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ABSTRACT  
   

We report the synthesis of novel boronic acid-containing metal-organic frameworks 

(MOFs), which was synthesized via solvothermal synthesis of cobalt nitride with 3,5-

Dicarboxyphenylboronic acid (3,5-DCPBC). Powder X-ray diffraction and BET surface 

area analysis have been used to verify the successful synthesis of this microporous 

material.  

 

We have also made the attempts of using zinc nitride and copper nitride as metal 

sources to synthesize the boronic acid-containing MOFs. However, the attempts were not 

successful. The possible reason is the existence of copper and zinc ions catalyzed the 

decomposition of 3,5-Dicarboxyphenylboronic acid, forming isophthalic acid. The ended 

product has been proved to be isophthalic acid crystals by the single crystal X-ray 

diffraction. The effects of solvents, reaction temperature, and added bases were 

investigated. The addition of triethylamine has been shown to tremendously improve the 

sample crystallinity by facilitating ligand deprotonation.  
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CHAPTER 1 

INTRODUCTION 

1.1 History of MOFs 

Metal Organic Frameworks, abbreviated as MOFs, are a burgeoning class of 

crystalline material constructed by metal ions or clusters and organic linkers. The 

structures of MOFs can be zero-dimensional (0D), one-dimensional (1D), two-

dimensional (2D) or three-dimensional (3D) architecture.  

 

The term coordination polymer was firstly introduced in 1916 (Shibata, 1916). 

However, because of restrict of knowledge and technology of people at that time, people 

cannot know well about them without characterization method like single-crystal-XRD. 

 

In the year of 1996, the first “MOF”, called as MOF-5, was synthesized by the Yaghi 

et al (1999). As shown in the Fig. 1.1.1, MOF-5 consists of Zn4O clusters and the 

clusters were connected by 1,4-benzenedicarboxylate organic linkers. In the following 

decades till now, after MOF-5 came out, thousands of research workers synthesized many 

kinds of MOFs with different chemical and physical properties which leads to many 

special applications of MOFs. 
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Figure 1.1 Ball-and stick representation of framework of MOF-5 

 

With the development of MOFs, many derived acronyms are introduced: CP 

(Coordination Polymers), IRMOF (IsoReticular Metal Organic Framework), ZIF 

(Zeolitic Imidazole Framework) and more.  

 

1.2 Introduction of several classical MOFs 

 

1.2.1 IRMOFs 

 

One of the most famous serious of MOFs is the Isoreticular Metal-Organic 

Framework (abbreviated as IRMOF) by Yaghi et al (2002). The MOFs are composed of 
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second building units, [Zn4O]6+ and a serious of aromatic carboxylic acid ligands. 

IRMOF-1 is the simplest MOF in the serious. IROMOF-1 is cubic crystal. It has the 

features like high surface area, regular pole structure, high structure volume and the 

ability of hydrogen storage to some extent. By change the functional groups on the 

ligands, the team got a serious of IROMOF-n (n=1~16) with the same topological 

structure. By using longer ligands, the pore size of IRMOFs can be as high as 28.8Å; the 

percent of void can be extended from 55.8% to 91.1%, which is much larger than zeolites. 

The properties are really rarely to be found in inorganic porous materials. 

 

 

Figure 1.2.1 Ball-and stick representation of framework of IRMOF-1 (A), 
IRMOF-6 (B) and IRMOF-8 (C) (Rosi el al., 2003). 

 

1.2.2 MOFs with pocket-channel structure. 

 

Among the vast MOFs invented already, another representative material is the 

[Cu3(TMA)2-(H2O)3]n (also called HKUST-1 and Cu-BTC), which is synthesized by 

Williams et al (1999). The synthesis is made by putting Cu(NO3)2�xH2O and trimesic 

acid into the solvent of ethylene glycol/H2O then hating for 12 hours under the 
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temperature of 180 �, the pore size of the pocket-channel in the MOF is 9.5Å�9.5Å, the 

BET (Brunauer-Emmett-Teller) surface area is 692.2 m2/g. In this serious of MOFs, each 

metal cluster connects with four organic ligands and each ligands connects with three 

metal clusters. The pocket-channel structure made the MOFs become the crystals with 

hollow space inside. Each pocket is connected with four channels and the size of channel 

can be changed by using different ligands. 

 

Figure 1.2.2 Single crystal structure of Cu-BTC (Williams et al., 1999). 

 

1.2.3 MIL-MOFs 

The Materials of Institute Lavoisier (abbreviated as MIL) is also a famous serious of 

MOF materials. The most famous one is the MIL-53(Cr) synthesized by Ferey et al 

(2002). The MOF is synthesized by using solvothermal synthesis method to heat 

Cr(NO3)3�4H2O, terephthalic acid (TPA), hydrofluoric acid and H2O with the mole ratio 

of 1:1:1:280. A serious of MIL-MOFs are also synthesized by changing the metal salts 

and ligands (Ferey et al.,2003; Barthelet et al.,2003; Barthelet et al.,2023). The structure 

of the crystal is flexible; the framework can change with the change of the environment 
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like temperature and pressure. This effect is called breath effect and the breath effect has 

become an important research area.  

 

Figure 1.2.3 Schematic representation of the reversible hydration-dehydration 
of MIL-53lt and MIL-53ht (Ferey et al., 2002) 

 

 

1.2.4 ZIFs 

Recently, The group of Yaghi synthesized a new serious of MOFs, zeolitic 

imidazolate framework (ZIF). It is constructed by Zn(II) or Co(II) metal salts and 

imidazole ligands. The structure of ZIFs is similar to zeolites. In the aluminosilicate 

molecular sieve, aluminum or silicon atoms are substituted by transition metal and the 

oxygen atoms are substituted by imidazole ligands. Among ZIFs, they can be classified 

by several classical topological structures. Like ZIF-5, it’s a MOF which contains Zn(II) 

and In(III) metal ions and imidazole ligands with the gar topology. The mostly studied 

ZIF is ZIF-8 and ZIF-11 on the aspect of gas adsorption and thermal and chemical 

stability. The research results show that ZIF have the high surface area around 1810m2/g, 

high thermal stability as high as 550� and very good chemical stability that it can keep 

stable in boiling alkaline aqueous solution and organic solvent. In addition, the imidazole 
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in ZIFs makes the crystal have high selectivity for absorbing CO2 in stack gas and 

vehicle exhaust. 

 



 7Figure 1.2.4 the single crystal structures of ZIFs shown as a stick diagram (left) 
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and as a tilling (center) and the largest cage in each ZIF (right) (Park et al., 
2006) 

 

 

 

1.2.5 UiO-MOFs 

UiO (University of Oslo) MOFs are a serious of zirconium (Zr) based MOFs that 

attract wide concerns. (Kavka, 2008) UiO-66 is the most classical MOF among UiO-

MOFs. It has high selectivity in CO2/CH4 separation and is reusable. The structure of 

UiO-66 made its thermal stability higher than 500�. The structure of UiO-66 is stable in 

many organic solvents. It’s the most stable MOF that has ben reported so far. The high 

stability makes the materials suitable for separation. Recent research shows that 

introducing –SO3H and –CO2H can highly improve UiO-66 the effects of CO2 capture 

(Yang, 2011). 

 

1.3 Synthesis methods of MOFs 

1.3.1 Hydrothermal/ solvothermal synthesis method 

Hydrothermal synthesis method is a staple way to synthesize inorganic materials and 

it’s widely used in the area of nanomaterial, biomaterial and geological material. The 

method is mainly to use water as solvent and make the reactants to be solutions and put 

them into a hydrothermal synthesis reactor. Then heat the reactor to a certain temperature 

(normally 100~200�). The hydrothermal synthesis reactor makes the system in a self-

generating pressure range. Normally under this situation a lot of nanomaterial with 

excellent properties can be made. In the year of 1999, Kitagawa et al (1999) put aqueous 
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solution of Na2pzdc in to the aqueous solution of Cu(ClO4)2�6H2O and pyrazine slowly 

and stir under room temperature. Then blue tiny crystal CPL-1 can be made after 

filtration. After that, the group of Ferey used hydrothermal methods to make the MIL-

MOFs serious materials.  

 

Figure 1.3.1 Teflon-lined stainless steel reactor usually used in hydrothermal/ 
solvothermal synthesis of MOFs. 
 

Solvothermal synthesis method has the same principle as hydrothermal synthesis 

method, but the solvent is not only limited to water. Solvothermal method is one of most 

important and frequently used methods. Normally hydrothermal thesis is to mix reactants 

with organic solvents like organic amine, methanol, ethanol and so on. Then put the 

mixture in to some closed containers like Teflon-lined stainless steel reactor or glass 

tubes and then hate the reactors under the temperature normally around 100~200�. The 

reaction will happen under the self-generating pressure and with the temperature increase 
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the reactant will dissolve gradually. The method decreases the reaction time and solves 

the problem that the reactants can’t dissolve in ambient temperature. The organic solvents 

used in the reactions usually have different functional groups, especially different 

properties like polarity, specific inductive capacity (SIC), boiling point, viscosity and so 

on, which made the reaction environments and the structure of resultants more flexible 

and various. The advantages of solvothermal synthesis technology like low cost, simple 

equipment and well-grown crystals made the methods one of the most often used 

methods chose by researchers. For example, the famous MOF serious like IRMOFs, ZIFs 

and UiO-MOFs are synthesized by using solvothermal synthesis method. In the year of 

2002, Yaghi et al (2002) mix 12 different organic ligands with Zn(NO3)2�4H2O 

separately and then put into N,N-Diethylformamide (DEF) solvent. After the reaction, a 

serious of IRMOFs with different pore sizes is obtained. The group of Stock (Ahnfeldt, 

2009) mixed AlCl3�6H2O with H2N-H2BDC and then put in to methanol solution. 

After the reaction, Al-based MOF, CAU-1, was obtained.  

1.3.2 Microwave synthesis 

The major differences between microwave synthesis method and the traditional 

hydrothermal/ solvothermal synthesis method is the way to heat. Direct current (DC) 

supplies the power to the permatron in the microwave oscillator and the microwave 

oscillator will produce alternative electric filed. The macromolecules in the alternative 

electric filed will absorb the electromagnetic wave and start to rotate and collide fiercely. 

So the polar molecules will move with the alternative electric filed and produce heat to 

increase the temperature of reactant fast in a short time. So the character of microwave 

synthesis is its short reaction time. It can decrease the reaction time from several days to 
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several hours even several minutes. Additionally, using microwave synthesis method can 

control the size of produced MOFs more easily.  

 

Figure 1.3.2 Microwave synthesizer produced by CEM Corporation. 
 

Ni and Richard (2006) firstly introduced the solvothermal synthesis methods assisted 

by microwave to the area of MOF synthesis. He synthesized the crystallites with the size 

around 4µm of IRMOF-1, IRMOF-2 and IRMOF-3. So far, microwave synthesis is the 

most widely used synthesis method except hydrothermal/ solvothermal synthesis in the 

area of MOF synthesis. For example, Jing et al (2007) use microwave synthesis method 

to successfully produced MIL-101 (Cr), and reduced the reaction time to less than 1 hour. 

The BET surface area of sample produced is 3900m2/g and the adsorption ability is also 

studied. Recently, Khan et al (2011) decreased the reaction time to 15min and Bromberg 

et al (2012) successfully synthesized MIL-101 (Cr) by using microwave synthesis 

method without adding HF and studied its catalytical properties after loaded with many 
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kinds of oxometallates. Compared with the original synthesis methods, the synthesis 

avoided using the poisonous and highly corrosive HF and for this reason it decreased the 

pollution to the environment effectively.  

1.3.3 Ultrasonic synthesis 

Ultrasonic synthesis can continuously produce bubbles. The growing and bursting 

bubbles form acoustic cavitation. Acoustic cavitation can lead to very high partial 

temperature (about 5000K) and partial pressure (about 1000atm). For this reason, using 

Ultrasonic synthesis to produce MOFs can increase the activity of reactants. Size of 

produced MOFs will be more uniform and reaction time will be highly decreased. The 

method is good for produce MOF samples with small crystal size.  
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Figure 1.3.3 Q500-Sonicator produced by Qsonica, LLC 
  

Son et al (2008) used ultrasonic synthesis method to high quality MOF-5 with the 

particle size from 5~25µm and the reaction time is decreased to 30min. Jung et al (2010) 

found the ultrasonic power and reaction time can affect the surface area of the MOFs 

when synthesizing MIL-177. Additionally, using ultrasonic synthesis method with the 

other methods together can improve the effect of synthesis. Sabouni et al (2010) use 

ultrasonic and microwave synthesis methods to study how the react condition affect the 

synthesis of IRMOF-1. After optimization, they made the sample with surface area of 

1874m2/g. The compare with the sample got from traditional synthesis method by using 

scanning electronic microscope (SEM) showed that the sample has more perfect crystal. 
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CHAPTER 2 

SYNTHSIS AND CHARACTERIZATION OF BORIC ACID CONTAINING MOF 

 

2.1 Introduction 

The design and synthesis of the burgeoning porous material, metal-organic 

frameworks (MOFs) are widely concerned and has become a popular research area 

because of their unique structure and properties and their potential in gas adsorption, 

separation, drug delivery and catalysis. The large majority of unique properties of MOFs 

have been found and the properties lead to the various applications of MOFs (Yaghi et 

al.,1999; Sabouni et al., 2010). Borax is an ore that easily accessible on and near the 

surface of the earth. In the past centuries, many applications of borax has been explored 

like metallurgy, glass, ceramics, medicine, detergents, insecticides, lubricants, oil 

exploitation and catalysis (Schubert, 2003). With the development of the study of borax, 

B-based compounds have been studied a lot and the study of boric acid accounts for a 

large proportion. In the past decades, the interests of study of boronic acid in medical 

application were increased a lot. For example, bortezomib, the dipeptide-boronic acid has 

been tried to use as proteasome inhibitor for treating relapsed multiple myeloma and 

mantle cell lymphoma as artificial sensors of sugars (Gupta, 2003). The function of boric 

acid as sugar sensors has a huge potential to be used in the area of industry, biology, and 

medical treatment because of the non-poisonous and environment friendly properties. 

Some other techniques of boric-acid including fluorescence, pH depression, colorimetry, 

electrochemistry and magnetic resonance imaging (MRI) were reported (Merbach, 2013).  
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To produce MOFs, the ligand must have at least two carboxylic groups on it to react 

with the metal salts. The ligands, 3,5-Dicarboxyphenylboronic acid (3,5, DCPBC) and 

3,5-Dicarboxyphenylboronic acid, pinacol ester (3,5, DCPBC, PE) were found and 

chosen. 3,5, DCPBC, PE was considered to use to protect the boronic acid groups during 

the process of synthesis.  

 

 

Figure 2.1-1 Molecular structure of 3,5-Dicarboxyphenylboronic acid (left) and 3,5-
Dicarboxyphenylboronic acid, pinacol ester (right). 

 

Many groups focused on synthesis of MOFs used zinc nitrate as one of the first 

several metal salts to try to synthesis new MOFs (Yaghi et al., 2002; Park et al., 2006) 

because it’s easy to bind with organic ligands. So we chose Zn(NO3)2�6H2O as one metal 

salt to try to synthesize the new MOF we want. Normally, perfect MOF samples have the 

appearance of crystals and can be seen by human eyes or under the microscope or very 

tiny microcrystals but looks pretty good. Like the Cu-BTC sample synthesized by our 

Lab, it obviously has the appearance of blue crystals.  
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Figure 2.1-2 Microscope image of Cu-BTC. 

 

However, when the synthesis process is finished, many impurities like the unreacted 

reactants or some other resultant will exist with MOFs. Especially for the initial period of 

trying to synthesize a new MOF, sometime there will be more impurities than MOF 

crystals in the sample. And if the MOF and impurities looks similar, it will be very hard 

to tell if the MOF is synthesized. For this reason, colored metal salts are preferred 

because they will make the synthesized MOF has color that is easy to be found in the 

impurities. And concerned about the properties of the metal ions, copper nitrate and 

cobalt nitrate were chosen because of their unique color. Normally Cu-based MOF will 

have a blue or green color and Co-based MOF will have a rose or purple color. The color 

will change with the valence state of the metal atoms.  

Concerned about the economic factors and the universality of the synthesis methods, 

hydrothermal/ solvothermal methods were used for trying to synthesis the boron-

containing MOF. 45mL Teflon-lined stainless steel hydrothermal reactors, which can 
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generate high-pressure environment when heated, were used and a heating furnace is 

used to heat the reactor. 

By using the hydrothermal/solvothermal method, the react conditions can be 

controlled were the temperature, heating time and the solvent decided to use in the 

reaction. Because MOF is a really big and complex area of study, there are no universal 

experiences of setting the react conditions of MOF synthesis. The react condition of 

synthesizing each kind of MOF is unique. So different reaction conditions need to be 

tested and then the range of reaction condition values will be narrowed by testing the 

qualities of samples. However, trying different reaction conditions blindly will be very 

low efficient and it’s not a scientific way to find the right way to synthesize new MOFs. 

The methods to produce the MOFs containing same metal salts and Ligands with similar 

structure were used references (Yaghi et al, 2002; Adhikari and Lin, 2014). The 

efficiency to approach our final goal was highly improved. 

 

2.2 Methodology 

2.2.1 Materials 

 All chemicals are commercially available and were used as received without 

further purification. Zinc nitrate hexahydrate (Sigma-Aldrich), cupper nitrate hydrate 

(Sigma-Aldrich), cobalt nitrate hexahydrate (Sigma-Aldrich), 3,5-

Dicarboxyphenylboronic acid (Combi-Blocks, 98%) and 3,5-Dicarboxyphenylboronic 

acid, pinacol ester (Combi-Blocks, 96%), N,N-dimethylformamide, DMF (Sigma-

Aldrich), N,N-Diethylformamide, DEF (TCI, > 99.0%), ethanol (Sigma-Aldrich, 92%), 
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Deionized water (Sigma-Aldrich), triethylamine  (Sigma-Aldrich) were used to 

synthesize the MOFs.  

2.2.2 Synthesis of Zn-, Cu- and Co-based 3,5 DCPBC MOF  

To test the influence of the metal salts and solvents to synthesis of the MOFs, the 

three kinds of metal salts, 0.5 mmol of zinc nitrate hexahydrate (Zn(NO3)2�6H2O) and 

Cupper (II) nitrate hydrate (Cu(NO3)2�xH2O) and cobalt nitrate hexahydrate 

(Co(NO3)2�6H2O) were fully dissolved into different solvents like DMF, DEF, ethanol 

and deionized water. Then added the Ligands, 3,5, DCPBC and 3,5, DCPBC, PE into the 

mixture. After that the resulting mixtures were transferred into 45mL Teflon-lined 

stainless steel reactors and heated under the temperatures of 100�, 120� and 150 for 72 

hours. After cooling down to room temperature, the generated solids are filtered and 

dried. Triethylamine was also added after ligands were dissolved in DMF to test the 

effects of alkaline in increasing the deprotonation of ligands (Manos, 2012).  

Sample # Metal salts/0.5mmol Ligands/0.5mmol Solvent/30mL 
Temp
eratur

e 
TEA 

1 Zn(NO3)2�6H2O 35DCPBC DMF 100� - 

2 Zn(NO3)2�6H2O 35DCPBC,PE DMF 100� - 

3 Zn(NO3)2�6H2O 35DCPBC DEF 100� - 

4 Zn(NO3)2�6H2O 35DCPBC,PE DEF 100� - 

5 Zn(NO3)2�6H2O 35DCPBC ethanol 100� - 

6 Zn(NO3)2�6H2O 35DCPBC,PE ethanol 100� - 

7 Zn(NO3)2�6H2O 35DCPBC water 100� - 

8 Zn(NO3)2�6H2O 35DCPBC,PE water 100� - 

9 Cu(NO3)2�xH2O 35DCPBC DMF 100� - 

10 Cu(NO3)2�xH2O 35DCPBC,PE DMF 100� 
- 
- 

11 Cu(NO3)2�xH2O 35DCPBC DEF 100� - 

12 Cu(NO3)2�xH2O 35DCPBC,PE DEF 100� - 

13 Cu(NO3)2�xH2O 35DCPBC ethanol 100� - 
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14 Cu(NO3)2�xH2O 35DCPBC,PE ethanol 100� - 

15 Cu(NO3)2�xH2O 35DCPBC water 100� - 

16 Cu(NO3)2�xH2O 35DCPBC,PE water 100� - 

17 Co(NO3)2�6H2O 35DCPBC DMF 100� - 

18 Co(NO3)2�6H2O 35DCPBC,PE DMF 100� - 

19 Co(NO3)2�6H2O 35DCPBC DEF 100� - 

20 Co(NO3)2�6H2O 35DCPBC,PE DEF 100� - 

21 Co(NO3)2�6H2O 35DCPBC ethanol 100� - 

22 Co(NO3)2�6H2O 35DCPBC,PE ethanol 100� - 

23 Co(NO3)2�6H2O 35DCPBC water 100� - 

24 Co(NO3)2�6H2O 35DCPBC,PE water 100� - 

25 Zn(NO3)2�6H2O 35DCPBC DMF 120� - 

26 Zn(NO3)2�6H2O 35DCPBC,PE DMF 120� - 

27 Zn(NO3)2�6H2O 35DCPBC DEF 120� - 

28 Zn(NO3)2�6H2O 35DCPBC,PE DEF 120� - 

29 Zn(NO3)2�6H2O 35DCPBC ethanol 120� - 

30 Zn(NO3)2�6H2O 35DCPBC,PE ethanol 120� - 

31 Zn(NO3)2�6H2O 35DCPBC water 120� - 

32 Zn(NO3)2�6H2O 35DCPBC,PE water 120� - 

33 Cu(NO3)2�xH2O 35DCPBC DMF 120� - 

34 Cu(NO3)2�xH2O 35DCPBC,PE DMF 120� - 

35 Cu(NO3)2�xH2O 35DCPBC DEF 120� - 

36 Cu(NO3)2�xH2O 35DCPBC,PE DEF 120� - 

37 Cu(NO3)2�xH2O 35DCPBC ethanol 120� - 

38 Cu(NO3)2�xH2O 35DCPBC,PE ethanol 120� - 

39 Cu(NO3)2�xH2O 35DCPBC water 120� - 

40 Cu(NO3)2�xH2O 35DCPBC,PE water 120� - 

41 Co(NO3)2�6H2O 35DCPBC DMF 120� - 

42 Co(NO3)2�6H2O 35DCPBC,PE DMF 120� - 

43 Co(NO3)2�6H2O 35DCPBC DEF 120� - 

44 Co(NO3)2�6H2O 35DCPBC,PE DEF 120� - 

45 Co(NO3)2�6H2O 35DCPBC ethanol 120� - 

46 Co(NO3)2�6H2O 35DCPBC,PE ethanol 120� - 

47 Co(NO3)2�6H2O 35DCPBC water 120� - 

48 Co(NO3)2�6H2O 35DCPBC,PE water 120� - 

49 Zn(NO3)2�6H2O 35DCPBC DMF 120� - 

50 Zn(NO3)2�6H2O 35DCPBC,PE DMF 150� - 
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51 Zn(NO3)2�6H2O 35DCPBC DEF 150� - 

52 Zn(NO3)2�6H2O 35DCPBC,PE DEF 150� - 

53 Zn(NO3)2�6H2O 35DCPBC ethanol 150� - 

54 Zn(NO3)2�6H2O 35DCPBC,PE ethanol 150� - 

55 Zn(NO3)2�6H2O 35DCPBC water 150� - 

56 Zn(NO3)2�6H2O 35DCPBC,PE water 150� - 

57 Cu(NO3)2�xH2O 35DCPBC DMF 150� - 

58 Cu(NO3)2�xH2O 35DCPBC,PE DMF 150� - 

59 Cu(NO3)2�xH2O 35DCPBC DEF 150� - 

60 Cu(NO3)2�xH2O 35DCPBC,PE DEF 150� - 

61 Cu(NO3)2�xH2O 35DCPBC ethanol 150� - 

62 Cu(NO3)2�xH2O 35DCPBC,PE ethanol 150� - 

63 Cu(NO3)2�xH2O 35DCPBC water 150� - 

64 Cu(NO3)2�xH2O 35DCPBC,PE water 150� - 

65 Co(NO3)2�6H2O 35DCPBC DMF 150� - 

66 Co(NO3)2�6H2O 35DCPBC,PE DMF 150� - 

67 Co(NO3)2�6H2O 35DCPBC DEF 150� - 

68 Co(NO3)2�6H2O 35DCPBC,PE DEF 150� - 

69 Co(NO3)2�6H2O 35DCPBC ethanol 150� - 

70 Co(NO3)2�6H2O 35DCPBC,PE ethanol 150� - 

71 Co(NO3)2�6H2O 35DCPBC water 150� - 

72 Co(NO3)2�6H2O 35DCPBC,PE water 150� - 

73 Co(NO3)2�6H2O 35DCPBC DMF 150� 
50µ
L  

74 Co(NO3)2�6H2O 35DCPBC DMF 150� 
100µ

L 

75 Co(NO3)2�6H2O 35DCPBC DMF 150� 
150µ

L 
Table 2.2.2 Selected MOF react conditions  

2.2.3 Characterization 

Powder X-ray diffraction analyses of all the samples were performed to characterize 

the crystalline phases by using (Panalytical X’ Pert Pro) with Pixcel detector using Ni-Kα 

radiation (λ=1.5406 Å). Textural properties of the samples were characterized. The BET 

specific surface area and cumulative pore volume were measured by TriStar II 3020 
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analyzer (Micromeritics) BET using Barret-Joyner-Halenda (BJH) model while the 

average pore diameter for the samples were calculated by density functional theory (DFT) 

method using the ASAP 2020 analyzer’s built-in software. Before the measurement, the 

samples were soaked in acetone and new acetone was exchanged every 24 hours for 3 

times and then the sample activation was carried out under evacuation at 150� for 12 

hours. 

2.3 Results and discussion 

From sample #75, purple crystals in colorless solution which was synthesized from 

adding Co(NO3)2�6H2O and 3,5, DCPBC and triethylamine in DMF were obtained.  

 

Figure 2.3-1: Optical microscope image of sample #73 
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Figure 2.3-2 powder XRD patterns of Co-based crystals sample #73 as synthesized. 

 

The powder XRD characterization shows that the crystals structures exist in the 

sample, but the background value indicate the exist of impurities. 
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Figure 2.3-3 N2 adsorption isotherms of sample #73. 
 

From the N2 adsorption isotherms curve it can be know the crystal is microporous 

material. The BET surface area of the sample is 313.9m2/g; the Langmuir surface area is 

393.16m2/g; the pore volume is 0.0452cm3/g and the average pore size is 27.593Å. The 

result shows the sample has the characters of porous materials. 

Large amounts of needle-shaped crystals were obtained in sample #55 and #63 were 

also obtained.  
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Figure 2.3-4 Optical microscope image of sample #55. 
 
 

 
Figure 2.3-5 Optical microscope image of sample #63. 

 
For the needle-shaped crystal obtained from synthesis of sample #55 and #63. The 

Figure2.4-1 shows the crystals are same and the samples are highly pure crystals. 
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Figure 2.3-6 powder XRD patterns of sample #55 and #63 needle-shaped crystals 
 

Single-crystal-XRD characterizations of the samples were carried out. The results of 

the characterization sent back showed that the crystal was not MOF but the crystal of 

isophthalic acid (IPA) because the unit cell size was too small. From the result it can be 

concluded that the bononic-acid functional groups would fall off from 3,5, DCPBC when 

heated in deionized water as solvent with the possibility that the Zn can Cu ions catalyzed 

the process of decomposition of the ligands. 

Compared sample #73 with sample #65, the reason that the crystals were obtained 

it’s possible the triethylamine accelerated the deprotonation process of the ligands before 

they react with the metal salts.  
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For the synthesis under the other react conditions we tried, no samples has the 

appearance of crystals and rest of the samples are amorphous solids and the samples are 

not crystals tested by powder x–ray diffraction (powder XRD) characterization. The 

influence of temperature to the MOFs in the range of 100~150� is not obvious. There 

are no obvious differences between the samples synthesized from using 3,5, DCPBC and 

3,5, DCPBC, PE under the same situation. 

 

Figure 2.3-7 Optical microscope image of sample #65. 
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CHAPTER 3  

CONCLUSTION AND FUTURE WORK 

 

The microporous Co-based 3,5, DCPBC MOF crystals were obtained through 

solvothermal route. From the characterizations of the Co-based MOF, we can know the 

sample contained impurities. The synthesis conditions will be tuned to get the MOFs with 

higher crystallinity. The activation will be optimized to improve the surface area of the 

MOF. The strategy of adding triethylamine to accelerate the process of deprotonation will 

be used to try to synthesis MOFs based on 3,5, DCPBC,PE and other metal salts.
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