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ABSTRACT

This thesis considers two problems in the control of robotic swarms. Firstly, it addresses a

trajectory planning and task allocation problem for a swarm of resource-constrained robots

that cannot localize or communicate with each other and that exhibit stochasticity in their

motion and task switching policies. We model the population dynamics of the robotic

swarm as a set of advection-diffusion- reaction (ADR) partial differential equations (PDEs).

Specifically, we consider a linear parabolic PDE model that is bilinear in the robots’ veloc-

ity and task-switching rates. These parameters constitute a set of time-dependent control

variables that can be optimized and transmitted to the robots prior to their deployment or

broadcasted in real time. The planning and allocation problem can then be formulated as

a PDE-constrained optimization problem, which we solve using techniques from optimal

control. Simulations of a commercial pollination scenario validate the ability of our control

approach to drive a robotic swarm to achieve predefined spatial distributions of activity over

a closed domain, which may contain obstacles. Secondly, we consider a mapping problem

wherein a robotic swarm is deployed over a closed domain and it is necessary to reconstruct

the unknown spatial distribution of a feature of interest. The ADR-based primitives result in

a coefficient identification problem for the corresponding system of PDEs. To deal with the

inherent ill-posedness of the problem, we frame it as an optimization problem. We validate

our approach through simulations and show that reconstruction of the spatially-dependent

coefficient can be achieved with considerable accuracy using temporal information alone.
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Chapter 1

INTRODUCTION

In recent years there has been considerable interest in the use of robotic systems to

augment or supersede human capabilities in performing complex tasks. This has been

primarily due to the explosion in the number of opportunities resulting from advances in

computing, communication, electronics, materials and mechanics. One class of interesting

problems is that of multi-robot systems. Muti-robot systems are useful in scenarios where

it might not be possible to perform the tasks required by a single robot alone. This might

be either due to the number of tasks and the concurrent time constraints involved, or to

exploit the redundancy offered by multiple robots. This redundancy might be especially

motivated by the economical, actuation and environmental constraints in various real world

applications that limit the complexity of a single robot. Typical examples of applications

include mapping, surveillance, reconnaissance, and collective motion.

While a considerable amount of work has been done on trajectory planning, task al-

location and mapping problems for the single robot case, the spatially distributed nature

of multi-robot systems introduces several additional complexities. One of the main prob-

lems in extending work on single robots to muliple ones is that of scalability of the design

methodologies. Scaling can be an issue in multiple aspects of system operation, such as

computation, control and communication. Extension of single robot methods often results

in explosion of the joint state space and has an adverse effect on computational tractabil-

ity. This is more of a problem in the swarm paradigm of multi-robot systems, where the

number of agents can go from hundreds to thousands and even in the trillions in the case of

bio-medical applications. Managing this problem either involves some modeling assump-

tions or imposing certain physical or communication constraints on the system, so that the
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resulting problem becomes tractable and the system behavior predictable. Managing the

trade off between imposing such constraints and reduction in the range of target behaviors

is often a challenge. Many times these constraints might even be naturally imposed on the

system and physically unavoidable. This is especially the case in nano-robotic applications

where agents work under severe actuation and sensory limitations.

The swarm paradigm considered in this work can be partly motivated by several natural

phenomena. It is often the case that simple animal behaviors, when performed in paral-

lel by large populations, show quite complex global behaviors. Where as it has been the

goal mathematical biology to predict these natural phenomena and understand the basic

primitives that agents in these systems follow, in robotics the application is subtly different

in that, it is usually the goal to understand the suitable primitives that should be assigned

to the each of the agents so that the resulting behavior can be abstracted suitably. This

should result in computationally tractable models that are amenable to analysis and can aid

in design decisions so that desired target behaviors can be guaranteed.

1.1 Literature Review

This section mentions some relevant work in the field of swarm robotics using advec-

tion diffusion models and optimal control of bilinear and multiplicative control systems of

partial differential equations.

Many instances of PDE based modeling can be found in mathematical biology liter-

ature. Flocking [Ha and Tadmor (2008)], schooling [Okubo (1986)] and other such herd

behavior are modeled often using PDEs [Murray (2002)]. This is usually some type of

nonlinear diffusion equation, wherein each agent changes its state based on the local ob-

servations and interaction. Another application in modeling of biological systems is that of

chemotaxis [Stevens and Othmer (1997)] and foraging behavior in swarms. Similar models

can also be found in modeling spatio-temporal evolution of bee colonies and their pollina-
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tion behavior [Sánchez-Garduño and Breña-Medina (2011)]. The underlying microscopic

interactions of the agents usually have a corresponding stochastic model. This is similar to

modeling of Brownian agents where the evolution probability densities of these agents can

be described using Fokker-Planck equations [Gardiner (1985)].

On these same principles chemical reation networks have been used to model robots

that show probabilistic decision making [Matthey et al. (2009)]. Fokker-Planck equations

have been used to model spatial inhomogeniety of swarms that show similar probabilistic

decision and motion primitives, however without the well mixed assumption that is typ-

ical of CRN models. [Hamann and Worn (2007)] considers modeling such swarms with

local interaction between robots and hence predictability of macroscopic description from

such local interactions. Similar work has been done in [Galstyan et al. (2005)] for a nano-

robotics application where robots in a biological medium respond to changes in density of

a chemical. [Prorok et al. (2011)] studied the use of Fokker- Planck equations for analysis

of spatial effects of robots with stochastic state transitions. The issue of optimization of

robot behavior has received some attention in this framework. In this direction [Miluti-

novic and Lima (2006)] has done some work on optimizing state transition of robots with

drift to maximize their distribution over some desired region. They extended their work

to optimizing stochastic robot behavior modeled by a nonlinear Fokker-Planck equation

[Palmer and Milutinovic (2011)]. Such work can be compared to that of [Foderaro (2013)],

that also considered spatially dependent velocity fields for a formation control problem.

Control systems that have a similar structure can also be found in many other appli-

cations in literature. These typically fall under the banner of bilinear [Elliott (2009)] or

multiplicative control systems (MCS) [Khapalov (2010)]. The previously mentioned sys-

tems fall under this class of control systems. MCS are systems where the controls multiply

with the states through a (linear or non-linear) operator acting on the states. A bilinear con-

trol system corresponds to a MCS that is linear in the initial conditions for fixed controls.
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[Finotti et al. (2012)] and [Lenhart (1995)] use optimal control to study the effect of

resource distribution over an environment on the movement of a population. [Belmiloudi

(2008)] consider a min-max problem for diffusion type models, where the reactions are

the main controls. They show the effectiveness of their method on a nuclear reactor model.

Other works on optimal control of bilinear PDEs include [Boulerhcha et al. (2012)] [Tagiev

(2009)] [Casas and Wachsmuth (2014)]. Aside from optimal control, some studies have

also been conducted on the controllability properties of such systems [Ball et al. (1982)]

[Khapalov (2010)] [Beauchard and Coron (2006)]. This has also been applied in a robotic

setting where controllability properties are considered under a uniform control input for a

swarm of robots with inhomogenous turning rates [Becker et al. (2012)]. [Kachroo (2009)]

considers the control and stabilization of vehicle traffic systems that are modeled by ad-

vection type systems. The optimal control methodology used in this work can be found in

[Tröltzsch (2010)] [Pinnau and Ulbrich (2008)] [Belmiloudi (2008)].

There has been very little work on the problem of simultaneous trajectory planning and

task allocation. An example is the work presented in [Turpin et al. (2014)]. The problem

considered in this work involves a number of point agents with first order dynamics whose

trajectories need to be computed and tasks are needed to be assigned to robots without any

preference, i.e. there is no preference as to which robot is assigned which task.

1.2 Contribution

This thesis presents a control theoretic approach to the problem of optimization of com-

bined path planning and allocation of swarm of robots modeled using advection-diffusion-

reaction (ADR) partial differential equations (PDEs) equations. More specifically, it con-

siders the optimal control approach. Optimal control is the generalization of optimization

in finite dimensional spaces to minimization (or maximization) of objective functionals

that are constrained by system of ordinary or partial differential equation (or other evolu-
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tion systems). Optimal control results in a computationally efficient method to compute the

controls as compared to black box approaches to optimization. Black box approaches such

as stochastic optimization, genetic algorithms and particle swarm optimization methods

are computationally too inefficient for the purpose of controller synthesis due to number

of evaluations of objective functional required in the optimization cycles. Optimal control

methods in contrast take advantage of the structure of the problem by characterizing the

gradient using the adjoint equation. This reduces the complexity of computing the gradient

of the objective functional. We frame the planning and allocation problem as an optimal

control problem. Subsequently we present some theoretical analysis characterizing the op-

timal controls. This is in turn is used to realize an algorithm to numerically approximate the

optimal controls. A part of this section subsection 4.1.1 subsection 4.1.3 subsection 4.1.4

has been submitted to a peer-reviewed conference [Elamvazhuthi and Berman (2015)].

Additionally, we consider the problem of mapping regions of interest in an unknown

environment using encounter-based observations from robotic swarms. We show that even

with noise-induced agent behaviors of the agents, a rich map of the environment can be con-

structed with temporal information extracted from the robots. We pose the resulting system

as optimization problem, which is solved numerically using a gradient descent method as

for the optimal control problem.

1.3 Problem Statement

The first scenario under consideration involves swarm of robotic bees that must pol-

linate several rows of crops. The model of the robots are motivated by recent work on

flapping wing micro aerial vehicles such as the Robobee [Ma et al. (2013)]. As in the work

of [Berman et al. (2011b)], we aim to design robot control policies that produce a uniform

density of flower visits along crop rows, and that can achieve any ratio between numbers of

flower visits at plants in different rows. In contrast to the work in [Berman et al. (2011b)],
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we consider environments that are bounded rather than unbounded and that may contain

obstacles. Additionally, the optimization methodolgy is based on optimal control theory

rather than stochastic optimization methods.

The second scenario involves a smaller swarm of agents that are deployed in order

to map an environment of interest. We regularize the the inverse problem using the well

known Tikhonov regularization. The optimization approach helps construct a simple yet

efficient convergent algorithm that is able to reconstruct the map of a feature of interest in

the environment, which could be the distribution of crops in the pollination scenario.

1.3.1 Robot Capabilities

The robots would have sufficient power to undertake brief flights that originate from

a location called the hive, and they would return to the hive to recharge. A computer at

the hive can serve as the supervisory agent in our architecture. The computer calculates

the parameters of the robot motion and task transitions for a specified pollination objective

and transmits these parameters to the robots when they are docked at the hive for charging

and uploading data. During a flight, the robots are assumed to be capable of recognizing

a flower that is very close by, distinguishing between different types of flowers, flying to

a flower, and hovering briefly while obtaining pollen from the flower using an appropriate

appendage. Each robot is equipped with a compass and thus can fly with a specified head-

ing. We also assume that robots can detect obstacles within their local sensing range and

adjust their flight path to avoid collision. Notably, the robots are not assumed to have local-

ization capabilities, since it is infeasible to use GPS sensors on highly power-constrained

platforms.
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1.3.2 Robot Controller

Each member of a swarm of N robots performs the following actions during a flight.

Upon deploying from the hive, each robot flies with a time-dependent velocity v(t) ∈ R2.

Concurrently with this deterministic motion, the robot exhibits random movement that

arises from inherent noise due to sensor and actuator errors. We assume that the flow-

ers are distributed densely enough such that a robot can always detect at least one flower in

its sensing range when it flies over plants. While a robot is flying over a row with flowers

of type j, it decides with a time-dependent probability per unit time, k j(t), to pause at a

flower in its sensing range and hover for pollination. The robot resumes flying with a fixed

probability per unit time k f , which determines the time taken to pollinate. The optimal

control approach described in section 4.1 computes the parameters v(t) and k j(t) prior to

the robots’ flight.

7



Chapter 2

MODELS OF THE COVERAGE SCENARIOS

In this chapter we describe the microscopic and macroscopic models for the swarm of

agents. The microscopic model is a stochastic agent based model based on theory of

stochastic differential equations [Gardiner (1985)]. It accounts for stochasticity in the

agents’ state evolution and is used to validate the control and estimation approaches de-

scribed in the sequel. The macroscopic models are deterministic models defined using a

systems of PDEs. The macroscopic models define the mean population dynamics of the

microscopic models.

2.1 Planning and Allocation

2.1.1 Microscopic Model

The microscopic model is used to simulate the individual robots’ motion and proba-

bilistic decisions that are produced by the robot controller in subsection 1.3.2. We model a

robot’s changes in state as a Chemical Reaction Network (CRN) in which the species are

F , a flying robot; H j, a robot that is hovering over a flower of type j; and Vj, an instance of

a robot visit to a flower of type j. The reactions are:

F
k j(t)−−→ H j +Vj (2.1)

H j
k f−→ F (2.2)

A robot i has position xi(t) = [xi(t) yi(t)]T at time t. The deterministic motion of each

flying robot is governed by the time-dependent velocity field v(t) = [vx(t) vy(t)]T . The

robot’s random movement is modeled as a Brownian motion that drives diffusion with an
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associated diffusion coefficient D, which we assume that we can characterize. We model

the displacement of the robot over each timestep ∆t using the standard-form Langevin

equation [Gillespie (2000)],

xi(t +∆t)−xi(t) = v(t)∆t +(2D∆t)1/2 Z(t), (2.3)

where Z ∈ R2 is a vector of independent, normally distributed random variables with zero

mean and unit variance. When a robot encounters an obstacle or a wall, it avoids a collision

by flying according to a specular reflection from the boundary.

2.1.2 Macroscopic Model

We can describe the time evolution of the expected spatial distribution of the swarm

with a macroscopic model consisting of a set of advection-diffusion-reaction (ADR) partial

differential equations [Berman et al. (2011a)]. The states of this model are the population

density fields y1(x, t) of flying robots, y2(x, t) of hovering robots, and y3(x, t) of flower visit

events. The velocity field v(t) and transition rates k j(t) are time-dependent control param-

eters. The model is defined over a bounded domain, Ω ⊂ R2, with Lipschitz continuous

boundary ∂Ω. We define Q = Ω× (0,T ) and Σ = ∂Ω× (0,T ) for some fixed final time

T . The vector n ∈ R2 is the outward normal to ∂Ω. There are n f types of flowers, and

the function Hi : Ω→ {0,1} is a spatially-dependent coefficient that models the presence

(Hi(x) = 1) or absence (Hi(x) = 0) of flowers of type i at point x in the domain.

Given these definitions, the macroscopic model of the pollination scenario is defined

as:

∂y1

∂ t
= ∇ · (D∇y1−v(t)y1)−

n f

∑
i=1

kiHiy1 + k f y2 in Q,

∂y2

∂ t
=

n f

∑
i=1

kiHiy1− k f y2 in Q,

∂y3

∂ t
=

n f

∑
i=1

kiHiy1 in Q, (2.4)
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with the no-flux boundary conditions

~n · (D∇y1−~v(t)y1) = 0 on Σ. (2.5)

Initially, the flying robots are distributed according to a Gaussian density centered at a

point x0, and there are no hovering robots or visits in the domain.

2.2 Mapping

2.2.1 Microscopic Model

The microscopic model for the mapping problem involves only one reaction. The re-

action network is a modification of the one in Equation 2.1 and Equation 2.2. The main

difference is that robots do not transition to hover state. When a flying robot F passes over

a feature of interest there is probability per unit time k0 that it registers an observation, O.

The chemical reactions of this system is given by

F ko−→ F +O (2.6)

The robots will obey the motion model as in Equation 2.3. However, the velocity field,~v is

predefined so that the a trajectory is assigned to the agents, rather than optimized as in the

previous case. The trajectory is chosen such that sufficient coverage of the domain can be

ensured.

2.2.2 Macroscopic Model

A number of robots are assigned a predefined trajectory based on a time dependent

velocity field. In the previous scenario knowledge of the spatial dependent coefficient,

H(x), is assumed. However, in the mapping scenario the spatial distribution of the feature

of interest is unknown. It is required that agents register their observations as they pass
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over these features over a domain. The resulting macroscopic model is of the form,

∂y1

∂ t
= ∇ · (D∇y1−v(t)y1) in Q,

∂y2

∂ t
= koHy1, (2.7)

with the no-flux boundary conditions

~n · (D∇y1−~v(t)y1) = 0 on Σ. (2.8)

It is required that the spatial coefficient, H, be reconstructed from information of the total

number of observations. More specifically it is desired that the H is estimated using the

total number of positive observations of the feature of interest at each time instant, i.e., no

spatial information about the observation locations is required from the agents.
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Chapter 3

MATHEMATICAL BACKGROUND

This chapter defines some mathematical terminologies that will be used in subsequent

chapters. The information presented in this chapter has been adapted from [Tröltzsch

(2010)] [Evans (1998)] [Pinnau and Ulbrich (2008)] and [Kurdila and Zabarankin (2006)].

3.1 Functional Analysis

Definition 3.1.1. A normed space {X ,‖·‖} is said to be complete if every cauchy sequence

in X converges, i.e, has a limit in X. A complete normed space is called a Banach space.

Definition 3.1.2. A Hilbert Space H is a Banach space endowed with an inner product (,)

which generates the norm, i.e, ‖u‖= (u,u)1/2.

Let X and Y be real Banach Spaces.

Definition 3.1.3. A mapping A : X → Y is linear mapping or a linear operator if

A(λu+µu) = λAu+µAu (3.1)

for all u,y ∈ X and λ ,µ ∈ R.

Definition 3.1.4. A linear operator A : X → Y is bounded if

‖A‖ := sup{‖A‖Y : ‖u‖X ≤ 1}< ∞. (3.2)

Definition 3.1.5. L (X ,Y ) denotes the normed space of all linear continuous mappings

form X to Y , endowed with the norm ‖ · ‖. If X = Y , then we write L (X ,Y ) := L (X).

12



Definition 3.1.6. The space X∗ := L (X ,R) of linear functionals on X is called dual space

of X, with the associated norm

‖ f‖X∗ = sup
‖u‖X=1

| f (u)|. (3.3)

We use the notation

〈 f ,u〉X∗,X = f (u) (3.4)

〈·, ·〉X∗,X is called the duality pairing of X∗ and X.

Theorem 3.1.7. (Reisz Representation theorem). Let {H,(·, ·)H} be a real Hilbert space.

Then for any linear functional F ∈ H∗ there exists a uniquely determined f ∈ H such that

‖F‖H∗ = ‖ f‖H and

F(v) = ( f ,v)H ∀v ∈ H. (3.5)

Definition 3.1.8. Let 1 ≤ p < ∞ and suppose Ω is a Lesbesgue measurable subset of Rn.

We define

Lp(Ω) =

{
f : Ω→ R,‖ f‖Lp(Ω) =

(∫
Ω

| f |p
)1/p

< ∞

}
(3.6)

while for p = ∞, we define

L∞(Ω) =

{
f : Ω→ R,‖ f‖L∞(Ω) = ess sup

x∈Ω

| f (x)|< ∞

}
. (3.7)

Similarly,

Lp
loc(Ω) =

{
f : Ω→ R, f ∈ Lp(K) ∀K ⊂Ω Compact

}
(3.8)

.

Theorem 3.1.9. (Fischer-Riesz) For 1≤ p≤∞, the spaces Lp(Ω) are Banach spaces. The

space L2(Ω) is a Hilbert Space with inner product

(u,v)L2(Ω) :=
∫

Ω

uvdx. (3.9)
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3.2 Partial Differential Equations

Definition 3.2.1. Let Ω⊂Rn be open and let u∈ L1
loc(Ω). If there exists a function w∈ L1

loc

such that ∫
Ω

wφ = (−1)α

∫
Ω

uDα
φdx, ∀φ ∈C∞

0 (Ω) (3.10)

then Dαu := w is called α-th weak partial derivative of u.

Definition 3.2.2. Let Ω⊂Rn be open. For k ∈N0, p ∈ [1,∞), we define the Sobolev space,

W k,p by

W k,p =
{

u ∈ Lp(Ω) : Dαu ∀|α| ≤ k
}

(3.11)

endowed with the norm

‖u‖W k,p(Ω) =

(
∑
|α|≤k

∫
Ω

|Dαu(x)|pdx
)1/p

. (3.12)

For p = ∞, W k,∞(Ω) is defined, equipped with the norm

‖u‖W k,∞ = max
|α|≤k
‖Dαu‖L∞(Ω). (3.13)

For p = 2, we write Hk(Ω) :=W k,2(Ω). We have

H1(Ω) =
{

u ∈ L2(Ω) : Diu ∈ L2(Ω), i = 1, ...,N
}

(3.14)

and is endowed with the norm

‖u‖H1(Ω) =

(∫
Ω

(u2 + |∇u|2)
)1/2

(3.15)

with the inner product

(x,y)H1(Ω) =
∫

Ω

xydµ +
∫

Ω

∇x ·∇ydµ. (3.16)

Theorem 3.2.3. (Trace Theorem) Let Ω ⊂ RN be a bounded Lipschitz domain and let

1 ≤ p ≤ ∞. Then there exists a linear and continuous mapping, τ : W 1,p(Ω)→ Lp(∂Ω)

such that for all u ∈W 1,p(Ω)∩C(Ω̄)) we have (τu)(x) = u(x) for all x ∈Ω.
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τ is called the trace operator. From linearity and continuity of the trace operator we can

conclude there exists some constant c = c(Ω, p) such that

‖τu‖Lp(Ω) ≤ c‖u‖W 1,p(Ω) ∀u ∈W 1,p(Ω). (3.17)

Let X be a separable Banach Space. We consider mappings t ∈ [0,T ]→ y(t) ∈ X .

Definition 3.2.4. 1. A function s : [0,T ]→ X is called simple if it has the form

s(t) =
m

∑
i=1

1Ei(t)yi, (3.18)

with Lesbesgue measurable sets Ei ⊂ [0,T ] and yi ∈ X

2. A function f : t ∈ [0,T ]→ f (t)∈ X is called strongly measurable if there exist simple

functions sk : [0,T ]→ X such that

sk(t)→ f (t) f or almost all t ∈ [0,T ]. (3.19)

Definition 3.2.5. Let X be a separable Banach Space. We define for 1≤ p < ∞ the space

Lp(0,T ;X) :=

{
y : [0,T ]→ X strongly measurable :

‖y‖Lp(0,T ;X) :=
(∫ T

0
‖y(t)‖p

X dt
)1/p

< ∞

}
. (3.20)

Moreover, we let

L∞(0,T ;X) :=

{
y : [0,T ]→ X strongly measurable :

‖y‖L∞(0,T ;X) := ess sup
t∈[0,T ]

‖y(t)‖X < ∞

}
. (3.21)

The space Ck([0,T ];X), k ∈ N0 is defined as the space of k-times continuously differ-

entiable functions on [0,T].
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Definition 3.2.6. (Weak time derivative) Let y ∈ L1(0,T ;X). We say that v ∈ L1(0,T ;X) is

the weak derivative of y, written yt = v, if∫ T

0
φ
′(t)y(t) =−

∫ T

0
φ(t)v(t)dt ∀φ ∈C∞

0 (0,T ). (3.22)

Theorem 3.2.7. Let X be a separable Banach space. Then for 1 ≤ p < ∞ the spaces

Lp(0,T ;X) are Banach spaces. For 1≤ p < ∞ the dual space of Lp(0,T ;X) can isometri-

cally be identified with Lq(0,T ;X∗), 1
p +

1
q = 1, by means of the pairing

〈v,y〉Lq(0,T );X∗,Lp(0,T ;X) =
∫ T

0
〈v(t),y(t)〉X∗,X dt. (3.23)

If H is a separable Hilbert space then L2(0,T ;H) is a Hilbert space with inner product

(y,v)L2(0,T ;X) :=
∫ T

0
(y(t),v(t))Hdt. (3.24)

Definition 3.2.8. Let H, V be separable Hilbert spaces with continuous and dense embed-

ding. We denote by W (0,T ;H,V ) the linear space of all y ∈ L2(0,T ;V ) having a distribu-

tional time derivative y′ ∈ L2(0,T ;V ∗), equipped with the norm

‖y‖W (0,T ;H,V ) =

(∫ T

0

(
‖y‖2

V +‖y′(t)‖2
V ∗
)
dt
)1/2

. (3.25)

Definition 3.2.9. Let H, V be separable Hilbert spaces with continuous and dense embed-

ding V ↪→ H. We identify H with its dual H∗. Then we have the continuous and dense

embeddings

V ↪→ H ∼= H∗ ↪→V ∗ (3.26)

which is called the Gelfand Triple.

Theorem 3.2.10. Let V ↪→ H ↪→ V ∗ be a Gelfand Triple. Then we have the continuous

embedding W (0,T ;H,V ) ↪→ C([0,T ];H). Moreover, for all y, p ∈W (0,T ;H,V ) we have

the integration by parts formula

(y(T ), p(T ))H− (y(0), p(0))H =
∫ T

0
〈y′(t), p(t)〉V ∗,V dt +

∫ T

0
〈p′(t),y(t)〉V ∗,V dt. (3.27)
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3.3 Optimization Theory

Definition 3.3.1. Let F : U ⊂ X→Y be an operator with U a non-empty subset. If the limit

dF(u,h) := lim
t↓0

1
t
(F(u+ th)−F(u)) (3.28)

exists in V, then it is called the direcitonal derivative of F at u in the direction h. If this limit

exists for all h ∈U, then the mapping h→ dF(u,h) is termed the first variation of F at u.

Definition 3.3.2. Suppose that the first variation dF(u,h) at u ∈ U exists, and suppose

there exists a continuous linear operator A : X ∈ Y such that

dF(u,h) = Ah ∀h ∈ X . (3.29)

Then F is said to be Gateaux differentiable at u, and A is referred to as the Gateaux deriva-

tive of F at u. We write A = F’(u).

Consider the problem

min
w∈W

J(w) s.t. w ∈C (3.30)

where W is a Banach space, J : W →R is Gateaux differentiable and C ⊂W is non-empty

closed and convex.

Theorem 3.3.3. Let W be a Banach space and C ⊂W be nonempty and convex. Further-

more, let J : W → R be defined on an open neighborhood of C. Let w∗ be a local solution of

Equation 3.3 at which J is Gateaux-differentiable. Then the following optimality condition

holds:

〈J′(w∗),w∗−w〉W∗,W ≥ 0 ∀w ∈C (3.31)
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Chapter 4

VARIATIONAL ANALYSIS

4.1 Planning and Allocation

In this section we consider the planning and allocation problem as an optimal control

problem. Our algorithm for computing optimal control policies is based on the well-known

gradient descent method. Methods of optimal control help to reduce the amount of compu-

tation that is required to compute the gradient of the objective functional with respect to the

control, subject to constraints in the form of differential equations. This is done using the

adjoint state equation. In the case of finite-dimensional systems, the adjoint/co-state equa-

tion can be derived using the Hamiltonian and Pontryagin’s maximum principle. Efforts

in optimal control of PDEs are in some sense attempts at generalization of the maximum

principle. In the infinite-dimensional case the existence of the Hamiltonian has been proved

only for a limited class of systems. For details of this approach refer to [Fattorini (1999)].

We study the solutions of PDEs in the ’weak’ sense, as opposed to the ’mild’ sense as in

the semigroup theoretic setting in [Fattorini (1999)]. Further on we present some analysis

regarding the existence of the optimal control, differentiability of the objective functional

and a first order necessary condition.

First we define V = H1(Ω) and X = V ×L2(Ω)n. Consequently, we have X∗ := V ∗×

L2(Ω)n from Equation 3.2.9. We consider bilinear control systems in the following form

for notational convenience:

∂y
∂ t

= Ay+
m+2

∑
i=1

uiBiy+ f in Q, ,

~n · (∇y1−~uby1) = g in Σ

y(0) = y0. (4.1)
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Q and Σ are as defined in subsection 2.1.2, the space time cylinder and the space time

cylinder at the boundary respectively. Here, for f ∈ F = L2(0,T ;L2(Ω)1+n), g ∈ G =

L2(0,T ;L2(∂Ω) and y0 ∈ L2(Ω)1+n, we will understand a function, y ∈ Y = L2(0,T ;X),

yt ∈ Y ∗ = L2(0,T ;X∗) , to be a weak solution of the the system, provided that:

〈∂y
∂ t

,φ〉Y ∗,Y = 〈Agy,φ〉Y ∗,Y +
m+2

∑
i=1
〈uiBiy,φ〉F + 〈 f ,φ〉F (4.2)

for all φ ∈ L2(0,T ;X). For n =2, we have the following form for the operators A and

Bi : L2(0,T ;X)→ L2(0,T ;L2(Ω)1+n),

A =


∇2 k f 0

0 −k f 0

0 0 0

 B1 =


− ∂

∂x1
0 0

0 0 0

0 0 0

 B2 =


− ∂

∂x2
0 0

0 0 0

0 0 0



Bi =


−Hi−2 0 0

Hi−2 0 0

Hi−2 0 0

 3≤ i≤ k f +2

(4.3)

for all φ ∈ X . Ag : L2(0,T ;X)→ L2(0,T ;X∗) is the variational form of the operator A.

The boundary conditions are equipped with Ag in the variational formulation using Green’s

theorem as,

Ag =


Mg k f 0

0 −k f 0

0 0 0

 (4.4)

Here, Mg : L2(0,T ;V )→ L2(0,T ;V ∗) is the Laplacian in the variational form and is defined

as, 〈
Mgy,φ

〉
V ∗,V =−〈D∇y,∇φ〉L2(Ω)+

∫
∂Ω

(g+~n ·~by)φdx (4.5)

The solution of Equation 2.4 corresponds to A0 and f = 0. We consider the more general
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form for the purpose of analysis of differentiability properties of the control to state map

(defined later) and the objective functional.

Also, the controls are~v = (u1,u2) =~ub, ui = ki−2 for 3≤ i≤ m+2 and m = n f .

Our optimal control problem can be framed as follows:

min
(y,u)∈Y×Uad

J(y,u) =
1
2
‖Wy(·,T )− yΩ‖2

L2(Ω)1+n +
λ

2
‖u‖2

L2(0,T )m (4.6)

subject to Equation 4.1 for f = 0 and g = 0. Here, yΩ is the target spatial distribution of

robot activity, Y =C([0,T ],L2(Ω)1+n), and

Uad = {u ∈ L2(0,T )m+2; umin
i ≤ ui ≤ umax

i a.e. in (0,T )}

is the set of admissible control inputs. Note that, due to the essential bounds on u, we

have that u ∈ L∞(0,T )m+2. Additionally, we take W ∈ L (L2(Ω)m+2). W is typically a

weighting function that weights relative significance of minimizing the distance between

different states and their targets.

4.1.1 Energy Estimates

Energy estimates refer to bounds on the solutions of the system under investigation

with respect to some parameters of interest, such as initial condition, coefficients, boundary

input. etc. While in theory of weak solutions of PDEs these energy estimates are used to

show the existence of solutions, in the optimal control analysis, these are used to study the

differentiability properties of the control to state map. We derive such energy estimates for

the solutions of Equation 4.1.

Lemma 4.1.1. Let~b ∈ R2 and g ∈ L2(∂Ω). Define M : V →V ∗ as

〈My,φ〉V ∗,V = 〈D∇y,∇φ〉L2(Ω)−
∫

∂Ω

(g+~n ·~by)φdx (4.7)

for some D > 0. Then we have the following energy estimate for all y ∈V
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β‖y‖2
V ≤ 〈My,y〉V ∗,V +α(‖g‖2

L2(∂Ω)+‖y‖
2
H) (4.8)

for some β ,α > 0.

Proof. Setting φ = y in the definition, we get,

D
∫

Ω

|∇y|2dx≤ 〈My,y〉V ∗,V +
∫

∂Ω

(g+~n ·~by)ydx (4.9)

D
∫

Ω

|∇y|2dx≤ 〈My,y〉V ∗,V +
∫

∂Ω

|g||y|dx+ |b|
∫

∂Ω

|y|2dx (4.10)

D‖y‖2
V ≤ 〈My,y〉V ∗,V +

1
2
‖g‖2

L2(∂Ω)+
1
2
‖τy‖2

L2(∂Ω)+ |b|‖τy‖2
L2(∂Ω)+D‖y‖2

H (4.11)

Using the bounds on trace operator Equation 3.2, the result follows.

That M is indeed a mapping from V to V ∗ can be verified using bilinear forms as in

[Evans (1998)] and [Grubb (2008)].

Corollary 4.1.2. Define Ag : X → X∗ be as in Equation 4.1 then we have the following

energy estimate

β‖y‖2
X ≤−〈Ay,y〉X∗,X +α(‖g‖2

L2(∂Ω)+‖y‖
2
L2(Ω)1+n). (4.12)

Lemma 4.1.3. Consider the time dependent second order partial differential operators in

their variational form, L : L2(0,T ;V )→ L2(0,T ;V ∗), L∗ : L2(0,T ;V )→ L2(0,T ;V ∗) as,

〈Ly(t),φ〉V ∗,V =−〈D∇y,∇φ〉L2(Ω)−〈~v ·∇y,φ〉L2(Ω)+
∫

∂Ω

~n · (~vyφ)dx

〈L∗p(t),φ〉V ∗,V =−〈D∇p,∇φ〉L2(Ω)+ 〈~v ·∇p,φ〉L2(Ω). (4.13)
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for all φ ∈V then

〈Ly, p〉V ∗,V −〈y,L
∗p〉V,V ∗ = 0 (4.14)

for all y, p ∈ L2(0,T ;V ). Moreover,

〈
Lgw(t), p

〉
V ∗,V −〈w,L

∗p(t)〉V,V ∗ = g(t) (4.15)

for all w, p ∈ L2(0,T ;V ) and

〈Lgw(t),φ〉V ∗,V = 〈Lw(t),φ〉V ∗,V +
∫

∂Ω

gφdx (4.16)

Proof. From Green’s theorem [Evans (1998)] we have that,

〈L∗p(t),φ〉V ∗,V =−〈D∇p,∇φ〉L2(Ω)−〈~v · p,∇φ〉L2(Ω)+
∫

∂Ω

~n · (~vyφ)dx. (4.17)

Lemma 4.1.4. Given f ∈ L2(0,T ;L2(Ω))1+n, g ∈ L2(0,T ;L2(∂Ω)) and the initial condi-

tion y0 ∈ L2(Ω)1+n, a unique solution exists for the problem in Equation 4.1. We have the

following estimate for the unique solution y in C([0,T ];L2(Ω)1+n):

‖y‖C([0,T ];L2(Ω)1+n)+‖y‖L2(0,T ;X) ≤ K(‖y0‖L2(Ω)1+n +‖ f‖L2(0,T ;L2(Ω))+‖g‖L2(0,T ;L2(∂Ω))

(4.18)

where K depends only on Ω, max
1≤i≤m+2

|umax
i |, max

1≤i≤m+2
|umin

i | and max
1≤i≤m+2

|bi|.

Proof. Let φ = y in Equation 4.1. Then

〈
∂y
∂ t

,y
〉

X ,X∗
−
〈
Agy,y

〉
X ,X∗ =

p

∑
i=1
〈uiBiy,y〉L2(Ω)1+n + 〈 f ,y〉L2(Ω)n+1 (4.19)

. From Equation 4.1.2

d
dt
‖y‖2

L2(Ω)1+n +β‖y‖2
X ≤

p

∑
i=1
‖ui‖L∞(0,T ) 〈Biy,y〉L2(Ω)1+n + 〈 f ,y〉L2(Ω)1+n

+α(‖g‖2
L2(∂Ω)+‖y‖

2
H) (4.20)
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Using Cauchy’s inequality and Young’s inequality [Evans (1998)], we have

d
dt
‖y‖2

L2(Ω)1+n +β‖y‖2
X ≤

1
2

p

∑
i=1
‖ui‖L∞(0,T )(‖Biy‖L2(Ω)1+n‖y‖L2(Ω)1+n)

+
1
2
(‖ f‖2

L2(Ω)1+n +‖y‖2
L2(Ω)1+n)

+α(‖g‖2
L2(∂Ω)+‖y‖

2
H) (4.21)

Let M = max
1≤i≤p

{
bi p|umin

i |,bi p|umax
i |
}

. Then,

d
dt
‖y‖2

L2(Ω)1+n +β‖y‖2
X ≤M(‖y‖X‖y‖L2(Ω)1+n)+

1
2
(‖ f‖2

L2(Ω)1+n +‖y‖2
L2(Ω)1+n)

+α(‖g‖2
L2(∂Ω)+‖y‖

2
L2(Ω)1+n) (4.22)

Using Young’s inequality we get,

d
dt
‖y‖2

L2(Ω)1+n +β‖y‖2
X ≤

β

2
‖y‖2

X +
M2

2β
‖y‖2

L2(Ω)1+n +
1
2
(‖ f‖2

L2(Ω)1+n +‖y‖2
L2(Ω)1+n)

+α(‖g‖2
L2(∂Ω)+‖y‖

2
L2(Ω)1+n)

(4.23)

Hence,

d
dt
‖y‖2

L2(Ω)1+n +
β

2
‖y‖2

X ≤
M2

2β
‖y‖2

L2(Ω)1+n +
1
2
(‖ f‖2

L2(Ω)1+n +‖y‖2
L2(Ω)1+n)

+α(‖g‖2
L2(∂Ω)+‖y‖

2
L2(Ω)1+n) (4.24)

and

d
dt
‖y‖2

L2(Ω)1+n +
β

2
‖y‖2

X ≤C(‖y‖2
L2(Ω)1+n +‖ f‖2

L2(Ω)1+n +‖g‖2
L2(∂Ω)) (4.25)

Then we also have,

d
dt
‖y‖2

L2(Ω)1+n ≤C(‖y‖2
L2(Ω)1+n +‖ f‖2

L2(Ω)1+n +‖g‖2
L2(∂Ω)) (4.26)

Setting η(t)=C‖y(t)‖2
L2(Ω)1+n and ψ(t)=C(‖ f (t)‖2

L2(Ω)1+n +‖g(t)‖2
L2(∂Ω)

) and using Gromwall’s

lemma [Evans (1998)] we get,

max
0≤t≤T

‖y(t)‖2
L2(Ω)1+n ≤C(‖y0‖2

L2(Ω)1+n +‖ f‖2
L2(0,T ;L2(Ω)1+n)+‖g‖

2
L2(∂Ω)) (4.27)
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for all t ∈ (0,T ). Substituting this expression in Equation 4.1.1 and integrating in time, t,

over (0,T ) we get

‖y‖2
L2(0,T ;X) ≤C(‖y0‖2

L2(Ω)1+n +‖ f‖2
L2(0,T ;L2(Ω)1+n)+‖g‖

2
L2(0,T );L2(∂Ω)) (4.28)

From these estimates and using traditional Galerkin approximations as in [Evans (1998)],

the existence and uniqueness of solutions follows for the problem Equation 4.1.

4.1.2 Existence of Optimal Control

In this section we study the existence of solution that for the formulated optimal control

problem in section 4.1. We introduce the control-to-state mapping, Ξ: Uad→Y , that maps a

control, u, to y, the corresponding solution defined through Equation 4.1 for f = 0 and g =

0. This will help us in studying the existence of the optimal control and the differentiability

of the objective functional, J, further on.

Theorem 4.1.5. An optimal control u∗ exists that minimizes the objective functional Ĵ.

Proof. The functional Ĵ(u) is bounded from below. Therefore, the infimum can be achieved

and q = infu∈Uad Ĵ(u) exists. Let {un}∞
n=1 be a minimizing sequence such that Ĵ(un)→ q as

n→ ∞.

Now that the infimum can be attained we need to find an optimal pair (y∗,u∗), so that

J(y∗,u∗) = q. Uad is bounded and closed convex set and hence weak sequentially compact.

Hence, there exists a subsequence {un}∞
n=1 such that,

un ⇀ u∗ in L2(0,T )m+2 (4.29)

Similarly, we can extract a subsequence yn = Ξ(un) due to the uniform boundedness from

Equation 4.1.4, such that,

yn ⇀ y∗ in L2(0,T ;X) (4.30)

24



Further on, it is required to confirm that Ξ(y∗) = u∗, since we do not know if the Ξ is

weakly continuous. From Aubin-Lions lemma [Simon (1986)] we have that,

yn
1→ y∗1 in L2(0,T ;L2(Ω)) (4.31)

From the uniform boundedness of the following terms we can also conclude that,

∇yn
1 ⇀ ∇y∗1 in L2(0,T ;L2(Ω))

∇yn
1→ ∇y∗1 in L2(0,T ;V ∗)

∂yn

∂ t
⇀

∂y∗

∂ t
in L2(0,T ;V ∗)

k f yn
2 ⇀ k f y∗2 in L2(0,T ;L2(Ω)) (4.32)

From strong convergence of yn
1 in L2(0,T ;L2(Ω)) and weak convergence of un in L2(0,T )m+2,

we can further deduce that,

kn
i Hiyn

1 ⇀ kiHiy∗1 in L2(0,T ;L2(Ω))

~vn∇yn
1 ⇀~v∇y∗1 in L2(0,T ;V ∗) (4.33)

Note that the first implication above is not generally true for product of two weakly con-

verging sequences. To deal with the boundary terms we use Green’s theorem to get,

〈~vn ·∇yn
1,φ〉L2(0,T ;L2(Ω))+

∫ T

0

∫
∂Ω

~n · (~vnyφ)dxdt =−〈~vn · yn
1,∇φ〉L2(0,T ;L2(Ω)) (4.34)

for all φ ∈ L2(0,T ;V ). Due to strong convergence of yn
1 in L2(0,T ;L2(Ω)) and weak con-

vergence of~vn in L2(0,T )2,

~vn · yn
1 ⇀~v∗ · y∗1 in L2(0,T ;L2(Ω)) (4.35)

Due to the above mentioned convergences we have that the sequence of solutions yn =

Ξ(un) given by,

〈∂yn

∂ t
,φ〉Y ∗,Y = 〈A0yn,φ〉Y ∗,Y +

m+2

∑
i=1
〈un

i Biyn,φ〉F (4.36)
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converges to the solution Ξ(u∗) and is given by,

〈∂y∗

∂ t
,φ〉Y ∗,Y = 〈A0y∗,φ〉Y ∗,Y +

m+2

∑
i=1
〈u∗i Biy∗,φ〉F (4.37)

It remains to be shown that Ĵ(u∗) = q. J is weakly lower semicontinuous. Hence,

q = lim
n→∞

J(yn,un)≤ J(y∗,u∗) (4.38)

Since q is the infimum,

Ĵ(u∗) = J(y∗,u∗) = q (4.39)

4.1.3 Differentiability and the Reduced Problem

This section discusses the differentiability of the objective functional.

Proposition 4.1.6. The mapping Ξ is Gateaux differentiable at every u ∈ Uad , and its

Gateaux derivative, Ξ′(u) : Uad → Y , evaluated at h ∈ Uad , i.e. Ξ′(u)h, is given by the

solution of the following equation:

∂w
∂ t

= Aw+
m+2

∑
i=1

uiBiw+
m+2

∑
i=1

hiBiy

~n · (∇w1− ~ub ·w1) =~n · (~hby1)

w(0) = 0. (4.40)

Proof. We define yε = Ξ(u+εh). We show that yε → y as ε→ 0. Define g = yε −y. Then

we have,

∂g
∂ t

= Ag+
m+2

∑
i=1

(ui + εh)Big+ ε

m+2

∑
i=1

hiBiy

~n · (∇g1− (~ub + ε~hb) ·g1) =~n · (ε~hby1)

g(0) = 0. (4.41)

26



For ε sufficiently small, u+ εh ∈Uad . Thus, it follows from Theorem 1.1 that

‖g‖C([0,T ];L2(Ω)1+n) ≤C(‖ε
m+2

∑
i=1

hiBiy‖L2(Q)1+n +‖εy1‖L2(Ω))

and so

‖g‖C([0,T ];L2(Ω)1+n) ≤ εK(‖y‖X +‖y1‖L2(Ω)),

where K is a constant.

Hence, yε → y as ε→ 0. Next, we define z = g/ε−w. Then, it is required to prove that

z→ 0 as ε → 0. From the definition of z, we get

∂ z
∂ t

= Az+
m+2

∑
i=1

uiBiz+
m+2

∑
i=1

hiBig

~n · (∇z1− ~ub · z1) =~n · (~hbg1)

z(0) = 0. (4.42)

Invoking Theorem 1.1, since g→ 0, we infer that z→ 0 as ε→ 0 and hence, g/ε→ w.

We now consider the reduced problem,

min
u∈Uad

Ĵ(u) := J(Ξ(u),u) (4.43)

We define the formal adjoints A# and B#
i ,

A# =


∇2 k f 0

0 −k f 0

0 0 0

 B#
1 =


− ∂

∂x1
0 0

0 0 0

0 0 0

 B#
1 =


∂

∂x1
0 0

0 0 0

0 0 0

 B#
2 =


∂

∂x2
0 0

0 0 0

0 0 0



B#
i =


−Hi−2 Hi−2 Hi−2

0 0 0

0 0 0

 3≤ i≤ k f +2

(4.44)
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These are defined as formal adjoints. This is so, as an actual representation of the adjoints

of differential operators requires the definition of their domain, typically using boundary

conditions. We will not need the adjoints of each of these operators but only their sum, i.e,

(A0 +∑
m+2
i=1 hiBi)

∗. We do not take the adjoints of the summands to represent the adjoints

of the sum. This is because for unbounded operators the equality between adjoints of sums

and their summands does not hold in general. For more details refer to [Grubb (2008)].

Theorem 4.1.7. The reduced objective functional Ĵ is differentiable in the Gateaux sense,

and the derivative has the form

〈Ĵ′(u),h〉L2(0,T )m+2 =
∫ T

0
〈~n ·(~hb p1),y1〉L2(∂Ω)+

∫ T

0
〈

m+2

∑
i=1

hiBiy, p〉L2(Ω)1+n +λ 〈u,h〉L2(0,T )m+2,

(4.45)

where p is the solution of the backward-in-time adjoint equation,

−∂ p
∂ t

= A# p+
m+2

∑
i=1

uiB#
i p

~n ·∇p1 = 0

p(T ) =W ∗(Wy(·,T )− yΩ). (4.46)

Proof. We use the generalized chain rule of differentiation of operators in Banach spaces

to prove the above result.

Consider G : C([0,T ];L2(Ω)1+n)→ L2(Ω)1+n, which maps the state to its final value.

This linear continuous mapping is well-defined for functions in the domain C([0,T ];L2(Ω)1+n)

due to continuity in time over a compact set.

Using the chain rule of differentiation,[Tröltzsch (2010)] [Pinnau and Ulbrich (2008)]

(since Ĵ is Frechet differentiable and Ξ is Gaeteaux differentiable) the Gateaux derivative

of Ĵ is given by

〈Ĵ′(u),h〉= 〈Jy(y,u),Ξ
′
(u)h〉+ 〈Ju(y,u),u〉, (4.47)

which is equal to

〈Ĵ′(u),h〉= 〈G∗W ∗(WGy− yΩ),w〉+λ 〈u,h〉. (4.48)
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Thus we have,

〈Ĵ′(u),h〉= 〈W ∗(WGy− yΩ),Gw〉+λ 〈u,h〉 (4.49)

Then,

〈Ĵ′(u),h〉= 〈p(·,T ),w(·,T )〉+λ 〈u,h〉

Consider the term 〈p(·,T ),w(.,T )〉. Using integration by parts in time, we find that this

term is: ∫ T

0
〈∂ p

∂ t
,w〉+

∫ T

0
〈p, ∂w

∂ t
〉+ 〈p(0),w(0)〉

and hence is equal to:∫ T

0
〈∂ p

∂ t
,w〉+

∫ T

0
〈p,A0w+

m+2

∑
i=1

uiBiw+
m+2

∑
i=1

hiBiy〉,

Let us now define the formal adjoints of these operators,

A#
0 =


M#

0 0 0

k f −k f 0

0 0 0

 (4.50)

such that M#
0 : L2(0,T ;V )→ L2(0,T ;V ∗) is given by

〈
M#

0y,φ
〉

V ∗,V =−〈D∇y,∇φ〉L2(Ω) (4.51)

Equation 4.46 has a solution in the weak sense and,

−〈∂ p
∂ t

,φ〉= 〈A#
0 p,φ〉+

m+2

∑
i=1
〈uiB#

i p,φ〉 (4.52)

for all φ ∈ L2(0,T ;X) The previous step can be written as,∫ T

0
〈∂ p

∂ t
,w〉+

∫ T

0
〈A#

0 p+
m

∑
i=1

uiB#
i p,w〉+

∫ T

0
~n · (~hb py)+

∫ T

0
〈p,

m+2

∑
i=1

hiBiy〉.

It follows that

〈p(·,T ),w(.,T )〉=
∫ T

0

∫
∂Ω

~n · (~hb p1y1)+
∫ T

0
〈p,

m

∑
i=1

hiBiy〉,

and hence we have our result.
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The adjoint state equation for the system defined in Equation 2.4 with respect to the

objective functional, J, is therefore given by:

−∂ p1

∂ t
= ∇ · (D∇p1 +v(t)p1)+

n f

∑
i=1

kiHi(−p1 + p2 + p3) in Q,

−∂ p2

∂ t
= k f p1− k f p2 in Q,

−∂ p3

∂ t
= 0 in Q, (4.53)

with the Neumann boundary conditions

~n ·∇p1 = 0 on Σ (4.54)

and final time condition

p(T ) =W ∗(Wy(·,T )− yΩ). (4.55)

4.1.4 First Order Necessary conditions

Theorem 4.1.8. Given the optimal control u∗, it satisfies the following condition,

〈J′(u∗),u∗−u〉 ≥ 0 ∀u ∈Uad (4.56)

Proof. This follows from Equation 3.3.

4.2 Mapping

In this section we analyze the mapping problem presented in section 1.3. Following is

the macroscopic model for the mapping problem,

∂y1

∂ t
= ∇ · (D∇y1−v(t)y1) in Q,

∂y2

∂ t
= koHy1 in Q, , (4.57)

with the no-flux boundary conditions

~n · (D∇y1−~v(t)y1) = 0 on Σ. (4.58)
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H is a spatially dependent coefficient and models the presence or absence of a feature of

interest in the environment. It is required that the spatial coefficient be reconstructed from

some temporal information from robots regarding the number of observations made by

them over time. More specifically the question of interest is whether the spatial coefficient,

H can be reconstructed from g(t) =
∫

Ω

∂y2
∂ t (t) alone. The data, g, is collected from the

agents, either from a stochastic simulation or an experiment. This section discusses the

well posedness of the problem.

4.2.1 The Optimization Problem

It is required that we estimate an unknown spatial coefficient, H ∈ Sad ⊂ L2(Ω). Due

to the one sided coupling between y1 and y2, the first state does not affect the solution of

the estimation problem. Hence we can pose the problem as follows: We seek the solution

of the system,

(KH)(t) =
∫

Ω

koH(x)y1(x, t)dx = g(t) (4.59)

Sad =
{

u ∈ L2(Ω);0≤ u(x)≤ 1 a.e x ∈Ω
}

(4.60)

The operator, K : L2(Ω)→ L2(0,T ), is an integral operator. This type of equation is called

a Fredholm integral equation of the first kind. Generally, Fredholm integral equations of

the first kind need not have unique solutions, unless some special conditions on koy1(s, t),

the kernal of the operator, can be guaranteed. To deal with ill-posedness of this inverse

problem, it can be alternately posed as an optimization problem:

min
H∈Sad

J(H) = ‖KH−g‖2
L2(0,T ) (4.61)

In optimization parlance, this is a convex functional in H but not necessarily strictly convex.
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4.2.2 Regularization, Differentiability and Sufficient Conditions

For unique solutions to the problem the functional can be made strictly convex as fol-

lows,

min
H∈Sad

Jλ (H) =
1
2
‖KH−g‖2

L2(0,T )+
λ

2
‖H‖2

L2(Ω) (4.62)

for λ > 0. λ is called the regularization parameter and is quite often used in the so called,

’Tikohnov regularization’ of inverse problems. The existence and uniqueness of the solu-

tion to this problem can be easily guaranteed. For details regarding existence and unique-

ness of this problem one can refer to [Kirsch (2011)].

For the gradient descent method used later, we need a characterization of the deriva-

tive of the objective functional. The objective functional is differentiable in Frechet sense.

Since K ∈L (L2(Ω),L2(0,T )), derivative of K is itself. Then by chain rule of differentia-

tion, the Frechet derivative of Jλ , J′
λ
(H) is given by,

〈J′
λ
(H),s〉L2(Ω) = 〈KH−g,Ks〉L2(0,T )+λ 〈H,s〉L2(Ω) (4.63)

Using Reiz representation (Equation 3.1) we can get explicit representation of the deriva-

tive, ∇Jλ as,

∇Jλ = K∗(KH−g)+λH ∈ L2(Ω). (4.64)

Here K∗ ∈L (L2(0,T ),L2(Ω)) is given by,

(K∗G)(x) =
∫ T

0
koG(t)y1(x, t)dt ∀p ∈ L2(0,T ). (4.65)

To verify that the characterization of K∗ is correct it can easily be checked that,

〈KH,G〉L2(0,T )−〈H,K∗G〉L2(Ω) = 0 ∀H ∈ L2(Ω), ∀G ∈ L2(0,T ). (4.66)
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Chapter 5

NUMERICAL IMPLEMENTATION

5.1 PDE Simulation

This section describes the numerical algorithm used to approximate the solution of the

primal and dual system of PDEs. Towards this end we use the method of lines(MOL) ap-

proach for numerical simulation. A detailed explanation of these approaches can be found

in [Hundsdorfer and Verwer (2003)] [Leveque (2004)]. The MOL approach involves ex-

plicit discretization of the concerned operators and system variables in space. The variables

are left continuous in time. The resulting semi-discretized system is system of ordinary dif-

ferential equations(ODEs). The system of ODEs can then be solved numerically using any

commericial ODE solver.

The spatial domain Ω = (0,1)× (0,1) is approximated using a spatial discretized do-

main Ωh. The nth coordinate is discretized as Xn = {xn,−1,xn,0xn,1,xn,2,xn3....xnm,xn,m+1}.

Here xn j = jh and h= 1/m is the mesh width. Then Ωh =X1×X2. The points xn,−1,xn,0 and

xn,m+1 are ghost points used to numerically define the boundary conditions of the system.

Figure 5.1 is a visual depiction of a small section of the discretized domain.

Let yi j
1 denote an approximation to y(x1i,x2 j). The spatial discretisation of the Laplacian

operator, ∇2· is given by

∇
2
hyi j

1 =
1
h2 (y

i−1, j
1 + yi+1, j

1 + yi, j−1
1 + yi, j+1

1 −4yi j
1 ) (5.1)

Straightforward finite difference discretization of the advection operator can lead to spuri-

ous oscillations in the numerical solution. To deal with such issues we use a flux limiter
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i,j i+1,j

i,j+1

i,j-1

i-1,j

Grid Points

Ghost Points

Figure 5.1: Sample numerical grid

based approximation. Advection in the x1 and x2 directions are approximated as

vx1(t)
∂hyi j

1
∂x

(t) = vx1(t)
1
h

(
f i− 1

2 , j(t,y1(t))− f i+ 1
2 , j(t,y1(t))

)
vx2(t)

∂hyi j
1

∂x
(t) = vx2(t)

1
h

(
f i, j− 1

2 (t,y1(t))− f i, j+ 1
2 (t,y1(t))

)
(5.2)

The flux term, f (t,y1(t)) can be given in a general form as

f i+ 1
2 , j(t,y1) = vx1(t)

[
yi, j

1 +ψ(θ i)(yi+1, j
1 − yi, j

1 ), vx1(t)≥ 0,

f i+ 1
2 , j(t,y1) = vx1(t)

[
yi, j

1 +ψ(θ j)(yi+1, j
1 − yi, j

1 )] vx2(t)≥ 0,

f i+ 1
2 , j(t,y1) = vx1(t)

[
yi+1, j

1 +ψ(
1

θ i+1 )(y
i, j
1 − yi+1, j

1 )], vx1(t)< 0,

f i+ 1
2 , j(t,y1) = vx1(t)

[
yi, j+1

1 +ψ(
1

θ j+1 )(y
i, j
1 − yi, j+1

1 )], vx2(t)< 0, (5.3)

Here, θi and θ j are ratios given by,

θ
i =

yi, j
1 − yi−1, j

1

yi+1, j
1 − yi, j

1

]

θ
j =

yi, j
1 − yi, j−1

1

yi, j+1
1 − yi, j

1

(5.4)
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ψ is called the limiter function. We use the superbee flux limiter which has the following

form,

ψ(r) = max [0,min(2r,1),min(r,2)] (5.5)

Note that the above implementation results in a nonlinear discretization for the originally

linear system.

For the implementation of boundary conditions the following numerical values are as-

sumed at the ghost points,

ym+2, j
1 = 0 −1≤ j ≤ m+2

yi,m+2
1 = 0 −1≤ i≤ m+2

y−1, j
1 = 0 −1≤ j ≤ m+2

yi,−1
1 = 0 −1≤ i≤ m+2 (5.6)

The zero flux boundary condition, Equation 2.5, can then be implemented based on a

simple reflection as

dym, j
1

dt
=

dym+1, j
1
dt

+
dym, j

1
dt

, 0≤ j ≤ m+1

dym+1, j
1
dt

= 0, 0≤ j ≤ m+1

dyi,m
1

dt
=

dyi,m+1
1
dt

+
dyi,m

1
dt

, 0≤ i≤ m+1

dyi,m+1
1
dt

= 0, 0≤ i≤ m+1

dy1, j
1

dt
=

dy0, j
1

dt
+

dy1, j
1

dt
, 0≤ j ≤ m+1

dy0, j
1

dt
= 0, 0≤ j ≤ m+1

dyi,1
1

dt
=

dyi,0
1

dt
+

dyi,1
1

dt
, 0≤ i≤ m+1

dyi,0
1

dt
= 0, 0≤ i≤ m+1 (5.7)
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Y
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Pre-reflection

Post-reflection

Figure 5.2: The zero flux boundary condition for a 1 dimensional cross-ection

Figure 5.2 is a visual depiction of the zero flux boundary condition implemented as a

reflection.

The numerical approximation for the adjoint system, Equation 4.53, Equation 4.54 and

Equation 4.55, is done in a similar manner. However, the adjoint system does not have a

zero flux boundary condition, but Neumann boundary conditions. The rectangular domain

implies that~n ·∇p1 = 0 reduces to ∂ p1
∂x1

= 0 and ∂ p1
∂x2

= 0 on edges parallel to the x1 and x2

co-ordinate axes respectively. The first derivatives can be approximated as

∂ pi j
1

∂x1
=

1
h

(
pi+1, j

1 − pi, j
1

)
∂ pi j

1
∂x2

=
1
h

(
pi, j+1

1 − pi, j
1

)
(5.8)

or

∂ pi j
1

∂x1
=

1
h

(
pi, j

1 − pi−1, j
1

)
∂ pi j

1
∂x2

=
1
h

(
pi, j

1 − pi, j−1
1

)
(5.9)
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Equation 5.8 and Equation 5.9 are the forward and backward first-order finite differ-

ence approximations of the first derivative of a function, respectively. Then the Neumann

boundary conditions can be implemented numerically by making the following substitu-

tions,

pm+1, j
1 = pm, j

1 0≤ j ≤ m+1

pi,m+1
1 = pi,m

1 0≤ i≤ m+1

p0, j
1 = p1, j

1 0≤ j ≤ m+1

pi,0
1 = pi,1

1 0≤ i≤ m+1 (5.10)

The zero flux boundary condition was not implemented using the method outlined

above for neumann boundary conditions. This was due to the excessive numerical dif-

fusion experienced at the boundaries because of the nature of the boundary condition. Due

to the high advection in the system, the solution results in sharp increase in the spatial

derivatives of the states near the boundaries. This is typical of singularly perturbed ADR

equations. An alternative method of implementation is the use of non-uniform grids (as

in [Roos et al. (2008)] ), where the grid is taken to be finer near the boundaries to enable

better approximation in regions of sharp transitions.

5.2 Optimization Algorithm

We use the projected gradient method to approximate the optimal controls iteratively.

We start with the initial arbitrary estimation of the optimal control u0. Let PC(x) denote the

projection of x on the set C. Then the algorithm can be stated as follows,

Algorithm 5.2.1. Projected Gradient Method

1. Find the solution, yn, corresponding to the state system Equation 2.4 with u = un

37



2. Solve the adjoint states, pn, with u = un and y = yn.

3. Take new descent direction using Equation 4.45 as

wn =−Ĵ′(un) (5.11)

4. Compute step size vector, ~α , using a line search (an example is defined below) on the

projected gradient, using the control constraints, ua and ub so that,

Ĵ(P[ua,ub](un +~αnwn))≥ Ĵ(un) (5.12)

5. Set un+1 = P[ua,ub](un +~αnwn)

6. if Ĵ(un+1)− Ĵ(un)>−β set n = n+1 and Goto 1

At step 4 a possible step size needs to be identified, to find a suitable value of the each

of the elements, αk
n , of the step size vector, ~αn, so that the new descent step, un+1, achieves

a useful reduction in the value of the objective function.

For the mapping problem the optimization algorithm is very similar except that at the

3rd step we use Equation 4.64. And instead of [ua,ub] we project over Sad as in Equa-

tion 4.60.

Algorithm 5.2.2. Line search

1. Choose some γ1 ∈ R such that 0 < γ1 < 1.

2. Choose some γ2,1 ∈ R such that 0 < γ2,1 ≤ 1 and set j = 1.

3. Evaluate S = Ĵ(P[ua,ub](u
1
n,u

2
n...(u

k
n + γ2, jwk

n))...)− Ĵ(un).

4. If S > 0 and j < 10 then set j = j+1, γ2, j+1 = γ1γ2, j and Goto 3.

5. Set αk
n = γ2, j.
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5.3 Stochastic Simulation Algorithm

This section describes the algorithm used for the simulation of the microscopic models.

The time interval, [0,T ], is discretized over a uniform grid, and the agent states are com-

puted at time t = i∆t for i = 1,2,3....Nt , where ∆t = T/Nt is the size of each time interval.

The controls u are taken to be piece wise linear over these time intervals. The variable s j

stores the current state of agent j: s j = 0 if the agent is flying, and s j = 1 if the agent is

hovering. Then the following is the numerical algorithm used to simulate an agent,

Algorithm 5.3.1. Stochastic Simulation

1. Initialize t = 0,s j = 0;

2. t = t +∆t;

3. If s j = 0, then generate a random vector ~Z from a normal distribution with mean 0

and standard deviation 1 and set ~x j = ~x j +(2D∆t)1/2~Z +~v(t)∆t.

4. Generate a random number r j uniformly distributed in the interval (0,1).

5. if s j = 0, r j ≤ Hm(~x j)km(t)∆t then s j = 1 and Goto 7.

6. if s j = 1 and r j ≤ k f ∆t then s j = 0.

7. if t < T then Goto 2.

m denotes the flower type and hence step 5 should be repeated for each m if the number

of flower types is more than m.
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Chapter 6

SIMULATION RESULTS

6.1 Planning and Allocation Problem

We developed microscopic and macroscopic models of scenarios in which a swarm of

robots is tasked to achieve a specified spatial distribution of flower visits over five crop

rows. We considered four different scenarios. We computed optimal control parameters

of the macroscopic model to achieve two types of target spatial distributions of visits over

the crop rows: one in which visits were required throughout the entire domain (Objective

1), and another in which they were required only on part of the domain (Objective 2). For

both objectives, we simulated an environment with and without obstacles to investigate the

effect of the geometry on the optimized robot control policies.

For each scenario, we simulated 1000 robots over a domain for size 100 m × 100 m.

We set k f = 0.2s−1 to define an expected pollination time of k−1
f = 5 s. In the optimization,

the robot speed was bounded between −0.1 and 0.1 m/s, and the transition rates k j were

bounded between 0 and 1.25 s−1. The microscopic model was simulated over a grid of

21× 21 cells. To account for numerical diffusion, the partial differential equation was

simulated over a finer grid of 51× 51 cells. The diffusion coefficient, D, was taken to be

5× 10−4m2/s. The terminal time, T was taken to be 480s for objective 1 and 100s for

objective 2. Figure 6.1 shows three snapshots of the simulation of the stochastic agent

based model for the case with Objective 2 and obstacles.

In Objective 1, the error norm between the actual and target spatial distribution of flower

visits was minimized. In Objective 2, the time until achieving the target distribution is min-

imized. Figure 6.2 shows that in all four scenarios, our optimal control approach success-
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Figure 6.1: Particle state evolution over time

fully minimizes the objective function, driving it nearly to zero in the time span allotted for

the simulation.

The resulting optimized parameters over time are plotted in Figure 6.3, with each of the

two plots showing the parameter set for environments both with and without obstacles. The

top plot of Figure 6.3 corresponds to the Objective 1 case, in which crops rows 2 and 4 were

assigned twice as high a target density of flower visits as rows 1, 3, and 5. The robots start
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Figure 6.2: Objective function over time for all four scenarios

at the bottom of the field in this case. The robot speed is kept almost at zero throughout the

optimization run; the robots’ motion is dominated by diffusion, and after they diffuse over

the entire domain (at 150 s), the transition rates are increased to approximately constant

levels. The transition rate k2, implemented when a robot is over row 2 or 4, is driven to

about the twice the value of k1, implemented for rows 1, 3, and 5, which results in twice

as many flower visits over rows 2 and 4. The bottom plot of Figure 6.3 corresponds to the

Objective 2 case, in which the target visit density is set to zero in rows 1, 2, and 3 and to

a nonzero value in rows 4 and 5 (the rightmost two rows). In this case, the robots started

at the left of the field, and their optimized speed in the positive x direction is kept high to

drive them quickly to the right of the field. The transition rate k1 increases as the robots

slow down in the x direction, causing them to focus the bulk of their flower visits on the

rightmost two rows.

Figure 6.4 through Figure 6.7 compare snapshots of the microscopic simulations (left

columns) and macroscopic model numerical solutions (right columns) for each scenario.

The two models are approximately similar in each case, which validates the ability of our
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Figure 6.3: Optimized robot parameters for Objective 1 (top) and Objective 2 (bottom)

macroscopic model to predict the behavior of an ensemble of individual robots. The pres-

ence of obstacles in the domain does not significantly affect the progress of the robots for

Objective 1, but it does impede their progress for Objective 2.

6.2 Mapping

We considered two cases to validate the Mapping approach proposed in the previous

chapters. The first case was motivated by the pollination scenario considered for the plan-

ning and allocation problem. The second case was chosen arbitrarily. 30 agents were used

in the stochastic simulation. The agents start about the point (10,10) as a gaussian distribu-
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tion. The trajectories of the agents’ were assigned by choosing appropriate velocity based

controls,~v. These were chosen such that coverage of sufficient portion of the domain could

be achieved. The sample trajectory of a single agent is shown in Figure 6.8. The diffusion

coefficient was chosen to be D = 1×10−4m2/s. The reaction rate, ko, was assumed to be

100s−1, that is high probability of registering a observation, when an agent passed over

a region of interest. High reaction rates were needed to estimate the coefficient to suffi-

cient accuracy with the proposed approach. The trials were simulated for the terminal time

T = 400s.

The results of the first case are shown in Figure 6.9. The coefficient has been recon-

structed to considerable accuracy. The error is the absolute error between the estimated

coefficient and the actual one. The errors in approximation correspond to the edges of the

features. This is typical of such methods familiar in image processing literature. The results

of the second case are shown in Figure 6.10. As in the previous case the spatial coefficient

has been reconstructed to considerable accuracy. The errors of approximation are highest

along the edges of the features. The higher inaccuracy of the feature closer to the top edge

can be attributed to the extensive diffusion experienced by the swarm as they reach this

portion of the domain.
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Figure 6.4: Distribution of flower visits at three times in the microscopic (left) and macro-
scopic (right) models with parameters optimized for Objective 1, no obstacles
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Figure 6.5: Distribution of flower visits at three times in the microscopic (left) and macro-
scopic (right) models with parameters optimized for Objective 1, with obstacles
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Figure 6.6: Distribution of flower visits at three times in the microscopic (left) and macro-
scopic (right) models with parameters optimized for Objective 2, no obstacles
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Figure 6.7: Distribution of flower visits at three times in the microscopic (left) and macro-
scopic (right) models with parameters optimized for Objective 2, with obstacles
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Figure 6.9: Estimated coefficient, H(x), for Case 1
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Chapter 7

CONCLUSION

7.1 Summary of Contributions

This thesis presented an optimal control approach to the trajectory planning and task al-

location problem for a swarm of diffusing and advecting robots that perform stochastic task

transitions. The approach was used to realize efficient numerical algorithms for the syn-

thesis of the resulting control inputs for the swarm. Additionally a mapping problem was

analyzed and a method for feature reconstruction from robot observations was presented.

The deterministic(PDE) model of the agent behavior enables the method to be robust to

noisy motion of the agents.

7.2 Future Work

In order to guarantee robust behavior of the swarm one can consider the control strate-

gies that are able to incorporate feedback from the robots in order to to fulfill a planning

and allocation task in the presence of unknown environmental disturbances, say for ex-

ample, as wind in the pollination scenario. For such scenarios, we must identify types of

observers with minimal measurement costs that will provide sufficiently rich state recon-

struction to enable real-time control in a broadcast control framework. As is often the case

for infinite-dimensional systems, exact observability will not be possible unless all agents

communicate back their state estimates. Some related work on industrial processes with

similar controls has been done in [Vries et al. (2008)]. There has been very little work on

stabilizability of bilinear infinite dimensional systems in general. This would be an oppor-

tunity from a control theoretical point of view and also relevant for the models used for
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swarms as in this thesis. Another issue not addressed in this work is the degree of corre-

spondence between the microscopic and the macroscopic models. It would be useful to

study the kind of convergence that can be expected between the models and the relevance

of the approach for the different regimes of swarm operation (for example, in terms of the

number of agents in the swarm). Finally, we can expand the types of control schemes that

we consider to include ones with inter-agent interactions, which is a common feature in

PDE models of natural coordinated behaviors such as flocking, schooling, and taxis. These

types of models introduce more non-linearities in the system description, which can make

the control theory more challenging. In this regard, there is also some opportunity for

work on modeling of large homogenous networks using PDEs. A leader induced formation

control using boundary control of a PDE was considered in this direction [Elamvazhuthi

and Berman (2014)]. However, more opportunities remain in terms non-linear hyperbolic

PDEs for multiple formation using the same controller, infinite dimensional chains of non-

holonomic agents, obstacle avoidance using these models. etc.

For the mapping problem, one could consider scenarios in which the topology of the

domain is not known. However, such a problem necessarily introduces additional com-

plexities in that the state space itself, which determines the domain of the PDE, needs to be

estimated from the robot data. Hence the optimization problem would be to find the right

state space. Moreover, assignment of agent trajectories becomes more challenging as an ar-

bitrary trajectory might not ensure complete coverage of the unknown domain. A relevant

problem in this regard is the famous problem posed by Mark Kac, ”Can one hear the shape

of a drum?” [Kac (1966)]. This problem is related to understanding the nature of evolution

equations such as the wave equation and the diffusion equation over different geometries

and the possibility of inferring the nature of this geometry from properties of the associ-

ated differential operators. A similar scenario could be considered in the mapping scenario

where agents with stochastic dynamics return with some information that relates to the
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spectrum of the differential operators associated with the PDE models. This could then be

used subsequently to reconstruct the geometry of the domain. The application of geometric

methods is an emerging theme in the control of PDEs [Croke (2004)]. Additionally, one

could consider more efficient algorithms that do not require high probabilities of successful

observations (and therefore high reaction rates) and hence are more tolerant to errors in the

observations. In this regard one could consider compressed sensing approaches to mapping

where rich information can obtained from relatively sparse data [Lustig et al. (2007)]. It

would also be interesting to integrate the mapping and the planning-allocation phase of the

swarm operation, where mapping is done first by a number of small, but highly capable

swarm of explorer agents, followed by planning and allocation to larger swarm of agents

based on the constructed map of the environment.
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Berman, S., R. Nagpal and Á. Halász, “Optimization of stochastic strategies for spatially
inhomogeneous robot swarms: A case study in commercial pollination”, in “Int’l. Conf.
Intelligent Robots and Systems (IROS)”, pp. 3923–3930 (2011b).

Boulerhcha, M., B. Abdelhaq and L. Samir, “Optimal bilinear control problems governed
by evolution partial differential equation”, Int’l. Journal of Math. Analysis 6, 2385–2395
(2012).

Casas, E. and D. Wachsmuth, Second Order Optimality Conditions for Bang-bang Bilinear
Control Problems (Inst. of Math., 2014).

Croke, C. B., Geometric methods in inverse problems and PDE control, vol. 137 (Springer,
2004).

Elamvazhuthi, K. and S. Berman, “Scalable formation control of multi-robot chain net-
works using a pde abstraction”, in “Int’l. Symp. on Distributed Autonomous Robotic
Systems (DARS)”, (Daejeon, Korea, 2014).

Elamvazhuthi, K. and S. Berman, “Optimal control of stochastic coverage strategies for
robotic swarms”, in “Proc. Int’l. Conf. on Robotics and Automation (ICRA)”, (Seattle,
WA, 2015), submitted.

Elliott, D., Bilinear control systems (Springer, 2009).

Evans, L. C., “Partial differential equations”, (1998).

Fattorini, H. O., Infinite dimensional optimization and control theory, vol. 54 (Cambridge
University Press, 1999).

Finotti, H., S. Lenhart and T. Van Phan, “Optimal control of advective direction in reaction-
diffusion population models.”, Evolution Equations & Control Theory 1, 1 (2012).

55



Foderaro, G., A Distributed Optimal Control Approach for Multi-agent Trajectory Opti-
mization, Ph.D. thesis, Duke University (2013).

Galstyan, A., T. Hogg and K. Lerman, “Modeling and mathematical analysis of swarms of
microscopic robots”, in “Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings
2005 IEEE”, pp. 201–208 (IEEE, 2005).

Gardiner, C., Stochastic methods (Springer-Verlag, Berlin–Heidelberg–New York–Tokyo,
1985).

Gillespie, D. T., “The chemical Langevin equation”, J. Chem. Phys. 113, 1, 297–306
(2000).

Grubb, G., Distributions and operators, vol. 252 (Springer, 2008).

Ha, S.-Y. and E. Tadmor, “From particle to kinetic and hydrodynamic descriptions of flock-
ing”, arXiv preprint arXiv:0806.2182 (2008).

Hamann, H. and H. Worn, “A space-and time-continuous model of self-organizing robot
swarms for design support”, in “Self-Adaptive and Self-Organizing Systems, 2007.
SASO’07. First International Conference on”, pp. 23–23 (IEEE, 2007).

Hundsdorfer, W. and J. G. Verwer, Numerical solution of time-dependent advection-
diffusion-reaction equations, vol. 33 (Springer, 2003).

Kac, M., “Can one hear the shape of a drum?”, American Mathematical Monthly pp. 1–23
(1966).

Kachroo, P., Pedestrian dynamics: Mathematical theory and evacuation control (CRC
Press, 2009).

Khapalov, A. Y., Controllability of partial differential equations governed by multiplicative
controls (Springer, 2010).

Kirsch, A., An introduction to the mathematical theory of inverse problems, vol. 120
(Springer, 2011).

Kurdila, A. J. and M. Zabarankin, Convex functional analysis (Springer, 2006).

Lenhart, S., “Optimal control of a convective-diffusive fluid problem”, Mathematical Mod-
els and Methods in Applied Sciences 5, 02, 225–237 (1995).

Leveque, R. J., Finite-Volume Methods for Hyperbolic Problems (Cambridge Univ. Press,
2004).

Lustig, M., D. Donoho and J. M. Pauly, “Sparse mri: The application of compressed sens-
ing for rapid mr imaging”, Magnetic resonance in medicine 58, 6, 1182–1195 (2007).

Ma, K. Y., P. Chirarattananon, S. B. Fuller and R. J. Wood, “Controlled flight of a biologi-
cally inspired, insect-scale robot”, Science 340, 6132, 603–607 (2013).

56



Matthey, L., S. Berman and V. Kumar, “Stochastic strategies for a swarm robotic assembly
system”, in “Robotics and Automation, 2009. ICRA’09. IEEE International Conference
on”, pp. 1953–1958 (IEEE, 2009).

Milutinovic, D. and P. Lima, “Modeling and optimal centralized control of a large-size
robotic population”, Robotics, IEEE Transactions on 22, 6, 1280–1285 (2006).

Murray, J. D., “Mathematical biology i: An introduction, vol. 17 of interdisciplinary ap-
plied mathematics”, (2002).

Okubo, A., “Dynamical aspects of animal grouping: swarms, schools, flocks, and herds”,
Advances in biophysics 22, 1–94 (1986).

Palmer, A. and D. Milutinovic, “A hamiltonian approach using partial differential equations
for open-loop stochastic optimal control”, in “American Control Conference (ACC),
2011”, pp. 2056–2061 (IEEE, 2011).

Pinnau, R. and M. Ulbrich, Optimization with PDE constraints, vol. 23 (Springer, 2008).

Prorok, A., N. Corell and A. Martinoli, “Multi-level spatial modeling for stochas-
tic distributed robotic systems”, The International Journal of Robotics Research p.
0278364911399521 (2011).

Roos, H.-G., M. Stynes and L. Tobiska, “Robust numerical methods for singularly per-
turbed differential equations”, Springer Ser. Comput. Math 24 (2008).

Sánchez-Garduño, F. and V. F. Breña-Medina, “Searching for spatial patterns in a
pollinator–plant–herbivore mathematical model”, Bulletin of mathematical biology 73,
5, 1118–1153 (2011).

Simon, J., “Compact sets in the spacel p (o, t; b)”, Annali di Matematica pura ed applicata
146, 1, 65–96 (1986).

Stevens, A. and H. G. Othmer, “Aggregation, blowup, and collapse: the abc’s of taxis in
reinforced random walks”, SIAM Journal on Applied Mathematics 57, 4, 1044–1081
(1997).

Tagiev, R., “Optimal coefficient control in parabolic systems”, Differential Equations 45,
10, 1526–1535 (2009).
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