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 ABSTRACT  
   

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present 

excellent corrosion resistance, lightweight, and formability making them attractive 

materials for expanded use in transportation and medical applications. However, the 

strength and toughness of CP titanium are affected by relatively small variations in their 

impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact 

that the solute either increases the critical stress required for the prismatic slip systems 

(�101�0��12�10�) or activates another slip system ({0001}�112�0�,�101�1��112�0�). In 

particular, solute additions such as O can effectively strengthen the alloy but with an 

attendant loss in ductility by changing the behavior from wavy (cross slip) to planar 

nature. In order to understand the underlying behavior of strengthening by solutes, it is 

important to understand the atomic scale mechanism. This dissertation aims to address 

this knowledge gap through a synergistic combination of density functional theory (DFT) 

and molecular dynamics. Further, due to the long-range strain fields of the dislocations 

and the periodicity of the DFT simulation cells, it is difficult to apply ab initio 

simulations to study the dislocation core structure. To alleviate this issue we developed a 

multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the 

dislocation core. We use the developed QM/MM method to study the pipe diffusion 

along a prismatic edge dislocation core.  Complementary to the atomistic simulations, the 

Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the 

dislocation core structure and mobility. The chemical interaction between the 

solute/impurity and the dislocation core is captured by the so-called generalized stacking 

fault energy (GSFE) surface which was determined from DFT-VASP calculations. By 
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taking the chemical interaction into consideration the SVPN model can predict the 

dislocation core structure and mobility in the presence and absence of the solute/impurity 

and thus reveal the effect of impurity/solute on the softening/hardening behavior in α-Ti.  

Finally, to study the interaction of the dislocation core with other planar defects such as 

grain boundaries (GB), we develop an automated method to theoretically generate GBs in 

HCP type materials. 
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CHAPTER 1 

1     MOTIVATION 

Titanium (Ti) and its alloys have been traditionally used for structural applications in 

automotive, aerospace, and biomedical applications due to their high strength-to-weight 

ratio (Leyens and Peters 2003; Davis 1990). Commercially pure (CP) and extra low 

interstitial (ELI) Ti-alloys in particular are attractive materials due to their excellent 

corrosion resistance, light weight, and formability. However, the strength and toughness 

of these alloys are affected by relatively small variations in their impurity content (IC), 

e.g., oxygen (O). Specifically, it has been shown that IC can cause a material to either 

harden or soften by interacting with dislocations or twins (Churchman 1954; Cerreta et al. 

2006; Dallas R. Trinkle and Woodward 2005; Trinkle III 2003; Zeng and Bieler 2005; 

Brandes et al. 2012; Dong and Li 2000; Liu and Welsch 1988; Okabe, Oishi, and Ono 

1992), as shown in Figure 1a. Table 1 lists the compositions for four common CP Ti 

alloys (ASTM grades 1-4) along with values for elongation, ultimate strength, and yield 

strength (Davis 1990). A comparison of the properties and compositions listed in Table 1 

shows that a relatively small increase in the oxygen impurity content results in a 

significant increase in the mechanical strength. Figure 1a further shows that the same 

increases in oxygen content give rise to a pronounced decrease in room-temperature 

ductility. Notably with higher percentages of IC, a transition from wavy to planar 

dislocation slip has been reported (Leyens and Peters 2003). 
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Figure 1: a) Effect of interstitial-element content on strength and ductility of unalloyed Ti (Davis 
1990), and b) slip planes of Ti (Leyens and Peters 2003). 

While the origin of impurity effects on the mechanical properties of CP and ELI Ti-

alloys has been well documented (Leyens and Peters 2003; Davis 1990; Churchman 

1954; Cerreta et al. 2006; Dallas R. Trinkle and Woodward 2005; Trinkle III 2003; Zeng 

and Bieler 2005; Brandes et al. 2012; Dong and Li 2000; Liu and Welsch 1988; Okabe, 

Oishi, and Ono 1992; Hanson 1986; Vitek and Paidar 2008; Richard G. Hennig et al. 

2005; Albaret, Finocchi, and Noguera 1999; Minato et al. 2009; Rogers Jr et al. 1986; 

Stringer 1960; Bieler, Glavicic, and Semiatin 2002) remarkably there have been few 

systematic studies exploring the effect of IC on the deformation mechanisms. In fact, a 

recent macroscopic experimental study shows significant tension-compression strength 

asymmetry for high oxygen content CP-Ti (Brandes et al. 2012). However, the exact 

physical mechanisms and mechanistic parameters, e.g., stress dependence of critical 

resolved shear stresses (CRSSs), related to this strength asymmetry are still unclear. This 

work aims to address this knowledge gap through a synergistic combination of first 

principle calculations and molecular dynamics (MD) simulations of pure Ti with 

relatively small amounts of IC (e.g., oxygen, vanadium, aluminum etc.).  
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Table 1: Composition, ultimate strength, and elongation for CP Ti ASTM grades 1-4 (Leyens and 
Peters 2003). 

Designation Wt.%H Wt. %C Wt. %O Wt. 
%N 

Wt. %Fe Ultimate 
strength 
(MPa) 

Elongation 
(%) 

Grade 1 0.01 0.1 0.18 0.03 0.2 240 24 

Grade 2 0.01 0.1 0.25 0.03 0.3 343 20 

Grade 3 0.01 0.1 0.35 0.05 0.3 440 18 

Grade 4 0.01 0.1 0.40 0.05 0.5 550 20 
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CHAPTER 2 

2     BACKGROUND AND SPECIFIC RESEARCH OBJECTIVE 

2.1 BACKGROUND 

 

Churchman (Churchman 1954) experimentally observed that deformation in CP Ti is 

governed by the three slip systems shown in Figure 1b (also ref. (Churchman 1954; 

Brandes et al. 2012; Vitek and Paidar 2008; Partridge 2013)). He also demonstrated that 

interstitial impurities not only affect the magnitude of CRSSs, but also the relative 

differences in the CRSS values for the three slip systems, where �101�0��12�10� is the 

principal slip system in Ti (Churchman 1954). Furthermore, using a hard sphere model, 

he proposed that interstitial sites occupied by oxygen atoms obstructs the slip activity on 

the basal and prismatic planes; resulting in an increase in the <c+a> dislocation activities. 

Similarly, Naka et al. (Naka et al. 1988) have shown that interstitial impurities provide a 

very strong hardening effect at lower temperatures (T ≤ 500 K) and observed cross slip of 

<a> type dislocation from the prism to pyramidal planes. Further, they concluded 

breakdown on the Schmidt law due to the presence of a non-planar core structure (Figure 

2).  

The CRSS for <c+a> dislocations has been measured to be several times (~8 times) 

larger than that for <a>-type slip on prismatic and basal planes (Churchman 1954; 

Brandes et al. 2012; Vitek and Paidar 2008; Partridge 2013), see Figure 3. In addition, the 

microstructure of the alloy makes a difference, for example in α/α+β alloys, the alpha 

phase will deform one way and the lamellar α+β will deform in another (Bieler, Glavicic, 

and Semiatin 2002). The secondary slip is in the �112�0� direction of the basal �0001� 
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plane. Other systems present are pyramidal slip in the �112�0� and �112�3�� directions of 

the �101�1� plane and in the �112�3�� direction of the �112�2� plane. Accurate atomistic 

modeling of non-basal defects is essential to correctly predict deformation behavior of 

hexagonal close packed (HCP) metals and alloys (Dallas R. Trinkle and Woodward 2005; 

Trinkle III 2003; Vitek and Paidar 2008; Richard G. Hennig et al. 2005; Vitek and 

Igarashi 1991). However, due to the long-range strain fields of the dislocations and the 

periodicity of the density functional theory (DFT) simulation cells, it is difficult to apply 

ab initio simulations to study dislocation core structure (Dallas R. Trinkle and Woodward 

2005; Trinkle III 2003; D. R. Trinkle 2007), especially with non-planar spreading of the 

dislocation cores. Stacking faults on the other hand are more straightforwardly 

represented in an ab initio model (Vitek and Paidar 2008; Vitek and Igarashi 1991; 

Yamaguchi, Shiga, and Kaburaki 2005; Van Swygenhoven, Derlet, and Frøseth 2004; G. 

Lu et al. 2000a; X. Wu, Wang, and Wang 2010) or modeling planar defects using 

coupled quantum and molecular mechanics (Y. Zhao and Lu 2011).  

 

Figure 2: slip traces on compression specimen at a) 77 K and b) 472 K. Composition of specimen 
is Ti+3270 at.p.p.m O. Note transition from a planar to wavy nature of slip at different 

temperature. Figure adapted from (Naka et al. 1988) 
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In high strength grade Ti-alloys oxygen and iron are intentionally added to the initial 

amounts already present in the melt to provide extra strength (Leyens and Peters 2003; 

Davis 1990). The addition of oxygen improves the corrosion and wear resistance of Ti 

and its alloys (Davis 1990; Stringer 1960). However, at elevated temperatures the oxide 

layer at the Ti surface will grow and oxygen will rapidly diffuse into the base metal (Liu 

and Welsch 1988; Rogers Jr et al. 1986; Rogers Jr et al. 1988; Thorwarth, Mändl, and 

Rauschenbach 2000) instigating hardening of the Ti (Dong and Li 2000). On the other 

hand, at lower temperatures and even with low concentration oxygen can initiate crack 

formation (Dong and Li 2000; Thorwarth, Mändl, and Rauschenbach 2000). Also, 

impurities such as oxygen and nitrogen render slip more difficult on two of the three slip 

planes in Ti (Churchman 1954; Brandes et al. 2012; Conrad 1981; Ogden and Jaffee 

1955). Cerreta et al. (Cerreta et al. 2006) found that 1 at.% oxygen impurities in Ti would 

completely suppress the pressure-driven (shock-induced) transformation from the α 

(HCP) to the ω (simple hexagonal) phase in Ti. Ti-alloys with higher interstitial content 

also show cleavage on the basal plane of the HCP structure (Churchman 1954), in 

contrast to a ductile fracture (Davis 1990; Churchman 1954). Twinning is an additional 

deformation mode observed most commonly in Ti-alloys with less IC. As the IC 

increases, however, the degree of twinning generally decreases in Ti (Conrad 1981; 

Ogden and Jaffee 1955). Recent experimental studies of the deformation behavior in Ti-

alloys (Zeng and Bieler 2005; Bieler et al. 2009; Leyun Wang et al. 2011; Y. M. Wang et 

al. 2007; Y. J. Chen et al. 2010; May 2010; Xing and Sun 2008) have revealed that 

nanoscale interactions are the underlying cause for this behavior.  
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Figure 3: a) Prismatic dislocations with edge character in Ti; and b) <a> and <c+a> dislocations 
with edge or mixed character in Ti+1000 ppm O. Adapted from Zaefferer 2003. 

 

2.2 RESEARCH OBJECTIVE 

The pronounced effects of IC on the mechanical properties shown in Table 1 and 

Figure 1 are thus accompanied by qualitative changes in the mechanisms underlying 

strength, ductility, and creep behavior. These observations suggest that, in principle, it 

should be possible to strongly influence the mechanical strength-ductility relationship in 

Ti through the addition of alloying elements and/or through microstructural changes 

selected to counteract or enhance the impurity effects influencing the underlying 

mechanisms of deformation and failure. Such a strategy requires an expanded 

understanding of the atomistic origins of the impurity effects reviewed above. As such, 

this dissertation addresses three fundamental questions concerning the mechanisms 

underlying these deformation mechanism and impurity effects on deformation according 

to the following topics: 

1. Role of IC on the ratio of stacking fault energies (SFEs) on prismatic, pyramidal, 

and basal planes. 

2. Effect of IC on Peierls stresses, and the tension-compression asymmetry observed 

a) b) 
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during deformation.  

3. The role of grain boundary (GB) character on the nucleation and interaction 

behavior of slip deformation.  

Also, this work provides a novel database on chemo-mechanical effects, i.e., IC 

contributions, into the strength and ductility response (structure-property relationships) to 

add insight into macroscale modeling (e.g. dislocation drag coefficient, dislocation 

mobility etc.). The research objectives of this proposal are as follows:  

• To investigate and compare the fundamental deformation mechanisms for Ti- 

with known amounts of IC additions; and  

• To identify the nanoscale mechanisms that enhance the impurity effects, 

including synergistic interactions between solutes and defects, such as 

dislocations, grain boundaries etc.  

Towards this goal, we will 

• Develop a coupled quantum and molecular mechanics framework to the direct 

effect of IC on dislocation core stability and other core properties. 

• Quantify a composition-dependent generalized stacking fault energy (GSFE) 

landscape using DFT to address the deformation anisotropy. 

• Encourage future work to quantify dislocation-grain boundary interactions and 

correlate the subsequent deformation event in the neighboring grain with the help 

of Luster Morris and Fatemi Socie parameters. 

This research and the resulting generic crystal plasticity principles and parameters 

related to the CRSS are expected to provide a foundation for designing and accelerating 
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adoption of future Ti-alloys that are cost-effective, energy-efficient, and structurally-

tailored for widespread applications, such as powertrain components for the 

transportation sector and/or prosthetic components for biomedical applications. 

To meet these objectives this dissertation is divided into two parts. The first part 

focuses on implicit and explicit modelling of different dislocation core structures. In the 

implicit method, the generalized stacking fault energy (GSFE) is used to compute 

dislocation core properties (Chapters 3 and 5); whereas, in the explicit method we 

directly model different dislocation core structures (Chapter 4). The second part focuses 

on grain boundary modelling (Chapter 6), solute effects (Chapter 7) and dislocation-GB 

interactions (Chapter 8). Finally, recommendations for future research are also presented 

(Chapter 9).    
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CHAPTER 3 

3     DISLOCATION CORE STRUCTURES: GENERALIZED STACKING FAULT 
ENERGY (GSFE) APPROACH  

 

3.1 INTRODUCTION 

 

Deformation in titanium is plastically anisotropic and dictated by dislocation and 

twinning mechanisms. The most common slip modes in titanium are �101�0� (prism), 

�101�1� (pyramidal), and (0001) (basal) along the � 112�0 � (<a> direction) as the slip 

direction. Hence, there are four independent slip systems with three glide planes. 

However, to maintain the deformation compatibility (Chichili, Ramesh, and Hemker 

1998) of five independent slip systems, twinning occur during plastic deformation which 

gives rise to the plastic anisotropy (Leclercq, Nguy, and Bensussan 1989). Earlier work 

of Akhtar (Akhtar 1975) and Teghtsoonian (Akhtar and Teghtsoonian 1975) using single 

crystal titanium concluded that deformation at lower temperatures involves twinning; 

whereas dislocation on the prismatic and basal planes was observed at higher 

temperatures.  

Dislocation motion in response to external load plays a crucial role in understanding 

the plastic deformation of metallic material. Over the last few decades, the long range 

elastic strain fields of a dislocation core have been well studied using continuum theories 

(Hirth and Lothe 1982), but continuum theory breaks down near the dislocation core. In 

the past to circumvent this issue, two approaches have been employed to study the 

dislocation core properties: a) the first approach utilizes the SVPN model, but it fails to 
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measure the dislocation velocity and also hardening due to the dislocation-dislocation 

interaction. The second approach is direct modeling of the dislocation core using first 

principles methods or empirical interatomic potential. In this study, we used both the 

approaches to study the <a> type dislocation core in titanium. Studies of dislocation cores 

with various interatomic potentials have been discussed in Chapter 4. Overall, the aim of 

this chapter is to investigate the <a> type dislocation lying on the basal, prismatic, and 

pyramidal planes using first principle, molecular static, and dynamic methods along with 

the SVPN model.  

3.2 METHODOLOGY 
 

Here, DFT calculations to characterizes GSFE curves were performed using the 

Vienna Ab-initio Simulation Package (VASP) plane wave electronic structure code (G. 

Kresse and Hafner 1993; G. Kresse and Furthmüller 1996a; G. Kresse and Furthmüller 

1996b). Projector augmented wave (PAW) (P. E. Blöchl 1994; G. Kresse and Joubert 

1999) potentials were used to represent the nuclei and core electrons up to the 3p shell 

with 3d3  and 4s1 as valence electrons for α-Ti. Exchange and correlation was treated with 

GGA using the PBE (Perdew, Burke, and Ernzerhof 1997) form with an energy cutoff of 

289 eV and the Monkhorst Pack k-point with gamma mesh of 1x10x16, 1x12x14, and 

1x16x9 for the prismatic, basal, and the pyramidal planes, respectively, were employed. 

The ionic relaxation was carried out using a conjugate gradient algorithm with 30 meV/Å 

force and 1 meV energy convergence criteria.  

For GSFE curves from semi-empirical potentials, a parallel molecular dynamics code 

(Large-scale Atomic/Molecular Massively Parallel Simulator, LAMMPS (Plimpton 
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1995)) was used. Here, we tested four different interatomic potentials which are based on 

the embedded atom method (EAM) (Daw and Baskes 1984), FS (Ercolessi and Adams 

1994), and MEAM (Baskes 1992) methods. The first potential was developed by Zope 

and Mishin (Zope and Mishin 2003) based on the EAM method. The database of this 

potential includes experimental lattice and elastic constants and ab initio crystal structure 

volume pressure data for fitting. The second potential was developed by Ackland 

(Ackland 1992) based on the FS method. This potential was fitted using point defects, the 

surface energies of basal, prismatic, and pyramidal surfaces, as well as the stacking fault 

energies of the basal and pyramidal planes. The third and fourth potentials were 

developed by Hennig (R. G. Hennig et al. 2008) where one of the potentials is a spline 

based MEAM potential and another is a spline based MEAM potential with Stillinger 

Weber (Stillinger and Weber 1985) functional form. The fitting database for this potential 

includes energies, forces, elastic constants, and defects for various Ti phases and also 

energies of transformation paths from α to ω. Calculated GSFE serves as the interfacial 

term in the SVPN method described in Eq. 3 of Section 3 required for calculation of 

dislocation core properties. Moreover, Table 2 shows the comparison of some of the 

structure properties obtained using different empirical potentials with experimental and 

DFT work. 
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Table 2: Unit cell parameters and elastic properties of a α-Ti single crystal obtained using our 
own first principles calculations (at 0 K), various empirical potentials, and their comparisons with 
available experimental data (at ~300 K)(Fisher and Renken 1964). 

 
a 

(Å) 
c 

(Å) 

Young's 
Modulus 

(GPa) 

Shear 
Modulus 

(GPa) 
Poisson's ratio 

Experiment 2.951 4.686 121.556 46.500 0.307 

DFT 2.938 4.657 128.091 48.960 0.308 

Mishin EAM 2.951 4.686 99.727 36.935 0.350 

Ackland FS 2.967 4.720 103.938 38.785 0.340 

Hennig Spline 2.935 4.673 84.731 30.783 0.376 

Hennig Swspline 2.940 4.669 84.141 30.594 0.375 

 

3.3 SEMI DISCRETE VARIATIONAL PEIERLS NABARRO MODEL (SVPN): 

 

The non-atomistic P-N model describes dislocation core structure in the continuum 

scale framework and has been used to estimate the critical stress needed for the 

dislocation motion, i.e., the Peierls stress (G. Lu 2005; Vitek 2005; Bulatov and Kaxiras 

1997b; Peierls 1940; Nabarro 1947). However, the original P-N model was found to be 

slightly inaccurate in estimating core properties of real materials due to various modeling 

assumptions (see detail in G. Lu 2005; Bulatov and Kaxiras 1997b; G. Lu et al. 2000b). 

The difference between periodicity of the Peierls stress and dislocation barrier, in general 

(Christian and Vítek 1970; J. N. Wang 1996; Schoeck 1999), lead to the development of 

the SVPN model (G. Lu 2005; Bulatov and Kaxiras 1997b; G. Lu et al. 2000b).  

The SVPN model has recently been presented to study dislocation core properties (G. Lu 

et al. 2000b; Bulatov and Kaxiras 1997b). In this method, the equilibrium structure can 
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be obtained by minimizing the total energy (����) with respect to the dislocation density 

or the disregistry vector using numerical methods such as the conjugate gradient method. 

The total energy (����) can be described as 

���� � ��������  �!��"��  ���#���  $%&'( ).                               (1) 

where L and b are the outer cutoff radius for the elastic energy and magnitude of the 

Burgers vector, respectively. The first term in Eq. (1) is the discretized elastic energy, 

Uelastic, and is given by  

�������� � ∑ ,
&  -�.  	$�/0�

�,�0.
�,�  0�

�&�0.
�&�1  $�0�

�2�0.
�2�
�,.                 (2) 

The second term in Eq. (1) is the interfacial energy, Umsifit, which is a function of a 

disregistry vector (456) and is given by  

�!��"�� � ∑ Δ892�456��                 (3) 

The core energy, (��:#�), is the sum of elastic and interfacial energies which are the 

dislocation configuration-dependent part of the total energy and is described as 

��:#� � ��������  �!��"��               (4) 

The third term in Eq. (1) describes the plastic work performed on the dislocation line, 

which is given by 

���#��� � ; ∑ <=>?<=@A>
& �0�

���B�
�����,�                      (5) 

The last term in Eq. (1), i.e., $%&'( ), is independent of the disregistry (dislocation 

density). In Equations (1-5), the superscript l=1, 2 and 3 corresponds to the edge, 
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vertical, and screw components of variables, respectively, and subscript i represents the i-

th nodal point. The general interplanar dislocation density at the i-th nodal point, 0�
���, is 

defined as 0�
��� �  �4�

��� ; 4�?,
��� � �8� ; 8�?,�C  where 4�

��� and 8� are the disregistry vector 

and the coordinate of the i-th nodal point (atomic row), respectively, and 92�456� is the 

three dimensional misfit potential computed using DFT (Hohenberg and Kohn 1964; 

Kohn and Sham 1965). The corresponding components of the applied stress interacting 

with  0�
�,�, 0�

�&� and 0�
�2� are B�,� � D&,, B�&� � D&& and B�2� � D&2, respectively. K is the 

pre-logarithmic energy factor, 

$ � E
&F ���G>H

,?I  JKL&M�                      (6)  

where θ is the angle between the Burgers vector and the dislocation line. Therefore the 

energy factor for an edge and a screw dislocation are $� � N/�2O�1 ; P�� and $� �
N/2O, respectively. µ and ν are the shear modulus and Poisson’s ratio, correspondingly. 

The x-axis is considered the dislocation gliding direction. The rest of the quantities can 

be computed by the following equations 

-�. � 2
& Q�,�?,Q.,.?,  R�?,,.?,  R�,. ; R�,.?, ; R.,�?,                (7) 

Q�,. � 8� ; 8.                           (8) 

R�,. � ,
& Q�,.& ln|Q�,.|                (9) 

The interfacial term (Eq. 3) requires an estimation of two-dimensional displacement 

parallel to the slip plane, i.e., the generalized stacking fault energy (GSFE). The GSFE 

was first introduced by Christian and Vitek (Christian and Vítek 1970) who suggested 
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that under applied stress alongside a certain plane, a crystal is cut into two parts that have 

relative displacements with respect to each other resulting in stacking faults. These faults 

produce an extra energy which can be computed using DFT. 

3.4 DISLOCATION CORE PROPERTIES: GSFE 
 

Figure 4 shows the generalized stacking fault energy curves on basal, prismatic, and 

pyramidal planes as a function of the applied shear displacement computed with DFT and 

empirical potentials. Legrand (P. B. Legrand 1984) investigated the slip system in 

transition and non-transition metals theoretically and suggested a criteria V �
 W����XYY  Z#��!X[[\  to predict the dominant slip system. This ratio explains the relative 

easiness of dislocation dissociation in the corresponding plane. If value of R<1, basal slip 

dominates. If R>1 prismatic slip dominates, and for R]1 both slip systems are activated. 

Table 3 shows the comparison of stacking fault energies for the basal and prismatic 

planes along with the elastic properties computed using different potentials. Legrand 

never found a stable prismatic stacking fault as predicted by DFT calculation in Figure 

8c. Instead he used an average value of  Z#��! along the � 12�10 � direction which 

resulted in a little higher value of 2.5 in his calculation. Moreover, none of the potentials 

are able to capture the stable stacking fault energy for the prismatic plane as predicted by 

DFT (valley in the figure) in Figure 4c. Furthermore, all potentials predict Legrand’s 

ratio R<1 (Table 3) which concludes the basal slip as dominant slip and contradicts with 

the findings of Ghazisaeidi and Trinkle (Ghazisaeidi and Trinkle 2012) where they were 

able to reproduce preferential prismatic screw dislocation core structure with Hennig (R. 
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G. Hennig et al. 2008) MEAM potential. Moreover, it will be shown in chapter 4 that the 

dislocation core energy on the prismatic plane has lower energy than the dislocation core 

energy on the basal plane, and hence, raising questions to the validity of Legrand’s 

criteria. To overcome this we employed the SVPN method which takes the whole GSFE 

into consideration instead of just the stacking fault (^&) on the basal and prismatic planes. 

Table 3: Stacking fault on the basal and prismatic planes and elastic properties of a α-Ti single 
crystal obtained using our own first principles calculations (at 0 K), various empirical potentials, 
and their comparison with Legrand calculation(P. B. Legrand 1984). 

 

 _`a`b�cd� 

(mJ/m2) 

 efgah 

(mJ/m2) 
ijj (GPa) ikk (GPa) 

Legrand 

Ratio R 

Legrand 290.00 110.00 50 47.4 2.50 

DFT 278.45 237.00 43.03 43.52 1.19 

Mishin EAM 65.66 268.06 26.04 28.20 0.27 

Ackland FS 71.29 266.11 24.31 26.35 0.29 

Hennig Spline 191.49 277.00 17.40 18.02 0.72 

Hennig Swspline 164.19 281.69 17.44 18.28 0.61 
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Figure 4: The stacking fault energy as a function of applied shear displacement a) along the 
	12�10
 direction on the basal plane, b) along the 	101�0
 direction on the basal plane, c) along the 
	12�10
 direction on the prismatic plane, and d) along the 	12�10
 direction on the pyramidal 
plane. 

 

In order to use SVPN to find the core energetics and Peierls stress for different types 

of dislocations along the basal, prismatic, and pyramidal planes, one needs to find the 

dislocation dissociation reactions. Dislocation dissociation reactions are on the basal 

plane (Figure 4b) and GSFE surfaces (Pei et al. 2013). In each slip system there is only 

one absolute maximum value of GSFE along perfect dislocations named as the unstable 

stacking fault, USF, with energy 9l�".  In other directions, the stacking fault energy has 
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both local minimum and maximum values. The local minimum stacking fault energy is 

the so-called stable or intrinsic stacking fault, ISF, with energy 9��". These local minima 

and local maxima of stacking fault energies allow the dissociation of the perfect 

dislocations into two imperfect dislocations with partial Burgers vectors. Having found 

perfect dislocation (b) and one partial dislocation (b1), the other partial dislocation (b2) 

can be perceived by subtracting the two other dislocations as seen for basal slip. Table 4 

lists the value of Pierels stress computed for different interatomic potentials and DFT. 

With  different interatomic potentials we observe the  basal slip to be the dominant slip 

which contradicts experimental and first principle calculation predictions of prismatic slip 

as the dominant slip. This discrepancy can be attributed to the prediction of lower stable 

stacking fault energy, 9��", with the potentials compared to first principle. Hence, there is 

a need of a development of a better potential which takes stacking fault energy and other 

defects calculated from first principles in the database of the fitting procedure. 

 
Table 4: Table of Pierels stress calculated using a semi discrete variational Peierls Nabarro 
method for different interatomic potentials. 

Method Peierls Stress (MPa) 

 Basal Prismatic Pyramidal 

DFT 40 24 144 

Mishin EAM  14 36 170 

Ackland FS 14 36 213 

Hennig Spline 27 48 213 

Hennig Swspline 26 48 240 
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Next, we employ DFT method to study the effect of solutes/impurities on the 

dislocation core behavior through so-called GSFE surfaces. Figure 5 shows the effect of 

substitution solute on the generalized stacking fault energy. There is a reduction in energy 

and more splitting of the core with the addition of aluminum as compared to without 

aluminum on the prismatic and basal planes (9��"). Whereas, with the addition of 

vanadium, there is an increase in energy on the prismatic plane and a decrease in energy 

of the basal plane �9��"). Moreover, aluminum decreases Peierls stresses on the basal 

plane from 40 MPa to 26 MPa and on the prismatic plane from 24 MPa to 18 MPa. 

Whereas, vanadium increases Peierls stresses on the prismatic plane from 24 MPa to 46 

MPa and decreases Peierls stress on the basal plane from 40 MPa to 26 MPa. Hence, 

aluminum increases the ductility in titanium; whereas, vanadium changes the slip system 

from prismatic slip to basal slip. Moreover, vanadium increases strength in titanium by 

increasing the Peierls stress for the prismatic dislocation.  
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Figure 5: Stacking fault energy as a function of applied shear displacement with solute at the 
shear plane a) along the 	101�0
 direction on the basal plane, b) along the 	12�10
 direction on the 
prismatic plane, and c) along the 	112�3
 direction on the second order pyramidal plane. 

 

3.5 SUMMARY 
 

In summary, using first principles simulations we show that the prismatic plane has a 

metastable stacking fault at 
�
Y � 112�0 � (Figure 4c), whereas the various interatomic 

potentials investigated fail to reproduce this behavior. Furthermore, we use the Legrand’s 

ratio, R, and the Peierls stress calculations (using SVPN method) to show that interatomic 

potentials predict the basal to be a preferred slip system in Ti, which contradicts 

experimental observations and first principles prediction, i.e., the prismatic slip being the 
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most preferred slip system. For the case of substitution solute strengthening, vanadium 

changes the preference of slip from the prismatic to basal (Figure 5); whereas, aluminum 

increases the ductility of <a> type dislocation and increases the Peierls barrier for <c+a> 

type dislocation. Hence, intuitively aluminum enhances the tension compression 

symmetry by increasing the barrier for <c+a> type dislocation and decreasing the barrier 

for <a> type dislocation. However, vanadium increases the tension compression 

asymmetry by increasing the Peierls barrier for <a> type dislocation on the prismatic 

plane and decreasing the barrier for <c+a> type dislocation. In the case of interstitial 

solute strengthening, oxygen increases the barrier for <a> type dislocation on the 

prismatic plane and decreases the barrier for <c+a> type dislocation as also seen in the 

experiment carried out by Zaefferer (Zaefferer 2003) and confirmed in Chapter 5.  
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CHAPTER 4 

4     DISLOCATION CORE STRUCTURE: MOLECULAR STATIC AND DYNAMIC 
APPROACH 

 

4.1 INTRODUCTION 

 
In this chapter we discuss the direct modeling of the dislocation core at the atomic 

level using first principle or empirical potentials. The benefit of using an empirical 

interatomic potential for the dislocation core modeling is the gain in computational time 

and, hence, the ability to model bigger systems (~1 million atoms), but the drawback is 

that these potentials are fitted from a confined database and may not be able to describe 

the dislocation core due to involvement of large lattice distortion (bond breaking and 

bond formation) which requires a quantum mechanical description of the core. Moreover, 

even though the first principles descriptions of the dislocation core are more reliable and 

accurate, it is computationally very expensive.  

 

In this chapter, we use  atomistic tool to model explicitly the dislocation core 

structures, which are  essential to correctly predict the deformation behavior of HCP 

metals and alloys (Dallas R. Trinkle and Woodward 2005; Vitek and Igarashi 1991; 

Trinkle III 2003; Vitek and Paidar 2008; Richard G. Hennig et al. 2005). The mechanical 

response of a material is govern by i) interactions between dislocations and ii) average 

dislocation velocity. Dislocation-dislocation interactions control hardening in the material 

as described in detail by Franciosi et al. (Franciosi, Berveiller, and Zaoui 1980) for FCC 

materials, and dislocation velocity controls the plastic flow in the material. Earlier works 
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on a numerical investigation of dislocation mobility and core properties using molecular 

statics and dynamics were performed on FCC materials, such as Cu (Mordehai et al. 

2003), Ni, and Al(Olmsted et al. 2005), on BCC materials like Mo (Chang et al. 2002) 

and Fe (Chaussidon, Fivel, and Rodney 2006; Bhatia, Groh, and Solanki 2014), and, 

recently, on HCP material like Mg (Groh et al. 2009).  In open literature, dislocation core 

properties in titanium have been studied by Girshick et al. (Girshick, Pettifor, and Vitek 

1998), Legrand (B. Legrand 1985), and Vitek and Igrashi (Vitek and Igarashi 1991) , but 

the dynamic properties of a dislocation has not been studied numerically. In this study, 

we used molecular statics and molecular dynamics to study the dissociation of core 

structure and numerically investigate the mobility rule for the titanium.  

 

4.2 METHODOLOGY 

 

For direct modeling of dislocation cores, the edge dislocation was created as 

described by Osetsky and Bacon (Osetsky and Bacon 2003) in LAMMPS (Plimpton 

1995) using Mishin’s EAM potential (Zope and Mishin 2003). The simulations were 

performed on a rectangular cell with y-axis oriented along the respective slip plane and x-

axis oriented along the burger’s vector 	12�10
 directions and z-axis along the dislocation 

line direction. The overall dimensions were: 293 Å x 468 Å x 51 Å for the basal 

dislocation, 293 Å x 511 Å x 46 Å for the prismatic dislocation and 293 Å x 233 Å x 85 

Å for the pyramidal dislocation. During dynamic loading, the x and z direction were 

periodic; whereas, the y-direction was fixed and shear stresses ranging from 20MPa to 

800MPa were applied along the x-direction (burger’s direction) on the slip plane(y plane) 

for a temperature range of 100K – 1000K. In contrast, a screw dislocation was created 
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using an elastic displacement field along the burger’s vector direction (z direction) given 

by equation 10.  

mn � W
&F o pqJrp( �s 8C �              (10)  

The z-axis was oriented along the burger’s vector 	12�10
 direction, and the y-axis 

was oriented along the normal to the slip plane direction. The overall dimensions were: 

460 Å x 510 Å x 30 Å for the basal, prismatic, and pyramidal dislocations. During 

dynamic loading, only the z direction was periodic; whereas, the x and y-directions were 

fixed and shear stresses ranging from 20MPa to 800MPa were applied along the z-

direction (burger’s direction) on the slip plane (y plane) for a temperature range of 100k – 

1000k.  

4.3 EDGE DISLOCATION: STATIC AND DYNAMIC 
  

To analyze the preference of a dislocation core spreading on the basal and prismatic 

planes, it is important to calculate dislocation energy. From anisotropic elasticity theory, 

the energy stored within a cylinder of radius R centered at the dislocation line is given by 

t�����V� �  uW>
[F o ln /v

#w1  t�:#�              (11) 

where t�:#� is the core energy, qx is the core radius, K is a constant which depends on 

elastic moduli and orientation, b is the burger’s vector (in present case the lattice constant 

a), R is the radius of the cylinder. 

Figure 6 shows the dislocation core energy as a function of ln(R/r0). Figure 6 

demonstrates the preferred edge dislocation core which is basal in the case of EAM and 

FS potentials; whereas, the MEAM potential predicts the prismatic plane as the preferred 
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slip plane. These results also match with the prediction of the SVPN method where EAM 

and FS predict basal slip to be the dominant slip as opposed to prismatic slip seen in 

experiments. The dislocation core energy can be predicted by taking the limit of ln(R/r0) 

which tends to zero. The dislocation core energies for the prismatic and basal planes are 

0.52 eV/Ȧ and 0.34 eV/Ȧ, 0.46 eV/Ȧ and 0.34 eV/Ȧ, and -0.56 eV/Ȧ and -0.35 eV/Ȧ 

with EAM, FS, and MEAM potentials, respectively.  

 

 
Figure 6: Energy of an edge dislocation stored within a cylinder of radius R as a function of 
ln(R/r). Filled points are EAM results. Open points are FS calculation, and half-filled points are 
MEAM results. 

Figure 7 shows the dislocation core of an edge dislocation on the basal (Figure7a), 

prismatic (Figure7b), and pyramidal planes (Figure7c). The dislocation core along the 
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partials; whereas, the core width on the prismatic and pyramidal planes were 0.9 nm and 

0.75 nm. Once a dislocation core is created and minimized with the conjugate gradient 

algorithm and energy criteria of 0.01 pico-eV/Å, a strain increment of 10-4 was applied on 

the top surface to calculate the Peierls stress with minimization criteria of 0.01 pico-eV/Å 

at each step until total strain was 1%. For the basal dislocation, a strain increment of 10-6 

was applied to capture the stress. Figure 7d shows the shear stress vs. shear strain curve 

for an edge dislocation on the basal, prismatic, and pyramidal planes.  The slope of the 

stress strain curve gives a value of X[[ to be 27 GPa. Peierls stress was found to be 2.12 

MPa, 25 MPa and 26 MPa for the basal, prismatic, and pyramidal, respectively. Based on 

the Peierls stress calculation, there is anisotropy seen in the slip system which suggests 

basal slip is an easy mode of deformation followed by prismatic and pyramidal which 

agrees with the prediction of SVPN model for the EAM potential.  Once a dislocation 

starts motion, all the excess energy is dissipated in the form of oscillatory stress which is 

attributed to the boundary condition. The uncertainty related to Peierls stress calculation 

can be estimated by calculating back stress generated from the finite dimension and 

boundary condition which is given by μ%&
)&C . Hence uncertainty in Peierls stress was 2.7 

MPa. 



Figure 7: Edge dislocation core structure on a) 
plane and d) Peierls stress as a function of strain for edge dislocation on
pyramidal planes. Note edge dislocation on 
stacking fault in between. Peierls
basal, prismatic, and pyramidal respectively. Atoms are colored according to common neighbor 
analysis (CNA) where red atoms are HCP atoms, gr
white are other atoms. 

 

Figure 8 shows the evolution of velocity as a function of applied stress for different 

temperatures. As seen from figure 

and prismatic edge dislocation

dislocation. There are three region

the applied load, the second region where there is curvature or non

a) 

c) 
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islocation core structure on a) basal plane b), prismatic plane, and c) 
stress as a function of strain for edge dislocation on the basal, 

. Note edge dislocation on the basal plane dissociates into two partial
Peierls stress was found to be 2.12 MPa, 25 MPa, and 26 MPa for 

and pyramidal respectively. Atoms are colored according to common neighbor 
analysis (CNA) where red atoms are HCP atoms, green are FCC atoms, blue are BCC atoms and 

shows the evolution of velocity as a function of applied stress for different 

As seen from figure 8, velocity is linear up to an 80 MPa load for 

prismatic edge dislocations as compared to up to 60 MPa for the pyramidal edge 

dislocation. There are three regions, the first region where velocity linearly increases with 

second region where there is curvature or non-linearity 

d) 

b) 

 

and c) pyramidal 
 prismatic, and 

two partials with a 
stress was found to be 2.12 MPa, 25 MPa, and 26 MPa for 

and pyramidal respectively. Atoms are colored according to common neighbor 
een are FCC atoms, blue are BCC atoms and 

shows the evolution of velocity as a function of applied stress for different 

80 MPa load for the basal 

pyramidal edge 

first region where velocity linearly increases with 

linearity as shown in 
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figure 8, and the third region where velocity saturates out and corresponds to maximum 

velocity in the material (forbidden velocity). We found the forbidden velocity to be 1800 

m/s, 2200 m/s, and 800 m/s for the basal, prismatic, and pyramidal dislocation, 

respectively. Transverse sound waves travel at the speed of 3100 m/s in titanium. The 

linear part (first region) of the figure was fitted using the least squares procedure with  

z � {�W|
} �               (12) 

where v is the velocity, α is a material constant, b is the burger’s vector, D is the applied 

load, and T is the temperature. The drag coefficient was found to be in the range of 

9.94E-6 Pa.s to 7.12E-5 Pa.s. The drag coefficient for the basal and prismatic edge 

dislocation was very similar at all temperature; whereas, the drag coefficient for the 

pyramidal plane was higher by a factor of 10.  This can be attributed to more screw 

components in the edge pyramidal plane as compared to the basal and prismatic planes. 

We can conclude from these results that dislocation is more mobile on the prismatic and 

basal planes as compared to the pyramidal plane. 
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Figure 8: Velocity as a function of applied load for <a> type edge dislocation on the a) prismatic 
plane b), basal plane, and c) pyramidal plane and d) drag coefficient as a function of temperature 
on basal, prismatic, and pyramidal planes. The edge dislocation velocity on the basal and 
prismatic planes is more than on the pyramidal plane. 

 

4.4 SCREW DISLOCATION: STATIC AND DYNAMIC 
 

Figure 9 shows the differential displacement for <a> type screw dislocation in 

titanium with the EAM potential (Figure 9a), FS potential, (Figure 9b) and SW spline 

MEAM potential (Figure 9c) for two different origins of the anisotropic displacement 

field, i.e., dislocation center 1 (DC1) and dislocation center 2 (DC2). In the case of DC1, 

the EAM potential predicts a planar dislocation core which resolved along the basal 
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plane. The FS potential predicts a planar dislocation core along the prismatic plane. The 

MEAM potential, a non-planar dislocation core with partially resolved along the 

prismatic, pyramidal, and basal planes. For the case of DC2, all the three potentials 

predict the planar dislocation core spreading on the prismatic plane which is in good 

agreement with earlier work of Rao et al. (Rao, Venkateswaran, and Letherwood 2013). 

To further evaluate the critical stress required for a screw dislocation to move, we applied 

a shear strain of 10-4 along the burger’s vector direction (z-direction) on the prismatic 

plane for the DC2 dislocation core configuration. The critical stress was found to be 5.2 

MPa and 10 MPa for the prismatic and pyramidal plane loading with EAM potential; 

whereas, stress was 224 MPa and 340 MPa for the prismatic and pyramidal plane loading 

using the MEAM potential, respectively. Results with the MEAM potential are higher 

because of the angular term included in fitting the potential. Moreover, this potential has 

3rd and 4th nearest neighbors as a cutoff parameter which makes the material stiffer and 

has been reported by Rao (Rao, Venkateswaran, and Letherwood 2013). Moreover, to see 

the orientation effect, loading was applied with -45˚ < θ < 45˚ where θ=0˚ is the prismatic 

plane. Figure 10 shows the critical stress with different orientations and it follows the 

Schmidt law. Hence, results suggest very little orientation effect on the peirels stress of 

an <a> type screw dislocation. This behavior is due to little non-planarity of the 

dislocation core (Figure 9) which agrees with the experiment where an hcp crystal 

follows the Schmidt law. 
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Figure 9: Differential displacement plot for screw dislocation core structure with different 
interatomic potentials a) EAM b), FS and c) SW-spline MEAM at two different dislocation center 
points as shown with a cross in figure. The screw dislocation with the EAM potential dissociates 
on the basal plane for DC1; whereas, FS and SW-spline dissociate on the prismatic, pyramidal, 
and basal planes. The Core structure with DC2 compares well with previous works (Rao, 
Venkateswaran, and Letherwood 2013) (Ghazisaeidi and Trinkle 2012). Note: the filled circles 
represent atoms at z=0 and open circles at z=%~�/2. DCi is the center of the dislocation marked 
with cross. 
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Figure 10: Peierls stress as a function of misorientation from prismatic plane. Small deviation 
from the expected Schmidt behavior was due to the presence of small edge character in the 
dislocation core structure and the non-planar core structure. 

 
Figure 11 shows the dislocation core energy for the screw dislocation as a function of 

ln(R/r0) for two dislocation centers (i.e., DC1 and DC2).  The dislocation core energies 

with DC1 center were found to be -0.005 eV/Ȧ, 0.12 eV/Ȧ, and -0.15 eV/Ȧ using the 

EAM, FS, and the MEAM potentials, respectively. Similarly, with the DC2 centers, the 

dislocation core energies were found to be 0.15 eV/Ȧ, 0.11 eV/Ȧ, -0.19 eV/Ȧ using the 

EAM, FS, and the MEAM potentials, respectively. Based on these results, it can be 

concluded that there is a high probability for a DC2 core to transform into a DC1 core 

using the EAM potential. The preferred screw dislocation core for the EAM potential 

resolves along the basal (DC1); and along the prismatic (DC2) for the FS and MEAM 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-50 -30 -10 10 30 50

Pe
ie

rl
s 

St
re

ss
 (
ττ ττ
/C

44
10

-3
)

Angle θ



34 

potentials. In the next section, this phenomena has been seen when a screw dislocation 

core with a DC2 origin is sheared at temperature. These results are comparable with the 

work of Girshick et al. (Girshick, Pettifor, and Vitek 1998) where they have shown the 

spreading of a dislocation core on the prismatic plane to be the preferred plane with the 

Bond Order Potential.  

 

 
Figure 11: Energy of a screw dislocation stored within a cylinder of radius R as a function of 
ln(R/r) for origin DC1 and DC2. Filled points are EAM results; open points are FS calculation; 
and half-filled points are MEAM results. 

 
Figure 12 shows the evolution of velocity for <a> type screw dislocation on various 

slip planes as a function of the applied stress with different temperatures. As seen from 
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pyramidal plane increases with the applied load and does not saturate to a constant value. 

Moreover, at room and higher temperatures, enough thermal energy is available to 

change the initial structure of the DC2 (prismatic spread) dislocation core into DC1 

(basal spread) dislocation core due to lower dislocation core energy for DC1 (-0.005 eV/ 

Ȧ) as compared to the DC2 (0.15 eV/ Ȧ) (Figure 11). Hence, Figure 12 only reports all 

the dislocation core velocity where DC2 dislocation core structure is stable and doesn’t 

migrate into a DC1 dislocation core structure. We found the maximum velocity to be 550 

m/s and 600 m/s for the prismatic and basal dislocations, respectively. Again the linear 

part (first region) of the figure was fitted using a least squares procedure to quantify the 

drag coefficient for the screw dislocation. Drag coefficient was found to be in the range 

of 2.9E-5 Pa.s to 6.35E-5 Pa.s. The drag coefficient for the basal and prismatic edge 

dislocation was very similar at 100 K temperature; whereas, the drag coefficient for the 

pyramidal plane was higher by a factor of 2 compared to other slip planes. Therefore, we 

can conclude that the screw dislocation mobility was highest on the prismatic plane 

followed by the basal and pyramidal planes respectively. Moreover, the edge dislocation 

mobility was found to be greater when compared to the screw dislocation as shown in 

Figures 8 and 12. 
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Figure 12: a) The dislocation velocity as a function of the applied load for <a> type screw 
dislocation on the basal, prismatic, and pyramidal planes and b) the drag coefficient as a function 
of temperature on the basal, prismatic, and pyramidal planes. Note: the screw dislocation 
dissociates into the DC2 structure on the basal plane above 500K for the basal plane and above 
300K for prismatic and pyramidal planes.  
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Figure 13: Differential displacement plot for <c+a> type screw dislocation core structure with a) 
Yuri Mishin EAM potential and b) Hening swspline MEAM potential at three dislocation center 
points. Note that the screw dislocation with EAM potential shows spreading on the first order 
pyramidal plane �101�1�, whereas SWSPLINE dissociates on the first order �101�1� and second 
order pyramidal planes �112�2�.  
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4.4 SUMMARY 
  

In summary, based on the dislocation core energy, the EAM and FS potentials prefer 

the minimum core energy of an edge dislocation on the basal plane; whereas, the MEAM 

potential predicts the prismatic plane (Figure 6). Furthermore, for an <a> type screw 

dislocation, the MEAM potential predicts the dislocation core to resolve on the prismatic 

plane (DC2) with small non planar components on the pyramidal and basal planes 

(Figure 11). In case of the EAM potential, the dislocation core was resolved on the basal 

plane (DC1), since the DC2 shows a small non planar character and very little orientation 

effect, i.e., follows the Schmidt law. Whereas, the DC1 core structure for the MEAM 

potential was resolved along all the three slip planes, so it will have a non-Schmidt 

component playing a role in the dislocation motion which will be a good study for the 

future. For the dynamic part, the motion of an edge dislocation is higher than that of a 

screw dislocation which is in agreement with experiments. At room temperature and 

higher temperatures with the EAM potential, the <a> type screw dislocation core with the 

DC2 structure (Figure 9a) rearranges to the DC1 (Figure 9b) dislocation core structure 

during minimization due to the availability of excess thermal energy. The drag 

coefficients for edge and screw dislocations have been reported, and these findings can be 

utilized for the development of higher length scale models. 
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CHAPTER 5 

5     EFFECT OF OXYGEN ON THE DISLOCATION CORE: A QUANTUM 
MECHANICS / MOLECULAR MECHANICS (QM/MM) APPROACH 

 

5.1 INTRODUCTION 
 
Titanium (Ti) and its alloys have been traditionally used for structural applications in 

automotive, aerospace, and biomedical applications due to their high strength-to-weight 

ratios (Leyens and Peters 2003). Commercially pure (CP) Ti-alloys, in particular, are 

attractive materials due to their excellent corrosion resistance, light weight, and 

formability. However, the strength and toughness of these alloys are affected by 

relatively small variations in their impurity contents, such as oxygen (O). Specifically, it 

has been shown that an increase in impurity contents can cause a material to either harden 

or soften by interacting with dislocations or twins (Brandes et al. 2012; Dong and Li 

2000; Liu and Welsch 1988). In high strength grade Ti-alloys, the addition of oxygen 

improves the corrosion and wear resistance of α-Ti and its alloys (Stringer 1960; Leyens 

and Peters 2003). However, at elevated temperatures, the oxide layer at the Ti surface 

will grow and oxygen will rapidly diffuse into the base metal (Liu and Welsch 1988), 

instigating hardening of the α-Ti (Dong and Li 2000). Notably, with higher percentages 

of impurity contents (e.g., oxygen), a transition from wavy (dominant cross slip nature) to 

planar dislocation slip has been reported (Williams, Sommer, and Tung 1972) along with 

an increase in <c+a> dislocation activities (Brandes et al. 2012). Consequently, 

understanding the mechanisms behind such a behavior has been of particular interest in 

both experimental and simulation research (H. H. Wu and Trinkle 2011; Williams, 
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Sommer, and Tung 1972; Brandes et al. 2012). In fact, the indeterminate mechanistic 

nature of such a behavior hinders our ability to satisfactorily address the role of oxygen in 

important technological applications, including nuclear power plants and other large-

scale, industrial infrastructure (e.g., wind turbines). 

 

5.2 METHODOLOGY 

 
In this chapter, to elucidate the complex nature of interactions between prismatic 

faults and an oxygen solute and to shed light on experimental results, we employed a 

coupled quantum and molecular mechanics (QM/MM) framework along with a climb-

based nudge elastic band (C-NEB) method of Henkelman et al. (Henkelman, Uberuaga, 

and Jónsson 2000) and the semi-discrete variational based generalized Peierls-Nabarro 

model (SVPN) (Bulatov and Kaxiras 1997a). First, we systematically assessed the 

energetically favorable site near the prismatic dislocation (�101�0��12�10�) and used the 

new found stable site to assess the oxygen diffusional barrier (high or low). Quantifying 

the diffusional barrier is instrumental to understanding the observed oxygen 

strengthening effects in α-Ti. In addition, the stable site and dislocation core structure can 

be used to study oxygen effects on the softening or hardening behavior, i.e., effect on the 

dislocation glide stress (Peierls stress). However, calculation of the change in the 

dislocation glide stress due to oxygen using explicit modeling of the dislocation core 

requires extra care because of periodic boundary conditions and the need to model 

sufficiently large dislocation line lengths to minimize periodic solute effects (also 

computationally expensive). Thus, in this work, the generalized stacking fault energy 
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(GSFE) and the SVPN formulation were used to provide non-empirical predictions of 

oxygen effects on the softening or hardening behavior. The GSFE curves are often 

employed as an alternate method to measure and understand dislocation core properties. 

Further, we also calculated the charge density to qualitatively understand charge transfer 

in the presence of an oxygen atom. The interaction between a prismatic fault and an 

oxygen solute atom is particularly important as it has a significant impact on the 

dislocation-based mechanical properties of α-Ti (see (Song, Guo, and Yang 2002)). 

In the QM/MM approach, the entire system is partitioned into three spatial domains: 

I) core (QM-DFT), II) transition (DFT for the energy and EAM for the force balance), 

and III) elastic (MM-EAM). The QM region treated by the constrained DFT (Q. Zhao 

and Parr 1993; Q. Zhao, Morrison, and Parr 1994) within the Vienna Ab-initio 

Simulation Package plane wave electronic structure code (DFT-VASP) (Georg Kresse 

and Hafner 1993) and an MM region is treated by empirical atomistic simulations (Daw 

and Baskes 1983) (see Zhang and Lu (Zhang, Lu, and Curtin 2013),(Zhang and Lu 2007) 

and also supplemental section for the QM/MM methodology). The semi-empirical 

embedded atom potential (EAM) developed by Zope and Mishin (Zope and Mishin 2003) 

was used to model the defect free EAM region in the QM/MM (see the Supplemental 

section). Table 5 lists the lattice properties of Ti with EAM potential and its comparison 

with DFT data.  The EAM potential was modified to match the lattice constant of DFT 

for QM/MM study to minimize the misfit energy at the boundary of coupling. 
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Table 5: Comparison of lattice constants and bulk modulus of the Ti EAM Potential with the 
DFT value. 

 a (Å) Ƴ=c/a K (GPa) SF 
(J/m2) 

DFT 2.94 1.58 109.62 0.268 

EAM 2.951 1.588 113.47 0.237 

 

 

An edge dislocation was created, as described by Osetsky and Bacon (Osetsky and 

Bacon 2003), initially in LAMMPS (Plimpton 1995). The edge dislocation structure 

obtained using the EAM potential was further relaxed using QM/MM with a conjugate 

gradient algorithm with 30 meV/Å force and 1 meV energy convergence criteria. The 

QM region had 196 atoms containing the dislocation core with/without an oxygen 

impurity and the MM region consisted of the remainder of the system (11926 atoms) 

including the long-range elastic field of the dislocation. The overall dimensions of 

different regions were: 30 Å x 27 Å x 9.26 Å for the QM region and 143.67 Å x 155.07 Å 

x 9.26 Å for the MM region which is large enough to have no effect by simulation cell 

size. The simulations were performed on a rectangular cell having x, y, and z-axes 

oriented along the 	12�10
, 	101�0
, and 	0001
 directions, respectively. The length along 

the dislocation line [0001] was set to 2c (c = 4.645 Å) to avoid interaction of oxygen 

atoms due to periodic boundary conditions. For the pipe diffusion of an oxygen atom 

along the dislocation line, the energy required by an oxygen atom to overcome the barrier 

was studied using the QM/MM with a C-NEB with sixteen intermediate images between 

the global minimums.  

For the DFT part, projector augmented wave (PAW) (Peter E. Blöchl 1994) potentials 

were used to represent the nuclei core with valence electrons on s and d orbitals for α-Ti 
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and valence electrons on s and p orbitals for oxygen atoms. Exchange and correlation was 

treated with GGA using the PBE (Perdew, Burke, and Ernzerhof 1997) form with an 

energy cutoff of 289 eV and the Monkhorst Pack k-point mesh of 1 x 1 x 5 along the 

	12�10
, 	101�0
, and [0001], respectively. For GSFE calculations, the k-point mesh is 18 

x 1 x 10. The ionic relaxation was carried out using a conjugate gradient algorithm with 

30 meV/Å force and 1 meV energy convergence criteria. A single oxygen atom was 

introduced on the prismatic shearing plane (along with six Ti atoms), i.e., a monolayer 

(ML) oxygen concentration of 16.67% and the model was subsequently sheared along the 

	12�10
 direction. It should be noted here that the oxygen atom was free to relax in all 

directions during the minimization whereas Ti atoms were free to move along the y-

direction (	101�0
).  

5.3 OXYGEN DIFFUSION IN BULK TITANIUM 

 
First, we present oxygen diffusing in bulk α-Ti. In α-Ti there are three positions for 

an interstitial atom to occupy, i.e., octahedral, crowdion, and hexahedral. An interstitial 

oxygen atom prefers the octahedral site in bulk α-Ti (H. H. Wu and Trinkle 2011). The 

hexahedral is a position on the basal plane; whereas, the octahedral and crowdion are in-

between A and B stackings along the [0001] direction (H. H. Wu and Trinkle 2011). The 

transition pathways and energy barriers between different interstitial sites for an oxygen 

atom in bulk α-Ti were investigated using the C-NEB method with 4 intermediate images 

to find the transition pathways and barriers between different interstitial sites. Figure 14 

shows the energy barrier for an oxygen atom to diffuse from an octahedral position to a 

crowdion position (O-C) then from a crowdion position to a hexahedral position (C-H) 
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and finally from a hexahedral position to an octahedral position (H-O). Also, the 

migration pathway is illustrated by showing the oxygen position along the transition path 

in Figure 14. The potential energy of the hexahedral position is 1.43 eV higher than that 

of the octahedral position. Moreover, the excess energy of the crowdion position over the 

octahedral position is 1.95 eV. Both these positions (crowdion and hexahedral) are local 

minima along the migration pathway and thus require excess thermal energy for the 

oxygen atom to reach the energetically favorable octahedral positions. The crossover 

energy barriers for crowdion and hexahedral positions to the octahedral positions are 120 

meV and ~550 meV, respectively, which compares well with the work of Wu and Trinkle 

(H. H. Wu and Trinkle 2011). 

 

Figure 14: C-NEB path for an oxygen diffusing in bulk α-Ti with the energy barrier for an 
oxygen atom to diffuse between different interstitial sites.  
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5.4 OXYGEN DIFFUSION AT EDGE DISLOCATION CORE 

 
Next, our main objective was to understand the atomistic mechanisms of oxygen-

dislocation interaction in α-Ti. To achieve this, the relative site preference of oxygen at 

the prismatic edge dislocation is addressed. The total energy of a single oxygen atom 

situated near the dislocation core region (various interstitial sites) and further away from 

the core as far as possible within the supercell size has been calculated. Figure 15a shows 

the optimized equilibrium geometry of oxygen at the prismatic edge dislocation in α-Ti 

when viewed along the [0001] direction. The local geometry changes from an HCP 

octahedral to a BCC octahedral site. The oxygen atom binds with four Ti atoms on the 

same basal plane and with another two Ti atoms above and below it. This position is the 

same as the hexahedral position in bulk α-Ti, except that now there are four atoms on the 

basal plane (see Figure 15b) instead of three (Figure 14) due to the dislocation core.  

 

Figure 15: a) Oxygen binding at the prismatic dislocation core with the plane of sight along the 
[0001] direction. b) Oxygen binds with six α-Ti atoms at the dislocation core. Atoms are marked 
by number on the basal plane. 
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Having obtained the stable oxygen site at the dislocation core, the transition pathways 

and energy barriers between different interstitial sites for an oxygen atom at the 

dislocation core (diffusion along a dislocation line) was explored using the C-NEB 

method with 16 intermediate images. Figure 16a shows the initial path for an oxygen 

atom to diffuse over a distance of c (4.645 Å) along the dislocation line (i.e., along the 

	0001
 direction with ABAB stacking). The energy barrier and transition path for the 

pipe diffusion of oxygen along the dislocation line are depicted in Figure 16b. Also, the 

migration pathway is illustrated by showing the oxygen position along the path in Figure 

16a. The energy barrier for the diffusion path from one BCC octahedral position to 

another BCC octahedral position is 1.24 eV along the edge dislocation line, which is 

much smaller than the bulk diffusion barrier of ~2.0 eV. The probability of an oxygen 

atom penetrating from one octahedral position to another octahedral position in bulk at 

room temperature is very small, since the potential barrier is high: 2.0 eV. However, the 

probability increases with the increase in system temperature as given by the probability 

Γ = 1013 exp(-Eb/kBT) where the phonon frequency is typically considered to be 1013/sec 

(Penetration barrier Eb, Boltzmann Constant kB, and absolute temperature is T). 

Considering the present case where Eb is 2 eV, for a unit probability, the temperature 

turns out to be 775 K. In the case of one oxygen atom penetrating along the edge 

dislocation from one octahedral position to another octahedral position and for a unity 

probability, the temperature turns out to be 496 K.    
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Figure 16: a) Diffusion path of an oxygen atom along the dislocation line (	0001
 direction) of 
the prismatic edge dislocation with ABAB stacking sequence. b) The C-NEB path for oxygen 
diffusing along the dislocation line (pipe diffusion) in a prismatic edge dislocation. 

 

5.5 GENERALIZED STACKING FAULT ENERGY 

 
With high diffusion barrier, we now explore the effect of oxygen on the softening or 

hardening behavior and establish non-empirical parameters through GSFE calculations 

along with the SVPN model, since the modeling of dislocation mobility in DFT is 

relatively expensive. Figure 16a illustrates GSFE curves as a function of shear 

displacement along the 	12�10
 direction for α-Ti with and without oxygen (1/6 ML). The 

unstable stacking fault energy for pure Ti is increased from 237 mJ/m2 to 303 mJ/m2 

(27.85% increases) with addition of 1/6 ML oxygen on the shear plane. Since oxygen 

increases the unstable stacking fault energy, we employed an SVPN framework (see 

details in (Bulatov and Kaxiras 1997b)) to quantify the role of oxygen on plastic 

deformation in α-Ti. The core width and the Peierls stress were calculated using the 
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SVPM method with DFT data as shown in Figure 16a for the cases with and without 

oxygen on the shear plane. The Peierls stress for prismatic slip in Ti with and without 1/6 

ML oxygen was found to be 96.6 MPa and 24 MPa, respectively (~400% increase with 

addition of oxygen). The simulations also revealed that the prismatic dislocations were 

small in core width with the addition of oxygen, i.e., the core width with 1/6 ML oxygen 

on the shear plane is 0.9 Å as compared to 1.1 Å for pure Ti.  

 

   

Figure 17: a) GSFE as a function of shear displacement along the 	12�10
 direction of α-Ti with 
and without 1/6 ML oxygen on the slip plane. b) A 3D iso-surface plot for charge density 
showing the effect of O at the prismatic stacking fault. The orange and black atoms represent 
oxygen and Ti atoms, respectively. The yellow and cyan iso-surfaces represent charge 
accumulation and depletion, respectively. 

 

5.6 CHARGE DENSITY WITH OXYGEN 

 
The mechanical properties of a material are defined by the nature of the atomic 

bonding. Bonding between atoms is the result of the polarization of charge densities 
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around the nuclei. Both the shear strength and cohesive strength are affected by bond 

directionality and also by charge distribution around atoms. Therefore, understanding the 

change in charge density with a solute is necessary for evaluating the shear strength of a 

material and the subsequent effect on the plastic deformation behavior (see (Song, Guo, 

and Yang 2002)). Figure 17b presents a 3D iso-surface plot for charge density 

(differential) showing the effect of oxygen at the prismatic stacking fault. The yellow and 

cyan iso-surfaces represent charge accumulation and depletion, respectively. In 

comparison with the charge density distribution of pure α-Ti, the main change for oxygen 

at the prismatic stacking fault seems to be around the octahedral position as seen in 

Figure 17b. The charge densities between Ti atoms were evidently increased with the 

addition of oxygen at the prismatic fault, resulting in an increase in the shear modulus, 

which affects the dislocation mobility as the shear stress is proportional to the shear 

modulus.  

 

5.7 SUMMARY 

 
In summary, the effect of oxygen on a prismatic edge dislocation in α-Ti was 

examined. According to impurity formation/binding energies calculated using the 

QM/MM method, it was found that oxygen prefers the BCC octahedral position at the 

edge dislocation. Moreover, the energy barrier for the reaction path from a BCC 

octahedral position to an HCP octahedral position is 1.24 eV along the edge dislocation 

line, which is much smaller than the bulk diffusion barrier of 2.0 eV. We also observed 

that oxygen can increase the Peierls energy barrier significantly, i.e., the Peierls stress for 
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α-Ti with and without 1/6 ML oxygen was 96.6 MPa and 24 MPa, respectively. The 

charge densities between Ti atoms were evidently increased with the addition of oxygen 

at the prismatic fault, resulting in an increase in the shear modulus. The simulations also 

revealed that the prismatic dislocations were small in core width with the addition of 

oxygen. Hence, the addition of oxygen increases the stacking fault energy (and Peierls 

stress) and also decreases the dislocation core width on the prismatic plane which may 

result in an increase in <c+a> dislocation activities as seen in experiments (Zaefferer 

2003). We will pursue the study of oxygen effects on the<c+a> core in future work. 

Generally, the observed effect of oxygen on plasticity in this study is consistent with the 

experimental observations, as it has been shown that an increase in oxygen content can 

instigate hardening of the α-Ti (Dong and Li 2000). 
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CHAPTER 6 

6     ENERGETICS OF VACANCY SEGREGATION TO SYMMETRIC TILT GRAIN 
BOUNDARIES IN HCP MATERIALS 

 

6.1 INTRODUCTION 

 
Quantifying how point defects interact with defect sinks, such as grain boundaries, is 

also important for understanding strength of material interfaces in various environments, 

such as titanium (Ti) in a high oxygen environment, zirconium (Zr) in an irradiation 

environment, and magnesium (Mg) in a corrosive environment. For instance, during 

irradiation-induced segregation, the flux of solute and impurity elements is highly 

coupled with the flux of vacancies and interstitials. As vacancies and interstitials tend to 

diffuse and bind to microstructural sinks, solute and impurity atoms are spatially 

redistributed in the vicinity of these sinks (de la Rubia et al. 2000; D. Chen et al. 2013). 

The net result is an accumulation or a depletion of solutes at these defect sinks, which can 

have deleterious effects on polycrystal properties (Möslang and Wiss 2006). Hence, the 

objective of the present research was to understand the atomistic relationship between the 

local structure and the point-defect energetics at the grain boundary interface in HCP 

materials, such as Ti, Mg, and Zr. Molecular statics (MS) simulations of Ti, Mg, and Zr 

bicrystals were used for various 	12�10
 and 	01�10
 tilt grain boundaries to clarify the 

role of the interface character on point-defect energetics. Of particular interest was how 

the grain boundary character in HCP materials affects the vacancy binding energies and 

associated spatial variations in the vicinity of the grain boundary. 
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6.2 METHODOLOGY 

 
To investigate grain boundary sink efficiency in different c/a ratio materials, we 

employed MS simulations using embedded atom method (EAM) potentials. Initially, a 

database of 190 minimum energy STGBs of Ti, Mg, and Zr with the tilt axes as 	12�10
 
and 	01�10
 was generated with MS simulations, which were performed using the 

classical molecular dynamics code, Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) (Plimpton 1995). Here, the analysis cell consisted of a standard 

bicrystal cell with a single grain boundary that divides the HCP crystal into two single 

crystals, as shown in Figure 18a. The initial single crystals were created with x, y and z 

along the 	01�10
, 	0001
 and 	12�10
 directions, respectively, for the 	12�10
 tilt axis; 

and along the 	12�10
, 	0001
 and 	01�10
 directions, respectively, for the 	01�10
 tilt 

axis. Then, the upper half crystal was rotated clockwise and the lower half crystal 

counter-clockwise by angle θ with respect to the tilt axis, as shown in Figure 18b. Several 

successive rigid body translations, followed by an atom-deletion technique and energy 

minimization using a non-linear conjugate method (Solanki et al. 2013; Tschopp et al. 

2012; Friedel 1952), were used to generate final relaxed minimum structure with the 

grain boundary plane along the x-z plane as shown in Figure 18c. This procedure was 

replicated to generate several 0 K minimum-energy grain boundary structures for Mg, Ti, 

and Zr. The EAM potentials of Sun et al.(Sun et al. 2006) for Mg, Zope and Mishin(Zope 

and Mishin 2003) for Ti, and Mendelev and Auckland (Mendelev and Ackland 2007) for 

Zr were used.  
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Figure 18: a) Single crystal model with x, y and z along the 	01�10
, 	0001
 and 	12�10
, 
respectively, b) Upper half crystal rotated θ (~42˚) clockwise and lower half crystal rotated 
counter-clockwise, and c) Final grain boundary structure; rotated crystal is minimized with 1 pN 
force on each atom using conjugate gradient algorithm. Note: TB is the twin boundary. 

 

Table 6: Bulk properties of Ti, Mg, and Zr. 

 Lattice 

parameter 

 a (Å) 

c/a 

ratio 

Cohesive energy  

Ecoh (eV/atom) 

Grain boundary 

free volume 

(Å3/atom) 

Bulk vacancy 

formation energy 

Ef (eV) 

Ti 2.95 1.581 -4.850 17.577 1.819 

Mg 3.20 1.633 -1.528 22.829 0.868 

Zr 3.23 1.581 -6.013 23.072 1.385 

 

 

Following the grain boundary dataset generation, the role of grain boundary character 

on sink efficiency for vacancies was assessed by calculating the formation energies for 

vacancies using MS for the generated 190 STGBs in Ti, Zr, and Mg, whereby a vacancy 

was placed at all sites within in a block of 3x2 nm near the grain boundary center. The 

database consisted of 125 	12�10
 and 65 	01�10
 STGBs. The vacancy formation energy 

for a site α is given by: 
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 t"� � t�W�  ;  t�W   t�:�,       (13) 

 

where t�:� is the cohesive energy/atom of a perfect HCP lattice (see Table 6), and t�W�   

and  t�W are the total energies of the grain boundary simulation cell with and without the 

vacancy, respectively. The cohesive energy for one atom is added to account for the extra 

atom in the case of the grain boundary simulation cell without the vacancy. 

 

6.3 GRAIN BOUNDARY ENERGY AND ATOMIC FREE VOLUME 

 
Understanding the structure and energy of the grain boundary system is crucial for 

engineering materials intended for advanced applications because grain boundary 

properties can vary widely (coherent twin versus low angle versus high angle grain 

boundaries). In this study, a range of grain boundary structures and energies that are 

representative of some of the variations observed in the grain boundary character 

distribution of polycrystalline as well as nanocrystalline metals was used to investigate 

the role of grain boundary character on point-defect energetics such as the vacancy 

binding energy in different c/a ratio materials. Figure 19 shows grain boundary energies 

as a function of the misorientation angle for the 	12�10
 and 	01�10
 tilt axes in Mg, Ti, 

and Zr. The trend observed for the grain boundary energy as a function of a 

misorientation angle is comparable to what has been previously reported in the literature 

for the Mg, and Ti (Jian Wang and Beyerlein 2012a; Jian Wang and Beyerlein 2012b). 

The energy cusps for the 	12�10
 system were identified 
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as �1�013�θ � 32.15°, �1�012�θ � 43.31°, �1�011�θ � 62.06° and �2�021�θ � 75.21° 
twin boundaries for magnesium, in order of increasing misorientation angle. Similarly, in 

the case of the 	01�10
 tilt axis, the energy cusps were �2�116�, �2�114�, �2�112�, and 

�2�111� twin boundaries.          

 

 

Figure 19: The plot of grain boundary energy as a function of grain boundary misorientation 
angle for a) the 	12�10
 tilt axis, and b) the 	01�10
 tilt axis in Ti, Mg, and Zr. Note that the energy 
cusps for the 	12�10
 system were identified as �1�013�, �1�012�, �1�011� and �2�021� twin 
boundaries, in order of increasing misorientation angle. Similarly, in the case of the 	01�10
 tilt 
axis, the energy cusps were �2�116�, �2�114�, �2�112�, and �2�111� twin boundaries. 
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Figure 20: Atomic representation of �1�011� and �2�021� grain boundaries depicting the 
distribution of the excess Voronoi volume in Ti (a and b), Mg (c and d), and Zr (e and f) for the 
	12�10
 tilt axis. The bulk Voronoi volume was found to be 17.57, 22.82 and 23.07 Å3 for the Ti, 
Mg and Zr, respectively. The black line indicates the twin boundary plane. 

 

The structure-energy correlation can provide more details about the variation in grain 

boundary energies, as each grain boundary has characteristic SUs describing its atomistic 

morphology. Low-angle boundaries can be represented by an array of discrete 

dislocations. However, at higher misorientation angles (high-angle grain boundaries), the 

dislocation cores overlap, and dislocations rearrange to minimize the boundary energy. 

The resulting grain boundary structures are often characterized by grain boundary 

dislocations or SUs(Jian Wang and Beyerlein 2012a; Jian Wang and Beyerlein 2012b; 

Sutton and Vitek 1983). Figure 20 shows the spatial distribution of atomic excess volume 

for �1�011� and �2�021� grain boundaries with the 	12�10
 tilt axis in Ti, Mg and Zr. 

Similarly, Figure 21 shows the spatial distribution of excess atomic volume for �2�112� 

Titanium Magnesium Zirconium
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and �2�116� grain boundaries with the 	01�10
 tilt axis in Ti, Mg and Zr. Notice that the 

atoms far away from the boundary are green (0 Å3 excess Voronoi volume), indicating 

that there is no atomic volume difference over the bulk lattice. The bulk Voronoi volume 

was found to be 17.57, 22.82 and 23.07 Å3 for the Ti, Mg and Zr, respectively. The 

excess Voronoi volume is highest/lowest (tensile versus compressive) at the grain 

boundary center and converges to the bulk Voronoi volume as distance from the grain 

boundary increases. Interestingly, the �1�011� and �2�112� plane twin boundaries in Mg 

and Zr have higher/lower (tensile versus compressive) excess Voronoi volumes than the 

Ti twin boundary, potentially due to the larger interplanar spacing. That is, near the twin 

boundary, the interplanar spacing changes and can increase or decrease associated atomic 

volume due to twinning dislocations (shuffling of atoms)(Serra, Pond, and Bacon 1991; J. 

Wang, Beyerlein, and Hirth 2012). In the case of �2�021� and �2�116� plane grain 

boundaries, Mg has higher/lower (tensile versus compressive) excess Voronoi volumes 

than the Ti and Zr. This grain-boundary metric can in turn be correlated to other 

energetics associated with the grain boundaries to derive a structure-property 

relationship. 
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Figure 21: Atomic representation of �2�112� and �2�116� grain boundaries depicting the 
distribution of the excess Voronoi volume in Ti (a and b), Mg (b and c), and Zr for the 	01�10
 tilt 
axis. The black line indicates the twin boundary plane. 

  

6.4 VACANCY BINDING ENERGY  

 
Molecular statics (MS) was used to examine the vacancy binding energy as a function 

of the local atomic structure and distance from the GB center. Here, the vacancy was 

placed at all sites within in a block of 3x2 nm near the grain boundary. Then, the change 

in the vacancy binding energies with increasing distance from the GB center was used to 

quantify the nonlocal length scale associated with the vacancy binding. The vacancy 

binding energy (Eb) is essentially the formation energy of a particular site in the GB 

region, which is normalized with the bulk formation energy (Eb = Ef – Ef(bulk), where 

Ef(bulk) =1.819, 0.868 and 1.385 eV for Ti , Mg and Zr, respectively). Figures 22-24 

show the spatial distribution of vacancy binding energies in selected grain boundaries, 

Titanium Magnesium Zirconium
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which is equivalent to representing the variation of vacancy formation energy for a grain 

boundary system after removing the bulk contribution. Notice that the atoms far away 

from the boundary are white (0 eV vacancy binding energy), indicating that there is no 

energy difference over the bulk lattice. For the �1�011� twin boundary, the minimum 

vacancy binding energy for Ti, Mg and Zr was found to be -0.438 eV, -0.157 eV and -

0.365 eV, respectively (see Figures 22 and 24a). Similarly, for the �2�112� plane twin 

boundary, the minimum vacancy binding energy for Ti, Mg and Zr was found to be -

0.294 eV, -0.167 eV and -0.134 eV, respectively (see Figure 23). Interestingly, the 

vacancy binding energy in the �1�011� and �2�112� plane twin boundaries were inversely 

proportional to the excess free volume. For example, the �1�011� and �2�112� plane twin 

boundaries in Ti had more negative vacancy binding energies and the lowest free volume 

when compared with Mg or Zr. In the case of the �2�112� plane twin boundary in all three 

materials, the vacancy binding energy for the 1st layer was lower than that for 0th layer, 

indicating that the GB center is not necessarily the sink for vacancy. However, the 

�1�011� plane twin boundary in all three materials exhibited lower vacancy binding 

energy for the 0th layer when compared with the 1st layer, suggesting a strong correlation 

between the GB structural unit and anisotropy associated with the vacancy binding 

energies. On average, the vacancy binding energies approached bulk values between 3 to 

4 layers away from the GB center for the �1�011� and �2�112� plane twin boundaries in 

all different c/a ratio materials examined here. 
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Figure 22: Atomic representation of �1�011� and �2�021� grain boundaries depicting the 
distribution of vacancy binding energies in Ti (a and b), Mg (c and d), and Zr (e and f) for the 
	12�10
 tilt axis. The vacancy binding energy in bulk was found to be 1.819, 0.868 and 1.385 eV 
for Ti, Mg, and Zr, respectively. The black line indicates the twin boundary plane. 

 

For the �2�021� grain boundary, the minimum vacancy binding energy for Ti, Mg and 

Zr was found to be -0.743 eV, -0.304 eV and -0.425 eV, respectively (see Figures 22 and 

24b). Similarly, for the �2�116� grain boundary, the minimum vacancy binding energy for 

Ti, Mg and Zr was found to be -0.777 eV, -0.825 eV and -0.435 eV, respectively (see 

Figure 23). The vacancy binding energy results of �2�021� and �2�116� grain boundaries 

indicate that there is no significant correlation between the vacancy binding energy and 

the free volume. For example, the �2�021� grain boundary in Ti and Zr had similar free 

volume but significantly different vacancy binding energies. Hence, vacancy binding is 

not correlated with only one atomic volume; rather, contributions from surrounding 

atoms also play a role in deciding the potential site for vacancy binding.  

Titanium Magnesium Zirconium



61 

 

 

Figure 23: Atomic representation of �2�112� and �2�116� grain boundaries depicting the 
distribution of vacancy binding energies in Ti (a and b), Mg (c and d); and Zr (e and f) for the 
	01�10
 tilt axis. Vacancy binding energy in bulk was found to be 1.819, 0.868 and 1.385 eV for 
Ti, Mg, and Zr, respectively. The black line indicates the boundary plane. 

 

The binding energies of the vacancy can be plotted against the distance from the grain 

boundary to quantify the evolution of the binding energies near the GB and to quantify 

the nonlocal length scale associated with the vacancy. Figure 24 is an example of one 

such plot for vacancy binding energies at various sites for the �1�011� and �2�021� grain 

boundaries. In this plot, the vacancy binding energy was first calculated for each site. 

Next, a grain boundary region was defined to compare the vacancy binding energies for 

the �1�011� and �2�021� GBs in Ti, Mg, and Zr. Similar to earlier observations that the 

minimum vacancy binding energy is at 0th layer (grain boundary plane) for the �1�011� 

grain boundary (Figure 24a) as compared to the 1st layer for the �2�021� grain boundary 

Titanium Magnesium Zirconium



62 

(Figure 24b), for all c/a ratio materials examined here. Furthermore, in both boundaries, 

the vacancy binding energies approach bulk values around 5 Å away from the GB center 

plane. 

Overall, for all grain boundaries in the three materials examined here, there were 

atoms lying symmetrically along the grain boundary plane that had vacancy binding 

energies close to bulk values or even higher than the bulk values in some cases, i.e., these 

GBs may not provide pathways for vacancy diffusion. Finally, these figures show that the 

local environment strongly influences the vacancy binding energies and that these 

energies are not independent of one another. 

 

 

Figure 24: Vacancy binding energy as a function of distance from the grain boundary center: a) 
the �1�011� plane boundary, where the vacancy binding energy is minimum energy at the 0th layer  
of the grain boundary plane, and b) the �2�021� plane boundary, where the vacancy binding 
energy is minimum energy at the 1st layer  from the grain boundary plane. The vacancy binding 
energies approach bulk values around 5 Å away from the GB center plane. 

 

6.5 CORRELATING GRAIN BOUNDARY METRICS 

 
The local environment surrounding each atom changes due to interactions with 

neighboring atoms, which in turn affects the vacancy binding energy and other per-atom 
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properties. In this subsection, we will analyze and correlate calculated vacancy binding 

energies with grain boundary energies in Ti, Mg, and Zr. The grain boundary energies of 

all 190 boundaries in all three elements are plotted against the vacancy binding energies 

of the same boundaries, as shown in Figure 24. The solid line corresponds to a perfect fit 

with a proportionality constant of -25 Å2. The results indicate that there is a strong 

correlation between the grain boundary energy and the vacancy binding energy. 

Furthermore, there is an overall trend of increasing boundary energy with decreasing 

binding energy. This could be due to atomic scale roughness when facing two tilted 

bicrystals together. As such a GB with higher atomic area density will have higher stress 

fields, which can be relieved through vacancy introduction. Therefore GBs with higher 

GB energies see a significant drop in the vacancy binding energy. 

Here, the linear correlation coefficient r is used (Eq. 15) to compare the degree of 

correlation between the binding energy and the grain boundary energy, where r = 1 

indicates a perfect positive correlation and r = -1 indicates a perfect negative correlation. 

Interestingly, the vacancy binding energy is highly negatively correlated (r = -0.7144) 

with the grain boundary energy. 

 

 q � ∑ <=�=?∑ �= ∑ �=�
�∑ <=>?�∑ �=�>

� �∑ �=>?�∑ �=�>
�

       (14) 

 



Figure 25: The grain boundary energies of all 190 boundaries in all three elements are plotted 
against the vacancy binding energies of the same boundaries. Closed data points are for the 

 tilt axis and open data points for the 
energy is highly negatively correlated (r = 

 

6.6 SUMMARY 

 
Molecular static simulations of 190 symmetric tilt grain boundaries in HCP metals 

were used to understand the energetics of point defects, such as vacancy, which is 

important for designing stable material interfaces for endurance in harsh environments. 

The simulation results reveal several interesting observations: 

 

1) The grain boundary local arrangements and resulting structural units have a 

significant influence on the magnitude of vacancy binding energies, and the site

to-site variation within the bou
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The grain boundary energies of all 190 boundaries in all three elements are plotted 
against the vacancy binding energies of the same boundaries. Closed data points are for the 

tilt axis and open data points for the  tilt axis. Interestingly, the vacancy binding 
energy is highly negatively correlated (r = -0.7144) with the grain boundary energy.

Molecular static simulations of 190 symmetric tilt grain boundaries in HCP metals 

were used to understand the energetics of point defects, such as vacancy, which is 

important for designing stable material interfaces for endurance in harsh environments. 

simulation results reveal several interesting observations:  

grain boundary local arrangements and resulting structural units have a 

significant influence on the magnitude of vacancy binding energies, and the site

site variation within the boundary is substantial (Figures 22-23) ;  

 

The grain boundary energies of all 190 boundaries in all three elements are plotted 
against the vacancy binding energies of the same boundaries. Closed data points are for the 

the vacancy binding 
0.7144) with the grain boundary energy. 

Molecular static simulations of 190 symmetric tilt grain boundaries in HCP metals 

were used to understand the energetics of point defects, such as vacancy, which is 

important for designing stable material interfaces for endurance in harsh environments. 

grain boundary local arrangements and resulting structural units have a 

significant influence on the magnitude of vacancy binding energies, and the site-
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2) Comparing the vacancy binding energies for each site in different c/a ratio 

materials shows that the binding energy increases significantly with an increase in 

c/a ratio, see Figure 23-24. For example, in the 	12�10
 tilt axis, Ti and Zr with 

c/a=1.5811 have a lower vacancy binding energy than the Mg with c/a=1.6299;  

3) For all grain boundaries in the three materials examined here, there were atoms 

lying symmetrically along the grain boundary plane that had vacancy binding 

energies close to bulk values or even higher than the bulk values in some cases, 

i.e., these GBs may not provide pathways for vacancy diffusion, see Figures 22-

24;  

4) In most grain boundaries examined here, the vacancy binding energies approach 

bulk values around 5 Å away from the GB center plane, see Figure 24;  

5) There is no significant correlation between the vacancy binding energy and the 

atomic free volume; and  

6) When the grain boundary energies of all 190 boundaries in all three elements are 

plotted against the vacancy binding energies of the same boundaries, a highly 

negative correlation (r = -0.7144) is revealed that has a linter fit with a 

proportionality constant of -25 Å2, see Figure 25. 

 

In summary, these new atomistic perspectives provide a physical basis for 

recognizing the incipient role between the GB character and vacancy binding energies in 

HCP materials. This is significant for applications where extreme environment damage 

generates lattice defects and grain boundaries act as sinks for both vacancies and 

interstitial atoms. 
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CHAPTER 7 

7     SUBSTITUTION SOLUTE EFFECT ON {���6d} TWIN BOUNDARY: A 
DENSITY FUNCTIONAL APPROACH 

 

7.1 INTRODUCTION 

 
Commercially pure titanium is a very attractive and important material with a wide 

range of application in the aerospace, biomedical, and light sporting material industries 

(Hanson 1986; Semlitsch, Staub, and Weber 1985). In order to meet the Taylor criteria of 

five independent deformation mechanisms, plastic deformation in titanium is controlled 

by slipping and twinning which ultimately controls the mechanical properties of materials 

(Randle 2004; K. Lu, Lu, and Suresh 2009; Harmer 2011). Earlier work of Akhtar 

(Akhtar 1975) and Teghtsoonian (Akhtar and Teghtsoonian 1975) on single crystal 

titanium concludes that deformation at lower temperature involves twinning; whereas, 

dislocation on the prismatic and basal planes is observed at higher temperature. Twinning 

in titanium occurs in �101�2�, �112�2�, and �101�1� planes (Paton and Backofen 1970). 

Moreover, yield strength and tension-compression asymmetry is closely related to 

twinning. Hence, understanding the stability of twins and factors affecting nucleation and 

growth of twins under different loading conditions is a key towards enhanced metal 

plasticity. Furthermore, as it is very difficult to study the effect of solutes, grain size, and 

sample size on deformation twins experimentally (L. Lu et al. 2009; Robson, Stanford, 

and Barnett 2011; Li et al. 2010), atomic scale experimentation or modeling is needed to 

understand the structure and chemistry of twins in materials.   
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Continuum theory of point defects in material was first established by Eshelby (Eshelby 

1956) in 1956. Later on Maclean(MacLean 1957) used the Arrhenius equation and found 

that solute segregation is confined to three to four atomic layers from the grain boundary. 

Segregation of alloying elements in high angle symmetric tilt grain boundaries, which 

have a network of dislocations, has been thoroughly studied in FCC (Udler and Seidman 

1998; Yamaguchi, Shiga, and Kaburaki 2005), BCC (Jin, Elfimov, and Militzer 2014; 

Kiejna and Wachowicz 2008), and HCP (Huber, Rottler, and Militzer 2014). Recently 

coherent twin boundaries in magnesium have been investigated by Nie et al. (Nie et al. 

2013) where they have found that an ordered periodic segregation of solute at twin 

boundaries was driven by minimization of the total elastic energy hence providing 

stability and strengthening of twin boundaries. 

7.2 METHODOLOGY 

 
In this work, to elucidate the effect of solute on the �101�2� twin boundary in 

titanium, we use first principles methods. The �101�2� twin boundary was created initially 

in LAMMPS (Plimpton 1995) with the Zope and Mishin (Zope and Mishin 2003) 

interatomic potential. The twin boundary structure obtained using the EAM potential was 

further relaxed using the Vienna Ab-initio Simulation Package (VASP) plane wave 

electronic structure code (G. Kresse and Furthmüller 1996b; G. Kresse and Furthmüller 

1996a) with a conjugate gradient algorithm and 1 meV total free energy change 

convergence criteria. Projector augmented wave (PAW) potentials (G. Kresse and Joubert 

1999; P. E. Blöchl 1994) were used to represent the nuclei core with valence electrons on 

s and d orbitals for α-Ti. Exchange and correlation was treated with GGA using the PBE 
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(Perdew, Burke, and Ernzerhof 1997) form with an energy cutoff of 289 eV and the 

Monkhorst (Monkhorst and Pack 1976) Pack k-point with gamma mesh of 6 x 9 x 18 

along the normal to the �101�1� (x-axis), �101�2� (y-axis), and �12�10� (z-axis) planes 

respectively. A single substitution solute atom was introduced at different potential sites 

around the twin boundary as shown in Figure 26a. It should be noted here that the solute 

atom was free to relax in all directions during the minimization.  

7.3 SEGREGATION ENERGY 

 
Figure 26a shows the spatial distribution of excess atomic volume for the �101�2� 

twin boundary in Ti. Notice that the atoms far away from the boundary are green (0 Å3 

excess Voronoi volume) indicating that there is no atomic volume difference over the 

bulk lattice. The bulk Voronoi volume was found to be 17.57 Å3. The excess Voronoi 

volume is highest/lowest (tensile versus compressive) at the twin boundary center and 

converges to the bulk Voronoi volume as distance from the grain boundary increases. 

Moreover, the potential site for solute binding with the twin boundary has been marked 

by numbers where the twin boundary has two sites: one with compressive hydrostatic 

stress and another with tension. Figure 26b shows the segregation of solute atoms at 

different potential sites from the twin boundary which converge to zero at around 4-5 

atomic layers (5 Å). Based on the atomic size, all atoms with size less than titanium will 

segregate at a compressive site (0) to relieve compressive stress whereas atoms with size 

bigger than titanium will prefer a tension site (0') due to the availability of excess 

volume. Cobalt has a maximum segregation of -0.544 eV at a compressive site and 

yttrium has a maximum segregation of -0.522 eV at a tension site whereas tin has a 
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minimum segregation of -0.07 eV at tension site. This result can be explained by the 

difference in the atomic size of different solutes with titanium. Cobalt and yttrium have a 

bigger atomic size difference; whereas, tin has the lowest atomic size difference with 

titanium. 

 

Figure 26: a) Potential site for substitution of atoms in �101�2� twin boundary in titanium. Atoms 
are colored according to voronoi volume. b) Segregation of different atoms at different sites on 
�101�2� twin boundaries. Blue atom at Layer 0 of twin boundary is under hydrostatic 
compression; whereas, red atom is under hydrostatic tension. Yttrium has high tendency to 
segregate only at Layer 0 with 0.522 eV due to high miscibility 

 

7.4 SEGREGATION ENERGY WITH TEMPERATURE 

 
The Langmuir-McLean theory (MacLean 1957) for segregation of a solute to a GB is 

���
���w ?��� � ��

,?��
exp �t ���C �             (15) 

where ���x  indicates saturation of the GB at 0 K, �Wis the solute concentration in bulk, E 

is the binding or segregation energy, and T is the temperature. White and Coghlan (White 

and Coghlan 1977) revised this equation for solute segregation at the boundary by taking 

into consideration binding distribution around the boundary as ��� � ∑ �����,�, where 

���,� is given by 
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���,� � �1  /,?��
��

1 exp �;t�/�����?,           (16)  

Figure 27a shows the weight average as a function of atomic volume for a �101�2� 

twin boundary. The dotted line represents the bulk atomic volume. Figure 27b shows the 

evolution of solute segregation as a function of temperature for 0.7 bulk concentration. 

Since atomic size difference between yttrium and titanium is very high, the twin 

boundary has very high solute segregation at lower temperature. This means all the solute 

will be concentrated at the twin boundary and none will be segregated in bulk. Moreover, 

as temperature increases yttrium migrates towards the bulk decreasing the segregation 

concentration at the twin boundary due to an increase in the lattice constant with 

temperature. Furthermore, all other solutes have a value in the range of 0.4 ~ 0.5 at 100 

K. As temperature increases, more solute segregates at the twin boundary from the bulk.  

 

Figure 27: a) Weight average �� as a function of voronoi volume for �101�2� twin boundary in 
titanium. Note: Dashed line represents the weight average of bulk voronoi volume. b) Solubility 
of different elements on �101�2� twin boundary for 0.7 bulk solubility as a function of 
temperature. Yttrium has lower miscibility with titanium, and hence, yttrium segregates more 
easily at the twin boundary as compared to other elements compared here. 

7.5 CHARGE DENSITY WITH SOLUTE 

 
The mechanical properties of a material are defined by the nature of the atomic 

bonding. Bonding between atoms is the result of the polarization of charge densities 
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around the nuclei. Both the shear strength and cohesive strength are affected by bond 

directionality and also by charge distribution around atoms. Therefore, understanding the 

change in charge density with a solute is necessary for evaluating the shear strength of a 

material and the subsequent effect on the plastic deformation behavior (see Song, Guo, 

and Yang 2002). Figure 28 presents a 3D iso-surface plot for charge density (differential) 

showing the effect of solute at the twin boundary. The yellow and cyan iso-surfaces 

represent charge accumulation and depletion, respectively. In comparison with the charge 

density distribution of a pure twin boundary, the main change for a solute at the twin 

boundary seems to be different for different solutes as seen in Figure 28. The charge 

densities between Ti atoms were evidently changed with the addition of a solute at the 

boundary resulting in a change in the shear modulus which affects the twin boundary 

growth as the shear stress is proportional to the shear modulus. Cobalt (Co) has 

directional anisotropy in bonding with surrounding titanium atoms due to directional d-

orbital binding. Cobalt shows strong bonding parallel and perpendicular to the twin 

boundary plane which can be attributed to valence d orbital bonding and, hence, will 

provide more barriers in twin boundary growth as compared to other solutes. On the other 

hand, tin (Sn) has very isotropic bonding with the surrounding titanium atoms because of 

the tin s-orbital binding with the titanium s-orbital which is spherical in nature; whereas, 

aluminum (Al) and copper (Cu) have the valence p-orbital interacting with the s-orbital 

of titanium and show a little anisotropy in bonding but not as much as Co.  
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Figure 28: A 3D iso-surface plot for charge density showing the effect of a substitution atom on 
the �101�2� twin boundary in titanium. The yellow and cyan iso-surfaces represent charge 
accumulation and depletion, respectively. Aluminum and tin have isotropic bonding with titanium 
atoms; whereas, cobalt bonds anisotropically with the titanium grain boundary. 

 

7.6 SUMMARY 
 

In summary, all of the solute atoms prefer to bind at the 0th plane of the grain 

boundary. Al which is smaller than titanium prefer compression sites; whereas, bigger 

solutes prefer tension sites. Moreover, using the revised McLean theory, we see 100% 

yttrium segregation at the �101�2� twin boundary at lower temperature because yttrium is 

30% bigger in radius than titanium; whereas, at higher temperature, the tendency of 

yttrium segregation at the twin boundary decreases due to an increase in the lattice size. 

However, all other solute elements have a higher tendency to segregate at the twin 

boundary at higher temperatures rather than at lower temperatures.  Furthermore, looking 
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at the local bonding of a solute with the surrounding titanium atoms, cobalt shows 

anisotropy in bonding due to the interaction of the valence d orbital with the d orbital of 

titanium. All other elements show isotropy when bonded at the twin boundary. 
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CHAPTER 8 

8     SLIP TRANSFER ACROSS A GRAIN BOUNDARY: A MOLECULAR 
DYNAMIC APPROACH 

 

8.1 INTRODUCTION 

 
The mechanical properties of crystalline materials are strongly governed by the 

presence of obstacles (point defects, solute atoms, dislocation network, grain boundaries, 

and precipitates) to dislocation motion. The GBs have the strongest influence on the 

strengthening by presenting an effective barrier to dislocation motion (Hall-Petch effect). 

On the other hand, strain accumulation at the GBs due to dislocation pileup can lead to 

crack nucleation if a feasible release for the dislocations is not available.  

There are four possible outcomes of dislocation-grain boundary interactions (Figure 

29): a) a direct transmission; b) a direct transmission with a residual dislocation along the 

grain boundary; c) an indirect transmission with a residual dislocation occurring because 

the incoming and outgoing slip planes do not intersect; and d) no transmission because 

the dislocation is absorbed at the grain boundary. Furthermore, the slip-grain boundary 

interactions can be summarized in terms of the Burgers vector of the incident (bi), 

transmitted (bt), and the residual dislocations (br).   

%5~~~�   %�~~~�  %#~~~�                                                                                                                    (17) 
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Figure 29: Slip-grain boundary interaction cases: (a) a direct transmission and dislocation cross-
slip; (b) a direct transmission with a residual dislocation along the grain boundary; (c) an indirect 
transmission with a residual dislocation where slip planes in each grain do not intersect; and (d) 
no transmission. 

 

A slip transmission criterion across the grain boundary was first proposed by 

Livingston (Livingston and Chalmers 1957). Later the model was extended by others to 

maximize the critical resolved shear stress on the transmitted slip system (Shen, 

Wagoner, and Clark 1986; Shen, Wagoner, and Clark 1988; Clark et al. 1992). Lee et al. 

(Lee, Robertson, and Birnbaum 1989) added a requirement on predicting the transmitted 

slip system by ensuring minimum residual dislocations along the grain boundary.  Based 

on Stroh’s theory, dislocation pileup at these interfaces induces a shear stress (formation 

of slip band (PSB) and extrusion) and combined with progressive applied stress, opens up 

to nucleate, instigate, or incubate a crack. Hence, stable pileup energy would govern the 

crack initiation and therefore is necessary to investigate this problem at a smaller scale. 

The energy barrier for dislocation transmission across the GB can be calculated by 

placing a control volume at the site of the dislocation and GB interaction. Inside the 

control volume only the defected atoms (9 > centrosymmetry parameter (Kelchner, 

Plimpton, and Hamilton 1998) > 6) were retained for further analysis. The energy of 

these selected atoms is tracked �t�:��� and the relaxed energy of these atoms �t#���<��� 
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was subtracted during the loading process. The net energy was normalized with the 

atomic volume of occupied defect atoms (Equation 18). 

tW�##��# � ∑ ¡¢£¤¥¦= ?¡§¨¢¤�¨¥
©                                                                                              (18) 

Thus, in this chapter we present a preliminary understanding on the effect of grain 

boundary atomic structure on the GB-dislocation interaction. The dislocation grain 

boundary interactions were quantified by computing the barrier energy of the GB 

interface.  

 

Figure 30: a) slip band cracks across the grain boundary in the case of grain 16 and grain 17 and 
b) deformation twins in grain 2 appear to have been nucleated at the grain boundary with grain 1. 
The slip bands in grain 1 and the deformation twins in grain 2 are correlated. Figure 30 was 
adopted from Wang  et al. (L. Wang et al. 2010) 

 

Recently, Wang et al. (L. Wang et al. 2010) showed formation of cracks due to the 

interaction of twin-twin and slip band formation as seen in Figure 30a. Moreover, he also 

has shown deformation twins nucleation from the grain 1-grain 2 grain boundary (Figure 

30b) and propagates towards the grain boundary of grain 2-grain 3 (Figure 30b), based on 

the difference in the thickness of the twin at the grain boundary of grain 1-grain 2 as 

compared with the grain boundary of grain 2-grain 3. Furthermore, a slip-twin correlation 

with the help of the Luster-Morris parameter (Luster and Morris 1995); wherein, the 
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prismatic slip interacts with the grain boundary and nucleates a deformation twin in the 

adjacent grain even though the c-axis of the grain is oriented at 45˚ to the loading axis 

which is unfavorable for twinning according to the Schmidt factor. Our main objective 

was to quantify all of the possible outcomes of slip/ twin interaction with the grain 

boundary interaction. 

8.2 METHODOLOGY 

 
MD simulations were used to study the dislocation interaction with twin boundaries 

and STGBs (Figure 31) in α-Ti using EAM potential developed by Zope et al. (Zope and 

Mishin 2003) at a temperature of 10 K. The GB structure and minimum energy were 

calculated using a bicrystal simulation cell with three-dimensional (3D) periodic 

boundary conditions using a methodology described in detail in chapter 6 section 2.  

Figure 31 shows the variation of GB energy as a function of GB geometry in a 

stereographic triangle representation, which is widely used to represent crystal systems. 

This was achieved by defining the polar and azimuthal angles for the GB database 

studied (Rajagopalan et al. 2014; Bhatia and Solanki 2013). Some of the coincident site 

lattice (CSL) GBs corresponding to the local minima in the energy distribution for the 

respective tilt systems (Figure 31a). For example, the �1�011�, θ=61.28° GB corresponds 

to a coherent compression twin and the �1�012�, θ=42.39° GB corresponds to a coherent 

tension twin boundary showing a more pronounced cusp in the GB energy (refer to 

Figure 31a). All the GB energies were consistent with previously reported findings in 

literature (Jian Wang and Beyerlein 2012a; Jian Wang and Beyerlein 2012b).  
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Figure 31: a) 	21�1�0
 symmetric tilt grain boundary energy (STGB) as a function of 
misorientation θ from the 	0001
 direction in Ti. b) Contour plot of GB energies for the three 
symmetric tilt systems of Ti represented using polar and azimuthal angles. The polar and 
azimuthal angles correspond to the degrees of freedom. 

 

8.2 SLIP-TWIN CORRELATION 

 
A 	2�114
 STGB with c-axis at θ=42.39° to the loading axis is deformed under 

tension with a crack as the source of the dislocation. Figure 32 shows the microstructure 

evolution with applied strain and the corresponding evolution of energy with the control 

volume with applied strain. Basal dislocation nucleates from the crack in grain 1 (soft 

grain) and interacts with the grain boundary. Twin nucleation from the GB site of the 

dislocation absorption and propagation in grain 2 with increase in applied strain as seen 

in figure 32c. This behavior was consistent as it requires more stress to nucleate a twin in 

a hard grain (grain 2). Moreover, the Schmidt factor for �112�1� twin nucleation was 

found to be 0.36 which is lower compared to the Schmidt factor of 0.48 for basal slip. 

The Luster parameter (Luster and Morris 1995) can be calculated to correlate slip-twin 

behavior in subsequent grains.  
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Figure 32: a) Interaction of basal dislocation with �2�114� grain boundary b) dislocation is 
absorbed at the grain boundary at around 4.9% strain, c) �112�1� twin nucleation from grain 
boundary, and d) residual shear strain showing trace of dislocatin glide and nucleation of a twin. 
Equation is the energy barrier equation to measure the grain boundary barrier energy.   

 
 

8.3 ENERGY BARRIER FOR SLIP TRANSMISSION 

 
Seven different grain boundaries from the 	2�110
 and 	01�10
 tilt axes were deformed 

to study the slip-grain boundary interaction. A power law similar to Sangid et al. (Sangid 

et al. 2011) was fitted between the energy barrier and the static grain boundary energy as 

shown in Figure 33. The �101�2� coherent twin boundary has the lowest interface energy, 

on the other hand the highest barrier to the slip transmission which contributes to the 

strengthening of the material as also seen in experiments. These findings are in agreement 

with intuition i.e. as interface energy increases, there is more excess volume available at 

the grain boundary and; hence, the lower barrier for slip transfers. From the power law fit 
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obtained from our results two material parameters namely tW�##��# � 2 o 10,[ and 

transfer rate ª � 1.05 can be used for the higher length scale modeling.  

 
Figure 33: The dislocation transmission energy barrier across a grain boundary as a function of 
the grain boundary energy in Titanium. 

 
Nine different grain boundaries from the [2�110] and [01�10] tilt axis were selected to 

study the dislocation nucleation from the GB. A power law function was fit to the energy 

barrier against the static grain boundary energy as shown in figure 34 for a dislocation 

emission. The �101�2� coherent twin boundary has the lowest interface energy and, 

hence, the highest barrier for the dislocation emission, which contributes to strengthening 

of the material as also seen in experiments. Moreover, as interface energy increases, there 

is more excess volume available at the grain boundary and, hence, less barrier to nucleate 

a dislocation. From the power law fit of our result, we found two material parameters 

namely tW�##��# � 4 o 10,« and nucleation rate m = 2.18 which can be used for the 

higher length scale modeling. Due to the presence of a pristine defect free crystal around 
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the grain boundary the energy barrier for nucleation of dislocations is higher than the 

energy barrier for slip transfer.  

 

Figure 34: The dislocation nucleation energy barrier from various STGBs as a function of the 
grain boundary energy in Titanium. 

 

8.4 SUMMARY 
 

In summary, the energy barrier for dislocation nucleation is higher than that for the 

slip transfer due to the presence of a pristine lattice during nucleation. Moreover, �101�2� 

twin boundary has highest energy barrier for slip transfer and hence we proposed that a 

higher fraction of �101�2� in material will have higher fraction of transgranular fracture 

as compared to intergranular fracture.  
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CHAPTER 9 

9     FUTURE WORK 

 

9.1 Bond order potential (BOP) 

 
The valence d-orbital electrons play a crucial role in the determination of cohesive 

energy and the ground state structure for transition metals such as titanium (Pettifor 

1995). The energy equation with a tight binding scheme has two parts, i.e., the first term 

is the bond energy arising from the valence d-orbital band that depends on the bond angle 

and the second term is the pairwise part for the repulsion and electrostatic interaction of 

atoms (Sutton et al. 1988). Hence, in the tight binding framework, the free energy of N 

atoms in titanium situated at rest position R is given by: 

� � ,
& ∑ ¬�V�.��­.  ��                (19) 

where V(Rij) is the pairwise repulsive part and �� is the bond energy part which depends 

on both the bond integral and the bond order and is given by. 

�W:G�
�. � ∑ 2®��,.¯Ѳ.¯,���¯                                                                                              (20) 

where the bond energy �W:G�
�.  is a function of Hamiltonian ®��,.¯ and the bond-order 

matrix element Ѳ.¯,�� that are associated with an individual bonds i-j and corresponding 

atomic orbitals α and β. Moreover, the fitting of bond energy part involves the bond 

integral i.e., the hoping of electron along ddπ and ddσ for a Ti-Ti bonding which is by 

±±B�V� � ±±Bx�vw²=@²=
v �G²=@²=                                                                                        (21) 

Where, Ro denotes the nearest Ti-Ti spacing in hcp Ti. R is the variable which is varied 

from Ro to R-cutoff. The π and σ are bond integrals, which form at the inter-site 
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Hamiltonian matrix can be obtained indirectly by fitting the band structure (Figure35). 

Another term in the fitting bond energy involves the bond order which is basically a 

subtraction of number of electrons in anti-bonding orbitals with number of electrons in 

bonding orbitals divided by two. 

 

Figure 35: Band structure of bulk Ti from γ-K-γ, where γ is at (0,0,0)and K is at (a,0,0). Bond 
integral π and σ is obtained by fitting the band structure with the inverse Fourier transformation. 

 

Fitting of pairwise repulsive part involves functional form of potential. Hence, 

equilibrium properties such as cohesive energy, electronic density of states, experimental 

elastic moduli and volume-energy curve for the equilibrium structure of titanium can be 

used to develop a functional form for a pairwise repulsive part. 
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The total energy of the QM/MM system can be expressed as 
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where the first term denotes the energy of the entire QM region calculated via the 
constrained DFT. The last two terms are the energy of the combined region II/MM region 

and the region-II, respectively, as determined by the empirical MM simulations. QMR
v

,

IIR
v

, and MMR
v

 represent atomic coordinates in the QM region, region II, and MM 

region, respectively. QMρ  indicates the QM charge density. As a key component of the 

QM/MM method, the constrained DFT allows a self-consistent determination of QMρ  by 

constraining it to a predetermined charge density in the boundary region. The essence of 
the QM/MM method is to ensure that the QM region is treated in the presence of the 
appropriate boundary conditions provided by the charge density and potentials of the MM 
atoms. The technical details and validations of the QM/MM method can be found 
elsewhere. As shown in Figure 1, the entire dislocation system was partitioned into three 
regions. The QM region (I+II) had 196 atoms containing the dislocation core 
with/without oxygen impurity and the MM region (III) consists of the rest of the system 
(11926 atoms) including the long-range elastic field of the dislocation. The overall 
dimensions of different regions were: 30 Å x 27 Å x 9.26 Å for the region-I and region-II, 
and 143.67 Å x 155.07 Å x 9.26 Å for the region-III. The length along the dislocation 
line [0001] was set to 2c (c = 4.645 Å) to avoid interaction of oxygen atoms due to 
periodic boundary conditions.   

Projector augmented wave (PAW) potentials were used to represent the nuclei core 
with valence electrons on s and d orbitals for α-Ti and valence electrons on s and p 
orbitals for oxygen atoms. Exchange and correlation was treated with GGA using the 
PBE form with an energy cutoff of 289 eV and the Monkhorst Pack k-point mesh of 1 x 1 
x 5 along the 	12�10
, 	101�0
, and [0001], respectively. The ionic relaxation was carried 
out using a conjugate gradient algorithm with 30 meV/Å force and 1 meV energy 
convergence criteria. Moreover, for the pipe diffusion of an oxygen atom, the energy 
barrier was studied using the C-NEB method with sixteen intermediate images between 
the global minimums.  



Figure 36: The prismatic edge dislocation core with different QM/MM regions. Red and blue 
atoms represent regions-I and II, 
whereas, yellow atoms belong to region

significant deformation in region
Å x 9.26 Å for region-I and region
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The prismatic edge dislocation core with different QM/MM regions. Red and blue 
I and II, respectively which were solved using the constrained DFT

yellow atoms belong to region-III solved using the MM approximation. There is no 
significant deformation in region-II.  The overall dimensions of different regions were: 30 Å x 27 

I and region-II and 143.67 Å x 155.07 Å x 9.26 Å for region

 

 

 

The prismatic edge dislocation core with different QM/MM regions. Red and blue 
respectively which were solved using the constrained DFT; 

III solved using the MM approximation. There is no 
II.  The overall dimensions of different regions were: 30 Å x 27 

II and 143.67 Å x 155.07 Å x 9.26 Å for region-III. 
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APPENDIX B 

INTERATOMIC POTENTIAL AND CRYSTAL PROPERTIES 
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The semi-empirical embedded atom potential (EAM) developed by Zope and Mishin was used to 
model the defect free EAM region (region-III) in the QM/MM. This EAM potential was 
parameterized using an extensive database of energies and configurations from DFT calculations 
and has been used to accurately define different material behaviors such as surface energies, 
GSFEs, etc. Furthermore, Table 4 lists the lattice properties of Ti with EAM potential and their 
comparison with DFT data. The EAM potential was modified to match both the lattice constant 
and bulk modulus of DFT to minimize the misfit energy at the boundary of coupling. 


