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ABSTRACT 

This paper addresses some aspects of the development of fully coupled thermal-

structural reduced order modeling of planned hypersonic vehicles. A general framework 

for the construction of the structural and thermal basis is presented and demonstrated on a 

representative panel considered in prior investigations. The thermal reduced order model 

is first developed using basis functions derived from appropriate conduction eigenvalue 

problems. The modal amplitudes are the solution of the governing equation, which is 

nonlinear due to the presence of radiation and temperature dependent capacitance and 

conductance matrices, and the predicted displacement field is validated using published 

data. A structural reduced order model was developed by first selecting normal modes of 

the system and then constructing associated dual modes for the capturing of nonlinear 

inplane displacements. This isothermal model was validated by comparison with full 

finite element results (Nastran) in static and dynamic loading environments. The coupling 

of this nonlinear structural reduced order model with the thermal reduced order model is 

next considered. Displacement-induced thermal modes are constructed in order to 

account for the effect that structural deflections will have on the thermal problem. This 

coupling also requires the enrichment of the structural basis to model the elastic 

deformations that may be produced consistently with the thermal reduced order model. 

The validation of the combined structural-thermal reduced order model is carried out with 

pure mechanical loads, pure thermal loads, and combined mechanical-thermal 

excitations. Such comparisons are performed here on static solutions with temperature 

increases up to 2200F and pressures up to 3 psi for which the maximum displacements 
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are of the order of 3 thicknesses. The reduced order model predicted results agree well 

with the full order finite element predictions in all of these various cases. A fully coupled 

analysis was performed in which the solution of the structural-thermal-aerodynamic 

reduced order model was carried out for 300 seconds and validated against a full order 

model. Finally, a reduced order model of a thin, aluminum beam is extended to include 

linear variations with local temperature of the elasticity tensor and coefficients of thermal 

expansion. 
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CHAPTER 1 – INTRODUCTION 

One of the goals of the United States Air Force is to field a manned, reusable, air-

breathing hypersonic aircraft. This pursuit has been met with a number of challenges 

within a number of disciplines including aerodynamics, structural dynamics, heat 

transfer, material science, guidance and control, and propulsion. These challenges have 

been the subject of considerable research, yet much progress is still needed in order to 

field such an aircraft. The Air Force Research Lab (AFRL) Structural Sciences Center 

recently initiated an effort with partners in industry that sought to understand and 

summarize the knowledge gaps relating to structural design that inhibit the development 

of such a vehicle. The first phase of the project involved a survey of previous attempts to 

produce a reusable hypersonic vehicle, and the shortcomings experienced therein [1-3]. A 

number of projects were reviewed, including the National Aerospace Plane (NASP) and 

the X-33. Both efforts arrived at very similar conclusions regarding knowledge gaps. 

These include, but are not limited to, the evolution of material properties when structures 

are exposed to extreme heating, the coupling of the aero-thermal-acoustic disciplines, the 

nonlinear response of the structure, and the accurate determination of thermo-acoustic 

loading conditions, to name a few. The standard approach taken was to assume a worst-

case scenario in which the most extreme case of each loading type was assumed to act on 

the structure simultaneously. A linear analysis ensued in which superposition was used to 

combine the effects of the various loads. This produced an overly conservative design, 

which added weight and cost to the vehicle. Additionally, the uncertainty in the response 
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to a coupled loading environment led to a more conservative design, which translates into 

higher weight, and higher cost. 

This assumption of linearity was tested in [4], in which a NASP ramp panel was 

subjected to thermal and acoustic loads expected in the flight regime. A linear and 

nonlinear analysis was performed, with the linear analysis overpredicting the response of 

the panel. This overprediction in deflection translated into an overprediction in the stress 

and a prediction of fatigue failure. However, the nonlinear analysis produced smaller 

deflections due to geometric nonlinearity and did not predict fatigue failure, showing the 

unnecessary cost of assuming a linear approach to the problem. 

In the second phase of the program four critical regions were selected on a 

concept vehicle and panels from these regions were designed and used for further study 

[5-8]. Analysts confirmed the knowledge gaps identified in Phase I, with a few more 

knowledge gaps identified [6]. These panel models are intended to be used in future 

research so that the aerospace community can solve some of the issues inhibiting the 

development of a reusable hypersonic vehicle. 

Many of the knowledge gaps identified involve the accurate coupling of the 

disciplines present in hypersonic flight. The desire to accurately model the coupling of 

the structural, thermal, and aerodynamic problems in hypersonic conditions has been the 

focus of a number of recent studies [9-13]. One study by Culler and McNamara sought to 

test the assumptions that are typically made regarding the two-way coupling of the 

structural and thermal problem on a representative hypersonic panel [10]. Early attempts 

to investigate the effects of coupled analyses at hypersonic speeds would neglect the two-
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way coupling between the structural displacement and the aerodynamic heating, instead 

assuming that the structural displacements were influenced by the temperature fields 

while the thermal problem was not influenced by the displacements [14-17]. Although an 

appropriate assumption to make when panel deflections are relatively small, the influence 

of the displacement field on the aerodynamic heating of the structure becomes significant 

at large displacements. The influence of large deformations on the temperature field of 

the structure was later observed [18-21], but a comprehensive investigation into the 

influence of two-way coupling on stress and dynamic stability of the structure was not 

performed. 

Culler and McNamara have undertaken to better understand the influence of two-

way coupling in hypersonic flight conditions, and their efforts are presented in [9] and 

[10]. In the investigation of [10], a representative hypersonic panel is used. That panel, 

shown in Fig. 1, was derived from an inlet ramp panel featured in [22,23].  

 

Figure 1. Representative Hypersonic Panel Model 

Two different flight trajectories were used, one which maintains constant freastream 

conditions of Mach 12 flow, while the other uses a constant rate ascent trajectory 

Skin 

Stiffener 
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analysis, maintaining a constant dynamic pressure and linearly increasing the Mach 

number of the freastream flow from 2 to 12 over 300 seconds. It will be the latter 

trajectory that will be the focus of this current research. In [10], the boundary conditions 

of the representative panel were varied in order to assess their influence on the two-way 

coupled analysis. When the panel was allowed to expand freely, the resulting 

displacements, stresses and failure indices from the two-way and one-way analyses 

strongly agreed. However, when the resistance to inplane expansion was set to its 

maximum level, the two solutions produced very different results. In both analyses the 

panel buckled into the flow, and this large deflection produced a significant effect on the 

aerodynamic heating in the two-way coupled analysis. The resulting temperature field 

caused the panel in the two-way coupled analysis to be dominated by a higher order 

mode, while the one-way coupled model remained dominated by the lowest order mode. 

As the displacements diverged, the stress and failure indices did as well, resulting in the 

prediction of failure for the one-way coupled analysis. Additionally, the one-way coupled 

analysis produced a displacement that was not dynamically stable, while the two-way 

coupled response was stable at all points of the analysis. The reason these differences 

emerged was that the resistance to inplane expansion caused the panel to buckle into the 

flow. With such large deflections the effect of two-way coupling was no longer 

negligible, as the deformations had a strong influence on the aerodynamic heating of the 

panel. 

 In order to carry out these simulations, a number of simplifications had to be 

made. Lower fidelity, yet still reliable models were used for the aerodynamic heating and 
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aerodynamic pressure. Eckert’s reference enthalpy method was used for aerodynamic 

heating [24,25], which provided the convection boundary conditions to the thermal model 

of the panel. Piston theory was used for aerodynamic pressure [26,27]. Here, the cubic 

form of the heating model was used due to the large deflections and high Mach numbers 

experienced [28]. The structural response was assumed to be quasi-static, due to the 

difference in the thermal and structural time scales (for details, see [10]). 

This analysis played a significant role in advancing understanding of the effect of 

structural-thermal-aerodynamic coupling in hypersonic environments. It is here desired to 

advance predictive capabilities further by developing a structural-thermal reduced order 

model of this panel, and repeating the fully coupled analysis presented in [10]. As the 

discussion in [1-8] indicates, the fully coupled, long-duration, nonlinear dynamic analysis 

for structural response prediction in hypersonic flight environments cannot currently be 

completed due to the time and computational resources required. This being the case, the 

last 15 years has seen the development of a number of model reduction techniques 

emerge, with the goal of reducing the computational resources required for long-duration 

analysis. 

The thin-walled aircraft panels that ROMs have been developed for will behave in 

a geometrically nonlinear manner during hypersonic flight. This complicates the analysis 

in two ways. First, it produces quadratic and cubic nonlinearities in the equation of 

motion. Second, it couples the transverse and inplane dominated modes. When a flat 

structure experiences large transverse deflections in a nonlinear analysis, a membrane 

stretching is nonlinearly induced. The cubic properties of the system typically harden the 
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system, while the quadratic nonlinearities typically soften the system through the inplane-

transverse coupling [29]. 

The methods by which the nonlinear terms are acquired are varied, typically 

separated into two classes; direct and indirect methods. Direct methods assume that the 

user has access to the finite element nonlinear stiffness terms, and is able to manipulate 

them for the purposes of the reduced order model. This method was used by [30,31] in 

early investigations of reduced order modeling for flat structures. However, commercially 

available finite element packages do not typically make this information available, so it 

has become the goal of a number of recent projects to develop reduced order models 

indirectly, or without direct access to the stiffness matrices of the particular finite element 

program. These methods employ a series of static, nonlinear finite element solutions in 

order to relate the nonlinear stiffness terms to the forces applied.  

In [32], Maymon describes a procedure by which the nonlinear stiffness 

parameters of the governing equation of motion will be fit to finite element data through 

either applied forces or prescribed displacements. Through this process, a single-mode 

ROM is attained; however, he does not go into detail about any specific model or results. 

McEwan et al took this a step further in [33], detailing a process by which the cubic 

stiffness terms in a multi-mode reduced order model were determined using a series of 

static solutions when the finite element model is subjected to prescribed loads. The 

procedure utilizes the displacements determined by the finite element program, as well as 

the prescribed forces, with both of these properties being transformed into modal space. 

The loads prescribed need to exercise the nonlinearity of the model, as well as include the 
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cross coupling between the selected modes. Thus, the applied loads were determined to 

be proportional to a linear combination of the truncated set of normal modes to be used in 

the reduced order model basis. A regression analysis was then used to curve fit the 

nonlinear coefficients to the data provided by the finite element program. The procedure 

outlined provided good results when used with a fully clamped and simply supported 

beam. 

Muravyov and Rizzi outlined a similar procedure to [33], but used enforced 

displacements as opposed to applied loads [34]. In this procedure, the displacements are 

prescribed and the nodal forces required to retain this deformation are solved for by the 

finite element program. The displacements and forces are transformed to modal space, 

and the unknown stiffness coefficients are solved for. This procedure will be reviewed in 

Section 3.3.1.1. Nonlinearity should be exercised, as well as the coupling between 

multiple modes. As with the previous method, it was again found necessary to prescribe a 

linear combination of structural modes, however, displacements proportional to a 

maximum combination of three different modes is used for any given test case in this 

procedure. 

With the methods for determining the nonlinear stiffness coefficients described, 

the methods for accounting for the transverse displacement induced membrane stretching 

will be reviewed. The method employed by [31,33] was to statically condense the inplane 

behavior into the transverse motion. The inplane behavior of a flat structure is very stiff, 

resulting in the inplane-dominated modes having a high natural frequency. The frequency 

of excitation the structure is subjected to is assumed to be much lower than the natural 
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frequency of inplane dominated modes, allowing the inplane behavior to be assumed to 

be a static response to the large transverse deformations. By assuming the response is 

quasi-static, the mass and damping terms can be removed and the inplane response is 

written in terms of the transverse generalized coordinate. Thus, the effect of the inplane 

modes on the transverse response is condensed. This condensation allows the reduced 

order model to have a basis of purely transverse modes, while still ensuring that the 

coupling effect that the inplane modes have on the transverse modes is accurately 

retained.  

There are a number of ways to employ static condensation.  In [29], Holllkamp et 

al. discusses a number of methods that involve static condensation, including explicit 

physical condensation [31], explicit modal condensation, and condensation involving 

companion modes. However, the most popular method is implicit condensation (IC). The 

applied force method for identifying nonlinear coefficients naturally pairs well with 

implicit condensation. By applying transverse loads and allowing the structure to deform 

freely in the inplane direction, the coefficients identified naturally accommodate the 

implicit condensation procedure.  In [29], the implicit condensation method was shown to 

produce good results for a flat and curved beam under acoustic loading. Additionally, in 

[35], the response was accurately predicted for a curved beam under acoustic and uniform 

thermal loads. The work presented in [36] and [37] show that the ROM built using the 

implicit condensation method predicted results that agree well with experiments. 

One of the drawbacks from this analysis is that the inplane displacements are not 

determined by the ROM when static condensation is employed. Because of this, the 
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associated stress fields of the ROM predicted displacements cannot be determined in the 

typical finite-element fashion. To enhance this modeling strategy, Hollkamp et al. 

presented a method in [38] in which the transverse displacements were used to extract 

associated inplane displacements that had been condensed into the transverse modes. 

Generally speaking, the modal amplitudes of the inplane modes are assumed to be 

dependent on the square of the modal amplitudes of the transverse modes. With these 

amplitudes estimated, the associated inplane modes are then determined by relating the 

displacements generated from the applied loads cases to the mode shapes and normal 

mode amplitudes already defined. The details of this procedure can be found in [38,39]. 

This procedure of implicit condensation and expansion (ICE) was shown to produce 

accurate results when using a flat and curved beam [38]. However, when a curved beam 

subjected to thermal loading was investigated in [40], the IC method was favored over 

the ICE method. 

Hollkamp and Gordon recently developed a reduced order model of the panel 

from [10], however the material properties were modified [41]. The goal of this effort 

was to show that reduced order models are a legitimate option when it comes to 

simulating the response of complex structures to large thermal loads. With this being the 

case, a number of simplifications were made. The structural reduced order model was 

developed, but a thermal ROM was not since the purpose of the investigation was simply 

to validate the reduced order modeling procedure for the representative hypersonic panel 

under intense thermal loads. The through thickness temperature gradient was neglected, 

as well as the static pressure loads, and the analysis was performed up to Mach 7 as 
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opposed to the original upper limit of Mach 12. Transverse-dominated and inplane-

dominated modes were included, and the enforced displacements procedure was used to 

identify the nonlinear coefficients. Results showed that the structural ROM was capable 

of producing good results with few modes when compared to the displacements predicted 

by the full order model. 

Other attempts to capture the effect of the membrane stretching have been put 

forward by Rizzi and Przekop. In [42-44], normal inplane modes are included in the 

structural basis and the nonlinear parameters are identified using the enforced 

displacement method, which naturally pairs well with a modal basis consisting of all 

types of degrees of freedom. In [42,43], the modal basis is selected to include a fixed 

number of transverse dominated normal modes and inplane dominated normal modes, 

and this basis was shown to produce results that agreed well with finite element results 

for a thermally buckled beam [42] and curved beam [43]. In [44], a methodology was put 

forward to guide the modal basis selection that did not depend as strongly on the ROM 

developer’s intuition or a priori knowledge of the expected structural response. In this 

work, the structure under consideration was subjected to loading conditions that 

resembled a relatively severe loading case, and a dynamic full order analysis was 

performed to provide a sample of the dynamic response. The displacements were 

partitioned into transverse and inplane components, and a POD analysis was performed 

on the displacement sets so that the stiffer inplane modes would not be overlooked in the 

analysis (see [45] and [46] for a discussion on POD analysis applied to structural 

displacements). The dominant POD modes (POMs) were identified by their associated 
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proper orthogonal values (POVs), and the participation of each POM was evaluated using 

Eq. (1). 

Ni
N

j j

i
i ,...,1,

1





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 

                                                                                   (1) 

Here, i  denotes the POM participation factor, while i  denotes the POV of the i
th

 mode 

and N is the total number of modes. The POMs with the highest eigenvalues are selected 

for inclusion in the reduced order basis until the cumulative POM participation factor is 

at a satisfactory level. The cumulative POM participation factor,  , is given in Eq. (2). 

10,
1

  

M

i i                                                                                      (2) 

Here, M is the number of selected POMs to be included in the basis. Next, the modal 

assurance criterion, or MAC, is used to identify the normal modes of the system that 

correlate with the selected POMs [47]. These normal modes comprise the final ROM 

basis. This process was termed the modal amplitude participation procedure, or MAP. 

The validation cases were repeated for the flat and curved beams, and the results showed 

that the new basis retained the accuracy exhibited in [42,43], while increasing the 

efficiency of the ROM by requiring fewer modes. 

In [48], Przekop et al outline two additional procedures that assist the ROM 

developer in selecting a basis. In [49] and [50] the authors derive a means of acquiring 

the natural frequency of POMs in a process that utilizes smooth orthogonal 

decomposition. This process requires the velocity data in addition to the displacement 

data needed for the POD analysis. Additionally, [46] observed that the mean square of the 

modal amplitudes converge to the mode’s POV as the number of dynamic snapshots of 
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the lightly damped response to acoustic loading becomes very large. These two 

observations allow the authors in [48] to derive a method to estimate the energy provided 

by each POM during the analysis. By considering energy in the modal selection process, 

the inplane modes that tend to have small modal amplitudes relative to the transverse 

modes can still be selected. This is due to the fact that the inplane modes are very stiff, 

and even small displacements may entail a significant amount of energy present in the 

system. In a manner similar to that of Eq. (1), the modal energy participation factor is 

determined, and the highest energy modes are selected for inclusion in the ROM basis. 

The total number of modes to be included in the basis is decided on once the cumulative 

energy participation factor, analogous to Equation 2, is determined to be at the desired 

level. These modes are then correlated with the normal modes through a process 

expressed in Eq. (3). 

PC Texp                                                                                                           (3) 

expC  is the expansion coefficient matrix, T is the matrix of all normal modes, and P  is 

the matrix of selected POMs. expC  expresses the linear combination of normal modes 

required to construct a given POM in P . The modes contributing most significantly to 

the construction of a selected POM will be retained in the final reduced order basis. 

Finally, the estimated POM frequencies approach (EPF) selects the modes whose 

frequencies are within a certain bandwidth. The selection process for the MEP and EPF 

methods in [48] were modified in order to perform a more direct comparison with the 

MAP procedure. Each method performed well, with the EPF having a slight advantage 

over the other two. One other observation was that the MEP approach tended to favor a 
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selection of transverse dominated modes when compared to the other selection 

procedures. 

 In [51], the authors demonstrate that a model developed using the MAP approach 

can accurately predict the response to pressure loads which vary spatially and temporally. 

A high pressure region is prescribed to oscillate over a beam which is otherwise under 

lower pressure loading, as well as acoustic loading. Multiple basis sets were developed to 

account for the excitation produced by a stationary high pressure region when that region 

was located at various points on the beam. One cumulative basis was selected to account 

for every normal mode present in each of the basis sets. Consolidating the different basis 

sets allows for a single reduced order model to accurately predict the response of the 

beam under high pressure loads when the load is applied at any of the previously 

investigated locations, further increasing the efficiency of the ROM. 

In [52-54], the concept of a “dual” mode was introduced and developed in order 

to account for the inplane displacements induced by nonlinear coupling with the 

transverse motion. In this formulation, the low order linear modes are first included in the 

ROM basis. Then, a series of static displacements are found from forces that are 

proportional to combinations of two linear modes. One mode is set as the dominant 

mode, and forces generated from combining this mode with all other linear modes are 

enforced on the structure. This is done at various loading levels, in order to exercise the 

nonlinearity of the problem. Then, the resulting displacements are made orthogonal to the 

linear modes in order to extract the nonlinearly induced components and a POD analysis 

is performed on these displacement vectors. The POD modes with the largest associated 
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eigenvalue, or POV, and strain energy are selected to be included in the basis. The strain 

energy is used as a measure for selecting dual modes because the inplane behavior of the 

panel will be stiff and modes with high inplane displacement will have large strain 

energy. This process was validated with isotropic and functionally graded panels to show 

its usefulness for symmetric and asymmetric structures [54]. Additionally, this dual-based 

formulation of the nonlinear ROM was extended for use in cantilevered ROMs [55]. The 

weak nonlinearity exhibited by the behavior of a cantilevered beam required that the 

typical approach be modified. Specifically, the inplane displacements were condensed 

into the transverse motion, and subsequently “decondensed” in order to have a full dof 

description of the structural response of the beam.  In [35], the dual-based approach was 

shown to accurately model a curved beam under significant acoustic and uniform thermal 

loading. 

A significant enhancement to the capabilities of reduced order modeling was 

introduced in [56]. A method to incorporate the effects of spatially varying temperature 

fields into the structural reduced order model was derived and validated.  The derivation 

showed that the temperature field would influence the linear stiffness matrix, as well as 

the thermal moment. Each of these exhibits a linear relationship with temperature. 

Further, a modal approach was taken for the thermal model, resulting in a one-way 

coupled structural-thermal reduced order model. Results were found in static conditions 

in [56,57], and [58] extended these validations to unsteady thermal environments as well. 

Additionally, the accurate prediction of stress fields were shown for the structure under 

thermal loading in [58].  
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A number of investigations into shock-boundary layer interactions have 

concluded that a shock impingement will produce localized heating [59], as well as 

oscillating pressures [60,61], to the point that it could affect the fatigue life of a structure. 

It is therefore important for structural models to have the ability to accurately predict the 

response to unsteady thermal and aerodynamic pressure loading.  In an effort to prove the 

capability of ROMs to model the response to oscillating thermal loads, a ROM was 

developed for a long, thin beam subjected to an oscillating heat source [62]. The 

frequency of oscillation varied from approximately 20 Hz, to just over the natural 

frequency of the beam, approximately 80 Hz. The ROM predicted displacements that 

were in agreement with the full order results when the thermal loading was applied, as 

well as in the presence of thermal and acoustic loading. 

Furthermore, the thermoelastic formulation was recently extended in [63,64] to 

include temperature dependent material properties. Specifically, the Young’s modulus 

and the coefficient of thermal expansion were assumed to vary linearly with temperature. 

Propagating this linear dependence of temperature throughout the structural ROM 

formulation showed that the linear stiffness matrix and thermal moment term would now 

have a cubic relationship with temperature. The quadratic and cubic stiffness tensors 

would now be linearly related to temperature. A method to identify these new coefficients 

was presented and subsequently validated with a beam model. 

 Perez et al presented work in [65] in which a reduced order model was developed 

for a 96,000 dof panel model. As the number of modes in the ROM basis increases, the 

number of nonlinear coefficients to be identified increases with the cube of the number of 
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modes, as well as the number of nonlinear enforced displacement cases required to 

identify those terms. In order to reduce the computational resources required to identify 

these parameters a new method was presented which utilizes the tangent stiffness matrix 

occurring at prescribed displacements, as opposed to the forces required to maintain a 

certain displacement field. The number of cases that must be run to identify the nonlinear 

coefficients is related to the square of the number of modes, significantly reducing the 

computational resources and time required to identify the ROM. Static cases showed 

agreement between the ROM and full order models, and preliminary dynamic results 

showed agreement as well. 

 In addition to the structural ROM, a thermal ROM will need to be developed. In 

developing a reduced order model for the thermal problem, a modal approach is taken, 

similar to the structural problem. A full derivation of this can be found in [56]. The 

primary issue in the construction of a thermal ROM is the selection of the thermal modes. 

In [56-58], the thermal basis was constructed using modes that are meant to satisfy 

nonhomogonous boundary conditions, as well as modes that were the product of the 

eigenvectors of the 1-D conductance capacitance eigenvalue problem and a function 

related to the through thickness temperature variation. It was found that linear and cubic 

through thickness temperature variations were needed to model the temperature fields in 

an unsteady environment. In [64], the eigenvectors of the 1-D eigenvalue problem were 

again combined with linear and cubic functions related to through thickness temperature 

variation. These modes were shown to produce accurate results under rapidly oscillating 

heat sources. 
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 Falkiewicz and Cesnik developed thermal reduced order models in [66] to test 

their applicability to hypersonic control surface modeling. It was decided that POD 

modes would serve as the optimal basis for this thermal problem. A sample of 

temperature fields were generated for a given loading scenario and a POD analysis was 

then carried out on these temperature fields. The POD modes were then used to simulate 

the temperature evolution on the control surface using the modal form of the heat 

conduction equation, and excellent results were observed with relatively few modes. A 

constant and time-dependent load vector was used in the analyses and the reduced order 

model developed from each of these produced accurate results. It was observed that POD 

modes were able to contribute to the prediction of temperatures when the load applied 

was different from the load used to generate the snapshots from which the POD modes 

were generated. Also, the POD modes from the constant flux case were able to improve 

the predictions of the time-dependent heat flux case. 

 In [67], this thermal reduced order modeling strategy is extended for use in a fully 

coupled aeroelastic analysis of a hypersonic control surface. The thermal modes were 

comprised of POD modes generated from snapshots of the temperature fields occurring in 

a simplified, representative case. A structural ROM was developed, and the structural 

modes were comprised of Ritz modes, which were several normal modes of the structure 

when the structure was subjected to the average temperature field of the thermal analysis 

just mentioned. Additionally, the structural response to this average thermal loading case 

was incorporated into the basis. The aerodynamic heating was modeled using CFD-based 

kriging surrogates [68-70], while the aerodynamic pressure was found using Piston 
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theory [26,27]. The models were validated, and the ensuing analysis found that 

aeroelastic effects will have a significant impact on the aerodynamic forces, both lift and 

drag, of the control surface. 

 The fully coupled, partitioned analysis in [67] is similar to the analysis that will 

be presented in the subsequent chapters. One of the main differences, though, is the 

inclusion of nonlinear structural and thermal properties of the current work. Therefore, in 

the context of this brief review, the contributions of this present work are to incorporate 

nonlinear reduced order models into a fully coupled structural-thermal-aerodynamic 

ascent trajectory simulation, develop a ROM of increased complexity, relative to 

previous models, and accurately predict responses to extreme temperatures.  

 Additionally, in order to fully demonstrate the ability of the structural reduced 

order model to incorporate temperature dependent material properties, a reduced order 

model of a beam with temperature dependent Youngs modulus and coefficient of thermal 

expansion will be developed. The structural model of the ramp panel described above 

includes only the coefficient of thermal expansion that is dependent on temperature.  

Here, validation efforts are presented to model the structural response to non-uniform and 

time varying temperature fields produced by an oscillating heat flux on a thin beam, 

shown in Fig. 2. Previously, this methodology was only validated with a uniform 

temperature field [63]. 
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Figure 2. Model Problem for the Validation of a Reduced Order Model With 

Temperature Dependent Material Properties. 

 Finally, it should be noted that the primary goal for the structural model is the 

accurate prediction of displacements. While other projects have shown that stress can be 

accurately predicted using reduced order models [52,58], stress values will not be 

calculated in this analysis. As stress is a derived quantity, the accuracy of displacement 

will be given priority and will be the only metric by which the structural model is 

evaluated. 
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CHAPTER 2 – MODEL DESCRIPTION 

2.1 Representative Panel 

2.1.1 Structural Model 

The panel used here, shown in Figure 1, is the same panel modeled using full 

order finite element analysis in [10]. The skin of the panel is 12 inches long in the 

direction of the flow, 10 inches wide and 0.065 inches thick. The stiffeners along the left 

and right edge of the skin are 1.25 inches wide and .0325 inches thick. The structural 

finite element model is composed of 2400 CQUAD4 (4 node plate) elements, resulting in 

2499 nodes. In both the structural and thermal problems the dimensions of the element 

were 0.25 in. by 0.25 in.  

The panel has the following structural boundary conditions [10]: 

(1) At the leading edge, x=0 and z=0, zero displacements are enforced for all degrees of 

freedom but y translations, which are free. 

(2) At the trailing edge, x=12 and z=0, zero displacements are enforced for all degrees of 

freedom except x and y translations, which are free. Springs also act on the nodes of the 

trailing edge in the x direction with a spring constant of 2378 lb/in. 

(3) At the panel center, x=6, y=5, and z=0, zero displacement is enforced for y 

translations. 

The structural properties of the composite material used in this model, advanced 

carbon-carbon 4, are provided in Tables 1 and 2 [22,23,71-73]. These properties, except 

for the coefficient of thermal expansion (CTE) will remain constant since there is no 

significant change over the range of temperatures experienced in this analysis [74]. In the 
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analysis of [10], the CTE value is linearly related to temperature until the temperature 

reaches 2190F, and above this temperature the value remains constant. The reduced order 

model, on the other hand, is formulated to be able to incorporate temperature dependent 

properties that are expressed as a polynomial with respect to temperature (see formulation 

in Section 3.1). In this analysis, the CTE will be assumed to vary linearly with 

temperature for the duration of the analysis with the same linear relationship that is used 

up to 2190F in the analysis of [10]. The full order results from Nastran will be found 

using the same linear variation of CTE over the entire temperature range in order to make 

a straightforward comparison between the full and reduced order model. The mean 

temperature of the panel exceeds 2190F only for the last 12 seconds of analysis, and 

comparisons between Nastran models with the two different CTE properties showed that 

the differences between structural displacements of the two models were minimal. 

Table 1. Material Properties of Panel  

Density 0.065 lbm/in
3 

Young’s Modulus11 15 E6 psi 

Young’s Modulus22 15 E6 psi 

Shear Modulus12 2.5 E6 psi 

Poisson’s Ratio12 0.3  

 

Table 2. Temperature Dependent Characteristics of CTE 

Temperature, ºF CTE  1/ºF 

30 0.556 E-6 

2500 2.334 E-6 

 

2.1.2 Thermal Model 

There are 2400 elements in the thermal finite element model, with the skin being 

composed of CHEXA (8 node brick) elements and the stiffeners being composed of 
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CQUAD4 elements, resulting in 4508 nodes.  The CHEXA elements allow for the 

through thickness temperature gradient to be calculated, which is then provided to the 

structural model. The surface of the stiffeners were assumed to be adiabatic, as well as 

the bottom surface of the skin. The top of the skin is exposed to the flow and the thermal 

loading predicted by the aerothermal analysis is imposed on the surface through a 

convection boundary condition, depicted in Eq. (4).  

)( wawconvaero TThQ                                                                                        (4) 

aeroQ  is the flux acting on the surface, convh  is the heat transfer coefficient, awT  is the 

adiabatic wall temperature, and wT  is the wall temperature. Additionally, effects of 

radiation on the top of the skin are modeled using Eq. (5) as provided in [10], 

4
wrad TQ   ,                                                                                                  (5) 

where the emissivity factor (ε) is 0.8 and the Stefan-Boltzmann constant (σ) is 3.302 E-15 

BTU/s/in
2
/R

4
. The thermal properties are provided in Table 3 and the variation of specific 

heat and in-plane thermal conductivity with temperature is given in Table 4 [22,75]. 

Table 3. Thermal Properties at 70 °F 

Density 0.065 Lbm/in.
3 

Specific Heat 0.18 BTU/lbm/°F 

Thermal Conductivity11 18.6 BTU/ hr/ft /°F 

Thermal Conductivity22 18.6 BTU/ hr/ft /°F 

Thermal Conductivity33 3.0 BTU/ hr/ft /°F 

Emissivity, ε 0.8  

 

Table 4. Specific Heat and Inplane Conductivity as a Function of Temperature 

Temperature  

 

 

°F 

Specific Heat 

BTU/lbm/°F 

In-plane Conductivity 

BTU/hr/ft/°F 

°F BTU/lbm/°F BTU/hr/ft/°F 

0 0.170 17.5 

200 -- 20.9 
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500 0.242 23.6 

750 - 24.2 

1000 0.295 24.2 

1250 - 23.9 

1500 0.330 23.3 

1750 - 23.1 

2000 0.360 22.5 

2250 - 21.9 

2500 0.390 21.4 

2750 - 20.9 

3000 0.420 20.3 

 

2.1.3 Aerodynamic Pressure Model 

 The panel under consideration is assumed to be at an angle of 5º with the free 

stream flow. Additionally, the panel is 60 inches upstream of the transition from laminar 

to turbulent boundary layer. The properties of the free stream flow are defined such that 

the Mach number varies linearly with time, increasing from 2 to 12 over 300 seconds, 

and the dynamic pressure is defined as 2000 psf throughout the analysis. Oblique shock 

relations are used to compute the inviscid flow properties downstream of the shock [76], 

which will occur upstream of the panel under consideration, and as long as the body of 

the hypersonic aircraft is rigid and the flow remains parallel to it, the inviscid flow 

properties will be constant at all points downstream of the shock. However, deformations 

of the panel will produce nonuniform flow properties on the surface of the panel. The 

pressure acting at each point on the surface of the panel is found using piston theory 

[26,27], specifically third order piston theory due to the high Mach numbers and 

deflections. Piston theory has shown to be a very efficient aerodynamic model that 

maintains reasonable accuracy during hypersonic flight as long as the product of Mach 
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number and the angle of inclination of the panel remain below 1 [28]. The third order 

piston theory equation is shown in Eq. (6). 
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Here, the subscript 0 denotes inviscid flow properties after the shock but upstream of the 

panel, while the subscript 1 denotes a property at the specific point of the panel in 

question [10]. w  is the transverse displacement, x  is the direction of the flow, t  is time, 

p  is pressure, q  is dynamic pressure, U  is velocity, and   is the ratio of specific heats. 

 

2.1.4 Aerodynamic Heating Model 

Piston theory is not a complete aerodynamic model, in the sense that it does not 

determine aerodynamic heating. In order to model the heating that is imposed on the 

panel, the semi-empirical Eckert’s reference enthalpy method is used [24,25]. This 

heating model provides the convection boundary condition to the thermal model of the 

panel. Additional details can be found in [10]. 

 

2.1.5 Solution Procedure 

In order to determine the quasi-static solution, a staggered solution sequence is 

employed, which sequentially determines the aerodynamic pressure, aerodynamic 

heating, temperature fields, and structural deflections. The aerodynamic pressure, 

convection boundary conditions, and structural displacement are calculated every half 
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second, while the transient thermal solution is calculated at every tenth of a second. Once 

the structural deflections are determined, the aerodynamic pressure is updated and the 

structural deflections are recalculated. The solutions of the structural and aerodynamic 

problems are repeated until convergence. For more details on the justification of the 

quasi-static assumption and the selection of the simulation time steps, see [10]. 

  

2.2 Beam Model 

The beam, a rough schematic of which is shown in Figure 2, has the following 

properties. 

Table 5.  Clamped-Clamped Beam Properties 

Beam Length (L) 0.2286 m 

Cross-section Width (w) 0.0127 m 

Cross-section Thickness (h) 7.88 10
-4

 m 

Density 2700 kg/m
3
 

Young’s Modulus 73,000 MPa 

Shear Modulus 27,730 MPa 

Coeff. Thermal Expansion 2.5 10
-5

 /°C 

Mesh (CBEAM) 40 

Further, the changes with temperature of the Young’s modulus and coefficient of 

thermal expansion were assumed as in Eqs (7) and (8), i.e. 

  T
)(

E
)(

EE
10

                                                                                               (7) 

and   

T
)1()0(

                                                                                                      (8)  

with )1(E = 3.0 10
9
 Pa/°C and )1( = 5.0 10

-7
 1/°C

2
. The Poisson’s ratio was assumed to 

be temperature independent here. Note that these values are not representative of 
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aluminum but rather were selected to ensure a notable change in properties with the range 

(10°C) of temperature experienced by the beam.  
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CHAPTER 3 – REDUCED ORDER MODEL FORMULATION 

3.1 Thermal and Structural Governing Equations 

 The derivation of the governing equations follows the approach taken in [56-

58,62-64]. It is desired here to represent both temperature and displacement fields in a 

“modal expansion” form, i.e. as 

     



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1

)(
,

n

n
n XTttXT                                                                                    (9) 

for the temperature, and 
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for the displacement. In these equations, the functions 
)(m

i  and 
)(m

T  are specified 

functions of the position vector X in the undeformed configuration, chosen to satisfy the 

necessary boundary conditions. 

 To obtain a set of (nonlinear) ordinary differential equations governing the 

evolution of the generalized coordinates  tqn  and  tn , it is first necessary to derive 

the governing field equations for the displacements  tXui ,  and temperature  tXT ,  in 

the undeformed configuration. Following references [77-79], one obtains (see also 

[57,58,54]) 

  iijkij
k

ubSF
X

0
0

0 



 for 0X                                             (11) 

where S  denotes the second Piola-Kirchhoff stress tensor, 0  is the density in the 

reference configuration, and 
0

b  is the vector of body forces, all of which are assumed to 
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depend on the coordinates iX  of the undeformed configuration in which the structure 

occupies the domain 0 . Further, in Eq. (11), the deformation gradient tensor F  is 

defined by its components ijF  as 

j
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                                                                 (12) 

where ij  denotes the Kronecker symbol and the displacement vector is Xxu  , x 

being the position vector in the deformed configuration. 

 The heat conduction equation on the domain 0  can be written as 
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where S  denotes the specific entropy and 
0

k  denotes the conductivity tensor pulled 

back to the undeformed configuration according to 

  T
FkFFk
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
10

det                                                                                     (14) 

where k  is the conductivity tensor in the deformed configuration. 

 To complete the formulation of the problem, it is necessary to define the material 

constitutive relations which stem from the Helmholtz free energy (per unit mass) F  

defined as 

SEF T                                                                                                        (15) 

where E  denotes the elastic energy. Specifically, one has 
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where E  denotes the Green strain tensor, i.e. 

 ijkjkiij FFE 
2

1
.                                                                                        (18) 

 The Duhamel-Neumann form of the Helmholtz free energy [77] is adopted in the 

undeformed configuration. Specifically, it is postulated that 

   000 ,
2

1
TTfETTCEEC ijklijklklijijkl  F                                (19) 

where C  denotes the fourth order elasticity tensor,   the second order tensor of thermal 

expansion, 0T  is the reference temperature, and [77] 
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whether or not vC  depends on temperature, and  

 






















 1ln,

000

000
T

T

T

T

T

T
TCTTf v                                                       (20b) 

when vC does not depend on temperature. 

 The stress-strain relation is then obtained from Eq. (16) as 
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whether the material properties (i.e. ijklC  and ij ) depend on temperature or not. 

 The governing equation for the heat convection is then obtained by combining 

Eqs (13) and (17). This gives the rate of change of the entropy as 
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Note that this complex expression reduces to the first two terms, appearing in [57,58], 

when the elasticity tensor and coefficient of thermal expansion are independent of 

temperature. Combining Eqs (13) and (23) yields finally the desired heat conduction 

equation 
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where G denotes a series of terms involving the derivatives of ijklC  and ij . 

Specifically, 
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The terms lumped in G can be considered as an additional latency effect, beside the first 

term on the right-hand-side of Eq. (24), as they all involve the strain. They differ from the 
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classical term (the first term on the right-hand-side of Eq. (24)) by their dependence on 

the variations of the structural properties with temperature. 

 The derivation of the governing equations for the generalized coordinates  tqn  

and  tn  is then achieved by introducing Eqs (9) and (10) in Eqs (11), (12), (18), (21), 

(24) and (25) and proceeding with a Galerkin approach. This process leads to the 

differential equations    
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Considering in particular the structural reduced order model, note that the coefficients 
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Should the material properties depend on temperature, these coefficients will implicitly 

depend on the temperature distribution since they are dependent on the tensor ijklC  and 

the product ijklC kl . If the material properties are independent of temperature, these 

terms are constant throughout the analysis and will only have to be identified once. 

However, should the properties vary with temperature these findings notably complicate 

the reduced order modeling formulation as they imply that new coefficients would have 

to be recomputed at every time step. This difficulty can be bypassed by assuming a 

polynomial dependence of ijklC  and ij  on the temperature. For example, assuming this 

dependence being linear, one has 

TCCC
ijklijklijkl

)1()0(
                                    (34) 

and 

Tijijij
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 .                                                                    (35)  

When propagating the temperature dependence through the terms in Eqs (28) and (32), it 

becomes more convenient to combine the expressions of 
)1(

ijK and 
)(

,
th
lij

K in order to 

determine a single expression for the linear stiffness coefficient’s dependence on 

temperature. Following the substitution of Eqs (34) and (35) into Eqs (28)-(33) 
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demonstrates that the coefficients, 
)2(

ijl
K , and 
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ijlp

K  would be linear in the thermal 

generalized coordinates i , while 
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iF  would be cubic in these variables, as  
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In Eq. (27), ijB  and ijK
~

 are the elements of the capacitance and conductance 

matrices of the reduced order model and 
)(st

ijl
K  is a linear latency term, dual of 

)(th
ijl

K . 

Further, the term iP  denotes the source term associated with the boundary conditions and 

the external flux while ijR  involves latency and change of geometry effects [16]. 
)(st

ijl
K  
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and ijR
 
are dependent on the temperature distribution. They also represent the feedback 

effect of the structural deformations on the temperature distribution. This effect is 

generally recognized as small for small to medium deformations and thus 
)(st

ijl
K  and ijR

 

will be neglected in the present analysis. The resulting heat conduction equation is 

ijijjij PKB 
~

  .                                                                                           (53) 

 

3.2 Basis Selection 

3.2.1 Structural Basis 

The selection of the structural basis functions 
)(n

  represents a key challenge of 

the reduced order modeling strategy: if the structural response is not well represented 

within this basis, the corresponding prediction of the reduced order model will in general 

be poor. The modes/basis functions needed for a nonlinear problem are certainly 

expected to include those used for the corresponding linear problem, but others are also 

anticipated to model the difference in physical behavior induced by the nonlinearity. This 

situation is particularly clear in shell-like structures subjected to transverse loadings in 

which the linear response is predominantly transverse while the tangential/in-plane 

displacement field plays a fundamental role (the “membrane-stretching” effect, see 

[29,38,39] for discussion) in large motions. 

This issue was addressed in [54] through the inclusion in the basis of an additional 

set of basis functions referred to as dual modes aimed at capturing the membrane 

stretching effects. The key idea in this approach is to first subject the structure to a series 
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of “representative” static loadings, and determine the corresponding nonlinear 

displacement fields. Then, extract from them additional basis functions, the “dual 

modes”, to append to the linear basis, i.e. the modes that would be used in the linear case. 

It was argued in [54] that the representative static loadings should be selected to excite 

primarily the linear basis modes and, in fact, in the absence of geometric nonlinearity (i.e. 

for a linear analysis) should only excite these modes. i.e. the applied load vectors 
)(m

FE
F  

on the structural finite element model should be such that the corresponding linear static 

responses are of the form  
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where 
)(m

i  are coefficients to be chosen with m denoting the load case number. A 

detailed discussion of the linear combinations to be used is presented in [54] but, in all 

validations carried out, it has been sufficient to consider the cases 
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and 
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where a “dominant” mode is loosely defined as one expected to provide a large 

component of the panel response to the physical loading. The ensemble of loading cases 
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considered is formed by selecting several values of 
)(m

i  for each dominant mode in Eq. 

(56) and also for each mode ij   in Eq. (57). Note further that both positive and 

negative values of 
)(m

i  are suggested and that their magnitudes should be such that the 

corresponding displacement fields )(m
u  range from near linear cases to some exhibiting a 

strong nonlinearity. 

The next step of the basis construction is the extraction of the nonlinear effects in 

the obtained displacement fields, which is achieved by removing from the displacements 

fields their projections on the linear basis. Finally, a proper orthogonal decomposition 

(POD) analysis of each set of “nonlinear responses” is then sequentially carried out to 

extract the dominant features of these responses which are then selected as dual modes, 

see [54] for full details. 

The above dual mode construction has been very successfully applied to various 

beam and plate structural models, e.g. see [39,54-58,62-65], to capture the nonlinear 

interaction, both static and dynamic, between transverse and “in-plane” motions. Its 

application to the panel of Fig. 1 did provide a basis that represented much better the 

nonlinear response, especially in the in-plane (tangential) direction, than the one based on 

the linear modes but yet not well enough to obtain an accurate reduced order model 

prediction of the full order Nastran results. This observation suggested that the load cases 

of Eq. (56) and (57) do provide a very valuable platform to identify the nonlinear effects, 

but it also demonstrated that other, smaller components, are also present. 
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In addition to the dual modes, “tangent duals” were added to the basis in order to 

capture the remaining components of the displacement. First, the tangent stiffness matrix 

is acquired at the displacements )(m
u  induced by the loading of Eqs (56) and (57). Next, 

a generalized eigenvector analysis of each matrix  
)(ˆ )( mT uK  was performed yielding 

the vectors )(m

j
  such that 

  )()()()( )(ˆ m
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m
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mT MuK  .                                                                   (58) 

Next, the eigenvectors )(m

j
  that are most significantly excited by the loading were 

retained and made orthogonal to the linear and dual modes in the basis. Finally, a POD 

analysis of the ensemble of modes was carried out to extract the novel information in the 

eigenvectors )(m

j
 . 

 

3.2.2 Thermal Basis 

For the beam, the thermal basis functions are a product of a through thickness 

component and a spanwise component. The spanwise component of the basis is the 

thermal eigenvector and the through thickness component is either a linear or cubic 

function of the through thickness location.  

For the panel, the thermal basis functions are composed of eigenvectors of the 

generalized eigenvalue problem involving the capacitance and conductance matrices at 

reference temperature. Additionally, the two-way coupled analysis required that the 

thermal basis be enhanced. Two different approaches were considered. First, an adaptive 
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approach was developed in order to construct the basis as the simulation was carried out. 

This involved the solution of an auxiliary problem with similarities to the full order, 

nonlinear thermal problem. The solutions of the auxiliary problem would then be used as 

a basis for the thermal ROM. Second, an alternative strategy to developing a thermal 

basis for the two-way coupled problem involved simulating the two-way coupling 

between the structural and thermal problem under a set of conditions which were 

representative of the conditions experienced during the ascent trajectory analysis. 

Structural displacements according to the linear structural modes were imposed while a 

constant Mach free stream flow was applied. The aerothermal analysis was performed in 

order to predict the heat flux acting on the panel under these conditions, and this flux was 

then applied to an unheated panel and a thermal simulation was then carried out. The 

resulting temperature fields acted as enrichments to the thermal basis which captured the 

coupling between the structural and thermal problems. 

 

3.3 Identification of the Parameters of the Reduced Order Model 

3.3.1 Structural Parameters 

3.3.1.1 No Temperature Present 

   While Eqs (36)-(48) provide exact expressions for the coefficients of the 

structural reduced order model, they are not in a form that is convenient for evaluation 

from a finite element model in which only discretized values of the modes are available. 

This observation has led, as in prior investigations, to the consideration of indirect 

methods for the estimation of the coefficients from a series of static finite element 
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computations. In the absence of temperature variations, the STEP identification strategy 

of the coefficients 
)1(

ijK ,
)2(

ijl
K , and 

)3(
ijlp

K   as initially proposed by Muravyov and Rizzi 

[34] and modified by [54] has often been utilized. 

In the STEP algorithm, the entire displacement field of the structure is imposed 

and the required static force distribution is obtained from the finite element code. The 

corresponding modal forces are then evaluated by projection on the basis. Appropriately 

selecting the displacement fields to be imposed can lead to a particularly convenient 

identification of the stiffness coefficients. Specifically, the imposition of displacements 

proportional to the basis function 
)(n

  only, i.e. 

)(n
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leads from Eq. (3) to the 3 sets of equations 
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in which no sum over the index n is to be understood and for i = 1, ..., M. Moreover, 
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where F , F̂ , and F
~

 are the force distributions needed to induce the three displacements 

fields of Eq. (59). In fact, these 3 sets of equations permit the direct evaluation of the 
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coefficients 
)1(

inK , 
)2(

innK , and
)3(

innnK  for all i. Repeating this effort for  n = 1, ..., M thus 

yields a first set of stiffness coefficients. 

Proceeding similarly but with combinations of two basis functions, i.e. 

 

)()( m
m

n
n qqu      m  n                                                                         (62) 

leads to equations involving the three coefficients 
)2(

inmK , 
)3(

innmK , and 
)3(

inmmK . Thus, 

imposing three sets of displacements of the form of Eq. (62) provides the equations 

needed to also identify 
)2(

inmK , 
)3(

innmK , and 
)3(

inmmK . 

Finally, imposing displacement fields as linear combinations of three modes, i.e. 
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 r  m  n  ,                                             (63) 

permits the identification of the remaining unknown coefficients, i.e. 
)3(

inmrK . 

An alternate approach has also been proposed [65], which relies on the availability of the 

final tangent stiffness matrix for each imposed displacement case. The advantage of this 

approach is that an M x M matrix is obtained for each solution and thus a reduction of the 

computational effort to )( 2MO  vs. )( 3MO  for the algorithm of Eqs (59)-(63) is 

achieved. The specific details of this algorithm are developed below. 

Note first that the iu component of the reduced order tangent stiffness matrix can 

be derived from the cubic stiffness operator of Eq. (26) as 
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It was proposed in [28] to determine the stiffness coefficients  
)1(

ijK , 
)2(

ijl
K , and

)3(
ijlp

K  by 

imposing the matching, for a series of deformed configurations, of the reduced order 

tangent stiffness matrix with the projection on the basis of its finite element counterpart 

)(ˆ TK . That is,  
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where the displacement fields 
   pp

qu  , for a series of p = 1, ..., P deformed 

configurations. 

The first such configuration is the undeformed one, i.e. u = 0, for which )(TK  is 

simply the linear stiffness matrix )1(K  and thus 

 )0(ˆ )()1( TT KK                                                                             (66) 

The next set of deformed configurations, 
 p

u , selected here are those of the imposed 

displacement scheme, Eqs (59) and (62). Consider first the situation in which the 

imposed displacement is along a single basis function, i.e. 
)( j

jqu  . The 

corresponding ROM tangent stiffness matrix can then be written as (no sum on j) 

 
    2)3()3()3()2()2()1()(

jiujjijujijjujiujijuiu
T

iu qKKKqKKKK 
                              

(67) 
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In this regard, note that the elements 
)2(

ijl
K  and 

)3(
ijlp

K  can be assumed to be zero unless p 

 l  j and thus the above equation is equivalent to three conditions 

  2)3()2()1()(ˆ
jijjujijuiuiu

TT qKqKKK             j < u  

  2)3()2()1()( 32ˆ
uiuuuuiuuiuiu

TT qKqKKK        j=u                               (68a,b,c)     

  2)3()2()1()(ˆ
jiujjjiujiuiu

TT qKqKKK            j > u    

from which the coefficients 
)2(

ijl
K , 

)3(
ijjl

K , and 
)3(

ijll
K  can be estimated  given the linear 

stiffness coefficients  obtained from Eq. (63). 

To complete the identification of the reduced order model, it remains to evaluate 

the coefficients 
)3(

ijlu
K  for jl, ju, and ul. They can be evaluated from the knowledge of 

)(T
iuK  corresponding to a displacement field which involves both basis functions j and l, 

i.e. of the form of Eq. (61). Then, 
)(T

iuK  is given by Eq. (64) in which no summation on j 

and l applies. Specifically, for u > l > j, one has 

   
 2)3(2)3()3(

)2()2()1()(

                  

ˆ

lillujijjuljijlu

lilujijuiuiu
TT

qKqKqqK

qKqKKK





                                                
(69) 

in which all terms are known except 
)3(

ijlu
K . 
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Lastly, the remaining parameters of the model of Eq. (26), i.e. the modal masses

ijM , damping coefficients ijD , and modal forces iF  are determined from the finite 

element model of the structure as follows 

)()( j
FE

Ti
ij MM                                                                                         (70) 

)()( j
FE

Ti
ij DD                                                                                           (71) 

FE
Ti

i FF
)(

                                                                                                    (72)    

where ,,
FEFE

DM  and FEF  are the global mass matrix, damping matrix, and forces 

applied to the full finite element model. 

Note finally, that the modal forces iF will in general be affected by the “pull 

back” operation. However, this issue was not addressed here because the displacements 

of the beams and panels considered in this investigation did not exceed a few thicknesses. 

 

3.3.1.2 Temperature Present – Temperature Independent Properties 

So far, a method for determining the coefficients in the absence of a nonzero 

temperature field has been provided. When the structure is subjected to thermal loading, 

and when the elasticity tensor and coefficient of thermal expansion do not vary with 

temperature, the linear stiffness term has a linear dependence on temperature. In fact, the 

linear stiffness can be expressed as follows: 

rrijijij KKK 
)1(
,

)1(
0,

)1(
                                                                                         (73) 
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with 
)1(
0,ij

K being the linear stiffness in the absence of temperature and 
)1(

ijK being the 

linear stiffness in the presence of temperature. In order to determine the value of 
)1(
,rijK , 

temperature fields proportional to each thermal mode as  

   XTXT
r

r
)(

                                                                                               (74) 

are imposed on the structure. With each temperature field applied, 
)1(

ijK could be found 

using either of the methods previously described. Since r  is a known scalar value, the 

only unknown left is 
)2(
,rijl

K , which is directly solved for in Eq. (73). The thermal moment 

term on the right hand side of Eq. (26) is determined as 

)()()( th
FE

Tith
il

FF   .                                                                                           (75) 

)(th
FE

F  is the force induced by the application of each thermal mode to the structure. 

 

3.3.1.3 Temperature Present – Temperature Dependent Properties 

For the beam model the elasticity tensor and coefficient of thermal expansion will vary 

with temperature. In order to determine the temperature dependent terms given in Eqs 

(36)-(39), a method similar to the one specified above will be used. A series of 

temperature fields, which will result from combinations of thermal modes, will be 

imposed on the system, and the desired stiffness and force terms will be acquired using 

the methodology specified above. A system of linear equations will result in which the 

temperature dependent parameters of Eqs (36)-(39) will be solved for. 
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 In all these equations, the terms with a subscript of 0 denote parameters that are 

not connected to the thermal generalized coordinates. These terms are found using the 

method described in Section 3.3.1.1, in which the reference temperature is enforced on 

the structure, with the elasticity tensor being independent of temperature and the 

coefficient of thermal expansion being equal to zero. 

 As seen in Eqs (37)-(38) the cubic and quadratic stiffness terms depend linearly 

on temperature, due to the presence of the elasticity tensor. Looking specifically at the 

quadratic stiffness, Eq. (37) can be rearranged as follows: 

  rrijlijlijl
KKK 

)2(
,

)2(
0,

)2(
                                                                                    (76) 

In order to determine the value of 
)2(
,rijl

K , temperature fields proportional to each thermal 

mode as  

   XTXT
r

r
)(

                                                                                               (77) 

are imposed on the structure, with the elasticity tensor varying with temperature. 

With each temperature field applied, the method described in Section 3.3.1.1 was applied 

in order to find 
)2(

ijl
K . Since r  is a known scalar value, the only unknown left is 

)2(
,rijl

K , 

which is directly solved for. In the same way, the terms that define the cubic stiffness 

coefficient, 
)3(
,rijlp

K ,can be found. 

 The linear stiffness coefficients and thermal moment terms have a cubic 

dependence on temperature. Further, they can be rearranged to have the same form as 
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specified in Eq. (60) but with the thermal generalized coordinates j  as opposed to their 

structural counterparts jq , e.g. 

  nmllmnijmllmijllijijij KKKKK 
)1(
,

)1(
,

)1(
,

)1(
0,

)1(
  .                                    (78)

 

Based on the similarity between Eqs (60) and (78), temperature fields will now be 

applied as the displacement fields were applied in the STEP method. Thus, the first step 

is to estimate the parameters 
)1(
,lij

K , 
)1(
,llij

K , and 
)1(
,lllij

K . Applying a temperature field 

proportional to a single thermal basis function, i.e.  

    3,2,1
)()()(

 rXTXT
lr

l
r

                                                                   (79) 

for each value of l in turn results in 

  llllllijllllijllijijij KKKKK 
)1(
,

)1(
,

)1(
,

)1(
0,

)1(
                                              (80) 

As each temperature field is applied to the system, which has both the elasticity tensor 

and the coefficient of thermal expansion varying linearly with temperature, the method 

described in 3.3.1.1 is again applied in order to determine 
)1(

ijK . Since l  is a known 

scalar, what results is a system of 3 linear equations in which there are 3 unknowns, 
)1(
,lij

K

, 
)1(
,llij

K , and 
)1(
,lllij

K . 

 The next step is the estimation of the parameters 
)1(
,lrij

K , 
)1(
,lrrij

K , and 
)1(
,llrij

K , for 

rl  , which appear in the model through the generalized coordinates r  and l . These 

parameters can be found following a similar procedure as the first step but with the 

application of the temperature fields that are of the form 
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      3,2,1
)()()()()(

 pXTXTXT
rp

r
lp

l
p

.                                        (81) 

The third and last step involves the determination of the parameters 
)3(

,lrsij
K , for l, r, and s 

all different. The temperature field imposed on the system in order to find this parameter 

is of the following form. 

       XTXTXTXT
s

s
r

r
l

l
)()()(

                                                       (82) 

The temperature dependent parameters of Eq. (39), which describes the thermal moment 

term, can be found in the same manner. 

3.3.2 Thermal Parameters 

   When the specific heat and thermal conductivity do not change with temperature 

the components of Eq. (27) are evaluated in a straightforward manner, as shown in Eqs 

(83) and (84), 

)()( j
FE

i
ij TBTB                                                                                               (83) 

)()( ~~ j
FE

i
ij TKTK  ,                                                                                           (84) 

where 
FE

B   and 
FE

K
~

are the capacitance and conductance matrix from the finite 

element model.  

A different approach has to be taken to determine the components of the 

capacitance and conductance matrix when the specific heat and thermal conductivity 

change with temperature, as it does with the panel. With regards to specific heat, it should 

first be noted that this is an isotropic property. With this in mind, the capacitance matrix 

was found for every individual element at the reference temperature. The average 
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temperature was found for each element and then the ratio of the current value of specific 

heat to the value of specific heat at reference temperature was found. The capacitance 

matrix for each element was multiplied by its associated ratio of specific heat, and then 

all the elemental capacitance matrices were assembled into the global matrix.  

Thermal conductivity is isotropic in the elements that comprise the stiffeners of 

the panel, which is why the procedure just described was applied to these elements. 

However, thermal conductivity is not an isotropic property in the elements that comprise 

the skin of the panel, since the inplane conductivity changes with temperature while the 

through thickness conductivity does not. Because of this, a database of conductance 

matrices of a single element was found at every temperature listed in Table 3, which 

depicts the relationship between the specific heat with temperature. Due to the uniformity 

of the shape of the skin elements, only one master element was needed. Within the 

conductance matrix of this master element there are only six unique numerical values. 

The average temperature was found for each skin element and the element’s conductance 

matrix was found by interpolating the values of the six unique components of the master 

element matrix between the temperatures listed in Table 3. This was done for every skin 

element and then the global conductance matrix was assembled. Then, the modal 

conductance and capacitance matrices could be determined, as shown in Eqs (85) and 

(86). 

)()( j
global

i
ij TBTB                                                                                           (85) 

)()( ~~ j
global

i
ij TKTK                                                                                          (86) 
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Finally, the force term, iP , is composed of thermal loads stemming from the 

aerodynamics, as well as radiation. The convection boundary condition described by Eq. 

(4) can be rewritten as 

wconvawconvaero ThThQ    .                                                                            (87) 

The term multiplying wall temperature, wT , was moved to the left hand side of the 

thermal governing equation and added to the conductance matrix. The term involving 

adiabatic wall temperature, awT  , was evaluated for each element. This term was then 

added to the flux from radiation, which was calculated according to Eq. (5) using the 

average temperature of each element. The element flux was then converted to nodal flux. 

In order to do this a unit value of heat flux was applied to an element on the skin of the 

finite element model while its temperature was held constant. The nodal reaction flux to 

this unit flux acting on the element was then acquired.  The total flux acting on each 

element was then used to scale the nodal reaction flux and these values from each 

element were then assembled into a global nodal flux vector, globalP . Then, the modal 

flux was determined using Eq. (88). 

global
Ti

i PTP
)(

                                                                                                (88) 
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CHAPTER 4 – RESULTS 

4.1 Results for the Thermal ROM of the Representative Panel 

4.1.1 One-Way Coupled Analysis 

The first issue to be addressed is the construction of the thermal reduced order 

basis. The temperature fields which are to be represented are those obtained in the one 

and two-way coupled, constant rate ascent trajectory analysis of [10] with the 10% spring 

boundary condition (maximum), in which the flow and its convection only act on the skin 

(top) of the panel. Accordingly, there is no heating taking place on the stiffeners and the 

heat must thus flow on them from the fold lines, where skin and stiffeners meet, to the 

free ends. Further, in the one-way coupled analysis, the heat convection is fairly constant 

through the skin resulting in a reasonably uniform temperature distribution. These 

comments are well reflected on the temperature distribution of Fig. 3(a) which was 

obtained after 300 s of analysis.  

Note that Fig. 3 is a “developed” 2D image of the entire panel. The stiffeners on 

the side have been “folded” upwards so that they lie in plane with the skin of the panel. 

The y domain from 0 to 10 inches represents the skin of the panel, while the regions less 

than 0 and greater than 10 represent the two stiffeners. The flow moves from left to right. 

The variation of temperature in the direction of the flow is mild. It is also in the y 

direction except in the stiffener domains where it is severe. 
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Figure 3. Temperature on Panel at Last Time Step. Results From Nastran (a) and Thermal 

Reduced Order Model (b) 

As broadly described above, the eigenvectors of the generalized conductance 

capacitance eigenvalue problem were first chosen to construct a thermal basis to 

represent the temperature fields occurring in the one-way coupled analysis. The 

sufficiency of the basis was assessed by projecting the desired temperature field of Figure 

3(a) onto the thermal basis. It was found, however, that the dominant eigenvectors did not 

produce fast enough convergence. This is not too surprising, given the sharp temperature 

gradient at the stiffener that would be very difficult for these eigenvectors to represent. 

The differences between the boundary conditions of the skin and stiffeners, 

specifically the skin’s exclusive exposure to the flow, necessitates that the basis account 

for the interaction of the aerodynamics and the heat convection acting on the exposed 

surface. So, in addition to the eigenvectors of the entire panel, another set of modes was 

generated from the conductance-capacitance generalized eigenvalue problem of the panel 

when the fold line connecting the skin and the panel was constrained to constant 

temperature. 
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In the end, 20 eigenvectors from the full model and 7 eigenvectors from the 

constrained model were selected for the final thermal basis for the one-way coupled 

analysis, totaling 27 modes. Figure 3 (b) shows the temperature field representation error, 

T

TT proj
Trep


 , ,                                                                                         (89) 

obtained by subtracting from the temperature distribution at six points in the analysis its 

projection on the thermal basis, as in Eq. (89). It should be noted that the average 

temperature at each timestep is subtracted out of the temperature fields of Eq. (89). This 

was done so that the large average temperature would not inhibit the observation of errors 

in temperature variations about the mean temperature. This error was computed from the 

data of [10] at every 10 seconds of the 300 seconds of analysis. The error in the very 

beginning is large relative to the error throughout the rest of the analysis, however, 

significant error in the temperature fields in the beginning of the analysis proved to have 

little influence over the prediction of temperature and displacements throughout the rest 

of the analysis, which are a higher priority considering the increased temperature and 

displacements observed at these later times. 
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Figure 4. Representation Error of 27 Mode Basis Over 300 Second Analysis 

A one-way coupled thermal simulation of the constant rate ascent trajectory 

analysis was performed using the thermal reduced order model for 300 seconds and 

resulted in errors shown in Fig. 5, when comparing the predicted results to the results in 

[10] at every 10 seconds of analysis. The error for the final time step is 1.0% and the full 

temperature field predicted by the ROM can be seen in Fig. 3(b). 
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Figure 5. Prediction Error of 27 Mode Thermal Model at Every 10 Seconds 

 

 

4.1.2 Two-Way Coupled Analysis: Adaptive Basis 

The 27-mode basis constructed above for the one-way coupled case was assessed 

to represent the temperature distribution of the two-way problem with full aero-thermo-

structural interaction. This assessment was carried out by projecting the known results 

from [10] onto the thermal ROM basis. Shown in Fig. 6 are the corresponding norm 

errors, i.e. representation errors. 

Interestingly, the representation error remains very low for approximately the first 

third of the time history and thus the single discipline basis would be fully appropriate in 

that time period to predict the temperature even in this multidisciplinary situation. Yet, 

with the increasing flow speed and thus temperature, the structural deformations grow 

and start to affect sufficiently the flow and, in turn, the convection leading to a qualitative 

change in temperature distribution. This behavior coincides with the rapid increase in the 

representation errors, i.e. the temperature distribution is no longer well representable by 

the 27-modes basis. Given the complexity of this interaction, it is proposed here to devise 

a strategy to adapt the thermal basis to the changing physics of the problem induced by 

the evolving aero-thermo-structural coupling.  

 



56 

 

 
Figure 6. Representation Error of Thermal ROM Basis for Two-Way Coupled Analysis 

and Time History of Maximum Panel Displacement Into the Flow. 

Fig. 7 (a) and (b) show the temperature fields predicted after 300 seconds of the 

one-way and two-way coupled analysis. Clearly, there are dramatic differences between 

the one and two-way coupled analyses, with the latter generating a more complex 

temperature distribution than its one-way counterpart. Note again that the panel has been 

“flattened” so that the stiffeners have been brought up to the same plane as the skin, 

producing a 2-D presentation of the 3-D structure. The regions above y=10 and below 

y=0 are the stiffeners, and the flow moves from left to right.  
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Figure 7. Temperature of the Panel After 300 Seconds of (a) One-Way Coupled Analysis 

and (b) Two-Way Coupled Analysis. 

Adapting the thermal basis requires having relevant data. Yet, it is also desired 

not to solve the full order problem or not solve it often, as not to increase significantly the 

cost of the reduced order modeling computations. To address this situation, it is proposed 

here to proceed with the adaptation on a simpler yet similar problem, referred to as the 

auxiliary problem. It is proposed here that this auxiliary problem be of the heat 

conduction on the panel without radiation and with constant conduction and capacitance 

properties. The equations governing this problem are thus linear and contain constant 

coefficients, i.e. they have a very efficient solution. The purpose of the auxiliary problem 

will be to determine the changes to the basis functions to be carried out. 

The following discussion will then focus on (1) demonstrating the validity of the 

proposed auxiliary problem and (2) investigating how and how often the basis should be 

updated. To validate the auxiliary problem, an unsteady analysis of it was performed over 

the same time span (300 seconds) as the complete analysis. Snapshots of the temperature 

fields produced by this linear analysis with the fluxes obtained from the full order 

analysis of [10] were generated and were projected on the basis. If the auxiliary problem 

is a meaningful substitute for the full, nonlinear problem, the residuals of these linear 

analyses should contain meaningful information on how to modify the thermal basis 

functions. 

This information was extracted through a proper orthogonal decomposition 

(POD) of the residuals and the corresponding dominant eigenvectors were determined 

and assessed as potential basis functions for the reduction of the representation error of 
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the full (two-way coupled) temperature distribution. If this process leads to a good 

representation of this latter temperature field, then the auxiliary problem is indeed 

appropriate for the adaptation of the basis. 

 

 
Figure 8. Representation Error of Enhanced Thermal ROM Basis for Two-Way Coupled 

Analysis. 

Shown in Fig. 8 is the representation error occurring at every 10 seconds of the 

300 second analysis when the 30 most dominant POD eigenvectors are added to the 

original 27 thermal modes. The error of 35% observed in Fig. 6 has now been reduced to 

approximately 1% demonstrating that the linear analysis does have the capability to 

produce enrichments to the basis that can capture the desired temperature fields. It is thus 

concluded, for this problem at least, that the linear conduction problem with temperature 

independent properties is an appropriate auxiliary problem. 

The next question to be addressed is how and how often the thermal basis should 

be adapted. Presented here are a number of options that were evaluated. In all of them, 

the auxiliary problem was solved only at regular time intervals and for a few consecutive 
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time steps. That is, the auxiliary problem is only performed at specific windows of time 

along the flight trajectory. The first approach placed enrichment times at every 40 

seconds, after the first 100 seconds of analysis had passed. To have consistent data, the 

solution of the auxiliary problem analysis is performed over N consecutive time steps 

yielding N temperature fields which are then processed to extract thermal basis 

enrichments. 

Much of the present study was carried out with blocks of N =12 sets of 

consecutive temperatures. They were separated into three windows of four seconds each, 

and a POD analysis was performed on each set. The consistency of the eigenvectors from 

one window to another was assessed with the modal assurance criterion (MAC), which is 

the measure of co-linearity of two vectors. For the vectors x and y, the MAC number 

would be defined as 

yx

yx
MAC


 .                                                                                          (90) 

The MAC numbers of the three sets of POD modes were then computed and the POD 

modes that maintained a presence throughout the 12 seconds of analysis would be kept. 

Initially, a MAC number of 0.9 was used to affirm the presence of a mode in multiple 

sets of data, and this resulted in the addition of two modes at every enrichment time for a 

total of 37 modes by the end of the analysis. The two enrichment modes that were added 

were present in all of the POD mode sets, but were chosen from the POD modes acquired 

through the first window of four seconds of the auxiliary analysis. It was found through 

experience that POD modes from the first POD set produced slightly better reduction in 
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representation error than the latter two POD sets. Shown in the following figures is the 

representation error when the temperature fields from [10] are projected onto the modal 

basis, as it evolves in time. The legend entry titled “set 100” relates to the enrichments of 

the basis found using the auxiliary solution starting after the 100
th

 time step, i.e. from the 

auxiliary solution in the interval [101,112] seconds and added to the basis from the time 

of 113 seconds. The solid black line provides at every time the projection error on the 

most up-to-date basis. 

The strategy described above was found to be quite successful in reducing the 

representation error. Shown in Fig. 9 are the results obtained when a MAC of 0.9 is 

required for consistency over the three windows of four seconds. The maximum error is 

6.1% and occurs at 270 seconds, while the final error (i.e. at the final time of 300s) is 

2.9%. These results are significantly better than the 35% of the original model! When the 

MAC number requirement for keeping a POD mode was reduced to 0.8, only one 

additional enrichment was added, bringing the total of these modes over the entire time to 

11. Figure 10 shows the resulting representation errors: the maximum error of 3.4% 

occurs at 270 seconds and the final error is 1.3%. 

A dynamic adaptation of the reduced order model basis would not only bring in 

new basis functions but it would also lead to the removal of others. To understand better 

which modes would be candidate for removal, i.e. those of the original basis or some of 

the enrichments added at earlier times, the influence of each mode in capturing the 

desired temperature fields was investigated. The magnitudes of the projections of the 

temperature on the basis functions, which equal the representation error reduction 
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induced by each of these basis functions, are presented as bar graphs in Figs 11-13 for the 

temperature distributions obtained at 100, 200, and 300 seconds. It is seen from this data 

that several of the thermal modes of the original 27 mode basis remain significant 

throughout the 300 second analysis while many of them stop contributing significantly 

and are thus candidates for removal. Further, the enrichment modes added at one time 

appear to remain strong contributors in later times and thus should be kept throughout. 

Note the addition/removal of thermal basis functions implies changes in the thermoelastic 

part of the structural ROM which would need to be updated. Further, small changes in the 

structural basis would also be expected to take place and that cost should be factored in 

the adaptation process but was not addressed here. 

 

 
Figure 9. Representation Error of the Adaptive Basis Using a Selection Criterion of a 

MAC of 0.9. 
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Figure 10. Representation Error of the Adaptive Basis Using a Selection Criterion of a 

MAC of 0.8. 

 

Figure 11. Representation Error Reduction by Each Thermal Mode With the Temperature 

Field of the Full Order Solution at 100 Seconds. 
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Figure 12. Representation Error Reduction by Each Thermal Mode With the Temperature 

Field of the Full Order Solution at 200 Seconds. 
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Figure 13. Representation Error Reduction by Each Thermal Mode With the Temperature 

Field of the Full Order Solution at 300 Seconds. 
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and occurs at 270 seconds, while the final error is 1.3%. These values are slightly smaller 

than those obtained with the three windows of four seconds each with the 0.8 MAC 

threshold but four additional modes were added. 

 

Figure 15. Representation Error When Adaptive Basis is Enriched Using the Dominant 

POD Modes of a Single Window of 12 Seconds of Data. 
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seconds. POD analyses were performed on three sets of  solutions, comprised of four 

temperature fields each. POD modes with MAC numbers between these three sets of 

modes that maintain a value above 0.8 over the 12 seconds were retained. This strategy 

produced a 15 mode total enrichment to the basis and led to a maximum error of 4.4% 

occurring at 250 seconds and a final error of 1.9%, see Fig. 16. Surprisingly, these results 

are worse than their counterparts for enrichment times of 40 seconds and with a larger 

basis. This observation would suggest that the enrichments were not well captured, 

possibly because the errors were not large enough to be consistent. 

 
Figure 16. Representation Error of Adaptive Thermal Basis When it is Enriched Every 20 

Seconds Using a MAC Criterion of 0.8. 
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could be obtained by varying the capacitance and conductance matrices to reflect the 

general heating up of the panel. To assess this possibility, the conductance and 

capacitance matrices were constructed using the temperature field at the beginning, 

middle, and final time step of the 12-second enrichment analysis. Based on representation 

errors, there did not appear to be any significant differences between the three different 

approaches. In all of these cases, three sets of POD modes were found at every 

enrichment time. After MAC numbers were calculated for the three sets of modes the 

POD modes that maintained MAC numbers above 0.8 were used to enrich the basis 

which was done every 40 seconds. Shown in Fig. 17 are the representation errors over the 

300 seconds of analysis when the conductance and capacitance matrices are updated with 

the temperature field at the beginning of the 12 second enrichment location. The 

maximum error of 3.5% occurs at 270 seconds, and the final error is 1.0%. These results 

are essentially similar to those obtained with the temperature-independent auxiliary 

problem suggesting that there is little benefit in this case to update the conductance and 

capacitance matrices of the auxiliary problem. 
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Figure 17. Representation Error of Adaptive Thermal Basis When the Conductance and 

Capacitance Matrix are Updated at the Beginning of Every Enrichment Location. 
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that accounts for the coupling between the displacement and temperature fields, the panel 

would be displaced according to the shape of each of the normal structural modes and 

would then be subjected to the type of flow experienced in the expected flight profile. 

The heat flux predicted by the aerodynamic heating model would then be applied to the 

panel, and the resulting temperature fields would be used to enrich the thermal basis. 

Many parameters could be varied, such as the Mach number applied, length of 

thermal simulation, displacement level, etc. For the initial attempt, properties were 

selected which were typical of those experienced throughout the analysis. A Mach 

number of 7 was selected, which is the average Mach number of the flight trajectory 

under investigation, and a maximum displacement of 2 thicknesses was assumed when 

the panel was displaced according to the shape of each linear mode. In the one-way and 

two-way coupled analysis the maximum transverse displacement is 2.6 and 2.1 

thicknesses, respectively, indicating that the displacement level is reasonable. Having 

subjected the panel to the flow, the heat flux acting on the skin was determined using the 

aerodynamic heating model. Beginning at reference temperature, the heat flux was then 

used to simulate the linear, transient heating of the panel for 10 seconds, storing the 

temperature field occurring on the panel every 0.2 seconds, for a total of 50 temperature 

fields. Carrying out the simulation longer than 10 seconds did not increase the 

effectiveness of the resulting thermal enrichments. A POD analysis was then performed 

on the 50 temperature fields. This process was then repeated for every linear structural 

mode. In order to select the POD modes to be added to the thermal basis, the temperature 

fields at 200, 250, and 300 seconds of the two-way coupled analysis in [10] were then 
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projected onto the thermal basis as the POD vectors from every set were added, one by 

one, to the original 27 mode basis. The POD modes that caused a significant drop in error 

were retained in the basis. 12 additional modes were retained when a minimum error drop 

of 0.3% was required for retention, resulting in a basis of 39 modes that brought the 

maximum error down to 3.38%. Fig. 18 shows the representation error over the 300 

seconds of two-way coupled simulation results.  

 

Figure 18. Thermal Representation Error of 39 Mode Basis Over 300 Seconds. 
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Next, it was desired to understand the influence that the Mach number of the free 

stream flow would have on the thermal enrichment modes. In addition to the Mach 7 case 

outlined above, a free stream flow of Mach 2 and 12 were also used in order to assess the 

differences between the enrichments found from the low, mid, and high speed flow. A 

description of the results are shown below in Table 6, where the total number of modes 

and resulting errors are shown for the various Mach levels used. 

Table 6. Effect of Mach on Enrichment Modes 

Free Stream 

Mach 

Minimum 

Error Criteria 

Number 

of Modes 

Error at 200 

Seconds 

Error at 250 

Seconds 

Error at 300 

Seconds 

2 0.5% 38 3.3 3.7 4.6 

2 0.3% 42 2.3 3.3 4.2 

7 0.5% 32 2.8 3.0 4.6 

7 0.3% 39 1.8 2.6 3.4 

12 0.5% 33 2.8 3.0 4.2 

12 0.3% 36 1.9 2.4 4.0 

 

The differing number of total modes makes it a challenge to compare the results between 

the 3 different Mach numbers selected, but it is apparent that the basis produced from 

Mach 7 and Mach 12 flow are more effective than the basis produced from Mach 2 flow. 

These results would seem appropriate, considering that the portion of the flight trajectory 

that is most difficult to model lies in the region where Mach 7 and Mach 12 flow occur. 

No apparent advantage is seen in either the Mach 7 or 12 data over the other. 

It was desired to see the influence of the nonlinear aspects of the thermal problem 

on the efficacy of the enrichment modes, and whether or not the nonlinearity could bring 

the error down significantly more than the 3 to 4% previously acquired. In order to do 

this, the same analysis was performed, but with radiation included in the 10 second 

thermal simulation. Here, the Mach 12 flow was used and 50 POD modes were created 
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from this simulation for each linear structural mode imposed. These POD modes were 

added to the modes found using the linear thermal simulation. The thermal results from 

the two-way analysis at 200, 250, and 300 seconds were projected onto these modes, one-

by-one, and the dominant modes were added to the original basis of 27 thermal 

eigenvectors. Table 7 shows these results. 

Table 7. Enrichment Modes From Thermal Simulation Including Radiation 

Minimum 

Error Criteria 

Number of 

Modes 

Error at 200 

Seconds 

Error at 250 

Seconds 

Error at 300 

Seconds 

0.5% 39 1.7 2.1 3. 7 

0.3% 44 1.4 1.9 2. 8 

Comparing the results in table 7 with those of table 6, it is concluded that the inclusion of 

radiation does not bring new, needed information to the basis. 

The other nonlinear aspect of the thermal problem is the temperature dependent 

specific heat and conductivity. These properties were included in the 10 second thermal 

simulation assuming Mach 12 flow, and the 50 resulting thermal POD vectors were 

added to the 50 POD vectors from the linear thermal analysis. Again, temperature fields 

from the two-way thermal analysis were projected onto these modes and the ones causing 

a drop in error greater than the minimum requirement were retained in the basis. Table 8 

shows the results for this basis.  

Table 8. Enrichment Modes From Thermal Simulation Including Radiation and 

Temperature Dependent Properties 

Minimum Error 

Criteria 

Number of 

Modes 

Error at 200 

Seconds 

Error at 250 

Seconds 

Error at 300 

Seconds 

0.5% 39 1.8 2.5 3.9 

0.3% 47 1.6 2.2 3.3 

It is apparent from these results that the inclusion of nonlinear properties do not bring 

anything new to the basis. 
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The displacements of the panel occurring during the fully coupled analysis will be 

a combination of the transverse modes that are being used to find these thermal 

enrichments. Thus far, the principle of superposition has been assumed, in that the 

temperature fields produced by imposing each linear structural mode can add to represent 

the temperature field produced by a displacement that is a combination of these structural 

modes. Here, an approach is used that attempts to assess whether or not the nonlinear 

aspects of the problem inhibit the assumption of superposition that is used thus far in the 

analysis. It should be noted that the displacements are dominated by the first normal 

mode in the one-way coupled analysis, and both the first and second normal modes in the 

two-way coupled analysis. 

Displacements of the panel were imposed which were a combination of the first 

structural mode and every other linear structural mode, totaling 16 displacement fields. 

The aerodynamic analysis was carried out assuming a free stream flow of Mach 12, and 

the resulting heat flux acting on the panel was used in a linear transient analysis to 

simulate the heating on the panel for 10 seconds. This process was then repeated using 

combinations of the second normal mode, and every other normal mode in the basis. Both 

of these sets of enrichments were then added to the enrichment set that was constructed 

when using each linear mode on its own, without combinations. The temperature fields 

from the two-way coupled analysis at 200, 250, and 300 seconds were then projected 

onto these modes and the effective modes were added to the basis. The resulting bases 

produced the results shown in Table 9. 
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Table 9. Enrichment Modes From Thermal Simulation Including Radiation and 

Temperature Dependent Properties 

Minimum Error 

Criteria 

Number of 

Modes 

Error at 200 

Seconds 

Error at 250 

Seconds 

Error at 300 

Seconds 

0.5% 33 2.8 3.0 4.2 

0.3% 36 1.9 2.4 4.0 

As can be seen, the results shown in Table 9 match almost exactly the results found in 

Table 6, in which the thermal enrichments were found using individual structural modes, 

as opposed to structural mode combinations. Thus, it was concluded that using 

combinations of structural modes brought no new, useful information to the basis. 

In all previous attempts at acquiring enrichment modes the transient thermal 

analysis was carried out for ten seconds with the same heat flux. In the original analysis 

of [10], the thermal loading was updated at every half second. The next effort to develop 

enrichment modes involves carrying out a 10 seconds thermal analysis in which the heat 

flux is updated every half second, while the displacement remains fixed according to the 

shape of each linear mode. This simulation assumes an initial Mach 7 freestream flow, 

and the Mach number was increased linearly to 7.33 over the 10 seconds. A POD 

analysis was performed on the resulting temperature fields, and the temperature fields of 

the two-way coupled analysis were projected onto them. The POD modes that caused a 

reduction in representation error greater than a predetermined percentage were retained 

and added to the original 27 mode thermal ROM. Table 10 presents the results for the 

final basis. 

Table 10. Enrichment Modes From Thermal Simulation With Updated Loading 

Minimum 

Error Criteria 

Number of 

Modes 

Error at 200 

Seconds 

Error at 250 

Seconds 

Error at 300 

Seconds 

0.5% 40 3.0 2.7 3.4 

0.3% 46 2.7 2.3 2.7 
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Next, an analysis was carried out in which a free stream flow of Mach 12 was used and 

the panel was displaced to a maximum of 0.2 thickness, one tenth of what has been used 

previously, in order to see the effect of smaller displacements on the enrichment modes. 

After the linear thermal transient simulation was performed, a POD analysis was 

performed on the temperature fields and the POD modes that produced a significant drop 

in error were added to the basis. The results of this new basis can be seen in Table 11. 

Table 11. Enrichment Modes From Small Structural Displacement 

Minimum 

Error Criteria 

Number of 

Modes 

Error at 200 

Seconds 

Error at 250 

Seconds 

Error at 300 

Seconds 

0.5% 33 2.8 3.0 4.2 

0.3% 36 1.9 2.4 4.0 

 

No difference is observed between the basis developed at smaller and larger 

displacements. 

Considering all of the bases developed, it was decided that the 39 mode basis 

which was constructed from the structural induced thermal enrichments with a free 

stream flow of Mach 7 would be used. The cost to assemble these enrichment modes is 

minimal, considering a linear thermal analysis is utilized. The Mach 7 flow is the average 

Mach number of the flows experienced in the analysis, and the 2 thickness displacement 

is within the range of displacements expected during the analysis. 

It was desired to find what additions to the basis were necessary in order to bring 

the representation error down below 1%. In order to do so, the temperature field from 

every second of the 300 second analysis was projected onto the new 39 mode basis, and 

the difference between the projected temperature and true temperature were stored. A 

POD of these 300 residual vectors was then performed, and the dominant POD modes 
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were added to the 39 mode basis in order to determine their effect on the capturing of the 

true temperature fields. Figure 19 shows the error of the original 39 mode basis from 100 

to 300 seconds, as well as the error from the bases which include various numbers of 

POD modes.  

 
Figure 19. Thermal Representation Error When POD Modes Are Added to Thermal 

Basis. 

As can be seen, the basis with 3 POD modes brings the maximum error down 
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to the 39 mode basis. 

To give perspective on the efficiency of the enriched basis, it was desired to see 

how the eigenvectors of the capacitance-conductance eigenvalue problem would fare in 

representing the temperature fields in the two-way coupled analysis. The previous 

thermal basis selected for the one-way coupled analysis was comprised of 27 

eigenvectors. As described in section 4.1.1, the eigenvectors of the full model, as well as 

100 120 140 160 180 200 220 240 260 280 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

R
e
p
re

s
e
n
ta

ti
o
n
 E

rr
o
r 

[%
]

 

 

27 eigenvector basis

27+12 enrichments

27+12+1 POD mode

27+12+2 POD mode

27+12+3 POD mode

27+12+4 POD mode



77 

 

the constrained model were used in the creation of the basis. The temperature fields 

occurring at 200, 250, and 300 seconds of the two-way coupled analysis will be projected 

onto the remaining thermal eigenvectors, and the ones creating an error drop greater than 

a predetermined value will be retained in the basis. The following results in Table 12 

were observed.  

Table 12. Basis Composed of Eigenvectors 

Minimum Error 

Criteria 

Number of 

Modes 

Error at 200 

Seconds 

Error at 250 

Seconds 

Error at 300 

Seconds 

0.5% 53 2.7 3.5 3.6 

0.3% 46 1.9 2.2 2.5 

 

The results indicate that using eigenvectors exclusively to form the basis for the two-way 

coupled analysis is far less efficient than using the previously investigated enrichment 

modes. 

With the basis selected, it was next desired to check the accuracy of results found 

from a thermal model built using this basis. This was done independently of a structural 

ROM by carrying out the 300 second, two-way coupled simulation using the previously 

defined aerodynamic model, the full order Nastran structural model, and the thermal 

reduced order model. First, results will be presented using the 39 mode thermal model. 

The error in the temperature field at every second of the two-way 300 second analysis, as 

compared to the results in [10], are presented below in Figure 20. 
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Figure 20. Thermal Prediction Error Over 300 Seconds for 39 Mode Thermal ROM. 

The error in the structural displacement fields were also found with respect to the 

structural results in [10] and are presented in Figure 21. 

  

Figure 21. (a) Transverse and (b) Inplane Structural Prediction Error When Predicting 

Temperature Fields Using the 39 Mode ROM. 
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phase proved difficult to predict accurately, but the model resumes accurate predictions 

after this phase.  

Next, the same simulations, which involve the previously described aerodynamic 

model, the full order Nastran structural model, and the reduced order thermal model, 

were carried out with the 42 mode thermal model. The thermal and structural errors over 

the 300 seconds of analysis are shown in Figs 22 and 23, respectively. 

 

Figure 22. Thermal Prediction Error Over 300 Seconds for 42 Mode Thermal ROM. 

  

Figure 23. (a) Transverse and (b) Inplane Structural Prediction Error When Predicting 

Temperature Fields Using the 42 Mode ROM. 
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The 42 mode thermal model produces results that are significantly improved over the 39 

mode model. The thermal error is mostly kept under 1% and the transverse structural 

error is also below 1% in all but a few portions of the analysis. The inplane error is kept 

very low. 

 

4.2 Results for the Structural ROM of the Representative Panel 

4.2.1 Validation in Isothermal Conditions 

The first step taken in the construction of the fully coupled structural model was 

to develop and validate an isothermal model. In order to assess the effectiveness of the 

basis as it is constructed, a series of displacements, static displacements as well as 

“snapshots” of dynamic behavior, were projected onto the chosen basis. The static cases 

were produced using uniform pressure on the top of the panel, and the results ranged in 

displacements from about 0.7 to 2.2 thicknesses. The dynamic data was found by 

subjecting the panel to a white noise excitation, the sound pressure level (SPL) of which 

was 171 dB with a frequency band of 2 kHz. This produced a maximum deflection of 

about 3.2 thicknesses. A set of 101 “snapshots” of this data were selected. 

Focusing first on the selection of a set of the linear modes of the panel, it was 

noted that 30 linear modes are present in the chosen frequency band with 16 of them 

participating in the response. With this first component of the basis, the average 

transverse and inplane representation errors were 0.81% and 48.17%, respectively, for the 

101 dynamic snapshots considered. This error here is computed as the norm of the 

difference between the finite element predicted displacements and the projection of this 
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displacement onto the basis, divided by the norm of the finite element predicted 

displacement, i.e. 

u

uu proj
rep


 .                                                                                            (91) 

In addition to the 16 in band modes, 5 out of band linear modes were found to 

participate. With these additional modes, the average transverse and inplane 

representation error for the dynamic data was improved to 0.63% and 48.06%, 

respectively.  

   In order to capture the nonlinear motion of the response, 24 duals were added to 

the basis. All of these duals were found using mode 1 as the dominant mode. The 

resulting 45-mode basis led to average representation errors of 0.16% transverse and 

2.48% inplane. The displacements that these duals were derived from were also used to 

find 81 tangent duals. These tangent duals were added to the basis, which resulted in 126 

modes and average transverse and inplane errors of 2.72E-4% and 0.50%. Clearly then, a 

basis developed from the methodologies outlined above can span the desired space. It 

was further expected that less than 126 modes would be truly necessary. To reduce the 

number of modes, the dynamic and static snapshots were projected onto the 126 mode 

basis and a POD analysis was done of the resulting projection coefficients for the basis 

(excluding the in-band linear modes). This analysis produced a new combination of 

modes that captures the dynamic response more efficiently; a 32 mode basis was found 

sufficient. This 32 mode basis then consisted of the 16 in-band linear modes, as well as 

the first 16 of the POD eigenvectors of the dual and tangent dual modes. This basis 
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produced average transverse and inplane errors of 0.1% and 2.39%. The progress made 

by each subsequent addition to the basis is shown below in Table 13. 

Table 13. Average Dynamic Representation Error of Panel 

 
Transverse 

Error (%) 

Inplane 

Error (%) 

16 modes 0.81 48.17 

21 modes 0.63 48.06 

45 modes 0.16 2.48 

126 modes 2.72 E-4 0.50 

32 modes 0.1 2.39 

The parameters of the reduced order model based on these 32 modes were next 

identified by the tangent stiffness matrix approach. The predictive capabilities of the 

ROM were assessed first under static, uniform loading applied to the top of the panel. 

Under a static loading of 3 psi in the upward direction, which yields a maximum 

displacement of about 2.3 thicknesses, the model had 0.30% error in the transverse 

direction and 1.12% error in the inplane direction when compared to Nastran. With a 

loading of 3 psi in the downward direction, which resulted in about 2.4 thickness 

displacement, a transverse error of 0.61% and inplane error of 0.57% was obtained. 

These results, including those obtained under smaller loading, can be seen in Table 6 

below. To support these numbers, shown in Figs 24 and 25 is a comparison of the 

transverse and inplane displacements of the panel predicted by the reduced order model 

with those obtained by Nastran. As suggested by the low error levels, the match is indeed 

very good. 

Table 14. Prediction Errors of Panel 

 
Transverse 

Error (%) 

Inplane 

Error (%) 

1 psi up .22 1.60 

1 psi down .29 0.70 
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3 psi up .30 1.12 

3 psi down .61 .57 

 

  
Figure 24. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From 3 psi Upward Loading. Units in Inches. Results From 32 Mode ROM. 

 

  
Figure 25. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From 3 psi Upward Loading. Units in Inches. Results From Nastran Nonlinear. 

Next, the ability of the ROM to predict the dynamic response was assessed by 

subjecting the panel to a white noise excitation of 145 dB and a frequency band of 2 kHz. 

This excitation resulted in a standard deviation of transverse displacement at the beam 

center of 0.0165 inches, or approximately a quarter panel thickness. This displacement 

level is non-linear, although only mildly. Figure 26 shows the power spectral density of 

(a) (b) 

(a) (b) 
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the transverse deflection at the beam center for both the reduced order model and Nastran 

SOL 400. Figure 27 shows its counterpart for the deflection in the x (T1) direction at the 

center. Note that a boundary condition is enforced at the panel center that restricts motion 

in the T2 direction. Clearly, an excellent match of the Nastran results is obtained at this 

mildly nonlinear response level. 

 
Figure 26. Power Spectral Density of the Transverse Deflection at Panel Center, 145 dB. 

 
Figure 27. Power Spectral Density of the Inplane Deflection at Panel Center, 145 dB. 

To continue the assessment of the reduced order model accuracy, a white noise 

excitation of 155 dB in the same frequency band of 2 kHz was applied. This resulted in a 

standard deviation of transverse displacement at the beam center of 0.69 thicknesses. The 
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spectra of the T3 and T1 deflection can be seen in Figs 28 and 29, respectively, with their 

Nastran counterparts and a very good match with these results is again obtained. 

 
Figure 28. Power Spectral Density of the Transverse Deflection at Panel Center, 155 dB. 

 
Figure 29. Power Spectral Density of the Inplane Deflection at Panel Center, 155 dB. 

 

4.2.2 Validation with Uniform Temperature Field 

It should be noted, first, that contrary to the structural model in [10], the structural 

ROM constructed here did not include a temperature dependent coefficient of thermal 

expansion (CTE). Instead, the value of CTE was held constant at its value at the reference 

temperature of 530 R, which is 5.84 E-7. The construction and validation of a structural 

reduced order model that includes temperature dependent material properties is carried 

out with the panel in Section 4.2.6. 
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As discussed in Section 3.2.1, it was necessary to enrich the structural-only basis 

to account for the displacements induced by the thermal expansion. This construction and 

its validation were performed in two different steps. It was assumed in a first step that the 

temperature distribution was uniform and the single enrichment corresponding to the 

static linear response to this uniform temperature change was determined. This effort thus 

led to a 33 structural mode basis. 

Next, structural basis enrichments were developed to capture the thermal 

expansion induced by the remaining 26 thermal modes of the thermal basis of Section 

4.1. Since adding 26 modes to the basis was not desirable, a POD analysis was performed 

on these 26 displacement sets and the first four POD modes were found to sufficiently 

improve the ability of the structural basis to represent the desired displacement field. The 

structural basis included these four modes in addition to the 33 modes previously 

described. The resulting 37 mode basis gave a transverse representation error of 0.17 % 

and inplane representation error of 0.11 % when the structural response from the final 

temperature field of Figure 3(a) predicted by the finite element model was projected onto 

the basis. 

  The validation of the structural reduced order models was carried out first under 

uniform temperature fields and without applied pressure. Shown in Figs 30(a) and (b) are 

the predicted transverse displacement and magnitude of inplane displacement, 

respectively, by the reduced order model while the corresponding figures for the Nastran 

predictions are on Figs 31 (a) and (b). The matching between these two sets of figures is 

excellent, the transverse norm error is 0.54% and the inplane one is 0.05%. It is 
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interesting to note that the inplane response at the center of the panel near the leading 

edge is close to zero, which is intuitive given the boundary conditions. The magnitude of 

the inplane displacement grows larger near the edges, where thermal expansion has 

caused the most displacement. The discontinuity at the stiffener is due to the expansion in 

the y direction being defined as transverse for the stiffener vs. inplane for the skin. This is 

also the reason for the sudden appearance of large transverse motion in the stiffener in 

Fig. 30 (b). Positive transverse motion in the stiffener is defined as motion away from the 

skin, as opposed to motion that would place the stiffener under the skin. 

  
Figure 30. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Uniform Temperature Field of 2700 R. Units in Inches. Results From 33 Mode 

ROM.  

 

  

(a) (b) 

(a) (b) 
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Figure 31. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Uniform Temperature Field of 2700 R. Units in Inches. Results From Nastran 

Nonlinear. 

Additional comparisons between responses predicted by the ROM and Nastran 

were carried out with the uniform temperature increase of 2700 R when the panel skin 

(not stiffener) was also subjected to a uniform pressure, see Table 15 for error 

comparisons and Figs 32 and 33 for an upward pressure load of 3 psi. Again, an excellent 

matching between Nastran and ROM results is obtained with displacements varying 

between approximately -3 and +3 thicknesses. 

  
Figure 32. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Uniform Temperature Field of 2700 R and 3 psi Upward Loading. Units in Inches. 

Results From 33 Mode ROM. 

 

  

(a) (b) 

(a) (b) 
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Figure 33. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Uniform Temperature Field of 2700 R and 3 psi Upward Loading. Units in Inches. 

Results From Nastran Nonlinear. 

Table 15. Results From 2700 R Uniform Temperature and Pressure Loads. 33 Mode 

ROM. 

 Transverse 

error [%] 

Inplane 

error [%] 

Nastran center 

disp. [thick.] 

ROM center 

disp. [thick] 

3 psi down .38 .50 -2.98 -2.98 

2 psi down .29 .20 -2.49 -2.49 

1 psi down .49 .13 -1.80 -1.81 

0 psi .54 .05 -.065 -.064 

1 psi up .51 .52 1.62 1.62 

2 psi up .33 1.1 2.25 2.25 

3 psi up 1.6 3.2 2.69 2.70 

 

4.2.3 Validation with Non-Uniform Temperature Field 

The validation of the enriched structural basis proceeded finally with the 37 mode 

model of section 4.2.2 and the temperature field of Fig. 3(b), determined by the thermal 

ROM. The displacement field induced by this temperature distribution without and with 

additional uniform pressure on the panel skin was computed by the ROM and by Nastran, 

see Figs 34-37 and Table 16. The observations drawn in connection with the uniform 

temperature are found to be applicable again here: an excellent matching between ROM 

and Nastran predictions is consistently observed. 
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Figure 34. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Final Temperature Field. Units in Inches. Results are From 37 Mode ROM. 

 

  
Figure 35. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Final Temperature Field. Units in Inches. Results From Nastran Nonlinear.  

 

Table 16. Results From Final Temperature With Pressure Loads. 37 Mode ROM. 

 Transverse 

error [%] 

Inplane 

error [%] 

Nastran center 

disp. [th] 

ROM center 

disp. [th] 

3 psi down .36 .26 -2.99 -2.99 

2 psi down .31 .32 -2.50 -2.50 

1 psi down .52 .38 -1.81 -1.81 

0 psi 1.35 .34 -.024 -.023 

1 psi up .47 .28 1.65 1.66 

2 psi up .24 .68 2.28 2.28 

3 psi up 2.69 4.18 2.72 2.74 

 

(a) (b) 

(a) (b) 
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Figure 36. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Final Temperature Field and 3 psi Upward Loading. Units in Inches. Results Are 

From 37 Mode ROM. 

 

  
Figure 37. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From Final Temperature Field and 3 psi Upward Loading. Units in Inches. Results From 

Nastran Nonlinear. 

It was finally desired to confirm the adequacy of the 37 modes over the entire 

temperature range. To this end, it was used for the prediction of the panel response in the 

absence of thermal loading but with applied pressure. Shown in Figs 38 and 39 (a) and 

(b) are the transverse and inplane responses to a loading of 3 psi in the upward direction. 

Moreover, the errors between the ROM and Nastran predictions for various pressure 

(a) (b) 

(a) (b) 
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loads acting on the panel without a thermal load are shown in Table 17. They are 

consistent with prior errors, see Tables 15 and 16. 

Table 17. Results From Uniform Pressure Loads Without Thermal Loading. 37 Mode 

ROM. 

 Transverse 

error [%] 

Inplane 

error [%] 

Nastran center 

disp. [th] 

ROM center 

disp. [th] 

3 psi down 1.09 .84 -2.45 -2.47 

2 psi down .52 .57 -1.93 -1.94 

1 psi down .18 .62 -1.20 -1.20 

1 psi up .16 1.26 1.14 1.14 

2 psi up .63 1.36 1.81 1.82 

3 psi up 2.33 3.87 2.28 2.31 

 

  
Figure 38. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From 3 psi Upward Loading. Units in Inches. Results Are From 37 Mode ROM. 

  

(a) (b) 

(a) (b) 
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Figure 39. (a) Magnitude of Inplane Displacement and (b) Transverse Displacement 

From 3 psi Upward Loading. Units in Inches. Results From Nastran Nonlinear. 

 

4.2.4 Thermal Buckling Investigation 

The model so far has used a constant CTE value of 5.84 E-7 1/F, which does not 

produce a buckling effect in the temperature range specified. Before developing a model 

which incorporates the temperature dependent CTE, it is first desired to show that the 

ROM accurately captures the buckling effect. The prediction of thermal buckling is 

highly sensitive to changes in the model parameters. To demonstrate this sensitivity, the 

deformations of the panel with constant coefficient of thermal expansion, equal to 1.33 E-

6 1/F, to a uniform temperature load was determined using MSC Nastran and NX Nastran 

for a broad range of applied temperatures. The same static nonlinear solver (SOL106) 

was used in both cases, but yielded very different results. Figure 40 shows the 

displacement at the center of the skin of the panel to uniform temperature loading 

predicted by MSC and NX Nastran, while Fig. 41 shows the norm error between the two 

responses. 
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Figure 40. Center Displacement Predicted by MSC and NX Nastran SOL 106 for 

Uniform Temperature Loading. 

 
Figure 41. Transverse Displacement Error Between MSC and NX SOL 106 Solvers for 

Uniform Temperature Loading. 

The difference between these two responses is striking, especially when considering that 

the solvers are expected to be quite similar, both emanating from the same code a few 

years ago. This comparison provides a first demonstration that the thermal buckling 

response is highly sensitive to small modeling variations. 
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Several structural reduced order models were built to test their ability to capture 

the thermal buckling behavior induced by uniform temperature loads. For the specific 

case considered here, specifically the uniform temperature case, the thermal enrichment 

modes were not all needed, allowing the model to be scaled back to 33 structural modes. 

The temperature-independent coefficient of thermal expansion of 1.33 10
-6

 1/F was used 

in this effort. The quadratic and cubic stiffness coefficients of the reduced order model, 

i.e., )2(
ijlK  and )3(

ijlpK  of Eq. (5), are typically identified at reference temperature since their 

values are theoretically not dependent on temperature (for a derivation, see [56]). 

However, it was observed that these coefficients do change, depending on the 

temperature at which they are identified. Table 18 shows the values of the nonlinear 

parameters associated with the first transverse mode and first dual mode (inplane 

dominated) of the reduced order model identified at reference temperature as well as at 

1400F, linear variations of these values with respect to the identification temperature 

were broadly observed. The first transverse and first dual mode, which are modes 1 and 

17 respectively, were chosen because their values have been observed to be the most 

influential on the response of the panel. 

Table 18. Effect of Temperature on Parameter Identification 

Nonlinear Parameter Identified at 0º F 
Identified at 

1400F 
% change /1400F 

K1,1,1
 

3.5473E8 2.0121E8 43.2776 

K1,1,17 -1.7762E12 -1.7804E12 -0.2370 

K1,17,17 -8.0374E11 -8.0574E11 -0.2479 

K17,17,17 -8.4298E11 -8.4507E11 -0.2479 

K1,1,1,1 1.6842E12 1.6899E12 -0.3346 

K1,1,1,17 -1.4371E12 -1.4410E12 -0.2673 

K1,1,17,17 6.4021E12 6.4336E12 -0.4872 

K1,17,17,17 -8.6520E12 -8.6754E12 -0.2706 
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K17,17,17,17 -4.7904E11 -4.8033E11 -0.3423 

 

The relative change for most of the coefficients is consistent with those seen in 

Table 18, i.e., between 0.2% and 0.5% over the 1400F range investigated. K1,1,1 varies 

much more significantly but most likely because of its much smaller absolute value. 

These small variations in nonlinear parameter values have a significant effect on the 

response of the panel, confirming the strong sensitivity deduced from the MSC/NX 

Nastran comparison of Figs 40 and 41. It was further found that the models identified 

near the buckling temperature (approximately 1500F according to a uniform temperature, 

linear buckling analysis) captured the thermal buckling behavior accurately. Shown 

below, Figs 42 and 43 show the center displacement and transverse displacement error of 

the model identified at reference temperature, while Figs 44 and 45 show these results for 

the model identified at 1400F.  

 

 
Figure 42. Center Displacement Due to Uniform Temperature Loading Predicted by MSC 

Nastran and the ROM Identified at Reference Temperature. 
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Figure 43. Transverse Displacement Error at Various Uniform Temperature Loading 

Levels Between MSC Nastran and the ROM Identified at Reference Temperature. 

 
Figure 44. Center Displacement Due to Uniform Temperature Loading Predicted by MSC 

Nastran and the ROM Identified at 1400F. 
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Figure 45. Transverse Displacement Error at Various Uniform Temperature Loading 

Levels Between MSC Nastran and the ROM Identified at 1400F. 

Clearly, the small changes in parameter values allow for the model identified at 1400F to 

more accurately capture the buckling effect and to maintain accurate predictions after 

buckling. The results presented in the ensuing section for the constant CTE were obtained 

with a model whose nonlinear parameters were identified at 1400F. 
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modes, the linear structural responses to the 42 thermal modes were found and then 

appended to the 33 mode structural basis. The structural results of the full order model for 

the two-way coupled analysis were then projected onto this basis, and the five enrichment 

modes contributing most to the capturing of the structural response were found to be 

sufficient and were retained. 

A fully coupled structural-thermal ROM analysis was next carried out with the 38 

structural mode and 42 thermal mode model and was first achieved with the CTE held 

constant at 1.33 10
-6

 1/F. The trajectory specified in [10], i.e., the constant rate ascent 

trajectory analysis from Mach 2 to Mach 12 in 300 seconds was adopted for the 

simulation and the ROM predictions were compared to the coupled full finite element 

analyses. 

 
Figure 46. Maximum Transverse Displacement Predicted by ROM and Nastran for 300 

Seconds. 
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Figure 47. Structural Displacement Norm Error in a) Inplane and b) Transverse 

Directions Over the Trajectory. 

 
Figure 48. Norm Error in Predicted Temperature Fields Over the Trajectory. 
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through the analysis until the end. Comparing Figs 47(b) and 48 with Fig. 46 shows that 

the starting point of the increase in error is the buckling of the panel. After the panel 

buckles into the flow, the structural ROM predicts a larger upward displacement than 

Nastran. This increased transverse displacement into the flow leads to larger temperatures 

and thus larger displacements owing to the thermal expansion. 

 

4.2.6 300 Second Two-Way Coupled Simulation – Temperature Dependent CTE 

In Section 3.3.1.3, when describing the means by which the reduced order model 

is identified, the coefficient of thermal expansion and the elasticity tensor are both 

assumed to be linearly dependent on temperature. If this were the case, the quadratic and 

cubic stiffness coefficients, )2(
ijlK  and )3(

ijlpK , would be linearly dependent on temperature, 

while the linear stiffness coefficient, )1(
ijK , and the thermal moment term, )(th

ijF , would 

have a cubic dependence on temperature (see Eqs 36 through 39). However, in this 

analysis only the CTE is dependent on temperature. Therefore, the polynomial 

expressions relating the stiffness and thermal moment terms to temperature will be 

reduced by one order. The quadratic and cubic stiffness terms will not be dependent on 

temperature, while the linear stiffness and thermal moment terms will have a quadratic 

dependence on temperature. The method of identification outlined in Section 3.3.1.3 is 

still appropriate for this condition. The formulation involving both a temperature 

dependent coefficient of thermal expansion and elasticity tensor will be validated in 

Section 4.3 using the beam model. 
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The 38 structural, 42 thermal mode model was found to produce unsatisfactory 

results for the case involving a temperature dependent CTE, as shown below. Over the 

300 second analysis, the first 200 seconds showed strong agreement between the ROM 

and Nastran. However, the behavior of the panel after 200 seconds is not well captured 

by the ROM. 

 
 

Figure 49. Maximum Transverse Displacement Predicted by ROM and Nastran for 

Model With Temperature Dependent CTE. 

  
Figure 50. Structural Displacement Norm Error in a) Inplane and b) Transverse 

Directions for the Model With Temperature Dependent CTE. 
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Figure 51. Norm Error in Predicted Temperature Fields for Model With Temperature 

Dependent CTE. 

The full order model predicts that the panel will have a peak displacement near the center 

of the panel until about 230 seconds. The behavior up to this point is dominated by the 

first structural mode. Then, the peak begins to move to the front of the panel, and the 

back of the panel begins to be displaced in the downward direction, resembling the third 

normal mode of the structure. Figs 52 (a) and (b) show the first and third mode shapes, 

respectively. Figs 53 (a) and (b) show the displacement at 200 seconds and the 

displacement at 250 seconds, respectively, for the full order model. This transition is not 

captured by the 38 mode structural model. 
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Figure 52. The Transverse Displacement of a) Normal Mode 1 and b) Normal Mode 3. 

  
Figure 53. Transverse Response Predicted by Full Order Model With Temperature 

Dependent CTE at a) 200 and b) 250 Seconds of the 2-way Coupled Analysis. 

The reduced order model predicted the peak moving forward to the front of the 

panel, but the full transition from mode 1 to mode 3 dominated deflection is never 

achieved. The transverse displacement of the panel at 200 seconds and 250 seconds is 

shown in Figs. 54 (a) and (b), respectively, for the reduced order model. 

(a) (b) 

(b) (a) 
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Figure 54. Transverse Response Predicted by Reduced Order Model With Temperature 

Dependent CTE at a) 200 and b) 250 Seconds of the 2-way Coupled Analysis. 

It was suspected that the reduced order model was too stiff to transition from the mode 1 

to mode 3 dominated displacement. In order to validate this suspicion, the first and third 

eigenvalue of the full order tangent stiffness matrix were compared to the first two 

eigenvalues of the ROM tangent stiffness matrix as well as the first two eigenvalues of 

the full order tangent stiffness matrix projected onto the ROM basis, as seen in Fig. 55. 

The second normal mode is not included in the reduced order model basis because it is 

not left/right symmetric. It should be noted that a mode switching occurs between modes 

2 and 3 of the full order model, which accounts for the discrepancy in the second 

eigenvalue for the first 50 seconds of the simulation in Fig. 55. The projection of the full 

order tangent stiffness matrix onto the reduced order basis is described in Eq. 89. 

   T
T

projT KK ,                                                                                                (89) 

(a) (b) 
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Figure 55. First and Third Eigenvalues of the Tangent Stiffness Matrix From Nastran, the 

First Two Eigenvalues of the 38 Mode ROM, and the First Two of the Nastran Tangent 

Stiffness Matrix Projected Onto the 38 Mode ROM Basis. 

As seen in Fig. 55, neither the predicted ROM eigenvalues, or the eigenvalues 

from the projected stiffness matrix match the values predicted by the full order tangent 

stiffness matrix. Special attention should be given to the projected stiffness matrix 

eigenvalues since this is, in some sense, a best-case scenario. These values are solely 

dependent on the structural basis, which indicates that the 38 mode basis is not capable of 

producing the correct eigenvalues. Further, the eigenvalues from the ROM as well as the 

projected stiffness matrix are higher than those of the full order tangent stiffness matrix, 

confirming that the reduced order model is more stiff than the full order model.  

An enrichment to the basis is needed in order for the ROM to be capable of 

predicting the correct eigenvalues, and thereby capture the transition from a mode 1 to a 

mode 3 dominated response. The first and third eigenvectors of the full order model at 

every second for the 300 second analysis were recorded and made orthogonal to the 38 
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mode structural basis. Then, a POD analysis was performed on the set of first and second 

eigenvectors. The first 3 POD modes from both the first and third eigenvector set were 

appended to the basis, resulting in a total of 44 modes. The resulting eigenvalues from the 

full order tangent stiffness matrix projected onto this 44 mode basis were found and can 

be seen plotted in Fig. 56. The matching is very good. 

 
Figure 56. First and Third Eigenvalues of the Tangent Stiffness Matrix From Nastran, the 

First Two Eigenvalues of the 44 Mode ROM, and the First Two of the Nastran Tangent 

Stiffness Matrix Projected Onto the 44 Mode ROM Basis. 

Next, the reduced order model parameters were identified. For the constant CTE 

case it was found that an identification temperature of 1400F was best to capture the 

thermal buckling that occurred midway through the analysis. For the temperature 

dependent case it was found that the model performed best when the quadratic and cubic 

parameters (symbols )2(
ijlK  and )3(

ijlpK  from Eq. 26) were identified at a temperature of 

300F. The full 300 second, two-way coupled analysis was run for this new 44 mode 

structural, 42 mode thermal model, and the results are shown below. Additionally, an 
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eigenvalue analysis was performed using the tangent stiffness matrix at the predicted 

ROM displacements, and those values can been seen above in Fig. 56. 

 

 
Figure 57. Maximum Transverse Displacement Predicted by ROM and Nastran Over 200 

Seconds for Model With Temperature Dependent CTE. 

  
Figure 58. Structural Displacement Norm Error in a) Inplane and b) Transverse 

Directions for the 200 Seconds of Analysis of Model With Temperature Dependent CTE. 
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Figure 59. Norm Error in Predicted Temperature Fields Over 300 Seconds for Model 

With Temperature Dependent CTE. 

Focusing on the structural results, the maximum error in the transverse and 

inplane directions are observed at around 235 seconds, which corresponds to the point at 

which the panel transitions from a mode 1 dominated behavior to a mode 3 dominated 

behavior. The errors are due to the slightly delayed reaction on the part of the ROM. 

However, the errors are quickly reduced once the ROM makes the transition to the third 

mode dominated behavior. This correlates to the difference in maximum transverse 

displacement seen in Fig. 57 at that same time. Additionally, the transverse and inplane 

error is observed to rise near the end of the analysis, correlating again to differences in 

the maximum predicted transverse response on the panel. Although the transverse error is 

9.4%, Figs 60 (a) and (b) show that the predicted transverse displacement to be very 

similar after 300 seconds of simulation. The largest contribution to error is the back of the 

panel, which the ROM predicts to be displaced at a greater magnitude than the full order 

model. 
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Figure 60. Transverse Response Predicted by a) Reduced Order Model  and b) Full Order 

Model With Temperature Dependent CTE at 300 Seconds of the 2-Way Coupled 

Analysis. 

  Finally, the error in the predicted temperature fields correlates strongly with the 

transverse error of the structural model. Add to this the accuracy of the thermal model 

exhibited in Section 4.1.3 and it can be concluded that the error in the thermal results are 

produced by errors in the structural model. 

 

4.3 Beam with Temperature Dependent Structural Properties 

A validation of the methodology to incorporate a temperature dependent CTE and 

elasticity tensor into the structural reduced order model, described in Section 3.3.1.3, in 

comparison with full Nastran computations was performed using the beam of properties 

specified by Table 4 at zero temperature. Further, the changes with temperature of the 

Young’s modulus and coefficient of thermal expansion were assumed as in Eq. (93) and 

(94), i.e. 

TEEE )1()0(                                                                                                (93) 

and 

(a) (b) 
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T)1()0(                                                                                              (94) 

with )1(E = 3.0 10
9
 Pa/°C and )1(  = 5.0 10

-7
 1/°C

2
. The Poisson’s ratio was assumed to 

be temperature independent here. Note that these values are not representative of 

aluminum but rather were selected to ensure a notable change in properties with the range 

(10°C) of temperature experienced by the beam. 

Consistent with Fig. 2, the thermal loading scenario considered here is a triangular 

heat flux centered on the beam, whose magnitude is prescribed to produce a peak 

temperature of 10 °C at the center of the panel. The bottom of the beam is held at a 

constant temperature of 0 °C. The temperature profile on top of the beam can be seen in 

Fig. 61. 

 

Figure 61. Temperature Profile on Top of Beam 

In [62], a 10 mode thermal reduced order model was found to be sufficient for 

predicting the temperature distribution along the beam span. In fact, the even numbered 

modes do not contribute as they are antisymmetric and thus the 5-mode thermal reduced 

order model formed with the odd numbered modes is sufficient and is considered here for 

the static, symmetric loading case. 
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Shown in Fig. 62 are the transverse and inplane responses (labeled “temp”) 

obtained with both Nastran and the 17-mode structural model identified as discussed in 

Section 3.2.1. For brevity, the reader is referred to [62] for more details on the basis 

selection process. Also shown on these figures are the predictions obtained with the 

temperature independent properties. Note that there is large difference between these two 

sets of results, as desired for a thorough validation.  
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Figure 62. Displacements, (a) Transverse, (b) Inplane, Induced by the Localized Steady 

Heat Flux. ROM and Nastran Nonlinear Predictions for Both Temperature Dependent 

(Labeled “Temp”) and Independent Properties. 

   In addition, the methodology was also validated under acoustic loading 

conditions, in which the excitation had an OASPL of 130 dB and frequency band of 1 

kHz. Here, the heat flux was prescribed to oscillate at 20 Hz and then 40 Hz. The 5 mode 

thermal basis used in the previous static validation had to be increased to a 12 thermal 

mode basis in order to account for the unsteady heating, while the structural basis was 

maintained at 17 structural modes.  The 12 thermal mode basis consisted of the first 10 

modes previously mentioned, as well as two additional symmetric modes to better 

capture the peak temperature. The same linear through thickness thermal loading was 

provided to Nastran that was used in the ROM because of the limitations of the CBEAM 

element, which only accepts linear through thickness temperature variation. Figures 63 

and 64 show the predictions of the ROM as well as the predictions of Nastran at the beam 

quarter and middle point, respectively, when an oscillating frequency of 20 Hz is applied, 
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while Figs 65 and 66 show the inplane and transverse response predictions with an 

oscillating frequency of 40 Hz.  The excellent matching between the reduced order model 

and full Nastran displacements for the temperature dependent properties in both static and 

dynamic loading environments fully validates the development of Section 3.3.1.3 and 

accordingly demonstrates the capability of the structural ROM to account for linear 

variations in structural properties with respect to temperature. 

 

Figure 63. Power Spectral Density of the Transverse (T3) and Inplane (T1) Deflections at 

the Beam Middle. ROM and Nastran Nonlinear and Temperature Dependent Predictions. 

Oscillating Heat Flux, Ω=40π(20Hz), and Acoustic Excitation of SPL =130dB. 
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Figure 64. Power Spectral Density of the Transverse (T3) and Inplane (T1) Deflections at 

the Beam Quarter Point. ROM and Nastran Nonlinear and Temperature Dependent 

Predictions. Oscillating Heat Flux, Ω=40π(20Hz), and Acoustic Excitation of SPL 

=130dB. 

 
Figure 65. Power Spectral Density of the Transverse (T3) and Inplane (T1) Deflections at 

the Beam Middle. ROM and Nastran Nonlinear and Temperature Dependent Predictions. 

Oscillating Heat Flux, Ω=80π(40Hz), and Acoustic Excitation of SPL =130dB. 
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Figure 66. Power Spectral Density of the Transverse (T3) and Inplane (T1) Deflections at 

the Beam Quarter Point. ROM and Nastran Nonlinear and Temperature Dependent 

Predictions. Oscillating Heat Flux, Ω=80π(40Hz), and Acoustic Excitation of SPL 

=130dB. 
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CHAPTER 5 - SUMMARY 

In this paper details were presented regarding the development and validation of a 

coupled thermal-structural reduced order model of a 3-D representative hypersonic panel. 

A nonlinear thermal ROM was developed and produced accurate results compared to 

those found using MSC.Nastran’s transient thermal solver. The thermal modes 

comprising the basis were constructed from eigenvectors of the capacitance-conductance 

eigenvalue problems, as well as enrichment modes developed to account for the coupling 

between the structural and thermal problems. Results from the thermal ROM compared 

very well with Nastran. Additionally, two different methodologies were outlined and 

pursued in order to provide improvements to the thermal basis. One method involved an 

adaptive basis that evolved as the simulation progressed, while the other developed 

displacement induced temperature fields. The latter method produced the greatest 

improvements and was utilized in this work to generate the final thermal basis. The basis 

for the structural model incorporated normal modes, dual modes, as well as enrichment 

modes provided by the linear responses of the structure to the modes of the thermal 

ROM. This structural basis was validated against MSC. Nastran’s nonlinear structural 

solver when subjected to the final and most severe temperature field predicted in the one-

way thermal analysis, as well as to a variety of combinations of structural and thermal 

loads. Maximum deflections of approximately 3 thicknesses were observed. Dynamic 

results were validated in isothermal conditions by subjecting the panel to acoustic 

excitations of 145 and 155 dB and with a frequency band of 2 kHz. A 300 second, fully 

coupled structural-thermal-aerodynamic simulation was performed using the thermal and 
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structural reduced order models and was validated against a full order thermal and 

structural model. 

Additionally, temperature dependent material properties were incorporated into a 

structural reduced order model of a thin aluminum beam. The model was subjected to a 

localized heat flux and was validated for the case in which the flux is steady at the center 

of the beam and one in which the flux oscillated about the center of the beam, in addition 

to the presence of acoustic excitation. 
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