

Genost: A System for Introductory Computer Science Education

with a Focus on Computational Thinking

by

Garret Walliman

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Masters of Science

Approved April 2015 by the

Graduate Supervisory Committee:

Robert Atkinson, Co-Chair

Yinong Chen, Co-Chair

Yann-Hang Lee

ARIZONA STATE UNIVERSITY

May 2015

i

ABSTRACT

Computational thinking, the creative thought process behind algorithmic design

and programming, is a crucial introductory skill for both computer scientists and the

population in general. In this thesis I perform an investigation into introductory computer

science education in the United States and find that computational thinking is not

effectively taught at either the high school or the college level. To remedy this, I present a

new educational system intended to teach computational thinking called Genost. Genost

consists of a software tool and a curriculum based on teaching computational thinking

through fundamental programming structures and algorithm design. Genost’s software

design is informed by a review of eight major computer science educational software

systems. Genost’s curriculum is informed by a review of major literature on

computational thinking. In two educational tests of Genost utilizing both college and high

school students, Genost was shown to significantly increase computational thinking

ability with a large effect size.

ii

ACKNOWLEDGEMENTS

Special thanks to the following individuals:

My thesis advisors Dr. Yinong Chen, Dr. Robert Atkinson, and Dr. Yann-Hang Lee for

opening many doors and providing an enormous amount of feedback.

Active Capstone team members Rizwan Ahmad, Garth Bjerk, Tracey Heath, David

Humphries, Corey Jallen, Ian Plumley, Stephen Pluta, Randy Queen, and Matt Rechia,

for helping to create both the Genost design and the Genost software and robot.

Tracy Ryan and the staff of the Arizona School for the Arts, for helping to organize and

run the ASA test.

The Fall 2014 FSE100 professors Jadiel de Armas, Refika Koseler Emre, Ryan Meuth,

Phillip Miller, Tahora Nazer, Yoalli Hidalgo Pontet, Satyabrata Sharma, and Chao

Zhang, for assistance with the FSE100 test.

Monica Dugan, Theresa Chai and the rest of the Brickyard staff, for their constant

willingness to provide materials and rooms for my work and testing.

And my wife, Naomi Walliman, for her support, feedback and considerable patience

iii

TABLE OF CONTENTS

Page

LIST OF TABLES .. xv

LIST OF FIGURES .. xvii

CHAPTER

1. INTRODUCTION ... 1

1.1. The Status of STEM ... 1

1.1.1. The Demand for STEM .. 2

1.1.2. The STEM Crisis .. 3

1.1.3. The STEM Crisis is a CS Crisis .. 5

1.1.4. A Response to the STEM Crisis ... 7

1.2. Computational Thinking .. 8

1.2.1. The Definition of Computational Thinking .. 9

1.2.2. Components of Computational Thinking.. 10

1.2.3. Computational Thinking is not Programming .. 12

1.2.4. Computational Thinking is Important for CS Students 14

1.2.5. Computational Thinking is Important for Everybody 15

1.3. Thesis Outline .. 17

2. REVIEW OF COMPUTER SCIENCE EDUCATION ... 19

2.1. Educational Goals of Introductory Computational Thinking Education 20

CHAPTER Page

iv

2.1.1. Is Computational Thinking Teachable? .. 20

2.1.2. Ability to Read and Understand Algorithms .. 24

2.1.3. Ability to Engage in Abstraction .. 27

2.1.4. Ability to Decompose a Problem into Solvable Processes 30

2.1.5. Ability to Identify the Quality of a Solution ... 33

2.1.6. Introductory Computational Educational Goals – Conclusion 36

2.2. The Need for Introductory Computational Thinking Education 36

2.2.1. Introductory Computer Science Education Ought to Involve

Computational Thinking ... 37

2.2.2. Introductory Computer Science Education Ought to ONLY

Involve Computational Thinking (and not Formal Syntax) 38

2.3. Review of Traditional Introductory Computer Science Education 42

2.3.1. Review of Introductory Computer Science Education in

United States Colleges .. 43

2.3.1.1. Course Selection Criteria ... 43

2.3.1.2. Course Information / Data Collected ... 45

2.3.1.3. Course Review Results .. 47

2.3.1.4. College Review Conclusion .. 49

2.3.2. Review of Introductory Computer Science Education in

United States High Schools .. 51

CHAPTER Page

v

2.3.2.1. Review of Literature on High School Computer Science Education .. 52

2.3.2.2. Review of AP Computer Science .. 57

2.3.2.3. High School Review Conclusion ... 59

2.3.3. The Poor State of Current Introductory Computer Science Education 60

2.3.3.1. Failure Rates .. 60

2.3.3.2. Attrition Rates.. 61

2.3.3.3. Student Ability to Program .. 62

2.3.4. The Reasons for this Poor State .. 63

2.4. Review of Newer Introductory Computer Science Education Software 66

2.4.1. Methods and Themes in the Review of Newer Introductory

CS Software .. 67

2.4.2. Overview of Newer System Categories .. 72

2.4.3. Code Based Virtual World Systems ... 77

2.4.3.1. Benefits of Code Based Virtual World Systems 80

2.4.3.2. Problems of Code Based Virtual World Systems 80

2.4.3.3. Takeaways of Code Based Virtual World Systems 81

2.4.4. Code Based Robotic Systems ... 81

2.4.4.1. FIRST Robotics Competition .. 81

2.4.4.1.1. Benefits of First Robotics Competition .. 83

CHAPTER Page

vi

2.4.4.1.2. Problems of First Robotics Competition .. 84

2.4.4.1.3. Takeaways of First Robotics Competition .. 85

2.4.4.2. Myro .. 85

2.4.4.2.1. Benefits of Myro ... 86

2.4.4.2.2. Problems of Myro ... 87

2.4.4.2.3. Takeaways of Myro .. 88

2.4.5. Summary of Code Based Systems .. 89

2.4.6. Drag and Drop Virtual World Systems ... 91

2.4.6.1. Alice... 91

2.4.6.1.1. Benefits of Alice ... 93

2.4.6.1.2. Problems of Alice ... 95

2.4.6.1.3. Takeaways of Alice .. 96

2.4.6.2. Scratch ... 97

2.4.6.2.1. Benefits of Scratch .. 98

2.4.6.2.2. Problems of Scratch .. 100

2.4.6.2.3. Takeaways of Scratch ... 101

2.4.7. Drag and Drop Robotic Systems... 102

2.4.7.1. Lego Mindstorms ... 102

2.4.7.1.1. Benefits of Lego Mindstorms ... 105

CHAPTER Page

vii

2.4.7.1.2. Problems of Lego Mindstorms ... 105

2.4.7.1.3. Takeaways of Lego Mindstorms ... 106

2.4.7.2. Microsoft Robotics Developer Studio / VPL 107

2.4.7.2.1. Benefits of Microsoft Robotics Developer Studio / VPL 108

2.4.7.2.2. Problems of Microsoft Robotics Developer Studio / VPL 110

2.4.7.2.3. Takeaways of Microsoft Robotics Developer Studio / VPL 111

2.4.8. Summary of Drag and Drop Systems ... 112

2.4.9. Creating the Ideal Introductory Computer Science Educational System .. 114

3. DESCRIPTION OF GENOST ... 121

3.1. Genost Overview .. 122

3.2. The Language ... 125

3.2.1. Language Design .. 130

3.2.1.1. Goal 1: Language Readability ... 130

3.2.1.2. Goal 2: Ease of Programming ... 131

3.2.1.3. Goal 3: Procedural Programming .. 132

3.2.1.4. Goal 4: Computational Thinking Built Into Language 134

3.2.1.5. Goal 5: Similarity to Formal Programming Language 135

3.2.1.6. Goal 6: Design Conflicts ... 136

3.3. The Maze .. 137

CHAPTER Page

viii

3.3.1. Maze Design ... 140

3.3.1.1. Goal 1: Teach Computational Thinking .. 140

3.3.1.2. Goal 2: Simple and Easy to Understand .. 144

3.3.1.3. Goal 3: Rich Interactions ... 144

3.3.1.4. Goal 4: Fun .. 145

3.4. The GUI and Simulator .. 146

3.4.1. GUI Description .. 146

3.4.2. Simulator Description ... 150

3.4.3. GUI and Simulator Design.. 152

3.4.3.1. Goal 1: Clear, Informative, Intuitive Design 152

3.4.3.2. Goal 2: Adaptability and Customizability ... 153

3.4.3.3. Goal 3: Management Website Integration ... 154

3.4.4. GUI and Simulator Technology .. 155

3.4.4.1. GUI Technology .. 156

3.4.4.2. Simulator Technology ... 159

3.4.4.3. Interpreter Technology .. 162

3.4.4.4. Communication Between the Systems .. 167

3.4.4.5. Technical Challenges ... 168

3.5. The Robot ... 169

CHAPTER Page

ix

3.5.1. Robot Design .. 171

3.5.1.1. Goal 1: Focus on Computational Thinking (Not Engineering) 172

3.5.1.2. Goal 2: Inexpensive ... 172

3.5.1.3. Goal 3: Robustness .. 173

3.5.1.4. Goal 4: Same as Simulated Robot ... 174

3.5.1.5. Goal 5: Remote Code Execution ... 174

3.5.2. Departures from Robot Design ... 175

3.5.3. Robot Technology ... 176

3.5.3.1. Robot Hardware ... 176

3.5.3.2. Robot Software .. 178

3.5.3.3. Technical Challenges ... 180

3.6. The Management Website .. 184

3.6.1. Management Website Design ... 187

3.6.2. Management Website Technology ... 187

3.6.2.1. Technical Challenges ... 190

3.7. The Curriculum .. 190

3.7.1. Curriculum Overview ... 191

3.7.2. Curriculum Topics .. 195

3.7.2.1. Section 1: Actions .. 195

CHAPTER Page

x

3.7.2.2. Section 2: Loops .. 196

3.7.2.3. Section 3: Wait Statements .. 197

3.7.2.4. Section 4: If Statements ... 198

3.7.3. Curriculum Design .. 200

3.7.3.1. Goal 1: Teach Fundamental Programming Structures 200

3.7.3.2. Goal 2: Teach Problem Breakdown and Algorithm Design 203

3.7.3.3. Goal 3: Teach Habits of Good Program Design 205

3.7.3.4. Goal 4: Design Curriculum to Scaffold Students 207

3.7.3.5. Goal 5: Strike Balance between Instruction and Creativity 208

3.7.3.6. Goal 6: Individual Effort ... 209

3.8. Comparison of Genost to Newer Systems.. 210

3.8.1. Drag and Drop Language .. 211

3.8.2. Virtual Worlds .. 213

3.8.3. Robots ... 214

3.8.4. Curriculum .. 215

3.8.5. Other ... 217

3.8.6. Comparison Conclusion .. 219

3.9. Genost Description Conclusion .. 220

4. TEST DESCRIPTION ... 221

CHAPTER Page

xi

4.1. Common Design of the Two Tests ... 221

4.1.1. The Testing Tool ... 223

4.1.2. The Feedback Forms ... 227

4.2. ASA Test .. 229

4.2.1. Student Numbers and Recruitment ... 229

4.2.1.1. Independent Group .. 230

4.2.1.2. Control Group .. 231

4.2.2. Time Allotted .. 231

4.2.3. Test Environment .. 232

4.2.4. Data Collected ... 233

4.2.4.1. Pretest / Posttest Data .. 234

4.2.4.2. Feedback .. 234

4.3. FSE100 Test ... 235

4.3.1. Student Numbers and Recruitment ... 236

4.3.1.1. Genost Group ... 237

4.3.1.2. Python Group ... 240

4.3.1.3. Control Group .. 240

4.3.2. Time Allotted .. 241

4.3.3. Test Environment .. 241

CHAPTER Page

xii

4.3.4. Data Collected ... 242

4.3.4.1. Student Grades ... 243

4.3.4.2. Pretest / Posttest Data .. 244

4.3.4.3. Feedback .. 244

5. DATA RESULTS AND ANALYSIS .. 245

5.1. Pretest / Posttest Reliability Analysis .. 245

5.2. ASA Test Results and Analysis ... 248

5.2.1. Group Similarity Test ... 248

5.2.2. Test Score Analysis... 249

5.2.2.1. ANCOVA Assumptions .. 250

5.2.2.2. ANCOVA Results and Analysis.. 251

5.2.2.3. Mann-Whitney U Assumptions, Results and Analysis 254

5.2.3. Feedback Analysis .. 255

5.2.3.1. Software Feedback (Likert Scales) .. 255

5.2.3.2. Curriculum Feedback (Free Response) ... 256

5.2.3.2.1. Free Response Data – What Students Liked 256

5.2.3.2.2. Free Response Data – What Students Disliked 258

5.2.3.2.3. Free Response Data – What Students Would Change 259

5.3. FSE100 Test Results and Analysis... 261

CHAPTER Page

xiii

5.3.1. FSE100 Grade Analysis .. 261

5.3.1.1. One-Way ANOVA Assumptions .. 262

5.3.1.2. One-Way ANOVA Results and Analysis .. 264

5.3.2. Test Score Analysis... 267

5.3.2.1.1. Paired-Samples T-Test Assumptions ... 267

5.3.2.2. Paired Samples T-Test Results and Analysis 268

5.3.3. Feedback Analysis .. 269

5.3.3.1. Software Feedback (Likert Scales) .. 269

5.3.3.2. Curriculum Feedback (Free Response) ... 270

5.3.3.2.1. Free Response Data – What Students Liked 271

5.3.3.2.2. Free Response Data – What Students Disliked 272

5.3.3.2.3. Free Response Data – What Students Would Change 274

5.4. Possible Data Weaknesses ... 276

5.4.1. Possible Data Weaknesses in the ASA Test ... 276

5.4.2. Possible Data Weaknesses in the FSE100 Test .. 277

6. CONCLUSION .. 278

6.1. Research Summary ... 278

6.2. Genost Test Summary .. 280

6.3. Thesis Limitations .. 284

CHAPTER Page

xiv

6.4. Future Improvements ... 286

REFERENCES ... 289

APPENDIX

A. COLLEGE CURRICULA REVIEW NOTES .. 301

B. OBJECTIVE G LANGUAGE DEFINITION .. 307

C. EXAMPLE GENOST CURRICULUM WORKSHEETS 313

D. COMPUTATIONAL THINKING TESTING INSTRUMENT 323

E. FEEDBACK FORMS ... 335

F. RECRUITMENT MATERIALS AND CONSENT FORMS............................. 338

G. G: SYSTEM COMPARISONS .. 345

H. IRB APPROVAL DOCUMENTS .. 348

xv

LIST OF TABLES

Table Page

1. Review Of Introductory Computer Science Education In US Colleges 47

2. The Tools Used By The Reviewed Colleges .. 49

3. Number Of Positive And Negative Features Displayed By Each System 219

4. The Results Of The Cronbach's Alpha Test On Six Administrations 246

5. Number Of Times Each Question's Removal Would Increase

Cronbach's Alpha .. 247

6. Independent Means T-Test To Establish Similarity Of Populations

Between ASA Test Control And Independent Groups 249

7. Test Of Between Subjects Effects For Asa Data To Establish

Homogeneity Of Regression Slopes. .. 250

8. Shapiro-Wilk Test Of Normality Of Residuals For ASA Data 251

9. Results Of Ancova On ASA Test Scores .. 252

10. Post-Hoc Analysis On ASA Ancova .. 253

11. The Likert Scale Averages From The Genost Software Feedback Form,

ASA Test ... 255

12. Free Response Tabulation For "Liked" Question, ASA Test 257

13. Free Response Tabulation For "Disliked” Question, ASA Test 258

14. Free Response Tabulation For "Would Change" Question, ASA Test............... 260

15. Shapiro-Wilk Test Of Normality For FSE100 Grade Data 263

16. Results Of Levine's Test For Homogeneity Of Variances, FSE100

Grade Data .. 264

xvi

Table .. Page

17. The Descriptive Statistics For The FSE100 Grade Data 264

18. Anova Test Results For FSE100 Grade Data ... 265

19. Test Of Between-Subject Effects For FSE100 Grade Data 266

20. Shapiro-Wilk Test Of Normality For FSE100 Pretest / Posttest Data 268

21. Paired Samples T-Test For FSE100 Pretest / Posttest Data 268

22. The Likert Scale Averages From The Genost Software

Feedback Form, FSE100 Test ... 270

23. Free Response Tabulation For "Liked" Question, FSE100 Test 272

24. Free Response Tabulation For "Disliked" Question, FSE100 Test 273

25. Free Response Tabulation For "Would Change" Question, FSE100 Test 275

xvii

LIST OF FIGURES

Figure Page

1. The Logo Software. .. 78

2. A Screenshot Of Robocode In Action. ... 79

3. A Photo Of Teams Competing In The First Robotics Competition. 82

4. The Myro Software. .. 86

5. Screenshot Of The Alice IDE. .. 93

6. Screenshot Of The Scratch IDE. ... 98

7. The Lego Mindstorms IDE. .. 104

8. The Microsoft VPL IDE. .. 109

9. An Example Program In The Objective G Language. .. 126

10. An Example Of A Simulated Maze In Genost. ... 138

11. A Maze Physically "Broken Down" Into Similar Parts. 142

12. The Genost GUI .. 147

13. The Method Definition Screen In The Genost GUI .. 149

14. The Simulator.. 151

15. Sample Toolbox Definition XML ... 158

16. An Objective G Algorithm Written In Formal Text Code 159

17. The Simulator Classes... 160

18. Snippet Of XML From A Maze Definition File ... 161

19. The Package Structure For The Interpreter ... 163

20. A Snippet Of Code Showing The Loop Until Class And

Its Implemented Functions. ... 166

xviii

Figure

 Page

21. The External Methods Implemented In Genost, And The Code

Of One Of These External Methods ... 167

22. The Robot.. 170

23. Screenshot Of The Management Website... 189

24. Mann-Whitney U Population Pyramid ... 254

1

1. INTRODUCTION

The United States and many other countries around the world are currently experiencing

a revolution in STEM (Carnevale, STEM: Science, Technology, Engineering, Math,

2011). STEM is an acronym that stands for “Science, Technology, Engineering and

Math”, and the STEM revolution refers to the explosion in the first world job market for

careers requiring STEM skills. The STEM revolution is not affecting only the job market;

in fact, STEM skills, and the products and services that these skills provide, are now

integrated into the life of the average first world citizen, in some ways deeply so

(Carnevale, STEM: Science, Technology, Engineering, Math, 2011) (Cowen, 2013).

This thesis is about STEM, and its creation was prompted by the elevation of STEM

abilities to their current position of importance in people’s lives. In this introduction, we

will begin by reflecting on the current status of STEM. Our reflection will show that the

STEM revolution has prompted a great need for students to be taught a skill (or perhaps

better put, a “paradigm”) known as computational thinking. We will define what

computational thinking is, why it is important, and why we ought to be teaching it to all

students. We will conclude this introduction with an outline of the rest of the thesis.

1.1. THE STATUS OF STEM

STEM skills are currently in very high demand (Carnevale, STEM: Science, Technology,

Engineering, Math, 2011) (BurningGlass, 2014). However, it has been noted by many

that this demand is not being filled, prompting many to warn of an impending “STEM

crisis” (CSTA Curriculum Improvement Task Force, 2006) (President's Council of

2

Advisors on Science and Technology, 2012). The root of this putative crisis is the

upcoming high demand for STEM jobs, paired with a worrying lack of qualified

graduates to fill these jobs.

In this section we will investigate the claims above. We will also argue that the “STEM

crisis” is more properly called a “computer science crisis”, as the impending high demand

for STEM skills, as well as some broader predicted trends, are deeply intertwined with

computer science.

1.1.1. The Demand for STEM

It has been argued by many that there is currently a great demand for STEM skills, which

will only increase in the near future. In a report by Georgetown University’s Center on

Education and the Workforce, United States jobs requiring STEM skills are projected to

grow at a 17% rate through the year 2018, compared to a 10% growth rate for US

occupations as a whole throughout that time period (Carnevale, STEM: Science,

Technology, Engineering, Math, 2011). Another report by Burning Glass Technologies, a

company focusing on workforce development and trend prediction, states that for every

new graduate with a 4-year STEM degree there are 2.5 entry-level job postings that this

graduate could fill, with 5.7 million postings in all for 2013. This creates a 26% salary

premium for STEM degree holders over non-STEM degree holders (BurningGlass,

2014). These statistics, and others like them, lead many to conclude that the demand for

STEM degree holders will continue for the foreseeable future.

3

1.1.2. The STEM Crisis

Despite the large upcoming demand for STEM degree holders, current educational trends

have led some to declare that this demand will not be filled. This phenomenon has been

called the “STEM crisis.”

There are two aspects to the STEM crisis: first, that there are not enough STEM majors

being produced (CSTA Curriculum Improvement Task Force, 2006) (President's Council

of Advisors on Science and Technology, 2012) (CBI, 2013) (Rothwell, 2014), and

second, that those STEM majors who are being produced do not have adequate skills to

perform the jobs they will be asked to fill (House of Lords Select Committee on Science

and Technology, 2012) (Gross, 2014) (CBI, 2013).

Many sources claim that there are not enough STEM majors to fill the large upcoming

demand. For example, the Computer Science Teachers Association (CSTA) noted in

2005 that there would be an anticipated shortage of 1.5 million qualified candidates for

CS and IT jobs by 2012 (CSTA Curriculum Improvement Task Force, 2006). This

prediction was somewhat borne out; a 2012 executive report prepared by the United

States President’s Council of Advisors on Science and Technology declared that, based

on current economic projections and graduation rates, there would be a shortfall of 1

million STEM degree holders over the next decade (President's Council of Advisors on

Science and Technology, 2012).

Many of the businesses that wish to hire STEM majors report trouble doing so. In the

CBI / Pearson Education and Skills Survey for 2013, which surveyed 294 firms, 39% of

4

firms surveyed reported having difficulty recruiting workers with the STEM skills they

needed (CBI, 2013). Furthermore, a report by the Brookings Institute declares that STEM

job positions take nearly twice as long to fill as positions that do not require STEM skills

(Rothwell, 2014).

In addition to the above problems, individuals pursuing or graduating with STEM majors

are reported to not possess the skills adequate to perform 21st century STEM jobs. An

oft-cited 2012 report on STEM education by the United Kingdom’s House of Lords notes

that students entering college do not possess the skills they need to succeed in STEM

subjects – for example, these students do not possess the math skills needed for first-year

college math courses (House of Lords Select Committee on Science and Technology,

2012). If students are entering college unprepared to handle STEM challenges, it does not

appear that colleges are providing them this preparedness; a 2014 paper presented at

IEEE’s Global Engineering Education Conference notes that STEM graduates “lack the

numeracy skills needed to succeed in the workplace” (Gross, 2014). The effect of this can

be seen in another statistic reported by the aforementioned CBI / Pearson report: 48% of

firms report having their workers undergo “basic remedial training” in literacy,

numeracy, and technical skills (CBI, 2013).

These statistics, and many more like them, contribute to the widespread belief that the

United States and other countries are entering a “STEM crisis”, and that immediate action

must be taken to avert this.

5

1.1.3. The STEM Crisis is a CS Crisis

As mentioned above, STEM stands for “Science, Technology, Engineering and Math”.

Career fields designated as “STEM jobs” have been noted to include “medicine and

dentistry; … biological sciences; veterinary science, agriculture and related subjects;

physical sciences; mathematical sciences; computer science; engineering; technologies;

and architecture, building and planning” (House of Lords Select Committee on Science

and Technology, 2012).

It might be believed that the “STEM crisis” affects all these fields, and to some extent it

does. However, inspection of the data reveals that the STEM crisis is really a computer

science crisis. The job growth, current and upcoming, is overwhelmingly in CS-related

jobs; there are broad trends that are bringing a need for CS abilities to jobs across the

market (not just STEM!); and despite all this, CS enrollment and graduation are on the

decline.

Let us first consider the aforementioned explosive job growth in STEM fields. According

to a report by the Bureau of Labor Statistics, between 2010 and 2020 62% of all newly

created jobs (not just newly created STEM jobs, but all newly created jobs) will require

some CS skills. This same report also notes that by 2020, 50% of all STEM jobs will be

CS related1 (K-12 Computer Science Education: Unlocking the Future of Students,

2012). This trend is reiterated by Stanford University’s Elizabeth Stark, who notes that

1 The BLS report cited here notes that their definition of STEM excludes jobs in the medical profession; if
these jobs were included, these number might be lower. However, it could also be argued that, with the
increasing computerization of the medical fields, CS skills will be just as important in medicine as
elsewhere.

6

“[b]y 2018, there will be nearly three times as many job openings requiring computer

science knowledge [as] qualified applicants” (Stark, 2013). The CS flavor of the STEM

crisis is summarized by Code.org’s Hadi Partovi who, relying on data from the BLS and

NSF, declares that “[c]omputer science is the only STEM field where there are more jobs

than students” (Partovi, 2014).

Looking beyond STEM jobs, we can find trends and forces that are quickly making

computer science skills an important factor – perhaps even a necessity – across all

industries. As contended by Carnevale’s STEM report, as well as Jeannette Wing, in her

seminal Computational Thinking article, computers have invaded every industry, not just

the hard sciences but the social sciences and even the humanities; we now need

individuals to work with these computers (Carnevale, STEM: Science, Technology,

Engineering, Math, 2011) (Wing J. M., Computational Thinking, 2006). This demand for

STEM skills across the workforce is further evinced by the fact that, in the UK, almost

half of all STEM graduates end up taking a job in what is considered a non-STEM field

(House of Lords Select Committee on Science and Technology, 2012).

Tyler Cowen, an economist and professor nominated by The Economist as one of the

most influential economists in the last decade2, wrote Average is Over in 2013 on

precisely this subject. In this book he concludes that the future of all industries will

involve massive integration with computers (he goes further and predicts that we will see

similar integration with our personal and social lives) (Cowen, 2013). Qua Cowen, these

2 http://www.economist.com/blogs/freeexchange/2011/02/economics

http://www.economist.com/blogs/freeexchange/2011/02/economics

7

trends are inevitable, and he declares that “[w]hether we will remain a middle class

society or not depends firstly on how many people will prove to be effective working

with intelligent machines” (Cowen, 2013).

From this information we can conclude that the upcoming need for STEM is

predominantly a need for CS. Yet despite these upcoming needs, computer science

education has been on the decline. Multiple sources report that CS enrollment is

decreasing (Hu, 2011) (Carter, 2006). Other sources indicate that students are losing

interest in pursuing CS majors (Wagstaff, 2012) (Blum, 2007).

Taken together, the high demand for CS skills, paired with the decrease in student pursuit

of CS as a major, leads to the conclusion that the STEM crisis is in reality a CS crisis,

and that – while we should not ignore the other STEM fields – CS is the one we may

want to focus on addressing the most.

1.1.4. A Response to the STEM Crisis

It is important to acknowledge that not everyone accepts the existence or severity of the

STEM crisis. In an influential article for the IEEE, Robert Charette argues that

misinterpretations of job data, incorrect or inaccurate estimations, optimistic predictions

and other errors are causing many to believe in a crisis when there is none (Charette).

According to Charette – and others who argue among similar lines – there is no

impending shortfall of engineers which requires drastic action to correct.

8

Despite not believing that the future will be rife with unfilled STEM positions, Charette

does share common ground with many of those cited above when he declares that

“everyone needs a solid grounding in science, engineering, and math. In that sense, there

is indeed a shortage – a STEM knowledge shortage” (Charette).

Whether one agrees with the CS shortfall predictions or not, there does seem to be broad

agreement that certain aspects of STEM – which, as we argue above, are really certain

aspects of CS – are becoming necessary skills for all individuals, whether they work in a

STEM field or not.

In the next section we will argue that these skills overlap considerably with a set of skills

currently rising to prominence in CS education, which are collectively known as

“computational thinking”.

1.2. COMPUTATIONAL THINKING

Computational thinking refers to a skill, a set of skills, or even an entire paradigm of

thought, depending on the source and the way in which the term is being used. The term

“computational thinking” and the ideas it represents are not new, but it has risen to

considerable prominence following a 2006 IEEE article by Jeannette Wing, the

President’s Professor of Computer Science at Carnage Mellon University. This article,

appropriately entitled “Computational Thinking”, launched a discussion within the

computer science community which continues to this day.

9

In this section we will analyze many aspects of this discussion, beginning with an attempt

to define exactly what computational thinking is. We will consider some specific

components of computational thinking, and review why computational thinking is

important both for CS students and for everyone. We will conclude this section with a

discussion of the difference between computational thinking and programming.

1.2.1. The Definition of Computational Thinking

In order to discuss computational thinking, we must first get an idea of what it

specifically is. Jeannette Wing is responsible for beginning the ongoing discussion of

computational thinking, and the most concise definition of computational thinking she

provides is as follows: “Computational Thinking is the thought processes involved in

formulating problems and their solutions so that the solutions are represented in a form

that can be effectively carried out by an information-processing unit” (Wing J. M.,

Computational Thinking, 2006) (Wing J. M., Computational Thinking: What and Why?,

2010). By this definition, computational thinking is a critical thinking and heuristic

reasoning skill, but one specifically involved with formulating both problems and

solutions in a computable form.

Despite the name, computational thinking does not literally mean “thinking like a

computer” (Wing J. M., Computational Thinking: What and Why?, 2010) (Gouws, 2013)

. Wing and others note that “thinking like a computer” implies mechanization of thought,

while computational thinking is heuristic, and perhaps even creative, in its approach to

transforming and solving problems (Wing J. M., Computational Thinking, 2006).

10

Computational thinking does rely on the fact that a problem, ultimately, must be

implemented in a mechanical setting (a computer), and the solution must be output from

this mechanical setting; but between the problem statement and its implementation in a

program lies a wealth of heuristics, creative thought and transformation, and it is that

ground between problem statement and compiled program which computational thinking

covers.

1.2.2. Components of Computational Thinking

In the previous section we provided a brief high-level definition of computational

thinking. In this section we will describe four specific (but still somewhat high-level)

components of computational thinking. These are not the only components of

computational thinking, but their frequent inclusion in computational thinking related

literature suggests that they are the most important ones.

The four components are as follows:

1. Ability to Read and Understand Algorithms

As computational thinking is fundamentally involved with the creation and

evaluation of algorithms, the ability to read and understand algorithms is a crucial

prerequisite of computational thinking. This skill involves understanding an

algorithm qua algorithm – understanding it as an entity separate from the specific

context that it operates in.

11

2. Ability to Engage in Abstraction

This is commonly cited as by far the most fundamental skill involved with

computational thinking, and it is at the base of most if not all other skills

involved. The ability to engage in abstraction involves (but is not limited to) the

ability to generalize, compartmentalize, move between levels of abstraction, and

understand and apply recursion.

3. Ability to Decompose a Problem into Solvable Processes

This skill may be roughly thought of abstraction applied to the problem domain. It

involves the ability to identify the pertinent aspects of a problem, the ability to

transform a problem from one domain to another, and the ability break down a

problem into subproblems. It also involves the ability to identify which

computable processes can solve problem components, and the ability to combine

these processes to create algorithms.

4. Ability to Evaluate the Quality of a Solution

If computational thinking deals with formatting and transforming problems, and

creating solutions, that are computable, then the ability to evaluate the quality of

the resulting algorithm ought to also be part of the skillset. This component

involves not just evaluating the correctness of an algorithm, but also its elegance,

cleanliness, optimization, generality, and reliability, among other things.

12

These items are described variously in (Hu, 2011) (Wing J. , 2006) (Wing J. M.,

Computational Thinking: What and Why?, 2010) (James J. Lu, 2009). A more

comprehensive treatment of these items will be provided in Section 2.

1.2.3. Computational Thinking is not Programming

In a list of misconceptions about computational science compiled by the CSTA, the very

first misconception is the idea that computer science should equal programming (CSTA

Curriculum Improvement Task Force, 2006). If computational thinking is at the root of

computer science, then it should be similarly believed that computational thinking and

programming are two different skillsets. This point is forcefully made by Wing, who

declares quite simply that “[c]omputational thinking is not computer programming”

(Wing J. M., Computational Thinking, 2006).

Before we proceed, we ought to properly define programming as precisely as we have

defined computational thinking. In this thesis, “programming” refers to the act of

transforming an algorithm from an idea into some symbolic notation which can be

executed on a computer. This can include writing code in Java or C, or it can include

writing an algorithm in a visual programming environment such as Scratch3 or Microsoft

VPL4. In a more abstract sense, it can even refer to writing natural language step-by-step

instructions for use by a human “computer”. The important part is that the development

of the algorithm precludes the practice of “programming” – put simply, programming is

3 http://scratch.mit.edu/

4 https://msdn.microsoft.com/en-us/library/bb483088.aspx

http://scratch.mit.edu/
https://msdn.microsoft.com/en-us/library/bb483088.aspx

13

algorithm transcription. Others refer to this act as “coding”; in this thesis, “coding” and

“programming” will refer to the same act that we have just defined.

If computational thinking and programming are two separate skillsets, how do they

relate? It was noted previously that computational thinking is the ground between a

problem definition and the implementation of an algorithm. Programming is involved

only in the implementation stage – in other words, programming begins where

computational thinking ends. Programming, when thought of this way, is a rote, or

mechanical process; this contrasts with computational thinking, which is a creative,

heuristic process (Wing J. M., Computational Thinking, 2006). Instead of thinking that

they are equivalent, computational thinking ought to be thought of as the “parent” of

programming – computational thinking skills produce a computable algorithm, while

programming implements the algorithm in solid form.

The misconception that computational thinking and programming are the same thing can

be harmful to student education. Wing warns that in teaching computer science “we do

not want people to come away thinking they understood the concepts because they are

adept at using the tool” – in other words, only teaching students how to program,

combined with the misconception that programming and computational thinking are the

same thing, can result in students who believe they have mastered skills that they really

haven’t (Wing J. M., Computational Thinking and Thinking about Computing, 2008).

Learning how to use a programming language is like learning how to use a tool; learning

14

computational thinking, on the other hand, creates students who are “not merely tool

users but tool builders” (Valerie Barr, 2011).

This is an important point to make and will be used to support evaluations of computer

science education, as well as decisions in creating a new computational thinking-based

educational system, later in the thesis.

1.2.4. Computational Thinking is Important for CS Students

Having defined computational thinking, we may now consider its utility for computer

science education. Unsurprisingly, this utility is argued to be quite high.

A joint report by the ACM and CSTA notes that “[c]omputer science education is

strongly based upon the higher tiers of Bloom’s cognitive taxonomy, as it involves

design, creativity, problem solving, analyzing a variety of possible solutions to a

problem, collaboration, and presentation skills” (Wilson, 2010). Design, creativity, and

problem solving are exactly what computational thinking teaches; if this is true, then a

strong foundation in computational thinking skills will prepare students to learn the

higher levels of computer science. This is corroborated by Mohtadi, who notes that when

computational thinking skills are taught systematically, students are able to internalize

and gain a deeper understanding of mathematical and programming / engineering

concepts very quickly (Mohtadi, 2013). Additionally, James Lu, a professor at Emory

University’s Mathematics & Computer Science department, declares that computational

thinking education prepares students to learn programming (James J. Lu, 2009).

15

To sum it up, computational thinking skills are simply “indispensable in [the] modern

engineering practice” (Mohtadi, 2013), and are therefore highly important for all students

of that practice to learn.

1.2.5. Computational Thinking is Important for Everybody

While computational thinking has considerable utility for computer science students, the

benefits of computational thinking are usually argued to be much broader: Wing notes

that “[i]f computational thinking will be used everywhere, then it will touch everyone

directly or indirectly” (Wing J. M., Computational Thinking and Thinking about

Computing, 2008). In other words, these skills are not just beneficial for computer

scientists, they are beneficial for everybody.

A commonly argued point is that computational thinking education teaches problem

solving skills and critical thinking skills that are invaluable to the modern world (Stark,

2013) (Carey, 2010) (Wilson, 2010) (Wing J. , 2006). Steve Jobs describes it as a liberal

art that teaches people how to think (Jobs, 1995). Jeannette Wing and others have gone so

far as to declare it the “4th R”, along with the traditional “3 R’s” of reading, writing, and

arithmetic (David Barr, 2011) (Wing J. M., Computational Thinking, 2006). These

arguments all hold that computational thinking is a fundamental skill that everyone ought

to have familiarity with.

Many of the articles that examine computational thinking often investigate its utility in

non-STEM career fields. The idea that the fundamental skills of computer science could

16

be valuable in career fields outside of computing is not a new one; Donald Knuth made

the argument in 1985 that computational thinking overlaps with thought patterns used in

other careers (Knuth D. , 1985).

The most common career area said to benefit from computational thinking skills is the

sciences, a claim that is not surprising when one considers the enormous role that

computers now play in scientific work. Wing notes that computational thinking has, in

recent years, “become the ‘third pillar’” of scientific research, “along with theory and

experimentation” (Wing J. M., Computational Thinking: What and Why?, 2010).

However, the sciences are not the only career fields said to utilize and benefit from

computational thinking.

Alan Bundy notes that computational thinking is influencing research across all

disciplines – not just the sciences, but also the humanities (Bundy, 2007). Barr and

Stephenson show that computational thinking concepts can be utilized even in social

studies and language arts fields (mostly having to do with big data) (Valerie Barr, 2011).

In her Computational Thinking paper, Wing lists many of the specific careers that

computational thinking already influences:

Computational thinking has also begun to influence disciplines and professions

beyond science and engineering. For example, areas of active study include

algorithmic medicine, computational archaeology, computational economics,

computational finance, computation and journalism, computational law,

computational social science, and digital humanities. Data analytics is used in

training Army recruits, spam and credit card fraud detection, recommendation and

reputation services, and personalizing coupons at supermarket checkout. (Wing J.

M., Computational Thinking: What and Why?, 2010)

17

This section and the one preceding it make the argument that computational thinking is a

highly valuable skill not just for computer scientists but for everyone. If this is the case,

then it follows that computational thinking is a subject that ought to be broadly and

universally taught.

1.3. THESIS OUTLINE

In Section 1.2 we established the importance of introductory computational thinking

education. Our recognition of this importance motivated us to create a new educational

system to teach introductory computational thinking. Our new system is made up of a

software tool and a curriculum, both of which were designed by utilizing lessons learned

through the evaluation of other educational systems and methods of teaching introductory

computer science. This new system is called “Genost”. This thesis is dedicated to

introducing Genost, explaining the thought that went into its development, and describing

our testing to determine whether Genost effectively teaches computational thinking. We

will divide the remainder of this thesis up into five sections.

In Section 2, we will perform a review of introductory computer science education and

the systems that are used as part of introductory CS education, in order to determine the

effectiveness of both traditional and newer educational systems in teaching computational

thinking skills. This review will be divided up into four major sections.

First, in Sections 2.1 and 2.2, we will perform an expanded investigation into

computational thinking in education, and the four specific components of computational

thinking that we mentioned earlier. Second, in Section 2.3, we will review current

18

practices in introductory computer science education in the United States. Third, in

Section 2.4, we will review some of the new computer science educational software

systems and investigate their usability, educational value, and the degree to which they

teach computational thinking. Finally, at the end of Section 2.4, we will review the

lessons learned from the previous sections, and based on these lessons describe the

qualities that an ideal computer science educational software system might have.

In Section 3 we will describe the software and curriculum that comprise our new Genost

system. In this section we will describe each part of Genost, along with our goals in

developing this part, the ways we attempted to implement these goals, and our

justifications for the goals and our implementation of them.

In Section 4 we will describe the two tests that we performed of the Genost software and

its ability to teach computational thinking skills. We will describe the recruitment criteria,

time allotted, test environment and the data collected from each test.

In Section 5 we will present the results of the two tests, and our analysis of these results.

Finally, in Section 6 we will conclude the thesis, and present our ideas on future

improvements to the Genost software.

19

2. REVIEW OF COMPUTER SCIENCE EDUCATION

In this section we will perform a review of introductory computer science education,

focusing on the quality of both traditional and newer forms and methods of introductory

education, and the degree to which these systems teach computational thinking. This

section will be divided into four subsections.

- The first section will be a deeper investigation into computational thinking,

focusing first on whether computational thinking skills are broadly teachable.

Following this, we will perform an expanded look at the four major components

of computational thinking described earlier and an investigation into how these

four components ought to be taught as part of introductory computer science

education.

- Second, we will perform a review of introductory computer science education in

American high schools and colleges, focusing on the degree to which these

classes teach computational thinking. We will also look at the general poor

performance of these educational programs, and consider some of the reasons that

these programs may be performing poorly.

- Third, we will review many newer educational software systems, like Alice5 or

Scratch, which are designed to be used in introductory computer science

5 http://www.alice.org/index.php

http://www.alice.org/index.php

20

education. This review will consider the general quality of these systems, their

pros and cons, and what takeaways we can glean from our evaluation of these

systems.

- Finally, we will reflect on the lessons learned from the preceding sections, and

using these lessons, discuss the composition of the ideal introductory computer

science educational system focused on teaching computational thinking.

2.1. EDUCATIONAL GOALS OF INTRODUCTORY COMPUTATIONAL

THINKING EDUCATION

As we have argued in Section 1.2, computational thinking is an important skill for both

computer scientists and individuals in general. Computational thinking is, however, a

very rich subject, and it is not realistic, or necessary, to teach every aspect of it in full

depth as part of introductory education. For introductory education, only the most

fundamental and important concepts ought to be taught. This section will investigate the

educational objectives that might be involved in teaching introductory computational

thinking education.

2.1.1. Is Computational Thinking Teachable?

Before beginning to consider specific educational goals in introductory computational

thinking education, we ought to first consider whether computational thinking skills are

in fact able to be effectively taught in the first place. Most authors that write about

computational thinking and education, such as Jeannette Wing, Valerie Barr or Chris

21

Stephenson, appear to assume that computational thinking skills are in fact teachable.

However, a relatively well-cited paper by Saeed Dehnadi and Richard Bornat appears to

bring this assumption into question.

Bornat and Dehnadi’s paper, written in 2006, describes an attempt to devise a test by

which students could be separated into two groups: those who had an “aptitude” for

programming and those who did not (Dehnadi, 2006).This paper claims to have

discovered such a test, which consists of providing an exam full of simple programming

questions to students, and then grading these not based on actual correctness, but the

degree to which student answers display a “consistent mental model” (to use a phrase

from the paper). This paper defines a consistent mental model as a model of how a

program should execute that is consistent across multiple programming questions

(utilizing different programs per question). Dehnadi and Bornat directly correlate the

degree to which this consistency is displayed with ultimate performance in introductory

computer science classes.

This result is notable for us because the “consistent mental model” discussed by Dehnadi

and Bornat sounds very much like a computational thinking skill. Dehnadi and Bornat

argue that students displaying a “consistent mental model” have internalized the crucial

idea that computers are literal machines, that they execute their algorithms the same way

every time, regardless of the input or context. This appears to relate very closely to items

1 (Ability to Read and Understand Algorithms) and 2 (Ability to Engage in Abstraction)

discussed in Section 1.2.2.

22

It is worth noting that Dehnadi and Bornat’s paper was not published in a peer-reviewed

journal6; despite this, it garnered a respectable number of citations in its draft form7,

many of them supportive (see (Robins, 2010) for an example of this). This reaction may

be explained by considering the following notion: if the “programming aptitude test” is

viable, then this means that the computational thinking skills required to learn and work

as an effective computer scientist are, to some degree, innate, or at least not teachable.

What are we to make of this? Is computational thinking, to some degree, not teachable?

This conclusion, and the paper that ventures it, is treated with skepticism by Alan Kay,

who posits that Dehnadi and Bornat “could be right, but there is nothing in the paper that

substantiates it” (Kay, 2008). Kay describes similar work in introductory science classes

which found that, despite a pretest having the apparent ability to predict students grades

in these classes, students could be taught skills to improve their performance on this

pretest that also resulted in higher performance in the class itself (Kay, 2008).

More notable than Kay’s commentary, however, is the fact that Bornat has retracted the

paper (Bornat, 2014). In this retraction Bornat declares that, upon further investigation,

the “aptitude test” could to some degree predict pass/fail in Bornat’s programming class,

but could not predict performance beyond that; more importantly, he notes that this

predictive phenomenon does not divide students into those who can and those who

6 http://retractionwatch.com/2014/07/18/the-camel-doesnt-have-two-humps-programming-aptitude-
test-canned-for-overzealous-conclusion/

7 https://scholar.google.com/scholar?cites=887892586020755938

http://retractionwatch.com/2014/07/18/the-camel-doesnt-have-two-humps-programming-aptitude-test-canned-for-overzealous-conclusion/
http://retractionwatch.com/2014/07/18/the-camel-doesnt-have-two-humps-programming-aptitude-test-canned-for-overzealous-conclusion/
https://scholar.google.com/scholar?cites=887892586020755938

23

cannot program. Putting it quite bluntly, he declares “Dehnadi didn’t discover a

programming aptitude test” (Bornat, 2014).

The overwhelming assumption is that computational thinking skills are teachable.

Bornat’s retraction removes a possible challenge to this consensus. We will proceed from

here in agreement with this assumption, that computational thinking is a teachable

skillset. The next question that must be confronted, then, is what skills must be taught.

The next four sections will each be dedicated to discussing the four aforementioned skills

that are part of and fundamental to the computational thinking skillset. To review, these

skills are:

1. Ability to Read and Understand Algorithms

2. Ability to Engage in Abstraction

3. Ability to Decompose a Problem into Solvable Processes

4. Ability to Identify the Quality of a Solution

As previously mentioned, these skills are not necessarily the only skills involved in

computational thinking, though we argue that they are the most important ones. These

skills are also not perfectly discrete or separate from one another: they intertwine, and are

involved with one another. It may be better to think of these as facets of computational

thinking, different ways of looking at a unified whole.

24

For each skill or facet, we will investigate what the ability is, why it is important to

computational thinking, some specific instances in which this skill is exercised, and any

other pertinent notes.

2.1.2. Ability to Read and Understand Algorithms

The ability to read and understand algorithms is defined as follows: students possessing

this skill are able to read an algorithm encoded in some form (plain English, pseudocode,

or some programming language) and “translate” the algorithm from its encoded,

contextual form into a more general, cognitive set of processes. In order for students to

properly claim they have understood an algorithm, they must mentally grasp the “idea”

behind it.

This is an important skill to possess and is absolutely fundamental to computational

thinking (James J. Lu, 2009). If computational thinking focuses on creating algorithms,

then in order to learn computational thinking students first must be able to read

algorithms. In this way, reading algorithms is the basic literacy of computational

thinking, and serves as a prerequisite for all other computational thinking skills. This

ability does not come naturally to everybody – the CSTA notes that novice students tend

to not understand algorithms, or to treat them as inscrutable standalone processes that

magically work “right” (CSTA Curriculum Improvement Task Force, 2006). In order for

students to ever create their own algorithms, they must have a strong ability to read

existing algorithms and understand both the general “idea” behind the whole algorithm,

as well as the “point” of each step.

25

Important components of this skill are listed below.

1. Students must have a firm grasp of what an algorithm actually is – and what it is

not. The formal, scientific definition of “algorithm” is an open question (Buss,

2001); nevertheless students may be (and routinely are) taught a practical

definition which consists of the following characteristics:

- An algorithm is finite – it has a finite number of steps.

- Each step of an algorithm is clearly and precisely defined.

- An algorithm takes zero or more items as input and produces some output.

The output produced is directly related to the input provided.

- The steps of an algorithm are effective – they can be performed by the human

brain in finite time.

The definition above is taken from (Knuth, 1997). Using this definition, students

should be able to understand the characteristics of an algorithm and identify steps

in algorithms they are reading that violate the above conditions.

2. Students must have a solid, immutable understanding of the literality of

algorithms and their execution. This is implied in the definition of an algorithm,

but is important – and misunderstood – enough to warrant its own object. Students

26

absolutely must understand that algorithms do exactly what they say they do, and

nothing more whatsoever. Authorial intent does not matter; only the code written

down matters.

3. Students must understand the way in which algorithms execute – starting from a

precise entrance point and proceeding step by step. Steps are never skipped,

unless the algorithm skips them in a well-defined manner; steps are never

repeated, unless the algorithm repeats them in a well-defined manner. Again, this

is implied in the definition of an algorithm, but is commonly misunderstood and

leads to much confusion.

4. Students should be able to read the symbolic representation of an algorithm and

understand each individual step. In other words, whatever language represents the

algorithm (English, pseudocode or code proper) students must be able to read that

language. This literacy need not be exhaustive, but before being asked to utilize a

specific concept in their own algorithms, students ought to be able to read that

concept when it is encoded in a language.

5. Given the general understanding of the characteristics of an algorithm reported in

1, 2 and 3, and the ability to read a specific encoding of an algorithm in 4,

students should be able to combine these skills and understand the “idea” behind a

specific instance of an algorithm. This understanding should be achieved on many

levels – students should understand the idea and purpose of each individual step,

27

the idea and purpose behind certain well-defined groups of steps, and the idea and

purpose behind the algorithm as a whole.

Jeannette Wing notes that the understanding of algorithms is the most basic form of

abstraction (Wing J. M., Computational Thinking: What and Why?, 2010). The

abstraction she refers to is the ability to, among other things, separate the general idea of

an algorithm from its context – for example, to see that a sorting algorithm will sort

whatever data it is given, no matter the size or content, so long as this data is of the type

the algorithm will accept.

2.1.3. Ability to Engage in Abstraction

The ability to engage in abstraction is a skill which, appropriately, must be understood

somewhat abstractly. The most concise definition may be that given by Lu, who notes

that abstraction is generalizing information and principles from specifics (James J. Lu,

2009). While this definition is formally accurate, it hides the richness of abstraction in

computational thinking. Wing helps show this richness when she states that “[a]bstraction

is used in defining patterns, generalizing from instances, and parameterization. It is used

to let one object stand for many. It is used to capture essential properties common to a set

of objects while hiding irrelevant distinctions among them” (Wing J. M., Computational

Thinking: What and Why?, 2010).

The importance of abstraction to computational thinking is hard to overstate. Wing calls

this the “most important and high level thought process” in computational thinking (Wing

28

J. M., Computational Thinking: What and Why?, 2010), and declares “[t]he essence of

computational thinking is abstraction.” (Wing J. M., Computational Thinking and

Thinking about Computing, 2008). This importance stems from the fact that abstraction

is, to some degree, present in virtually all other skills and modes of thinking which fall

under the definition of “computational thinking.” It is required to read and understand

algorithms, and it is required at every step of algorithm creation.

Computational thinking is an inherently layered paradigm (Wing J. M., Computational

Thinking and Thinking about Computing, 2008). Abstraction comes into play at all of

these layers. Specific uses of abstraction at these different layers are listed below.

1. Abstraction is involved in the basic creation and understanding of what an

algorithm is. To even understand a particular algorithm we must abstract, and

realize that an algorithm is a set of instructions independent of the real world

circumstances in which it executes. These instructions gain context and meaning

once they are applied to the real world; but the algorithm itself need not depend

on this context. (Wing J. M., Computational Thinking and Thinking about

Computing, 2008) (Wing J. M., Computational Thinking: What and Why?, 2010)

2. Abstraction is required to understand the fundamental structures of a

programming language outside of their specific implementations. For example,

we must use abstraction to understand the idea of “loop” outside of any specific

implementation thereof. It is clear that when encountering and solving a problem,

29

CS students must know what tools are available to them, how they can be

combined; this is the abstraction we are talking about. (Gouws, 2013)

3. Abstraction is involved in the analysis of a problem that we wish to solve with an

algorithm. We must abstract a problem out of its real world circumstances to

some degree in order to begin breaking it down and solving it (Wing J. M.,

Computational Thinking: What and Why?, 2010).

4. Once a problem has been abstracted out of its circumstances, we must abstract

still further when breaking this problem down into processes. At each point we

abstract away the irrelevant parts of a problem and encapsulate what remains into

a subproblem. This abstracting process is repeated, often multiple times, in the

breakdown process. Abstraction is also used in building a program up into a

complete algorithm, as we solve subproblems and combine these solutions into

larger solutions, and eventually into a single algorithm (Wing J. M.,

Computational Thinking: What and Why?, 2010).

These are only a few of the layers that abstraction is used on. We believe that they are

some of the most fundamental ones and the ones that introductory students ought to be

explicitly taught to work on.

There are other concerns involved with the abstraction skill. Aside from simply being

able to abstract, Wing notes, students should also know how to identify which abstraction

30

is best out of multiple options (Wing J. M., Computational Thinking and Thinking about

Computing, 2008). Furthermore, in addition to being able to properly identify which

information is important and generalizing it, students should also have the skill to identify

information that is not as important, which can be ignored and abstracted away (Wing J.

M., Computational Thinking: What and Why?, 2010).

2.1.4. Ability to Decompose a Problem into Solvable Processes

The ability to decompose a problem into solvable processes is, in essence, the general

approach that one takes when designing an algorithm based on a problem statement.

There are two important components to this skill: first, the decomposition (“break down”)

of the problem into subproblems, and second, the creation of solution processes and the

combination (“build up”) of these processes into a final algorithm. Both of these

processes are iterative – one breaks down a problem into subproblems (abstracting along

the way), and then breaks those subproblems down further, until one reaches a point

where each subproblem may be easily modeled and solved. One then iterates back up,

combining the solution processes into a final algorithm. Every step of this ability involves

modeling: Hu notes that “[a] model allows transforming data from one representation to

another to make the data better understood or more “easily” manipulated”, and this is

what we are doing as we both break down and build up (Hu, 2011).

The skill to decompose problems and solve subproblems with processes is fundamental to

computational thinking. Wing notes in her initial computational thinking paper that

“[c]omputational thinking is reformulating a seemingly difficult problem into one we

31

know how to solve, perhaps by reduction, embedding, transformation, or simulation”

(Wing J. M., Computational Thinking, 2006). The modeling aspect of this is also

important: Dave Moursund considers “developing models…of problems that one is trying

to study and solve [as the] underlying idea” of computational thinking (Moursund, 2013).

Michael Resnick notes that this iterative modeling and transformative process is central

to creative thinking (Resnick, 2007). Finally, Mohtadi notes that this skill is important not

just in computational thinking but in all engineering disciplines, declaring that the skills

of “reformulating seemingly difficult problems, reduction, embedding, [and]

transformation…are indispensable in modern engineering practice” (Mohtadi, 2013).

Like the ability to read and understand algorithms, or the ability to abstract, this is a

general skill which must be taught (Hu, 2011). The items below are some specific ways

that this skill must be taught.

1. Students must be able to initially model a problem: that is, to abstract it out of its

specific circumstances and generalize it to the extent that it can begin to be broken

down. A large part of this is simply choosing an appropriate model, which Hu

notes is crucial for learning this skill (Hu, 2011).

2. After modeling the problem, students must transform or decompose it to the point

where it is solvable using simple processes, using techniques Wing describes like

“reduction, embedding, transformation, or simulation” (Wing J. M.,

Computational Thinking, 2006).

32

There are two separate classes of techniques that deserve further elaboration,

which we will describe as “transformation” and “decomposition”:

a. Transformation refers here to converting or narrowing a problem from one

form to another. It is a one-to-one process: one problem is transformed

into a newer problem, usually by noting that if we can solve the

transformed problem, then we can solve the original (in other words, we

abstract the “real problem” away from the less important details).

Challenges here include not just transforming the problem but

transforming it correctly.

b. Decomposition refers to breaking a problem down into subproblem. This

tends to involve identifying ‘submodels’ that, when put together, make up

a single problem model. This is a one-to-many process: problems are

broken down and one problem is turned into multiple, smaller problems

which, when solved, can have their solutions put together to create a

solution for the original problem. Challenges here include breaking down

the problem in an intelligent, clean and well thought out manner.

3. Students must have the ability to select and build a solution process for a

subproblem, once the subproblem is small enough to have a discrete solution

applied to it.

33

4. Students must have the ability to combine two or more solution processes to make

a “superprocess” – that is, a single algorithm that implements both subprocesses.

This is very similar to the decomposition process and in practice is often a direct

reverse.

This skill, like the others, is really a special form of abstraction; in this case, it is

abstraction as relates to problems and problem spaces.

2.1.5. Ability to Identify the Quality of a Solution

The final skill we are considering brings the element of quality evaluation into the

computational thinking skillset. Individuals possessing this ability are able to accurately

evaluate various facets of quality in regards to the steps of the computational thinking

process. It has been noted by Lu and others that this is most definitely a computational

thinking skill (James J. Lu, 2009) (Orni Meerbaum-Salant, Habits of Programming in

Scratch, 2011).

The importance of judging computational thinking products for quality is fairly

straightforward: Donald Knuth declares on the seventh page of the first volume of his

seminal Art of Computer Programming that "[i]n practice, we not only want algorithms,

we want good algorithms” (Knuth D. , 1985). Wing also weighs in on the matter, noting

that after solving a problem, we ought to ask: is our solution good enough? She goes on

to describe that computational thinking involves “judging a problem not just for

34

correctness and efficiency but for aesthetics, and a system’s design for simplicity and

elegance” (Wing J. M., Computational Thinking, 2006).

One fundamental part of this ability is the recognition that a problem may have multiple,

and sometimes infinite, solutions. Much like the understanding of what an algorithm

actually is, the understanding that algorithms may have multiple solutions is very basic,

yet also may not be understood by novices. Stephenson and Barr note this as a highly

important skill for computer scientists (Valerie Barr, 2011).

After understanding that algorithms may have multiple solutions, the next question is:

which of these solutions are the best (and how do we judge this)? This question accounts

for the remainder of the ability to identify the quality of a solution.

There are many different parts of the algorithm creation process involved in

computational thinking that can be judged for quality. These parts include (among

others):

- The initial modeling of the problem statement.

- The breakdown of the problem into subproblems

- The solution processes created to solve these subproblems

- The combination of these subprocesses into a single solution algorithm.

35

Furthermore, there are many different kinds of quality that we can evaluate. These

include (among others):

- The ability to determine whether a solution does, in fact, solve the problem.

- The ability to gauge whether a solution is optimized – is our implementation the

best possible one for this solution?

- The ability to evaluate the cleanliness of the solution – is this solution free from

extraneous steps, unnecessary actions, etc.? Is it easily understood by others?

- The ability to evaluate the generality of a solution – could it be easily extended, if

needed? Could it be easily adapted to solve a similar problem?

- The ability to gauge the reliability of a solution – does it depend on many

different assumptions? Can it break easily?

It is important to note that this skill does not ask for students to be able to judge quality

objectively, or assign a cardinal value to the quality of a solution – such things are

impossible. Students with this ability should simply be able to cogently and persuasively

argue for the quality of a particular solution and its ordinal superiority (or inferiority, or

equivalency) to other solutions.

36

2.1.6. Introductory Computational Educational Goals – Conclusion

The above four subsections 2.1.2 – 2.1.5 described some of the specifics of the four

computational thinking goals which we and others have identified as important for

introductory computational science education. We note again that these goals intertwine

with one another and cannot properly be taught as separate, discrete ideas – instead, it

might be more effective to teach them as part of a unified curriculum focusing on

algorithm development.

In Section 2.1 we have provided a rough sketch of what fundamental computational

thinking education should consist of. In the next section, we will briefly justify why

computational thinking ought to be taught as an introductory class – that is, as the very

first computer science class that a computer science student (or anyone) should take.

Following this we will present a review of both traditional and newer introductory

computer science education and analyze the degree to which these offer an education like

the one described in section 2.1.

2.2. THE NEED FOR INTRODUCTORY COMPUTATIONAL THINKING

EDUCATION

Up to this point we have spoken of introductory education – but the question may be

asked: why ought the computational thinking skills we have described be taught in a

student’s first computer science class? This section will make the argument for dedicating

a student’s first computer science class to computational thinking – and only

computational thinking.

37

2.2.1. Introductory Computer Science Education Ought to Involve Computational

Thinking

As has been argued many times above, computational thinking is a foundational concept

(Wilson, 2010) which is fundamental for learning higher topics in computer science – for

example, programming (James J. Lu, 2009). If this is the case, then it ought to be

introduced as being among the first topics a student learns in their CS career.

The National Academy of Engineering study “Educating the Engineer of 2020: Adapting

Engineering Education to the New Century” that the skills that are a part of

computational thinking should be taught as the first thing in the curriculum (Committee

on the Engineer of 2020, Phase II, Committee on Engineering Education, National

Academy of Engineering, 2005). Wing concurs, declaring that an introductory

computational thinking course ought to be taught to all college freshmen, both computer

science and non-computer science (Wing J. M., Computational Thinking, 2006).

Some argue that computational thinking ought to be introduced even earlier. Stephenson

and Barr declare:

It is no longer sufficient to wait until students are in college to introduce these

concepts. All of today’s students will go on to live a life heavily influenced by

computing, and many will work in fields that involve or are influenced by

computing. They must begin to work with algorithmic problem solving and

computational methods and tools in K-12. (Valerie Barr, 2011)

Even if one does not believe that high school students should be introduced to

computational thinking principles (whether they are interested in CS or not), if one

accepts the arguments above then it follows that high school students who do take

38

computer science classes should be learning computational thinking, just as freshmen

college students do.

There are additional reasons to support introductory CS courses containing computational

thinking education. For example, the previously mentioned Executive Report to the

United States President notes that “high-performing students frequently cite uninspiring

introductory courses as a factor in their choice to switch majors” (President's Council of

Advisors on Science and Technology, 2012). We will argue in section 2.3 that most

existing introductory computer science education is focused mostly on learning

programming languages; bringing computational thinking into these introductory courses

may make these courses far more exciting and inspiring for students, solving to some

degree the problem identified by the executive report.

These are the arguments for bringing computational thinking education into introductory

computer science courses. The next section will argue that not only should these ideas be

present in introductory education: they should be the only ideas present.

2.2.2. Introductory Computer Science Education Ought to ONLY Involve

Computational Thinking (and not Formal Syntax)

In this section we will argue that introductory computer science education should consist

only of computational thinking education, teaching skills such as the four described

above. This section is in truth an argument against the current introductory education

focus on learning a formal programming language like Java or C (for evidence of this

39

heavy focus, see section 2.3). There are many reasons to exclude learning a formal

programming language in introductory computer science courses, which we will discuss

in this section.

We are not arguing here that nothing which may be described as a “programming

language” ought to be taught in introductory computer science – our own Genost

solution, which we will describe below, as well as Alice, Scratch, or other newer

educational software, feature simplified programming languages which can and perhaps

should be used in introductory education. We are arguing against the use of formal,

complex, text-based languages such as Java or C, which have traditionally been used in

introductory education.

As has been noted in Section 1.2.3, computational thinking is not programming. These

are two separate subjects. James Lu has argued that computational thinking education

ought to come before programming education. He argues this by noting that

programming serves a role in computer science similar to the role that proofs play in

mathematics – that is, programming is a skill that opens the door to higher topics. Before

students learn to write formal proofs in mathematics, they learn a host of simpler, more

fundamental skills, including arithmetic and logic. By this analogy, programming ought

to come only after students have learned the fundamental skills of computational

thinking. Lu states that programming is therefore very important to computer science

students – but it ought not to serve as their “first encounter” with the field (James J. Lu,

2009).

40

Malan states that teaching programming in introductory education may actually be

harmful to student education. He states:

In the first weeks of an introductory course (for majors or non-majors), too often

do semicolons and their syntactical cousins delay, if not downright discourage,

students’ appreciation and mastery of more fundamental programmatic constructs

(e.g. conditions, loops, variables, etc.) as well as logic itself. We daresay that

languages like Java challenge students to master programmatic overhead before

programming itself: students must become masters of syntax before solvers of

problems. (David J. Malan, 2007).

The arguments presented above show that introductory computer science education ought

to focus on computational thinking alone, and not attempt to teach a formal programming

language. This argument may be taken further by noting that if computational thinking is

to be treated as a general skill and taught to everyone, then introductory computer science

education has even more reasons to be free from learning a programming language. Non-

CS students taking an introductory computer science class will have a different set of

needs, both short-term and long-term, to CS students. These non-CS students will have

little or no need to learn Java. While they may need a skill that may be called

“programming”, this skill won’t look like traditional programming (CSTA Curriculum

Improvement Task Force, 2006). It may look instead more like the visual programming

of Scratch or VPL, or something else entirely. This upcoming paradigm shift may already

be seen in the advent of service-oriented programming, in which programmers, instead of

coding a program from scratch, cobble an algorithm together using preexisting services

(Yinong Chen, 2014) (W.T. Tsai, 2008). In fact, visual “drag and drop” software like

41

Oracle SOA Suite8 already exist and are being used in the industry to allow individuals

without traditional CS skills to build service-oriented algorithms (Yinong Chen, 2014).

Individuals using the SOA suite do not need the ability to code in traditional languages,

but they still do require computational thinking abilities.

In light of this, we declare that the purpose of teaching non-CS students computational

thinking is not to teach them to “think like a computer scientist”. Rather, as stated by Barr

and Stephenson, “the ultimate goal should [be] … to teach them to apply these common

elements to solve problems and discover new questions that can be explored within and

across all disciplines” (Valerie Barr, 2011).

The statements presented in this section argue that introductory computer science

education should consist of computational thinking, and nothing else. In the next two

sections, we will investigate both traditional and newer forms of introductory computer

science education, with a focus on the degree to which they offer computational thinking.

The traditional systems will be found to offer almost no computational thinking

education; and as a result, we will show, they have very poor results. The newer systems

are mixed in their usefulness for teaching computational thinking education: some

approaches are good, others are not so good. We will investigate these approaches and

describe them accordingly.

8 http://www.oracle.com/us/products/middleware/soa/suite/overview/index.html

http://www.oracle.com/us/products/middleware/soa/suite/overview/index.html

42

2.3. REVIEW OF TRADITIONAL INTRODUCTORY COMPUTER SCIENCE

EDUCATION

In “Computational Thinking - What it Might Mean and What we Might Do About It”,

Chenglie Hu notes that “[w]e seem confident that whatever we teach in computing

promotes computational thinking. But why is this true? We struggle to answer this

question” (Hu, 2011). Do our current methods of teaching computer science in college

and high school promote computational thinking? This section will examine that

question.

In order to determine whether current introductory computer science education in the

United States teaches computational thinking, we have performed a review of both

introductory college computer science education and high school computer science

education offered in the US. We will first present these reviews, describing our

methodology and results. We will then argue that these reviews show that current

methods of introductory computer science education do not effectively teach

computational thinking skills.

Following this, we will describe the current poor results of computer science education.

We will argue that these poor effects are attributable to lack of computational thinking

content in introductory content, among other things.

43

2.3.1. Review of Introductory Computer Science Education in United States Colleges

In order to determine the degree to which introductory computer science education in

college teaches computational thinking skills, we performed a review of introductory

computer science classes taught at United States colleges. For this review, we

investigated the curricula of these introductory classes for both the top 25 colleges

overall, and the top 25 colleges for computer science, as ranked by US News9.

2.3.1.1. Course Selection Criteria

For each college on both of these lists, we selected the courses that served as the

introductory computer science course for this college’s computer science major. Our

selection criteria were as follows:

1. The course should be part of the track for a computer science (CS) degree. We did

not consider introductory education for other computer-related degrees, such as

computer science engineering (CSE), computer engineering (CE), computer

information science (CIS), etc., if the introductory education for those degrees

differed from the computer science degree.

9 The listing for the top 25 overall colleges can be found at
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-universities/data, and
was accessed on 11/29/2014. The listing for the top 25 colleges for computer science can be found at
http://www.usnews.com/education/best-global-universities/search?country=united-
states&subject=computer-science, and was accessed on 11/29/2014

http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/national-universities/data
http://www.usnews.com/education/best-global-universities/search?country=united-states&subject=computer-science
http://www.usnews.com/education/best-global-universities/search?country=united-states&subject=computer-science

44

2. The course should be part of the bachelors of science track. We did not consider

introductory education for minor tracks, master’s degrees, doctoral degrees,

certificates, etc., if the introductory education for these tracks differed from the

BS track.

3. The course should be required. We did not consider optional courses or electives.

4. The course should be taken in the first year, i.e. it should be what one would call a

100-level class (note that the designation “100-level class” does not necessarily

mean the course number was itself between 100 and 199!) We did not consider

higher level courses.

5. The course should be presented as a fundamentals course. We did not consider

courses which were presented as specialized courses.

6. When colleges had multiple tracks for a bachelor’s degree in computer science,

we tried to choose courses that were required for all tracks. Usually, the same first

year introductory course was taught between all the tracks. When it was not, we

either investigated all the introductory courses, or chose the course that appeared

to be the most general-purpose.

The selection of courses was done by reviewing information publically available on the

college’s website. Most colleges had between one and three courses selected for review.

45

For each course, we attempted to find a curriculum, syllabus, or course calendar available

online. If these resources were not available online, or they were out of date (all resources

used were from 2010 or later; most were from the most recent provision of the course, in

Fall 2014) we contacted the professor responsible for the most recent provision of the

course, and requested access to a syllabus or curriculum. In cases where we did not hear

back from the professor, we skipped the review of that course.

2.3.1.2. Course Information / Data Collected

For each course that we were able to retrieve a syllabus, curriculum or calendar for, we

reviewed the information provided in this syllabus and recorded the following:

1. A brief description of the course overall

2. A brief description of how the course taught computational thinking skills

3. The primary tool or language used in the course (e.g. Java, Scratch, etc.)

4. A numeric rating, ranging from 0 – 5, of the degree to which the course taught

computational thinking skills.

The numeric rating described above used a scale of our own design. The scale description

is as follows:

0) A zero rating indicates that the course is a survey of many different subjects or

fields in computer science. Courses with this ratings attempt to provide an

46

“overview of the computer science career field”, and does not attempt to teach

either a language or computational thinking ideas.

1) A one rating indicates that the course is focused entirely on teaching a formal

programming language, like Java or C. Computational thinking concepts are not

specifically discussed.

2) A two rating indicates that the course is focused mostly on teaching a formal

programming language, like Java or C. Some computational thinking ideas are

discussed, but they are discussed solely within the context of the programming

language being taught, and not as separate, language-independent concepts.

3) A three rating indicates that the course is a mixture of learning a formal

programming language, and learning computational thinking ideas in abstract.

Newer software, such as Scratch or Alice, may be used.

4) A four rating indicates that the course has the majority of its focus on learning

computational thinking ideas in abstract. A formal language may be involved, but

learning this language is not the focus of the course. Newer software, such as

Scratch or Alice, may be used.

5) A five rating indicates that the course is entirely focused on teaching

computational thinking ideas, and students are not asked to learn any formal

47

programming language syntax. Newer software, such as Scratch or Alice, may be

used.

Some of the data collected, most importantly the numeric rating, may be found in

Appendix A. We have also downloaded copies of all curricula that we utilized as part of

this study, and these are available upon request.

2.3.1.3. Course Review Results

The results of this survey can be seen in the table below.

Table 1

Review of introductory computer science education in US colleges

Top 25 Colleges

Overall

Top 25 Colleges for

Computer Science

Number of Colleges

Reviewed
26 25

Number of Courses Selected 50 42

Number of Courses Selected 43 38

Number / Percent of

Courses Rated 0
1 / 2.33% 0 / 0%

Number / Percent of

Courses Rated 1
16 / 37.21% 11 / 28.95%

Number / Percent of

Courses Rated 2
19 / 44.19% 18 / 47.37%

Number / Percent of

Courses Rated 3
6 / 13.95% 8 / 21.05%

Number / Percent of

Courses Rated 4
0 / 0% 0 / 0%

Number / Percent of

Courses Rated 5
1 / 2.33% 1 / 2.63%

Average Rating 1.79 2

48

We actually reviewed 26 individual colleges off of the top 25 overall list, because two

colleges were tied for 25th place. From these 26 colleges, 51 courses were selected and

reviewed, with a rounded average of 2 courses selected per college. Of those 51 courses,

we were unable to retrieve recent curricula for 7 of them.

There were no ties for the top 25 colleges for CS, and so only 25 colleges were reviewed.

From these 25 colleges, 43 courses were selected and reviewed, with an average of ~1.6

courses selected per college. Of those 43 courses, we were unable to retrieve recent

curricula for 4 of them.

The average rating for the top 25 colleges overall was 1.79. The average rating for the top

25 colleges in computer science was 2.

The following table summarizes the tools that were used by these classes. Note that some

courses used multiple tools.

49

Table 2

The tools used by the reviewed colleges

 Top 25 Colleges Overall
Top 25 Colleges for Computer

Science

Formal Languages

Java 14 14

Python 12 10

C++ 7 8

C 4 2

HTML / CSS /

JavaScript
3 3

LISP / Racket 3 0

PHP 2 2

OCAML 2 0

MATLAB 1 1

SCALA 1 0

Newer Educational Systems

Scratch 2 2

Karel the Robot 1 1

2.3.1.4. College Review Conclusion

These results indicate three things.

1. These colleges do not effectively teach computational thinking in their

introductory computer science education.

The average ratings for both colleges were on the low end of the scale – 1.79 for

the top 25 overall colleges, and 2 for the top 25 computer science colleges. The

overwhelming majority of courses were rated as 0, 1 or 2, which indicates that

computational thinking is at best taught within the context of a programming

language (a 2 rating), or not taught at all (0 or 1). For the top 25 colleges overall,

50

83.73% of courses surveyed were rated with a 0, 1 or 2; for the top 25 computer

science colleges, 76.32% of courses surveyed were rated with a 0, 1 or 2.

2. Colleges overwhelmingly use formal programming languages in their

introductory computer science education.

As can be seen in Table 2, the vast majority of tools used in these introductory

courses are formal programming languages. Only 3 courses from either the top 25

overall colleges or the top 25 computer science colleges use tools that are not

formal programming languages – two courses use Scratch, and one course uses

Karel the Robot10. Of the languages used, Java is used the most among both sets

of colleges, followed by Python and C++.

3. The top 25 computer science colleges are only slightly better at teaching

computational thinking than the top 25 overall colleges.

The average rating for the top 25 computer science colleges (2) is slightly higher

than the average rating for the top 25 colleges overall (1.79) – but only slightly.

The percentage of courses rated 1 is lower for the top 25 CS colleges than in the

top 25 overall colleges (by roughly 8 percentage points), while the percentage of

courses rated 2 and 3 is higher (by roughly 3 percentage points and 7 percentage

10 http://karel.sourceforge.net/

http://karel.sourceforge.net/

51

points respectively). However, the number of courses rated 4 and 5 are exactly the

same in both groups.

The tools used do not significantly differ between the two groups of colleges.

There are some slight variations – for example, the top 25 overall colleges have

more courses using C, while the top 25 computer science colleges have more

courses using C++ – but the number of courses using the newer tools is exactly

the same.

This evidence indicates that, for the top 25 colleges both overall and for computer science

in the United States, computational thinking is not effectively taught. It is not effectively

taught as an independent subject (if it is mentioned at all), and instead students are taught

the syntax and rules of a formal programming language. Assuming that the top 25

schools are as good as or better than the remainder of colleges in the United States, this

review indicates that there is a serious failure to teach effective computational thinking

skills in college introductory computer science education is the US.

2.3.2. Review of Introductory Computer Science Education in United States High

Schools

Unlike the review of introductory computer science education in college, we are not able

to easily perform a formal review of all introductory high school computer science

courses. These courses – and the institutions that offer them – are vastly more numerous

than introductory college courses. Furthermore, virtually all high school computer

science education would be classified as “introductory”, since by definition these courses

52

are likely to be the first computer science course given to the students taking them. The

pool of individual courses to be reviewed is much wider.

In lieu of performing an exhaustive review ourselves, we will turn to the literature which

has already, to some degree, done this. We will also review one of the more widely

offered high school computer science courses: AP Computer Science. After looking at

both these sources, we will again conclude that high school computer science education

does not adequately teach computational thinking skills.

2.3.2.1. Review of Literature on High School Computer Science Education

We begin by noting that very little computer science is taught in US public high schools

in the first place. According to Partovi, as of 2014 90% of public schools in the United

States do not teach any computer science (Partovi, 2014). Even in schools that do teach it,

students have little incentive to take it beyond personal interest – only 9 states count

computer science as a mathematics credit, and only 1 state counts it as a science credit (6

states allow the district to determine what it will count as) (Wilson, 2010). Therefore,

even before analyzing the course content itself, we can see that computer science

education in high school is not at all widely taught.

We will now investigate the actual content of the little computer science education that is

offered in American high schools. It is widely reported in sources such as (Wagstaff,

2012) that high school computer education focuses more on “skill-based aspects” of

computing, such as keyboarding, OS-specific operational skills, word processing,

spreadsheets, etc., as opposed to the algorithm creation skills of computational thinking.

53

To further investigate the contents of high school computer science education, we turn to

the ACM’s 2010 report Running on Empty: The Failure to Teach K-12 Computer Science

in the Digital Age.

This report describes three different levels of computer science education standards that

the ACM and the CSTA have created. These three levels are intended for three different

age groups, and are described as follows:

1. The Level I standards are intended for the K-8 age group. This set of standards

focuses mainly on computer operation and awareness, and includes such items as

“use standard input and output devices to successfully operate computers and

related technology”, “create developmentally appropriate multimedia products”,

“discuss basic issues related to the responsible use of technology and

information”, “exhibit legal and ethical behaviors when using information and

technology”, “develop, publish and present products using technology resource”,

etc. These Level I standards are focused much more on teaching computer

operation than computational thinking skills, though there are some standards that

offer very basic computational thinking, such as “develop a simple understanding

of an algorithm, such as text compression, search, or network routing, using

computer free exercises” (Wilson, 2010).

54

2. The Level II standards are intended for the 9th/ 10th grade age group. This set of

standards focuses on introductory computer engineering and science concepts,

and asks students to understand “principles of computer organization and the

major components”, “the basic steps in algorithmic problem solving”, “the basic

components of computer networks”, “the notion of hierarchy and abstraction in

computing”, etc. Computational thinking skills are well represented in these

standards (Wilson, 2010).

3. The Level III Standards are intended for 11th or 12th grade age groups. This set of

standards continues the focus on computer engineering and science concepts, and

includes standards such as “fundamental ideas about the process of program

design and problem solving”, “simple data structures”, “fundamentals of

hardware design”, “the limits of computing”, etc. Again, computational thinking

is well represented here (Wilson, 2010).

The ACM uses these standards in their report and investigates the degree to which these

standards are adopted by high schools across the United States. They report that, on

average, each state has adopted 70% of the “skill-based” Level I standards. In contrast to

this, the higher level standards – which focus far more on computational thinking skills –

are adopted at much lower rates. Only 35% of Level II standards and 30% of Level III

standards are adopted by a state on average (Wilson, 2010).

55

These are average ratings. Looking at the actual number of standards adopted by the

states, we find that “there are 16 states with no model curriculum standards adopted at

Level II and 22 states with no model curriculum standards adopted at Level III”. Only 10

states adopt all Level II standards, and only 9 states adopt all Level III standards (Wilson,

2010). In other words, only 1/5 of the states have adopted 100% of the standards focusing

on computational thinking, and there are more states that haven’t adopted any

computational thinking standards than those that have adopted all of them. Both these

numbers and the average adoption rates described above indicate that high school CS

standards mostly focus on computer operation instead of computational thinking.

In addition to considering the adoption of the standards by level, the ACM also considers

the adoption of the standards by category. The report defines three separate categories,

and divides the standards between them. The three categories are defined in the text as

follows:

Concepts: emphasize one of the 10 basic ideas that, at a high level, define modern

computers, networks, and information...[e]xamples include computer

organization, information systems, networks, digital representation of

information, information organization, modeling and abstraction, algorithmic

thinking and programming, universality, limitations of information technology,

and societal impact of information technology.

Capabilities: emphasize one of the 10 fundamental abilities for using computing

to solve a problem…[e]xamples include the ability to engage in sustained

reasoning, manage complexity, test a solution, manage faulty systems and

software, organize and navigate information structures and evaluate information,

collaborate, communicate to other audiences, expect the unexpected, anticipate

changing technologies, and think abstractly about IT.

Skills: “emphasize one of the 10 abilities to use today’s computer applications in

one’s own work…[e]xamples include the ability to set up a personal computer;

use basic operating system features; use a word processor and create a document;

use a graphics or artwork package to create illustrations, slides, and images;

56

connect a computer to a network; use the Internet to find information and

resources; use a computer to communicate with others; use a spreadsheet to model

simple processes or financial tables; use a database system to set up and access

information; and use instructional materials to learn about new applications or

features. (Wilson, 2010)

Organizing the standards along these categories allows us to see the problem even more

clearly. First, consider the “concepts” standards, which overlap very strongly with

computational thinking skills. There are 19 total “concepts” standards, but only 16 states

have adopted more than half of them. Fewer than half of the states – 22 – have adopted

even ¼ of the total number of “concepts” standards. 11 states have adopted only one

standard, and 9 states have adopted only two standards.

Compare this to the “capabilities” standard, which does include computational thinking

skills to a small degree, but mostly focuses on the reasoning, thinking and skills expected

of a computer operator or IT manager. There are 19 “capabilities” standards, and only 13

states have failed to adopt at least half of these standards. 21 states have adopted at least

¾ of the standards, and 10 have adopted every single one.

Finally, consider the “skills” standards, which are entirely based on computer operation

and do not contain any computational thinking. These skills are the most widely adopted

of all: like the “capabilities” standards, only 13 states have not adopted at least half of the

“skills” standards, 30 states have adopted at least ¾ of the standards, and 23 – nearly half

– have adopted every single one (Wilson, 2010).

57

The ACM concludes that these findings indicate that high school computer science

education is “focused almost exclusively on skill-based aspects of computing…and [has]

few standards on the conceptual aspects of computer science that lay the foundation for

innovation and deeper study in the field” (Wilson, 2010). In other words, computational

thinking is very poorly represented in these curricula, and computer operation skills are

the main focus.

2.3.2.2. Review of AP Computer Science

A traditional way in which US high schools have offered computer science education has

been through the Advanced Placement or AP Computer Science course11. Of the

aforementioned 10% of US schools that do teach CS, half of them teach AP Computer

Science (Microsoft). The AP Computer Science course has a well-defined curriculum,

and therefore considering its prominence in US high school computer education can serve

as a useful indicator of the content of this education.

A review of the AP Computer Science curriculum makes it clear that the major focus of

the course is learning Java. This curriculum rates a 2 on the scale described in Section

2.3.1.2 – the course’s major focus is learning a formal programming language, and while

some computational thinking concepts are discussed, they are discussed entirely within

the context of Java, and not as abstract concepts in their own right. The National Science

Foundation appears to concur with this assessment, declaring that the AP Computer

11 http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-
2014.pdf

http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-2014.pdf
http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-a-course-description-2014.pdf

58

Science course simply “focuses on programming skills. The course teaches students how

to code in a specific language (Java)” (NSF, 2014).

Perhaps the best indicator of the degree to which computational thinking is absent from

AP Computer Science can be found in the release – and the reaction to – a new AP

course, “AP Computer Science Principles”, which is explicitly stated to be designed as a

computational thinking-centric alternative to the traditional AP Computer Science course

(NSF, 2014). In the National Science Foundation’s press release on the new AP course,

Jan Cuny, the program director at the NSF for Computer Science Education and

Workforce Development, states that “[t]his new course will broaden the appeal of

computing to a wider group of students by focusing on the creative aspects of computing

and computational thinking practices that enable students to be creators, not just users, of

technology” (NSF, 2014). Elsewhere, Cuny notes that “[a]lthough [AP Computer Science

Principles] does include programming, the course isn’t programming-centric. Instead, it

focuses on the underlying principles of computation including problem solving,

abstraction, algorithms, data and knowledge creation, and programming” (Cuny, 2011).

The development of a new course to provide computational thinking education seems a

clear indication that the existing course does not provide this. The AP Computer Science

Principles course will launch in Fall 2016; until then, many US high school students are

limited to the Java-centric AP Computer Science course. The unsuitability of this existing

course to the needs of computer science students is perhaps indicated by the falling

amount of students taking AP CS. The percentage of high school students earning credits

59

in AP Computer Science has declined from 1990 (25%) to 2009 (19%) (K-12 Computer

Science Education: Unlocking the Future of Students, 2012).

2.3.2.3. High School Review Conclusion

The results from both the overview of the literature related to US high school computer

science education, and a review of the AP Computer Science course, indicates that high

school computer science education is rarely and inconsistently offered to high school

students, and when it is offered, is primarily based on teaching computing skills such as

keyboarding, OS-specific operational skills, word processing, spreadsheets, etc., as

opposed to computational thinking skills. We can conclude from this that computational

thinking is very poorly represented in US high schools.

This concludes our review of the degree to which computational thinking is taught in

existing educational contexts. We will conclude Section 2.3 by reviewing the results of

computer science education in the United States – that is, the degree to which students are

successful in pursuing computer science education – and will argue that these results are

quite poor. We will then argue that this poor state is attributable to the lack of

computational thinking concepts being taught in introductory education.

60

2.3.3. The Poor State of Current Introductory Computer Science Education

Introductory computer science in the United States produces many poor results. This

section will briefly review this poor state by examining three performance metrics from

college introductory computer science. These metrics are: failure rates, attrition rates, and

student ability to program.

2.3.3.1. Failure Rates

It is a commonly accepted idea that introductory computer science education has a high

failure rate. However, only two papers appear to have actually attempted to investigate

this assertion. These two papers find that failure rates are nontrivial, although they may

not be as high as some think.

In 2007 Bennedsen and Caspersen solicited responses from the SIGCSE mailing list for

information on the participants’ school’s pass / fail rates for introductory computer

science education. A small number of schools responded (63) and reported a failure rate

of 33%. The authors noted that due to the low response rate, as well as the potential

motivation for those schools with low rates to not respond, this number may not be

representative (Bennedsen, 2007).

A second attempt was made to consider the failure rates in 2014. Watson and Li, drawing

inspiration from Bennedsen and Caspersen’s paper, performed a very similar analysis,

this time with 161 schools participating. Interestingly, the authors found an identical

61

failure rate of 33%. The authors also performed a study of failure rates historically, and

have found that since 1969 the rates have not significantly decreased (Watson, 2014).

Both papers state that, in light of common claims that failure rates in introductory

computer science education are astronomically high, a 33% failure rate is not that bad.

However, it still represents 1 in 3 students failing their very first programming class – and

this, paired with the observed failure of this rate to decrease over time, is cause for

concern.

2.3.3.2. Attrition Rates

The next metric we will investigate are attrition rates for computer science, which are

also popularly believed to be quite high. In this case, the popular belief appears to be

correct.

Drew notes that 40% of all engineering students either change their major away from

engineering, or drop out entirely (Drew). These numbers are corroborated by Beaubouef,

who notes that computer science has an attrition rate of 30% to 40%. Beaubouef also

notes that most of this attrition happens during students’ freshman or sophomore years –

that is to say, during their introductory education. Interestingly, Beaubouef hypothesizes

that one major reason for these attrition rates and patterns may be low problem solving

abilities in incoming computer science students, and notes that this deficiency is mostly

in their “inability to form [an] algorithm in the first place” (Beaubouef, 2005).

62

Finally, we note that when compared to other subjects, computer science has one of the

highest – if not the highest – drop out rates, at 27% (Computer science courses get

highest drop outs - study, 2010).

2.3.3.3. Student Ability to Program

The final metric we will investigate is student ability to program. We note that this metric

only applies to people who pass introductory programming – that is, make it through the

relatively high failure and attrition rates – and therefore the numbers here represent the

small amount of “successful” CS degree-seekers.

Despite introductory computer science education traditionally focusing on teaching

students a programming language (as described in Section 2.3.1), students emerging from

their first CS class are often not able to actually program in this language. The famous

McCracken group study is the traditional example of this; published in 2001, it describes

a simple test administered to 216 first year computing students across four universities.

This test – which asks students to evaluate arithmetic expressions read in from a text file

in either postfix, prefix or infix notation – is challenging, but should not be too difficult

for a novice programmer. McCracken found that students scored an average of 21% on

this test, a considerably low score. He also notes that many of the participants did not

even finishing designing an algorithm, much less implementing it (Michael McCracken,

2001).

63

10 years later, Guzdial reports that these low numbers are still present. He describes an

even simpler programming test administered to students at Yale in 1983, which resulted

in a pass rate of only 14%. Guzdial reports that follow up studies and repetitions of this

test (the latest repetition coming in 2009 when his article was published) have found

similar results (Guzdial, Education: From Science to Engineering, 2011). These results

indicate that, despite ostensibly being taught how to program in their first class, emerging

students often cannot program at all.

From these three metrics, we can see that introductory computer science is in fact in a

poor state. In the next section, we will argue that this poor state is attributable to a

curriculum that is heavy on syntax and light on computational thinking.

2.3.4. The Reasons for this Poor State

We have established in sections 2.3.1 and 2.3.2 that introductory computer science

education focuses mostly on teaching either computer operation, or the syntax of a formal

programming language. This conclusion is shared by many other individuals. Malan, for

example, has declared that learning syntax is the major focus of introductory computer

science (David J. Malan, 2007). These sources, and our own studies above, lead us to the

conclusion that computational thinking is not effectively taught in introductory education.

In section 1.2.4, we argued that computational thinking is highly important for computer

science students, and that it should be considered a “prerequisite” to programming. Given

this, its failure to be taught is questionable. A generous explanation for this failure might

64

be the belief that students already possess computational thinking skills. The CSTA notes

that “educators may be inclined to believe that [basic concepts such as algorithm design]

are trivial and therefore easy to understand” (CSTA Curriculum Improvement Task

Force, 2006). If this is the case, then introductory computer science need not waste time

teaching something students already know.

It is apparent, however, that computational thinking is not a trivial or natural belief.

Cynthia Selby has argued that computational thinking does not come naturally to students

(Selby, 2012). This same argument is made by Donald Knuth, who has argued as early as

1985 that, based on his experiences in teaching, only 2% of CS students naturally have

the ability to “think algorithmically” (Knuth D. , 1985). One may be tempted to declare

that, with the rise of widespread home computer use, Knuth’s observation may no longer

be valid, or at least his percentage may be higher. Despite popular beliefs, however, it is

apparent that the “digital natives” also do not naturally possess computational thinking

skills (Mitchel Resnick, 2009).

With these facts in mind, the poor state does not look surprising. Students are asked to

utilize skills which, by and large, they do not possess, and are not taught. Malan notes

that syntax-heavy classes are asking students to “master programmatic overhead before

programming itself” (David J. Malan, 2007); Resnick notes that the syntax students are

asked to learn is too difficult for them (Mitchel Resnick, 2009); both Wagstaff and the

ACM’s Running on Empty report states that programming classes are often far too

65

advanced for students (Wagstaff, 2012) (Wilson, 2010). This difficulty, then,

understandably leads to frustration, forfeiture and failure.

Even students who make it through their introductory computer science course may still

suffer from its failure to teach computational thinking. Aside from the continuing

struggle to learn in an environment where prerequisite skills are not taught, the very fact

that these skills are not taught may set up the wrong expectations for people. Malan and

McCracken both note that the heavy focus on programming leads students to believe that

these are the only skills they need to succeed in computer science (David J. Malan, 2007)

(Michael McCracken, 2001). Failure, then, begets failure.

It is not necessarily the case that the lack of computational thinking is the only reason for

the poor state of computer science. Other reasons have been proposed – for example,

Resnick has noted that introductory projects are often very unengaging or uninteresting

for students (consider the classic “Hello World” – a valuable first project, but also a very

boring one for students expecting something more) (Mitchel Resnick, 2009). From what

we have established, however, it seems likely that the lack of explicit computational

thinking education is one of the primary reasons for the poor state of computer science

education.

66

2.4. REVIEW OF NEWER INTRODUCTORY COMPUTER SCIENCE

EDUCATION SOFTWARE

Mitchel Resnick, the leader of the MIT team which developed and maintains the Scratch

software, declares that, traditionally, “programming was introduced in contexts where no

one could provide guidance when things went wrong – or encourage deeper exploration

when things went right” (Mitchel Resnick, 2009). In other words, traditional introductory

programming education is poorly designed and ineffective. In an attempt to mitigate this,

he and many others have developed a number of “newer” educational software systems

which attempt to teach introductory computer science education in a simpler, easier,

clearer, more guided manner, deeper, and often more fun manner.

These systems often state a goal or intent of providing computational thinking education.

Many create their own language, or forego formal text-based languages altogether, in an

attempt to shift the focus away from learning syntax and instead towards learning the

deeper ideas of computer science.

In this section we will perform a review of many of the newer systems. For each system,

we will provide a brief description of the system and at whom it is targeted at, a list of

good features of the system, and a list of problems with the system. For each system we

will also list takeaways or “lessons learned”, and at the end of this section we will collect

and summarize these takeaways. After investigating all of the newer systems, we will

conclude this section with a collective review of the lessons learned and takeaways from

67

each system, and in doing so present the features that we believe ought to be present in an

ideal introductory computer science educational system.

2.4.1. Methods and Themes in the Review of Newer Introductory CS Software

In the course of performing this review, we will examine each system and describe both

the positive benefits of this system, as well as its weaknesses and problems. Our

judgments, both positive and negative, will be informed by the field of literature on these

systems, but also by our own evaluations with appeals to, among other things, our

definition of computational thinking in section 2.1, as well as common sense.

Some common themes will appear in our evaluations. Before starting the evaluations

proper, we will briefly describe each of these themes.

1. Ease of Use

A frequent area that we will evaluate will be the ease of use of a particular

system. Common sense tells us that a system ought to be as easy to use as

possible for both the students using it, and the teachers teaching it, so long as this

can be achieved without undue sacrifice of the system’s educational value. If a

system is difficult to use, then students may lose motivation and must spend more

time learning to operate the specific system as opposed to the more general ideas

the system is trying to teach.

68

Furthermore, a system that is highly complicated may very well turn away

teachers who are not themselves very technical. With this in mind, the ease of use

of a particular system is an area that we will frequently evaluate.

2. Fun

It has long been recognized in educational psychology that fun is an intrinsic

motivator (Ormrod, 2012). When a student has fun working with a system, the

student is motivated, pursues the task under his own initiative, stays engaged in

the task, pays closer attention, shows creativity, and ultimately learns more from

that system than he would were he not having fun (Ormrod, 2012). Because we

are here concerned with introductory programming education, fun is especially

important for us since the students we are working with may often be relatively

young. The amount of fun that students have, or are likely to have, with a system

is therefore an important item to evaluation.

3. Adaptability

Classrooms come in all shapes and sizes, and have different resources. Due to

this, a system ought to be adaptable such that it can be used in as many

classrooms as possible. This means, among other things, having a low price (or at

least different levels of pricing), and not requiring specialized equipment or

software (though this does not mean the system cannot optionally integrate

specialized technologies!) The degree to which a system can be adapted for use in

different classrooms is an area that we will often talk about.

69

This theme also includes the degree to which end users are able to customize the

software and curriculum. A system that teaches a single set of lessons is not very

adaptable; one in which the end user can customize which lesson it teaches is

more adaptable, all things being equal.

4. Computational Thinking

A major concern in our review will be the degree to which a system is able to

teach computational thinking skills. We will generally look at this theme in two

different ways.

First, we will look at the software itself, and the degree to which this software has

the potential to be used to effectively teach computational thinking. Note that the

above three themes feed into this fourth theme – a system that is easier to use,

more fun, and more adaptable is, all things being equal, more suited for

computational thinking education than one that is difficult to use, dull, and rigid.

This being said, the software is not the source of the computational thinking

education – the curriculum that utilizes the software is. Therefore, we would also

attempt to evaluate the curriculum for these systems and determine whether it

effectively teaches computational thinking. There is, however, a difficulty with

performing this observation.

70

The difficulty with evaluating the curriculum for these newer systems is that most

of the systems we are evaluating do not have curricula – at least, not “official”

ones. Instead, many of these systems are released as software-only, and third

party organizations – sometimes affiliated with the software developers,

sometimes not – release curricula for them. To our evaluation, this is less

desirable than the original developers creating and pairing an official curriculum

with the software. A full system that includes both a curriculum and the software

that will be used to teach it can be developed such that the curriculum needs

influence the software design, something that is not possible when the software is

developed in isolation. For these reasons, a system that contains an official

computational thinking curriculum will be considered better than one that does

not.

5. Play / Storytelling / Competition

As mentioned above, fun is a major motivator for student learning and will be

considered a benefit in our reviews. However, many systems attempt to achieve

fun in ways which we will not consider beneficial, and in some cases will

consider problematic.

Many systems attempt to foster enjoyment or motivation in students by focusing

on student play, storytelling, or competition, on the theory that this will increase

student learning. These systems will, to some degree, eschew traditional teaching

which attempts to directly convey a concept to a student, and instead give the

71

student freedom to play with the system, perhaps with some direction or help

when they get stuck. Proponents of this technique claim that it will benefit student

education. (Resnick, 2007).

It may be that undirected play is beneficial to student learning in some

circumstances. However, the canon of educational research tells us that, for

students to learn, basic familiarity with the topic they are learning about is

required. Ausubel has noted that students require “anchoring ideas” to properly

orient themselves on a topic such that new knowledge can be retained (Ausubel,

1968). If this is accurate, then it follows that play can only assist student learning

when the student already has a set of basic “anchoring ideas” to orient themselves

with. Play without this introduction, according to this theory, will not produce any

meaningful long term knowledge.

Since we are concerned with creating an introductory educational tool here, the

students participating in it will by definition have little to no orientation on the

topic. With this in mind, we should be wary of organizing our system around

creative play, and make sure that our curriculum always establishes the orienting

ideas first before turning students loose to discover knowledge on their own.

For these reasons, we will consider systems that focus heavily on play,

storytelling and competition as being weaker than those systems that concentrate

on explicit computational thinking education first and foremost.

72

Having described some of our methods for evaluating the newer systems, as well as some

of the general themes that will appear in our review, we will next describe the categories

into which the systems we will review will be organized.

2.4.2. Overview of Newer System Categories

In order to provide some organization to the large list of newer systems we will be

reviewing, we will classify these systems on two different metrics.

The first metric (which we will call “input”) will describe the way in which programs are

input into the system, and has two values: code-based, and drag and drop. The second

metric (which we will call “testing”) will describe the method and environment in which

student programs are run, and again has two values: virtual worlds, and robots. Below,

we will provide a brief description of what each of these four values mean. Additionally,

because three of the four metrics (drag and drop, virtual worlds and robots) are often

described as good or valuable features of educational systems, we will also recount

general arguments for the educational benefits of these three characteristics.

1. Code Based

This is the first value of the “input” metric. This value will apply when a system

requires traditional text-based code to be typed out to create the program. This

value is often found in some of the older systems that we will recount here. Some

systems with this feature utilize a simplified version of an existing programming

73

language, while others create their own language entirely; this is done in an

attempt to simplify the cognitive load of learning complicated grammar and

syntax rules.

Because code-based input is the “default” for educational systems (as it is the

same as the methods used in traditional systems) we will make no arguments for

its educational benefits.

2. Drag and Drop

This is the second value of the “input” metric. This value will apply to systems in

which students utilize a GUI to build a program by selecting, dragging, placing,

and connecting discrete graphics representing parts of a program in a 2D plane.

Most newer programs feature this feature. For obvious reasons, all drag and drop

systems utilize a custom graphical language.

Drag and drop has many putative benefits. The major one is that drag and drop

GUIs eliminate the possibility of syntax errors – the method of input prevents

them by preventing the graphics to be arranged in a syntactically incorrect way.

This removes the need for students to learn complex syntactic rules (Wanda

Dann, 2009) (Karin Johnsgard, 2008) (David J. Malan, 2007) (Mitchel Resnick,

2009). Another commonly argued benefit is the potential guidance that drag and

drop programs can provide – by making different graphics have different shapes,

colors or other physical properties, the program can easily communicate through

74

sight alone which blocks are able to go together (Mitchel Resnick, 2009). For

example, a graphic representing a logical comparison can be shaped in such a way

that it fits inside a graphic representing a loop test, while a graphic representing a

variable assignment statement can be shaped in a different way, visually

indicating that the variable assignment does not go inside of the loop test.

3. Virtual Worlds

Virtual worlds is one value of the “testing” metric. This value will applies to the

method in which students test their programs – virtual worlds systems are ones in

which student programs are simulated through activities in a virtual world. This

can involve an animation representing discrete objects being manipulated in

accordance with the input program’s commands.

The virtual worlds feature is a fundamental aspect of some newer systems,

appearing in many of them, and it is often argued to be a primary benefit of these

newer systems. There are many putative benefits to virtual worlds. These are

listed below.

A primary benefit – and one of the most commonly argued – is that virtual worlds

provide a “low floor, wide walls, [and] high ceiling”. This phrase, which comes

from Seymour Papert’s Mindstorms, refers to three separate but related ideals for

an educational system: “low floor” means that the technology should be easy to

learn and get started with. “Wide walls” means that a large range of activities

75

should be possible within the technology. “High ceiling” means that the

technology, while capable of very simple interactions, should also support highly

complex interactions, and all those in between (Papert, 1993). Systems

implementing virtual worlds commonly assert that they implement all three of

these ideals (Mitchel Resnick, 2009).

A second, and perhaps related benefit is the abstraction that is capable within

virtual worlds. These virtual worlds can be configured to involve only those

factors that are pertinent to a particular example. For example, in a virtual world

based on driving a robot around, one need not worry about keeping the robot

driving straight, or the accuracy of its turns – as the robot is simulated, it will

drive straight and turn accurately every time. Guziman notes that students

learning computer science “don’t want or need to deal with the subtle shades of

correctness” (Guzdial, Programming Environments for Novices, 2004) – virtual

worlds allow students to avoid worrying about the tiny details in favor of the big

picture.

There are other benefits to virtual worlds which are much more practical. Virtual

worlds are easy to build, easy to configure, are not resource intensive, and are

cheap (Thomas R. Flowers, 2002). Given a single engine for designing virtual

worlds, a very wide array of challenges can be built without requiring the

purchase of additional equipment. This is a large benefit for cash-strapped

schools.

76

Finally, virtual worlds, it is argued, are simply more interesting and fun for

students than more traditional methods of testing code. The challenges that can be

provided in a virtual world – drive from point A to point B, move object X to

position Y, etc. – are both more interesting to students vs. a typical exercise in

traditional programming education, such as number sorting, as well as more

directly relatable to a student (it is far easier to envision what a robot driving

would look like than a sorting algorithm!) (Guzdial, Programming Environments

for Novices, 2004).

4. Robots

Robots are the other possible value for the “testing” metric. As one might expect,

using a robot to test a program involves the student loading a program onto a

physical robot and seeing the robot execute the program in real space, and real

time.

Robotic systems are argued to have many of the benefits that virtual worlds do.

Like virtual worlds, it is argued that robot programming is much more interesting

for students than traditional programming exercises (like Hello World or sorting

lists), and that robotic programming provides significant motivation and

engagement to students (Maja J Mataric, 2007) (Tom Lauwers, 2009) (Barry

Fagin, 2003) (McGill, 2012). In addition to the fun factor of robot programming,

it has also been noted that robot exercises offer student a very clear model of

execution, something that traditional CS problems do not (Paul, 2012). Students

77

can easily understand what a successful robot test should look like, and can

identify a success or failure without trouble. This modeling benefit is also present

in virtual worlds, but the supporters of robots often assert that the model is

stronger and more concrete, due to it existing in the real world as opposed to on a

computer screen (Wanda Dann, 2009) (Tucker Balch, 2008) (Tom Lauwers,

2009) (Thomas R. Flowers, 2002).

These are the four characteristics that we will use to divide up the systems. Because these

characteristics are divided up into two scales with two possible characteristics each, we

will present four subsections total: code based virtual worlds, code based robots, drag and

drop virtual worlds, and finally, drag and drop robots.

The first set of systems we will review are the code-based systems. There are two

permutations that we will review: code based systems utilizing virtual worlds, and code

based systems utilizing robots.

2.4.3. Code Based Virtual World Systems

Code-based virtual world systems are among the first “newer” systems to have been

created, starting with the Logo programming language12, developed by Wally Feurzeig

and Seymour Papert in the 1960s. The Logo programming language is a Lisp dialect

created to teach students the fundamentals of programming. Logo was originally a robot-

based system and controlled a turtle-shaped robot, but it is today best remembered for the

12 http://el.media.mit.edu/logo-foundation/logo/programming.html

http://el.media.mit.edu/logo-foundation/logo/programming.html

78

simulated Logo turtle that could be programmed to move around in a virtual world (What

Is Logo?, 2011). A screenshot of Logo may be seen in Figure 1.

Figure 1. The Logo software. Screenshot credit: http://www.techibuzz.com/logo-

programming-language-software-for-kids/

Another code-based virtual world system is Robocode13 (previously called IBM

Robocode), in which students write Java or .NET code to create a simple AI system for a

virtual battle tank. Students using Robocode are able to compete with one another, pitting

their programmed tanks against one another in a virtual battlefield (Larsen, 2013).

Robocode was first developed in 2000, was adopted by IBM in 2001, was released as

13 http://robocode.sourceforge.net/

http://robocode.sourceforge.net/

79

open source in 2005, and continues to be developed to this day. Figure 2 shows the

Robocode system.

Figure 2. A screenshot of Robocode in action. The robots may be seen in the background.

Screenshot credit: http://www.ibm.com/developerworks/library/j-robocode/

Both of these systems appear to be targeted towards any student who wishes to learn

them. Additionally, both systems have gone through numerous iterations and have many

different variants. This is especially true for Logo, which has been offered and promoted

in many different ways, and in many different environments, in the 40+ years since its

initial creation.

80

Because these two systems are both very early attempts at creating an alternative to

traditional programming education, we will consider the benefits and downsides of these

systems together as opposed to separately.

2.4.3.1. Benefits of Code Based Virtual World Systems

The primary benefits argued for these systems tend to be in the context of the virtual

worlds. Most of the virtual world benefits mentioned earlier are applicable here. Papert’s

“low floor, wide walls, high ceiling” ideal is stated to have informed Logo’s design and

Logo carries its benefits (What Is Logo?, 2011). Robocode has similar benefits; it also

benefits from its competitive design, which must certainly interest and motivate certain

programmers more than traditional programming exercises (Jackie O'Kelly, 2006).

2.4.3.2. Problems of Code Based Virtual World Systems

The primary downsides to these code-based systems are, predictably, the formal code.

Logo is a Lisp dialect designed for simplicity (What Is Logo?, 2011), and Robocode is

straight Java or .NET (Larsen, 2013). The problems with teaching introductory computer

science using formal languages have been discussed above; the primary difficulty is

students needing to learn complex and difficult syntax. Robocode, as it uses unaltered,

unsimplified formal languages certainly suffers from this problem, but even the

simplified Logo language has been noted to have a high enough complexity to scare away

students or teachers (Tucker Balch, 2008), and dampen the fun for students using it

(Long, 2007).

81

2.4.3.3. Takeaways of Code Based Virtual World Systems

The most widely recognized lesson of early systems like Logo was the value of

simplified programming languages and virtual worlds. Perhaps the more important lesson

to learn, however, is the reason that programs like Logo did not spread further. As stated

in the previous section, the reason for this failure to “catch on” this would seem to be the

complexity of its system, especially its programming language. For an introductory

educational system to be effective, then, it must be vastly simplified so as not to scare off

or discourage both students and teachers (Tucker Balch, 2008).

2.4.4. Code Based Robotic Systems

Code-based robotic systems are focused on teaching students computer science by

developing programs to control a physical robot, as opposed the manipulating of objects

within a virtual world. As the name indicates, the programs in these systems are

developed using formal programming languages.

We will here investigate two code based robotic systems: the FIRST Robotics

Competition14 and Myro15.

2.4.4.1. FIRST Robotics Competition

FIRST Robotics Competition is a popular extracurricular organization centered on student

robotics competitions. Participating students form teams and work together to design,

14 http://www.usfirst.org/roboticsprograms/frc

15 http://wiki.roboteducation.org/Myro_Development

http://www.usfirst.org/roboticsprograms/frc
http://wiki.roboteducation.org/Myro_Development

82

build and program a robot. The robot may then be brought to FRC tournaments around

the country and compete in various events against other FRC teams’ robots (Welcome to

the FIRST Robotics Competition, n.d.).

FRC is an extracurricular program – coaches may form teams through a school or on

their own. The age range for students to participate in FRC is 14 – 18. These students are

entirely responsible for the design and construction of the robot – the only limitations are

related to certain forbidden parts and an overall budget cap. All participating teams start

with a common set of parts, but may (within certain budgetary restrictions) purchase or

build additional ones. After building the robot, students then program it to compete using

special FRC variants of common programming languages: in 2015, FRC variants of C++,

Java and LabVIEW were available (2015 FRC Control System, 2015).

Figure 3. A photo of teams competing in the FIRST Robotics Competition. Photo Credit:

http://www.rose-hulman.edu/offices-and-services/first-robotics-regional/first-

faqs/first%C2%AE-robotics-competition-faq.aspx

83

FRC is a popular program. In 2015, 75,000 high school-aged students participated in

3,000 teams. 56 regional events, 5 regional championships and 1 grand championship

event were held (The FIRST Robotics Competition: HOW IT WORKS, 2014).

2.4.4.1.1. Benefits of First Robotics Competition

FRC is commonly promoted as being a fun way to teach students engineering. The

FIRST organization states that FRC provides “[r]eal-world engineering experience”,

“[t]echnological literacy”, and has a “proven positive impact on student interest in

engineering” (The FIRST Robotics Competition: HOW IT WORKS, 2014) (The FIRST

Robotics Competition: OVERVIEW, 2014).

Other stated benefits include a positive impact on a student’s academic success (The

FIRST Robotics Competition: SUCCESS, 2013), and the imparting of real-world

technological skills (The FIRST Robotics Competition: CAREERS, 2014). 89% of FRC

students report an “[i]ncreased understanding of [s]cience & [t]echnology”, and 90%

report “[l]earning new practical and work-related skills” (The FIRST Robotics

Competition: EVALUATION, 2013).

As with other competitive educational systems, the competition itself has been stated to

increase student motivation and enjoyment (Long, 2007).

84

2.4.4.1.2. Problems of First Robotics Competition

FRC is, as mentioned above, a popular engineering program, and is often cited for its

value in both mechanical engineering and computer science. Academic reviews of the

FIRST program, however, have found that the former tends to be far more of a focus for

an FRC team than the latter. Buckhaults, a professor at the University of South Carolina

and FRC coach, notes that in a typical FRC six-week build sprint the majority of student

time is spent engineering and building the robot itself. She notes that little time is spent

actually programming the robot. This problem is one that is common to robotic-based

educational systems in which one actually builds the robot (as we will see in Section

2.4.7): the primary focus is often the building instead of the programming, the

mechanical engineering as opposed to the computational thinking (Buckhaults, 2009)

(Delden, 2008).

This can be seen further in the program’s stated results on major choices. Buckhaults

notes that FRC alumni “major in engineering about seven times…the rate for high school

graduates”, and notes further that the program also produces computer science majors at

“two times the rate for high school graduates” (Buckhaults, 2009). A 100% increase in

computer science graduation is nothing to be scoffed at – but these numbers still make it

clear that the FRC program produces far more mechanical engineers than it does

computer scientists.

85

2.4.4.1.3. Takeaways of First Robotics Competition

The fact that the FIRST competition involves building robots in addition to programming

them leads participants focusing more on mechanical engineering than computer science

and computational thinking is a theme that will be repeated with other robotic solutions

of this nature. The takeaway from this is that, if one wishes to use robots to teach

computational thinking, students should spend minimal or no time building these robots.

It may be better for the program overall if the robots come prebuilt.

2.4.4.2. Myro

Myro is a project of the Institute for Personal Robots in Education16, which is itself a

collaboration between Georgia Tech and Bryn Mawr College (Institute for Personal

Robots in Education, 2008). The Myro project involves using a prebuilt, simple robot to

teach students programming skills: students can use programming languages such as

CPython17, IDLE18 and Tkinter19 to program the robots (Myro Development, 2009).

The Myro robot is relatively simple and the project appears to be targeted at younger

learners. A screenshot of the Myro software may be seen in Figure 4.

16 http://www.roboteducation.org/

17 http://cython.org/

18 https://docs.python.org/2/library/idle.html

19 https://docs.python.org/2/library/tkinter.html

http://www.roboteducation.org/
http://cython.org/
https://docs.python.org/2/library/idle.html
https://docs.python.org/2/library/tkinter.html

86

Figure 4. The Myro software. Screenshot credit:

http://www.cc.gatech.edu/~richard/oldsite/Myro3/

2.4.4.2.1. Benefits of Myro

The Myro system has many interesting features that other robot-based systems do not

have. One of the most interesting features is the fact that the programs developed to

control the robot do not actually execute on the robot itself – instead, the programs are

executed on a desktop computer and commands are transmitted to the robot as it runs.

This feature allows for many benefits: the robot can be vastly simpler (requiring only a

receiver and some basic translation software as opposed to a full computer), and the

program can be debugged, stepped through or otherwise manipulated on the computer as

the robot runs (Tucker Balch, 2008).

http://www.cc.gatech.edu/~richard/oldsite/Myro3/

87

Another major benefit of the Myro system, and one that is not often seen, is the bundling

with Myro of a curriculum specifically designed for it (Deepak Kumar, 2008). Many

other systems, such as Scratch or Alice, are released without curricula, and users must

rely on other organizations to create these. The IPRE, on the other hand, has designed

both the Myro robot and the curriculum with the other in mind, “let[ting] the needs of the

curriculum drive the design of the robot” and vice versa (Tucker Balch, 2008). This, it is

argued, leads to a superior system.

It is notable that the Myro robots are technically quite simple. Mohtadi notes that the

“biggest barrier” to using hardware-based testbeds – which includes robots – is the high

technical complexity, which can severely hinder their adoption in the classroom

(Mohtadi, 2013). Myro avoids this by using a very simple prebuilt robot design.

Finally, it has been noted in at least one study that, compared with a traditional Java

class, students who took a Myro-centered class had more fun on at least one project, and

emerged from the class feeling more confident in their knowledge about computers than

their Java companions (Harms, 2013).

2.4.4.2.2. Problems of Myro

Despite its benefits, Myro suffers from a few weaknesses. The primary weakness is one

that we will examine in more depth when examining Scratch: this weakness comes as

part of the “low floor, wide walls, high ceiling” philosophy, and specifically, the high

ceiling. Myro is very scalable, and can be programmed to do some very advanced things.

88

In order to enable this high scalability, however, Myro is necessarily very technologically

complex. In this way, the “high ceiling” conflicts with the “low floor”, and Myro’s

technical complexity has been reported to be too great for some students (Deepak Kumar,

2008).

A similar problem comes from the Myro curriculum. The topics that the curriculum goes

over are very advanced for an introductory programming class - while starting out with

common introductory topics, the curriculum continues on to ask students to create

computer vision algorithms, or artificial intelligence (Deepak Kumar, 2008). While

justified in terms of providing an overview of the computing field, these topics may be

too advanced for a proper introductory curriculum – either in terms of their difficulty, or

in terms of their pertinence.

2.4.4.2.3. Takeaways of Myro

There are two major positive takeaways for Myro. The first is the benefit of executing a

student algorithm on a computer instead of the robot itself. The ability to step through, set

breakpoints, and debug are common features in standard programming IDEs and are

quite helpful for program development. These features cannot be used if a student must

send his algorithm to a robot for remote execution. By executing the algorithm on the

local desktop computer and transmitting instructions to the robot, the debug features can

be utilized, to the student’s educational benefit. An additional benefit of this feature is

that the robot need not have hardware for compiling or executing code, and may therefore

be less expensive and technically complex.

89

The second major takeaway is more general: this is the benefit of pairing educational

software with a curriculum. For an educational system to be successful, it must have both

good software and a good curriculum. By pairing the development of these, the system

becomes stronger overall.

There is a negative takeaway for the Myro system, which relates to the curriculum as

well: the curriculum for an introductory computer science course must stay at a basic

level. It should not involve topics which are too advanced, and should instead focus on

the basic skills involved with computational thinking.

2.4.5. Summary of Code Based Systems

Having reviewed four separate code-based systems across two categories, we will now

perform a brief review of the takeaways and lessons learned from these systems in

general.

The positives takeaways of code-based systems are as follows:

- A system ought to feature either a virtual world or a robot, in order to make the

problem domain more comprehensible and visual.

- A system should reduce the complexity of its language as much as practically

possible.

90

- A system ought to, if possible, develop and pair a curriculum along with the

system. In this way the system’s design may affect the curriculum’s design, and

the curriculum’s design may affect the system’s design.

- Robot code should run on a computer instead of the robot itself, to allow for

active debugging, step-through, and other benefits. This also reduces the cost of

the robot.

The negatives takeaways of code-based systems are as follows:

- A system should not require that students learn complex syntax and grammar

rules in order to work with the system. This can lead to a focus on syntax at the

expense of computational thinking skills.

- A robot based system should not allow the focus to be on building or engineering

the robot, if one wishes to focus on computational thinking education.

- A robot-based system ought to have a platform that is as technically simple as

practical.

- A curriculum ought to not be inappropriately advanced – curricula for

computational thinking courses should limit themselves to basic computational

thinking topics, and not advanced subjects such as AI or computer vision.

91

With these lessons in mind, we will now move on to the drag and drop systems. Once

again we have two permutations: drag and drop systems utilizing virtual worlds, and drag

and drop systems utilizing robots.

2.4.6. Drag and Drop Virtual World Systems

The drag and drop systems are in many ways more modern than the code based systems.

By and large they are newer developments, and have more notoriety. Because of this,

they also have much more related research. This reflects the drag and drop input system’s

popularity due to its simplicity, and the inability to make syntax errors using a properly

designed drag and drop programming system.

The two drag and drop systems utilizing virtual worlds that we will here review are Alice

and Scratch, both of which are quite popular and well-known systems. We will, as with

the code-based systems above, discuss what these systems do well, what problems or

criticism they face, and the takeaways from these systems.

2.4.6.1. Alice

Alice is a graphical educational programming tool developed by Carnegie Mellon, with

which students can write programs to manipulate 3D characters in a virtual world. Alice’s

website describes the software as follows:

Alice is an innovative 3D programming environment that makes it easy to create

an animation for telling a story, playing an interactive game, or a video to share

on the web. Alice is a freely available teaching tool designed to be a student's first

exposure to object-oriented programming. It allows students to learn fundamental

programming concepts in the context of creating animated movies and simple

92

video games. In Alice, 3-D objects (e.g., people, animals, and vehicles) populate a

virtual world and students create a program to animate the objects.

In Alice's interactive interface, students drag and drop graphic tiles to create a

program, where the instructions correspond to standard statements in a production

oriented programming language, such as Java, C++, and C#. Alice allows students

to immediately see how their animation programs run, enabling them to easily

understand the relationship between the programming statements and the behavior

of objects in their animation. By manipulating the objects in their virtual world,

students gain experience with all the programming constructs typically taught in

an introductory programming course. (What is Alice?, 2015)

Alice uses a visual drag-and-drop programming language. In the Alice GUI, students are

able to select blocks, drag them into a class or function, drop them, and pair them

together to create programs. Most program actions consist of moving a character model

in a certain way – students are able to click on a part of a 3D character, or the entire

character itself, and drag different blocks into their program to command that character to

move in certain ways. As the Alice description notes, Alice’s visual language has an

object-oriented design – individual characters are treated as objects, their different

movable parts (arms, legs, etc.) as attribute objects of the character, and students call

object methods to move or otherwise manipulate these objects.

Alice attempts to motivate students to learn by asking them to create a story or video

game using the software’s 3D models and virtual worlds (What is Alice?, 2015). A

variant of Alice, called Storytelling Alice20, takes this even further, providing changes to

the basic Alice software to increase the focus on creating a story using the software

(Kelleher, 2007).

20 http://www.alice.org/kelleher/storytelling/index.html

http://www.alice.org/kelleher/storytelling/index.html

93

Figure 5. Screenshot of the Alice IDE. Screenshot credit:

http://en.wikipedia.org/wiki/Alice_(software)

Alice is used in a wide array of schools and with a wide array of students. As can be seen

on the Alice Testimonials page, high school students, college students, and young

elementary-age students have all used the software (Testimonials from Alice users,

2015).

2.4.6.1.1. Benefits of Alice

Alice, with its drag-and-drop programming interfaces, features all the standard benefits of

a system of this nature: it makes programming “gentler” (Paul Mullins, 2009), more

enjoyable (Karin Johnsgard, 2008), and does not suffer from syntax errors (Wanda Dann,

2009) (Karin Johnsgard, 2008).

94

Alice is designed around the concept of a “head fake” – students are asked to learn a

fundamental concept of computer science while they think they are learning something

else. Alice’s creator argues that this results in superior learning results (Wanda Dann,

2009). The storytelling aspect of Alice is also considered quite important to motivate and

foster student learning (Caitlin Kelleher, 2007).

Certain aspects of Alice’s implementation have been praised. Alice’s methods for moving

characters are presented at a high level – instead of having to design methods to turn a

robot’s wheels for a certain amount of time, students using Alice can simply command

their characters to “walk”. Storytelling Alice is designed to abstract these methods even

further (Caitlin Kelleher, 2007). Another argued benefit is the way Alice’s code executes

– as characters move around during program execution, students can directly follow

along in the code. In this way the student’s program is directly tied to the on-screen

results (Ian Utting, 2010).

In various tests, Alice has been found to increase student enrollment in computer science,

increase the retention of those students who are enrolled, and increase the success of

these students in their computer science classes (Ryan Garlick, 2010) (Paul Mullins,

2009) (Karin Johnsgard, 2008).

Finally, it is notable that Alice is released along with an official curriculum. This

curriculum is developed by Carnegie Mellon, the developers of Alice itself (About the

Alice 3 Instructional Materials, 2015).

95

2.4.6.1.2. Problems of Alice

Despite Alice’s benefits, there are also criticisms, some of which directly challenge the

cited benefits.

One criticism is that Alice’s storytelling focus, while sounding nice in theory and

showing some increase the amount of student interaction with the program (Kelleher,

2007), represents play and not serious learning. Mullins reports a test of Alice he

conducted in which he found that students focus far more on the story they are creating

than the concepts being learned. He notes further that students often base their story

around what their program is doing, and not the other way around – in other words,

students will make their program do something – anything – and then tell a story about it,

incorporating bugs, mistakes or random behavior into the tale (Paul Mullins, 2009).

Other criticisms focus on Alice’s practical effects. Garlick notes that students trained in

Alice had difficulty transitioning to a formal programming language, and that these

students had lower grades in traditional programming education, directly contradicting

the aforementioned reports of Alice increasing success (Ryan Garlick, 2010). Finally,

Garlick and Mullins note that in their tests students complained that Alice was not “real

programming” (Ryan Garlick, 2010) (Paul Mullins, 2009) – this would seem to contradict

the claim that Alice always results in increased student motivation.

96

2.4.6.1.3. Takeaways of Alice

Alice shows that drag and drop programming interfaces can be very successful.

Furthermore, there are certain aspects of Alice that deserve note.

Alice keeps things simple by keeping its basic actions at a high level. A character can be

instructed to “walk”, and the requisite animation plays automatically – the student need

not program the movement of every limb. This high level abstraction reduces cognitive

load on students and allows them to “make things happen” without considerable effort.

Additionally, Alice’s close ties between the program and its on-screen execution is

certainly valuable for students learning to track algorithm execution.

The criticisms of Alice, however, show that certain features ought to be avoided. There is

contention as to whether Alice’s storytelling aspects are beneficial or not. This indicates

that one ought to be cautious about using play to motivate students – it appears that while

it may have benefits, it is very easy for the play to become the main focus of the activity

(this will be discussed further later). Additionally, the difficulty students have with

moving from Alice to a formal language indicates a possible weakness of the drag and

drop interface: despite having the same concepts, Alice code does not look or feel like

“real” code. A possible takeaway is that visual GUIs ought not to look too radically

different from real code in their feel and structure.

97

2.4.6.2. Scratch

Scratch is another graphical programming tool designed to teach students the

fundamentals of programming. Developed by MIT and targeted at 8 – 16 year olds,

Scratch allows students to create and manipulate graphics on a 2D plane through the use

of drag and drop programming blocks. Students are able to use Scratch to create

animations, stories and games (For Parents, n.d.). Specific topics that Scratch focuses on

teaching include “mathematical and computational ideas”, the “process of design”, and

computer fluency (Learning with Scratch).

Scratch’s programming language is graphical – blocks may be dragged, dropped and

attached together to create programs. Scratch’s programming paradigm is mostly

procedural, though it contains some object-oriented features (Object-Oriented

Programming, 2014). A notable feature of Scratch is the design of the blocks – each

block is color coded and has a physical shape indicative of which blocks it can attach to

(David J. Malan, 2007) (Mitchel Resnick, 2009).

Scratch integrates with a specially-designed social networking platform that allows

students to upload and share their programs. Other users may comment on a student’s

program, or even download the program and edit it, something that Scratch calls

“remixing” (Mitchel Resnick, 2009). Scratch is used in many universities, high schools,

and even elementary schools in more than 150 different countries (About Scratch, n.d.).

98

Figure 6. Screenshot of the Scratch IDE. Screenshot credit: http://mit-

scratch.softonic.com/

2.4.6.2.1. Benefits of Scratch

As with Alice, Scratch features all the benefits of drag-and-drop programming: syntax

errors are impossible to make, and the visual design of the language itself contributes to

student understanding of how to use it (David J. Malan, 2007) (Mitchel Resnick, 2009).

Mitchel Resnick, the leader of MIT’s Scratch team, notes that the Scratch language is

designed to be clear and precise, readable even to students with little or no programming

experience (Mitchel Resnick, 2009).

99

Resnick and others have described Scratch as attempting to embody Papert’s “low floor,

wide walls, high ceiling” (David J. Malan, 2007): it is designed to be a language that is

not just easy to use, but also fun; a language not just for formal learning, but for

“tinkering” (Mitchel Resnick, 2009). Scratch’s free-for-all project design allows students

to create “personally meaningful” projects, contributing to motivation (Mitchel Resnick,

2009).

Resnick and others have noted that Scratch’s social network as a very important benefit

of the program. Putative benefits of this network include increased motivation for

students, and the ability for students to share projects and help each other learn (Mitchel

Resnick, 2009).

Like Alice, Scratch directly ties program statements to their on-screen results: as students

execute their program, they can track the code as the computer steps through it (Ian

Utting, 2010).

Finally, Scratch is stated to have proven educational benefits. Some studies have found

that Scratch has increased student knowledge and internalization of computer science

concepts (David J. Malan, 2007) (Diana Franklin, 2013). Other studies have found that

students exposed to Scratch have had an easier transition to formal languages like Java or

C (Ursula Wolz, 2009). Finally, it has been noted that using Scratch helps students

100

overcome anxiety and increases self-esteem and confidence in relation to programming

(Orni Meerbaum-Salant, Learning Computer Science Concepts with Scratch, 2013)

(David J. Malan, 2007).

2.4.6.2.2. Problems of Scratch

The problems that we have identified with Scratch has mostly to do with one of its stated

benefits – its “wide walls” design goal of enabling – and even encouraging – creative

exploration and “tinkering”. Scratch is essentially undirected – students are able to create

any kind of algorithm they want within the software. Multiple sources have noted that

this playful, undirected design may interfere with computational thinking education (Orni

Meerbaum-Salant, Habits of Programming in Scratch, 2011) (Orni Meerbaum-Salant,

Learning Computer Science Concepts with Scratch, 2013) (Maloney, 2008).

The difficulty may be stated as such: Scratch, per Resnick, emphasizes “bottom-up

tinkering” versus “top-down planning” when building algorithms (Mitchel Resnick,

2009). However, as we have noted in above sections, “top-down planning” is a

fundamental and crucial part of computational thinking.

At least two studies have found that Scratch’s focus on creative exploration and play

causes difficulty in getting certain computational thinking concepts across to students.

One study noted that in one class, 21% of the students participating did not create any

actual programs – they instead engaged in “media manipulation”, that is, activities such

as “drawing [or] playing music” (Orni Meerbaum-Salant, Learning Computer Science

101

Concepts with Scratch, 2013) (Maloney, 2008). A second study notes that Scratch’s

“creativity aspect” and bottom-up design actively interferes with attempts to teach

planning and design principles (Orni Meerbaum-Salant, Habits of Programming in

Scratch, 2011).

A final problem with the Scratch system is that it does not have an “official” curriculum.

There are many online curricula for Scratch; one major curriculum, developed by

Harvard and linked to on the Scratch website, can be found at (Scratch Curriculum

Guide, 2014). Despite the fact that the Harvard curriculum appears to have a strong

computational thinking foundation (An Introductory Computing Curriculum Using

Scratch, n.d.), it is a fundamentally separate development from Scratch itself. It is also

notable that the Harvard curriculum was released in 2014, a full 7 years after Scratch’s

online release (Scratch Curriculum Guide, 2014).

2.4.6.2.3. Takeaways of Scratch

Many of Alice’s takeaways are also found in Scratch. Scratch’s programming language

design – clear, precise, and easy to use – contains many valuable features that should be

appreciated. Furthermore, Scratch’s ability for students to link program code with

onscreen actions is valuable feature.

Scratch’s social media aspect is also an item which should be considered in future

systems, due to its increase in student motivation and other benefits.

102

The potential problems with Scratch’s bottom-up, wide-walls design should be taken with

a grain of salt, but they also should not be dismissed entirely. Like with Alice, while

introducing creative “play” elements into the design of an educational system is

something to strive for, one should also be aware of the detriments that these elements

may have to computational thinking education, and be careful that one does not lose sight

of the true goal of teaching computational thinking skills.

2.4.7. Drag and Drop Robotic Systems

The last type of system we will investigate are drag and drop systems that utilize physical

robots instead of virtual worlds. Once again, the two systems that we will review –

Microsoft Robotics Developer Studio (also referred to as VPL in some sources)21 and

Lego Mindstorms (also referred to as NXT or EV3)22 – are fairly well known and widely

used in educational contexts.

2.4.7.1. Lego Mindstorms

The Lego Mindstorms product is developed by The Lego Group, and consists of a

buildable robot and software to program their robot. Mindstorms is a generic name for

the product family, while terms like NXT or EV3 refer to specific generations of the

product (About EV3, 2015); we will use the Mindstorms name for this thesis. Students

build their robots around a central computer (usually referred to as the “brick”) and can

21 https://msdn.microsoft.com/en-us/library/dd939239.aspx

22 http://www.lego.com/en-us/mindstorms/

https://msdn.microsoft.com/en-us/library/dd939239.aspx
http://www.lego.com/en-us/mindstorms/

103

attach motors, various sensors, and other common Lego pieces. While Lego provides

plans to build many different models of robots, the modularity of the Mindstorms kits

allows students to design and build their own original robots as well (Build a Robot,

2015).

After building a robot, students can use various languages and softwares to program it.

Some of these languages are traditional formal languages, like LeJOS (which uses Java)23

or brickOS (which uses C/C++)24, while others are drag and drop, like NXT-G25 or

LabVIEW for Lego Mindstorms26. NXT-G is the most common language used with Lego

Mindstorms (NXT-G, 2014), and that is what we will be focusing on here. NXT-G is a

drag-and-drop model, and students are able to place and connect blocks to write programs

for their robot. The software divides its blocks up into five categories: Action (to control

motors and lights), Flow (to enable looping and conditional statements), Sensor (to

retrieve data from the various sensors), Data Operation (to operate on variables) and

Advanced (allowing access to files, Bluetooth connections, and other features) (Learn to

Program, 2015).

The Lego Education website states that Mindstorms is targeted at middle-school students;

despite this, the product is used in educational contexts for students of all ages, from

23 http://www.lejos.org/

24 http://brickos.sourceforge.net/

25 http://www.legoengineering.com/program/nxt-g/

26 http://www.ni.com/academic/mindstorms/

http://www.lejos.org/
http://brickos.sourceforge.net/
http://www.legoengineering.com/program/nxt-g/
http://www.ni.com/academic/mindstorms/

104

elementary school to college (Lego MINDSTORMS Education EV3, 2014). It is also

used in the FIRST robotics competition (FIRST, 2015).

Figure 7. The Lego Mindstorms IDE. Screenshot credit:

http://spectrum.ieee.org/automaton/robotics/robotics-

software/review_lego_mindstorms_nxt_1

Note that the Mindstorms robots are able to be programmed using other software, such as

Microsoft’s VPL (Lego Mindstorms NXT, 2015). For the purpose of this section we will

ignore these integrations and will only consider the Mindstorms NXT-G.

105

2.4.7.1.1. Benefits of Lego Mindstorms

Once again, we find that the Lego Mindstorms software has a clear GUI that is easy for

students to work with. Because NXT-G is a drag-and-drop GUI, syntax errors are

impossible to make.

Mindstorms robotics kits are very customizable and therefore can be built for many

different situations or scenarios. This allows great flexibility in the use of these kits (Get

Started (LEGO MINDSTORMS), n.d.). Additionally, it has been noted that students very

much enjoy interacting with the Mindstorms robots, and are motivated to learn because of

them (Maja J Mataric, 2007) (Barry Fagin, 2003).

2.4.7.1.2. Problems of Lego Mindstorms

The most commonly cited problem with the Lego Mindstorms software is its expense

(Maja J Mataric, 2007). At time of writing, a single Mindstorms EV3 kit costs

$349.99USD27. In a classroom setting, multiple robots will be required, which rapidly

becomes quite costly.

Mindstorms also suffers from the problem common to robotics systems in which students

build their own robots – the danger of focusing far more on the engineering challenge of

building the robot than the computational challenge of programming it. It has been noted

that a robot-based curriculum must be very carefully designed to avoid an

“overabundance of robotics related material” (Delden, 2008) (Buckhaults, 2009). The

phenomenon of students focusing heavily on building the robots, to the expense of

27 http://shop.lego.com/en-US/LEGO-MINDSTORMS-EV3-31313

http://shop.lego.com/en-US/LEGO-MINDSTORMS-EV3-31313

106

programming them, is something that I have anecdotally witnessed both as an undergrad

in an introductory programming class which utilized Mindstorms, and as a teacher when

using Mindstorms to teach computer science.

It is notable that the Mindstorms programming language, while clear and easy to

understand, looks very dissimilar to a formal textual programming language. We have

noted previously that drag and drop languages that are dissimilar to formal languages

have resulted in difficulty transferring to a formal language (Ryan Garlick, 2010).

Furthermore, in our experience of using the software, we found that the unique and

highly simplified language design often made it difficult for relatively complex problems

to be created.

Finally, we note that the Lego Mindstorms system does not appear to have an official,

comprehensive curriculum centered on computational thinking. It does appear that Lego

has built a curriculum based on engineering and exploration, which is offered on its

website, (All About EV3 - Curriculum & Tools, 2014) – but this is more of a guide to

building specific robots vs. a general curriculum for computational thinking.

2.4.7.1.3. Takeaways of Lego Mindstorms

Mindstorms is a fun system, and its robots greatly increase student enjoyment and

motivation. The popularity of Mindstorms shows the degree to which robots can produce

student motivation.

107

However, Mindstorms has many drawbacks. Its interface offers an important lesson:

while simplification in drag and drop programming is important, oversimplification can

work against the ultimate goal of computational thinking.

The expense of the Mindstorms kit has been reported in many works as hindering its

adoption and usability. The lesson, then, is that cost must be taken into account when

producing a robotic platform, and should be minimized.

Finally, we can once again see the problems of having students build their own robots,

and we can conclude from this that prebuilt robots may be superior in regards to

computational thinking focus.

2.4.7.2. Microsoft Robotics Developer Studio / VPL

The last system that we will review is Microsoft’s Robotics Developer Studio. MRDS is

a graphical IDE designed “for hobbyist, academic and commercial developers to create

robotics applications for a variety of hardware platforms” (Microsoft Robotics -

Overview, 2012).

MRDS refers to the program as a whole – the graphical language used within MRDS is

called Visual Programming Language, or VPL. VPL, like other languages discussed here,

allows students to select blocks, drag them around and place them in a 2D canvas. VPL is

a bit different in its approach: instead of attaching the blocks directly to one another, the

108

blocks are connected using thin lines, meant to resemble a workflow diagram (VPL

Introduction, 2012).

VPL has two categories of blocks. The first category is Basic Activities, which contains

the standard control and data features common to all procedural and object-oriented

languages, such as Variable, If, etc. The second category is Services, which consists of

blocks representing input, output, actions, and other system features. These Services are

in fact independent programs following Microsoft’s DSS Protocol, thereby allowing them

to be compiled together with a VPL program and invoked in a service-oriented manner

(VPL Introduction, 2012) (Visual Programming Language - Using Services, 2012).

MRDS bundles together a VPL editor and a large number of robotics DSS services. Both

platform specific and generic services are included, allowing a MRDS program to

compile for many different robot platforms, including Lego Mindstorms, iRobot, and

Roomba (Supported Robots, 2015). Once compiled, the program runs on the robot itself.

MRDS is used in many educational settings, including Arizona State University, where

up until 2013 it was used in the introductory programming course FSE100.

2.4.7.2.1. Benefits of Microsoft Robotics Developer Studio / VPL

As with all drag and drop systems, VPL is incapable of syntax errors. However, VPL

does not feature many of the other benefits of standard drag and drop languages, as we

will discuss in the next subsection.

109

Figure 8. The Microsoft VPL IDE. Screenshot credit: https://msdn.microsoft.com/en-

us/library/bb483088.aspx

MRDS, in addition to compiling programs and sending them to a robot, also has a

simulator on which programs can be tested. This simulator has been reported to be very

accuracy and simulates the physics of robot execution to a high degree – this has been

stated to be a benefit for teams testing out robot designs where this accuracy is needed

(for example, in competition) (Buckhaults, 2009).

110

As mentioned above, MRDS programs can be compiled and run on many different robots

without changing the VPL code (Supported Robots, 2015). This allows schools different

options for which robots they purchase and use. Furthermore, MRDS’s DSS services may

be extended, or new services may be written entirely, adding further flexibility to the

program (Creating DSS Service Projects, 2012).

2.4.7.2.2. Problems of Microsoft Robotics Developer Studio / VPL

Perhaps the primary criticism of MRDS is its high technical complexity (Tucker Balch,

2008). VPL is a good example of a program with a “high ceiling” – it is written such that

it can be used not just by novices but by advanced users as well, and its simulator is

realistic enough to be useful for real-world applications (VPL Introduction, 2012). This

high technical ability comes at a price: VPL is a very general language and is somewhat

complex, making it difficult for students to learn and use (Tucker Balch, 2008). This

difficulty is something that I have anecdotally observed as well in my interactions with

the software as both a student and teacher.

VPL is a graphical language without many of the benefits that the graphical languages

often feature. Unlike Alice or Scratch, its blocks feature almost no indication of how they

can be placed together, and nontrivial configuration is often required when connecting

two blocks.

111

Like Mindstorms code, VPL code does not physically resemble formal program code.

Visual dissimilarity can result in difficulty for students when they transfer from VPL to a

formal language, as we have noted earlier (Ryan Garlick, 2010).

Finally, note that like Lego Mindstorms, MRDS does not feature an official curriculum

with which students can learn computational thinking. A Microsoft blog post from 2007,

written one year after the initial release of MRDS, notes that Microsoft did develop and

release a robotics curriculum – however, this curriculum is apparently no longer

available, and based on the post, the content of the course was mostly focused on learning

robot engineering and robot-specific programming, instead of more general

computational thinking skills (Thompson, 2007).

2.4.7.2.3. Takeaways of Microsoft Robotics Developer Studio / VPL

MRDS’s generality (its ability to run on many different robots) and easy extendibility are

laudable. However, most of the takeaways for this system are negative.

The VPL programming language is a difficult language to learn and use; the reasons for

this difficulty (high generality and lack of indication for how the blocks should go

together) are things that should be avoided in future graphical languages.

More generally, the design of VPL, in trying to be both an educational language and a

useful language for real-world applications, results in high technical complexity which

112

makes it difficult to learn. This is one example of a “high ceiling” inadvertently raising

the floor, and is a good lesson in what not to do.

2.4.8. Summary of Drag and Drop Systems

Having reviewed four separate drag and drop systems across two categories, we will now

perform a brief review of the takeaways and lessons learned from these systems in

general.

The positive takeaways of the drag-and-drop systems are as follows:

- The drag and drop language should be vastly simplified from a formal

programming language, and made to be both clear and precise.

- The drag and drop language should be designed such that syntax errors are

impossible.

- The drag and drop language should be designed such that the physical design of

the program blocks (color, shape, etc.) should indicate how those blocks can go

together.

- The drag and drop language should abstract the actions that the user can

command to a high enough level to allow practical programming without

significant work.

113

- The program should closely tie the program’s steps with the on-screen execution,

so students can easily follow what each step does as it executes.

- Either a virtual world or a robotic system should be included if possible, as these

increase student motivation and enjoyment. The robotic system especially has

been shown to increase these things.

- A virtual world should be designed to be extendable and wide, so that many

different tests, tasks and problems may be set up and solved within it.

- A robotic system should be set up such that the software works with multiple

robots.

- A system can benefit from integrating with a social media sharing platform.

- A system should allow for easy extension and customization.

The negative takeaways of the drag-and-drop systems are as follows:

- A system should be careful not to focus more on creative “play” or storytelling to

the detriment of computational thinking education.

114

- A drag-and-drop language’s structure and visual appearance should not be

completely visually dissimilar to a formal text-based programming language.

- A drag-and-drop language should not drastically oversimplify its language and

should allow for some complex algorithms to be built.

- A drag-and-drop language should not attempt to be useful for both educational

purposes and industrial work, as this can result in a language becoming

overcomplicated. An educational language should limit its focus to education.

- A robotic system should not be extraordinarily expensive.

- A robotic system should not allow the focus to be on engineering (building the

robot) to the detriment of computer science (programming the robot).

We have now reviewed eight different systems across four different categories, and have

identified many useful lessons and takeaways. We will now conclude Section 2 by

attempting to synthesize the lessons learned into the description of an ideal introductory

computer science educational system.

2.4.9. Creating the Ideal Introductory Computer Science Educational System

In this section, we synthesize the information collected in the review performed above

and create a description of the “ideal” computer science educational system. This “ideal”

115

system features the benefits identified in the eight systems reviewed above, and avoids

the problems that these suffer.

Our description will be divided up into 5 major parts – with each part containing both the

features we wish to include, and the problems we wish to avoid, as pertains to that part.

1. Drag and Drop Style Programming

Drag and drop programming in an introductory computer science educational

system is an absolute must. As shown above, these languages allow students to

dispense with learning complicated syntax and instead focus on the idea behind

programming. A proper drag and drop language ought to make syntax errors

impossible by not allowing programming blocks to be arranged in invalid ways. It

also ought to design the blocks to reflect their use in their physical shape, color, or

in other attributes, thereby giving students an indication of how these blocks

properly go together. Finally, the actual language ought to be simplified and

abstracted to a high level, to allow effective programs to be written without

requiring students to fill in all the details. For example, a language designed

around students driving a robot ought to have a single “drive” block, instead of

forcing students to set up multiple blocks to turn individual wheels in a specific

manner.

The language should not be complicated, and should not require learning any

more syntax or grammar rules than are absolutely necessary. On the other hand, it

116

also should not be drastically oversimplified, and should allow students to write

programs of some depth and complexity. Most or all advanced techniques in

programming such as nesting, recursion, etc. should be present.

Finally, a drag and drop language should attempt to resemble, at least in some

ways, the structure of an actual program written in a formal language. Examples

of how this can be achieved include ensuring that code reads roughly in one

physical direction (versus, say, VPL’s design that allows code blocks to be placed

anywhere), and by separating different “levels” of code into different groupings

(for example, a loop’s body code may be grouped together in some way). In light

of the finding that visually dissimilar languages can hinder student transfer to

formal languages (Ryan Garlick, 2010), we believe that making a language

visually similar to formal languages should counteract or even reverse this effect.

2. Virtual Worlds

A virtual world ought to be featured in an ideal educational system. The virtual

world allows students to simulate their algorithms in an abstracted, simplified

world which is beneficial to computational thinking education (David Barr, 2011).

Papert’s goal of “Low floor, wide walls, high ceiling” can be implemented in

these virtual worlds. Finally, virtual worlds are inexpensive for classrooms, and

can be designed such that they are easy to customize and extend (Thomas R.

Flowers, 2002).

117

Because the execution of an algorithm in a virtual world happens on a computer

screen, students may view both the executing algorithm and their program code at

the same time. Furthermore, because the executing algorithm usually involves

graphics moving around on screen (for example, Logo’s turtle graphics, or Alice’s

character movement) these algorithms usually execute slowly enough for students

to easily follow the algorithm code as it executes, thereby “pairing” the execution

with the code. A really good virtual world should go one step further and

explicitly highlight the code blocks currently being executed, to allow for easy

tracking.

Finally, the virtual world should be designed so that interacting with it is fun for

the student, in order to increase motivation and enjoyment.

3. Robots

In addition to a virtual world, a good educational system should feature a robot.

Robots have been shown to vastly increase student fun, motivation, interest and

engagement (Maja J Mataric, 2007) (Tom Lauwers, 2009) (Barry Fagin, 2003)

(McGill, 2012). Furthermore, executing an algorithm on a physical robot in the

real world adds a level of concreteness that virtual worlds do not achieve – the

robot acts as a well-defined model executing in a familiar context, which

increases student learning (Paul, 2012) (Wanda Dann, 2009) (Tucker Balch,

2008) (Tom Lauwers, 2009) (Thomas R. Flowers, 2002). For these reasons, a

robot should be included alongside the virtual world. These two different media

118

of execution can be used in different scenarios where their different advantages

can be maximized.

Because robots can be expensive, and because classrooms have different needs,

an ideal system should be designed such that its algorithms can execute on

different robot models. This will allow classrooms to choose a robot model that

best fits their needs and their budget.

Furthermore, if possible, the system should be designed such that the code is

executed on a local computer and transmitted to the robot, instead of having the

code execute on the robot itself. This allows robots to be built in a simpler and

less expensive manner, since they do not require expensive hardware to execute

programs. Furthermore, by executing the algorithm on a computer, students can

debug the algorithm as it executes on the robot.

Things to avoid when building the robot include making the robot prohibitively

expensive, or too technically complex. The robot should be prebuilt if possible, to

avoid requiring teachers or students to build it – this can scare less technically

competent users away from the system, and can also shift the focus of the system

away from computer science and towards mechanical engineering, as was seen in

the FIRST Robotics Competition and Mindstorms sections above.

4. Curriculum

119

An educational system without a paired curriculum is no more than a tool. This

tool may be used properly, or it may be used poorly, depending on the teacher

utilizing it. Similarly, curricula may be made by third party users, and these may

be good or bad. A better solution is for the developers of the tool to create an

“official” curriculum and pair it with the tool, thereby making it a full educational

system. In doing so, the curriculum design may be informed by the software

design, and the software design may be informed by the curriculum design.

Our reviews above have identified some problems with systems that are heavily

focused on competition (such as FIRST), creative “play” (such as Scratch) or

storytelling (such as Alice). For some students, these focuses were distracting or

hindering to their computer science education. It is not necessarily the case that

this will be true for all students, and these focuses may be motivating or helpful

for some students. In light of the fact that these things can be distracting,

however, an ideal system should ensure that first and foremost it focuses on

computational thinking education. Play, storytelling and competition must be

secondary to this primary goal.

It may be that undirected play is most useful for students who have some

foundation to work with, some basic orientation to point them in the right

direction in which to learn. Ausubel has noted that students require “anchoring

ideas” to properly orient themselves on a topic such that new knowledge can be

retained (Ausubel, 1968). If this is accurate, then it follows that undirected play

120

coming after introductory orienting education can be quite educational – but play

without this introduction will not produce any meaningful long term knowledge.

Since we are concerned with creating an introductory educational tool here, we

should be wary of organizing it around creative play, and make sure that our

curriculum always establishes the orienting ideas first before turning students

loose to discover knowledge on their own.

5. Other

The following items are design goals for the ideal curriculum that do not fit into

the above four groups.

An ideal system should be extendable and customizable. This allows both easy

additions to it by its maintainer, but it also allows end users (teachers or parents)

to customize it to their student’s needs. For example, by allowing the language to

be customizable, teachers are able to add new programming blocks containing

concepts that they wish to teach. By allowing the virtual world to be

customizable, teachers may add new graphics or goals for the student to play

with. In this way teachers can add lessons or concepts to the paired curriculum.

A beneficial feature, as we have seen with Scratch, is an integration with social

media. Students should be able to upload their algorithms and share them with

friends. Scratch has found that this increases student motivation, and also allows

students to learn from each other’s work (Mitchel Resnick, 2009).

121

Finally, a system should limit its purpose to education. Systems such as VPL that

attempt to be useful for both education and for industrial or specialized use run a

high risk of being too technically complicated for easy student use – or, put

another way, by raising the ceiling too high, they also raise the floor.

This concludes our review of newer educational systems. A chart comparing the newer

educational systems discussed here, using the ideal features identified above as criteria,

may be found in Appendix G.

Using this review, we have developed a new system for teaching introductory computer

science and computational thinking. We have attempted to implement the features

identified in this review as desirable, and we have attempted to avoid all the features

identified as problematic. This system will be fully described in the next section.

3. DESCRIPTION OF GENOST

In Section 1, we described computational thinking and established the need for this

subject to be effectively taught. In Section 2, we showed that traditional introductory

computer science education does not effectively teach computational thinking, and that

“newer” systems, while in many ways superior to the traditional systems in teaching

computational thinking, also have many flaws. This brings us to the main subject of this

thesis: the introduction and description of a new educational system designed using our

122

analysis of an “ideal” system above, and intended to effectively teach computational

thinking. We have named this new system “Genost”28.

Genost is a full educational system, including both an educational tool, consisting of a

GUI, simulator and robot, and a curriculum (along with a third component, an

administrative website for managing, customizing and tracking data from the system). In

this section we will describe the Genost system, provide an overview of each part, and

state our goals for its development, our justification for these goals, and how we

implemented those goals.

We wish to acknowledge the contributions of the undergraduate students that assisted us

in the development of the Genost software and robot. These students are: Rizwan Ahmad,

Garth Bjerk, Tracey Heath, David Humphries, Corey Jallen, Ian Plumley, Stephen Pluta,

Randy Queen, and Matt Rechia.

3.1. GENOST OVERVIEW

Before covering each component of the Genost system in depth, we will here provide a

brief summary of the whole system. This will allow us to consider each individual part in

context of the whole, and to speak on how these parts interact, without undue elaboration

in each subsection.

28 “Genost” is a truncation and corruption of the Greek adjective gnostikos, which translates to
“cognitive” or “intellectual.” The related noun, Gnosis, means “knowledge.”

123

There are six major parts of Genost that deserve discussion. These parts are the

Language, the Mazes, the GUI, the Simulator, the Robot, the Management Website,

and the Curriculum. The way these parts work together is described below.

First, students use the GUI to create algorithms utilizing a visual drag-and-drop

Language. The Language has a Turing-complete drag-and-drop design, which involves

arranging blocks to create an executable program. Each block type represents a single

fundamental programming concept. Students write algorithms in the language using the

browser-based GUI, which is highly customizable and may be configured for different

lessons from the Curriculum.

The problems that students create algorithms to solve are all based around moving a robot

through a Maze. Each Maze is associated with a specific lesson in the Curriculum;

these mazes are highly customizable and may have multiple objectives, such as driving

the robot from one end of the maze to another, or collecting all the pickup objects

(‘coins’) in the maze.

The actual Maze is implemented in either a Virtual World, in which case the algorithm

controls a virtual robot moving in a Simulator, or it is implemented in the Real World, in

which case the algorithm controls a physical Robot moving in a real-world maze. The

ability to execute the algorithm with either a Simulator or a Robot allows for heavy

customization of the Genost experience – classrooms can use the Simulator exclusively,

which might be good for a small classroom or one with limited resources, or the

124

Simulator and Robot together, in order to get the motivational and physical benefits of

using robotic education; a classroom could even use the Robot alone if they so choose.

Ultimately, our review in Section 2 showed that both virtual world simulations and robots

are valuable models to transfer computational thinking knowledge; a system with both

simulation and robots allows teachers and learners to have the “best of both worlds”.

The above tools may all be used in a Curriculum that takes full advantage of the

software’s capability to teach computational thinking skills. We created a Curriculum

alongside the software during its development that focuses on teaching the fundamental

programming structures and the ability to analyze and break down an algorithm. This

Curriculum may serve as an “official core” for the Genost system. However, through the

use of the Management Website, end users may create new lessons to add on to our core

Curriculum, or create their own entirely. End users can also create class organizations,

add students to the organization, and assign one or more curricula to their class – the GUI

will then interact with the Management Website to walk students through their own

class’s curriculum, and collect data from the students as they go.

This is a brief overview of the Genost system as a whole. Each of the above major parts

were designed to meet the goals of an ideal introductory computer science educational

system described in Section 2.4.9, as well as to serve the more general goal of teaching

computational thinking. In the remainder of Section 3, we will describe the development

of each of these six major parts. For each item we will briefly describe the part of the

125

system, and will then describe the goals we had for its design, our justifications for these

goals, and the ways in which we attempted to implement them.

Throughout this review we will make frequent reference to the computational thinking

goals described in Section 2.1, the themes described in Section 2.4.1, and the ideal

system goals described in Section 2.4.9. We will refer to these in the following manner:

- CG<X> will refer to computational thinking goal X described in Section 2.1.

- T<Y> will refer to theme Y described in Section 2.4.1.

- IG<Z> will refer to ideal system goal Z described in Section 2.4.9.

The first time a specific goal or theme is mentioned, we will briefly summarize it to ease

in reading. These goals will be cited as justification for our designs; for justification of

the goals themselves, please refer to the sections mentioned above.

3.2. THE LANGUAGE

The language that is used in the Genost software is a procedural drag and drop language

that we call “Objective G”. To write algorithms with Objective G in the Genost GUI,

students drag virtual blocks from block panels and drop them into the “canvas”. Students

may arrange the blocks in different ways to create algorithms.

126

Objective G is designed to be simple, clear and high-level. The syntax is designed to be

very easy to learn and understand. Because Objective G is a drag and drop language,

syntax errors are impossible – the software will not allow an algorithm with improper

syntax to be created.

Figure 9. An example program in the Objective G language.

Each block in the Genost language represents a single fundamental programming

structure: example blocks include Wait Until and Loop For, as can be seen in Figure 9.

Some blocks are “standalone”, requiring no additional data to operate, but most blocks

take one or more parameters, in the form of additional blocks. A block that requires a

parameter will have a “socket” into which another block must be dropped. When a block

127

requiring additional data is placed into the canvas, its socket is blank and empty,

indicating to students that it must be filled. All of the blocks seen in Figure 9 above

require at least one parameter block, as can be seen by the filled sockets. One can also see

how some parameter blocks have their own sockets, creating a chain of parameters – for

example, the Wait Until block has an < (less than) block in its socket, which in turn has a

Sonar block and an Integer block in its own sockets.

Genost code is written unidirectionally, top-to-bottom, and its blocks automatically

indent when appropriate, such as in a Loop or If statement body. This can be seen above

in Figure 9 – the top block in the algorithm is a Loop For, and the blocks in its body are

indented. In this way, Objective G attempts to resemble the look and feel of formal

programming languages.

Objective G allows deep nesting – there is no artificial limit on how far one can nest

blocks – so that even complex algorithms can be written in Objective G. Other advanced

techniques, like recursion, are also possible in Objective G.

Objective G has many different blocks, which are defined by a customizable XML file.

We have divided the blocks up into eight different groups, which are defined below.

1. Action:

128

The Action blocks consist of all the blocks that command the robot to physically

do something. Most Action blocks either tell the robot to move a certain way, or

tell the robot to check a sensor and return a data value. All Action blocks are

written at a high level – we have a single “Drive” block, for example, to tell the

robot to drive forward, as opposed to requiring students to manipulate the

individual wheels.

2. Data and Robot Data

The Data and Robot Data blocks represent different literal values and are inserted

into the sockets of other blocks. The Data blocks include traditional primitives

like Integer; the Robot Data blocks involve special robot-specific constants, such

as Direction. These items are literals in the sense that they are not changeable at

runtime, but their values are definable at design time.

3. Loops

The Loop blocks allow certain sections of code to be repeated. There are two

loops in Objective G: Loop For, which is equivalent to a Java For loop, and Loop

Until, which is equivalent to a Java While loop.

4. Wait Statements

A Wait statement prevents the Genost interpreter from proceeding onto the next

line of code for a certain amount of time. While the program is waiting using a

Wait block, any robot movement that is already occurring continues (if the robot

129

is driving, it will continue to drive). There are two Wait statements: Wait Until,

which waits until a specified condition becomes true, and Wait For, which waits

for a specified amount of time. Wait Statements are useful for writing algorithms

that can, for example, drive the robot forward until it detects a wall in front of it.

5. If Statements

If statements are equivalent in nature to their Java companions. Objective G

incorporates If, Else If and Else blocks, to allow the creation of “If chains” that

allow decisions with an arbitrary number of possible choices.

6. Variables and Assignments

Objective G allows the creation of Variables of types Integer, String and Boolean.

Assignment statements may be used to assign values to these Variables.

7. Logic and Comparison

These blocks are used in the sockets of blocks that require a condition – for

example, a Loop Until, a Wait Until or an If. Comparison blocks include all

mathematical equalities and inequalities (Less Than, Less Than or Equal To,

Equal To, Not Equal To, etc.). Logic blocks involve logical relations – AND and

OR. Using these Logic and Comparison blocks, arbitrarily complex conditions

can be defined.

8. Methods

130

Objective G allows the creation of Methods of type Void, Integer, String or

Boolean. These Methods may take arbitrarily defined parameters (which are

available as variables within the method body), and may return data of the proper

type using a special Return block.

Each block type is colored differently, in an attempt to help students more easily

differentiate them.

A full explanation of the blocks in Objective G may be found in Appendix B.

3.2.1. Language Design

Ultimately, our goal with Objective G is to create what Lu calls a “computational

thinking language” or CTL. The most general goal of a CTL is to allow students to think

about and learn computational thinking ideas without being required to spend

considerable time learning the syntax and grammar of the language itself (James J. Lu,

2009). When designing Objective G, we used the following goals to guide us.

3.2.1.1. Goal 1: Language Readability

The idea here is that students should be able to read the language without having to learn

much – or ideally, any – syntax and grammar. This is directly from T1 (Ease of Use) and

is described specifically in IG1 (Drag and Drop Programming goals), which notes that a

language should not be complicated for a student to read. This goal will ultimately help

131

with general computational thinking education, but especially with CG1 (the ability to

read and understand algorithms.)

Our primary attempt at implementing this was in using clear English labels for our

programming blocks, and attempting to make the block code itself read like an English

sentence. For example, a fully configured Loop For block that repeats 5 times reads left

to right, “Loop for 5 times”.

The physical layout of the blocks and their sockets attempts to contribute to the above

effort of reading like an English sentence by being organized in a sensible manner. Using

the Loop For example from before, the socket to indicate the number of times to loop is

located between the text “Loop for” and “times”, hinting that the parameter indicates the

number of time the loop should iterate.

We have also colored the blocks differently depending on their types, to assist students in

telling them apart.

3.2.1.2. Goal 2: Ease of Programming

The basic idea behind this goal is that developing a program in this language should not

require more effort than necessary. Once again, this goal comes directly from T1 and

IG1. Furthermore, this goal also serves T2 (Fun) – a language that is easy for students to

develop programs in will almost certainly be more fun for them than one that is difficult.

132

Naturally, the primary way we attempted to make the language easy to program in is by

making it a drag and drop language! As noted above, drag and drop languages disallow

syntax errors, which reduces the difficulty of programming considerably. Aside from this,

efforts to make the language easy to program with include creating a one to one

relationship between blocks and concepts – each block represents a single fundamental

structure, meaning that students can add in that structure by dragging and dropping a

single block. When a concept requires multiple blocks to be complete (such as a Loop

For requiring an Integer block to inform it how many times to iterate) we have made the

empty socket quite obvious so the learner can easily see that more blocks are needed to

complete the structure. Finally, by limiting the system to procedural programming, we

are able to implement all of the concepts we wish to implement without considerably

complicating the GUI (procedural programming will be discussed more in the next

subsection).

As mentioned above, the Objective G blocks are colored differently depending on their

type. This is our first attempt at using the physical appearance of the block to indicate

what it does, a goal described in IG1. With practice, students can learn that a block

colored tan represents a Data parameter, for example. We plan in the future to alter the

blocks’ and sockets’ physical shapes as well to indicate their functions.

3.2.1.3. Goal 3: Procedural Programming

We have decided to limit Objective G to procedural programming, and have not included

object or class designs in the language. This section will justify this decision.

133

Our goal for Genost is to teach introductory programming. At the heart of all

programming paradigms lies procedural programming concepts – control flow, variables

and functions. Therefore it makes sense to focus on these procedural aspects in

introductory programming. Furthermore, procedural programming concepts, especially

control flow, are at the heart of T4 (computational thinking). Specific skills that

procedural programming teaches especially well are CG2 (the ability to engage in

abstraction) and CG3 (the ability to decompose a problem into processes). Procedural

programming is also fundamentally easier to learn than the more advanced paradigms

that grow from it. Therefore, focusing on procedural programming helps us fulfill T1

(ease of use).

In order to focus on procedural programming, we limited the blocks available for students

to use to the following: basic Actions (driving, turning), Loops, Wait Statements, and If

Statements. We also included Variables and Functions. No other block types, such as

classes or objects, were implemented; those blocks that were implemented do not feature

object-oriented behavior.

We believe that procedural programming allows us to teach all of the computational

thinking goals that we wish to teach, and that the benefits in simplicity and clarity makes

the decision to focus on procedural programming alone worth it. Adding in features from

more advanced paradigms, like OOP, would not seem to gain us any additional advantage

134

in terms of introductory computational thinking education, but it would complicate the

language (and the GUI) quite significantly.

3.2.1.4. Goal 4: Computational Thinking Built Into Language

We wished to design Objective G such that the very act of programming in the language

should reinforce certain computational thinking concepts. In other words, even

independent of the particular lesson being undertaken, simply writing a program in the

language should suggest or reinforce computational concepts, due to the language’s

design. An example of how this may be achieved (which we implement, as we will

describe later) is by visually grouping blocks (using indentation, highlighting, or some

other measure) together at a certain level of abstraction. This goal directly benefits T4,

and depending on how it is implemented may serve CG1 or CG2.

We have attempted to implement this goal in many ways. As mentioned before, we have

made each block represent a single concept, in order to implicitly show the separation

and differences between these concepts, and to assist students in learning those

differences. A more interesting design choice was to force students to program “outside-

in” – that is, when adding a block such as an If statement, students must first place the If

block, and only after the block is placed can they add to its body. Another example of this

“outside-in” design would be the way a complicated conditional statement – say, ((X >

Y) AND Z) – is built. In order to build this in Objective G, students must first place the

AND block, then place the > block inside the AND’s left socket, and finally place X, Y

and Z inside their proper places. This “outside-in” or “top-down” style of programming

135

pushes students to think of the outer block in context of its own level of abstraction, and

the inner blocks that go within the outer block’s body as a different, lower abstraction

level.

Abstraction and parameterization is further reinforced through certain design choices in

the Action blocks. Most Action blocks in Objective G explicitly require a parameter

block to be added – for example, the Drive block requires students add a block to tell it to

drive either Forward or Backwards. This reinforces abstraction by encouraging students

to think of Actions as abstract entities, only becoming concrete when adding a parameter

indicating how to perform that action. By choosing to parameterize these Action blocks

instead of rolling action and parameter into a single block, these computational thinking

ideas are reinforced.

Finally, we allow students to fully explore computational thinking by not oversimplifying

Objective G. The language is Turing-complete and programs of arbitrarily high

complexity may be written in it. This is powered by, among other things, the inclusion of

deep nesting and recursion.

3.2.1.5. Goal 5: Similarity to Formal Programming Language

We want the act of programming in the language to look and feel similar to programming

in a formal programming language. We chose this goal for two reasons. The first reason

is practicality: eventually students will need to move from Objective G to a formal

language like Java or C. We want to make this transition as easy as possible, as stated in

IG1 – we believe that making our language look similar to a formal language will assist

136

in this eventual transition. The second reason has to do once again with computational

thinking: we have observed that the structure of real languages often reinforces certain

computational thinking concepts, including CG1 and CG2. Examples of this include the

inherent unidirectional code flow of real languages (CG1) and the clear “separation of

concerns” achieved by the indentation or demarcation of loop, if statement, or function

bodies, which reflects the different levels of abstraction in an algorithm (CG2). Since

formal programming languages have these benefits, designing our language to look

similar to those languages will ideally bring us those benefits as well.

We designed Objective G’s look and feel with this goal in mind. Unlike languages such

as NXT or VPL, Objective G reads explicitly unidirectionally, top to bottom, just like a

formal language. Objective G also automatically indents loop bodies, if bodies, and the

like, which is also not the case in NXT or VPL.

We mentioned when discussing Goal 1 that we have attempted to use clear English labels

for our blocks. When possible, we tried to use the same labels that are used in actual

programming – for example, “If” or “Loop”.

3.2.1.6. Goal 6: Design Conflicts

It is inevitable that the five above goals will conflict, and we need some way of resolving

this conflict. Due to the fact that teaching computational thinking is our goal above all

else, as stated in T4 and IG5, we resolved these conflicts by choosing the solution that

was best for computational thinking education.

137

In our implementation, specific compromises were made between some of these goals to

support computational thinking. For example, we realized that the “outside-in”

programming style may be somewhat confusing to students, and is certainly pedantic in

certain cases, violating Goals 1 and 2. However, as we have argued in Goal 4, this

practice reinforces computational thinking, and therefore we kept it in.

In a very similar way, if we had rolled Action parameters into the Action blocks

themselves, instead of requiring students to explicitly add these parameters to the blocks,

we could have saved a step when adding the actions. That we did not do so again violates

Goal 2. Once again, however, the computational thinking utility of this practice

outweighs the difficulty this introduces into programming.

3.3. THE MAZE

The Genost language, and the curriculum, are centered on mazes. A “maze” in Genost is

a 2D plane containing a movable item (“robot”) along with obstacles, items that may be

picked up (“coins”), and goals. Students control the robot by writing an algorithm in

Objective G. Each maze has a specific goal, and it is this goal that students write their

algorithms to achieve. Note that the term “maze” does not necessarily imply that any one

design is mazelike (for example, it might be a single straight corridor) and similarly, the

terms “robot” and “coin” do not imply that the graphics representing those concepts will

actually look like a robot or a coin! Figure 10 shows a sample maze, with robot and

coins.

138

Figure 10. An example of a simulated maze in Genost. The red square is the robot, the

dark blue blocks are walls, and the yellow items are coins. This maze’s goal is to collect

all the coins.

Our mazes are implemented in a simulated virtual world, and can also be implemented in

the real world using a real robot. In the simulated mazes, goals are defined according to

the maze and success or failure is detected automatically.

In our simulated mazes, there are four possible goals:

1. Drive to the Finish and Stop

In this goal, a student must write a single algorithm which will drive the robot

through the maze, reach a special square known as a “finish zone”, and complete

the algorithm while stopped on the space.

139

2. Collect all the Coins and Stop

In this goal, a student must write a single algorithm which will drive the robot

around the maze and pick up each coin in the maze. After picking up the last coin,

the robot algorithm must end with the robot stopped.

3. Drive to the Finish

This is the same as the Drive to the Finish and Stop goal, except the algorithm is

not required to end with the robot stopped. Instead, so long as the robot touches

the finish zone, the algorithm will be considered a success.

4. Collect all the Coins

This is the same as the Collect all the Coins and Stop goal, except the system does

not require the robot to stop and complete its algorithm. Instead, the algorithm

will be considered successful the second the robot picks up the last coin.

In a real world maze, the success and failure criteria would be defined and judged by an

external observer, such as a teacher, advisor or coach. The above goals could be

implemented in the real world maze without considerable trouble.

We use mazes implementing the goals above to teach students computational thinking

skills.

140

3.3.1. Maze Design

Considerable thought was put into deciding to center Genost on maze solving, and once

this decision was made, more thought was put into how the mazes should function and

the goals of the mazes. The thought processes that led to these decisions will be described

here.

3.3.1.1. Goal 1: Teach Computational Thinking

A primary goal was for whatever goal Genost’s algorithms were centered on achieving to

teach computational thinking effectively. Mazes were ultimately chosen because there are

certain features of mazes that make them very effective for teaching computational

thinking. A primary computational thinking benefit of maze solving is the fact that a

maze solution is an inherently visual one – a student can watch his robot executing each

step of his algorithm in real time. Resnick has noted that watching a robot move through

a maze is an act of “reflection and evaluation” that is crucial to the learning process

(Resnick, 2007).

When watching a robot move through a maze, students can see the algorithm itself

operating in real time. Every algorithm step may be seen in the robot’s movement. If the

algorithm fails, it is immediately obvious that the failure has occurred (i.e. the robot

turned the wrong way and crashed into a wall) and students may determine at what point

in the algorithm this happened (i.e. immediately after it drove down the third corridor)

without considerable difficulty. In this way the ability to watch a robot execute an

algorithm helps fulfill CG1, the ability to read and understand algorithms.

141

We can compare watching the robot’s movement to a more traditional way of testing

algorithms to further see the benefit. Traditional program testing tends to only show the

final output, if such output is generated in the first place. For example, a number sorting

program ultimately produces a list of numbers that is either sorted or it is not, assuming

the program does not crash. Students cannot easily watch this algorithm execute. CG1 is

therefore served far better with maze solving than more opaque algorithmic tasks.

Another benefit of mazes is that a maze is its own model – the problem that a student

must solve is clearly visible in 2D form. When solving the maze, it is often useful to

focus on solving individual parts of the maze by themselves, and then combine those

solutions to make a single algorithm. This is the essence of abstraction (CG2) and

problem breakdown (CG3), and we use this technique heavily in our curriculum. Because

the maze is its own model, when performing this abstraction and moving between levels,

students may literally focus their view on the part of the maze they are working with at

the time. Once again, this task is more difficult with more opaque computer tasks such as

number sorting, since the different “areas of concern” are entirely invisible. With mazes,

they are visible. This assists very strongly with CG2 and CG3 – we believe that mazes

help students have an easier time abstracting and breaking down a problem.

When watching a maze algorithm execute, inefficiencies or problems in the algorithm

may become very clear. If the algorithm fails, the failure will be visible as a robot crashes

or takes a wrong turn. If the algorithm is inefficient, the inefficiency will be visible as the

robot traverses the same corridor multiple times, or otherwise performs unnecessary

142

actions. The visibility of algorithm quality assists students with CG4, learning to evaluate

algorithm quality.

Figure 11. A maze physically "broken down" into similar parts. This breakdown, which

can be done visually, helps students with CG2 and CG3.

In this way, mazes can be used to teach all four parts of computational thinking. Our

implementation of the mazes, specifically the goals that we chose to include, also help

with teaching computational thinking.

For many of our mazes, such as the maze in Figure 11, multiple solutions are possible –

this fact is used to help teach CG1, the ability to understand algorithms, since

143

understanding that the same task may be solved with multiple algorithms is an important

step in this computational thinking goal.

The “X and stop” goals introduce an important requirement into the algorithm

development process: students must design not just how their algorithm will run but also

how it will end. Once again this is a fundamental part of computational thinking and

helps round out CG3, the ability to break down a problem and design a solution.

The two main goals – Drive to the Finish, and Collect all the Coins – have different

focuses. Drive to the Finish teaches the development of a minimal algorithm, since all

that is needed is to get to the end. Meanwhile, Collect all the Coins can be used to teach

algorithms focusing on completeness, since the entire maze must be traversed to ensure

that every coin is collected. These are again two important elements of computational

thinking.

Finally, it is possible to design mazes such that a single algorithm will solve multiple

mazes. A lesson, then, may contain multiple mazes that all must be solved by the student

with one program. This technique, which we make heavy use of, requires the student to

generalize and abstract to a great degree, and is therefore a great way to teach CG2.

These benefits, and more, are the reason that we chose to center Genost on mazes.

144

3.3.1.2. Goal 2: Simple and Easy to Understand

T1 tells us that our system should be easy to use, and this extends to the mazes. IG2 notes

that virtual worlds are superior to traditional algorithm tests because they are easier – as

our goal is to make the best system possible, we therefore want to make the mazes as

easy to understand as they can be. Finally, Papert’s “low floor” is another way of saying

that these systems should be easy to understand (Papert, 1993).

Note that “easy to understand” does not necessarily mean “easy to solve”. Students

should be challenged by the task of creating a high-quality algorithm to solve the maze;

the challenge should not come from difficulty in understanding the rules of the virtual

world, or the goal that they are being asked to solve.

We have attempted to implement this goal through the use of clear graphical themes and

simple to understand goals. The choice of using a 2D world instead of a 3D world was

also motivated by this goal: by limiting ourselves to two dimensions, we make the mazes

simpler without losing too much richness or potential. We have also limited the number

of actions the robot can perform to only those that are necessary, instead of allowing it to

perform a very large number of actions that are individually only rarely useful.

3.3.1.3. Goal 3: Rich Interactions

Rich interactions refers to the ability for a maze system to implement many different

kinds of tasks, and for each task to have depth to it. The richness of virtual worlds when

compared to traditional algorithm tests is a benefit described in IG2 – this is the “wide

145

walls” feature that Papert describes. Interestingly enough, the richness of the mazes also

enables, to some degree, the “high ceiling”, as relatively complicated puzzles can be

implemented in these mazes (Papert, 1993). This goal also fulfills T3, Adaptability – a

maze system with rich interaction is ultimately more adaptable, as more examples and

concepts may be taught with it without requiring additional development.

We have tried to make our mazes highly customizable – the obstacles can be arranged in

any way, as can the coins and finish zones. The mazes can be any shape or size. In this

way a vast array of different mazes can be created. As described above, we have four

different possible maze goals, applicable to different situations – these goals may be

applied to any maze. We believe that these features taken together make our application

very rich, and virtually any concept we wish to teach can be built into a maze.

3.3.1.4. Goal 4: Fun

Fun is one of our major themes (T2). We want all student interaction with our system to

be fun – its benefits have been much discussed. We therefore wish to make our mazes fun

for the students to solve.

This goal is somewhat solved through the use of mazes themselves, as we believe that the

art of solving a maze is itself fun for the students. Other ways we have attempted to make

solving the maze fun is through the use of bright graphic and sprite-art themes, which

mimic video games. Anecdotally, we have found that students quite enjoy these video

game connections.

146

3.4. THE GUI AND SIMULATOR

Two online systems comprise the core of the Genost software. These systems are the GUI

and the simulator. The GUI refers to the software with which students develop their

algorithm; the simulator refers to the software with which they can test the algorithm in a

virtual world. Both of these systems are web-based.

3.4.1. GUI Description

The GUI is a Microsoft Silverlight29 program and may be seen in Figure 12 below. It

consists of a number of major parts, each of which we will briefly describe.

- The Canvas

The “canvas” is the center part of the Genost GUI, and is where code blocks are

dropped to assemble an algorithm. Users can drag the blocks from the block

panels to the left to insert new blocks, or they can drag blocks from inside the

canvas to new positions to rearrange them.

- The Block Panels

The two panels on the left containing the grouped code blocks are the Block

Panels. The top one, the Robot Functions panel, contains blocks related to the

robot’s actions; the bottom one, the Program Structures panel, contains blocks

related to the general programming structures such as Loops or Ifs.

29 http://www.microsoft.com/silverlight/

http://www.microsoft.com/silverlight/

147

These blocks are loaded in from an XML file, which may be customized to add

new blocks or alter existing ones. An different XML file is loaded each time a

new lesson is loaded.

Figure 12. The Genost GUI

- The Lesson Selection

Beneath the Program Structures panel is a pair of black buttons and a “Current”

link. These make up the Lesson Selection panel, which allows students to view

information about, and change, their current lesson. A Lesson is part of a

Curriculum, and contains a block definition file and a maze; when a lesson is

148

selected, these files are loaded into the GUI. Using the Previous and Next buttons,

students may change to the previous or next Lesson in the Curriculum. Using the

Current link, they may view an image of the current maze they are solving.

- The Variables Panel

Using the Variables panel on the right, students may define new variables of

different types. Once a variable has been defined, it appears in the Variables

panel. Users may use the Create button to create new variables, or the Delete

button to get rid of old ones.

- The Methods Panel

The Methods panel, like the Variables panel, allows users to create new methods.

When a method has been created, a block to call that method appears in the

Methods panel, and a tab for that Method appears at the top of the screen. By

clicking on the Method tab at the top of the screen, users can access the Methods

Definition Screen. Users can Create and Delete methods using the black buttons

at the top of the Methods panel.

- The Trash Panel

The bottom right corner of the GUI features the Trash panel. Users may drag

blocks to the Trash to delete them, or they may click the Clear button to clear the

current canvas.

149

- The Method Definition Screen

When a method has been defined, clicking the tab at the top of the screen with

that method’s name allows a user to access the Method Definition Screen. Doing

so will change the canvas to the Method’s body instead of the Main canvas. On

this screen users may define the details of a method’s parameters, return type and

body. This screen may be seen in Figure 13.

Figure 13. The Method Definition Screen in the Genost GUI

150

- The Control Panel

The Control Panel is a series of five buttons beneath the canvas. These five

buttons are:

1. The Load Program button, which allows students to load a saved program

from a file.

2. The Save Program button, which outputs the current program to a file.

3. The Run Simulator button, which will launch the Simulator to run the current

program.

4. The Send to Robot button, which will transmit the current program to a

connected robot and make it ready to execute.

5. The Execute on Robot button, which will send an execute command to a

connected robot. When the robot is executing, this button turns into a Stop

button to stop the robot.

3.4.2. Simulator Description

The Simulator is a Java applet that is launched when a student clicks the “Run Simulator”

in the GUI. When this button is clicked, the GUI sends the code to the Simulator through

a web service and opens a new window with the Simulator in it. The Simulator may be

seen in Figure 14.

151

Figure 14. The Simulator

The maze can be seen in the top part of the Simulator. This window is able to scroll if the

maze becomes too large.

Students click the “Execute” button to run the algorithm they have developed. The

algorithm itself may be seen (in text code form) in the panel in the bottom left hand

corner of the Simulator. Students may reset the Simulator at any time by pressing the

“Reset” button.

Other notable panels here include the bottom middle panel, which contains output and

debug information from the simulator, and the bottom right panel, which provides an

accurate readout of the simulated robot’s sensor data.

152

3.4.3. GUI and Simulator Design

The GUI and Simulator are vehicles for delivering the Objective G language and the

virtual worlds and mazes – we have already discussed how these items teach

computational thinking in Sections 3.2 and 3.3. Therefore, in discussing the design of the

GUI and simulator we will focus on their technical design goals instead of any

educational design goals, since the latter have already been discussed in the two

mentioned sections.

3.4.3.1. Goal 1: Clear, Informative, Intuitive Design

We want our software interfaces to be clean, easy to understand and easy to use. We want

these interfaces to provide all the information that a student needs, and none that they do

not. We want students to be able to figure out how to use the software without too much

trouble. Above all, we do not want the interface to be confusing. This is, of course,

justified by T1, Ease of Use, as well as general aesthetics and common sense.

We have attempted to implement this by using a clean design, and making good use of

grouping. For example, the various Genost code blocks are grouped in the GUI between

two panels – one for general programming blocks, and one for robot-specific blocks. The

blocks in these panels are grouped yet again by common theme – for example, the Loop

For and Loop Until blocks are grouped under a single Loop header. These headers are

collapsible so learners need only see the blocks they are presently concerned with. In this

way, the block grouping produces not only a clean interface, but also an informative

hierarchy.

153

Just as with Objective G, we have attempted to use clear English labeling of all parts of

the GUI. This labeling serves both to inform and to prevent confusion. We try further to

prevent confusion by separating the blocks by different colors.

In the Simulator, we have tried to maintain a clean design, but have also presented

information where needed. For example, the sonar sensor output, and the simulator debug

console, are both present in order to give students information about the state of the

simulated robot, and the algorithm’s execution.

We chose to run the simulator in a separate window from the GUI, so that students could

have both windows open at the same time. This allows students to follow along with their

algorithm as the robot runs it, thereby “pairing” the robot movement and the code

execution, a goal explicitly stated in IG2. Currently the GUI does not explicitly highlight

code blocks as they are executed, an item we noted would be beneficial; we hope to

implement this feature sometime in the future.

Ultimately, this goal is a matter of aesthetics, but we believe the decisions that we have

made have resulted in a clean and easy to understand interface.

3.4.3.2. Goal 2: Adaptability and Customizability

We designed the GUI and simulator to run in the web browser with almost no

prerequisites or requirements. All that is required to run these items are the Java and

Silverlight browser plugins, which are very commonly installed and are free to use. This

154

makes Genost highly adaptable, a goal described in T3, as it can be used on any

computer, in any lab – it requires no specialized software or equipment. This design also

helps implement T1, ease of use, as teachers and students need not deal with advanced

technical complexity to set up and use the software.

Furthermore, as described above, both the Objective G language and the Mazes are

designed to be customizable. In order to take advantage of that, the GUI and the

simulator are designed to be customizable as well. Both the code blocks in the GUI and

the maze in the Simulator are customizable. These items are defined in XML files and are

loaded into the software when needed. New mazes to teach new computational thinking

skills can be easily created using a maze development kit that we have developed; new

code blocks may be created by adding new XML to the block definition file. This has

allowed us to easily develop a curriculum to test, and it will allow easy development of

new lessons in the future. This goal of customizability is directly stated in T3; it also

helps us with T4, the goal of teaching computational thinking, as the customizability of

the system allows us to try many ways of teaching the various computational thinking

skills to find those that work the best.

3.4.3.3. Goal 3: Management Website Integration

The Management Website, as its name implies, manages the Genost system. The most

visible way that this management takes place is by sending data to, and receiving data

from, the GUI and simulator. The management website allows teachers to define student

logins, which the students actually use to access the GUI. Once logged in, the

155

management website sends lesson information to the GUI for the student to iterate

through. The actual lessons, which contain the mazes and code block definitions

described in the previous section on customization, are hosted on the management

website and are sent to the GUI and simulator when needed. Finally, the GUI and

software send data about the student’s performance and interaction with Genost back to

the management website for teachers to peruse.

The integration between the management website and the software make this software far

easier for teachers to use in teaching a class, which therefore serves T1. This feature also

allows the customization we have built into the software to actually be used effectively,

and therefore this feature also serves T3.

3.4.4. GUI and Simulator Technology

We have described above the visual and functional design goals for the GUI and

simulator. In this subsection we will describe the actual technology that powers the GUI

and the simulator. We will describe the technology that powers the GUI and simulator

individually, but the way in which these two disparate systems communicate with one

another is, in our opinion, the more interesting and novel technology. We will briefly

describe this method of communication now.

The main reason for communication between the GUI and the simulator is to allow

transfer of the student-developed algorithm from the GUI to the simulator for execution;

the algorithm itself must be sent, along with information about what environment (i.e. the

156

maze) the algorithm ought to be executed in. This is accomplished by first transforming

the graphical GUI algorithm into text code and sending it, via RESTful web service, to

the simulator. RESTful services are also used to allow the simulator and GUI to

communicate with the management website. The fact that these three different systems –

written in three different languages – can communicate with each other via the REST

protocol is a testament to the language-independence of the service-oriented

programming paradigm (Yinong Chen, 2014).

In the subsections below we will describe the GUI and Simulator systems individually in

some depth. We will also more deeply describe the technology that facilitates the

RESTful transfer of the algorithm from GUI to simulator as described in the previous

paragraph. We will finish with a discussion of some of the technical challenges we faced

in implementing these items, and how they were overcome.

3.4.4.1. GUI Technology

The GUI, as mentioned previously, is built in Microsoft Silverlight. Silverlight is a plugin

for web browsers that is powered by the .NET framework, and enables the development

of rich applications such as Genost. Silverlight features a robust drag and drop API that

was used in the Genost GUI to enable the dragging of blocks back and forth between the

various sockets, panels and canvases. C# is the language used in all .NET frameworks,

Silverlight included, and hence it is the language that the Genost GUI was built in. The

157

use of Silverlight allows the GUI to run across all operating systems and in any browser

(so long as it implements a Silverlight plugin), which makes the software very widely

usable.

Above, we have described the ability of the GUI to be customized. All programming

blocks that may be manipulated within the GUI are loaded and defined at runtime. These

blocks are defined in a “toolbox” XML file that contains a definition for each block. Each

block definition includes the block name, block color, block type, as well as

specifications for where the block may be placed, whether the block has any sockets, and

whether it has a body, among other things.

158

Figure 15: Sample Toolbox Definition XML

The toolbox file defines all the block interactions that are capable within the GUI. This

fact allows us very precise control over what kind of algorithm a student may build

within a single lesson.

The GUI utilizes many RESTful services to communicate with the management website.

When a student first accesses the GUI, he is asked to enter his username and password.

When the student clicks the “login” button after entering this login information, these

credentials are sent to the management website via a RESTful call. The management

website validates the student’s username and password and, if they are valid, returns the

ID of the current lesson the student is working on. The GUI may then call other RESTful

services, using the lesson ID as a key, to load up the toolbox and other information

necessary for configuring the GUI.

After a student has used the drag-and-drop functions of the GUI to build an algorithm, the

student may send it to the simulator (or robot). When the student chooses to test his

algorithm by sending it to one of these systems, the GUI first transforms the graphical

algorithm it into text code. The language that we translate into is a formal, textual version

of Objective G. A sample of the formal Objective G text code may be seen in Figure 16.

This algorithm, once transformed into text, is transmitted to the Simulator or Robot. The

process by which this transfer is performed will also be discussed in Section 3.4.4.4.

159

Figure 16. An Objective G algorithm written in formal text code

3.4.4.2. Simulator Technology

The Simulator is built in Java, and runs as a Java applet. Just like the GUI, the Simulator

applet runs in any browser and on any operating system, so long the Java plugin is

installed. We used Java’s Swing library to power the graphics in the mazes. Each

individual graphical item in the maze is defined by its own class. Intelligent use of object-

oriented concepts such as inheritance and encapsulation allow us to distribute the

behavior of the items within the maze (the obstacles, the coins, and most importantly the

robot) across several different classes.

When starting the simulator, the actual maze is loaded using, once again, an XML file

that is retrieved via a RESTful service from the management website. The maze XML

file describes the position, type, and graphic of each individual item within the maze, as

well as global settings such as the maze goal. The images themselves are loaded via

REST from the management website as well. In this way the actual Simulator applet

contains no local XML or image files that must be referenced.

160

Figure 17. The Simulator classes

In addition to loading the maze at startup, the actual algorithm is loaded at startup as well

via REST. In order to execute the algorithm, we send the text code to another Java

executable that runs within the simulator which we call the “interpreter”. The interpreter

will be described in the next section.

161

Figure 18. Snippet of XML from a maze definition file

The Genost simulator is heavily inspired by the “eRobotic” simulator30, also developed at

ASU, which also features a robot navigating a 2D maze. This simulator was created to

test the Robot as a Service (RaaS) paradigm (which will be described further in Section

30 The simulator may be viewed at http://venus.eas.asu.edu/WSRepository/eRobotic/; a screenshot of the
simulator may be seen in (Chen Y. H., 2013).

http://venus.eas.asu.edu/WSRepository/eRobotic/

162

3.5) and does not allow the easy creation and simulation of arbitrary algorithms.

However, its physical appearance and robot design are roughly similar (Chen Y. H.,

2013).

3.4.4.3. Interpreter Technology

The interpretation and execution of the student algorithm is performed by the Genost

Interpreter. The Interpreter is a Java package which must be implemented by another

program, such as the Simulator or the Robot core code. The Interpreter defines many

events which the implementing system must create handlers for; these handlers are then

called by the Interpreter as needed when it executes an input algorithm.

Like the Simulator, the Interpreter is defined in a highly modular way and makes deep

use of object-oriented inheritance and other concepts. Each programming structure

defined in the Objective G design is implemented as a class with three methods: a

constructor to parse the text code of the structure and turn it into an object, a validate

function to ensure there are no syntax errors in the structure instance, and an execute

function that actually executes the structure when appropriate. The class tree for the

Interpreter can be seen in Figure 19 (not all classes are visible).

When the Interpreter receives a text algorithm as input, it immediately begins parsing it

line by line. As the Interpreter parses it builds an object tree, turning textual

representations of the various program structures that make up the algorithm into objects

which may be validated and executed. The parsing is done using a large recursive loop

163

which creates, in essence, a very large linked-list with the first line of the algorithm at its

head. Any typos or syntax errors in the algorithm are identified at this stage; if such a

mistake is found, a Java error is thrown from the Interpreter to the system which

implements it.

Figure 19. The package structure for the Interpreter

164

At the end of the parsing step, the algorithm has been transformed into a large linked-list

containing program structure objects. This list is recursively validated by calling the

validation function of each object in the list, starting at the head. The validation process

checks for errors that are not syntactically incorrect but violate the defined rules of the

language (such as, for example, attempting to loop for -2 times). If a violation is found,

an error is thrown to the implementing system to handle. The validation step also handles

setting up any required class members in the program structure objects that could not be

set up during the parsing step. For example, a reference to the line of code immediately

following the end of an If statement body is found and placed in the If statement object

during the validation step.

Once validation has been completed, the algorithm is executed by recursively calling the

execution functions of the objects in the list, again starting from the head. Because the

object list was built when parsing the text algorithm line-by-line, top to bottom, the list is

ordered in the exact same way as the text algorithm, and hence the object execution

functions are guaranteed to run in the right order. The execution function for a program

structure performs the activity that the structure itself would do in the algorithm – for

example, the Loop For execution function calls the execution function of its associated

Body object for the specified number of times. The basic structure of a program structure

class containing the constructor, validation function and execution function can be seen

in Figure 20.

165

Of particular interest are the special program structure classes that represent actions – for

example, the Drive or Turn actions. Because the Interpreter is meant to be implemented

inside of a system like the Simulator or the Robot, when executing one of these actions

the Interpreter simply throws an event to its parent system. The implementing Simulator

(or physical robot) must catch that event and perform the appropriate action (driving,

turning, etc.) accordingly. The Interpreter is built in a general fashion – all actions that it

can call are defined in their own classes, and any new action may be defined simply by

creating a new class that inherits the ExtMethod class. The actions that the Interpreter

implements, and the code of one particular action, may be seen in Figure 21. Note that

not every external method we have defined in the interpreter is actually used in the GUI.

The general, customizable nature of the Interpreter means that it can be implemented by

any program, so long as the proper event handlers are defined for it. This means that it

can be used to write algorithms to control other things than robots driving in mazes –

indeed, it could be repurposed to a completely different goal simply by changing the

action methods. More broadly, any change in the Objective G language could easily be

affected simply by rewriting the appropriate classes – a whole new program structure

could be added just by adding in a new class.

166

Figure 20. A snippet of code showing the Loop Until class and its implemented functions.

167

Figure 21. The external methods implemented in Genost, and the code of one of these

external methods

3.4.4.4. Communication Between the Systems

One of the challenges in creating this system was creating a way for the GUI and

simulator to communicate when both of these software are running in the browser. Not

only were we required to find a way to “push” the algorithm from GUI to simulator, but

we also must allow an arbitrary number of users to do this at the same time.

The classic HTTP model is a “pull” model – user agents request must explicitly

information from the web to be downloaded and displayed in their browser. Remote

systems are not able to, on their own initiative, push data to a browser, except in systems

that are specifically designed to allow this. For this reason, we could not simply have the

GUI software send the algorithm to the simulator software when both were running in the

browser. The simulator had to, in some way, request it – a difficult thing to do when the

simulator has no way of knowing that an algorithm even exists, much less is ready to be

transferred.

168

In order to transfer the algorithm from the GUI to the simulator, the following procedure

was defined. We programmed the GUI to, when sending an algorithm, first create a

globally unique identifier (GUID), associate it with the algorithm code, and send both the

algorithm and GUID to the Genost web server storage using a RESTful service. The GUI

then opens up the simulator and, in doing so, includes the GUID as a URL parameter in

the simulator URL. Once the simulator loads, it takes the GUID from its URL and calls

another RESTful service, sending the GUID as input and receiving the associated

algorithm in return. This solution both allows the algorithm to be transferred from GUI to

server, and allows multiple users to run this at once, since the GUID is, by definition,

globally unique. This solves the problem of communication between the two systems.

3.4.4.5. Technical Challenges

Many of the innovations discussed above were developed in response to technical

challenges faced during the Genost development. For example, the method of sending the

algorithm from GUI to simulator was built in response to the limitations of HTTP

communications.

The GUI / simulator communication difficulty is a specific instance of the general

challenge of having three different systems, all running on the web, communicating with

each other. Not only are these three systems all running in separate environments, they

are written in different languages. The challenge of having these three systems

169

synchronize and communicate would have been insurmountable without the use of

service-oriented principles, and we believe that our intelligent use of SOA is a strength

and innovation of our system.

The generality and customizability of our systems was also a challenge to implement, but

was ultimately worth it due to our ability to easily reuse and extend the software. Once

again this customizability is heavily powered by SOA principles (in the case of the GUI

and simulator loading in XML files to configure themselves) but also by object-oriented

principles (in the case of the high generality of the Interpreter).

A final difficulty worth mentioning is the complicated security issues that the GUI and

simulator had to navigate. As these items run in a web browser, an inherently unsafe

medium, our software had to contend with security provisions implemented by the

browser and, in the case of the Java software, the language itself. We ultimately were

required to purchase a Java security certificate to allow us to bypass the security

protections in the browser.

3.5. THE ROBOT

In addition to allowing students to run their algorithm on the simulated robot in the

Simulator, our system also features a physical robot prototype which students may send

their algorithms to.

170

The robot may be seen below in Figure 22. It has all the same features that the simulated

robot does – namely, the ability to drive and turn, sonar sensors on all four sides, and a

compass sensor.

Figure 22. The Robot. Photo credit Jessica Hochreiter / ASU.

Currently the robot is powered by a full onboard computer in the form of an Intel Bay

Trail SOC31. It connects to the internet wirelessly. When the robot is turned on, it

immediately begins waiting for a program to be sent to it from the GUI. When the

program is sent, the robot receives it, parses it and sets itself up to run the program. After

receiving an “execute” signal from the GUI, the robot runs the program until it receives a

Stop signal by the GUI. The communication described here is powered entirely by

RESTful web services.

31 http://ark.intel.com/products/codename/55844/Bay-Trail

http://ark.intel.com/products/codename/55844/Bay-Trail

171

The robot was built to be as low cost as possible, and costs less than $500. However, it

should also be noted that the robot does not currently implement every feature that we

planned for.

The robot may be used as the needs of the curriculum dictate – however, in our

conception of the classroom use, the robot would be shared between students, who would

use it to execute finalized algorithms which were developed using the virtual world. In

this way a single robot could be shared between an entire classroom, and could be used as

a “reward” for developing a successful algorithm.

3.5.1. Robot Design

The primary reasons for adding the robot to the Genost system was for both the fun that

students have when working with robots (which therefore brings increased motivation,

attention, and learning success), and for the execution model that a robot provides, which

is more concrete than a virtual world. These benefits are discussed more in-depth in IG3.

In this section we will discuss our goals for the robot’s design. We were not able to

implement all of these goals in the final product – we will discuss the reason for this at

the end of this section.

172

3.5.1.1. Goal 1: Focus on Computational Thinking (Not Engineering)

Our primary focus for Genost is teaching computational thinking (T4). As discussed in

IG3, many systems that use robots tend to involve the engineering or building of the

robots, to the detriment of the computer science education. For this reason, we want to set

up our system such that computational thinking education is primary, and any other

educational focus, such as engineering, is secondary.

We implemented this goal by creating a single prebuilt robot to give to the students

instead of attempting to design a “kit” that the students will build. In educational use,

students would use the prebuilt robot from Day 1, and would not build their own. The

robot, then, serves solely as a tool to execute algorithms (and thereby teach

computational thinking skills), instead of a focus in itself.

3.5.1.2. Goal 2: Inexpensive

We want our robot to be available to as many classrooms as possible – a goal discussed

explicitly in IG3 and implied in T3 (adaptability). Just as our software should be

adaptable, so should the system as a whole, and that means we should be able to make it

work in schools of different types and means. One of the most important ways to do this

is by making the robot inexpensive.

When designing and building our robot we attempted to make it as inexpensive to build

as we could. Low cost parts were chosen, and we built our own robot chassis from basic

materials instead of purchasing an expensive designer chassis. Ultimately, we were able

173

to build a fully functional robot that implements all the functions that the simulated robot

does for less than $500USD. This is roughly one and a half times more expensive than a

single Lego Mindstorms robot32, and may serve an entire classroom.

Notably, our robot may actually be more expensive than it necessarily needs to be – we

included a full SOC on the robot, which receives and executes the algorithm. A smaller

embedded system which receives commands from a remote computer executing the

algorithm would be less expensive, and is more in line with IG3. The reasons for not

implementing this will be described further in Sections 3.5.1.5 and 3.5.2.

3.5.1.3. Goal 3: Robustness

Genost is an introductory educational system, meant to be used in a classroom with

students, potentially young students. For this reason, the robot needs to be tough enough

to survive “in the field”. This is specifically discussed in IG3, and is somewhat in line

with T3.

Robustness was an important, though not primary, goal for the robot we developed – we

attempted to implement it by giving it a flexible body to absorb small shocks, as opposed

to the more brittle body that the previous version of the robot had. This said, it is unclear

to what degree our robot could actually survive a classroom environment, as we will

discuss more in Section 3.5.2. In future robot development, robustness would likely be

emphasized to a greater degree.

32 At time of writing, the Lego Mindstorms EV3 Model 31313 retails for $350USD.

174

3.5.1.4. Goal 4: Same as Simulated Robot

We want our actual robot to respond exactly the same to the commands of an algorithm

as our simulated robot. They should move in the same way, and use the same units in

their sensor values, as far as possible. The physical robot and the simulated robot are

supposed to be equivalent and interchangeable, so that a classroom using one will not be

disadvantaged to a classroom using another.

To some degree this is also motivated by T1 – we do not want students writing an

algorithm in the simulator to have to rewrite their code to make it work on the robot.

There is little to say in regards to our implementation of this. Currently the as robot has

all the same capabilities as the simulated robot does, and will respond in the same way to

an algorithm. However, it does not currently use the same units as the simulated robot

does in its sensors.

3.5.1.5. Goal 5: Remote Code Execution

In IG3 we detailed the benefits of remote code execution - that is, the feature such that an

algorithm executes on a desktop computer, and each command (drive, turn, etc.) is

transmitted to the robot when necessary. These benefits include simpler (and therefore

less expensive) robots, a benefit mentioned in Section 3.5.1.2; and more importantly, this

allows students to debug their algorithm or step through it as it executes on the robot,

assisting with teaching computational thinking, particularly CG1 and CG4.

175

There are considerable technical difficulties with this feature, primarily with ensuring that

the commands reliably transmit to the robot in time. Additionally, because our robot uses

sensors, the technology must support bidirectional transmitting. Possible ways of doing

this include HTTP-based web services, or local wireless in the form of Bluetooth or

others options. We initially attempted to implement this using the web services approach

but found it far too slow to be useful. For this reason, we chose not to implement this goal

in our current testing robot. Future development will attempt to implement this goal in an

efficient manner.

3.5.2. Departures from Robot Design

The goals listed above are designed to produce an effective, fun, inexpensive and

adaptable robot. Unfortunately, we were not able to implement all of these goals, and our

robot currently serves as more of an effective testbed for executing Genost code than as a

production robot that could be used in an actual classroom.

As described above, the robot is not terribly robust, does not run exactly the same way as

the simulated robot, and does not implement remote code execution capabilities. It also is

not consistent in its driving, turning, and sensor readings. The communication between

the robot and the GUI is functional but not always reliable, and various ease-of-use

features have not been implemented.

176

As mentioned above, we wish to implement a robot due to its benefits in motivation and

in providing students with a concrete model of execution. Our robot currently proves that

it can interface with the GUI, receive code, and execute it. The features that are not

implemented are benefits ancillary to the main goal of the robot. Because these ancillary

benefits are not present, we did not choose to use our robot in our tests or curriculum, as

will be described in the section below. However, by adding the features we have

described, we believe that an effective educational robot could be created and

immediately integrated into the curriculum.

3.5.3. Robot Technology

In the previous subsection we described our intended robot design, as well as the ways

that we departed from this. In this section we will describe the technology that went into

building the robot. We will not discuss the proposed technology for features that were not

actually included in our robot. This section will be divided into three subsections: the

robot hardware, the robot software, and the technical challenges we faced in building the

robot.

3.5.3.1. Robot Hardware

In this section we will describe the physical hardware that was used to build the robot.

The main computer on the robot is an embedded Intel architecture (IA) platform powered

by an Intel Bay Trail SOC. The actual project board is a custom board created by Intel

177

and used for their ESDC 2014 competition33. Because we participated in this competition

during the development of this thesis, we were able to utilize the project board. Aside

from the Bay Trail processor, the board contains various input / output ports, GPIO pins

and an SD reader for long-term storage. The board itself, and its standoff mounts and

protective plastic covers, measures roughly 5.5” x 5” x 1.5”.

An Anker laptop battery was used to power the Bay Trail board. The battery was chosen

for its ability to self-regulate its output, adjusting the voltage between three separate

settings and its current as needed. The advanced laptop battery also allowed us to charge

the battery even while it is providing power to the computer without risk of damage to

either the battery or the board.

The robot’s drive system consisted of two Parallax high-speed bidirectional 360 degree

motors, used to power the rear two wheels of the robot. The rear wheels themselves were

made of rubber, chosen for grip. The front two wheels were special Vex omni-wheels34,

which contain small rollers along the wheel circumference which turn perpendicular to

the main wheel axle. This allows the omni-wheels to “strafe”, or in this situation, allowed

the two rear wheels to turn the robot without resistance from the front wheels. A Parallax

“Propeller” servo controller was used to control the motors. A basic 7.2V hobby battery

was used to power the motors.

33 https://software.intel.com/en-us/forums/2014-intel-cup-embedded-system-design-contest
34 http://www.vexrobotics.com/omni-wheels.html

https://software.intel.com/en-us/forums/2014-intel-cup-embedded-system-design-contest
http://www.vexrobotics.com/omni-wheels.html

178

The robot’s sensor system consisted of two types of sensors: sonar sensors and a compass

sensor. Three Phidgets sonar sensors were utilized, one pointing to the robot’s front, and

one on each side. A Phidgets sensor interface board was used to interface with and

control the sonar sensors. This sensor board connects to the main board via USB. The

compass sensor was also made by Phidgets, and connects directly to the main board via

USB without the need for an intermediary interface board. All of these sensors received

power through the USB connection and did not require their own external battery

connection.

The chassis of the robot consists of two polycarbonate sheets measuring 10” x 8” x

0.093”. The two sheets were stacked and bolted together, and the various robot parts were

attached. The polycarbonate sheet was chosen as a basic material that was strong,

flexible and easy to work with, while also quite inexpensive.

The above hardware was identified and chosen over a semester-long prototyping process,

and was preceded by an earlier prototype build which was built mostly to test out the

motors. These parts were found to be the least expensive items that were still usable,

reliable and robust enough for our design.

3.5.3.2. Robot Software

The operating system that is running on the robot’s Bay Trail mainboard is Ubuntu,

chosen to assist us in easy development while still providing a relatively small memory

footprint. The actual software that we developed to run the robot is divided up into

179

different “modules”, all of which are written in Java. The modules are: the bootstrapper

module, the networking module, the robot core, and the hardware drivers. Each of these

modules are invoked at certain points in the operating cycle of the robot. We will discuss

the technology involved with each of these modules in the order that they are invoked.

The bootstrapper module is responsible for configuring the robot and loading up all other

modules when the robot first boots up. It is automatically run at computer boot time and

loads up the networking module and robot core for further processing. As the name

indicates, its main purpose is bootstrapping the robot.

The networking module is started by the bootstrapper and, once it is started, connects to

the internet wirelessly. It then begins polling a RESTful service defined on the

management website to see if it an algorithm is ready for the robot to execute. Once the

algorithm is ready, the networking module downloads it and sends it to the robot core for

processing. It then begins polling for the command to execute. Once it receives this

command the module instructs the robot core to begin executing, and starts polling once

more for the “stop” command. Once it receives this stop command, the module stops the

robot, and starts the polling process over, polling for a new algorithm.

The robot core is made up of the interpreter, and the drivers for the motors, sonar sensors

and compass sensor. The interpreter that is used here is exact same one that is used in the

simulator (described in Section 3.4.4.3) – just as the interpreter’s event handlers are

implemented in the simulator to allow the interpreter to control the simulated robot, so

the physical robot’s code implements event handlers to control the real robot. When the

180

networking module sends the algorithm to the robot core and commands it to execute, the

interpreter is started up with the algorithm as input. The execution proceeds just as it does

with the simulator.

In order to send commands to the motors and retrieve data from the sensors, we required

drivers to interface with the hardware. The Phidgets sonar sensors and compass sensor

have prepackaged drivers that allow easy communication, but the motors did not.

Communication with the “Propeller” servo controller requires the use of a special

language called “Spin” (Scanlan, 2007) – for this reason we wrote a translator driver to

translate Java commands into Spin commands.

3.5.3.3. Technical Challenges

Many challenges were encountered in developing the robot, a handful of which are

worthy of mention. The main challenge that we will discuss has to do with the way in

which commands are sent to the robot. As described in Section 3.5.1.5, a major goal of

our system was to run the interpreter in the browser or on a local computer, instead of on

the robot itself; this would require us to relay robot action commands like “drive” or

“turn” to the robot in some manner.

In order to implement this we initially pursued the Robot as a Service (RaaS) SOA

model, a paradigm described by Chen et al in (Chen Y. Z.-A., 2010) and (Chen Y. H.,

2013). The RaaS methodology allows a robot to be controlled through services hosted on

the robot itself – for example, the robot’s motors could be controlled via a motor service,

181

and the sonars could be accessed through a sonar service. This is an admirable paradigm

and would fit our needs very well, allowing us to simply send HTTP packets to the robot

with our commands as they were issued by the interpreter. Using RaaS would also allow

us to avoid requiring additional hardware (like IR sensors or Bluetooth) to communicate

with the robot.

Past experiments have verified the validity of the RaaS paradigm. In 2010 Chen, Du and

García-Acosta implemented some aspects of the RaaS paradigm in Microsoft VPL,

utilizing its DSS service framework (Chen Y. Z.-A., 2010); in 2013 Chen and Hu created

a full prototype of the RaaS paradigm, in which a robot hosted multiple services (Chen Y.

H., 2013). Each service represented an instruction to move or turn the robot in a certain

direction; as a test, a website was created containing buttons that called the services when

pushed. These experiments prove the technical possibility of the RaaS paradigm.

We attempted to use the RaaS paradigm to control the Genost robot. Setting up the robot

services themselves was a relatively simple task, but connecting to them was a difficult

challenge. The robot, because it utilizes dynamically assigned IPs when connected to the

internet, does not have a URL or other static identifier. If the IP address of the robot is

known, then we can send messages to it; the problem is knowing the IP address, which is

not known until the robot is turned on in the classroom. A possible solution is to have the

teacher using the robot look up and enter the robot’s current IP address on the

management website, from which it could be utilized by the robot services; but we cannot

182

rely on teachers being technically savvy enough to accomplish this step, and anyways it

is quite pedantic. It would be far better if this could be accomplished automatically.

A step was made towards solving this problem by having the networking module look up

its own IP address and send it to the Genost server via a RESTful service. Once sent, the

IP could then be utilized by the interpreter to connect to the robot. However, if the robot

was inside of a NAT, then this method would only work so long as the interpreter itself

was also running inside of that NAT – which, if the interpreter is running in the browser

(i.e. off a remote Genost server), will never be the case. This difficulty was never entirely

resolved, due to the result of the challenge described next.

It was found that, after setting up the SOA robot such that it could run within a NAT,

communication between the interpreter and the robot was excruciatingly slow. HTTP is,

by its design, a “best effort” policy, so it is not surprising that the packets had a round trip

time nearly on the order of seconds. This was far too slow for robot operations. Consider

the scenario in which the robot is told to drive forward until a sonar sensor sees a wall

five inches away – by the time the interpreter has queried the sonar sensor, and the sonar

sensor has responded with the sensor value, the robot had already had at least a second or

two to continue driving, and may have already slammed into the wall. Due to the slow

response time, and the difficulty in connecting to the robot from the Genost server, the

RaaS paradigm was mostly abandoned, and the current method of running the interpreter

on the robot itself was adopted.

183

Abandoning RaaS does not mean abandoning the use of HTTP RESTful services, as can

be seen with our method of polling the RESTful services to retrieve the algorithm and

execute command from the server. While this does work, it is far from an ideal solution

since it involves polling, a non-ideal solution in any circumstance. We wish to maintain

our use of HTTP due to the aforementioned benefits of universality and generality that it

brings, but since we cannot “push” to the robot polling was judged an acceptable

compromise. All this said, the RaaS paradigm is a valuable one and we believe with

additional time and funding the identified problems could be overcome.

Another challenge that was not ever fully overcome involves creating a way to connect

the robot to a wireless network. If the robot is to be run under arbitrary wireless networks

in a classroom, the teacher would need a way to enter the network credentials into the

robot. Our goal was to create a program that would run when the robot was connected to

a desktop computer via USB; this program would allow the teacher to enter the wireless

credentials, which would be saved on the robot. We were never able to create this

program due to time constraints and technical difficulties. Currently the wireless

credentials for ASU’s network are hardcoded onto the robot, so the robot will function

anywhere on ASU campus. Configuring the robot to work outside of campus on a

different network would require connecting the Bay Trail board to a monitor and mouse,

and changing the hardcoded credentials, a method which is not at all acceptable or

sustainable. This is a challenge that we hope to overcome in the future.

184

A final challenge worth mentioning is the simple difficulty in designing an inexpensive

robot that can drive and turn accurately. Due to our goal of low cost, certain sacrifices

had to be made in quality, and as a result our final robot does not drive perfectly straight,

nor does it turn perfectly accurately. Early in the project we planned to implement

external sensors to help track the rotation of the wheels and use this information as

feedback to adjust the robot’s movement on the fly. While these sensors were bought and

installed, we did not have the time to implement them into the code. We believe this

challenge can be overcome with, as usual, more time for development.

3.6. THE MANAGEMENT WEBSITE

The Management Website or “Teacher Website” is a tool to manage the curricula, mazes,

and student access for Genost. Genost is a highly customizable tool – the Management

Website partially powers this customizability by hosting the content which Genost uses to

configure itself.

There are a handful of different data objects which are hosted on the Management

Website. These are: Classes, Students, Curricula, Lessons, Mazes and Toolboxes.

- Maze:

A maze hosted on the Management Website is an XML file that, when loaded

into the Simulator, defines the position of all the obstacles and coins in the maze,

what graphics they will use, the initial position of the robot, and the goal of the

maze.

185

- Toolbox:

A toolbox hosted on the Management Website is an XML file that, when loaded

into the GUI, defines what code blocks are available to the user and what those

code blocks do.

- Lesson:

A Lesson is a structure hosted on the Management Website that references a

particular Maze and a particular Toolbox. In other words, a Lesson links together

a maze and the code blocks that the student will have access to in order to solve

the maze. A Lesson is loaded into the GUI when the GUI is first started, and

when students change the Lesson manually.

- Curriculum:

In context of the management website, a Curriculum is a linked series of

Lessons, hosted as a data object on the Management website. Teachers or other

managing users can define a Curriculum and set up which lessons they wish to be

included in it, as well as specify the order that these lessons should proceed in.

When a user on the GUI loads the “next” or “previous” lesson, it is the

186

Curriculum that is referenced to determine which lesson is in fact “next” or

“previous”.

- Students:

All users who utilize Genost will have a Student account on the Management

website, though only teachers and other managerial users will have access to the

management content. Creating user accounts for each student allows us to track

student activity – when interacting with the GUI, all students must first log into

their Student account, and from then on their activity can be recorded, tracked and

analyzed.

- Class:

A Class is a logical grouping of Student objects. A teacher may set up their Class

to contain all their students, and then associate one or more Curricula with the

Class. It is through the Class object that students access the Curricula, and

therefore how they load in their lessons. The Class object also is where the

various metrics, such as student completeness, are centered and reported.

Figure 23 shows a screenshot of the management website’s Class report, which shows a

list of lessons for the class, a list of students for the class, and a report showing which

students have completed which mazes. In this way, the Management Website may serve

187

as both a customizing tool, allowing teachers to set up mazes and toolboxes, an

organization tool, allowing teachers to set up classes and curricula, and as a reporting tool

or gradebook, allowing teachers to see how their students are doing.

3.6.1. Management Website Design

The primary design goals of the management website are to be easy to use (T1) and to

allow users to quickly and simply set up powerful customizations (T3). Furthermore, the

feedback functionality supports T4 in a broader sense, as it will allow teachers and

researchers to get feedback on their educational techniques, improve these techniques,

and ultimately teach computational thinking education more effectively.

The website itself is built using the Drupal35 content management system, and uses

RESTful web services to communicate with the GUI, simulator and robot. Because this

website is fairly simple, no more needs to be said about it.

3.6.2. Management Website Technology

As mentioned above, the management website was built from the Drupal CMS, which is

written in PHP. Drupal is an extraordinarily flexible tool and this is why it was chosen for

our management website. It also has a very active community which has developed many

“modules” to extend the base CMS. Some of these modules, like Views36, have allowed

35 https://www.drupal.org/

36 https://www.drupal.org/project/views

https://www.drupal.org/
https://www.drupal.org/project/views

188

us to easily generate useful displays of student data, such as that seen in Figure 23. Other

modules, like the Taxonomy module37, allow us to easily define, create and categorize

large amounts of data; the Taxonomy module was used to store all the data collected on

the student interaction with the software.

37 https://www.drupal.org/documentation/modules/taxonomy

https://www.drupal.org/documentation/modules/taxonomy

189

Figure 23. Screenshot of the Management Website

One of Drupal’s very useful functions is the “menu hook” functionality38, which allows

one to define an arbitrary URL and associate it with a custom function. The function may

38 https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_menu/7

https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_menu/7

190

be written in PHP and can therefore perform arbitrary activity, and can return any data to

the system that requests the URL. In this way we could use easily define as many

RESTful services as we needed and program them to do whatever we needed them to do.

3.6.2.1. Technical Challenges

The “menu hook” solution for defining the RESTful services was chosen only after trying

many other solutions. One solution which is representative of the ones we tried is the

Services module39, which allows the definition of RESTful services through the website

front end. While this module is useful for creating certain types of services (mostly those

that allow the creation, updating, and selection of Drupal content items or “nodes”) it

does not allow us to define the more arbitrary, functional services that we needed.

The “menu hook” solution was one of the last solutions tried due to its lack of support for

creating the RESTful services – all relevant items had to be created by scratch when

using the “menu hook”. However, after trying it we found that this did not require nearly

as much effort as expected, and so this solution was the one we settled on.

3.7. THE CURRICULUM

As has been mentioned many times, the Genost system consists of two major parts: the

software, and the curriculum. The previous sections have all dealt with various aspects of

the software (or the hardware, in regards to the robot.) This section will focus entirely on

39 https://www.drupal.org/project/services

https://www.drupal.org/project/services

191

the other half of the Genost system, the curriculum. The software is a tool which has been

designed to be maximally effective in teaching computational thinking skills – the

curriculum, however, is where these skills are actually taught.

As part of this thesis, we have designed a curriculum for both theoretical reasons (we

wish to design not just the tool but also to explore its use) and practical reasons (we need

a curriculum with which to test our system.) Another motivating factor in developing the

curriculum is the benefits that pairing a curriculum with software bring, as discussed in

IG4.

3.7.1. Curriculum Overview

The subject of our Genost curriculum is computational thinking, and we teach in two

major ways: first, by introducing the fundamental programming structures (loops, if

statements, variables, etc.) as general concepts (this covers CG1 and CG2) and second,

by teaching the skills involved with analyzing a problem, breaking it down, and turning it

into an algorithm.

The curriculum is divided logically into four sections. These sections are each dedicated

to introducing a different fundamental programming structure; the theme of algorithm

design is dispersed throughout.

192

The four sections are:

1. Actions: introduces the basic robot actions and procedural programming

2. Loops: introduces the two Loops available in Genost, as well as basic algorithm

design

3. Waits: introduces the Wait statements, as well as generalized algorithm design

4. Ifs: introduces the If statements and their various uses, and ties the concepts

together.

It should be noted that this curriculum does not include Variables or Function, even

though the Objective G language does contain this functionality. We did not include these

items because our curriculum, as it stands, is already very large, and we would not be

able to effectively teach these large concepts with the little time we had to test. Future

iterations of the curriculum will include sections for these concepts.

Each of the four sections described above is divided up into multiple subsections. Each is

focused on a subtopic of the overall section topic – for example, a subsection of the Loop

section might focus on Loop For specifically. The subsections are themselves divided up

into individual lessons – there are almost always four lessons per subsection, though

occasionally there are more. Each lesson comprises a maze and a worksheet. The maze is

designed to require use of the subsection topic to (easily) solve, and the worksheet is used

to help the student solve the maze.

193

The worksheets usually contain questions that the students are asked to answer. The

questions ask the student to think about the topics at hand, and usually involve breaking

down a problem into subproblems, selecting solutions for the subproblems, and putting

them back together to create a final algorithm. Example worksheets may be seen in

Appendix C.

The four lessons in a subsection follow a “fading” progression, an approach described by

Atkinson that involves first teaching a topic through a complete example, then slowly

working the student through examples of increasing incompleteness, until finally the

students are asked to solve a full problem. Research on this fading technique has found it

to be an effective method of knowledge transfer (Renkl, 2002). We “fade” through the

use of four sequential lessons per topic, each of which are described below.

The four lesson model is as follows:

1. Initial Lecture: the first lesson is usually provided in the form of a lecture, which

introduces the topic of the subsection. The general idea behind the topic is

covered, as well as the need for the structure, and its uses. Each lecture also

includes a worked example code exercise in which the instructor walks students

through the development of an algorithm. The algorithm walkthrough focuses on

the structure being taught; the instructor explains the development every step of

the way, and the students follow along on their own computer. The focus of the

initial lecture is introducing students to the concept. A review recently conducted

194

by Atkinson et al has concluded that this worked example method of teaching

does provide real, flexible knowledge transfer (Atkinson, 2000); we are therefore

confident that this method of introducing a topic will provide a solid foundation

for students to work through the subsequent lessons.

2. Guided Practice: the second lesson is provided through a handout worksheet.

The worksheet serves as another worked example, as it walks students through the

development of a second algorithm, which again features the programming

structure being taught. The worksheet will involve basic questions that will walk

the student through breaking down the problem and developing the algorithm.

The focus of the guided practice is to build confidence in the new concept.

3. Simple Exercise: in the third lesson the students are given a simple maze to solve

that requires use of the topic structure. Usually, the simple exercise will involve

some questions that will help the student break down the problem and develop the

algorithm. The goal of the simple exercise is to test the student’s familiarly of the

concept.

4. Challenging Exercise: in the final lesson the student is given a more challenging

maze to solve, and is given very little or no guidance in solving it. The student can

use the skills he learned from the previous worksheets and his own creativity to

solve the maze. The goal of the challenging exercise is to challenge the student’s

mastery of the concept.

195

For most lessons, the subsection topic is taught through direct instruction. In some

lessons we intentionally have the student to make errors, in order to illustrate a principle

or show a common mistake, as well as how to recover from these errors. In other lessons

we have the student solve a maze in an inefficient or difficult way, in order to illustrate

the need for a new structure. Often a certain maze will be used multiple times throughout

the curriculum – the first time it is used it will be solved inefficiently using early

techniques, and later on it will be solved in a more efficient way using better techniques.

It should be noted that this curriculum is designed to be used with the GUI and the virtual

worlds in the simulator, and does not utilize the robot. We discussed our reasons for not

using the robot in this curriculum in Section 3.5.2.

3.7.2. Curriculum Topics

This section will cover the different topics covered in the curriculum. We will cover each

of the four sections and briefly describe the subsections within them.

3.7.2.1. Section 1: Actions

Section 1 is intended to introduce the basic operation of the Genost software, the

definition of the Genost language, the Action blocks, Sockets and Parameters. A basic

introduction to breaking down a problem and building an algorithm is provided.

196

Section 1 has two subsections:

- Section 1.1: this subsection focuses on introducing the Drive Distance action,

Sockets, and the Integer data block. It only has two lessons, both of which are

lectures.

- Section 1.2: this subsection focuses on introducing the concept of procedural

code flow and the Turn Degrees action. Section 1.2 contains the standard four

lessons, plus an additional challenging lecture to make five lessons total.

3.7.2.2. Section 2: Loops

Section 2 is focused on two major subjects: introducing the concept of loops, and fully

introducing problem breakdown and algorithm design. In this section, the algorithm

design steps are taught very mechanically – students are told to use the visual patterns in

the maze to determine how an algorithm should be broken down, and the visual patterns

are introduced as directly indicative of what processes and code blocks should be used to

solve them.

Section 2 has five subsections:

- Section 2.1: this subsection introduces loops, and teaches the Loop For block. It

also introduces the algorithm design process more fully than was covered in

Section 1. It has the standard four lessons.

197

- Section 2.2: this subsection introduces the use of sequential Loop For blocks, and

continues teaching the algorithm design processes. It also introduces the concept

of setting up the system to run a loop – that is, positioning the robot in a certain

way solely for the convenience of the loop. It has the standard four lessons.

- Section 2.3: this subsection introduces the use of nesting with Loop Fors.

“Looping loops” is introduced and integrated into the algorithm design process.

Again, this has the standard four lessons.

- Section 2.4: this subsection introduces the use of the Loop Until, which

necessitates the introduction of Conditions. Using Loop Untils allows us to write

general code that can solve multiple mazes, and techniques to do this are

introduced. The four standard lessons are used.

- Section 2.5: the final subsection combines Loop Until and Loop For and uses

both sequential and nested loops. A technique is introduced that allows the robot

to drive forward forward until a condition is met. The four standard lessons are

used.

3.7.2.3. Section 3: Wait Statements

Section 3 introduces the Wait statements, which enhances the generality of code by

allowing the robot to continuously perform an action until a certain condition is met. The

198

Drive and Turn blocks are introduced as separate concepts from Drive Distance and Turn

Degrees. The difference between the algorithm’s execution and the robot’s movement is

explored. This section has three subsections.

- Section 3.1: the first section in Section 3 introduces the Wait Until block, the

Drive block, and the difference between code execution and robot movement.

Algorithm design is explored in greater detail here, with an eye towards

generality. This section has the standard four lessons.

- Section 3.2: this section combines Wait Untils and Loops, and a more general

form of algorithm analysis is introduced. This newer form of algorithm design

moves away from the mechanical form used in Section 2 to a more creative form.

This section has the standard four lessons.

- Section 3.3: this section teaches Wait For, and continues teaching the difference

between algorithm execution and robot movement. Wait Fors and Wait Untils are

combined to allow greater and safer generality. This section has the standard four

lessons.

3.7.2.4. Section 4: If Statements

Section 4, the final section, introduces If statements and the concept of the algorithm

executing differently depending on the circumstances. Ifs, Else Ifs and Elses are all

introduced, and at the very end of Section 4, Logical AND and OR are introduced.

199

Algorithm design is taught in its fullest and most creative method. This section has four

subsections.

- Section 4.1: this section introduces the If block, which is introduced in the

context of executing “additional actions” in certain circumstances. Algorithm

design is once again tweaked to accommodate this new and more general

possibility. The standard four lessons are used here.

- Section 4.2: this section introduces the Else block, and an If paired with an Else is

described as allowing the program to make a decision or choice with two

possibilities. This allows for the creation of very general algorithms. The standard

four lessons are used here.

- Section 4.3: this section introduces the Else If block, and this block is described

as allowing the program to make choices with 3+ outcomes. The method of

reducing a single choice between n options to a series of choices between two

options is described. The standard four lessons are used here.

- Section 4.4: the AND / OR logical blocks are introduced along with complex

logical conditions. Students are shown how to convert complex If-Else If-Else

chains into smaller chains using these logical blocks. Four lessons are used here.

200

This concludes the review of the Genost curriculum topics. It is important to note that this

curriculum is not the only curriculum that can be used with Genost, though we believe

that it is a fundamental or “core” curriculum that other curricula can be based on.

3.7.3. Curriculum Design

We have described the layout of our curriculum above, and to some degree justified our

general design. In this section we will describe the design goals, justification and

implementation of some of the major elements of the curriculum, including both aspects

of the content and aspects of its presentation.

3.7.3.1. Goal 1: Teach Fundamental Programming Structures

In Section 3.7.1 we described the two major focuses of our curriculum. The first of these

focuses, teaching the fundamental programming structures, will be described in this

subsection. The other major focus will be discussed in the next subsection.

“Fundamental programming structures” refers to the structures in programming that are

common to most or all programming languages and paradigms. Variables, Functions,

Loops, and Ifs are all examples of these fundamental structures. They are fundamental

because, ultimately, all algorithms are made up of various combinations of these

concepts.

In order to program in any language, a student must have some understanding of the

general concepts behind the code they are writing. As we have shown in Sections 2.3.1

201

and 2.3.2, however, these concepts are not taught generally in US introductory computer

science education – they are instead taught specifically, in the context of a particular

programming language.

We believe that a student with a grasp of these fundamental concepts as general ideas

will easily be able to read algorithms that implement them regardless of the syntax,

fulfilling CG1, and will also be able to effectively break down problems and build

algorithmic solutions, fulfilling CG3. It is for these reasons we wish to teach these

concepts directly as general concepts, instead of indirectly within the context of a specific

formal language. Furthermore, teaching these items as general ideas transcending

languages instead of specific items already encoded in a formal language is directly in

line with CG2, abstraction.

Our curriculum focuses on teaching four of the major fundamental programming

structures: Actions (the concept of a structure that results in discernible output), Loops

(the concept of a specific section of code repeating), Waits (the concept of pausing

execution of an algorithm for a certain amount of real-world time) and Ifs (the concept of

choosing between alternatives, i.e. branching). Each major section focuses on one of

these, and they are explicitly explained as general concepts to the students.

The usefulness and “purpose” of these concepts are taught in a few different ways. As

mentioned above, in each section we directly explain to students what the section topic is

good for. We also introduce the need for these structures, and their common uses. In

202

some cases we introduce these items in an indirect manner. For example, some lessons

ask students to solve a maze that would best be solved using one concept, but we do not

allow the students to use this concept in the solution. In these cases the student solution is

inevitably messy, inefficient and generally poor, and when comparing this poor solution

to a solution that utilizes the proper concept, students can easily see why the concept is

useful, as well as how the concept can be used.

Our approach to teaching these concepts closely mirrors the ITEST group’s description of

a Use – Modify – Create learning cycle. In the ITEST cycle, the first step, Use, asks the

student to simply use the concept, to see it in action. The second step, Modify, asks the

student to modify an existing algorithm using the concept. Finally, the third step, Create,

asks the student to create an algorithm from scratch with this concept (Allen).

Our four-lesson cycle is very similar to this. The first lesson, the lecture, asks students to

Use the concept. The second lesson, a guided worksheet, has students both Use the

concept and Modify its use in some ways. The third lesson, a simple challenge, asks

students to either Modify an existing algorithm or Create a new one, depending on the

lesson. The fourth lesson always has the students Create a new algorithm using the

concept.

In this way, our curriculum attempts to teach the fundamental programming structures.

203

3.7.3.2. Goal 2: Teach Problem Breakdown and Algorithm Design

The second of our two major focuses in the curriculum is the ability for students to break

down a problem and create an algorithm that solves it. We have argued above for the

importance of this skill for computational thinking. One of the four components of

computational thinking, CG3, is directly dedicated to it. As always, CG2, abstraction, is

also an important part of this skill.

We teach this ability explicitly all throughout the four sections of our curriculum. A

common mantra that students are taught is the “four steps of algorithm analysis”, which

are:

1. Fully understanding a problem

2. Breaking the problem down into subproblems

3. Solving the subproblems

4. Combining the subproblem solutions to form an algorithm

In most lectures (the first lesson of the four-lesson model) students are explicitly walked

through these four steps to solve a problem. In the guided worksheet (the second lesson

of the four-lesson model) students are usually directed to proceed through each of these

steps by solving worksheet problems corresponding to each step. These worksheet

problems are also sometimes present in the third lesson.

204

Students are usually asked to work through the first and second steps on their worksheets

by literally drawing on a picture of the maze to indicate their division of the maze into

subproblems. Students are encouraged to look for similar shapes in the maze to help them

break the maze down. See Figure 10 for an example of a maze with drawings to highlight

how it can be broken down into subproblems: the large maze is broken down into four

separate identical crosses. These function as subproblems whose solution can be looped

to create a full algorithm to solve the maze.

Students work through the third and fourth steps by writing pseudocode in special text

areas on their worksheets. Students are asked to write out code for the individual

subproblems at first, and then to write pseudocode that combines the individual solutions,

along with “glue code” that is inserted in between the subproblem solutions to allow them

to work together. Most guided worksheets end with having the student write out the

entire algorithm in pseudocode.

Early worksheets in Section 2 tend to teach the algorithm design skill in a very

mechanical, procedural way: students are told to rely on the visual appearance of the

maze to break down the algorithm, and to find guidance in repeating physical shapes (like

the crosses in Figure 10). In Section 2 the combining step, Step 4 in the list above, is

always a loop, and students are told to select the number of iterations by looking at the

number of repeating physical shapes there are. In this way the skill is first introduced

mechanically.

205

In Section 3 and Section 4, as students are taught to solve multiple mazes with the same

algorithm, and are introduced to heuristics to help them in doing so. Students are

encouraged to walk through an algorithm in their heads, to abstract away certain elements

while paying attention to others. By Section 4, students are given little mechanical

guidance, and the guided algorithm analysis is mostly performed with heuristics, though

students are still asked to keep track of their algorithm solutions and subsolutions by

writing down their pseudocode.

In this way, our curriculum attempts to teach the ability to break down problems and

design algorithms.

3.7.3.3. Goal 3: Teach Habits of Good Program Design

Once again, this goal corresponds directly to an element of computational thinking, in

this case CG4 (algorithm quality). As we have argued before, we do not only want to

teach students to design algorithms, we want to teach them to design good algorithms. In

our curriculum we tell the student that high quality algorithms are not just better

technologically but also better ethically, and that high should be considered just as

important as functionality.

The importance of high quality in programming is discussed heavily and reinforced

throughout the curriculum. Just like with problem breakdown / algorithm design, the

curriculum contains a mantra about programming quality that is repeated many times

206

throughout the lessons, and is specifically tested on the pretest and posttest. The mantra is

describes the “three goals of programming”, which are:

1. Reduce the size and complexity of your algorithm.

2. Create algorithms that are more general and can be used in multiple mazes.

3. Have fun programming!

Goals 1 and 2 focus on quality – Goal 3 is a reminder that high quality programming is

fun.

Algorithm size reduction is consistently taught and practiced. Students are reminded

whenever they write pseudocode that “less is more”. Many worksheets include a specific

number of blank lines for pseudocode that match up with the most minimal (and therefore

least complex) algorithm possible. The practice of cutting out unnecessary code is

consistently encouraged.

Beginning with late Section 2, and continuing with earnest in Section 3 and 4, students

are not only encouraged but also required to write algorithms that are general and

reusable. Most lessons in Sections 3 and 4 involve creating a single algorithm for

multiple mazes, which requires the introduction of reusability and generality into the

algorithm design process.

In this way, our curriculum attempts to teach the production of high quality algorithms.

207

3.7.3.4. Goal 4: Design Curriculum to Scaffold Students

In IG4, we noted the applicability of Ausubel’s “anchoring ideas” or “advance

organizers” to programming education (Ausubel, 1968). We argued in that section that in

order for students to be able to explore programming, they must first be instructed in the

fundamentals (this is why we reject a heavy play emphasis for our introductory

curriculum). A similar argument may be made that in order to understand advanced

applications of the fundamentals, students must first understand basic applications.

We have put considerable effort into designing the curriculum such that students are

never asked to utilize a skill or apply knowledge that has not first been deeply taught. The

four major sections are arranged in such a way that each section can be taught using only

the skills used up to that point. This applies not only to the major fundamental

programming structures (i.e. we teach Loops without utilizing Ifs) but also to the problem

breakdown techniques, algorithm design techniques, minimizing techniques, and all other

items that have been discussed so far. Each subsection contains (almost always) four

lessons presented in a specific order to deeply teach the concept. Within the four-lesson

model, a concept is always first introduced, explained and specifically applied before the

student is asked to utilize it on their own.

Even combinations of fundamental structures and techniques are held off from until both

structures involved in the combination have been taught individually. For example, in

Section 3, we do not utilize Loops with Waits until Section 3.2, after we have introduced

the concept of Waits on its own in Section 3.1.

208

In addition to the curriculum design, we also scaffold through clever use of the

customizability of the Genost GUI (described in Section 3.4). In that section we noted

that each lesson has its own “toolbox”, that is, has its own XML file defining which

blocks are available for use. Instead of making all blocks be available in every lesson, we

limit the blocks to only those that the student has learned so far. This helps us scaffold the

student – the student is not overwhelmed by a large number of blocks before he has

learned them all, and the GUI “learns” along with him as it makes more blocks available.

In this way, our curriculum attempts to scaffold the students as they learn.

3.7.3.5. Goal 5: Strike Balance between Instruction and Creativity

In T5, we discuss the need for the curriculum to be focused on explicitly teaching

computational thinking skills first and foremost, as opposed to other newer systems

which focus more on play, storytelling or competition. The reasons for this are discussed

in the previous subsection (Section 3.7.3.4), in IG4 (Section 2.4.9) and throughout

Section 2.4. However, we also do not want to exclude creative action entirely. A balance

must be struck, and this is what we have attempted to do.

As described above, we initially teach algorithm analysis mechanically, but later move on

to allowing students to use their own creative heuristics once we are confident they have

been properly scaffolded. Similarly, the four-lesson model features explicit instruction in

209

the first two lessons, and allows for creative problem solving in the remaining two. These

are some of the ways that we attempt to strike the balance between instruction and

creativity.

Genost’s customizability and maze building functions may also be leveraged to allow

some student creativity, once the explicit concepts have been taught. For example, a

possible future section of the curriculum may involve allowing students to make their

own mazes that are centered on a certain concept, or are intended to teach a certain

fundamental structure. After building the maze, students may then share (Chamillard,

2000) them with their friends. This would allow for the social creativity that Resnick and

others often extol, while still providing a direction for the student to work in. Although

this feature is not currently part of our curriculum, we have considered it and may

implement it in future versions, as we will describe more in Section 6.4.

3.7.3.6. Goal 6: Individual Effort

The final goal for the curriculum has much more to do with the way the curriculum is

taught than the curriculum itself. We have attempted to teach our curriculum such that all

lessons are an individual effort, and that students work on their own as much as possible.

There are many benefits to individual effort. For example, Chamillard has noted that it

reduces plagiarism and allows for teachers to better evaluate student learning

(Chamillard, 2000). Perhaps more importantly, however, individual effort ensures that

each student is responsible for his or her own learning.

210

Many arguments for group work in programming education stem from the idea that it

helps teach the teamwork skills necessary for working in industry (see (Williams, 2002)

for an example of this). This may be true. However, our curriculum is centered on

computational thinking education – something that precludes most other programming

skills, including working on a team with other engineers. For this reason we do not

believe that anything is lost by having students work individually, and much is gained.

As our curriculum is designed, there is technically nothing stopping it from being taught

using student groups. However, some aspects of the system do encourage individual

effort – each GUI allows only one student to log on at a time, and the Management

Website’s tracking is set up under the assumption that each Genost account represents a

student, and not a team. In our own tests we have had each student work individually,

though discussion with other students was allowed.

These are some of the ways we have attempted to implement an individual education

basis in Genost.

3.8. COMPARISON OF GENOST TO NEWER SYSTEMS

In Section 2.4 we performed a review of eight different “newer” systems that attempt to

teach computational thinking ideas, and it was from this review that we took lessons and

takeaways for what an “ideal” system would look like. These lessons and takeaways are

specifically described in Section 2.4.9. Using those lessons, we designed and built the

Genost system, described in great depth above. We will now perform a direct comparison

211

between Genost and the other eight systems, utilizing the lessons in Section 2.4.9 as our

items of comparison. To see a visual representation of this comparison, please see the

charts in Appendix G.

3.8.1. Drag and Drop Language

Judging by its universal adoption in almost all recently created educational systems, a

drag and drop language is virtually a requirement for an introductory educational system.

Alice, Scratch, Lego Mindstorms and Microsoft Robotics Developer Studio all contain

this feature, while older systems such as Logo, Myro, IBM Robocode and FIRST

Robotics Competition do not. Genost does feature a drag and drop language, as described

in Section 3.2.

A drag and drop language brings many benefits with it. By its very nature, a drag and

drop language makes it impossible for students to make syntax errors – this is a benefit

present in all the reviewed systems containing the drag and drop language, including

Genost. These five systems also implement their drag and drop languages such that

actions – the commands being sent to the item being programmed – are abstracted to a

high level, a feature argued to lighten the cognitive load for younger programmers

(Caitlin Kelleher, 2007).

There are certain beneficial features of drag and drop languages that are not implemented

by all new systems containing such languages, however. For example, due to a

language’s graphical design, the language “blocks” can be shaped or colored in such a

212

way that their appearance indicates their use. Most systems like Alice, Scrath or

Mindstorms feature this ability, but Microsoft Robotics Developer Studio does not.

Genost does contain this feature: we currently color the blocks differently depending on

their use, and in the future we plan to alter their shapes as well.

Just as there are many benefits to the drag and drop languages, there are also certain

items that we wish to avoid when implementing them. A major item we wish to avoid is

oversimplifying the language, something that we have argued that Lego Mindstorm’s

NXT-G language does by, for example, limiting the depth of nesting. Genost does not

feature any artificial limitations of this nature, and any algorithm that can be created in a

formal procedural language can ultimately be created in Genost.

Finally, we note again that the “look” of a language can help or hinder student transition

from the introductory system to a formal language. We have argued above that languages

like VPL in MRDS or the Mindstorms NXT-G language, which are visually dissimilar to

formal languages and look more like flowcharts, can hinder the transition to an actual

formal language (we have also argued that the visual structure of formal languages, in

some ways, orients students towards certain computational thinking ideas). Genost’s

language is designed such that Genost algorithms are visually similar to algorithms

written in a formal language, reading from top to bottom and containing indentation

where appropriate.

213

3.8.2. Virtual Worlds

We argued for the enormous benefits of virtual worlds in programming education in

Section 2.4.1 and elsewhere. It is apparent that this feature is widely recognized as

beneficial, as all but three systems (Myro, FIRST Robotics Competition and Lego

Mindstorms) feature virtual worlds as part of their regular educational system. Genost

does feature a virtual world, as described in Section 3.3.

Genost’s virtual world is somewhat different in nature to the virtual worlds featured in,

for example, Alice or Scratch. The Alice and Scratch virtual worlds are very open in

nature, allowing for students to create wide-ranging stories with many characters (in the

case of Alice) or manipulate 2D graphics and media in just about any way, in the case of

Scratch. We have argued that this openness, while often touted as beneficial, may

actually be a hindrance when teaching introductory computational thinking skills.

Sources such as (Paul Mullins, 2009), (Orni Meerbaum-Salant, Habits of Programming in

Scratch, 2011), (Orni Meerbaum-Salant, Learning Computer Science Concepts with

Scratch, 2013) or (Maloney, 2008) have noted that some students may be distracted by

the open-world playfulness of these virtual worlds to the detriment of their education.

Genost has attempted to alleviate this by providing a less open, more directed virtual

world in which students are given an explicit goal to solve. The Genost world is not fully

locked down, as students have complete freedom to choose how to pursue this goal; we

believe that this design is a good compromise that will better direct students towards

learning computational thinking, while still allowing them to have fun.

214

3.8.3. Robots

Just as virtual worlds bring educational benefit and motivation to students, so we have

argued in Section 2.4.1 and elsewhere that robots also bring educational benefits and

motivation, though in a different way and to a different degree than virtual worlds. If

paired correctly we believe that virtual worlds a nd robots may complement each other,

and for this reason we want our system to include a robot as well as a virtual world. Four

of the eight “newer” systems feature a robot – these are Myro, FIRST Robotics

Competition, Lego Mindstorms and Microsoft Robotics Developer Studio. As described

in Section 3.5, Genost also features a robot. Note that only Microsoft Robotics Developer

Studio and Genost feature both virtual worlds and robots.

While the four mentioned systems do feature robots, these robots are often implemented

in ways that we find problematic. For example, the FIRST Robotics Competition system

and the Lego Mindstorms system both focus heavily on building the actual robot, which

certain studies have noted takes time and emphasis away from learning computer science

(Delden, 2008) (Buckhaults, 2009). Genost attempts to avoid this problem by not asking

students to build the robot itself, and not involving any mechanical engineering items in

the Genost curriculum. This decision has an added benefit of preventing any teacher or

student alienation due to unduly technical content, which has been noted to negatively

affect adoption of more complicated systems (Tucker Balch, 2008) (Long, 2007).

Genost took inspiration from the Myro system and added to our robot design the goal of

having the algorithm controlling the robot be executed on a local computer and

215

transmitted to the robot, instead of executing on the robot itself. This design choice was

made for the benefits described in Section 3.5.1.5 and elsewhere in this thesis: namely,

the ability to debug algorithms or step through the code as it executes. Most other robotic

systems, such as FIRST, Mindstorms or Microsoft Robotics Developer Studio, do not

contain this feature. Myro implemented this feature using local wireless communication

to transmit commands to the robot. For reasons described in Section 3.5.3 we attempted

to implement this using HTTP. While we were not able to implement this feature for this

release, we plan to implement it in future releases in order to attain the benefits it brings.

Aside from Genost, only Myro contains this feature.

Finally, the Genost system, due to its general, customizable design is usable with multiple

robots. FIRST and MRDS also contain this feature; Myro and Mindstorms do not. We

believe that the ability to build and work with multiple robots makes a system more

adaptable and allows it to be useful in more varied environments and classrooms – for

this reason we are proud to have this feature in Genost.

3.8.4. Curriculum

From the beginning of development, Genost was developed with the needs of the

curriculum in mind, and our finished product has an official curriculum to go along with

the software. All things being equal, it would seem that a system that has a curriculum to

go with it is better than one that does not (since software without a curriculum is simply a

tool). Furthermore, we have explicitly argued above that developing these software and

216

the curriculum alongside one another allows for better “fit” between the two, as opposed

to a curriculum developed after the fact (perhaps by a third party).

Very few systems actually feature an official “curriculum”. Myro and Alice both have

curricula developed and released by the same entities that produced the software, but

Scratch, Mindstorms, and Microsoft Robotics Developer Studio do not. A curriculum is

not applicable for FIRST Robotics Competition and Robocode (since these are more of a

competition and a game, respectively), and it is unclear whether Logo has an official

curriculum or not due to its considerable age. Ultimately, then, the fact that Genost has an

official curriculum that was developed alongside the software differentiates it

significantly from the other systems.

The content and structure of Genost’s curriculum also differentiates it from the other

systems. Genost teaches computational thinking explicitly through the use of procedural

programming – we put the computational thinking instruction first and foremost. Contrast

this with systems like FIRST, Alice or Scratch which have a heavy competition,

storytelling or “tinkering” focus, respectively. We have noted above in Section 2.4.9 that

these features are not necessarily bad, and in fact may be quite beneficial, but that they

should not be the major focus for introductory computing education. Genost attempts to

attain the proper balance between explicit instruction and allowance for creativity

through its four-lesson “fading” structure, in which the first two lessons for a particular

topic are guided, and the final two lessons allow the student to solve the problem in their

own way.

217

We have noted above that Microsoft Robotics Developer Studio, in contrast to all of the

other systems (Genost included) attempts to serve multiple roles – it attempts to be both

an educational system and a useful IDE for industrial robot prototyping and development,

and in doing so plays neither role well. Genost consciously avoids this mistake and

attempts to focus only on being an educational system.

Finally, we note that the Genost curriculum is designed to be simple and fundamental,

and to avoid inappropriately advanced items, such as the computer vision or AI found in

the Myro system. We intend Genost to be used only for introductory computer science,

and therefore have limited our curriculum accordingly.

3.8.5. Other

In this last section of the comparison between Genost and the eight “newer” systems

reviewed in Section 2.4 we will discuss some of the differences that do not fit anywhere

else.

A major difference between Genost and these other systems, and one that we are most

proud of, is Genost’s ability to be extended and customized. Genost’s mazes, code

blocks, lessons, and even curriculum can all be customized by end users. All of these

items can be created, uploaded and used within the Genost system. Almost no other

system that we have considered features customization to this degree. The only system

aside from Genost that features this customizability is Microsoft Robotics Developer

Studio, which allows end users to develop their own DSS services. We consider Genost’s

218

customizability a large benefit in making the system adaptable to different classrooms,

easy to develop for, and in general, robust.

We argue above that allowing students to visually follow along with their program code

as their algorithm executes (thereby “pairing” the code and the execution) provides

educational benefits. Genost features this “pairing” in the sense that the GUI and the

simulator live in separate windows, and students may arrange these windows such that

both the code and the simulator are simultaneously visible. In the future we plan to make

this pairing more explicit, and perhaps even enforced. This feature is not present in many

other systems – none of the four code-based systems feature it. Only Alice and Scratch

contain this feature. This feature is not applicable to Lego Mindstorms and Microsoft

Robotics Developer Studio, because these systems use a real robot instead of a simulated

one.

The last item that we will discuss is the integration of a system with social media, which

is the only feature that we identified as valuable that Genost does not implement. Scratch

is the only prevalent example of this – as described above, all Scratch projects may be

uploaded and shared using Scratch’s own social media site. This social feature has been

described as a primary benefit of the Scratch system. None of the other seven systems we

reviewed contain this feature. Genost also does not contain this feature, and we do not

have any explicit plans to add it at this time. We chose not to include this due to the

difficulty of implementation, and the relative small benefit that it would bring to the

Genost system as currently designed. While social media integration does have the

219

potential to increase both the motivational aspect and the educational efficacy of a

system, we are not confident that the increase such an integration would provide would

be worth the considerable time and expense that the integration would bring.

3.8.6. Comparison Conclusion

The above five sections feature comparisons between Genost and the eight systems we

reviewed. The following table summarizes these comparisons by showing the number of

positive and negative features in each system:

Table 3

Number of positive and negative features displayed by each system

System # Positive Features # Negative Features

Logo 3 1

IBM Robocode 1 2

Myro 3 2

FIRST Robotics Competition 2 5

Alice 7 1

Scratch 7 1

Lego Mindstorms 5 5

Microsoft Robotics Developer Studio 6 2

Genost 11 0

This table shows that Genost contains the largest number of positive features (11), and

the smallest number of negative features (zero), out of all of the systems. Genost does not

implement a single negative feature, and implements all but one positive feature.

220

The fact that Genost is, according to this analysis, the “best” system is perhaps not

surprising, considering that Genost was designed specifically with the lessons and

takeaways of these systems in mind. Ultimately, it would appear that the careful planning

that went into Genost’s design therefore has paid off, as our analysis shows that Genost,

at time of writing, is the superior system for teaching introductory computer science.

3.9. GENOST DESCRIPTION CONCLUSION

In the above section, we have described and justified the Genost software and curriculum.

Section 3.8 shows that Genost implements almost all the positive features, and none of

the negative features of the ideal educational system, as described in Section 2.4.9. By

this analysis, Genost is superior to the eight other prominent introductory computer

science education systems on the market.

Section 3 argued for Genost’s effectiveness in teaching computational thinking by

describing its implementation of features that have been proven to work in other systems,

and its avoidance of features that have proven to hinder student education. This argument

alone is not sufficient to establish Genost’s efficacy in teaching computational thinking.

For this reason we have run two tests to evaluate whether Genost is in fact effective at

teaching computational thinking. The next section, Section 4, will describe the two tests

that we have run.

221

4. TEST DESCRIPTION

In order to determine whether our system was effective at teaching computational

thinking we performed two different tests. This section will describe the tests that we

held. For each test we will describe the design of the test, our recruitment efforts, the

number of students that participated, the allotted time and environment of each test, and

the data that was collected. We will discuss the actual results of the test in Section 5.

We held two tests: one test was held at the Arizona School for the Arts40, and this test

will be referred to as the “ASA test.” The other was held at Arizona State University

using students from ASU’s FSE100 (Introduction to Engineering) classes, and this test

will be referred to as the “FSE100 test”. In the rest of Section 4 we will first describe the

elements common to both tests. After this, we will discuss the ASA test first, and the

FSE100 test after it.

4.1. COMMON DESIGN OF THE TWO TESTS

In this section we will discuss the general design of the two tests, and the commonalities

between them in some depth. Both tests were roughly similar, though each had certain

unique elements that will be discussed in the following two sections.

Each test began by giving the participating students a pretest intended to measure

computational thinking. Students were then taught the Genost curriculum over a period of

weeks. At the end of the class, a posttest was given to measure computational thinking

40 http://www.goasa.org/

http://www.goasa.org/

222

ability again. The pretest and the posttest both used the same testing tool, and the same

testing tool was used for both the ASA and the FSE100 tests.

The two tests were carried out over different lengths of time, with different numbers of

students, and with different student grade levels. The same lecture slides, worksheets, and

mazes were used between the two tests, but the presentation of the material was adapted

to the differences between the tests. For example, the FSE100 test had less teaching time

overall, so less time was spent on individual lectures and topics as compared to the ASA

test.

Despite the differences, each teaching day in either test followed roughly the same

pattern. A certain number of curriculum subsections (usually two or three) would be

covered each day. Each subsection would begin with a brief lecture to the students. I was

the sole lecturer for these two tests. During the lecture we would often do examples,

which would involve the students following along with me as I developed an algorithm

illustrating the curriculum section topic. During these lecture exercises the students were

asked to build the algorithm on their own computers as I walked them through it.

After each lecture, the students were given a certain amount of time to complete the

worksheets and mazes for the subsection. Students were asked to work individually and

not in groups, though they were allowed to speak with each other and give each other

advice. Students were asked to finish worksheets and mazes that were not completed in

class outside of class, though this was not stated to be a requirement.

223

Both test designs were approved by Arizona State University’s Independent Review

Board. Copies of the approval are available upon request.

4.1.1. The Testing Tool

We created a single testing tool to be used as both the pretest and the posttest. The test is

intended to be measure of computational thinking ability in relation to the topics covered

during the curriculum, which are basic actions, loops, wait statements, if statements,

problem breakdown, and algorithm analysis. The questions are mostly stated in terms of

Objective G code, but due to Objective G’s clear design (described in Section 3.2.1) we

believe that anyone with computational thinking ability and critical thinking skills would

be able to understand the questions on the test.

The test has 13 questions. The questions on the test cover the following topics:

- Basic identification of fundamental programming structures (Question 1)

- Reading and evaluation of algorithms (Question 11, Question 12)

- Understanding algorithm design (Question 2, Question 3)

- Understanding algorithm execution (Question 4, Question 5)

224

- Understanding and applying fundamental programming structures

o Loops (Question 6, Question 7)

o Wait Statements (Question 8)

o If Statements (Question 9)

o Logical Operators (Question 10)

- Debugging (Question 13)

The test questions have many different formats. The formats of the questions are as

follows:

- Multiple choice (Question 7, Question 8, Question 9, Question 10, Question 13)

- True / False (Question 4, Question 11)

- Fill-in-the-blank (Question 2, Question 3, Question 6)

- Matching (Question 1)

- Ordering (Question 5)

- Free response questions (Question 12, Question 13 Extra Credit)

225

Each question takes up one full page on the test. At the bottom of each page is a sentence

stating “I don’t know how to solve Question #X” – students were instructed both verbally

and in the test directions to circle this sentence if they do not know the answer to the

question. This was included in an attempt to deter guessing.

Each question was worth one point, save Question 13, which was worth one normal point

plus one extra credit point. Questions with multiple parts were given a value of one point

overall, with the point distributed evenly over the different parts of the question. So, for a

question with three parts, each part was worth 1/3 of a point.

The full test may be viewed in Appendix D.

We argue that our testing metric is both reliable and valid. The reliability of the testing

metric will be evaluated through the use of Cronbach’s Alpha in Section 5.1. The validity

of the testing metric can be assessed by examining the questions and comparing their

content to the goals of computational thinking education listed in section 2.1. For

reference, those goals are:

1. Ability to Read and Understand Algorithms

2. Ability to Engage in Abstraction

3. Ability to Decompose a Problem into Solvable Processes

4. Ability to Identify the Quality of a Solution

226

Goal 1 skills are required to answer almost all of the questions on the test, since most of

the questions require students to read an algorithm and complete it. Specific questions

that focus on Goal 1 skills include Questions 5, 11 and 12. Question 11 asks students to

read an algorithm and evaluate whether it will work or not; Question 12 asks students to

read an algorithm and trace the path of the robot as it executes the algorithm.

Goal 2 skills are also required to answer virtually all of the questions, since abstraction is

required at all levels of computational thinking. Specific questions that require

abstraction include Question 1, which asks students to think of fundamental programming

structures such as loops or if statements as abstract items, and Question 4, which asks

students to move between two different levels of abstraction (the execution of the code

vs. the movement of the robot).

Goal 3 skills are required to answer Questions 2, 6, 7, 8, 9, and 10. Questions 6 – 10 all

ask the student to complete an algorithm, which requires the student to examine the

algorithm and the maze, break them down, and figure out what the best answer is from

the available choices to complete the algorithm. Question 2 asks students to explicitly

state the four steps of breaking down an algorithm.

Goal 4 skills are required to answer Questions 3 and 13. Question 3 asks students to

explicitly state some of the criteria by which a solution is judged for quality. Question 13

asks students to examine and debug a solution, to figure out why it doesn’t work and how

it can be fixed.

227

Skills in all four of the listed goals are required to complete the test. Therefore, we argue

that our test is a valid measure of computational thinking ability.

4.1.2. The Feedback Forms

In order to collect feedback on the Genost system, we created and distributed two

different forms to both groups of students that went through the Genost intervention.

Each form collected feedback on a different subject: the first form, which we will call the

Likert form, collected feedback on the Genost system as a whole, including the software,

the curriculum, and our presentation through the use of Likert scale questions. The

second form, which we will call the Free Response form, collected feedback specifically

on the curriculum and my presentation, through the use of free response questions. We

will describe both forms below.

The Likert form contained ten separate Likert scale questions that ask students to rate

their feelings on various metrics related to the Genost system as a whole. Three major

metrics were measured on the Likert form, which were:

- Ease of use of the Genost system (Question 1, Question 5, Question 8)

- Educational value of the Genost system (Question 2, Question 4, Question 7)

- Student enjoyment from using the Genost system (Question 3, Question 6,

Question 9)

228

Question 10 asked students to rate their overall satisfaction with their Genost experience

and therefore contains elements of all three metrics.

The Likert form may be viewed in Appendix E. Note that the Likert form had a field at

the top for students to enter their pseudonym. This field was inadvertently added and was

not caught until the forms had been printed. Students were told not to fill out this name

field.

The Free Response form contained four separate free response questions asking students

to provide feedback on the Genost curriculum and my presentation of it. The students

were asked to write down three things they liked, three things they disliked, three things

they would change, and any additional comments they had. Students were instructed not

to include specific software bugs or improvements in their feedback on the Free

Response form. The Free Response form had no field for students to fill in their

pseudonym, and students were instructed not to write this pseudonym anywhere on the

form.

The Free Response form may be viewed in Appendix E.

For both the FSE100 test and the ASA test, the feedback forms described above were

administered after participating students took the posttest.

229

4.2. ASA TEST

The ASA test was performed at the Arizona School for the Arts, a charter school located

in Phoenix, Arizona. The school serves students from grades 5 through 12, though the

students participating in our test were all in grades 7 through 12. Tracy Ryan, a teacher at

ASA, assisted us with organizing and carrying out the test.

The ASA test was a two-group design, with one group receiving the Genost treatment

and the other group receiving no treatment. We will call the group that received the

Genost treatment the independent group, and the group receiving no treatment the control

group. The two groups were not related and no student was a member of both groups

simultaneously.

Both the independent and control group were given the aforementioned pretest at the

beginning of the testing period. After the Genost treatment had been given to the

independent group, the posttest was given to both groups. This is the basic design of the

ASA test.

4.2.1. Student Numbers and Recruitment

The recruitment methods and number of students were different between the independent

and control groups. We will review this data for both of the groups in this subsection.

230

4.2.1.1. Independent Group

Our recruitment target for the independent group was 30 students between 7th and 12th

grade. Participation in the group was voluntary, and students were recruited through an

online form, advertised through email and in person at the school. Both parents and

students were informed of the opportunity. No incentive was provided for participation.

The online recruitment form was opened on August 19th, 2014, and an email

advertisement was sent out to ASA newsletter recipients on this same day. The text of the

advertisement may be seen in Appendix F. The online form was limited to 30 students –

students who filled out the form after it had received 30 submissions were added to a wait

list. Throughout the recruitment period, some students who had been part of the initial 30

signups withdrew their signup, and were replaced with students on the wait list.

29 students were present on the first day of the class. Due to one student not being

present, another student on the wait list was selected to participate on the second day,

bring the class up to 30 participants. Students were allowed to withdraw from the class at

any time, and 10 students did withdraw over the course of the Genost class. Ultimately,

20 students from the class completed the pretest, the Genost class, and the posttest, and

therefore our final independent group dataset consists of 20 students. No other selection

methods were applied to populate the independent group.

The final independent group contained 6 students in 7th grade, 10 students in 8th grade, 1

student in 9th grade, 1 student in 10th grade, and 2 students in 11th grade.

231

4.2.1.2. Control Group

The control group was recruited from a group of 7th to 12th grade students in a study hall

class. The class was asked to take the pretest at the beginning of the Genost intervention

period, and was asked again to take the posttest at the end of the Genost intervention

period. The control group therefore consists of the students from this class that took both

tests. Students were incentivized to participate by offering candy to participants.

Some small selection criteria was applied. Two students who were known to have high

programming ability, and were therefore unsuitable for introductory programming

education, were excluded from the control group. No other selection criteria was applied.

The final control group consisted of 17 students. The students’ grade level were self-

reported on the tests, and because not every student filled this out, we do not have

accurate grade level information for the control group.

4.2.2. Time Allotted

The Genost intervention that the independent group took part in was administered over

two weeks. Class was intended to be held for two hours after school on Monday through

Friday from 3PM to 5PM, making 10 days of class total. Due to unexpected events, class

was actually only held for 8 days – one class was cancelled due to unexpected weather,

and another was cancelled due to early release at ASA. Therefore, the total amount of

time students spent in the Genost intervention was 16 hours.

232

On most class days, two curriculum sections were presented. Students spent the first 30

minutes listening to and participating in a lecture on the first curriculum section, and the

second 30 minutes doing worksheets and self-directed algorithm creation for that section.

The second hour was spent similarly, 30 minutes in lecture and 30 minutes doing

worksheets. Students who did not finish their worksheets in class were asked to complete

them outside of class.

4.2.3. Test Environment

The eight classes that were part of the Genost intervention were held in a classroom on

the ASA campus in Phoenix, Arizona. Each student was given a Macbook laptop with an

internet connection – students were able to use the web browser on these laptops to

interact with the Genost software.

Students were seated at long tables instead of individual desks, due to the way the room

was organized. The students were allowed to sit wherever and with whomever they

wanted, which in some cases led to excessive socialization and off topic play during the

class. In some cases we reseated students in an attempt to prevent this.

The classroom had a projector at the front of the room, which was used to project the

lecture onto a screen.

233

4.2.4. Data Collected

The primary data that were collected in the ASA test were the scores on the pretest and

posttest. We also collected feedback data from the student through two forms. These two

sets of collected data will be described below, and the actual data collected, and our

analysis of that data, will be presented in Section 5.

In addition to the items mentioned above, we also collected the following information

from the students:

- Attendance records for the Genost classes

- Records regarding the worksheets and mazes completed by each student

- Various data related to the interaction of the student with the Genost software,

such as the number of times students simulated an algorithm in a specific maze, or

the date and time that a student switched from one lesson to the next. Each datum

that was collected was tagged with a date and time stamp, along with other

contextual information.

These three items will not be presented or analyzed in this thesis.

234

4.2.4.1. Pretest / Posttest Data

The same test that was used for both the pretest and the posttest. This test is the one that

was discussed in Section 4.1.1 and shown in Appendix D. All students in the independent

and control groups took both a pretest and a posttest.

We collected the score for each individual question on this test, and the overall score, for

each student and on both administrations of the test. Each test was hand-graded. No

manipulation or adjustment was done to any of the test data.

4.2.4.2. Feedback

The Likert and Free Response forms described above in Section 4.1.2 and shown in

Appendix E were given to the ASA independent group on the last day of class. All

students in the independent group filled out both forms.

The data collected on the Likert form was collected and averaged. Students were

instructed to only circle one number on the Likert scales; when multiple numbers were

circled, we chose the lowest number circled.

The data collected on the Free Response form was analyzed, and responses were noted,

classified and counted.

235

4.3. FSE100 TEST

The FSE100 test was held at Arizona State University using students from ASU’s Fall

2014 FSE100 Introduction to Engineering class. This class is a required introductory

course for many majors offered through the Fulton Engineering School, including

computer science, computer systems engineering, mechanical engineering, electrical

engineering, and industrial engineering.

The FSE100 test was a three group design. The three groups are as follows:

- The Genost group, which participated in an extracurricular class designed to teach

the Genost curriculum.

- The Python group, which participated in CodeAcademy.com’s online Python

course41.

- The Control group, which did not undergo any treatment.

The Genost class was given at the beginning of the semester. The Python course, because

it is an online course, was available throughout the semester for any student who desired

to take it. At the end of the semester the FSE100 grade data from all participants in the

three groups was collected – these data served as our main data set for the FSE100 test.

41 http://www.codecademy.com/en/tracks/python

http://www.codecademy.com/en/tracks/python

236

The main goal of the FSE100 test was to compare the grade data of the three groups and

determine whether there was any significant difference between them.

In addition to the grade data, we also collected pretest and posttest data from the Genost

group. The Genost group was given the pretest at the beginning of the Genost class, and

the posttest at the end of this class. However, we were not able to administer the pretest

and posttest to the other two groups.

4.3.1. Student Numbers and Recruitment

ASU’s FSE100 course is offered in different “flavors” – for example, one FSE100 course

may be taught with a computer science flavor, intended for the CS and CSE majors,

while another may be taught with a mechanical engineering flavor, intended for the ME

and Civil Engineering majors. We limited our recruitment to the computer-flavored

FSE100 classes, of which there were 13 in Fall 2014. Each of the 13 FSE100 classes had

43 students in it, for a total of 559 students42. It was from these 559 students that we

recruited our participants in the FSE100 test.

Participation in all three groups was entirely voluntary. At the beginning of the semester,

I visited each of the 13 FSE100 sections and gave a short speech explaining our research

and asking students for two things: first, to consent to releasing their FSE100 grade data

to us, and second, to sign up for either the Genost group or the Python group if they were

interested in participating. Students consenting to releasing their grade data signed a

42 Note that this is the number of seats filled at the beginning of the semester; the number of students
that completed the FSE100 course is fewer than 559.

237

release form during my visit. The speech that was given during these initial classroom

visits may be viewed in Appendix F.

Students were offered an incentive to participate in either the Genost or the Python group.

All students who completed participation in either of these groups (defined as either

completing the Python course or taking both the Genost pretest and posttest) received a

10% extra credit bonus to their FSE100 grade. Students were not offered an incentive to

release their grade data to us.

At the end of these classroom visits, we had received grade release forms from many

students, and contact information from students interested in either the Genost or Python

courses. The next three sections will detail the student numbers and any further

recruitment efforts for the three groups.

4.3.1.1. Genost Group

After the classroom visits at the beginning of the semester, we found that the number of

students that had signed up for the Genost extracurricular activity was very large. We

were not able to accept all signups due to the nature of the Genost extracurricular activity

as an in-person class with limited space. We therefore were forced to narrow the number

of students from the pool.

We first created a questionnaire form and emailed it to all students who had signed up.

238

The form asked for basic contact information along with the following questions:

1. Are you interested in participating in the ASU Genost-based extracurricular

activity?

2. Will you be able to come to all six sessions?

3. Can you commit to completing the activity from beginning to end?

4. Depending on the way the meetings go, we may ask you to do some extra practice

work outside of class. Is this something you would be willing and able to do?

5. What is your current grade level?

6. Please rate what you consider your programming ability, from 1 (no ability) to 10

(expert)

By the time we closed the form for submissions roughly one week after sending it out, we

had received exactly 100 unique responses. Our goal was to narrow the pool down to 30

students.

We began by eliminating all students that did not answer “yes” to questions 1, 2, 3 and 4.

This eliminated 29 students.

239

We next examined the remaining rows and their answers to questions 5 and 6. We

removed all students who were not freshmen and who rated themselves as having a

programming ability greater than or equal to a 5. This eliminated 15 students. Our

justification for this narrowing measure is that we are attempting to teach introductory

programming, and are less interested in teaching students who already have considerable

programming ability.

After taking the measures above, 56 rows remained. We narrowed the pool from 56 to 30

through directed random selection, done in the following way:

1. We arranged the 56 rows into 13 groups, grouping them by their FSE100 class.

2. We selected 2 students randomly from each of the 13 groups, resulting in 25

students selected. One group only had one student, which is why we finished this

step with 25 instead of 26 students.

3. Removing the selected students from the 13 groups, we then chose the 5 most

populous groups, which had populations of 7, 6, and 3 groups of 5. Note that there

were actually 5 groups with population 5 – the 3 groups chosen from those 5 were

chosen randomly.

4. We randomly selected one student from each of these 5 most populous groups.

This resulted in 30 randomly selected students.

240

We therefore began the Genost test with 30 students. On the first day of class, 4 students

did not show up, resulting in a starting group size of 26. 9 students withdrew from the

study or otherwise did not complete it, resulting in a final Genost group size of 17

students.

These 17 students all signed an additional consent form releasing the data collected with

Genost to us for study. This consent form may be viewed in Appendix F.

4.3.1.2. Python Group

The Python group consists of all students who signed up for the Python course during the

classroom visits (or contacted us about their desire to participate sometime during the

semester), completed the Python course, and released their grade data to us. Each student

that completed the Python course was counted by sending us link to or screenshot of their

CodeAcademy account, which shows the completion of the course.

No further selection or narrowing of the Python group was performed. There are 38

students in the Python group.

4.3.1.3. Control Group

The control group was made up of all students who released their grade data to us but did

not participate in either the Genost or the Python group. There are 317 students total in

the control group.

241

4.3.2. Time Allotted

The Genost class was administered over the course of three weeks. Students met twice a

week on Mondays and Wednesdays for two hour sessions, 7PM to 9PM. On most class

days, two curriculum sections were presented. Students spent the first 30 minutes

listening to and participating in a lecture on the first curriculum section, and the second

30 minutes working on worksheets for that section. The second hour was spent similarly,

30 minutes in lecture and 30 minutes doing worksheets. Additionally, all students were

asked to complete outside of class all worksheets not completed in class.

Students who did not attend one class were asked to come in thirty minutes early to the

subsequent one for makeup. Not counting this makeup time, students spent 12 hours as

part of the class.

The Python class on CodeAcademy.com is a set of step-by-step tutorials and does not

feature any human instructor, so students were able to take this course at any time during

the Fall 2014 semester. We required Python group students to complete the online course

by the final day of classes for the Fall 2014 semester, which was December 5th. Aside

from that requirement, students were allowed to start the course whenever they wanted

and to take as long as they wanted to complete it.

4.3.3. Test Environment

The six classes that were held as part of the Genost intervention were held in a computer

lab on ASU’s Tempe campus. Each student used a desktop computer running Windows

242

7. Students used the computer’s web browser to interact with the Genost software. Early

in the test, some students chose to use their own laptop instead of the desktop lab

computers.

Students were seated at long tables instead of individual desks, due to the way the room

was organized. The students were allowed to sit wherever they wanted during the class.

The classroom had a projector at the front of the room, which was used to project the

lecture onto a large screen.

4.3.4. Data Collected

The primary data that were collected in the FSE100 test were the student FSE100 final

grade percentage. In addition to this grade data, we also collected the Genost group’s

scores on the pretest and posttest. Because these tests were not administered to the

Python and Control groups, no score data were collected from them. Finally, we collected

feedback data from the student through two forms. These three forms of data collection

will be described below, and the actual data collected, and our analysis of that data, will

be presented in Section 5.

In addition to the items mentioned above, we also collected the following information

from the students:

243

- Attendance records for the Genost classes

- Records regarding the worksheets and mazes completed by each student

- Various data related to the interaction of the student with the Genost software,

such as the number of times students simulated an algorithm in a specific maze, or

the date and time that a student switched from one lesson to the next. Each datum

that was collected was tagged with a date and time stamp, along with other

contextual information.

These three items will not be presented or analyzed in this thesis.

4.3.4.1. Student Grades

The full gradebook for all students who released their data to us by signing a consent

form was sent to us by the FSE100 professors at the end of the Fall 2014 semester. While

the full gradebook was available, only the final FSE100 score was used in our analysis.

This score is a grade percentage and therefore is on a scale from 0 to 100. The 10% extra

credit incentive offered to participants in the Genost or Python groups is not included in

this final percentage.

Our hypothesis that if Genost does succeed in teaching computational thinking skills,

then this will be reflected in higher grades in FSE100 for students who underwent the

Genost intervention than those who did not. We are assuming that students with higher

244

computational thinking skills will receive higher FSE100 grades. Note that we are not

claiming that the FSE100 grade is a direct measure of computational thinking ability,

only that computational thinking skills will result in higher grades in computer science

courses. This is consistent with what we have argued above in regards to computational

thinking as a “prerequisite” to computer science.

4.3.4.2. Pretest / Posttest Data

The same testing instrument was used for both the pretest and the posttest. This test is the

same one that was discussed in Section 4.1.1 and shown in Appendix D. All students in

Genost group took both a pretest and a posttest.

We collected the score for each individual question on this test, and the overall score, for

each student and on both administrations of the test. Each test was hand-graded. No

manipulation or adjustment was done to any of the test data.

4.3.4.3. Feedback

The Likert and Free Response forms described above in Section 4.1.2 and shown in

Appendix E were given to the Genost group on the last day of class. All students in the

Genost group filled out both forms.

The data collected on the Likert form was collected and averaged. Students were

instructed to only circle one number on the Likert scales; when multiple numbers were

circled, we chose the lowest number circled.

245

The data collected on the Free Response form was analyzed, and responses were noted,

classified and counted.

5. DATA RESULTS AND ANALYSIS

In Section 4 we described the design of our tests and the data that was collected. In this

section we will present the results of these tests and our analysis of the collected data.

We will begin by presenting the results from our reliability analysis of the testing metric

that was used in both tests, in Section 5.1. We will then present the results and analysis of

the ASA test in Section 5.2, and the results and analysis of the FSE100 test in Section

5.3. Finally, we will discuss possible weaknesses of our data in Section 5.4.

5.1. PRETEST / POSTTEST RELIABILITY ANALYSIS

In Section 4.1.1 we argued for the validity of the testing tool. In this section we will argue

for the reliability of the testing tool, as measured by Cronbach’s Alpha.

The test was given six times: four times in the ASA test and twice in the FSE100 test. We

performed a Cronbach’s Alpha test on each of these administrations. The results of this

analysis may be viewed below:

246

Table 4

The results of the Cronbach's Alpha test on six administrations

Test Cronbach’s Alpha

of Items

Removed Due

to 0 Variance

of Items Which

Would Increase

Cronbach’s Alpha

if deleted

ASA – Control

Pretest

.859 0 4 (Q1, Q3, Q11,

Q12)

ASA – Control

Posttest

.828 2 (Q9, Q10) 0

ASA – Independent

Pretest

.758 0 2 (Q4, Q7)

ASA – Independent

Posttest

.782 0 2 (Q4, Q11)

FSE100 – Pretest .643 1 (Q7) 4 (Q2, Q3, Q6, Q9)

FSE100 – Posttest .449 2 (Q8, Q10) 4 (Q4, Q5, Q7, Q13)

In 4 out of 6 administrations, Cronbach’s Alpha was greater than .7. In one of the two

administrations that did not have a Cronbach’s Alpha greater than .7, the Cronbach’s

Alpha score was very close to .7 (.643). The remaining administration had a low score of

.449. Because the majority of administrations had a high Cronbach’s Alpha score, we are

confident that our test has a high level of internal consistency and is valid.

As can be seen in

, some items were removed from some of the Cronbach’s Alpha test due to zero

variation. The ASA Control Group posttest had two items removed – this was because no

student got these two questions right. The same is true for the one question removed from

the FSE100 pretest – no student scored any points on this item for that administration of

the test. Finally, in the FSE100 posttest, no student got Q8 or Q10 wrong, and so this

question also had zero variance.

247

On all administrations of the test except the ASA Control Posttest, there were some

questions which, if they were removed, would increase the Cronbach’s Alpha score.

These items are listed in the last column of

.

Table 5 shows the distribution of this data across the thirteen questions.

Table 5

Number of Times Each Question's Removal would Increase Cronbach's Alpha

Question #

of times removal would

increase Cronbach’s

Alpha

1 1

2 1

3 2

4 3

5 1

6 1

7 2

8 0

9 1

10 0

11 2

12 1

13 1

The data in

Table 5 is fairly well distributed across the thirteen questions – most questions were

removed at least once, some were removed twice, and one was removed three times.

Because this data is well distributed, and no one question has a removal number much

larger than the others, we do not believe that any of the questions on our testing metric is

inherently unreliable.

248

Section 4.1.1 establishes the validity of our testing metric. The current section also

establishes its reliability. Because of this, we believe that we can proceed to analyze the

scores on administrations of this test with the confidence that these scores do represent

the degree to which students understand fundamental computational thinking ideas.

5.2. ASA TEST RESULTS AND ANALYSIS

Our ASA test, as described in Section 4.2, was a two-group test, one of which was a

control group and the other of which was the independent group. We collected pretest /

posttest data from both groups, and feedback data from the independent group. In this

section we will present our analysis of this data.

5.2.1. Group Similarity Test

Because we are comparing two separate groups of students, we want to first establish that

these students are drawn from similar populations and the groups do not significantly

differ. In order to do this, we performed an independent means t-test on the pretest scores

of these two groups.

As can be seen in Table 6 below, no significant difference was found between the two

groups (t(42) = -.797, p > .05). The mean pretest score of the control group (m = 20.59,

sd = 22.176) was not significantly different from the mean of the experimental group

pretest scores (m = 15.89, sd = 16.842).

249

Table 6

Independent means t-test to establish similarity of populations between ASA test Control

and Independent groups

 Levene's Test for

Equality of

Variances

t-test for Equality of Means

F Sig. t df Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

13.

Equal

variances

assumed

2.495 .122
-

.797
42 .430 -4.699 5.898

Equal

variances not

assumed

-

.748
27.500 .461 -4.699 6.280

This indicates that the populations in the two groups were not significantly different from

one another, and that we may compare the performance of the two groups.

5.2.2. Test Score Analysis

An ANCOVA test was performed on the ASA data to determine whether the posttest

scores were significantly different between the independent group and control group,

with the pretest score treated as a covariant.

Note that, in the tables below, Group 1 is the independent group, and Group 2 is the

control group.

250

5.2.2.1. ANCOVA Assumptions

To draw conclusions from an ANCOVA test, a series of assumptions about the data must

be made. We ran a series of tests on the data to validate these assumptions, which will be

described below.

A test of between-subject effects was run in order to determine the homogeneity of

regression slopes. The interaction term (group * pretest) was found not to be statistically

significant, F(1, 33) = .017, p = .897. Table 7 below shows this data.

Table 7

Test of between subjects effects for ASA data to establish homogeneity of regression

slopes.

Dependent Variable: Posttest

Source Type III Sum

of Squares

Df Mean

Square

F Sig.

Group 13950.736 1 13950.736 43.039 .000

Pretest 2426.957 1 2426.957 7.487 .010

Group *

Pretest
5.530 1 5.530 .017 .897

Error 10696.772 33 324.145

Total 98806.692 37

A Shapiro-Wilk’s test was run to ensure that the standardized residuals for the

interventions and for the overall model were normally distributed. This test showed that

these were normally distributed (p > .05). These results can be seen below in Table 8.

251

Table 8

Shapiro-Wilk test of normality of residuals for ASA data

 Group Shapiro-Wilk

 Statistic df Sig.

Standardized Residual

for Posttest

1 .961 20 .564

2 .907 17 .088

Homoscedasticity was established by a visual inspection of a scatterplot of the residuals.

There were also no outliers in the data, as assessed by no cases appearing with

standardized residuals greater than +3 standard deviations.

Certain assumptions were not met. There was not a linear relationship between the pretest

scores and posttest scores, and there was not homogeneity of variances, as assessed by

Levine’s test of homogeneity of variance (p = .023). These violations may partially be

explained by a floor effect in our pretest data. Despite not meeting these assumptions, we

proceeded with the ANCOVA test, as these violations are not large, and ANCOVA is

known to be robust against violations of assumptions. Furthermore, the strong

significance found after running the ANCOVA makes it unlikely that these assumption

violations led to a Type I error.

5.2.2.2. ANCOVA Results and Analysis

After investigating the assumptions, we ran the actual ANCOVA test. The result of this

test may be seen below in Table 9.

252

Table 9

Results of ANCOVA on ASA test scores

Dependent Variable: Posttest

Source Type III

Sum of

Squares

df Mean

Square

F Sig. Partial Eta

Squared

Pretest 2680.604 1 2680.604 8.516 .006 .200

Group 27811.964 1 27811.964 88.355 .000 .722

Error 10702.302 34 314.774

Total 98806.692 37

The result of the ANCOVA test show that, after adjustment for pretest score, there was a

statistically significant difference in posttest scores between the control and independent

groups, F(1,34) = 88.355, p < .0005, partial η2 = .722.

Post hoc analysis was performed with a Bonferroni adjustment. This analysis shows that

posttest scores were statistically significantly greater for the independent group (p <

.0005). This data may be seen below in Table 10.

253

Table 10

Post-hoc analysis on ASA ANCOVA

Dependent Variable: Posttest

(I)

Group

(J)

Group

Mean

Difference

(I-J)

Std.

Error

Sig.b

1 2 55.839* 5.940 .000

2 1 -55.839* 5.940 .000

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

The Cohen’s D value for this data is 9.4. This is an extremely large effect size, perhaps

suspiciously so. Possible reasons for the large effect size come from the control group,

whose scores actually decreased from pretest to posttest. Possible problems with the

control group include:

- The control group knew that they were part of a test, and may have experienced

an observation expectancy effect.

- The control group may have had low motivation to take the test seriously – this

may explain the decrease in scores.

- Many people withdrew from the study in both groups.

These facts should be kept in mind when evaluating the ASA test results.

254

5.2.2.3. Mann-Whitney U Assumptions, Results and Analysis

Due to the fact that certain assumptions for the ANCOVA were not met, as discussed in

Section 5.2.2.1, a Mann-Whitney U test was run to confirm our ANCOVA result. The

Mann-Whitney U test was run to determine if there were differences in change scores

(posttest minus pretest) between the independent group and the control group. Based on a

visual assessment of a population pyramid, we determined that the distributions of

change scores were similar enough to allow us to use the Mann-Whitney U test to

compare medians (see Figure 24).

Figure 24. Mann-Whitney U population pyramid

The result of the Mann-Whitney U test was as follows: median change scores was

statistically significantly higher in the independent group (48.065) than in the control

group (-5.154), U = 11, z = -4.846, p < .001, using an exact sampling distribution for U.

255

This result confirms our ANCOVA analysis, and allows us to state with confidence that

the Genost treatment did elicit an increase in computational thinking scores.

5.2.3. Feedback Analysis

Two sources of feedback were collected from the independent group during the ASA test,

as described in Section 4.2.4.2.

5.2.3.1. Software Feedback (Likert Scales)

All students in the independent group filled out a feedback form containing ten Likert

scales, with three questions for the categories of ease of use, educational efficacy and

enjoyment of the Genost software. Additionally, one question was dedicated to rating the

overall experience of using Genost. The Likert scales measured on a scale of 1 to 10, with

1 being the lowest score and 10 being the highest. The feedback collected was averaged

and the results are as follows:

Table 11

The Likert scale averages from the Genost software feedback form, ASA test

Scale Average Score

Ease of Use (Q1, Q5, Q8) 7.767

Educational Efficacy (Q2, Q4, Q7) 8.183

Enjoyment (Q3, Q6, Q9) 7.15

Overall Experience (Q10) 7.71

Because our form has not been administered for other educational systems, we cannot do

numeric comparisons to determine whether this feedback is higher or lower than, say,

256

Scratch, Alice or NXT. However, we can at least see that the numbers themselves are on

the high end of the scale.

5.2.3.2. Curriculum Feedback (Free Response)

The second sources of feedback collected from the independent group was a series of

four free response questions focusing on the Genost curriculum and our presentation.

Students were asked to list three things they liked, three things they disliked, three things

they would change, and any other comments they had, and were specifically instructed to

limit these things to the Genost curriculum and our presentation. We examined these

responses and, for the first three free response questions (liked, disliked, and would

change) we tabulated common themes in the responses. From this free response feedback,

we can examine common themes for what the students liked, found easy, found

educational, as well as what they did not like, found difficult, or did not understand.

We will examine this free response data over the next three subsections.

5.2.3.2.1. Free Response Data – What Students Liked

Table 12 shows common themes that the students identified in their free response

feedback for the question “Please write three or more things that you liked about the

Genost curriculum and my presentation”.

257

Table 12

Free response tabulation for "Liked" question, ASA Test

Responses /

% of Total Theme

10 / 16.9% High quality / clarity of presentation by instructor

10 / 16.9% Curriculum easy to learn / use / understand

5 / 8.5% High quality / clarity of presentation on lecture slides

5 / 8.5% Felt that curriculum was a good introduction to programming

4 / 6.8% Had fun

3 / 5.1% Written response was unclear

3 / 5.1%

Enjoyed the visual programming basis (i.e. liked drag/drop better than

coding)

3 / 5.1% Student felt like he or she learned something

2 / 3.4% Good introduction to computational thinking

2 / 3.4% Good difficulty progression (started out easy, became more challenging)

2 / 3.4% Good conceptual progression (student felt scaffolding was appropriate)

2 / 3.4%

Open nature of the software ("multiple answers to problems and no

strict rules")

1 / 1.7% Related to software

1 / 1.7% Lessons well ordered

1 / 1.7% Related to class section (Small class size, flexible etc.)

1 / 1.7% Liked mazes

1 / 1.7% Liked video game theme

1 / 1.7% Good presentation speed

1 / 1.7% Liked "achievement based" style

1 / 1.7% Felt that lectures related to exercise

We can see that the two most prominent themes were that the curriculum was easy to

learn and understand, and that we presented it well. Other major themes that students

liked include well-constructed lecture slides, and a belief that the Genost course was a

good introduction to programming. It is notable and encouraging that these responses are

exactly what we were aiming for in constructing the Genost system.

258

5.2.3.2.2. Free Response Data – What Students Disliked

Table 13 shows common themes that the students identified in their free response

feedback for the question “Please write three or more things that you disliked about the

Genost curriculum and my presentation”.

Table 13

Free response tabulation for "Disliked” question, ASA Test

Responses /

% of Total Theme

9 / 17.3% Class was taught too fast

9 / 17.3% Class featured too many worksheets

8 / 15.4% Response related to software bugs

5 / 9.6% Not enough time for exercises

4 / 7.7% Lack of formal language education

3 / 5.8% Not fun

2 / 3.7% Response related to software design

2 / 3.7% Student didn't understand something

2 / 3.7% Worksheets were too long

1 / 1.9% Class was taught too slow

1 / 1.9% Curriculum featured repetitiveness

1 / 1.9% Review questions were too easy / repetitive / unnecessary

1 / 1.9% Simulated robot moved slowly

1 / 1.9% Poor design of the lecture slides

1 / 1.9% Class time too long

1 / 1.9% Genost did not run on well on all computers

1 / 1.9% Related to class section (time of day, classroom management, etc.)

Overwhelmingly, the response data for the disliked question were related to the class

design, specifically its length of time. Three of the top four responses have to do with

this, meaning that, had the class been taught over a longer period of time, these common

complaints may have been alleviated. This is not surprising, as the Genost curriculum

259

contains a large amount of information and requires a considerable amount of work. It is

difficult to fit into the relatively short 16 hour instruction time of the ASA course.

The only response in the top four not dealing with the class design has to do with

software bugs, a common complaint despite students being instructed not to include these

on their free response forms.

Another interesting response is the lack of real life language involvement – four students

noted that they would have liked to see more information relating Genost to a real life

language, such as Java or C. Part of the reason for this response may have been student

expectations – some students entered the Genost class under the impression that they

would be learning a formal language, and at least some of the students already had

experience with formal languages.

Relatively few students reported that they found the curriculum unenjoyable, and only

two students reported not understanding something. However, due to the overwhelming

response related to the class design, it may be that responses of this nature were

suppressed. We may at least conclude from this data that whatever lack of enjoyment or

lack of understanding that students experience was overwhelmingly outweighed by their

dislike of the short amount of instruction time.

5.2.3.2.3. Free Response Data – What Students Would Change

260

Table 14 shows common themes that the students identified in their free response

feedback for the question “Please write three or more things that you would change about

the Genost curriculum or my presentation”.

Table 14

Free response tabulation for "Would Change" question, ASA Test

Responses /

% of Total Theme

13 / 30.2% Response related to software bugs

6 / 14%

Would add more time to class (Not enough time to go over

everything in class, taught too fast, etc.)

5 / 11.6% Fewer worksheets

4 / 9.3%

Related to class section / study design (class time, pretest, posttest,

number of students, etc.)

4 / 9.3% Improve pace - faster on easy stuff, slower on hard stuff

2 / 4.7% Make things more fun

1 / 2.3% Link to formal language education

1 / 2.3% Change presentations - make more concise, less redundant

1 / 2.3% Put content online / make it accessible

1 / 2.3% Improve maze design / theme

1 / 2.3% Improve worksheet quality - Add tips, hints

1 / 2.3% Do not show solution in first lecture

1 / 2.3% Do not require filling out worksheets

1 / 2.3% More independent work

1 / 2.3% Make different ways to solve a maze

Once again, despite being instructed not to include this information, many students

responded with requests to solve software bugs. Following this, the top three responses

all were related to the class design, especially the length of time. The most common

261

theme that was not involved with class design was instead related to the pace of the

curriculum. There were no commonly suggested changes that had to do with the

curriculum content itself.

As with the “dislike” question, it may be that the class design problems stood out so

much to the students that problems related to the curriculum were suppressed. However,

it is also notable that the second most common request was for more time with the

curriculum, which seems to indicate at least that students did not dislike their time spent

working with Genost.

5.3. FSE100 TEST RESULTS AND ANALYSIS

Our FSE100 test, as described in Section 4.2, used a three-group test, with one control

group and two in dependent groups (the Genost group and the Python group). We

collected the final FSE100 grade from all participants in the three groups. Additionally,

we collected both pretest / posttest data and feedback data from the Genost group. In this

section we will present the analysis of this data.

5.3.1. FSE100 Grade Analysis

The primary test that was performed on the FSE100 grade data was a one-way ANOVA,

to determine whether the final FSE100 grades were significantly different between the

three groups.

262

5.3.1.1. One-Way ANOVA Assumptions

To draw conclusions from an ANOVA test, a series of assumptions about the data are

made. We ran a series of tests on the data to validate these assumptions.

The first assumption is that there are no significant outliers in any of the groups. We

examined the data for outliers with the use of a boxplot, and identified as an outlier any

value greater than 1.5 box-lengths from the edge of the box. Upon inspection, we

identified 9 outliers, students whose grades were 75% or lower. Because the vast majority

of grades were much higher than this (usually in the range of 80% to 100%), and because

many of these outliers were far below the 75% mark, we believe that these outliers

represent students who did not attend class (but also did not withdraw), or students who

were not serious about the course for other reasons. For this reason, we removed the

outliers from the data.

The second assumption, normality of the data, was assessed using a Shapiro-Wilk test of

normality. This was performed on the data. The results may be seen below in Table 15.

263

Table 15

Shapiro-Wilk test of normality for FSE100 grade data

 Group Shapiro-Wilk

 Statistic df Sig.

Grade

Control .705 317 .000

Python .910 38 .005

Genost .979 17 .942

a. Lilliefors Significance Correction

The Genost group is seen to easily be normally distributed (p > .05). However, the

Python and Control groups both fail to reject the null hypothesis, and therefore we cannot

claim that this data is normally distributed. This is in line with our earlier observation

about the heavy grade skew towards the high range for the FSE100 grade data. While the

Genost group is small enough for this skew to not be significant (n = 17), the Python

group (n = 37) and Control group (n = 309) are large enough that this skew becomes

highly visible.

Despite this assumption violation, we chose to carry on with the one-way ANOVA. It has

been argued that ANOVA is robust to deviations from normality in cases where sample

sizes are large (Lix, 1996), and in cases where the skew is similar across groups

(Sawilowsky, 1992). Because the groups in which the assumption is violated are both

large, and because the skew is the same across all groups, we chose to proceed.

264

The final assumption tested was homogeneity of variances. Levine’s test for equality of

variances was run, and it was found that the variances for the FSE100 grade data were

homogenous (p = .166). This can be seen in Table 16 below.

Table 16

Results of Levine's test for homogeneity of variances, FSE100 grade data

Grade

Levene

Statistic

df1 df2 Sig.

1.805 2 360 .166

5.3.1.2. One-Way ANOVA Results and Analysis

Having run the assumptions tests above, we ran the ANOVA test on the data.

The descriptive final grade data is presented in Table 17 below.

Table 17

The descriptive statistics for the FSE100 grade data

Grade

 N Mean Std.

Deviation

Std. Error Minimu

m

Maximu

m

Contro

l
309 91.585568 8.7981871 .5005114 57.7400 106.7848

Python 37 92.741530 6.8492320 1.1260068 74.3208 107.3308

Genost 17 96.028957 7.0763748 1.7162730 83.8517 111.3680

Total 363 91.911486 8.5846856 .4505791 57.7400 111.3680

265

Data are mean +- standard deviation. As can be seen, the final grade increased from the

control group (n = 309, 91.59 + 8.8), to the Python group (n = 37, 92.74 + 6.85), to the

Genost group (n = 17, 96.03 + 7.08), in that order.

The actual ANOVA test results can be seen in Table 18 below.

Table 18

ANOVA test results for FSE100 grade data

Grade

 Sum of

Squares

df Mean

Square

F Sig.

Between

Groups
346.525 2 173.263 2.369 .095

Within Groups 26331.726 360 73.144

Total 26678.251 362

The differences between the FSE100 grade data, though they were arranged in

concordance with our expected results (control group had the lowest grades, followed by

Python group, followed by Genost group with the highest grade), were not statistically

significant, F(2, 360) = 2.369, p = .095. Because the group means were not statistically

significant (p > .05), we cannot reject the null hypothesis and cannot accept the

alternative hypothesis.

266

A univariate analysis of variance test was run in order to confirm this result, and to

identify the observed power of the test. The results of this can be seen below in Table 19:

Table 19

Test of between-subject effects for FSE100 grade data

Dependent Variable: Grade

Source Type III

Sum of

Squares

df Mean

Square

F Sig. Noncent.

Parameter

Observed

Powerb

group 346.525 2 173.263 2.369 .095 4.738 .478

Error 26331.726 360 73.144

Total 3093201.053 363

b. Computed using alpha = .05

We can see from this analysis that the same result is found: the differences between

groups are not statistically significant, F(2, 360) = 2.369, p = .095. We can also see that

the observed power of the experiment was .478, a low observed power.

We postulate that the low observed power indicates that this experiment was

underpowered. Possible reasons for this underpowered design including utilizing data

which was heavily skewed towards the high range, and large differences between the

group sizes. Because the experiment is underpowered, while we cannot conclude that

Genost had an effect on FSE100 grade data, we also cannot conclude that the Genost

intervention had no effect. A future experiment may attempt to rectify this underpowered

design by testing Genost’s effect on the final grades of a different class with a more

normal grade distribution, and by equalizing the group sizes.

267

5.3.2. Test Score Analysis

As with the ASA test, we collected pretest / posttest scores from the Genost independent

group. However, we did not collect this data from the other two groups, and so we are

limited on what analyses we can perform on this data, and what we can conclude from it.

We chose to run a paired-sample t-test on this data in order to determine whether there

was a statistically significant mean difference between the pretest and posttest scores.

5.3.2.1.1. Paired-Samples T-Test Assumptions

In order to draw conclusions from a paired-samples t-test, two assumptions must be met.

The first assumption is that there are no outliers in the data. A boxplot was created to test

this assumption. Visual inspection of the boxplot showed that there were no outliers in

the pretest / posttest data.

The second assumption is that the differences between the two groups are normally

distributed. A Shapiro-Wilk test was performed to investigate this. The results of this test

may be seen below in Table 20:

268

Table 20

Shapiro-Wilk test of normality for FSE100 pretest / posttest data

 Shapiro-Wilk

Statistic df Sig.

differenc

e
.851 19 .007

This test reported that the differences were not normally distributed (p = 0.007). Despite

the data not being normally distributed, we proceeded to perform the paired-samples t-

test. We continued because the paired-samples t-test is robust against normality

assumption deviations.

5.3.2.2. Paired Samples T-Test Results and Analysis

The results of the paired-samples t-test may be seen below in Table 21:

Table 21

Paired Samples T-Test for FSE100 pretest / posttest data

Mean Std. Deviation Std. Error

Mean

Pair

1

Posttest -

Pretest
56.84210526084 19.61696781889 4.50044106849 12.630 18 .000

As can be seen in Table 21, the posttest scores (88.28 +- 11.6) were significantly higher

than the pretest scores (31.44 +- 17.44). The Genost treatment elicited a statistically

269

significant increase in computational thinking test scores of 56.84 points (95% CI, 47.39

to 66.3), t(18) = 12.63, p < .0005.

A Cohen's d value was calculated to determine the effect size of the Genost treatment.

This value was d = 2.9. According to Cohen's effect size interpretation guidelines, this is

a large effect (d > 0.8).

This analysis does not necessarily indicate that the Genost treatment was responsible for

this increase in scores, since we do not have a control group to compare it to. However,

this data supports the analysis of the ASA ANCOVA test in Section 5.2.2.2, which did

have a control group, and found that the Genost treatment was responsible for the

improvement in scores.

5.3.3. Feedback Analysis

Two sources of feedback were collected from the independent group during the FSE100

test, as described in Section 4.2.4.2.

5.3.3.1. Software Feedback (Likert Scales)

All students in the Genost group filled out a feedback form with ten Likert scales, with

three questions for the categories of ease of use, educational efficacy and enjoyment of

the Genost software. Additionally, one question was dedicated to rating the overall

270

experience of using Genost. The Likert scales measured on a scale of 1 to 10, with 1

being the lowest score and 10 being the highest. The feedback collected was averaged

and the results are as follows:

Table 22

The Likert scale averages from the Genost software feedback form, FSE100 test

Scale Average Score

Ease of Use (Q1, Q5, Q8) 7.474

Educational Efficacy (Q2, Q4, Q7) 7.596

Enjoyment (Q3, Q6, Q9) 6.123

Overall Experience (Q10) 7.037

Once again, we can see that these numbers are on the high end of scale. Interestingly,

they are somewhat lower than the ASA test. Possible reasons for this may include less

time spent with the software (12 hours for the FSE100 test vs. 16 hours for the ASA tests)

or age differences between the two groups (high-school aged vs. college aged.)

5.3.3.2. Curriculum Feedback (Free Response)

The second sources of feedback collected from the Genost group was a series of four free

response questions focusing on the Genost curriculum and our presentation. Students

were asked to list three things they liked, three things they disliked, three things they

would change, and any other comments they had, and were specifically instructed to limit

their responses to the Genost curriculum and our presentation. We examined these

responses and, for the first three free response questions (liked, disliked, and would

change) we tabulated common themes in the responses. From this free response feedback,

271

we can examine common themes in what the students liked, found easy, found

educational, as well as what they did not like, found difficult, or did not understand.

We will examine this free response data over the next three subsections.

5.3.3.2.1. Free Response Data – What Students Liked

Table 23 shows common themes that the students identified in their free response

feedback for the question “Please write three or more things that you liked about the

Genost curriculum and my presentation”.

Similar to the ASA free response feedback, the two most liked items were related to the

content of the curriculum, and its presentation. The most frequent item that students

noted they liked was learning the fundamental concepts of programming in a general

manner. Other highly rated items include the example-based nature of the curriculum, the

frequent practice and repetition of concepts, and the general education of computational

thinking. Once again, these are exactly the things that we aimed for when developing

Genost.

272

Table 23

Free response tabulation for "Liked" question, FSE100 test

Responses

/

% of Total Theme

8 / 13.1%

Genost taught the fundamental concepts in a general – to – concrete

way

8 / 13.1% High quality / clarity of presentation on lecture slides

6 / 9.8% Used examples to teach in a concrete – to – general manner.

6 / 9.8% High quality / clarity of presentation by instructor

5 / 8.2% Enjoyed the repetition and practice

4 / 6.6% Related to the software design

3 / 4.9% Taught computational thinking

3 / 4.9% Easy to learn

3 / 4.9% Related to Class Section (Small class size, flexible etc.)

3 / 4.9% Had fun

3 / 4.9% Liked quality of the curriculum

2 / 3.3% Written response was unclear

2 / 3.3% Felt lessons were well ordered

1 / 1.6% Liked receiving extra credit for participating

1 / 1.6% Liked similarity to formal programming languages

1 / 1.6% Liked mazes

1 / 1.6% Liked video game theme

1 / 1.6% Liked drag-and-drop programming interface

5.3.3.2.2. Free Response Data – What Students Disliked

Table 24 shows common themes that the students identified in their free response

feedback for the question “Please write three or more things that you disliked about the

Genost curriculum and my presentation”.

273

Table 24

Free response tabulation for "Disliked" question, FSE100 Test

Responses

/

% of Total Theme

6 / 12.5% Class was taught too fast

4 / 8.3% Certain worksheets were too hard

3 / 6.3% Curriculum was repetitive

3 / 6.3% Review questions were too easy / repetitive / unnecessary

3 / 6.3% Late lessons were too hard

2 / 4.2% Lack of real life language involvement

2 / 4.2% Early lessons were too easy

2 / 4.2% Felt certain worksheets were unnecessary

2 / 4.2% Felt certain concepts were missing concepts (variables, etc.)

2 / 4.2% Simulated robot moved slowly

2 / 4.2% Poor design of the lecture slides

2 / 4.2% Worksheet goals were unclear

2 / 4.2% Class featured too many worksheets

1 / 2.1% Class was taught too slow

1 / 2.1% Not enough time for exercises

1 / 2.1% Student didn't understand something

1 / 2.1% Disliked maze focus

1 / 2.1%

Found early exercises (i.e. exercises without the best tools available)

too hard

1 / 2.1% Focused too much on learning Genost, and not general ideas

1 / 2.1% Software crashed often

1 / 2.1% Did not have fun

1 / 2.1% Poor lesson design led to lack of student participation

1 / 2.1% Instructor did not review takehome assignments in class

1 / 2.1% Class ran for too long

1 / 2.1% Genost did not run well on all computers

1 / 2.1% Related to class section (time of day, classroom management, etc.)

As with the ASA test, the most common complaint has to do with the speed at which the

class was taught, due to the limited time available. However, many of the other common

complaints have to do with the curriculum itself. Two common complaints state that parts

274

of the curriculum were too difficult. Another common dislike is the repetition of the

review questions at the end of each lecture. Finally, as with the ASA test, some students

did not like the lack of formal language integration into the curriculum.

This feedback indicates that the curriculum may be difficult for some students to learn.

As suggested in Section 5.3.3.1, part of the reason for this difficulty may be the short

amount of time involved with the FSE100 course, though we do not suggest that this

accounts for all of the difficulty students experienced.

5.3.3.2.3. Free Response Data – What Students Would Change

Table 25 shows common themes that the students identified in their free response

feedback for the question “Please write three or more things that you would change about

the Genost curriculum or my presentation”.

275

Table 25

Free response tabulation for "Would Change" question, FSE100 Test

Responses

/

% of Total Theme

9 / 18.4%

More Time (Not enough time to go over everything in class, taught too

fast, etc.)

4 / 8.2% Fewer Worksheets

4 / 8.2%

Related to class section / study design (class time, pretest, posttest,

number of students, etc.)

2 / 4.1% Change presentations - improve design, make easier to read

2 / 4.1% Change presentations - improve review questions

2 / 4.1% Put content online / make it accessible

2 / 4.1% Engage class more

2 / 4.1% Teach more concepts

2 / 4.1% Improve pace - faster on easy stuff, slower on hard stuff

2 / 4.1% Improve worksheet quality - Add tips, hints

2 / 4.1% Make class more concise

1 / 2% Unclear

1 / 2% Related to software

1 / 2% Link to Real Code

1 / 2% More Explanation of a Subject

1 / 2% Should synchronize Genost curriculum with another freshman class

1 / 2% Change presentation – be more concise, less redundant

1 / 2% Change presentation – give more examples

1 / 2% Improve worksheet quality – focus more on key points

1 / 2% Make class more difficult

1 / 2% Focus less on Genost and more on concepts

1 / 2% Rely less on Powerpoint slides when lecturing

1 / 2% Improve the maze design and theme

1 / 2% Go over takehome lessons in class

1 / 2% Add practice tests to curriculum

1 / 2% Shorten worksheet length

1 / 2% Teach more on algorithm design

Once again we see that the overwhelming suggestion for change is to increase the length

of the course. The second most common suggestion is a reduction in the number of

276

worksheets. Interestingly, the third most commonly suggested changes had to do with the

particulars of the class design – usually this had to do with the class time, which was held

relatively late in the day at 7:00PM.

To conclude our review of the free response feedback, we note that the most common

complaints seem to be that not enough time was spent in the course; at the very least, this

seems to indicate that students did not dislike the Genost course, and wanted to spend

more time learning.

5.4. POSSIBLE DATA WEAKNESSES

Our analyses above conclude that Genost did increase the computational thinking skills

of the participating students. We have argued that we can conclude from this that Genost

does effectively teach the computational thinking skills we have designed it to teach. In

this section we will note possible data weaknesses to keep in mind when drawing this

conclusion.

5.4.1. Possible Data Weaknesses in the ASA Test

The ASA test had relatively small sample sizes, with 20 students in the independent

group and 17 students in the con troll group. This small sample size limits our ability to

extrapolate the results of the test to larger populations.

Another possible weakness of the ASA data has to do with the nature of student

recruitment. Because we recruited by advertising the Genost class to interested students,

277

instead of selecting participants from a pool, some self-selection may have occurred in

the independent group. Further selection bias may have occurred as students dropped out

during the course, and were therefore removed from the independent group. The control

group is not likely to have experienced similar self-selection since they were recruited

from a single class, and did not join the experiment based on an interest in learning to

program.

5.4.2. Possible Data Weaknesses in the FSE100 Test

The FSE100 test, as we have argued above, was a low power test, at least in regards to

the grades. This severely limits our ability to draw any conclusions from it.

The FSE100 test is not likely to have experienced selection bias to the same extent as the

ASA test may have. As discussed in Section 4.3.1.1, we received a large amount of

volunteers for the Genost group, and narrowed our selection from 100 to 30. At least half

of the students eliminated were done so randomly. For this reason, initial selection is not

likely to suffer selection bias in student selection. However, as with the ASA test, some

selection bias may have occurred due to students dropping the course over its run.

Finally, we note again that the FSE100 grade data was unexpectedly skewed highly

towards the high range of the grade distribution. Almost every student that we collected

data from received at least an 80%. This may be part of the reason for the experiment’s

unexpectedly low power.

278

6. CONCLUSION

We will conclude this thesis by summarizing the results of our research and our review,

and by performing a final analysis on the information gathered. We will summarize the

results of our own tests on the Genost system, and discuss limitations on these results.

Finally, we will complete the thesis with a discussion of future improvements that may be

made to the Genost system.

6.1. RESEARCH SUMMARY

We began this thesis by considering the oft-reported STEM crisis. While the nature and

magnitude of this impending crisis is disputed depending on the source, we found that all

sources agree on the importance of teaching computational thinking. Most sources

believe that computational thinking is an important (perhaps even crucial) skill for the

modern world, and that it should be taught not just to computer science students, but to

all students, regardless of their major.

In response to this we performed an investigation into the definition of computational

thinking and identified four major components of computational thinking that ought to be

taught. These are: the ability to read and understand algorithms, the ability to engage in

abstraction, the ability to decompose a problem into solvable processes, and the ability to

evaluate the quality of a solution. In Section 2.1 we performed a deeper look at each of

these subjects and identified several educational goals for teaching each one.

279

Further research led to the conclusion that computational thinking ought to be taught in a

student’s “introductory” computer science course. A review of the literature led us to

conclude that computational thinking and programming are two separate skills, and that

the former ought to be taught prior to, and independently of, the latter. In this way we

established that introductory computer science education ought to consist solely of

computational thinking instruction.

We performed an investigation into existing introductory computer science education in

the United States. This investigation found that neither high school education nor college

education adequately teaches students computational thinking. In both high school and

college, existing introductory courses focus on teaching the syntax of a formal

programming language, and while in some cases computational thinking skills are taught

as well, they are rarely taught explicitly, and are almost always taught in the context of

programming in whatever particular language has been taught. After performing this

review, we noted that existing introductory computer science education produces very

poor results: these classes have high failure rates, high attrition rates, and the students

who pass these classes are often unable to effectively design and write programs. We

argue that the lack of computational thinking education is, at least in part, responsible for

these poor results.

We are not the only ones to come to this conclusion, and many “newer” educational

systems have been created to attempt to teach computational thinking. We performed a

review of eight of these newer educational systems. As part of this review, the good and

280

bad qualities of these systems were considered, and from each system we drew a series of

lessons and takeaways. The goal of this review was to determine what qualities are good

for an introductory computer science education system focused on computational

thinking, and what qualities are problematic.

We found four major qualities that an “ideal” introductory computer science educational

system should include, which are are: drag and drop style programming, virtual world

integration, robot integration, and an official curriculum developed alongside the

software. Other particular desirable features that were identified include a well-designed

drag and drop language that abstracts actions to a high level, and is visually designed to

indicate how the blocks can be combined; a robotic integration that allows the robot code

to execute on a local computer instead of on the robot itself, and also allows multiple

models of robots to be used; general customizability of the system, and integration with

social media. Particular features that systems should avoid include shifting focus away

from computational thinking education onto other items like syntax or mechanical

engineering, unduly high technical complexity, oversimplification, high expense, and a

curriculum that focuses more on play, competition or storytelling than explicit

computational thinking instruction.

6.2. GENOST TEST SUMMARY

Using the research findings described above, we designed and built Genost, an

educational system focused on teaching introductory computational thinking skills.

Genost’s design and technology is described extensively in Section 3.

281

In Section 3.8 we compared Genost to the other eight systems that were reviewed in

Section 2.4 and found, based on our takeaways from that review, that Genost implements

more desirable features than any other system, and avoids all problems that the reviewed

systems have. A table showing this comparison can be found in Appendix G.

In order to test Genost’s effectiveness in teaching computational thinking, we performed

two major tests of the systems, which involved teaching the Genost curriculum to two

separate groups of students and evaluating these students’ abilities in computational

thinking. The designs of these tests are described in Section 4, and the results are

described and analyzed in Section 5.

As stated in Section 5, we found in both tests that students participating in a Genost class

saw a significant increase in their computational thinking skills and abilities. It is notable

that the students in these classes went to having almost no computational thinking skills,

attaining averages on the computational thinking pretest in the range of 0 to 10%, and

often not even attempting most questions, to scoring in the range of 50% to 60%, with

most students attempting most of the questions. The ASA test, due to its design, allows us

to conclude that Genost was responsible for this increase. The FSE100 test does not allow

us to draw this same conclusion due to the lack of a control group for the pretest /

posttest, but the extremely large size of the increase in computational thinking skills, and

the results of the ASA test, makes us believe that Genost was indeed responsible for the

increase. In both tests the effect size of Genost on computational thinking abilities was

classified as “large”.

282

In addition to measuring computational thinking ability, we also collected grade data

from the FSE100 students in our FSE100 test. We found that students participating in the

Genost exercise had the highest raw grade average, followed by the students participating

in a Python exercise, and finally by the remainder of the class. However, the differences

between these grade means were not large enough to be significant, and so we cannot

conclude that Genost raised student grades in FSE100.

The final data set that we reviewed was student feedback, provided in two forms: Likert

data for the Genost software, and free-response data for the Genost curriculum and

presentation. All students participating in the Genost groups provided us with this

feedback, and we believe it is an accurate representation of student thoughts and feeling

on the system.

The Likert responses measure student thoughts on the ease of use, fun and educational

efficacy of the software. These responses were on the high end of the scale, measuring

roughly between 6 and 8 for all categories. Ease of use was rated between 7.5 and 7.8 on

average; educational efficacy was rated 7.6 to 8.1 on average; and enjoyment was rated

6.1 to 7.1 on average. The overall Genost software experience was given a rating of 7 –

7.7. These scores are on the high end of the scale, and lead us to conclude that students

found the Genost software easy to work with, that they enjoyed working with it, and that

they believed that they learned something from their interaction with the software.

283

The free response feedback, which measures student thoughts about the Genost

curriculum and our presentation of it, was also very positive. The positive feedback that

students provided indicated that students found the system easy to understand and

educationally rigorous. This feedback also indicates that the students found our

presentation of the curriculum clear and engaging. Many of the educational benefits that

we argued that Genost provides, such as a general presentation of the fundamental

programming concepts, were identified by the students as something they liked. This

feedback makes us somewhat confident that we “hit the mark” with Genost.

An overwhelmingly high percentage of the negative feedback and the feedback on what

the students would change focuses on the relative short amount of time students spent

with Genost, and the large amount of work that we attempted to fit into that time. 44.2%

of the student complaints in the ASA test had specifically to do with the short amount of

time in the Genost class; lack of time was also the highest percentage complaint for the

FSE100 test. The only major complaint that did not have to do with the short amount of

time, or with other aspects of the class section (such as the class size or time of day at

which it was taught) was a complaint by four FSE100 students that the worksheets were

too hard to understand. A similar pattern can be seen in the feedback on what students

would like changed – the most common suggestion for the FSE100 test, and the second

highest suggestion for the ASA test (second only to a request to fix bugs with the

software) was to add more time to the class. These complaints and suggestions indicate to

us that none of Genost’s deficiencies are strong or glaring enough to seriously bother the

students; and indeed, the fact that students wish to spend more time with the Genost

284

system further reinforces our conclusion that students like the system, and find it

educational and enjoyable.

The results of our comparison between Genost and the eight “newer” systems, and the

results of our test, lead us to conclude that the Genost system is effective in teaching

computational thinking, is easy and fun for students to use, and is in many ways superior

to the other systems currently on the market.

6.3. THESIS LIMITATIONS

In Section 5.4.2 we noted some of the possible weaknesses of our results analysis. These

include violations of some assumptions for both the ANOVA test in the ASA test (used

to analyze the computational thinking pretest / posttest results) and the paired-samples t-

test in the FSE100 test (also used to analyze the computational thinking pretest / posttest

results). Despite these assumption violations, we have proceeded with these tests and

believe that the results we have retrieved from them are valid. We are confident that this

is acceptable due to the known robustness of these tests to violations, but also to the fact

that the significance and effect size of our results are very large, meaning that Type I

errors are less likely.

We also discussed possible biases in our tests in Section 5.4.2. Students participating in

the FSE100 test were chosen pseudo-randomly according to the process described in

Section 4.3.1.1, and therefore selection bias is not likely here. The ASA students were

chosen on a first-come first-serve basis, however, and so the group may have been biased

285

towards students interested in learning programming. Furthermore, both independent

groups had students withdraw, and therefore some bias may have been introduced

towards more hardworking or persistent students. These sources of bias are virtually

unavoidable in tests of this nature since participation is and must be voluntary. Despite

this, we again believe that the very strong significance and effect size indicates that,

whether selection bias was in fact present or not, it is unlikely to be high enough to

invalidate our conclusions.

In retrospect we are able to see that FSE100 was not the ideal class to use for our test – as

previously described, the scores for all groups were skewed strongly towards the high end

of the scale, instead of providing a strong normal distribution. This feature and others are

likely what led to the FSE100 grade data analysis being underpowered. This is ultimately

not a true limitation since we cannot draw any conclusions from this data.

Aside from the limitations on the data we collected and analyzed discussed above, more

general limitations may be identified when considering our literary review. For example,

our review of the introductory computer science education classes in the United States

was conducted using the best information available to us, which were online curricula.

These curricula, while informative, do not and cannot give a whole picture of the class;

and often the true value of the class comes from the teacher teaching it. It is possible that

amount of computational thinking education in existing introductory computer science is

higher than we have identified (it could also be lower).

286

A similar limitation should be noted for our review of the eight “newer” systems. Many

of these systems are quite new and literature on them is limited. Furthermore, literature

on how well these systems teach introductory computational thinking skills is a small

percentage of the total amount of research for these systems. We believe that the general

conclusions we have drawn in regards to this system are valid, but could certainly be

refined. Similarly, our comparison between these systems and Genost are rough

comparisons, and further research and explicit tests to compare these systems are

certainly warranted.

6.4. FUTURE IMPROVEMENTS

We plan to add many features to Genost in order to improve its design and ability to

teach computational thinking. We will conclude this thesis by listing some of these

planned improvements.

Our immediate goals for the current version of Genost is to fix the bugs in the GUI and

simulator, improve the visual design of the blocks to better indicate how they fit together,

and improve the general usability of the system. We also hope to complete development

on the robot and integrate it into the curriculum. Finally, we hope to rewrite some of the

curriculum lessons to aid in clarity and educational efficacy.

Due to the feedback received as part of this test, we plan to either split future Genost

courses up into multiple classes, or increase the length of a single course, in order to give

students more time for individual lessons.

287

Our long-term goals for Genost involve a fairly complete rebuild of the system. We plan

to rebuild the Genost system in JavaScript in order to take advantage of the language’s

native functionality in the browser. This will allow Genost to run cleanly in the browser

with absolutely no required software or plugins. We also plan to add many new features

to the mazes, in order to increase the richness of the different lessons. We hope to create

multiple models of robots to provide customers greater flexibility in selecting a robot that

meets their needs, and we also hope to implement a Genost interpreter on existing robot

systems, such as Lego Mindstorms. Along with these features and changes, we also hope

to refactor the system to allow the robot algorithm to be executed on a local computer

instead of the robot itself. We plan on adding a debugger to the GUI, and in general

redesign the software to be far more usable.

In addition to a redesign and reimplementation of the Genost software, we also plan to

redesign the curriculum, and move it away from its current lecture-based focus to a

collaborative development style of learning. We plan to add a larger focus on debugging

to the curriculum, as well as introducing constant testing and refinement of student

knowledge through online quizzes. We plan to design our curriculum such that all

resources and materials may be accessed online.

Future implementations of Genost may include an online course, automated or facilitated,

and possibly a video game.

288

This thesis has described the need for a system to effectively teach computational

thinking, and we believe that Genost fills this need. This belief is informed both by a

description and justification of Genost’s design, and the results of the tests we have run

that show that Genost results in increased computational thinking ability. Informed by

this success, we hope to utilize the Genost system in the future to perform the vitally

important task of teaching students computational thinking.

289

REFERENCES

2015 FRC Control System. (2015). (FIRST Robotics Competition) Retrieved 2 25, 2015,

from WPILib: https://wpilib.screenstepslive.com/s/4485

About EV3. (2015). (The LEGO Group) Retrieved 2 25, 2015, from Lego Mindstorms:

http://www.lego.com/en-us/mindstorms/about-ev3

About Scratch. (n.d.). (MIT) Retrieved February 5, 2015, from Scratch:

http://scratch.mit.edu/about/

About the Alice 3 Instructional Materials. (2015). (Carnegie Mellon) Retrieved February

25, 2015, from Alice: http://www.alice.org/3.1/index.html

All About EV3 - Curriculum & Tools. (2014). (The LEGO Group) Retrieved February 25,

2015, from Lego Education: https://education.lego.com/en-us/lesi/middle-

school/mindstorms-education-ev3/all-about-ev3/curriculum

Allen, W. B.-S. (n.d.). Computational thinking for Youth. Retrieved March 4, 2015, from

stelar: STEM Learning and Research Center:

http://stelar.edc.org/sites/stelar.edc.org/files/Computational_Thinking_paper.pdf

An Introductory Computing Curriculum Using Scratch. (n.d.). (Harvard) Retrieved

February 25, 2015, from Creative Computing:

http://scratched.gse.harvard.edu/guide/

AP Computer Science Principles. (2015). (The College Board) Retrieved February 27,

2015, from Advances in AP:

https://advancesinap.collegeboard.org/stem/computer-science-principles

Atkinson, R. K. (2000). Learning from Examples: Instructional Principles from the

Worked Examples Research. Review of Educational Research, 70(2), pp. 181-

214.

Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt,

Rinehart and Winston.

Barry Fagin, L. M. (2003). Measuring the Effectiveness of Robots in Teaching Computer

Science. Proceedings of the 34th SIGCSE technical symposium on Computer

science education (SIGCSE '03) (pp. 307-311). New York: ACM.

Beaubouef, T. J. (2005). Why the High Attrition Rate for Computer Science Students:

Some Thoughts and Observations. ACM SIGCSE Bulletin, 37(2), pp. 103-106.

290

Bennedsen, J. M. (2007). Failure Rates in Introductory Programming. ACM SIGCSE

Bulletin, 39(2), pp. 32-36.

Blank, D. J. (2012). Calico: A Multi-Programming-Language, Multi-Context Framework

Designed for Computer Science Education. Proceedings of the 43rd ACM

technical symposium on Computer Science Education (SIGCSE '12) (pp. 63-68).

New York: ACM.

Blum, L. T. (2007). CS4HS An Outreach Program for High School CS Teachers.

Proceedings of the 38th SIGCSE technical symposium on Computer science

education (SIGCSE '07) (pp. 19-23). New York: ACM.

Bornat, R. (2014). Camels and humps: a retraction. London: School of Science and

Technology, Middlesex University.

Buckhaults, C. (2009). Increasing Computer Science Participation in the FIRST Robotics

Competition with Robot Simulation. Proceedings of the 47th Annual Southeast

Regional Conference (ACM-SE 47). New York: ACM.

Build a Robot. (2015). (The LEGO Group) Retrieved February 25, 2015, from Lego

Mindstorms: http://www.lego.com/en-us/mindstorms/build-a-robot

Bundy, A. (2007). Computational Thinking is Pervasive. Journal of Scientific and

Practical Computing, 1(2), 67-69.

BurningGlass. (2014, February). Real-Time Insight into the Market for Entry-Level

STEM Jobs. Retrieved February 27, 2015, from Burning Glass: Careers in Focus:

http://www.burning-glass.com/media/3326/Real-

Time%20Insight%20Into%20The%20Market%20For%20Entry-

Level%20STEM%20Jobs.pdf

Buss, S. R. (2001). The Prospects for Mathematical Logic in the Twenty-First Century.

The Bulletin of Symbolic Logic, 7(2).

Caitlin Kelleher, R. P. (2007). Storytelling Alice Motivates Middle School Girls to Learn

Computer Programming. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '07) (pp. 1455-1464). New York: ACM.

Calico. (2014, August 18). (Institute for Personal Robotics in Education) Retrieved

February 25, 2015, from IPRE Wiki: http://calicoproject.org/

Carey, K. (2010, November 7). Decoding the Value of Computer Science. Retrieved

March 19, 2015, from The Chronicle of Higher Education:

https://chronicle.com/article/Decoding-the-Value-of-Computer/125266/

291

Carnevale, A. P. (2011). STEM: Science, Technology, Engineering, Math. Washington

DC: Georgetown University Center on Education and the Workforce.

Carnevale, A. P. (2011). STEM: Science, Technology, Engineering, Mathematics.

Washington, DC: Georgetown University Center on Education and the

Workforce.

Carter, L. (2006). Why Students with an Apparent Aptitude for Computer Science don’t

choose to Major in Computer Science. Proceedings of the 37th SIGCSE technical

symposium on Computer science education (SIGCSE '06) (pp. 27-31). New York:

ACM.

CBI. (2013, June 20). Changing the Pace: CBI / Pearson Education and Skills Survey

2013. Retrieved February 27, 2015, from CBI:

http://www.cbi.org.uk/media/2119176/education_and_skills_survey_2013.pdf

Chamillard, A. K. (2000). Evaluating Programming Ability in an Introductory Computer

Science Course. ACM SIGCSE Bulletin, 32(1), pp. 212-216.

Charette, R. N. (n.d.). The STEM Crisis Is a Myth. Retrieved from IEEE Spectrum:

http://spectrum.ieee.org/at-work/education/the-stem-crisis-is-a-myth

Chen, Y. H. (2013). Internet of intelligent things and robot as a service. Simulation

Modelling Practice and Theory, 34, 159-171.

Chen, Y. Z.-A. (2010). Robot as a Service in Cloud Computing. 2010 Fifth IEEE

International Symposium on Service Oriented System Engineering (SOSE) (pp.

151-158). Nanjing: IEEE.

Committee on the Engineer of 2020, Phase II, Committee on Engineering Education,

National Academy of Engineering. (2005). Educating the Engineer of 2020:

Adapting Engineering Education to the New Century. Retrieved February 27,

2015, from The National Academies Press:

http://www.nap.edu/catalog/11338/educating-the-engineer-of-2020-adapting-

engineering-education-to-the

Computer science courses get highest drop outs - study. (2010, October 28). Retrieved

February 27, 2015, from Silicon Republic:

http://www.siliconrepublic.com/innovation/item/18532-computer-science-

courses-ge

Cowen, T. (2013). Average is Over: Powering America Beyond the Age of the Great

Stagnation. New York: Dutton.

292

Creating DSS Service Projects. (2012). (Microsoft) Retrieved February 27, 2015, from

Microsoft Developer Network: https://msdn.microsoft.com/en-

us/library/bb483009.aspx

CSTA Curriculum Improvement Task Force. (2006). The New Educational Imperative -

Improving High School Computer Science Education. New York: ACM.

Retrieved from

http://csta.acm.org/Communications/sub/DocsPresentationFiles/White_Paper07_0

6.pdf

Cuny, J. (2011, June). Transforming Computer Science Education in High Schools.

Retrieved February 27, 2015, from Exploring Computer Science:

http://www.exploringcs.org/wp-content/uploads/2011/11/IEEE-Transforming-

Computer-Science-Education-in-High-Schools.pdf

David Barr, J. H. (2011, March). Computational Thinking: A Digital Age Skill for

Everyone. Learning & Leading with Technology, 38(6), 20-23.

David J. Malan, H. H. (2007). Scratch for Budding Computer Scientists. Proceedings of

the 38th SIGCSE technical symposium on Computer science education (SIGCSE

'07) (pp. 223-227). New York: ACM.

Deepak Kumar, D. B. (2008). Engaging Computing Students with AI and Robotics. AAAI

Spring Symposium: Using AI to Motivate Greater Participation in Computer

Science, (pp. 55-60).

Dehnadi, S. R. (2006, February 22). The camel has two humps (working title). Retrieved

February 27, 2015, from Science and Technology WebServer:

www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

Delden, S. v. (2008). Effective Integration of Autonomous Robots Into an Introductory

Computer Science Course: A Case Study. Consortium for Computing Sciences in

Colleges, 23(4).

Diana Franklin, P. C.-T. (2013). Assessment of Computer Science Learning in a Scratch-

Based Outreach Program. Proceeding of the 44th ACM technical symposium on

Computer science education (SIGCSE '13) (pp. 371-376). New York: ACM.

Drew, C. (n.d.). Why Science Majors Change their Minds (It's Just So Darn Hard).

Retrieved from The New York Times:

http://www.nytimes.com/2011/11/06/education/edlife/why-science-majors-

change-their-mind-its-just-so-darn-hard.html

FIRST. (2015). FIRST LEGO League. (FIRST) Retrieved February 27, 2015, from

FIRST LEGO League: http://www.firstlegoleague.org/

293

For Parents. (n.d.). (MIT Media Lab) Retrieved February 27, 2015, from Scratch:

http://scratch.mit.edu/parents/

Get Started (LEGO MINDSTORMS). (n.d.). (Carnegie Mellon) Retrieved February 27,

2015, from Carnegie Mellon Robotics Academy:

http://www.education.rec.ri.cmu.edu/content/lego/start/

Gouws, L. (2013). Computational thinking in educational activities: an evaluation of the

educational game light-bot. Proceedings of the 18th ACM conference on

Innovation and technology in computer science education (ITiCSE '13) (pp. 10-

15). New York: ACM.

Gross, S. M. (2014). Fostering Computational Thinking in Engineering Education.

Global Engineering Education Conference (EDUCON) (pp. 450-459). Istanbul:

IEEE.

Guzdial, M. (2004). Programming Environments for Novices. In S. Fincher, Computer

Science Education Research. Taylor & Francis.

Guzdial, M. (2011). Education: From Science to Engineering. Communications of the

ACM, 54(2), 37.

Harms, D. (2013). A Preliminary Analysis of the Effectiveness of Myro / Java in

Computer Science 1. CompSysTech'13 Local Proceedings (pp. 42-46). Ruse:

University of Ruse.

Hofstadter, D. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic

Books.

House of Lords Select Committee on Science and Technology. (2012). Higher Education

in Science, technology, Engineering and Mathematics (STEM) subjects, 2nd

report of session 2012-2013. House of Lords. London: The Stationary Office

Limited. Retrieved from

http://www.publications.parliament.uk/pa/ld201213/ldselect/ldsctech/37/37.pdf

Hu, C. (2011). Computational Thinking - What it Might Mean and What we Might Do

About It. Proceedings of the 16th annual joint conference on Innovation and

technology in computer science education (ITiCSE '11) (pp. 223-227). New York:

ACM.

Ian Utting, S. C. (2010). Alice, Greenfoot and Scratch - A Discussion. ACM Transactions

on Computing Education, 10(4), 1-11.

Institute for Personal Robots in Education. (2008, February 27). Institute for Personal

Robots in Education. (Institute for Personal Robots in Education) Retrieved

294

February 27, 2015, from Institute for Personal Robots in Education:

http://www.roboteducation.org/

Jackie O'Kelly, J. P. (2006). RoboCode & problem-based learning: a non-prescriptive

approach to teaching programming. Proceedings of the 11th annual SIGCSE

conference on Innovation and technology in computer science education (ITiCSE

'06) (pp. 217-221). New York: ACM.

James J. Lu, G. H. (2009). Thinking about Computational Thinking. Proceedings of the

40th ACM technical symposium on Computer science education (SIGCSE '09)

(pp. 260-264). New York: ACM.

Jobs, S. (1995). https://www.youtube.com/watch?v=IY7EsTnUSxY.

K-12 Computer Science Education: Unlocking the Future of Students. (2012, August).

ACM. Retrieved from http://www.acm.org/public-

policy/2012_CS_Slides_Aug.pptx

Karin Johnsgard, J. M. (2008). Using Alice in Overview Courses to Improve Success

Rates in Programming 1. IEEE 21st Conference on Software Engineering

Education and Training, 2008 (fCSEET '08) (pp. 129-136). Charleston, SC: IEEE.

Kay, A. (2008, August 24). Alan Kay on 'The Camel has Two Humps'. Retrieved

February 27, 2015, from SecretGeek.net: http://secretgeek.net/camel_kay

Kelleher, C. (2007). Retrieved February 27, 2015, from Storytelling Alice:

http://www.alice.org/kelleher/storytelling/index.html

Knuth. (1997). The Art of Computer Programming Second Edition, Volume 1

Fundamental Algorithms. Reading, Massachusetts: Addison-Wesley.

Knuth, D. (1985, March). Algorithmic Thinking and Mathematical Thinking. The

American Mathematical Monthly, 92(3), pp. 170-181.

Larsen, F. N. (2013, February 27). ReadMe for Robocode. Retrieved February 27, 2015,

from Robocode: http://robocode.sourceforge.net/docs/ReadMe.html

Learn to Program. (2015). (The LEGO Group) Retrieved February 27, 2015, from Lego

Mindstorms: http://www.lego.com/en-us/mindstorms/learn-to-program

Learning with Scratch. (n.d.). Retrieved February 27, 2015, from Scratch:

https://llk.media.mit.edu/scratch/Learning-with-Scratch.pdf

295

Lego MINDSTORMS Education EV3. (2014). (The LEGO Group) Retrieved February 27,

2015, from Lego Education: https://education.lego.com/en-us/lesi/middle-

school/mindstorms-education-ev3

Lego Mindstorms NXT. (2015). (Microsoft) Retrieved February 27, 2015, from Microsoft

Developer Network: https://msdn.microsoft.com/en-us/library/bb905443.aspx

Lix, L. M. (1996). Consequences of assumption violations revisited: A quantitative

review of alternatives to the one-way analysis of variance F test. Review of

educational research, 66(4), 579-619.

Long, J. (2007). Just for Fun: Using Programming Games in Software Programming,

Training and Education - A Field Study of IBm Robocode Community. Journal of

Information Technology Education: Research, 6(1), 279-290.

Maja J Mataric, N. K.-S. (2007). Materials for Enabling Hands-On Robotics and STEM

Education. AAAI Spring Symposium: Semantic Scientific Knowledge Integration

(pp. 99-102). AAAI.

Maloney, J. (2008). Programming by Choice: Urban Youth Learning Programming with

Scratch. ACM SIGCSE Bulletin, 40(1), pp. 367-371.

McGill, M. M. (2012). Learning to Program with Personal Robots Influences on Student

Motivation. ACM Transactions on Computing Education, 12(1), 1-32.

Michael McCracken, V. A.-D. (2001, December). A Multi-National Multi-Institutional

Study of Assessment of Programming Skills of First-Year CS Students. ACM

SIGCSE Bulletin, 33(4), pp. 125-180.

Microsoft. (n.d.). A National Talent Strategy: Ideas for Securing US Competativeness

and Economic Growth. Retrieved February 27, 2015, from News Center:

http://news.microsoft.com/download/presskits/citizenship/msnts.pdf

Microsoft Robotics - Overview. (2012). (Microsoft) Retrieved February 27, 2015, from

Microsoft Developer Network: https://msdn.microsoft.com/en-

us/library/bb483024.aspx

Mitchel Resnick, J. M.-H. (2009, November). Scratch: Programming for All.

Communications of the ACM, 52(11), pp. 60-67.

Mohtadi, C. M. (2013). Why Integrate Computational Thinking into a 21st Century

Engineering Curriculum. 41st SEFI Conference. Leuven, Belgium.

Moursund, D. (2013, October 12). Computational Thinking. Retrieved February 27,

2015, from IAE-Pedia: http://iae-pedia.org/Computational_Thinking

296

Myro Development. (2009, August 4). (Institute for Personal Robotics in Education)

Retrieved February 27, 2015, from Calico Project:

http://calicoproject.org/Myro_Development

NSF. (2014, December 8). College Board launches new AP Computer Science Principles

course. (National Science Foundation) Retrieved February 27, 2015, from

National Science Foundation:

http://www.nsf.gov/news/news_summ.jsp?cntn_id=133571

NXT-G. (2014). (Tufts University Center for Engineering Education and Outreach)

Retrieved February 27, 2015, from LEGO engineering:

http://www.legoengineering.com/program/nxt-g/

Object-Oriented Programming. (2014, November 19). Retrieved February 27, 2015, from

Scratch Wiki: http://wiki.scratch.mit.edu/wiki/Object-Oriented_Programming

Ormrod, J. E. (2012). Human Learning (6th ed.). Upper Saddle River, New Jersey:

Pearson Education, Inc.

Orni Meerbaum-Salant, M. A.-A. (2011). Habits of Programming in Scratch.

Proceedings of the 16th annual joint conference on Innovation and technology in

computer science education (ITiCSE '11) (pp. 168-172). New York: ACM.

Orni Meerbaum-Salant, M. A.-A. (2013). Learning Computer Science Concepts with

Scratch. Computer Science Education, 23(3), 239-264.

Papert, S. (1993). Mindstorms: Children, Computers, And Powerful Ideas. Basic Books.

Partovi, H. (2014, June 19). What % of STEM Should Be Computer Science? (Code.org)

Retrieved February 27, 2015, from Anybody Can Learn:

http://codeorg.tumblr.com/post/89267280803/stem

Paul Mullins, D. W. (2009). Using Alice 2.0 as a First Language. Journal of Computing

Sciences in Colleges, 24(3), 136-143.

Paul, J. (2012, June). Living in a Computing World - A Step Towards Making

Knowledge of Computing Accessible to Every Student. ACM Inroads, 3(2), pp.

78-81.

President's Council of Advisors on Science and Technology. (2012, February). Report to

the President: Engage to Excel: Producing One Million Additional College

Graduates With Degrees in Science, Technology, Engineering and Mathematics.

Retrieved March 4, 2015, from Whitehouse.gov:

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-

excel-final_2-25-12.pdf

297

Renkl, A. R. (2002). From Example Study to Problem Solving: Smooth Transitions Help

Learning. The Journal of Experimental Education, 70(4), 293-315.

Resnick, M. (2007). All I Really Need to Know (About Creative Thinking) I Learned (By

Studying How Children Learn) in Kindergarten. Proceedings of the 6th ACM

SIGCHI conference on Creativity & cognition (C&C '07) (pp. 1-6). New York:

ACM.

Robins, A. (2010, April 7). Learning edge momentum: a new account of outcomes in

CS1. Computer Science Education, 20(1), 37-71.

Rothwell, J. (2014, July). Still Searching: Job Vacancies and STEM Skills. Retrieved

March 4, 2015, from Brookings:

http://www.brookings.edu/~/media/research/files/reports/2014/07/stem/job%20va

cancies%20and%20stem%20skills.pdf

Ryan Garlick, E. C. (2010). Using Alice in CS1: A quantitative experiment. Proceedings

of the fifteenth annual conference on Innovation and technology in computer

science education (ITiCSE '10) (pp. 165-168). New York: ACM.

Sawilowsky, S. S. (1992, March). A more realistic look at the robustness and type II error

properties of the t test to departures from population normality. Psychological

Bulletin, 111(2), 352-360.

Scanlan, D. A. (2007, October). Programming the Eight-Core Propeller Chip. Journal of

Computing Sciences in Colleges, 23(1), 162-168.

Scratch Curriculum Guide. (2014, August 7). (Harvard) Retrieved February 27, 2015,

from ScratchED: http://scratched.gse.harvard.edu/resources/scratch-curriculum-

guide

Selby, C. C. (2012). Promoting Computational Thinking with Programming. Proceedings

of the 7th Workshop in Primary and Secondary Computing Education (WiPSCE

'12) (pp. 74-77). New York: ACM.

Stark, E. (2013, January 29). Commentary: US Kids Need Computer Science Education.

USA Today.

Supported Robots. (2015). (Microsoft) Retrieved February 27, 2015, from Microsoft

Developer Network: https://msdn.microsoft.com/en-us/library/bb905441.aspx

Testimonials from Alice users. (2015). (Carnegie Mellon) Retrieved February 27, 2015,

from Alice: http://www.alice.org/index.php?page=testimonials

298

The FIRST Robotics Competition: CAREERS. (2014, August). Retrieved February 27,

2015, from FIRST Robotics Competition:

http://www.usfirst.org/uploadedFiles/Robotics_Programs/FRC/FRC_Communicat

ions_Resource_Center/Flyers/FRC_CareersFNL.pdf

The FIRST Robotics Competition: EVALUATION. (2013, August). Retrieved February

27, 2015, from FIRST Robotics Competition:

http://www.usfirst.org/uploadedFiles/Robotics_Programs/FRC/FRC_Communicat

ions_Resource_Center/Flyers/FRC_EvaluationFNL.pdf

The FIRST Robotics Competition: HOW IT WORKS. (2014, August). Retrieved February

27, 2015, from FIRST Robotics Competition:

http://www.usfirst.org/uploadedFiles/Robotics_Programs/FRC/FRC_Communicat

ions_Resource_Center/Flyers/FRC_HowitworksFNL.pdf

The FIRST Robotics Competition: OVERVIEW. (2014, August). Retrieved February 27,

2015, from FIRST Robotics Competition:

http://www.usfirst.org/uploadedFiles/Robotics_Programs/FRC/FRC_Communicat

ions_Resource_Center/Flyers/FRC_OverviewFNL.pdf

The FIRST Robotics Competition: SUCCESS. (2013, August). Retrieved February 27,

2015, from FIRST Robotics Competition:

http://www.usfirst.org/uploadedFiles/Robotics_Programs/FRC/FRC_Communicat

ions_Resource_Center/Flyers/FRC_AcademicSuccessFNL.pdf

Thomas R. Flowers, K. A. (2002, May). Teaching Problem Solving, Computing and

Information Technology with Robots. Journal of Computing Sciences in Colleges,

17(6), 45-55.

Thompson, A. (2007, September 21). New Robotics Curriculum from Microsoft Robotics

Studio. (Microsoft) Retrieved February 27, 2015, from Microsoft Education

Blogger: Teaching Computer Science:

http://blogs.msdn.com/b/alfredth/archive/2007/09/21/new-robotics-curriculum-

from-microsoft-robotics-studio.aspx

Tom Lauwers, I. N. (2009). CSbots: Design and Deployment of a Robot Designed for the

CS1 Classroom. Proceedings of the 40th ACM technical symposium on Computer

science education (SIGCSE '09) (pp. 428-432). New York: ACM.

Tucker Balch, J. S. (2008, April). Designing Personal Robots for Education: Hardware,

Software and Curriculum. Pervasive Computing, 7(2), pp. 5-9.

Ursula Wolz, H. H. (2009). Starting with Scratch in CS1. Proceedings of the 40th ACM

technical symposium on Computer science education (SIGCSE '09) (pp. 2-3).

New York: ACM.

299

Valerie Barr, C. S. (2011, March). Bringing Computational Thinking to K12 - What is

Involved and What ist he Role of the Computer Science Education Community?

ACM Inroads, 2(1), pp. 48 - 54.

Visual Programming Language - Using Services. (2012). (Microsoft) Retrieved February

27, 2015, from Microsoft Developer Network: https://msdn.microsoft.com/en-

us/library/dd146310.aspx

VPL Introduction. (2012). (Microsoft) Retrieved February 27, 2015, from Microsoft

Developer Network: https://msdn.microsoft.com/en-us/library/bb483088.aspx

W.T. Tsai, Y. C. (2008). An Introductory Course on Service-Oriented Computing for

High Schools. Journal of Information Technology Education: Research, 7(1).

Wagstaff, K. (2012, July 16). Can we Fix Computer Science Education in America.

(Time, Inc) Retrieved March 4, 2015, from Time:

http://techland.time.com/2012/07/16/can-we-fix-computer-science-education-in-

america/

Wanda Dann, S. C. (2009, August). Education: Alice 3: Concrete to Abstract.

Communications of the ACM, 52(8), pp. 27-29.

Watson, C. F. (2014). Failure Rates in Introductory Programming Revisited. Proceedings

of the 2014 conference on Innovation & technology in computer science

education (ITiCSE '14) (pp. 39-44). New York: ACM.

Welcome to the FIRST Robotics Competition. (n.d.). (FIRST) Retrieved February 27,

2015, from FIRST Robotics Competition:

http://www.usfirst.org/roboticsprograms/frc

What is Alice? (2015). (Carnegie Mellon) Retrieved February 27, 2015, from Alice:

http://www.alice.org/index.php?page=what_is_alice/what_is_alice

What Is Logo? (2011). (The Logo Foundation) Retrieved February 27, 2015, from Logo

Foundation: http://el.media.mit.edu/logo-foundation/logo/index.html

Williams, L. E. (2002). In Support of Pair Programming in the Introductory Computer

Science Course. Computer Science Education, 12(3), 197-212.

Wilson, C. L. (2010). Running on Empty: The Failure to Teach K-12 Computer Science

in the Digital Age. ACM. Retrieved from

http://runningonempty.acm.org/fullreport2.pdf

Wing, J. (2006). Computational Thinking and CS@CMU.

300

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3).

Wing, J. M. (2008, October 28). Computational Thinking and Thinking about

Computing. Philosophical Transactions: Mathematical, Physical and

Engineering Sciences , 366(1881), 3717-3725.

Wing, J. M. (2010, November 17). Computational Thinking: What and Why? Retrieved

March 4, 2015, from Center for Computational Thinking:

http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Yinong Chen, W.-T. T. (2014). Service-Oriented Computing and Web Software

Integration. Dubuque, IA: Kendall Hunt.

301

APPENDIX A:

COLLEGE CURRICULA REVIEW NOTES

302

The following tables contain the overall rating and language used notes for the

classes reviewed. Detailed commentary is available upon request.

College Curricula Review Notes for Overall Top 25 US Colleges

(As determined by US News, accessed 11/29/2014)

College Course
Ratin

g
Language Used

Date

Accessed

Princeton University COS109 1
HTML, Javascript

11/30/201

4

 COS126 2 Java
11/30/201

4

Harvard University CS50 2
C, HTML, PHP,

Javascript, Scratch

11/30/201

4

 COMPSCI1 No syllabus obtainable

COMPSCI5

1
No syllabus obtainable

Yale University CPSC112 No syllabus obtainable

 CPSC201 2 Racket
11/30/201

4

Columbia University
COMSW10

04
No syllabus obtainable

Stanford University CS105 1 HTML, CSS, PHP
11/30/201

4

 CS106A 3 Karel Robot, Java
11/30/201

4

 CS106B 2 C++
11/30/201

4

University of Chicago
CMSC1510

0
1 Racket

12/16/201

4

CMSC1520

0
1 C

12/16/201

4

MIT 6.01 2 Python
12/16/201

4

 6.02 1 Python
12/16/201

4

Duke University
CompSci10

1
2 Python

12/16/201

4

University of

Pennsylvania
CIS110 1 Java

12/16/201

4

 CIS120 2 Java, OCAML
12/16/201

4

California Institute of

Technology
CS1 1 Python

12/16/201

4

303

 CS2 No syllabus obtainable

Dartmouth College COSC1 2 Python
12/18/201

4

 COSC10 2 Java
12/17/201

4

John Hopkins University EN.600.107 1 Java
12/17/201

4

Northwestern University EECS101 0 N/A
12/17/201

4

 EECS111 3 C, Python
12/17/201

4

Washington University in

St. Louis
CSE131 2 Java

12/17/201

4

 CSE132 2 Java
12/17/201

4

Cornell University
CS1110 /

CS1133
1 Python

12/18/201

4

CS1112 /

CS1132
2 MATLAB

12/18/201

4

Brown University CSCI0150 1 Java
12/18/201

4

 CSCI0170 2
Racket, OCAML,

Java, Scala

12/18/201

4

University of Notre Dame CSE20211 2 C
12/18/201

4

 CSE20212 1 C++
12/18/201

4

Vanderbilt University CS101 No syllabus obtainable

 CS201 No syllabus obtainable

Rice University COMP140 3 Python
12/19/201

4

 COMP160 1 Python
12/19/201

4

University of California -

Berkeley
CS61A 3 Python

12/19/201

4

 CS61B 3 Java
12/19/201

4

 CS10 5 Snap (Scratch)
12/19/201

4

Emory University CS170 2 Java
12/19/201

4

 CS171 1 Java
12/19/201

4

Georgetown University COSC051 2 C++
12/20/201

4

304

 COSC052 1 C++
12/20/201

4

University of California -

Los Angeles
COMSCI31 2 C++

12/20/201

4

 COMSCI32 2 C++
12/23/201

4

University of Virginia
CS1110 /

CS1133
3 Java

12/20/201

4

Carnegie Mellon

University
15-112 1 Python

12/21/201

4

 15-122 1 Python
12/21/201

4

University of Southern

California
CSCI103 2 C++

12/21/201

4

305

College Curricula Review Notes for Top 25 US Colleges for Computer Science

(As determined by US News, accessed 11/29/2014)

College Course
Ratin

g
Language

Date

Accessed

MIT 6.01 2 Python
12/16/201

4

 6.02 1 Python
12/16/201

4

Harvard University CS50 2
C, HTML, PHP,

Javascript, Scratch

11/30/201

4

COMPSCI

1
No syllabus obtainable

COMPSCI

51
No syllabus obtainable

Stanford University CS105 1 HTML, CSS, PHP
11/30/201

4

 CS106A 3 Karel Robot, Java
11/30/201

4

 CS106B 2 C++
11/30/201

4

University of California -

Berkeley
CS61A 3 Python

12/19/201

4

 CS61B 3 Java
12/19/201

4

 CS10 5 Snap (Scratch)
12/19/201

4

Princeton University COS109 1 HTML, Javascript
11/30/201

4

 COS126 2 Java
11/30/201

4

University of Texas -

Austin
CS312 2 Java

12/23/201

4

University of California -

San Diego
CSE8A 3 Java

12/23/201

4

 CSE11 1 Java
12/23/201

4

University of Southern

California
CSCI103 2 C++

12/21/201

4

Georgia Institute of

Technology
CS1301 3 Python

12/23/201

4

 CS1331 2 Java
12/23/201

4

University of California -

Los Angeles
COMSCI31 2 C++

12/20/201

4

306

 COMSCI32 2 C++
12/23/201

4

Carnegie Mellon

University
15-112 1 Python

12/21/201

4

 15-122 1 Python
12/21/201

4

University of California -

Irvine
I&C SCI 31 3 Python

12/23/201

5

University of Illinois -

Urbana-Champaign
CS125 2 Java

12/23/201

5

University of Maryland -

College Park
CMSC131 1 Java

12/23/201

5

California Institute of

Technology
CS1 1 Python

12/16/201

4

 CS2 No syllabus obtainable

University of Michigan EECS280 3 C++
12/23/201

5

University of Washington CSE142 1 Java
12/24/201

5

 CSE143 1 Java
12/24/201

5

University of California -

Davis
ECS30 2 C 1/5/2015

 ECS40 2 C++ 1/5/2015

Columbia University
COMSW10

04
No syllabus obtainable

Purdue University CS18000 2 Java 1/6/2015

Ohio State University CSE1223 2 Java 1/6/2015

 CSE2221 2 Java 1/6/2015

Cornell University
CS1110 /

CS1133
1 Python

12/18/201

4

CS1112 /

CS1132
2 MATLAB

12/18/201

4

University of Minnesota -

Twin Cities
CSCI1133 3 Python 1/6/2015

Pennsylvania State

University
CMPSC121 2 C++ 1/6/2015

Texas A&M University -

College Station
CSCE121 2 C++ 1/6/2015

307

APPENDIX B:

OBJECTIVE G LANGUAGE DEFINITION

308

1. Action Blocks

The Action Blocks are all the blocks that command the robot to do something. Some

blocks return a data value. The Action Blocks are:

a. Drive Distance: takes a single Integer-type block as a parameter, which tells the

robot how far to drive. One can tell the robot to drive forwards or backwards by

making the Integer value positive or negative, respectively.

b. Drive: tells the robot to drive in a certain direction. Takes a single parameter, a

Direction data block with parameters “Forward” or “Backwards”.

c. Turn Degrees: takes a single Integer-type block as a parameter, which tells the

robot how far to turn. One can tell the robot to turn right or left by making the

Integer value positive or negative, respectively.

d. Turn to Bearing: takes a single parameter, which may be either an Integer-type

block or a Bearing data block. The robot will turn to either the cardinal direction

specified, if a Bearing block is given, or to the bearing represented by the integer

value, if an Integer block is given.

e. Turn: tells the robot to turn in a certain direction. Takes a single parameter, a

Direction data block with parameters “Right” or “Left”.

f. Get Distance: takes a single parameter, a Direction data block with values

“Forwards”, “Backwards”, “Left” or “Right”. Will take a sonar sensor reading

from the sonar sensor specified by the Direction block and return it as an Integer.

g. Get Bearing: takes a reading on the compass sensor and returns the value as an

Integer. Does not take a parameter.

h. Stop: stops the robot. Does not take a parameter.

309

2. Data and Robot Data

The data blocks function as input for other blocks. These blocks cannot stand alone

and must be placed in a socket. There are two types: primatives (the value of which

students must specify) and constants (the value of which are fixed)

a. Integer: a primitive block which allows students to enter an integer value.

b. String: a primitive block which allows students to enter a String value.

c. Boolean: a primitive block which allows students to enter a Boolean value.

d. Direction: a constant block. Students may select six different constants:

Forward, Backwards, Left, Right, Front and Rear. The above list of six

constants is filtered depending on what socket the Direction block is placed in.

e. Bearing: a constant block. Students may select four different constants:

North, South, East and West.

3. Loops

A Loop block has a Condition and a Body. The Condition determines how many

times a loop iterates; the Body is the code that is iterated. There are two loop types.

a. Loop For: takes an Integer, Integer-type Variable, or Integer-type Method as

a Condition. Executes the code body the exact number of times specified by

the Condition. If the Condition Integer is negative or zero, the loop body does

not execute.

b. Loop Until: takes a Comparison or Logic block as its Condition. When the

Loop Until first executes, the Condition is evaluated, and if it is FALSE, the

loop body executes. After executing the body, the Condition is evaluated

again. The loop body will execute until the Condition evaluates to TRUE. For

this reason, it is possible to use Loop Until to create infinite loops.

310

4. Wait Statements

A Wait Statement pauses the interpreter for a certain amount of time. No code is

executed during this time, although any ongoing action the robot is performing like

Drive or Turn will continue during the pause. There are two wait statement types.

a. Wait For: takes an Integer, Integer-type Variable or Integer-type Method, and

pauses execution for the number of milliseconds equal to the Integer

parameter. If this Integer is zero or negative, the Wait will not pause anything.

b. Wait Until: takes a Comparison or Logic block as a parameter. Pauses

execution until the parameter evaluates to TRUE. Checks this parameter as

frequently as it can. It is possible to create an infinite Wait Until.

5. If Statements

An If statement, and its companions Else If and Else, allow a certain segment of code

to be executed only if a certain Condition is TRUE (or FALSE). All If statements

must contain an If block, and may optionally contain an Else If and / or an Else. An If

Statement may contain one to many individual If / Else If / Else blocks, only one of

which will have its body executed.

a. If: an If block is the basic form of an If statement. It accepts a Condition

(either a Comparison or a Logic block) and has a body. When the If block is

executed, the Condition is evaluated. If the Condition is TRUE, the body is

executed, and after the body is executed the next line of code outside the If

Statement is executed. If the Condition is FALSE, either the next item in the If

Statement is executed (either an Else If or an Else if there is one), or the next

line of code outside the If Statement is executed if there is no other items in

the If Statement.

b. Else If: the Else If block also contains a Condition and a body. Else If blocks

may only follow If blocks or other Else If blocks. When an Else If block is

executed, the Condition is evaluated. If the Condition is TRUE, the body is

executed, and after the body is executed the next line of code outside the If

Statement is executed. If the Condition is FALSE, either the next item in the If

Statement is executed (either an Else If or an Else if there is one), or the next

line of code outside the If Statement is executed if there is no other items in

the If Statement.

c. Else: the Else block contains only a body, and has no condition. Else blocks

may only follow an If or Else If block. An Else block terminates an If

311

Statement – no other Elses or Else Ifs may go after it. When an Else block is

executed, the body is automatically executed, and after this the next line of

code outside the If Statement is executed.

6. Variables and Assignments: a Variable is a temporary container for storing a value.

An Assignment is a block which assigns a value to a Variable.

a. Variables: All Variables have a type which may be either Integer, String or

Boolean. Variables may be plugged into sockets, but may not stand alone.

Variables may either return or receive a value, depending on where they are

used. Variables are created or deleted in the Variable panel.

b. Assignment: an Assignment statement has two sockets. The left hand socket

may only accept a Variable. The right hand socket accepts a block of the same

type as the Variable in the left hand socket – for example, a Data block of the

same type, another Variable of the same type, or a Function of the same type.

7. Logic and Comparison: logic and comparison blocks may be entered into sockets

which accept Conditions. These items cannot stand on their own. When evaluated,

Logic and Comparison blocks return a Boolean value.

a. Comparison: a comparison is a test between two blocks of the same type.

Possible Comparison blocks are == (equals), != (not equals), <= (less than or

equal to), >= (greater than or equal to), > (greater than), and < (less than).

Two sockets are present in each Comparison block to accept the values being

compared. Integer values may be used in all six tests; String or Boolean values

may only be compared using == or !=. When evaluated, if the test passes,

TRUE is returned; else, FALSE is returned.

b. Logic: a Logic block has two sockets, both of which accept either

Comparison blocks or another Logic block. There are two Logic blocks: AND

and OR. When evaluated, the contents of both sockets are evaluated. If the

Logic block is an AND, then the block will only return TRUE if both sockets

evaluate to TRUE, and will return FALSE otherwise. If the Logic block is an

OR, then the block will only return FALSE if both sockets evaluate to

FALSE, and will return TRUE otherwise.

312

8. Methods

A Method is a set of instructions which may be called through a Method block.

Methods have Types and Parameters; the Type determines what value the Method

returns, and the Parameters are used to pass data into the Method.

a. Method: a Method may have a type of Integer, Boolean, or String, which

indicates that the Method returns that type of data. A Method may also have a

type of Void, which indicates the Method returns nothing. A Method may

have parameters, which will be detailed later. The Method has a body; when

the Method is executed, the body code is executed. A Method is executed by

placing a Method block in either the main canvas or the body of some other

block (including another Method). Methods may be created and deleted in the

Method panel.

b. Parameter: a Method may have zero or more parameters. Each parameter has

a type of either Integer, String or Boolean. When a Method is called, all

Parameters must be passed in by inserting blocks of the appropriate types into

the sockets. Inside the Method body the Parameters are available to be used in

a similar way to Variables.

313

APPENDIX C:

EXAMPLE GENOST CURRICULUM WORKSHEETS

314

The following worksheet is a guided practice worksheet from Section 1. This

worksheet walks the student through developing the algorithm to solve the maze.

315

316

The following worksheet is a simple exercise from Section 2. The worksheet does not

walk the student through solving the maze, but does provide guidance on how to get

there.

317

318

319

320

321

322

The following worksheet is a challenging exercise from Section 3. This worksheet

provides no guidance for the student to solve the problem. Also, note how this

worksheet requires the student to solve multiple mazes.

323

APPENDIX D:

COMPUTATIONAL THINKING TESTING INSTRUMENT

324

325

326

327

328

329

330

331

332

333

334

335

APPENDIX E:

FEEDBACK FORMS

336

The following form is the Likert scale form used to collect feedback on the Genost

software.

337

The following is the free response form used to collect information on the Genost

curriculum and presentation.

338

APPENDIX F:

RECRUITMENT MATERIALS AND CONSENT FORMS

339

The following text contains the speech made to the FSE100 students recruiting them

to participate in the test.

Howdy everyone, I’m Garret Walliman. Welcome to your first day of FSE100.

I’m here to talk to you about an opportunity that may help you out a lot in FSE100, as

well as your other programming classes throughout your time here at ASU.

Wanted to ask – how many in here are CS? CSE? Other degrees?

For what reason did you choose your degree?

All right. ASU is conducting research into a new educational program that we’re

developing. We’re wondering whether a curriculum that focuses heavily on programming

fundamentals and algorithm development helps students in future programming classes.

To this end we will be holding an extracurricular activity for FSE100 students during the

first three weeks of September. We will meet six times and go through a small, custom

set of lessons that we’ve developed using a new educational tool that we’ve built.

It is our hope that students participating in this course will gain a deeper insight into

programming and that the ultimate result will be better understanding and higher grades.

In addition, all students who complete this activity will be given 10% extra credit in

FSE100 – that’s a full letter grade.

So I’m going to ask you for two things. The first thing I want to ask is for anybody who

wants to participate in this extracurricular activity to sign this signup sheet.

The second thing I would like to ask is for all students, whether you want to participate in

the extracurricular activity or not, to sign a consent form to release your FSE100 grade

data to our study. This data will allow us to compare the performance of those who

participate in the exercise to those who do not.

I want to make it clear that you are not required to participate in the activity or to release

your grade data to us. Your participation in these things is not required for you to attend

FSE100 or ASU. You will not be penalized for choosing not to participate. You can also

choose to stop participation at any time.

If you do choose to consent to releasing your grade data, it will be anonymized and will

not be connected to you in any way. At ASU we comply with all ethical standards related

to student data so you can trust that we’ll keep it safe.

So – if you wish to allow us to collect your grade data for FSE100, please sign these

consent forms. If you wish to participate in our extracurricular activity, please sign this

signup sheet. For those who sign up, if you are chosen to participate, we will contact you

closer to the activity.

340

Again, your participation is not required, but it will help us, and hopefully it will greatly

benefit you as well.

I’d like to remind you again that participating in our activity and completing it will earn

you 10% extra credit in your FSE100 class. If you are interested in earning the 10% extra

credit but do not want to participate in our activity, there is an alternative activity

available that I can describe to those who are interested. If you want to participate in the

ASU activity, please sign the signup sheet. If you would like to participate in the

alternative activity, please send me an email at the email address on the board.

Thanks guys!

341

The following text was sent to parents in an email, and displayed on the ASA

website, to recruit ASA students to participate in the independent group.

Educational Programming Opportunity!

Programming and computational thinking are now recognized as a fundamental skill, as

important as reading and writing, and a necessary ability for the modern world. We

believe that a skill this fundamental should be given fundamental education.

An introductory programming class will be held at the Arizona School for the Arts from

September 8 – 12 and 15 - 19, 3PM to 5PM. We are looking for 30 students, grades

7th to 12th, to attend!

In this class, you will learn the fundamental skills involved in creating algorithms and

programming. These skills include:

- Performing problem analysis

- Designing algorithms

- Recognizing and understanding programming concepts

- Applying and combining fundamental programming structures to implement an

algorithm in code.

- General computational thinking principles

We will be using a new program being developed at Arizona State University, called

Genost, to help teach these fundamental skills. This class is being held as part of a study

conducted at Arizona State University to determine the educational effectiveness of

Genost.

All participants, and their parents, will be required to sign consent forms to participate in

the class. These forms may be downloaded below, and provide more information about

the research being conducted.

We look forward to seeing you!

342

The following form is the grade release consent form used for the FSE100 students.

343

The following form is the consent form for participants in the FSE100 Genost

group.

344

The following form is the consent form for participants in the ASA independent

group.

345

APPENDIX G:

SYSTEM COMPARISONS

346

347

348

APPENDIX H:

IRB APPROVAL DOCUMENTS

349

350

351

352

353

354

