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ABSTRACT

A myriad of social media services are emerging in recent years that allow people to

communicate and express themselves conveniently and easily. The pervasive use of

social media generates massive data at an unprecedented rate. It becomes increasingly

difficult for online users to find relevant information or, in other words, exacerbates the

information overload problem. Meanwhile, users in social media can be both passive

content consumers and active content producers, causing the quality of user-generated

content can vary dramatically from excellence to abuse or spam, which results in a

problem of information credibility. Trust, providing evidence about with whom users

can trust to share information and from whom users can accept information without

additional verification, plays a crucial role in helping online users collect relevant and

reliable information. It has been proven to be an effective way to mitigate information

overload and credibility problems and has attracted increasing attention.

As the conceptual counterpart of trust, distrust could be as important as trust and

its value has been widely recognized by social sciences in the physical world. However,

little attention is paid on distrust in social media. Social media differs from the

physical world - (1) its data is passively observed, large-scale, incomplete, noisy and

embedded with rich heterogeneous sources; and (2) distrust is generally unavailable

in social media. These unique properties of social media present novel challenges for

computing distrust in social media: (1) passively observed social media data does

not provide necessary information social scientists use to understand distrust, how

can I understand distrust in social media? (2) distrust is usually invisible in social

media, how can I make invisible distrust visible by leveraging unique properties of

social media data? and (3) little is known about distrust and its role in social media

applications, how can distrust help make difference in social media applications?

The chief objective of this dissertation is to figure out solutions to these challenges
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via innovative research and novel methods. In particular, computational tasks are

designed to understand distrust, a innovative task, i.e., predicting distrust is proposed

with novel frameworks to make invisible distrust visible, and principled approaches

are develop to apply distrust in social media applications. Since distrust is a special

type of negative links, I demonstrate the generalization of properties and algorithms of

distrust to negative links, i.e., generalizing findings of distrust, which greatly expands

the boundaries of research of distrust and largely broadens its applications in social

media.
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Chapter 1

INTRODUCTION

Social media greatly enables people to participate in online activities and shatters

the barrier for online users to create and share information in any place at any time.

The pervasive use of social media generates massive data in an unprecedented rate and

the information overload problem becomes increasingly severe for social media users.

Meanwhile the quality of user-generated content can vary dramatically from excellence

content to abuse or spam, resulting in a problem of information credibility [102, 9].

The study and understanding of trust can lead to an effective approach to address both

information overload and credibility problems. Trust refers to a relationship between

a trustor (the subject that trusts a target entity) and a trustee (the entity that is

trusted) [22]. In the context of social media, trust provides evidence about with whom

we can trust to share information and from whom we can accept information without

additional verification. With trust, we make the mental shortcut by directly seeking

information from trustees or trusted entities, which serves a two-fold purpose: without

being overwhelmed by excessive information (i.e., mitigated information overload) and

with credible information due to the trust placed on the information provider (i.e.,

increased information credibility). Therefore, trust is crucial in helping social media

users collect relevant and reliable information, and computing trust in social media

has attracted increasing attention in recent years [87].

Comparing with trust, little attention is paid to distrust in social media. Research

with only trust may be biased without considering distrust [23, 83]. Typically, trust

relations can be represented as a trust network and the adjacency matrix is adopted

to represent the trust network where “0” is used to indicate no trust as illustrated

1



a 

b 

c d e 

a b c d e 

a 0 0 1 0 0 

b 1 0 1 0 0 

c 1 1 0 1 0 

d 0 0 0 0 1 

e 0 1 0 1 0 

a 

b 

c d e 

(A) A Trust Network (B) The Adjacency Matrix 

 Network in (A)  Network in (C) 

a 0.183 0.223 

b 0.184 0.213 

c 0.263 0.223 

d 0.184 0.171 

e 0.186 0.171 

(C) A Distrust Link from  a to d (D) Status Scores 

Figure 1.1: The Impact of Distrust.

in Figure 1.1 (A) and (B). However, this representation may not be representative

since a zero score cannot distinguish between distrust and no trust. For example,

a distrust relation may exist from node a to node d as shown in Figure 1.1 (C).

Furthermore, ignoring distrust in online applications may lead to over-estimation of

the effects of trust [93]. The first column of Table (D) in Figure 1.1 shows reputation

scores, calculated using PageRank [61], of nodes in the network of Figure 1.1 (A);

while the second column shows reputation scores, calculated by a variant of Pagerank

taking into account distrust [93], of nodes in the network of Figure 1.1 (C). The only

difference between networks in Figure 1.1 (A) and (C) is a distrust relation from a to

d in the network (C); clearly, the small difference significantly affects the statuses of

the nodes. These findings suggest that distrust could be as important as trust.
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1.1 Research Challenges

Social scientists have studied distrust in the physical world in reducing uncertainty

and vulnerability associated with critical decisions [63, 3]. Social media differs from

the physical world and computing distrust in social media face challenges:

• Social scientists understand distrust from the perspectives of formation mecha-

nisms and constructs [40, 12]. One understanding is that distrust is the negation

of trust while an alternative understanding is that distrust has added value over

trust. There is still no consensus about the understanding of distrust in social

sciences [63, 3, 29]. However, understanding distrust with social media data is

inherently difficult. Social media data is based on passive observations with a

large number of online users and lacks of necessary information social scientists

use to study distrust where interactions with users are required. Since methods

from social sciences are not directly applicable, the first challenge is how we can

understand distrust in social media.

• It is suggested in research [37, 24] that trust is a desired property while distrust

is an unwanted one for an online social community. Therefore, various online

services such as Ciao1, eBay2 and Epinions3 implement trust mechanisms to

help users to better use their services, but few of them allow online users to

specify distrust relations. Since distrust is usually unavailable in social media,

the second challenge is how we can make unavailable distrust available in social

media?

• An ultimate assessment of the utility of distrust is its impact on real-world

1http://www.ciao.co.uk/
2http://www.ebay.com/
3http://www.epinions.com/
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applications. We observe successful applications of trust such as node classi-

fication [65, 19] and social recommendation [82]. Social theories such as ho-

mophily [56] and social influence [50] serve as the groundwork in many trust

applications; but they may not applicable to distrust [83]. Since we know too

little about distrust and applying distrust may not be carried out by simply

extending these of trust, the third challenge is how we can apply distrust in

social media applications?

1.2 Contributions

The aforementioned challenges present a series of interesting research questions -

(1) is distrust the negation of trust? and does distrust has added value over trust?

(2) can invisible distrust be discovered? (3) how can distrust help make difference

in social media applications? and (4) is research of distrust generalizable to negative

links in social media? One of the chief objectives of this dissertation is to figure

out answers to these questions via innovative research. The contributions of this

dissertation are summarized as:

• The unique properties of social media determines that innovative methods

should be developed in order to understand distrust. We design two compu-

tational tasks by leveraging data mining and machine learning techniques to

enable the computational understanding of distrust in social media. The first

task is to predict distrust from only trust, which is designed to seek an answer

for the question of “is distrust the negation of trust?”; and the second task is to

predict trust with information from distrust, which is designed for the question

of “does distrust have added value over trust?”

• We propose a new research task, i.e., predicting distrust, which aims to auto-

4



matically predict distrust when distrust is unavailable by leveraging available

sources in social media. We make a number of important findings about distrust

and develop an unsupervised framework dTrust and a supervised framework

NeLP, which can predict distrust accurately by using trust and content-centric

user interactions.

• We provide principled approaches to exploit distrust for social media applica-

tions, i.e., applying distrust. In detail, we use node classification and recom-

mendation as two representative applications to illustrate the importance and

the added value of distrust in social media applications.

• We generalize research about distrust to negative links, i.e., generalizing findings

of distrust. In particular, we find that properties and algorithms of distrust can

be generalized to negative links, which greatly expands the boundaries of the

research of computing distrust and broadens its applications.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we in-

troduce some basic concepts, our research on computing trust in social media, and

background of distrust in social science. In Chapter 3, we first introduce possi-

ble representations of distrust, then investigate properties of distrust and detail two

computational tasks to seek answers for the questions of “is distrust the negation of

trust?” and “does distrust have added value over trust?”. In Chapter 4, we formally

define the problem of distrust prediction, perform analysis on distrust and introduce

the details about the unsupervised framework dTrust and the supervised framework

NeLP. In Chapter 5, we study two representative applications of distrust with a frame-

work NCSSN for node classification and a framework RecSSN for recommendation. In
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Chapter 6, we investigate the generalization of properties of distrust to negative links,

expand dTrust and NeLP to predict negative links and apply application frameworks

NCSSN and RecSSN for negative links. We conclude the dissertation and point out

broader impacts and promising research directions in Chapter 7.
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Chapter 2

FOUNDATIONS AND PRELIMINARIES

Before studying distrust in social media, we have prepared ourselves with research

on computing trust in social media. In this section, we will briefly introduce our

research on computing trust in social media first, and then give background about

distrust research in social sciences.

2.1 Computing Trust in Social Media

There are three major computational tasks for trust - representing trust, measur-

ing trust and applying trust [87, 89]. Below we introduce the research we have done

for computing trust in social media.

Representing Trust: It aims to represent trust relations among users and trust

representations can be roughly divided into probabilistic representations and gradual

representations [94]. Traditional trust representation considers trust as a single con-

cept, however, trust is a complex concept with multiple dimensions. Therefore, we

propose two multi-dimensional trust representations - mTrust [78] and eTrust [79, 75].

Trust is context dependent and trusting someone on one topic does not necessarily

mean he will be trusted on others, hence, mTrust is proposed to capture multi-faceted

trust, i.e., trust relations under different contexts. As humans interact, trust evolves

and eTrust is proposed to capture trust evolution.

Measuring Trust: It measures how much a certain user can be trusted by other

users from the community. From different perspectives, trust metrics can be classified

differently [87]. From a personalization perspective, trust metrics can be classified

as global [30] and local trust metrics [21]. From a methodology perspective, trust
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metrics can be supervised [59] or unsupervised [108]. From a network perspective,

trust metrics can be binary or continuous [87]. A few factors can influence people

to establish trust relations and a user usually establishes trust relations with a small

proportion of users in the trust network, resulting in the adjacent matrix very sparse

and low-rank, hence users can have a more compact but accurate representation in

a low-rank space. hTrust is an unsupervised trust measurement framework based on

low-rank matrix factorization [77]. Online trust relations follow a power law distri-

bution, suggesting that a small number of users specify many trust relations while a

large proportion of users specify a few trust relations. The power law distribution in-

dicates that the available trust relations may not be enough to guarantee the success

of existing trust measurements. On the other hand, there are many theories devel-

oped to explain the formation of trust such as homophily [56] and status theory [39],

and these social theories may be helpful to mitigate the data sparsity problem. We

propose hTrust [77] and sTrust [97] to exploit homophily effect and status theory to

improve trust measurements for users with few or no trust relations. User preferences

may evolve over time and we also consider temporal dynamics in trust metrics [7].

Applying Trust: It aims to incorporate trust to help social media applications.

Recommendation is one of the most popular and important applications of trust [53,

82, 2]. Existing trust-aware recommendation systems can be divided into memory-

based methods [21, 27] and model-based methods [46, 48]. In the physical world,

people seek recommendations from their trusted friends and they are also likely to

accept recommendations from trustworthy users. Therefore we proposed LOCABEL

to exploit local and global trust for recommendation [81]. Users may think reviews

from their trusted users more useful and CAP is proposed to apply trust in review

recommendation in online review websites such as eBay [76]. An comprehensive

overview about trust-aware recommender systems can be found in our survey paper
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in [82].

2.2 Distrust in Social Sciences

In social sciences, the conceptual counterpart of trust, distrust, is considered as

important and complex as trust [54, 37, 24, 13]. For example, [68, 12] claim that

trust and distrust help a decision maker reduce uncertainty and vulnerability (i.e.,

risk) associated with decision consequences; and [13] indicates that only distrust

can irrevocably exclude services from being selected at all. There is an enduring

problem about distrust - what is the relation between trust and distrust. Answering

this question has its significance. If trust and distrust are the same, lack of distrust

research matters little, however, if they are different, the lack of distrust research could

be problematic because distrust may have unique impact. Some researchers believe

distrust simply means a low level of trust, hence evidence of high trust was always

regarded as being that of low distrust, and outcomes of high trust would be identical to

those of low distrust [63, 3, 29]. Others believe distrust is a concept entirely separate

from trust [40, 36]. Therefore distrust and trust can coexist, and they have different

antecedents and consequents [55]. For example, in [40], three reasons are proposed

to prove that trust and distrust are separate - (1) they separate empirically; (2) they

coexist; and (3) they have different antecedents and consequents. There is still no

consensus answer about this problem, and some social scientists consider distrust as

the “darker” side of trust [51].
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Chapter 3

UNDERSTANDING DISTRUST IN SOCIAL MEDIA

Social scientists understand distrust from the perspectives of formation mech-

anisms and constructs [40, 12] and have recognized that distrust helps a decision

maker reduce the uncertainty and vulnerability (i.e., risk) associated with decision

consequences [12], and in some cases, plays a more critical role than trust [68, 54].

Large-scale social media data does not contain necessary information social scientists

ascribe in their studying distrust. In social media, distrust is embedded with rich but

passively observed user-generated content and interactions. Understanding distrust

in social media requires new methods since those from social sciences are not directly

applicable, but can be helpful in our search of new methods. More specifically, we aim

to answer the following research questions: (1) what are the properties of distrust?

(2) is distrust the negation of trust? and (3) does distrust have added value over

trust?

3.1 Representing Distrust

Computational models for trust depends on certain trust representations [87];

hence an immediate question for distrust is how to represent distrust. We propose to

represent distrust with trust, which can not only avoid possible biases because of the

ignorance of trust in distrust representations but also help us better understand the

role and added value of distrust over trust in applications.

Distrust representations are substantially different with different understandings

about distrust over trust. If distrust is considered as the negation of trust [63, 3],

high (or low) trust would be identical to those of low (or high) distrust [29]. In this
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Figure 3.1: Network Understandings of Representations of Trust and Distrust.

case, we represent trust and distrust are two ends of the same conceptual spectrum.

If distrust is not the negation of trust [40, 36], there are two views about the relations

between trust and distrust as:

• Trust and distrust are viewed as tightly related features in a single structure [38].

Hence we add positive and negative signs to represent trust and distrust respec-

tively, and we keep the semantics of a zero score in the representation; and

• Distrust is viewed as a distinct dimension from trust about users [69]. Hence

we add a new dimension about users to represent distrust.

To further understand aforementioned three representations better, we show these

representations from the network perspective as demonstrated in Figure 3.1. When

we consider distrust as low trust, the trust and distrust network is a weighted unsigned

network as shown in Figure 3.1(a); when we add signs to represent trust and distrust,

the resulting network is a weighted signed network as shown in Figure 3.1(b); while

we add a new dimension to represent distrust, the trust and distrust network is a

weighted multi-dimensional unsigned network as shown in Figure 3.1(c).

Let U = {u1, u2, . . . , un} be the sets of users where n is the number of users. If we

consider trust and distrust links as tightly related features in a single network. We

represent both trust and distrust links into one adjacency matrix F ∈ Rn×n where
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Fij = 1, Fij = −1 and Fij = 0 denote trust, distrust and missing links from ui to

uj, respectively. If we tread distrust as a distinct dimension from trust about users,

we use two adjacency matrices to represent trust and distrust links, respectively. In

particular, it uses T ∈ Rn×n to represent trust links where Tij = 1 and Tij = 0

denote a trust link and a missing link from ui to uj. Similarly D ∈ Rn×n is used

to represent distrust links where Dij = 1 and Dij = 0 denote a distrust link and a

missing link from ui to uj.

It is easy to convert one representation into the other representation with the

following rules: F = T−D, and T = |F|+F
2

and D = |F|−F
2

where |F| is the absolution

of F.

3.2 Properties of Distrust

Properties of trust such as transitivity, asymmetry and homophily help determine

the value of trust[20, 77]. Hence, to understand distrust, it is natural to start with

exploring properties of distrust. Naturally, we question if there are some obvious

connections between these properties of trust to distrust. The proposed research can

help us understand how unique distrust is and the intrinsic differences between trust

and distrust.

Before investigations, we first introduce the dataset we used. Trust mechanisms

are implemented by various online services; however, few of them allow users to

establish distrust relations. Although the product review site Epinions allows users

to trust and distrust other users, distrust relations are unavailable to the public. For

the research purpose, a dataset with distrust relations was given by Epinions staff. We

preprocess the data by filtering users without any trust and distrust relations. This

dataset includes trust and distrust relations, user-item ratings, user-review authorship

relations and user-review helpfulness ratings. The statistics of the dataset are shown
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# of Users 30,455

# of Trust Relations 363,773

# of Distrust Relations 46,196

# of Users Receiving Distrust 9,513

# of Users Creating Distrust 5,324

# of Items 89,270

# of Ratings 562,355

# of Reviews 1,197,816

# of Helpfulness Ratings 10,341,893

Avg of Helpfulness Rating Score 4.7129

Avg of Rating Score 3.9053

Table 3.1: Statistics of the Epinions.

in Table 3.1.

3.2.1 Transitivity

Transitivity is a primary property of trust and it describes that trust can be passed

between people [29, 20]. For example, if user ui trusts user uj, and user uj trusts

user uk, then transitivity indicates that with a high probability, user ui will trust user

uk. Here we study the property of distrust with respect to transitivity. Note that we

use x+y, x-y, and x?y to denote the observations of a trust, a distrust and a missing

relation from user x to user y, respectively.

To investigate the transitivity property of distrust, we first find all pairs of relations

〈ui-uj,uj-uk〉, and check whether ui and uk are with a trust (ui+uk), or a distrust

(ui-uk), or a missing relation (ui?uk). We conduct a similar process for trust, and

the results are demonstrated in Table 3.2. For the first calculation, we consider all
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〈ui,uk〉 pairs (i.e., ui+uk, ui-uk, or ui?uk) and use “P1” to denote the percentage of

pairs of 〈 ui,uk〉 with a trust, a distrust or a missing relation over all pairs. For the

second calculation, we only consider〈ui,uk〉 pairs with observed relations (i.e., trust

ui+uk or distrust ui-uk), and adopt “P2” to represent the percentage of 〈 ui,uk〉 with

a trust or a distrust relation over pairs with observed relations (i.e., ui+uk or ui-uk).

Golbeck suggests that trust is not perfectly transitive in the mathematical sense

and is conditionally transitive [20], which is especially true for social media data since

users in social media are world-widely distributed and there are many pairs of user

not knowing each other. A trust relation ui+uk only takes 11.46% (P1) of all pairs of

〈ui,uk 〉 for trust. However, among pairs with observed relations, ui+uk takes as high

as 97.75% (P2), which suggests the transitivity property for trust - if ui establishes

a relation with uk, it is likely to be a trust relation. For distrust, the percentages of

ui-uk and ui+uk are comparable. ui-uk suggests transitivity, which can be explained

by status theory; while ui+uk can be explained by balance theory [8, 25] as “the

enemy of your enemy is your friend.”

3.2.2 Asymmetry

The asymmetry of trust is also important and suggests that for two people involved

in a relation, trust is not necessarily identical in both directions [22]. For example,

if ui trusts uj, one cannot infer that uj trusts ui. Next we examine the property of

distrust in term of asymmetry.

For each trust relation ui+uj (or each distrust relation ui-uj), we check the pos-

sible relations from uj to ui, and the results are illustrated in Table 3.3. Note that

in Table 3.3 the numbers in parentheses are the percentages of the corresponding

relations over all possible relations. We observe 37.71% mutual trust relations, but

only 5.86% mutual distrust relations. These results suggest that trust is asymmetric,
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Trust

Types Number P1 P2

〈ui+uj,uj+uk〉, ui?uk 25,584,525 88.34% N.A

〈ui+uj,uj+uk〉, ui+uk 3,320,991 11.46% 97.75%

〈ui+uj,uj+uk〉, ui-uk 76,613 0.2% 2.25%

Distrust

Types Number P1 P2

〈ui-uj,uj-uk〉, ui?uk 716,340 91.70% N.A

〈ui-uj,uj-uk〉, ui+uk 38,729 4.96% 59.73%

〈ui-uj,uj-uk〉, ui-uk 26,114 3.34% 40.27%

Table 3.2: Transitivity of Trust and Distrust.

uj+ui(%) uj-ui(%) uj?ui(%)

ui+uj 136,806(37.61) 967(0.27) 226,000(62.13)

ui-uj 967(2.09) 2,623(5.86) 42,606(92.23)

Table 3.3: Asymmetry of Trust and Distrust.

and distrust is even more asymmetric.

3.2.3 Similarity

Ziegler et al. [107] point out that there is a strong and significant correlation

between trust and similarity and users with trust relations are more similar than

those without. Next we investigate the relations between distrust and similarity. In

Epinions, users can give a score from 1 to 5 to rate various items and we define user

similarities as their rating similarities [77]. We use the following three measures to

compute the similarity between ui and uj as:
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CI COSINE CI-COSINE

Distrust (sd) 0.4994 0.0105 0.0142

Trust (st) 0.6792 0.0157 0.0166

Random Pairs (sr) 0.1247 0.0027 0.0032

Table 3.4: Similarity for Trust and Distrust.

• CI: the number of common items rated by both ui and uj;

• COSINE: the cosine similarity between the rating scores of ui and uj over all

items; and

• CI-COSINE: the cosine similarity between the rating scores of ui and uj over

their commonly rated items.

We calculate three similarities for each distrust relation, i.e., distrust similarity ds,

trust similarity ts, and random similarity rs. For example, for the distrust relation

ui-uj, indicating that ui distrusts uj, ds is the rating similarity between ui and uj, ts

the similarity between ui and a randomly chosen user who has a trust relation with

ui, and rs the similarity between ui and a randomly chosen user without a distrust

relation with ui. Over all distrust relations, finally we obtain three similarity vectors,

sd, st, and sr. sd is the set of all distrust similarities ds, st the set of ts, and sr the

set of rs. The means of sd, st and sr are shown in Table 3.4, respectively. We observe

that the means of distrust are larger than those of random but smaller than those of

trust over all three similarity measures.

To see the significance, we conduct a series of two-sample t-test on {sd, sr}, {st, sr},

and {st, sd}. For two vectors {x,y}, the null hypothesis H0, and the alternative

hypothesis H1 are defined as:

H0 : x <= y H1 : x > y. (3.1)
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CI COSINE CI-COSINE

H0 : sd <= sr H1 : sd > sr 9.57e-87 1.19e-120 4.88e-45

H0 : st <= sr H1 : st > sr 1.71e-132 5.83e-157 3.72e-108

H0 : st <= sd H1 : st > sd 7.84e-23 1.99e-19 9.32e-17

Table 3.5: P-values for t-test Results.

The null hypothesis is rejected at significance level α = 0.01 with p-values shown in

Table 3.5. Means in Table 3.4 and evidence from t-test suggest that - (1) users with

distrust are likely to be more similar than those without; (2) users with trust are

likely to be more similar than those without; and (3) users with trust are likely to be

more similar than those with distrust.

3.2.4 Discussion

Aforementioned empirical investigations indicate that distrust is not transitive,

highly asymmetric and neither similarity nor dissimilarity. Through this comparative

study on properties of trust and distrust, we can conclude that (1) the properties of

trust cannot be extended to distrust; and (2) distrust presents distinct properties.

3.3 Constructing Distrust from Only Trust

Some social scientists believe distrust as the negation of trust - trust and distrust

are two ends of the same conceptual spectrum, and distrust can be suggested by low

trust [63, 3]. To seek an answer to the question of “is distrust the negation of trust?”,

we design the task of constructing distrust from only trust. The reasoning behind this

task is if distrust is the negation of trust, distrust can be suggested for pairs of users

with low trust and we can accurately construct distrust from only trust. Therefore the

problem of constructing distrust from only trust boils down to the problem of predicting
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low trust with trust. Trust scores of pairs of users in the same trust network can be

computed via existing trust prediction algorithms.

The general framework for the task is shown in Algorithm 1. The input of the

framework includes trust T and a trust predictor f . For a pair of users without trust

〈ui, uj〉, we use f to predict a trust score T̃ij from ui to uj and then suggest pairs

with low trust scores as distrust. We choose two representative trust predictors -

trust propagation [23] and the one we proposed in [77] based on matrix factorization.

Algorithm 1 The framework of Task 1 to predict distrust from only trust

Input: User-user trust relation matrix T, and a trust predictor f

Output: Ranking list of pairs of users

1: for Each pair of users without trust 〈ui, uj〉 do

2: Predicting the trust score of T̃ij from ui to uj by f

3: end for

4: Ranking pairs of users (e.g., 〈ui, uj〉) according to T̃ij in an ascending order.

3.3.1 Trust Prediction based on Matrix Factorization

Trust has some well-known properties such as transitivity, asymmetry and corre-

lation with user preference similarity, which lay the groundwork for meaningful and

effective trust prediction models. Let Ui ∈ Rd denote the user preference vector of

ui. In [77], we propose to model a trust relation from ui to uj as Tij = UiVU>j

where V ∈ Rd×d captures the correlations among use preferences. We can verify that

the proposed model can capture several important properties of trust such as tran-

sitivity, asymmetry and similarity. For example, V could be asymmetric, therefore

Tij = UiVU>j could be unequal to Tji = UjVU>i , which captures the property of

asymmetry. Let U = {U1,U2, . . . ,Un} be the user preference matrix. U and V can
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be obtained via solving the following low-rank matrix factorization problem:

min
U,V

‖T−UVU>‖2F + α‖U‖2F + β‖V‖2F (3.2)

where terms of α‖U‖2F +β‖V‖2F are introduced to avoid overfitting. With the learned

U and V, the estimated user-user trust relation matrix T̃ is obtained as T̃ = UVU>.

3.3.2 Evaluation

In this subsection, we conduct experiments to answer the following question: is

distrust the negation of trust? To answer the question, we check how accurately we

can predict distrust from only trust.

Experimental Settings

We first introduce the experimental setting for this evaluation. AT = {〈ui, uj〉|Tij =

1} is the set of pairs of users with trust relations, and AD = {〈ui, uj〉|Dij = 1} is

the set of pairs of users with distrust relations. The pairs in both AT and AD are

sorted in chronological order in terms of the time when they established relations.

We assume that until time t, x% of pairs in AT establish trust relations, denoted as

AxT , and we use AxD to denote pairs of users in AD establishing distrust until time

t. x is varied as {50, 55, 60, 65, 70, 80, 90, 100}. For each x, we use AxT to predict AxD

from Nx
T where Nx

T is the negation of AxT as shown in Figure 3.2.

We follow a common metric for trust evaluation in [41, 77] to assess the prediction

performance. In detail, each predictor ranks pairs in Nx
T in ascending order of

confidence and we take the first |AxD| pairs as the set of predicted distrust relations,

denoting ApD. Then the performance is computed as,

M1 =
|AxD ∩ A

p
D|

|AxD|
(3.3)

where | · | denotes the size of a set.
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Figure 3.2: Experimental Settings for Constructing Distrust from Only Trust.

Experimental Results

The results are shown in the Table 3.6. “dTP”, “dMF”, and “dTP-MF” and “Ran-

dom” in the table are defined as follows:

• dTP: this distrust predictor obtains trust scores for pairs of users based on trust

propagation, and then suggests distrust relations for pairs with low trust scores;

• dMF: this distrust predictor computes trust scores for pairs of users based on

matrix fatorization, and then predict pairs with low trust scores as distrust

relations;

• dTP-MF: this distrust predictor combines results of dTP and dMF to infer

distrust relations; and

• Random: this distrust predictor randomly guesses pairs of users with distrust

relations.

If distrust is the negation of trust, low trust scores should accurately indicate

distrust. However, we observe that the performance of dTP, dMF and dTP-MF

is consistently worse than that of the randomly guessing (Random). These results

suggest that low trust scores cannot be used to predict distrust; hence distrust is not
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x (%) dTP (×10−5) dMF(×10−5) dTP-MF(×10−5) Random(×10−5)

50 4.8941 4.8941 4.8941 5.6824

55 5.6236 5.6236 5.6236 8.1182

60 7.1885 7.1885 7.1885 15.814

65 11.985 11.985 11.985 19.717

70 13.532 13.532 13.532 18.826

80 10.844 10.844 10.844 16.266

90 12.720 12.720 12.720 25.457

100 14.237 14.237 14.237 29.904

Table 3.6: Performance Comparison of Predicting Distrust from Only Trust.

the negation of trust. Social scientists, who support distrust not the negation of trust,

argue that pairs of users with untrust can have very low trust scores [51], which is

especially correct for users in social media since they are world-widely distributed.

3.4 Trust Prediction with Information from Distrust

An alternative understanding is that distrust is not the negation of trust and

it has added value over trust [40, 36]. To seek an answer to the question of “does

distrust have added value over trust?”, we design the task of trust prediction with

information from distrust. The intuition behind this task is if distrust has added value

over trust, distrust should provide extra information about users and we shall be able

to predict trust better with distrust. An illustration of the problem of trust prediction

with information from distrust is shown in Figure 3.3 - the input of traditional trust

prediction is only old trust relations; we propose to also use distrust information

as shown in the dashed box in Figure 3.3. In [23], two strategies are investigate

to incorporate distrust into trust propagation: (1) one step distrust propagation -
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Figure 3.3: Trust Prediction with Information from Distrust.

first propagating trust for multiple steps and then propagating one-step distrust; and

(2) multiple step distrust propagation - propagating trust and distrust propagate

together for multiple steps. Next we will investigate how to incorporate distrust into

the matrix factorization based trust prediction [77].

3.4.1 Matrix Factorization based Trust Prediction with Distrust Information

We view trust and distrust as tightly related features in a single structure (or

a signed network) and choose adding signs to represent trust and distrust as F =

T − D. The advantages of this representation are two-fold. First, we can extend

the matrix factorization based trust prediction to incorporate distrust information as

Fij = UiVU>j . Second, by adding signs, trust and distrust relations are represented

as a signed network and social theories for signed networks such as balance theory

can be used to facilitate the task. Below we introduce how to model balance theory.

We use sij to denote the sign of the relation between ui and uj where sij = 1 (or

sij = −1) if we observe a trust relation (or a distrust relation) between ui and uj.

With these notations, balance theory suggests that a triad 〈ui, uj, uk〉 is balanced if

- (1) sij = 1 and sjk = 1, then sik = 1; or (2) sij = −1 and sjk = −1, then sik = 1.

For a triad 〈ui, uj, uk〉, there are four possible sign combinations A(+,+,+), B(+,+,-
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Figure 3.4: An Illustration of Balance Theory.

) C(+,-,-) and D(-,-,-). According to balance theory, only A(+,+,+) and C(+,-,-)

are balanced. We examine all triads in the studied dataset and find that more than

90% of them are balanced. This result suggests that balance theory is a principle to

understand the formation of trust and distrust relations.

For each user ui, we introduce a one-dimensional latent factor ri to model balance

theory, and we further assume that the relation between ui and uj due to the effect of

balance theory is captured as Fij = rirj. To show that Fij = rirj can capture balance

theory, we need to prove that - (1) Case 1: if sign(Fij) = 1 and sign(Fjk) = 1, we

can prove that sign(Fik) = 1; and (2) Case 2: if sign(Fij) = −1 and sign(Fjk) = −1,

we can prove that sign(Fik) = 1.

Let us first prove Case 1. If sign(Fij) = 1 and sign(Fjk) = 1, we have sign(rirj) =

1 and sign(rjrk) = 1; by multiplying sign(rirj) and sign(rjrk), we have sign(rirjrjrk) =

1. Since sign(r2j ) = 1, we get sign(rirk) = 1, i.e., sign(Fik) = 1. We can use a

similar process to prove Case 2. If sign(Fij) = −1 and sign(Fjk) = −1, we have

sign(rirj) = −1 and sign(rjrk) = −1; by multiplying sign(rirj) and sign(rjrk), we

have sign(rirjrjrk) = 1. Since sign(r2j ) = 1, we get sign(rirk) = 1, i.e., sign(Fik) = 1.

The proposed framework disMF for the problem of trust prediction with distrust
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information is to solve the following optimization problem,

min
U,V,r

‖F−UVU> − λrr>‖2F + α‖U‖2F + β‖V‖2F + η‖r‖22, (3.4)

where r = [r1, r2, . . . , rn]>; the term ‖r‖22 is introduced to avoid overfitting; and

the parameter λ is used to control the contributions from balance theory. A local

minimum of Eq. (4.9) can be obtained through a gradient decent optimization method.

3.4.2 Evaluation

In this subsection, we conduct experiments to answer the following question: does

distrust have added value in trust prediction? To answer the question, we examine

whether the performance of trust prediction is improved by exploiting distrust.

Experimental Settings

Before going to the detailed evaluation, we first introduce the experimental setting.

We use O = {〈ui, uj〉|Tij 6= 1} to denote the set of pairs of users without trust

relations. Assume that at time t, x% of AT have estabilshed trust relations. We

choose these x% as old trust relations AxT , and the remaining 1 − x% as new trust

relations AnT to predict. We use AxD to denote the subset of pairs in AD, which have

established distrust before t. We vary x as {50, 55, 60, 65, 70, 80, 90}. For each x,

we also repeat the experiments 10 times and report the average performance. The

experimental setting is illustrated in Figure 3.5 where Nx
T denotes the set of pairs

without trust relations at time t.

For each x, we use old trust relations AxT and distrust relations AxD to predict

new trust relations AnT . Each predictor ranks pairs in Nx
T in decreasing order of

confidence and we take the first |AnT | pairs as the set of predicted trust relations,
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Figure 3.5: Experimental Setting for Trust Prediction with Distrust Information.

denoting as ApT . Then the performance is assessed as,

M2 =
|AnT ∩ A

p
T |

|AnT |
(3.5)

Experimental Results

We use disTP-m and disTP-s to denote performing multiple steps and a single step

distrust propagation in trust propagation (TP), and their comparison results are

shown in Figure 3.6. The comparison results of disMF over matrix-factorization

based trust prediction (MF) are demonstrated in Figure 3.7. Note that “Random” in

figures denotes the performance of randomly guessing.

Let us first examine the performance comparisons when x = 50, which are high-

lighted in Figure 3.6 and Figure 3.7. We make the following observations:

• For the first column results in Figure 3.6, both disTP-s and disTP-m outperform

TP. For example, disTP-s obtains 4.28% relative improvement compared to TP.

disTP-s and disTP-m incorporate distrust propagation into trust propagation,

and the improvement is from distrust propagation. These results support that

distrust can improve trust propagation and leads to the performance gain in

trust prediction. We also note that most of the time, disTP-s with one-step

distrust propagation outperforms disTP-m with multiple step distrust propaga-

tion.
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50% 55% 60% 65% 70% 80% 90%
TP 0.1376 0.1354 0.1293 0.1264 0.1201 0.1156 0.1098
disTP-s 0.1435 0.1418 0.1372 0.1359 0.1296 0.1207 0.1176
disTP-m 0.1422 0.1398 0.1359 0.1355 0.1279 0.1207 0.1173
Random 0.0023 0.0023 0.0020 0.0019 0.0018 0.0015 0.0013
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Figure 3.6: Performance Comparison for Trust Propagation without and with Dis-

trust Information.

50% 55% 60% 65% 70% 80% 90%
MF 0.1531 0.1502 0.1489 0.1444 0.1391 0.1332 0.1277
disMF 0.1665 0.1654 0.1639 0.1601 0.1563 0.1498 0.1415
Random 0.0023 0.0023 0.0020 0.0019 0.0018 0.0015 0.0013
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Figure 3.7: Performance Comparison for the Matrix Factorization based Method

without and with Distrust Information.
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• For the first column results in Figure 3.7, disMF obtains better performance

than MF, and gains 8.55% relative improvement over MF.

For other values of x, we have similar observations - distrust can improve the per-

formance of trust prediction. With the help of distrust, we can significantly improve

the performance of trust prediction, which suggests that distrust has added value over

trust.

3.5 Conclusion

With aforementioned investigations, we can draw a computational understanding

of distrust in social media by answering the three questions we asked at the begin-

ning of this chapter. First, the property investigation suggests that distrust presents

distinct properties from trust and we cannot extend properties of trust to distrust.

Second, the task of distrust prediction with only trust fails to predict distrust by us-

ing low trust, which indicates that low trust is not equivalent to distrust and distrust

is not the negation of trust. Third, the trust prediction performance is significantly

improved with distrust information, which supports that distrust has added value

over trust.
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Chapter 4

PREDICTING DISTRUST IN SOCIAL MEDIA

It is suggested in research [37, 24] that trust is a desired property while distrust is

an unwanted one for an online social community. Intuitively, various online services

such as Ciao1, eBay2 and Epinions3 implement trust mechanisms to help users to bet-

ter use their services, but few of them allow online users to specify distrust relations.

To make use of distrust, we need to make them visible on social media sites where

distrust does not explicitly present. We propose to predict distrust by mining social

media data. Before delving into the discussion of distrust prediction, we delineate its

differences from trust/distrust prediction [23] and sign prediction [101] as shown in

Figure 4.1. The distrust prediction problem in this proposal is quite different from

the trust/distrust prediction and sign prediction problems as follows:

• As shown in Figure 4.1a, the trust/distrust prediction predicts new trust and

distrust relations from existing trust and distrust relations. Our prediction

problem, as illustrated in Figure 4.1c, assumes that distrust is not accessible in

data.

• The sign prediction problem as shown in Figure 4.1b predicts signs of already

existing relations. The distrust prediction problem needs to identify the pairs

of nodes between which distrust relations are predicted to exist.

1http://www.ciao.co.uk/
2http://www.ebay.com/
3http://www.epinions.com/
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Figure 4.1: An Illustration of the Differences of Trust/Distrust Link Prediction,

Sign Prediction and Distrust Prediction.

Users: 

        Trust : 

Posting: 

Interacting: 

Content: 

Figure 4.2: An Illustration of Interaction Data in Social Media.

4.1 Problem Statement

To preserve the generality of our approach, it is important to use data which is

pervasively available across these social trust systems. Figure 4.2 demonstrates a

typical data in social trust systems. First, an obvious source of useful data is trust

information which is commonly available in most social trust systems. Second, in

most these sites, users can create or post user-generated content and other users can

comment, like/dislike and rate such content. For example, in Epinions, users can rate

the helpfulness of reviews written by others. In this work, we study the novel problem

of distrust prediction from these two pervasive sources in social trust systems - trust

information and content-centric interactions.
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Let P = {p1, p2, . . . , pM} be the set of M pieces of user-generated content such

as posts. We use A ∈ Rn×M to denote the user-content authorships, where Pij =

1 if pj is created by ui, and Pij = 0 otherwise. Users can express opinions on

content via comments, likes/dislikes, and ratings. Some sites provide explicit ways of

enabling user feedback on content. Examples include likes/dislikes in eBay, and “very

helpful”/“not helpful” ratings in Epinions. Other more common forms of feedback

allow users to express their opinions in the form of textual comments and replies. In

such cases, we adapt off-the-shelf opinion mining tools to extract user opinions from

such texts. We use O ∈ Rn×M to represent the user-post opinion relations where

Oij = 1, Oij = −1 and Oij = 0, if ui expresses positive, negative and neutral (or no)

opinions, respectively, on pj.

With the aforementioned notations and definitions, the problem of distrust pre-

diction with trust relations and content-centric user interactions is formally defined

as follows:

Given trust relations T, and content-centric user interactions P and O, we aim to

develop a predictor f to predict distrust relations D with T, P and O as,

f : {T,P,O} → D (4.1)

4.2 Data Analysis

Because trust prediction is dependent on “typical” behavior of trust networks such

as transitivity and similarity, it is natural to explore similar properties of distrust with

respect to trust relations and and content-centric interactions. Such an understanding

lays the groundwork for a meaningful distrust prediction model. Note that distrust

relations in data analysis only serve as a ground-truth about typical properties and the

underlying social theories. However, they will not be explicitly used in the proposed

frameworks for the problem of distrust prediction.

30



1 2 3 4 5 6 7 Inf
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The Length of Path

R
at

io

Figure 4.3: Ratio Distribution of the Length of Shortest Path for Pairs with Distrust

Relations in the Trust Network.

4.2.1 Where Are our “Foes”?

Our first analytical task is to examine the typical structural relationships of “foes”

(or users with distrust relations) within the trust network. In other words, if ui has a

distrust relation to uj in the distrust network D, we investigate the typical position

of uj with respect to ui in the trust network T.

For each distrust link ui-uj in D, we use breadth-first search to compute the

shortest path from ui to uj in T. If paths exist from ui to uj, we report the length

of the shortest path. Otherwise we report the length as “inf” to indicate there is no

path from ui to uj in T. The ratio distributions of the lengths of the shortest paths

for all distrust relations are demonstrated in Figure 4.3. More than 45% of distrust

relations ui-uj have shortest path lengths less than 3, and more than 80% of them

have shortest path lengths less than 4. These results suggest that our “foes” are often

close to us in the trust network T. For example, about 82.64% of enemy-pairs are

within 3-hops of each other in the trust network of Epinions.
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4.2.2 Social Theories in Trust/Distrust Networks

We can view trust/distrust networks as signed networks. In this subsection,

we investigate two of the most important social theories for signed networks in

trust/distrust networks - balance theory [25] and status theory [23, 39].

For a triad, four possible sign combinations exist - A(+,+,+), B(+,+,-) C(+,-,-)

and D(-,-,-). Among these four combinations, A and C are balanced. The way to

measure balance of trust/distrust networks is to examine all these triads and then

to compute the ratio of A and C over A, B, C and D. We computed the relative

presence of these four possible combinations and find that 92.31% triads in Epinions

are balanced.

While balance theory is developed for undirected signed networks, for directed

signed networks, status theory is introduced in [23, 39]. In status theory, a trust

relation from ui to uj indicates that ui has a higher status than uj; while a distrust

relation from ui to uj indicates that ui has a lower status than uj. For a triad, status

theory suggests that if we take each distrust relation, reverse its direction, and flip its

sign to trust, then the resulting triangle (with all trust relations) should be acyclic.

We first obtain all triads and then follow the aforementioned way to examine whether

these triads satisfy status theory or not. We find that 94.73% of triads in Epnions

satisfy status theory.

4.2.3 Distrust Relations and Content-centric Interactions

Content-centric interactions relate the opinion of user ui on the content posted

by user uj. The user ui can express negative opinions on content posted by another

user uj by disliking, giving negative comments, or negative ratings. Such types of

content-centric interactions may be viewed as negative interactions between ui and
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uj. A negative interaction from ui to uj is often a manifestation of user ui’s disagree-

ment and antagonism toward uj. It is therefore reasonable to surmise that negative

interactions might be correlated with distrust relations. In this subsection, we study

the correlation between negative interactions and distrust relations.

Let N ∈ Rn×n be a user-user negative interaction matrix where Nij denotes the

number of negative interactions from ui to uj. We can obtain N from the user-content

authorship matrix A and the user-content opinion matrix O as N = −A(O−)> where

O− = O−|O|
2

is the negative part of O. To verify the correlation between negative

interactions and distrust relations, we aim to answer the following question: Are pairs

of users with negative interactions more likely to have distrust relations than those

without negative interactions?

For each pair 〈ui, uj〉 with negative interactions (or Nij 6= 0), we first randomly

select a user uk that ui does not have negative interactions with (or Nij = 0), and

then use S (or R) to indicate whether 〈ui, uj〉 (or 〈ui, uk〉) has a distrust relation

where S = 1 (or R = 1) if ui has a distrust relation to uj (or ui has a distrust relation

to uk), otherwise S = 0 (or R = 0). Let s be a vector of Ss over all pairs of users

with negative interactions and r be the corresponding vector of Rs. We conduct a

two-sample t-test on s and r. The null hypothesis and the alternative hypothesis are

defined as:

H0 : s ≤ r, H1 : s > r. (4.2)

The null hypothesis is rejected at significance level α = 0.01 with p-value of 5.72e-

89 in Epinions. Evidence from the t-test suggests a positive answer to the question:

there is a strong correlation between negative interactions and distrust relations, and

users with negative interactions are likely to have distrust relations.

We further investigate the direct impact of negative interactions on distrust re-
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Figure 4.4: Number of Negative Interactions and Distrust Relations.

lations. For a given value of K, we calculated the ratio of pairs with both distrust

relations and at least K negative interactions over all pairs with at least K negative

interactions. The ratio distributions with respect to the number of negative interac-

tions are demonstrated in Figures 4.4. Note that the ratios of randomly selected pairs

with distrust relations among all n(n − 1) pairs of users are 2.4177e-04 in Epinions.

From the figure, we note that the ratios are much higher than the random ones even

when K is very small. This observation further supports the existence of the correla-

tion between negative interactions and distrust relations. Furthermore with increase

of K, the ratios tend to increase. Therefore, an increase in the number of negative

interactions increases the likelihood of distrust relations between users.

4.2.4 Discussion

We summarize the insights obtained in the aforementioned discussion as follows:

• Most of our “foes” are close to us within a few (e.g., 2 or 3) hops in the trust

network;
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• Most of triads in trust/distrust networks satisfy balance theory and status the-

ory;

• Pairs of users with negative interactions are more likely to have distrust relations

than those without them; and

• Negative interactions between users increase the propensity of distrust relations.

These observations provide the groundwork for the following proposed frameworks

for distrust prediction. Algorithms for all variations of trust prediction are either

unsupervised methods [23, 77] or supervised methods [43, 59]. In the following two

subsections, we will investigate distrust prediction in both unsupervised [80] and

supervised scenarios [73].

4.3 Unsupervised Distrust Prediction

Traditional unsupervised trust prediction are usually based on certain properties

of trust [87] such as transitivity [23] and low-rank representation [77]. Similarly, we try

to model findings and observations of distrust in the last subsection for unsupervised

distrust prediction.

4.3.1 Pseudo Distrust Relations

We first divide all n(n− 1) pairs of users into three groups G = {G1,G2,G3} as:

• G1 contains pairs of users with trust relations as:

G1 = {〈ui, uj〉|Tij = 1}; (4.3)

• G2 is the set of pairs of users without trust relations but with negative interac-

tions as:

G2 = {〈ui, uj〉|Tij = 0 ∧Nij > 0}; (4.4)
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• G3 includes the remaining pairs as:

G3 = {〈ui, uj〉|〈ui, uj〉 /∈ (G1 ∪ G2)}. (4.5)

G1 and G2 correspond to the set of pairs of users with trust relations and negative

interactions, respectively. Based on these three groups, we introduce a matrix F ∈

Rn×n to represent user-user trust relations and pseudo distrust relations, and the

entities of F are defined as follows:

• For 〈ui, uj〉 ∈ G1, we set Fij = 1 since ui trusts uj;

• For 〈ui, uj〉 ∈ G2, ui has negative interactions to uj, and according to the correla-

tion between negative interactions and distrust relations, ui is likely to distrust

uj; hence, we assign a pseudo distrust relation from ui to uj by setting Fij = −1;

• We do not have evidence of possible relations for 〈ui, uj〉 ∈ G3, therefore we set

Fij = 0.

the entities of F are formally defined as follows:

Fij =


1 if 〈ui, uj〉 ∈ G1

−1 if 〈ui, uj〉 ∈ G2

0 if 〈ui, uj〉 ∈ G3

. (4.6)

The values in F may be not equally reliable. For example, Fij for 〈ui, uj〉 ∈ G1

is very reliable since we observe trust relations, while values of pairs in G2 with

more negative interactions are more reliable based on the finding - the more negative

interactions two users have, the more likely a distrust relation between them exists.

Therefore, we define a weight matrix W ∈ Rn×n where Wij ∈ [0, 1] is a weight to

indicate the reliability of Fij. Next we define the weight matrix as

• We observe trust relations for pairs in G1; hence for 〈ui, uj〉 ∈ G1, we set Wij = 1;
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• Our previous finding reveals that the more negative interactions two users have,

the more likely a distrust relation between them exists; hence for 〈ui, uj〉 ∈ G2,

Wij is defined as a function of the number of negative interactions as Wij =

g(Nij). The function g(x) has following properties - (1) x is a positive integer;

(2) g(x) ∈ [0, 1]; and (3) g(x) is non-decreasing function of x; and

• We set Wij to be a constant c ∈ [0, 1] for 〈ui, uj〉 ∈ G3.

the weight matrix W is formally defined as,

Wij =


1 if 〈ui, uj〉 ∈ G1

g(Nij) if 〈ui, uj〉 ∈ G2

c if 〈ui, uj〉 ∈ G3

. (4.7)

4.3.2 An Unsupervised Framework - dTrust

With trust and pseudo distrust relations F and its weight matrix W, the problem

of distrust prediction boils down to a special trust and distrust prediction problem.

Therefore we can choose a representative trust and distrust prediction algorithm as

our basic algorithm. In this work, we choose the matrix factorization based method

introduced in Section 3.4.1. However, we may not apply it to our problem directly

since the values in F may not be reliable. The proposed framework dTrust is based

on the new formulation with the user-user trust and pseudo distrust relations F and

its weight matrix W as,

min
U,H,r

n∑
i=1

n∑
j=1

(
Wij(Fij −UiHU>j − λrirj)

)2
+ α(‖U‖2F + ‖H‖2F + ‖r‖22), (4.8)

where the contribution of Fij to the learning process is controlled by Wij. A large

value of Wij, indicating the high reliability of Fij, will force UiHU>j to tightly fit

Fij, while UiHU>j will loosely approximate Fij when Wij is small.
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Eq. (4.8) can be rewritten to its matrix form as

min
U,H,r

‖W � (F−UHU> − λrr>)‖2F + α(‖U‖2F + ‖V‖2F + ‖r‖22), (4.9)

where � is the Hadamard product where (X�Y)ij = Xij×Yij for any two matrices

X and Y with the same size. The significance of the introduction of pseudo distrust

relations in F is three fold. First, it enables us to predict distrust relations by incor-

porating interaction data. Second, it paves a way to model the correlation between

negative interactions and distrust relations. Finally the introduction of pseudo dis-

trust relations enables us to exploit social theories from signed networks with trust

and pseudo distrust relations, while exploiting social theories in turn may help us

mitigate the effects of unreliable values in F, and potentially improves the distrust

prediction performance. The optimization problem in dTrust is solved by a decent

gradient method and more details are shown in Appendix A.

4.3.3 Evaluation

In this section, we conduct experiments to evaluate the effectiveness of the pro-

posed framework. In particular, we try to answer two questions via experiments - (1)

can the proposed framework predict distrust information indirectly with interaction

data? and (2) how do the components of dTrust affect its performance? We begin by

introducing experimental settings, and then design experiments to seek answers for

these questions.

Experimental Settings

Let A be the set of pairs with trust relations in the Epinions dataset and we sort A

in a chronological order in terms of the time when pairs established trust relations.

Assume that there are x% of pairs in A establishing trust relations until time tx. For
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each x, we collect trust relations, distrust relations, user-review authorship relations

and user-review helpfulness ratings until time tx to form a evaluation dataset Epin-

ionsx. In this paper, we vary x as {50, 70, 100} and correspondingly we construct

three evaluation datasets from the Epinions dataset, i.e., Epinions50, Epinions70

and Epinions100. The purpose of varying the values of x is to investigate the per-

formance of the proposed framework on Epinions datasets with different statistics.

Other experimental settings and evaluation metric are the same as these in 3.3.2.

Experimental Results

The comparison results are shown in Figure 4.5 and baseline methods in the figure

are defined as,

• negInter: This method is based on the strong correlation between negative in-

teractions and distrust relations. negInter ranks pairs of users based on the

numbers of negative interactions. The larger the number of negative interac-

tions, the higher the prediction confidence.

• random: this predictor ranks pairs of users randomly. [41] suggests that a ran-

dom predictor should be used as a baseline method to meaningfully demonstrate

the predictor quality since the M1 value is usually low.

From Figure 4.5, we note that the performance of negInter is much better than

that of random, which further demonstrates the existence of a strong correlation be-

tween negative interactions and distrust relations. We also observe that the proposed

framework dTrust always outperforms baseline methods. Performance comparison

between the random predictor and the proposed framework dTrust suggests that

dTrust can accurately predict distrust relations by incorporating trust relations and

interaction data.
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Epinions50 Epinions70 Epinions100
negInter 0.0546 0.1147 0.1278
dTrust 0.0874 0.1505 0.1739
random 0.00002 0.00004 0.00005
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Figure 4.5: Performance Comparison of Different Predictors.

g(x) controls the impact of the number of negative interactions on dTrust and we

empirically set g(x) = 1− 1
log(x+1)

. Next we investigate the importance of the number

of negative interactions by studying the performance changes of dTrust with difference

choices of g(x) as shown in Table 4.1. Note that “random” in the table denotes that we

randomly assign values in [0, 1] to the function. We make the following observations

• When g(x) = 0, we eliminate negative interactions and the performance re-

duces dramatically. This result demonstrates the importance of incorporating

interaction data.

• Compared to the performance of g(x) = 1− 1
log(x+1)

, the performance g(x) with

a non-zero constant degrades a lot. These results suggest that modeling the

impact of the number of negative interactions on the correlation can improve

the performance of dTrust.

• Compared to the performance of g(x) = 1− 1
log(x+1)

, the performance g(x) with

random values also reduces a lot. These results directly suggest that g(x) should

not be random values, and further demonstrate the importance of modeling the

impact of the number of negative interactions by W.
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Epinions50 Epinions70 Epinions100

g(x) = 0 0.00001 0.00003 0.00004

g(x) = 1 0.05812 0.11686 0.13039

g(x) = random 0.05905 0.11763 0.13207

g(x) = 1− 1
log(x+1)

0.08737 0.15054 0.17391

Table 4.1: Difference Definitions of g(x).

We can conclude that (1) g(x) should not be random values; (2) defining g(x) based

on the number of negative interactions can significantly improve the performance of

dTrust.

4.4 Supervised Distrust Prediction

Traditional supervised methods consider trust prediction as as classification prob-

lem [87]. Supervised methods could have several advantages over unsupervised meth-

ods such as superior performance, adaptability to different data domains, and variance

reduction [42]. In this subsection, we investigate how to tackle the problem of distrust

prediction with supervised learning. Similar to traditional trust prediction, we can

consider distrust prediction problem as a classification problem where we need to con-

struct labels and extract features. Different from traditional trust prediction, there

are unique challenges in preparing training data in the distrust prediction problem.

For example, existing relations are given in traditional trust prediction such as trust

relations in trust prediction, and trust/distrust relation in trust/distrust prediction,

while existing distrust relations are not given in the distrust prediction problem.
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4.4.1 Label Construction

Let En and Eo denote pairs of users with distrust relations and without any

relations, respectively. In most previous formulations of link prediction, including the

signed version, label construction is trivial because the presence of links is specified.

However, we study the scenario where no distrust relations are provided, and therefore

the labels for En are really an unspecified subset of Eo∪En. What is worse, the sizes

of En and Eo are extremely imbalanced. For example, the imbalance ratios En : Eo

are 1:4131 in Epinions. We treat pairs in Eo as positive samples and distrust relations

as negative samples. Label construction is to construct positive and negative samples

from Eo ∪ En. Since the ratio of Eo in En ∪ Eo are often bigger than 99.9%, we can

randomly select a subset of samples from En ∪ Eo as positive samples PS. Next we

introduce a way to select samples from En∪Eo as negative samples based on previous

observations. The process is shown in Algorithm 2.

Next, we describe Algorithm 2 for negative sample construction. The strong cor-

relation between negative interactions and distrust relations suggests that users with

negative interactions are likely to have distrust relations. Therefore from line 2 to

line 4 in Algorithm 2, we construct negative sample candidates based on this obser-

vation. With the trust relations and distrust relations ui-uj from NS, we construct a

signed network G in line 5. Most of the triads in signed networks satisfy status theory.

Therefore we refine NS by (a) excluding 〈ui, uj〉 from NS if ui-uj is in any triads of

G that does not satisfy status theory in line 6; and (b) adding samples 〈ui, uk〉 into

NS if ui-uk can make all triads that involve ui and uk in G satisfying status theory in

line 7. The reliability of these negative samples may vary. For example, observations

from data analysis indicate that negative sample candidates with more negative in-

teractions are more likely to have distrust links, and are therefore more likely to be
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Algorithm 2 Negative Sample Construction

Input : The trust network T and user-user negative interaction matrix N

Output : Negative sample set NS and the reliability weight matrix W

1: Initialize NS = ∅

2: for all Nij 6= 0 do

3: NS = NS ∪ {〈ui, uj〉}

4: end for

5: Construct G as a signed network with trust relations from T and distrust relations

ui-uj from NS

6: Remove samples 〈ui, uj〉 from NS if ui-uj is in any triads of G that does not

satisfy status theory

7: Add samples 〈ui, uk〉 into NS if ui-uk can make all triads that involve ui and uk

in G satisfying status theory

8: for all 〈ui, uj〉 ∈ NS do

9: Calculate a reliability weight Wij

10: end for

reliable. Therefore, we associate each 〈ui, uj〉 with a reliability weight Wij, which is

defined as follows:

Wij =

 g(Nij) if Nij 6= 0

r otherwise
. (4.10)

if the pair 〈ui, uj〉 ∈ NS has negative interactions, we define the reliability weight

as a function g of the number of negative interactions Nij. Otherwise, the pair

〈ui, uj〉 ∈ NS is added by line 7 in Algorithm 2 and we set the reliability weight to a

constant r.
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4.4.2 Feature Extraction

We extract three types of features corresponding to user features, pair features and

sign features. User features and pair features are extracted from two given sources,

such as trust relations and content-centric interactions, as follows:

• User features are extracted for each user ui including ui’s indegree (or outdegree)

in terms of trust relations, the number of triads that ui involved in, the number

of content-centric items (e.g., posts) that ui creates, the number of ui’s posts

that obtain positive (or negative) opinions, and the number of positive (or

negative) opinions ui expresses; and

• Pair features are extracted for a pair of users 〈ui, uj〉 including the number

of positive (or negative) interactions from ui to uj, the number of positive

(or negative) interactions from uj to ui, Jaccard coefficients of indegree (or

outdegree) of ui and uj in terms of trust relations, and the length of the shortest

path between ui and uj.

We construct a weighted signed network with the given trust relations and distrust

relations from NS where the weights of trust relations are 1 and the weights of

distrust relations are their reliability weights. For a pair 〈ui, uj〉, signed features

include weighted indegree (or outdegee) in terms of trust relations of ui, weighted

indegree (and outdegee) in terms of distrust relations of uj, Jaccard coefficients of

indegree (or outdegree) of ui and uj in terms of distrust relations and 16 weighted

triads suggested by [38].

With definitions of user features, pair features and sign features, we extract 45

features in total for each pair 〈ui, uj〉 including 8 user features of ui, 8 user features

of uj, 7 pair features, and 22 signed features.
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4.4.3 A Supervised Framework - NeLP

Through label construction and feature extraction, we prepare training data to

learn classifiers for the distrust prediction problem. However, the labels of the training

data are noisy, and especially so for negative samples. Therefore, it is necessary for

the base classifier to be tolerant to training data noise. In this paper, we choose a

soft-margin version of support vector machines as our basic classifier because it has

been proven to be highly noise-tolerant [14].

Let X = {x1, x2, . . . , xN} be the set of user pairs in Eo ∪En and xi be the feature

vector representation of the pair xi. The standard soft-margin support vector machine

for the distrust prediction problem is as follows:

min
w,b,ε

1

2
‖w‖22 + C

∑
xi∈PS∪NS

εi

s.t. yi(w
>xi + b) ≥ 1− εi, xi ∈ PS ∪NS

εi ≥ 0 xi ∈ PS ∪NS (4.11)

Eq. (4.11) introduces the term εi for the soft-margin slack variable of xi, which

can be viewed as the allowance for the noise in this training sample. The parameter

C controls the degree of impact of this term. In the distrust prediction problem,

the noise-levels of positive and negative samples are different because positive sam-

ples PS are generally more robust than the (indirectly derived) negative samples.

As discussed earlier, the reliability of negative samples is explicitly quantified with

their weights. These intuitions suggest that we should allow more errors in negative

samples especially when their weights suggest unreliability. This yields the following
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formulation:

min
w,b,ε

1

2
‖w‖22 + Cp

∑
xi∈PS

εi + Cn
∑
xj∈NS

cjεj

s.t. yi(w
>xi + b) ≥ 1− εi, xi ∈ PS

yj(w
>xj + b) ≥ 1− εj, xj ∈ NS

εi ≥ 0, εj ≥ 0 (4.12)

In Eq. (4.12), we use two parameters Cp and Cn to weight the positive and negative

errors differently. We use a larger value for Cp compared to Cn to reflect the differential

behavior of the positive and negative samples. For a negative sample xj, we introduce

a weight cj to further control its error based on its quantified reliability weight. For

the negative sample xj corresponding to the pair 〈ui, uk〉, we set cj = Wik where Wik

is the reliability weight for 〈ui, uk〉. This additional term allows differential control of

the noise in negative samples of varying reliability.

Balance theory suggests that triads in signed networks are likely to be balanced;

hence we want to maintain or increase the structural balance after distrust prediction.

If there is a trust relation between ui and uj, and both ui and uj do not have trust

relations with another user uk, the types of (ui, uk) and (uj, uk) in the distrust graph

Gn are likely to be the same. In other words, to maintain or increase the structural

balance, it is likely that both are distrust relations where 〈ui, uj, uk〉 forms a balanced

triad or both are missing relations where there is no triad among 〈ui, uj, uk〉. With

this intuition, we introduce a matrix B where Bh` = 1 if there is a trust relation

between ui and uj where we assume that xh and x` denote pairs 〈ui, uk〉 and 〈uj, uk〉,

respectively. Otherwise, we assume that Bh` = 0. Then, we force xh and x` to have

the same types of links if Bh` = 1 by introducing a balance-theory regularization:

min
1

2

∑
h,`

Bh`(w
>xh −w>x`)

2
2 = w>XLX>w (4.13)
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Here, L is the Laplacian matrix based on B. The number of pairs in En∪Eo is usually

very large, which leads to a large number of terms in the balance theory regularization.

The observation from data analysis suggests that our “foes” are usually close to us

in the trust network. Hence, in this work, we only consider pairs whose shortest

path lengths are 2, and pairs in NS and PS in the balance theory regularization. We

assume that there are l+µ samples in X where the first l ones are from PS∪NS. The

significance of the introduction of the balance theory regularization is two-fold. First,

it allows us to model balance theory. Second, it allows us to include more samples

during the learning process in addition to NS and PS. A similar function is achieved

by this approach, as achieved by unlabeled samples in semi-supervised learning [106].

With these components, the proposed NeLP framework is able to solve the following

optimization problem:

min
w,b,ε

1

2
‖w‖22 + Cp

∑
xi∈PS

εi + Cn
∑
xj∈NS

cjεj +
Cb
2

w>XLX>w

s.t. yi(w
>xi + b) ≥ 1− εi, xi ∈ PS

yj(w
>xj + b) ≥ 1− εj, xj ∈ NS

εi ≥ 0, εj ≥ 0 (4.14)

We solve the optimization problem in Eq. (4.14) based on the dual form [4] and more

details are presented in Appendix B.

4.4.4 Evaluation

In this subsection, we present experiments which (a) quantify the performance of

the proposed NeLP framework in predicting distrust links, and (b) evaluate the con-

tribution of various model components to the performance. We begin by introducing

performance evaluation metrics, which are useful in both contexts.
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True class = -1 True class = 1

Predicted class = -1 true pos. (tp) false pos. (fp)

Predicted class = 1 false neg. (fn) true neg. (tn)

Table 4.2: Confusion Matrix of a Binary Classifier.

Experimental Settings

Distrust prediction can be viewed as a highly imbalanced classification problem. In

such case, straightforward accuracy measures are well known to be misleading [96].

For example, the trivial classifier that labels all samples as missing relation can have a

99.99% accuracy in Epinions. In distrust prediction, we aim to achieve high precision

and recall over distrust relations, defined in terms of the confusion matrix of a classifier

as shown in Table 4.2: precision = tp
tp+fp

and recall = tp
tp+fn

. Usually precision and

recall are combined into their harmonic mean, the F-measure. Therefore we will adopt

F1-measure as one metric for the performance evaluation. As suggested in [96], in

some scenarios, we put more emphasis on precision because the most challenging task

is to seek some distrust relations with high probability, even at the price of increasing

false negatives. Hence, we also report the precision performance.

Performance of Distrust Prediction

For the evaluation purpose, we define the following baseline methods for the proposed

framework NeLP:

• Random: This predictor randomly guesses the labels of samples.

• sPath: Observations in data analysis suggest that our “foes” are always close

to us in the trust network and sPath assigns distrust relations to pairs whose

shortest path lengths is L;
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Algorithms
Epinions

F1 Precision

random 0.0005 0.0002

sPath 0.0040 0.0075

negIn 0.2826 0.2097

negInS 0.2893 0.2124

NeLP-negIn 0.3206 0.2812

NeLP 0.3242 0.2861

Table 4.3: Performance Comparison of Distrust Prediction in Epinions.

• negIn: Given the strong correlation between negative interactions and distrust

links, negIn suggests distrust relations to these pairs with negative interactions;

• negInS: after obtaining distrust candidates via negIn, negInS further refines

these candidates by performing a removing step and an adding step as shown

in Algorithm 2; and

• NeLP-negIn: NeLP-negIn is a variant of the proposed NeLP framework. Instead

of using distrust links suggested by negInS as NeLP, NeLP-negIn uses distrust

relations found by negIn.

For parameterized methods, we report the best performance of each baseline

method. For NeLP, we set its parameters as {Cp = 1, Cn = 0.5, Cb = 0.1}. We

empirically find that g(x) = 1− 1
log(1+x)

works well for the proposed framework. More

details about parameter sensitivity of NeLP will be discussed later. The comparison

results are demonstrated in Table 5.1.

We make the following observations:
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• sPath obtains much better performance than random guessing, which further

supports the hypothesis that our “foes” are close to us in the trust network;

• negIn improves the performance significantly. These results suggest the exis-

tence of correlation between negative interactions and distrust relations;

• by removing candidates suggested by negIn that do not satisfy status theory and

adding candidates to make open triads closure to satisfy status theory, negInS

outperforms negIn. For example, negInS gains 2.37% relative improvement in

terms of F1-measure in Epinions. These results indicate that status theory can

help us remove some noisy samples and add some useful samples for training.

These observations can also be used to explain the reason why the performance

of NeLP based on distrust relations suggested by negInS is better than that

based on negIn; and

• The proposed framework always obtains the best performance.

Component Analysis of NeLP

There are three important components of NeLP. First, NeLP introduces Cn to control

errors in negative samples. Second, NeLP introduces cj to control the error in the

sample xj, which is related to the number of negative interactions based on our ob-

servations from data analysis. Third, NeLP introduces balance theory regularization

to model balance theory, which also allows us to include more samples in the clas-

sifier learning process. Next we discuss the effects of these components. By setting

Cp = 1 and varying different values of Cn, cj and Cb, we can examine the impact

of these components on the performance of NeLP. The results of component analysis

are shown in Tables 4.4.
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Cn cj Cb F1-measure Precision

0.5 f(x) = 1− 1
log(1+x)

0.1 0.3242 0.2861

1 f(x) = 1− 1
log(1+x)

0.1 0.3188 0.2793

0.5 f(x) = 1 0.1 0.3067 0.2612

0.5 f(x) = 1− 1
log(1+x)

0 0.3084 0.2686

1 f(x) = 1 0 0.2992 0.2342

Table 4.4: Component analysis for NeLP in Epinions.

The first row in the table represents the performance of NeLP with all three

components. We make the following observations about different variations of NeLP

in other rows of the table:

• in the second row, we set Cn = 1, which gives equal weights to positive and

negative samples. This approach effectively eliminates the differential impor-

tance given to errors from negative samples. The performance degrades, which

suggests that the errors of negative and positive samples should be treated

differently;

• in the third row, we set cj = 1 instead of the reliability weight related to the

number of negative interactions to eliminate the component controlling the error

in the negative sample xj. The performance reduces a lot. For example, the

precision reduces by 8.70% in Epinions. These results support the importance

of the number of negative interactions to indicate the reliability of negative

samples;

• in the fourth row, we set Cb = 0 to eliminate the contribution from the balance

theory regularization. The performance is consistently worse than that with the

balance theory regularization. This illustrates the importance of the balance
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theory regularization in the proposed NeLP framework; and

• in the fifth row, we eliminate all these three components and the performance

further degrades. These results suggest that the three components contain

complementary information.

4.5 Conclusion

In this chapter, we propose an unsupervised framework dTrust and a supervised

framework NeLP to predict distrust by leveraging trust and content-centric user in-

teractions. We make a number of findings about distrust including (1) our distrusted

users are close to us (usually within 2 or 3 hops); (2) most triads in trust/distrust

networks satisfy balance and status theories; (3) there is a strong correlation between

distrust and negative interactions; and (4) the more negative interactions two users

have, the more likely a distrust relation exists between them. Evaluations of dTrust

and NeLP on Epinions suggest that (1) balance and status theories play important

roles in distrust prediction; (2) negative interactions are strong indicators of distrust;

and (3) distrust can be accurately predicted by using trust and content-centric user

interactions.
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Chapter 5

APPLYING DISTRUST

Trust is used in many real-world applications such as node classification [65], in-

formation propagation [31], recommendation [82, 91], information filtering [76] and

feature selection [84, 85, 88, 86]. Distrust plays a different role in many ways from

trust. Simply extending applications of trust may not work for distrust [10]. In

addition, it would be ideal to put research findings into real-world applications. It

is also an ultimate assessment of impact for distrust. Hence, we propose to apply

distrust together with trust in our efforts to further understand the role and added

value of distrust. We focus on two applications of distrust - node classification and

recommendation. The reason is two-fold. First, these two problems are quite general

and many real-world applications can be essentially considered as one of these two

problems. For example, sentiment analysis can be formulated as a classification prob-

lem [70, 26, 90]. Second, these two applications can serve as examples when exploring

other data-intensive applications.

5.1 Node Classification

User information such as demographic values, interest, beliefs or other charac-

teristics plays an important role in helping social media sites provide better services

for their users such as recommendations and content filtering. However, most so-

cial media users do not share too much of their information [103]. For example,

more than 90% of users in Facebook do not reveal their political views [1]. One way

of bridging this knowledge gap is to infer missing user information by leveraging the

pervasively available network structures in social media. An example of such inference
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is that of node classification in trust networks. The node classification problem has

been extensively studied in the literature [19]. Existing node classification algorithms

can be mainly grouped into local classifier based methods and random walk based

methods [5]. The vast majority of these algorithms have focused on trust networks

[58, 92, 44, 106, 104, 65], while little work exists for trust/distrust networks [71].

5.1.1 Problem Statement

Let C = {c1, c2, . . . , cm} be the set of m label classes. Assume that UL =

{u1, u2, . . . , uN} is the set of N labeled nodes where N < n and UU = U\UL is

the set of n − N unlabeled users. We use Y ∈ RN×m to denote the label indicator

matrix for UL where Yik = 1 if ui is labeled as ck, and Yik = 0 otherwise. With

the aforementioned notations and definitions, the problem of node classification in a

trust/distrust can be formally stated as follows:

Given a trust/distrust network G with trust relations T, distrust relations D, and

labels Y for some nodes UL, the problem of node classification in a trust/distrust

network aims to infer labels for the unlabeled nodes UU .

5.1.2 Transforming Algorithms from Trust to Trust and Distrust Networks

Existing node classification algorithms in trust networks can be mainly divided

into local classifier based methods and random walk based methods [5]. In this

subsection, we investigate how to generalize these key categories of representative

algorithms in trust networks to trust/distrust networks.

Local Classifier based Methods

Local classifier based methods use local neighborhood information to learn local clas-

sifiers [58, 44, 49]. Iterative classification methods (or ICA) [44] are representative
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methods in this family. A typical ICA algorithm first extracts feature vectors for

nodes. Typically, three types of features are extracted as shown in Figure 5.1a:

• LFIP = {f1, f2, . . . , fm} denotes the set of features of label distributions of

incoming relations (or indegree) of the trust network T. The number of features

in LFIP is equal to that of class labels and the value of fk for uj is often

calculated as the frequency of ck in the incoming relations of uj in T;

• Similarly, LFOP is the set of features of label distributions of outgoing relations

(or outdegree) of T; and

• SFP is the set of features extracted from the topological information of T such

as indegree, outdegree,and the number of triads.

With the constructed features, it builds a traditional classifier with labeled nodes

UL. The resulting classifier is used to infer labels of nodes in UU in an iterative

fashion, where the most confidently predicted labels are added to the labeled set. In

each iteration a new set of features LFIP and LFOP is extracted with the augmented

labels, and the aforementioned process is repeated until stable performance is achieved

or a maximum number of iterations have been executed.

To transform the aforementioned ICA algorithm to trust/distrust networks, we

define the extracted features from trust/distrust networks as shown in Figure 5.1b:

• We continue to use the feature sets LFIP and LFOP because a trust/distrust

network G naturally includes a social network with only trust relations T;

• Similar to LFIP for trust relations, we define LFIN to capture label distributions

of incoming distrust relations (or indegree of trust relations);

• Similar to LFOP for trust relations, LFON is defined to capture label distribu-

tions of outgoing distrust relations (or outdegree of distrust relations); and

55



…….. …. …. 
1u 2u Nunu

IPLF

OPLF

PSF

(a) Trust Networks

…….. …. …. 
1u 2u Nunu

IPLF

OPLF

PNSF

INLF

ONLF

(b) Trust/Distrust Networks

…….. …. …. 
1u 2u Nu

nu

IPLF

OPLF

PSF

…….. …. …. 
1u 2u Nu

nu

IPLF

OPLF

PNSF

INLF

ONLF

Feature 
Types 

Descriptions 

Label features from indegree of trust links 

Label features from outdegree of trust links 

Label features from indegree of distrust links 

Label features from outdegree of distrust links 

Structure features from the trust network 

Structure features from the trust/distrust network 

IPLF

OPLF

INLF

ONLF

PNSF
PSF

(c) Feature Descriptions

Figure 5.1: Feature Construction for Iterative Classification Methods in Trust and

Trust/Distrust Networks.

• We redefine structural features SFPN for trust/distrust networks according to

one of the most important theories for trust/distrust networks, i.e., balance

theory [25]. According to balance theory, `-length circles can capture important

topological properties of trust/distrust [11] and we extract `-length circles for

SFPN . For example, when ` = 3, SFPN is the set of triad features suggested

by [38].

A summary of the extracted features for ICA in trust and trust/distrust networks

is illustrated in Figure 5.1. To transform ICA, we define two feature sets LFIN and

LFON based on distrust relations, and redefine structural features SFPN according

to balance theory.

Random Walk based Methods

Random walk based methods propagate labels from labeled nodes to unlabeled nodes

by performing random walks on the trust network [6, 106, 104, 105]. Graph reg-

ularization based methods are representative methods in this family [5]. A typical
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formulation for graph regularization based methods is as follows [105]:

min
∑

ui,uj∈U

Tij(
Li√
dIPi
− Lj√

dOPj

)2 + µ
∑
uk∈UL

‖Lk −Yk‖22 (5.1)

where Li is the predicted label indicator vector for ui in the network G, and dIPi and

dOPj are the indegree and outdegree of trust relations for ui and uj, respectively. In

Eq.( 5.1), the first term ensures greater local consistency of labels of users connected

with trust relations, and the second term enforces global consistency of the inferred

labels with the provided training labels. The balance between the two criteria is

controlled by a parameter µ.

Next, we discuss two possible ways of generalizing the aforementioned algorithm

to the trust/distrust scenario:

• The underlying assumption of the aforementioned algorithm is that two users

with a trust relation are likely to share similar labels, which can be explained

by two popular social theories, i.e., homophily and social influence. Intuitively,

a distrust relation may denote dissimilarity or distance. Therefore, one possible

way to capture distrust relations is to force labels of two users with a distrust

relation dissimilar by introducing a term in Eq. (5.1) as:

min
∑

ui,uj∈U

Tij(
Li√
dIPi
− Lj√

dOPj

)2 + µ
∑
uk∈UL

‖Lk −Yk‖22

− η
∑

ui,uj∈U

Dij(
Li√
dINi
− Lj√

dONj

)2 (5.2)

where dINi and dONj are the indegree and outdegree of distrust relations for ui

and uj, respectively, and the third term captures the contribution from distrust

relations, which is controlled by η.

• Previous work demonstrated that more than 90% of triads in trust/distrust
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networks satisfy status theory [39]. To apply Eq. (5.1), we can convert distrust

relations to trust links via status theory.

Let Sij = 1 if ui has a trust relation to uj and Sij = −1 for a distrust relation.

In [38], an approach based on status theory is proposed to determine the sign

from ui to uk in an open triad with given signs between ui and uj, and between

uj and uk. The algorithm first flips the directions of relations between ui and

uj, and between uj and uk, if possible, so that they point from ui to uj and uj

to uk. Then it also flips the signs of the relations correspondingly if we flip their

directions. Finally the sign from ui to uk is Sik = Sij + Sjk.

According to the aforementioned algorithm, we can convert distrust relations

into trust relations. Three examples are shown in Figure 5.2 where uk → ui

in A, ui → uk in B and uk → ui in C are converted trust relations. We have

Sij = −1 and Sjk = −1 for the open triad A in Figure 5.2 and next we will use

A as an example to illustrate how to covert distrust relations to trust relations.

According to the algorithm, we can calculate that Ski = 1; hence, we add a trust

relation from uk to ui. A similar process can be performed for B and C. After

that, we remove all distrust relations and the original trust/distrust network is

converted into a trust network. As a result, Eq. (5.1) will be applicable to this

new trust network.

5.1.3 The Proposed Framework - NCSSN

In this section, we will first introduce a node classification algorithm with only

trust relations, and then give details about how to capture distrust relations and the

proposed NCSSN framework.
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Figure 5.2: Examples of Converting Distrust Relations into Trust Relations accord-

ing to Status Theory.

A Node Classification Algorithm with Only Trust Relations

To perform the classification, we associate latent factors with nodes. Let Ui ∈ R1×K
+

be the latent factor of ui. Then, a trust relation from ui to uj can be modeled as

the interaction between their latent factors as Tij = UiH
tU>j where Ht ∈ RK×K

+

captures the interaction for trust relations [77]. We use a linear classifier W ∈ RK×m

to capture the label information from labeled nodes based on their latent factors as

Yi = UiW. The proposed node classification algorithm with only trust relations

solves the following optimization problem:

min
Hp≥0,U≥0,W

∑
ui,uj∈U

‖Tij −UiH
tU>j ‖22 + α

∑
ui∈UL

‖UiW −Yi‖22 (5.3)

where α controls the contribution from labeled nodes.

The Eq. (5.3) can be rewritten in matrix form as follows:

min
Hp≥0,U≥0,W

||T−UHtU>‖22 + α‖C(UW −Y)‖2F (5.4)

where U = [U1; U2; . . . ; Un] ∈ Rn×K
+ and C ∈ Rn×n is a diagonal matrix, where

Cii = 1 if ui ∈ UL and Cii = 0, otherwise.
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Capturing Distrust Relations

Independent information from distrust relations is crucial to account for distinct topo-

logical properties of distrust relations in modeling [69]; while as suggested in [38],

trust and distrust relations should also be viewed as tightly related features in a sin-

gle structure. Therefore, we capture two types of information when modeling distrust

relations. One is information from only distrust relations which we refer to as inde-

pendent information from distrust relations. The other is information derived from

the interactions between trust and distrust relations which we refer to as dependent

information from distrust relations.

To capture independent information, which is similar to modeling trust relations,

a distrust relation from ui to uj can be modeled as the interaction between their

latent factors as follows:

Dij = UiH
dU>j (5.5)

Here, the notation Hd ∈ RK×K is introduced to capture the interaction for distrust

relations.

The notion of structural balance was extended by [15]. According to this principle,

a structure in a trust/distrust network should ensure that users are able to have their

“friends“ closer than their “foes” i.e., users should sit closer to their “friends” (or

users with trust relations) than their “foes” (or users with distrust relations). For

〈i, j, k〉 where ui has a distrust relation to uj and a distrust relation to uk, we force ui

closer to her “friend” uj than her “foe” uk in terms of their latent factors to capture

dependent information according to the aforementioned theory. To achieve this goal,

we consider the following two cases:

• Case 1: If a user ui sits closer to her “friend” uj than her “foes” uk, i.e.,

‖Ui−Uj‖22−‖Ui−Uk‖22 < 0, we should not penalize this case since we expect
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it.

• Case 2: If a user ui sits closer to her “enemy” uk than her “friend” uj, i.e.,

‖Ui −Uj‖22 − ‖Ui −Uk‖22 > 0, we should add a penalty to pull ui closer to uj

than uk.

Based on the aforementioned analysis, we propose the following formulation to

capture dependent information from distrust relations as

min
∑
〈i,j,k〉∈S

max(0, ‖Ui −Uj‖22 − ‖Ui −Uk‖22) (5.6)

S is the set of 〈i, j, k〉 where ui has a trust relation to uj while has a distrust relation

to uk, which is formally defined as

S = {〈i, j, k〉|Ap
ij = 1 ∧An

ik = 1} (5.7)

Next, we give details on the inner workings of Eq. (5.6):

• When a user ui sits closer to her “friend” uj than her “foe” uk, i.e., Case 1, the

minimizing term in Eq. (5.6) is 0 since ‖Ui −Uj‖22 − ‖Ui −Uk‖22 < 0. We do

not add any penalty for Case 1;

• When a user ui sits closer to her “foe” uk than her “friend” uj, i.e., Case 2, the

minimizing term in Eq. (5.6) is ‖Ui −Uj‖22 − ‖Ui −Uk‖22 since ‖Ui −Uj‖22 −

‖Ui −Uk‖22 > 0. Eq. (5.6) will pull ui closer to uj than uk for Case 2.

Eq. (5.6) can be rewritten in the matrix form as follows:

∑
〈i,j,k〉∈S

max(0, ‖Ui −Uj‖22 − ‖Ui −Uk‖22) =
∑
〈i,j,k〉∈S

fijkTr(M
ijkUU>) (5.8)
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where Mijk has Mijk
ij = Mijk

ji = Mijk
kk = −1 and Mijk

ik = Mijk
ki = Mijk

jj = 1 with other

entries equal to zero. The term fijk is defined as follows:

fijk =

 1 if Tr(MijkUU>) > 0

0 otherwise
. (5.9)

With models of independent and dependent information from distrust relations,

we propose the following formulation to leverage distrust relations:

min ‖An −UHnU>‖2F +
∑
〈i,j,k〉∈S

fijkTr(M
ijkUU>) (5.10)

The Proposed Formulation for NCSSN

Combining Eqs. (5.4) and (5.10), the proposed node classification framework in

trust/distrust networks NCSSN is to solve the following optimization problem:

min
Ht≥0,Hd≥0,U≥0,W

‖T−UHtU>‖2F + α‖C(UW −Y)‖2F

+ β
(
‖D−UHdU>‖2F +

∑
〈i,j,k〉∈S

fijkTr(M
ijkUU>)

)
+ λ(‖Ht‖2F + ‖Hd‖2F + ‖U‖2F + ‖W‖2F ) (5.11)

where the first term to the fourth term capture trust information, label information

from labeled nodes, independent information from distrust relations and dependent

information from distrust relations, respectively. The term λ(‖Ht‖2F+‖Hd‖2F+‖U‖2F+

‖W‖2F ) is introduced to avoid overfitting. The relationships among U, Ht, Hd and

W make the problem of finding optimal solutions for all parameters in Eq. (5.11)

difficult to determine simultaneously. In this work, we adopt an alternate optimization

scheme [16] for Eq. (5.11) where we optimize one component while fixing others. More

details are shown in Appendix C. After we learn W and U, the label of a node in

62



the trust/distrust network ui ∈ UU can be predicted as follows:

c∗ = arg max
cj∈C

([UiW]j) (5.12)

5.1.4 Evaluation

Dataset and Experimental Settings

Epinions can write reviews for products from various categories. We chose these

categories as the class labels of users. For a user who writes reviews for products

from multiple categories, we chose the one with most products she writes reviews to

as her label. We perform additional preprocessing on the original Epinions dataset by

filtering users without any labels, and class labels with a limited number of users. The

new dataset includes 23,280 users, 291,422 trust relations, 40,792 distrust relations

and 20 class labels.

In each case, we randomly choose x% of nodes labeled and the remaining 1−x% as

unlabeled nodes for testing. For each x, we repeat the experiments 10 times and report

the average performance. Since it is very common for labels to be sparsely specified,

we chose relatively small values of x, which were {5, 10, 15, 20}. One commonly used

measure, referred to as Micro-F1, is adopted to assess the classification performance.

Node Classification Performance

In this subsection, we evaluate the classification performance with trust/distrust net-

works in terms of (a) the performance of algorithms transformed from trust networks,

and (b) the performance of the proposed NCSSN framework with respect to these

transformed methods.

The comparison results are demonstrated in Table 5.1. The algorithms in the

table are defined as follows:
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• ICA: This algorithm is a traditional iterative classification method [44] with

features LFIP , LFOP and SFP . We apply ICA to trust/distrust networks by

ignoring all distrust relations.

• sICA3: This algorithm is a transformed version of ICA for trust/distrust net-

works. For SFPN , we chose circles of length 3 as features.

• sICA4: This algorithm is also a transformed version of ICA. Different from

sICA3, sICA4 uses circles of length 4 as features.

• GReg: This algorithm is a traditional graph regularization method [105] for trust

networks. We ignore all distrust relations when we apply GReg to trust/distrust

networks.

• disGReg: This algorithm is a variant of GReg, which considers a distrust relation

as dissimilarity.

• sGReg: This algorithm is also a variant of GReg. To apply GReg from trust

to trust/distrust networks, sGReg converts distrust relations to trust relations

according to status theory.

• NCSSN: This is the proposed algorithm which models both independent and

dependent information to capture distrust relations.

• Random: this algorithm chooses class labels randomly for unlabeled nodes.

For methods with parameters, we used cross-validation to determine their values.

However, disGReg achieves the best performance when η = 0. This means that the

distrust relations in disGReg reduce its performance. To show the impact of distrust

relations on disGReg, we report the performance when η = 1 in Table 5.1. Note that

for ICA, sICA3 and sICA4, we try various types of traditional classifiers including
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Algorithms
Epinions

5% 10% 15% 20%

ICA 10.57 11.00 11.45 11.99

sICA3 11.09 11.61 12.03 12.52

sICA4 11.75 11.98 12.36 13.03

GReg 9.71 11.02 11.51 12.10

disGReg 9.39 10.70 11.21 11.80

sGReg 10.34 11.68 12.17 12.56

NCSSN 12.08 12.63 13.22 13.87

Random 4.98 5.00 5.00 5.02

Table 5.1: Performance Comparison of Negative Link Prediction in Epinions.

Naive Bayes, SVM, logistic regression, linear regression, and random forests, and we

report the best performance.

We make some key observations from Table 5.1:

• In general, with the increase in the number of labeled nodes, the classification

performance consistently increases for all methods in Table 5.1.

• The relative performance improvement of sICA3 and sICA4 compared to ICA

is shown in Table 5.2. Both sICA3 and sICA4 outperform ICA. These results

support the contention that distrust relations are helpful in the node classifica-

tion problem. sICA4 often outperforms sICA3. Since trust/distrust networks

are usually very sparse, some users may not have any length 3 circle features

but have 4-length circle features; hence length 4 circle features are more robust.

• The relative performance improvement of disGReg and sGReg compared to GReg

is shown in Table 5.3. disGReg performs worse than GReg, which suggests
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sICA3 sICA4

5% +4.92% +11.16%

10% +5.55% +8.91%

15% +5.07% +7.95%

20% +4.42% +8.67%

Table 5.2: Relative Performance Improvement of sICA3 and sICA4 Compared to

ICA.

disGReg sGReg

5% -3.30% +6.49%

10% -2.90% +5.73%

15% -2.61% +5.99%

20% -2.48% +3.80%

Table 5.3: Relative Performance Improvement of disGReg and sGReg Compared to

GReg.

that a distrust relation may not denote dissimilarity and transforming GReg to

trust/distrust by considering a distrust relation as dissimilarity may not work.

These observations are consistent with our previous observations in Epinions

that distrust in Epinions may not be dissimilarity measurements [83]. sGReg

obtains better performance than GReg. Transforming GReg to trust/distrust

networks by converting distrust relations to trust relations according to status

theory can improve classification performance.

• The proposed framework NCSSN always obtains the best performance. NCSSN

models independent and dependent information to capture distrust links and

the contributions of these two components to the performance improvement

from NCSSN will be discussed in the following subsection.
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In summary, the aforementioned analysis provides the insights that (a) trans-

formed algorithms from trust to trust/distrust networks properly can improve the

classification performance; (b) a distrust relation may not denote dissimilarity; and

(c) the proposed NCSSN framework obtains significant performance improvement

compared to other methods.

Component Analysis for NCSSN

Based on the performance comparison in the previous subsection, we observe that

the proposed NCSSN framework improves the classification performance significantly.

To capture distrust relations, NCSSN provides two components ‖An −UHnU>‖2F +∑
〈i,j,k〉∈S fijkTr(M

ijkUU>) to model independent and dependent information, re-

spectively. To study the impact of distrust relations on the proposed framework, we

systematically eliminate the effects of these two components by defining the following

variants of NCSSN:

• NCSSN\II - We eliminate the effect of the independent component on NCSSN.

In particular, we remove the term ‖An − UHnU>‖2F from the optimization

problem in Eq. (5.11).

• NCSSN\DI - We eliminate the effect of the dependent component on NCSSN

by removing the term∑
〈i,j,k〉∈S fijkTr(M

ijkUU>) from the optimization problem in Eq. (5.11).

• NCSSN\DII - We eliminate the effects of both independent and dependent

components on NCSSN by setting β = 0 in Eq. (5.11).

The parameters in all variants are determined with cross-validation and the per-

formance comparison of NCSSN and its variants are demonstrated in Figure 5.3.
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Figure 5.3: The Impact of Distrust Relations on The Proposed Framework.

When we eliminate the effect of the independent component, the performance

of NCSSN\II degrades in comparison with NCSSN. For example, the performance

reduces 6.95% with 5% of labeled users in Epinions. These results suggest that

the independent component in NCSSN is important. We make similar observations

for NCSSN\DI when we eliminate the effect of the component modeling dependent

information. When we eliminate the effects of both components, the performance of

NCSSN\DII further reduces compared to NCSSN\II and NCSSN\DI. These results

suggest that these components are complementary to each other.

In summary, via the component analysis of NCSSN, we conclude that (a) both

components can contribute to the performance improvement of NCSSN; (b) it is

necessary to model both because they contain complementary information.

5.2 Recommendation

In the physical world, we always seek recommendations from our trusted friends,

which suggests that trust information may be useful to improve recommendation

performance. Many recommender systems are proposed to incorporate ones’ trust

networks for recommendation and gain performance improvement [52, 46, 27, 47, 28,

82, 91]. Scholars have noted that distrust information may be more noticeable and

credible than trust information with a similar magnitude [12]. In this section, we
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investigate how to exploit trust/distrust networks for recommendation [72].

5.2.1 Problem Statement

In a typical recommender system, there is a user-item rating matrix R ∈ Rn×I

where I is the number of the set of items V = {v1, v2, . . . , vI}, Rij the rating score

if ui rates vj, and 0 otherwise. Let O = {〈ui, vj〉|Rij 6= 0} be the set of observed

ratings and M = {〈ui, vk〉|Rik 6= 0} be the set of missing ratings. The problem of

recommendation with trust/distrust networks can be formally stated as follows:

Given observed ratings O and a trust/distrust network G with trust relations T,

and distrust relations D, the problem of recommendation with a trust/distrust network

aims to infer missing values M in R.

5.2.2 A Recommendation Framework with Trust/Distrust Networks - RecSSN

Two types of information from trust networks can be exploited for recommenda-

tion, which correspond to local information and global information [87]. Local in-

formation reveals the correlations among the user and his/her trusted friends, while

global information reveals the reputation of the user in the whole network. Users in

the physical world are likely to ask for suggestions from their local friends while they

also tend to seek suggestions from users with high global reputation. This suggests

that both local and global information can be exploited in trust networks to improve

the performance of recommender systems [81]. In the following subsections, we will

first provide details about the methods for capturing local and global information in

trust/distrust networks, and then introduce the proposed RecSSN framework.

Matrix factorization is chosen as our basic model because it is one of the most

popular techniques for building recommender systems [35, 34]. Assume that Ui ∈ RK

is the K-dimensional preference latent factor of ui, and Vj ∈ RK is the K-dimensional
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characteristic latent factor of item j. Typically, scores from ui to vj in Rij are modeled

by the interactions between their latent factors. This interaction is defined in terms

of the product of the latent vectors:

Rij = U>i Vj (5.13)

Matrix factorization-based recommender systems solve the following optimization

problem:

min
n∑
i=1

m∑
j=1

Wij‖Rij −U>i Vj‖22 + α(‖U‖2F + ‖V‖2F ) (5.14)

where U = {U1,U2, . . . ,Un} and V = {V1,V2, . . . ,Vm}. Wij controls the contri-

bution from Rij, and the term ‖U‖2F + ‖V‖2F is added to avoid overfitting.

Capturing Local Information from Trust/Distrust Networks

The local information in trust/distrust networks is about the preference relations

between users, and their “friends” (or users with positive links) and “foes” (or users

with negative links). Next, we introduce our approach to capture local information

from trust/distrust networks based on the findings of the previous section.

Let Pi and Ni be ui’s friend circle, including users who have trust relations with

ui, and foe circle, including users who have distrust relations with ui, respectively.

Based on Pi and Ni, we can divide users into three groups as below:

• OP includes users who have only trust links as - OP = {ui|Pi 6= ∅ ∩ Ni = ∅};

• ON includes users who have only distrust links as - ON = {ui|Pi = ∅∩Ni 6= ∅};

• PN contains users who have both trust and distrust links as - PN = {ui|Pi 6=

∅ ∪ Ni 6= ∅}.
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We define Ūp
i and Ūn

i as the average user preferences of ui’s friend circle and foe

circle, respectively, as follows:

Ūp
i =

∑
uj∈Pi

SijUj∑
uj∈Pi

Sij
, Ūn

i =

∑
uj∈Ni

SijUj∑
uj∈Ni

Sij
(5.15)

where Sij is the connection strength between ui and uj. Next, we will discuss how to

capture local information for these groups separately:

• For a user ui with only friend circle (or ui ∈ OP), our previous finding suggests

that ui’s preference is likely to be similar with her friend circle. Hence, we force

ui’s preference close to Pi by minimizing the following term:

min ‖Ui − Ūp
i ‖22. (5.16)

• For a user ui with only foe circle (or ui ∈ ON ), this user is likely to be untrust-

worthy and we should not consider this user for the purpose of recommenda-

tion [95]. Therefore, we ignore local information from these users with only foe

circles, which are only a small portion of the users in real-world trust/distrust

networks. For example, in the studied dataset, there are less than 5% of users

with only foe circles.

• For a user ui with both friend and foe circles, our previous finding suggests that

the preference of ui is likely to be closer to that of his/her friend circle than that

of his/her foe circle. In other words, (1) if a user ui sits closer to his/her friend

circle Pi than her foe circle Ni, i.e., ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22 < 0, we should

not penalize this case; while (2) if a user ui sits closer to his/her foe circle Ni

than her friend circle Pi, i.e., ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22 > 0, we should add

a penalty to pull ui closer to Pi than Ni. Therefore, we propose the following

minimization term to force ui’s preference closer to Pi than Ni as:

min max(0, ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22) (5.17)
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Next, we give details on the inner workings of Eq. (5.17). (1) When ui sits

closer to his/her friend circle Pi than his/her foe circle Ni, the minimizing term

in Eq. (5.17) is 0 because ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22 < 0 and we do not add

any penalty; and (2) when ui sits closer to her foe circle Ni than her friend

circle Pi, the minimizing term in Eq. (5.17) is ‖Ui− Ūp
i ‖22−‖Ui− Ūn

i because

‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i > 0 and Eq. (5.17) will pull ui back to Pi from Ni.

We can develop a unified term to capture local information from these three groups

in trust/distrust networks with the following observations - (1) if we define Ūn
i = Ui

for ui in OP , the term for OP is equivalent to max(0, ‖Ui−Ūp
i ‖22−‖Ui−Ūn

i ‖22); and

(2) if we define Ūn
i = Ui for ui in ON , the term max(0, ‖Ui − Ūp

i ‖22 − ‖Ui − Ūn
i ‖22)

is 0 for ON , which indicates that we ignore the impact of users from ON . Therefore

by redefining Ūp
i and Ūn

i as,

Ūp
i =


∑

uj∈Pi
SijUj∑

uj∈Pi
Sij

for ui ∈ OP ∪ PN ,

Ui for ui ∈ ON .

Ūn
i =


∑

uj∈Ni
SijUj∑

uj∈Ni
Sij

for ui ∈ ON ∪ PN ,

Ui for ui ∈ OP ,
(5.18)

we can find a unified term to capture local information from trust/distrust networks

as:

min
n∑
i=1

max(0, ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22) (5.19)

Capturing Global Information from Signed Social Networks

The global information of a trust/distrust network reveals the reputation of a user

in the whole network [52]. User reputation is a sort of status that gives additional

powers and capabilities in recommender systems [81]. There are many algorithms to
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calculate the reputations of nodes in trust networks [61, 32]. However, a small num-

ber of distrust links can significantly affect the status of the nodes, which suggests

that we should consider distrust links. Therefore, we choose a variant of Pagerank,

Exponential Ranking [93], taking into account distrust links to calculate user reputa-

tions. In detail, we first perform Exponential Ranking to rank users by exploiting the

global information of trust/distrust networks. We assume that ri ∈ {1, 2, . . . , N} is

the reputation ranking of ui where ri = 1 denotes that ui has the highest reputation

in the trust network. Then we define user reputation score wi as a function f of

user reputation ranking ri: wi = f(ri) where the function f limits the value of the

reputation score wi within [0, 1] and is a decreasing function of ri, i.e., top-ranked

users have high reputation scores.

In the physical world, user reputation plays an important role in recommenda-

tion. Many companies employ people with high reputations to enhance consumers’

awareness and understanding of their products. Seno and Lukas found that sugges-

tions from people with high reputations positively affect a consumer’s adoption of

a brand [66]. While in the online world, Massa found that recommendations from

users with high reputations are more likely to be trustworthy [52]. To capture global

information from trust/distrust, we can use user reputation scores to weight the im-

portance of their recommendations. Originally the importance of Rij in Eq. (5.14)

is controlled by Wij. With trust/distrust networks, we should also consider the rep-

utation of ui; hence we define the new weight for Rij as Ŵij = g(Wij,wi) where g

is a function to combine two weights. With these new weights, the formulation to

capture global information from trust/distrust networks is computed as follows:

min
N∑
i=1

m∑
j=1

g(Wij,wi)‖Rij −U>i Vj‖22 + α(‖U‖2F + ‖V‖2F ) (5.20)

where the importance of Rij is controlled by Wij and the reputation score of ui
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through a function g.

An Optimization Algorithm for RecSSN

We have introduced our approaches to capture local and global information from

trust/distrust networks. With these model components, we propose a recommenda-

tion framework, RecSSN, which exploits local and global information simultaneously

from trust/distrust networks. The proposed RecSSN framework solves the following

optimization problem:

min
N∑
i=1

m∑
j=1

g(Wij,wi)‖(Rij −UiV
>
j )‖22 + α(‖U‖2F + ‖V‖2F )

+ β
n∑
i=1

max(0, ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22) (5.21)

where β
∑n

i=1 max(0, ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22) captures local information from

trust/distrust networks and the parameter β controls its contribution. The term

g(Wij,wi) is introduced to capture global information from trust/distrust networks.

By setting g(Wij,wi) = Wij and ignoring all distrust links, the proposed formu-

lation for RecSSN in Eq. (5.21) can be written as follows:

min
N∑
i=1

m∑
j=1

Wij‖(Rij −UiV
>
j )‖22 + α(‖U‖2F + ‖V‖2F ) + β

n∑
i=1

‖Ui − Ūp
i ‖22 (5.22)

Interestingly, this formulation is equivalent to one of the state-of-the-art recommender

systems with trust networks SocialMF [27]. Therefore, RecSSN provides a unified

recommendation framework with trust and trust/distrust networks. Eq. (5.21) is

jointly convex with respect to U and V and there is no nice solution in closed form

due to the use of the max function. A local minimum can be obtained through the

gradient decent optimization method in Appendix D, which usually works well for

recommender systems [35]. After learning the user preference matrix U and the item
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characteristic matrix V, an unknown score R̂i′j′ from the user u′i to the item v′j will

be predicted as R̂i′j′ = u>i′ vj′ .

5.2.3 Evaluation

In this section, we conduct experiments to answer the following two questions -

(1) can the proposed RecSSN framework improve the recommendation performance

by exploiting trust/distrust networks? and (2) which model components of RecSSN

contribute to the performance improvement? Before answering these questions, we

begin by introducing the experimental settings.

Experimental Settings

Following common ways to assess recommendation performance in rating systems, we

choose two metrics, corresponding to the Root Mean Square Error (RMSE) and the

Mean Absolute Error (MAE), which are formally defined as follows:

RMSE =

√∑
(ui,vj)∈T (Rij − R̂ij)2

|T |
,

MAE =
1

|T |
∑

(ui,vj)∈T

|Rij − R̂ij|, (5.23)

where T is the set of ratings in the testing set, |T | is the size of T and R̂ij is the

predicted rating from ui to vj. A smaller RMSE or MAE value means better perfor-

mance. Note that previous work demonstrated that small improvement in RMSE or

MAE terms can have a significant impact on the quality of the top few recommenda-

tions [33]. In this work, we choose x% of rating scores as training and the remaining

1− x% as testing, and x is varied as {50, 70, 90}.
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Performance Comparison of Recommender Systems

To answer the first question, we compare the proposed RecSSN framework with exist-

ing recommender systems. Traditional collaborative filtering systems can be grouped

into memory-based systems and model-based systems; hence we choose two groups

of baseline methods.

The first group of baseline methods includes the following memory-based systems:

• UCF: This system makes recommendations by aggregating recommendations

from ones’ similar users only based on the user-item matrix.

• pUCF: This system is a variant of UCF, which combines recommendations

from ones’ similar users and their trust friends [52]. pUCF utilizes both user-

item matrix and trust links.

• pnUCF: This system is a variant of pUCF, which excludes recommendations

from ones’ foes by exploiting distrust links [95]. pnUCF makes use of user-item

matrix, trust and distrust links.

The second group of baseline methods includes the following model-based systems:

• MF: This system performs matrix factorization on the user-item matrix as

shown in Eq. (5.14) [64]. It only utilizes the user-item matrix.

• SocialMF: This system combines both user-item matrix and trust links for

recommendation [27], which is a special case of the proposed framework with

only trust links as shown in Eq. (5.22).

• SoReg: This system also leverages both user-item matrix and trust links, and

defines social regularization to capture trust links [47].
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• LOCABAL: This system captures local and global information of trust links

under the matrix factorization framework [81].

• disSoReg: In [45], two systems are proposed to exploit trust and distrust

links, respectively. disSoReg is a combination of these two systems to exploit

trust and distrust links simultaneously, which is actually a variant of SoReg

by considering distrust links as dissimilarity measurements.

Note that we use cross-validation to determine parameters for all baseline methods.

For RecSSN, β is set to 0.7. We empirically set α = 0.1 and the number of latent

factors K = 10 for both datasets. In Eq. (5.20), we empirically find that f(x) =

1
log(x+1)

and g(x, y) = x ∗ y work well. The comparison results are demonstrated in

Tables 5.4.

We make the following observations:

• In general, model-based methods outperform memory-based methods on the

two studied datasets. Most of the existing recommender systems suffer from

the data sparsity problem but model-based methods are usually less sensitive

than memory-based methods [33].

• pUCF outperforms UCF. Furthermore, SocialMF, SoReg and LOCABAL

outperform MF. These results support the known contention that exploiting

trust links can significantly improve recommendation performance.

• LOCABAL exploits local and global information from trust links, and obtains

better performance than the systems which model only local information from

trust links such as SocialMF and SoReg. These observations indicate the

importance of global information for recommendation.
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• pnUCF obtains better performance than pUCF, which suggests that excluding

recommendations from users with distrust links can improve recommendation

performance. Furthermore, disSoReg performs worse than SoReg. These

results suggest that we may not consider distrust links as dissimilarities in

recommendation, which is consistent with observations in [83].

• The proposed RecSSN framework always obtains the best performance. RecSSN

captures local and global information from trust/distrust networks. In addition

to trust links, trust/distrust networks also provide distrust links. More de-

tails about the effects of distrust links on the performance of RecSSN will be

discussed in the following subsection.

With these observations, we can draw conclusions about the first question - the

proposed RecSSN framework outperforms the state-of-the-art recommender systems

by exploiting local and global information from trust/distrust networks.
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Impact of Distrust Links on RecSSN

We will now focus on the second issue of examining the precise impact of distrust

links on RecSSN. The experimental results in the previous subsection show that

the proposed RecSSN framework outperforms various representative recommender

systems with trust networks. Compared to these systems, RecSSN also leverages

information from distrust links. In this subsection, we investigate the impact of

distrust links on the proposed RecSSN framework to answer the second question. In

particular, we eliminate the effects of distrust links systematically from RecSSN by

defining the following algorithmic variants:

• RecSSN\GN - Eliminating the effect of distrust links from global information

of trust/distrust networks by using Pagerank to calculate status scores of users

with only trust links.

• RecSSN\LN - Eliminating the effect of distrust links from local information of

trust/distrust networks by replacing
∑n

i=1 max(0, ‖Ui − Ūp
i ‖22 − ‖Ui − Ūn

i ‖22)

with
∑n

i=1 ‖Ui − Ūp
i ‖22 in Eq. (5.21).

• RecSSN\GN-LN - Eliminating the effects of distrust links from global and local

information of trust/distrust networks.

The parameters in all these variants are determined via cross-validation. The ex-

perimental results are demonstrated in Figure 5.4. In general, eliminating any model

component which captures the effect of distrust links will reduce the recommendation

performance. The relative performance reductions for variants compared to RecSSN

are shown in Table 5.5. When eliminating the effect of global information of distrust

links from the proposed framework, the performance of RecSSN\GN degrades. We

make a similar observation for RecSSN\LN when eliminating the effect of local in-
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50% 70% 90%

RecSSN 0.9273 0.8981 0.8863

RecSSN\GN 0.9327 0.9042 0.8918

RecSSN\LN 0.9422 0.9237 0.8984

RecSSN\GN-LN 0.9467 0.9274 0.9017

50% 70% 90%

RecSSN 1.0886 1.0697 1.0479

RecSSN\GN 1.0964 1.0794 1.0568

RecSSN\LN 1.1186 1.0955 1.0784

RecSSN\GN-LN 1.1212 1.1009 1.0821
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Figure 5.4: Impact of Distrust Links on The Proposed Framework RecSSN.

Variants
50% 70% 90%

MAE RMSE MAE RMSE MAE RMSE

RecSSN\GN -0.88% -1.02% -0.98% -1.21% -0.92% -1.15%

RecSSN\LN -2.06% -3.06% -3.15% -2.71% -1.67% -3.21%

RecSSN\GN-LN -2.59% -3.29% -3.56% -3.22% -2.04% -3.56%

Table 5.5: Relative Performance Reductions for Variants Compared to RecSSN.

formation. For example, compared to RecSSN, RecSSN\GN and RecSSN\LN have

1.02% and 3.06% relative performance reductions, respectively, in terms of RMSE

with 50% of Epinions data. When eliminating the effects of distrust links from global

and local information of trust/distrust networks, RecSSN\GN-LN obtains worse per-

formance than both RecSSN\GN and RecSSN\LN. This suggests that local and global

information contain complementary information to each other for recommendation.

With the results from Figure 5.4 and Table 5.5, we can answer the second ques-

tion - both local and global information of distrust links in the proposed RecSSN

framework can help improve the recommendation performance.
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5.3 Conclusion

In this chapter, we study two applications of distrust - node classification in

trust/distrust networks and recommendation with trust/distrust networks. The re-

search results suggest that (1) negative links may not denote dissimilarities; (2) the

observation that users should site closer to their “friends” than their “foes” paves a

way to capture trust/distrust relations; and (3) distrust have added value over trust

and can significantly improve the performance of node classification and recommen-

dation.
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Chapter 6

GENERALIZING FINDINGS OF DISTRUST

Trust is a special type of positive links, and many properties and algorithms of trust

can be generalized to positive links such as friendships and like [87]. For example,

similar properties such as transitivity and homophily have been observed for positive

links [99, 77]; trust prediction algorithms perform well with positive links [57, 77];

and many trust application frameworks can be directly applied to positive links [82,

46]. Since distrust is a special type of negative links, a natural question here is

whether we can generalize some properties and algorithms of distrust to negative

links such as foes and dislike. This investigation can greatly expand the boundaries

of distrust computing and make research achievements be applicable to a wide range

of applications.

We collect a dataset from Slashdot. Slashdot is a technology news platform in

which users can create friend (positive) and foe (negative) links to other users. They

can also post news articles. Other users may annotate these articles with their com-

ments and opinions. Slashdot users can associate themselves with tags and join some

interest groups. Some key statistics are demonstrated in Table 6.7. From the table,

we note that Slashdot provides sufficient information to enable this investigation.

In the following sections, we will investigate whether we can generalize (1) prop-

erties, (2) distrust prediction algorithms and (3) application frameworks of distrust

to negative links.
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# of Users 7,275

# of Positive Links 67,705

# of Negative Links 20,851

# of Posts 300,932

# of Positive Opinions 1,742,763

# of Negative Opinions 42,260

# of Tags 27,942

# of Labels 10

Table 6.1: Statistics of the Slashdot Dataset.

6.1 Negative Link Properties

Distrust is not transitive, highly asymmetric and denotes neither similarity nor

dissimilarity. In this section, we examine these properties of negative links. Note that

since we use similar methods of distrust to investigate negative links, we omit details

and directly present results and observations.

6.1.1 Transitivity

The results of transitivity of negative links are shown in Table 6.2. We make

similar observations as - (1) positive links are transitive; (2) negative links are not

transitive; and (3) when 〈ui-uj,uj-uk〉, it is also likely that ui+uk, which can be

explained by balance theory as “enemies’enemies are friends”.

6.1.2 Asymmetry

We show the results of asymmetry of negative links in Table 6.3. Positive links

are asymmetric; while negative links are highly asymmetric. These observations are

consistent with those for distrust.
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Trust

Types Number P1 P2

〈ui+uj,uj+uk〉, ui?uk 4,197,533 82.03% N.A.

〈ui+uj,uj+uk〉, ui+uk 898,905 17.57% 97.89%

〈ui+uj,uj+uk〉, ui-uk 19,365 0.4% 2.11%

Distrust

Types Number P1 P2

〈ui-uj,uj-uk〉, ui?uk 777,586 91.70% N.A.

〈ui-uj,uj-uk〉, ui+uk 13,362 1.67% 54.07%

〈ui-uj,uj-uk〉, ui-uk 11,351 1.41% 45.93%

Table 6.2: Transitivity of Positive and Negative Links in Slashdot.

uj+ui(%) uj-ui(%) uj?ui(%)

ui+uj 59,965(31.62) 556(0.29) 129,121(68.09)

ui-uj 556(1.69) 2,055(6.26) 30,218(92.05)

Table 6.3: Asymmetry of Positive and Negative Links.

6.1.3 Similarity

We investigate similarities between pairs with positive links, negative links and

no links, and the average similarities are illustrated in Table 6.4. We observe - (1)

pairs with positive links are likely to be similar; (2) pairs with negative links are more

similar than those randomly selected pairs; and (3) pairs with positive links are more

similar than those with negative links. Similar observations are made for distrust and

trust relations.
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CI COSINE CI-COSINE

Foe (sd) 0.1926 0.1926 0.5577

Friend (st) 0.2160 0.2160 0.6480

Random Pairs (sr) 0.1759 0.1759 0.5385

Table 6.4: Similarity for Positive and Negative Links.

6.2 Negative Link Prediction

We make a number of observations of distrust in Chapter 4 and based on these

observations, we propose an unsupervised framework dTrust and a supervised frame-

work NeLP to predict distrust by leveraging two sources - trust and content-centric

user interactions. In this section, we first investigate whether we can make similar

observations for negative links and then expand dTrust and NeLP to predict negative

links by using positive links and content-centric user interactions.

6.2.1 Analysis on Negative Links

We compute the lengths of shortest paths of pairs with negative links in the

positive networks and the length distribution is demonstrated in Figure 6.1. We

make similar observations - more than 50% of our foes are within 2 hops and more

than 80% of our foes are within 3 hops.

We examine all triads in Slashdot and find that (1) 93.01% of triads are balanced;

and (2) 93.38% of triads satisfy status theory.

We investigate the existence of correlation between negative links and negative

interactions via a two sample t-test. Evidence from t-test suggests that there is a

strong correlation between negative links and negative interactions, and users with

negative interactions are likely to have negative links. The distributions of ratios

of negative links with respect to the number of negative interactions are shown in
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Figure 6.2: The Ratios of Negative Links with respect to the Number of Negative

Interactions.

Figure 6.2. The ratio of a randomly selected pair as a negative link is 3.9402e − 04

in Slashdot. Even when the numbers of negative interactions are small, the ratios

are much higher than the random one, which further supports that existence of the

correlation. Furthermore with increase of the number of negative interactions, the

ratios tend to increase. Therefore, an increase in the number of negative interactions

increases the likelihood of negative links between users.

Aforementioned analysis on negative links suggests that observations of distrust
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Slashdot50 Slashdot70 Slashdot100

negInter 0.0323 0.0819 0.0997  

random 0.00001 0.00002 0.00003

dTrust 0.0754 0.1372 0.1491
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Figure 6.3: Performance of dTrust in Predicting Negative Links in Slashdot.

can be generalized to negative links, which indicates that the proposed frameworks

dTrust and NeLP for distrust prediction may be generalized to predict negative links.

6.2.2 dTrust for Negative Link Prediction

Following similar experimental settings to assess dTrust in Epinions, we evaluate

dTrust on Slashdot and the performance is illustrated in Figure 6.3. negInter obtains

much better performance than random, which suggests the existence of the correlation

between negative links and negative interactions. Performance comparison between

dTrust and random suggests that dTrust can accurately predict negative links, which

indicates that dTrust can be generalized to negative link prediction.

6.2.3 NeLP for Negative Link Prediction

We generalize NeLP to predict negative links by using positive links and content-

centric user interactions in Slashdot and the performance is shown in Table 6.5.

negInS always outperforms negIn, which indicates that status theory is helpful in
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Algorithms
Slashdot

F1 Precision

random 0.0008 0.0004

sPath 0.0090 0.0172

negIn 0.1986 0.1483

negInS 0.2072 0.1524

NeLP-negIn 0.2394 0.2083

NeLP 0.2441 0.2139

Table 6.5: Performance of NeLP in Predicting Negative Links in Slashdot.

negative link prediction. Compared to random, NeLP obtains much better perfor-

mance, which suggests that NeLP can be generalized to negative link prediction.

Because the classifier learned by NeLP is based on the same set of features ex-

tracted from pervasively available sources for most social media sites, it is possible to

generalize the classifier learned in one site to other sites and we further investigate

how well the learned classifier generalizes across social media sites. In particular, we

evaluate the performance of the classifier on Epinions (or Slashdot), which is learned

from Slashdot (or Epinions). The results are shown in Figure 6.4. Note that in the

figure x → y denotes training on x and evaluating on y. These results show that

there is very good generalization of the classifier learned by NeLP although there

is remarkably little decrease in performance regardless of which dataset is used for

training.

6.3 Negative Link Applications

In Chapter 5, we propose a node classification framework NCSSN to infer labels of

unlabeled nodes by leveraging labeled nodes and trust/distrust networks, and a rec-
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Figure 6.4: The Negative Link Prediction Performance across Epinions and Slash-

dot.

ommendation framework RecSSN, which exploits trust/distrust networks to improve

recommendation performance. In this section, we investigate the generalization of

NCSSN and RecSSN from trust/distrust networks to signed social networks (or net-

works with positive and negative links).

6.3.1 NCSSN for Node Classification in Signed Social Networks

Similar to evaluation of NCSSN in Epinions, we assess NCSSN in Slashdot. Users

in Slashdot can join in some interest groups and these group identifiers are treated

as the class labels. Via cross validation, the parameters for NCSSN are set as {α =

1, β = 0.5, K = 500} and the experimental results are demonstrated in Table 6.6.

We observe that - (1) sICA3 and sICA4 outperform ICA and negative links can

improve node classification performance; (2) disGReg performs worse than GReg,

and negative links may not denote dissimilarities; and (3) performance comparison

between NCSSN and Random indicates that NCSSN can significantly improve node

classification performance with signed social networks. All these observations suggest

that NCSSN can be generalized to the problem of node classification in signed social
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Algorithms
Slashdot

5% 10% 15% 20%

ICA 19.99 20.86 21.25 21.34

sICA3 21.46 21.68 22.31 22.75

sICA4 22.24 22.30 22.85 23.13

GReg 19.57 20.91 21.23 22.03

disGReg 18.93 19.85 20.54 21.19

sGReg 20.56 22.56 22.77 22.90

NCSSN 23.54 24.66 25.20 25.62

Random 8.33 8.31 8.34 8.34

Table 6.6: Performance Comparison of Node Classification in Slashdot.

networks.

6.3.2 RecSSN for Recommendation with Signed Social Networks

In Slashdot, users are associated with certain tags and the recommendation task

is to recommend tags to users. In this scenario, the performance is often evaluated

via precision@N and recall@N [67], which are formally defined as follows:

precision@N =

∑
ui∈U |TopNi

⋂
Ii|∑

ui∈U |TopNi|
(6.1)

recall@N =

∑
ui∈U |TopNi

⋂
Ii|∑

ui∈U |Ii|
, (6.2)

where TopNi is the set of N items recommended to user ui that ui has not been

associated in the training set, and Ii is the set of items that have been associated

with ui in the testing set. A larger precision@N or recall@N value means better

performance. The values of precision@N and recall@N are usually small in the case

of sparse datasets. For example, the precision@5 is less than 0.05 over a dataset with
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Metrics
Memory-based Methods Model-based Methods

UCF pUCF pnUCF MF SocialMF SoReg LOCABAL disSoReg RecSSN

P@5 0.0343 0.0372 0.0381 0.0354 0.0387 0.0386 0.0394 0.0379 0.0419

R@5 0.0438 0.0479 0.0485 0.0453 0.0492 0.0488 0.0498 0.0473 0.0511

P@10 0.0332 0.0358 0.0364 0.0338 0.0365 0.0368 0.0375 0.0359 0.0388

R@10 0.0413 0.0454 0.0463 0.0427 0.0463 0.0467 0.0479 0.0457 0.0497

Table 6.7: Comparison of Different Recommender Systems in Slashdot.

8.02e− 3 density [17, 18]. In this work, we set N = 5 and N = 10.

The recommendation performance is illustrated in Figure 6.7. Note that we set

β = 0.3 via cross validation. It is observed that (1) disSoReg obtains worse per-

formance than SoReg and we may not consider negative links as dissimilarities in

recommendation; and (2) RecSSN can significantly improve recommendation per-

formance by exploiting signed social networks compared to baseline methods. These

observations suggest that the recommendation framework RecSSN can be generalized

from trust/distrust networks to signed social networks.

6.4 Conclusion

Some properties and algorithms of trust can be generalized to positive links, which

motivates us to study whether we can generalize findings of distrust to negative links.

The aforementioned investigations suggest that (1) similar properties are observed

for negative links as distrust; (2) distrust prediction frameworks dTrust and NeLP

can accurately predict negative links; and (3) application frameworks NCSSN and

RecSSN can be generalized from trust/distrust networks to signed social networks

(or networks with positive and negative links).
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Chapter 7

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our research results and their broader impacts, and

discuss promising research directions.

7.1 Summary

In this dissertation, we propose four innovative research tasks - (1) understanding

distrust; (2) predicting distrust; (3) applying distrust and (4) generalizing findings of

distrust.

For understanding distrust, we investigate properties of distrust and find that we

can not extend properties of trust to distrust and distrust presents distinct properties.

The computational task of predicting distrust from only trust suggests that we can

not predict distrust from only trust hence distrust is not the negation of trust in

social media; while the computational task of predicting trust with information from

distrust indicates that distrust can significantly improve trust prediction performance

hence distrust has added value over trust.

For predicting distrust, we formally define the problem and make a number of

important findings about distrust - (1) our “foes” are close to us in the trust network;

(2) most triads satisfy balance and status theories; (3) there is a strong correlation

between distrust and negative interactions; and (4) negative interactions between

users increase the propensity of distrust. These findings serve as the groundwork

of an unsupervised framework dTrust and a supervised framework NeLP, which can

predict distrust accurately by leveraging trust and content-centric user interactions.

For applying distrust, we propose principled approaches to model distrust in two
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representative social media applications, i.e., node classification and recommendation.

The successful experiences of applying distrust in node classification and recommen-

dation suggest that (1) distrust may not denote dissimilarity although trust denotes

similarity; and (2) distrust has potentials in improving the performance of social

media applications.

For generalizing findings of distrust, we investigate the generalization of proper-

ties and algorithms of distrust to negative links. We find that (1) negative links show

similar properties as distrust; (2) distrust predication frameworks dTrust and NeLP

can accurately predict negative links; and (3) the node classification framework NC-

SSN and the recommendation framework RecSSN can be successfully expanded for

negative links.

This dissertation investigates original problems that entreat unconventional data

mining solutions. They are challenging because distrust is often not available in social

media and they are original because little is known about distrust and its role in social

media applications. Methodologies and techniques presented in this dissertation also

have broader impacts:

• Data availability is still a challenging problem for social scientists [98]. Social

media provides a virtual world for users online activities and makes it possible

for social scientists to observe social behavior and interaction data of hundreds

of millions of users. Our successful experiences of using social media data to

study the social concept distrust pave the way for new research endeavors to

enable the large-scale study of user behaviors in social media in computational

social science.

• The enabling of distrust in social media and the successfully applying distrust in

social media applications not only can have impact on industrial IT applications
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by improving services and user experience but also will open doors to new

opportunities of research and development involving social media.

• Social theories are useful to explain user behaviors in social media and play im-

portant roles in helping distrust computing in social media. The techniques

of modeling social theories may be directly applied to social media mining

tasks [102] and their success manifests a new research direction - mining so-

cial media data with social theories.

7.2 Future Work

Computing distrust in social media is still in its early stages of development and

an active area of exploration. Below we present some promising research directions:

• Distrust Prediction with Cross-media Data: Our previous study suggests

that the learned distrust predictor by NeLP have very good generalization across

social media sites, which suggests not only that some underlying general prin-

ciples guide the creation of distrust relations but also that cross-media data

has potentials in distrust prediction. The key issue of the problem of distrust

prediction with cross-media data is how to transfer knowledge or patterns from

distrust in the source site to the target site. This would be an application

scenario of transfer learning [62]; hence, we will investigate under what circum-

stances, transfer learning algorithms are applicable for distrust prediction with

cross-media data.

• Evaluation without Ground Truth: Evaluations in this dissertation are

based on datasets with ground truth. However distrust is usually unavailable in

social media and then the chief challenge of evaluation is related to the invisi-

bility of distrust - how to verify the correctness of predicted distrust when they
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are invisible. We can take a multipronged approach to evaluation challenges.

Traditionally, training and test datasets are used in evaluation; in such as a

case, we say there is ground truth. When these datasets are not available, user

studies are conducted (e.g., employing Amazon Mechanical Turks). We also

can try user studies as in a study [100] to verify the performance of predicting

strong and weak ties on Facebook. In essence, this method would rely on a

group of recruited subjects who donate their data but withhold distrust and

then compare predicted distrust against their withheld distrust.

• Putting Distrust into More Social Media Applications: We use node

classification and recommendation as examples to illustrate that distrust can

significantly improve their performance. The exciting progress not only proves

the importance of distrust but also suggests that we should put distrust into

more social media applications. The enabling and generalizing of distrust fur-

ther broaden its applications. We will investigate how to apply distrust in more

social media applications such as data clustering, active learning, information

propagation, sentiment analysis and feature selection [74].

96



REFERENCES

[1] M. A. Abbasi, J. Tang, and H. Liu. Scalable learning of users preferences using
networked data. In Proceedings of the 25th ACM conference on Hypertext and
social media, pages 4–12. ACM, 2014.

[2] M. A. Abbasi, J. Tang, and H. Liu. Trust-aware recommender systems. Machine
Learning book on computational trust,Chapman & Hall/CRC Press, 2014.

[3] B. Barber. The logic and limits of trust. Rutgers University Press New
Brunswick, NJ, 1983.

[4] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In Proceed-
ings of the Tenth International Workshop on Artificial Intelligence and Statis-
tics (AISTAT 2005), pages 17–24. Citeseer, 2005.

[5] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social
networks. In Social network data analytics, pages 115–148. Springer, 2011.

[6] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph
mincuts. In Proceedings of the Eighteenth International Conference on Machine
Learning, pages 19–26. Morgan Kaufmann Publishers Inc., 2001.

[7] G. Cai, J. Tang, and Y. Wen. Trust prediction with temporal dynamics. In
Web-Age Information Management, 2014.

[8] D. Cartwright and F. Harary. Structural balance: a generalization of heider’s
theory. Psychological Review, 63(5):277, 1956.

[9] Y. Chang, L. Tang, Y. Inagaki, and Y. Liu. What is tumblr: A statistical
overview and comparison. ACM SIGKDD Explorations Newsletter, 16(1):21–
29, 2014.

[10] K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, A. Tewari, and I. S. Dhillon. Pre-
diction and clustering in signed networks: A local to global perspective. arXiv
preprint arXiv:1302.5145, 2013.

[11] K.-Y. Chiang, N. Natarajan, A. Tewari, and I. S. Dhillon. Exploiting longer
cycles for link prediction in signed networks. In Proceedings of the 20th ACM in-
ternational conference on Information and knowledge management, pages 1157–
1162. ACM, 2011.

[12] J. Cho. The mechanism of trust and distrust formation and their relational
outcomes. Journal of retailing, 82(1):25–35, 2006.

[13] P. Cofta. Distrust. In ICEC. ACM, 2006.

[14] N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press, 2000.

97



[15] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Sitting closer
to friends than enemies, revisited. In Mathematical Foundations of Computer
Science 2012, pages 296–307. Springer, 2012.

[16] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-
factorizations for clustering. In Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 126–135.
ACM, 2006.

[17] H. Gao, J. Tang, X. Hu, and H. Liu. Exploring temporal effects for location
recommendation on location-based social networks. In Proceedings of the 7th
ACM conference on Recommender systems, pages 93–100. ACM, 2013.

[18] H. Gao, J. Tang, X. Hu, and H. Liu. Content-aware point of interest recom-
mendation on location-based social networks. In AAAI. AAAI, 2015.

[19] L. Getoor and C. P. Diehl. Link mining: a survey. ACM SIGKDD Explorations
Newsletter, 7(2):3–12, 2005.

[20] J. Golbeck. Computing and applying trust in web-based social networks. Ph.D.
dissertation, 2005.

[21] J. Golbeck. Generating predictive movie recommendations from trust in social
networks. Trust Management, pages 93–104, 2006.

[22] J. Golbeck. Computing with social trust. Springer Publishing Company, Incor-
porated, 2008.

[23] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In Proceedings of the 13th international conference on World Wide
Web, pages 403–412. ACM, 2004.

[24] R. Hardin. Distrust: Manifestations and management. Russell Sage Foundation,
2004.

[25] F. Heider. Attitudes and cognitive organization. The Journal of psychology,
21(1):107–112, 1946.

[26] X. Hu, L. Tang, J. Tang, and H. Liu. Exploiting social relations for senti-
ment analysis in microblogging. In Proceedings of the sixth ACM international
conference on Web search and data mining, pages 537–546. ACM, 2013.

[27] M. Jamali and M. Ester. Trustwalker: a random walk model for combining
trust-based and item-based recommendation. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 397–406. ACM, 2009.

[28] M. Jiang, P. Cui, R. Liu, Q. Yang, F. Wang, W. Zhu, and S. Yang. Social
contextual recommendation. In Proceedings of the 22th ACM international
conference on Information and knowledge management. ACM, 2012.

98



[29] A. Josang, E. Gray, and M. Kinateder. Analysing topologies of transitive
trust. In Proc. of the 1st workshop on Formal Aspects in Security and Trust
(FAST2003), 2003.

[30] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algo-
rithm for reputation management in p2p networks. In Proceedings of the 12th
international conference on World Wide Web, pages 640–651. ACM, 2003.

[31] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 137–146.
ACM, 2003.

[32] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM (JACM), 46(5):604–632, 1999.

[33] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceeding of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[34] Y. Koren. Collaborative filtering with temporal dynamics. Communications of
the ACM, 53(4):89–97, 2010.

[35] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[36] R. M. Kramer. Trust and distrust in organizations: Emerging perspectives,
enduring questions. Annual review of psychology, 50(1):569–598, 1999.

[37] D. W. Larson and R. Hardin. Distrust: Prudent, if not always wise. Distrust,
pages 34–59, 2004.

[38] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and neg-
ative links in online social networks. In Proceedings of the 19th international
conference on World wide web, pages 641–650. ACM, 2010.

[39] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1361–1370. ACM, 2010.

[40] R. J. Lewicki, D. J. McAllister, and R. J. Bies. Trust and distrust: New
relationships and realities. Academy of management Review, 23(3):438–458,
1998.

[41] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social net-
works. Journal of the American society for information science and technology,
58(7):1019–1031, 2007.

99



[42] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and
methods in link prediction. In Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 243–252.
ACM, 2010.

[43] H. Liu, E. Lim, H. Lauw, M. Le, A. Sun, J. Srivastava, and Y. Kim. Predicting
trusts among users of online communities: an epinions case study. In Proceedings
of the 9th ACM Conference on Electronic Commerce, pages 310–319. ACM,
2008.

[44] Q. Lu and L. Getoor. Link-based classification. In ICML, volume 3, pages
496–503, 2003.

[45] H. Ma, M. R. Lyu, and I. King. Learning to recommend with trust and distrust
relationships. In Proceedings of the third ACM conference on Recommender
systems, pages 189–196. ACM, 2009.

[46] H. Ma, H. Yang, M. Lyu, and I. King. Sorec: social recommendation using
probabilistic matrix factorization. In Proceeding of the 17th ACM conference
on Information and knowledge management, pages 931–940. ACM, 2008.

[47] H. Ma, D. Zhou, C. Liu, M. Lyu, and I. King. Recommender systems with social
regularization. In Proceedings of the fourth ACM international conference on
Web search and data mining, pages 287–296. ACM, 2011.

[48] N. Ma, E. Lim, V. Nguyen, A. Sun, and H. Liu. Trust relationship prediction
using online product review data. In Proceeding of the 1st ACM international
workshop on Complex networks meet information & knowledge management,
pages 47–54. ACM, 2009.

[49] S. A. Macskassy and F. Provost. A simple relational classifier. Technical report,
DTIC Document, 2003.

[50] P. V. Marsden and N. E. Friedkin. Network studies of social influence. Socio-
logical Methods & Research, 22(1):127–151, 1993.

[51] S. Marsh and M. R. Dibben. Trust, untrust, distrust and mistrust–an explo-
ration of the dark (er) side. In Trust Management, pages 17–33. Springer, 2005.

[52] P. Massa. A survey of trust use and modeling in real online systems. Trust in
E-services: Technologies, Practices and Challenges, 2007.

[53] P. Massa and P. Avesani. Trust-aware recommender systems. In Proceedings of
the 2007 ACM conference on Recommender systems, pages 17–24. ACM, 2007.

[54] D. H. McKnight and N. L. Chervany. Trust and distrust definitions: One bite
at a time. In Trust in Cyber-societies, pages 27–54. Springer, 2001.

[55] D. H. McKnight and V. Choudhury. Distrust and trust in b2c e-commerce: Do
they differ? In ICEC, pages 482–491. ACM, 2006.

100



[56] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily
in social networks. Annual review of sociology, pages 415–444, 2001.

[57] A. K. Menon and C. Elkan. Link prediction via matrix factorization. In Machine
Learning and Knowledge Discovery in Databases, pages 437–452. Springer, 2011.

[58] J. Neville and D. Jensen. Iterative classification in relational data. In Proc.
AAAI-2000 Workshop on Learning Statistical Models from Relational Data,
pages 13–20, 2000.

[59] V. Nguyen, E. Lim, J. Jiang, and A. Sun. To trust or not to trust? predicting
online trusts using trust antecedent framework. In Ninth IEEE International
Conference on Data Mining, pages 896–901. IEEE, 2009.

[60] J. Nocedal and S. Wright. Numerical optimization. Springer verlag, 1999.

[61] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. 1999.

[62] S. J. Pan and Q. Yang. A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[63] J. B. Rotter. Interpersonal trust, trustworthiness, and gullibility. American
psychologist, 35(1):1, 1980.

[64] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. Advances in
neural information processing systems, 20:1257–1264, 2008.

[65] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93, 2008.

[66] D. Seno and B. Lukas. The equity effect of product endorsement by celebrities:
A conceptual framework from a co-branding perspective. European Journal of
Marketing, 2007.

[67] B. Sigurbjörnsson and R. Van Zwol. Flickr tag recommendation based on col-
lective knowledge. In Proceedings of the 17th international conference on World
Wide Web, pages 327–336. ACM, 2008.

[68] J. Singh and D. Sirdeshmukh. Agency and trust mechanisms in consumer sat-
isfaction and loyalty judgments. Journal of the Academy of Marketing Science,
28(1):150–167, 2000.

[69] M. Szell, R. Lambiotte, and S. Thurner. Multirelational organization of large-
scale social networks in an online world. Proceedings of the National Academy
of Sciences, 107(31):13636–13641, 2010.

[70] C. Tan, L. Lee, J. Tang, L. Jiang, M. Zhou, and P. Li. User-level sentiment anal-
ysis incorporating social networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1397–
1405. ACM, 2011.

101



[71] J. Tang, C. Aggarwal, and H. Liu. Node classification in signed social net-
works. In Submitted to ACM SIGKDD international conference on Knowledge
discovery and data mining, 2015.

[72] J. Tang, C. Aggarwal, and H. Liu. Recommendation with signed social net-
works. In Submitted to The 37th Annual ACM SIGIR conference, 2015.

[73] J. Tang, S. Chang, C. Aggarwal, and H. Liu. Negative link prediction in social
media. In ACM International Conference on Web Search and Data Mining,
2015.

[74] J. Tang, Y. Chang, C. Aggarwal, and H. Liu. A survey of mining signed networks
in social media. Submitted to ACM Computing Survey, 2015.

[75] J. Tang, H. Gao, A. Dassarma, Y. Bi, and H. Liu. Trust evolution: Modeling
and its applications. IEEE Transactions on Knowledge and Data Engineering,
2013.

[76] J. Tang, H. Gao, X. Hu, and H. Liu. Context-aware review helpfulness rating
prediction. In Proceedings of the 7th ACM conference on Recommender systems,
pages 1–8. ACM, 2013.

[77] J. Tang, H. Gao, X. Hu, and H. Liu. Exploiting homophily effect for trust
prediction. In Proceedings of the sixth ACM international conference on Web
search and data mining, pages 53–62. ACM, 2013.

[78] J. Tang, H. Gao, and H. Liu. mTrust: Discerning multi-faceted trust in a
connected world. In the 5th ACM International Conference on Web Search and
Data Mining, 2012.

[79] J. Tang, H. Gao, H. Liu, and A. Das Sarma. eTrust: Understanding trust
evolution in an online world. In Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 253–261.
ACM, 2012.

[80] J. Tang, X. Hu, Y. Chang, and H. Liu. Predictability of distrust with inter-
action data. In ACM International Conference on Information and Knowledge
Management, 2014.

[81] J. Tang, X. Hu, H. Gao, and H. Liu. Exploiting local and global social context
for recommendation. In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pages 2712–2718. AAAI Press, 2013.

[82] J. Tang, X. Hu, and H. Liu. Social recommendation: a review. Social Network
Analysis and Mining, 3(4):1113–1133, 2013.

[83] J. Tang, X. Hu, and H. Liu. Is distrust the negation of trust? the value of
distrust in social media. In ACM Hypertext conference, 2014.

[84] J. Tang and H. Liu. Feature selection with linked data in social media. In SDM,
pages 118–128. SIAM, 2012.

102



[85] J. Tang and H. Liu. Unsupervised feature selection for linked social media
data. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 904–912. ACM, 2012.

[86] J. Tang and H. Liu. Feature selection for social media data. ACM Transactions
on Knowledge Discovery from Data (TKDD), 8(4):19, 2014.

[87] J. Tang and H. Liu. Trust in social computing. In Proceedings of the companion
publication of the 23rd international conference on World wide web companion,
pages 207–208. International World Wide Web Conferences Steering Commit-
tee, 2014.

[88] J. Tang and H. Liu. An unsupervised feature selection framework for social
media data. IEEE Transactions on Knowledge and Data Engineering, 2014.

[89] J. Tang and H. Liu. Trust in Social Media. Morgan & Claypool Publishers,
2015.

[90] J. Tang, C. Nobata, A. Dong, Y. Chang, and H. Liu. Propagation-based sen-
timent analysis for microblogging data. In SIAM International Conference on
Data Mining, 2015.

[91] J. Tang, J. Tang, and H. Liu. Recommendation in social media: recent advances
and new frontiers. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1977–1977. ACM,
2014.

[92] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for
relational data. In Proceedings of the Eighteenth conference on Uncertainty in
artificial intelligence, pages 485–492. Morgan Kaufmann Publishers Inc., 2002.

[93] V. Traag, Y. Nesterov, and P. Van Dooren. Exponential ranking: Taking into
account negative links. Social Informatics, pages 192–202, 2010.

[94] P. Victor, C. Cornelis, M. De Cock, and P. P. Da Silva. Gradual trust and
distrust in recommender systems. Fuzzy Sets and Systems, 160(10):1367–1382,
2009.

[95] P. Victor, C. Cornelis, M. De Cock, and A. Teredesai. Trust-and distrust-
based recommendations for controversial reviews. In Web Science Conference
(WebSci’09: Society On-Line), number 161, 2009.

[96] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding. Community discovery us-
ing nonnegative matrix factorization. Data Mining and Knowledge Discovery,
22(3):493–521, 2011.

[97] Y. Wang, X. Wang, J. Tang, W. Zuo, and G. Cai. Modeling status theory in
trust prediction. In the AAAI Conference on Artificial Intelligence, 2015.

[98] D. J. Watts. Computational social science: Exciting progress and future direc-
tions. The Bridge on Frontiers of Engineering, 43(4):5–10, 2013.

103



[99] J. Weng, E. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive
influential twitterers. In Proceedings of the third ACM international conference
on Web search and data mining, pages 261–270. ACM, 2010.

[100] R. Xiang, J. Neville, and M. Rogati. Modeling relationship strength in online
social networks. In Proceedings of the 19th international conference on World
wide web, pages 981–990. ACM, 2010.

[101] S.-H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang. Friend or frenemy?:
predicting signed ties in social networks. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in information retrieval,
pages 555–564. ACM, 2012.

[102] R. Zafarani, M. A. Abbasi, and H. Liu. Social Media Mining: An Introduction.
Cambridge University Press, 2014.

[103] E. Zheleva and L. Getoor. To join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles. In Proceedings of the 18th
international conference on World wide web, pages 531–540. ACM, 2009.

[104] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with
local and global consistency. Advances in neural information processing systems,
16(16):321–328, 2004.

[105] D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled
data on a directed graph. In Proceedings of the 22nd international conference
on Machine learning, pages 1036–1043. ACM, 2005.

[106] X. Zhu, Z. Ghahramani, J. Lafferty, et al. Semi-supervised learning using gaus-
sian fields and harmonic functions. In ICML, volume 3, pages 912–919, 2003.

[107] C. Ziegler and J. Golbeck. Investigating interactions of trust and interest simi-
larity. Decision Support Systems, 43(2):460–475, 2007.

[108] C.-N. Ziegler and G. Lausen. Propagation models for trust and distrust in social
networks. Information Systems Frontiers, 7(4-5):337–358, 2005.

104



APPENDIX A

AN OPTIMIZATION ALGORITHM FOR DISTRUST
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Set A = F − λrr> and let L contain terms related to U and H in the objective
function J of Eq. (4.9), which can be rewritten as,

L = Tr(−2(W �W �A)UH>U> + (W �W �UHU>)

UH>U>) + α(‖U‖2F + ‖V‖2F ) (A.1)

the partial derivations of U and H with respective to J can be obtained from L are

1

2

∂J
∂U

=
1

2

∂L
∂U

=

− (W �W �A)UH> − (W �W �A)>UH + αU

+ (W �W �UHU>)UH> + (W �W �UHU>)>UH,

1

2

∂J
∂H

=
1

2

∂L
∂H

=

−U>(W �W �A)U + U>(W �W �UHU>)U + αH (A.2)

Set B = G −UHU> and let Lr contain terms related to r in J , which can be
rewritten as,

Lr = Tr(−2λ(W �W �B)rr>

+ λ2(W �W � rr>)rr>) + α‖r‖22 (A.3)

then the partial derivation of r with respect to J is

1

2

∂J
∂r

=
1

2

∂Lr
∂r

− λ(W �W �B)r− λ(W �W �B)>r + αr

+ λ2(W �W � rr>)r + λ2(W �W � rr>)>r (A.4)

With the partial derivations of U, H, and r, a optimal solution of the objective
function in Eq. (4.9) can be obtained through a gradient decent optimization method
as shown in Algorithm 3.

Next we briefly review Algorithm 3. In line 1, we construct the trust and pseudo
distrust relation matrix F and its weight matrix W from user-user trust relations T,
user-review authorship relations P, and user-review helpfulness ratings R. From line
3 to line 8, we update U, H and r until convergence where γu, γh and γr are learning
steps, which are chosen to satisfy Goldstein Conditions [60]. After learning the user
preference matrix U, H and r via Algorithm 3, the reconstructed trust and distrust
matrix is F̂ = UHU>+λrr>. Finally we predict pairs 〈ui, uj〉 whose sign(F̂ij) = −1

as a distrust relation with confidence |F̂ij|.
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Algorithm 3 The Proposed Framework dTrust.

Input : User-user trust relations T, user-review authorship relations P, user-review
helpfulness ratings R, {d, λ}.
Output : A ranking list of pairs of users.

1: Construct W and F from T, P, and R
2: Initialize U, H and r randomly
3: while Not convergent do
4: Calculate ∂J

∂U
, ∂J
∂H

and ∂J
∂r

5: Update U← U− γu ∂J∂U
6: Update H← H− γh ∂J∂H
7: Update r← r− γr ∂J∂r
8: end while
9: Set F̂ = UHU> + λrr>

10: Set D = {〈ui, uj〉|sign(F̂ij) = −1}
11: Ranking pairs of users in D (e.g.,〈ui, uj〉) according to |F̂| (e.g., |F̂ij—) in a

descending order
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APPENDIX B

AN OPTIMIZATION ALGORITHM FOR THE SUPERVISED FRAMEWORK
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We solve the optimization problem in Eq. (4.14) based on the dual form [4]. The
classical representer theorem states that the solution to this minimization problem of
Eq.( 4.14) exists in HK and can be written as follows:

w∗ =
∑
i

αiK(xi,x) (B.1)

Eq.( 4.14) can be rewritten as follows:

min
α,b,ε

1

2
α>Kα + Cp

∑
ui∈PS

εi + Cn
∑
uj∈NS

cjεj +
Cb
2
α>KLKα

s.t. yi(
∑
k

αkK(xk,xi) + b) ≥ 1− εi, ui ∈ PS

yj(
∑
k

αkK(xk,xj) + b) ≥ 1− εj, uj ∈ NS

εi ≥ 0, εj ≥ 0 (B.2)

where K is the Gram matrix over all samples.
We define si for xi as follows:

si =

{
Cp for xi ∈ PS,
Cnci for xi ∈ NS. (B.3)

After the introduction of two sets of multipliers β and γ, the Lagrangian function
of Eq.( B.2) is as follows:

L(w, b, ε, α, γ) =
1

2
α>(K + CbKLK)α +

l∑
i=1

siεi

−
l∑

i=1

βi[yi(
∑
k

αkK(xk,xi) + b)− 1 + εi]−
l∑

i=1

γiεi (B.4)

where β and γ are Lagrange multipliers.
To obtain the dual representation, we set

∂L

∂b
= 0⇒

l∑
i=1

βiyi = 0

∂L

∂εi
= 0⇒ si − βi − γi = 0⇒ 0 ≤ βi ≤ si (B.5)

With Eq. (B.5), we can rewrite the Lagrangian as a function of only α and β as
follows:

L(α, β) =
1

2
α>(K + CbKLK)α− α>KJ>Yβ +

l∑
i=1

βi (B.6)
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in Eq. (B.6), J = [I 0] where I is an l× l identity matrix and 0 is a l× µ rectangular
matrix with all zeros, and Y is a l× l diagonal matrix composed by labels of samples
in PS and NS.

By setting ∂L
∂α

= 0, we obtain

α = (I + CbKL)−1J>Yβ (B.7)

After substituting back in the Lagrangian function, we obtain the dual problem
as a quadratic programming problem:

max
β

l∑
i=1

βi −
1

2
β>Qβ

s.t.

l∑
i=1

βiyi = 0

0 ≤ βi ≤ si (B.8)

where Q is defined as follows:

Q = YJK(I + CbKL)−1J>Y (B.9)
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Let L be the Lagrangian function as:

L = f(Ht,Hd,U,W)− Tr((ΛU)>U)

− Tr((ΛHt

)>Ht)− Tr((ΛHd

)>Hd) (C.1)

where f(Ht,Hd,U,W) is the objective function of Eq. (5.11). The notations ΛU ,

ΛHt
and ΛHd

are the Lagrangian multipliers for non-negativity of U, Ht and Hd.
To compute U, we fix Ht, Hd and W. The derivative of L with respect to U is

as follows:

∂L
∂U

= E−B− ΛU (C.2)

where the matrices B and E are defined as follows:

B = (T)>UHt + TU(Ht)> + α
(
(CYW>)+

+ (CUWW>)−
)

+ β((D)>UHd + DU(Hd)>)

+ β
( ∑
〈i,j,k〉∈S

fijk(M
ijkU + U(Mijk)>)

)−
E = U(Ht)>U>UHt + UHtU>U(Ht)> + α

(
(CUWW>)+

+ (CYW>)−
)

+ β(U(Hd)>U>UHd + UHdU
>U(Hd))

+ β
( ∑
〈i,j,k〉∈S

fijk(M
ijkU + U(Mijk)>)

)+
+ λU (C.3)

where for any matrix X, (X)+ and (X)− denote the positive and negative parts of X,
respectively.

Setting ∂L
∂U

= 0 and using the KKT complementary condition UijΛ
U
ij = 0, we can

derive the update rule for U as follows:

Uij ← Uij

√
Bij

Eij

(C.4)

To compute Ht, we fix U, Hd and W. The derivative of L with respect to Ht is
as follows:

∂L
∂Ht

= U>UHtU>U + λHt −U>TU− ΛHt

(C.5)

Setting ∂L
∂Ht = 0 and using the KKT complementary condition Ht

ijΛ
Ht

ij = 0, we
can get the update rule for Ht as follows:

Ht
ij ← Ht

ij

√
[U>TU]ij

[U>UHtU>U + λHt]ij
(C.6)
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Similarly, we can obtain the update rule for Hd as follows:

Hd
ij ← Hd

ij

√
[U>DU]− ij

[U>UHdU>U + λHd]ij
(C.7)

Setting ∂L
∂W

= 0, we obtain the following:

W = (U>CU + λI)−1U>CY (C.8)

With update rules for U, Ht, Hd and W, the detailed algorithm for NCSNN is
shown in Algorithm 4. Next, we give a brief description of Algorithm 4. In line 1,
we construct the set S and then we initialize U, Ht, Hd and W randomly. From line
3 to line 10, we update U, Ht, Hd and W according to update rules in Eqs. (C.4),
(C.6), (C.7) and (C.8).

Algorithm 4 The Node Classification Framework in Trust/Distrust Networks.

Input: T, D, Y and {α, β, λ}
Output: A linear classifier W and the user latent factor matrix U

1: Construct S as S = {〈i, j, k〉|Tij = 1 ∧Dik = 1}
2: Initialize U, Ht, Hd and W randomly
3: while Not convergent do
4: for 〈i, j, k〉 ∈ S do
5: Construct fijk and Mijk

6: end for
7: Construct B and E as Eq. (C.3)
8: for i from 1 to N do
9: for j from 1 to K do

10: Uij ← Uij

√
Bij

Eij

11: end for
12: end for
13: for i from 1 to K do
14: for j from 1 to K do

15: Ht
ij ← Ht

ij

√
[U>TU]ij

[U>UHtU>U+λHt]ij

16: Hd
ij ← Hd

ij

√
[U>DU]−ij

[U>UHdU>U+λHd]ij

17: end for
18: end for
19: W = (U>CU + λI)−1U>CY
20: end while
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We define Mk
i at the k-th iteration for ui as follows:

Mk
i =

{
1 ‖Ui − Ūp

i ‖22 − ‖Ui − Ūn
i ‖22 > 0

0 otherwise
. (D.1)

Then, we use J to denote the objective function of Eq. (5.21) in the k-th iteration
as follows:

J =
N∑
i=1

m∑
j=1

g(Wij,wi)‖(Rij −UiV
>
j )‖22

+ α(
N∑
i=1

‖U‖22 +
m∑
j=1

‖Vj‖22) + β

N∑
i=1

Mk
i (

‖Ui −
∑

uj∈Pi
SijUj∑

uj∈Pi
Sij
‖22 − ‖Ui −

∑
uj∈Ni

SijUj∑
uj∈Ni

Sij
‖22) (D.2)

The derivatives of J with respect to Ui and Vj are as follows:

∂J
∂Ui

= −2
∑
j

g(Wij,wi)(Rij −UiV
>
j )Vj + 2αUi

+ 2βMk
i (Ui − Ūp

i )− 2βMk
i (Ui − Ūn

i )

− 2β
∑
uj∈Pi

Mk
j (Uj − Ūp

j)
1∑

uj∈Pi
Sji

+ 2β
∑
uj∈Ni

Mk
j (Uj − Ūn

j )
1∑

uj∈Ni
Sji

∂J
∂Vj

= −2
∑
i

g(Wij,wi)(Rij −UiV
>
j )Ui + 2αVj (D.3)

The detailed algorithm is shown in Algorithm 5. In Algorithm 5, γu and γv are
learning steps, which are chosen to satisfy Goldstein Conditions [60]. Next, we briefly
discuss the algorithm. In line 1, we initialize latent factors of users U and items V
randomly. In each iteration, we calculate Ūp

i , Ūn
i and Mk

i for ui from line 3 to line 6.
From line 7 to line 9, we update U and V using aforementioned update rules.
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Algorithm 5 The Proposed Recommendation Framework RecSSN with Signed Social
Networks.
Input: The rating information R, trust links T, negative links D, the number of
latent factors K and β
Output: The user preference matrix U and the item characteristic matrix V

1: Initialize U and V randomly and set k = 1
2: while Not convergent do
3: for i = 1 : N do
4: Calculate Ūp

i and Ūn
i according to Eq. (5.18)

5: Calculate Mk
i according to Eq. (D.1)

6: end for
7: Calculate ∂J

∂U
and ∂J

∂V

8: Update U← U− γu ∂J∂U
9: Update V← V − γv ∂J∂V
10: k = k + 1
11: end while
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