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ABSTRACT

The rapid urban expansion has greatly extended the physical boundary of our living

area, along with a large number of POIs (points of interest) being developed. A POI

is a specific location (e.g., hotel, restaurant, theater, mall) that a user may find useful

or interesting. When exploring the city and neighborhood, the increasing number

of POIs could enrich people’s daily life, providing them with more choices of life

experience than before, while at the same time also brings the problem of “curse of

choices”, resulting in the difficulty for a user to make a satisfied decision on “where

to go” in an efficient way. Personalized POI recommendation is a task proposed on

purpose of helping users filter out uninteresting POIs and reduce time in decision

making, which could also benefit virtual marketing.

Developing POI recommender systems requires observation of human mobility

w.r.t. real-world POIs, which is infeasible with traditional mobile data. However,

the recent development of location-based social networks (LBSNs) provides such ob-

servation. Typical location-based social networking sites allow users to “check in” at

POIs with smartphones, leave tips and share that experience with their online friends.

The increasing number of LBSN users has generated large amounts of LBSN data,

providing an unprecedented opportunity to study human mobility for personalized

POI recommendation in spatial, temporal, social, and content aspects.

Different from recommender systems in other categories, e.g., movie recommen-

dation in NetFlix, friend recommendation in dating websites, item recommendation

in online shopping sites, personalized POI recommendation on LBSNs has its unique

challenges due to the stochastic property of human mobility and the mobile behavior

indications provided by LBSN information layout. The strong correlations between

geographical POI information and other LBSN information result in three major

human mobile properties, i.e., geo-social correlations, geo-temporal patterns, and
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geo-content indications, which are neither observed in other recommender systems,

nor exploited in current POI recommendation. In this dissertation, we investigate

these properties on LBSNs, and propose personalized POI recommendation models

accordingly. The performance evaluated on real-world LBSN datasets validates the

power of these properties in capturing user mobility, and demonstrates the ability of

our models for personalized POI recommendation.
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Chapter 1

INTRODUCTION

The rapid growth of cities has developed an increasing number of points of in-

terest (POIs), e.g., restaurants, theaters, stores, hotels, to enrich people’s life and

entertainment, providing us with more choices of life experience than before. Peo-

ple are willing to explore the city and neighborhood in their daily life and decide

“where to go” according to their personal interest and the various choices of POIs.

At the same time, making a satisfying decision efficiently among the large number of

POI choices becomes a touch problem for a user. To facilitate a user’s exploration

and decision making, POI recommendation has been introduced by location-based

services such as Yelp1 and Foursquare2. However, such recommendation models are

commonly based on majority users’ preference on POIs, which ignore a user’s personal

preference. Comparing to visiting places that best fit a user’s interest, visiting places

against a user’s taste may give him very terrible experience, especially in a situation

when the user travels to a new place. Therefore, personalized POI recommendation

is proposed to help users filter out uninteresting venues according to their own taste

and save their time in decision making.

1.1 Background

Before the Web 2.0 era, analyzing user’s mobility for personalized POI recommen-

dation is infeasible even the mobile devices are widely adapted with large amount of

cellphone-based GPS data available, as there is no indication of POI information from

1http://www.yelp.com
2http://foursquare.com
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the GPS data other than longitude and latitude records. For example, we could ob-

serve a set of locations in terms of longitude and latitude pairs that a user has been

to, while there is no easy way to figure out whether a specific pair of longitude and

latitude is corresponding to a restaurant, or a hotel, or just a point on highway, since

all these information are passively recorded by mobile devices.

With the developing of Web 2.0 technology, a number of location-based social

networking services, e.g., Foursquare, Yelp, and Facebook Places3, have emerged in

recent years, making the study of personalized POI recommendation possible. Typical

location-based social networking services maintain a large POI database and allow a

user to “check-in” at a POI with his smartphone regarding to his current physical

location. The user can also leave tips and share the “check-in” experience with his

online friends, along with creating the opportunity to make new friends. According to

a recent survey from the Pew Internet and American Life Project, over the past year

18% of smartphone owners use geosocial services to “check in” at certain locations and

share them with their friends, while this percentage has risen from 12% in 2011 [102].

Such rapid growth has led to the availability of a large amount of user mobility

data, promoting a new concept of online social media, namely location-based social

networks (LBSNs).

Location-based social networks not only refer to the social connections among

users, but also consist of the “location-based” context including geographical check-

in POIs, check-in time stamps, and check-in related content (e.g., tips, comments,

POI descriptions, etc.), as shown in Figure 1.1. Compared with other online social

networks that consist of user activities interacting with the virtual world, LBSNs re-

flect a user’s geographical action in the real world, residing where the online world and

real world intersect, therefore bridging the gap between the real world and the vir-

3http://www.facebook.com/about/location
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Figure 1.1: The Information Layout of Location-Based Social Networks

tual world, providing both opportunities and challenges for researchers to investigate

users’ check-in behavior for personalized POI recommendation in spatial (“where”),

temporal (“when”), social (“who”) and content (“what”) aspects.

In the last decade, recommender systems have been widely studied among various

categories, e.g., movie recommendation on NetFlix, dating recommendation on Zoosk,

item recommendation on Amazon. However, it is not sufficient to directly apply

these technologies as personalized POI recommendation on LBSNs presents unique

challenges due to the heterogeneous information layout and the specificity of human

mobility. Designing efficient POI recommendation approaches on LBSNs inevitably

needs to consider the following properties.
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1.1.1 Geographical Properties of Social Connections

Traditional social network analysis mainly studies network structure and proper-

ties without the consideration of geographical distance between nodes. Although the

idea of “Death of Distance” proposed in 2011 claims that geographical distance plays

a less important role due to the communication revolution and the rapid develop-

ment of the Internet, which could make of our world a “global village” [7], studies on

spatial structure of networks demonstrated that there is a strong correlation between

geographical attributes and network properties, indicating the significance of consid-

ering the spatial properties of networks for future applications [25]. Researchers have

further studied the distinctions between online and offline social networks [14], and

discovered that geographical property does play important roles when constructing

the social connection between two users especially in explaining their mobility in the

physical world[67, 13].

As two special factors on LBSNs, Geographical property and social connections

are coherent and affect each other in human behavior. For example, a user is more

likely to be friends with other users who are geographically close to him, e.g, co-

workers, colleagues. Likewise, a user may check-in at a location due to the influence

from his friends, such as following friends’ suggestions to visit a restaurant, going out

with friends for shopping, etc. Such coherence results in a new property, commonly

referred to as socio-spatial properties.

In recommender systems, user similarity evaluates how similar two users’ pref-

erences are, which is a significant measurement for recommendation especially so-

cial recommendation with collaborative filtering approaches. However, as discussed

above, unlike regular social recommender systems, social connections on LBSNs ex-

hibit unique geographical properties, providing a new dimension for computing user

4



similarity. Therefore, considering the social information together with the geographi-

cal property enables us to capture the user preferences more precisely in POI recom-

mendation on LBSNs.

1.1.2 Temporal Patterns of Geographical Check-ins

As suggested in [83, 12, 51], human geographical movement exhibits strong tem-

poral patterns and is highly relevant to the location property. For example, a user

regularly goes to a restaurant for lunch around 12:00 pm, watches movie on Friday

night, and shops during weekends. This is generally referred to as temporal cyclic

patterns. Such temporal patterns are not widely observed in other recommender sys-

tems. For instance, it is not common to observe a user regularly watching a specific

movie (e.g., Batman, Avatar) or purchasing a specific item (e.g., camera, cellphone)

at specific hour of the day, or day of the week. (Although birthdays or holidays like

Thanksgiving may affect human behavior a bit, they are not commonly considered).

On the other hand, the temporal information of check-in actions on LBSNs is also

considered as an order indicator to connect check-ins chronologically for generating

location trajectories [98, 48, 81]. This is commonly referred to as temporal chrono-

logical patterns. For example, a user may want to sip a cup of coffee at Starbucks

before he goes to office; or watch a move after dinner at a restaurant, and then relax

at a bar.

In addition, temporal cyclic patterns and temporal chronological patterns are

correlated to each other. Considering them together provides us a perspective to

understand human mobility in terms of where a user would like to go at a specific time

after his recent visits on other POIs. Thus, investigating the features embedded in

temporal patterns enables us to better capture human check-in behavior, providing a

potential opportunity to design more advanced POI recommender systems on LBSNs.

5



1.1.3 Semantic Indications of Check-in Content

Content information on LBSNs could be related to a user’s check-in action, pro-

viding a unique opportunity for POI recommendation. When checking-in at a POI, a

user may leave tips or comments to express his attitude towards the POI. Such con-

tent indicates abundant information w.r.t. the user’s interested topics and personal

preferences against various facets of the POI. For example, by observing a user’s com-

ment on a Mexican restaurant discussing its spicy food, we observe the User Interests

in spicy food. If the comment is actually a compliment, e.g., “Best spicy food ever!”,

we could infer both the user’s Sentiment Indications and her interests.

On the other hand, a POI is commonly associated with descriptive tags. Through

studying these tags, one can not only infer the POI’s property but also the interests of

users who have checked-in at this POI. For example, by observing a POI’s description

as “vegetarian restaurant”, we infer that the restaurant serves “vegetarian food” and

users who check-in at this POI might be interested in the vegetarian diet. This is an

example of POI Properties.

These three types of content information, i.e., POI properties, User Interests, and

Sentiment Indications, are all related to a user’s check-in actions and provide con-

ceptual interpretations to three facets of his check-in actions, as listed in Table 1.1.

In recommender systems, user interests and target properties are the two essential

elements in capturing a user’s action (e.g., check-in) on a target (e.g., POI) for recom-

mendation [36], while user assessment has also been recognized as an important factor

to gauge the check-in action for future recommendation [70]. Investigating them to-

gether makes it possible to infer how a user’s interests match a POI’s property and

whether the user prefers to visit that POI. Thus, content information on LBSNs

provides a conceptual perspective to investigate users’ check-in behavior, which in
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Table 1.1: Facets of Check-in Actions w.r.t. Content Information

Content Information Facets of Check-in Actions

POI Properties What is this POI about?

User Interests Am I interested?

Sentiment Indications How good is this POI?

turn constitutes the key factors of recommender systems, suggesting its potential for

improving POI recommendation.

1.2 Problem Statement

Let u = {u1, u2, ..., um} be the set of users and l = {l1, l2, ..., ln} be the set of

POIs where m and n are the numbers of users and POIs, respectively. The problem

of personalized POI recommendation on LBSNs is defined as:

Given a user u ∈ u, a set of POIs (locations) lu ∈ l that u has checked-in,

recommend him some POIs for his future visits based on the LBSN context (e.g.,

social connections, content information of check-ins, time stamps of check-ins) related

to him, as illustrated in Figure 1.2.

For ease of presentation, we use POI, venue, and location as interchangeable

terms in this dissertation. The recommendation algorithms discussed in this work

are designed for individuals. However, they can be easily extended for group recom-

mendation with aggregation strategies [91].

1.3 Contributions

The properties discussed above, i.e., geographical properties of social connections,

temporal patterns of geographical check-ins, and semantic Indications of check-in
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Figure 1.2: Illustration of Personalized POI Recommendation on LBSNs

Content, reveal the unique relationships of human behavior between geographical in-

formation and temporal, social, content information respectively, which are not com-

monly observed in other recommendation problems. In this dissertation, we study

each property, and propose personalized POI recommender systems correspondingly,

i.e., personalized geo-temporal recommendation, personalized geo-social recommen-

dation, and personalized geo-content recommendation. To the best of our knowledge,

this is the first work investigating these properties for POI recommendation on LB-

SNs. The contributions of our research are:

• Study the relationship between geographical check-ins and temporal informa-

tion, model the temporal cyclic patterns and chronological patterns of a user’s

check-in behavior, and propose geo-temporal POI recommender systems regard-

ing to these patterns with their complementary effect.

• Investigate the geo-social correlations of user check-in behavior to solve the

“cold-start” POI recommendation problem and propose personalized geo-social

POI recommender systems.

• Identify the challenges of analyzing semantic indications of content information

on LBSNs, propose models to leverage such information for personalized geo-

8



content POI recommendation.

1.4 Organization

The remainder of this dissertation is organized as follows. We first give a brief

literature review in Chapter 2. From Chapter 3 to Chapter 5, we investigate the three

LBSN properties to design personalized POI recommender systems. In Chapter 3,

we introduce the personalized POI recommender system with geo-social correlations.

We study the relationships between geographical distance and social friendships, and

investigate them as a component w.r.t various facets. In chapter 4, we propose per-

sonalized geo-temporal POI recommender system. We study both temporal cyclic

and temporal chronological patterns and their combinational effect. In Chapter 5, we

analyze the user-generated content and POI-associated content, and leverage three

types of content information including sentiment indications, user interests, and POI

properties for personalized geo-content POI recommendation. We conclude the dis-

sertation and point out promising research directions in Chapter 6.
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Chapter 2

LITERATURE REVIEW

In the last decade, recommender systems have been widely studied among various cat-

egories, e.g., movie recommendation on NetFlix, job recommendation on Linkedin,

item recommendation on Amazon, news recommendation on Yahoo. POI recom-

mendation, also referred to as location recommendation, has been recognized as an

essential task on recommender systems for enriching human life experience and fa-

cilitating decision making, which belongs to a sub-category of recommender systems.

Thus, technologies of general recommender systems are also practically applicable

to location recommendation, although the performance may be limited due to the

specific properties of human mobility on LBSNs. In the following sections, we first

give a literature review on general recommender systems, and then review techniques

of location-based recommender systems for personalized POI recommendation.

2.1 General Recommender Systems

Recommender systems refer to technologies that help users find items of interest

among a large amount of items by generating personalized recommendations [1]. The

techniques of recommender systems can be generally classified into three categories:

collaborative filtering, content-based, and hybrid models. Among them, collaborative

filtering (CF) is one of the most successful approaches, which has been proven effective

in practise [65, 71]. It requires a user-item rating matrix (i.e., user-location check-

in frequency matrix) as an input. The fundamental assumption of CF is that if two

users have similar behavior on the similar items (e.g., watching similar movies, buying

similar products, visiting similar restaurants, etc.,), they will most likely have similar
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behavior on other items in the future. In general, collaborative filtering approaches

can be further classified into memory-based CF and model-based CF. The memory-

based CF approach leverages the entire user-item rating matrix for recommendation,

which has been adopted in many commercial systems. According to whose similarity

it relies on to perform the recommendation, approaches contain user-based [29] and

item-based [65]. The idea of user-based CF is to capture a user u’s preference on

unvisited locations based on the preferences from K users most similar to him on

locations. As an example of POI recommendation, it generally contains three steps:

1. Select K most similar users to u as his neighborhood Nu.

2. Aggregate the preferences of users from N (u) on the locations not visited by u,

deem them as u’s preferences.

3. Rank u’s preferences on those unvisited locations and select the top N locations

for recommendation.

Analogously, item-based CF firstly finds K most similar locations and then cal-

culates a weighted average of their check-in frequency.

Memory-based collaborative filtering approaches are efficient and easy to adopt.

However, there are two shortfalls when it is applied to large-scale sparse data.

• Sparsity

In many real-world applications, the user-item matrix is usually very sparse

with a density of 10−4 to 10−5. Under sparse data, the similarity measured

from ratings (or check-in frequency) may not be reliable due to the insufficient

information observed [60]. In an extreme case of “cold-start” problem, a new

user who has no rating/check-in history would have the similarity value of 0 to

any other users.
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• Scalability

Memory-based CF makes use of the whole user-item matrix to perform rec-

ommendation, which requires a large storage space. In addition, the comput-

ing of nearest neighbor is also computationally inefficient when the number of

users/items is large.

Model based collaborative filtering approaches are proposed to address the above

issues. They leverage data mining and machine learning technologies to learn a model

from training data, and applies the model on test data to predict user interests on

different items. Various models are investigated in this category, including latent

factor models, classification/regression models, etc. Among all these models, latent

factor models such as the matrix factorization model have been widely used [10].

The basic idea of the matrix factorization approach is to assume that there are

certain latent factors related to both users’ interests and locations’ properties. As an

example of restaurant in POI recommendation, latent factors could be taste, quality,

environment, price, etc. These latent factors may dominate the occurrences of major

check-in actions, with each check-in happening as a result of the combinational effect

from a user’s interests and a locations’ property on these factors. For example, a user

who likes seafood and is concerned with dining environment may be interested in a

restaurant that serves fresh seafood with beautiful ocean view.

Classification/Regression-based recommender systems first generate training data

consisting of (user, item) pairs. Then, features for users and items are extracted to

construct the feature space. The observed (user, item) pair, i.e., a user has selected

that item, is assigned with a positive label, while the unobserved (user, item) pair is

assigned with a negative label. A classification/regression model is learned based on

the training data though certain learning models, e.g., logistic regression, Decision

Tree. To perform recommendation, the learned model is applied to a target pair of
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(user, item) and outputs the likelihood of this user’s interest in that item [54].

Hybrid CF makes use of information other than the user-item matrix, e.g., content

information, and combines CF with the content-based recommender systems. The

results from each recommender system are weighted and combined into a final result

for recommendation.

2.2 Personalized POI Recommendation

Existing work in POI recommendation contain generic approaches and personal-

ized approaches. In generic approaches, POIs are commonly recommended based on

their popularity [78, 8, 100], which is similar to some approaches in news recommen-

dation [2]. Thus, generic POI recommendation recommend the same POIs for every

user. In personalized approaches, recommendation is made according to a user’s per-

sonal preference; and different user receives recommendation of different POIs. Since

our dissertation focuses on the personalized approach, in the following, we review

several main methods of personalized POI recommendation.

2.2.1 Personalized POI recommendation with GPS data

The task of personalized POI recommendation is highly related to human mobility.

It was traditionally studied on mobile data, i.e., cellphone-based GPS data. In the

mobile era, cellphones have been widely used to facilitate humans’ life and communi-

cation. A user generally have his cell phone with him among most of the time. Thus,

cellphones can be considered as mobile sensors of human beings, while data collected

through these sensors could provide abundant information regarding human mobility.

Typical cellphone-based GPS data contains a set of time-stamped GPS points that a

user has been to, along with the mobile activities such as listening to music, gener-

ating bluetooth connections, browsing web pages, watching videos. Various existing
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work has done on such data to study the human mobility, which promote a set of

location-based applications including POI recommendation [72, 30, 5, 68, 61].

Due to the lack of mapping information between geo coordinates and specific real-

world POIs, a POI is usually determined by the stay points extracted from hundreds

of users’ GPS trajectory logs [100, 95]. A GPS trajectory is a sequence of time-

stamped latitude/longtitude pairs, which are collected repeatedly at intervals of a

short period (e.g., a few seconds). The stay points are geographical regions at which

a user spent sufficient long time, and thus are considered as POIs (locations).

Since content and social information is usually not available on such datasets, spa-

tial and temporal patterns are commonly adopted with collaborative filtering methods

to perform POI recommendation. Leung et al. [39] studied different user classes and

temporal preferences for collaborative location recommendation with a dynamic clus-

tering algorithm. Zheng et al. [97] proposed a HITS-based inference model which

takes into account both the location interests and users’ travel experience with a

tree-based hierarchical graph. Their recommendation effect was evaluated on a real-

world GPS data over one-year period. Ye et al. [87] investigate individual life patterns

from GPS data, which can be used for location prediction and recommendation. Ge

et al. [27] use collaborative filtering based approach to recommend locations and

travel packages with GPS trajectory data. Zheng et al. [99] proposed a recommen-

dation framework for location recommendation and friend recommendation with the

consideration of sequence property, region popularity, and hierarchical property of

geographical spaces.

Content information could be obtained in certain types of the GPS data. Zheng

et al. [94, 96, 95] proposed a user-centered collaborative location and activity filtering

approach to find like-minded users and similar activities at different locations with

tensor decomposition. The dataset is collected through voluntary users while user
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comments regarding to geographical visits are used. In tour recommendation [26, 47]

and tourist POI recommendation [35], content related to travel package or tourist

POIs, such as package description or POI attributes, are used to analyze users’ inter-

ested topics for POI recommendation.

Since GPS data is obtained from users’ cell phones through telecommunication

services, user privacy is a big concern which limits the data availability. Majority

users do not feel comfortable to share their mobile data even for research purposes.

Thus, GPS data usually contains a limited number of users over long period [17]. Gao

et al. [19] summarized the characterises and limitations of leveraging GPS data for

POI recommendation, as listed below.

• Small-Scale Mobility Data

Due to the user privacy concerns, cellphone-based GPS data generally con-

tain a small number of users, which usually cannot be public available. The

observations on such data may be biased due to certain factors such as region,

demography, gender, age, education. For generating statistically significant con-

clusions especially in big data era, more data are encouraged when analyzing

human mobility.

• Absence of Semantic Indications

GPS data store location information in terms of geographical coordinates, i.e.,

latitude and longitude. It is not straightforward to associate such coordinates

with real-world points of interests, e.g., restaurants, hotels, theaters, malls.

Generally, semantic information of locations is not available on GPS data. Al-

though one can use third-party library to map coordinates into POIs, it does

not work well on places with dense POIs, as it is difficult to distinguish POIs

close to each other based on geographical coordinates. Furthermore, even via
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observing that a user has stopped at a geographical point, it is not easy to

determine whether he was visiting the corresponding POI or just passing by.

• Insufficient Social Information

Social connections are not easily obtained from GPS data. Generally, social

connections can be inferred through the history of one’s phone calls, messages,

or bluetooth connections. However, it is difficult to collect this kind of data

due to the privacy concerns. There are work collecting social information on

GPS data through communication network or bluetooth network with a num-

ber of participated users who grant permissions [17, 40, 79]. However, social

information obtained in this way maybe in low quality. For example, bluetooth

may not be commonly used thus connections inferred through this way maybe

biased; users who have phone communications do not necessarily indicate their

friendships, not to mention that they share common interests of locations.

2.2.2 Personalized POI recommendation with LBSN data

With the rapid development of location-based social networking services, users

are able to check-in at real-world POIs and share such check-ins with their friends

through mobile devices, resulting in more abundant spatial, temporal, social, and

content information to improve personalized POI recommendation. Ye et al. [85]

introduced POI recommendation into LBSNs. Due to the strong correlations between

geographical distance and social connections discovered in previous work [12, 13, 67,

92, 22], current work on POI recommendation on LBSNs mainly focuses on leveraging

the geographical and social properties to improve recommendation effectiveness.

Techniques of personalized POI recommendation with geographical influence and

social connections mainly study these two elements separately, and then combine their

output together with a fused model. The social influence is usually modeled through
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friend-based collaborative filtering with either memory-based approaches [101] or

model-based approaches [84, 80, 49]. Ye et al. [86] investigated the geographical

influence with a power-law distribution. The hypothesis is that users tend to visit

places in short distance. Cho et al. [13] and Cheng [10] investigated the geographical

influence through a multi-center Gaussian model. Zhang et al. [93] proposed a Kernel

density estimation method to model the geographical influence without knowing a

specific type of distribution. All these work further combine the geographical influ-

ence with social influence through a fused model based on the sum rule or the product

rule for POI recommendation.

There are also work using joint model to study geographical influence and social

connections for personalized POI recommendation. Ying et al. [89] proposed a set

of features related to social factor, individual preference, and location popularity,

and utilized a regression-tree model to recommend POIs. Gao et al. [23] studied

the two factors as a component, named as geo-social correlations, to solve the POI

recommendation problem on LBSNs.

Among the current work on LBSNs, temporal information has also attracted much

attention from researchers. Ye et al. [83] introduced temporal dimension of daily

and weekly check-ins to identify the types of unknown geographic target on LBSNs.

Chang et al. [9] proposed a logistic regression model with observed temporal patterns

as one type of feature. POI recommendation with temporal effects mainly leverages

temporal cyclic patterns and temporal chronological patterns on LBSNs. Cheng et

al. [11] introduced the task of successive personalized POI recommendation in LBSNs

by embedding the temporal chronological patterns and localized regions into a matrix

factorization method. Gao et al. [22] used a Hierarchical Pitman-Yor language model

to capture the temporal chronological patterns with the consideration of power-law

distribution and short-term effect. Ye et al [82] studies the chronological patterns with
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a Hidden Markov model. For temporal cyclic patterns, Gao et al. [21] investigated

their properties in terms of temporal non-uniformness and temporal consecutiveness

with a matrix factorization model. Yuan et al. [90] incorporated both temporal cyclic

information and geographical information through a unified framework for time-aware

POI recommendation. Gao et al. [21] discovered the distribution of cyclic patterns

and proposed a Gaussian Mixture model for personalized POI recommendation.

Most recently, researchers have started exploring the content information on LB-

SNs for POI recommendation. Current work of content-aware POI recommendation

focuses on one of the three types of content information, i.e., POI-property content,

user-interest content, and user sentiment indications. Yang et al. [16] introduced senti-

ment information into POI recommendation and reported its better performance over

state-of-the-art approaches. Hu et al. [31] investigated the user-interest content from

Twitter and Yelp, and proposed a topic model for POI recommendation considering

both the spatial aspect and textual aspect of user posts. Liu et al. [43, 44] studied

the effect of POI-associated tags for POI recommendation with an aggregated LDA

model and matrix factorization method. Hu et al. [32] incorporated content infor-

mation into social correlations and proposed a topic model for POI recommendation.

Yuan et al [90] studied content information with its spatio-temporal patterns. Yin et

al. [88] investigated both personal interest and local preference in terms of item-based

content on LBSNs and EBSNs. All of this work focuses on one type of the content

information without considering the other two and their correlations.

18



Chapter 3

PERSONALIZED GEO-SOCIAL POI RECOMMENDATION

Geographical property and social connections are two special factors on LBSNs. The

geographical property reflects human behavior in real world, which distinguishes

location-based social networks from content-based social networks [66]. The explicit

social network information, which is generated by users through the “add friend” ac-

tion, distinguishes location-based social networks from cellphone data. On cellphone-

based GPS data, social information is commonly collected by user study [40, 17]

or inferred from communication networks through the calling/messaging actions or

bluetooth connections [79].

3.1 Defining Geo-Social Correlations

Researchers have investigated how geographical distance influences social net-

works, and how social networks influence human movement on LBSNs. One study

on three location-based social networking sites (Brightkite, Foursquare, and Gowalla)

discovers strong heterogeneity across users at different geographic scales of interac-

tions across social ties. The probability of a social tie between two users is roughly a

function of the geographical distance between them [67]. The study on LBSN data and

cell phone data reports that long-distance travel is more influenced by social friend-

ship while short-range human movement is not influenced by social networks [13].

More recently, the investigation [37] on twitter social network concluds that offline

geography still matters in online social networks, while one third of the users would

like to have their social links in other countries, which is consistent with the previous

findings in [42, 66]. Figure 3.1 and Figure 3.2 present the probability of a social tie
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Figure 3.1: Empirical Cumulative Distribution (CDF) of Geographic Distance be-

tween Users and between Friends([67])

between two users w.r.t. their geographical distance on three typical LBSN datasets.

It shows that users with short geographical distance are more likely to become friends

than users with long geographical distance. On the other hand, friends usually have

short geographical distance than non-friends.

The above influence between geographical distance and social networks is gener-

ally referred to as geo-social correlations. According to the different combinations

of geographical distance and social strength between two users, we define four geo-

social circles to represent four types of geo-social correlations, i.e., local friends SFD̄,

distant friends SFD, local non-friends SF̄ D̄, and distant non-friends SF̄D, as shown

in Table 3.1. Figure 3.3 illustrates a user’s “new check-in” behavior with the cor-

responding geo-social correlations. User u goes to the airport at t1, and then the

restaurant at t2 followed by the hospital at t3. When u performs a “new check-in”

at t4, i.e., the check-in POI does not belong to {L1, L2, L3}, it may be correlated to

those users that are from u’s four geo-social circles SFD̄, SFD, SF̄ D̄ and SF̄D, corre-

sponding to the four types of geo-social correlations. Investigating these four circles
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Figure 3.2: Probability of Friendship between Two Users w.r.t. Their Geographic

Distance ([67])
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Figure 3.3: The Geo-Social Correlations of New Check-in Behavior

enables us to study a user’s check-in behavior in four corresponding aspects: local

social correlation, distant social correlation, confounding, and unknown effect.
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Table 3.1: Geo-Social Correlations

F F̄

D̄ SFD̄: Local Friends SF̄ D̄: Local Non-friends

D SFD: Distant Friends SF̄D: Distant Non-friends

3.2 gSCorr: Location Recommendation with Geo-Social Correlations

To model the geo-social correlations of “new check-in” behavior, we propose

gSCorr, a recommendation model that generates the probability of a user u’s check-

in at a new POI l at time t, i.e., P t
u(l), as a combination of the four geo-social

correlations, as defined below,

P t
u(l) = Φ1P

t
u(l|SF̄ D̄) + Φ2P

t
u(l|SFD̄)

+ Φ3P
t
u(l|SFD) + Φ4P

t
u(l|SF̄D). (3.1)

where Φ1, Φ2 and Φ3 and Φ4 are four distributions that govern the strength of different

geo-social correlations, P t
u(l|Sx) indicates the probability of user u checking-in at POI

l that is correlated to u’s geo-social circle Sx.

3.2.1 Modeling Geo-Social Correlation Strengths

The modeling of Φ1, Φ2 and Φ3 and Φ4 is based on the observation of “new

check-in” distribution in Figure 3.4, which indicates that Φ1 is a real-valued and

differentiable increasing function, and Φ2 and Φ3 are fairly constant. The percentage

of new check-ins from SF̄D is not presented, since it can be deduced from the other
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Figure 3.4: Observed Social Correlations on New Check-ins

three. Therefore,

Φ1 = f(wTf t
u + b), 0 ≤ Φ1 ≤ 1

Φ2 = (1− Φ1)φ1

Φ3 = (1− Φ1)(1− φ1)φ2

Φ4 = (1− Φ1)(1− φ1)(1− φ2), (3.2)

where f t
u is a check-in feature vector of a single user u at time t, w is a vector of the

weights of f t
u, and b controls the bias. In this work, we define a user’s check-in and

social features f t
u in Table 3.2.

Based on above definitions, we can rewrite the probability P t
u(l) in Eq. (3.1) as
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Table 3.2: Check-in and Social Features

Features Description

N c Number of check-ins in u’s history

Nnc Number of new check-ins in u’s history

NFD̄ Number of friends in SFD̄

N c
F D̄

Number of check-ins from SFD̄

Nuc
F D̄

Number of unique check-ins from SFD̄

Nvc
F D̄

Number of visited check-ins from SFD̄

Nuvc
F D̄

Number of visited unique check-ins from SFD̄

NFD Number of friends in SFD

N c
FD Number of check-ins from SFD

Nuc
FD Number of unique check-ins from SFD

Nvc
FD Number of visited check-ins from SFD

Nuvc
FD Number of visited unique check-ins from SFD

NF̄ D̄ Number of users in SF̄ D̄

N c
F̄ D̄

Number of check-ins from SF̄ D̄

Nuc
F̄ D̄

Number of unique check-ins from SF̄ D̄

Nvc
F̄ D̄

Number of visited check-ins from SF̄ D̄

Nuvc
F̄ D̄

Number of visited unique check-ins from SF̄ D̄
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shown below,

P t
u(l) = f(wT f tu + b)P t

u(l|SF̄ D̄)

+
(
1− f(wT f tu + b)

)
φ1P

t
u(l|SFD̄)

+
(
1− f(wT f tu + b)

)
(1− φ1)φ2P

t
u(l|SFD)

+
(
1− f(wT f tu + b)

)
(1− φ1)(1− φ2)P

t
u(l|SF̄D). (3.3)

3.2.2 Modeling Geo-Social Correlation Probabilities

To capture the geo-social correlation probabilities P t
u(l|Sx), three geo-social cor-

relation measures are proposed considering the factors of location frequency, user

frequency and user similarity, as described below,

• Sim-Location Frequency (S.Lf)

P t
u(l|Sx) =

∑
v∈Sx

s(u, v)N t
v(l)∑

v∈Sx
s(u, v)N t

v

, (3.4)

where s(u, v) is the user similarity between user u and user v. N t
v(l) represents

the number of check-ins at POI l by user v before time t, and N t
v the total

number of POIs visited by user v that user u has not visited before time t .

• Sim-User Frequency (S.Uf)

P t
u(l|Sx) =

∑
v∈Sx

δtv(l)s(u, v)∑
v∈Sx

s(u, v)
, (3.5)

where δtv(l) equals to 1 if user v has checked in at l before t, and 0 otherwise.

• Sim-Location Frequency & User Frequency (S.Lf.Uf)

P t
u(l|Sx) =

∑
v∈Sx

s(u, v)N t
v(l)∑

v∈Sx
s(u, v)N t

v

∑
v∈Sx

δtv(l)

NSx

, (3.6)
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3.2.3 Parameter Inference

With the definitions described in the last section, we discuss the process of infer-

ring the parameters defined in Eq. (3.3). We define (u, l, t) as a check-in action at

location l performed by user u at time t, the likelihood of the observation over the

whole data set is the product of the probability of each (u, l, t) action, defined as:

P (C|Θ) =
∏

(u,l,t)∈C
P t
u(l), (3.7)

where C is the set of all the observed (u, l, t) actions, and Θ is the parameter set

consisting of w, b, φ1, φ2. We learn these parameters through maximum likelihood,

which is equivalent to the following minimization problem:

min
∑

(u,l,t)∈C
−lnP (C|Θ)

+ λ(||w||22 + ||b||22 + ||φ1||22 + ||φ2||22) (3.8)

where parameter λ controls the quadratic regularized term to avoid overfitting. In

this work, we set the value of λ as 0.05, and get the objective function below,

min
∑

(u,l,t)∈C
−ln

(
f(wT f tu + b)P t

u(l|SF̄ D̄)

+
(
1− f(wT f tu + b)

)
φ1P

t
u(l|SFD̄)

+
(
1− f(wT f tu + b)

)
(1− φ1)φ2P

t
u(l|SFD)

+
(
1− f(wT f tu + b)

)
(1− φ1)(1− φ2)P

t
u(l|SF̄D)

)

+ λ(||w||22 + ||b||22 + ||φ1||22 + ||φ2||22)

s.t. 0 ≤ φ1 ≤ 1, 0 ≤ φ2 ≤ 1 (3.9)

We take the projected gradient method [6] to solve Eq. (3.9). The basic idea is to

update each current parameter towards an optimal direction (determined by the first
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derivative of the objective function) with an appropriate step size in each learning

step. In each step, if the parameter value runs out of the constraints (e.g., 0 ≤

φ1 ≤ 1, 0 ≤ φ2 ≤ 1), we project it back to the corresponding range. The process

will go iteratively to update the parameters until convergence. As shown below, the

parameters are updated as,

w ← w − γw∇w

b ← b− γb∇b

φ1 ←





0 φ1 − γφ1∇φ1 < 0

1 φ1 − γφ1∇φ1 > 1

φ1 − γφ1∇φ1 else

φ2 ←





0 φ2 − γφ2∇φ2 < 0

1 φ2 − γφ2∇φ2 > 1

φ2 − γφ2∇φ2 else

(3.10)

where γw, γb, γφ1 and γφ2 are learning step sizes, which are chosen to satisfy

Goldstein Conditions [53]. ∇w, ∇b, ∇φ1 and ∇φ2 are the partial derivatives of the

objective function in Eq. (3.9) with respect to w, b, φ1 and φ2 respectively,

∇w = 2λw−
∑

(u,l,t)∈C

B

A

e1
(1 + e1)2

ftu

∇b = 2λb−
∑

(u,l,t)∈C

B

A

e1
(1 + e1)2

∇φ1 = 2λφ1 −
∑

(u,l,t)∈C

(1− Φ1)

A
C

∇φ2 = 2λφ2 −
∑

(u,l,t)∈C

(1− Φ1)(1− φ1)

A
D (3.11)
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where

e1 = e−(wT f tu+b)

A = Φ1P
t
u(l|SF̄ D̄) + (1− Φ1)φ1P

t
u(l|SFD̄)

+ (1− Φ1)(1− φ1)φ2P
t
u(l|SFD)

+ (1− Φ1)(1− φ1)(1− φ2)P
t
u(l|SF̄D),

B = P t
u(l|SF̄ D̄)− φ1P

t
u(l|SFD̄)− (1− φ1)φ2P

t
u(l|SFD)

− (1− φ1)(1− φ2)P
t
u(l|SF̄D)

C = P t
u(l|SFD̄)− φ2P

t
u(l|SFD)− (1− φ2)P

t
u(l|SF̄D)

D = P t
u(l|SFD)− P t

u(l|SF̄D) (3.12)

3.3 Evaluating gSCorr

In this work, we evaluate the performance of our proposed geo-social correlation

model gSCorr. In particular, we evaluate the following: (1) how well the proposed

geo-social correlation measures capture the geo-social correlation probabilities; (2)

how the geo-social correlation strengths and measures affect the cold-start check-in

behavior; and (3) whether social correlations help cold-start location recommenda-

tion. Before we delve into experiment details, we first discuss an LBSN dataset and

experiment settings.

3.3.1 Data Collection

We use a Foursquare dataset to study the geo-social correlations of check-in be-

havior on location-based social networks. Foursquare is one of the most popular

online LBSNs. It has more than 45 million members as of January, 20141 and keeps

growing every month. The web site itself does not provide a public API to access

1https://foursquare.com/about
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Figure 3.5: The User Distribution over the World

users’ check-in data, however, it provides an alternative way for users to link their

twitter accounts with Foursquare, and then pop out the check-in messages as tweets

to Twitter. Previous work [67, 22] uses this way to collect the data from Twitter

for studying check-in behavior. Similarly, by getting access to the check-in tweets

through the Twitter REST API, we collected public Foursquare check-in data from

January 2011 to December 2011. We also collected the user friendships and home-

town information through Foursquare. Note that the friendships on Foursquare are

undirected. The statistics of the final dataset are shown in Table 3.3. The user

distributions w.r.t. the world and the USA are given in Figure 3.5 and Figure 3.6.

3.3.2 Experiment Setup

We test our proposed model gSCorr on the data of each month from July to

December respectively, with the corresponding training data from the previous 6
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Figure 3.6: The User Distribution over the USA

months to learn our model parameters as in Eq. (4.5). For example, when testing

gSCorr on September data, we use the data from March to August to train our

recommendation model.

For each month from July to December, we construct its test set and ground

truth based on the observation of their corresponding cold-start check-in distribu-

tions in four geo-social circles. Table 3.4 lists detailed statistical information of the

observed cold-start check-in distribution in four geo-social circles on the check-in data

in July. Due to the space limit, we do not present the statistical information from

the other months since they all have the similar distributions. We define “Social

Co-occurrence Check-ins” (SCCs) as the cold-start check-ins whose check-in

locations can be found from the user’s different social circles before its checking in

time. The check-in data in July contains 213,702 check-ins, with 77,581 cold-start

check-ins performed at the locations that have never been visited before (the July

test data is a closed set in the sense that it does not consider the historical check-ins
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before July, as the same as the test data from other months). Among the 77,581

cold-start check-ins, around 44.5% SCCs can be found from the SF̄ D̄, 7.26% from

SFD̄, 4.62% from SFD and 50.82% from SF̄D. Only 10.61% SCCs are from a user’s

direct friendship circle. In other words, only 8,235 among 77,581 cold-start check-ins

co-occurred with check-ins of the user’s friendships. SF̄ D̄ has a large proportion of

co-occurrences, indicating that user would like to go to a new location where his local

non-friends in the state usually go. The number of SCCs of SF̄ D̄ ∪SFD̄ ∪SFD doesn’t

increase much compared to SF̄ D̄, indicating that local non-friends have already cov-

ered most of the co-occurrences. Finally, we found that more than 50% of SCCs are

correlated to SF̄D, which is difficult to capture for location prediction as the unknown

effect. Note that there are 2.2% “Others”, indicating that at the time of check-in,

1,672 cold-start check-ins cannot be found from any of the four social circles. We

consider this as an unknown effect and merge it into SF̄D.

We use location recommendation to evaluate our correlation measures and model

performance. User similarities are computed based on the check-in data in the first

half year by cosine similarity, while each user is represented by a check-in vector, and

the entry in the vector indicates the visiting frequency of the user at the location.

For each test month, the test set is selected as the SCCs of SF̄ D̄ ∪ SFD̄ ∪ SFD, and

the ground truth is the corresponding check-in locations. We do not consider SF̄D

because from a user’s perspective, friends and local non-friends are the ones that are

reachable, while the distant non-friend users are too weak in relation.

3.3.3 Geo-Social Correlation Measure Selection

Before we discuss the performance of our proposed model gSCorr, we first eval-

uate the 3 geo-social correlation measures. Each measure can be directly applied to

the test set and generates a ranking list of location probabilities P t
u(l|Sx) with re-
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Table 3.3: Statistical Information of the Dataset

Duration Jan 1, 2011-Dec 31, 2011

No. of users 11,326

No. of check-ins 2,290,997

No. of unique locations 187,218

No. of links 47,164

Average check-ins per user 202

Clustering coefficient 0.1560

Average degree 8.33

Table 3.4: Statistical Information of the July Data

Social Circle No. of SCCs Ratio

SF̄ D̄ 34,523 44.50%

SFD̄ 5,636 7.26%

SFD 3,588 4.62%

SF̄D 39,423 50.82%

Others 1,672 2.2%

SF̄ D̄ ∪ SFD̄ 35,277 45.47%

SF̄ D̄ ∪ SFD 35,784 46.12%

SFD̄ ∪ SFD 8,235 10.61%

SF̄ D̄ ∪ SFD̄ ∪ SFD 36,486 47.03%
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spect to the geo-social circles. We select the location with the highest P t
u(l|Sx) as

recommended location for the cold-start check-in, and evaluate the performance with

accuracy. The purpose of this comparison is to select the best correlation measure

for each geo-social circle, and utilize the most suitable ones for P t
u(l|Sx) in Eq. (3.1).

The results are shown in Table 3.5, Table 3.6, and Table 3.7 with some observations

summarized below:

• S.Lf.Uf is the best measure for capturing the social correlations of local friends

SFD̄. It also performs well on the other two geo-social circles especially on SFD̄.

It considers the user frequency, location frequency and user similarities together,

and obtains 1% relative improvement compared to the second best rated (S.LF),

and 24.88% relative improvement compared to the worst rated (Uf).

• S.Lf shows good performance in capturing the social correlations of distant

friends SFD. It considers the location frequency and user similarity without the

user frequency. One possible reason of this may be due to the smaller number

of distant friends (2.68 per user on average) compared with the number of local

friends (5.64 per user on average), which makes it a weak measure by counting

the user frequency of distant friends.

• The performance on SF̄ D̄ indicates that its best correlation measure is S.Uf,

suggesting that a user would like to go to a location that has been visited by a

large proportion of local non-friend users, no matter how frequently the location

is visited by each individual user. This is consistent to the confounding effect

that people who live in similar environment tend to share similar behavior,

which is exactly the geo-social circle SF̄ D̄ supposed to capture.

Due to the varied performances of each correlation measure on each geo-social circle,

we conclude that measure selection is necessary for computing geo-social correla-
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Table 3.5: Location Recommendation for Measure Selection on SFD̄

Ranking Strategy
SFD̄

Jul Aug Sep Oct Nov Dec

S.LF 6.30% 6.73% 6.99% 7.32% 7.04% 7.90%

S.UF 5.38% 5.83% 5.77% 5.97% 5.96% 6.58%

S.LF.UF 6.51% 6.85% 7.02% 7.37% 7.11% 7.76%

Table 3.6: Location Recommendation for Measure Selection on SFD

Ranking Strategy
SFD

Jul Aug Sep Oct Nov Dec

S.LF 3.65% 3.52% 4.15% 4.63% 4.37% 4.91%

S.UF 3.14% 3.00% 3.43% 3.86% 3.76% 4.01%

S.LF.UF 3.64% 3.57% 4.19% 4.56% 4.31% 4.64%

tion probabilities. Hence, we apply S.Lf.Uf, S.Lf and S.Uf to compute P t
u(l|SFD̄),

P t
u(l|SFD) and P

t
u(l|SF̄ D̄) respectively in the following experiments, considering their

good performance on the corresponding geo-social circles. We do not report the re-

sults on SF̄D, since for the unknown effect P t
u(l|SF̄D), all the measures applied to SF̄D

perform as a random guess in our experiment, one possible reason may be the large

number of users and candidate locations within this geo-social circle. Therefore, to

reduce the time complexity, we consider P t
u(l|SF̄D) as a probability of a random jump

to a location in current location vocabulary that user u has not checked-in before.

3.3.4 Performance of gSCorr

We compare gSCorr with four baselines, one is from the observation of the mea-

sure selection, and the other three are selected as the existing most popular location
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Table 3.7: Location Recommendation for Measure Selection on SF̄ D̄

Ranking Strategy
SF̄ D̄

Jul Aug Sep Oct Nov Dec

S.LF 17.84% 18.75% 18.60% 19.56% 19.72% 22.38%

S.UF 18.37% 19.40% 19.45% 20.21% 20.34% 22.82%

S.LF.UF 17.75% 18.86% 18.80% 19.74% 20.10% 22.34%

recommendation model on LBSNs.

• S.LF.UF: We select S.LF.UF to capture geo-social correlations and predict

cold-start check-ins. It performs well on all the geo-social circles from Table 3.5

to Table 3.7, and achieve the best performance on SFD̄ and many times on SFD̄.

We apply it to the whole test set to predict the cold-start check-ins.

• Periodic & Social Mobility Model (PSMM): PSMM ranks the locations

based on a user’s periodic and social patterns [13]. Since the periodic pat-

terns can only recommend existing locations, we adopt the social patterns to

recommmend the cold-start check-ins.

• Social-Historical Model (SHM): SHM integrates a user’s historical ties

and social ties to recommend/predict the next check-in location [22]. Similar to

PSMM, we leverage the social model which utilizes the social ties to recommend

cold-start check-in locations.

• Collaborative Filtering (CF): CF is a state-of-the-art approach for recom-

mender systems. It computes a user’s interest in a location based on other

users’ interests in that location. Since it can recommend new locations to a

user, we apply it to each test case of our test set and consider that a correct
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recommendation happens when the recommended location is the same as the

ground truth of the test case. We choose user-based collaborative filtering for

such recommendation [71] as shown below:

P t
u(l) =

∑
v∈U s(u, v)rv,l∑
v∈U s(u, v)

. (3.13)

where U is the set of users who have visited l, rv,l is the preference of user v on

location l, which in our experiment is chosen as proportional to number of v’s

check-ins on l normalized by v’s total number of check-ins, i.e., Nt
v(l)
Nt

v
.

The results are shown in Table 3.8, we summarize several interesting observations

as listed below:

• Both PSMM and SHM do not perform well in recommending the cold-start

check-in locations. SHM performs better than PSMM, but still only achieve a

low accuracy. They recommend a user’s next location based on the observation

of his friends’ check-in history. The performance indicates that a user does not

follow his friends’ check-in sequence a lot on LBSNs, especially when performing

a cold-start check-in.

• CF has comparable performance with S.LF.UF. Applying S.LF.UF to the

whole test set is actually similar to user-based collaborative filtering, resulting in

a close performance to S.LF.UF according to Table 3.8. This also demonstrates

the practicability of our proposed correlation measures.

• gSCorr performs the best among all the approaches. To demonstrate the sig-

nificance of its improvement over other baseline methods, we launch a random

guess approach to recommend the cold-start check-ins. The recommendation

accuracy of the random guess is always below 0.005%, indicating that gSCorr

significantly improves the baseline methods.
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Table 3.8: Performance Comparison for Location Recommendation

Dataset Jul Aug Sep Oct Nov Dec

S.LF.UF 18.31% 19.58% 19.71% 20.79% 21.10% 23.53%

PSMM 1.04% 1.19% 1.24% 1.22% 1.26% 1.23%

SHM 5.30% 5.08% 5.39% 5.65% 5.03% 5.58%

CF 18.24% 19.57% 19.45% 20.74% 20.84% 23.59%

gSCorr 19.21% 20.25% 20.36% 21.26% 21.42% 24.13%

3.3.5 Effect of Geo-Social Correlation Strengths and Measures

To further evaluate gSCorr, we consider the effect of both geo-social correla-

tion strength and measures in capturing the user’s “new check-in” behavior. There-

fore, we set up five baselines to compare the POI recommendation performance with

gSCorr, as shown in Table 3.9. Each baseline adopts a different combination of

correlation strength and measures, where “Es”, “Rs”, “Vs”, “Sm”, “Vm” represent

“Equal Strength” (set all geo-social correlation strengths as 1), “Random Strength”

(randomly assign the geo-social correlation strengths), “Various Strength” (the same

as gScorr), “Single Measure” (use S.Lf.Uf to measure the correlation probabilities for

all the geo-social circles) and “Various Measures” (the same as gScorr) respectively.

Note that gSCorr is a various strength and various metrics approach. Following the

evaluation metrics of recommendation system, we use top-k accuracy as evaluation

metric and set k = 1, 2, 3 in the experiment. For each random strength approach

(RsSm and RsVm), we run 30 times and report the average accuracy.

Table 3.10 shows the detailed recommendation performance of each method for

further comparison. We summarize the essential observations below:

• The geo-social correlations from different geo-social circles contribute variously
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Table 3.9: Evaluation Metrics

Single Measure Various Measures

Equal Strength EsSm EsVm

Random Strength RsSm RsVm

Various Strength VsSm gSCorr

to a user’s check-in behavior. Both VsSm and gSCorr perform better than

their equal strength versions (i.e., EsSm and EsSm), respectively, indicating

that the geo-social correlations are not equally weighted.

• The randomly assigned strength approaches (RsSm and RsVm) perform the

worst compared to the other approaches, where the performance of VsSm has

a 10.50% relative improvement over RsSm , and gSCorr has a 26.11% relative

improvement over RsVm , indicating that social correlation strengths do affect

check-in behavior.

• The single metric approaches (EsSm , RsSm , VsSm) always perform worse

than the various metrics approaches (EsVm , RsVm , gSCorr), suggesting

that for different social circles, there are different suitable correlation metrics.

gSCorr performs the best among all the approaches. To demonstrate the signifi-

cance of its improvement over other methods, we launch a random guess approach to

recommend the “cold-start” check-ins. The prediction accuracy of the random guess

is always below 0.005% for top-1 prediction, and below 0.01% for top-2 and top-3

prediction, indicating that gSCorr significantly improves the baseline methods, sug-

gesting the advantage of gSCorr as considering different geo-social correlation strength

and metrics for each geo-social circle.
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Table 3.10: POI Recommendation with Different Geo-Social Correlation Strengths

and Measures

Methods Top-1 Top-2 Top-3

EsVm 17.88% 24.06% 27.86%

EsSm 16.20% 21.92% 25.43%

VsSm 16.49% 22.28% 25.92%

RsSm 14.93% 20.30% 23.70%

RsVm 15.23% 20.85% 24.50%

gSCorr 19.21% 25.19% 28.69%
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Chapter 4

PERSONALIZED GEO-TEMPORAL POI RECOMMENDATION

In this section, we study the geo-temporal patterns for personalized POI recommen-

dation on LBSNs. Temporal information is closely associated with the geographical

check-ins. Figure 4.1 illustrates a user’s check-in history at various POIs with check-

in time stamps. The temporal information embedded in these check-ins indicates two

types of temporal patterns, temporal cyclic patterns and temporal chronological pat-

terns. Firstly, the time stamps indicate the cyclic patterns (e.g., hour of the day, day

of the week) of a user’s check-in behavior. Secondly, the time stamps work as an order

indicator to connect check-in POIs chronologically for generating a user’s historical

location trajectories. In the following sections, we investigate each pattern individ-

ually, and discuss their complementary effect for personalized POI recommendation.

4.1 Temporal Cyclic Patterns

As suggested in [83, 12, 51], human geographical movement exhibits significant

temporal cyclic patterns on LBSNs and is highly relevant to the location property,

Figure 4.1: Geo-Temporal Patterns of Check-in Behavior
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Figure 4.2: Daily Check-in Activities on LBSN

while the daily pattern (hours of the day) is one of the most fundamental patterns

that reflects a user’s mobile behavior. For example, a user may regularly arrive to

the office around 9:00 am, go to a restaurant for lunch at 12:00 pm, and watch

movies at night around 10:00 pm. Therefore, investigating the features embedded in

daily patterns enables us to better understand human mobile behavior, providing a

potential opportunity to design more advanced POI recommender systems on LBSNs.

4.1.1 Temporal Non-uniformness and Consecutiveness

Previous work reports that a user’s preferences change continuously over time [74,

24], indicating two temporal properties of a user’s daily check-in preferences: (1)

non-uniformness: a user exhibits distinct check-in preferences at different hours

of the day; and (2) consecutiveness: a user tends to have more similar check-in

preferences in consecutive hours than in non-consecutive hours. Figure 4.2 plots an

illustrative example of a user’s aggregated check-in activities on his top 5 most visited

POIs over 24 hours on our LBSN data. Each cell represents the total number of check-

in activities happened at a specific POI during the corresponding hour, colored from

black (least active) to white (most active). The user’s check-in behavior presents a

different check-in POI distribution at each hour, which changes continually over time.

The temporal non-uniformness property, i.e., a user exhibits distinct check-in pref-
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erences at different hours of the day, is straightforward to evaluate with a two-sided

hypothesis testing on the check-in behavior of two temporal states for each user. Ex-

periments show that this property does hold in the LBSN dataset. Due to the space

limit, I will ignore its evaluation details and focus on evaluating the temporal con-

secutiveness. Firstly, define the check-in similarity of a user between two temporal

states ti and tj as:

simu(ti, tj) =
Cti(u, :) ·Ctj (u, :)

|Cti(u, :)|2 × |Ctj (u, :)|2
, (4.1)

where Ct(u, :) is the check-in vector of user u at temporal state t. | • |2 is the 2-norm

of a vector.

To evaluate the temporal consecutiveness, we calculate two similarities for each

user u, i.e., consecutive similarity Sc(u) and non-consecutive similarity Sn(u). Sc(u)

is the average similarity of all simu(ti, tj) where ti and tj are consecutive temporal

states. Note that T temporal states have in total T consecutive temporal similarities,

i.e., simu(t1, t2), simu(t2, t3),..., simu(T − 1, T ), and simu(T, 1). Similarly, Sn(u) is

the average similarity of all simu(ti, tj) where ti and tj are non-consecutive temporal

states. For fairly comparison, we randomly sample T non-consecutive temporal sim-

ilarities simu(ti, tj) to ensure that both Sc(u) and Sn(u) have the same sample size,

and then take the average for calculating Sn(u).

We conduct a two-sample t-test on vectors Sc and Sn. The null hypothesis is H0:

Sc ≤ Sn, i.e., check-ins between consecutive temporal states are less or equally similar

than that between non-consecutive temporal states, and the alternative hypothesis is

H1: Sc > Sn. In our experiment, the null hypothesis is rejected at significant level

α = 0.001 with p-value of 5.6e-191, i.e., a user’s check-in in two consecutive temporal

states have higher similarity than that in non-consecutive temporal states.
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4.1.2 POI Recommendation with Geo-Temporal Patterns

To the best of our knowledge, these properties have not been exploited for POI

recommendation on LBSNs. Furthermore, the large-scale check-in data on LBSNs is

usually very sparse due to the user-driven check-in property [67, 55, 22]. To solve

large-scale recommendation problems, matrix factorization is state-of-the-art tech-

nology that has been proven to be successful in the Netflix Competition [36], and

is being used for item recommendation and trust prediction on product review sites

like Epinions and Ciao for research purposes [73, 74]. Therefore, in this section, we

leverage the temporal cyclic patterns on LBSNs with low-rank matrix factorization

for POI recommendation.

A Basic POI Recommendation Model

We first introduce a basic POI recommendation model based on low-rank matrix

factorization without considering temporal effects. Let u = {u1, u2, ..., um} be the

set of users, and l = {l1, l2, ..., ln} be the set of POIs, where m and n denote the

number of users and POIs, respectively. C ∈ R
m×n is a user-POI matrix with each

element Cij representing the number of check-ins made by user ui at POI lj . Let

U ∈ R
m×d be the user check-in preferences and L ∈ R

n×d be the POI characteristics,

with d≪ min(m,n) being the number of latent preference factors. The basic location

recommendation model approximates ui’s check-in preference on an unvisited lj via

solving the following optimization problem:

min
Ui≥0,Lj≥0

m∑

i

n∑

j

Wij(Cij −UiL
⊤
j )

2, (4.2)

where W ∈ R
m×n is a check-in indicator matrix, Wij = 1 indicating that ui has

checked in at lj, Wij = 0 otherwise.
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After obtaining Ui and Lj , the missing value in C, represented as C̃ij , indicating

the preference of a user ui at an unvisited POI lj , is then approximated by UiL
⊤
j .

To avoid over-fitting, two smoothness regularizations are added on Ui and Lj respec-

tively. Eq.(5.1) can then be represented in matrix format as

min
U≥0,L≥0

‖W⊙ (C−UL⊤)‖2F + α‖U‖2F + β‖L‖2F , (4.3)

where α and β are non-negative parameters to control the capability of U and L.

⊙ is the Hadamard product operator, where (A ⊙ B)i,j = Ai,j × Bi,j. || · ||F is the

Frobenius norm of a matrix.

Modeling Temporal Non-uniformness

According to the temporal property of non-uniformness as described above, users

exhibit distinct check-in preferences at different hours of the day. This inspires us to

consider a user’s check-in behavior as a set of time-dependent check-in preferences,

with each preference corresponding to an hour of the day. To model this property,

we first introduce temporal state t ∈ [1, T ] to represent the hour of the day, where

T = 24 is the total number of temporal states. For example, t = 1 for check-in time

at “2012-10-24 00:30:00pm”, indicating the check-in happens during hour 0 to 1.

We then define Ut ∈ R
m×d as the time-dependent user check-in preferences under

temporal state t. As observed in [83], POI characteristics are inherent properties that

do not change much as time goes by. Therefore, we define POI characteristics to be

time-independent, denoted as L ∈ R
n×d. By approximating the check-in activities at

each temporal state t and minimizing their aggregation, we obtain time-dependent

user check-in preferences via the following optimization problem:

min
Ut≥0,L≥0

T∑

t=1

‖Wt ⊙ (Ct −UtL
⊤)‖2F + α

T∑

t=1

‖Ut‖2F + β‖L‖2F , (4.4)
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where Ct ∈ R
m×n contains the check-in activities at temporal state t, and Wt is the

corresponding indicator matrix.

Modeling Temporal Consecutiveness

Inspired by the temporal consecutiveness property, which implies that users on LBSNs

tend to have closer check-in preferences on consecutive temporal state, we propose a

temporal regularization to minimize the following terms:

min

T∑

t=1

m∑

i=1

ψi(t, t− 1)‖Ut(i, :)−Ut−1(i, :)‖22, (4.5)

where ψi(t, t − 1) ∈ [0, 1] is defined as a temporal coefficient that measures the

temporal closeness of ui’s check-in preferences between temporal state t and t − 1.

The larger ψi(t, t− 1) is, the closer ui’s check-in preferences between t and t− 1. We

use cosine similarity to measure ψi(t, t− 1), defined as

ψi(t, t− 1) =
Ct(i, :) ·Ct−1(i, :)√∑

j C
2
t (i, j)

√∑
j C

2
t−1(i, j)

. (4.6)

Note that we consider the temporal state t−1 as T when t = 1, e.g., Ut−1 = UT when

t = 1. After some derivations, we can get the matrix form of temporal regularization,

T∑

t=1

Tr
(
(Ut −Ut−1)

⊤Σt(Ut −Ut−1)
)
, (4.7)

where Σt is the diagonal temporal coefficient matrix among m users, defined as

Σt =




ψ1(t, t− 1) 0 · · · 0

0 ψ2(t, t− 1) · · · 0

...
...

. . .
...

0 0 · · · ψm(t, t− 1)




. (4.8)
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Figure 4.3: POI Recommendation Framework with Geo-Temporal Patterns

4.1.3 LRT: Location Recommendation with Temporal Effects

Figure 4.3 illustrates the working flow of our POI recommendation framework

LRT. “x” denotes the observed check-in frequency by the user on the corresponding

POI, and “?” represents the user’s check-in preferences on an unvisited POI that the

framework is going to infer. The whole framework consists of three steps: temporal

division, temporal factorization, and temporal aggregation. Firstly, the original user-

POI matrix C is divided into T sub-matrices according to the T temporal states, with

each sub-matrix only containing check-in actions that happened at the corresponding

temporal state. Secondly, each Ct is factorized into the user check-in preference Ut

and the POI characteristics L based on the above proposed model, while L is shared

by all ofUt. Finally, the corresponding low-rank approximation C̃t is constructed and

aggregated (with ensemble method) into C̃, representing the user check-in preferences

of each POI. The POI recommendation will then be performed based on the final user

check-in preference C̃(i, j).

Since the temporal division is straightforward to implement, in the following we
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will describe in details the second and third steps, i.e., learning user temporal check-in

preferences at each temporal state and aggregating temporal check-in preferences for

location recommendation.

Learning Temporal Check-in Preferences

Based on the discussion of modeling temporal non-uniformness and consecutiveness

properties in the above sections, the user temporal check-in preferences can be ob-

tained by solving the following optimization problem:

min
Ut≥0,L≥0

T∑

t=1

‖Wt ⊙ (Ct −UtL
⊤)‖2F + α

T∑

t=1

‖Ut‖2F + β‖L‖2F

+ λ
T∑

t=1

Tr
(
(Ut −Ut−1)

⊤Σt(Ut −Ut−1)
)
, (4.9)

where λ is a non-negative parameter to control the temporal regularization.

J =
T∑

t=1

Tr
(
(W⊤

t ⊙C⊤
t )(Wt ⊙Ct)− (W⊤

t ⊙C⊤
t )(Wt ⊙UtL

⊤)

− (Wt ⊙Ct)(W
⊤
t ⊙ LU⊤

t ) + (W⊤
t ⊙ LU⊤

t )(Wt ⊙UtL
⊤)
)

+ λ

T∑

t=1

Tr
(
(Ut −Ut−1)

⊤Σt(Ut −Ut−1)
)

+ α

T∑

t=1

Tr(U⊤
t Ut) + βTr(L⊤L)

−
T∑

t=1

Tr(ΓUt
U⊤

t )− Tr(ΓLL
⊤). (4.10)
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where ΓUt
and ΓL are Lagrangian multipliers for non-negativity of Ut and L, respec-

tively. By taking the derivation of J with respect to Ut and L, we obtain

∂J
∂Ut

= −2(Wt ⊙Ct)L+ 2(Wt ⊙UtL
⊤)L + 2λΣt(Ut −Ut−1)

+ 2αUt − ΓUt
,

∂J
∂L

= −2
T∑

t=1

(Wt ⊙Ct)
⊤Ut + 2

T∑

t=1

(Wt ⊙UtL
⊤)⊤Ut

+ 2βL− ΓL. (4.11)

Let ∂J
∂Ut

= 0 and ∂J
∂L

= 0, we obtain

ΓUt
= −2(Wt ⊙Ct)L + 2(Wt ⊙UtL

⊤)L+ 2λΣt(Ut −Ut−1)

+ 2αtUt,

ΓV = −2
T∑

t=1

(Wt ⊙Ct)
⊤Ut + 2

T∑

t=1

(Wt ⊙UtL
⊤)⊤Ut + 2βV. (4.12)

According to the Karush-Kuhn-Tucker condition,

Ut(i, k)ΓUt
(i, k) = 0, ∀i ∈ [1, m], k ∈ [1, d], t ∈ [1, T ]

L(i, k)ΓL(i, k) = 0, ∀i ∈ [1, n], k ∈ [1, d]. (4.13)

We obtain the following updating formula of Ut and L with a similar derivation

process in [15]

Ut(i, k)← Ut(i, k)

√
[(Wt ⊙Ct)L + λΣtUt−1](i, k)

[(Wt ⊙UtL
⊤)L+ λΣtUt + αUt](i, k)

L(i, k)← L(i, k)

√
[
∑T

t=1(Wt ⊙Ct)⊤Ut](i, k)

[
∑T

t=1(Wt ⊙UtL
⊤)⊤Ut + βL](i, k)

. (4.14)

Temporal Aggregation for POI Recommendation

By solving the above optimization problem, the user check-in preferences C̃t(i, j) at

each temporal state can be computed throughUt(i,:)L(j, :)
⊤. To recommend locations
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to a user w.r.t. each C̃t(i, j), we define an aggregation function f(·) to compute the

final user check-in preferences C̃(i, j).

C̃(i, j) = f(C̃1(i, j), C̃2(i, j), ..., C̃T (i, j)), (4.15)

In this work, we propose four aggregation strategies for f(·), defined as below:

• Sum: we consider a user’s check-in preferences on a location as the sum of his

check-in preferences from each temporal state, i.e., C̃(i, j) =
∑T

t=1 C̃t(i, j).

• Mean: we consider a user’s check-in preferences on a location as the average

non-zero preferences from each temporal state, i.e., C̃(i, j) =
∑T

t=1 C̃t(i,j)

|{C̃t(i,j)|C̃t(i,j)6=0}| .

• Maximum: we consider a user’s check-in preferences on a location as his max-

imum temporal check-in preferences, i.e., C̃(i, j) = max(C̃1(i, j), ..., C̃T (i, j)).

• Voting: Each C̃t(i, j) acts as a recommender, and nominates top n locations

to a user. The final recommended locations are those locations that have been

nominated by most C̃t(i, j).

The location recommendation will then be performed based on the final user check-in

preference C̃(i, j).

Algorithm Analysis and Time Complexity

Algorithm 1 presents the detailed procedures of the proposed framework. Compared

to the temporal division of C and temporal aggregation for C̃, the updating rules for

Ut and L in each iteration corresponds to the major cost of Algorithm 1. Therefore,

we next analysis the time complexity of updating Ut and L. For the updating rule

of Ut, (Wt⊙Ct)L takes O(md2) operations due to the sparsity of Wt and Ct. Since

Σt is a diagonal matrix, the time complexity of λΣtUt−1 is O(md). (Wt ⊙UtL
⊤)L
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takes O(mnd) operations, while the time complexity of λΣtUt and αUt is O(md).

Therefore, it takes O(mndT ) operations for updating all the Ut. Similarly, the time

complexity of
∑T

t=1(Wt⊙Ct)
⊤Ut for updating L is O(md2T ).

∑T
t=1(Wt⊙UtL

⊤)⊤Ut

takes O(mndT ) operations and βL takes O(nd) operations, resulting in the time

complexity of updating L as O(mndT ). Since T is usually a constant of small value,

in sum, the time complexity of Algorithm 1 is O(mnd).

4.1.4 Experiments

In this section, we evaluate the performance of our framework LRT for location

recommendation. In particular, we evaluate the following: (1) how the proposed

framework fares in comparison with state-of-the-art models that capture static check-

in preferences; (2) how the proposed framework recommends locations with various

temporal aggregation strategies; and (3) whether other temporal patterns could be

leveraged for location recommendation with the proposed framework. Before we delve

into experiment details, we first discuss an LBSN dataset and evaluation metrics.

4.1.5 Dataset and Experiment Setup

We crawled the experimental dataset from Foursquare and obtained check-ins for

three months (Jan 2011 - Mar 2011) to evaluate our proposed framework. We select

check-in locations which have been visited by at least two distinct users, and users

who have checked in at least 10 distinct locations. The statistics of the final dataset

are shown in Table 4.1. The majority of check-ins happened in the United States.

We organize the dataset as a user-location matrix. The check-in density of the

matrix is 8.84 × 10−4. Logistic function 1
1+(ex)−1 is commonly used in recommender

system [50] to map each matrix element into [0,1]. We notice that in contrast with

online item recommendation, where x (the rating of an item) is usually ranging from
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Algorithm 1 Location Recommendation with Temporal Effects

Input: user-location check-in matrix C, α, β, possible temporal states {1, 2, ..., T}

Output: approximated user-location preference matrix C̃

1: Divide C into {C1, C2,..., CT } according to T

2: Generate {W1, W2,..., WT} based on {C1, C2,..., CT}

3: Construct {Σ1, Σ2, ..., ΣT} based on {C1, C2,..., CT}

4: Initialize {U1, U2,..., UT} and L randomly

5: while Not Convergent do

6: for t = 1 to T do

7: for i = 1 to m do

8: for k = 1 to d do

9: Ut(i, k)← Ut(i, k)
√

[(Wt⊙Ct)L+λΣtUt−1](i,k)

[(Wt⊙UtL
⊤)L+λΣtUt+αUt](i,k)

10: end for

11: end for

12: end for

13: for i = 1 to n do

14: for k = 1 to d do

15: L(i, k)← L(i, k)

√
[
∑T

t=1(Wt⊙Ct)⊤Ut](i,k)

[
∑T

t=1(Wt⊙UtL
⊤)⊤Ut+βL](i,k)

16: end for

17: end for

18: end while

19: for t = 1 to T do

20: Set C̃t = UtL
⊤

21: end for

22: Set C̃ = f(C̃1, C̃2, ..., C̃T )

23: return C̃
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Table 4.1: Statistical Information of the Dataset

duration Jan 1, 2011-Mar 31, 2011

No. of users 5,269

No. of check-ins 288,079

No. of unique locations 26,381

Average check-ins per user 55

Check-in density 8.84× 10−4

1 to 5, in location recommendation, the value of x (check-in frequency of a location)

is commonly large, while the function “(ex)−1” would result in very small and indis-

tinguishable values, with x being larger than 7. Therefore, we adjust the mapping

function as 1
1+x−1 , with x corresponding to C̃(i, j) in our data, which works better

than the logistic function in our experiment.

For each individual user in the dataset, we randomly mark off 20% and 40% of all

locations that he has checked-in for testing. The rest of the user-location pairs are

used as training data to infer Ut and L for location recommendation. The random

selection is conducted 5 times individually, and we report the average results.

To evaluate the recommendation performance, we are interested in: (1) how many

previously marked off locations are recommended to the users among the total number

of recommended locations, and (2) how many previously marked off locations are

recommended to the users among the total number of marked off locations. Thus, we

utilize precision@N and recall@N as our evaluation metrics, defined as follows:

precision@N =

∑
ui∈U |TopN(ui)

⋂
L(ui)|∑

ui∈U |TopN(ui)|
(4.16)

recall@N =

∑
ui∈U |TopN(ui)

⋂
L(ui)|∑

ui∈U |L(ui)|
, (4.17)

where TopN(ui) is the set of recommended locations to user ui that ui has not visited
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in the training set. L(ui) is the set of locations that has been visited by ui in the

testing set. In our experiment, N is set to 5 and 10, respectively.

All the parameters in this work are set through cross-validation. For the pro-

posed method, the experimental results use d=10 dimensions to represent the latent

features, the regularization coefficients α and β are set to 2, and λ is set to 1. As

suggested in [84], the effectiveness of recommender systems with sparse datasets (i.e.,

low-density user-item matrix) is usually not high. For example, the reported top 5

precision is 5% over a dataset with 8.02× 10−3 density and 3.5% over a dataset with

4.24× 10−5 density [84, 86]. Therefore, the low precision obtained in our experiment

is reasonable. In this work, we focus on comparing the relative performance of

algorithms instead of their absolute performance.

Comparison of Various Recommendation Models

Three baseline methods are introduced w.r.t. time-dependent and static check-in

preferences, as defined below:

• User-Based Collaborative Filtering (CF)

User-based collaborative filtering is a state-of-the-art approach for recommender

systems. We adopt the user-based recommender [101] for location recommen-

dation. It computes a user’s interest in a location based on other users’ interests

in that location. Temporal information is not considered in this approach.

• Non-negative Matrix Factorization (NMF)

Non-negative Matrix Factorization (NMF) [38] computes non-negative user check-

in preferences under the whole user-location matrix, which is our basic location

recommendation model, as defined in Eq. (4.3), without temporal effects.

• Random LRT (R-LRT)
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We randomly divide the original user-location matrix C into 24 pieces Ct with-

out considering the temporal state, and then apply the same recommendation

process in Figure 4.3.

Figure 4.4 and Figure 4.5 show the comparison results of LRT with the proposed

baseline methods [20]. The aggregation strategy is selected as voting due to its

good performance. (more details on the comparison of aggregation strategies will be

discussed in the next subsection). The results discover several observations which we

summarize below:

• CF performs the worst among all the approaches. The data sparseness could

be one reason to explain this performance. Due to the low density of the user-

location matrix, the collaborative filtering approach fails to accurately recom-

mend locations, and performs worse than matrix factorization approaches which

leverage the low-rank approximation of user check-in preferences.

• Both NMF and R-LRT performance better than CF, indicating their ability

in dealing with sparse data for location recommendation. Furthermore, the

better performance of LRT than NMF suggests that time-dependent check-in

preference capture user mobile behavior better than static check-in preferences.

• LRT performs better than R-LRT, suggesting that the division strategy is im-

portant to the recommendation effectiveness. Our model with the consideration

of temporal effects is able to improve the location recommendation performance,

while the matrix divide-aggregation strategy without a appropriate temporal di-

vision could result in a bad performance.

LRT performs the best among all the baseline methods. It considers time-

dependent check-in preferences and outperforms approaches that capture static check-

in preferences. The standard deviation of the performance from each method is less
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Figure 4.4: Recommendation Performance (Precision)

than 2 × 10−4, confirming the reliability of our comparison results. As discussed be-

fore, due to the low matrix density, the low precision obtained in our experiment is

reasonable. To further evaluate the significance of our framework, we lunch a random

recommendation [85]. For each user, we randomly select 5/10 locations from the total

26, 381 locations (excluding those locations that have been previously visited by the

user), and recommend them to the user. The recommendation performance is shown

in Table 4.2. Compared to the random recommendation, our proposed framework

is, on average, 73.27 times better than the random performance, demonstrating the

power of temporal effects for improving location recommendation performance.

Location Recommendation with Various Aggregation Strategies

In this subsection, we discuss the performance of various aggregation strategies. We

compare the recommendation performance with four aggregation strategies, and list
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Figure 4.5: Recommendation Performance (Recall)

Table 4.2: Performance of Random Recommendation

Testing Metrics @5 @10

20%
Precision 0.0152% 0.0190%

Recall 0.0177% 0.0442%

40%
Precision 0.0266% 0.0361%

Recall 0.0149% 0.0403%

the results in Table 4.3 and Table 4.4. We summarize the essential observations below:

• The mean performs the worst among all the aggregation strategies. This is

because taking average on all the temporal preferences degrades the preference

variance, and makes the personal preferences indistinguishable. It validates

that a user’s check-in preferences are highly dependent on the temporal state,

approaches regardless of this may fail in recommending the right locations.

56



Table 4.3: Comparison of Aggregation Strategies (Precision)

Testing Metrics Sum Mean Max Voting

20%
P@5 1.37% 0.03% 1.35% 1.47%

P@10 1.31% 0.03% 1.30% 1.34%

40%
P@5 3.08% 0.46% 3.10% 3.20%

P@10 2.95% 0.44% 2.95% 3.00%

Table 4.4: Comparison of Aggregation Strategies (Recall)

Testing Metrics Sum Mean Max Voting

20%
R@5 1.60% 0.03% 1.57% 1.71%

R@10 3.05% 0.08% 3.03% 3.11%

40%
R@5 1.73% 0.03% 1.74% 1.79%

R@10 3.25% 0.05% 3.30% 3.35%

• The maximum has similar performance to the sum, suggesting that if a user’s

check-in preferences are strongly indicated by one temporal state, then with high

probability it indicates the true preferences of the user. This is also consistent

with the observations in [24] that a user’s check-in behavior presents gaussian

distribution over hours of the day, in which a user mostly checks-in at a location

during a specific period of time, and rarely visits it during other time periods.

• The voting performs the best among all the aggregation strategies. Compared

to the sum, it filters controversial location candidates at each temporal state,

and reduces the uncertainty brought by the noisy location candidates, demon-

strating its robustness in dealing with noisy data.
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Exploring Various Temporal Patterns

LRT is designed to recommend locations to a user by taking advantage of tempo-

ral patterns. So far we have evaluated its recommendation performance with daily

patterns, while its recommendation ability is not limited to one specific temporal pat-

tern. By taking different definitions of temporal state, many other temporal patterns

can be utilized for location recommendation with LRT, as long as they contain the

non-uniformness and consecutiveness properties. For example, we could define the

temporal state as t=[1,T], with T=7 for weekly (day of the week) patterns, T=2 for

weekday/weekend patterns, and T=12 for monthly (month of the year) patterns. The

only change is to divide the original user-location matrix C into a set of Ct according

to the corresponding temporal state. Table 4.5 shows the recommendation results of

LRT with weekly patterns and weekday/weekend patterns. Due to the space limit,

we only present the results on testing size = 40%. The results indicate that weekly

patterns and weekday/weekend patterns can also capture users’ temporal check-in

preferences, and improve the location recommendation performance.

Table 4.5: Comparison of Temporal Patterns

Temporal Patterns Metrics @5 @10

Day of the Week
Precision 2.32% 2.18%

Recall 1.30% 2.45%

Weekday/Weekend
Precision 2.23% 2.04%

Recall 1.21% 2.28%

58



0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Check−in Frequency (C
f
)

P
ro

ba
bi

lit
y 

of
 C

he
ck

−
in

 F
re

qu
en

cy
 P

(C
f)

 

 
check−in frequency

Figure 4.6: Power-law Distribution of Check-ins from All the Users

4.2 Temporal Chronological Patterns

The chronological information connects a user’s check-in history into a POI trajec-

tory, presenting two properties on LBSNs: (1) a user’s check-in history approximately

follows a power-law distribution, i.e., a user goes to a few places many times and to

many places a few times. Figure 4.6 shows the distribution of check-in frequency

(in log scale) in our dataset. The figure suggests that the check-in history follows a

power-law distribution and the corresponding exponent is approximately 1.42. The

check-in distribution of an individual also shows the power-law property, as shown

in Figure 4.7; and (2) chronological patterns have short-term effect. As illustrated in

Figure 4.1, a user arrives at the airport and then takes a shuttle to the hotel. After

his dinner, he sips a cup of coffee. The previous check-ins at the airport, shuttle stop,

hotel and restaurant have different tie strengths with respect to the latest check-in at

the coffee shop. Furthermore, the tie strength decreases over time.
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Figure 4.7: Power-law Distribution of Individual Check-ins

4.2.1 Modeling Power-Law Distribution and Short-Term Effect

Capturing the long tail of power-law distribution is a challenging task [4]. In

addition, the determination of tie strength between the current check-in and various

previous check-ins relies on the considering of variation of check-in time. To ad-

dress these challenges, we introduce a language model to help in analyzing temporal

chronological patterns, specifically, the power-law distribution and short-term effect.

Language Modeling and LBSN Mining

There are many common features shared between language processing and LBSNs

mining. First, the text data and check-in data have similar structures, as shown

in Table 4.6. For example, a document in language processing can correspond to a

individual check-in sequence in LBSNs, while a word in the sentence corresponds to

a check-in POI. Second, the power-law distribution and short term effect observed

in LBSNs have also been found in natural language processing, where the word dis-

tribution is closely approximated by power-law [103]; and the current word is more

relevant to its adjacent words than distant ones. Thus, language models for language

processing is potentially applicable to LBSNs due to these common features.
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Table 4.6: Corresponding Features between Language and LBSN Modeling

Language Modeling LBSN Modeling

Corpus Check-in collection

Document Individual check-ins

Paragraph Monthly check-in sequence

Document Sentence Check-in Weekly check-in sequence

Structure Phrase Structure Daily check-in sequence

Word Check-in location

Pitman-Yor process [63, 62, 33] is a state-of-the-art language model that generates

a power-law distribution of word tokens [28]. Furthermore, its hierarchical extension,

i.e., Hierarchical Pitman-Yor (HPY) process [76, 77], assumes that the earliest word

has least importance to the latest word, which has potential to be leveraged to capture

the short-term effect in LBSNs. Therefore, we propose to utilize the power of language

model in LBSNs for modeling check-in behavior.

Modeling Power-Law Distribution

Firstly, we introduce how to use PY process to capture the power-law property. The

PY process generates a distribution over distributions over a probability space. Given

a user with his/her check-in history, the next check-in location distribution is formu-

lated as:

G ∼ PY (d, γ, G0), (4.18)

where G is the next check-in location distribution based on the observed check-in

history, d ∈ [0, 1) is a discount parameter to control the power-law property, γ is a

strength parameter, and G0 is a base distribution over the location space. Let L be
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the location space which is a fixed and finite vocabulary of m locations, i.e., m = |L|.

The base distribution G0 is a uniform distribution providing a prior probability of

the location before observing any data. It satisfies G0(l) = 1/m, where G0(l) is

the probability of location l ∈ L being checked-in. Furthermore, when the discount

parameter d is regarded as zero, this process reduces to the Dirichlet process [18].

Next, we illustrate how to generate a check-in sequence with this process. Let

c1, c2, ..., cn be a sequence of check-ins coming one by one. The first arrived check-in

chooses a location drawn from the distribution G0, then uses this location to form

a location node and adheres to it. The subsequent check-in could either choose to

adhere to a previous location node as its check-in location, or choose a new location

node with its check-in location drawn from G0. The choosing rule is: the k-th location

node with probability Nk−d
γ+n

while a new location node with probability γ+td

γ+n
,

where Nk denotes the number of check-ins adhered to location node k, n =
∑

kNk

the length of check-in sequence, and t the current number of location nodes. Notice

that each location node represents a check-in location. Since a new draw from G0

may generate a previously appeared location, there may be multiple location nodes

corresponding to one check-in location. Therefore, by marginalizing on the location

node, the predictive probability of a new check-in cn+1 at location l given the previous

check-in sequence is,

P (cn+1 = l|c1, c2, ..., cn)

=
∑

k

Nk − d
γ + n

δlk +
γ + td

γ + n
G0 =

Nl − tld
γ + n

+
γ + td

γ + n
G0,

where δlk is a function that satisfies:

δlk =





1 location node k represents location l

0 location node k does not represent location l,
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Nl =
∑

kNkδ
l
k denotes the current number of check-ins adhered to the location node

at location l, which is the current number of check-ins at location l, and tl is the

current number of location nodes that represent location l. This generating process

indicates that a new check-in would either choose a previous appeared location l

with probability proportional to Nl − tld, or choose a location drawn from G0 with

probability proportional to γ + td.

Figure 4.8 illustrates a generating process of the next check-in c11 with 10 previous

check-ins {c1 = l1, c2 = l1, c3 = l2, c4 = l3, c5 = l1, c6 = l3, c7 = l4, c8 = l1, c9 =

l3, c10 = l4}. The green nodes are location nodes and each one represents a location

corresponding to a location icon. Red nodes are check-ins that adhered to the location

nodes, which indicates the check-ins happened at that location. The probability of

next check-in c11 at location l2 consists of three parts: (1) c11 adheres to the location

node L2 with probability 1−d
γ+10

; (2) c11 adheres to the location node L4 with probability

2−d
γ+10

; and (3) c11 forms a new location node representing the check-in location l2 with

probability γ+4d
γ+10

G0(l2). Therefore the probability of the next check-in c11 = l2 is:

P (c11 = l2|c1, ..., c10) =
3− 2d

γ + 10
+
γ + 4d

γ + 10
G0(l2), (4.19)

This generating process shows two properties: (1) the rich-get-richer property

indicates a user would like to visit a previously visited location; and (2) the more

check-ins occurred, the more new locations would appear as drawn from the base

distribution G0.

Modeling Short-Term Effect

The PY process models the power-law property and generates the unigram check-in

distribution for a check-in sequence. However, a unigram distribution is not sufficient
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Figure 4.8: The Generating Process of Check-in Sequence

to capture the short-term effect, therefore we adopt the hierarchical extension of PY

process, i.e. Hierarchical Pitman Yor process [76, 77] to consider the historical context

of a particular check-in. It is an n-gram model that naturally captures the short-term

effect while keeping the power-law property in distribution. It models the probability

of the next check-in, denoted as Gu, given a history context u as:

Gu ∼ PY (d|u|, γ|u|, Gπ(u)
), (4.20)

where Gu(l), l ∈ L, is the probability of the next check-in occurring at location l given

the history context u. The discount parameter d|u| and strength parameter γ|u| are

functions of the historical context u. π(u) is the suffix of u consisting of all but the

earliest check-in, therefore Gπ(u) is the probability of next check-in given all but the

earliest check-in in the history context u. Gπ(u) is then computed with the parameter

d|π(u)|,γ|π(u)| and Gπ(π(u)). This process is repeated until we get the empty historical

context ∅,

G∅ ∼ PY (d0, γ0, G0). (4.21)
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Note that this iterative process drops the earliest check-in first in each iteration. It

assumes that the earliest check-in would have the least importance in determining

the distribution over the next check-ins, which in turn captures the short-term effect.

4.2.2 HM: Historical Model

Regarding the modeling of power-law distribution and short-term effect of a user’s

check sequence as discussed above, we propose a historical model to capture the user’s

check-in behavior in terms of historical ties.

Based on Eq. (4.20), the predictive probability of the next check-in cn+1 at location

l with context u is defined as:

PHPY
u (cn+1 = l|c1, c2, ..., cn)

=
Nul − tuld|u|
γ|u| + nu·

+
γ|u| + tud|u|
γ|u| + nu·

Gπ(u)(cn+1 = l|c1, c2, ..., cn), (4.22)

where Nul is the number of check-ins at l following the history context u and nu· =
∑

l′ Nul′. tu =
∑

l tul is the sum of all tul, which is a latent variable satisfying:





tul = 0 if Nul = 0;

0 ≤ tul ≤ Nul if Nul > 0;

Since we always consider a user’s complete check-in history as historical context u,

we remove the notion u in the following sections. To model the historical tie effect,

we define our historical model as:

P i
H(cn+1 = l) = P i,i

HPY (cn+1 = l). (4.23)

where P i,i
HPY (cn+1 = l) is the probability of ui’s check-in cn+1 at location l generated

by HPY process with user ui’s observed check-in history.
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Table 4.7: Average Number of Check-ins between Two Users

Common check-ins

between friends 11.8306

between strangers 4.3226

4.2.3 SHM: Social-Historical Model

Social correlation [3] suggests to consider users’ social ties since human movement

is usually affected by their social context, such as visiting friends, going out with col-

leagues, traveling while following friends’ recommendations, and so on. The historical

ties and social ties, can shape a user’s check-in experience on LBSNs, while each tie

gives rise to a different probability of check-in activity, which indicates that people

in different spatial-temporal-social circles have different interactions. Thus, exploring

a user’s social-historical ties is crucial to analyze his check-in behavior and therefore

understand the corresponding movement.

We explore the social tie effect by proposing a social-historical model to under-

stand the user’s check-in behavior on LBSNs. First, we investigate the social corre-

lation of check-in behavior, more specifically, we ask whether the friendships a user

has affect his check-in behavior.

We first compare the number of common check-ins between two friends and two

strangers. As shown in Table 4.7, on average, a pair of strangers share approximately

4.32 check-ins, while a pair of friends share approximately 11.83 check-ins, which is

as almost 3 times large as the former.

Next, we define the check-in similarity between two users and compare the sim-

ilarity between users with friendship and those without. For each user, let f ∈ R
m

be his check-in vector with each element f(k) equal to the number of check-ins at
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location lk ∈ L, where m = |L| is the vocabulary size. The cosine similarity of two

users ui and uj is defined as:

sim(ui, uj) =
fi · fj

|fi|2 × |fj|2
, (4.24)

where | • |2 is the 2-norm of a vector.

We define the similarity between ui and a group G of other users as the average

similarity between user uj and the users in group G,

SG(ui) =

∑
uj∈G sim(ui, uj)

|G| . (4.25)

For each ui, we calculate two similarities, i.e., SF (ui) is the average similarity of ui and

his friendship network; SR(ui) is the average similarity of ui and randomly chosen

users, who are not in the friendship network of ui. The number of the randomly

chosen users is the same as that of ui’s friends.

We conduct a two-sample t-test on the vectors SF and SR. The null hypothesis

is H0: SF ≤ SR, i.e., users with friendship share less common check-ins than those

without, and the alternative hypothesis is H1: SF > SR. In our experiment, the null

hypothesis is rejected at significant level α = 0.001 with p-value of 2.6e-6, i.e., users

with friendship have higher check-in similarity than those without.

The evidence from both shared check-ins and t-test suggests that with high prob-

ability, users with friend relationships have larger check-in correlation than those

without, which demonstrates that a user’s social ties contain important evidence for

the user’s movement. In this work, we propose an effective model to integrate both

effects, in order to explore the social-historical ties. To do so, we add a user’s social

ties as a regularization part to his historical ties. A parameter η ∈ [0, 1] is introduced

to control the weight between historical and social ties. For a user ui, the probability
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of the next check-in location is defined as:

P i
SH(cn+1 = l) = ηP i

H(cn+1 = l) + (1− η)P i
S(cn+1 = l). (4.26)

We denote this model as social-historical model, where P i
H(cn+1 = l) is the probability

of ui’s check-in at location l observed from his historical ties, defined in Eq. (4.23);

P i
S(cn+1 = l) is the check-in probability based on ui’s social ties, defined as:

P i
S(cn+1 = l) =

∑

uj∈N (ui)

sim(ui, uj)P
i,j
HPY (cn+1 = l). (4.27)

where N (ui) is the set of ui’s friends. P i,j
HPY (cn+1 = l) is the probability of ui’s

next check-in at location l computed by HPY process with uj’s check-in history as

training data. Note that only the check-ins before the prediction time are included

in the training data.

4.2.4 Experiments

We evaluate our proposed models: historical model and social-historical model

through the following aspects: (1) how the proposed historical model fares in com-

parison with baseline models; (2) how the proposed historical model behaves over

time; (3) whether social ties help location prediction as we discussed earlier; and (4)

under what circumstances, the two types of ties complement each other.

4.2.5 Dataset and Experiment Setup

We use Foursquare dataset to study the social-historical ties on LBSNs. For a

particular user on Foursquare, we get his check-in history with timestamps ranging

from August, 2010 to November, 2011. We also collect the user’s friendship informa-

tion. In our experiment, we consider the users who have at least 10 check-ins. We

obtain 43,108 unique geographical locations as the location vocabulary. Some key

statistics of the dataset are shown in Table 4.8.
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Table 4.8: Statistical Information of the Dataset

number of users 18,107

number of check-ins 2,073,740

number of links 123,325

average check-ins per user 101

clustering coefficient 0.1841

average degree 10.58

We separate the check-in sequence of each user into 9 time bins, and each time

bin has approximately equal time interval. Let the timestamp at the end of each time

bin be T = {T1, T2, ..., T9}. We predict the check-in location at each timestamp for

the user, with his historical check-ins before that time as observed context. Denote

the prediction for user u at time t as Pt(u), the prediction accuracy is defined as:

accuracy(Ti) =
|{u|u ∈ U , PTi

(u) = lTi
(u)}|

|U| . (4.28)

where U is the set of users, lTi
(u) denotes the actual check-in location l of user u at

time Ti.

Baseline Models

To evaluate the historical model (HM) and social-historical model (SHM), we choose

three baseline models, i.e., Most Frequent Check-in model (MFC), Most Frequent

Time model (MFT), and Order-k Markov Model based on our review of related work

(to discuss later). The MFC baseline model considers the power-law property simply

in aspect of rich-get-richer effect. The MFT model considers the temporal pattern

only, which was used in [13] for comparison with their periodic model. Since our

proposed models do not attempt to model periodic behavior, we focus on the social
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and historical sequence of check-ins. Integrating periodic patterns in HM and HPY

will be an extension of this work. The Order-k Markov Model considers the short-

term effect of historical check-ins, which is reported as a state-of-the-art prediction

algorithm for location prediction [69]. We give detailed information of these three

baselines below:

• Most Frequent Check-in Model: In [9], a logistic regression model was

proposed and found that the strongest predictor is the check-in frequency of

the historical check-ins made by the user. In this work, we use this rule as one

baseline, denoted as the most frequent check-in model (MFC). It assigns the

probability of next check-in cn+1 at location l as the probability of l appearing

in the check-in history,

PMFC(cn+1 = l|C) = |{cr|crǫC, cr = l}|
|{cr|crǫC}|

, (4.29)

where C = {c1, c2, ..., cn} is the set of check-in history.

• Most Frequent Time Model: People tend to go the the same place at the

similar time of the day as a routine activity. For example, an individual might

like to have coffee after lunch; therefore, it would be common for him to check-

in at Starbucks around 1pm. We choose the most frequent time model (MFT)

as another baseline considering the temporal patterns of the check-ins. Let

tn+1 = h denote that the time at the (n + 1)-th check-in is h, where h ∈ H =

{1, 2, ..., 24} is a discrete set of 24 hours. MFT model assigns the probability

of next check-in cn+1 at location l at time h as the probability of the location l

occurring at time h in the previous check-in history,

PMFT (cn+1 = l|C, tn+1 = h)

=
|c|crǫC, cr = l, tr = h|
|cr|crǫC, tr = h| . (4.30)
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• Order-k Markov Model: The third baseline is the order-k Markov Model.

It considers the latest k check-in context, and searches for frequent patterns to

predict the next location. The probability of the next check-in cn+1 at location

l with order-k Markov model is defined as:

Porder−k(cn+1 = l|C) = P (cn+1 = l|cn−k+1, ..., cn)

=
|cr|crǫC, cr = l, cr−j = cn−j+1|
|cr|crǫC, cr−j = cn−j+1|

, 0 < j < k, j ∈ Z. (4.31)

We consider the Order-1 and Order-2 Markov models as baseline methods, note

that the MFC is actually Order-0 Markov model.

Results and Discussions

Figure 4.9 shows the comparison results at 9 time stamps. The Order-2 Markov

model performs the worst while SHM obtains the best performance for all the 9 time

stamps. MFC model performs well but its accuracy decreases greatly with time.

The Order-1 Markov model has better performance than MFC after T6, while the

MFT model performs stable without impressive accuracy. To further investigate their

performance, we summarize several interesting observations below:

• The MFC performs better than MFT, Order-1, and Order-2 Markov models

before T6. Since it predicts the next location as the most frequent one in history,

it considers the rich-get-richer property of power-law effect. However, it ignores

the short-term effect; therefore, as time goes by, it can not distinguish which

check-ins are more important in the long history and its accuracy decreases

quickly. In contrast, the Order-1 Markov model outperforms MFC after T6.

That is because Order-1 Markov model considers the short-term effect more

than power-law property, it is not affected by the length of the history as much

as the MFC.
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Figure 4.9: Performance Comparison of Recommendation Models

• All the models have a decreasing trend in accuracy after certain time point,

especially the SHM, HM, Order-1, and Order-2 Markov models have similar de-

creasing rate with time. This phenomenon can be explained by the increasing

number of appeared unique check-ins. We prove this by launching a random

guess of next check-in location at each time point. We denote the average

number of unique check-ins per user that appeared before time t as Wt. The

probability of accurately predict the next location at this time by random guess

is the inverse of Wt, which reflects the difficulty of prediction. We denote this

as the random guess accuracy AWt
. The statistics information of Wt and its

corresponding AWt
from our data is shown in Table 4.9. From T1 to T9, the ac-

curacy of random guess keeps decreasing from 20.49% to 4.33% (approximately

78.87% relative decrement), while our historical model only decreases 3.9% from

39.56% to 29.66% (approximately 11.62% relative decrement). In sum, the per-

formance of our historical model is considerable, and even slight improvement
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in experiment is significant considering the difficulty of this prediction task.

• The MFC has the highest decreasing rate among all the models. This phe-

nomenon is caused by two factors. Firstly, MFC is affected by the number of

appeared unique check-ins as well as SHM, HM, Order-1, and Order-2 Markov

models as described above. Secondly, it suffers from the short-term effect. Since

even the number of appeared unique check-ins does not increase, it can not dis-

tinguish the most important check-ins to current time through the long history.

Therefore, suffering from both unique check-ins and short-term effect, it has the

greatest decreasing rate among all the five models.

• In our data, there are 14.47% of users with check-in sequence length between

10 to 20. For these users at time T1, only 1 to 2 check-ins are observed,

which significantly intensifies the prediction difficulty. Specially, SHM, HM and

MFC are very close to each other at T1, because all are suffering from the lack

of observed data. The MFT, Order-1, and Order-2 Markov models perform

even worse than SHM, HM, and MFC due to their strict pattern rules. With

insufficient data, few patterns can be found and used to determine the next

location by these three models; while as time goes by, more and more data

are observed which improves their performance. This suggests that SHM, HM

and MFC are more robust to the situation when the observation sequence is

insufficient. The Order-2 Markov model is too strict on its pattern rule therefore

it performs the worst due to over-fitting.

• The HM obtains better performance than all baselines, which considers both

power-law property and short-term effect. Furthermore, the smoothing strategy

on the n-gram context gives it better performance than the Order-2 Markov

model, which suffers severely from over-fitting. The MFT performs stable,
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which suggests the importance of temporal information. We will further inves-

tigate the temporal effect on check-in behavior in our future work.

We note that SHM consistently outperforms HM, and SHM considers both his-

torical and social ties. To investigate the contribution of social ties and historical

ties in affecting user’s behavior, we increase the parameter η from 0 to 1 with an

increment step of 0.01 and observe the prediction performance at each η. We only

show the prediction accuracy at times T3, T6 and T9 in Figure 4.10, Figure 4.11, and

Figure 4.12, since similar performance can be observed at other time points. Some

interesting insights can be observed:

• When η = 0, the social-historical model only considers social ties. Its perfor-

mance is always worst, suggesting that considering social information only is

not enough to capture the check-in behavior.

• By increasing η, the performance shows the following pattern: first increasing,

reaching its peak value and then decreasing. Most of the time, the best perfor-

mance is achieved at around η = 0.7. A big weight is given to historical ties,

indicating that historical ties are more important than social ties.

• When η = 1, the social-historical model boils down to the historical model. Its

performance is not the best, suggesting that social ties are also important.

• Comparing with the previous time, the social ties make the greatest improve-

ment on performance of historical ties at T9, indicating that social ties are

complementary to the historical ties, especially when the historical model does

not perform well due to the long and noisy history.
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Figure 4.11: The Performance of Social-historical Model w.r.t. η (T6)
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Table 4.9: Number of Unique Check-ins at Each Time Point

T1 T2 T3 T4 T5 T6 T7 T8 T9

Wt 4.88 7.578 9.95 12.20 14.40 16.59 18.75 20.92 23.11

AWt
20.49% 13.20% 10.05% 8.20% 6.94% 6.03% 5.33% 4.78% 4.33%
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Figure 4.12: The Performance of Social-historical Model w.r.t. η (T9)

4.3 Complementary Effect of Temporal Cyclic and Chronological Patterns

The recommendation ability of temporal cyclic patterns and temporal chronolog-

ical patterns has been demonstrated in previous sections. Each of them represents

one type of human movement indication. The temporal cyclic patterns indicate the

probability of next check-in happening at a specific POI given the next check-in time,

while temporal chronological patterns indicate the probability of next check-in hap-

pening at a specific POI given the previous check-in POI sequence. To investigate

their complementary effect, we formulate the POI recommendation problem as rec-
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ommendation a POI to a user given his previous check-in POI sequence and the time

when recommendation is performed, as shown below,

Pu(ct = l|t, Hu,t), (4.32)

where ct = l indicates that user u’s check-in at time t happening at POI l, t indicates

the check-in time, and Hu,t indicates the u’s check-in POI sequence before time t.

Note that t here is a periodic time indicating the cyclic time stamp of the check-in,

such as a specific hour (e.g., 23:00pm), a day of the week (e.g., Monday), a month

(e.g., January) or even a year. Using Bayes’ rule, the probability in Eq. (4.32) is

equivalent to:

Pu(ct = l|t, Hu,t) ∝ Pu(ct = l, t|Hu,t) = Pu(t|ct = l, Hu,t)Pu(ct = l|Hu,t), (4.33)

The two factorized terms Pu(t|ct = l, Hu,t) and Pu(ct = l|Hu,t) represent exactly

temporal cyclic patterns and temporal chronological patterns [21], with their product

capturing the complementary effect. These two probabilities restrain each other and

complement each other in the form of spatio-temporal context, the candidate POI l

with the highest probability P (ct = l|t, Hu,t) is the one that most reasonably happens

at time t, after the observation of previous check-ins Hu,t. The experimental results

show impressive performance which are presented in [24, 21].
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Chapter 5

PERSONALIZED GEO-CONTENT POI RECOMMENDATION

In this chapter, we study the geo-content indications for personalized POI recom-

mendation on LBSNs. As discussed in Chapter 1, content information on LBSNs is

related to a user’s check-in action, containing three types of information regarding

POI properties, User Interests, and Sentiment Indications. These three types of infor-

mation are representatives of POI-Associated Content and User-Generated Content,

as shown in Figure 5.1.

However, since each type of content information represents a different facet of

check-in action, how to systematically model them for POI recommendation becomes

a challenging problem, which relies on the investigation of their relationship to check-

in actions and their complementary effects in affecting POI recommender systems. In

this chapter, we study the three types of content information and propose a unified

framework to model them. Specifically, we propose to:

• Study the relationship between users’ check-in behavior and content information

on LBSNs in terms of POI properties, user interests, and sentiment indications.

• Incorporate the three types of content information into a unified framework for

POI recommendation on LBSNs.

• Investigate the recommendation effort of each type of content information on a

real-world LBSN dataset.
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5.1 A POI Recommendation Model with Geo-Content Indications

In chapter 3, we have introduced a basic matrix factorization model for location

recommendation. In this section, we introduce a tri-factorization model and then

discuss how to incorporate content information. The reason of using a tri-factorization

model instead of a bi-factorization model as a basic model will be explained in later

sections. Let U ∈ R
M×K be the users’ latent interests, V ∈ R

N×K be the POIs’

latent properties, and H ∈ R
K×K be the data-dependent dense matrix with K ≪

min(M,N) being the number of latent factors. The basic POI recommendation

model approximates ui’s latent interests in an unvisited vj by solving the following

optimization problem:

min
Ui,H,Vj≥0

1

2

m∑

i

n∑

j

Wij(Cij −UiHV⊤
j )

2, (5.1)
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where W ∈ R
m×n is a check-in weighting matrix with Wij = 1 indicating that ui has

checked in at vj , Wij = 0 otherwise. A large value of Wij will forceUiHVT
j to tightly

fit the check-in Cij , suggesting that the corresponding check-in is more important to

the user, while a lower value of Wij allows UiHVT
j to loosely fit Cij, suggesting the

corresponding check-in is less important to the user.

The above recommendation model learns an optimal set of {U, H, V} whose

product Ĉ = UHV⊤ is a non-sparse matrix which approximates the original check-in

matrix C. POI recommendation is then performed for each user based on the ranking

among her unvisited POIs in Ĉ. Note that a non-negative constraint has been applied

to Ui, H, and Vj, respectively, as we consider that a user’s latent interests and a

POI’s latent properties could have real-world explanations on LBSNs.

5.1.1 Modeling User Sentiment Indications

The basic POI recommendation model learns user latent interests and POI latent

properties to approximate observed check-in actions. As discussed in the above sec-

tion, W is a weighting matrix applied to indicate the importance of check-ins, i.e.,

how likely the check-in action should be considered based on its observability, which

is critical for improving recommendation performance [64, 57]. Previous work has

discussed its potential effect when combined with information such as user reputa-

tion [75] or user activities [41] to better capture the importance of observed actions

for recommendation. This inspires us to investigate how to incorporate sentiment

information for capturing check-in behavior.

Sentiment information is embedded in the tips or comments that reflect users’

check-in experience. For example, if a user leaves a positive tip (or she likes it), the

corresponding check-in is more important; otherwise it is less so. Thus, sentiment

information can play a role as W in Eq. (5.1) does in determining the importance of
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check-ins. To incorporate sentiment information, we propose a sentiment-enhanced

weighting scheme as a function Ŵ = f(W,S) which assigns weights on check-ins

based on the corresponding check-in observability and sentiment indications. We use

Ŵ to replace the original weighting matrix while the function f(·) should have the

following properties:

• Sentiment Consistency

For an observed check-in action, a positive sentiment indication on this check-

in should increase its importance, while a negative sentiment indication should

decrease its importance.

• Sentiment Scaling

To avoid over-weighting or under-weighting of sentiment information, the sen-

timent score in S should be adjusted to an appropriate scale before adopting it

for recommendation.

• Non-Negativity

The value in W generated by f(·) should be non-negative according to the

learning model in Eq. (5.1).

In this work, we empirically set f(·) as below, which works well in our model,

Ŵ = W+ η ∗ S, η ∈ [0, 1], (5.2)

where η is a scalar to control the weight from sentiment indications corresponding

to the Sentiment Scaling property. Since observed check-ins have original weight

Wij = 1, while the corresponding sentiment score Sij ∈ [−1, 1], the hybrid score Ŵ

on an observed check-in is guaranteed to have the Non-Negativity property.

In Eq. (5.2), the importance of check-in actions is related to the corresponding

sentiment score. A higher sentiment score Sij results in a greater value of Ŵij, which
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forces UiHVT
j to tightly fit the check-in Cij while UiHVT

j will loosely approximate

Cij when Ŵij is smaller (corresponding to a lower Sij). In an extreme case, when

Ŵij is 0, the check-in action is not considered at all; thus, its likelihood of being

recommended to other users is reduced. This is consistent to the user’s sentiment

indication, as Ŵij = 0 happens when ui presents the most negative score (-1) towards

vj (assuming η=1), which meets the Sentiment Consistency property.

5.1.2 Modeling User-Interest Content and POI-Property Content

Besides user sentiment indications, user-interest content is also embedded in tips

and comments on LBSNs. Tips and comments contain semantic words that reflect

a user’s interested topics regarding POIs, e.g., environment, taste, service. On the

other hand, a user’s interests towards POIs are also indicated by her check-in be-

havior through corresponding visiting actions. According to the common assumption

of transfer learning [59], we consider user interests as the intermediary to connect

tipping/commenting behavior and check-in behavior, where the knowledge embedded

in tips and comments can be leveraged as auxiliary information on check-in actions

to better capture user interests. In the meantime, it can also help address the data

sparsity problem of check-in actions to a certain extent, as insufficient observation of

check-in behavior can be compensated by the observed tipping/commenting behavior

for inferring user interests. Thus, we propose the leveraging of information from tips

and comments to improve the learning of user latent interests, as shown below,

min
1

2

M∑

i

N∑

j

(Aij −UiGj)
2, (5.3)

where Gj represents the word properties on latent topics in user-interest content.

Similarly, information from POI-property content can also be leveraged to learn
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the POI latent properties, as shown below,

min
1

2

M∑

i

N∑

j

(Bij −ViĜj)
2, (5.4)

where Ĝj represents the word properties on latent topics in POI-property content.

Both Gj and Ĝj represent word latent topics, where the former is in user context

related to user-interest content, and the latter is in POI context related to POI-

property content. Thus, we expect these two latent topics to be different but with

certain overlaps, and propose a ℓ-1 norm to capture such relationship,

min ‖G− Ĝ‖1 (5.5)

where ‖ · ‖ is the ℓ-1 norm regularization, with ‖X‖1 =
∑

i

∑
j |Xij|.

5.1.3 CAPRF: Content-Aware POI Recommendation Framework

According to the model described in above sections, our content-aware POI recom-

mendation framework, CAPRF, aims to solve the following optimization problem,

min
U,H,V≥0

1

2
‖Ŵ⊙ (C−UHV⊤)‖2F +

λ1
2
‖A−UG‖2F

+
λ2
2
‖B−VĜ‖2F + δ‖G− Ĝ‖1

+
α

2
(‖U‖2F + ‖H‖2F + ‖V‖2F + ‖G‖2F + ‖Ĝ‖2F ), (5.6)

where λ1 and λ2 are introduced to control the weight of user-interest content and POI-

property content. δ is to control the closeness between Gj and Ĝ. The regularization

terms ‖U‖2F , ‖H‖2F , ‖V‖2F , ‖G‖2F , and ‖Ĝ‖2F are used to avoid overfitting.

Table 5.1 lists the relevant notations. Our content-aware POI recommendation

framework is illustrated in Figure 5.2. Check-in action C is directly related to sen-

timent indications S, user interests U, and POI properties V, where the latter two
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kĜkG

kiA , kjB ,

iU

jiC ,

jV

jiS ,

H

kG kĜ

Figure 5.2: Content-Aware POI Recommendation Framework

are learned from the factorization of C with the consideration of a data dependent

matrix H for model flexibility. User interest U is also related to user-interest content

A, which represents tipping/commenting actions factorized to U and word proper-

ties G. POI properties V is also related to POI-property content B, which represents

POI descriptions factorized to V and word properties Ĝ. G and Ĝ are considered to

be close to each other. The input of our framework is user check-in action C, user

sentiment indications S, user-interest content A, and POI-property content B, and

the output is U, H, and V, whose product UHV⊤ is used for POI recommendation.

5.1.4 Parameter Estimation

Previous sections have discussed the modeling of different types of content in-

formation under a unified framework for POI recommendation. In this section, we

introduce a learning method for the parameters involved in our model.

In Eq. (5.6), G and Ĝ are both constrained by ℓ-1 norm regularization, resulting
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Table 5.1: Mathematical Notation

Symbol Size Description

C M×N User-POI Check-in Matrix

W M×N User-POI Weighting Matrix

S M×N User-POI Sentiment Matrix

A M×T User-Word Matrix

B N×T POI-Word Matrix

U M×K User Latent Interests

V N×K POI Latent Properties

H K×K Data Dependent Dense Matrix

G, Ĝ,D K×T Word Latent Factors

in the difficulty to solve each of them. In this work, we propose an equivalent way

to solve this problem via representing G− Ĝ as one variable D, which rephrases the

original problem as solving the ℓ-1 norm regarding D, as shown below:

D = G− Ĝ. (5.7)

According to Eq. (5.6) and Eq. (5.7), the original optimization problem can be

rephrased as

min
U,H,V≥0

J =
1

2
‖Ŵ⊙ (C−UHV⊤)‖2F +

λ1
2
‖A−UG‖2F

+
λ2
2
‖B−V(G−D)‖2F + δ‖D‖1

+
α

2
(‖U‖2F + ‖H‖2F + ‖V‖2F + ‖G‖2F ) (5.8)

Since there are multiple variables in the object function, and alternative algorithm

is commonly used, as it is difficult to provide a direct closed-form solution for the

above optimization problem. Thus, we apply an alternative algorithm to find optimal
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solutions for the five variables U, H, V, G, and D. The key idea is to minimize the

objective function w.r.t. one variable while fixing the other variables, as similar

to [56]. The algorithm will keep updating the variables until convergence or reaching

the number of maximum iterations.

Computation of {U, H, V, G}

The objective function J in Eq. (5.8) is differentiable at U,H,V, and G, the deriva-

tion of J with respect to them are

∂J
∂U

= −(Ŵ ⊙ Ŵ⊙C)VH⊤ + (Ŵ⊙ Ŵ⊙ (UHV⊤))VH⊤

− λ1AG⊤ + λ1UGG⊤ + αU

∂J
∂H

= −U⊤(Ŵ⊙ Ŵ⊙C)V+U⊤(Ŵ⊙ Ŵ⊙ (UHV⊤)V+ αH

∂J
∂V

= −(Ŵ⊤ ⊙ Ŵ
⊤ ⊙C⊤)UH+ (Ŵ

⊤ ⊙ Ŵ
⊤ ⊙ (VH⊤U⊤))UH

− λ2(B−VG+VD)(G⊤ −D⊤) + αV

∂J
∂G

= −λ1U⊤A+ λ1U
⊤UG− λ2V⊤(B−VG+VD) + αG (5.9)

The gradient descent optimization method is widely applied to update the above

variables, and usually works well in recommender systems [36]. For the non-negative

constraints on U,H, and V, we applied projected strategy, which projects a negative

parameter value to 0 in each iteration. The detailed updating rules are shown in

Algorithm 3, where γu, γh, γv, and γg are learning steps, which are chosen to satisfy

Goldstein Conditions [34].

Computation of D

Optimizing Eq. (5.8) w.r.t. D is equivalent to

min
D

λ2
2
‖B−V(G−D)‖2F + δ‖D‖1 (5.10)
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Since ℓ1-norm regularization is applied to D, the objective function in Eq. (5.11)

is a non-smooth convex problem. Proximal gradient descent has recently received

increasing attention, and is able to deal with the non-smooth convex problem. It

considers the objective function as a composite of a smooth part and a non-smooth

part, as shown below:

f(D) =
λ2
2
‖VD− (VG−B)‖2F

F (D) = f(D) + δ‖D‖1 (5.11)

It is known that f(D) is convex and differentiable, while δ‖D‖1 is non-smooth but

convex. In each iteration of the proximal gradient descent, the value of D is updated

as below

Dt+1 = argmin
D

Lγt(D,Dt), (5.12)

where

Lγt(D,Dt) = f(Dt)+ < ∇f(Dt),D−Dt >

+
γt
2
‖D−Dt‖2 + δ‖D‖1 (5.13)

By ignoring the terms in Lγt(D,Dt) that are independent of D, the original optimiza-

tion problem in Eq. (5.11) boils down to

Dt+1 = argmin
D

1

2
‖D−Yt‖2F +

δ

γt
‖D‖1, (5.14)

where Yt = Dt − 1
γt
∇f(Dt). ∇f(Dt) is the gradient of f(Dt). In our problem,

∇f(Dt) is defined as:

∇f(Dt) = −λ2V⊤VD− λ2V⊤VG + λ2V
⊤B (5.15)

Eq. (5.14) can be further decomposed into k separate sub problems as

di
t+1 = argmin ‖di − yi

t‖22 +
δ

γt
‖di‖1, (5.16)
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where di
t+1, d

i, and yi
t are the i-th rows of Di

t+1, D
i, and Yi

t, respectively. It has a

closed form solution according to [46].

di
t+1 = sign(yi

t)⊙max(|yi
t| −

δ

γt
, 0) (5.17)

The convergence rate of the above method is O(1
ǫ
). As suggested in [45], it can be fur-

ther accelerated to achieve the convergence rate of O( 1√
ǫ
) with Nesterov’s method [52],

which is based on a linear combination of Di
t+1 and Di as search points

Zt = Dt +
σt−1 − 1

σt
(Dt −Dt−1), (5.18)

where {σt}t≥1 is conventionally set to be σt+1 =
1+
√

1+4σ2
t

2
. The detailed learning

algorithm of D with above accelerated method is shown in Algorithm 2.

5.1.5 Algorithm Analysis

The detailed learning algorithm of our content-aware recommendation framework

is shown in Algorithm 3. In lines 1-2, all the parameters are firstly initialized ran-

domly, where W is generated through check-in action C, based on which Ŵ is con-

structed with S. From lines 3 to 10, the algorithm iteratively updates U, H, V,

G, and D until convergence. The final output of this algorithm is Ĉ, which is the

product of U, H, and V. We perform POI recommendation for each user based on

the corresponding ranking among her unvisited POIs in Ĉ.

Compared to other operations, the updating rules for U, H, V, G, and D in each

iteration correspond to the major cost of Algorithm 3. Therefore, we analyze the time

complexity of updating operations. For the updating rule of U, (Ŵ⊙ Ŵ⊙C)VH⊤

and (Ŵ⊙Ŵ⊙(UHV⊤))VH⊤ take O(MKN) operations, and λ1AG⊤ and λ1UGG⊤

take O(MKT ) operations, while the time complexity for αU is O(MK). Therefore, it

takes O(MKN) +O(MKT ) operations to update U. Similarly, the time complexity
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Algorithm 2 The Learning Algorithm of D

Input: {B, V, G, λ2, δ}, and max iteration number q

Output: D

1: Initialize D randomly

2: Set D1=D0 = D, σ0 = 0, σ1 = 1, t = 1, γ1 = 1

3: for t = 1 to q do

4: Set Zt = Dt +
σt−1−1

σt
(Dt −Dt−1)

5: Set ∇f(Zt) = −λ2V⊤VZt − λ2V⊤VG+ λ2V
⊤B

6: while true do

7: Set Yt = Zt − 1
γt
∇f(Zt)

8: Compute Dt+1 = argmin
D

Lγt(D,Zt) according to Eq. (5.17)

9: if f(Dt+1) ≤ Lγt(Dt+1,Zt) then

10: Set γt+1 = γt, break

11: end if

12: Set γt = 2 ∗ γt
13: end while

14: Set D = Dt+1

15: Set σt+1 =
1+
√

1+4σ2
t

2

16: Set t = t+ 1

17: end for

18: return D
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of updating H, V, and G are O(MKN), O(MKN) + O(NKT ), and O(MKT ) +

O(NKT ), respectively. To update D, it takes O(NKT ) operations to compute the

gradient and O(K) operations for the ℓ1-norm regularization part. In sum, the time

complexity of Algorithm 3 is
(
# of iterations)∗(O(MKN) +O(NKT ) +O(MKT )

)
.

Algorithm 3 The Learning Algorithm of the Proposed Model

Input: user-POI check-in matrix C, sentiment indication matrix S, user-interest

content A, POI-property content B, parameters {η, λ1, λ2, δ, α}

Output: approximated user-POI preference matrix C̃

1: Initialize U, H, V, and G randomly

2: Set W = sign(C), Ŵ = W+ η ∗ S

3: while Not Convergent do

4: Calculate ∂J
∂U

, ∂J
∂H

, ∂J
∂V

, and ∂J
∂G

5: Update U← max(U− γu ∂J
∂U
, 0)

6: Update H← max(H− γh ∂J
∂H
, 0)

7: Update V← max(V− γv ∂J
∂V
, 0)

8: Update G← G− γg ∂J
∂G

9: Update D according to Algorithm 2

10: end while

11: return C̃ = UHV⊤

5.2 Experiments

In this section, we evaluate the performance of our proposed framework CAPRF

for POI recommendation. In particular, we evaluate the following: (1) how the pro-

posed framework fares in comparison with state-of-the-art recommendation systems;

and (2) how different kinds of content information perform in the POI recommenda-

tion task. Before we delve into experiment details, we first discuss an LBSN dataset
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and evaluation metrics.

5.2.1 Foursquare Dataset

We use Foursquare dataset to study the content information on LBSNs. We

collect users whose Foursquare profiles indicate their hometown as being California

or New York state. We then obtain their corresponding check-in tweets through

Twitter’s public REST API with the same crawling strategy as proposed in [67, 22],

and collect check-ins that happened in the corresponding state. A check-in tweet

contains a unique URL that directs to a Foursquare web page indicating check-in

POI information. Based on the venue id extracted from check-in tweets, we obtain

the POI category through the “Venue API”1 of Foursquare. We select check-ins

happened at POI of the “Food” category, which is the largest category among all the

POIs in Foursquare. We obtain the POI-associated content (tags) through the venue

API as well.

To collect user-generated content, we combine both check-in tips and check-in

comments. Check-in tips are collected through the “Tip API”2 of foursquare, while

check-in comments are embedded in the check-in tweets in which we remove the

system-generated comment formatted “I’m at xxx 4sq.com/xxx.” Note that tips and

comments have no overlaps, as tipping is an independent action on Foursquare that

requires a user to specifically post, while comments can be left when a user performs

check-in actions. In our experiment, we consider users who have checked-in at least

2 distinct POIs. The statistics of the final dataset are shown in Table 5.2. Figure 5.3

and Figure 5.4 show the check-in distribution over California and New York State in

our dataset, respectively.

1https://developer.foursquare.com/docs/venues/venues
2https://developer.foursquare.com/docs/users/tips
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Table 5.2: Statistical Information of the Dataset

CA NY

Number of Users 4,287 6,043

Number of Check-ins 134,556 207,591

Number of POIs 5,878 5,937

Number of Tips 19,741 40,539

Number of Comments 56,718 78,290

Check-in Duration May, 2008-Sep, 2013

Figure 5.3: Check-in Distribution over the California State
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Figure 5.4: Check-in Distribution over the New York State

5.2.2 Experimental Setup

The input of our framework is the observed check-in action matrix C and three

types of content information S, A, and B. We first introduce how we organize this

input information in our experiments, then discuss the experimental settings and

evaluation metrics.

• Check-in Matrix C

We organize the check-in actions as a user-POI matrix C. The check-in density

of the matrix is 5.34 × 10−4 for CA data, and 5.79 × 10−4 for NY data. We

adopt the mapping function 1
1+x−1 , which has been proven to work well for POI

recommendation in our previous work [21].

• Sentiment Indication Matrix S

We generate the user sentiment indication matrix S from tips and comments

with an unsupervised sentiment classification method. For each tip/comment,
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we remove stop words and employ a word-matching scheme to compute its

sentiment score based on a sentiment lexicon. Sentiment polarity of a word is

obtained from the pre-defined sentiment lexicon, i.e., −1 for negative and +1

for positive. The overall sentiment score of a tip/comment is computed as the

summation of sentiment scores of the words in the tip/comment, and normalized

to [-1,1] by taking the average on the tip/comment length. We adopt the MPQA

Subjectivity Lexicon3, which is a widely used manually labeled sentiment lexicon

containing 2, 718 positive and 4, 902 negative words.

• User-Interest Matrix A & POI-Property Matrix B

We select the common words of user-interest content and POI-property con-

tent, construct them as a user-word matrix A and a POI-word matrix B, with

the matrix entry representing the frequency of a word used by corresponding

user/POI. The total number of common words in the CA dataset and NY

dataset are 1, 810 and 1, 906, respectively.

For each individual user in the check-in matrix, we randomly mark off 20% of all

POIs that he has checked-in for testing. The rest of the observed user-POI pairs are

used as training data for POI recommendation. The random selection is conducted

5 times individually, and we report the average results. Since only the observed

check-in actions (corresponding to Wij = 1) are considered in Eq. (5.1), following

the standard strategy of solving one-class CF problems [57, 58], we sample 10% of

unobserved check-ins from the training matrix, deem them as the check-in frequency

of 0 and set their corresponding Wij to 1. The same strategy is also performed on

baseline methods.

3http://mpqa.cs.pitt.edu/lexicons/subj lexicon
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To evaluate the recommendation performance, we use precision@N and recall@N

in Eq. (4.17) as our evaluation metrics. In our experiment, N is set to be 5 and

10. All the parameters in this work are set through cross-validation. For the pro-

posed method, the experimental results use d=20 dimensions to represent the latent

features, the parameters {η, λ1, λ2, δ, α} are set to {0.3, 0.1, 0.1, 0.8, 0.1} in the CA

dataset and {0.2, 0.3, 0.3, 0.5, 0.1} in the NY dataset.

5.2.3 Performance Evaluation

In this section, we compare our POI recommendation framework with existing

state-of-the-art methods. Five baseline methods are introduced w.r.t. different types

of content, as defined below:

• User-Based Collaborative Filtering (UCF)

User-based collaborative filtering is a state-of-the-art approach for recommender

systems. We adopt the user-based recommender [101] for POI recommendation.

It computes a user’s interests in a location based on other users’ interests in

that POI. Content information is not considered in this approach.

• Probabilistic Matrix Factorization (PMF)

PMF is a classical matrix factorization approach which factorizes the user-item

actions into user interests and item properties for recommendation [64]. In this

work, we regard POIs as items while content information is not used.

• Non-negative Matrix Factorization (NMF)

Non-negative Matrix Factorization (NMF) [38] computes non-negative user check-

in preferences under the user-POI matrix. In this work, we adopt the tri-

factorization model, which is our basic POI recommendation model, as defined

in Eq. (5.1), without considering content effects.
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• Spatial Topic Location Recommender (STLR)

STLR performs location recommendation under a topic model which considers

the user-interest content [31]. It approximates the user interests and location

properties based on the content information left by a user at a location. The

POI-property content and sentiment information is not used.

• Sentiment-Enhanced Location Recommender (SELR)

SELR is a recommendation model based on probabilistic matrix factorization

that uses sentiment information and venue categories for location recommenda-

tion [16]. From a content view, user-interest content and POI-property content

(tags) are not used in this work.

Note that there are existing works that are using POI-property content only for POI

recommendation [88]. In this work, we do not consider them as baseline methods,

as these methods are “location-aware”, i.e., when making a recommendation, the

system is aware of the user’s current position in terms of a city or activity region, and

selects POI candidates within the region for recommendation. Since our model does

not have this assumption, for fair comparison, we do not perform comparison with

these methods. However, in the next section, we investigate the recommendation

efforts of each type of content information with our proposed model, which gives the

interpretation on the effect of POI-property content.

Table 5.3 and Table 5.4 report the comparison results of CAPIR with the pro-

posed baseline methods. The results precipitate several observations, which we sum-

marize below:

• UCF performs the worst among all the approaches. Data sparseness is a possible

reason for its performance. Due to the low density of the check-in matrix, the

user-based collaborative filtering approach fails to accurately recommend POIs
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Table 5.3: Performance Comparison (CA)

Methods
Precision Recall

P@5 P@10 R@5 R@10

UCF 0.0083 0.0077 0.0117 0.0216

PMF 0.0114 0.0104 0.0160 0.0292

NMF 0.0126 0.0111 0.0177 0.0310

STLR 0.0173 0.0150 0.0243 0.0422

SELR 0.0134 0.0121 0.0188 0.0340

CAPRF 0.0186 0.0169 0.0261 0.0474

Table 5.4: Performance Comparison (NY)

Methods
Precision Recall

P@5 P@10 R@5 R@10

UCF 0.0052 0.0047 0.0056 0.0103

PMF 0.0109 0.0099 0.0119 0.0151

NMF 0.0114 0.0102 0.0124 0.0223

STLR 0.0138 0.0125 0.0150 0.0273

SELR 0.0124 0.0113 0.0136 0.0247

CAPRF 0.0158 0.0143 0.0172 0.0311
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and performs worse than matrix factorization approaches which leverage the

low-rank approximation of user check-in preferences.

• Both PMF and NMF perform better than CF, demonstrating their ability in

dealing with sparse data for POI recommendation. However, since there is no

content information used in PMF and NMF, their recommendation performance

is worse than content-based POI recommendation approaches.

• SELR and STLR perform better than UCF, PMF, and NMF, suggesting the

importance of sentiment information and user-interest content. Furthermore,

the better performance of STLR over SELR indicates that user-interest content

seems to be more effective than sentiment information for POI recommendation.

We will further discuss this in the next section.

• Among all the approaches, our proposed model CAPRF performs the best, sug-

gesting the importance of content information on LBSNs for POI recommenda-

tion. Our model, with the consideration of different types of content information

w.r.t. sentiment indications, user-interest content, and POI-property content,

is able to improve POI recommendation performance, which indicates its ability

to capture the relationship between content information and check-in actions

on LBSNs.

It is worth noting that precision and recall in our experiments are not high. As

discussed in Chapter 4, the effectiveness of recommender systems with sparse datasets

is usually very low. For example, the reported top 5 precision is 5% over a dataset

with 8.02 × 10−3 density [84, 86]. Therefore, the low precision obtained in our ex-

periment is reasonable. In this work, we focus on comparing algorithms’ relative

performance instead of their absolute performance.
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5.2.4 Evaluation of Different Types of Content Information

In this section, we discuss the recommendation efforts of different types of content

information on LBSNs, i.e., Sentiment Indications (SI), User-Interest Content (UIC),

and POI-Property Content (PPC). To evaluate each type of content information and

their complementary effect, we propose to consider their different combinations by

setting the corresponding parameter η (for sentiment indications), λ1 (for user-interest

content), and λ2 (for POI-property content). For each parameter, if the corresponding

type of content is considered, we set it to the optimal value; otherwise, 0. Since the

parameter δ relates to both user-interest content and POI-property content, we set it

to the optimal value when both types of content information have been considered,

and 0 if only one or none of them has been considered. In the next section, we will

specifically investigate this parameter.

Table 5.5 and Table 5.6 lists the comparison results with the consideration of

different types of content information and their combinations. We use
√

to indicate

that the corresponding type of content information is used, and × otherwise. From

the result, we observe the recommendation effect of different content information

with their complementary effects for POI recommendation. We summarize the key

observations below:

• Sentiment information is helpful in improving the POI recommendation perfor-

mance. It consistently improves the performance based on existing content in-

formation. For example, it achieves approximately 3.60% relative improvement

over the “None” model, and 3.10% relative improvement over the “UIC+PPC”

model on CA data. Similar improvement can also be observed on NY data.

However, it seems that the recommendation effect of sentiment information is

not as great as user-interest content and POI-property content. One possi-
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ble reason could be that sentiment information is quite noisy in user-generated

content, while the non-perfect lexicon-based sentiment classification approach

exacerbates the capturing of essential user attitude content, resulting in a piece

of valuable but noisy or even inaccurate information for POI recommendation.

• User-interest content presents more recommendation effect than the other two

types of content information. Compared to POI-property content, user-interest

content achieves, on average, 7% ∼ 10% relative improvement with either in-

dividual content information or multiple content information on both datasets.

One possible reason of this improvement could be the different frequency of

words (tags) in the two types of content information. In POI-property content,

a word/tag is commonly only mentioned once with a POI, while in user-interest

content, a word/tag can be mentioned many times in users’ tips or comments.

Thus, word information will be more helpful to distinguish user interests in

user-interest content than POI properties in POI-property content.

• The combination of all three types of content information, i.e., CAPRF, has

the best performance among all the other methods. This indicates the potential

complementary effect among the three types of content information. According

to Table 1.1, this information constitutes the key factors of POI recommender

systems regarding a set of check-in related considerations, i.e., “what is the POI

about” (POI properties), “am I interested” (user interests), and “how good is

the POI” (sentiment indications).

5.2.5 Parameter Analysis

In this section, we analysis the parameters in our recommendation framework

CAPRF w.r.t. η (weight of sentiment indications), λ1 (weight of user-interest con-
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Table 5.5: Recommendation Effect of Different Types of Content Information

Information SI UIC PPC
CA

P@5 R@5 P@10 R@10

NONE × × × 0.0126 0.0177 0.0111 0.0310

SI
√ × × 0.0130 0.0182 0.0115 0.0323

UIC × √ × 0.0164 0.0230 0.0148 0.0416

PPC × × √
0.0154 0.0217 0.0138 0.0387

UIC+SI
√ √ × 0.0172 0.0242 0.0154 0.0433

PPC+SI
√ × √

0.0157 0.0221 0.0141 0.0396

UIC+PPC × √ √
0.0178 0.0250 0.0162 0.0456

SI+UIC+PPC
√ √ √

0.0186 0.0261 0.0169 0.0474

Table 5.6: Recommendation Effect of Different Types of Content Information

Information SI UIC PPC
NY

P@5 R@5 P@10 R@10

NONE × × × 0.0110 0.0120 0.0102 0.0223

SI
√ × × 0.0117 0.0127 0.0108 0.0234

UIC × √ × 0.0138 0.0151 0.0128 0.0279

PPC × × √
0.0130 0.0141 0.0120 0.0261

UIC+SI
√ √ × 0.0140 0.0152 0.0130 0.0283

PPC+SI
√ × √

0.0133 0.0144 0.0123 0.0267

UIC+PPC × √ √
0.0149 0.0163 0.0138 0.0301

SI+UIC+PPC
√ √ √

0.0154 0.0168 0.0143 0.0311
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tent), λ2 (weight of POI-property content), and δ (control of overlapped semantic

space). We investigate each parameter by evaluating the model performance when

varying the value of one parameter and keeping the other parameters fixed as their

optimal values. Figure 5.5 to Figure 5.8 plot the performance w.r.t these parameters.

Since η ∈ [0, 1], we increase its value from 0 to 1 with a step 0.1, and observe its

performance. For λ1, λ2, and δ, we set their values as {0, 1e− 4, 1e− 3, 1e− 2, 1e−

1, 1, 10, 100, 1000}. From the figures, we observe the following:

• When η increases from 0 to 1, the recommendation performance on both CA

and NY datasets exhibits a similar trend, i.e., it first increases, reaches its peak,

then decreases, indicating the sensitivity of η to the model performance. When

η is small, the sentiment indications are not fully considered; thus the learning

of user interests and POI properties are affected more by check-in actions. With

the increasing of η, the model considers sentiment information more than check-

in actions, resulting in a poor recommendation performance as the former is

much noisier and sparser than the latter.

• The varying of λ1 and λ2 presents a similar trend on the recommendation per-

formance. According to Figure 5.6 and Figure 5.7, the optimal values of these

two parameters are between 0 and 1, while the recommendation performance

rapidly reduces when λ1/λ2 is smaller than 0 or larger than 1. This suggests that

content information can be helpful to improve POI recommendation when it is

considered auxiliary information on the check-in information for learning user

interests and POI properties. A large λ1/λ2 will place a strong constraint on

user interests/POI properties, therefore making the model severely over-fitted

on content information, resulting in the poor recommendation performance.

• Increasing δ immediately improves the recommendation performance, suggest-
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Figure 5.5: Sentiment Indications-η

ing its importance. δ controls the sparseness of G − Ĝ, under the assumption

that words in user context and POI context should have similar semantic prop-

erties on latent topics. However, when δ takes a large value, the performance

stops increasing and decreases a bit, suggesting that some words may not have

the same semantic properties due to their different appearance in the two con-

texts, while forcing them to be the same may decrease the performance.

103



0 1e−4 1e−3 1e−2 1e−1 1 10 100 1000
0.008

0.01

0.012

0.014

0.016

0.018

0.02

λ
1

P
re

ci
si

on
@

10

 

 

CA
NY

Figure 5.6: User-Interest Content-λ1
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Figure 5.7: POI-Property Content-λ2
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Figure 5.8: Semantic Overlapping-δ
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Chapter 6

CONCLUSION AND FUTURE WORK

In this dissertation, we study personalized POI recommendation on LBSNs. We

investigate various LBSN-related properties to design the POI recommender systems,

including geo-temporal patterns, geo-social correlations, and geo-content indications.

We evaluate the performance of proposed models on a real-world LBSN dataset and

summarize key observations from the experimental results.

In personalized geo-temporal POI recommender system, we study both temporal

cyclic and temporal chronological patterns and their combinational effect. We lever-

age the temporal non-uniformness and temporal consecutiveness properties to model

the temporal cyclic patterns with a matrix factorization model. We use power-law

distribution and short-term effect to model the temporal chronological patterns with

a Hierarchical Pitman-Yor language model.

In personalized geo-social POI recommender system, we consider the relationships

between geographical distance and social friendships, and study them as a component

w.r.t four elements, i.e., local friends, distant friends, local non-friends, and distant

non-friends, which correspond to four types of correlations, i.e., local influence, dis-

tant influence, confounding effect, and unknown effect. We model them in a unify

framework, gSCorr, and discover the recommendation ability of each element.

In personalized geo-content POI recommender system, we study the user-generated

content and POI-associated content, and recognized three types of content informa-

tion including sentiment indications, user interests, and POI properties. We model

the sentiment as a enhanced component on check-in preference, and connect users’

latent interests and POIs’ latent profiles through the factorization of user-generated
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content and POI-associated content.

There are many extensions and work that are worth further explorations. We

summarize the future work as below:

• Temporal-based Content Analysis

Content information has been proven to be useful for personalized POI rec-

ommendation. By investigating the sentiment and topics embedded in content

information, one can infer a user’s interests in POIs and perform better rec-

ommendation services to him. However, a user’s interests may change over the

time. A user may not eat any spicy food before but love it now due to certain

reasons. Such change is reflected through his check-in content over a certain

period of time. Thus, temporal-based content analysis could help capture the

change of check-in interests and provide the most up-to-date recommendations.

• Relationships Among Multiple Information

Although most of the existing work studies more than two types of information,

e.g., spatio-temporal, socio-spatial, spatial-content, etc., individual information

are commonly combined together through fused method, which restricts the

understanding of their deep relationships. In the future, it is possible to study

more coherent relationships among multiple types of information, such as the

geo-social correlations. This also relies on the discovery of anthropology and

social theories of these relationships, which can be helpful for guiding the rela-

tionship modeling.

• Tensor-Based POI Recommender Systems

Most of the existing POI recommender systems study temporal information

with other types of information. When the temporal information is considered,

it is natural to organize the check-in actions as a tensor. Thus, tensor-based ap-
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proaches can be used to study user preferences, which is more compact and rea-

sonable. Furthermore, tensor-based approaches consider different information

as a whole component, providing us an opportunity to study their relationships

and complementary effect for personalize POI recommendation.

• Location-Based Mobile Applications

Personalized POI recommendation has been a popular topic in academic dur-

ing the last five years. Due to its close relationship to human mobility, it also

exhibits great developing potential in industry. Location-based social network-

ing services such as Foursquare and Yelp have already started to use their POI

recommendation model to help users find interested POIs. We expect to see

more applications, especially mobile applications, to be developed in the next

decade and significantly facilitate users’ daily life.

108



REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions on, 17(6):734–749, 2005.

[2] D. Agarwal and B.-C. Chen. Recommender problems for web applications. In
16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Tutorial, 2010.

[3] A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation
in social networks. In Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 7–15. ACM, 2008.

[4] C. Anderson. The long tail: Why the future of business is selling less of more.
Hyperion Books, 2008.

[5] A. Beeharee and A. Steed. Exploiting real world knowledge in ubiquitous ap-
plications. Personal and Ubiquitous Computing, 11(6):429–437, 2007.

[6] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[7] F. Cairncross. The death of distance: How the communications revolution is
changing our lives. Harvard Business Press, 2001.

[8] X. Cao, G. Cong, and C. S. Jensen. Mining significant semantic locations from
gps data. Proceedings of the VLDB Endowment, 3(1-2):1009–1020, 2010.

[9] J. Chang and E. Sun. Location 3: How users share and respond to location-
based data on social networking sites. Proceedings of the Fifth International
AAAI Conference on Weblogs and Social Media, 2011.

[10] C. Cheng, H. Yang, I. King, and M. Lyu. Fused matrix factorization with geo-
graphical and social influence in location-based social networks. AAAI, Toronto,
Canada, 2012.

[11] C. Cheng, H. Yang, M. R. Lyu, and I. King. Where you like to go next:
Successive point-of-interest recommendation. In Proceedings of the Twenty-
Third international joint conference on Artificial Intelligence, pages 2605–2611.
AAAI Press, 2013.

[12] Z. Cheng, J. Caverlee, K. Lee, and D. Sui. Exploring millions of footprints in
location sharing services. In Proceedings of the Fifth International Conference
on Weblogs and Social Media, 2011.

[13] E. Cho, S. Myers, and J. Leskovec. Friendship and mobility: user movement in
location-based social networks. In Proceedings of the 17th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 1082–
1090. ACM, 2011.

109



[14] J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Sadeh. Bridging the gap
between physical location and online social networks. In Proceedings of the
12th ACM international conference on Ubiquitous computing, pages 119–128.
ACM, 2010.

[15] C. Ding, T. Li, and M. Jordan. Nonnegative matrix factorization for combina-
torial optimization: Spectral clustering, graph matching, and clique finding. In
Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages
183–192. IEEE, 2008.

[16] Z. Y. Dingqi Yang, Daqing Zhang and Z. Wang. A sentiment-enhanced person-
alized location recommendation system. ACM Hypertext, 2013.

[17] N. Eagle, A. Pentland, and D. Lazer. Inferring friendship network structure
by using mobile phone data. Proceedings of the National Academy of Sciences,
106(36):15274–15278, 2009.

[18] T. Ferguson. A bayesian analysis of some nonparametric problems. The annals
of statistics, pages 209–230, 1973.

[19] H. Gao and H. Liu. Data analysis on location-based social networks. In Mobile
Social Networking, pages 165–194. Springer, 2014.

[20] H. Gao, J. Tang, X. Hu, and H. Liu. Exploring temporal effects for location
recommendation on location-based social networks. In Proceedings of the 7th
ACM conference on Recommender systems, pages 93–100. ACM, 2013.

[21] H. Gao, J. Tang, X. Hu, and H. Liu. Modeling temporal effects of human mobile
behavior on location-based social networks. In Proceedings of the 22nd ACM
international conference on Conference on information & knowledge manage-
ment, pages 1673–1678. ACM, 2013.

[22] H. Gao, J. Tang, and H. Liu. Exploring social-historical ties on location-based
social networks. In Proceedings of the Sixth International Conference on Weblogs
and Social Media, 2012.

[23] H. Gao, J. Tang, and H. Liu. gscorr: Modeling geo-social correlations for new
check-ins on location-based social networks. 21st ACM International Conference
on Information and Knowledge Management, 2012.

[24] H. Gao, J. Tang, and H. Liu. Mobile location prediction in spatio-temporal
context. Nokia Mobile Data Challenge Workshop, 2012.

[25] M. Gastner and M. Newman. The spatial structure of networks. The European
Physical Journal B-Condensed Matter and Complex Systems, 49(2):247–252,
2006.

[26] Y. Ge, Q. Liu, H. Xiong, A. Tuzhilin, and J. Chen. Cost-aware travel tour
recommendation. In Proceedings of the 17th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 983–991. ACM, 2011.

110



[27] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani. An
energy-efficient mobile recommender system. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 899–908. ACM, 2010.

[28] S. Goldwater, T. Griffiths, and M. Johnson. Interpolating between types and
tokens by estimating power-law generators. Advances in neural information
processing systems, 18:459, 2006.

[29] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 230–237. ACM, 1999.

[30] T. Horozov, N. Narasimhan, and V. Vasudevan. Using location for personalized
poi recommendations in mobile environments. In Applications and the Internet,
2006. SAINT 2006. International Symposium on, pages 6–pp. IEEE, 2006.

[31] B. Hu and M. Ester. Spatial topic modeling in online social media for location
recommendation. In Proceedings of the 7th ACM conference on Recommender
systems, pages 25–32. ACM, 2013.

[32] B. Hu and M. Ester. Social topic modeling for point-of-interest recommendation
in location-based social networks. In IEEE International Conference on Data
Mining series, 2014.

[33] H. Ishwaran and L. James. Gibbs sampling methods for stick-breaking priors.
Journal of the American Statistical Association, 96(453):161–173, 2001.

[34] S. W. Jorge Nocedal. Numerial Optimization. Springer, 1999.

[35] E.-y. Kang, H. Kim, and J. Cho. Personalization method for tourist point
of interest (poi) recommendation. In Knowledge-Based Intelligent Information
and Engineering Systems, pages 392–400. Springer, 2006.

[36] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceeding of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[37] J. Kulshrestha, F. Kooti, A. Nikravesh, and K. Gummadi. Geographic dissec-
tion of the twitter network. 2012.

[38] D. Lee, H. Seung, et al. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999.

[39] K. W.-T. Leung, D. L. Lee, and W.-C. Lee. Clr: a collaborative location
recommendation framework based on co-clustering. In SIGIR, pages 305–314,
2011.

111



[40] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W. Ma. Mining user similarity
based on location history. In Proceedings of the 16th ACM SIGSPATIAL inter-
national conference on Advances in geographic information systems, page 34.
ACM, 2008.

[41] Y. Li, J. Hu, C. Zhai, and Y. Chen. Improving one-class collaborative filtering
by incorporating rich user information. In Proceedings of the CIKM, pages
959–968. ACM, 2010.

[42] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins. Ge-
ographic routing in social networks. Proceedings of the National Academy of
Sciences, 102(33):11623–11628, Aug. 2005.

[43] B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning geographical preferences for
point-of-interest recommendation. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1043–
1051. ACM, 2013.

[44] B. Liu and H. Xiong. Point-of-interest recommendation in location based social
networks with topic and location awareness. Proc. of SDM13, pages 396–404,
2013.

[45] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l 2, 1-norm
minimization. In Proceedings of the UAI, pages 339–348. AUAI Press, 2009.

[46] J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of fused lasso
problems. In Proceedings of the SIGKDD, pages 323–332. ACM, 2010.

[47] Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong. Personalized travel package recom-
mendation. In Data Mining (ICDM), 2011 IEEE 11th International Conference
on, pages 407–416. IEEE, 2011.

[48] T. Liu, P. Bahl, and I. Chlamtac. Mobility modeling, location tracking, and tra-
jectory prediction in wireless atm networks. Selected Areas in Communications,
IEEE Journal on, 16(6):922–936, 1998.

[49] X. Long and J. Joshi. A hits-based poi recommendation algorithm for location-
based social networks. In Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pages 642–
647. ACM, 2013.

[50] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using
probabilistic matrix factorization. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 931–940. ACM, 2008.

[51] E. Malmi, T. Do, and D. Gatica-Perez. Checking in or checked in: Compar-
ing large-scale manual and automatic location disclosure patterns. The 11th
International Conference on Mobile and Ubiquitous Multimedia (MUM 2012),
2012.

112



[52] Y. Nesterov and I. E. Nesterov. Introductory lectures on convex optimization:
A basic course, volume 87. 2004.

[53] J. Nocedal and S. Wright. Numerical optimization. Springer verlag, 1999.

[54] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. Mining user mobility features
for next place prediction in location-based services. In ICDM, pages 1038–1043,
2012.

[55] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. An empirical study of geo-
graphic user activity patterns in foursquare. Proceeding of the 5th International
AAAI Conference on Weblogs and Social Media, 2011.

[56] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics,
(2), 1994.

[57] R. Pan and M. Scholz. Mind the gaps: weighting the unknown in large-scale
one-class collaborative filtering. In Proceedings of the SIGKDD, pages 667–676.
ACM, 2009.

[58] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-
class collaborative filtering. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, pages 502–511. IEEE, 2008.

[59] S. J. Pan and Q. Yang. A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[60] M. Papagelis, D. Plexousakis, and T. Kutsuras. Alleviating the sparsity problem
of collaborative filtering using trust inferences. In Trust management, pages
224–239. Springer, 2005.

[61] M.-H. Park, J.-H. Hong, and S.-B. Cho. Location-based recommendation sys-
tem using bayesian users preference model in mobile devices. In Ubiquitous
Intelligence and Computing, pages 1130–1139. Springer, 2007.

[62] J. Pitman. Combinatorial stochastic processes, volume 1875. Springer-Verlag,
2006.

[63] J. Pitman and M. Yor. The two-parameter poisson-dirichlet distribution derived
from a stable subordinator. The Annals of Probability, 25(2):855–900, 1997.

[64] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS,
volume 1, pages 2–1, 2007.

[65] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285–295. ACM, 2001.

[66] S. Scellato, C. Mascolo, M. Musolesi, and V. Latora. Distance matters: Geo-
social metrics for online social networks. In Proceedings of the 3rd conference
on Online social networks, pages 8–8. USENIX Association, 2010.

113



[67] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-spatial properties
of online location-based social networks. Proceeding of the 5th International
AAAI Conference on Weblogs and Social Media, 11, 2011.
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