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ABSTRACT 

 Fission products in nuclear fuel pellets can affect fuel performance as they change 

the fuel chemistry and structure. The behavior of the fission products and their release 

mechanisms are important to the operation of a power reactor. Research has shown that 

fission product release can occur through grain boundary (GB) at low burnups. Early 

fission gas release models, which assumed spherical grains with no effect of GB 

diffusion, did not capture the early stage of the release behavior well. In order to 

understand the phenomenon at low burnup and how it leads to the later release 

mechanism, a microstructurally explicit model is needed. This dissertation conducted 

finite element simulations of the transport behavior using 3-D microstructurally explicit 

models. It looks into the effects of GB character, with emphases on conditions that can 

lead to enhanced effective diffusion. Moreover, the relationship between temperature and 

fission product transport is coupled to reflect the high temperature environment. 

 The modeling work began with 3-D microstructure reconstruction for three 

uranium oxide samples with different oxygen stoichiometry: UO2.00 UO2.06 and UO2.14. 

The 3-D models were created based on the real microstructure of depleted UO2 samples 

characterized by Electron Backscattering Diffraction (EBSD) combined with serial 

sectioning. Mathematical equations on fission gas diffusion and heat conduction were 

studied and derived to simulate the fission gas transport under GB effect. Verification 

models showed that 2-D elements can be used to model GBs to reduce the number of 

elements. The effect of each variable, including fuel stoichiometry, temperature, GB 

diffusion, triple junction diffusion and GB thermal resistance, is verified, and they are 
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coupled in multi-physics simulations to study the transport of fission gas at different 

radial location of a fuel pellet. It was demonstrated that the microstructural model can be 

used to incorporate the effect of different physics to study fission gas transport. The 

results suggested that the GB effect is the most significant at the edge of fuel pellet where 

the temperature is the lowest. In the high temperature region, the increase in bulk 

diffusivity due to excess oxygen diminished the effect of GB diffusion. 
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1. INTRODUCTION 

 The study of nuclear fuel is key to conceptualize and design new nuclear power 

plants capable of more efficient power generation. This chapter will provide a general 

background on the development and the current status of nuclear power industry. Some 

basic theories, issues and development of nuclear fuel elements are also covered to pave 

the ground for further discussion of the current research on oxide fuels, which will be the 

topic of the next chapter. 

1.1 Nuclear Power Overview 

 With the fast increase in human population and modernized cities, the demand for 

power has increased dramatically over the past century. Globally, the major sources of 

power still rely heavily on fossil fuels, including coal, petroleum and natural gas. The 

issues with these traditional power generation methods mainly lie with air pollution and 

greenhouse gas release, both of which are believed to be the cause of global warming and 

climate change. New ways of power generation have been developed over the years 

aiming at resolving these issues. These include but are not limited to water, geothermal, 

wind, solar and nuclear energy. Among all types of energy mentioned above, nuclear 

technology gained an edge in the development and became mature enough for massive 

and steady power generation since the 1950s. Even today, nuclear power is still the only 

power generating method that can compete with fossil fuels in terms of cost and base 

load while emitting only water vapor and heat during operation. Many countries 

worldwide, including the United States, generate a significant portion of their power from 
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nuclear reactors. The overview presented here looks into the history, development and 

challenges in the use of nuclear power. 

1.1.1 History and Application 

 Nuclear power is generated from the atomic fission of fissile materials such as the 

isotopes of Uranium (U), Plutonium (Pu) and Thorium (Th). A great amount of energy, 

usually between one to two hundred MeV per fission event, is released during the 

process. Other than the energy produced, neutrons are generally produced as well. With 

sufficient kinetic energy, the neutrons can hit other atoms and initiate more fission 

events. A chain reaction can be sustained in such manner until running short of the fissile 

or fissionable materials. Over the years, people have learned to harvest this energy for 

different purposes. 

 Nuclear power was firstly applied in World War II as a weapon of mass 

destruction, soon after Enrico Fermi achieved the first self-sustaining chain reaction at 

the University of Chicago. It was later on applied as a mean of power generation that had 

the potential to replace or reduce the dependence on traditional fossil fuels. Experimental 

Breeder Reactor 1 (EBR1) harvested nuclear generated electricity for the first time in 

1951 and marked a key milestone for nuclear power. Nuclear reactors were later on used 

to power ships, submarines and space shuttles. The advantages of nuclear power over 

fossil fuels include near zero carbon emissions and cheaper operation costs than all major 

source of fossil fuels, including coal, natural gas and petroleum. Over the years, nuclear 

energy has developed into a major power generation source in many countries including 
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France (75%), South Korea (30%) and the United States (20%). Figure 1-1 shows the 

increasing electricity generation from nuclear power plants over the years.  

 

Figure 1-1: Nuclear Electricity Production over the Years [1] 

 The trend had slowed down recently after the outbreaks of several nuclear power 

plant failures over the years. It is worth noting here that coal powered electricity has 

made up for a majority of the increasing power demand worldwide, as other forms of 

renewable energy are not ready for power generation at a large scale. Overall, nuclear 

power generates 13% of the world electricity. It also accounts for 6% of total world 

energy use, the fourth largest after oil, coal and gas. In 2012, only eight countries were 

known to have nuclear weapon capability while thirty countries operated over 434 

commercial nuclear power plants, which shows the increasing dependency on nuclear 

power [1] 

 About a decade ago, the increasing demand in energy consumption along with the 

rising cost of petroleum boosted multinational collaborations to develop the next 
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generation of nuclear power plants. In the United States, there was a “renaissance” of 

nuclear power with new investment going into research and over 20 applications for 

construction and operation of new generation nuclear power plants [2]. However, a major 

part of the effort was stopped or indefinitely postponed after the disaster of the 

Fukushima nuclear power plant that took place in Japan in March 2011.  

 Today, very few nuclear power plants are being built in the U.S.; however, most 

of the plants are still filing for license renewal to extend their lives for another 20 to 30 

years in order to meet current and future power demands. Research efforts have also 

continued and have shifted their focus toward operational safety as well as advanced 

fuels and structural material designs that will enhance the efficiency and safety of nuclear 

power plants. 

1.1.2 Issues 

 Despite the great benefits of nuclear power, it also comes with some potential 

issues that can lead to serious consequences, and have thus led to many opposing 

viewpoints. The issues with nuclear power involve proliferation threats, nuclear waste 

storage and material failure. Each of these issues has played a role in deterring the 

development and growth of the use of nuclear power. These issues are briefly discussed 

in this section, including strategies under development to tackle them.  

 Proliferation is a term used to describe the spread of materials that can be used in 

nuclear weapons. In general, the concerns are placed on better regulations and controls to 

limit the access to the materials, such as 239Pu and 235U, which can be used to create 

nuclear weapons. From the nuclear power industry side, the spent fuel of a Light Water 
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Reactor (LWR) contains 239Pu, which is a concern in terms of nuclear proliferation. It is 

desired to reduce the production of this isotope to the minimum. A new type of fuel that 

burns both UO2 and PuO2, termed mixed oxide fuel (MOX), was developed to serve this 

purpose. It consumes plutonium oxide, which can be reprocessed from the spent fuel, and 

thus reduces the proliferation threat and the amount of nuclear waste. Other methods 

include mixing gamma emitter nuclides into plutonium, burning plutonium in an inert 

matrix fuel form to trap plutonium, or by increasing the fraction of 240Pu (12%) to deter 

proliferation activity [3, 4]. 

 One major concern of nuclear power plants is the management of waste materials. 

The spent fuel assemblies, which contain fission products (FPs) and unburned fuels, 

remain toxic for thousands of years. Most commercial nuclear reactors today store spent 

fuel on site in a pool, which consumes power for cooling and is not ideal for safety 

purposes. The Yucca Mountain nuclear waste repository was proposed for the purpose of 

dry storing these spent fuels in a safer, remote environment. However, the site lost its 

funding in 2010 due to the opposition of environmentalists and political concerns. The 

construction and management of a long-term storage site for the toxic waste remains a 

big challenge. Other approaches to reduce the nuclear waste include fuel recycling and 

nuclear waste transmutation. The recycled fuels can be reprocessed to make MOX fuels 

as mentioned above. The transmutation of Pu and long lived FPs is another approach to 

reduce radiotoxicity of nuclear wastes to make them more manageable. Transmutation is 

usually achieved by converting the highly radioactive elements into others using the 

excess neutrons in the reactors [5]. The development of advanced fuel elements that can 

stand higher burnup will also help reducing the amount of waste produced. 
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 Another challenge in running a nuclear power plant is the harsh environment in a 

reactor that can quickly degrade the materials for fuel elements, claddings and pressure 

vessels. The high temperature environment along with irradiation damage enhance creep 

rate, brittle failure, swelling of fuel elements, corrosion and fatigue [6]. These failure 

mechanisms limit the lifetime of the reactors. Research has focused on understanding and 

predicting these failures as well as developing new materials that can sustain these 

damage mechanisms for a longer period of time. 

1.1.3 Current Status: new power plant (gen III and IV) 

 The first power generating reactor was the Experimental Breeder Reactor I (EBR-

I), which successfully harvested atomic power for the first time on December 20th, 1951. 

Since then, many different reactors have been designed and built throughout the world. 

The more common types include the LWR, the Canada Deuterium (CANDU) reactor, the 

Liquid Metal Fast Breeder Reactor (LMFBR), the Advanced Gas Cooled Reactor (AGR) 

and the the High Temperature Gas-Cooled Reactor (HTGR). Among these designs, LWR 

is the most common type of reactor used for power plants in the U.S.  

 Light Water Reactors can be categorized into two types, Boiling Water Reactor 

(BWR) and Pressurized Water Reactors (PWR). Both reactors use water as coolant and 

steam to drive turbines. The main difference between the two designs is the pressure 

maintained in the reactor core. The BWR has a lower pressure and boils water directly in 

the core while the PWR functions at a higher pressure to keep the water in the liquid form 

before the water is passed to a secondary vessel for steam generation. One advantage of 
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the PWR is that it allows more fuel rods in one fuel assembly and thus requires less 

number of assemblies [7].   

 Table 1-1 provides a list for the evolution of nuclear power plants over the years. 

The early fleets of LWRs in the U.S. were mostly built in the 60s and belong to a 

generation II design. They are all water cooled and use UO2 as fuel. Generation II+ 

upgrades upon the existing LWRs so that they can burn on MOX fuels. These designs are 

mostly seen in Japan and France. New generation of LWRs, categorized as Generation 

III, are designed for safer and more effective operation. There are a few plants in 

construction in China, and two licenses have been approved in the U.S. for construction. 

The latest research focuses on Generation IV, which employs a completely different 

design. It is developed to operate at a higher temperature and uses different coolants as 

well as fuel elements, aiming to generate hydrogen as a byproduct of electricity and to 

contain all FPs within the newly developed tri-isotropic layered (TRISO) fuel particles. 

Research from all aspects of Generation IV is still ongoing. 
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Table 1-1: Genealogy of Large Nuclear Reactors [2] 

Generation I First nuclear electricity: EBR-I, Shippingport (US), Magnox 

(UK),.....1950s–1960 

Generation II  Current fleet of LWRs – pressurized water (PWR) or boiling-water 

(BWR) (US); VVER (Russia); CANDU (a heavy-water cooled reactor) 

(Canada).........1970–1980 

Generation II+  Current LWRs with new fuel; MOX, hydride fuel; liquid–metal bond 

Generation III  LWRs of completely new design – passive safety, fewer valves, shorter 

piping: ABWR (GE-Toshiba), AP1000 (Westinghouse-AREVA); EPR 

(Europe) 1990 – present 

Generation IV  Completely new designs or resuscitation of old reactor types – sodium 

fast reactor; (SFR); very-high-temperature reactor (VHTR)...2025 –?? 

1.2 Nuclear Physics Basics 

 In order to understand the operation of nuclear power plants, it is important to 

understand the basic concepts and terminologies of nuclear physics. This section briefly 

covers this aspect to introduce the basic equations and to define the terminologies that 

will aid the discussions in the later chapters. 

1.2.1 Nuclear Physics Basics  

 Two of the most common nuclear reactions are fission and fusion (Figure 1-2), 

both of which are capable of generating a large amount of energy. The fission reaction 
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consists on the separation of a nucleus into two fragments upon the absorption of a 

neutron that renders the nucleus unstable. It is most commonly observed in heavy 

elements such as uranium (U), plutonium (Pu) and thorium (Th). Take U-235 for 

example, under the fission reaction shown in Equation 1-1, it adsorbs a neutron and forms 

an excited U-236. The unstable U-236 eventually breaks into two FPs noted as FP1 and 

FP2 and emits neutrons and energy (E). The energy generated from the process can be 

obtained by calculating the difference in mass between both sides of the equation and 

apply the famous energy-mass equivalence equation: E=mc2. The calculated fission 

energy for U-235 is approximately 200 MeV per fission event [4].  

(a) (b)  

Figure 1-2: Illustrations of (a) Fission Reaction (b) Fusion Reaction 

 U+ n0
1 →

92

235
FP1Z1

A1 + FP2Z2

A2 + x n0
1 +E Equation 1-1 

 The fusion reaction, on the other hand, occurs when two light elements, most 

commonly deuterium and tritium, combine into a larger element. Similar to the fission 

reaction, neutrons and energy can be released from the reaction as shown in Equation 1-2. 

The loss in total mass can also be calculated to find the energy released. The average 
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energy yield for deuterium ( H1
2 ) fuel is about 6MeV. One example of a fusion reactor is 

the Sun in our solar system. In terms of power generation, there exist many benefits to 

harvest fusion energy instead of fission energy, including higher energy per unit mass, 

more abundant fuel sources and less hazardous nuclear waste. However, the mechanisms 

and reactor designs for fusion reactors are a lot different from fission reactors, and 

challenges remain with the ability to sustain a chain fusion reaction. Breakthrough 

researches from many aspects are still needed to build a practical fusion power plant. The 

technology of fusion energy will not be addressed in this work. 

 H1
2 + H1

3 → He2
4 + n0

1 + 17.6MeV Equation 1-2 

 In fission nuclear fuels, the term “burnup” is used to measure the usage of a fuel 

element. Burnup is defined as the percentage of initial heavy metal that has undergone 

fission. The fractional burnup (β) can be calculated using Equation 1-3 below. Burnup 

can also be expressed as the number of megawatt days of thermal energy released by fuel 

containing 1 metric ton of heavy metal atoms (MWd/MTU). As a general rule of thumb, 

one percent burnup is approximately equal to 104 MWd/MTU. These units are used 

interchangeably in different reports and papers. 

 
β =

number of fissions

initial number of heavy metal atoms
 

Equation 1-3 

1.2.2 Irradiation damage 

 After being able to sustain a nuclear reaction, the first challenge in reactor design 

is to take into account the radiation damage caused by the energetic particles generated 

from fission events. Materials need to remain functional under heavy radiation in order to 
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be used in the reactors. To briefly describe the process of radiation damage, when an 

energetic particle, i.e., a neutron released from a fission event, hits a material, it has a 

finite probably to collide with a lattice atom. This probability differs between different 

atoms and isotopes and is described as the “neutron cross section”. The higher the 

neutron cross section is the higher the probability of having a collision event. The first 

atom that is struck by the particle is called “primary knock-on atom” or PKA. One way of 

describing the level of radiation damage in a material is by counting the number of 

displacements per atom, known as “dpa”. Upon collision, the PKA carries a “recoil 

energy” transferred from the particle and starts moving. The PKA would travel a distance 

in the lattice and forces a small displacement in other atoms until it reaches a stop in 

either a pre-existing vacancy site or a interstitial site. The path it traveled is called a 

“displacement cascade”. The results of many of these collisions are the formation of 

many point defects, or more likely, clusters of point defects such as dislocation loops and 

voids. These changes in microstructure often degrade material properties and cause many 

phenomena in fuel elements and structural materials that will be addressed later [8]. 

 The irradiation damage is one of the most important factors to be considered 

when working with nuclear power generation, given that the damage caused by the highly 

energized particles produced during fission events is inevitable. Moreover, the atomic 

scale damage can quickly accumulate to impose a big impact on the microstructure and 

the material properties of fuel elements as well as structural materials.  
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1.3 Nuclear Fuels 

 Many different types of fuels materials exist for different types of reactors. They 

can be generally categorized into metallic fuels and ceramics fuels. This section will go 

over the basic mechanisms of nuclear physics in order to understand the desired 

properties in a fuel element. Different types of fuel will be mentioned, but the review will 

stress on oxide ceramic fuels as they are the most common type of fuel for nuclear power 

plants.  

1.3.1 Nuclear Fuels Overview  

 There are fissile and fertile materials when it comes to nuclear fuels. The fissile 

material can have fission reaction by itself while the fertile material requires the capture 

of a neutron for the fission event to take place. The most commonly used element for 

nuclear fuel is uranium. In nature, there is over 99% of 238U, which is fertile, and less 

than 1% of 235U, which is fissile. A refining process is usually required to make fuels 

with more 235U content, typically 3-5% for most reactors. Plutonium (Pu) is also 

commonly used in fuel elements by mixing it with uranium to make MOX fuels. The Pu 

can be extracted from pellets of spent uranium fuel. Using Pu serves the purpose of 

reducing the amount of nuclear waste as well as reducing the proliferation threats. In 

addition to uranium and plutonium, thorium (Th) is also a naturally occurring radioactive 

element that has a potential of generating nuclear power. Thorium is three times more 

abundant than uranium and has a different decay chain. It does not require enrichment, 

and it produces nuclear waste with less proliferation threat and a lot shorter half-life and 
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thus has a potential to replace uranium as a cleaner fuel for nuclear power. However, 

thorium based fuels require a different reactor design, which is still being developed [9].  

 The radioactive elements can be processed to produce fuels of different types, 

including metallic fuels and ceramic fuels, in the form of nitride, carbide or oxide fuels. 

The most common type of fuel, as abovementioned, is uranium oxide, which is a ceramic 

type fuel. It is used in almost all LWRs in the U.S. It has the advantages of a very stable 

atomic structure and a higher melting temperature, which is better for power generation 

purposes. UO2 has a fluorite crystal structure, as shown in Figure 1-3a, with the uranium 

atoms forming a face centered cubic (FCC) structure with oxygen atoms occupying the 

tetrahedral sites. It is usually made into cylindrical shape pellets with a diameter of about 

1cm (Figure 1-3b). Other types of fuels, such as uranium nitride (UN) and uranium 

carbide (UC) are also commonly seen in reactors for different purposes, such as research 

and transportation. Different shapes also exist among these fuels, such as plate type fuel 

and spherical type, i.e., tri-structural isotropic fuel (TRISO) [10]. 

 

Figure 1-3: (a) Fluorite Crystal Structure (b) UO2 Fuel Pellet with a Diameter of about 

1cm [11] 
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TRISO fuel is one of the latest designs of nuclear fuels, which is meant to be used 

in generation IV VHTRs. The idea is to have a more enclosed design to contain the FPs. 

The smaller size also enhances heat transfer and allows the coolant to see higher 

temperature. The basic idea is shown in Figure 1-4. The fuel elements, usually UO2 or 

UC2, are made into spherical kernels and then covered with a carbon buffer, inner pyro-

carbon, silicon carbide and then another layer of pyro-carbon. The final particles are 

dispersed in a graphite inclusion with a shape of a cylinder or a spherical pebble. Because 

of the introduction of carbon, the fuel chemistry becomes more involved. The layered 

structure also complicates the heat transfer model. Research work is focusing on both 

manufacturing process and the performance of the fuels as some prototype reactors are 

being built [10]. 

 

Figure 1-4: Tri-Structural Isotropic (TRISO) Fuel for VHTR  
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1.3.2 Uranium Oxide Fuel Performance 

In LWRs, UO2 is generally used in fuel pellets, which are stacked in a fuel rod as 

shown in Figure 1-5a. The material for the cladding is usually zircaloy, a zirconium based 

alloy, for better resistance to radiation damage. The fuel-cladding gap is kept to account 

for fuel swelling, and the space is filled with helium gas to enhance the thermal 

conductivity. Many fuel rods are assembled into a bundle secured by several square grids 

as shown in Figure 1-5b. The purpose of the grids is to provide support for fuel rods and 

prevent excessive vibration; however, they are also the spots in the fuel rods that are 

under higher risk of failure due to stress induced by small vibration and thermal 

expansion, a phenomenon known as fretting.  

(a)  (b)  

Figure 1-5: Fuel Assembly Illustration (a) the Layout of an Individual Fuel Rod (b) 

Pressurized Water Reactor Fuel Assembly [2] 
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 One advantage of uranium dioxide, as mentioned above, is its stability at high 

temperature. Uranium dioxide has a melting point as high as 2800 °C. However, it has a 

lower heavy metal density, which means less burnable fuels. It is generally operating in a 

very high temperature environment while only cooled by the light water coolant. In 

addition to high temperature, the fuel elements in a reactor also experience a very high 

temperature gradient, which can be as high as 104 °C/cm [6], due to the low thermal 

conductivity, which is around 7.5 W/mK at room temperature. The thermal conductivity 

value is even lower at higher temperatures. Because of the high temperature and 

temperature gradient, many physical phenomena that are not usually observed at low 

temperature, including FP transport, pore migration and microstructure reconstruction, 

can take place and make a difference on material properties and fuel performance. To 

predict the changes in material properties has become a very important topic as it is the 

key to design fuels that allow higher burnup. 

1.3.3 Fission Products 

 As the fuels are going through the fission process to produce heat for power 

generation, FPs are generated as a byproduct. The study of FPs is important for many 

reasons. First of all, some long lived FPs are highly radioactive and become a major 

concern for spent fuel treatment. Some nuclear research [5] focuses on the transmutation 

process to reduce the radioactivity and the half-life of these highly radiotoxic FPs. On the 

other hand, FPs can change the fuel chemistry significantly and thus the fuel properties. 

They also result in fission gas release (FGR), fuel swelling, and the resulting fuel-pellet 

interaction, which can cause the failure of fuel rods. It is thus important to have a 
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thorough understanding of the formation of these FPs, their chemistry and the way they 

behave in the fuel elements. 

 Some FPs have a short half-life that is less than a day and are thus ignored for 

most studies. The majority of long-lived FPs are in either the solid or the gaseous phase, 

depending on the elements and the temperature. Regarding the solid isotopes, they can 

either form metallic inclusions, react with oxygen and form oxide compounds that reside 

in the fuel matrix or form its own oxide cluster for the ones with low solubility [6]. 

Fission gases (FGs) and volatile FPs, such as Xe, Kr, I, Cs, Rb, Te, Ba, Sr [12] account 

for a large fraction of fission yield (see Table 1-2) and thus can change the composition, 

microstructure and properties of the fuels significantly. They are also the cause of some 

common failure mechanisms, such as stress corrosion cracking (SCC) and fuel poisoning 

[10]. Furthermore, some FPs, such as 135Xe and 149Sm, have large thermal neutron 

absorption cross sections and are “poisonous” to fission reactions. These FPs absorb 

neutrons from the chain reaction and thus can significantly affect the chain reaction of the 

fuel element. Many considerations need to be taken for these FPs.  
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Table 1-2: Fraction of Elemental Fission Product Yield in a Fast Neutron Spectrum. 

Table Reproduced from [6] 

Chemical Group 

Elemental yield 

235U 239Pu 

0.15 239Pu + 

0.85 238U 

Zr + Nb 0.298 0.204 0.219 

Y + rare earths 0.534 0.471 0.493 

Ba + Sr 0.149 0.096 0.109 

Mo 0.240 0.203 0.206 

Ru + Tc+ Rh + Pd 0.263 0.516 0.456 

Cs + Rb 0.226 0.189 0.209 

I + Te 0.012 0.070  

Xe + Kr 0.251 0.248  

 As outlined in the review above, FPs affect many aspects of the operation of a 

nuclear power plant. It is thus very important to understand their behaviors from the 

production to their kinetics and chemistry within fuel elements. 

1.3.4 Fuel Swelling and Microstructure Reconstruction 

 As fuel burnup increases, the volume of the fuel elements must increase to 

incorporate the generation of FPs and voids formed by irradiation damage. The increase 

in volume along with FG bubble formation result in the phenomenon known as fuel 
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swelling. Figure 1-6 provides a quick illustration of fuel swelling. It is shown that the 

expansion in volume can easily cover the gap between the fuel pellets and fuel rods and 

induce stress in the cladding. The interaction, known as pellet-cladding interaction (PCI) 

is one common cause of the failure in fuel rods. Eventually, the fuel pellets turn into an 

hourglass shape as a consequence of thermal and FP induced stress. Some species of FPs, 

in particular the nobles gases and volatile FPs, have very low solubility in the fuel matrix 

and thus exist in gaseous phase. The gas pressure builds up over time and causes cracks 

to form in the fuels. The transport of these FGs and the high temperature gradient in the 

fuel elements are responsible for the changes in microstructure within the fuel elements. 

 

Figure 1-6: The evolution of fuel elements that lead to pellet- cladding interaction [2] 

 Under irradiation effects and high temperature, the fuel microstructure changes 

significantly. The changes can affect the fuel performance and sometimes cause failure. 

Material microstructure behaves differently at different radial positions as shown in 

Figure 1-7. In the center of the fuel pellet where the temperature is the highest, a void can 

form due to pore migration and the evaporation and condensation of UO2. It is mainly 
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observed in fast reactors, of which the fission chain is sustained by fast neutrons (higher 

kinetic energy) instead of thermal neutrons. The grains close to the center void evolve 

into a columnar shape along the radial direction as a consequence of rapid FP migration 

in the high temperature. The columnar grains are followed by equiaxed grains that are 

larger than those in the original polycrystalline microstructure due to grain growth. The 

perimeter of the pellets remains similar to the initial microstructure since the temperature 

is lower in that region [6]. It can take as little as 24 hours for the restructuring process to 

take place [10]. This change in structure makes a difference on fuel performance as well 

as FGR behaviors between low and high burnup.  

 

Figure 1-7: An Illustration of a Reconstructed Microstructure of a Fuel Rod Cross 

Section Irradiated in a Fast Reactor [6] 



 

21 

 

1.3.5 Release of Fission Gases 

 The management of FGR is an optimization problem. Fission gases tend to have 

very low solubility in the fuel matrix and form bubbles. The pressure of fission gases gets 

larger with the increase of burnup, and there are two possible outcomes for these gases. 

They are either retained inside the fuel pellet or released to the gap between pellet and 

cladding. If the gases are released to the gap, the pressure will increase and induce stress 

in the cladding, which can cause stress corrosion and other failure mechanisms fatal to 

fuel rods. They also have lower thermal conductivity than helium; therefore, they can 

reduce the rate of heat transfer and thus decrease the efficiency of power generation. The 

gases released from the pellets also have higher possibility of being released to the 

environment and cause radiation hazards [6]. On the other hand, if the gases are kept 

within the fuel pellets, they tend to form bubbles within the microstructure of the pellets. 

The bubbles usually form in the grains and then diffuse or segregate to grain boundaries 

(GBs) where they coalesce into larger bubbles as illustrated in Figure 1-8. The gas 

bubbles contribute to fuel swelling. If the gas bubbles link at GBs, they can also cause the 

intergranular cracking that is commonly observed at high burnup [6, 13]. The behavior 

and the release mechanisms of these FGs have thus become a critical factor for fuel 

performance.  
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Figure 1-8: Fission Gas Bubbles Forming in the Grains and Coalesce in GBs [6] 

 The study of FGR was generally performed by measuring the quantity of released 

gas and fitting the results with a lattice diffusion model based on spherical grains. The 

model was later improved by including other mechanisms such as GB diffusion, bubble 

trapping and resolution [14-16]. Although the model has been successfully applied to 

predict the general trend of FGR, it does not predict the variation in the release profile 

caused by transient states and nor does it explain the observed local variation in bubble 

concentration [17, 18]. It has been seen from both experiments and reactor operation that 

the release of FGs is not linear. A phenomenon known as FG burst release has been 

observed from both operational and experimental data [19, 20]. Figure 1-9 shows an 

experimental data of the release of 88Kr with respect to irradiation time. A rapid increase 

in the release to birth ratio is observed between week 15 to week 21. From the FG release 

experiments along with the sample characterization, it is believed that the burst of FG is a 

consequence of FG bubble inter-linkage. The FG atoms, as they are generated in the grain 

bulk tend to migrate to GBs or pores to form gas bubbles. When a GB is saturated with 
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FG, the GB opens up and forms an open path. If many open GBs are inter-connected to 

the pellet surface, a large amount of FG gets released in a short period of time. Figure 1-8 

shows a diagram to illustrate the FG formation in the grain bulk and the coalescence in 

the GBs.  

 

Figure 1-9: Fission Gas (88Kr) Release to Birth Ratio (R/B) with Respect to Irradiation 

Time in Week in x: Small Grains and o: Large Grains [20] 

 Although the basic idea of FGR burst can be explained with the bubble linkage 

mechanism, the whole FGR process involves many different physical phenomena, 

including solid state diffusion, interface diffusion, percolation behavior, bubble-UO2 

equilibrium and irradiation induced diffusion. All these physics are happening in a high 

temperature and high thermal gradient environment. In addition, resolution of FGs can 

also happen due to irradiation effects. A thorough understanding in each of these physics 

and their coupling effects is needed in order to design advanced fuels with better 
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performance. Many models and experiments have been conducted addressing these 

effects and will be introduced in more details in Chapter 2. 

1.3.6 Experimental Techniques  

 The study of FGR involves both simulation and experiments. From the 

experimental perspective, there are two commonly used techniques to measure FGR: in-

pile measurements and post irradiation heat treatment. The basic ideas of the two 

techniques are illustrated in Figure 1-10. Both techniques employ a sweeping gas system 

through the environment followed by a fission gas trapping analysis system. In general, 

in-pile experiments are more representative of the environment inside a reactor; however, 

the cost of building the experimental instruments around it is very high. The conditions, 

although more realistic, are more complex and harder for post analysis since there are 

more variables to be considered. For example, the rating for burnup and the temperature 

vary with time and the radial location. Post irradiation heat treatment, on the other hand, 

allows better control over the burnup and temperature and is thus more commonly used 

by researchers to study FGR and to calculate FG diffusivities [6, 10].  

 



 

25 

 

 

Figure 1-10: Diagrams to Illustrate (a) In-pile Experiment and (b) Post Irradiation Heat 

Treatment [6] 

1.4 Motivation 

 The main purpose of the project funding this work is to develop advanced nuclear 

fuels for a more sustainable fuel cycle. Fuels of different types are being developed and 

studied to enhance accident tolerance and to achieve higher burnup. Research results are 

taken from several different aspects with a focus on simulation of fuel behavior due to the 

cost and difficulties involved with irradiation testing. For UO2, even though the bulk 

behavior has been studied over many years, some phenomena such as FP transport and its 

effect on fuel properties are still not well understood. A more thorough understanding of 

the FP behavior is needed. It has been shown for many materials that the microstructural 

features play important roles in their transport behavior. However, not much modeling 

work in the microstructure level has been done for UO2 in the past even though the 

importance of such work has been suggested from many characterization and theoretical 

works.  Before the next generation fuel can be designed and manufactured, there is an 
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urgent need to have a microstructurally explicit model that can reflect the micro-scale 

features of the material. Such model can be used to verify the performance of the 

developed fuels, which can help refining the manufacturing processes.  
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2. LITERATURE REVIEW 

 This chapter covers past research related to the transport of fission products (FPs) 

in UO2, with a focus on the diffusion of xenon. The first part of the chapter goes over the 

material properties needed for this study. The second part of the chapter discusses the 

importance of the microstructure on material properties, and how it can affect the 

transport mechanisms. The last section of the chapter introduces some existing models to 

address the phenomenon of fission gas release (FGR).  

2.1 UO2 Properties  

 Uranium dioxide (UO2), also known as uranium oxide or urania, is a black, 

radioactive crystalline material that occurs naturally in uraninite mineral, which is 

composed of 99.3% fertile U-238 and 0.7% of fissile U-235. It has a fluorite structure 

(CaF2) with U4+
 ions forming an FCC sub-lattice and with O2-

 ions occupying the 

tetragonal sites. One of the major advantages of UO2 as a nuclear fuel, as mentioned in 

Chapter 1, is the stability of its fluorite structure, which gives a high melting temperature 

of about 2865oC. The oxygen ions in UO2 do not fission and have no nuclear purpose.  

 A thorough understanding of the material properties is essential to the study of 

nuclear fuel, either for experimental or modeling work. Most intrinsic properties of UO2 

are well established through studies and measurements by many different scientists over 

the years [21, 22]. However, when applied in a nuclear reactor, UO2 has properties that 

evolve with time. The changes in properties depend on many factors, including initial 

composition, oxygen content, thermal environment, irradiation history, microstructures, 

etc. Also, there are certain properties that are not as well established as the 
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abovementioned such as grain boundary (GB) properties. This section covers a 

comprehensive literature review on the work done studying these properties with a focus 

on the effect of oxygen content, microstructure and burnup. 

2.1.1 Thermal Properties  

The thermal performance of fuel elements is critical to the operation of a nuclear 

power plant as it directly affects the efficiency of fuel elements. Many experimental data 

have been obtained over the years to study the thermophysical properties of UO2. To 

study the thermal performance of the fuel elements, it is important to know the thermal 

conductivity, density and heat capacity. Fink [22] made a thorough review of the 

thermophysical properties of UO2 in both solid and liquid form. The data, presented in 

Equation 2-1 through Equation 2-5 below, represent the initial properties of solid UO2 

fuel elements, where t=T/1000 and LT is the material length at the temperature T, which 

is a way to present thermal expansion data. The equations were obtained by fitting the 

data obtained by many researchers as summarized in [22].  

Thermal Conductivity:  

𝑘 =
100

7.5408 + 17.692𝑡 + 3.6142𝑡2
+
6400

𝑡5/2
𝑒𝑥𝑝(

−16.35

𝑡
) Equation 2-1 

Density:  

𝜌(𝑇) = 𝜌(273) (
𝐿273

𝐿𝑇
)  kg/m3 Equation 2-2 

LT = L273(9.973 × 10
−1 + 9.082 × 10−6T − 2.705 × 10−10T2 +

4.391 × 10−13T3 for 273K ≤ T ≤ 923K  

Equation 2-3 
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LT = L273(9.9672 × 10
−1 + 1.179 × 10−5T − 2.429 × 10−9T2 +

1.219 × 10−12T3 for923K ≤ T ≤ 3120K  

Equation 2-4 

LT: the length at temperature (K) 

ρ(273): 10.963 Mg/m3 

Heat Capacity:  

Cp=52.1743+87.951t-84.2411t2+31.542t3-2.6334t4-0.71391t-2  
J

kgK
  Equation 2-5 

The temperature dependence of thermal conductivity, for example, is illustrated in 

Figure 2-1. The thermal conductivity is about four times lower at 1800K as compared 

with the value at room temperature. This difference is significant and affects the fuel 

behavior as a large temperature gradient is usually present in the fuel pellets. Note that 

these functions are only temperature dependent and do not take into account the effects of 

irradiation and microstructure.  
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Figure 2-1: Experimental Data for Thermal Conductivity of UO2 [22]. 

2.1.2 Fission Product Diffusivities 

 Transport properties of FPs, especially FGs, are not well established. For the 

course of this work, the diffusivity of xenon in UO2 will be investigated due to its large 

quantity; however, it is important to keep in mind that other gases and volatile FPs, such 

as Kr, Cs, I and Rb can all behave similarly with some variations in each case. For the 

diffusivity of Xe in UO2, DXe, there exists many experimental data measured by different 

techniques and in different environments [23-25]. However, the measured values spread 

over several orders of magnitudes. It is commonly believed that the spread is due to the 

defect density controlled by the fuel stoichiometry [23]. For ceramic nuclear fuels, the 

diffusion of FPs has three major mechanisms categorized by Turnbull [26-28]: intrinsic 

diffusion (D1), irradiation enhanced uranium vacancy contribution (D2) and irradiation 
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enhanced self-diffusion (D3) as shown in Equation 2-6, where T is fuel temperature and Ḟ 

is fission rate. The effective diffusivity is usually expressed as the sum of the three 

components.  The detail of the explanation for each term can be found in [29].  

 D=D1(T) + D2(T,Ḟ) + D3(Ḟ) Equation 2-6 

 The experimental intrinsic diffusivity data are usually measured by post-

irradiation heat treatment, in which the fractional FG release data can be measured. The 

diffusivity of the fission gas can then be calculated based on Booth’s model [30]. The 

measured diffusivity values are generally expressed in an Arrhenius equation in the form 

D=D0exp(
-Q

RT
), where D0 is pre-exponential diffusion coefficient, Q is the activation 

energy and R is gas constant.  

Table 2-1 shows a list of intrinsic xenon diffusivity values obtained from experiments, 

except for Equation 2-10, which includes the three diffusion mechanisms listed in 

Equation 2-6. 
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Table 2-1: Experimentally Determined Equations for Diffusivity of FG in UO2. 

Diffusivity Equation Source  

DXe=2.1×10
-4

exp [
-380 kJ/mole

RT
] cm2 /𝑠 Cornel[31] Equation 2-7 

DXe=7.6×10
-6

exp [
-293kJ/mol

RT
] cm2 /s Davies and Long[32] Equation 2-8 

DXe=1.1×10
-4

exp [
-289kJ/mol

RT
] cm2 /s 

Matzke, Olander[33, 

34] 

Equation 2-9 

DFG=1.09×10
-13

exp(-6614/T) cm2/s 

𝑓𝑜𝑟 𝑇 > 1650𝐾 

DFG=2.14×10
-9

exp(-22884/T) cm2/s 

𝑓𝑜𝑟 1381 < 𝑇 < 1650𝐾 

DFG=1.51×10
-13

exp(--9508/T) cm2/s 

𝑓𝑜𝑟 𝑇 < 1381𝐾 

Forsberg and Massih   

[28, 35] 

FG: Xe, Kr, I, Cs 

Equation 2-10 

DXe=(0.05 𝑡𝑜 5)×exp(-3.9eV/kT) cm2/s 

Miekeley and Felix 

[25] 

Equation 2-11 

DXe = 2.9 × 10−8exp (
−276.5 kJ/mol

RT
) cm2/s Kaimal [36] Equation 2-12 

DXe = 1.7 × 10−8exp (
−235 kJ/mol

RT
) cm2/s Kashibe [37] Equation 2-13 
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It is not difficult to see that a large discrepancy exists for both the pre-exponential 

term and the activation energy. There are many possible reasons for the spread in 

diffusivity measurements including sample conditions, experimental approach, 

environment and the irradiation profile [23]. The samples being investigated come from 

different manufacturers and have different density and microstructures, i.e., porosity and 

grain sizes. During the experiments, the researchers used different gases such as Ar, H2, 

etc., and that can result in variations in sample stoichiometry, and it is believed that the 

deviation in stoichiometry has the biggest impact on the diffusivity measurements [23]. 

The irradiation history also plays an important role in the study because the defects 

generated can greatly impact the irradiation-enhanced diffusivity. Research work has also 

shown difference in Xe diffusivity at different concentration levels while the opposite 

effect was observed for Cs, I and Rb [33]. It is important to keep in mind the high level of 

discrepancy in FP diffusivity and each of these possible contributing factors when 

applying them in the study of FGR.  

2.1.3 Stoichiometry Effect on Material Properties 

Stoichiometry of UO2 determines the defect structure and thus can affect the 

transport properties significantly. Fresh fuel pellets are usually made to be stoichiometric 

or close to stoichiometry with an oxygen to uranium metal ratio (O/M) of 2:1. As the 

burnup increases, uranium atoms are consumed by fission reactions, and the M/O is 

reduced. This issue, again, is not determined by a single factor; the distribution of oxygen 

in a fuel pin is also affected by the high temperature gradient and the formation of FPs 

that can form oxide compounds. Under the high temperature gradient, oxygen is 
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transported by a CO/CO2 mechanism in the opposite direction of the thermal gradient. It 

also forms oxide with many metallic FPs that are transported by vaporization and 

condensation mechanisms. In addition, the oxygen partial pressure in the gap needs to 

maintain equilibrium with both the fuel pins and the cladding materials such as zircaloys. 

As a consequence, the fuel stoichiometry would vary with burnup and radial position as 

shown in Figure 2-2. 

 

Figure 2-2: Oxygen Redistribution Results from Both Calculation and Experiments for 

(U,Pu)O2+x [6]. 

The difference in stoichiometry, as abovementioned, results in different material 

properties, especially the transport properties such as thermal conductivity and FP 

diffusivities. For thermal conductivity, it is known that the value decreases when the 

material stoichiometry deviates from 2.0 as shown in Figure 2-3. Physically, it is 
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expected as the excess (or insufficient) oxygen produces point defects, which interfere 

with the phonon transport in the lattice structure. The change in thermal conductivity is 

most significant at low temperatures. The stoichiometry effect on thermal conductivity 

becomes less pronounced with increasing temperature and O/M ratio. 

 

Figure 2-3: The Change in Thermal Conductivity with O/M Ratio and Temperature for 

U0.8Pu0.2O2±x [6]. 

As mentioned in section 0, the measured FG diffusivity value varies by several 

orders of magnitude, and it was proposed that the main factor contributing to this scatter 

was the stoichiometry of the samples. To address this problem, Miekeley and Felix [25] 

investigated the stoichiometry effect with post irradiation annealing experiments on three 

samples of different stoichiometry: hypo-stoichiometric (UO2-x), hyper-stoichiometric 

(UO2+x) and stoichiometric (UO2). It was found that the hyper-stoichiometric sample has 

the highest diffusivity followed by stoichiometric sample at 1400 K as shown in Figure 

2-4. It was also reported that no difference in diffusivity values was observed based on 

many experimental data. However, a different observation was published by Matzke [38] 

that showed a variation in DXe with the magnitude of x as shown in Figure 2-5. 

Theoretically, it makes more sense to see changes in diffusivity with respect to the x 
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value due to the changes in defect structure [39]. Overall, these experimental works 

provided insights to the defect structures of UO2+x, which is important to many atomistic 

diffusion models that will be discussed later. 

 

Figure 2-4: Variation of DXe with Stoichiometry in UO2 Powders [25]. 

 

Figure 2-5: Variation of DXe with Sample Stoichiometry in UO2 Powder [38]. 
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2.2 Effects of Microstructure 

 It is known that the microstructure plays an important role in material properties. 

For polycrystalline materials, both metals and ceramics, microstructural features include 

porosity, grain bulks, GB and triple junction (TJ). Any variation in properties from these 

microstructural features can result in a large variation in bulk behaviors. This section will 

discuss the important aspects of microstructural effects on the transport of FPs in UO2.  

2.2.1 Grain Boundary and Coincident Site Lattice 

 Grain boundaries (GBs) play an important role in polycrystalline materials. The 

material properties at GBs are different from the bulk lattice because of disordered 

structure and higher interfacial energy at GBs. They are usually the preferred sites for 

corrosion, cracking as well as mass diffusion [40]. It has been found that GBs are the 

high diffusivity paths in some materials, both metals and ceramics [41]. For UO2, it is 

generally believed that GBs play an important role in the release of FGs [34]. As the 

grain size gets smaller, the coverage of GBs per unit volume increases, and the effect of 

GBs on material properties can increase significantly. Much work has been done trying to 

understand GBs for metals. However, the work is still lacking for ceramic materials, in 

general, and UO2, in particular. Before getting into the detail of the present work, it is 

necessary to understand some basic concepts of GBs and how it can affect the FP 

transport.  

 Grain boundaries have imperfect crystal structure in the presence between two 

grains of different orientations. The difference in angles between two neighboring grains 

orientation axes is called the disorientation or misorientation angle. Based on the rotation 
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axis between two grains, as defined by their Euler angle [40], GBs can be categorized as 

tilt GBs and twist GBs. A tilt boundary has a rotation axis that is parallel to the boundary 

plane while the twist boundary has the axis perpendicular to the boundary plane. Grain 

boundaries can also be classified as low and high angle GBs according to the angles of 

misorientation, and it has been found that low and high angle GBs can have different 

properties as shown in Figure 2-6. Usually when the angle exceeds 10° to 15°, it is 

categorized as high angle GBs. In a low angle GB, atoms are better aligned with each 

other while in high angle GBs, they tend to be more distorted and thus have higher GB 

energy [42]. 

 

Figure 2-6: Relative GB Energy Data for Al and Cu for a Symmetric [100] Tilt Boundary 

That Shows the Increase in Energy with Misorientation Angle [43]. 

 It was also discovered that certain high angle GBs with certain specific planes and 

misorientation angles have lattice sites that coincide between two grains, and these 
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“special GBs” are expected to have a more aligned structure than a general GB. 

According to coincident site lattice (CSL) theory, these GBs  can be categorized by their 

degree of fit (Σ), which is defined as the reciprocal of the ratio of coincidence sites to 

total number of sites at boundaries [40]. Figure 2-7 shows an example of the structure of 

a Σ5 tilt (310)/ [001] GB [44]. The effect of CSL on GB energy has been experimentally 

proven for many materials (Figure 2-8). These differences in GB energy often lead to 

variation in their behaviors such as resistance to corrosion and GB diffusivities.  

 

Figure 2-7: Structure of Σ5 Tilt Boundary at (310) Plane in [001] Direction [44]. 

(a) (b)  

Figure 2-8: The GB Energy at Different Misorientation Angles for a Ceramic (a) [110] 

Tilt (b) [100] Twist [43]. 
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Possible evidence of the effect of heterogeneous GB properties have on the FG 

bubble distribution in UO2 fuels has been observed. Figure 2-9 shows a fractograph of 

UO2 grains with bubbles on their GBs. The bubble shape and connectivity vary between 

different GBs with some isolated and some connected. The bubbles in the connected GBs 

appear to have grown and coalesced sooner than bubbles in other GBs. It seems like the 

crystallography effect is a more reasonable explanation as these neighboring GBs are all 

under similar environment and irradiation history. However, no study, to the best of 

author’s knowledge, has been conducted regarding this phenomenon. 

 

Figure 2-9: A Micrograph of a UO2 Grain Showing Different Pore Shapes at Different 

GBs [45]. 

2.2.2 Grain Boundary Diffusion 

 The phenomenon of GB diffusion was established as early as 1950s when Fisher 

[46] set up the problem by placing a thin layer of high diffusivity material between two 

grains with low diffusivity while a constant flux was applied from the top surface as 

shown in Figure 2-10. By solving a mass balance equation using Fick’s law of diffusion, 

the GB concentration can be expressed with a partial differential equation as shown in 
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Equation 2-14, and similarly for bulk concentration, which is shown in Equation 2-15, 

where the Cb is the concentration at the GB, Db is the diffusivity of the GB, Dl is the 

lattice diffusivity, Cl is the concentration of the bulk lattice and δ is the GB thickness. 

Whipple [47] was the first one to solve for the exact solution to this problem as shown in 

Equation 2-16. It was shown that the GB diffusivity Db is in a product with δ, which 

means that one can only determine the value of δDb but not Db alone. It puts an emphasis 

on the fact that the GB thickness plays an important role in the study of GB diffusion. 

However, the value for δ is not well defined and can depend of the type of GB, the 

porosity and many other factors. Values ranging from 0.5 nm to 100 nm have been used 

in different models [48, 49]. 

 

Figure 2-10: A Sketch that Illustrates the GB Diffusion Model Described by Fisher [50]. 

 
∂Cb
∂t

= Db
∂Cb
∂y

+
2Dl
δ

∂Cl
∂x

 Equation 2-14 

 
∂C

∂t
= D∇2C Equation 2-15 

 [dln(c)/d(y6/5)]
5/3

= 0.66(Dl/t)
0.5(1/δDb) Equation 2-16 
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 For polycrystalline materials, the GB diffusion mechanism was classified into 

three types by Harrison [50]. Figure 2-11 shows a schematic of the three GB diffusion 

types. Type A describes a case with long diffusion time, small grain size and a high bulk 

diffusivity that is comparable to GB diffusivity. Under these conditions, no significant 

difference in concentration can be observed. Type B is the most common type of 

diffusion mechanism that is observed from experiments [51]. It has a deep penetration 

depth along GBs with a simultaneous diffusion from the GB to the bulk. If the bulk 

diffusivity is negligibly small, the diffusion mechanism is a type C, which has no 

observable concentration gradient in the bulk.  

 

Figure 2-11: Schematic Illustrations of Type A, B and C Boundary Diffusion in a 

Polycrystalline Material [50]. 



 

43 

 

 Experiments, as well as simulations, have been done on ceramic materials with 

the fluorite structure, such as yttria–stabilized zirconia (YSZ) [52] and UO2 [49], and 

illustrate the effects of GBs on mass transports. It was found that for both metal and 

oxide ceramics, the Db/Dl could be as high as 107 [49]. Grain boundary diffusion has been 

known to be the reason for many observed phenomena such as grain growth, 

recrystallization and Coble creep. It also plays an important role in the models for FGR, 

which will be discussed in more details later. 

 For nuclear fuels, uranium oxide to be specific, it is generally believed that the 

release of fission gases occurs mainly by the interconnections of gas bubbles at GBs. 

Grain boundary diffusion was simply ignored in most studies. However, an analysis done 

by Olander [34] found that the simple grain bulk diffusion model does not fit the 

fractional release data he obtained at low burnup. The analysis showed that FGR through 

interconnected bubbles is only the case at medium and high burnup (> 20MWd/kg) when 

the gas atoms are trapped after migrating a distance equal or less to the size of a grain. At 

low burnup, GB diffusivity is still contributing to the release of fission gases with little or 

no effects from trapping by the bubbles. 

2.2.3 Percolation Theory and Grain Boundary Networks  

Because of the high diffusivities and the heterogeneity that GBs possess, 

percolation theory has been applied to study how they affect transport in a GB network. 

Percolation theory is a study of the connectivity in a network. It describes the geometrical 

transition between disconnected and connected phases with respect to the increase of 

concentration of occupied sites [53, 54]. It deals with the number and properties of 
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clusters, which is defined as a group of neighboring occupied sites. The percolation 

threshold (pc) is the concentration at which the cluster starts to expand from one side of 

the system to the other. The value is dependent on the lattice geometry as well as the size 

of the network and can be solved mathematically. For an infinite network, the 2-D 

honeycomb lattice has a percolation threshold of 0.65271. The values for 3-D networks 

are generally smaller due to the larger number of neighboring sites, and the pc for a 

simple cubic network has a value of 0.2488 [53]. Percolation theory has been applied in 

the study of many physical properties of disordered systems such as mechanical 

properties of gels and conductivity of metal insulator composites. It has also been applied 

to study the diffusion mechanism in a GB network.  

 The effect of heterogeneous GB diffusivity on mass transport in a GB network 

and the conditions that lead to percolation are studied by Chen et al. [55] using a 

computational model. The model is set up as an ideal, 2-D honeycomb lattice network 

with two diffusivity values randomly assigned to each GB. The high diffusivity (D2) and 

low diffusivity (D1) were assigned to GBs at random with a prescribed probability.  The 

probability, which controled the fraction of high diffusivity GBs (p), was varied 

arbitrarily in this simulated network. The effective diffusivity was calculated using 

Effective Mean Theory [55]. In Figure 2-12a and b, the normalized concentration profile 

with p=0.7 is plotted at two different diffusivity contrasts, and the difference is obvious 

with the diffusivity ratio set at 10 and 108. The concentration distribution became 

nonlinear in Figure 2-12b, which has the high diffusivity contrast. The distribution of the 

concentration shows how the low diffusivity GBs can hinder the mass flow on certain 

sites while increasing the mass flow on others. The normalized effective diffusivity with 



 

45 

 

respect to p at different D2/D1 ratio is plotted in Figure 2-13. Two major findings from the 

result include the critical high diffusivity GB fraction pc and the continuity of the curves 

for different D2/D1 ratio. At a fraction of about 0.65, there is an abrupt change in 

normalized Deff, indicating the onset of percolation, which matches closely to the 

theoretical value for a honeycomb lattice [53]. At this critical value, the curves have a 

sharp increase in magnitude; moreover the increase in magnitude become discontinuous 

for high diffusivity contrast cases (D2/D1>104). These observations indicate that 

percolation behavior can only be observed for GB networks with high diffusivity 

contrast, and the critical value of percolation threshold obtained in this simulation was 

about 0.65. 

 

Figure 2-12: The Concentration Profile with (a) Low Diffusivity Contrast GBs (b) High 

Diffusivity Contrast GBs under a Fixed Concentration Gradient. 
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Figure 2-13: Normalized Effective Diffusivity Change with High Diffusivity GB Fraction 

(p) for Different Diffusivity Contrast. 

Another important aspect of applying percolation theory in engineering studies is 

related to scaling laws. In principle, percolation theory tries to describe a system in an 

infinite network to understand the general behavior. However, an infinite network does 

not exist in reality and the percolation behavior can vary with the size of the network. 

Scaling laws have been developed to address this issue. Work done by Frary and Schuh 

[56] examined the scaling effect in a GB network using four properties: average radius of 

gyration of GB clusters (Rs), the number of clusters of a given mass per lattice site (ns), 

the connectivity length (n), and the strength of the infinite or lattice spanning cluster (P). 

The GB networks for special GBs as well as general GBs with and without 

crystallographic relationships were studied. It was found that all the finite size GB 

networks studied follow the scaling law. Deviations, caused by local correlation, became 

significant when the cluster size decreased to three grain diameters or smaller.  
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2.2.4 Grain Boundary Thermal Resistance 

Microstructure can also make an impact on the thermal performance of fuel 

elements, and it is very important to have a thorough understanding of their thermal 

performance as it directly affects the efficiency of the power plants. Many simulation 

works at different scales [57] have been conducted in the past trying to predict the 

thermal conductivity of UO2 inside a reactor. It is an evolving property that depends not 

only on temperature but also on the evolution of the microstructure, which makes it a 

complex process. Lucuta et al. [58] summarized and expressed thermal conductivity as: 

 λ=κ1(β)κ2(p)κ3(x)κ4(r)λ(T) (W/mK) Equation 2-17 

where κ1 is the burnup (β) dependence factor, κ2 is the porosity/bubble contribution (p), κ3 

is the effect of O/M ratio and κ4 is the radiation damage (r) factor. Each of these factors 

plays a different role at different stages of the fuel cycle, and interacting effects may exist 

between these factors to further complicate the problem. Typically, these factors are 

studied individually to provide inputs to fuel performance. In a microstructurally explicit 

model, the effects of GBs can be taken into account in the study thermal conductivity. 

Grain boundaries have a disordered atomic structure and can impede phonon 

scattering, which is the mechanism for heat conduction, and thus reduce the overall 

thermal conductivity. The phenomenon is known as GB thermal resistance, or Kapitza 

resistance as it was firstly observed in the 1940s by Kapitza [59] to describe the 

resistance to heat flow at material interfaces. Polycrystalline materials have many GBs 

that act as thermally resistive layers and can significantly reduce the overall thermal 

conduction of the materials [6]. When FGs accumulate in the GBs, the low conductivity 



 

48 

 

inert gas bubbles can further increase the thermal resistance in these boundaries [55, 60, 

61]. The effect of the GB Kapitza resistance has been studied for silicon and oxide 

ceramics, including YSZ and UO2 [62-64]. The analytical solution derived by Yang [62], 

as shown in Equation 2-18, is generally used to solve for Kapitza resistance.  

 
k = 

k0

1+
k0Rk

d

 Equation 2-18 

where k is the effective thermal conductivity, k0 is the bulk thermal conductivity, Rk is 

the Kapitza resistance and d is the grain size. Phase field models created by 

Chockalingam, Millet and Tonks modified Equation 2-18 and showed the changes in 

effective thermal conductivity of UO2 as a function of pore sizes and GB bubble coverage 

[48, 65]. The models take into account the bubble shape factors, bubble coverage fraction 

and grain size in a 2-D hexagonal grain structure and derived effective Kapitza resistance 

for GBs with FG bubbles. 

2.2.5 Effect of Triple Junctions 

 A TJ, a line in 3-D where three GBs meet, is also an important microstructural 

feature that needs to be considered when studying microstructural effects on fuel 

elements. Similar to GBs, TJs can also be fast diffusion paths due to their structure. The 

diffusion mechanisms for TJs, however, are not as well established as GB diffusion. 

Some studies do exist as Chen et al. [66] has pointed out that TJ diffusion can be a 

possible mechanism for the “anomalous diffusion” that was observed in nano-crystalline 

materials. Experimental work presented in [67] has also shown that diffusion of zinc 

along aluminum TJs is about three orders of magnitude higher than GBs. If that is also 
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the case for UO2 as nuclear fuel, it can have a significant impact on the studies of fission 

gas release at low burnups. Figure 2-14 shows a SEM picture of bubbles located in GBs 

as well as TJs. It can clearly be seen that TJs have larger bubbles compared with its 

neighboring GBs, which is evidence that TJs have different properties from GBs and 

grain bulks in the study of FGR. Moreover, if TJs are the first microstructural feature to 

be filled with FG bubbles, their connectivity can be a more important network that 

dominates the FG venting. However, research work in TJs in general and its application 

to FGR is still lacking. 

 

Figure 2-14: Early Stage of Porosity Formed by Fission Gas Formation at a UO2 Fracture 

Surface Taken by SEM. The Size Difference Between Pores at TJs and GBs Can Be 

Differentiated. The Circled Areas Are Quadruple Points Where Three TJs Meet. [45]. 

 From the crystallographic point of view, TJs are also important as the dihedral 

angles, which can be measured at TJs (Figure 2-15), reveal GB tensions and, in turn, GB 

energy [42]. The information helps predict the movement of grains and GBs as they try to 
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achieve equilibrium when all three dihedral angles are equal to 120o.  Other than dihedral 

angles, Schuh [68, 69] also showed that there existed a correlation at TJs where the type 

of GB was determined by the other two GBs due to crystallographic constraints (Figure 

2-15b). The work in [68] also concluded that it required 50-70% more special GBs to 

break the connectivity of high angle GBs. This illustrated that a randomly generated GB 

network did not fully characterize an actual GB network. Figure 2-16 shows an example 

by comparing a general GB network created at random (a) and a network created 

following crystallographic constraints (b). It is evident that Figure 2-16b has a more 

connected GB network as compared with Equation 2-16a.  

(a) (b)  

Figure 2-15: (a) Three GBs Intersecting at a Triple Junction Reveals Three Dihedral 

Angles (b) The Possible Combinations of GBs That Satisfy Crystallographic Constraints 

at a TJ Defined in [68]. 
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Figure 2-16: General GB Network in Irregular Lattice (a) A Randomly Generated GB 

Network (b) a GB Network with Crystallographic Constraints [70]. 

 Despite the fact that TJ diffusion is not as well established as GB diffusion, it is 

still an important factor that affects the crystallography of the microstructure as well as 

the distribution of general and special GBs. The atomic structure is definitely more 

complicated to study than that of GBs; however, if TJs possess a diffusivity value that is 

orders of magnitude higher than DGB, the outcome of FGR can be altered by them. It is 

important to keep in mind the possible effect of TJs when studying the microstructure 

effect on FP transport. 

2.2.6 Defect Structure in Uranium Dioxide 

The bulk transport of FPs in UO2 is strongly dependent on the defect structures, 

which is also a strong function of the stoichiometry and atomic structure. Uranium 

dioxide has a fluorite structure, and as a fuel material, it is generally made to be close to 

stoichiometry. However, as burnup increases, uranium atoms are consumed and the 

pellets tend to become hyper-stoichiometric UO2+x. The number of point defects 
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increases significantly with the increase in x, followed by formation of voids and defect 

clusters. These defects strongly affect the transport properties of the fuel element [6]. It is 

important to have a good understanding of the defect structure in UO2. Figure 2-17 shows 

the dependence of oxygen partial free energy on the deviation from stoichiometry. The n 

value corresponds to the relationship to oxygen partial pressure (pO2
1/n), which 

determines the stoichiometry. The dominating defect structure varies with the n value 

[71]. 

 

Figure 2-17: Relative Partial Free Energies of Oxygen, ΔGO2, of UO2+x, as a Function of -

log(x). The Variable n Denotes the Exponent in the pO2
1/n [39]. 

 Experiments have been done to understand the diffusion mechanism of Xe in UO2 

by doping with metals of different charges. It was found that the creation of either U 

vacancy or O vacancy does not promote diffusion of Xe in UO2 matrix. It was concluded 

that the Xe diffusion must be accomplished through a complex defect structure, mostly 
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likely through one U vacancy and two O vacancies [6]. This work later becomes the basis 

of many atomistic scale simulations, which will be discussed later. 

2.3 Existing Fission Product Transport Models 

 Much simulation work is usually needed in the study of nuclear fuel due to the 

difficulties and costs associated with irradiation experimental work. In the study of fuel 

behavior, simulations have been used to interpret experimental data in order to 

understand the observations and to calculate and predict fuel behavior in a reactor. This 

section covers the earlier models, Booth’s model and its variations, as well as the newer 

atomistic as well as meso-scale microstructure models. 

2.3.1 Booth’s Model  

One of the earliest and most widely applied models in the study of FGR was 

developed by Booth [30], who assumed a spherical grain with perfect sink at the GB, as 

shown in Figure 2-8. The fission gas atoms were generated in the grain and migrated to 

GBs following the classical diffusion equation. The gas bubbles were considered released 

when they reached GBs. The amount of FG released could be calculated by integrating 

the diffusion equation over time over the GB surface. The release to birth ratio (R/B) can 

then be calculated using the derived relationship shown in Equation 2-19 where S/V is 

surface to volume ratio, D is diffusivity and λ is the decay constant. The model was also 

applied to deduce the diffusivity of fission gases from the experimental measurements. 

Booth’s model was later modified to include other physics such as resolution of FG 

bubbles and trapping [15, 72, 73] to be incorporated in different fuel performance codes. 

Speight [72], for example, added a net mass flux term contributed by trapping and re-
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solution effects, as expressed in Equation 2-20, where m is the amount of gas in the 

bubble, c is local concentration of gas atoms in the solution, g is the probability per 

second of a gas atom in the solution being trapped by a bubble, and b is the probability 

per second of a gas atom within a bubble being re-dissolved. These modifications 

generally improved upon Booth’s model to make more precise predictions of gas release; 

however, the basic idea still followed Booth’s model. 

 R

𝐵
= (

𝑆

𝑉
)(
𝐷

𝜆
)1/2 

Equation 2-19 

 ∂m

∂t
=gc-bm 

Equation 2-20 

 

Figure 2-18: An Illustration of Booth’s Model for Fission Gas Release. [74] 

 The issue concerned with Booth’s model was mainly the over simplification of 

the geometry and the boundary conditions. The spherical grain model does not reflect the 

microstructure of UO2, and the size considered is limited to a single grain. When applied 

in fuel performance codes, it did not predict the low FGR at the early stage of fuel life 

followed by the bursting phenomenon. However, Booth’s model built the ground for the 
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modeling work in the study of FGR, and most of the FG diffusivity values that are being 

used today are based on Booth’s model. 

2.3.2 Atomistic Simulation  

 In the atomic scale, the transport of FPs takes place mainly through the migration 

through the vacancies and interstitial sites. First principle studies to understand the 

intrinsic material behavior are often based on density functional theory (DFT) and 

molecular dynamics (MD) calculations. Molecular dynamics mainly studies the dynamic 

motion of atoms in a many body systems while DFT is based on quantum mechanical 

models that use electronic structures to study material properties. In particular, DFT has 

been commonly used among researchers to study the atomistic diffusion in UO2. Liu et 

al. [75] demonstrated the capability of using DFT simulation to calculate different 

properties of nuclear fuels, including the transport behavior of Xe in UO2. Andersson et 

al. [76], on the other hand, applied the method and calculated the xenon diffusivity in 

UO2-x, UO2 and UO2+x. The results were comparable to existing experimental data. 

Atomistic studies were also applied to study different GBs [77, 78], and the GB energy as 

well as segregation energy for different GB types were calculated. Although very limited 

number of GB types was studied, the work found that the segregation energy for xenon to 

UO2 GBs is higher at a random GB than at a CSL GB (Σ5). The result agreed with CSL 

theory. The results of atomistic simulations helped provide an idea of intrinsic material 

behaviors as well as a reference to be compared with experimental data, especially when 

a large uncertainty exists in the experimental work. The atomistic studies also provided 

inputs to meso-scale models to study microstructural effect on nuclear fuel behavior.  
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2.3.3 Meso-scale Models and Percolation Theory 

 Meso-scale models have been developed to study microstructural effects on fuel 

performance. Techniques such as phase-field and finite element analysis are commonly 

used. They typically use the experimentally obtained material properties or first principle 

calculations as inputs to the partial differential equations and solve the material behavior 

at the microstructural level. The approach has been applied to study FG bubble evolution 

(Figure 2-19a), effective GB resistance (Figure 2-19b) as well as transport of FGs. Earlier 

meso-scale models began with 2-D models studied in a simulated network, and more 

complex models were later developed to study the effect in 3-D, as it is known that some 

physics, such as bubble morphology and percolation effect, have different behaviors in 3-

D.  

(a) (b)  

Figure 2-19: Examples of Meso-scale Models (a) FG bubble Evolution at a GB [79] (b) 

Bubble Enhanced Thermal Resistance at GBs [80].  

 The percolation theory has been applied in some meso-scale models to study the 

FGR mechanisms. The study conducted by Rudman et al. [81], built on the GB 

percolation analysis described in section 2.2.2 and conducted simulations with a real 

microstructure of UO2, which contains 68% fraction of high diffusivity (D2) GBs. The 
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study set up a normalized concentration profile and observed the percolation paths at 

different diffusivity ratios, and the results are shown in Figure 2-20a. The percolation 

paths started to show at a D2 to low GB diffusivity (D1) ratio of 105 or higher, which is in 

a good agreement with Chen’s work [55]. The effective diffusivity was also calculated 

and plotted versus log (D2/D1), and it is shown that the normalized diffusivity (Deff/D2) 

reached a constant value as the D2/D1 ratio increased above 104
 (Figure 2-21). A similar 

study was also conducted in a larger scale by Millett [60] using a simulated network with 

no crystallographic information (Figure 2-20b). The work included lattice diffusion of 

FGs and conducted a percolation study on FG saturated GBs. The obtained percolation 

threshold in 2-D was about 0.65, a close match with other studies. Although the 

percolation results seemed to match in different studies, it was believed that the complex 

grain microstructure in 3-D can make a difference. These simulations were also very 

preliminary as they did not take into account other effects such as temperature and fuel 

stoichiometry, which are known to have a big impact on the transport behavior and 

subsequently, the percolation behavior. 
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(a)  

(b)  

Figure 2-20: (a) Diffusion Flux from the Simulation Result in a 2-D Microstructure with 

Diffusivity Ratio of 106, 107 (From Left to Right) [81] (b) 2-D GB Networks Used to 

Study the Percolation of Saturated GBs. 
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Figure 2-21: Effective Diffusivity under as a Function of Diffusivity  Contrast for the 

Simulation in 2-D Microstructure [81]. 

 In order to have a better understanding of FP transport and its effect on nuclear 

fuel elements, a more realistic model is needed. The model needs to reflect the complex 

geometry in 3-D as well as other effects such as temperature, stoichiometry and GBs. The 

effects of GBs, in particular, need more attention as they are dominating the FGR 

behavior. The variation in GB properties due to crystallography is rarely addressed in 

past studies of FGR; however, more and more evidence has shown that differences in GB 

properties introduced by differences in GB crystallography can certainly affect the 

percolation behavior studied in a microstructurally explicit model. As a result, there is a 

need to develop new tools that can take the abovementioned complex physics into 

account to tackle this problem.  
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3. OBJECTIVES  

 The objective of the work is to develop a microstructurally explicit model to study 

the behavior of oxide nuclear fuels. The nuclear renaissance that started about a decade 

ago put an emphasis on material modeling work in order to predict fuel behavior better 

and to develop next generation fuels with better thermal and mechanical performance. 

The earlier works on fuel modeling are mostly analytical and describe mainly the bulk 

behavior while a lot of recent work has focused on atomistic simulation. More meso-scale 

models are needed to bridge the gap between the bulk behavior and the atomistic models. 

 Very few 3-D microstructurally explicit models are available in the literature, and 

most of which are applied only to provide geometric information. No meso-scale model, 

to the best of the author’s knowledge, has been developed to take into account 

crystallographic information, which is known to affect material behavior. The present 

work looks to take advantage of the advances in material characterization techniques and 

computational capability by developing a model that contains both the geometric and 

crystallographic information of UO2 from actual microstructures obtained from 

characterization, to perform finite element simulations of fuel behavior.  

 To be more specific, the goal is to create a 3-D meso-scale model to verify and 

predict the evolution of fission product transport and the thermal performance of UO2 at 

low burnups, taking into account the complex physics that are important for this problem: 

grain bulk and grain boundary (GB) diffusion, triple junction (TJ) diffusion, temperature 

dependent material properties, material stoichiometry and GB thermal resistance. The 

model needs to be in 3-D and multi-physics to account for 3-D geometric effects and 
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coupling between temperature and mass transport given by all the temperature dependent 

properties in a high temperature gradient environment. The heterogeneity of material 

properties will be included based on the crystallography data obtained from the sample 

characterization. The model will be simulated using COMSOLTM, a platform for multi-

physics simulation using finite elements, and the complex interactions between different 

mechanisms can be combined and studied in one model. 

The work can be broken down as follow: 

 Reconstruct the microstructure of UO2 samples in 3-D. Apply serial sectioning 

techniques to collect a series of orientation imaging microscopy (OIM) using 

electron backscattered diffraction (EBSD) and focused ion beam (FIB). Develop a 

procedure for 3-D reconstruction.  

 Characterize and compare the samples using 2-D EBSD data and the 

reconstructed 3-D model. Study the results to have a good understanding of the 

difference between 2-D and 3-D characterization and between different samples. 

The GBs will be characterized based on misorientation angles and coincident site 

lattice theory to provide additional information for simulations. 

 Study the physics of FP transport and heat conduction in nuclear fuels and derive 

the necessary equations to be applied to the model. Calculate the bulk fuel 

behavior based on reactor operating conditions to obtain parameters needed to 

simulate different fuel behaviors.  

 Verify the analytical work using a bi-crystal model. 
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 Conduct simulations for each variable, including stoichiometry, GB diffusion, TJ 

and heat transfer, individually to study their effects on fission product transport 

and heat conduction. A sensitivity analysis will be conducted to check the effect 

of material properties with a large uncertainty. 

 Conduct multi-physics simulations for different samples to study the effect of 

different microstructure geometry and crystallography on fission product 

transport. 
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4. EXPERIMENTAL PROCEDURES AND CHARACTERIZATION RESULTS 

 A microstructurally explicit model requires a thorough understanding of the 

microstructural features and statistics of the studied samples. This chapter is dedicated to 

the experimental procedures, which include sample preparation methods and 

characterization techniques. Figure 4-1, which is an Electron Backscattering Diffraction 

(EBSD) data superposing on top of a Scanning Electron Microscopy (SEM) image, 

shows an example of the information to be collected from the characterization work, 

including electron micrographs, grain orientation images and grain boundary (GB) 

character. The different grain orientation and GBs are labeled with different colors, and 

the information is used to provide statistical data and to create finite element models. 

This chapter provides the detailed procedures for both experimental and characterization 

work. The obtained characterization data in 2-D and 3-D will also be presented.  

 

Figure 4-1: SEM and EBSD Image for a Porous UO2 Sample Showing the 

Crystallography Orientation and the Types of Special GBs. 
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4.1 Experimental Procedures 

 The work began with sample preparation and data collection, which was 

completed in Los Alamos National Laboratory (LANL). It was followed up by sample 

characterization work and data analysis done by Karin Rudman et al. [82, 83].  

4.1.1 Sample Preparation  

 Depleted uranium dioxide pellets with oxygen to uranium ratio of 2.00, 2.06 and 

2.14 were fabricated and serial sectioned in LANL. The detailed fabrication process can 

be found in [82]. To briefly describe the process, the sample preparation started with 

depleted UO2.16 powder, which was milled and passed through a mesh to ensure a 

uniform particle size. They were then cold pressed at 40 MPa into cylindrical pellets 

using a 5.7 mm diameter die. The pellets were then placed in a furnace to be sintered. All 

samples went through a heating ramp of 5°C/min to 1350°C when they were held at the 

temperature for two hours. The samples were then cooled to room temperature at a rate of 

5°C/min [84]. The control of oxygen content in the UO2 samples was achieved by 

controlling the oxygen partial pressure in the environment. The samples were then 

roughly polished with SiC papers for serial sectioning using focused ion beam (FIB) and 

EBSD.  

4.1.2 Microstructure Characterization Techniques 

 The samples were characterized and serial sectioned at LANL using a FEI Helios 

Nano Lab 600 Dual Beam SEM and serial sectioned with a FIB along the radial direction 

of the pellets. At each section, an Orientation Image Map (OIM) was obtained using the 
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EBSD detector. An EBSD detector collected the diffraction pattern, which is also known 

as Kikuchi band, and reveals the grain orientation at each spot being scanned [85]. Figure 

4-2 is a quick illustration of the EBSD technique. An area of approximately 30 μm by 40 

μm was scanned for each slice for each sample. The FIB was used to remove from 0.33 

μm to 0.5 μm of material after each scan. The ion beam energy for serial sectioning was 

30 keV and 21 nA, while secondary electron images and EBSD scans were obtained with 

electron beams operating at 20 keV and 2.7 nA [84]. The obtained data contained 

different numbers of slices and spacing between slices between different samples. The 

density and a summary of serial sectioning information for the samples are listed in  

 

 

Table 4-1. The depth resolution is limited by the slice spacing, and the lateral resolution 

depends on the beam size, which is about 0.2 μm. The total depth of the depth of the data 

collected varies between 30 to 50 μm. Fiducial marks, as shown in Figure 4-3a, were 

made on the samples as references for alignment during the serial sectioning process to 

provide information of the amount of material removed. Figure 4-3b and c provided 

examples of the information collected during each serial sectioning scan, which contains 

both SEM and EBSD images. 
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Figure 4-2: An Illustration of the OIM Technique [85]. 

 

Figure 4-3: Examples of the Images Obtained from SEM and EBSD (a) SEM Image of a 

Sample Undergoing Serial Section Along the Vertical Direction. A Fiducial Mark Was 

Made in the Lower Right Corner. (b) Image Quality Map from EBSD. (c) Orientation 

Map from EBSD [84]. 
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Table 4-1: Serial Sectioning Information for UO2.00 UO2.06 and UO2.14 

Sample UO2.00 UO2.06 UO2.14 

Theoretical Density 

(TD) 

91%  94% 92% 

Slice spacing (μm) 0.33 0.33 0.5 

Number of slices 160 105 87 

 

4.1.3 Three Dimensional Characterization Technique 

 The serial sectioning data will be used to create 3-D models, and the procedures 

of which will be discussed in detail in the next chapter, which addresses the model 

development for finite element simulation. In addition to the simulation purposes, the 3-D 

models are also very important from the characterization perspective. First of all, they 

reveal the grain shapes in 3-D which can vary significantly from 2-D data if any texture is 

present. It is also known that in order to fully characterize a GB, one needs three 

variables to specify the misorientation angles and two to specify the GB normals [86, 87]. 

A 2-D OIM image cannot fully characterize the five parameters of a GB. In addition to 

the grain orientations (Euler angle), the GB normals in 3-D are also needed. The GB lines 

in 2-D images are only projections of the GB planes to the scanned surfaces which do not 

reflect the GB orientation in the 3-D space.  

 To fully characterize a GB, a technique was developed to measure the GB normal 

in 3-D using the reconstructed 3-D microstructure. The top left figure in Figure 4-4 

shows a reconstructed triple junction (TJ) surround by three grains and three GBs. In 

AVIZOTM, GB planes can be represented by making cut planes tangential to the GB in 

the 3-D space. The GB normal can then be obtained knowing the normal to the cut plane. 

Note that the collected data represent only the GB normal at the studied layer near a TJ  
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and cannot reveal the curvature that may exist in a GB; however, the information is still 

valid for the layer studied. The information collected can also be applied to calculate the 

dihedral angle at a TJ in 3-D. 

 

Figure 4-4: Measuring GB Normals by Making Tangential Cut Planes Along the GBs 

Using AVIZOTM. 

4.2 Characterization Results 

 The three stoichiometric samples were characterized in both 2-D and 3-D by 

Rudman et al. [83, 84]. The characterization results are very important to the 

development of finite element models as they will be used to determine the applied 

material properties. The data will be shown for the three FIB samples in both 2-D and 3-

D. The information such as grain sizes, GB misorientation angles and CSL of each 

sample will be compared.  



 

69 

 

4.2.1 Microstructure Information in 2-D 

 For statistical purposes, three larger scans, each with an area of 400 μm by 400 

μm, were obtained from the work published in [83] for the three stoichiometric samples. 

The scanned areas were chosen to be the center of the pellet, the edge of the pellet and 

the middle between the two to catch possible variation in microstructure from the 

sintering. The data obtained from the large scans will be used as the representative 2-D 

data as they contain a lot more grains and GBs than the FIB data.  

 First of all, the average grain size over the three areas for each sample is 6.0 μm, 

5.7 μm and 6.3 μm for O/M ratio of 2.00, 2.06 and 2.14, respectively. The distribution of 

the three scans for each sample is shown in Figure 4-5. The distributions vary with each 

sample. UO2.00 has larger grains at the edge while UO2.06 has smaller grains in the center, 

possibly a result of higher edge temperature during sintering. The UO2.14 has the largest 

average grain size which can be a reflection of its higher oxygen content. The 

distributions for the three scans are similar for UO2.14.  
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Figure 4-5: Distribution of Grain Size of the Samples with Different O/M Values from 2-

D Data [83]. 

4.2.2 Grain Boundary Misorientation Angle Distribution 

 The GB misorientation angles affect the GB energy and thus the diffusivity of 

materials as discussed in Chapter 2. From the large 2-D scans, the distributions of GB 

misorientation angle distribution for the three samples were plotted in Figure 4-6, taken 

from [83]. The distribution is consistent for all three samples with a peak at around 45° 
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and a maximum angle at around 60°, as constrained by the symmetry for a cubic crystal. 

The GBs are mostly high angle GBs.  

(a)   

(b)  

(c)  

Figure 4-6: Grain Boundary Misorientation Angle Distribution (a) UO2.00 (b) UO2.06 (c) 

UO2.14 [84]. 
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 The distributions of special GBs, known as coincident site lattice (CSL), were 

also collected and plotted for each sample as shown in Figure 4-7. Large variation exists 

between samples. It is also observed that most of CSL GBs have low Σ. For this reason 

along with the fact that they have more coincident sites, only the GB with Σ value of 11 

or less will be considered in the simulation work. Their distribution in 3-D will be 

characterized in the 3-D models.  

 

Figure 4-7: Coincident Site Lattice Distribution for Both UO2.00 and UO2.06 Samples [84]. 

4.2.3 Characterization Results from 3-D Reconstruction 

 The FIB data were used to reconstruct 3-D models, and the models can be used to 

provide statistics in 3-D. Serial sectioning slices are shown in Figure 4-8 as an example 

of the FIB data. The figures show the change in grain shape through the thickness. Each 

slice contains the same information that was obtained from the 2-D data. The 

reconstructed surfaces for the three sets of FIB data are shown in Figure 4-9. From the 

appearances of the outer surfaces, the sample UO2.00 has several large, elongated grains 
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along radial direction surrounded by many smaller and slighted elongated grains. The 

UO2.06 sample has a more uniform distribution with the presence of many small grains. 

The UO2.14 also have elongated grains but with smaller aspect ratios. The grain size also 

looks similar with many large grains.  

 

Figure 4-8: Serial Sectioned Microstructure of UO2.14 Sample [84]. 
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(a) (b)  

(c)  

Figure 4-9: 3-D Microstructure Reconstructions for Different Samples: (a) UO2.00 (b) 

UO2.06 (c) UO2.14. 

 The volume of each grain in the reconstructed models can be measured using 

AVIZOTM, and the grain size in diameter can be calculated assuming spherical grains.  

Based on the calculation, the average grain sizes for the three samples are 5.3 μm, 3.9 μm 

and 4.3 μm for UO2.00, UO2.06 and UO2.14, respectively. The grain size distributions for 

the three samples are shown in Figure 4-10. For UO2.00 the majority of the grains have a 

grain size of 4 μm to 5 μm with the presence of a few very large grains that are over 15 
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μm. For UO2.06, there are more small grains with most grains below 10 μm. The UO2.14 

has a grain size distribution peak at 4.5 μm with most grains below 12 μm. The 

measurements agree qualitatively with visual inspection.  

(a)  

(b)  

(c)  

Figure 4-10: 3-D Grain Size Distribution for (a) UO2.00 (b) UO2.06 (c) UO2.14 
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 Another approach, which was used in [83] to collect grain size statistics, is to 

combine a series of serial sectioning slices into one image (Figure 4-11). The information 

such as distribution of grain size and GB misorientation angle can then be obtained fairly 

easily without the reconstruction process. However, it is hard to determine the spacing 

between selected slices and double counting or under estimation can happen, especially 

for samples with a large spread in grain size. The average grain size obtained from this 

approach is 3.6 μm, 3.4 μm and 3.6 μm for UO2.00, UO2.06 and UO2.14, respectively. 

 

Figure 4-11: Selected Slices from FIB Serial Sectioning Set of Sample UO2.00 for 

Calculating Grain Size across Thickness  

 Table 4-2 provides a summary of grain size obtained from different approaches. 

The 2-D data is the most reliable as it contains a much larger data set, if no texture is 

present. The values obtained from FIB data are smaller in general. The FIB slices in 2-D 

approach underestimated the 2-D results the most. The reason can be a combination of 

higher fraction of grains cut off by the boundaries and local variation. From the 

perspective of fission gas transport, it is expected to have faster transport rate in the 

UO2.06 sample, which has the smallest grains in the three models, when the GBs are the 
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high diffusivity paths. However, the actual behavior will also depend on the distribution 

of these grains and the heterogeneous GB properties. 

Table 4-2: Average Grain Size Obtained using Different Approaches for the Three 

Stoichiometric Samples 

 Average grain size (μm) 

O/M 2-D FIB Slices in 2-D 3-D Reconstruction 

2.00 6 3.6 5.3 

2.06 5.7 3.4 3.9 

2.14 6.3 3.6 4.7 

4.3 Triple Junction Study and Grain Boundary Connectivity 

In addition to the stoichiometric samples, a UO2 sample with 95% density was 

studied to obtain statistical information of the dihedral angle distribution. The 

information is valuable to the understanding of interface energy. Moreover, the 

connectivity of the GBs was evaluated using the homology metrics [88], which can 

provided a different perspective to understand the percolation behavior.  

4.3.1 Dihedral Angle at Triple Junctions 

 A TJ, a line where three GBs meet, is an important microstructural feature that 

reveals the interfacial energy of the GBs [42]. Characteristics at triple junctions can be 

used to obtain indirect measurements of GB energies and to provide some initial insight 

as to the importance of GB character and topology on transport properties. It has been 

used to explain some observed phenomena such as grain growth and wetting [89]. The 

interface energy needs to be balanced at a TJ, as shown in Figure 4-12a. The resulting 

relationship is expressed in Equation 4-1, where Χ is the dihedral angle and γ is the 
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interfacial energy. For an isotropic material, given that all GBs have the same energy, the 

three dihedral angles should be 120°, one of the reasons that many meso-scale models 

employ hexagonal grains. However, that is rarely the case due to the differences in 

misorientation angle resulting in different atomic structure and thus different GB energy 

[89, 90]. The dihedral angle at a triple junction can be measured from the 2-D EBSD data 

as shown in Figure 4-12b. Measurements in 3-D can also be collected using the approach 

discussed in section 4.1.3.  

 
𝛾1

𝑠𝑖𝑛𝛸1
=

𝛾2
𝑠𝑖𝑛𝛸2

=
𝛾3

𝑠𝑖𝑛𝛸3
 Equation 4-1 

(a) (b)   

Figure 4-12: (a) A Triple Junction Surround by 3 Grains, gA, gB, gC and 3 GBs, b1, b2 and 

b3. X Represents the Dihedral to the Corresponding GB [89] (b) Dihedral Angle 

Measurement from a 2-D EBSD Data  

Measurements were performed on a 95% fully sintered UO2 sample in both 2-D 

and 3-D to study the distribution of the dihedral angles. For 2-D measurements, two areas 

of 60µm x 100µm were analyzed, and a total of 503 triple points were identified. Note 

that only two out of three dihedral angles measured at each TJ are taken into account in 
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the statistical analysis because the third dihedral angle is determined by the values of the 

first two measurements. A preliminary statistical analysis was conducted, and the 

distribution was plotted in Figure 4-13.  It showed a normal distribution that peaked at 

about 120°, in agreement with literature. Three dimensional measurements were also 

made for over 100 TJs on the same sample. The resulting distribution curve had a peak at 

140° with higher distribution at both ends of the curve, indicating the presence of some 

very high and low dihedral angles values. It also suggested an underestimation from the 

2-D measurements. To check the correlation of the dihedral angles at a TJ, the two 

dihedral angles as a pair from 3-D measurements were plotted in a 3D histogram shown 

in Figure 4-14. It showed that most pairs have both dihedral angle between 110° and 

130°, which is a closer match of the theoretical value for equilibrium interfacial energy at 

the TJs.  

 

Figure 4-13: The Distribution of Dihedral Angles at Triple Junctions for a 95% Density 

UO2 Sample 
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Figure 4-14: A Histogram for 3-D Dihedral Angle Pairs: X-axis Is a Dihedral Angle 

Measured at a TJ, and Y-axis Is the Corresponding Dihedral Angle at the Same TJ. 

4.3.2 CHomP Study of Connectivity 

In the study of diffusion in a GB network, the simulation work from [81] has 

shown that the concentration distributions are different for different networks. Figure 

4-15 demonstrated that even when all three cases have percolating networks, the resulting 

concentration profiles still vary. The results indicate that the behavior of mass transport is 

affected not only by GB character but also by their distribution and connectivity. It has 

been shown that the connectivity of a GB network can be characterized using a parameter 

called homology metrics, which can be calculated using the software known as 

Computational Homology Project (CHomP) [88, 91]. The software reads images of GB 

network in .bmp format and calculates the number of independent components (β0) and 

the number of holes (β1). The value for β0 represents the number of connected GBs. In a 

GB network that is fully connected, the value for β0 should be 1 and the value for β1 

should be the number of grains. The ratio (β01) of β0 to β1 provides an insight to the 
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connectivity of the networks. A well connected network should have a small β01 value 

and a poorly connected network should have a large β01 value.  

 

Figure 4-15: (a) Percolation Paths in Different 2-D GB Networks (b) The Resulting 

Concentration Distribution from the Percolation Paths [81]. 

Examples of GB network for the software are shown in Figure 4-16, where (a) 

contains all GBs while (b) contains only high diffusivity GB as defined in [81]. It was 

found, based on several different GB networks, that when including all GBs in a network, 

β01 holds a value between 0.009 and 0.02, which indicates a well-connected network. 

When only high diffusivity GBs are considered in the network, the β01 values range from 

0.48 to 1, with around 68% of high diffusivity GBs. These values obtained from well-

defined GB networks provide references to different types of network to be studied.  

SLICE 1 SLICE 2INSULATOR

(a)

(b)
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(a) (b)  

Figure 4-16: Examples of the GB Networks for ChomP Analysis (a) A Fully Connected 

Network Including All GBs (b) A Network with Only High Diffusivity GBs.  

The variable that is the most comparable to the study of mass transport should be 

the mass flux because they include the relationship between the orientation of a GB and 

the direction of the applied concentration gradient, in addition to GB properties. To study 

the connectivity of GBs with high mass flux, the flux profiles in Figure 4-15 are filtered 

in Photoshop using the same threshold parameters to show only high mass flux value as 

shown in Figure 4-17 below. The homology parameters are calculated for each case and 

listed in Table 3. It is shown that the β01 value is the largest for Case (a) and the smallest 

for case (c). The values indicate that the network in Case (a) has a poorly connected high 

flux network while Case (c) is better connected by the high mass flux boundaries, 

resulting in a different concentration profile in Figure 4-15b. The better connected 

network represents a better defined percolation paths and thus resulting in a smaller 

fraction of high concentration area. This study sets an example of applying homology 

metrics to the study of mass transport and relating them to the concentration distribution. 
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(a) (b) (c)  

Figure 4-17: The Flux Profiles from Figure 4-15 after Threshold to Show Only High Flux 

GBs. The Figures Are Listed in the Same Order as Figure 4-15. 

Table 4-3: Homology Parameters for the Geometries in Figure 4-17 

Figure 4-17 β0 β1 β01 

(a) 180 0 Infinity 

(b) 90 2 45 

(c) 45 10 4.5 

 

The GB analysis obtained from this chapter will provide inputs to the material 

properties to be assigned during model development process, which will be discussed 

next. Other information, such as grain size and GB connectivity, in both 2-D and 3-D will 

provide valuable information for comparing different simulation results in order to 

understand the transport behavior of FPs.   
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5. FINITE ELEMENT MODEL DEVELOPMENT AND SIMULATION 

PROCEDURES 

 In order to build the microstructurally explicit models required to achieve the 

goals of this work, the information collected from the characterization results needs to be 

translated into finite element models for simulation. This chapter discusses the 

procedures developed for 3-D microstructure reconstruction along with calculations used 

to derive the reactor environment in which the transport behavior will be studied. It also 

covers how different physics are coupled and applied to the model.  

5.1 Model Reconstruction 

 The first step on the modeling procedure is the microstructure reconstruction. It is 

achieved by stitching serial sectioning slices into a 3-D microstructure model. The 

reconstruction process starts by using the segmentation tools in DREAM3DTM software 

so that EBSD data can be used to create a 3-D model of the microstructure that contains 

crystallographic information. Three dimensional surfaces and 3-D mesh elements are 

then created using AVIZOTM software. The mesh file is then passed on to COMSOLTM 

software where multi-physics simulations are conducted.  

5.1.1 Microstructure Reconstruction 

 It is known that many microstructural features affect material properties and 

performance. Most of earlier work tried to capture and understand the effects in 2-D; 

however, more recent work [92] has suggested that microstructures need to be studied in 

3-D as actual materials can behave very differently from 2-D predictions. This 
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particularly applies to the study of geometrical effects such as percolation, topology and 

connectivity of certain microstructural features.   

 The reconstruction of the microstructure of a UO2 pellet is an essential first step to 

create a microstructurally-explicit finite element model. Many researchers have dedicated 

their work to improving the techniques and developing algorithms to accelerate and 

automate the process [92, 93]. The reconstruction process usually begins with a series of 

OIM images (Figure 5-1a) obtained from EBSD, and the images go through a series of 

pre-processing steps, such as threshold, alignment, segmentation. The threshold process 

basically cleans up the noise in EBSD data while the alignment makes sure all images are 

aligned. Confidence index (CI) and image quality (IQ) from EBSD data are the 

commonly used threshold parameters. The step that follows is image segmentation, 

which assigns each grain with a label as shown in Figure 5-1b. After each grain is 

assigned with a label for all the images, visualization software such as AVIZOTM, can be 

used to interpolate the GBs into a 3-D network based on the labels assigned.  

The final products can be a GB network or a 3-D volume as shown in Figure 5-1c and 

d. The process of reconstructing a 3-D microstructure can be tedious and time 

consuming, as a consequence, other tools such as DREAM3DTM can be used to 

streamline the process. DREAM3DTM reads output files directly from EBSD scans and 

performs alignment, data filtering and segmentation all in one step. It is useful for large 

dataset such as the serial sectioning data obtained using FIB coupled with EBSD.  
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(a) (b) (c)  

(d)  

Figure 5-1: Examples of the Process for 3-D Microstructure Reconstruction: (a) Stacking 

Two Identical EBSD Maps (b) Labeling Grains in AVIZOTM (c) GB Network Obtained 

from the Labels (d) 3-D Microstructure. 

 The reconstructed geometry files contain a surface mesh for GBs and geometry 

boundaries. The geometry needs to be meshed with 3-D elements using either AVIZOTM 

or meshing software like HypermeshTM before they are exported to COMSOLTM for 

simulations. One issue with meshing that is brought up from the 2-D simulation work 

published in [81], is the resolution of GBs. Grain boundary widths are very small 

compared to the grain size of the samples used here. Most theoretical works treat GBs as 

0.5 to 1 nm thick [41], but the grains for a typical UO2 sample are in the micrometer 

scale, which is three to four orders of magnitude larger than the typical GB width. This 

difference in size makes meshing the geometry very difficult, and as a consequence, 
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many modeling works had to use thicker GBs or other approaches to reduce 

computational cost. The 2-D work in [81] used a GB thickness value of 1 μm, which 

deviates from the actual thickness, in order to resolve GBs using small elements. Even 

with the compromise, it still requires a large number of elements as shown in Figure 5-2. 

The large number of elements increases the computational cost significantly.  

 

Figure 5-2: Meshed Geometry for the 2-D Simulation [81]. 

In 3-D, it is even harder to resolve the GBs as they often have significant 3-D 

curvatures and they are represented by 2-D surfaces. To avoid these issues, the GBs in 

the models developed here are meshed with 2-D elements that do not have a physical 

thickness value. The thickness term will be incorporated in the equations governing the 

behavior of these 2-D elements in the simulations. It is similar to the way that the 

analytical solution for GB diffusion uses a δDGB term, as discussed in the Literature 

Review [51]. An example of a GB network meshed with 2-D elements is shown in Figure 

5-3. This approach can significantly reduce the number of elements required to mesh the 
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geometry and thus the computation cost. All the models created in this work are based on 

this approach. 

 

Figure 5-3: A GB Network Meshed with 2-D Elements. 

5.1.2 Reconstructed 3-D Models 

 Many different models have been created in the past couple years from different 

samples. In general, the work began from the 2-D model referenced in [81] and found 

that heterogeneous GBs play a dominating role in the study of the percolation of fission 

products. The second model then constructed a GB network and conducted the simulation 

in 2.5-D, where the GBs are meshed with 2-D elements to solve the issue with GB 

thickness. For the three samples discussed in this work, the FIB and EBSD data are 

imported to DREAM3DTM for pre-processing and segmentation. The segmented files are 

then exported to AVIZOTM for interpolation, surface reconstruction and 3-D meshing.  

Each side of the reconstructed model is between 25-30 μm while the length is about 50 

μm, 20 μm and 40μm for UO2.0, UO2.06 and UO2.14, respectively.  The actual size used for 
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simulations is different to keep the size in all three dimensions similar in order to have a 

representative cubic volume.  

Figure 5-4 shows the final microstructural models for UO2.00, UO2.06 and UO2.14, meshed 

with tetrahedral elements. The mesh size is controlled to have finer elements in small 

grains and close to GBs, and larger elements for large grains to reduce the total number 

of elements required to solve the model.  

(a) (b)  

(c)  

Figure 5-4: Meshed Model for the Three Samples (a) UO2.00 (b) UO2.06 (c) UO2.14. 
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The meshed models have different microstructural statistics from the whole 

reconstructed models as well as from the 2-D data. A summary of the statistics for the 

meshed models is listed in Table 5-1. The information includes average grain sizes, 

fraction of different GB types, dimensions of the models and the total elements required 

to mesh them. The GB types are defined following the work in [94], which defined low 

diffusivity GBs with misorientation angles below 30° and above 55°. The high angle 

GBs, which have misorientation angles between 30° and 55°, are assigned with a high 

diffusivity value. The low CSL GBs are also identified and assigned to the models as low 

diffusivity GBs. The EBSD slices provided information on these GBs, which are then 

assigned to the 3-D models by matching the reconstructed models to the 2-D data. With 

these GBs now represented in 3-D space, their total surface area can be measured and 

area fractions are calculated.  
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Table 5-1: Microstructural Data in 3-D for the Three Reconstructed and Meshed 

Stoichiometric Samples 

Model 
UO2.0 (200grains) UO2.06 (248 grains) UO2.14 (196grains) 

Average grain size 

(μm) 

4.28 3.55 4.36 

High angle GB 

fraction 

0.734 0.716 0.657 

Mid angle GB 

fraction 

0.172 0.221 0.220 

Low angle GB 

fraction 

0.031 0.024 

0.123 

CSL GB fraction 
0.063 0.039 

Dimensions (μm) 
29 x 25 x 31 27 x 26 x 20 30 x 25 x 25 

Number of element 

(million) 

1.49 2.09 1.36  

 

From the statistics of these three models, it is noticed that the average grain sizes 

for all three of them are smaller as compared with those from the whole reconstructed 

models presented in Chapter 4. The reduction in size is expected due to the fact that a 

larger fraction of grains are now cut off by the model boundaries. The grain size 

distributions for the three meshed microstructures are plotted in Figure 5-5. The UO2.00 

and UO2.14 models have very similar distribution with a peak at 4 μm. The UO2.06 model 

has smaller grains with a peak at about 3 μm. The overall model dimensions are similar 

with each side between 20 μm to 30 μm.  
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Figure 5-5: Grain Size Distributions for the Three Reconstructed and Meshed Models. 

The x-axis Has a Unit in μm 

5.2 Analytical Approach 

 Once the finite element models are meshed and ready for simulation, work needs 

to be done to ensure the right equations are applied to the model. This section discusses 

the origins and the derivation of the equations applied to grain bulks, GBs and TJs to 

study the transport phenomena in the fuel microstructure. 

5.2.1 Governing Equations  

 The transport mechanisms in UO2 fuel pellets are complex because of the extreme 

environment, which has very high temperature gradients and irradiation damage. The 

dominating mechanisms change over time and thus need to be studied separately. At the 
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beginning of fuel life, solid state diffusion is the dominating mechanism for FG transport, 

which is why diffusivities are obtained by measuring FGR from lightly irradiated samples 

[6]. The differential equation resulting from Fick’s Law can be applied to study the 

problem. Similarly, heat transport via conduction can be studied using Fourier’s Law. 

The resulting relationships are shown in Equation 5-1 and Equation 5-2, where C is 

concentration, t is time, D is diffusivity, F is FG generation rate, ρ is fuel density, Cp is 

heat capacity, T is temperature, k is thermal conductivity and H is heat generation rate. 

The equations may look simple enough, but the inter-connected physics can make the 

problem fairly complicated. First of all, the diffusion mechanism is a strong function of 

temperature. If there is a high temperature gradient in the model, then there will be 

significant changes on diffusivity across the model. The heat conduction and fission 

product diffusion equations are coupled one way given that the mass diffusivity is a 

function of temperature. It is also known that the thermal conductivity of GBs can change 

due to the accumulation of fission gases. The models can then be coupled both ways by 

including equations to capture these relationships. 

 ∂C

∂t
− ∇(D∇C) = F Equation 5-1 

 
ρCp

∂T

∂t
+ ∇(k∇T) = H Equation 5-2 

5.2.2 Modeling Grain Boundary Diffusion 

The work presented in this section shows the analytical derivation of the 2-D 

equations applied to GBs. As mentioned in the modeling procedures, the approach taken 

for the modeling work is to treat GBs with 2-D elements and triple junctions (TJs) with 1-
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D elements in which the GB thickness and the TJ cross-sectional area can be incorporated 

in equations instead of trying to capture them with small 3-D elements. The governing 

relationships for different dimensionalities (1- and 2-D) can be derived from the standard 

3-D diffusion equation, shown in Equation 5-1, with the FG concentration in the GBs is 

labeled with C’ to differentiate from the concentration in the bulk. The equation in 2-D 

can be obtained by taking the average over the GB thickness. Assuming this thickness is 

parallel to the z-axis and that diffusivity is constant, one obtains Equation 5-3 below: 

 1

𝛿
∫ (

𝜕𝐶′

𝜕𝑡
− 𝐷𝐺𝐵 (

𝜕2𝐶′

𝜕𝑥2
+
𝜕2𝐶′

𝜕𝑦2
+
𝜕2𝐶′

𝜕𝑧2
) − 𝐹)𝑑𝑧 = 0

𝛿

0

 Equation 5-3 

where Dentity is the diffusivity of the entity, δ is the GB thickness and F is the source term 

for FPs, i.e., the volumetric generation rate. 

Then, integrating over z once, the equation becomes 

 ∂C′

∂t
− DGB (

∂2C′

∂x2
+
∂2C′

∂y2
) −

DGB
δ
(
∂C′

∂z
|
z=δ

−
∂C′

∂z
|
z=0

) − F = 0 Equation 5-4 

Where  

 
C′ =

1

δ
∫ C′dz
δ

0

 Equation 5-5 

Multiplying Equation 5-4 by the thickness δ, Equation 5-6 can be obtained below. 

 
δ
∂C′

∂t
− δDGB (

∂2C′

∂x2
+
∂2C′

∂y2
) − DGB (

∂C′

∂z
|
z=δ

−
∂C′

∂z
|
z=0

) − δF

= 0 

Equation 5-6 
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The term DGB (
∂C'

∂z
|
z=δ

-
∂C'

∂z
|
z=0
) is nothing more than the net flux along the z direction 

between the grains and the GB. Taking advantage of the fact that fluxes perpendicular to 

an interface must be continuous [95], this term can be rewritten in terms of the flux from 

the grain bulk (jbulk) as shown in Equation 5-7 below. 

 
j𝑏𝑢𝑙𝑘 = DGB (

∂C′

∂z
|
z=δ

−
∂C′

∂z
|
z=0

)= D

bulk

(
∂C

∂z
|
z=δ

-
∂C

∂z
|
z=0

) Equation 5-7 

where the concentration gradients are now taken on the bulk of the grain, rather than on 

the GB [14]. Using this approach the flux term can be reflected in the grain bulk rather 

than the GB, which has no actual thickness.  In addition, given that the value of DGB is 

orders of magnitude higher than Dbulk and that the GB thickness δ is orders of magnitude 

smaller than the grain size of a typical UO2 sample, a constant concentration is assumed 

across the GBs with the continuity in concentration enforced that at the bulk-GB 

interface, i.e., C’=C. Finally, the equation for the GB is given by: 

 
δ
∂C

∂t
− δDGB (

∂2C

∂x2
+
∂2C

∂y2
) − jbulk − δF = 0 Equation 5-8 

This is quite similar to the equation used in [95], except that the net flux term has been 

neglected for the reasons discussed above. A similar approach can be followed for the TJ 

by integrating the diffusion equation for a TJ line with respect to both y and z direction, 

assuming that the cross-section of the TJ is perpendicular to x, to obtain Equation 5-9 

below, with the flux term now representing the net flux in two directions perpendicular to 

the TJ from the GBs as shown in Equation 5-10 
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δ2 ∂C

∂t
−δ2DTJ (

∂2 C

∂x2
) − j𝐺𝐵 =δ

2F Equation 5-9 

 
jGB = δ𝐷𝐺𝐵 (

∂C′

∂z
|
z=δ

−
∂C′

∂z
|
z=0

+
∂C′

∂y
|
z=δ

−
∂C′

∂y
|
z=0

) Equation 5-10 

The resulting equation is similar to what was obtained by Klinger [96] with slight 

differences due to the assumptions on the TJ cross-section geometry. . If the diffusivities 

are not constant, the equations can be written more generally for grain bulk, GB and TJ 

as: 

 ∂C

∂t
+ ∇(−Dbulk∇C)  =  F Equation 5-11 

 𝜕𝐶

𝜕𝑡
δ + ∇(−δ 𝐷𝐺𝐵∇𝐶) =  δ𝐹 + j𝑏𝑢𝑙𝑘 Equation 5-12 

 𝜕𝐶

𝜕𝑡
δ2 + ∇(−δ 2𝐷𝑇𝐽∇𝐶) =  δ

2𝐹 + j𝐺𝐵 Equation 5-13 

 The three equations developed will be applied to study the transport behavior of 

FPs. It is known that the behavior of mass transport is a strong function of temperature. 

Moreover, the distribution of FPs can affect the heat transfer behavior. It is important to 

couple these equations to the temperature distribution in a fuel element, taking into 

account the effect of GB thermal resistance, which is affected by the FP concentration.  

5.2.3 Grain Boundary Thermal Resistance 

A similar approach can be taken to model the phenomenon known as GB thermal 

resistance, or Kapitza resistance. The basic concept of the Kapitza resistance was covered 

in the Literature Review. In order to model the temperature drop across a GB, a lower 
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thermal conductivity needs to be applied to it. However, when 2-D elements are used for 

GBs with the thickness term incorporated in the equation, the drop in temperature also 

needs to be treated analytically. Similar to section 5.2.2, the heat conduction equation 

shown in Equation 5-2 can be integrated over GB thickness to obtain Equation 5-14. The 

difference in modeling the Kapitza resistance is that the δkGB (
∂

2
T

∂x2
+

∂
2
T

∂y2
)  term can be 

eliminated due to the low GB thermal conductivity. At steady state with no heat 

generation at GBs, the only term left is −kGB (
∂T

∂z
|
z=δ

- 
∂T

∂z
|
z=0
), which is the GB thermal 

conductivity times the temperature gradient difference between top and bottom of a GB. 

The temperature gradient difference can be simplified as (Tu-Td )/δ, where Tu is the 

temperature at the upside and Td is the temperature at the downside of a boundary, 

given that the GB thickness is small. Finally Equation 5-15 is obtained, and the heat flux 

coming from the grain bulk is translated to a temperature drop across the GB. The 

magnitude of the temperature drop depends only on the GB thermal conductivity and GB 

thickness. 

 
δρCp

∂T

∂t
-δkGB (

∂
2
T

∂x2
+

∂
2
T

∂y2
) -kGB (

∂T

∂z
|
z=δ

- 
∂T

∂z
|
z=0

)  - δH=0 Equation 5-14 

 
−n ∙ (k𝑏𝑢𝑙𝑘∇T) = −

k𝐺𝐵
𝛿
(𝑇𝑢 − 𝑇𝑑) 

n: GB normal  

Equation 5-15 

Literature has also shown that the thermal conductivity at a GB is not a constant 

value. Bubbles that are mostly filled with Xe and Kr accumulate at GBs and can further 

reduce their thermal conductivity. Analytical derivations regarding this effect can be 
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found in [28, 65, 80]. According to these works, the thermal conductivity of GBs can be 

expressed as kGB=δ/Rk’, where Rk’ stands for the thermal resistance across a GB. The 

expression of Rk’ follows Eq.8 from the work presented by Millet [80]. The expression 

for Rk’, as shown in Equation 5-16, is a function of fission gas bubble radius (rb), 

intrinsic GB resistance (Rk) and bubble coverage fraction (XGB), which allows the 

resistivity value to increase with the bubble coverage. Assuming a bubble radius of 50 

nm, GB resistance with a value of 1x10-8 [80], the bubble coverage fraction XGB, which is 

a function of the number of gas atom per unit area, can be calculated using Equation 5-17 

as suggested in [28, 74]. After taking into account all the relationships, the final thermal 

conductivity is roughly estimated to vary between 0.1 W/m/K, a GB conductivity value 

similar to that used in the literature [48], and 0.00552W/m/K, experimental value of Xe 

thermal conductivity [97], depending on the fission gas concentration in GBs. This 

approach couples thermal conductivity to the concentration of fission gases and allows 

the model to capture the variation in GB thermal conductivity caused by the difference in 

fission gas distribution. 

 Rk
′ = Rk[1 + (A3rb

A4 + rbRk
A2)(XGB

c )A1] Equation 5-16 

 
XGB
c =

3kbT

4(2γ + r𝑏Pext)f(θ)
NGB 

Equation 5-17 

Parameters Used: 

A1=1.5; A2=-0.968; A3=9.8176; A4=0.0862, γ (surface tension) =0.626 J/m2, Pext = 

10MPa; NGB: number of FG atoms per GB area 

Rk=10-8 m2K/W; rb=50 nm 
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5.3 Simulation Parameters 

The simulation parameters, including boundary conditions and material properties, 

need to be carefully defined for the simulations to reflect the actual reactor environment. 

The boundary conditions depend mainly on the type of study being done with the model. 

The applied values need to reflect the conditions of an operating fuel rod. These 

parameters, including concentration profile, FG generation rate and temperature profile 

need to be calculated based on the operating conditions of a reactor. On the other hand, 

the material properties for UO2 mainly come from experimental data collected from 

published characterization work spanning several decades. Some material properties are 

well established, e.g., thermal conductivity, density and heat capacity, while some 

properties vary by orders of magnitude between different experiments, e.g., FG 

diffusivity. Other properties such as GB diffusivity and TJ diffusivity are difficult to 

measure and are thus scarce from the existing literature. The applied values will be based 

on suggestions from the open literature. As a consequence of large uncertainty in these 

parameters, a sensitivity analysis will be performed to quantify how much their 

variability affects the outcomes of the simulations. This section revisits data collected 

from literature review and uses them to derive and map out the simulation parameters. 

5.3.1 Fission Gas Diffusivity  

The diffusivities of FGs, mainly xenon, in a UO2 matrix collected in the literature 

review are plotted in Figure 5-6 based on Table 2.1. The presented values account for 

only the intrinsic diffusion, and no irradiation effect is included. All the values follow an 

Arrhenius relationship, but with different diffusion coefficients and activation energies. 
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The upper and the lower bounds differ by 5 orders of magnitude or more. The value 

derived by Davies and Long [98] will be used for the simulation because it stays away 

from both the upper and lower extremes. Also, most of the FGR models and fuel 

performance codes also use the value by [98], which will allow easier comparison. A 

sensitivity analysis will also be conducted to examine the effect of the upper and lower 

bound values.  

 

Figure 5-6: Fission Gas Diffusivities from Different Researchers (log D vs T). 

It has been discussed that the stoichiometry of UO2+x makes a large difference in 

the transport properties and needs to be considered in the analysis. It has also been 

proposed in many papers [6, 99] that the large deviation in FG diffusivity reported in 

experimental measurements is due to poor control of sample stoichiometry. However, 

experiments done to study the effect of stoichiometry on FG diffusion is scarce. The 
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work done by Miekeley and Felix [25] is the most commonly referenced source that 

studies the effect of stoichiometry. Stoichiometric samples were fabricated under a 

carefully controlled annealing environment. All samples were irradiated to a burnup 

between 1 to 10 x 1015 fission/cm3.  UO2±x samples were then obtained by annealing in 

different environments and measuring the fractional release of xenon over time. The data 

were fitted with Arrhenius relationships and the results for diffusion coefficient and 

activation energy are listed in Table 5-2 and plotted in Figure 5-7. The deviation in 

diffusivity is significant at low temperature, and the effect diminishes at temperatures 

above 1500 K.  

Table 5-2: Stoichiometry Effect on Xenon Diffusivity. Table Reproduced from [25]. 

Samples Diffusion Coefficient and Activation 

Energy 

Temperature Range 

UO2-x D0=4x102 to 1.6x103 cm2s-1 ; 

ΔH=6.0±0.1eV 

1400°C < T < 2200°C 

UO2.0 D0=5x10-2 to 5 cm2s-1 ; ΔH=3.9±0.4eV 950°C < T < 1700°C 

UO2+x D0=1x10-8 to 1x10-4 cm2s-1; ΔH=1.7±0.4eV 600°C < T < 1300°C 
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Figure 5-7: Stoichiometry Effect on Xe Diffusivity Based on Equations in [25]. The 

Results Are Compared with the Diffusivity from Davies and Long [98]. 

To address the discrepancy from literature about the stoichiometry effect on FG 

diffusivity, the work by [38], which showed that the diffusivity increases with the 

increase in x value in UO2+x, is plotted in Figure 5-8, in comparison with Miekeley’s 

work, which claimed that the diffusivity is fixed across a range of x values. The 

comparison shows that the work by Matzke has a closer match in the diffusivity value for 

UO2.00 to the diffusivity of Davies and Long. Comparing with the UO2.00 diffusivity 

derived by Matzke at 1400 K, it is an about 7 times larger for UO2.02 and about 32 time 

larger for UO2.12. The value for Miekeley’s hyper-stoichiometric diffusivity is another 34 

times larger than the one for UO2.12 by Matzke. Given the fact that a more recent work 

[100] has also suggested the x dependence of the diffusivities, the three models will take 
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the diffusivity values interpolated based Matzke’s results. However, the high diffusivity 

value obtained by Miekeley will also be examined to observe the effect 

 

Figure 5-8: Stoichiometric Effect on Xenon Diffusivity Measured by Matzke (Plot 

Reproduced from [38]), Comparing with Miekeley’s Work [25]. 

5.3.2 Grain Boundary Diffusivity and Effective Grain Boundary Diffusion 

Although GBs play an important role in the study of FGR, experimental work to 

study GB diffusion or the effect of heterogeneous GB properties is scarce. Most of the 

available data of FG diffusion in UO2 GBs are based on calculations. Olander [34] 

calculated two different diffusivity values by fitting 5 data point for Xe fractional release 
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using the bulk diffusion measurements by Davies and Long [101] and Matzke [33] along 

with his developed model to obtain two different GB diffusivities, shown in Equation 

5-18 and Equation 5-19, respectively. In addition, Kogai [102] modified the work by 

Reynolds [103] on uranium vacancy diffusion and applied it as gas atom diffusion in GBs 

in his model on FGR (Equation 5-20). Govers et al. [104] conducted molecular dynamic 

simulations in a polycrystalline UO2 model and calculated the bulk and GB diffusion of 

oxygen, uranium and xenon. The Arrhenius parameters were obtained for each of them 

with the assumption that xenon diffusion is governed by uranium vacancy diffusion 

(Equation 5-21). The abovementioned GB diffusivities are plotted in Figure 5-9 along 

with the bulk diffusivity value of Davies and Long for comparison. In general, all the GB 

diffusivities are larger than bulk diffusivity by at least 5 orders of magnitude, and the 

differences become smaller as temperature increases. It seems more reasonable to apply 

Olander’s work because the fractional release data used is based on lightly irradiated 

samples so that the effect of microstructure reconstruction and bubble coalescence can be 

ignored.  When the diffusivity value from Davies and Long is used, the corresponding 

GB diffusivity (Olander 1) will be applied to the GB diffusivity. Again, sensitivity 

analysis will need to be conducted given the large discrepancy found in the literature. 

Olander1: [34] 
Dgb1=9×10

-8exp (
-92kJ/mol

RT
)   cm2/s Equation 5-18 

Olander2: [34] 
Dgb2=1.3×10

-3exp (
-272kJ/mol

RT
)   cm2/s Equation 5-19 

Kogai: [102] 
Dgb3=6.9×exp (

-322kJ/mol

RT
)   cm2/s Equation 5-20 
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Govers: [104] 
Dgb4=3.5×10

−5exp (
-0.74eV

kbT
)   cm2/s Equation 5-21 

 

Figure 5-9: Fission Gas Diffusivity in the bulk (Davies and Long only) and in Grain 

Boundaries. Plots Based on the Equations Derived in [34, 102, 104]. 

 In addition to GB diffusion, variation in GB properties based on their 

misorientation angle and CSL obtained from the characterization results can be applied to 

the model to study the effect of heterogeneous GB properties. In Figure 5-10, 

experimental work in metals shows that the diffusivity increases with the increase of 

misorientation angle and peaks at about 45° due to the symmetry of the cubic system 

[105]. Using the chart as a reference, GB diffusivities can be divided into three groups 

based on the misorientation angles: low angle GB, mid angle GB and high angle GB. The 

three groups of GBs can be identified in the 3-D models and assigned with three different 
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diffusivity levels: Dbulk, Dlow and Dhigh.  The CSL GBs are grouped into the bulk 

diffusivity regime with Σ values ranging from 3 to 11 as they are the most commonly 

found to have lower free energy. The higher sigma values are not considered in this 

model because they only account for a small proportion and the differences in GB energy 

are not as significant as those for low Σ GBs. The combination of characterization and 3-

D modeling techniques made it possible to incorporate the effect of heterogeneous GB 

properties in the study of FP transport. 

 

Figure 5-10: Grain Boundary Properties and Their Relationship to Misorientation Angles 

[105]. 

5.3.3 Heat and Mass Generation Rate 

The generation rates of heat and FGs are important parameters that are needed to 

calculate the concentration and temperature profiles across the radius of a nuclear fuel 

pellet. Although variations in neutron flux exist at different locations in a reactor and at 

different radial positions in a pellet that will affect heat and mass generation rates, which 

are both dependent on fission rates, a simplified calculation assuming average behavior 
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can provide a reasonable estimation [106]. From the thermal performance of the fuel, the 

fission gas generation rate can be calculated by finding out the number of fission events 

needed to sustain the heat generation, assuming all the fission energy is dissipated in the 

form of heat. A typical LWR can have a linear power density up to 400 W/cm under 

normal operating conditions [10]. The volumetric heat generation is calculated by 

dividing the linear heat density by the pellet cross sectional area, assuming a 1 cm 

diameter pellet. The fission gases generation rate can then be approximated assuming 

25% of stable fission gases (Xe and Kr) are generated from fission events [6] and that 

each fission event generate 200 MeV of energy. The volumetric heat generation is 

calculated to be 509 MW/m3. The number of fission events required to generate such 

power is then calculated to be 1.39x1013 fission/m3s, and the number of stable FG is 

estimated to be 3.48 x 1012  FG generated per cubic meter per second, which is 5.78x10-6 

mole of FG/m3s. 

5.3.4 Temperature Profile 

Temperature profiles along the radius of the fuel pellet can also be calculated 

based on the volumetric heat generation calculated for the power density specified above. 

Plug the heat generation term into Equation 5-2, convert it into cylindrical coordinates to 

fit the shape of a pellet, and calculate for the steady state. The equation becomes 

Equation 5-22 shown below. With a little calculation, the equation can be simplified to 

Equation 5-23. Note that the thermal conductivity term is expressed as a function of the 

temperature, and as mentioned in previous chapters, the thermal conductivity vary 

somewhat over the large temperature range that is present in a fuel pellet. On the other 
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hand, the temperature, which is a function of radius, is the very unknown we are trying to 

solve. These relationships complicate the problem.  

In order to get a reasonable temperature profile, an iterative method is used. It is 

firstly assumed that there is a constant thermal conductivity, k, which represents the 

average thermal conductivity across the radius. Using Equation 5-24 and the boundary 

conditions shown in Equation 5-25 and Equation 5-26, the temperature difference 

between centerline and the surface of a pellet can be calculated using Equation 5-27. The 

temperature difference can then be used to calculate k using Equation 5-28, knowing the 

relationship between thermal conductivity and temperature from the literature review 

(Chapter 2). The calculated k value is then plugged back into Equation 5-27 to get the 

new temperature difference value. The steps are repeated until the calculated temperature 

differences match. Finally, the temperature profile can be expressed using Equation 5-29. 

 
1

r

d

dr
(rk(T)

dT

dr
)+H=0 Equation 5-22 

 k(T)
dT

dr
= -

1

2
Hr2 Equation 5-23 

If k(T) = k T(r)= -
1

4

Hr2

k
 Equation 5-24 

Boundary condition: at r=R T (R) = Ts = 800K Equation 5-25 

Boundary condition: at r=0 T(0) = T0 Equation 5-26 

 T0-Ts=
1

4

HR2

k
 Equation 5-27 
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 k=
∫ k(T)dT
T0
Ts

T0-Ts
 

Equation 5-28 

 T = Ts +
1

4

HR2

k
(1 −

r2

R2
) Equation 5-29 

The obtained temperature profile is plotted in Figure 5-11. As expected, the 

temperature profile has a parabolic shape with the highest temperature at the center of the 

pellet at around 1950 K. Note that the calculation of the temperature profile is to generate 

reference temperatures that can represent the thermal environment in a fuel pellet for the 

use of multi-physics simulations. The calculated values should be representative of an 

actual reactor environment, but should not be always held as completely accurate. The 

actual temperature profile can vary depending on many factors. For example, linear 

power densities of a reactor change depending on operating conditions and can directly 

affect the temperature. Other factors, such as the position of the pellet inside a fuel rod, 

the position of the fuel rod inside the reactor core, the actual power history and the 

coolant condition can all make a difference in the temperature profile. Moreover, material 

properties would change with microstructure as well as the increase of burnup and further 

impact the temperature of a fuel pellet. The calculated profile is for the simulation of 

normal operation conditions at low burnups. 
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Figure 5-11: Temperature Profile across the Radius of a Fuel Pellet. 

5.3.5 Concentration Profile 

Theoretically the concentration profile can also be derived from Fick’s first law of 

mass (Equation 5-1) in a similar fashion to that used to obtain the temperature profile in 

the last section. However, for an actual fuel pellet, other mechanisms such as 

microstructure reconstruction and crack formation greatly alter the FGR behavior. The 

simple solid state diffusion cannot depict the FG distribution along the whole radius. It 

can, however, be used to calculate local profile next to a spherical sink [6] as illustrated 

in Figure 5-12. 
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Figure 5-12: Spherical Sink in a Fuel Pellet for Calculating the Concentration Profile [6]. 

To calculate the concentration profile next to a sink, The FG diffusivity, as 

previously discussed, follows an Arrhenius temperature dependence. The partial 

differential equation for cylindrical geometry has the form expressed in Equation 5-30, 

where F is the volumetric fission gas generation rate. Equation 5-30 can be simplified by 

taking an integral over r. Assume no mass flux at the outer boundary, which is the 

effective limit of the sink, Equation 5-31 can be obtained. Integrating Equation 5-31 

analytically becomes more complicated than solving the temperature profile because the 

diffusivity D is a function of temperature and thus a function of radius. Note that T is 

function of position given by the expression obtained in the previous section. Substituting 

the temperature profile obtained from Equation 5-29 into the diffusivity term, we get 

Equation 5-32. The last expression was solved numerically using MathematicaTM with the 

derived heat and mass generation parameters. The final solution is plotted in Figure 5-13.  

 1

r

d

dr
(rD

dC

dr
)+F=0 Equation 5-30 
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 dC

dr
=

-Fr

2D
 Equation 5-31 

 

dC

dr
=

-Fr

2D0

exp

{
 
 

 
 

Q

R* [Ts+
1
4

HR0
2

k̅
(1-

r2

R0
2)]
}
 
 

 
 

 Equation 5-32 

 

Figure 5-13: Concentration Profile close to a Spherical Sink. 

 

As abovementioned, unlike temperature profile, the concentration profile across 

the radius of a fuel pellet cannot be calculated by solving the partial differential equation 

across the radius due to crack formation and microstructural reconstruction. Experimental 

work [107] has been done to measure the retained fission gases using electron probe 

micro analysis (EPMA). The concentration of xenon, as shown in Figure 5-14, is the 

lowest close to the center and increases with increase in radius. This is due to the fact that 

cracks open up at an early stage of fuel life, and the FG in high temperature region has a 

diffusivity value orders of magnitude higher than the cold region. The FGs can transport 

to the open space a lot faster in the hot region. The behavior can be simulated using finite 
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element method by making a wedge to represent a section of a cylindrical pellet as shown 

in Figure 5-15a. It is assumed that the wedge is sandwiched between two radial cracks, 

which are reflected by the zero concentration boundary condition. The model is assigned 

with a heat generation term and a fission product generation term derived in section 5.3.3. 

The two sides are kept insulated for heat transfer. At steady state, the radial concentration 

profile is plotted in Figure 5-15b, which showed a similar trend as the experimental work. 

The middle flat region in Figure 5-14 that is not captured in the simulation is likely the 

coarse grain region that has a different microstructure from the center of the fuel. 

 

Figure 5-14: Xenon Concentration across the Radius of a UO2 Fuel Pellet that Was 

Irradiated to about 2% Burnup [107]. 
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(a) (b)  

Figure 5-15: (a) A Finite Element Model that Simulates a Section of a Cylindrical Fuel 

Pellet Sandwiched between Two Radial Cracks; C: Concentration, T:Ttemperature (K), q: 

Heat Flux. (b) The Obtained Radial Concentration Profile.  

 The study has demonstrated that the concentration gradient does not necessary 

follow the temperature gradient, which goes along the radial direction of a pellet. The FG 

concentration increases with the increase in radius and thus has an opposite gradient from 

the temperature gradient with a highest value at the region close to the edge. However, 

concentration gradient can also be in the same direction as the temperature gradient when 

a spherical sink or pore is present. Both cases will be investigated in the simulation work.  

5.3.6 Boundary Conditions 

The derived temperature and concentration profiles are meant to represent a 

typical environment in a LWR. The values will be applied to finite element models as 

reference boundary conditions to mimic different environment in a fuel pellet. In the 

simulations to be covered in the next chapter, boundary conditions are generally set up by 

applying fixed concentrations and temperatures on the top and bottom boundaries of the 
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geometry while keeping the sides insulated to make it a macroscopic 1-D problem 

(Figure 5-16). For some cases, a flux term will be applied to one boundary to drive the 

transport of heat or mass instead of applying a fixed gradient. In addition, the calculated 

rates of heat and FG generation can be applied directly to the bulk to capture the behavior 

at the beginning of fuel life.  

 

Figure 5-16: Schematic of Boundary Conditions Set-up. T: Temperature, C: 

Concentration, j: Mass Flux, q: Heat Flux, H: Heat Generation rate, F: FG Generation 

Rate 

5.3.7 Effective Grain Boundary Diffusivity 

Fission gas bubbles are usually larger in the GBs than in the grain bulk.  Figure 

5-17a shows bubbles distributing across the GBs with an area fraction of about 24%. The 

consensus is that FGs diffuse to GBs and accumulate in these bubbles, which grow and 

becomes interconnected. It is also known that the presence and the distribution of the 

inter-granular bubbles behave like traps and will affect the diffusion along GBs. It is 
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desired to develop a homogenized model for GB diffusion taking into account the effects 

of the bubbles on transport mechanisms. The model should represent GB with bubbles 

before coalescence takes place. 

(a)   

(b)  

Figure 5-17: (a) A Fractograph Showing FG Bubbles at GB for a UO2 Sample Irradiated 

to 1.3% Followed by a Heat Treatment [108] (b) Schematic to Illustrate the Relationship 

between Bubble Size and Bubble Density [102]. 

A simple finite element model is developed to capture the effective diffusivity at 

an instance of bubble growth. According to the experimental work by Kashibe and Une 

[109], GB bubble number density usually remains a constant until coalescence occurs as 

illustrated in Figure 5-17b. As a result, the work begins by using a fixed bubble density of 
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1012  bubbles/ m2, a value typically observed at a GB [102]. A GB plane 10 μm by 10 μm, 

which contain 100 bubbles of 0.1 μm radius, as shown in Figure 5-18, is generated. The 

bubbles radius is increased by 0.1 μm until the bubbles touch at 0.5 μm, and the bubble 

coverage changes from 0.03 to 0.79. The analytical work about FG trapping from 

literatures usually includes a mass rate term as shown in Equation 5-33, which includes a 

trapping term and a resolution term. The equation is applied and solved for spherical 

grain models with the trapping probably calculated as a function of number of bubbles, 

diffusivity and bubble radius. The work presented here is done at a smaller scale where 

each bubble is treated separately. A similar approach is used by assigning the bubble 

surface with a trapping flux that is equal to the GB diffusional flux of the FP. The 

resolution effect, which depends on the reactor operating condition, is varied to cancel 

the trapping effect by 30 to 100%. In another word, the trapping flux is set to be 0 to 70% 

of the GB diffusional flux. 

 

Figure 5-18: Square and Hexagonal Bubble Distribution in a 10 μm by 10 μm Area GB 

for Effective GB Diffusivity Calculation. 
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 dm

dt
=gc-bm 

Equation 5-33 

g: trapping parameter; b: resolution parameter; c: number of fission gas atom in solid; m: 

number of fission gas atom in bubble. 

The simulation is conducted at T = 1400 K. The effective diffusivities can be 

calculated by applying a concentration gradient and measuring the average flux at the 

bottom boundary. Periodic boundary conditions are applied to the side boundaries to 

eliminate the edge effect. A normalized concentration gradient is applied along the 

vertical direction. The ratio of the flux and the gradient is the effective diffusivity 

according to Fick’s Law (Deff = -j/∇C). With a series of simulations, the relationship 

between the effective diffusivity and bubble sizes can be obtained for different trapping 

conditions. Two types of bubble distributions, square and hexagonal as shown in Figure 

5-18, are studied.   

The obtained results are plotted in Figure 5-19. A general trend observed as 

expected is the decrease in effective diffusivity with the increase in bubble radius, which 

is basically bubble coverage. When no trapping is taking place, i.e., the trapping rate is 

the same as the resolution rate, the decrease in diffusivity is less than one order of 

magnitude. The trend is consistent until the bubble size reaches 0.50 μm, at which size 

the bubbles touch with their neighbors and results in a higher drop in diffusivity. Bubble 

coalescence usually takes place before the bubbles can reach the size [110]. The decrease 

in effective diffusivity starts to become very significant when the trapping effect kicks in. 

The trapping can reduce the GB diffusion by over 10 orders of magnitude given enough 

bubble size and little resolution effect. It was also found that the hexagonal bubble 
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distribution hinders the diffusion more than square distribution, and the effect is only 

significant at trapping probabilities of 30% or higher. The decrease in effective 

diffusivity will be calculated as a function of GB bubble coverage and applied to the GB 

diffusivity term used in the microstructurally explicit models. 

(a)    

(b)  

Figure 5-19: Effective GB Diffusivity for Both (a) Square and (b) Hexagonal Bubble 

Distribution as Different Bubble Radius. 



 

120 

 

To summarize, this chapter described the detail of the development of the 

microstructurally explicit model, which will be used to conduct finite element simulation 

of the transport mechanisms of nuclear fuels. The parameters required for such 

simulation are reviewed and calculated based on typical reactor conditions. The equations 

for different physics, such as GB diffusion, heat conduction and Kapitza resistance, are 

studied and derived for the simulations. The different concentration and temperature 

profiles obtained in this chapter will provide references to the boundary conditions 

applied for different scenarios in the simulations. The large spread in certain 

experimental parameters will also be followed up with sensitivity analysis in the next 

chapter. 
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6. SIMULATION RESULTS AND DISCUSSION 

 The simulations described in this chapter build up from simple models that 

contain two grains and one grain boundary (GB), i.e., bicrystals models, to full 

polycrystalline microstructures. The bicrystals models are used to verify that 2-D GB 

elements are appropriate to simulate GB diffusion as well as GB thermal resistance. The 

simulation results for reconstructed polycrystalline models allow studying the effect of 

different material and microstructural parameters. Finally, multiphysics simulations that 

take into account multiple effects are presented along with sensitivity studies to account 

for effects of the uncertainty on key material parameters. 

6.1 Bicrystal Model Verification 

 Bicrystal models are used to verify the analytical derivations shown in the 

previous chapter that allows treating GBs with 2-D elements and triple junctions (TJs) 

with 1-D elements due to their small thicknesses compared to grain bulks. This section 

illustrates that the approach can be used to model GB diffusion, triple junction (TJ) 

diffusion as well as GB thermal resistance. 

6.1.1 Grain Boundary Diffusion Verification 

 In order to verify that the equations developed in the previous chapter can be used 

to model GBs with 2-D elements and provide the same results as modeling them with 3-

D elements, a bicrystal simulation was conducted. The geometry of the bicrystal model 

consists of two grains and one GB. The benefit of modeling GBs with 2-D elements is 

firstly illustrated with two bicrystal models, one where the GB is meshed with 3-D 

elements, like the grain bulk, and another where the GB is meshed with 2-D elements, 
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while keeping 3-D elements for the bulk. The GB thickness (δ) is set to be 0.1 μm, and 

the meshes are generated in COMSOLTM, which automatically decides the mesh size 

based on the smallest edge length. From Figure 6-1, it can be seen that the model that 

meshed the GB with 3-D element requires a lot more elements (63,401 elements) 

compared with the 2-D case (7,720 elements) due to the small δ. Note that the ratio 

between GB thickness and the width of the grains is only two orders of magnitude in this 

case. The actual number of elements needed to resolve GBs a few nanometers thick in a 

microstructure with a grain size of a few micrometers would be even higher.  

(a) (b)  

Figure 6-1: Bicrystal Models with GB Meshed with (a) 2-D Elements (b) 3-D Elements. 

 To verify the results of GB diffusion using the two models shown above, 

boundary conditions are applied to give a concentration gradient along the vertical 

direction, parallel to the GB plane, while keeping the sides insulated. The GB diffusivity 

is set to be 5 orders of magnitude higher than the grain bulk, and the GB thickness, δ, in 

the equation for 2-D GB elements takes the same value used for the 3-D GB. The 

unsteady simulation was conducted up to a time when a fair amount of diffusion along 

the GB can be observed. The concentration profiles for the 2-D and 3-D GB models are 
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shown in Figure 6-2(a) and (b), respectively. At the same time step, it appears that the 

two simulations have the same concentration profile. To better compare the results, a line 

profile was plotted horizontally across the GB, 5 μm away from the tope surface, as 

shown in Figure 6-2c. The two lines are basically identical except that the GB thickness 

is not present in the 2-D case. The same approach can be applied to model TJs by 

assigning the equation developed for 1-D elements to the edges of the model. The TJs can 

then also act as fast diffusions paths as shown in Figure 6-3.  

(a)  (b)   

(c)  

Figure 6-2: The Concentration Profile for Bicrystal Model with a GB Treated as (a) 2-D 

(b) 3-D (c) Concentration Profiles across the GBs for both models. 
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Figure 6-3: Modeling Diffusion along TJs using 1-D edge Elements. 

6.1.2 Grain Boundary Thermal Resistance: Bicrystal Verification 

Another phenomenon that is commonly observed in GBs is GB thermal 

resistance, also known as the Kapitza resistance. In a fashion similar to the GB diffusion 

approach shown in the last section, the idea here is to illustrate that the temperature drop 

across a GB can be captured by 2-D elements. The theory for Kapitza resistance was 

discussed in the literature review, and the analytical equations were developed in Chapter 

5. By applying Equation 6-1, the thickness of a GB is incorporated into the appropriate 

equation and the heat flux from the grain bulk leads to a temperature drop across the GB. 

Note that the GB conductivity is dependent on the GB resistivity term in Equation 5-16, 

which is a function of the fraction of the GB covered with FG bubbles. The fractional 

coverage term is a function of FG concentration based on Equation 5-17. In other words, 

the temperature distribution is now dependent on FG concentration. 

 −n ∙ (k𝑏𝑢𝑙𝑘∇T) = −
k𝐺𝐵
𝑑𝑠

(𝑇𝑢 − 𝑇𝑑) Equation 6-1 
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 The boundary conditions are applied as shown in Figure 6-4a, where a normalized 

concentration gradient is imposed from top to bottom and a temperature gradient is 

applied normal to the concentration gradient to see the effect of the Kapitza resistance. 

For this run, the concentration is normalized such that C1 is 1 and C2 is 0. Temperature 

T1 is set to be 800 K at the left boundary with the outward heat flux q set to be 100 

MW/m2 at the right boundary, conditions that follow the work done in [48] for 

comparison. The thermal conductivity of the GB has an initial value of 0.1 W/mK and 

decreases with the increase in FG concentration. The maximum concentration in the 

simulation is normalized to have the maximum GB coverage fraction of about 0.5, a 

typically observed value from experimental work. After solving the model to a steady 

state, the temperature profiles across the top (high concentration) and bottom (low 

concentration) of the model are shown in Figure 6-4b. 

(a) (b)  

Figure 6-4: (a) Boundary Conditions of the Bicrystal Model Used to Verify the Effect of 

Kapitza Resistance. C: Concentration, T: Temperature, q: Heat Flux. (b) Resulting 

Temperature Profiles Close to the Top Boundary (High Concentration region) and 

Bottom Boundary (Low Concentration Region) . 
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The Kapitza conductance, in the high concentration region, is calculated to be close 

to 20 MW/m2/K with the equation, 𝐺𝑘 =
𝑗

∆𝑇
, where j is the heat flux. The calculated 

value, representing the lower bound here, is still higher than the upper bound value in the 

literature [65]. The discrepancy should be a result of GB thickness. The model here uses 

a GB thickness of 1 nm, and is suitable to model fuel behavior at low burnup, before the 

fission gases coalesce in GBs. The geometric effect of fission gas bubbles, which is not 

considered in this model, can be incorporated given a homogenized representation. The 

work presented here is to show that GB resistance, as a function of fission gas 

concentration, can be simulated in this finite element model, and that the temperature 

drop across the GBs can impact thermal performance of the fuel. 

6.2 Controlling Parameters 

The transport of FPs is a function of many factors as discussed in the previous 

chapters. The goal of the simulation work done here is to isolate the effect of each factor 

and conduct simulations with only one controlling factor at a time to study the effect of 

each parameter. The parameters to be considered in the model are: sample stoichiometry, 

temperature effect, Kapitza resistance, heterogeneous GB properties and mass generation.  

6.2.1 Baseline 3-D Microstructure Models 

 A preliminary 3-D simulation was conducted using the reconstructed 

microstructures from the three samples with different compositions. To setup a baseline 

model for future comparisons, it is first assumed that all GBs have a high diffusivity 

value that is five orders of magnitude larger than bulk diffusivity. This choice of the GB 

diffusivity value serves two purposes. Firstly, the ratio DGB/Dbulk is such that the 
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percolation effect becomes significant, as suggested in [111]. Secondly, the value is well 

within the range of the calculated xenon GB diffusivities as well as experimentally 

observed values in other materials [112]. The temperature is set to be constant for this 

case at 1585 K, an average value obtained from the calculated temperature profile across 

the pellet radius. The same material properties and boundary conditions are applied to all 

three models to examine the effect of different microstructures. The boundary conditions 

are applied similarly to those for the bicrystal simulations in section 6.1, where a 

normalized concentration gradient is applied from top to bottom with the sides insulated. 

The boundary conditions are set up to create a one-directional diffusion effect, similar to 

the radial direction in a fuel pellet or a gradient toward a spherical sink. Steady state 

solutions are obtained for each model, and the concentration profiles for the three 

different models are shown in Figure 6-5.  
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(a) (b)   

(c)  

Figure 6-5: 3-D Finite Element Simulation Showing the Effect of High Diffusivity Grain 

Boundaries on the Diffusion of Fission Products (a) UO2.0 (b) UO2.06 (c) UO2.14. 

As seen in Figure 6-5, different models have different concentration distributions, 

even though they have the same GB properties and are under the same concentration 

gradient. When all GBs have the same high diffusivity, lateral variation in concentration 

seems to be affected by the distribution of GBs, which is dictated by grain sizes and 
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shapes. The variation is most significant for sample UO2.00 as it has several very large 

grains that are surrounded by small grains. The diffusional paths are hindered when some 

GBs lead to the top of a grain bulk (the lower left of Figure 6-5a), and the resulting 

concentration gradient becomes steep in the region. The UO2.06 model, as shown in 

Figure 6-5b, has a much more uniform concentration distribution due to its small and 

uniform grain size. The third model, UO2.14, has a slight lateral variation that sits between 

the first two models. However, the work in Chapter 5 showed that the UO2.14 model 

actually has a very similar grain size distribution and average grain size as those for the 

UO2.00 model. The different concentration distribution suggests that the local behavior is 

sensitive to the neighboring geometry and GB distribution, and that overall statistical 

information alone is not enough to capture this effect. This is especially important when 

one takes into account that it is commonly accepted that long-range diffusion does not 

have a major contribution to FGR [34]. These results suggest that the local behavior that 

leads to interconnected bubbles can be strongly affected by local variation in 

microstructural geometry and crystallography.  

Another way to examine the concentration profile is shown in Figure 6-6, where 

the vertical concentration profiles of the three models are plotted. The profiles follow cut 

lines made close to the centers of x-y planes that probe the regions that cannot be seen 

from the outer surface. The line distances are normalized to eliminate the effect from the 

different dimensions in different models. The deviation from a uniform distribution, 

which should be a straight line with a fixed slope, can be observed for each case as the 

slope changes. The variation in the concentration profiles in Figure 6-6 follows 
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qualitatively to what was observed in Figure 6-5 with the UO2.00 model showing the 

largest variation.  

 

Figure 6-6: Vertical Concentration Profiles along a Cut Line across the Three Models.  

 It is noticed that a kink in the curve occurs at a relative distance of about 0.3 in 

the UO2.00 microstructure, indicating a discrete change in effective diffusion in the region. 

To investigate the unexpected phenomenon, the magnitudes of the concentration gradient 

are plotted in Figure 6-7, showing two perpendicular surfaces containing the cut line used 

for Figure 6-6. In both surfaces, the cutline started in a smaller grain region and ends in a 

very large grain that takes almost one third of the area. The GBs in the small grain 

regions, acting as the fast transport paths, are driving the FGs through the area quickly 

until they end in the large grain where no GB along the applied concentration gradient is 

present. The FGs have to either move with the horizontally oriented GBs to the other side 

of the microstructure or accumulate in the low diffusivity large grain, the latter of which 
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can be observed in the concentration profile shown in Figure 6-5a. The lateral transport 

can be observed in both surfaces Figure 6-7, indicated by the more continuous and lower 

concentration paths that are going around the big grain.  

 

Figure 6-7: Magnitude of Concentration Gradient in Two Perpendicular Cut Planes 

Containing the UO2.00 Concentration Line Plotted in Figure 6-6, as Marked by the Red 

Lines. 

 It is also noticed from the right surface in Figure 6-7 that the magnitude of the 

concentration gradient is determined by the surrounding grains. The regions with large 

grains have larger concentration gradient, indicating a lower effective diffusivity, and the 

contrary is observed in small grains region. The black line plotted in the right surface in 

Figure 6-7 probes a region with different grain size. It goes through four regions of 

different grain sizes: large - small - large – small, and the concentration profile along the 

line, plotted in Figure 6-8 can be fitted with four straight lines of different slopes, 

showing that the effective diffusivity is heavily affected by the local microstructure, 
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which suggests that control of FG transport is possible with a bimodal grain size 

distributions.  

 

Figure 6-8: The Concentration Profile along the Black Line in Figure 6-7 Showing 

Different Slopes Due to Differences in Microstructure. 

The effective diffusivity can be calculated by running the same simulation but 

with a mass flux applied at the bottom boundary instead of using zero concentration. The 

average concentration at the bottom boundaries can be calculated and the effective 

diffusivity can be derived by dividing the applied flux by the resulting concentration 

gradient. For all three models, a fixed flux, 4.0x10-15 mole/m2s, a value comparable to 

bulk diffusional flux, is used, and the calculated values are shown in Table 6-1. The 

UO2.06 microstructure has the highest effective diffusivity, which is expected due to its 

small grain size and uniformly distributed GBs. The UO2.00 and UO2.14 microstructures 

have similar grains size, but UO2.14 has a higher effective diffusivity. It is most likely the 

result of several very large and columnar grains that block the diffusion paths in the 
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UO2.00 model. These effective diffusivity values calculated for the three base simulations, 

which assume a uniform high diffusivity GBs, are the upper bound values at the 

temperature studied, and will be used as references to compare with other simulations 

with different physics considered. 

Table 6-1: The Calculated Deff from the Base Simulations 

Model 

Average 

Concentration 

Deff 

(m2/s) Deff / Dbulk 

UO200 0.925 1.69E-18 10.1 

UO206 0.968 3.03E-18 18.1 

UO214 0.953 2.57E-18 15.3 

 

The baseline models have shown the effect of microstructure and GB diffusion on 

the distribution of FGs. Several regions with different grain size distributions were 

identified, and it was shown that they can affect the FG concentration distribution and the 

local effective diffusivity. It was also shown that the presence of large grains can reduce 

the effective diffusivity by up to 44%, due to effects of the variation in microstructures of 

the studied models, suggesting that FG transport can be controlled locally by modifying 

the grain size distribution. The models will be modified to include other parameters such 

as TJ diffusion, temperature gradient, heterogeneous GB properties and mass generation 

to make the model more realistic in terms of simulating the actual fuel behavior in a 

reactor. 

6.2.2 Triple Junction Diffusion 

In addition to GB diffusion, TJs have also been shown to be possible high 

diffusivity paths for material transport, as discussed in literature review. Many irradiated 
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fuel images have also suggested that interconnected bubbles can develop sooner at TJs 

than GBs [45]. As a consequence, it is desired to include the TJ networks in the models to 

study their effects on the transport behavior of FPs. Although experimental data for TJ 

diffusion is scarce, in the atomistic scale, it is a disordered structure that should require 

lower energy for dopant atoms to travel in. In the developed multi-physics model, the 

effect of TJs can be simulated in addition to the GB diffusion using Equation 5-13. The 

diffusivity value applied in this model is set to be three orders of magnitude higher than 

GB diffusivity, using the experimental work of Zn diffusing in the TJs of Al from [67] as 

a reference.  The TJ network for the UO2.14 model is shown in Figure 6-9. It is assumed 

here that there is no variation in TJ property. The same boundary conditions as the 

baseline models are applied. 

 

Figure 6-9: Triple Junctions in the UO2.14 Microstructure Labeled with Blue Lines. 

The simulation result is compared with the baseline model in terms of the vertical 

concentration profile as plotted in Figure 6-10 for both UO2.00 and UO2.14 

microstructures. In Figure 6-10a, it shows a slight decrease in the concentration in the 
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middle of the line, and the concentration is almost identical after a distance of 20 μm. The 

effect of TJ diffusion seems limited for this simulation when all GBs have a high 

diffusivity, and the distribution of GBs is still the dominating factor. The same was 

observed in the UO2.00 microstructure. Figure 6-10b showed that the concentration 

profile, which is heavily affected by a big grain in the base simulations, is almost 

identical with the presence of TJ diffusion. The results obtained here have suggested that 

the TJ diffusion does not have a significant contribution to the non-uniform FG 

distribution induced by the GB diffusion and variations in microstructure. However, the 

work in [113] has showed that the TJ diffusion significantly reduced the non-uniformity 

on FG distribution imposed by heterogeneous GB properties. The part of work will be 

verified again when GBs of different character are incorporated in the models. 
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(a)  

(b)  

Figure 6-10: The Concentration Profiles along a Vertical Line with and without TJ 

Diffusion in the (a) UO2.14 and (b) UO2.00 Microstructure.  

6.2.3 Stoichiometry Effect 

The study of stoichiometry effects requires the use of the experimental data 

obtained by Miekeley and Felix [25] and Matzke [38] as they are the few FGR studies 

available in the literature that took stoichiometry into account. The stoichiometry effect 

on thermal conductivity is ignored for now as it is not as significant as diffusivity, and the 
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effect also diminishes at elevated temperature. The diffusivity value for UO2.00 by 

Miekeley and Felix is higher than the value from Davies and Long [101] at the 

temperature studied. The application of the value is then first compared with the 

diffusivity value from Davies and Long. At the simulation temperature of 1585 K, the 

diffusivity from Miekeley and Felix for UO2.00 is 3.93 x 10-16
 m

2/s while it is 1.68 x 10-19 

m2/s from Davies and Long. The difference is over three orders of magnitude. The new 

UO2.00 diffusivity is applied to the UO2.00 model, chosen for its larger lateral variation in 

the concentration profile of the baseline model, with everything else the same.  

The obtained concentration profile from the simulation using Miekeley’s 

diffusivity shows little change in concentration gradient. Cut lines are made to probe the 

variation in the concentration in the middle of the UO2.00 microstructure and compare 

with the base simulation. The results are plotted in Figure 6-11. The concentration profile 

under the effect of Miekeley’s bulk diffusivity is almost linear with very little change in 

slope; in contrast to the kink that is observed in the base simulation. The higher bulk 

diffusivity has diminished effect of the percolated high diffusivity GBs as the DGB/Dbulk 

ratio is now less than 800, which is in agreement with the work from [81, 111], which 

stated that the percolation effect is only significant at the diffusivity ratio of 105 or higher. 

However, the horizontal concentration profile, shown in Figure 6-11b, showed the lateral 

variation in concentration is still present with the maximum difference of .029, which is 

an almost 20% difference. It shows that even at a diffusivity ratio as low as 800, GB 

diffusion can still alter the FG distribution locally.  
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(a)   

(b)  

Figure 6-11: (a) Concentration Profile of a Vertical Cut Line across the UO2.00 Model, 

Comparing between the Two Simulations using the Bulk Diffusivity from Miekeley and 

Davies and Long (Baseline Model). (b) Concentration Profile in a Horizontal Plane 5 μm 

Away from the Bottom Surface from the Simulation Using Miekeley’s Diffusivity. 

 As it is found that the higher diffusivity applied to grain bulks diminished the 

variation in concentration profile induced by GB diffusion, it is expected to see similar or 

stronger effects if the diffusivity of UO2+x is applied to grain bulks. Although the data for 

hyper-stoichiometric diffusivity differ by a couple orders of magnitudes, it is important to 
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keep in mind that if the bulk diffusivity is enhanced to high enough levels due to 

stoichiometry, the effect of GB diffusion can be neglected.   

6.2.4 Temperature Effect 

The material properties needed for the simulations are all temperature dependent, 

especially the FP diffusivities, which have an Arrhenius relationship with the 

temperature. The diffusivity values can span a few orders of magnitude given the high 

temperature gradient found in a fuel pellet. The effect of temperature is studied by 

applying the highest observed temperature gradient in a fuel pellet, which is about 10000 

°C/cm [6], to the developed models. The GB diffusivity, in this case cannot be set to a 

fixed ratio with Dbulk because it is also temperature dependent with different activation 

energy. Using the GB diffusivity (DGB) derived by Olander (Olander 1 in Figure 5-9), 

calculated using the bulk diffusivity data by Davies and Long [101], one can plot the ratio 

between DGB and Dbulk as shown in Figure 6-12. Note that the difference is larger at low 

temperatures and decreases with increasing temperatures. It is desired to investigate 

regions with different temperatures to check if different behaviors exist.  
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Figure 6-12: Ratio Between Grain Boundary Diffusivity and Bulk Diffusivity. The 

Values Are Based on Davies and Long (Bulk) and Calculation from Olander (GB). 

The simulation is first done using the UO2.00 microstructure. A temperature 

gradient, from 1600 K to 1570 K, is applied in the same direction as the concentration 

gradient. The temperature gradient should introduce a higher diffusivity in the hot region 

while a lower diffusivity in the cold region. Simulations, with and without a temperature 

gradient, were conducted, and the vertical concentration profiles along two different 

lines, shown in Figure 6-13a, are plotted in Figure 6-13b. In both concentration profiles, 

the temperature effect introduces a higher and flatter concentration profile in the hot 

region to accommodate the higher diffusivity followed by a sharp drop in the cold region. 

The behavior is expected when the FG travels faster in the hot region and gets slowed 

down in the cold region.  
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(a)  

(b)  

Figure 6-13: (a) The Two Vertical Lines Indicating the Locations the Line Profiles Are 

Plotted with Line1 on the Left and Line2 on the Right. (b) The Vertical Concentration 

Profiles along the Two Vertical Lines in (a) Comparing the Effect of the Temperature 

Gradient with the Base Simulation in the UO2.00 Microstructure. 

It has been discussed that the direction of a temperature gradient does not 

necessary follow the concentration gradient. The pellet temperature is usually the highest 
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in the center and decreases along the radial direction while the FG concentration is 

usually the highest at the edge and can be heavily affected by the presence of local 

porosity. To investigate the effect of different temperature gradient directions, the same 

simulation was conducted using the UO2.14 microstructure and included the effect of a 

reverse temperature gradient. The resulting vertical concentration profile is plotted in 

Figure 6-14, in comparison with the base model and the simulation with a forward 

temperature gradient. Similar to previous simulation, the case with a forward temperature 

gradient is found to increase the concentration in the hot region and results in a sharper 

drop in the cold region. For the case of the reverse temperature gradient, the effect is 

inverted with a lower overall concentration across the line. The first 10 μm of the vertical 

line is now the cold region with a lower diffusivity, with which a larger concentration 

gradient is needed to sustain the applied mass flux. In the lower hot region, the 

concentration gradient decreased due to a corresponding the increase in diffusivity.  
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Figure 6-14: The Linear Concentration Profiles under the Effect of a Constant 

Temperature, a Forward Temperature Gradient and a Reverse Temperature Gradient. 

From Figure 6-12, the GB diffusivity is much higher than bulk diffusivity at lower 

temperatures. To observe the difference, a temperature gradient from 830 K to 800 K is 

applied to the UO2.14 microstructure. The temperature range matches the region close to 

the edge of the pellet. The diffusivity ratio is over 8 orders of magnitude at this 

temperature range. The resulting concentration profile is plotted in Figure 6-15 in 

comparison with the concentration profile obtained above. At low temperature, the 

concentration profile follows a similar trend as the high temperature profile since they 

have the same GB distribution. The low temperature line has an overall higher 

concentration, which is likely due to the overall lower diffusivity. The low temperature 

profile also deviates from the reference line showing the effect of a higher diffusivity 

ratio. 
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Figure 6-15: The Concentration Profiles under the Influence of High Temperature (1600 

K – 1570 K) and Low Temperature (830 K – 800 K). The Reference Line Is a Straight 

Line Representing a Perfectively Uniform Concentration Gradient. 

6.2.5 Effects of Heterogeneous Grain Boundary Properties  

 The EBSD data provide information for the distribution of the GB types, as 

classified by their misorientation angle and CSL type. The GBs of different characters, 

defined in Table 5-1, are now assigned with different diffusivities. A two-level diffusivity 

system is applied with the high angle GBs assigned with a high diffusivity value 

(Olander1 in Figure 5-9), and the middle angle GB along with the low angle and CSL 

GBs assigned with a low diffusivity, the same value as bulk diffusivity. Steady state 

solutions are obtained at a constant temperature of 1585 K. The distribution of the high 
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diffusivity GBs and the resulting concentration profiles for each microstructure are 

plotted in Figure 6-16. 

(a)  

(b)  

(c)  

Figure 6-16: The Distribution of GBs Assigned with a High Diffusivity Value and the 

Resulting Surface Concentration Profiles for Sample (a) UO2.00 (b) UO2.06, (c) UO2.14. 
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The first significant observation from the concentration profiles is that the 

presence of the two-level heterogeneous GB properties increased the non-uniformity in 

the concentration profiles as compared with the base simulations. The distribution of FGs 

is no longer controlled only by the grain size distribution, which is the main reason for 

the variation of concentration in the base models. Even though the fractions of high 

diffusivity GBs in all three cases are still much higher than some calculated 3-D 

percolation threshold values, e.g., about 0.25 for a cubic boundary network [53], the 

presence of a small fraction of low diffusivity GBs still alters the concentration 

distribution.  

The effect can be better explained by making cross-sectional concentration 

profiles as shown in Figure 6-17 and Figure 6-18, which capture some lateral variations 

in concentration through the depth of the models. First of all, these concentration profiles 

show that the high concentration region is not limited to one side of the model and can 

change fairly quickly through the thickness. Secondly, the distribution of high 

concentration region is no longer controlled solely by the grain sizes. The distribution of 

high and low diffusivity GBs is also very important as the concentration profile now 

shows several small grains with high concentrations, which differ from the conclusion 

drawn from the base simulation stating that the small grain region results in lower 

concentration laterally. 
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Figure 6-17: The Cross Sectional Concentration Profiles Showing the Changes in 

Relative Concentration through the Thickness of the UO2.06 Model. Each Slice Is 1 μm 

Apart. 
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Figure 6-18: The Cross Sectional Concentration Profiles Showing the Change in Relative 

Concentration through the Thickness of the UO2.14 Model. Each Slice Is 1 μm Apart. 

The formation of these regions of high concentration can be explained by 

exploring the grain shape and GB properties locally in the 3-D microstructure. In Figure 

6-19a, the highly concentrated grain in the UO2.06 simulation is identified from the 3-D 

grain structure with the high diffusivity GB labeled. The 3-D grain structure shows that 

the high diffusivity GBs become discontinuous at the bottom of the grain, as boxed in 

red. The FG atoms that are transported to the region have to accumulate in the area and 

that eventually results in a high concentration region. Similarly, Figure 6-19b shows the 

high concentration grain in the center of the cross sectional cut 23 μm away from the top 

surface. The discontinuity in high diffusivity GBs is also found to result in the high 

concentration region. Note that the two cases discussed here both have grains that are 

well surrounded by the high diffusivity GBs; however, it is the nature of the GBs that 
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follow along the applied concentration gradient that leads to the regions with local high 

concentration. The work presented here shows that the distribution of FGs not only 

depends on the distribution of the GBs, but also on their connectivity and the orientation 

to the concentration gradient. The GBs in the high concentration regions are expected to 

capture enough FGs for bubble interconnection earlier than other GBs do.  

(a)  

(b)  

Figure 6-19: A Highly Concentrated Grain and Its Neighboring Grain Structure in 3-D 

with High Diffusivity GB Labeled (a) in UO2.06 Model (b) UO2.14 Model. The Red Circles 

Indicate the Discontinuity in High Diffusivity GBs. 

 It has been discussed that the connectivity of GBs is correlated by 

crystallographic constraints, and that the resulting GB network is different from a random 

GB network as suggested in [56]. The GBs with heterogeneous properties are categorized 
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based on characterization results and can be considered as correlated GBs. Using the 

same UO2.06 microstructure model, a different simulation can be conducted by assigning 

GB properties at random. The same 71 % high diffusivity GBs are chosen using a random 

number generator and assigned to the model. The simulation is conducted using the same 

boundary conditions, and the resulting concentration profiles under the effect of 

correlated GBs and random GBs are plotted in Figure 6-20, along with the distribution of 

the assigned low diffusivity GBs. The difference is actually significant as the random 

GBs resulted in a much more uniform concentration profile. It also appears that the low 

diffusivity GBs are much more evenly distributed in the random GB case. In principle, it 

agrees with the literature [114], which suggests that two CSL GBs connected at a TJ 

requires a third CSL GB, in a way that the correlated GBs model has a better connected 

low diffusivity GBs and thus a higher lateral variation in concentration. However, the 

fraction of CSL GB is fairly small in these models studied, and a bigger network along 

with more analysis will be needed before such conclusion can be drawn. The quick 

message here is that the correlated GBs will result in a different FG distribution as 

compared with the random GB case.  
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(a)  

(b)  

Figure 6-20: The Concentration Profiles under the Effect of (a) Correlated GBs (b) 

Random GBs with the Low Diffusivity GB Labeled. 

 Finally, the effect of TJ is revisited by apply a high diffusivity to all TJs in the 

UO2.14 model with heterogeneous GB properties. The resulting change in concentration 

profile is shown in Figure 6-21, which shows that the TJ diffusion straightens the 

concentration line profile. The effect is more obvious than what is observed from the base 

simulation as the heterogeneous models are expected to have more disconnected high 



 

152 

 

diffusivity GBs, and the presence of the high diffusivity TJs compensates for these 

discontinuities and thus results in a more uniform concentration profile. 

 

Figure 6-21: The Effect of TJ Diffusion in the Heterogeneous GB Properties Model in the 

UO2.14 Microstructure. 

6.2.6 Mass Generation 

The rate of fission gas generation was calculated in the previous chapter and the 

result can be applied to grain bulks as a source term. Now, instead of applying a 

normalized concentration gradient, the evolution of the fission gas generation can be 

studied from the very beginning of fuel life when the FG concentration is zero 

everywhere. The simulation was conducted by assigning only the bottom boundaries with 

a fixed zero concentration, representing a sink for FGs, with other boundaries insulated. 

The source term is included in the partial differential equation for mass diffusion for 

grain bulks where the FGs are generated. The surface boundaries are now given the same 



 

153 

 

diffusivity as the GBs to allow tangential mass diffusion to prevent the high 

concentration region from forming at the surfaces due to the insulated boundary 

condition.  

The resulting concentration cross section is plotted in Figure 6-22. At steady state, 

the regions with high concentration reside within the large grains. The closer they are to 

the GBs, the lower the concentration is. A similar behavior was also observed in the base 

simulations, which showed higher concentrations in regions with large grains. The 

approach of assigning mass generation can be used to identify the GBs where the bubbles 

first become interconnected when unsteady simulations can be conducted. The results 

obtained also offer a better comparison with experimental data. A concentration line 

profile across a grain in Figure 6-22 is plotted in Figure 6-23a, which shows that the 

highest concentration is at the center of the grain. This behavior was also observed by 

Walker [107] during a study of xenon concentration across a grain using electron probe 

microanalysis.  

 

Figure 6-22: Concentration Profile of a Cut Plane 15 Micron Away from the Top Surface 

from a Mass Generation Simulation for the UO2.14 Microstructure 
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(a)   

(b)  

Figure 6-23: (a) The Concentration Profile across the Black Line in Figure 6-22 (b) 

Experimentally Measured Xenon Concentration across a Grain at a Normalized Radial 

Position of 0.6 [107]. 

6.2.7 Grain Boundary Kapitza Resistance in Polycrystalline Models 

The approach to simulate GB Kapitza resistance that was demonstrated with a 

bicrystal model is now applied to the UO2.14 microstructure to demonstrate its effect in a 

polycrystalline microstructure. The same boundary conditions as the bicrystal model are 

used, and the applied concentration is normalized in a way that the maximum GB 

coverage, which is the XGB term in Equation 5-16, is 50% to match experimental 
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observations [79]. The resulting temperature profile along a horizontal cutline is plotted 

in Figure 6-24. Several temperature drops, which are induced by the GB resistance, can 

be observed. The resulting temperature profile in the right surface is shown in Figure 

6-25, which has a maximum temperature difference of about 12 K. The difference in 

temperature distribution is affected by the grain shapes. The average temperature in the 

right surface can be calculated, and the effective thermal conductivity can be calculated. 

 

Figure 6-24: A Section of the Temperature Profile in the UO2.14 Model Showing the 

Temperature Drops under the Effect of the Kaptiza Resistance.  
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Figure 6-25: The Temperature Profile (K) on the Right Surface of the Model under the 

Effect of GB Resistance. 

 To compare the results in the different microstructures, the same simulation was 

conducted on the three reconstructed models: UO2.00, UO2.06 and UO2.14, with and without 

the effect of GB Kapitza resistance. The results are shown in Table 6-2 in terms of the 

percent change in effective thermal conductivity and the temperature difference per 

micrometer induced by GB Kapitza resistance. The results are similar in all three models 

with the % change in keff from 0.54 % to 0.60 % and the temperature drop per micrometer 

from 0.10 K/μm to 0.12 K/μm. The values seem to be dependent on the number of grains, 

which is the largest in UO2.06 and the smallest in UO2.14. Although the changes in 

temperature seem small in the microstructure models, the overall effect over the whole 

radius of a fuel pellet can be significant. However, a direct comparison should be made 

here as the heat flux may vary in the fuel pellet. The work here demonstrated that the 
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model can be used to study the thermal performance of a fuel pellet under the effect of 

microstructure and FGs.  

Table 6-2: The Change in Effective Thermal Conductivity in the Three Different 

Microstructures. 

Model % change in keff ΔT(K) / μm 

UO2.00 0.60 0.11 

UO2.06 0.65 0.12 

UO2.14 0.54 0.10 

6.3 Multi-Physics Effects on Fission Product Transport  

The simulations conducted in section 6.2 provided a basic idea on the effect that 

each phenomenon of interest to this work had on the transport of FPs. The multiphysics 

effect, which is the goal of creating such models, is studied next. The different physics 

are coupled by the transport properties, which are temperature dependent, as well as the 

concentration-dependent GB resistance, which has been shown to affect the temperature 

profile. It is important to point out again that this model is suitable for simulating the 

behavior before the formation of interconnected bubbles, i.e., at low burnups. The three 

reconstructed models of different stoichiometry will be used to study the transport 

behavior at different radial positions of a fuel pellet. Finally, a sensitivity study will be 

conducted to discuss the effect of the large spread in some experimentally obtained 

material properties. 
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6.3.1 Microstructurally Explicit Simulation of UO2.00, UO2.06 and UO2.14 

The three microstructures, each representing a different stoichiometry, are used to 

probe the transport behavior of FGs at different radial position using the window method 

[115]. The technique places a representative volume element (RVE) that is 

microstructurally explicit in a homogeneous matrix to study the interaction between the 

micro and macroscale. The stoichiometry of fuel elements changes with increase in 

burnup due to uranium consumption as well as oxygen migration. According to Figure 

2-2, sample oxygen stoichiometries of 2.14, 2.06 and 2.00 can be used to approximate the 

center, mid-radius and edge stoichiometry in a fuel pellet, respectively. The temperature 

range at each location is also approximated from the temperature profile derived and 

plotted in Figure 5-11. The three reconstructed models are used to conduct multi-physics 

simulations that include the effect of stoichiometry, temperature, Kapitza resistance and 

heterogeneous GB properties.  

Similar to previous simulations, a normalized concentration gradient is applied 

along with other temperature dependent material properties. For the effective Kapitza 

resistance calculation to make physical sense, the maximum concentration value is 

normalized to have GB coverage of 50% to study the FG distribution before the bubbles 

interconnect. The bulk diffusivity values now depend not only on the temperature, but 

also on the stoichiometry. The hyper-stoichiometric diffusivity data derived by Miekeley 

and Felix [25] has no x dependence in UO2+x. As a result, the work by Matzke [38], 

which has the diffusivity data for two hyper-stoichiometric samples, is used and 

interpolated to be applied to the UO2.06 and UO2.14 models. Grain boundary diffusivity is 

kept the same for all three models with the two-level heterogeneous GB distribution, the 
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same as the work in 6.2.5. Table 6-3 lists the parameters used for each model. Now the 

microstructurally explicit models that are coupled with the thermal transport can be used 

to study the FG behavior at low burnup.  

Table 6-3: Parameters for Multiphysics Simulations. 

Model Radial 

position 

Temperature 

range (K) 

Diffusivity 

UO2.00 edge 830-800 Dbulk 

UO2.06 middle 1600-1570 57.5Dbulk(T=1585) 

UO2.14 center 1900-1870 35.6Dbulk(T=1885) 

 

 The three models are calculated and the FG concentration profiles are collected. It 

is first noticed that the simulation results for both UO2.14 and UO2.06 show no lateral 

variation from the surface concentration plots, as shown in Figure 6-26a and Figure 

6-27a. The reduction in the DGB/Dbulk ratio along with the increase in bulk diffusivity due 

to stoichiometry has eliminated the GB effect that was observed before. However, it is 

found that a slight local variation produced by GBs are still present in the cross sectional 

concentration profile for the UO2.06 model, as shown in Figure 6-26b. A maximum 

concentration difference from the concentration profile is about 0.03, which is 4 % of the 

minimum concentration, comparing with that of less than 1 % in the UO2.14 model shown 

in Figure 6-27. The results indicate that the effect of GB diffusion diminishes with 

increases in temperature and oxygen content. 
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 (a) (b)  

Figure 6-26: (a) The Concentration Profile of the UO2.06 Model under Mid-Radius 

Conditions (b) A Horizontal Cross-Sectional Slice of the Concentration Profile. 

(a) (b)  

Figure 6-27: (a) The Concentration Profile of the UO2.14 Model under Center Pellet 

Conditions (b) A Horizontal Cross-Sectional Slice of the Concentration Profile. 

The increase in bulk diffusivity due to the oxygen content as a multiple of 

intrinsic bulk diffusivity (Davies and Long) is listed in Table 6-3, calculated with respect 

to the corresponding simulation temperatures. The increase in bulk diffusivity as 
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compared to the intrinsic diffusivity in the UO2.06 model is about 57 fold. Although the 

number is much smaller compared to the ratio between GB diffusivity and bulk 

diffusivity, it is large enough to diminish the effect of GBs that was observed in the base 

simulation and the simulation with heterogeneous GB properties. In the UO2.14 model, 

which is simulated at a higher temperature, the DGB/Dbulk ratio is even smaller according 

to Figure 6-12. The stoichiometry of 2.14 also makes the bulk diffusivity 35.6 times 

larger at the temperature range studied. The combined effects result in a uniformly 

distributed concentration profile that shows little GB effect. 

 The UO2.00 model, on the other hand, has the largest DGB/Dbulk ratio, given that the 

bulk diffusivity is the reference. The resulting concentration profile, which is plotted in 

Figure 6-28, shows large lateral variations induced by the GB diffusion. To make good 

comparisons among the models, the effective diffusivity (Deff) for each model is 

calculated by applying a fixed flux and measuring the resulting concentration gradient. 

The value for each model is listed in Table 6-4. Although this parameter is heavily 

affected by the temperature, its ratio to the applied bulk diffusivity (DUO2+x) value at the 

same temperature range provides insights into the GB effect. The Deff /DUO2+x calculated 

for UO2.00, UO2.06 and UO2.14 models are 6.35, 1.2 and 1.02. These values provide ideas 

for the effective diffusivity enhanced by GB diffusion, and they showed that the Deff for 

UO2.06 and UO2.14 are only slightly larger than the diffusivity of the bulk. This explains 

why uniform concentration profiles were observed for both cases. 
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(a) (b)  

Figure 6-28: (a) The Concentration Profile for the Multiphysics Simulation of the UO2.00 

Model under Edge Conditions (b) Vertical Slices of the Concentration Profile with the 

Outline of the Microstructure. 

Table 6-4: The Effective Diffusivities Calculated from the Multiphysics Simulations. 

Model Deff (m
2/s) Deff / Dbulk Deff /DUO2+x 

UO2.00 8.02E-28 6.35 6.35 

UO2.06 1.16E-17 69.1 1.2 

UO2.14 2.11E-16 36.5 1.02 

 

The results suggest that the GB diffusion is not making a contribution to the 

fission gas transport in the high temperature regions, especially in the center of a fuel 

pellet. The bulk diffusion enhanced by excess oxygen is the key parameter. In addition, 
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other effects such as evaporation and GB sweeping that are most commonly observed in 

the hot region will also take over the diffusion and become the major mechanism for 

FGR. The GB effect, on the other hand, is the most significant at the edge of a fuel pellet. 

The results showed that the distribution of FGs is heavily affected by the distribution of 

different GBs, despite the fact that the number of high diffusivity GBs is much higher 

than the percolation threshold calculated for a cubic boundary network. The 

microstructure at the edge is also the least affected by the microstructure reconstruction 

due to temperature and stoichiometry enhanced diffusion. The results obtained here 

provide insight as how the FGR can be better predicted. The controlled release is also 

possible by coupling the present microstructure models with the control of grain sizes, 

e.g., bi-modal grain size distribution, or GB engineering, which can alter the fraction of 

high and low diffusivity GBs.  

6.3.2 Sensitivity Analysis  

 The applied values with large uncertainty in the experimental work include GB 

thickness, bulk diffusivity and GB diffusivity. Sensitivity analysis was conducted using 

the UO2.14 model to test the effect of different GB thickness on effective diffusivity. The 

GB thickness values of 0.5, 1, 5, 10 and 50 nm are simulated, and the results in terms of 

effective diffusivity are compared. The effect of bulk and GB diffusivity will be tested in 

various combinations, using the higher and lower bound values collected from the 

literature. Table 6-5 below shows all the combinations used in the sensitivity study.  
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Table 6-5: Applied Diffusivity Combinations for Sensitivity Analysis. 

Study Dbulk DGB 

Base Dmid (Davies and Long) Dmid (Olander 1) 

1 Dhigh (Miekeley) Dhigh (Gover) 

2 Dhigh Dlow (Olander 2) 

3 Dlow (Cornell) Dhigh 

4 Dlow Dlow 

 

 The GB thickness is examined first because it directly affects the effective value 

of GB diffusivity. The study is conducted by re-running the multi-physics simulations for 

the three models from 6.3.1. Results show no significant change in the concentration 

profiles for the whole surfaces with increasing GB thickness. However, in the cross 

sectional concentration profile for the UO2.14 model, which showed no effect of GB 

diffusion, variations start to show with the increase in GB thickness. Figure 6-29 shows a 

concentration profile of the model ran with a 10 nm GB thickness. The maximum 

concentration difference is now 0.047, which is close to a 10% variation.  
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Figure 6-29: The Cross-Sectional Concentration Profile for a UO2.14 Multiphysics 

Simulation with a 10 nm GB Thickness. 

 The effective diffusivity for UO2.00 is calculated with respect to the increase in 

GB thickness as plotted in Figure 6-30 below. This model, which was previously shown 

to be strongly influenced by GB diffusion, does not show much increase in Deff with 

increases in GB thickness. The result agrees with the work by Chen [55], which showed 

the change in Deff is small when the fraction of high diffusivity GB passes the percolation 

threshold. The value stops increasing with a GB thickness of 5 nm or higher.  
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Figure 6-30: The Effective Diffusivity of the UO2.00 Model with Respect to GB 

Thickness. 

 The Effective diffusivity for UO2.14 is plotted in Figure 6-31. Unlike the UO2.00 

model, the plot shows a larger and linear increase in diffusivity with respect to the GB 

thickness. The different behavior occurs due to the fact that UO2.14 model had a DGB/Dbulk 

ratio less than 105, a threshold value suggested in literature for the GB diffusion to be 

significant. The increase in GB thickness increases the δDGB term, which steadily brings 

the DGB to Dbulk ratio closer or above the threshold value, resulting in the increase in 

effective diffusivity. 
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Figure 6-31: The Effective Diffusivity of UO2.14 Model with Respect to the GB 

Thickness. 

 The four cases listed in Table 6-5 are simulated using the UO2.06 microstructure 

and the mid-radius pellet temperature range, as it was the model that showed ambiguity 

in the effect of GB, i.e., the effect of GB diminishes under certain conditions. The 

concentration profile for each case is plotted in Figure 6-32 with cases 1 and 3 

overlapping. First of all, the results showed that all cases, except for case 2, have multiple 

changes in slopes in the concentration profile, showing the effect of GB diffusion. Case 2 

with a high bulk diffusivity and a low GB diffusivity has a DGB/Dbulk ratio of 420, which 

is much smaller than the cutoff value of 105. The resulting concentration profile is almost 

a straight line. On the other hand, case 1 and case 3 both have the highest GB diffusivity, 

but case 3 has a low bulk diffusivity while case 1 has a high bulk diffusivity. The almost 

identical concentration profiles suggest that the concentration profiles stop changing 
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when the DGB/Dbulk exceeds a certain value, which must be equal or smaller than the 

calculated value of 7.8x105 for case 3. 

 

Figure 6-32: The Concentration Profile Plotted Based on the Four Cases Described in 

Table 6-5 for Sensitivity Analysis. 

 To summarize, the work presented in this chapter has showed that the GB 

diffusivity, coupled with heat transfer, can be studied using the developed polycrystalline 

models, taking into account the different physics, including GB diffusion, GB 

heterogeneity, temperature gradient, TJ diffusion, Kapitza resistance and UO2 

composition. The physics is fully coupled as the heat transfer is affected by the FG 

concentration in the GB through the GB Kapitza resistance. The simulation began with 

bicrystal models to verify assumptions made on GB diffusion and thermal resistance. 

After it was verified that the 2-D GBs can be used in models of the 3-D microstructure, 

the effect of each physics is studied independently in the three reconstructed 
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polycrystalline models. With all simulations performed with the same uniform 

concentration gradient from top to bottom, the resulting concentration profiles can be 

different depending on the temperature, grain size distribution and the connectivity of 

high diffusivity GBs. The three microstructures are then used to probe the FG behavior at 

different radial locations, taking into account the coupling physics and the stoichiometry 

effect. The results showed that the GB effect is most significant at the edge of a pellet and 

that GB engineering to control the FGR can be simulated in the region. Lastly, the results 

from the sensitivity analysis are affected by the DGB/Dbulk, in a way that the increase in 

GB thickness does not further increase the Deff once the cutoff ratio of 105 is met. The 

study of different GB and bulk diffusivity showed that only the lowest collected GB 

diffusivity in combination with the highest collected bulk diffusivity will negate the 

effect of GB on the distribution of FGs, again, suggesting the importance of the 

developed microstructurally explicit models. 
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7. CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

 The work presented began with background on the behavior of FPs, in general, 

and FGs, in particular, which is known to affect nuclear fuel performance. Much effort 

has been dedicated to the field since the 1960s; however, the FP release mechanism is 

still not fully understood. Although it has been shown that microstructure plays an 

important role, no computational work has been performed to take into account the effect 

of complex microstructures and material properties affected by crystallography. The 

work presented here tries to fill in this gap by developing microstructurally explicit 

models to simulate the transport behavior of FGs at the early stage of fuel life accounting 

full geometric and crystallographic features and constraints of actual fuel microstructures. 

 A finite element modeling framework has been developed to study FGR. The 

work took advantage of the characterization and modeling capability and developed 

techniques to conduct 3-D microstructure reconstruction using actual microstructure of 

UO2 samples. Three UO2 samples of different compositions were scanned with EBSD 

and serial sectioning using FIB. A series of OIM images were obtained for 3-D 

microstructure reconstruction, which used Dream3DTM and AVIZOTM for a series of 

image processing, segmentation, visualization and meshing steps. Statistical data have 

been collected in both 2-D and 3-D, and GB properties were assigned to the meshed 

models based on GB misorientation angles and CSL types obtained from EBSD data. 

 Simulations were conducted on the three different microstructures to study the 

transport behavior of fission product under effect of different microstructures and 
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different physics, including bulk and GB diffusion, GB Kapitza resistance, TJ diffusion, 

as well as temperature and stoichiometry effects. These effects were coupled in a way 

that the diffusion process is temperature dependent while the heat conduction is affected 

by the FGs in the GBs. The coupled physics allowed better understanding of the complex 

environment in a fuel element. Finally, based on the simulation results, the following 

conclusions were drawn: 

1. The approach of modeling GBs using 2-D elements was verified and compared 

with 3-D GB models and the results showed that the derived equations can be 

applied to simulate GB diffusion and GB Kapitza resistance using 2-D elements 

to save on the computational cost. 

2. Effective GB diffusivity models that took the effect of bubble trapping into 

account were developed and the effective diffusivity as a function of bubble 

coverage at GBs was derived.  

3. The simulations using microstructurally explicit models, assuming all GBs have 

higher diffusivity than the bulk, showed that the FG distribution is heavily 

affected by the microstructure. The variation in grain size resulted in a non-

uniform FG distribution with high concentration in the large grain regions due to 

a smaller fraction of GBs.  

4. The presence of a temperature gradient that simulates the reactor environment 

changed the diffusivities for both grain bulk and GB. The higher temperature 

region resulted in a higher diffusivity and thus a smaller concentration gradient. 

The distribution of FGs is altered by the temperature effect. 
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5. Kapitza resistance was incorporated into the polycrystalline models to study the 

effective thermal conductivity of each microstructure. The effective thermal 

conductivity is reduced by the GB in each microstructure by about a half 

percentage. The effect seems small in the size of the model studies but can be 

significant over a long range due to the cumulative effects of many GBs. 

6. A two-level heterogeneous GB property was assigned based on the 

characterization data to reflect the fact that GBs have different properties due to 

their different structure. The results suggested that the distribution of FG was no 

longer affected only by the grain size distribution. The presence of a small 

fraction (about 30%) of low diffusivity GB was breaking the continuity of high 

diffusivity GBs and creating many locally high concentration regions. The 

geometrical orientation of these GBs with respect to the concentration gradient 

was also an important factor. 

7. The presence of TJ diffusion can reduce the non-uniformity in the FG distribution 

induced by heterogeneous GB properties. The effect is small when all GBs have 

the same high diffusivity value, but becomes more significant when GBs have 

different properties. 

8. Window methods were applied to probe the FG behavior at different radial 

positions in a fuel pellet using multi-physics simulations. The microstructure 

models of the three different samples, UO2.14, UO2.06 and UO2.00, were placed at 

the center, mid-radius and edge of a fuel pellet to reflect the difference in oxygen 

content and temperature. The effect of heterogeneous GB properties, GB Kapitza 

resistance, temperature and oxygen enhanced diffusivity are all considered in 
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these simulations. The results showed that the GB effect is the most significant 

from the mid-radius to edge region where high DGB/Dbulk ratios are present. In 

these regions, high concentration regions formed either due to grain size 

distribution or difference in GB properties. These regions are the likely places 

where FG bubbles first grow and become interconnected. The locations and the 

connectivity of the GBs in these regions can provide insights to the development 

of the interconnected open GBs that lead to the burst release phenomenon.  

7.2 Future Work  

 The work presented here has shown the capabilities of the models to simulate the 

transport behavior of FGs at low burnup. In the future, different directions can be taken 

using the developed framework for different studies. First of all, a percolation study can 

be conducted based on the existing results. Compared with the percolation of high 

diffusivity GBs, the connectivity of highly concentrated GBs is more important because 

they will be the GBs that interconnect first and contribute to the later stage of FGR. The 

work can be combined with the homology metrics that was presented as part of the 

characterization results. The homology metrics can be applied to the 3-D models to 

examine the connectivity of different GBs in 3-D. The results, in addition to the 

percolation study, can provide more precise inputs to the transport of FG from the 

statistical perspective. Ideally, the work is to be linked with the sample fabrication to test 

the effect of GB engineering. 

 The developed model can also be used to examine the experimental FGR data. To 

do so, the simulation needs to be conducted in a time dependent fashion, and the 



 

174 

 

fractional release for the RVE can be calculated and compared with the samples It is 

desired to use the model to study the fractional release data for samples irradiated to low 

burnups. If samples with high burnups are to be studied, the developed effective GB 

trapping model needs to be applied and the physics of FG flow through the 

interconnected GBs or TJs needs to be developed.  

In addition, the work has so far focused on the coupled relationship between heat 

and mass transport and ignored the effect of irradiation damage. The models for high 

burnups will require the incorporation of irradiation damage, which will affect the 

diffusion behavior of FGs. With the capability of simulating FG behavior from the 

beginning of fuel life to high burnups, the information will provide inputs to some of the 

existing fuel performance codes to perform better predictions of the overall FG transport 

in an actual reactor, as well as its local variability due to microstructure heterogeneity. 
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