do not significantly differ between the two groups of colleges. 

There are some slight variations – for example, the top 25 overall colleges have 

more courses using C, while the top 25 computer science colleges have more 

courses using C++ – but the number of courses using the newer tools is exactly 

the same. 

 

This evidence indicates that, for the top 25 colleges both overall and for computer science 

in the United States, computational thinking is not effectively taught. It is not effectively 

taught as an independent subject (if it is mentioned at all), and instead students are taught 

the syntax and rules of a formal programming language. Assuming that the top 25 

schools are as good as or better than the remainder of colleges in the United States, this 

review indicates that there is a serious failure to teach effective computational thinking 

skills in college introductory computer science education is the US. 

 

2.3.2. Review of Introductory Computer Science Education in United States High 

Schools 

Unlike the review of introductory computer science education in college, we are not able 

to easily perform a formal review of all introductory high school computer science 

courses. These courses – and the institutions that offer them – are vastly more numerous 

than introductory college courses. Furthermore, virtually all high school computer 

science education would be classified as “introductory”, since by definition these courses 
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are likely to be the first computer science course given to the students taking them. The 

pool of individual courses to be reviewed is much wider. 

In lieu of performing an exhaustive review ourselves, we will turn to the literature which 

has already, to some degree, done this. We will also review one of the more widely 

offered high school computer science courses: AP Computer Science. After looking at 

both these sources, we will again conclude that high school computer science education 

does not adequately teach computational thinking skills. 

 

2.3.2.1. Review of Literature on High School Computer Science Education 

We begin by noting that very little computer science is taught in US public high schools 

in the first place. According to Partovi, as of 2014 90% of public schools in the United 

States do not teach any computer science (Partovi, 2014). Even in schools that do teach it, 

students have little incentive to take it beyond personal interest – only 9 states count 

computer science as a mathematics credit, and only 1 state counts it as a science credit (6 

states allow the district to determine what it will count as) (Wilson, 2010). Therefore, 

even before analyzing the course content itself, we can see that computer science 

education in high school is not at all widely taught. 

 

We will now investigate the actual content of the little computer science education that is 

offered in American high schools. It is widely reported in sources such as (Wagstaff, 

2012) that high school computer education focuses more on “skill-based aspects” of 

computing, such as keyboarding, OS-specific operational skills, word processing, 

spreadsheets, etc., as opposed to the algorithm creation skills of computational thinking.  
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To further investigate the contents of high school computer science education, we turn to 

the ACM’s 2010 report Running on Empty: The Failure to Teach K-12 Computer Science 

in the Digital Age.  

 

This report describes three different levels of computer science education standards that 

the ACM and the CSTA have created. These three levels are intended for three different 

age groups, and are described as follows: 

 

1. The Level I standards are intended for the K-8 age group. This set of standards 

focuses mainly on computer operation and awareness, and includes such items as 

“use standard input and output devices to successfully operate computers and 

related technology”, “create developmentally appropriate multimedia products”, 

“discuss basic issues related to the responsible use of technology and 

information”, “exhibit legal and ethical behaviors when using information and 

technology”, “develop, publish and present products using technology resource”, 

etc. These Level I standards are focused much more on teaching computer 

operation than computational thinking skills, though there are some standards that 

offer very basic computational thinking, such as “develop a simple understanding 

of an algorithm, such as text compression, search, or network routing, using 

computer free exercises” (Wilson, 2010). 
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2. The Level II standards are intended for the 9th/ 10th grade age group. This set of 

standards focuses on introductory computer engineering and science concepts, 

and asks students to understand “principles of computer organization and the 

major components”, “the basic steps in algorithmic problem solving”, “the basic 

components of computer networks”, “the notion of hierarchy and abstraction in 

computing”, etc. Computational thinking skills are well represented in these 

standards (Wilson, 2010). 

 

3. The Level III Standards are intended for 11th or 12th grade age groups. This set of 

standards continues the focus on computer engineering and science concepts, and 

includes standards such as “fundamental ideas about the process of program 

design and problem solving”, “simple data structures”, “fundamentals of 

hardware design”, “the limits of computing”, etc. Again, computational thinking 

is well represented here (Wilson, 2010).  

 

The ACM uses these standards in their report and investigates the degree to which these 

standards are adopted by high schools across the United States. They report that, on 

average, each state has adopted 70% of the “skill-based” Level I standards. In contrast to 

this, the higher level standards – which focus far more on computational thinking skills – 

are adopted at much lower rates. Only 35% of Level II standards and 30% of Level III 

standards are adopted by a state on average (Wilson, 2010). 
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These are average ratings. Looking at the actual number of standards adopted by the 

states, we find that “there are 16 states with no model curriculum standards adopted at 

Level II and 22 states with no model curriculum standards adopted at Level III”. Only 10 

states adopt all Level II standards, and only 9 states adopt all Level III standards (Wilson, 

2010). In other words, only 1/5 of the states have adopted 100% of the standards focusing 

on computational thinking, and there are more states that haven’t adopted any 

computational thinking standards than those that have adopted all of them. Both these 

numbers and the average adoption rates described above indicate that high school CS 

standards mostly focus on computer operation instead of computational thinking. 

 

In addition to considering the adoption of the standards by level, the ACM also considers 

the adoption of the standards by category. The report defines three separate categories, 

and divides the standards between them. The three categories are defined in the text as 

follows: 

Concepts: emphasize one of the 10 basic ideas that, at a high level, define modern 

computers, networks, and information...[e]xamples include computer 

organization, information systems, networks, digital representation of 

information, information organization, modeling and abstraction, algorithmic 

thinking and programming, universality, limitations of information technology, 

and societal impact of information technology. 

 

Capabilities: emphasize one of the 10 fundamental abilities for using computing 

to solve a problem…[e]xamples include the ability to engage in sustained 

reasoning, manage complexity, test a solution, manage faulty systems and 

software, organize and navigate information structures and evaluate information, 

collaborate, communicate to other audiences, expect the unexpected, anticipate 

changing technologies, and think abstractly about IT. 

 

Skills: “emphasize one of the 10 abilities to use today’s computer applications in 

one’s own work…[e]xamples include the ability to set up a personal computer; 

use basic operating system features; use a word processor and create a document; 

use a graphics or artwork package to create illustrations, slides, and images; 
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connect a computer to a network; use the Internet to find information and 

resources; use a computer to communicate with others; use a spreadsheet to model 

simple processes or financial tables; use a database system to set up and access 

information; and use instructional materials to learn about new applications or 

features. (Wilson, 2010) 

 

Organizing the standards along these categories allows us to see the problem even more 

clearly. First, consider the “concepts” standards, which overlap very strongly with 

computational thinking skills. There are 19 total “concepts” standards, but only 16 states 

have adopted more than half of them. Fewer than half of the states – 22 – have adopted 

even ¼ of the total number of “concepts” standards. 11 states have adopted only one 

standard, and 9 states have adopted only two standards. 

 

Compare this to the “capabilities” standard, which does include computational thinking 

skills to a small degree, but mostly focuses on the reasoning, thinking and skills expected 

of a computer operator or IT manager. There are 19 “capabilities” standards, and only 13 

states have failed to adopt at least half of these standards. 21 states have adopted at least 

¾ of the standards, and 10 have adopted every single one. 

 

Finally, consider the “skills” standards, which are entirely based on computer operation 

and do not contain any computational thinking. These skills are the most widely adopted 

of all: like the “capabilities” standards, only 13 states have not adopted at least half of the 

“skills” standards, 30 states have adopted at least ¾ of the standards, and 23 – nearly half 

– have adopted every single one (Wilson, 2010). 
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The ACM concludes that these findings indicate that high school computer science 

education is “focused almost exclusively on skill-based aspects of computing…and [has] 

few standards on the conceptual aspects of computer science that lay the foundation for 

innovation and deeper study in the field” (Wilson, 2010). In other words, computational 

thinking is very poorly represented in these curricula, and computer operation skills are 

the main focus. 

 

2.3.2.2. Review of AP Computer Science 

A traditional way in which US high schools have offered computer science education has 

been through the Advanced Placement or AP Computer Science course11. Of the 

aforementioned 10% of US schools that do teach CS, half of them teach AP Computer 

Science (Microsoft). The AP Computer Science course has a well-defined curriculum, 

and therefore considering its prominence in US high school computer education can serve 

as a useful indicator of the content of this education. 

 

A review of the AP Computer Science curriculum makes it clear that the major focus of 

the course is learning Java. This curriculum rates a 2 on the scale described in Section 

2.3.1.2 – the course’s major focus is learning a formal programming language, and while 

some computational thinking concepts are discussed, they are discussed entirely within 

the context of Java, and not as abstract concepts in their own right. The National Science 

Foundation appears to concur with this assessment, declaring that the AP Computer 

                                                           
11 http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-
2014.pdf 

http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-2014.pdf
http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-2014.pdf
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Science course simply “focuses on programming skills. The course teaches students how 

to code in a specific language (Java)” (NSF, 2014). 

 

Perhaps the best indicator of the degree to which computational thinking is absent from 

AP Computer Science can be found in the release – and the reaction to – a new AP 

course, “AP Computer Science Principles”, which is explicitly stated to be designed as a 

computational thinking-centric alternative to the traditional AP Computer Science course 

(NSF, 2014). In the National Science Foundation’s press release on the new AP course, 

Jan Cuny, the program director at the NSF for Computer Science Education and 

Workforce Development, states that “[t]his new course will broaden the appeal of 

computing to a wider group of students by focusing on the creative aspects of computing 

and computational thinking practices that enable students to be creators, not just users, of 

technology” (NSF, 2014). Elsewhere, Cuny notes that “[a]lthough [AP Computer Science 

Principles] does include programming, the course isn’t programming-centric. Instead, it 

focuses on the underlying principles of computation including problem solving, 

abstraction, algorithms, data and knowledge creation, and programming” (Cuny, 2011). 

 

The development of a new course to provide computational thinking education seems a 

clear indication that the existing course does not provide this. The AP Computer Science 

Principles course will launch in Fall 2016; until then, many US high school students are 

limited to the Java-centric AP Computer Science course. The unsuitability of this existing 

course to the needs of computer science students is perhaps indicated by the falling 

amount of students taking AP CS. The percentage of high school students earning credits 
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in AP Computer Science has declined from 1990 (25%) to 2009 (19%) (K-12 Computer 

Science Education: Unlocking the Future of Students, 2012). 

 

2.3.2.3. High School Review Conclusion 

The results from both the overview of the literature related to US high school computer 

science education, and a review of the AP Computer Science course, indicates that high 

school computer science education is rarely and inconsistently offered to high school 

students, and when it is offered, is primarily based on teaching computing skills such as 

keyboarding, OS-specific operational skills, word processing, spreadsheets, etc., as 

opposed to computational thinking skills. We can conclude from this that computational 

thinking is very poorly represented in US high schools. 

 

This concludes our review of the degree to which computational thinking is taught in 

existing educational contexts. We will conclude Section 2.3 by reviewing the results of 

computer science education in the United States – that is, the degree to which students are 

successful in pursuing computer science education – and will argue that these results are 

quite poor. We will then argue that this poor state is attributable to the lack of 

computational thinking concepts being taught in introductory education. 
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2.3.3. The Poor State of Current Introductory Computer Science Education 

Introductory computer science in the United States produces many poor results. This 

section will briefly review this poor state by examining three performance metrics from 

college introductory computer science. These metrics are: failure rates, attrition rates, and 

student ability to program. 

 

2.3.3.1. Failure Rates 

It is a commonly accepted idea that introductory computer science education has a high 

failure rate. However, only two papers appear to have actually attempted to investigate 

this assertion. These two papers find that failure rates are nontrivial, although they may 

not be as high as some think. 

 

In 2007 Bennedsen and Caspersen solicited responses from the SIGCSE mailing list for 

information on the participants’ school’s pass / fail rates for introductory computer 

science education. A small number of schools responded (63) and reported a failure rate 

of 33%. The authors noted that due to the low response rate, as well as the potential 

motivation for those schools with low rates to not respond, this number may not be 

representative (Bennedsen, 2007). 

 

A second attempt was made to consider the failure rates in 2014. Watson and Li, drawing 

inspiration from Bennedsen and Caspersen’s paper, performed a very similar analysis, 

this time with 161 schools participating. Interestingly, the authors found an identical 
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failure rate of 33%. The authors also performed a study of failure rates historically, and 

have found that since 1969 the rates have not significantly decreased (Watson, 2014). 

 

Both papers state that, in light of common claims that failure rates in introductory 

computer science education are astronomically high, a 33% failure rate is not that bad. 

However, it still represents 1 in 3 students failing their very first programming class – and 

this, paired with the observed failure of this rate to decrease over time, is cause for 

concern. 

 

2.3.3.2. Attrition Rates 

The next metric we will investigate are attrition rates for computer science, which are 

also popularly believed to be quite high. In this case, the popular belief appears to be 

correct. 

 

Drew notes that 40% of all engineering students either change their major away from 

engineering, or drop out entirely (Drew). These numbers are corroborated by Beaubouef, 

who notes that computer science has an attrition rate of 30% to 40%. Beaubouef also 

notes that most of this attrition happens during students’ freshman or sophomore years – 

that is to say, during their introductory education. Interestingly, Beaubouef hypothesizes 

that one major reason for these attrition rates and patterns may be low problem solving 

abilities in incoming computer science students, and notes that this deficiency is mostly 

in their “inability to form [an] algorithm in the first place” (Beaubouef, 2005). 

 



 

 
 

 

62 

Finally, we note that when compared to other subjects, computer science has one of the 

highest – if not the highest – drop out rates, at 27% (Computer science courses get 

highest drop outs - study, 2010). 

 

2.3.3.3. Student Ability to Program 

The final metric we will investigate is student ability to program. We note that this metric 

only applies to people who pass introductory programming – that is, make it through the 

relatively high failure and attrition rates – and therefore the numbers here represent the 

small amount of “successful” CS degree-seekers.  

 

Despite introductory computer science education traditionally focusing on teaching 

students a programming language (as described in Section 2.3.1), students emerging from 

their first CS class are often not able to actually program in this language. The famous 

McCracken group study is the traditional example of this; published in 2001, it describes 

a simple test administered to 216 first year computing students across four universities. 

This test – which asks students to evaluate arithmetic expressions read in from a text file 

in either postfix, prefix or infix notation – is challenging, but should not be too difficult 

for a novice programmer. McCracken found that students scored an average of 21% on 

this test, a considerably low score. He also notes that many of the participants did not 

even finishing designing an algorithm, much less implementing it (Michael McCracken, 

2001). 
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10 years later, Guzdial reports that these low numbers are still present. He describes an 

even simpler programming test administered to students at Yale in 1983, which resulted 

in a pass rate of only 14%. Guzdial reports that follow up studies and repetitions of this 

test (the latest repetition coming in 2009 when his article was published) have found 

similar results (Guzdial, Education: From Science to Engineering, 2011). These results 

indicate that, despite ostensibly being taught how to program in their first class, emerging 

students often cannot program at all. 

 

From these three metrics, we can see that introductory computer science is in fact in a 

poor state. In the next section, we will argue that this poor state is attributable to a 

curriculum that is heavy on syntax and light on computational thinking. 

 

2.3.4. The Reasons for this Poor State 

We have established in sections 2.3.1 and 2.3.2 that introductory computer science 

education focuses mostly on teaching either computer operation, or the syntax of a formal 

programming language. This conclusion is shared by many other individuals. Malan, for 

example, has declared that learning syntax is the major focus of introductory computer 

science (David J. Malan, 2007). These sources, and our own studies above, lead us to the 

conclusion that computational thinking is not effectively taught in introductory education. 

 

In section 1.2.4, we argued that computational thinking is highly important for computer 

science students, and that it should be considered a “prerequisite” to programming. Given 

this, its failure to be taught is questionable. A generous explanation for this failure might 
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be the belief that students already possess computational thinking skills. The CSTA notes 

that “educators may be inclined to believe that [basic concepts such as algorithm design] 

are trivial and therefore easy to understand” (CSTA Curriculum Improvement Task 

Force, 2006). If this is the case, then introductory computer science need not waste time 

teaching something students already know. 

 

It is apparent, however, that computational thinking is not a trivial or natural belief. 

Cynthia Selby has argued that computational thinking does not come naturally to students 

(Selby, 2012). This same argument is made by Donald Knuth, who has argued as early as 

1985 that, based on his experiences in teaching, only 2% of CS students naturally have 

the ability to “think algorithmically” (Knuth D. , 1985). One may be tempted to declare 

that, with the rise of widespread home computer use, Knuth’s observation may no longer 

be valid, or at least his percentage may be higher. Despite popular beliefs, however, it is 

apparent that the “digital natives” also do not naturally possess computational thinking 

skills (Mitchel Resnick, 2009). 

 

With these facts in mind, the poor state does not look surprising. Students are asked to 

utilize skills which, by and large, they do not possess, and are not taught. Malan notes 

that syntax-heavy classes are asking students to “master programmatic overhead before 

programming itself” (David J. Malan, 2007); Resnick notes that the syntax students are 

asked to learn is too difficult for them (Mitchel Resnick, 2009); both Wagstaff and the 

ACM’s Running on Empty report states that programming classes are often far too 
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advanced for students (Wagstaff, 2012) (Wilson, 2010). This difficulty, then, 

understandably leads to frustration, forfeiture and failure. 

 

Even students who make it through their introductory computer science course may still 

suffer from its failure to teach computational thinking. Aside from the continuing 

struggle to learn in an environment where prerequisite skills are not taught, the very fact 

that these skills are not taught may set up the wrong expectations for people. Malan and 

McCracken both note that the heavy focus on programming leads students to believe that 

these are the only skills they need to succeed in computer science (David J. Malan, 2007) 

(Michael McCracken, 2001). Failure, then, begets failure. 

 

It is not necessarily the case that the lack of computational thinking is the only reason for 

the poor state of computer science. Other reasons have been proposed – for example, 

Resnick has noted that introductory projects are often very unengaging or uninteresting 

for students (consider the classic “Hello World” – a valuable first project, but also a very 

boring one for students expecting something more) (Mitchel Resnick, 2009). From what 

we have established, however, it seems likely that the lack of explicit computational 

thinking education is one of the primary reasons for the poor state of computer science 

education. 
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2.4. REVIEW OF NEWER INTRODUCTORY COMPUTER SCIENCE 

EDUCATION SOFTWARE 

Mitchel Resnick, the leader of the MIT team which developed and maintains the Scratch 

software, declares that, traditionally, “programming was introduced in contexts where no 

one could provide guidance when things went wrong – or encourage deeper exploration 

when things went right” (Mitchel Resnick, 2009). In other words, traditional introductory 

programming education is poorly designed and ineffective. In an attempt to mitigate this, 

he and many others have developed a number of “newer” educational software systems 

which attempt to teach introductory computer science education in a simpler, easier, 

clearer, more guided manner, deeper, and often more fun manner. 

 

These systems often state a goal or intent of providing computational thinking education. 

Many create their own language, or forego formal text-based languages altogether, in an 

attempt to shift the focus away from learning syntax and instead towards learning the 

deeper ideas of computer science. 

 

In this section we will perform a review of many of the newer systems. For each system, 

we will provide a brief description of the system and at whom it is targeted at, a list of 

good features of the system, and a list of problems with the system. For each system we 

will also list takeaways or “lessons learned”, and at the end of this section we will collect 

and summarize these takeaways. After investigating all of the newer systems, we will 

conclude this section with a collective review of the lessons learned and takeaways from 
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each system, and in doing so present the features that we believe ought to be present in an 

ideal introductory computer science educational system. 

 

2.4.1. Methods and Themes in the Review of Newer Introductory CS Software 

In the course of performing this review, we will examine each system and describe both 

the positive benefits of this system, as well as its weaknesses and problems. Our 

judgments, both positive and negative, will be informed by the field of literature on these 

systems, but also by our own evaluations with appeals to, among other things, our 

definition of computational thinking in section 2.1, as well as common sense. 

 

Some common themes will appear in our evaluations. Before starting the evaluations 

proper, we will briefly describe each of these themes. 

 

1. Ease of Use 

A frequent area that we will evaluate will be the ease of use of a particular 

system. Common sense tells us that a system ought to be as easy to use as 

possible for both the students using it, and the teachers teaching it, so long as this 

can be achieved without undue sacrifice of the system’s educational value. If a 

system is difficult to use, then students may lose motivation and must spend more 

time learning to operate the specific system as opposed to the more general ideas 

the system is trying to teach.  
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Furthermore, a system that is highly complicated may very well turn away 

teachers who are not themselves very technical. With this in mind, the ease of use 

of a particular system is an area that we will frequently evaluate.  

 

2. Fun 

It has long been recognized in educational psychology that fun is an intrinsic 

motivator (Ormrod, 2012). When a student has fun working with a system, the 

student is motivated, pursues the task under his own initiative, stays engaged in 

the task, pays closer attention, shows creativity, and ultimately learns more from 

that system than he would were he not having fun (Ormrod, 2012). Because we 

are here concerned with introductory programming education, fun is especially 

important for us since the students we are working with may often be relatively 

young. The amount of fun that students have, or are likely to have, with a system 

is therefore an important item to evaluation. 

 

3. Adaptability 

Classrooms come in all shapes and sizes, and have different resources. Due to 

this, a system ought to be adaptable such that it can be used in as many 

classrooms as possible. This means, among other things, having a low price (or at 

least different levels of pricing), and not requiring specialized equipment or 

software (though this does not mean the system cannot optionally integrate 

specialized technologies!) The degree to which a system can be adapted for use in 

different classrooms is an area that we will often talk about.  
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This theme also includes the degree to which end users are able to customize the 

software and curriculum. A system that teaches a single set of lessons is not very 

adaptable; one in which the end user can customize which lesson it teaches is 

more adaptable, all things being equal. 

 

4. Computational Thinking 

A major concern in our review will be the degree to which a system is able to 

teach computational thinking skills. We will generally look at this theme in two 

different ways. 

 

First, we will look at the software itself, and the degree to which this software has 

the potential to be used to effectively teach computational thinking. Note that the 

above three themes feed into this fourth theme – a system that is easier to use, 

more fun, and more adaptable is, all things being equal, more suited for 

computational thinking education than one that is difficult to use, dull, and rigid. 

 

This being said, the software is not the source of the computational thinking 

education – the curriculum that utilizes the software is. Therefore, we would also 

attempt to evaluate the curriculum for these systems and determine whether it 

effectively teaches computational thinking. There is, however, a difficulty with 

performing this observation. 
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The difficulty with evaluating the curriculum for these newer systems is that most 

of the systems we are evaluating do not have curricula – at least, not “official” 

ones. Instead, many of these systems are released as software-only, and third 

party organizations – sometimes affiliated with the software developers, 

sometimes not – release curricula for them. To our evaluation, this is less 

desirable than the original developers creating and pairing an official curriculum 

with the software. A full system that includes both a curriculum and the software 

that will be used to teach it can be developed such that the curriculum needs 

influence the software design, something that is not possible when the software is 

developed in isolation. For these reasons, a system that contains an official 

computational thinking curriculum will be considered better than one that does 

not. 

 

5. Play / Storytelling / Competition 

As mentioned above, fun is a major motivator for student learning and will be 

considered a benefit in our reviews. However, many systems attempt to achieve 

fun in ways which we will not consider beneficial, and in some cases will 

consider problematic.  

 

Many systems attempt to foster enjoyment or motivation in students by focusing 

on student play, storytelling, or competition, on the theory that this will increase 

student learning. These systems will, to some degree, eschew traditional teaching 

which attempts to directly convey a concept to a student, and instead give the 
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student freedom to play with the system, perhaps with some direction or help 

when they get stuck. Proponents of this technique claim that it will benefit student 

education. (Resnick, 2007). 

 

It may be that undirected play is beneficial to student learning in some 

circumstances. However, the canon of educational research tells us that, for 

students to learn, basic familiarity with the topic they are learning about is 

required. Ausubel has noted that students require “anchoring ideas” to properly 

orient themselves on a topic such that new knowledge can be retained (Ausubel, 

1968). If this is accurate, then it follows that play can only assist student learning 

when the student already has a set of basic “anchoring ideas” to orient themselves 

with. Play without this introduction, according to this theory, will not produce any 

meaningful long term knowledge.  

 

Since we are concerned with creating an introductory educational tool here, the 

students participating in it will by definition have little to no orientation on the 

topic. With this in mind, we should be wary of organizing our system around 

creative play, and make sure that our curriculum always establishes the orienting 

ideas first before turning students loose to discover knowledge on their own. 

 

For these reasons, we will consider systems that focus heavily on play, 

storytelling and competition as being weaker than those systems that concentrate 

on explicit computational thinking education first and foremost. 
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Having described some of our methods for evaluating the newer systems, as well as some 

of the general themes that will appear in our review, we will next describe the categories 

into which the systems we will review will be organized. 

 

2.4.2. Overview of Newer System Categories 

In order to provide some organization to the large list of newer systems we will be 

reviewing, we will classify these systems on two different metrics.  

 

The first metric (which we will call “input”) will describe the way in which programs are 

input into the system, and has two values: code-based, and drag and drop. The second 

metric (which we will call “testing”) will describe the method and environment in which 

student programs are run, and again has two values: virtual worlds, and robots. Below, 

we will provide a brief description of what each of these four values mean. Additionally, 

because three of the four metrics (drag and drop, virtual worlds and robots) are often 

described as good or valuable features of educational systems, we will also recount 

general arguments for the educational benefits of these three characteristics.  

 

1. Code Based 

This is the first value of the “input” metric. This value will apply when a system 

requires traditional text-based code to be typed out to create the program. This 

value is often found in some of the older systems that we will recount here. Some 

systems with this feature utilize a simplified version of an existing programming  
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language, while others create their own language entirely; this is done in an 

attempt to simplify the cognitive load of learning complicated grammar and 

syntax rules. 

 

Because code-based input is the “default” for educational systems (as it is the 

same as the methods used in traditional systems) we will make no arguments for 

its educational benefits. 

 

2. Drag and Drop 

This is the second value of the “input” metric. This value will apply to systems in 

which students utilize a GUI to build a program by selecting, dragging, placing, 

and connecting discrete graphics representing parts of a program in a 2D plane. 

Most newer programs feature this feature. For obvious reasons, all drag and drop 

systems utilize a custom graphical language. 

 

Drag and drop has many putative benefits. The major one is that drag and drop 

GUIs eliminate the possibility of syntax errors – the method of input prevents 

them by preventing the graphics to be arranged in a syntactically incorrect way. 

This removes the need for students to learn complex syntactic rules (Wanda 

Dann, 2009) (Karin Johnsgard, 2008) (David J. Malan, 2007) (Mitchel Resnick, 

2009). Another commonly argued benefit is the potential guidance that drag and 

drop programs can provide – by making different graphics have different shapes, 

colors or other physical properties, the program can easily communicate through 
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sight alone which blocks are able to go together (Mitchel Resnick, 2009). For 

example, a graphic representing a logical comparison can be shaped in such a way 

that it fits inside a graphic representing a loop test, while a graphic representing a 

variable assignment statement can be shaped in a different way, visually 

indicating that the variable assignment does not go inside of the loop test.  

 

3. Virtual Worlds 

Virtual worlds is one value of the “testing” metric. This value will applies to the 

method in which students test their programs – virtual worlds systems are ones in 

which student programs are simulated through activities in a virtual world. This 

can involve an animation representing discrete objects being manipulated in 

accordance with the input program’s commands. 

 

The virtual worlds feature is a fundamental aspect of some newer systems, 

appearing in many of them, and it is often argued to be a primary benefit of these 

newer systems. There are many putative benefits to virtual worlds. These are 

listed below. 

 

A primary benefit – and one of the most commonly argued – is that virtual worlds 

provide a “low floor, wide walls, [and] high ceiling”. This phrase, which comes 

from Seymour Papert’s Mindstorms, refers to three separate but related ideals for 

an educational system: “low floor” means that the technology should be easy to 

learn and get started with. “Wide walls” means that a large range of activities 
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should be possible within the technology. “High ceiling” means that the 

technology, while capable of very simple interactions, should also support highly 

complex interactions, and all those in between (Papert, 1993). Systems 

implementing virtual worlds commonly assert that they implement all three of 

these ideals (Mitchel Resnick, 2009). 

 

A second, and perhaps related benefit is the abstraction that is capable within 

virtual worlds. These virtual worlds can be configured to involve only those 

factors that are pertinent to a particular example. For example, in a virtual world 

based on driving a robot around, one need not worry about keeping the robot 

driving straight, or the accuracy of its turns – as the robot is simulated, it will 

drive straight and turn accurately every time. Guziman notes that students 

learning computer science “don’t want or need to deal with the subtle shades of 

correctness” (Guzdial, Programming Environments for Novices, 2004) – virtual 

worlds allow students to avoid worrying about the tiny details in favor of the big 

picture. 

 

There are other benefits to virtual worlds which are much more practical. Virtual 

worlds are easy to build, easy to configure, are not resource intensive, and are 

cheap (Thomas R. Flowers, 2002). Given a single engine for designing virtual 

worlds, a very wide array of challenges can be built without requiring the 

purchase of additional equipment. This is a large benefit for cash-strapped 

schools. 
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Finally, virtual worlds, it is argued, are simply more interesting and fun for 

students than more traditional methods of testing code. The challenges that can be 

provided in a virtual world – drive from point A to point B, move object X to 

position Y, etc. – are both more interesting to students vs. a typical exercise in 

traditional programming education, such as number sorting, as well as more 

directly relatable to a student (it is far easier to envision what a robot driving 

would look like than a sorting algorithm!) (Guzdial, Programming Environments 

for Novices, 2004). 

 

4. Robots 

Robots are the other possible value for the “testing” metric. As one might expect, 

using a robot to test a program involves the student loading a program onto a 

physical robot and seeing the robot execute the program in real space, and real 

time. 

 

Robotic systems are argued to have many of the benefits that virtual worlds do. 

Like virtual worlds, it is argued that robot programming is much more interesting 

for students than traditional programming exercises (like Hello World or sorting 

lists), and that robotic programming provides significant motivation and 

engagement to students (Maja J Mataric, 2007) (Tom Lauwers, 2009) (Barry 

Fagin, 2003) (McGill, 2012). In addition to the fun factor of robot programming, 

it has also been noted that robot exercises offer student a very clear model of 

execution, something that traditional CS problems do not (Paul, 2012). Students 
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can easily understand what a successful robot test should look like, and can 

identify a success or failure without trouble. This modeling benefit is also present 

in virtual worlds, but the supporters of robots often assert that the model is 

stronger and more concrete, due to it existing in the real world as opposed to on a 

computer screen (Wanda Dann, 2009) (Tucker Balch, 2008) (Tom Lauwers, 

2009) (Thomas R. Flowers, 2002). 

 

These are the four characteristics that we will use to divide up the systems. Because these 

characteristics are divided up into two scales with two possible characteristics each, we 

will present four subsections total: code based virtual worlds, code based robots, drag and 

drop virtual worlds, and finally, drag and drop robots.  

 

The first set of systems we will review are the code-based systems. There are two 

permutations that we will review: code based systems utilizing virtual worlds, and code 

based systems utilizing robots. 

 

2.4.3. Code Based Virtual World Systems 

Code-based virtual world systems are among the first “newer” systems to have been 

created, starting with the Logo programming language12, developed by Wally Feurzeig 

and Seymour Papert in the 1960s. The Logo programming language is a Lisp dialect 

created to teach students the fundamentals of programming. Logo was originally a robot-

based system and controlled a turtle-shaped robot, but it is today best remembered for the 

                                                           
12 http://el.media.mit.edu/logo-foundation/logo/programming.html 

http://el.media.mit.edu/logo-foundation/logo/programming.html
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simulated Logo turtle that could be programmed to move around in a virtual world (What 

Is Logo?, 2011).  A screenshot of Logo may be seen in Figure 1. 

 

 

Figure 1. The Logo software. Screenshot credit: http://www.techibuzz.com/logo-

programming-language-software-for-kids/ 

 

Another code-based virtual world system is Robocode13 (previously called IBM 

Robocode), in which students write Java or .NET code to create a simple AI system for a 

virtual battle tank. Students using Robocode are able to compete with one another, pitting 

their programmed tanks against one another in a virtual battlefield (Larsen, 2013). 

Robocode was first developed in 2000, was adopted by IBM in 2001, was released as 

                                                           
13 http://robocode.sourceforge.net/ 

http://robocode.sourceforge.net/
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open source in 2005, and continues to be developed to this day. Figure 2 shows the 

Robocode system. 

 

 

Figure 2. A screenshot of Robocode in action. The robots may be seen in the background. 

Screenshot credit: http://www.ibm.com/developerworks/library/j-robocode/ 

 

Both of these systems appear to be targeted towards any student who wishes to learn 

them. Additionally, both systems have gone through numerous iterations and have many 

different variants. This is especially true for Logo, which has been offered and promoted 

in many different ways, and in many different environments, in the 40+ years since its 

initial creation. 
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Because these two systems are both very early attempts at creating an alternative to 

traditional programming education, we will consider the benefits and downsides of these 

systems together as opposed to separately. 

 

2.4.3.1. Benefits of Code Based Virtual World Systems 

The primary benefits argued for these systems tend to be in the context of the virtual 

worlds. Most of the virtual world benefits mentioned earlier are applicable here. Papert’s 

“low floor, wide walls, high ceiling” ideal is stated to have informed Logo’s design and 

Logo carries its benefits (What Is Logo?, 2011). Robocode has similar benefits; it also 

benefits from its competitive design, which must certainly interest and motivate certain 

programmers more than traditional programming exercises (Jackie O'Kelly, 2006). 

 

2.4.3.2. Problems of Code Based Virtual World Systems 

The primary downsides to these code-based systems are, predictably, the formal code. 

Logo is a Lisp dialect designed for simplicity (What Is Logo?, 2011), and Robocode is 

straight Java or .NET (Larsen, 2013).  The problems with teaching introductory computer 

science using formal languages have been discussed above; the primary difficulty is 

students needing to learn complex and difficult syntax. Robocode, as it uses unaltered, 

unsimplified formal languages certainly suffers from this problem, but even the 

simplified Logo language has been noted to have a high enough complexity to scare away 

students or teachers (Tucker Balch, 2008), and dampen the fun for students using it 

(Long, 2007). 

 



 

 
 

 

81 

2.4.3.3. Takeaways of Code Based Virtual World Systems 

The most widely recognized lesson of early systems like Logo was the value of 

simplified programming languages and virtual worlds. Perhaps the more important lesson 

to learn, however, is the reason that programs like Logo did not spread further. As stated 

in the previous section, the reason for this failure to “catch on” this would seem to be the 

complexity of its system, especially its programming language. For an introductory 

educational system to be effective, then, it must be vastly simplified so as not to scare off 

or discourage both students and teachers (Tucker Balch, 2008).  

 

2.4.4. Code Based Robotic Systems 

Code-based robotic systems are focused on teaching students computer science by 

developing programs to control a physical robot, as opposed the manipulating of objects 

within a virtual world. As the name indicates, the programs in these systems are 

developed using formal programming languages.  

 

We will here investigate two code based robotic systems: the FIRST Robotics 

Competition14 and Myro15. 

 

2.4.4.1. FIRST Robotics Competition 

FIRST Robotics Competition is a popular extracurricular organization centered on student 

robotics competitions. Participating students form teams and work together to design, 

                                                           
14 http://www.usfirst.org/roboticsprograms/frc 
 
15 http://wiki.roboteducation.org/Myro_Development 

http://www.usfirst.org/roboticsprograms/frc
http://wiki.roboteducation.org/Myro_Development
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build and program a robot. The robot may then be brought to FRC tournaments around 

the country and compete in various events against other FRC teams’ robots (Welcome to 

the FIRST Robotics Competition, n.d.). 

 

FRC is an extracurricular program – coaches may form teams through a school or on 

their own. The age range for students to participate in FRC is 14 – 18. These students are 

entirely responsible for the design and construction of the robot – the only limitations are 

related to certain forbidden parts and an overall budget cap. All participating teams start 

with a common set of parts, but may (within certain budgetary restrictions) purchase or 

build additional ones. After building the robot, students then program it to compete using 

special FRC variants of common programming languages: in 2015, FRC variants of C++, 

Java and LabVIEW were available (2015 FRC Control System, 2015).  

 

 

Figure 3. A photo of teams competing in the FIRST Robotics Competition. Photo Credit: 

http://www.rose-hulman.edu/offices-and-services/first-robotics-regional/first-

faqs/first%C2%AE-robotics-competition-faq.aspx 
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FRC is a popular program. In 2015, 75,000 high school-aged students participated in 

3,000 teams. 56 regional events, 5 regional championships and 1 grand championship 

event were held (The FIRST Robotics Competition: HOW IT WORKS, 2014). 

 

2.4.4.1.1. Benefits of First Robotics Competition 

FRC is commonly promoted as being a fun way to teach students engineering. The 

FIRST organization states that FRC provides “[r]eal-world engineering experience”, 

“[t]echnological literacy”, and has a “proven positive impact on student interest in 

engineering” (The FIRST Robotics Competition: HOW IT WORKS, 2014) (The FIRST 

Robotics Competition: OVERVIEW, 2014). 

 

Other stated benefits include a positive impact on a student’s academic success (The 

FIRST Robotics Competition: SUCCESS, 2013), and the imparting of real-world 

technological skills (The FIRST Robotics Competition: CAREERS, 2014). 89% of FRC 

students report an “[i]ncreased understanding of [s]cience & [t]echnology”, and 90% 

report “[l]earning new practical and work-related skills” (The FIRST Robotics 

Competition: EVALUATION, 2013). 

 

As with other competitive educational systems, the competition itself has been stated to 

increase student motivation and enjoyment (Long, 2007). 
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2.4.4.1.2. Problems of First Robotics Competition 

FRC is, as mentioned above, a popular engineering program, and is often cited for its 

value in both mechanical engineering and computer science. Academic reviews of the 

FIRST program, however, have found that the former tends to be far more of a focus for 

an FRC team than the latter. Buckhaults, a professor at the University of South Carolina 

and FRC coach, notes that in a typical FRC six-week build sprint the majority of student 

time is spent engineering and building the robot itself. She notes that little time is spent 

actually programming the robot. This problem is one that is common to robotic-based 

educational systems in which one actually builds the robot (as we will see in Section 

2.4.7): the primary focus is often the building instead of the programming, the 

mechanical engineering as opposed to the computational thinking (Buckhaults, 2009) 

(Delden, 2008). 

 

This can be seen further in the program’s stated results on major choices. Buckhaults 

notes that FRC alumni “major in engineering about seven times…the rate for high school 

graduates”, and notes further that the program also produces computer science majors at 

“two times the rate for high school graduates” (Buckhaults, 2009). A 100% increase in 

computer science graduation is nothing to be scoffed at – but these numbers still make it 

clear that the FRC program produces far more mechanical engineers than it does 

computer scientists. 
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2.4.4.1.3. Takeaways of First Robotics Competition 

The fact that the FIRST competition involves building robots in addition to programming 

them leads participants focusing more on mechanical engineering than computer science 

and computational thinking is a theme that will be repeated with other robotic solutions 

of this nature. The takeaway from this is that, if one wishes to use robots to teach 

computational thinking, students should spend minimal or no time building these robots. 

It may be better for the program overall if the robots come prebuilt. 

2.4.4.2. Myro  

Myro is a project of the Institute for Personal Robots in Education16, which is itself a 

collaboration between Georgia Tech and Bryn Mawr College (Institute for Personal 

Robots in Education, 2008). The Myro project involves using a prebuilt, simple robot to 

teach students programming skills: students can use programming languages such as 

CPython17, IDLE18 and Tkinter19 to program the robots (Myro Development, 2009). 

 

The Myro robot is relatively simple and the project appears to be targeted at younger 

learners. A screenshot of the Myro software may be seen in Figure 4. 

 

                                                           
16 http://www.roboteducation.org/ 
 
17 http://cython.org/ 
 
18 https://docs.python.org/2/library/idle.html 
 
19 https://docs.python.org/2/library/tkinter.html 

http://www.roboteducation.org/
http://cython.org/
https://docs.python.org/2/library/idle.html
https://docs.python.org/2/library/tkinter.html
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Figure 4. The Myro software. Screenshot credit: 

http://www.cc.gatech.edu/~richard/oldsite/Myro3/ 

 

2.4.4.2.1. Benefits of Myro 

The Myro system has many interesting features that other robot-based systems do not 

have. One of the most interesting features is the fact that the programs developed to 

control the robot do not actually execute on the robot itself – instead, the programs are 

executed on a desktop computer and commands are transmitted to the robot as it runs. 

This feature allows for many benefits: the robot can be vastly simpler (requiring only a 

receiver and some basic translation software as opposed to a full computer), and the 

program can be debugged, stepped through or otherwise manipulated on the computer as 

the robot runs (Tucker Balch, 2008). 

http://www.cc.gatech.edu/~richard/oldsite/Myro3/
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Another major benefit of the Myro system, and one that is not often seen, is the bundling 

with Myro of a curriculum specifically designed for it (Deepak Kumar, 2008). Many 

other systems, such as Scratch or Alice, are released without curricula, and users must 

rely on other organizations to create these. The IPRE, on the other hand, has designed 

both the Myro robot and the curriculum with the other in mind, “let[ting] the needs of the 

curriculum drive the design of the robot” and vice versa (Tucker Balch, 2008). This, it is 

argued, leads to a superior system. 

 

It is notable that the Myro robots are technically quite simple. Mohtadi notes that the 

“biggest barrier” to using hardware-based testbeds – which includes robots – is the high 

technical complexity, which can severely hinder their adoption in the classroom 

(Mohtadi, 2013). Myro avoids this by using a very simple prebuilt robot design. 

 

Finally, it has been noted in at least one study that, compared with a traditional Java 

class, students who took a Myro-centered class had more fun on at least one project, and 

emerged from the class feeling more confident in their knowledge about computers than 

their Java companions (Harms, 2013). 

 

2.4.4.2.2. Problems of Myro 

Despite its benefits, Myro suffers from a few weaknesses. The primary weakness is one 

that we will examine in more depth when examining Scratch: this weakness comes as 

part of the “low floor, wide walls, high ceiling” philosophy, and specifically, the high 

ceiling. Myro is very scalable, and can be programmed to do some very advanced things. 
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In order to enable this high scalability, however, Myro is necessarily very technologically 

complex. In this way, the “high ceiling” conflicts with the “low floor”, and Myro’s 

technical complexity has been reported to be too great for some students (Deepak Kumar, 

2008). 

 

A similar problem comes from the Myro curriculum. The topics that the curriculum goes 

over are very advanced for an introductory programming class - while starting out with 

common introductory topics, the curriculum continues on to ask students to create 

computer vision algorithms, or artificial intelligence (Deepak Kumar, 2008).  While 

justified in terms of providing an overview of the computing field, these topics may be 

too advanced for a proper introductory curriculum – either in terms of their difficulty, or 

in terms of their pertinence. 

 

2.4.4.2.3. Takeaways of Myro 

There are two major positive takeaways for Myro. The first is the benefit of executing a 

student algorithm on a computer instead of the robot itself. The ability to step through, set 

breakpoints, and debug are common features in standard programming IDEs and are 

quite helpful for program development. These features cannot be used if a student must 

send his algorithm to a robot for remote execution. By executing the algorithm on the 

local desktop computer and transmitting instructions to the robot, the debug features can 

be utilized, to the student’s educational benefit. An additional benefit of this feature is 

that the robot need not have hardware for compiling or executing code, and may therefore 

be less expensive and technically complex. 
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The second major takeaway is more general: this is the benefit of pairing educational 

software with a curriculum. For an educational system to be successful, it must have both 

good software and a good curriculum. By pairing the development of these, the system 

becomes stronger overall. 

 

There is a negative takeaway for the Myro system, which relates to the curriculum as 

well: the curriculum for an introductory computer science course must stay at a basic 

level. It should not involve topics which are too advanced, and should instead focus on 

the basic skills involved with computational thinking. 

 

2.4.5. Summary of Code Based Systems 

Having reviewed four separate code-based systems across two categories, we will now 

perform a brief review of the takeaways and lessons learned from these systems in 

general. 

 

The positives takeaways of code-based systems are as follows: 

 

- A system ought to feature either a virtual world or a robot, in order to make the 

problem domain more comprehensible and visual. 

 

- A system should reduce the complexity of its language as much as practically 

possible. 
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- A system ought to, if possible, develop and pair a curriculum along with the 

system. In this way the system’s design may affect the curriculum’s design, and 

the curriculum’s design may affect the system’s design. 

 

- Robot code should run on a computer instead of the robot itself, to allow for 

active debugging, step-through, and other benefits. This also reduces the cost of 

the robot. 

 

The negatives takeaways of code-based systems are as follows: 

 

- A system should not require that students learn complex syntax and grammar 

rules in order to work with the system. This can lead to a focus on syntax at the 

expense of computational thinking skills. 

  

- A robot based system should not allow the focus to be on building or engineering 

the robot, if one wishes to focus on computational thinking education.  

 

- A robot-based system ought to have a platform that is as technically simple as 

practical. 

 

- A curriculum ought to not be inappropriately advanced – curricula for 

computational thinking courses should limit themselves to basic computational 

thinking topics, and not advanced subjects such as AI or computer vision. 
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With these lessons in mind, we will now move on to the drag and drop systems. Once 

again we have two permutations: drag and drop systems utilizing virtual worlds, and drag 

and drop systems utilizing robots. 

 

2.4.6. Drag and Drop Virtual World Systems 

The drag and drop systems are in many ways more modern than the code based systems. 

By and large they are newer developments, and have more notoriety. Because of this, 

they also have much more related research. This reflects the drag and drop input system’s 

popularity due to its simplicity, and the inability to make syntax errors using a properly 

designed drag and drop programming system. 

 

The two drag and drop systems utilizing virtual worlds that we will here review are Alice 

and Scratch, both of which are quite popular and well-known systems. We will, as with 

the code-based systems above, discuss what these systems do well, what problems or 

criticism they face, and the takeaways from these systems. 

 

2.4.6.1. Alice 

Alice is a graphical educational programming tool developed by Carnegie Mellon, with 

which students can write programs to manipulate 3D characters in a virtual world. Alice’s 

website describes the software as follows: 

Alice is an innovative 3D programming environment that makes it easy to create 

an animation for telling a story, playing an interactive game, or a video to share 

on the web. Alice is a freely available teaching tool designed to be a student's first 

exposure to object-oriented programming. It allows students to learn fundamental 

programming concepts in the context of creating animated movies and simple 
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video games. In Alice, 3-D objects (e.g., people, animals, and vehicles) populate a 

virtual world and students create a program to animate the objects. 

 

In Alice's interactive interface, students drag and drop graphic tiles to create a 

program, where the instructions correspond to standard statements in a production 

oriented programming language, such as Java, C++, and C#. Alice allows students 

to immediately see how their animation programs run, enabling them to easily 

understand the relationship between the programming statements and the behavior 

of objects in their animation. By manipulating the objects in their virtual world, 

students gain experience with all the programming constructs typically taught in 

an introductory programming course. (What is Alice?, 2015) 

 

Alice uses a visual drag-and-drop programming language. In the Alice GUI, students are 

able to select blocks, drag them into a class or function, drop them, and pair them 

together to create programs. Most program actions consist of moving a character model 

in a certain way – students are able to click on a part of a 3D character, or the entire 

character itself, and drag different blocks into their program to command that character to 

move in certain ways. As the Alice description notes, Alice’s visual language has an 

object-oriented design – individual characters are treated as objects, their different 

movable parts (arms, legs, etc.) as attribute objects of the character, and students call 

object methods to move or otherwise manipulate these objects. 

 

Alice attempts to motivate students to learn by asking them to create a story or video 

game using the software’s 3D models and virtual worlds (What is Alice?, 2015). A 

variant of Alice, called Storytelling Alice20, takes this even further, providing changes to 

the basic Alice software to increase the focus on creating a story using the software 

(Kelleher, 2007). 

 

                                                           
20 http://www.alice.org/kelleher/storytelling/index.html 

http://www.alice.org/kelleher/storytelling/index.html
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Figure 5. Screenshot of the Alice IDE. Screenshot credit: 

http://en.wikipedia.org/wiki/Alice_(software) 

 

Alice is used in a wide array of schools and with a wide array of students. As can be seen 

on the Alice Testimonials page, high school students, college students, and young 

elementary-age students have all used the software (Testimonials from Alice users, 

2015). 

 

2.4.6.1.1. Benefits of Alice 

Alice, with its drag-and-drop programming interfaces, features all the standard benefits of 

a system of this nature: it makes programming “gentler” (Paul Mullins, 2009), more 

enjoyable (Karin Johnsgard, 2008), and does not suffer from syntax errors (Wanda Dann, 

2009) (Karin Johnsgard, 2008). 
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Alice is designed around the concept of a “head fake” – students are asked to learn a 

fundamental concept of computer science while they think they are learning something 

else. Alice’s creator argues that this results in superior learning results (Wanda Dann, 

2009). The storytelling aspect of Alice is also considered quite important to motivate and 

foster student learning (Caitlin Kelleher, 2007). 

 

Certain aspects of Alice’s implementation have been praised. Alice’s methods for moving 

characters are presented at a high level – instead of having to design methods to turn a 

robot’s wheels for a certain amount of time, students using Alice can simply command 

their characters to “walk”. Storytelling Alice is designed to abstract these methods even 

further (Caitlin Kelleher, 2007). Another argued benefit is the way Alice’s code executes 

– as characters move around during program execution, students can directly follow 

along in the code. In this way the student’s program is directly tied to the on-screen 

results (Ian Utting, 2010). 

 

In various tests, Alice has been found to increase student enrollment in computer science, 

increase the retention of those students who are enrolled, and increase the success of 

these students in their computer science classes (Ryan Garlick, 2010) (Paul Mullins, 

2009) (Karin Johnsgard, 2008). 

 

Finally, it is notable that Alice is released along with an official curriculum. This 

curriculum is developed by Carnegie Mellon, the developers of Alice itself (About the 

Alice 3 Instructional Materials, 2015). 
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2.4.6.1.2. Problems of Alice 

Despite Alice’s benefits, there are also criticisms, some of which directly challenge the 

cited benefits. 

 

One criticism is that Alice’s storytelling focus, while sounding nice in theory and 

showing some increase the amount of student interaction with the program (Kelleher, 

2007), represents play and not serious learning. Mullins reports a test of Alice he 

conducted in which he found that students focus far more on the story they are creating 

than the concepts being learned. He notes further that students often base their story 

around what their program is doing, and not the other way around – in other words, 

students will make their program do something – anything – and then tell a story about it, 

incorporating bugs, mistakes or random behavior into the tale (Paul Mullins, 2009).  

 

Other criticisms focus on Alice’s practical effects. Garlick notes that students trained in 

Alice had difficulty transitioning to a formal programming language, and that these 

students had lower grades in traditional programming education, directly contradicting 

the aforementioned reports of Alice increasing success (Ryan Garlick, 2010). Finally, 

Garlick and Mullins note that in their tests students complained that Alice was not “real 

programming” (Ryan Garlick, 2010) (Paul Mullins, 2009) – this would seem to contradict 

the claim that Alice always results in increased student motivation. 
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2.4.6.1.3. Takeaways of Alice 

Alice shows that drag and drop programming interfaces can be very successful. 

Furthermore, there are certain aspects of Alice that deserve note. 

 

Alice keeps things simple by keeping its basic actions at a high level. A character can be 

instructed to “walk”, and the requisite animation plays automatically – the student need 

not program the movement of every limb. This high level abstraction reduces cognitive 

load on students and allows them to “make things happen” without considerable effort. 

Additionally, Alice’s close ties between the program and its on-screen execution is 

certainly valuable for students learning to track algorithm execution. 

 

The criticisms of Alice, however, show that certain features ought to be avoided. There is 

contention as to whether Alice’s storytelling aspects are beneficial or not. This indicates 

that one ought to be cautious about using play to motivate students – it appears that while 

it may have benefits, it is very easy for the play to become the main focus of the activity 

(this will be discussed further later). Additionally, the difficulty students have with 

moving from Alice to a formal language indicates a possible weakness of the drag and 

drop interface: despite having the same concepts, Alice code does not look or feel like 

“real” code. A possible takeaway is that visual GUIs ought not to look too radically 

different from real code in their feel and structure. 
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2.4.6.2. Scratch 

Scratch is another graphical programming tool designed to teach students the 

fundamentals of programming. Developed by MIT and targeted at 8 – 16 year olds, 

Scratch allows students to create and manipulate graphics on a 2D plane through the use 

of drag and drop programming blocks. Students are able to use Scratch to create 

animations, stories and games (For Parents, n.d.). Specific topics that Scratch focuses on 

teaching include “mathematical and computational ideas”, the “process of design”, and 

computer fluency (Learning with Scratch). 

 

Scratch’s programming language is graphical – blocks may be dragged, dropped and 

attached together to create programs. Scratch’s programming paradigm is mostly 

procedural, though it contains some object-oriented features (Object-Oriented 

Programming, 2014). A notable feature of Scratch is the design of the blocks – each 

block is color coded and has a physical shape indicative of which blocks it can attach to 

(David J. Malan, 2007) (Mitchel Resnick, 2009). 

 

Scratch integrates with a specially-designed social networking platform that allows 

students to upload and share their programs. Other users may comment on a student’s 

program, or even download the program and edit it, something that Scratch calls 

“remixing” (Mitchel Resnick, 2009). Scratch is used in many universities, high schools, 

and even elementary schools in more than 150 different countries (About Scratch, n.d.). 
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Figure 6. Screenshot of the Scratch IDE. Screenshot credit: http://mit-

scratch.softonic.com/ 

 

 

2.4.6.2.1. Benefits of Scratch 

As with Alice, Scratch features all the benefits of drag-and-drop programming: syntax 

errors are impossible to make, and the visual design of the language itself contributes to 

student understanding of how to use it (David J. Malan, 2007) (Mitchel Resnick, 2009). 

Mitchel Resnick, the leader of MIT’s Scratch team, notes that the Scratch language is 

designed to be clear and precise, readable even to students with little or no programming 

experience (Mitchel Resnick, 2009). 
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Resnick and others have described Scratch as attempting to embody Papert’s “low floor, 

wide walls, high ceiling” (David J. Malan, 2007): it is designed to be a language that is 

not just easy to use, but also fun; a language not just for formal learning, but for 

“tinkering” (Mitchel Resnick, 2009). Scratch’s free-for-all project design allows students 

to create “personally meaningful” projects, contributing to motivation (Mitchel Resnick, 

2009). 

 

Resnick and others have noted that Scratch’s social network as a very important benefit 

of the program. Putative benefits of this network include increased motivation for 

students, and the ability for students to share projects and help each other learn (Mitchel 

Resnick, 2009). 

 

Like Alice, Scratch directly ties program statements to their on-screen results: as students 

execute their program, they can track the code as the computer steps through it (Ian 

Utting, 2010). 

 

Finally, Scratch is stated to have proven educational benefits. Some studies have found 

that Scratch has increased student knowledge and internalization of computer science 

concepts (David J. Malan, 2007) (Diana Franklin, 2013). Other studies have found that 

students exposed to Scratch have had an easier transition to formal languages like Java or 

C (Ursula Wolz, 2009). Finally, it has been noted that using Scratch helps students  
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overcome anxiety and increases self-esteem and confidence in relation to programming 

(Orni Meerbaum-Salant, Learning Computer Science Concepts with Scratch, 2013) 

(David J. Malan, 2007). 

 

2.4.6.2.2. Problems of Scratch 

The problems that we have identified with Scratch has mostly to do with one of its stated 

benefits – its “wide walls” design goal of enabling – and even encouraging – creative 

exploration and “tinkering”. Scratch is essentially undirected – students are able to create 

any kind of algorithm they want within the software. Multiple sources have noted that 

this playful, undirected design may interfere with computational thinking education (Orni 

Meerbaum-Salant, Habits of Programming in Scratch, 2011) (Orni Meerbaum-Salant, 

Learning Computer Science Concepts with Scratch, 2013) (Maloney, 2008). 

 

The difficulty may be stated as such: Scratch, per Resnick, emphasizes “bottom-up 

tinkering” versus “top-down planning” when building algorithms (Mitchel Resnick, 

2009). However, as we have noted in above sections, “top-down planning” is a 

fundamental and crucial part of computational thinking. 

 

At least two studies have found that Scratch’s focus on creative exploration and play 

causes difficulty in getting certain computational thinking concepts across to students. 

One study noted that in one class, 21% of the students participating did not create any 

actual programs – they instead engaged in “media manipulation”, that is, activities such 

as “drawing [or] playing music” (Orni Meerbaum-Salant, Learning Computer Science 
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Concepts with Scratch, 2013) (Maloney, 2008). A second study notes that Scratch’s 

“creativity aspect” and bottom-up design actively interferes with attempts to teach 

planning and design principles (Orni Meerbaum-Salant, Habits of Programming in 

Scratch, 2011). 

 

A final problem with the Scratch system is that it does not have an “official” curriculum. 

There are many online curricula for Scratch; one major curriculum, developed by 

Harvard and linked to on the Scratch website, can be found at (Scratch Curriculum 

Guide, 2014). Despite the fact that the Harvard curriculum appears to have a strong 

computational thinking foundation (An Introductory Computing Curriculum Using 

Scratch, n.d.), it is a fundamentally separate development from Scratch itself. It is also 

notable that the Harvard curriculum was released in 2014, a full 7 years after Scratch’s 

online release (Scratch Curriculum Guide, 2014). 

 

2.4.6.2.3. Takeaways of Scratch 

Many of Alice’s takeaways are also found in Scratch. Scratch’s programming language 

design – clear, precise, and easy to use – contains many valuable features that should be 

appreciated. Furthermore, Scratch’s ability for students to link program code with 

onscreen actions is valuable feature. 

 

Scratch’s social media aspect is also an item which should be considered in future 

systems, due to its increase in student motivation and other benefits. 
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The potential problems with Scratch’s bottom-up, wide-walls design should be taken with 

a grain of salt, but they also should not be dismissed entirely. Like with Alice, while 

introducing creative “play” elements into the design of an educational system is 

something to strive for, one should also be aware of the detriments that these elements 

may have to computational thinking education, and be careful that one does not lose sight 

of the true goal of teaching computational thinking skills. 

 

2.4.7. Drag and Drop Robotic Systems 

The last type of system we will investigate are drag and drop systems that utilize physical 

robots instead of virtual worlds. Once again, the two systems that we will review – 

Microsoft Robotics Developer Studio (also referred to as VPL in some sources)21 and 

Lego Mindstorms (also referred to as NXT or EV3)22 – are fairly well known and widely 

used in educational contexts. 

 

2.4.7.1. Lego Mindstorms 

The Lego Mindstorms product is developed by The Lego Group, and consists of a 

buildable robot and software to program their robot. Mindstorms is a generic name for 

the product family, while terms like NXT or EV3 refer to specific generations of the 

product (About EV3, 2015); we will use the Mindstorms name for this thesis. Students 

build their robots around a central computer (usually referred to as the “brick”) and can 

                                                           
21 https://msdn.microsoft.com/en-us/library/dd939239.aspx 
 
22 http://www.lego.com/en-us/mindstorms/ 
 

https://msdn.microsoft.com/en-us/library/dd939239.aspx
http://www.lego.com/en-us/mindstorms/
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attach motors, various sensors, and other common Lego pieces. While Lego provides 

plans to build many different models of robots, the modularity of the Mindstorms kits 

allows students to design and build their own original robots as well (Build a Robot, 

2015). 

 

After building a robot, students can use various languages and softwares to program it. 

Some of these languages are traditional formal languages, like LeJOS (which uses Java)23 

or brickOS (which uses C/C++)24, while others are drag and drop, like NXT-G25 or 

LabVIEW for Lego Mindstorms26. NXT-G is the most common language used with Lego 

Mindstorms (NXT-G, 2014), and that is what we will be focusing on here. NXT-G is a 

drag-and-drop model, and students are able to place and connect blocks to write programs 

for their robot. The software divides its blocks up into five categories: Action (to control 

motors and lights), Flow (to enable looping and conditional statements), Sensor (to 

retrieve data from the various sensors), Data Operation (to operate on variables) and 

Advanced (allowing access to files, Bluetooth connections, and other features) (Learn to 

Program, 2015). 

 

The Lego Education website states that Mindstorms is targeted at middle-school students; 

despite this, the product is used in educational contexts for students of all ages, from 

                                                           
23 http://www.lejos.org/ 
 
24 http://brickos.sourceforge.net/ 
 
25 http://www.legoengineering.com/program/nxt-g/ 
 
26 http://www.ni.com/academic/mindstorms/ 

http://www.lejos.org/
http://brickos.sourceforge.net/
http://www.legoengineering.com/program/nxt-g/
http://www.ni.com/academic/mindstorms/
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elementary school to college (Lego MINDSTORMS Education EV3, 2014). It is also 

used in the FIRST robotics competition (FIRST, 2015). 

 

Figure 7. The Lego Mindstorms IDE. Screenshot credit: 

http://spectrum.ieee.org/automaton/robotics/robotics-

software/review_lego_mindstorms_nxt_1 

 

 

Note that the Mindstorms robots are able to be programmed using other software, such as 

Microsoft’s VPL (Lego Mindstorms NXT, 2015). For the purpose of this section we will 

ignore these integrations and will only consider the Mindstorms NXT-G. 
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2.4.7.1.1. Benefits of Lego Mindstorms 

Once again, we find that the Lego Mindstorms software has a clear GUI that is easy for 

students to work with. Because NXT-G is a drag-and-drop GUI, syntax errors are 

impossible to make. 

Mindstorms robotics kits are very customizable and therefore can be built for many 

different situations or scenarios. This allows great flexibility in the use of these kits (Get 

Started (LEGO MINDSTORMS), n.d.). Additionally, it has been noted that students very 

much enjoy interacting with the Mindstorms robots, and are motivated to learn because of 

them (Maja J Mataric, 2007) (Barry Fagin, 2003). 

 

2.4.7.1.2. Problems of Lego Mindstorms 

The most commonly cited problem with the Lego Mindstorms software is its expense 

(Maja J Mataric, 2007). At time of writing, a single Mindstorms EV3 kit costs 

$349.99USD27. In a classroom setting, multiple robots will be required, which rapidly 

becomes quite costly. 

 

Mindstorms also suffers from the problem common to robotics systems in which students 

build their own robots – the danger of focusing far more on the engineering challenge of 

building the robot than the computational challenge of programming it. It has been noted 

that a robot-based curriculum must be very carefully designed to avoid an 

“overabundance of robotics related material” (Delden, 2008) (Buckhaults, 2009). The 

phenomenon of students focusing heavily on building the robots, to the expense of 

                                                           
27 http://shop.lego.com/en-US/LEGO-MINDSTORMS-EV3-31313 

http://shop.lego.com/en-US/LEGO-MINDSTORMS-EV3-31313
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programming them, is something that I have anecdotally witnessed both as an undergrad 

in an introductory programming class which utilized Mindstorms, and as a teacher when 

using Mindstorms to teach computer science. 

 

It is notable that the Mindstorms programming language, while clear and easy to 

understand, looks very dissimilar to a formal textual programming language. We have 

noted previously that drag and drop languages that are dissimilar to formal languages 

have resulted in difficulty transferring to a formal language (Ryan Garlick, 2010). 

Furthermore, in our experience of using the software, we found that the unique and 

highly simplified language design often made it difficult for relatively complex problems 

to be created. 

 

Finally, we note that the Lego Mindstorms system does not appear to have an official, 

comprehensive curriculum centered on computational thinking. It does appear that Lego 

has built a curriculum based on engineering and exploration, which is offered on its 

website, (All About EV3 - Curriculum & Tools, 2014) – but this is more of a guide to 

building specific robots vs. a general curriculum for computational thinking. 

 

2.4.7.1.3. Takeaways of Lego Mindstorms 

Mindstorms is a fun system, and its robots greatly increase student enjoyment and 

motivation. The popularity of Mindstorms shows the degree to which robots can produce 

student motivation. 
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However, Mindstorms has many drawbacks. Its interface offers an important lesson: 

while simplification in drag and drop programming is important, oversimplification can 

work against the ultimate goal of computational thinking.  

 

The expense of the Mindstorms kit has been reported in many works as hindering its 

adoption and usability. The lesson, then, is that cost must be taken into account when 

producing a robotic platform, and should be minimized. 

 

Finally, we can once again see the problems of having students build their own robots, 

and we can conclude from this that prebuilt robots may be superior in regards to 

computational thinking focus. 

 

2.4.7.2. Microsoft Robotics Developer Studio / VPL 

The last system that we will review is Microsoft’s Robotics Developer Studio. MRDS is 

a graphical IDE designed “for hobbyist, academic and commercial developers to create 

robotics applications for a variety of hardware platforms” (Microsoft Robotics - 

Overview, 2012).  

 

MRDS refers to the program as a whole – the graphical language used within MRDS is 

called Visual Programming Language, or VPL. VPL, like other languages discussed here, 

allows students to select blocks, drag them around and place them in a 2D canvas. VPL is 

a bit different in its approach: instead of attaching the blocks directly to one another, the 
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blocks are connected using thin lines, meant to resemble a workflow diagram (VPL 

Introduction, 2012).  

 

VPL has two categories of blocks. The first category is Basic Activities, which contains 

the standard control and data features common to all procedural and object-oriented 

languages, such as Variable, If, etc. The second category is Services, which consists of 

blocks representing input, output, actions, and other system features. These Services are 

in fact independent programs following Microsoft’s DSS Protocol, thereby allowing them 

to be compiled together with a VPL program and invoked in a service-oriented manner 

(VPL Introduction, 2012) (Visual Programming Language - Using Services, 2012). 

 

MRDS bundles together a VPL editor and a large number of robotics DSS services. Both 

platform specific and generic services are included, allowing a MRDS program to 

compile for many different robot platforms, including Lego Mindstorms, iRobot, and 

Roomba (Supported Robots, 2015). Once compiled, the program runs on the robot itself. 

 

MRDS is used in many educational settings, including Arizona State University, where 

up until 2013 it was used in the introductory programming course FSE100. 

 

2.4.7.2.1. Benefits of Microsoft Robotics Developer Studio / VPL 

As with all drag and drop systems, VPL is incapable of syntax errors. However, VPL 

does not feature many of the other benefits of standard drag and drop languages, as we 

will discuss in the next subsection. 
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Figure 8. The Microsoft VPL IDE. Screenshot credit: https://msdn.microsoft.com/en-

us/library/bb483088.aspx 

 

 

MRDS, in addition to compiling programs and sending them to a robot, also has a 

simulator on which programs can be tested. This simulator has been reported to be very 

accuracy and simulates the physics of robot execution to a high degree – this has been 

stated to be a benefit for teams testing out robot designs where this accuracy is needed 

(for example, in competition) (Buckhaults, 2009). 
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As mentioned above, MRDS programs can be compiled and run on many different robots 

without changing the VPL code (Supported Robots, 2015). This allows schools different 

options for which robots they purchase and use. Furthermore, MRDS’s DSS services may 

be extended, or new services may be written entirely, adding further flexibility to the 

program (Creating DSS Service Projects, 2012).  

 

2.4.7.2.2. Problems of Microsoft Robotics Developer Studio / VPL 

Perhaps the primary criticism of MRDS is its high technical complexity (Tucker Balch, 

2008). VPL is a good example of a program with a “high ceiling” – it is written such that 

it can be used not just by novices but by advanced users as well, and its simulator is 

realistic enough to be useful for real-world applications (VPL Introduction, 2012). This 

high technical ability comes at a price: VPL is a very general language and is somewhat 

complex, making it difficult for students to learn and use (Tucker Balch, 2008). This 

difficulty is something that I have anecdotally observed as well in my interactions with 

the software as both a student and teacher. 

 

VPL is a graphical language without many of the benefits that the graphical languages 

often feature. Unlike Alice or Scratch, its blocks feature almost no indication of how they 

can be placed together, and nontrivial configuration is often required when connecting 

two blocks.  
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Like Mindstorms code, VPL code does not physically resemble formal program code. 

Visual dissimilarity can result in difficulty for students when they transfer from VPL to a 

formal language, as we have noted earlier (Ryan Garlick, 2010). 

 

Finally, note that like Lego Mindstorms, MRDS does not feature an official curriculum 

with which students can learn computational thinking. A Microsoft blog post from 2007, 

written one year after the initial release of MRDS, notes that Microsoft did develop and 

release a robotics curriculum – however, this curriculum is apparently no longer 

available, and based on the post, the content of the course was mostly focused on learning 

robot engineering and robot-specific programming, instead of more general 

computational thinking skills (Thompson, 2007). 

 

2.4.7.2.3. Takeaways of Microsoft Robotics Developer Studio / VPL 

MRDS’s generality (its ability to run on many different robots) and easy extendibility are 

laudable. However, most of the takeaways for this system are negative. 

 

The VPL programming language is a difficult language to learn and use; the reasons for 

this difficulty (high generality and lack of indication for how the blocks should go 

together) are things that should be avoided in future graphical languages. 

 

More generally, the design of VPL, in trying to be both an educational language and a 

useful language for real-world applications, results in high technical complexity which 
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makes it difficult to learn. This is one example of a “high ceiling” inadvertently raising 

the floor, and is a good lesson in what not to do. 

 

2.4.8. Summary of Drag and Drop Systems 

Having reviewed four separate drag and drop systems across two categories, we will now 

perform a brief review of the takeaways and lessons learned from these systems in 

general. 

 

The positive takeaways of the drag-and-drop systems are as follows: 

 

- The drag and drop language should be vastly simplified from a formal 

programming language, and made to be both clear and precise. 

 

- The drag and drop language should be designed such that syntax errors are 

impossible. 

 

- The drag and drop language should be designed such that the physical design of 

the program blocks (color, shape, etc.) should indicate how those blocks can go 

together. 

 

- The drag and drop language should abstract the actions that the user can 

command to a high enough level to allow practical programming without 

significant work. 
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- The program should closely tie the program’s steps with the on-screen execution, 

so students can easily follow what each step does as it executes. 

- Either a virtual world or a robotic system should be included if possible, as these 

increase student motivation and enjoyment. The robotic system especially has 

been shown to increase these things. 

 

- A virtual world should be designed to be extendable and wide, so that many 

different tests, tasks and problems may be set up and solved within it. 

 

- A robotic system should be set up such that the software works with multiple 

robots. 

 

- A system can benefit from integrating with a social media sharing platform. 

 

- A system should allow for easy extension and customization. 

 

The negative takeaways of the drag-and-drop systems are as follows: 

 

- A system should be careful not to focus more on creative “play” or storytelling to 

the detriment of computational thinking education. 
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- A drag-and-drop language’s structure and visual appearance should not be 

completely visually dissimilar to a formal text-based programming language. 

 

- A drag-and-drop language should not drastically oversimplify its language and 

should allow for some complex algorithms to be built. 

 

- A drag-and-drop language should not attempt to be useful for both educational 

purposes and industrial work, as this can result in a language becoming 

overcomplicated. An educational language should limit its focus to education. 

 

- A robotic system should not be extraordinarily expensive. 

 

- A robotic system should not allow the focus to be on engineering (building the 

robot) to the detriment of computer science (programming the robot). 

 

We have now reviewed eight different systems across four different categories, and have 

identified many useful lessons and takeaways. We will now conclude Section 2 by 

attempting to synthesize the lessons learned into the description of an ideal introductory 

computer science educational system. 

 

2.4.9. Creating the Ideal Introductory Computer Science Educational System 

In this section, we synthesize the information collected in the review performed above 

and create a description of the “ideal” computer science educational system. This “ideal” 
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system features the benefits identified in the eight systems reviewed above, and avoids 

the problems that these suffer.  

 

Our description will be divided up into 5 major parts – with each part containing both the 

features we wish to include, and the problems we wish to avoid, as pertains to that part. 

 

1. Drag and Drop Style Programming 

Drag and drop programming in an introductory computer science educational 

system is an absolute must. As shown above, these languages allow students to 

dispense with learning complicated syntax and instead focus on the idea behind 

programming. A proper drag and drop language ought to make syntax errors 

impossible by not allowing programming blocks to be arranged in invalid ways. It 

also ought to design the blocks to reflect their use in their physical shape, color, or 

in other attributes, thereby giving students an indication of how these blocks 

properly go together. Finally, the actual language ought to be simplified and 

abstracted to a high level, to allow effective programs to be written without 

requiring students to fill in all the details. For example, a language designed 

around students driving a robot ought to have a single “drive” block, instead of 

forcing students to set up multiple blocks to turn individual wheels in a specific 

manner. 

 

The language should not be complicated, and should not require learning any 

more syntax or grammar rules than are absolutely necessary. On the other hand, it 
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also should not be drastically oversimplified, and should allow students to write 

programs of some depth and complexity. Most or all advanced techniques in 

programming such as nesting, recursion, etc. should be present. 

Finally, a drag and drop language should attempt to resemble, at least in some 

ways, the structure of an actual program written in a formal language. Examples 

of how this can be achieved include ensuring that code reads roughly in one 

physical direction (versus, say, VPL’s design that allows code blocks to be placed 

anywhere), and by separating different “levels” of code into different groupings 

(for example, a loop’s body code may be grouped together in some way). In light 

of the finding that visually dissimilar languages can hinder student transfer to 

formal languages (Ryan Garlick, 2010), we believe that making a language 

visually similar to formal languages should counteract or even reverse this effect. 

 

2. Virtual Worlds 

A virtual world ought to be featured in an ideal educational system. The virtual 

world allows students to simulate their algorithms in an abstracted, simplified 

world which is beneficial to computational thinking education (David Barr, 2011). 

Papert’s goal of “Low floor, wide walls, high ceiling” can be implemented in 

these virtual worlds. Finally, virtual worlds are inexpensive for classrooms, and 

can be designed such that they are easy to customize and extend (Thomas R. 

Flowers, 2002).  
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Because the execution of an algorithm in a virtual world happens on a computer 

screen, students may view both the executing algorithm and their program code at 

the same time. Furthermore, because the executing algorithm usually involves 

graphics moving around on screen (for example, Logo’s turtle graphics, or Alice’s 

character movement) these algorithms usually execute slowly enough for students 

to easily follow the algorithm code as it executes, thereby “pairing” the execution 

with the code. A really good virtual world should go one step further and 

explicitly highlight the code blocks currently being executed, to allow for easy 

tracking. 

 

Finally, the virtual world should be designed so that interacting with it is fun for 

the student, in order to increase motivation and enjoyment. 

 

3. Robots 

In addition to a virtual world, a good educational system should feature a robot. 

Robots have been shown to vastly increase student fun, motivation, interest and 

engagement (Maja J Mataric, 2007) (Tom Lauwers, 2009) (Barry Fagin, 2003) 

(McGill, 2012). Furthermore, executing an algorithm on a physical robot in the 

real world adds a level of concreteness that virtual worlds do not achieve – the 

robot acts as a well-defined model executing in a familiar context, which 

increases student learning (Paul, 2012) (Wanda Dann, 2009) (Tucker Balch, 

2008) (Tom Lauwers, 2009) (Thomas R. Flowers, 2002). For these reasons, a 

robot should be included alongside the virtual world. These two different media 
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of execution can be used in different scenarios where their different advantages 

can be maximized. 

 

Because robots can be expensive, and because classrooms have different needs, 

an ideal system should be designed such that its algorithms can execute on 

different robot models. This will allow classrooms to choose a robot model that 

best fits their needs and their budget. 

 

Furthermore, if possible, the system should be designed such that the code is 

executed on a local computer and transmitted to the robot, instead of having the 

code execute on the robot itself. This allows robots to be built in a simpler and 

less expensive manner, since they do not require expensive hardware to execute 

programs. Furthermore, by executing the algorithm on a computer, students can 

debug the algorithm as it executes on the robot. 

 

Things to avoid when building the robot include making the robot prohibitively 

expensive, or too technically complex. The robot should be prebuilt if possible, to 

avoid requiring teachers or students to build it – this can scare less technically 

competent users away from the system, and can also shift the focus of the system 

away from computer science and towards mechanical engineering, as was seen in 

the FIRST Robotics Competition and Mindstorms sections above. 

 

4. Curriculum 
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An educational system without a paired curriculum is no more than a tool. This 

tool may be used properly, or it may be used poorly, depending on the teacher 

utilizing it. Similarly, curricula may be made by third party users, and these may 

be good or bad. A better solution is for the developers of the tool to create an 

“official” curriculum and pair it with the tool, thereby making it a full educational 

system. In doing so, the curriculum design may be informed by the software 

design, and the software design may be informed by the curriculum design. 

 

Our reviews above have identified some problems with systems that are heavily 

focused on competition (such as FIRST), creative “play” (such as Scratch) or 

storytelling (such as Alice). For some students, these focuses were distracting or 

hindering to their computer science education. It is not necessarily the case that 

this will be true for all students, and these focuses may be motivating or helpful 

for some students. In light of the fact that these things can be distracting, 

however, an ideal system should ensure that first and foremost it focuses on 

computational thinking education. Play, storytelling and competition must be 

secondary to this primary goal. 

 

It may be that undirected play is most useful for students who have some 

foundation to work with, some basic orientation to point them in the right 

direction in which to learn. Ausubel has noted that students require “anchoring 

ideas” to properly orient themselves on a topic such that new knowledge can be 

retained (Ausubel, 1968). If this is accurate, then it follows that undirected play 
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coming after introductory orienting education can be quite educational – but play 

without this introduction will not produce any meaningful long term knowledge. 

Since we are concerned with creating an introductory educational tool here, we 

should be wary of organizing it around creative play, and make sure that our 

curriculum always establishes the orienting ideas first before turning students 

loose to discover knowledge on their own. 

 

5. Other 

The following items are design goals for the ideal curriculum that do not fit into 

the above four groups. 

 

An ideal system should be extendable and customizable. This allows both easy 

additions to it by its maintainer, but it also allows end users (teachers or parents) 

to customize it to their student’s needs. For example, by allowing the language to 

be customizable, teachers are able to add new programming blocks containing 

concepts that they wish to teach. By allowing the virtual world to be 

customizable, teachers may add new graphics or goals for the student to play 

with. In this way teachers can add lessons or concepts to the paired curriculum. 

 

A beneficial feature, as we have seen with Scratch, is an integration with social 

media. Students should be able to upload their algorithms and share them with 

friends. Scratch has found that this increases student motivation, and also allows 

students to learn from each other’s work (Mitchel Resnick, 2009). 
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Finally, a system should limit its purpose to education. Systems such as VPL that 

attempt to be useful for both education and for industrial or specialized use run a 

high risk of being too technically complicated for easy student use – or, put 

another way, by raising the ceiling too high, they also raise the floor. 

 

This concludes our review of newer educational systems. A chart comparing the newer 

educational systems discussed here, using the ideal features identified above as criteria, 

may be found in Appendix G. 

 

Using this review, we have developed a new system for teaching introductory computer 

science and computational thinking. We have attempted to implement the features 

identified in this review as desirable, and we have attempted to avoid all the features 

identified as problematic. This system will be fully described in the next section.  

3. DESCRIPTION OF GENOST 

In Section 1, we described computational thinking and established the need for this 

subject to be effectively taught. In Section 2, we showed that traditional introductory 

computer science education does not effectively teach computational thinking, and that 

“newer” systems, while in many ways superior to the traditional systems in teaching 

computational thinking, also have many flaws. This brings us to the main subject of this 

thesis: the introduction and description of a new educational system designed using our 
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analysis of an “ideal” system above, and intended to effectively teach computational 

thinking. We have named this new system “Genost”28. 

 

Genost is a full educational system, including both an educational tool, consisting of a 

GUI, simulator and robot, and a curriculum (along with a third component, an 

administrative website for managing, customizing and tracking data from the system). In 

this section we will describe the Genost system, provide an overview of each part, and 

state our goals for its development, our justification for these goals, and how we 

implemented those goals. 

 

We wish to acknowledge the contributions of the undergraduate students that assisted us 

in the development of the Genost software and robot. These students are: Rizwan Ahmad, 

Garth Bjerk, Tracey Heath, David Humphries, Corey Jallen, Ian Plumley, Stephen Pluta, 

Randy Queen, and Matt Rechia. 

 

3.1. GENOST OVERVIEW 

Before covering each component of the Genost system in depth, we will here provide a 

brief summary of the whole system. This will allow us to consider each individual part in 

context of the whole, and to speak on how these parts interact, without undue elaboration 

in each subsection. 

 

                                                           
28 “Genost” is a truncation and corruption of the Greek adjective gnostikos, which translates to 
“cognitive” or “intellectual.” The related noun, Gnosis, means “knowledge.” 
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There are six major parts of Genost that deserve discussion. These parts are the 

Language, the Mazes, the GUI, the Simulator, the Robot, the Management Website, 

and the Curriculum. The way these parts work together is described below. 

  

First, students use the GUI to create algorithms utilizing a visual drag-and-drop 

Language. The Language has a Turing-complete drag-and-drop design, which involves 

arranging blocks to create an executable program. Each block type represents a single 

fundamental programming concept. Students write algorithms in the language using the 

browser-based GUI, which is highly customizable and may be configured for different 

lessons from the Curriculum.  

 

The problems that students create algorithms to solve are all based around moving a robot 

through a Maze. Each Maze is associated with a specific lesson in the Curriculum; 

these mazes are highly customizable and may have multiple objectives, such as driving 

the robot from one end of the maze to another, or collecting all the pickup objects 

(‘coins’) in the maze.  

 

The actual Maze is implemented in either a Virtual World, in which case the algorithm 

controls a virtual robot moving in a Simulator, or it is implemented in the Real World, in 

which case the algorithm controls a physical Robot moving in a real-world maze. The 

ability to execute the algorithm with either a Simulator or a Robot allows for heavy 

customization of the Genost experience – classrooms can use the Simulator exclusively, 

which might be good for a small classroom or one with limited resources, or the 
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Simulator and Robot together, in order to get the motivational and physical benefits of 

using robotic education; a classroom could even use the Robot alone if they so choose. 

Ultimately, our review in Section 2 showed that both virtual world simulations and robots 

are valuable models to transfer computational thinking knowledge; a system with both 

simulation and robots allows teachers and learners to have the “best of both worlds”. 

 

The above tools may all be used in a Curriculum that takes full advantage of the 

software’s capability to teach computational thinking skills. We created a Curriculum 

alongside the software during its development that focuses on teaching the fundamental 

programming structures and the ability to analyze and break down an algorithm. This 

Curriculum may serve as an “official core” for the Genost system. However, through the 

use of the Management Website, end users may create new lessons to add on to our core 

Curriculum, or create their own entirely. End users can also create class organizations, 

add students to the organization, and assign one or more curricula to their class – the GUI 

will then interact with the Management Website to walk students through their own 

class’s curriculum, and collect data from the students as they go.  

 

This is a brief overview of the Genost system as a whole. Each of the above major parts 

were designed to meet the goals of an ideal introductory computer science educational 

system described in Section 2.4.9, as well as to serve the more general goal of teaching 

computational thinking. In the remainder of Section 3, we will describe the development 

of each of these six major parts. For each item we will briefly describe the part of the 
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system, and will then describe the goals we had for its design, our justifications for these 

goals, and the ways in which we attempted to implement them. 

 

Throughout this review we will make frequent reference to the computational thinking 

goals described in Section 2.1, the themes described in Section 2.4.1, and the ideal 

system goals described in Section 2.4.9. We will refer to these in the following manner: 

 

- CG<X> will refer to computational thinking goal X described in Section 2.1. 

 

- T<Y> will refer to theme Y described in Section 2.4.1. 

 

- IG<Z> will refer to ideal system goal Z described in Section 2.4.9. 

 

The first time a specific goal or theme is mentioned, we will briefly summarize it to ease 

in reading. These goals will be cited as justification for our designs; for justification of 

the goals themselves, please refer to the sections mentioned above. 

 

3.2. THE LANGUAGE 

The language that is used in the Genost software is a procedural drag and drop language 

that we call “Objective G”. To write algorithms with Objective G in the Genost GUI, 

students drag virtual blocks from block panels and drop them into the “canvas”. Students 

may arrange the blocks in different ways to create algorithms. 
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Objective G is designed to be simple, clear and high-level. The syntax is designed to be 

very easy to learn and understand. Because Objective G is a drag and drop language, 

syntax errors are impossible – the software will not allow an algorithm with improper 

syntax to be created. 

 

 

Figure 9. An example program in the Objective G language. 

 

Each block in the Genost language represents a single fundamental programming 

structure: example blocks include Wait Until and Loop For, as can be seen in Figure 9. 

Some blocks are “standalone”, requiring no additional data to operate, but most blocks 

take one or more parameters, in the form of additional blocks. A block that requires a 

parameter will have a “socket” into which another block must be dropped. When a block 
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requiring additional data is placed into the canvas, its socket is blank and empty, 

indicating to students that it must be filled. All of the blocks seen in Figure 9 above 

require at least one parameter block, as can be seen by the filled sockets. One can also see 

how some parameter blocks have their own sockets, creating a chain of parameters – for 

example, the Wait Until block has an < (less than) block in its socket, which in turn has a 

Sonar block and an Integer block in its own sockets. 

 

Genost code is written unidirectionally, top-to-bottom, and its blocks automatically 

indent when appropriate, such as in a Loop or If statement body. This can be seen above 

in Figure 9 – the top block in the algorithm is a Loop For, and the blocks in its body are 

indented.  In this way, Objective G attempts to resemble the look and feel of formal 

programming languages. 

 

Objective G allows deep nesting – there is no artificial limit on how far one can nest 

blocks – so that even complex algorithms can be written in Objective G. Other advanced 

techniques, like recursion, are also possible in Objective G.  

 

Objective G has many different blocks, which are defined by a customizable XML file. 

We have divided the blocks up into eight different groups, which are defined below.  

 

1. Action:  
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The Action blocks consist of all the blocks that command the robot to physically 

do something. Most Action blocks either tell the robot to move a certain way, or 

tell the robot to check a sensor and return a data value. All Action blocks are  

written at a high level – we have a single “Drive” block, for example, to tell the 

robot to drive forward, as opposed to requiring students to manipulate the 

individual wheels. 

 

2. Data and Robot Data 

The Data and Robot Data blocks represent different literal values and are inserted 

into the sockets of other blocks. The Data blocks include traditional primitives 

like Integer; the Robot Data blocks involve special robot-specific constants, such 

as Direction. These items are literals in the sense that they are not changeable at 

runtime, but their values are definable at design time. 

 

3. Loops 

The Loop blocks allow certain sections of code to be repeated. There are two 

loops in Objective G: Loop For, which is equivalent to a Java For loop, and Loop 

Until, which is equivalent to a Java While loop. 

 

4. Wait Statements 

A Wait statement prevents the Genost interpreter from proceeding onto the next 

line of code for a certain amount of time. While the program is waiting using a 

Wait block, any robot movement that is already occurring continues (if the robot 
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is driving, it will continue to drive). There are two Wait statements: Wait Until, 

which waits until a specified condition becomes true, and Wait For, which waits 

for a specified amount of time. Wait Statements are useful for writing algorithms 

that can, for example, drive the robot forward until it detects a wall in front of it. 

 

5. If Statements 

If statements are equivalent in nature to their Java companions. Objective G 

incorporates If, Else If and Else blocks, to allow the creation of “If chains” that 

allow decisions with an arbitrary number of possible choices. 

 

6. Variables and Assignments 

Objective G allows the creation of Variables of types Integer, String and Boolean. 

Assignment statements may be used to assign values to these Variables. 

 

7. Logic and Comparison 

These blocks are used in the sockets of blocks that require a condition – for 

example, a Loop Until, a Wait Until or an If. Comparison blocks include all 

mathematical equalities and inequalities (Less Than, Less Than or Equal To, 

Equal To, Not Equal To, etc.). Logic blocks involve logical relations – AND and 

OR. Using these Logic and Comparison blocks, arbitrarily complex conditions 

can be defined. 

 

8. Methods 
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Objective G allows the creation of Methods of type Void, Integer, String or 

Boolean. These Methods may take arbitrarily defined parameters (which are 

available as variables within the method body), and may return data of the proper 

type using a special Return block. 

 

Each block type is colored differently, in an attempt to help students more easily 

differentiate them. 

 

A full explanation of the blocks in Objective G may be found in Appendix B. 

 

3.2.1. Language Design 

Ultimately, our goal with Objective G is to create what Lu calls a “computational 

thinking language” or CTL. The most general goal of a CTL is to allow students to think 

about and learn computational thinking ideas without being required to spend 

considerable time learning the syntax and grammar of the language itself (James J. Lu, 

2009). When designing Objective G, we used the following goals to guide us. 

 

3.2.1.1. Goal 1: Language Readability 

The idea here is that students should be able to read the language without having to learn 

much – or ideally, any – syntax and grammar. This is directly from T1 (Ease of Use) and 

is described specifically in IG1 (Drag and Drop Programming goals), which notes that a 

language should not be complicated for a student to read. This goal will ultimately help 



 

 
 

 

131 

with general computational thinking education, but especially with CG1 (the ability to 

read and understand algorithms.) 

 

Our primary attempt at implementing this was in using clear English labels for our 

programming blocks, and attempting to make the block code itself read like an English 

sentence. For example, a fully configured Loop For block that repeats 5 times reads left 

to right, “Loop for 5 times”. 

  

The physical layout of the blocks and their sockets attempts to contribute to the above 

effort of reading like an English sentence by being organized in a sensible manner. Using 

the Loop For example from before, the socket to indicate the number of times to loop is 

located between the text “Loop for” and “times”, hinting that the parameter indicates the 

number of time the loop should iterate. 

  

We have also colored the blocks differently depending on their types, to assist students in 

telling them apart. 

 

3.2.1.2. Goal 2: Ease of Programming 

The basic idea behind this goal is that developing a program in this language should not 

require more effort than necessary. Once again, this goal comes directly from T1 and 

IG1. Furthermore, this goal also serves T2 (Fun) – a language that is easy for students to 

develop programs in will almost certainly be more fun for them than one that is difficult. 
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Naturally, the primary way we attempted to make the language easy to program in is by 

making it a drag and drop language! As noted above, drag and drop languages disallow 

syntax errors, which reduces the difficulty of programming considerably. Aside from this, 

efforts to make the language easy to program with include creating a one to one 

relationship between blocks and concepts – each block represents a single fundamental 

structure, meaning that students can add in that structure by dragging and dropping a 

single block. When a concept requires multiple blocks to be complete (such as a Loop 

For requiring an Integer block to inform it how many times to iterate) we have made the 

empty socket quite obvious so the learner can easily see that more blocks are needed to 

complete the structure. Finally, by limiting the system to procedural programming, we 

are able to implement all of the concepts we wish to implement without considerably 

complicating the GUI (procedural programming will be discussed more in the next 

subsection). 

 

As mentioned above, the Objective G blocks are colored differently depending on their 

type. This is our first attempt at using the physical appearance of the block to indicate 

what it does, a goal described in IG1. With practice, students can learn that a block 

colored tan represents a Data parameter, for example. We plan in the future to alter the 

blocks’ and sockets’ physical shapes as well to indicate their functions. 

 

3.2.1.3. Goal 3: Procedural Programming 

We have decided to limit Objective G to procedural programming, and have not included 

object or class designs in the language. This section will justify this decision. 
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Our goal for Genost is to teach introductory programming. At the heart of all 

programming paradigms lies procedural programming concepts – control flow, variables 

and functions. Therefore it makes sense to focus on these procedural aspects in 

introductory programming. Furthermore, procedural programming concepts, especially 

control flow, are at the heart of T4 (computational thinking). Specific skills that 

procedural programming teaches especially well are CG2 (the ability to engage in 

abstraction) and CG3 (the ability to decompose a problem into processes). Procedural 

programming is also fundamentally easier to learn than the more advanced paradigms 

that grow from it. Therefore, focusing on procedural programming helps us fulfill T1 

(ease of use). 

 

In order to focus on procedural programming, we limited the blocks available for students 

to use to the following: basic Actions (driving, turning), Loops, Wait Statements, and If 

Statements. We also included Variables and Functions. No other block types, such as 

classes or objects, were implemented; those blocks that were implemented do not feature 

object-oriented behavior. 

 

We believe that procedural programming allows us to teach all of the computational 

thinking goals that we wish to teach, and that the benefits in simplicity and clarity makes 

the decision to focus on procedural programming alone worth it. Adding in features from 

more advanced paradigms, like OOP, would not seem to gain us any additional advantage 



 

 
 

 

134 

in terms of introductory computational thinking education, but it would complicate the 

language (and the GUI) quite significantly. 

 

3.2.1.4. Goal 4: Computational Thinking Built Into Language 

We wished to design Objective G such that the very act of programming in the language 

should reinforce certain computational thinking concepts. In other words, even 

independent of the particular lesson being undertaken, simply writing a program in the 

language should suggest or reinforce computational concepts, due to the language’s 

design. An example of how this may be achieved (which we implement, as we will 

describe later) is by visually grouping blocks (using indentation, highlighting, or some 

other measure) together at a certain level of abstraction. This goal directly benefits T4, 

and depending on how it is implemented may serve CG1 or CG2. 

 

We have attempted to implement this goal in many ways. As mentioned before, we have 

made each block represent a single concept, in order to implicitly show the separation 

and differences between these concepts, and to assist students in learning those 

differences. A more interesting design choice was to force students to program “outside-

in” – that is, when adding a block such as an If statement, students must first place the If 

block, and only after the block is placed can they add to its body. Another example of this 

“outside-in” design would be the way a complicated conditional statement – say, ((X > 

Y) AND Z) – is built. In order to build this in Objective G, students must first place the 

AND block, then place the > block inside the AND’s left socket, and finally place X, Y 

and Z inside their proper places. This “outside-in” or “top-down” style of programming 
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pushes students to think of the outer block in context of its own level of abstraction, and 

the inner blocks that go within the outer block’s body as a different, lower abstraction 

level. 

Abstraction and parameterization is further reinforced through certain design choices in 

the Action blocks. Most Action blocks in Objective G explicitly require a parameter 

block to be added – for example, the Drive block requires students add a block to tell it to 

drive either Forward or Backwards. This reinforces abstraction by encouraging students 

to think of Actions as abstract entities, only becoming concrete when adding a parameter 

indicating how to perform that action. By choosing to parameterize these Action blocks 

instead of rolling action and parameter into a single block, these computational thinking 

ideas are reinforced. 

 

Finally, we allow students to fully explore computational thinking by not oversimplifying 

Objective G. The language is Turing-complete and programs of arbitrarily high 

complexity may be written in it. This is powered by, among other things, the inclusion of 

deep nesting and recursion. 

 

3.2.1.5. Goal 5: Similarity to Formal Programming Language 

We want the act of programming in the language to look and feel similar to programming 

in a formal programming language. We chose this goal for two reasons. The first reason 

is practicality: eventually students will need to move from Objective G to a formal 

language like Java or C. We want to make this transition as easy as possible, as stated in 

IG1 – we believe that making our language look similar to a formal language will assist 
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in this eventual transition. The second reason has to do once again with computational 

thinking: we have observed that the structure of real languages often reinforces certain 

computational thinking concepts, including CG1 and CG2. Examples of this include the 

inherent unidirectional code flow of real languages (CG1) and the clear “separation of 

concerns” achieved by the indentation or demarcation of loop, if statement, or function 

bodies, which reflects the different levels of abstraction in an algorithm (CG2). Since 

formal programming languages have these benefits, designing our language to look 

similar to those languages will ideally bring us those benefits as well. 

 

We designed Objective G’s look and feel with this goal in mind. Unlike languages such 

as NXT or VPL, Objective G reads explicitly unidirectionally, top to bottom, just like a 

formal language. Objective G also automatically indents loop bodies, if bodies, and the 

like, which is also not the case in NXT or VPL. 

 

We mentioned when discussing Goal 1 that we have attempted to use clear English labels 

for our blocks. When possible, we tried to use the same labels that are used in actual 

programming – for example, “If” or “Loop”. 

 

3.2.1.6. Goal 6: Design Conflicts 

It is inevitable that the five above goals will conflict, and we need some way of resolving 

this conflict. Due to the fact that teaching computational thinking is our goal above all 

else, as stated in T4 and IG5, we resolved these conflicts by choosing the solution that 

was best for computational thinking education. 
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In our implementation, specific compromises were made between some of these goals to 

support computational thinking. For example, we realized that the “outside-in” 

programming style may be somewhat confusing to students, and is certainly pedantic in 

certain cases, violating Goals 1 and 2. However, as we have argued in Goal 4, this 

practice reinforces computational thinking, and therefore we kept it in. 

 

In a very similar way, if we had rolled Action parameters into the Action blocks 

themselves, instead of requiring students to explicitly add these parameters to the blocks, 

we could have saved a step when adding the actions. That we did not do so again violates 

Goal 2. Once again, however, the computational thinking utility of this practice 

outweighs the difficulty this introduces into programming. 

 

3.3. THE MAZE 

The Genost language, and the curriculum, are centered on mazes. A “maze” in Genost is 

a 2D plane containing a movable item (“robot”) along with obstacles, items that may be 

picked up (“coins”), and goals.  Students control the robot by writing an algorithm in 

Objective G. Each maze has a specific goal, and it is this goal that students write their 

algorithms to achieve. Note that the term “maze” does not necessarily imply that any one 

design is mazelike (for example, it might be a single straight corridor) and similarly, the 

terms “robot” and “coin” do not imply that the graphics representing those concepts will 

actually look like a robot or a coin! Figure 10 shows a sample maze, with robot and 

coins. 
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Figure 10. An example of a simulated maze in Genost. The red square is the robot, the 

dark blue blocks are walls, and the yellow items are coins. This maze’s goal is to collect 

all the coins. 

 

Our mazes are implemented in a simulated virtual world, and can also be implemented in 

the real world using a real robot. In the simulated mazes, goals are defined according to 

the maze and success or failure is detected automatically. 

 

In our simulated mazes, there are four possible goals: 

 

1. Drive to the Finish and Stop 

In this goal, a student must write a single algorithm which will drive the robot 

through the maze, reach a special square known as a “finish zone”, and complete 

the algorithm while stopped on the space. 
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2. Collect all the Coins and Stop 

In this goal, a student must write a single algorithm which will drive the robot 

around the maze and pick up each coin in the maze. After picking up the last coin, 

the robot algorithm must end with the robot stopped. 

 

3. Drive to the Finish 

This is the same as the Drive to the Finish and Stop goal, except the algorithm is 

not required to end with the robot stopped. Instead, so long as the robot touches 

the finish zone, the algorithm will be considered a success. 

 

4. Collect all the Coins 

This is the same as the Collect all the Coins and Stop goal, except the system does 

not require the robot to stop and complete its algorithm. Instead, the algorithm 

will be considered successful the second the robot picks up the last coin. 

 

In a real world maze, the success and failure criteria would be defined and judged by an 

external observer, such as a teacher, advisor or coach. The above goals could be 

implemented in the real world maze without considerable trouble. 

 

We use mazes implementing the goals above to teach students computational thinking 

skills. 
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3.3.1. Maze Design 

Considerable thought was put into deciding to center Genost on maze solving, and once 

this decision was made, more thought was put into how the mazes should function and 

the goals of the mazes. The thought processes that led to these decisions will be described 

here. 

 

3.3.1.1. Goal 1: Teach Computational Thinking 

A primary goal was for whatever goal Genost’s algorithms were centered on achieving to 

teach computational thinking effectively. Mazes were ultimately chosen because there are 

certain features of mazes that make them very effective for teaching computational 

thinking. A primary computational thinking benefit of maze solving is the fact that a 

maze solution is an inherently visual one – a student can watch his robot executing each 

step of his algorithm in real time. Resnick has noted that watching a robot move through 

a maze is an act of “reflection and evaluation” that is crucial to the learning process 

(Resnick, 2007). 

 

When watching a robot move through a maze, students can see the algorithm itself 

operating in real time. Every algorithm step may be seen in the robot’s movement. If the 

algorithm fails, it is immediately obvious that the failure has occurred (i.e. the robot 

turned the wrong way and crashed into a wall) and students may determine at what point 

in the algorithm this happened (i.e. immediately after it drove down the third corridor) 

without considerable difficulty. In this way the ability to watch a robot execute an 

algorithm helps fulfill CG1, the ability to read and understand algorithms.  
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We can compare watching the robot’s movement to a more traditional way of testing 

algorithms to further see the benefit. Traditional program testing tends to only show the 

final output, if such output is generated in the first place. For example, a number sorting 

program ultimately produces a list of numbers that is either sorted or it is not, assuming 

the program does not crash. Students cannot easily watch this algorithm execute. CG1 is 

therefore served far better with maze solving than more opaque algorithmic tasks. 

 

Another benefit of mazes is that a maze is its own model – the problem that a student 

must solve is clearly visible in 2D form. When solving the maze, it is often useful to 

focus on solving individual parts of the maze by themselves, and then combine those 

solutions to make a single algorithm. This is the essence of abstraction (CG2) and 

problem breakdown (CG3), and we use this technique heavily in our curriculum. Because 

the maze is its own model, when performing this abstraction and moving between levels, 

students may literally focus their view on the part of the maze they are working with at 

the time. Once again, this task is more difficult with more opaque computer tasks such as 

number sorting, since the different “areas of concern” are entirely invisible. With mazes, 

they are visible. This assists very strongly with CG2 and CG3 – we believe that mazes 

help students have an easier time abstracting and breaking down a problem. 

 

When watching a maze algorithm execute, inefficiencies or problems in the algorithm 

may become very clear. If the algorithm fails, the failure will be visible as a robot crashes 

or takes a wrong turn. If the algorithm is inefficient, the inefficiency will be visible as the 

robot traverses the same corridor multiple times, or otherwise performs unnecessary 
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actions. The visibility of algorithm quality assists students with CG4, learning to evaluate 

algorithm quality. 

 

 

Figure 11. A maze physically "broken down" into similar parts. This breakdown, which 

can be done visually, helps students with CG2 and CG3. 

 

In this way, mazes can be used to teach all four parts of computational thinking. Our 

implementation of the mazes, specifically the goals that we chose to include, also help 

with teaching computational thinking. 

 

For many of our mazes, such as the maze in Figure 11, multiple solutions are possible – 

this fact is used to help teach CG1, the ability to understand algorithms, since 
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understanding that the same task may be solved with multiple algorithms is an important 

step in this computational thinking goal. 

The “X and stop” goals introduce an important requirement into the algorithm 

development process: students must design not just how their algorithm will run but also 

how it will end. Once again this is a fundamental part of computational thinking and 

helps round out CG3, the ability to break down a problem and design a solution. 

 

The two main goals – Drive to the Finish, and Collect all the Coins – have different 

focuses. Drive to the Finish teaches the development of a minimal algorithm, since all 

that is needed is to get to the end. Meanwhile, Collect all the Coins can be used to teach 

algorithms focusing on completeness, since the entire maze must be traversed to ensure 

that every coin is collected. These are again two important elements of computational 

thinking. 

 

Finally, it is possible to design mazes such that a single algorithm will solve multiple 

mazes. A lesson, then, may contain multiple mazes that all must be solved by the student 

with one program. This technique, which we make heavy use of, requires the student to 

generalize and abstract to a great degree, and is therefore a great way to teach CG2. 

 

These benefits, and more, are the reason that we chose to center Genost on mazes. 
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3.3.1.2. Goal 2: Simple and Easy to Understand 

T1 tells us that our system should be easy to use, and this extends to the mazes. IG2 notes 

that virtual worlds are superior to traditional algorithm tests because they are easier – as 

our goal is to make the best system possible, we therefore want to make the mazes as 

easy to understand as they can be. Finally, Papert’s “low floor” is another way of saying 

that these systems should be easy to understand (Papert, 1993). 

 

Note that “easy to understand” does not necessarily mean “easy to solve”. Students 

should be challenged by the task of creating a high-quality algorithm to solve the maze; 

the challenge should not come from difficulty in understanding the rules of the virtual 

world, or the goal that they are being asked to solve. 

 

We have attempted to implement this goal through the use of clear graphical themes and 

simple to understand goals. The choice of using a 2D world instead of a 3D world was 

also motivated by this goal: by limiting ourselves to two dimensions, we make the mazes 

simpler without losing too much richness or potential. We have also limited the number 

of actions the robot can perform to only those that are necessary, instead of allowing it to 

perform a very large number of actions that are individually only rarely useful. 

 

3.3.1.3. Goal 3: Rich Interactions  

Rich interactions refers to the ability for a maze system to implement many different 

kinds of tasks, and for each task to have depth to it. The richness of virtual worlds when 

compared to traditional algorithm tests is a benefit described in IG2 – this is the “wide 
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walls” feature that Papert describes. Interestingly enough, the richness of the mazes also 

enables, to some degree, the “high ceiling”, as relatively complicated puzzles can be 

implemented in these mazes (Papert, 1993). This goal also fulfills T3, Adaptability – a 

maze system with rich interaction is ultimately more adaptable, as more examples and 

concepts may be taught with it without requiring additional development.  

 

We have tried to make our mazes highly customizable – the obstacles can be arranged in 

any way, as can the coins and finish zones. The mazes can be any shape or size. In this 

way a vast array of different mazes can be created. As described above, we have four 

different possible maze goals, applicable to different situations – these goals may be 

applied to any maze. We believe that these features taken together make our application 

very rich, and virtually any concept we wish to teach can be built into a maze. 

 

3.3.1.4. Goal 4: Fun 

Fun is one of our major themes (T2). We want all student interaction with our system to 

be fun – its benefits have been much discussed. We therefore wish to make our mazes fun 

for the students to solve. 

 

This goal is somewhat solved through the use of mazes themselves, as we believe that the 

art of solving a maze is itself fun for the students. Other ways we have attempted to make 

solving the maze fun is through the use of bright graphic and sprite-art themes, which 

mimic video games. Anecdotally, we have found that students quite enjoy these video 

game connections.  
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3.4. THE GUI AND SIMULATOR 

Two online systems comprise the core of the Genost software. These systems are the GUI 

and the simulator. The GUI refers to the software with which students develop their 

algorithm; the simulator refers to the software with which they can test the algorithm in a 

virtual world. Both of these systems are web-based. 

 

3.4.1. GUI Description 

The GUI is a Microsoft Silverlight29 program and may be seen in Figure 12 below. It 

consists of a number of major parts, each of which we will briefly describe.  

 

- The Canvas 

The “canvas” is the center part of the Genost GUI, and is where code blocks are 

dropped to assemble an algorithm. Users can drag the blocks from the block 

panels to the left to insert new blocks, or they can drag blocks from inside the 

canvas to new positions to rearrange them. 

 

- The Block Panels 

The two panels on the left containing the grouped code blocks are the Block 

Panels. The top one, the Robot Functions panel, contains blocks related to the 

robot’s actions; the bottom one, the Program Structures panel, contains blocks 

related to the general programming structures such as Loops or Ifs. 

                                                           
29 http://www.microsoft.com/silverlight/ 

http://www.microsoft.com/silverlight/
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These blocks are loaded in from an XML file, which may be customized to add 

new blocks or alter existing ones. An different XML file is loaded each time a 

new lesson is loaded. 

 

 

Figure 12. The Genost GUI 

 

- The Lesson Selection 

Beneath the Program Structures panel is a pair of black buttons and a “Current” 

link. These make up the Lesson Selection panel, which allows students to view 

information about, and change, their current lesson. A Lesson is part of a 

Curriculum, and contains a block definition file and a maze; when a lesson is 
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selected, these files are loaded into the GUI. Using the Previous and Next buttons, 

students may change to the previous or next Lesson in the Curriculum. Using the 

Current link, they may view an image of the current maze they are solving. 

 

- The Variables Panel 

Using the Variables panel on the right, students may define new variables of 

different types. Once a variable has been defined, it appears in the Variables 

panel. Users may use the Create button to create new variables, or the Delete 

button to get rid of old ones. 

  

- The Methods Panel 

The Methods panel, like the Variables panel, allows users to create new methods. 

When a method has been created, a block to call that method appears in the 

Methods panel, and a tab for that Method appears at the top of the screen. By 

clicking on the Method tab at the top of the screen, users can access the Methods 

Definition Screen. Users can Create and Delete methods using the black buttons 

at the top of the Methods panel. 

 

- The Trash Panel 

The bottom right corner of the GUI features the Trash panel. Users may drag 

blocks to the Trash to delete them, or they may click the Clear button to clear the 

current canvas. 
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- The Method Definition Screen 

When a method has been defined, clicking the tab at the top of the screen with 

that method’s name allows a user to access the Method Definition Screen. Doing 

so will change the canvas to the Method’s body instead of the Main canvas. On 

this screen users may define the details of a method’s parameters, return type and 

body. This screen may be seen in Figure 13. 

 

 

Figure 13. The Method Definition Screen in the Genost GUI 
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- The Control Panel 

The Control Panel is a series of five buttons beneath the canvas. These five 

buttons are: 

 

1. The Load Program button, which allows students to load a saved program 

from a file. 

2. The Save Program button, which outputs the current program to a file. 

3. The Run Simulator button, which will launch the Simulator to run the current 

program. 

4. The Send to Robot button, which will transmit the current program to a 

connected robot and make it ready to execute. 

5. The Execute on Robot button, which will send an execute command to a 

connected robot. When the robot is executing, this button turns into a Stop 

button to stop the robot. 

 

3.4.2. Simulator Description 

The Simulator is a Java applet that is launched when a student clicks the “Run Simulator” 

in the GUI. When this button is clicked, the GUI sends the code to the Simulator through 

a web service and opens a new window with the Simulator in it. The Simulator may be 

seen in Figure 14. 
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Figure 14. The Simulator 

 

The maze can be seen in the top part of the Simulator. This window is able to scroll if the 

maze becomes too large. 

 

Students click the “Execute” button to run the algorithm they have developed. The 

algorithm itself may be seen (in text code form) in the panel in the bottom left hand 

corner of the Simulator. Students may reset the Simulator at any time by pressing the 

“Reset” button. 

 

Other notable panels here include the bottom middle panel, which contains output and 

debug information from the simulator, and the bottom right panel, which provides an 

accurate readout of the simulated robot’s sensor data. 
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3.4.3. GUI and Simulator Design 

The GUI and Simulator are vehicles for delivering the Objective G language and the 

virtual worlds and mazes – we have already discussed how these items teach 

computational thinking in Sections 3.2 and 3.3. Therefore, in discussing the design of the 

GUI and simulator we will focus on their technical design goals instead of any 

educational design goals, since the latter have already been discussed in the two 

mentioned sections. 

 

3.4.3.1. Goal 1: Clear, Informative, Intuitive Design 

We want our software interfaces to be clean, easy to understand and easy to use. We want 

these interfaces to provide all the information that a student needs, and none that they do 

not. We want students to be able to figure out how to use the software without too much 

trouble. Above all, we do not want the interface to be confusing. This is, of course, 

justified by T1, Ease of Use, as well as general aesthetics and common sense. 

 

We have attempted to implement this by using a clean design, and making good use of 

grouping. For example, the various Genost code blocks are grouped in the GUI between 

two panels – one for general programming blocks, and one for robot-specific blocks. The 

blocks in these panels are grouped yet again by common theme – for example, the Loop 

For and Loop Until blocks are grouped under a single Loop header. These headers are 

collapsible so learners need only see the blocks they are presently concerned with. In this 

way, the block grouping produces not only a clean interface, but also an informative 

hierarchy. 
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Just as with Objective G, we have attempted to use clear English labeling of all parts of 

the GUI. This labeling serves both to inform and to prevent confusion. We try further to 

prevent confusion by separating the blocks by different colors. 

 

In the Simulator, we have tried to maintain a clean design, but have also presented 

information where needed. For example, the sonar sensor output, and the simulator debug 

console, are both present in order to give students information about the state of the 

simulated robot, and the algorithm’s execution. 

 

We chose to run the simulator in a separate window from the GUI, so that students could 

have both windows open at the same time. This allows students to follow along with their 

algorithm as the robot runs it, thereby “pairing” the robot movement and the code 

execution, a goal explicitly stated in IG2. Currently the GUI does not explicitly highlight 

code blocks as they are executed, an item we noted would be beneficial; we hope to 

implement this feature sometime in the future. 

 

Ultimately, this goal is a matter of aesthetics, but we believe the decisions that we have 

made have resulted in a clean and easy to understand interface. 

 

3.4.3.2. Goal 2: Adaptability and Customizability 

We designed the GUI and simulator to run in the web browser with almost no 

prerequisites or requirements. All that is required to run these items are the Java and 

Silverlight browser plugins, which are very commonly installed and are free to use. This 
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makes Genost highly adaptable, a goal described in T3, as it can be used on any 

computer, in any lab – it requires no specialized software or equipment. This design also 

helps implement T1, ease of use, as teachers and students need not deal with advanced 

technical complexity to set up and use the software. 

 

Furthermore, as described above, both the Objective G language and the Mazes are 

designed to be customizable. In order to take advantage of that, the GUI and the 

simulator are designed to be customizable as well. Both the code blocks in the GUI and 

the maze in the Simulator are customizable. These items are defined in XML files and are 

loaded into the software when needed. New mazes to teach new computational thinking 

skills can be easily created using a maze development kit that we have developed; new 

code blocks may be created by adding new XML to the block definition file. This has 

allowed us to easily develop a curriculum to test, and it will allow easy development of 

new lessons in the future. This goal of customizability is directly stated in T3; it also 

helps us with T4, the goal of teaching computational thinking, as the customizability of 

the system allows us to try many ways of teaching the various computational thinking 

skills to find those that work the best. 

 

3.4.3.3. Goal 3: Management Website Integration 

The Management Website, as its name implies, manages the Genost system. The most 

visible way that this management takes place is by sending data to, and receiving data 

from, the GUI and simulator. The management website allows teachers to define student 

logins, which the students actually use to access the GUI. Once logged in, the 



 

 
 

 

155 

management website sends lesson information to the GUI for the student to iterate 

through. The actual lessons, which contain the mazes and code block definitions 

described in the previous section on customization, are hosted on the management 

website and are sent to the GUI and simulator when needed. Finally, the GUI and 

software send data about the student’s performance and interaction with Genost back to 

the management website for teachers to peruse. 

 

The integration between the management website and the software make this software far 

easier for teachers to use in teaching a class, which therefore serves T1. This feature also 

allows the customization we have built into the software to actually be used effectively, 

and therefore this feature also serves T3. 

 

3.4.4. GUI and Simulator Technology 

We have described above the visual and functional design goals for the GUI and 

simulator. In this subsection we will describe the actual technology that powers the GUI 

and the simulator. We will describe the technology that powers the GUI and simulator 

individually, but the way in which these two disparate systems communicate with one 

another is, in our opinion, the more interesting and novel technology. We will briefly 

describe this method of communication now. 

 

The main reason for communication between the GUI and the simulator is to allow 

transfer of the student-developed algorithm from the GUI to the simulator for execution; 

the algorithm itself must be sent, along with information about what environment (i.e. the 
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maze) the algorithm ought to be executed in. This is accomplished by first transforming 

the graphical GUI algorithm into text code and sending it, via RESTful web service, to 

the simulator. RESTful services are also used to allow the simulator and GUI to 

communicate with the management website. The fact that these three different systems – 

written in three different languages – can communicate with each other via the REST 

protocol is a testament to the language-independence of the service-oriented 

programming paradigm (Yinong Chen, 2014). 

 

In the subsections below we will describe the GUI and Simulator systems individually in 

some depth. We will also more deeply describe the technology that facilitates the 

RESTful transfer of the algorithm from GUI to simulator as described in the previous 

paragraph. We will finish with a discussion of some of the technical challenges we faced 

in implementing these items, and how they were overcome. 

 

3.4.4.1. GUI Technology 

The GUI, as mentioned previously, is built in Microsoft Silverlight. Silverlight is a plugin 

for web browsers that is powered by the .NET framework, and enables the development 

of rich applications such as Genost. Silverlight features a robust drag and drop API that 

was used in the Genost GUI to enable the dragging of blocks back and forth between the 

various sockets, panels and canvases. C# is the language used in all .NET frameworks, 

Silverlight included, and hence it is the language that the Genost GUI was built in. The  
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use of Silverlight allows the GUI to run across all operating systems and in any browser 

(so long as it implements a Silverlight plugin), which makes the software very widely 

usable. 

 

Above, we have described the ability of the GUI to be customized. All programming 

blocks that may be manipulated within the GUI are loaded and defined at runtime. These 

blocks are defined in a “toolbox” XML file that contains a definition for each block. Each 

block definition includes the block name, block color, block type, as well as 

specifications for where the block may be placed, whether the block has any sockets, and 

whether it has a body, among other things. 
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Figure 15: Sample Toolbox Definition XML 

The toolbox file defines all the block interactions that are capable within the GUI. This 

fact allows us very precise control over what kind of algorithm a student may build 

within a single lesson. 

 

The GUI utilizes many RESTful services to communicate with the management website. 

When a student first accesses the GUI, he is asked to enter his username and password. 

When the student clicks the “login” button after entering this login information, these 

credentials are sent to the management website via a RESTful call. The management 

website validates the student’s username and password and, if they are valid, returns the 

ID of the current lesson the student is working on. The GUI may then call other RESTful 

services, using the lesson ID as a key, to load up the toolbox and other information 

necessary for configuring the GUI. 

 

After a student has used the drag-and-drop functions of the GUI to build an algorithm, the 

student may send it to the simulator (or robot). When the student chooses to test his 

algorithm by sending it to one of these systems, the GUI first transforms the graphical 

algorithm it into text code. The language that we translate into is a formal, textual version 

of Objective G. A sample of the formal Objective G text code may be seen in Figure 16. 

 

This algorithm, once transformed into text, is transmitted to the Simulator or Robot. The 

process by which this transfer is performed will also be discussed in Section 3.4.4.4. 
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Figure 16. An Objective G algorithm written in formal text code 

 

3.4.4.2. Simulator Technology 

The Simulator is built in Java, and runs as a Java applet. Just like the GUI, the Simulator 

applet runs in any browser and on any operating system, so long the Java plugin is 

installed. We used Java’s Swing library to power the graphics in the mazes. Each 

individual graphical item in the maze is defined by its own class. Intelligent use of object-

oriented concepts such as inheritance and encapsulation allow us to distribute the 

behavior of the items within the maze (the obstacles, the coins, and most importantly the 

robot) across several different classes. 

 

When starting the simulator, the actual maze is loaded using, once again, an XML file 

that is retrieved via a RESTful service from the management website. The maze XML 

file describes the position, type, and graphic of each individual item within the maze, as 

well as global settings such as the maze goal. The images themselves are loaded via 

REST from the management website as well. In this way the actual Simulator applet 

contains no local XML or image files that must be referenced. 
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Figure 17. The Simulator classes 

 

In addition to loading the maze at startup, the actual algorithm is loaded at startup as well 

via REST. In order to execute the algorithm, we send the text code to another Java 

executable that runs within the simulator which we call the “interpreter”. The interpreter 

will be described in the next section. 
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Figure 18. Snippet of XML from a maze definition file 

 

The Genost simulator is heavily inspired by the “eRobotic” simulator30, also developed at 

ASU, which also features a robot navigating a 2D maze. This simulator was created to 

test the Robot as a Service (RaaS) paradigm (which will be described further in Section  

                                                           
30 The simulator may be viewed at http://venus.eas.asu.edu/WSRepository/eRobotic/; a screenshot of the 
simulator may be seen in (Chen Y. H., 2013). 

http://venus.eas.asu.edu/WSRepository/eRobotic/
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3.5) and does not allow the easy creation and simulation of arbitrary algorithms. 

However, its physical appearance and robot design are roughly similar (Chen Y. H., 

2013). 

 

3.4.4.3. Interpreter Technology 

The interpretation and execution of the student algorithm is performed by the Genost 

Interpreter. The Interpreter is a Java package which must be implemented by another 

program, such as the Simulator or the Robot core code. The Interpreter defines many 

events which the implementing system must create handlers for; these handlers are then 

called by the Interpreter as needed when it executes an input algorithm. 

 

Like the Simulator, the Interpreter is defined in a highly modular way and makes deep 

use of object-oriented inheritance and other concepts. Each programming structure 

defined in the Objective G design is implemented as a class with three methods: a 

constructor to parse the text code of the structure and turn it into an object, a validate 

function to ensure there are no syntax errors in the structure instance, and an execute 

function that actually executes the structure when appropriate. The class tree for the 

Interpreter can be seen in Figure 19 (not all classes are visible). 

 

When the Interpreter receives a text algorithm as input, it immediately begins parsing it 

line by line. As the Interpreter parses it builds an object tree, turning textual 

representations of the various program structures that make up the algorithm into objects 

which may be validated and executed. The parsing is done using a large recursive loop 
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which creates, in essence, a very large linked-list with the first line of the algorithm at its 

head. Any typos or syntax errors in the algorithm are identified at this stage; if such a 

mistake is found, a Java error is thrown from the Interpreter to the system which 

implements it. 

 

 

Figure 19. The package structure for the Interpreter 
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At the end of the parsing step, the algorithm has been transformed into a large linked-list 

containing program structure objects. This list is recursively validated by calling the 

validation function of each object in the list, starting at the head. The validation process 

checks for errors that are not syntactically incorrect but violate the defined rules of the 

language (such as, for example, attempting to loop for -2 times). If a violation is found, 

an error is thrown to the implementing system to handle. The validation step also handles 

setting up any required class members in the program structure objects that could not be 

set up during the parsing step. For example, a reference to the line of code immediately 

following the end of an If statement body is found and placed in the If statement object 

during the validation step. 

 

Once validation has been completed, the algorithm is executed by recursively calling the 

execution functions of the objects in the list, again starting from the head. Because the 

object list was built when parsing the text algorithm line-by-line, top to bottom, the list is 

ordered in the exact same way as the text algorithm, and hence the object execution 

functions are guaranteed to run in the right order. The execution function for a program 

structure performs the activity that the structure itself would do in the algorithm – for 

example, the Loop For execution function calls the execution function of its associated 

Body object for the specified number of times. The basic structure of a program structure 

class containing the constructor, validation function and execution function can be seen 

in Figure 20. 
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Of particular interest are the special program structure classes that represent actions – for 

example, the Drive or Turn actions. Because the Interpreter is meant to be implemented 

inside of a system like the Simulator or the Robot, when executing one of these actions 

the Interpreter simply throws an event to its parent system. The implementing Simulator 

(or physical robot) must catch that event and perform the appropriate action (driving, 

turning, etc.) accordingly. The Interpreter is built in a general fashion – all actions that it 

can call are defined in their own classes, and any new action may be defined simply by 

creating a new class that inherits the ExtMethod class. The actions that the Interpreter 

implements, and the code of one particular action, may be seen in Figure 21. Note that 

not every external method we have defined in the interpreter is actually used in the GUI. 

 

The general, customizable nature of the Interpreter means that it can be implemented by 

any program, so long as the proper event handlers are defined for it. This means that it 

can be used to write algorithms to control other things than robots driving in mazes – 

indeed, it could be repurposed to a completely different goal simply by changing the 

action methods. More broadly, any change in the Objective G language could easily be 

affected simply by rewriting the appropriate classes – a whole new program structure 

could be added just by adding in a new class. 

 



 

 
 

 

166 

 

Figure 20. A snippet of code showing the Loop Until class and its implemented functions. 
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Figure 21. The external methods implemented in Genost, and the code of one of these 

external methods 

 

3.4.4.4. Communication Between the Systems 

One of the challenges in creating this system was creating a way for the GUI and 

simulator to communicate when both of these software are running in the browser. Not 

only were we required to find a way to “push” the algorithm from GUI to simulator, but 

we also must allow an arbitrary number of users to do this at the same time. 

 

The classic HTTP model is a “pull” model – user agents request must explicitly 

information from the web to be downloaded and displayed in their browser. Remote 

systems are not able to, on their own initiative, push data to a browser, except in systems 

that are specifically designed to allow this. For this reason, we could not simply have the 

GUI software send the algorithm to the simulator software when both were running in the 

browser. The simulator had to, in some way, request it – a difficult thing to do when the 

simulator has no way of knowing that an algorithm even exists, much less is ready to be 

transferred. 
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In order to transfer the algorithm from the GUI to the simulator, the following procedure 

was defined. We programmed the GUI to, when sending an algorithm, first create a 

globally unique identifier (GUID), associate it with the algorithm code, and send both the 

algorithm and GUID to the Genost web server storage using a RESTful service. The GUI 

then opens up the simulator and, in doing so, includes the GUID as a URL parameter in 

the simulator URL. Once the simulator loads, it takes the GUID from its URL and calls 

another RESTful service, sending the GUID as input and receiving the associated 

algorithm in return. This solution both allows the algorithm to be transferred from GUI to 

server, and allows multiple users to run this at once, since the GUID is, by definition, 

globally unique. This solves the problem of communication between the two systems. 

 

3.4.4.5. Technical Challenges 

Many of the innovations discussed above were developed in response to technical 

challenges faced during the Genost development. For example, the method of sending the 

algorithm from GUI to simulator was built in response to the limitations of HTTP 

communications. 

 

The GUI / simulator communication difficulty is a specific instance of the general 

challenge of having three different systems, all running on the web, communicating with 

each other. Not only are these three systems all running in separate environments, they 

are written in different languages. The challenge of having these three systems  
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synchronize and communicate would have been insurmountable without the use of 

service-oriented principles, and we believe that our intelligent use of SOA is a strength 

and innovation of our system. 

 

The generality and customizability of our systems was also a challenge to implement, but 

was ultimately worth it due to our ability to easily reuse and extend the software. Once 

again this customizability is heavily powered by SOA principles (in the case of the GUI 

and simulator loading in XML files to configure themselves) but also by object-oriented 

principles (in the case of the high generality of the Interpreter). 

 

A final difficulty worth mentioning is the complicated security issues that the GUI and 

simulator had to navigate. As these items run in a web browser, an inherently unsafe 

medium, our software had to contend with security provisions implemented by the 

browser and, in the case of the Java software, the language itself. We ultimately were 

required to purchase a Java security certificate to allow us to bypass the security 

protections in the browser. 

 

3.5. THE ROBOT 

In addition to allowing students to run their algorithm on the simulated robot in the 

Simulator, our system also features a physical robot prototype which students may send 

their algorithms to. 
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The robot may be seen below in Figure 22. It has all the same features that the simulated 

robot does – namely, the ability to drive and turn, sonar sensors on all four sides, and a 

compass sensor. 

 

 

Figure 22. The Robot. Photo credit Jessica Hochreiter / ASU. 

 

Currently the robot is powered by a full onboard computer in the form of an Intel Bay 

Trail SOC31. It connects to the internet wirelessly. When the robot is turned on, it 

immediately begins waiting for a program to be sent to it from the GUI. When the 

program is sent, the robot receives it, parses it and sets itself up to run the program. After 

receiving an “execute” signal from the GUI, the robot runs the program until it receives a 

Stop signal by the GUI. The communication described here is powered entirely by 

RESTful web services. 

                                                           
31 http://ark.intel.com/products/codename/55844/Bay-Trail 

http://ark.intel.com/products/codename/55844/Bay-Trail


 

 
 

 

171 

 

The robot was built to be as low cost as possible, and costs less than $500. However, it 

should also be noted that the robot does not currently implement every feature that we 

planned for. 

 

The robot may be used as the needs of the curriculum dictate – however, in our 

conception of the classroom use, the robot would be shared between students, who would 

use it to execute finalized algorithms which were developed using the virtual world. In 

this way a single robot could be shared between an entire classroom, and could be used as 

a “reward” for developing a successful algorithm.  

 

3.5.1. Robot Design 

The primary reasons for adding the robot to the Genost system was for both the fun that 

students have when working with robots  (which therefore brings increased motivation, 

attention, and learning success), and for the execution model that a robot provides, which 

is more concrete than a virtual world. These benefits are discussed more in-depth in IG3. 

 

In this section we will discuss our goals for the robot’s design. We were not able to 

implement all of these goals in the final product – we will discuss the reason for this at 

the end of this section. 
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3.5.1.1. Goal 1: Focus on Computational Thinking (Not Engineering) 

Our primary focus for Genost is teaching computational thinking (T4). As discussed in 

IG3, many systems that use robots tend to involve the engineering or building of the 

robots, to the detriment of the computer science education. For this reason, we want to set 

up our system such that computational thinking education is primary, and any other 

educational focus, such as engineering, is secondary. 

 

We implemented this goal by creating a single prebuilt robot to give to the students 

instead of attempting to design a “kit” that the students will build. In educational use, 

students would use the prebuilt robot from Day 1, and would not build their own. The 

robot, then, serves solely as a tool to execute algorithms (and thereby teach 

computational thinking skills), instead of a focus in itself. 

 

3.5.1.2. Goal 2: Inexpensive 

We want our robot to be available to as many classrooms as possible – a goal discussed 

explicitly in IG3 and implied in T3 (adaptability). Just as our software should be 

adaptable, so should the system as a whole, and that means we should be able to make it 

work in schools of different types and means. One of the most important ways to do this 

is by making the robot inexpensive. 

 

When designing and building our robot we attempted to make it as inexpensive to build 

as we could. Low cost parts were chosen, and we built our own robot chassis from basic 

materials instead of purchasing an expensive designer chassis. Ultimately, we were able 
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to build a fully functional robot that implements all the functions that the simulated robot 

does for less than $500USD. This is roughly one and a half times more expensive than a 

single Lego Mindstorms robot32, and may serve an entire classroom. 

 

Notably, our robot may actually be more expensive than it necessarily needs to be – we 

included a full SOC on the robot, which receives and executes the algorithm. A smaller 

embedded system which receives commands from a remote computer executing the 

algorithm would be less expensive, and is more in line with IG3. The reasons for not 

implementing this will be described further in Sections 3.5.1.5 and 3.5.2. 

 

3.5.1.3. Goal 3: Robustness 

Genost is an introductory educational system, meant to be used in a classroom with 

students, potentially young students. For this reason, the robot needs to be tough enough 

to survive “in the field”. This is specifically discussed in IG3, and is somewhat in line 

with T3. 

 

Robustness was an important, though not primary, goal for the robot we developed – we 

attempted to implement it by giving it a flexible body to absorb small shocks, as opposed 

to the more brittle body that the previous version of the robot had. This said, it is unclear 

to what degree our robot could actually survive a classroom environment, as we will 

discuss more in Section 3.5.2. In future robot development, robustness would likely be 

emphasized to a greater degree. 

                                                           
32 At time of writing, the Lego Mindstorms EV3 Model 31313 retails for $350USD. 
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3.5.1.4. Goal 4: Same as Simulated Robot 

We want our actual robot to respond exactly the same to the commands of an algorithm 

as our simulated robot. They should move in the same way, and use the same units in 

their sensor values, as far as possible. The physical robot and the simulated robot are 

supposed to be equivalent and interchangeable, so that a classroom using one will not be 

disadvantaged to a classroom using another. 

 

To some degree this is also motivated by T1 – we do not want students writing an 

algorithm in the simulator to have to rewrite their code to make it work on the robot. 

 

There is little to say in regards to our implementation of this. Currently the as robot has 

all the same capabilities as the simulated robot does, and will respond in the same way to 

an algorithm. However, it does not currently use the same units as the simulated robot 

does in its sensors. 

 

3.5.1.5. Goal 5: Remote Code Execution 

In IG3 we detailed the benefits of remote code execution - that is, the feature such that an 

algorithm executes on a desktop computer, and each command (drive, turn, etc.) is 

transmitted to the robot when necessary. These benefits include simpler (and therefore 

less expensive) robots, a benefit mentioned in Section 3.5.1.2; and more importantly, this 

allows students to debug their algorithm or step through it as it executes on the robot, 

assisting with teaching computational thinking, particularly CG1 and CG4. 
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There are considerable technical difficulties with this feature, primarily with ensuring that 

the commands reliably transmit to the robot in time. Additionally, because our robot uses 

sensors, the technology must support bidirectional transmitting. Possible ways of doing 

this include HTTP-based web services, or local wireless in the form of Bluetooth or 

others options. We initially attempted to implement this using the web services approach 

but found it far too slow to be useful. For this reason, we chose not to implement this goal 

in our current testing robot. Future development will attempt to implement this goal in an 

efficient manner. 

 

3.5.2. Departures from Robot Design 

The goals listed above are designed to produce an effective, fun, inexpensive and 

adaptable robot. Unfortunately, we were not able to implement all of these goals, and our 

robot currently serves as more of an effective testbed for executing Genost code than as a 

production robot that could be used in an actual classroom. 

 

As described above, the robot is not terribly robust, does not run exactly the same way as 

the simulated robot, and does not implement remote code execution capabilities. It also is 

not consistent in its driving, turning, and sensor readings. The communication between 

the robot and the GUI is functional but not always reliable, and various ease-of-use 

features have not been implemented. 
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As mentioned above, we wish to implement a robot due to its benefits in motivation and 

in providing students with a concrete model of execution. Our robot currently proves that 

it can interface with the GUI, receive code, and execute it. The features that are not 

implemented are benefits ancillary to the main goal of the robot. Because these ancillary 

benefits are not present, we did not choose to use our robot in our tests or curriculum, as 

will be described in the section below. However, by adding the features we have 

described, we believe that an effective educational robot could be created and 

immediately integrated into the curriculum. 

 

3.5.3. Robot Technology 

In the previous subsection we described our intended robot design, as well as the ways 

that we departed from this. In this section we will describe the technology that went into 

building the robot. We will not discuss the proposed technology for features that were not 

actually included in our robot. This section will be divided into three subsections: the 

robot hardware, the robot software, and the technical challenges we faced in building the 

robot. 

 

3.5.3.1. Robot Hardware 

In this section we will describe the physical hardware that was used to build the robot. 

 

The main computer on the robot is an embedded Intel architecture (IA) platform powered 

by an Intel Bay Trail SOC. The actual project board is a custom board created by Intel 
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and used for their ESDC 2014 competition33. Because we participated in this competition 

during the development of this thesis, we were able to utilize the project board. Aside 

from the Bay Trail processor, the board contains various input / output ports, GPIO pins 

and an SD reader for long-term storage. The board itself, and its standoff mounts and 

protective plastic covers, measures roughly 5.5” x 5” x 1.5”. 

 

An Anker laptop battery was used to power the Bay Trail board. The battery was chosen 

for its ability to self-regulate its output, adjusting the voltage between three separate 

settings and its current as needed. The advanced laptop battery also allowed us to charge 

the battery even while it is providing power to the computer without risk of damage to 

either the battery or the board. 

 

The robot’s drive system consisted of two Parallax high-speed bidirectional 360 degree 

motors, used to power the rear two wheels of the robot. The rear wheels themselves were 

made of rubber, chosen for grip. The front two wheels were special Vex omni-wheels34, 

which contain small rollers along the wheel circumference which turn perpendicular to 

the main wheel axle. This allows the omni-wheels to “strafe”, or in this situation, allowed 

the two rear wheels to turn the robot without resistance from the front wheels. A Parallax 

“Propeller” servo controller was used to control the motors. A basic 7.2V hobby battery 

was used to power the motors. 

 

                                                           
33 https://software.intel.com/en-us/forums/2014-intel-cup-embedded-system-design-contest 
34 http://www.vexrobotics.com/omni-wheels.html 

https://software.intel.com/en-us/forums/2014-intel-cup-embedded-system-design-contest
http://www.vexrobotics.com/omni-wheels.html
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The robot’s sensor system consisted of two types of sensors: sonar sensors and a compass 

sensor. Three Phidgets sonar sensors were utilized, one pointing to the robot’s front, and 

one on each side. A Phidgets sensor interface board was used to interface with and 

control the sonar sensors. This sensor board connects to the main board via USB. The 

compass sensor was also made by Phidgets, and connects directly to the main board via 

USB without the need for an intermediary interface board. All of these sensors received 

power through the USB connection and did not require their own external battery 

connection. 

 

The chassis of the robot consists of two polycarbonate sheets measuring 10” x 8” x 

0.093”. The two sheets were stacked and bolted together, and the various robot parts were 

attached.  The polycarbonate sheet was chosen as a basic material that was strong, 

flexible and easy to work with, while also quite inexpensive. 

 

The above hardware was identified and chosen over a semester-long prototyping process, 

and was preceded by an earlier prototype build which was built mostly to test out the 

motors. These parts were found to be the least expensive items that were still usable, 

reliable and robust enough for our design. 

 

3.5.3.2. Robot Software 

The operating system that is running on the robot’s Bay Trail mainboard is Ubuntu, 

chosen to assist us in easy development while still providing a relatively small memory 

footprint. The actual software that we developed to run the robot is divided up into 
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different “modules”, all of which are written in Java. The modules are: the bootstrapper 

module, the networking module, the robot core, and the hardware drivers. Each of these 

modules are invoked at certain points in the operating cycle of the robot. We will discuss 

the technology involved with each of these modules in the order that they are invoked. 

The bootstrapper module is responsible for configuring the robot and loading up all other 

modules when the robot first boots up. It is automatically run at computer boot time and 

loads up the networking module and robot core for further processing. As the name 

indicates, its main purpose is bootstrapping the robot. 

 

The networking module is started by the bootstrapper and, once it is started, connects to 

the internet wirelessly. It then begins polling a RESTful service defined on the 

management website to see if it an algorithm is ready for the robot to execute. Once the 

algorithm is ready, the networking module downloads it and sends it to the robot core for 

processing. It then begins polling for the command to execute. Once it receives this 

command the module instructs the robot core to begin executing, and starts polling once 

more for the “stop” command. Once it receives this stop command, the module stops the 

robot, and starts the polling process over, polling for a new algorithm. 

 

The robot core is made up of the interpreter, and the drivers for the motors, sonar sensors 

and compass sensor. The interpreter that is used here is exact same one that is used in the 

simulator (described in Section 3.4.4.3) – just as the interpreter’s event handlers are 

implemented in the simulator to allow the interpreter to control the simulated robot, so 

the physical robot’s code implements event handlers to control the real robot. When the 
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networking module sends the algorithm to the robot core and commands it to execute, the 

interpreter is started up with the algorithm as input. The execution proceeds just as it does 

with the simulator. 

 

In order to send commands to the motors and retrieve data from the sensors, we required 

drivers to interface with the hardware. The Phidgets sonar sensors and compass sensor 

have prepackaged drivers that allow easy communication, but the motors did not. 

Communication with the “Propeller” servo controller requires the use of a special 

language called “Spin” (Scanlan, 2007) – for this reason we wrote a translator driver to 

translate Java commands into Spin commands. 

 

3.5.3.3. Technical Challenges 

Many challenges were encountered in developing the robot, a handful of which are 

worthy of mention. The main challenge that we will discuss has to do with the way in 

which commands are sent to the robot. As described in Section 3.5.1.5, a major goal of 

our system was to run the interpreter in the browser or on a local computer, instead of on 

the robot itself; this would require us to relay robot action commands like “drive” or 

“turn” to the robot in some manner. 

 

In order to implement this we initially pursued the Robot as a Service (RaaS) SOA 

model, a paradigm described by Chen et al in (Chen Y. Z.-A., 2010) and (Chen Y. H., 

2013). The RaaS methodology allows a robot to be controlled through services hosted on 

the robot itself – for example, the robot’s motors could be controlled via a motor service, 
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and the sonars could be accessed through a sonar service. This is an admirable paradigm 

and would fit our needs very well, allowing us to simply send HTTP packets to the robot  

with our commands as they were issued by the interpreter. Using RaaS would also allow 

us to avoid requiring additional hardware (like IR sensors or Bluetooth) to communicate 

with the robot. 

 

Past experiments have verified the validity of the RaaS paradigm. In 2010 Chen, Du and 

García-Acosta implemented some aspects of the RaaS paradigm in Microsoft VPL, 

utilizing its DSS service framework (Chen Y. Z.-A., 2010); in 2013 Chen and Hu created 

a full prototype of the RaaS paradigm, in which a robot hosted multiple services (Chen Y. 

H., 2013). Each service represented an instruction to move or turn the robot in a certain 

direction; as a test, a website was created containing buttons that called the services when 

pushed. These experiments prove the technical possibility of the RaaS paradigm. 

 

We attempted to use the RaaS paradigm to control the Genost robot. Setting up the robot 

services themselves was a relatively simple task, but connecting to them was a difficult 

challenge. The robot, because it utilizes dynamically assigned IPs when connected to the 

internet, does not have a URL or other static identifier. If the IP address of the robot is 

known, then we can send messages to it; the problem is knowing the IP address, which is 

not known until the robot is turned on in the classroom. A possible solution is to have the 

teacher using the robot look up and enter the robot’s current IP address on the 

management website, from which it could be utilized by the robot services; but we cannot 
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rely on teachers being technically savvy enough to accomplish this step, and anyways it 

is quite pedantic. It would be far better if this could be accomplished automatically. 

 

A step was made towards solving this problem by having the networking module look up 

its own IP address and send it to the Genost server via a RESTful service. Once sent, the 

IP could then be utilized by the interpreter to connect to the robot. However, if the robot 

was inside of a NAT, then this method would only work so long as the interpreter itself 

was also running inside of that NAT – which, if the interpreter is running in the browser 

(i.e. off a remote Genost server), will never be the case. This difficulty was never entirely 

resolved, due to the result of the challenge described next. 

 

It was found that, after setting up the SOA robot such that it could run within a NAT, 

communication between the interpreter and the robot was excruciatingly slow. HTTP is, 

by its design, a “best effort” policy, so it is not surprising that the packets had a round trip 

time nearly on the order of seconds. This was far too slow for robot operations. Consider 

the scenario in which the robot is told to drive forward until a sonar sensor sees a wall 

five inches away – by the time the interpreter has queried the sonar sensor, and the sonar 

sensor has responded with the sensor value, the robot had already had at least a second or 

two to continue driving, and may have already slammed into the wall. Due to the slow 

response time, and the difficulty in connecting to the robot from the Genost server, the 

RaaS paradigm was mostly abandoned, and the current method of running the interpreter 

on the robot itself was adopted. 
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Abandoning RaaS does not mean abandoning the use of HTTP RESTful services, as can 

be seen with our method of polling the RESTful services to retrieve the algorithm and 

execute command from the server. While this does work, it is far from an ideal solution 

since it involves polling, a non-ideal solution in any circumstance. We wish to maintain 

our use of HTTP due to the aforementioned benefits of universality and generality that it 

brings, but since we cannot “push” to the robot polling was judged an acceptable 

compromise. All this said, the RaaS paradigm is a valuable one and we believe with 

additional time and funding the identified problems could be overcome.  

 

Another challenge that was not ever fully overcome involves creating a way to connect 

the robot to a wireless network. If the robot is to be run under arbitrary wireless networks 

in a classroom, the teacher would need a way to enter the network credentials into the 

robot. Our goal was to create a program that would run when the robot was connected to 

a desktop computer via USB; this program would allow the teacher to enter the wireless 

credentials, which would be saved on the robot. We were never able to create this 

program due to time constraints and technical difficulties. Currently the wireless 

credentials for ASU’s network are hardcoded onto the robot, so the robot will function 

anywhere on ASU campus. Configuring the robot to work outside of campus on a 

different network would require connecting the Bay Trail board to a monitor and mouse, 

and changing the hardcoded credentials, a method which is not at all acceptable or 

sustainable. This is a challenge that we hope to overcome in the future. 
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A final challenge worth mentioning is the simple difficulty in designing an inexpensive 

robot that can drive and turn accurately. Due to our goal of low cost, certain sacrifices 

had to be made in quality, and as a result our final robot does not drive perfectly straight, 

nor does it turn perfectly accurately. Early in the project we planned to implement 

external sensors to help track the rotation of the wheels and use this information as 

feedback to adjust the robot’s movement on the fly. While these sensors were bought and 

installed, we did not have the time to implement them into the code. We believe this 

challenge can be overcome with, as usual, more time for development. 

 

3.6. THE MANAGEMENT WEBSITE 

The Management Website or “Teacher Website” is a tool to manage the curricula, mazes, 

and student access for Genost. Genost is a highly customizable tool – the Management 

Website partially powers this customizability by hosting the content which Genost uses to 

configure itself. 

 

There are a handful of different data objects which are hosted on the Management 

Website. These are: Classes, Students, Curricula, Lessons, Mazes and Toolboxes. 

 

- Maze:  

A maze hosted on the Management Website is an XML file that, when loaded 

into the Simulator, defines the position of all the obstacles and coins in the maze, 

what graphics they will use, the initial position of the robot, and the goal of the 

maze. 
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- Toolbox: 

A toolbox hosted on the Management Website is an XML file that, when loaded 

into the GUI, defines what code blocks are available to the user and what those 

code blocks do.  

 

- Lesson: 

A Lesson is a structure hosted on the Management Website that references a 

particular Maze and a particular Toolbox. In other words, a Lesson links together 

a maze and the code blocks that the student will have access to in order to solve 

the maze. A Lesson is loaded into the GUI when the GUI is first started, and 

when students change the Lesson manually. 

 

- Curriculum:  

In context of the management website, a Curriculum is a linked series of 

Lessons, hosted as a data object on the Management website. Teachers or other 

managing users can define a Curriculum and set up which lessons they wish to be 

included in it, as well as specify the order that these lessons should proceed in. 

When a user on the GUI loads the “next” or “previous” lesson, it is the 
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Curriculum that is referenced to determine which lesson is in fact “next” or 

“previous”. 

 

 

 

- Students: 

All users who utilize Genost will have a Student account on the Management 

website, though only teachers and other managerial users will have access to the 

management content. Creating user accounts for each student allows us to track 

student activity – when interacting with the GUI, all students must first log into 

their Student account, and from then on their activity can be recorded, tracked and 

analyzed. 

 

- Class: 

A Class is a logical grouping of Student objects. A teacher may set up their Class 

to contain all their students, and then associate one or more Curricula with the 

Class. It is through the Class object that students access the Curricula, and 

therefore how they load in their lessons. The Class object also is where the 

various metrics, such as student completeness, are centered and reported. 

 

Figure 23 shows a screenshot of the management website’s Class report, which shows a 

list of lessons for the class, a list of students for the class, and a report showing which 

students have completed which mazes. In this way, the Management Website may serve 
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as both a customizing tool, allowing teachers to set up mazes and toolboxes, an 

organization tool, allowing teachers to set up classes and curricula, and as a reporting tool 

or gradebook, allowing teachers to see how their students are doing. 

  

3.6.1. Management Website Design 

The primary design goals of the management website are to be easy to use (T1) and to 

allow users to quickly and simply set up powerful customizations (T3). Furthermore, the 

feedback functionality supports T4 in a broader sense, as it will allow teachers and 

researchers to get feedback on their educational techniques, improve these techniques, 

and ultimately teach computational thinking education more effectively. 

 

The website itself is built using the Drupal35 content management system, and uses 

RESTful web services to communicate with the GUI, simulator and robot. Because this 

website is fairly simple, no more needs to be said about it. 

 

3.6.2. Management Website Technology 

As mentioned above, the management website was built from the Drupal CMS, which is 

written in PHP. Drupal is an extraordinarily flexible tool and this is why it was chosen for 

our management website. It also has a very active community which has developed many 

“modules” to extend the base CMS. Some of these modules, like Views36, have allowed 

                                                           
35 https://www.drupal.org/ 
 
36 https://www.drupal.org/project/views 
 

https://www.drupal.org/
https://www.drupal.org/project/views
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us to easily generate useful displays of student data, such as that seen in Figure 23. Other 

modules, like the Taxonomy module37, allow us to easily define, create and categorize 

large amounts of data; the Taxonomy module was used to store all the data collected on 

the student interaction with the software. 

                                                           
37 https://www.drupal.org/documentation/modules/taxonomy 
 

https://www.drupal.org/documentation/modules/taxonomy
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Figure 23. Screenshot of the Management Website 

 

One of Drupal’s very useful functions is the “menu hook” functionality38, which allows 

one to define an arbitrary URL and associate it with a custom function. The function may 

                                                           
38 https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_menu/7 

https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_menu/7
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be written in PHP and can therefore perform arbitrary activity, and can return any data to 

the system that requests the URL. In this way we could use easily define as many 

RESTful services as we needed and program them to do whatever we needed them to do.  

 

3.6.2.1. Technical Challenges 

The “menu hook” solution for defining the RESTful services was chosen only after trying 

many other solutions. One solution which is representative of the ones we tried is the 

Services module39, which allows the definition of RESTful services through the website 

front end. While this module is useful for creating certain types of services (mostly those 

that allow the creation, updating, and selection of Drupal content items or “nodes”) it 

does not allow us to define the more arbitrary, functional services that we needed. 

 

The “menu hook” solution was one of the last solutions tried due to its lack of support for 

creating the RESTful services – all relevant items had to be created by scratch when 

using the “menu hook”. However, after trying it we found that this did not require nearly 

as much effort as expected, and so this solution was the one we settled on. 

 

3.7. THE CURRICULUM 

As has been mentioned many times, the Genost system consists of two major parts: the 

software, and the curriculum. The previous sections have all dealt with various aspects of 

the software (or the hardware, in regards to the robot.) This section will focus entirely on  

                                                           
 
39 https://www.drupal.org/project/services 

https://www.drupal.org/project/services
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the other half of the Genost system, the curriculum. The software is a tool which has been 

designed to be maximally effective in teaching computational thinking skills – the 

curriculum, however, is where these skills are actually taught. 

 

As part of this thesis, we have designed a curriculum for both theoretical reasons (we 

wish to design not just the tool but also to explore its use) and practical reasons (we need 

a curriculum with which to test our system.) Another motivating factor in developing the 

curriculum is the benefits that pairing a curriculum with software bring, as discussed in 

IG4. 

 

3.7.1. Curriculum Overview 

The subject of our Genost curriculum is computational thinking, and we teach in two 

major ways: first, by introducing the fundamental programming structures (loops, if 

statements, variables, etc.) as general concepts (this covers CG1 and CG2) and second, 

by teaching the skills involved with analyzing a problem, breaking it down, and turning it 

into an algorithm. 

 

The curriculum is divided logically into four sections. These sections are each dedicated 

to introducing a different fundamental programming structure; the theme of algorithm 

design is dispersed throughout.  
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The four sections are: 

 

1. Actions: introduces the basic robot actions and procedural programming 

2. Loops: introduces the two Loops available in Genost, as well as basic algorithm 

design 

3. Waits: introduces the Wait statements, as well as generalized algorithm design 

4. Ifs: introduces the If statements and their various uses, and ties the concepts 

together. 

 

It should be noted that this curriculum does not include Variables or Function, even 

though the Objective G language does contain this functionality. We did not include these 

items because our curriculum, as it stands, is already very large, and we would not be 

able to effectively teach these large concepts with the little time we had to test. Future 

iterations of the curriculum will include sections for these concepts. 

 

Each of the four sections described above is divided up into multiple subsections. Each is 

focused on a subtopic of the overall section topic – for example, a subsection of the Loop 

section might focus on Loop For specifically. The subsections are themselves divided up 

into individual lessons – there are almost always four lessons per subsection, though 

occasionally there are more. Each lesson comprises a maze and a worksheet. The maze is 

designed to require use of the subsection topic to (easily) solve, and the worksheet is used 

to help the student solve the maze.  
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The worksheets usually contain questions that the students are asked to answer. The 

questions ask the student to think about the topics at hand, and usually involve breaking 

down a problem into subproblems, selecting solutions for the subproblems, and putting 

them back together to create a final algorithm. Example worksheets may be seen in 

Appendix C. 

 

The four lessons in a subsection follow a “fading” progression, an approach described by 

Atkinson that involves first teaching a topic through a complete example, then slowly 

working the student through examples of increasing incompleteness, until finally the 

students are asked to solve a full problem. Research on this fading technique has found it 

to be an effective method of knowledge transfer (Renkl, 2002). We “fade” through the 

use of four sequential lessons per topic, each of which are described below. 

 

The four lesson model is as follows: 

 

1. Initial Lecture: the first lesson is usually provided in the form of a lecture, which 

introduces the topic of the subsection. The general idea behind the topic is 

covered, as well as the need for the structure, and its uses. Each lecture also 

includes a worked example code exercise in which the instructor walks students 

through the development of an algorithm. The algorithm walkthrough focuses on 

the structure being taught; the instructor explains the development every step of 

the way, and the students follow along on their own computer. The focus of the 

initial lecture is introducing students to the concept. A review recently conducted 
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by Atkinson et al has concluded that this worked example method of teaching 

does provide real, flexible knowledge transfer (Atkinson, 2000); we are therefore 

confident that this method of introducing a topic will provide a solid foundation 

for students to work through the subsequent lessons. 

 

2. Guided Practice: the second lesson is provided through a handout worksheet. 

The worksheet serves as another worked example, as it walks students through the 

development of a second algorithm, which again features the programming 

structure being taught. The worksheet will involve basic questions that will walk 

the student through breaking down the problem and developing the algorithm. 

The focus of the guided practice is to build confidence in the new concept. 

 

3. Simple Exercise: in the third lesson the students are given a simple maze to solve 

that requires use of the topic structure. Usually, the simple exercise will involve 

some questions that will help the student break down the problem and develop the 

algorithm. The goal of the simple exercise is to test the student’s familiarly of the 

concept. 

 

4. Challenging Exercise: in the final lesson the student is given a more challenging 

maze to solve, and is given very little or no guidance in solving it. The student can 

use the skills he learned from the previous worksheets and his own creativity to 

solve the maze. The goal of the challenging exercise is to challenge the student’s 

mastery of the concept. 
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For most lessons, the subsection topic is taught through direct instruction. In some 

lessons we intentionally have the student to make errors, in order to illustrate a principle 

or show a common mistake, as well as how to recover from these errors. In other lessons 

we have the student solve a maze in an inefficient or difficult way, in order to illustrate 

the need for a new structure. Often a certain maze will be used multiple times throughout 

the curriculum – the first time it is used it will be solved inefficiently using early 

techniques, and later on it will be solved in a more efficient way using better techniques. 

 

It should be noted that this curriculum is designed to be used with the GUI and the virtual 

worlds in the simulator, and does not utilize the robot. We discussed our reasons for not 

using the robot in this curriculum in Section 3.5.2. 

 

3.7.2. Curriculum Topics 

This section will cover the different topics covered in the curriculum. We will cover each 

of the four sections and briefly describe the subsections within them. 

 

3.7.2.1. Section 1: Actions 

Section 1 is intended to introduce the basic operation of the Genost software, the 

definition of the Genost language, the Action blocks, Sockets and Parameters. A basic 

introduction to breaking down a problem and building an algorithm is provided. 
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Section 1 has two subsections: 

 

- Section 1.1: this subsection focuses on introducing the Drive Distance action, 

Sockets, and the Integer data block. It only has two lessons, both of which are 

lectures. 

 

- Section 1.2: this subsection focuses on introducing the concept of procedural 

code flow and the Turn Degrees action. Section 1.2 contains the standard four 

lessons, plus an additional challenging lecture to make five lessons total. 

 

3.7.2.2. Section 2: Loops 

Section 2 is focused on two major subjects: introducing the concept of loops, and fully 

introducing problem breakdown and algorithm design. In this section, the algorithm 

design steps are taught very mechanically – students are told to use the visual patterns in 

the maze to determine how an algorithm should be broken down, and the visual patterns 

are introduced as directly indicative of what processes and code blocks should be used to 

solve them. 

 

Section 2 has five subsections: 

 

- Section 2.1: this subsection introduces loops, and teaches the Loop For block. It 

also introduces the algorithm design process more fully than was covered in 

Section 1. It has the standard four lessons. 
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- Section 2.2: this subsection introduces the use of sequential Loop For blocks, and 

continues teaching the algorithm design processes. It also introduces the concept 

of setting up the system to run a loop – that is, positioning the robot in a certain 

way solely for the convenience of the loop. It has the standard four lessons. 

 

- Section 2.3: this subsection introduces the use of nesting with Loop Fors. 

“Looping loops” is introduced and integrated into the algorithm design process. 

Again, this has the standard four lessons. 

 

- Section 2.4: this subsection introduces the use of the Loop Until, which 

necessitates the introduction of Conditions. Using Loop Untils allows us to write 

general code that can solve multiple mazes, and techniques to do this are 

introduced. The four standard lessons are used. 

 

- Section 2.5: the final subsection combines Loop Until and Loop For and uses 

both sequential and nested loops. A technique is introduced that allows the robot 

to drive forward forward until a condition is met. The four standard lessons are 

used. 

 

3.7.2.3. Section 3: Wait Statements 

Section 3 introduces the Wait statements, which enhances the generality of code by 

allowing the robot to continuously perform an action until a certain condition is met. The 
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Drive and Turn blocks are introduced as separate concepts from Drive Distance and Turn 

Degrees. The difference between the algorithm’s execution and the robot’s movement is 

explored. This section has three subsections. 

 

- Section 3.1: the first section in Section 3 introduces the Wait Until block, the 

Drive block, and the difference between code execution and robot movement. 

Algorithm design is explored in greater detail here, with an eye towards 

generality. This section has the standard four lessons. 

 

- Section 3.2: this section combines Wait Untils and Loops, and a more general 

form of algorithm analysis is introduced. This newer form of algorithm design 

moves away from the mechanical form used in Section 2 to a more creative form. 

This section has the standard four lessons. 

 

- Section 3.3: this section teaches Wait For, and continues teaching the difference 

between algorithm execution and robot movement. Wait Fors and Wait Untils are 

combined to allow greater and safer generality. This section has the standard four 

lessons. 

 

3.7.2.4. Section 4: If Statements 

Section 4, the final section, introduces If statements and the concept of the algorithm 

executing differently depending on the circumstances. Ifs, Else Ifs and Elses are all 

introduced, and at the very end of Section 4, Logical AND and OR are introduced. 
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Algorithm design is taught in its fullest and most creative method. This section has four 

subsections. 

 

- Section 4.1: this section introduces the If block, which is introduced in the 

context of executing “additional actions” in certain circumstances. Algorithm 

design is once again tweaked to accommodate this new and more general 

possibility. The standard four lessons are used here. 

 

- Section 4.2: this section introduces the Else block, and an If paired with an Else is 

described as allowing the program to make a decision or choice with two 

possibilities. This allows for the creation of very general algorithms. The standard 

four lessons are used here. 

 

- Section 4.3: this section introduces the Else If block, and this block is described 

as allowing the program to make choices with 3+ outcomes. The method of 

reducing a single choice between n options to a series of choices between two 

options is described. The standard four lessons are used here. 

 

- Section 4.4: the AND / OR logical blocks are introduced along with complex 

logical conditions. Students are shown how to convert complex If-Else If-Else 

chains into smaller chains using these logical blocks. Four lessons are used here. 
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This concludes the review of the Genost curriculum topics. It is important to note that this 

curriculum is not the only curriculum that can be used with Genost, though we believe 

that it is a fundamental or “core” curriculum that other curricula can be based on.  

 

3.7.3. Curriculum Design 

We have described the layout of our curriculum above, and to some degree justified our 

general design. In this section we will describe the design goals, justification and 

implementation of some of the major elements of the curriculum, including both aspects 

of the content and aspects of its presentation. 

 

3.7.3.1. Goal 1: Teach Fundamental Programming Structures 

In Section 3.7.1 we described the two major focuses of our curriculum. The first of these 

focuses, teaching the fundamental programming structures, will be described in this 

subsection. The other major focus will be discussed in the next subsection. 

 

“Fundamental programming structures” refers to the structures in programming that are 

common to most or all programming languages and paradigms. Variables, Functions, 

Loops, and Ifs are all examples of these fundamental structures. They are fundamental 

because, ultimately, all algorithms are made up of various combinations of these 

concepts. 

 

In order to program in any language, a student must have some understanding of the 

general concepts behind the code they are writing. As we have shown in Sections 2.3.1 
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and 2.3.2, however, these concepts are not taught generally in US introductory computer 

science education – they are instead taught specifically, in the context of a particular 

programming language. 

 

We believe that a student with a grasp of these fundamental concepts as general ideas 

will easily be able to read algorithms that implement them regardless of the syntax, 

fulfilling CG1, and will also be able to effectively break down problems and build 

algorithmic solutions, fulfilling CG3. It is for these reasons we wish to teach these 

concepts directly as general concepts, instead of indirectly within the context of a specific 

formal language. Furthermore, teaching these items as general ideas transcending 

languages instead of specific items already encoded in a formal language is directly in 

line with CG2, abstraction. 

 

Our curriculum focuses on teaching four of the major fundamental programming 

structures: Actions (the concept of a structure that results in discernible output), Loops 

(the concept of a specific section of code repeating), Waits (the concept of pausing 

execution of an algorithm for a certain amount of real-world time) and Ifs (the concept of 

choosing between alternatives, i.e. branching). Each major section focuses on one of 

these, and they are explicitly explained as general concepts to the students. 

 

The usefulness and “purpose” of these concepts are taught in a few different ways. As 

mentioned above, in each section we directly explain to students what the section topic is 

good for. We also introduce the need for these structures, and their common uses. In 
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some cases we introduce these items in an indirect manner. For example, some lessons 

ask students to solve a maze that would best be solved using one concept, but we do not 

allow the students to use this concept in the solution. In these cases the student solution is 

inevitably messy, inefficient and generally poor, and when comparing this poor solution 

to a solution that utilizes the proper concept, students can easily see why the concept is 

useful, as well as how the concept can be used. 

 

Our approach to teaching these concepts closely mirrors the ITEST group’s description of 

a Use – Modify – Create learning cycle. In the ITEST cycle, the first step, Use, asks the 

student to simply use the concept, to see it in action. The second step, Modify, asks the 

student to modify an existing algorithm using the concept. Finally, the third step, Create, 

asks the student to create an algorithm from scratch with this concept (Allen). 

 

Our four-lesson cycle is very similar to this. The first lesson, the lecture, asks students to 

Use the concept. The second lesson, a guided worksheet, has students both Use the 

concept and Modify its use in some ways. The third lesson, a simple challenge, asks 

students to either Modify an existing algorithm or Create a new one, depending on the 

lesson. The fourth lesson always has the students Create a new algorithm using the 

concept. 

 

In this way, our curriculum attempts to teach the fundamental programming structures. 
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3.7.3.2. Goal 2: Teach Problem Breakdown and Algorithm Design 

The second of our two major focuses in the curriculum is the ability for students to break 

down a problem and create an algorithm that solves it. We have argued above for the 

importance of this skill for computational thinking. One of the four components of 

computational thinking, CG3, is directly dedicated to it. As always, CG2, abstraction, is 

also an important part of this skill. 

 

We teach this ability explicitly all throughout the four sections of our curriculum. A 

common mantra that students are taught is the “four steps of algorithm analysis”, which 

are: 

 

1. Fully understanding a problem 

2. Breaking the problem down into subproblems 

3. Solving the subproblems 

4. Combining the subproblem solutions to form an algorithm 

 

In most lectures (the first lesson of the four-lesson model) students are explicitly walked 

through these four steps to solve a problem. In the guided worksheet (the second lesson 

of the four-lesson model) students are usually directed to proceed through each of these 

steps by solving worksheet problems corresponding to each step.  These worksheet 

problems are also sometimes present in the third lesson. 
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Students are usually asked to work through the first and second steps on their worksheets 

by literally drawing on a picture of the maze to indicate their division of the maze into 

subproblems. Students are encouraged to look for similar shapes in the maze to help them 

break the maze down. See Figure 10 for an example of a maze with drawings to highlight 

how it can be broken down into subproblems: the large maze is broken down into four 

separate identical crosses. These function as subproblems whose solution can be looped 

to create a full algorithm to solve the maze. 

 

Students work through the third and fourth steps by writing pseudocode in special text 

areas on their worksheets. Students are asked to write out code for the individual 

subproblems at first, and then to write pseudocode that combines the individual solutions, 

along with “glue code” that is inserted in between the subproblem solutions to allow them 

to work together. Most guided worksheets end with having the student write out the 

entire algorithm in pseudocode. 

 

Early worksheets in Section 2 tend to teach the algorithm design skill in a very 

mechanical, procedural way: students are told to rely on the visual appearance of the 

maze to break down the algorithm, and to find guidance in repeating physical shapes (like 

the crosses in Figure 10). In Section 2 the combining step, Step 4 in the list above, is 

always a loop, and students are told to select the number of iterations by looking at the 

number of repeating physical shapes there are. In this way the skill is first introduced 

mechanically. 
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In Section 3 and Section 4, as students are taught to solve multiple mazes with the same 

algorithm, and are introduced to heuristics to help them in doing so. Students are 

encouraged to walk through an algorithm in their heads, to abstract away certain elements 

while paying attention to others. By Section 4, students are given little mechanical 

guidance, and the guided algorithm analysis is mostly performed with heuristics, though 

students are still asked to keep track of their algorithm solutions and subsolutions by 

writing down their pseudocode. 

 

In this way, our curriculum attempts to teach the ability to break down problems and 

design algorithms. 

 

3.7.3.3. Goal 3: Teach Habits of Good Program Design 

Once again, this goal corresponds directly to an element of computational thinking, in 

this case CG4 (algorithm quality). As we have argued before, we do not only want to 

teach students to design algorithms, we want to teach them to design good algorithms. In 

our curriculum we tell the student that high quality algorithms are not just better 

technologically but also better ethically, and that high should be considered just as 

important as functionality. 

 

The importance of high quality in programming is discussed heavily and reinforced 

throughout the curriculum. Just like with problem breakdown / algorithm design, the 

curriculum contains a mantra about programming quality that is repeated many times 
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throughout the lessons, and is specifically tested on the pretest and posttest. The mantra is 

describes the “three goals of programming”, which are: 

 

1. Reduce the size and complexity of your algorithm. 

2. Create algorithms that are more general and can be used in multiple mazes. 

3. Have fun programming! 

 

Goals 1 and 2 focus on quality – Goal 3 is a reminder that high quality programming is 

fun. 

 

Algorithm size reduction is consistently taught and practiced. Students are reminded 

whenever they write pseudocode that “less is more”. Many worksheets include a specific 

number of blank lines for pseudocode that match up with the most minimal (and therefore 

least complex) algorithm possible. The practice of cutting out unnecessary code is 

consistently encouraged. 

 

Beginning with late Section 2, and continuing with earnest in Section 3 and 4, students 

are not only encouraged but also required to write algorithms that are general and 

reusable. Most lessons in Sections 3 and 4 involve creating a single algorithm for 

multiple mazes, which requires the introduction of reusability and generality into the 

algorithm design process. 

 

In this way, our curriculum attempts to teach the production of high quality algorithms. 
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3.7.3.4. Goal 4: Design Curriculum to Scaffold Students 

In IG4, we noted the applicability of Ausubel’s “anchoring ideas” or “advance 

organizers” to programming education (Ausubel, 1968). We argued in that section that in 

order for students to be able to explore programming, they must first be instructed in the 

fundamentals (this is why we reject a heavy play emphasis for our introductory 

curriculum). A similar argument may be made that in order to understand advanced 

applications of the fundamentals, students must first understand basic applications. 

 

We have put considerable effort into designing the curriculum such that students are 

never asked to utilize a skill or apply knowledge that has not first been deeply taught. The 

four major sections are arranged in such a way that each section can be taught using only 

the skills used up to that point. This applies not only to the major fundamental 

programming structures (i.e. we teach Loops without utilizing Ifs) but also to the problem 

breakdown techniques, algorithm design techniques, minimizing techniques, and all other 

items that have been discussed so far. Each subsection contains (almost always) four 

lessons presented in a specific order to deeply teach the concept. Within the four-lesson 

model, a concept is always first introduced, explained and specifically applied before the 

student is asked to utilize it on their own. 

 

Even combinations of fundamental structures and techniques are held off from until both 

structures involved in the combination have been taught individually. For example, in 

Section 3, we do not utilize Loops with Waits until Section 3.2, after we have introduced 

the concept of Waits on its own in Section 3.1. 



 

 
 

 

208 

In addition to the curriculum design, we also scaffold through clever use of the 

customizability of the Genost GUI (described in Section 3.4). In that section we noted 

that each lesson has its own “toolbox”, that is, has its own XML file defining which 

blocks are available for use. Instead of making all blocks be available in every lesson, we 

limit the blocks to only those that the student has learned so far. This helps us scaffold the 

student – the student is not overwhelmed by a large number of blocks before he has 

learned them all, and the GUI “learns” along with him as it makes more blocks available. 

 

In this way, our curriculum attempts to scaffold the students as they learn. 

 

3.7.3.5. Goal 5: Strike Balance between Instruction and Creativity 

In T5, we discuss the need for the curriculum to be focused on explicitly teaching 

computational thinking skills first and foremost, as opposed to other newer systems 

which focus more on play, storytelling or competition. The reasons for this are discussed 

in the previous subsection (Section 3.7.3.4), in IG4 (Section 2.4.9) and throughout 

Section 2.4. However, we also do not want to exclude creative action entirely. A balance 

must be struck, and this is what we have attempted to do. 

 

As described above, we initially teach algorithm analysis mechanically, but later move on 

to allowing students to use their own creative heuristics once we are confident they have 

been properly scaffolded. Similarly, the four-lesson model features explicit instruction in  
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the first two lessons, and allows for creative problem solving in the remaining two. These 

are some of the ways that we attempt to strike the balance between instruction and 

creativity. 

 

Genost’s customizability and maze building functions may also be leveraged to allow 

some student creativity, once the explicit concepts have been taught. For example, a 

possible future section of the curriculum may involve allowing students to make their 

own mazes that are centered on a certain concept, or are intended to teach a certain 

fundamental structure. After building the maze, students may then share (Chamillard, 

2000) them with their friends. This would allow for the social creativity that Resnick and 

others often extol, while still providing a direction for the student to work in. Although 

this feature is not currently part of our curriculum, we have considered it and may 

implement it in future versions, as we will describe more in Section 6.4. 

 

3.7.3.6. Goal 6: Individual Effort 

The final goal for the curriculum has much more to do with the way the curriculum is 

taught than the curriculum itself. We have attempted to teach our curriculum such that all 

lessons are an individual effort, and that students work on their own as much as possible. 

 

There are many benefits to individual effort. For example, Chamillard has noted that it 

reduces plagiarism and allows for teachers to better evaluate student learning 

(Chamillard, 2000). Perhaps more importantly, however, individual effort ensures that 

each student is responsible for his or her own learning. 
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Many arguments for group work in programming education stem from the idea that it 

helps teach the teamwork skills necessary for working in industry (see (Williams, 2002) 

for an example of this). This may be true. However, our curriculum is centered on 

computational thinking education – something that precludes most other programming 

skills, including working on a team with other engineers. For this reason we do not 

believe that anything is lost by having students work individually, and much is gained. 

 

As our curriculum is designed, there is technically nothing stopping it from being taught 

using student groups. However, some aspects of the system do encourage individual 

effort – each GUI allows only one student to log on at a time, and the Management 

Website’s tracking is set up under the assumption that each Genost account represents a 

student, and not a team. In our own tests we have had each student work individually, 

though discussion with other students was allowed. 

 

These are some of the ways we have attempted to implement an individual education 

basis in Genost. 

 

3.8. COMPARISON OF GENOST TO NEWER SYSTEMS 

In Section 2.4 we performed a review of eight different “newer” systems that attempt to 

teach computational thinking ideas, and it was from this review that we took lessons and 

takeaways for what an “ideal” system would look like. These lessons and takeaways are 

specifically described in Section 2.4.9. Using those lessons, we designed and built the 

Genost system, described in great depth above. We will now perform a direct comparison 
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between Genost and the other eight systems, utilizing the lessons in Section 2.4.9 as our 

items of comparison. To see a visual representation of this comparison, please see the 

charts in Appendix G. 

 

3.8.1. Drag and Drop Language 

Judging by its universal adoption in almost all recently created educational systems, a 

drag and drop language is virtually a requirement for an introductory educational system. 

Alice, Scratch, Lego Mindstorms and Microsoft Robotics Developer Studio all contain 

this feature, while older systems such as Logo, Myro, IBM Robocode and FIRST 

Robotics Competition do not. Genost does feature a drag and drop language, as described 

in Section 3.2. 

 

A drag and drop language brings many benefits with it. By its very nature, a drag and 

drop language makes it impossible for students to make syntax errors – this is a benefit 

present in all the reviewed systems containing the drag and drop language, including 

Genost. These five systems also implement their drag and drop languages such that 

actions – the commands being sent to the item being programmed – are abstracted to a 

high level, a feature argued to lighten the cognitive load for younger programmers 

(Caitlin Kelleher, 2007). 

 

There are certain beneficial features of drag and drop languages that are not implemented 

by all new systems containing such languages, however. For example, due to a 

language’s graphical design, the language “blocks” can be shaped or colored in such a 
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way that their appearance indicates their use. Most systems like Alice, Scrath or 

Mindstorms feature this ability, but Microsoft Robotics Developer Studio does not. 

Genost does contain this feature: we currently color the blocks differently depending on 

their use, and in the future we plan to alter their shapes as well. 

 

Just as there are many benefits to the drag and drop languages, there are also certain 

items that we wish to avoid when implementing them. A major item we wish to avoid is 

oversimplifying the language, something that we have argued that Lego Mindstorm’s 

NXT-G language does by, for example, limiting the depth of nesting. Genost does not 

feature any artificial limitations of this nature, and any algorithm that can be created in a 

formal procedural language can ultimately be created in Genost. 

 

Finally, we note again that the “look” of a language can help or hinder student transition 

from the introductory system to a formal language. We have argued above that languages 

like VPL in MRDS or the Mindstorms NXT-G language, which are visually dissimilar to 

formal languages and look more like flowcharts, can hinder the transition to an actual 

formal language (we have also argued that the visual structure of formal languages, in 

some ways, orients students towards certain computational thinking ideas). Genost’s 

language is designed such that Genost algorithms are visually similar to algorithms 

written in a formal language, reading from top to bottom and containing indentation 

where appropriate. 
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3.8.2. Virtual Worlds 

We argued for the enormous benefits of virtual worlds in programming education in 

Section 2.4.1 and elsewhere. It is apparent that this feature is widely recognized as 

beneficial, as all but three systems (Myro, FIRST Robotics Competition and Lego 

Mindstorms) feature virtual worlds as part of their regular educational system. Genost 

does feature a virtual world, as described in Section 3.3. 

 

Genost’s virtual world is somewhat different in nature to the virtual worlds featured in, 

for example, Alice or Scratch. The Alice and Scratch virtual worlds are very open in 

nature, allowing for students to create wide-ranging stories with many characters (in the 

case of Alice) or manipulate 2D graphics and media in just about any way, in the case of 

Scratch. We have argued that this openness, while often touted as beneficial, may 

actually be a hindrance when teaching introductory computational thinking skills. 

Sources such as (Paul Mullins, 2009), (Orni Meerbaum-Salant, Habits of Programming in 

Scratch, 2011), (Orni Meerbaum-Salant, Learning Computer Science Concepts with 

Scratch, 2013) or (Maloney, 2008) have noted that some students may be distracted by 

the open-world playfulness of these virtual worlds to the detriment of their education. 

Genost has attempted to alleviate this by providing a less open, more directed virtual 

world in which students are given an explicit goal to solve. The Genost world is not fully 

locked down, as students have complete freedom to choose how to pursue this goal; we 

believe that this design is a good compromise that will better direct students towards 

learning computational thinking, while still allowing them to have fun. 

 



 

 
 

 

214 

3.8.3. Robots 

Just as virtual worlds bring educational benefit and motivation to students, so we have 

argued in Section 2.4.1 and elsewhere that robots also bring educational benefits and 

motivation, though in a different way and to a different degree than virtual worlds. If 

paired correctly we believe that virtual worlds a nd robots may complement each other, 

and for this reason we want our system to include a robot as well as a virtual world. Four 

of the eight “newer” systems feature a robot – these are Myro, FIRST Robotics 

Competition, Lego Mindstorms and Microsoft Robotics Developer Studio. As described 

in Section 3.5, Genost also features a robot. Note that only Microsoft Robotics Developer 

Studio and Genost feature both virtual worlds and robots. 

 

While the four mentioned systems do feature robots, these robots are often implemented 

in ways that we find problematic. For example, the FIRST Robotics Competition system 

and the Lego Mindstorms system both focus heavily on building the actual robot, which 

certain studies have noted takes time and emphasis away from learning computer science 

(Delden, 2008) (Buckhaults, 2009). Genost attempts to avoid this problem by not asking 

students to build the robot itself, and not involving any mechanical engineering items in 

the Genost curriculum. This decision has an added benefit of preventing any teacher or 

student alienation due to unduly technical content, which has been noted to negatively 

affect adoption of more complicated systems (Tucker Balch, 2008) (Long, 2007). 

 

Genost took inspiration from the Myro system and added to our robot design the goal of 

having the algorithm controlling the robot be executed on a local computer and 
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transmitted to the robot, instead of executing on the robot itself. This design choice was 

made for the benefits described in Section 3.5.1.5 and elsewhere in this thesis: namely, 

the ability to debug algorithms or step through the code as it executes. Most other robotic 

systems, such as FIRST, Mindstorms or Microsoft Robotics Developer Studio, do not 

contain this feature. Myro implemented this feature using local wireless communication 

to transmit commands to the robot. For reasons described in Section 3.5.3 we attempted 

to implement this using HTTP. While we were not able to implement this feature for this 

release, we plan to implement it in future releases in order to attain the benefits it brings. 

Aside from Genost, only Myro contains this feature. 

 

Finally, the Genost system, due to its general, customizable design is usable with multiple 

robots. FIRST and MRDS also contain this feature; Myro and Mindstorms do not. We 

believe that the ability to build and work with multiple robots makes a system more 

adaptable and allows it to be useful in more varied environments and classrooms – for 

this reason we are proud to have this feature in Genost. 

 

3.8.4. Curriculum 

From the beginning of development, Genost was developed with the needs of the 

curriculum in mind, and our finished product has an official curriculum to go along with 

the software. All things being equal, it would seem that a system that has a curriculum to 

go with it is better than one that does not (since software without a curriculum is simply a 

tool). Furthermore, we have explicitly argued above that developing these software and 
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the curriculum alongside one another allows for better “fit” between the two, as opposed 

to a curriculum developed after the fact (perhaps by a third party). 

 

Very few systems actually feature an official “curriculum”. Myro and Alice both have 

curricula developed and released by the same entities that produced the software, but 

Scratch, Mindstorms, and Microsoft Robotics Developer Studio do not. A curriculum is 

not applicable for FIRST Robotics Competition and Robocode (since these are more of a 

competition and a game, respectively), and it is unclear whether Logo has an official 

curriculum or not due to its considerable age. Ultimately, then, the fact that Genost has an 

official curriculum that was developed alongside the software differentiates it 

significantly from the other systems. 

 

The content and structure of Genost’s curriculum also differentiates it from the other 

systems. Genost teaches computational thinking explicitly through the use of procedural 

programming – we put the computational thinking instruction first and foremost. Contrast 

this with systems like FIRST, Alice or Scratch which have a heavy competition, 

storytelling or “tinkering” focus, respectively. We have noted above in Section 2.4.9 that 

these features are not necessarily bad, and in fact may be quite beneficial, but that they 

should not be the major focus for introductory computing education. Genost attempts to 

attain the proper balance between explicit instruction and allowance for creativity 

through its four-lesson “fading” structure, in which the first two lessons for a particular 

topic are guided, and the final two lessons allow the student to solve the problem in their 

own way. 
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We have noted above that Microsoft Robotics Developer Studio, in contrast to all of the 

other systems (Genost included) attempts to serve multiple roles – it attempts to be both 

an educational system and a useful IDE for industrial robot prototyping and development, 

and in doing so plays neither role well. Genost consciously avoids this mistake and 

attempts to focus only on being an educational system. 

 

Finally, we note that the Genost curriculum is designed to be simple and fundamental, 

and to avoid inappropriately advanced items, such as the computer vision or AI found in 

the Myro system. We intend Genost to be used only for introductory computer science, 

and therefore have limited our curriculum accordingly. 

 

3.8.5. Other 

In this last section of the comparison between Genost and the eight “newer” systems 

reviewed in Section 2.4 we will discuss some of the differences that do not fit anywhere 

else. 

 

A major difference between Genost and these other systems, and one that we are most 

proud of, is Genost’s ability to be extended and customized. Genost’s mazes, code 

blocks, lessons, and even curriculum can all be customized by end users. All of these 

items can be created, uploaded and used within the Genost system. Almost no other 

system that we have considered features customization to this degree. The only system 

aside from Genost that features this customizability is Microsoft Robotics Developer 

Studio, which allows end users to develop their own DSS services. We consider Genost’s 
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customizability a large benefit in making the system adaptable to different classrooms, 

easy to develop for, and in general, robust. 

 

We argue above that allowing students to visually follow along with their program code 

as their algorithm executes (thereby “pairing” the code and the execution) provides 

educational benefits. Genost features this “pairing” in the sense that the GUI and the 

simulator live in separate windows, and students may arrange these windows such that 

both the code and the simulator are simultaneously visible. In the future we plan to make 

this pairing more explicit, and perhaps even enforced. This feature is not present in many 

other systems – none of the four code-based systems feature it. Only Alice and Scratch 

contain this feature. This feature is not applicable to Lego Mindstorms and Microsoft 

Robotics Developer Studio, because these systems use a real robot instead of a simulated 

one. 

 

The last item that we will discuss is the integration of a system with social media, which 

is the only feature that we identified as valuable that Genost does not implement. Scratch 

is the only prevalent example of this – as described above, all Scratch projects may be 

uploaded and shared using Scratch’s own social media site. This social feature has been 

described as a primary benefit of the Scratch system. None of the other seven systems we 

reviewed contain this feature. Genost also does not contain this feature, and we do not 

have any explicit plans to add it at this time. We chose not to include this due to the 

difficulty of implementation, and the relative small benefit that it would bring to the 

Genost system as currently designed. While social media integration does have the 
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potential to increase both the motivational aspect and the educational efficacy of a 

system, we are not confident that the increase such an integration would provide would 

be worth the considerable time and expense that the integration would bring.  

 

3.8.6. Comparison Conclusion 

The above five sections feature comparisons between Genost and the eight systems we 

reviewed. The following table summarizes these comparisons by showing the number of 

positive and negative features in each system: 

 

Table 3 

Number of positive and negative features displayed by each system 

System # Positive Features # Negative Features 

Logo 3 1 

IBM Robocode 1 2 

Myro 3 2 

FIRST Robotics Competition 2 5 

Alice 7 1 

Scratch 7 1 

Lego Mindstorms 5 5 

Microsoft Robotics Developer Studio 6 2 

Genost 11 0 

 

This table shows that Genost contains the largest number of positive features (11), and 

the smallest number of negative features (zero), out of all of the systems. Genost does not 

implement a single negative feature, and implements all but one positive feature. 
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The fact that Genost is, according to this analysis, the “best” system is perhaps not 

surprising, considering that Genost was designed specifically with the lessons and 

takeaways of these systems in mind. Ultimately, it would appear that the careful planning 

that went into Genost’s design therefore has paid off, as our analysis shows that Genost, 

at time of writing, is the superior system for teaching introductory computer science. 

 

3.9. GENOST DESCRIPTION CONCLUSION 

In the above section, we have described and justified the Genost software and curriculum. 

Section 3.8 shows that Genost implements almost all the positive features, and none of 

the negative features of the ideal educational system, as described in Section 2.4.9. By 

this analysis, Genost is superior to the eight other prominent introductory computer 

science education systems on the market. 

 

Section 3 argued for Genost’s effectiveness in teaching computational thinking by 

describing its implementation of features that have been proven to work in other systems, 

and its avoidance of features that have proven to hinder student education. This argument 

alone is not sufficient to establish Genost’s efficacy in teaching computational thinking. 

For this reason we have run two tests to evaluate whether Genost is in fact effective at 

teaching computational thinking. The next section, Section 4, will describe the two tests 

that we have run. 
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4. TEST DESCRIPTION 

In order to determine whether our system was effective at teaching computational 

thinking we performed two different tests. This section will describe the tests that we 

held. For each test we will describe the design of the test, our recruitment efforts, the 

number of students that participated, the allotted time and environment of each test, and 

the data that was collected. We will discuss the actual results of the test in Section 5. 

 

We held two tests: one test was held at the Arizona School for the Arts40, and this test 

will be referred to as the “ASA test.” The other was held at Arizona State University 

using students from ASU’s FSE100 (Introduction to Engineering) classes, and this test 

will be referred to as the “FSE100 test”. In the rest of Section 4 we will first describe the 

elements common to both tests. After this, we will discuss the ASA test first, and the 

FSE100 test after it. 

 

4.1. COMMON DESIGN OF THE TWO TESTS 

In this section we will discuss the general design of the two tests, and the commonalities 

between them in some depth. Both tests were roughly similar, though each had certain 

unique elements that will be discussed in the following two sections. 

 

Each test began by giving the participating students a pretest intended to measure 

computational thinking. Students were then taught the Genost curriculum over a period of 

weeks. At the end of the class, a posttest was given to measure computational thinking 

                                                           
40 http://www.goasa.org/ 

http://www.goasa.org/
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ability again. The pretest and the posttest both used the same testing tool, and the same 

testing tool was used for both the ASA and the FSE100 tests. 

 

The two tests were carried out over different lengths of time, with different numbers of 

students, and with different student grade levels. The same lecture slides, worksheets, and 

mazes were used between the two tests, but the presentation of the material was adapted 

to the differences between the tests. For example, the FSE100 test had less teaching time 

overall, so less time was spent on individual lectures and topics as compared to the ASA 

test. 

 

Despite the differences, each teaching day in either test followed roughly the same 

pattern. A certain number of curriculum subsections (usually two or three) would be 

covered each day. Each subsection would begin with a brief lecture to the students. I was 

the sole lecturer for these two tests. During the lecture we would often do examples, 

which would involve the students following along with me as I developed an algorithm 

illustrating the curriculum section topic. During these lecture exercises the students were 

asked to build the algorithm on their own computers as I walked them through it. 

 

After each lecture, the students were given a certain amount of time to complete the 

worksheets and mazes for the subsection. Students were asked to work individually and 

not in groups, though they were allowed to speak with each other and give each other 

advice. Students were asked to finish worksheets and mazes that were not completed in 

class outside of class, though this was not stated to be a requirement. 
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Both test designs were approved by Arizona State University’s Independent Review 

Board. Copies of the approval are available upon request. 

 

4.1.1. The Testing Tool 

We created a single testing tool to be used as both the pretest and the posttest. The test is 

intended to be measure of computational thinking ability in relation to the topics covered 

during the curriculum, which are basic actions, loops, wait statements, if statements, 

problem breakdown, and algorithm analysis. The questions are mostly stated in terms of 

Objective G code, but due to Objective G’s clear design (described in Section 3.2.1) we 

believe that anyone with computational thinking ability and critical thinking skills would 

be able to understand the questions on the test. 

 

The test has 13 questions. The questions on the test cover the following topics: 

 

- Basic identification of fundamental programming structures (Question 1) 

 

- Reading and evaluation of algorithms (Question 11, Question 12) 

 

- Understanding algorithm design (Question 2, Question 3) 

 

- Understanding algorithm execution (Question 4, Question 5) 
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- Understanding and applying fundamental programming structures 

o Loops (Question 6, Question 7) 

o Wait Statements (Question 8) 

o If Statements (Question 9) 

o Logical Operators (Question 10) 

 

- Debugging (Question 13) 

 

The test questions have many different formats. The formats of the questions are as 

follows: 

 

- Multiple choice (Question 7, Question 8, Question 9, Question 10, Question 13) 

 

- True / False (Question 4, Question 11) 

 

- Fill-in-the-blank (Question 2, Question 3, Question 6) 

 

- Matching (Question 1) 

 

- Ordering (Question 5) 

 

- Free response questions (Question 12, Question 13 Extra Credit) 
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Each question takes up one full page on the test. At the bottom of each page is a sentence 

stating “I don’t know how to solve Question #X” – students were instructed both verbally 

and in the test directions to circle this sentence if they do not know the answer to the 

question. This was included in an attempt to deter guessing. 

 

Each question was worth one point, save Question 13, which was worth one normal point 

plus one extra credit point. Questions with multiple parts were given a value of one point 

overall, with the point distributed evenly over the different parts of the question. So, for a 

question with three parts, each part was worth 1/3 of a point. 

 

The full test may be viewed in Appendix D. 

 

We argue that our testing metric is both reliable and valid. The reliability of the testing 

metric will be evaluated through the use of Cronbach’s Alpha in Section 5.1. The validity 

of the testing metric can be assessed by examining the questions and comparing their 

content to the goals of computational thinking education listed in section 2.1. For 

reference, those goals are: 

 

1. Ability to Read and Understand Algorithms 

2. Ability to Engage in Abstraction 

3. Ability to Decompose a Problem into Solvable Processes 

4. Ability to Identify the Quality of a Solution 
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Goal 1 skills are required to answer almost all of the questions on the test, since most of 

the questions require students to read an algorithm and complete it. Specific questions 

that focus on Goal 1 skills include Questions 5, 11 and 12. Question 11 asks students to 

read an algorithm and evaluate whether it will work or not; Question 12 asks students to 

read an algorithm and trace the path of the robot as it executes the algorithm. 

  

Goal 2 skills are also required to answer virtually all of the questions, since abstraction is 

required at all levels of computational thinking. Specific questions that require 

abstraction include Question 1, which asks students to think of fundamental programming 

structures such as loops or if statements as abstract items, and Question 4, which asks 

students to move between two different levels of abstraction (the execution of the code 

vs. the movement of the robot). 

 

Goal 3 skills are required to answer Questions 2, 6, 7, 8, 9, and 10. Questions 6 – 10 all 

ask the student to complete an algorithm, which requires the student to examine the 

algorithm and the maze, break them down, and figure out what the best answer is from 

the available choices to complete the algorithm. Question 2 asks students to explicitly 

state the four steps of breaking down an algorithm.  

 

Goal 4 skills are required to answer Questions 3 and 13. Question 3 asks students to 

explicitly state some of the criteria by which a solution is judged for quality. Question 13 

asks students to examine and debug a solution, to figure out why it doesn’t work and how 

it can be fixed. 
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Skills in all four of the listed goals are required to complete the test. Therefore, we argue 

that our test is a valid measure of computational thinking ability. 

 

4.1.2. The Feedback Forms 

In order to collect feedback on the Genost system, we created and distributed two 

different forms to both groups of students that went through the Genost intervention. 

Each form collected feedback on a different subject: the first form, which we will call the 

Likert form, collected feedback on the Genost system as a whole, including the software, 

the curriculum, and our presentation through the use of Likert scale questions. The 

second form, which we will call the Free Response form, collected feedback specifically 

on the curriculum and my presentation, through the use of free response questions. We 

will describe both forms below. 

 

The Likert form contained ten separate Likert scale questions that ask students to rate 

their feelings on various metrics related to the Genost system as a whole. Three major 

metrics were measured on the Likert form, which were:  

 

- Ease of use of the Genost system (Question 1, Question 5, Question 8) 

- Educational value of the Genost system (Question 2, Question 4, Question 7) 

- Student enjoyment from using the Genost system (Question 3, Question 6, 

Question 9) 
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Question 10 asked students to rate their overall satisfaction with their Genost experience 

and therefore contains elements of all three metrics. 

 

The Likert form may be viewed in Appendix E. Note that the Likert form had a field at 

the top for students to enter their pseudonym. This field was inadvertently added and was 

not caught until the forms had been printed. Students were told not to fill out this name 

field. 

 

The Free Response form contained four separate free response questions asking students 

to provide feedback on the Genost curriculum and my presentation of it. The students 

were asked to write down three things they liked, three things they disliked, three things 

they would change, and any additional comments they had. Students were instructed not 

to include specific software bugs or improvements in their feedback on the Free 

Response form. The Free Response form had no field for students to fill in their 

pseudonym, and students were instructed not to write this pseudonym anywhere on the 

form. 

 

The Free Response form may be viewed in Appendix E. 

 

For both the FSE100 test and the ASA test, the feedback forms described above were 

administered after participating students took the posttest. 
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4.2. ASA TEST 

The ASA test was performed at the Arizona School for the Arts, a charter school located 

in Phoenix, Arizona. The school serves students from grades 5 through 12, though the 

students participating in our test were all in grades 7 through 12. Tracy Ryan, a teacher at 

ASA, assisted us with organizing and carrying out the test. 

 

The ASA test was a two-group design, with one group receiving the Genost treatment 

and the other group receiving no treatment. We will call the group that received the 

Genost treatment the independent group, and the group receiving no treatment the control 

group. The two groups were not related and no student was a member of both groups 

simultaneously. 

 

Both the independent and control group were given the aforementioned pretest at the 

beginning of the testing period. After the Genost treatment had been given to the 

independent group, the posttest was given to both groups. This is the basic design of the 

ASA test.  

 

4.2.1. Student Numbers and Recruitment 

The recruitment methods and number of students were different between the independent 

and control groups. We will review this data for both of the groups in this subsection. 
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4.2.1.1. Independent Group 

Our recruitment target for the independent group was 30 students between 7th and 12th 

grade. Participation in the group was voluntary, and students were recruited through an 

online form, advertised through email and in person at the school. Both parents and 

students were informed of the opportunity. No incentive was provided for participation. 

 

The online recruitment form was opened on August 19th, 2014, and an email 

advertisement was sent out to ASA newsletter recipients on this same day. The text of the 

advertisement may be seen in Appendix F. The online form was limited to 30 students – 

students who filled out the form after it had received 30 submissions were added to a wait 

list. Throughout the recruitment period, some students who had been part of the initial 30 

signups withdrew their signup, and were replaced with students on the wait list. 

 

29 students were present on the first day of the class. Due to one student not being 

present, another student on the wait list was selected to participate on the second day, 

bring the class up to 30 participants. Students were allowed to withdraw from the class at 

any time, and 10 students did withdraw over the course of the Genost class. Ultimately, 

20 students from the class completed the pretest, the Genost class, and the posttest, and 

therefore our final independent group dataset consists of 20 students. No other selection 

methods were applied to populate the independent group. 

 

The final independent group contained 6 students in 7th grade, 10 students in 8th grade, 1 

student in 9th grade, 1 student in 10th grade, and 2 students in 11th grade.  
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4.2.1.2. Control Group 

The control group was recruited from a group of 7th to 12th grade students in a study hall 

class. The class was asked to take the pretest at the beginning of the Genost intervention 

period, and was asked again to take the posttest at the end of the Genost intervention 

period. The control group therefore consists of the students from this class that took both 

tests. Students were incentivized to participate by offering candy to participants. 

 

Some small selection criteria was applied. Two students who were known to have high 

programming ability, and were therefore unsuitable for introductory programming 

education, were excluded from the control group. No other selection criteria was applied. 

 

The final control group consisted of 17 students. The students’ grade level were self-

reported on the tests, and because not every student filled this out, we do not have 

accurate grade level information for the control group. 

 

4.2.2. Time Allotted 

The Genost intervention that the independent group took part in was administered over 

two weeks. Class was intended to be held for two hours after school on Monday through 

Friday from 3PM to 5PM, making 10 days of class total. Due to unexpected events, class 

was actually only held for 8 days – one class was cancelled due to unexpected weather, 

and another was cancelled due to early release at ASA. Therefore, the total amount of 

time students spent in the Genost intervention was 16 hours. 
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On most class days, two curriculum sections were presented. Students spent the first 30 

minutes listening to and participating in a lecture on the first curriculum section, and the 

second 30 minutes doing worksheets and self-directed algorithm creation for that section. 

The second hour was spent similarly, 30 minutes in lecture and 30 minutes doing 

worksheets. Students who did not finish their worksheets in class were asked to complete 

them outside of class. 

 

4.2.3. Test Environment 

The eight classes that were part of the Genost intervention were held in a classroom on 

the ASA campus in Phoenix, Arizona. Each student was given a Macbook laptop with an 

internet connection – students were able to use the web browser on these laptops to 

interact with the Genost software. 

 

Students were seated at long tables instead of individual desks, due to the way the room 

was organized. The students were allowed to sit wherever and with whomever they 

wanted, which in some cases led to excessive socialization and off topic play during the 

class. In some cases we reseated students in an attempt to prevent this. 

 

The classroom had a projector at the front of the room, which was used to project the 

lecture onto a screen. 
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4.2.4. Data Collected 

The primary data that were collected in the ASA test were the scores on the pretest and 

posttest. We also collected feedback data from the student through two forms. These two 

sets of collected data will be described below, and the actual data collected, and our 

analysis of that data, will be presented in Section 5. 

 

In addition to the items mentioned above, we also collected the following information 

from the students: 

 

- Attendance records for the Genost classes 

 

- Records regarding the worksheets and mazes completed by each student 

 

- Various data related to the interaction of the student with the Genost software, 

such as the number of times students simulated an algorithm in a specific maze, or 

the date and time that a student switched from one lesson to the next. Each datum 

that was collected was tagged with a date and time stamp, along with other 

contextual information. 

 

These three items will not be presented or analyzed in this thesis. 
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4.2.4.1. Pretest / Posttest Data 

The same test that was used for both the pretest and the posttest. This test is the one that 

was discussed in Section 4.1.1 and shown in Appendix D. All students in the independent 

and control groups took both a pretest and a posttest. 

 

We collected the score for each individual question on this test, and the overall score, for 

each student and on both administrations of the test. Each test was hand-graded. No 

manipulation or adjustment was done to any of the test data. 

 

4.2.4.2. Feedback 

The Likert and Free Response forms described above in Section 4.1.2 and shown in 

Appendix E were given to the ASA independent group on the last day of class. All 

students in the independent group filled out both forms. 

 

The data collected on the Likert form was collected and averaged. Students were 

instructed to only circle one number on the Likert scales; when multiple numbers were 

circled, we chose the lowest number circled. 

 

The data collected on the Free Response form was analyzed, and responses were noted, 

classified and counted.  

 



 

 
 

 

235 

4.3. FSE100 TEST 

The FSE100 test was held at Arizona State University using students from ASU’s Fall 

2014 FSE100 Introduction to Engineering class. This class is a required introductory 

course for many majors offered through the Fulton Engineering School, including 

computer science, computer systems engineering, mechanical engineering, electrical 

engineering, and industrial engineering.  

 

The FSE100 test was a three group design. The three groups are as follows: 

 

- The Genost group, which participated in an extracurricular class designed to teach 

the Genost curriculum. 

 

- The Python group, which participated in CodeAcademy.com’s online Python 

course41. 

 

- The Control group, which did not undergo any treatment. 

 

The Genost class was given at the beginning of the semester. The Python course, because 

it is an online course, was available throughout the semester for any student who desired 

to take it. At the end of the semester the FSE100 grade data from all participants in the 

three groups was collected – these data served as our main data set for the FSE100 test. 

                                                           
41 http://www.codecademy.com/en/tracks/python 

http://www.codecademy.com/en/tracks/python
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The main goal of the FSE100 test was to compare the grade data of the three groups and 

determine whether there was any significant difference between them. 

In addition to the grade data, we also collected pretest and posttest data from the Genost 

group. The Genost group was given the pretest at the beginning of the Genost class, and 

the posttest at the end of this class. However, we were not able to administer the pretest 

and posttest to the other two groups. 

 

4.3.1. Student Numbers and Recruitment 

ASU’s FSE100 course is offered in different “flavors” – for example, one FSE100 course 

may be taught with a computer science flavor, intended for the CS and CSE majors, 

while another may be taught with a mechanical engineering flavor, intended for the ME 

and Civil Engineering majors. We limited our recruitment to the computer-flavored 

FSE100 classes, of which there were 13 in Fall 2014. Each of the 13 FSE100 classes had 

43 students in it, for a total of 559 students42. It was from these 559 students that we 

recruited our participants in the FSE100 test. 

 

Participation in all three groups was entirely voluntary. At the beginning of the semester, 

I visited each of the 13 FSE100 sections and gave a short speech explaining our research 

and asking students for two things: first, to consent to releasing their FSE100 grade data 

to us, and second, to sign up for either the Genost group or the Python group if they were 

interested in participating. Students consenting to releasing their grade data signed a 

                                                           
42 Note that this is the number of seats filled at the beginning of the semester; the number of students 
that completed the FSE100 course is fewer than 559. 
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release form during my visit. The speech that was given during these initial classroom 

visits may be viewed in Appendix F.  

 

Students were offered an incentive to participate in either the Genost or the Python group. 

All students who completed participation in either of these groups (defined as either 

completing the Python course or taking both the Genost pretest and posttest) received a 

10% extra credit bonus to their FSE100 grade. Students were not offered an incentive to 

release their grade data to us. 

 

At the end of these classroom visits, we had received grade release forms from many 

students, and contact information from students interested in either the Genost or Python 

courses. The next three sections will detail the student numbers and any further 

recruitment efforts for the three groups. 

 

4.3.1.1. Genost Group 

After the classroom visits at the beginning of the semester, we found that the number of 

students that had signed up for the Genost extracurricular activity was very large. We 

were not able to accept all signups due to the nature of the Genost extracurricular activity 

as an in-person class with limited space. We therefore were forced to narrow the number 

of students from the pool. 

 

We first created a questionnaire form and emailed it to all students who had signed up.  
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The form asked for basic contact information along with the following questions: 

 

1. Are you interested in participating in the ASU Genost-based extracurricular 

activity? 

 

2. Will you be able to come to all six sessions? 

 

3. Can you commit to completing the activity from beginning to end? 

 

4. Depending on the way the meetings go, we may ask you to do some extra practice 

work outside of class. Is this something you would be willing and able to do? 

 

5. What is your current grade level? 

 

6. Please rate what you consider your programming ability, from 1 (no ability) to 10 

(expert) 

 

By the time we closed the form for submissions roughly one week after sending it out, we 

had received exactly 100 unique responses. Our goal was to narrow the pool down to 30 

students. 

 

We began by eliminating all students that did not answer “yes” to questions 1, 2, 3 and 4. 

This eliminated 29 students. 
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We next examined the remaining rows and their answers to questions 5 and 6. We 

removed all students who were not freshmen and who rated themselves as having a 

programming ability greater than or equal to a 5. This eliminated 15 students. Our 

justification for this narrowing measure is that we are attempting to teach introductory 

programming, and are less interested in teaching students who already have considerable 

programming ability. 

 

After taking the measures above, 56 rows remained. We narrowed the pool from 56 to 30 

through directed random selection, done in the following way: 

 

1. We arranged the 56 rows into 13 groups, grouping them by their FSE100 class. 

 

2. We selected 2 students randomly from each of the 13 groups, resulting in 25 

students selected. One group only had one student, which is why we finished this 

step with 25 instead of 26 students. 

 

3. Removing the selected students from the 13 groups, we then chose the 5 most 

populous groups, which had populations of 7, 6, and 3 groups of 5. Note that there 

were actually 5 groups with population 5 – the 3 groups chosen from those 5 were 

chosen randomly. 

 

4. We randomly selected one student from each of these 5 most populous groups. 

This resulted in 30 randomly selected students. 
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We therefore began the Genost test with 30 students. On the first day of class, 4 students 

did not show up, resulting in a starting group size of 26. 9 students withdrew from the 

study or otherwise did not complete it, resulting in a final Genost group size of 17 

students. 

 

These 17 students all signed an additional consent form releasing the data collected with 

Genost to us for study. This consent form may be viewed in Appendix F. 

 

4.3.1.2. Python Group  

The Python group consists of all students who signed up for the Python course during the 

classroom visits (or contacted us about their desire to participate sometime during the 

semester), completed the Python course, and released their grade data to us. Each student 

that completed the Python course was counted by sending us link to or screenshot of their 

CodeAcademy account, which shows the completion of the course. 

 

No further selection or narrowing of the Python group was performed. There are 38 

students in the Python group. 

 

4.3.1.3. Control Group 

The control group was made up of all students who released their grade data to us but did 

not participate in either the Genost or the Python group. There are 317 students total in 

the control group. 
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4.3.2. Time Allotted 

The Genost class was administered over the course of three weeks. Students met twice a 

week on Mondays and Wednesdays for two hour sessions, 7PM to 9PM. On most class 

days, two curriculum sections were presented. Students spent the first 30 minutes 

listening to and participating in a lecture on the first curriculum section, and the second 

30 minutes working on worksheets for that section. The second hour was spent similarly, 

30 minutes in lecture and 30 minutes doing worksheets. Additionally, all students were 

asked to complete outside of class all worksheets not completed in class. 

 

Students who did not attend one class were asked to come in thirty minutes early to the 

subsequent one for makeup. Not counting this makeup time, students spent 12 hours as 

part of the class. 

 

The Python class on CodeAcademy.com is a set of step-by-step tutorials and does not 

feature any human instructor, so students were able to take this course at any time during 

the Fall 2014 semester. We required Python group students to complete the online course 

by the final day of classes for the Fall 2014 semester, which was December 5th. Aside 

from that requirement, students were allowed to start the course whenever they wanted 

and to take as long as they wanted to complete it. 

 

4.3.3. Test Environment 

The six classes that were held as part of the Genost intervention were held in a computer 

lab on ASU’s Tempe campus. Each student used a desktop computer running Windows 
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7. Students used the computer’s web browser to interact with the Genost software. Early 

in the test, some students chose to use their own laptop instead of the desktop lab 

computers. 

 

Students were seated at long tables instead of individual desks, due to the way the room 

was organized. The students were allowed to sit wherever they wanted during the class. 

 

The classroom had a projector at the front of the room, which was used to project the 

lecture onto a large screen. 

 

4.3.4. Data Collected 

The primary data that were collected in the FSE100 test were the student FSE100 final 

grade percentage. In addition to this grade data, we also collected the Genost group’s 

scores on the pretest and posttest. Because these tests were not administered to the 

Python and Control groups, no score data were collected from them. Finally, we collected 

feedback data from the student through two forms. These three forms of data collection 

will be described below, and the actual data collected, and our analysis of that data, will 

be presented in Section 5. 

 

In addition to the items mentioned above, we also collected the following information 

from the students: 
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- Attendance records for the Genost classes 

 

- Records regarding the worksheets and mazes completed by each student 

 

- Various data related to the interaction of the student with the Genost software, 

such as the number of times students simulated an algorithm in a specific maze, or 

the date and time that a student switched from one lesson to the next. Each datum 

that was collected was tagged with a date and time stamp, along with other 

contextual information. 

 

These three items will not be presented or analyzed in this thesis. 

 

4.3.4.1. Student Grades 

The full gradebook for all students who released their data to us by signing a consent 

form was sent to us by the FSE100 professors at the end of the Fall 2014 semester. While 

the full gradebook was available, only the final FSE100 score was used in our analysis. 

This score is a grade percentage and therefore is on a scale from 0 to 100. The 10% extra 

credit incentive offered to participants in the Genost or Python groups is not included in 

this final percentage. 

 

Our hypothesis that if Genost does succeed in teaching computational thinking skills, 

then this will be reflected in higher grades in FSE100 for students who underwent the 

Genost intervention than those who did not. We are assuming that students with higher 
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computational thinking skills will receive higher FSE100 grades. Note that we are not 

claiming that the FSE100 grade is a direct measure of computational thinking ability, 

only that computational thinking skills will result in higher grades in computer science 

courses. This is consistent with what we have argued above in regards to computational 

thinking as a “prerequisite” to computer science. 

 

4.3.4.2. Pretest / Posttest Data 

The same testing instrument was used for both the pretest and the posttest. This test is the 

same one that was discussed in Section 4.1.1 and shown in Appendix D. All students in 

Genost group took both a pretest and a posttest. 

 

We collected the score for each individual question on this test, and the overall score, for 

each student and on both administrations of the test. Each test was hand-graded. No 

manipulation or adjustment was done to any of the test data. 

 

4.3.4.3. Feedback 

The Likert and Free Response forms described above in Section 4.1.2 and shown in 

Appendix E were given to the Genost group on the last day of class. All students in the 

Genost group filled out both forms. 

 

The data collected on the Likert form was collected and averaged. Students were 

instructed to only circle one number on the Likert scales; when multiple numbers were 

circled, we chose the lowest number circled. 
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The data collected on the Free Response form was analyzed, and responses were noted, 

classified and counted. 

 

5. DATA RESULTS AND ANALYSIS 

In Section 4 we described the design of our tests and the data that was collected. In this 

section we will present the results of these tests and our analysis of the collected data. 

 

We will begin by presenting the results from our reliability analysis of the testing metric 

that was used in both tests, in Section 5.1. We will then present the results and analysis of 

the ASA test in Section 5.2, and the results and analysis of the FSE100 test in Section 

5.3. Finally, we will discuss possible weaknesses of our data in Section 5.4. 

 

5.1. PRETEST / POSTTEST RELIABILITY ANALYSIS 

In Section 4.1.1 we argued for the validity of the testing tool. In this section we will argue 

for the reliability of the testing tool, as measured by Cronbach’s Alpha. 

 

The test was given six times: four times in the ASA test and twice in the FSE100 test. We 

performed a Cronbach’s Alpha test on each of these administrations. The results of this 

analysis may be viewed below: 
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Table 4  

The results of the Cronbach's Alpha test on six administrations 

Test Cronbach’s Alpha 

# of Items 

Removed Due 

to 0 Variance 

# of Items Which 

Would Increase 

Cronbach’s Alpha 

if deleted 

ASA – Control 

Pretest 

.859 0 4 (Q1, Q3, Q11, 

Q12) 

ASA – Control 

Posttest 

.828 2 (Q9, Q10) 0 

ASA – Independent 

Pretest 

.758 0 2 (Q4, Q7) 

ASA – Independent 

Posttest 

.782 0 2 (Q4, Q11) 

FSE100 – Pretest .643 1 (Q7) 4 (Q2, Q3, Q6, Q9) 

FSE100 – Posttest .449 2 (Q8, Q10) 4 (Q4, Q5, Q7, Q13) 

 

In 4 out of 6 administrations, Cronbach’s Alpha was greater than .7. In one of the two 

administrations that did not have a Cronbach’s Alpha greater than .7, the Cronbach’s 

Alpha score was very close to .7 (.643). The remaining administration had a low score of 

.449. Because the majority of administrations had a high Cronbach’s Alpha score, we are 

confident that our test has a high level of internal consistency and is valid. 

 

As can be seen in  

, some items were removed from some of the Cronbach’s Alpha test due to zero 

variation. The ASA Control Group posttest had two items removed – this was because no 

student got these two questions right. The same is true for the one question removed from 

the FSE100 pretest – no student scored any points on this item for that administration of 

the test. Finally, in the FSE100 posttest, no student got Q8 or Q10 wrong, and so this 

question also had zero variance. 
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On all administrations of the test except the ASA Control Posttest, there were some 

questions which, if they were removed, would increase the Cronbach’s Alpha score. 

These items are listed in the last column of  

.  

Table 5 shows the distribution of this data across the thirteen questions. 

 

Table 5 

Number of Times Each Question's Removal would Increase Cronbach's Alpha 

Question # 

# of times removal would 

increase Cronbach’s 

Alpha 

1 1 

2 1 

3 2 

4 3 

5 1 

6 1 

7 2 

8 0 

9 1 

10 0 

11 2 

12 1 

13 1 

 

The data in  

Table 5 is fairly well distributed across the thirteen questions – most questions were 

removed at least once, some were removed twice, and one was removed three times. 

Because this data is well distributed, and no one question has a removal number much 

larger than the others, we do not believe that any of the questions on our testing metric is 

inherently unreliable. 
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Section 4.1.1 establishes the validity of our testing metric. The current section also 

establishes its reliability. Because of this, we believe that we can proceed to analyze the 

scores on administrations of this test with the confidence that these scores do represent 

the degree to which students understand fundamental computational thinking ideas. 

 

5.2. ASA TEST RESULTS AND ANALYSIS 

Our ASA test, as described in Section 4.2, was a two-group test, one of which was a 

control group and the other of which was the independent group. We collected pretest / 

posttest data from both groups, and feedback data from the independent group. In this 

section we will present our analysis of this data. 

 

5.2.1. Group Similarity Test 

Because we are comparing two separate groups of students, we want to first establish that 

these students are drawn from similar populations and the groups do not significantly 

differ. In order to do this, we performed an independent means t-test on the pretest scores 

of these two groups. 

 

As can be seen in Table 6 below, no significant difference was found between the two 

groups (t(42) = -.797, p > .05). The mean pretest score of the control group (m = 20.59, 

sd = 22.176) was not significantly different from the mean of the experimental group 

pretest scores (m = 15.89, sd = 16.842). 
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Table 6 

Independent means t-test to establish similarity of populations between ASA test Control 

and Independent groups 

 

 Levene's Test for 

Equality of 

Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

13. 

Equal 

variances 

assumed 

2.495 .122 
-

.797 
42 .430 -4.699 5.898 

Equal 

variances not 

assumed 

  
-

.748 
27.500 .461 -4.699 6.280 

 

 

This indicates that the populations in the two groups were not significantly different from 

one another, and that we may compare the performance of the two groups. 

 

5.2.2. Test Score Analysis 

An ANCOVA test was performed on the ASA data to determine whether the posttest 

scores were significantly different between the independent group and control group, 

with the pretest score treated as a covariant. 

 

Note that, in the tables below, Group 1 is the independent group, and Group 2 is the 

control group. 
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5.2.2.1. ANCOVA Assumptions 

To draw conclusions from an ANCOVA test, a series of assumptions about the data must 

be made. We ran a series of tests on the data to validate these assumptions, which will be 

described below. 

 

A test of between-subject effects was run in order to determine the homogeneity of 

regression slopes. The interaction term (group * pretest) was found not to be statistically 

significant, F(1, 33) = .017, p = .897.  Table 7 below shows this data. 

 

Table 7  

Test of between subjects effects for ASA data to establish homogeneity of regression 

slopes. 

Dependent Variable: Posttest 

Source Type III Sum 

of Squares 

Df Mean 

Square 

F Sig. 

Group 13950.736 1 13950.736 43.039 .000 

Pretest 2426.957 1 2426.957 7.487 .010 

Group * 

Pretest 
5.530 1 5.530 .017 .897 

Error 10696.772 33 324.145   

Total 98806.692 37    

 

 

A Shapiro-Wilk’s test was run to ensure that the standardized residuals for the 

interventions and for the overall model were normally distributed. This test showed that 

these were normally distributed (p > .05). These results can be seen below in Table 8. 
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Table 8 

Shapiro-Wilk test of normality of residuals for ASA data 

 Group Shapiro-Wilk 

 Statistic df Sig. 

Standardized Residual 

for Posttest 

1 .961 20 .564 

2 .907 17 .088 

 

Homoscedasticity was established by a visual inspection of a scatterplot of the residuals. 

There were also no outliers in the data, as assessed by no cases appearing with 

standardized residuals greater than +3 standard deviations. 

 

Certain assumptions were not met. There was not a linear relationship between the pretest 

scores and posttest scores, and there was not homogeneity of variances, as assessed by 

Levine’s test of homogeneity of variance (p = .023). These violations may partially be 

explained by a floor effect in our pretest data. Despite not meeting these assumptions, we 

proceeded with the ANCOVA test, as these violations are not large, and ANCOVA is 

known to be robust against violations of assumptions. Furthermore, the strong 

significance found after running the ANCOVA makes it unlikely that these assumption 

violations led to a Type I error. 

 

5.2.2.2. ANCOVA Results and Analysis 

After investigating the assumptions, we ran the actual ANCOVA test. The result of this 

test may be seen below in Table 9. 
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Table 9 

Results of ANCOVA on ASA test scores 

Dependent Variable: Posttest 

Source Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 

Pretest 2680.604 1 2680.604 8.516 .006 .200 

Group 27811.964 1 27811.964 88.355 .000 .722 

Error 10702.302 34 314.774    

Total 98806.692 37     

 

 

The result of the ANCOVA test show that, after adjustment for pretest score, there was a 

statistically significant difference in posttest scores between the control and independent 

groups, F(1,34) = 88.355, p < .0005, partial η2 = .722. 

 

Post hoc analysis was performed with a Bonferroni adjustment. This analysis shows that 

posttest scores were statistically significantly greater for the independent group (p < 

.0005). This data may be seen below in Table 10. 
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Table 10 

Post-hoc analysis on ASA ANCOVA 

Dependent Variable: Posttest 

(I) 

Group 

(J) 

Group 

Mean 

Difference 

(I-J) 

Std. 

Error 

Sig.b 

1 2 55.839* 5.940 .000 

2 1 -55.839* 5.940 .000 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 

 

The Cohen’s D value for this data is 9.4. This is an extremely large effect size, perhaps 

suspiciously so. Possible reasons for the large effect size come from the control group, 

whose scores actually decreased from pretest to posttest. Possible problems with the 

control group include: 

 

- The control group knew that they were part of a test, and may have experienced 

an observation expectancy effect. 

 

- The control group may have had low motivation to take the test seriously – this 

may explain the decrease in scores. 

 

- Many people withdrew from the study in both groups. 

 

These facts should be kept in mind when evaluating the ASA test results. 
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5.2.2.3. Mann-Whitney U Assumptions, Results and Analysis 

Due to the fact that certain assumptions for the ANCOVA were not met, as discussed in 

Section 5.2.2.1, a Mann-Whitney U test was run to confirm our ANCOVA result. The 

Mann-Whitney U test was run to determine if there were differences in change scores 

(posttest minus pretest) between the independent group and the control group. Based on a 

visual assessment of a population pyramid, we determined that the distributions of 

change scores were similar enough to allow us to use the Mann-Whitney U test to 

compare medians (see Figure 24).  

 

 

Figure 24. Mann-Whitney U population pyramid 

 

The result of the Mann-Whitney U test was as follows: median change scores was 

statistically significantly higher in the independent group (48.065) than in the control 

group (-5.154), U = 11, z = -4.846, p < .001, using an exact sampling distribution for U. 
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This result confirms our ANCOVA analysis, and allows us to state with confidence that 

the Genost treatment did elicit an increase in computational thinking scores. 

5.2.3. Feedback Analysis 

Two sources of feedback were collected from the independent group during the ASA test, 

as described in Section 4.2.4.2. 

 

5.2.3.1. Software Feedback (Likert Scales) 

All students in the independent group filled out a feedback form containing ten Likert 

scales, with three questions for the categories of ease of use, educational efficacy and 

enjoyment of the Genost software. Additionally, one question was dedicated to rating the 

overall experience of using Genost. The Likert scales measured on a scale of 1 to 10, with 

1 being the lowest score and 10 being the highest. The feedback collected was averaged 

and the results are as follows: 

 

Table 11 

The Likert scale averages from the Genost software feedback form, ASA test 

Scale Average Score 

Ease of Use (Q1, Q5, Q8) 7.767 

Educational Efficacy (Q2, Q4, Q7) 8.183 

Enjoyment (Q3, Q6, Q9) 7.15 

Overall Experience (Q10) 7.71 

 

Because our form has not been administered for other educational systems, we cannot do 

numeric comparisons to determine whether this feedback is higher or lower than, say, 
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Scratch, Alice or NXT. However, we can at least see that the numbers themselves are on 

the high end of the scale. 

 

5.2.3.2. Curriculum Feedback (Free Response) 

The second sources of feedback collected from the independent group was a series of 

four free response questions focusing on the Genost curriculum and our presentation. 

Students were asked to list three things they liked, three things they disliked, three things 

they would change, and any other comments they had, and were specifically instructed to 

limit these things to the Genost curriculum and our presentation. We examined these 

responses and, for the first three free response questions (liked, disliked, and would 

change) we tabulated common themes in the responses. From this free response feedback, 

we can examine common themes for what the students liked, found easy, found 

educational, as well as what they did not like, found difficult, or did not understand. 

 

We will examine this free response data over the next three subsections. 

 

5.2.3.2.1. Free Response Data – What Students Liked 

Table 12 shows common themes that the students identified in their free response 

feedback for the question “Please write three or more things that you liked about the 

Genost curriculum and my presentation”. 
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Table 12  

Free response tabulation for "Liked" question, ASA Test 

# 

Responses /  

% of Total Theme 

10 / 16.9% High quality / clarity of presentation by instructor 

10 / 16.9% Curriculum easy to learn / use / understand 

5 / 8.5% High quality / clarity of presentation on lecture slides 

5 / 8.5% Felt that curriculum was a good introduction to programming 

4 / 6.8% Had fun 

3 / 5.1% Written response was unclear 

3 / 5.1% 

Enjoyed the visual programming basis (i.e. liked drag/drop better than 

coding) 

3 / 5.1% Student felt like he or she learned something 

2 / 3.4% Good introduction to computational thinking 

2 / 3.4% Good difficulty progression (started out easy, became more challenging) 

2 / 3.4% Good conceptual progression (student felt scaffolding was appropriate) 

2 / 3.4% 

Open nature of the software ("multiple answers to problems and no 

strict rules") 

1 / 1.7% Related to software 

1 / 1.7% Lessons well ordered 

1 / 1.7% Related to class section (Small class size, flexible etc.) 

1 / 1.7% Liked mazes 

1 / 1.7% Liked video game theme 

1 / 1.7% Good presentation speed 

1 / 1.7% Liked "achievement based" style 

1 / 1.7% Felt that lectures related to exercise 

 

We can see that the two most prominent themes were that the curriculum was easy to 

learn and understand, and that we presented it well. Other major themes that students 

liked include well-constructed lecture slides, and a belief that the Genost course was a 

good introduction to programming. It is notable and encouraging that these responses are 

exactly what we were aiming for in constructing the Genost system.  
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5.2.3.2.2. Free Response Data – What Students Disliked 

Table 13 shows common themes that the students identified in their free response 

feedback for the question “Please write three or more things that you disliked about the 

Genost curriculum and my presentation”. 

 

Table 13  

Free response tabulation for "Disliked” question, ASA Test 

# Responses /  

% of Total Theme 

9 / 17.3% Class was taught too fast 

9 / 17.3% Class featured too many worksheets 

8 / 15.4% Response related to software bugs 

5 / 9.6% Not enough time for exercises 

4 / 7.7% Lack of formal language education 

3 / 5.8% Not fun 

2 / 3.7% Response related to software design 

2 / 3.7% Student didn't understand something 

2 / 3.7% Worksheets were too long 

1 / 1.9% Class was taught too slow 

1 / 1.9% Curriculum featured repetitiveness 

1 / 1.9% Review questions were too easy / repetitive / unnecessary 

1 / 1.9% Simulated robot moved slowly 

1 / 1.9% Poor design of the lecture slides 

1 / 1.9% Class time too long 

1 / 1.9% Genost did not run on well on all computers 

1 / 1.9% Related to class section (time of day, classroom management, etc.) 

 

Overwhelmingly, the response data for the disliked question were related to the class 

design, specifically its length of time. Three of the top four responses have to do with 

this, meaning that, had the class been taught over a longer period of time, these common 

complaints may have been alleviated. This is not surprising, as the Genost curriculum 
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contains a large amount of information and requires a considerable amount of work. It is 

difficult to fit into the relatively short 16 hour instruction time of the ASA course. 

 

The only response in the top four not dealing with the class design has to do with 

software bugs, a common complaint despite students being instructed not to include these 

on their free response forms. 

 

Another interesting response is the lack of real life language involvement – four students 

noted that they would have liked to see more information relating Genost to a real life 

language, such as Java or C. Part of the reason for this response may have been student 

expectations – some students entered the Genost class under the impression that they 

would be learning a formal language, and at least some of the students already had 

experience with formal languages. 

 

Relatively few students reported that they found the curriculum unenjoyable, and only 

two students reported not understanding something. However, due to the overwhelming 

response related to the class design, it may be that responses of this nature were 

suppressed. We may at least conclude from this data that whatever lack of enjoyment or 

lack of understanding that students experience was overwhelmingly outweighed by their 

dislike of the short amount of instruction time. 

 

5.2.3.2.3. Free Response Data – What Students Would Change 
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Table 14 shows common themes that the students identified in their free response 

feedback for the question “Please write three or more things that you would change about 

the Genost curriculum or my presentation”. 

 

Table 14 

Free response tabulation for "Would Change" question, ASA Test 

# Responses /  

% of Total Theme 

13 / 30.2% Response related to software bugs 

6 / 14% 

Would add more time to class (Not enough time to go over 

everything in class, taught too fast, etc.) 

5 / 11.6% Fewer worksheets 

4 / 9.3% 

Related to class section / study design (class time, pretest, posttest, 

number of students, etc.) 

4 / 9.3% Improve pace - faster on easy stuff, slower on hard stuff 

2 / 4.7% Make things more fun 

1 / 2.3% Link to formal language education 

1 / 2.3% Change presentations - make more concise, less redundant 

1 / 2.3% Put content online / make it accessible 

1 / 2.3% Improve maze design / theme 

1 / 2.3% Improve worksheet quality - Add tips, hints 

1 / 2.3% Do not show solution in first lecture 

1 / 2.3% Do not require filling out worksheets 

1 / 2.3% More independent work 

1 / 2.3% Make different ways to solve a maze 

 

Once again, despite being instructed not to include this information, many students 

responded with requests to solve software bugs. Following this, the top three responses 

all were related to the class design, especially the length of time. The most common  
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theme that was not involved with class design was instead related to the pace of the 

curriculum. There were no commonly suggested changes that had to do with the 

curriculum content itself. 

 

As with the “dislike” question, it may be that the class design problems stood out so 

much to the students that problems related to the curriculum were suppressed. However, 

it is also notable that the second most common request was for more time with the 

curriculum, which seems to indicate at least that students did not dislike their time spent 

working with Genost. 

 

5.3. FSE100 TEST RESULTS AND ANALYSIS 

Our FSE100 test, as described in Section 4.2, used a three-group test, with one control 

group and two in dependent groups (the Genost group and the Python group). We 

collected the final FSE100 grade from all participants in the three groups. Additionally, 

we collected both pretest / posttest data and feedback data from the Genost group. In this 

section we will present the analysis of this data. 

 

5.3.1. FSE100 Grade Analysis 

The primary test that was performed on the FSE100 grade data was a one-way ANOVA, 

to determine whether the final FSE100 grades were significantly different between the 

three groups.  
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5.3.1.1. One-Way ANOVA Assumptions 

To draw conclusions from an ANOVA test, a series of assumptions about the data are 

made. We ran a series of tests on the data to validate these assumptions. 

  

The first assumption is that there are no significant outliers in any of the groups. We 

examined the data for outliers with the use of a boxplot, and identified as an outlier any 

value greater than 1.5 box-lengths from the edge of the box. Upon inspection, we 

identified 9 outliers, students whose grades were 75% or lower. Because the vast majority 

of grades were much higher than this (usually in the range of 80% to 100%), and because 

many of these outliers were far below the 75% mark, we believe that these outliers 

represent students who did not attend class (but also did not withdraw), or students who 

were not serious about the course for other reasons. For this reason, we removed the 

outliers from the data. 

 

The second assumption, normality of the data, was assessed using a Shapiro-Wilk test of 

normality. This was performed on the data. The results may be seen below in Table 15. 
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Table 15  

Shapiro-Wilk test of normality for FSE100 grade data 

 

 Group Shapiro-Wilk 

 Statistic df Sig. 

Grade 

Control .705 317 .000 

Python .910 38 .005 

Genost .979 17 .942 

a. Lilliefors Significance Correction 

 

The Genost group is seen to easily be normally distributed (p > .05). However, the 

Python and Control groups both fail to reject the null hypothesis, and therefore we cannot 

claim that this data is normally distributed. This is in line with our earlier observation 

about the heavy grade skew towards the high range for the FSE100 grade data. While the 

Genost group is small enough for this skew to not be significant (n = 17), the Python 

group (n = 37) and Control group (n = 309) are large enough that this skew becomes 

highly visible. 

 

Despite this assumption violation, we chose to carry on with the one-way ANOVA. It has 

been argued that ANOVA is robust to deviations from normality in cases where sample 

sizes are large (Lix, 1996), and in cases where the skew is similar across groups 

(Sawilowsky, 1992). Because the groups in which the assumption is violated are both 

large, and because the skew is the same across all groups, we chose to proceed. 
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The final assumption tested was homogeneity of variances. Levine’s test for equality of 

variances was run, and it was found that the variances for the FSE100 grade data were 

homogenous (p = .166). This can be seen in Table 16 below. 

 

Table 16 

Results of Levine's test for homogeneity of variances, FSE100 grade data 

Grade 

Levene 

Statistic 

df1 df2 Sig. 

1.805 2 360 .166 

 

 

5.3.1.2. One-Way ANOVA Results and Analysis 

Having run the assumptions tests above, we ran the ANOVA test on the data. 

 

The descriptive final grade data is presented in Table 17 below. 

 

Table 17 

The descriptive statistics for the FSE100 grade data 

Grade 

 N Mean Std. 

Deviation 

Std. Error Minimu

m 

Maximu

m 

Contro

l 
309 91.585568 8.7981871 .5005114 57.7400 106.7848 

Python 37 92.741530 6.8492320 1.1260068 74.3208 107.3308 

Genost 17 96.028957 7.0763748 1.7162730 83.8517 111.3680 

Total 363 91.911486 8.5846856 .4505791 57.7400 111.3680 
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Data are mean +- standard deviation. As can be seen, the final grade increased from the 

control group (n = 309, 91.59 + 8.8), to the Python group (n = 37, 92.74 + 6.85), to the 

Genost group (n = 17, 96.03 + 7.08), in that order. 

 

The actual ANOVA test results can be seen in Table 18 below. 

 

Table 18 

ANOVA test results for FSE100 grade data 

 

Grade 

 Sum of 

Squares 

df Mean 

Square 

F Sig. 

Between 

Groups 
346.525 2 173.263 2.369 .095 

Within Groups 26331.726 360 73.144   

Total 26678.251 362    

 

The differences between the FSE100 grade data, though they were arranged in 

concordance with our expected results (control group had the lowest grades, followed by 

Python group, followed by Genost group with the highest grade), were not statistically 

significant, F(2, 360) = 2.369, p  = .095. Because the group means were not statistically 

significant (p > .05), we cannot reject the null hypothesis and cannot accept the 

alternative hypothesis. 
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A univariate analysis of variance test was run in order to confirm this result, and to 

identify the observed power of the test. The results of this can be seen below in Table 19: 

 

Table 19  

Test of between-subject effects for FSE100 grade data 

Dependent Variable: Grade 

Source Type III 

Sum of 

Squares 

df Mean 

Square 

F Sig. Noncent. 

Parameter 

Observed 

Powerb 

group 346.525 2 173.263 2.369 .095 4.738 .478 

Error 26331.726 360 73.144     

Total 3093201.053 363      

b. Computed using alpha = .05 

 

We can see from this analysis that the same result is found: the differences between 

groups are not statistically significant, F(2, 360) = 2.369, p  = .095. We can also see that 

the observed power of the experiment was .478, a low observed power. 

 

We postulate that the low observed power indicates that this experiment was 

underpowered. Possible reasons for this underpowered design including utilizing data 

which was heavily skewed towards the high range, and large differences between the 

group sizes. Because the experiment is underpowered, while we cannot conclude that 

Genost had an effect on FSE100 grade data, we also cannot conclude that the Genost 

intervention had no effect. A future experiment may attempt to rectify this underpowered 

design by testing Genost’s effect on the final grades of a different class with a more 

normal grade distribution, and by equalizing the group sizes. 
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5.3.2. Test Score Analysis 

As with the ASA test, we collected pretest / posttest scores from the Genost independent 

group. However, we did not collect this data from the other two groups, and so we are 

limited on what analyses we can perform on this data, and what we can conclude from it. 

 

We chose to run a paired-sample t-test on this data in order to determine whether there 

was a statistically significant mean difference between the pretest and posttest scores. 

 

5.3.2.1.1. Paired-Samples T-Test Assumptions 

In order to draw conclusions from a paired-samples t-test, two assumptions must be met. 

 

The first assumption is that there are no outliers in the data. A boxplot was created to test 

this assumption. Visual inspection of the boxplot showed that there were no outliers in 

the pretest / posttest data. 

 

The second assumption is that the differences between the two groups are normally 

distributed. A Shapiro-Wilk test was performed to investigate this. The results of this test 

may be seen below in Table 20: 
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Table 20 

Shapiro-Wilk test of normality for FSE100 pretest / posttest data 

 Shapiro-Wilk 

Statistic df Sig. 

differenc

e 
.851 19 .007 

 

This test reported that the differences were not normally distributed (p = 0.007). Despite 

the data not being normally distributed, we proceeded to perform the paired-samples t-

test. We continued because the paired-samples t-test is robust against normality 

assumption deviations. 

 

5.3.2.2. Paired Samples T-Test Results and Analysis 

The results of the paired-samples t-test may be seen below in Table 21: 

 

Table 21 

Paired Samples T-Test for FSE100 pretest / posttest data 

     

Mean Std. Deviation Std. Error 

Mean 

Pair 

1 

Posttest - 

Pretest 
56.84210526084 19.61696781889 4.50044106849 12.630 18 .000 

 

As can be seen in Table 21, the posttest scores (88.28 +- 11.6) were significantly higher 

than the pretest scores (31.44 +- 17.44). The Genost treatment elicited a statistically 
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significant increase in computational thinking test scores of 56.84 points (95% CI, 47.39 

to 66.3), t(18) = 12.63, p < .0005. 

 

A Cohen's d value was calculated to determine the effect size of the Genost treatment. 

This value was d = 2.9. According to Cohen's effect size interpretation guidelines, this is 

a large effect (d > 0.8). 

 

This analysis does not necessarily indicate that the Genost treatment was responsible for 

this increase in scores, since we do not have a control group to compare it to. However, 

this data supports the analysis of the ASA ANCOVA test in Section 5.2.2.2, which did 

have a control group, and found that the Genost treatment was responsible for the 

improvement in scores. 

 

5.3.3. Feedback Analysis 

Two sources of feedback were collected from the independent group during the FSE100 

test, as described in Section 4.2.4.2. 

 

5.3.3.1. Software Feedback (Likert Scales) 

All students in the Genost group filled out a feedback form with ten Likert scales, with 

three questions for the categories of ease of use, educational efficacy and enjoyment of 

the Genost software. Additionally, one question was dedicated to rating the overall  
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experience of using Genost. The Likert scales measured on a scale of 1 to 10, with 1 

being the lowest score and 10 being the highest. The feedback collected was averaged 

and the results are as follows: 

 

Table 22 

The Likert scale averages from the Genost software feedback form, FSE100 test 

Scale Average Score 

Ease of Use (Q1, Q5, Q8) 7.474 

Educational Efficacy (Q2, Q4, Q7) 7.596 

Enjoyment (Q3, Q6, Q9) 6.123 

Overall Experience (Q10) 7.037 

 

Once again, we can see that these numbers are on the high end of scale. Interestingly, 

they are somewhat lower than the ASA test. Possible reasons for this may include less 

time spent with the software (12 hours for the FSE100 test vs. 16 hours for the ASA tests) 

or age differences between the two groups (high-school aged vs. college aged.)  

 

5.3.3.2. Curriculum Feedback (Free Response) 

The second sources of feedback collected from the Genost group was a series of four free 

response questions focusing on the Genost curriculum and our presentation. Students 

were asked to list three things they liked, three things they disliked, three things they 

would change, and any other comments they had, and were specifically instructed to limit 

their responses to the Genost curriculum and our presentation. We examined these 

responses and, for the first three free response questions (liked, disliked, and would 

change) we tabulated common themes in the responses. From this free response feedback, 
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we can examine common themes in what the students liked, found easy, found 

educational, as well as what they did not like, found difficult, or did not understand. 

 

We will examine this free response data over the next three subsections. 

 

5.3.3.2.1. Free Response Data – What Students Liked 

Table 23 shows common themes that the students identified in their free response 

feedback for the question “Please write three or more things that you liked about the 

Genost curriculum and my presentation”. 

 

Similar to the ASA free response feedback, the two most liked items were related to the 

content of the curriculum, and its presentation. The most frequent item that students 

noted they liked was learning the fundamental concepts of programming in a general 

manner. Other highly rated items include the example-based nature of the curriculum, the 

frequent practice and repetition of concepts, and the general education of computational 

thinking. Once again, these are exactly the things that we aimed for when developing 

Genost. 
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Table 23 

Free response tabulation for "Liked" question, FSE100 test 

# Responses 

/  

% of Total Theme 

8 / 13.1% 

Genost taught the fundamental concepts in a general – to – concrete 

way 

8 / 13.1% High quality / clarity of presentation on lecture slides 

6 / 9.8% Used examples to teach in a concrete – to – general manner. 

6 / 9.8% High quality / clarity of presentation by instructor 

5 / 8.2% Enjoyed the repetition and practice 

4 / 6.6% Related to the software design 

3 / 4.9% Taught computational thinking 

3 / 4.9% Easy to learn 

3 / 4.9% Related to Class Section (Small class size, flexible etc.) 

3 / 4.9% Had fun 

3 / 4.9% Liked quality of the curriculum 

2 / 3.3% Written response was unclear 

2 / 3.3% Felt lessons were well ordered 

1 / 1.6% Liked receiving extra credit for participating 

1 / 1.6% Liked similarity to formal programming languages 

1 / 1.6% Liked mazes 

1 / 1.6% Liked video game theme 

1 / 1.6% Liked drag-and-drop programming interface 

 

5.3.3.2.2. Free Response Data – What Students Disliked 

Table 24 shows common themes that the students identified in their free response 

feedback for the question “Please write three or more things that you disliked about the 

Genost curriculum and my presentation”. 
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Table 24 

Free response tabulation for "Disliked" question, FSE100 Test 

# Responses 

/  

% of Total Theme 

6 / 12.5% Class was taught too fast 

4 / 8.3% Certain worksheets were too hard 

3 / 6.3% Curriculum was repetitive 

3 / 6.3% Review questions were too easy / repetitive / unnecessary 

3 / 6.3% Late lessons were too hard 

2 / 4.2% Lack of real life language involvement 

2 / 4.2% Early lessons were too easy 

2 / 4.2% Felt certain worksheets were unnecessary 

2 / 4.2% Felt certain concepts were missing concepts (variables, etc.) 

2 / 4.2% Simulated robot moved slowly 

2 / 4.2% Poor design of the lecture slides 

2 / 4.2% Worksheet goals were unclear  

2 / 4.2% Class featured too many worksheets 

1 / 2.1% Class was taught too slow 

1 / 2.1% Not enough time for exercises 

1 / 2.1% Student didn't understand something 

1 / 2.1% Disliked maze focus 

1 / 2.1% 

Found early exercises (i.e. exercises without the best tools available) 

too hard 

1 / 2.1% Focused too much on learning Genost, and not general ideas 

1 / 2.1% Software crashed often 

1 / 2.1% Did not have fun 

1 / 2.1% Poor lesson design led to lack of student participation 

1 / 2.1% Instructor did not review takehome assignments in class 

1 / 2.1% Class ran for too long 

1 / 2.1% Genost did not run well on all computers 

1 / 2.1% Related to class section (time of day, classroom management, etc.) 

 

As with the ASA test, the most common complaint has to do with the speed at which the 

class was taught, due to the limited time available. However, many of the other common 

complaints have to do with the curriculum itself. Two common complaints state that parts 
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of the curriculum were too difficult. Another common dislike is the repetition of the 

review questions at the end of each lecture. Finally, as with the ASA test, some students 

did not like the lack of formal language integration into the curriculum. 

 

This feedback indicates that the curriculum may be difficult for some students to learn. 

As suggested in Section 5.3.3.1, part of the reason for this difficulty may be the short 

amount of time involved with the FSE100 course, though we do not suggest that this 

accounts for all of the difficulty students experienced.  

 

5.3.3.2.3. Free Response Data – What Students Would Change 

Table 25 shows common themes that the students identified in their free response 

feedback for the question “Please write three or more things that you would change about 

the Genost curriculum or my presentation”. 
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Table 25  

Free response tabulation for "Would Change" question, FSE100 Test 

# Responses 

/  

% of Total Theme 

9 / 18.4% 

More Time (Not enough time to go over everything in class, taught too 

fast, etc.) 

4 / 8.2% Fewer Worksheets 

4 / 8.2% 

Related to class section / study design (class time, pretest, posttest, 

number of students, etc.) 

2 / 4.1% Change presentations - improve design, make easier to read 

2 / 4.1% Change presentations - improve review questions 

2 / 4.1% Put content online / make it accessible 

2 / 4.1% Engage class more 

2 / 4.1% Teach more concepts 

2 / 4.1% Improve pace - faster on easy stuff, slower on hard stuff 

2 / 4.1% Improve worksheet quality - Add tips, hints 

2 / 4.1% Make class more concise 

1 / 2% Unclear 

1 / 2% Related to software 

1 / 2% Link to Real Code 

1 / 2% More Explanation of a Subject 

1 / 2% Should synchronize Genost curriculum with another freshman class 

1 / 2% Change presentation – be more concise, less redundant 

1 / 2% Change presentation – give more examples 

1 / 2% Improve worksheet quality – focus more on key points 

1 / 2% Make class more difficult 

1 / 2% Focus less on Genost and more on concepts 

1 / 2% Rely less on Powerpoint slides when lecturing 

1 / 2% Improve the maze design and theme 

1 / 2% Go over takehome lessons in class 

1 / 2% Add practice tests to curriculum 

1 / 2% Shorten worksheet length 

1 / 2% Teach more on algorithm design 

 

Once again we see that the overwhelming suggestion for change is to increase the length 

of the course. The second most common suggestion is a reduction in the number of 
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worksheets. Interestingly, the third most commonly suggested changes had to do with the 

particulars of the class design – usually this had to do with the class time, which was held 

relatively late in the day at 7:00PM. 

 

To conclude our review of the free response feedback, we note that the most common 

complaints seem to be that not enough time was spent in the course; at the very least, this 

seems to indicate that students did not dislike the Genost course, and wanted to spend 

more time learning. 

 

5.4. POSSIBLE DATA WEAKNESSES 

Our analyses above conclude that Genost did increase the computational thinking skills 

of the participating students. We have argued that we can conclude from this that Genost 

does effectively teach the computational thinking skills we have designed it to teach. In 

this section we will note possible data weaknesses to keep in mind when drawing this 

conclusion. 

 

5.4.1.   Possible Data Weaknesses in the ASA Test 

The ASA test had relatively small sample sizes, with 20 students in the independent 

group and 17 students in the con troll group. This small sample size limits our ability to 

extrapolate the results of the test to larger populations. 

 

Another possible weakness of the ASA data has to do with the nature of student 

recruitment. Because we recruited by advertising the Genost class to interested students, 
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instead of selecting participants from a pool, some self-selection may have occurred in 

the independent group. Further selection bias may have occurred as students dropped out 

during the course, and were therefore removed from the independent group. The control 

group is not likely to have experienced similar self-selection since they were recruited 

from a single class, and did not join the experiment based on an interest in learning to 

program. 

 

5.4.2.   Possible Data Weaknesses in the FSE100 Test 

The FSE100 test, as we have argued above, was a low power test, at least in regards to 

the grades. This severely limits our ability to draw any conclusions from it. 

 

The FSE100 test is not likely to have experienced selection bias to the same extent as the 

ASA test may have. As discussed in Section 4.3.1.1, we received a large amount of 

volunteers for the Genost group, and narrowed our selection from 100 to 30. At least half 

of the students eliminated were done so randomly. For this reason, initial selection is not 

likely to suffer selection bias in student selection. However, as with the ASA test, some 

selection bias may have occurred due to students dropping the course over its run. 

 

Finally, we note again that the FSE100 grade data was unexpectedly skewed highly 

towards the high range of the grade distribution. Almost every student that we collected 

data from received at least an 80%. This may be part of the reason for the experiment’s 

unexpectedly low power. 
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6. CONCLUSION 

We will conclude this thesis by summarizing the results of our research and our review, 

and by performing a final analysis on the information gathered. We will summarize the 

results of our own tests on the Genost system, and discuss limitations on these results. 

Finally, we will complete the thesis with a discussion of future improvements that may be 

made to the Genost system. 

 

6.1. RESEARCH SUMMARY 

We began this thesis by considering the oft-reported STEM crisis. While the nature and 

magnitude of this impending crisis is disputed depending on the source, we found that all 

sources agree on the importance of teaching computational thinking. Most sources 

believe that computational thinking is an important (perhaps even crucial) skill for the 

modern world, and that it should be taught not just to computer science students, but to 

all students, regardless of their major. 

 

In response to this we performed an investigation into the definition of computational 

thinking and identified four major components of computational thinking that ought to be 

taught. These are: the ability to read and understand algorithms, the ability to engage in 

abstraction, the ability to decompose a problem into solvable processes, and the ability to 

evaluate the quality of a solution. In Section 2.1 we performed a deeper look at each of 

these subjects and identified several educational goals for teaching each one. 
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Further research led to the conclusion that computational thinking ought to be taught in a 

student’s “introductory” computer science course. A review of the literature led us to 

conclude that computational thinking and programming are two separate skills, and that 

the former ought to be taught prior to, and independently of, the latter. In this way we 

established that introductory computer science education ought to consist solely of 

computational thinking instruction. 

 

We performed an investigation into existing introductory computer science education in 

the United States. This investigation found that neither high school education nor college 

education adequately teaches students computational thinking. In both high school and 

college, existing introductory courses focus on teaching the syntax of a formal 

programming language, and while in some cases computational thinking skills are taught 

as well, they are rarely taught explicitly, and are almost always taught in the context of 

programming in whatever particular language has been taught. After performing this 

review, we noted that existing introductory computer science education produces very 

poor results: these classes have high failure rates, high attrition rates, and the students 

who pass these classes are often unable to effectively design and write programs. We 

argue that the lack of computational thinking education is, at least in part, responsible for 

these poor results. 

 

We are not the only ones to come to this conclusion, and many “newer” educational 

systems have been created to attempt to teach computational thinking. We performed a 

review of eight of these newer educational systems. As part of this review, the good and 
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bad qualities of these systems were considered, and from each system we drew a series of 

lessons and takeaways. The goal of this review was to determine what qualities are good 

for an introductory computer science education system focused on computational 

thinking, and what qualities are problematic. 

 

We found four major qualities that an “ideal” introductory computer science educational 

system should include, which are are: drag and drop style programming, virtual world 

integration, robot integration, and an official curriculum developed alongside the 

software. Other particular desirable features that were identified include a well-designed 

drag and drop language that abstracts actions to a high level, and is visually designed to 

indicate how the blocks can be combined; a robotic integration that allows the robot code 

to execute on a local computer instead of on the robot itself, and also allows multiple 

models of robots to be used; general customizability of the system, and integration with 

social media. Particular features that systems should avoid include shifting focus away 

from computational thinking education onto other items like syntax or mechanical 

engineering, unduly high technical complexity, oversimplification, high expense, and a 

curriculum that focuses more on play, competition or storytelling than explicit 

computational thinking instruction. 

 

6.2. GENOST TEST SUMMARY 

Using the research findings described above, we designed and built Genost, an 

educational system focused on teaching introductory computational thinking skills. 

Genost’s design and technology is described extensively in Section 3. 
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In Section 3.8 we compared Genost to the other eight systems that were reviewed in 

Section 2.4 and found, based on our takeaways from that review, that Genost implements 

more desirable features than any other system, and avoids all problems that the reviewed 

systems have. A table showing this comparison can be found in Appendix G. 

 

In order to test Genost’s effectiveness in teaching computational thinking, we performed 

two major tests of the systems, which involved teaching the Genost curriculum to two 

separate groups of students and evaluating these students’ abilities in computational 

thinking. The designs of these tests are described in Section 4, and the results are 

described and analyzed in Section 5. 

 

As stated in Section 5, we found in both tests that students participating in a Genost class 

saw a significant increase in their computational thinking skills and abilities. It is notable 

that the students in these classes went to having almost no computational thinking skills, 

attaining averages on the computational thinking pretest in the range of 0 to 10%, and 

often not even attempting most questions, to scoring in the range of 50% to 60%, with 

most students attempting most of the questions. The ASA test, due to its design, allows us 

to conclude that Genost was responsible for this increase. The FSE100 test does not allow 

us to draw this same conclusion due to the lack of a control group for the pretest / 

posttest, but the extremely large size of the increase in computational thinking skills, and 

the results of the ASA test, makes us believe that Genost was indeed responsible for the 

increase. In both tests the effect size of Genost on computational thinking abilities was 

classified as “large”. 
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In addition to measuring computational thinking ability, we also collected grade data 

from the FSE100 students in our FSE100 test. We found that students participating in the 

Genost exercise had the highest raw grade average, followed by the students participating 

in a Python exercise, and finally by the remainder of the class. However, the differences 

between these grade means were not large enough to be significant, and so we cannot 

conclude that Genost raised student grades in FSE100. 

 

The final data set that we reviewed was student feedback, provided in two forms: Likert 

data for the Genost software, and free-response data for the Genost curriculum and 

presentation. All students participating in the Genost groups provided us with this 

feedback, and we believe it is an accurate representation of student thoughts and feeling 

on the system. 

 

The Likert responses measure student thoughts on the ease of use, fun and educational 

efficacy of the software. These responses were on the high end of the scale, measuring 

roughly between 6 and 8 for all categories. Ease of use was rated between 7.5 and 7.8 on 

average; educational efficacy was rated 7.6 to 8.1 on average; and enjoyment was rated 

6.1 to 7.1 on average. The overall Genost software experience was given a rating of 7 – 

7.7. These scores are on the high end of the scale, and lead us to conclude that students 

found the Genost software easy to work with, that they enjoyed working with it, and that 

they believed that they learned something from their interaction with the software. 
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The free response feedback, which measures student thoughts about the Genost 

curriculum and our presentation of it, was also very positive. The positive feedback that 

students provided indicated that students found the system easy to understand and 

educationally rigorous. This feedback also indicates that the students found our 

presentation of the curriculum clear and engaging. Many of the educational benefits that 

we argued that Genost provides, such as a general presentation of the fundamental 

programming concepts, were identified by the students as something they liked. This 

feedback makes us somewhat confident that we “hit the mark” with Genost. 

 

An overwhelmingly high percentage of the negative feedback and the feedback on what 

the students would change focuses on the relative short amount of time students spent 

with Genost, and the large amount of work that we attempted to fit into that time.  44.2% 

of the student complaints in the ASA test had specifically to do with the short amount of 

time in the Genost class; lack of time was also the highest percentage complaint for the 

FSE100 test. The only major complaint that did not have to do with the short amount of 

time, or with other aspects of the class section (such as the class size or time of day at 

which it was taught) was a complaint by four FSE100 students that the worksheets were 

too hard to understand. A similar pattern can be seen in the feedback on what students 

would like changed – the most common suggestion for the FSE100 test, and the second 

highest suggestion for the ASA test (second only to a request to fix bugs with the 

software) was to add more time to the class. These complaints and suggestions indicate to 

us that none of Genost’s deficiencies are strong or glaring enough to seriously bother the 

students; and indeed, the fact that students wish to spend more time with the Genost 
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system further reinforces our conclusion that students like the system, and find it 

educational and enjoyable. 

 

The results of our comparison between Genost and the eight “newer” systems, and the 

results of our test, lead us to conclude that the Genost system is effective in teaching 

computational thinking, is easy and fun for students to use, and is in many ways superior 

to the other systems currently on the market.  

 

6.3. THESIS LIMITATIONS 

In Section 5.4.2 we noted some of the possible weaknesses of our results analysis. These 

include violations of some assumptions for both the ANOVA test in the ASA test (used 

to analyze the computational thinking pretest / posttest results) and the paired-samples t-

test in the FSE100 test (also used to analyze the computational thinking pretest / posttest 

results). Despite these assumption violations, we have proceeded with these tests and 

believe that the results we have retrieved from them are valid. We are confident that this 

is acceptable due to the known robustness of these tests to violations, but also to the fact 

that the significance and effect size of our results are very large, meaning that Type I 

errors are less likely. 

 

We also discussed possible biases in our tests in Section 5.4.2. Students participating in 

the FSE100 test were chosen pseudo-randomly according to the process described in 

Section 4.3.1.1, and therefore selection bias is not likely here. The ASA students were 

chosen on a first-come first-serve basis, however, and so the group may have been biased 
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towards students interested in learning programming. Furthermore, both independent 

groups had students withdraw, and therefore some bias may have been introduced 

towards more hardworking or persistent students. These sources of bias are virtually 

unavoidable in tests of this nature since participation is and must be voluntary. Despite 

this, we again believe that the very strong significance and effect size indicates that, 

whether selection bias was in fact present or not, it is unlikely to be high enough to 

invalidate our conclusions. 

 

In retrospect we are able to see that FSE100 was not the ideal class to use for our test – as 

previously described, the scores for all groups were skewed strongly towards the high end 

of the scale, instead of providing a strong normal distribution. This feature and others are 

likely what led to the FSE100 grade data analysis being underpowered. This is ultimately 

not a true limitation since we cannot draw any conclusions from this data. 

 

Aside from the limitations on the data we collected and analyzed discussed above, more 

general limitations may be identified when considering our literary review. For example, 

our review of the introductory computer science education classes in the United States 

was conducted using the best information available to us, which were online curricula. 

These curricula, while informative, do not and cannot give a whole picture of the class; 

and often the true value of the class comes from the teacher teaching it. It is possible that 

amount of computational thinking education in existing introductory computer science is 

higher than we have identified (it could also be lower). 
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A similar limitation should be noted for our review of the eight “newer” systems. Many 

of these systems are quite new and literature on them is limited. Furthermore, literature 

on how well these systems teach introductory computational thinking skills is a small 

percentage of the total amount of research for these systems. We believe that the general 

conclusions we have drawn in regards to this system are valid, but could certainly be 

refined. Similarly, our comparison between these systems and Genost are rough 

comparisons, and further research and explicit tests to compare these systems are 

certainly warranted. 

 

6.4. FUTURE IMPROVEMENTS 

We plan to add many features to Genost in order to improve its design and ability to 

teach computational thinking. We will conclude this thesis by listing some of these 

planned improvements. 

 

Our immediate goals for the current version of Genost is to fix the bugs in the GUI and 

simulator, improve the visual design of the blocks to better indicate how they fit together, 

and improve the general usability of the system. We also hope to complete development 

on the robot and integrate it into the curriculum. Finally, we hope to rewrite some of the 

curriculum lessons to aid in clarity and educational efficacy. 

 

Due to the feedback received as part of this test, we plan to either split future Genost 

courses up into multiple classes, or increase the length of a single course, in order to give 

students more time for individual lessons. 
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Our long-term goals for Genost involve a fairly complete rebuild of the system. We plan 

to rebuild the Genost system in JavaScript in order to take advantage of the language’s 

native functionality in the browser. This will allow Genost to run cleanly in the browser 

with absolutely no required software or plugins. We also plan to add many new features 

to the mazes, in order to increase the richness of the different lessons. We hope to create 

multiple models of robots to provide customers greater flexibility in selecting a robot that 

meets their needs, and we also hope to implement a Genost interpreter on existing robot 

systems, such as Lego Mindstorms. Along with these features and changes, we also hope 

to refactor the system to allow the robot algorithm to be executed on a local computer 

instead of the robot itself. We plan on adding a debugger to the GUI, and in general 

redesign the software to be far more usable. 

 

In addition to a redesign and reimplementation of the Genost software, we also plan to 

redesign the curriculum, and move it away from its current lecture-based focus to a 

collaborative development style of learning. We plan to add a larger focus on debugging 

to the curriculum, as well as introducing constant testing and refinement of student 

knowledge through online quizzes. We plan to design our curriculum such that all 

resources and materials may be accessed online. 

 

Future implementations of Genost may include an online course, automated or facilitated, 

and possibly a video game. 
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This thesis has described the need for a system to effectively teach computational 

thinking, and we believe that Genost fills this need. This belief is informed both by a 

description and justification of Genost’s design, and the results of the tests we have run 

that show that Genost results in increased computational thinking ability. Informed by 

this success, we hope to utilize the Genost system in the future to perform the vitally 

important task of teaching students computational thinking. 
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The following tables contain the overall rating and language used notes for the 

classes reviewed. Detailed commentary is available upon request. 

 

 

College Curricula Review Notes for Overall Top 25 US Colleges 

(As determined by US News, accessed 11/29/2014) 

 

College Course 
Ratin

g 
Language Used 

Date 

Accessed 

Princeton University COS109 1 
HTML, Javascript 

 

11/30/201

4 

 COS126 2 Java 
11/30/201

4 

Harvard University CS50 2 
C, HTML, PHP, 

Javascript, Scratch 

11/30/201

4 

 COMPSCI1 No syllabus obtainable 

 
COMPSCI5

1 
No syllabus obtainable 

Yale University CPSC112 No syllabus obtainable 

 CPSC201 2 Racket 
11/30/201

4 

Columbia University 
COMSW10

04 
No syllabus obtainable 

Stanford University CS105 1 HTML, CSS, PHP 
11/30/201

4 

 CS106A 3 Karel Robot, Java 
11/30/201

4 

 CS106B 2 C++ 
11/30/201

4 

University of Chicago 
CMSC1510

0 
1 Racket 

12/16/201

4 

 
CMSC1520

0 
1 C 

12/16/201

4 

MIT 6.01 2 Python 
12/16/201

4 

 6.02 1 Python 
12/16/201

4 

Duke University 
CompSci10

1 
2 Python 

12/16/201

4 

University of 

Pennsylvania 
CIS110 1 Java 

12/16/201

4 

 CIS120 2 Java, OCAML 
12/16/201

4 

California Institute of 

Technology 
CS1 1 Python 

12/16/201

4 
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 CS2 No syllabus obtainable 

Dartmouth College COSC1 2 Python 
12/18/201

4 

 COSC10 2 Java 
12/17/201

4 

John Hopkins University EN.600.107 1 Java 
12/17/201

4 

Northwestern University EECS101 0 N/A 
12/17/201

4 

 EECS111 3 C, Python 
12/17/201

4 

Washington University in 

St. Louis 
CSE131 2 Java 

12/17/201

4 

 CSE132 2 Java 
12/17/201

4 

Cornell University 
CS1110 / 

CS1133 
1 Python 

12/18/201

4 

 
CS1112 / 

CS1132 
2 MATLAB 

12/18/201

4 

Brown University CSCI0150 1 Java 
12/18/201

4 

 CSCI0170 2 
Racket, OCAML, 

Java, Scala 

12/18/201

4 

University of Notre Dame CSE20211 2 C 
12/18/201

4 

 CSE20212 1 C++ 
12/18/201

4 

Vanderbilt University CS101 No syllabus obtainable 

 CS201 No syllabus obtainable 

Rice University COMP140 3 Python 
12/19/201

4 

 COMP160 1 Python 
12/19/201

4 

University of California - 

Berkeley 
CS61A 3 Python 

12/19/201

4 

 CS61B 3 Java 
12/19/201

4 

 CS10 5 Snap (Scratch) 
12/19/201

4 

Emory University CS170 2 Java 
12/19/201

4 

 CS171 1 Java 
12/19/201

4 

Georgetown University COSC051 2 C++ 
12/20/201

4 
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 COSC052 1 C++ 
12/20/201

4 

University of California - 

Los Angeles 
COMSCI31 2 C++ 

12/20/201

4 

 COMSCI32 2 C++ 
12/23/201

4 

University of Virginia 
CS1110 / 

CS1133 
3 Java 

12/20/201

4 

Carnegie Mellon 

University 
15-112 1 Python 

12/21/201

4 

 15-122 1 Python 
12/21/201

4 

University of Southern 

California 
CSCI103 2 C++ 

12/21/201

4 
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College Curricula Review Notes for Top 25 US Colleges for Computer Science 

(As determined by US News, accessed 11/29/2014) 

 

College Course 
Ratin

g 
Language 

Date 

Accessed 

MIT 6.01 2 Python 
12/16/201

4 

 6.02 1 Python 
12/16/201

4 

Harvard University CS50 2 
C, HTML, PHP, 

Javascript, Scratch 

11/30/201

4 

 
COMPSCI

1 
No syllabus obtainable 

 
COMPSCI

51 
No syllabus obtainable 

Stanford University CS105 1 HTML, CSS, PHP 
11/30/201

4 

 CS106A 3 Karel Robot, Java 
11/30/201

4 

 CS106B 2 C++ 
11/30/201

4 

University of California - 

Berkeley 
CS61A 3 Python 

12/19/201

4 

 CS61B 3 Java 
12/19/201

4 

 CS10 5 Snap (Scratch) 
12/19/201

4 

Princeton University COS109 1 HTML, Javascript 
11/30/201

4 

 COS126 2 Java 
11/30/201

4 

University of Texas - 

Austin 
CS312 2 Java 

12/23/201

4 

University of California - 

San Diego 
CSE8A 3 Java 

12/23/201

4 

 CSE11 1 Java 
12/23/201

4 

University of Southern 

California 
CSCI103 2 C++ 

12/21/201

4 

Georgia Institute of 

Technology 
CS1301 3 Python 

12/23/201

4 

 CS1331 2 Java 
12/23/201

4 

University of California - 

Los Angeles 
COMSCI31 2 C++ 

12/20/201

4 
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 COMSCI32 2 C++ 
12/23/201

4 

Carnegie Mellon 

University 
15-112 1 Python 

12/21/201

4 

 15-122 1 Python 
12/21/201

4 

University of California - 

Irvine 
I&C SCI 31 3 Python 

12/23/201

5 

University of Illinois - 

Urbana-Champaign 
CS125 2 Java 

12/23/201

5 

University of Maryland - 

College Park 
CMSC131 1 Java 

12/23/201

5 

California Institute of 

Technology 
CS1 1 Python 

12/16/201

4 

 CS2 No syllabus obtainable 

University of Michigan EECS280 3 C++ 
12/23/201

5 

University of Washington CSE142 1 Java 
12/24/201

5 

 CSE143 1 Java 
12/24/201

5 

University of California - 

Davis 
ECS30 2 C 1/5/2015 

 ECS40 2 C++ 1/5/2015 

Columbia University 
COMSW10

04 
No syllabus obtainable 

Purdue University CS18000 2 Java 1/6/2015 

Ohio State University CSE1223 2 Java 1/6/2015 

 CSE2221 2 Java 1/6/2015 

Cornell University 
CS1110 / 

CS1133 
1 Python 

12/18/201

4 

 
CS1112 / 

CS1132 
2 MATLAB 

12/18/201

4 

University of Minnesota - 

Twin Cities 
CSCI1133 3 Python 1/6/2015 

Pennsylvania State 

University 
CMPSC121 2 C++ 1/6/2015 

Texas A&M University - 

College Station 
CSCE121 2 C++ 1/6/2015 
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1. Action Blocks 

The Action Blocks are all the blocks that command the robot to do something. Some 

blocks return a data value. The Action Blocks are: 

 

 

a. Drive Distance: takes a single Integer-type block as a parameter, which tells the 

robot how far to drive. One can tell the robot to drive forwards or backwards by 

making the Integer value positive or negative, respectively. 

 

b. Drive: tells the robot to drive in a certain direction. Takes a single parameter, a 

Direction data block with parameters “Forward” or “Backwards”. 

 

c. Turn Degrees: takes a single Integer-type block as a parameter, which tells the 

robot how far to turn. One can tell the robot to turn right or left by making the 

Integer value positive or negative, respectively. 

 

d. Turn to Bearing: takes a single parameter, which may be either an Integer-type 

block or a Bearing data block. The robot will turn to either the cardinal direction 

specified, if a Bearing block is given, or to the bearing represented by the integer 

value, if an Integer block is given. 

 

e. Turn: tells the robot to turn in a certain direction. Takes a single parameter, a 

Direction data block with parameters “Right” or “Left”. 

 

f. Get Distance: takes a single parameter, a Direction data block with values 

“Forwards”, “Backwards”, “Left” or “Right”. Will take a sonar sensor reading 

from the sonar sensor specified by the Direction block and return it as an Integer. 

 

g. Get Bearing: takes a reading on the compass sensor and returns the value as an 

Integer. Does not take a parameter. 

 

h. Stop: stops the robot. Does not take a parameter. 
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2. Data and Robot Data 

The data blocks function as input for other blocks. These blocks cannot stand alone 

and must be placed in a socket. There are two types: primatives (the value of which 

students must specify) and constants (the value of which are fixed) 

 

 

a. Integer: a primitive block which allows students to enter an integer value. 

 

b. String: a primitive block which allows students to enter a String value. 

 

c. Boolean: a primitive block which allows students to enter a Boolean value. 

 

d. Direction: a constant block. Students may select six different constants: 

Forward, Backwards, Left, Right, Front and Rear. The above list of six 

constants is filtered depending on what socket the Direction block is placed in. 

 

e. Bearing: a constant block. Students may select four different constants: 

North, South, East and West. 

 

 

3. Loops 

A Loop block has a Condition and a Body. The Condition determines how many 

times a loop iterates; the Body is the code that is iterated. There are two loop types. 

 

 

a. Loop For: takes an Integer, Integer-type Variable, or Integer-type Method as 

a Condition. Executes the code body the exact number of times specified by 

the Condition. If the Condition Integer is negative or zero, the loop body does 

not execute. 

 

b. Loop Until: takes a Comparison or Logic block as its Condition. When the 

Loop Until first executes, the Condition is evaluated, and if it is FALSE, the 

loop body executes. After executing the body, the Condition is evaluated 

again. The loop body will execute until the Condition evaluates to TRUE. For 

this reason, it is possible to use Loop Until to create infinite loops. 
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4. Wait Statements 

A Wait Statement pauses the interpreter for a certain amount of time. No code is 

executed during this time, although any ongoing action the robot is performing like 

Drive or Turn will continue during the pause. There are two wait statement types. 

 

 

a. Wait For: takes an Integer, Integer-type Variable or Integer-type Method, and 

pauses execution for the number of milliseconds equal to the Integer 

parameter. If this Integer is zero or negative, the Wait will not pause anything. 

 

b. Wait Until: takes a Comparison or Logic block as a parameter. Pauses 

execution until the parameter evaluates to TRUE. Checks this parameter as 

frequently as it can. It is possible to create an infinite Wait Until. 

 

 

5. If Statements 

An If statement, and its companions Else If and Else, allow a certain segment of code 

to be executed only if a certain Condition is TRUE (or FALSE). All If statements 

must contain an If block, and may optionally contain an Else If and / or an Else. An If 

Statement may contain one to many individual If / Else If / Else blocks, only one of 

which will have its body executed. 

 

 

a. If: an If block is the basic form of an If statement. It accepts a Condition 

(either a Comparison or a Logic block) and has a body. When the If block is 

executed, the Condition is evaluated. If the Condition is TRUE, the body is 

executed, and after the body is executed the next line of code outside the If 

Statement is executed. If the Condition is FALSE, either the next item in the If 

Statement is executed (either an Else If or an Else if there is one), or the next 

line of code outside the If Statement is executed if there is no other items in 

the If Statement. 

 

b. Else If: the Else If block also contains a Condition and a body. Else If blocks 

may only follow If blocks or other Else If blocks. When an Else If block is 

executed, the Condition is evaluated. If the Condition is TRUE, the body is 

executed, and after the body is executed the next line of code outside the If 

Statement is executed. If the Condition is FALSE, either the next item in the If 

Statement is executed (either an Else If or an Else if there is one), or the next 

line of code outside the If Statement is executed if there is no other items in 

the If Statement. 

 

c. Else: the Else block contains only a body, and has no condition. Else blocks 

may only follow an If or Else If block. An Else block terminates an If 
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Statement – no other Elses or Else Ifs may go after it. When an Else block is 

executed, the body is automatically executed, and after this the next line of 

code outside the If Statement is executed. 

 

 

6. Variables and Assignments: a Variable is a temporary container for storing a value. 

An Assignment is a block which assigns a value to a Variable. 

 

 

a. Variables: All Variables have a type which may be either Integer, String or 

Boolean. Variables may be plugged into sockets, but may not stand alone. 

Variables may either return or receive a value, depending on where they are 

used. Variables are created or deleted in the Variable panel. 

 

b. Assignment: an Assignment statement has two sockets. The left hand socket 

may only accept a Variable. The right hand socket accepts a block of the same 

type as the Variable in the left hand socket – for example, a Data block of the 

same type, another Variable of the same type, or a Function of the same type. 

 

 

7. Logic and Comparison: logic and comparison blocks may be entered into sockets 

which accept Conditions. These items cannot stand on their own. When evaluated, 

Logic and Comparison blocks return a Boolean value. 

 

 

a. Comparison: a comparison is a test between two blocks of the same type. 

Possible Comparison blocks are == (equals), != (not equals), <= (less than or 

equal to), >= (greater than or equal to), > (greater than), and < (less than). 

Two sockets are present in each Comparison block to accept the values being 

compared. Integer values may be used in all six tests; String or Boolean values 

may only be compared using == or !=. When evaluated, if the test passes, 

TRUE is returned; else, FALSE is returned. 

 

b. Logic: a Logic block has two sockets, both of which accept either 

Comparison blocks or another Logic block. There are two Logic blocks: AND 

and OR. When evaluated, the contents of both sockets are evaluated. If the 

Logic block is an AND, then the block will only return TRUE if both sockets 

evaluate to TRUE, and will return FALSE otherwise. If the Logic block is an 

OR, then the block will only return FALSE if both sockets evaluate to 

FALSE, and will return TRUE otherwise. 
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8. Methods 

A Method is a set of instructions which may be called through a Method block. 

Methods have Types and Parameters; the Type determines what value the Method 

returns, and the Parameters are used to pass data into the Method. 

 

 

a. Method: a Method may have a type of Integer, Boolean, or String, which 

indicates that the Method returns that type of data. A Method may also have a 

type of Void, which indicates the Method returns nothing. A Method may 

have parameters, which will be detailed later. The Method has a body; when 

the Method is executed, the body code is executed. A Method is executed by 

placing a Method block in either the main canvas or the body of some other 

block (including another Method). Methods may be created and deleted in the 

Method panel. 

 

b. Parameter: a Method may have zero or more parameters. Each parameter has 

a type of either Integer, String or Boolean. When a Method is called, all 

Parameters must be passed in by inserting blocks of the appropriate types into 

the sockets. Inside the Method body the Parameters are available to be used in 

a similar way to Variables. 
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APPENDIX C: 

EXAMPLE GENOST CURRICULUM WORKSHEETS 
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The following worksheet is a guided practice worksheet from Section 1. This 

worksheet walks the student through developing the algorithm to solve the maze. 
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The following worksheet is a simple exercise from Section 2. The worksheet does not 

walk the student through solving the maze, but does provide guidance on how to get 

there. 
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The following worksheet is a challenging exercise from Section 3. This worksheet 

provides no guidance for the student to solve the problem. Also, note how this 

worksheet requires the student to solve multiple mazes. 
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APPENDIX D: 

COMPUTATIONAL THINKING TESTING INSTRUMENT 
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APPENDIX E: 

 

FEEDBACK FORMS 
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The following form is the Likert scale form used to collect feedback on the Genost 

software. 
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The following is the free response form used to collect information on the Genost 

curriculum and presentation. 
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APPENDIX F: 

RECRUITMENT MATERIALS AND CONSENT FORMS 
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The following text contains the speech made to the FSE100 students recruiting them 

to participate in the test. 

 

 

Howdy everyone, I’m Garret Walliman. Welcome to your first day of FSE100.  

 

I’m here to talk to you about an opportunity that may help you out a lot in FSE100, as 

well as your other programming classes throughout your time here at ASU. 

 

Wanted to ask – how many in here are CS? CSE? Other degrees? 

For what reason did you choose your degree? 

 

All right. ASU is conducting research into a new educational program that we’re 

developing. We’re wondering whether a curriculum that focuses heavily on programming 

fundamentals and algorithm development helps students in future programming classes. 

 

To this end we will be holding an extracurricular activity for FSE100 students during the 

first three weeks of September. We will meet six times and go through a small, custom 

set of lessons that we’ve developed using a new educational tool that we’ve built. 

 

It is our hope that students participating in this course will gain a deeper insight into 

programming and that the ultimate result will be better understanding and higher grades. 

In addition, all students who complete this activity will be given 10% extra credit in 

FSE100 – that’s a full letter grade. 

 

So I’m going to ask you for two things. The first thing I want to ask is for anybody who 

wants to participate in this extracurricular activity to sign this signup sheet.  

 

The second thing I would like to ask is for all students, whether you want to participate in 

the extracurricular activity or not, to sign a consent form to release your FSE100 grade 

data to our study. This data will allow us to compare the performance of those who 

participate in the exercise to those who do not.  

 

I want to make it clear that you are not required to participate in the activity or to release 

your grade data to us. Your participation in these things is not required for you to attend 

FSE100 or ASU. You will not be penalized for choosing not to participate. You can also 

choose to stop participation at any time.  

 

If you do choose to consent to releasing your grade data, it will be anonymized and will 

not be connected to you in any way. At ASU we comply with all ethical standards related 

to student data so you can trust that we’ll keep it safe. 

 

So – if you wish to allow us to collect your grade data for FSE100, please sign these 

consent forms. If you wish to participate in our extracurricular activity, please sign this 

signup sheet. For those who sign up, if you are chosen to participate, we will contact you 

closer to the activity.  
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Again, your participation is not required, but it will help us, and hopefully it will greatly 

benefit you as well. 

 

I’d like to remind you again that participating in our activity and completing it will earn 

you 10% extra credit in your FSE100 class. If you are interested in earning the 10% extra 

credit but do not want to participate in our activity, there is an alternative activity 

available that I can describe to those who are interested. If you want to participate in the 

ASU activity, please sign the signup sheet. If you would like to participate in the 

alternative activity, please send me an email at the email address on the board. 

 

Thanks guys! 
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The following text was sent to parents in an email, and displayed on the ASA 

website, to recruit ASA students to participate in the independent group. 

 

 

Educational Programming Opportunity! 

 

Programming and computational thinking are now recognized as a fundamental skill, as 

important as reading and writing, and a necessary ability for the modern world. We 

believe that a skill this fundamental should be given fundamental education. 

 

An introductory programming class will be held at the Arizona School for the Arts from 

September 8 – 12 and 15 - 19, 3PM to 5PM. We are looking for 30 students, grades 

7th to 12th, to attend! 

 

In this class, you will learn the fundamental skills involved in creating algorithms and 

programming. These skills include: 

- Performing problem analysis 

- Designing algorithms 

- Recognizing and understanding programming concepts 

- Applying and combining fundamental programming structures to implement an 

algorithm in code. 

- General computational thinking principles 

 

We will be using a new program being developed at Arizona State University, called 

Genost, to help teach these fundamental skills. This class is being held as part of a study 

conducted at Arizona State University to determine the educational effectiveness of 

Genost. 

 

All participants, and their parents, will be required to sign consent forms to participate in 

the class. These forms may be downloaded below, and provide more information about 

the research being conducted. 

 

We look forward to seeing you! 
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The following form is the grade release consent form used for the FSE100 students. 
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The following form is the consent form for participants in the FSE100 Genost 

group. 
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The following form is the consent form for participants in the ASA independent 

group. 
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APPENDIX G: 

SYSTEM COMPARISONS 
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APPENDIX H: 

IRB APPROVAL DOCUMENTS 
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