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ABSTRACT  

   

Data imbalance and data noise often coexist in real world datasets. Data 

imbalance affects the learning classifier by degrading the recognition power of the 

classifier on the minority class, while data noise affects the learning classifier by 

providing inaccurate information and thus misleads the classifier. Because of these 

differences, data imbalance and data noise have been treated separately in the data mining 

field. Yet, such approach ignores the mutual effects and as a result may lead to new 

problems. A desirable solution is to tackle these two issues jointly. Noting the 

complementary nature of generative and discriminative models, this research proposes a 

unified model fusion based framework to handle the imbalanced classification with noisy 

dataset.  

The phase I study focuses on the imbalanced classification problem. A generative 

classifier, Gaussian Mixture Model (GMM) is studied which can learn the distribution of 

the imbalance data to improve the discrimination power on imbalanced classes. By fusing 

this knowledge into cost SVM (cSVM), a CSG method is proposed. Experimental results 

show the effectiveness of CSG in dealing with imbalanced classification problems.  

The phase II study expands the research scope to include the noisy dataset into the 

imbalanced classification problem. A model fusion based framework, K Nearest 

Gaussian (KNG) is proposed. KNG employs a generative modeling method, GMM, to 

model the training data as Gaussian mixtures and form adjustable confidence regions 

which are less sensitive to data imbalance and noise. Motivated by the K-nearest 

neighbor algorithm, the neighboring Gaussians are used to classify the testing instances. 
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Experimental results show KNG method greatly outperforms traditional classification 

methods in dealing with imbalanced classification problems with noisy dataset.  

The phase III study addresses the issues of feature selection and parameter tuning 

of KNG algorithm. To further improve the performance of KNG algorithm, a Particle 

Swarm Optimization based method (PSO-KNG) is proposed. PSO-KNG formulates 

model parameters and data features into the same particle vector and thus can search the 

best feature and parameter combination jointly. The experimental results show that PSO 

can greatly improve the performance of KNG with better accuracy and much lower 

computational cost. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Rationale 

In real world application, classification problems always suffer from the data quality issues such 

as imbalance and noise. These issues not only increase the complexity of learning, but also 

hinder the performance of most classification algorithms.  

Data imbalance occurs when one class (minority class) is greatly outnumbered by another class 

(majority class). Indeed, many applications call special attention on labeling the minority class. 

For example, in the field of medical diagnosis (diseased patients), fraud detection (true fraud), 

identifying the minority examples is the interest (if not the only interest) of the problem. The 

standard classifiers generally have poor recognition power on the minority class when dealing 

with imbalance data due to the fact that majority class dominates the whole dataset. As a result, 

the performance of most standard classifiers is less than satisfactory in dealing with imbalanced 

dataset. 

Data noise occurs when the data has been corrupted by various errors such as systematic 

uncertainty, measurement error, human error, etc (Sáez et al., 2013),(Zhu & Wu, 2004).  Based 

on its information sources, data noise can be characterized as (1) attribute noise, which refers to 

the corruption in the attributes, and (2) class noise, which occurs when the instances are 

incorrectly labeled. Noise may hinder the knowledge extraction from the data and thus makes the 

classifier less effective, particularly if the classifier is noise-sensitive. 

Although various approaches to tackle the imbalance and noise classification problems have 

been proposed (He & Garcia, 2009),(Chawla, 2005),(Xiong et al., 2006),(Lee et al., 

2000),(Mingers, 1989a),(Long & Servedio, 2008), most of the existing approaches deal with 
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imbalance and noise issues separately. This is because the causes and problematic consequences 

of imbalance and noise are different, as aforementioned. However, doing so ignores the mutual 

effects of data imbalance and data noise and thus may lead to new problems. Besides, this two-

step procedure is more likely to be computational costly. Thus, a framework that can handle 

imbalance and noisy data jointly is required. To the best of our knowledge, existing literature 

focuses on discriminative models (Jordan, 2002) to handle either imbalanced or noisy dataset but 

not both in the classification problems. This is mainly due to the fact that discriminative model 

tends to be more effective in forming the class boundary. However, since it works on the raw 

data directly, discriminative model may be more error-prone to the data imbalance and noise. 

Alternatively, generative models (Jordan, 2002) focus on extracting the characteristics from the 

raw data which are expected to be less sensitive to data imbalance and noise. Due to the 

complementary nature of the generative and discriminative classifiers, in this research, we 

propose a generative/discriminative model fusion based framework to tackle the problem of 

imbalanced classification with noisy dataset. 

1.2 Research Scope 

In this research, we are interested in three specific research questions as following: 

Research Question 1:  How to handle imbalanced classification problem?  

Proposed Approach: CSG: Augmenting cost SVM with Gaussian Mixture Model (GMM) for 

imbalanced classification. 

We first focus on the data imbalance issue only. Based on Bayes decision theory, the 

misclassification costs of false positive and false negative are generally unequal. Thus, classifier 

designed using cost sensitive framework is expected to be optimal in dealing with imbalanced 

dataset (Masnadi-Shirazi et al., 2012). However, the well-known cost sensitive SVM (cSVM) 
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method does not work well in many empirical studies (Wu & Chang, 2004),(Masnadi-Shirazi et 

al., 2012),(Cao et al., 2013) because its ability to enforce cost-sensitivity is limited by the KKT 

condition (detailed discussion can be found in Section 2.3.2). In this study, we propose a model 

fusion based framework, CSG, which augments cSVM with a generative model, GMM, to 

improve the performance of cost SVM on imbalanced datasets. By fusing the GMM with cSVM, 

the skewed class boundary can be pushed back towards the majority class and more minority 

instances can be correctly recognized. Experimental results on seven UCI benchmark datasets 

and one real world medical imaging dataset show the effectiveness of CSG in dealing with 

imbalanced classification problem. 

Research Question 2:  How to handle imbalanced classification problem with noisy dataset?  

Proposed Approach: K Nearest Gaussian (KNG) - a Model Fusion based Framework for 

Imbalanced Classification with Noisy dataset. 

In Phase II study, we further explore the imbalance issue and noise issue jointly. In Phase I 

study, we show a case where a generative classifier (GMM) can be used as supplementation to a 

discriminative classifier (cSVM) in dealing with imbalanced classification problem. We also find 

from literatures that most discriminative classifiers are criticized to be ineffective on imbalanced 

and noisy data (Sáez et al., 2013),(Akbani et al., 2004). On the contrary, the data characteristics 

extracted by generative classifiers are expected to be less sensitive to imbalance and noise. This 

leads us to a research question: instead of using generative classifiers as supplement method, can 

we turn our focus to generative classifier and use discriminative classifier as supplement to 

handle the imbalanced and noisy data? Our proposed approach is KNG method. KNG employs 

GMM to model the training data as Gaussian mixtures and form adjustable confidence regions of 

each Gaussian. The classification of a testing instance is achieved by majority voting of its 
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neighboring Gaussians. The experimental study show that KNG method outperforms other 

commonly used classifiers in both Gmean and robustness measures. 

Research Question 3:  How to jointly perform feature selection and parameter tuning on KNG 

method? 

Proposed Approach: PSO-KNG: A Particle Swarm Optimization (PSO) based KNG algorithm. 

In phase II study, we propose the KNG algorithm to handle imbalanced classification with noisy 

dataset. Although the experiment results show the effectiveness of KNG, we do find two issues 

that may hinder the performance of KNG. First, KNG may suffer from the redundancy among 

the features which may highly impact the effectiveness of GMM. As a result, the Gaussian 

mixtures modeled by GMM may not be robust. Secondly, we observe through empirical 

experiments that the success of KNG is mainly based on the proper tuning of the parameters. 

However, the parameter tuning technique employed in phase II study is grid search, which has 

been criticized to be inefficient.  

To further improve the performance of KNG, we explore the feature selection and parameter 

tuning issues in phase III study. Traditionally, feature selection and parameter tuning are 

generally treated as separate process. However, doing so simply ignores the mutual influence 

among model parameters and data features which may not achieve optimal model performance. 

In this study, we propose a PSO based method, PSO-KNG, to tackle these two issues jointly. 

PSO is a stochastic optimization technique. We use PSO to formulate model parameters and data 

features into the same particle vector so that it can search the best combination of parameters and 

features which jointly achieve best model performance. The experimental results show that PSO-

KNG greatly outperforms KNG in terms of both Gmean and running time measures.  
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1.3 Dissertation Organization 

The rest of this dissertation is organized into three interrelated chapters that address the problem 

of imbalanced classification with noisy dataset. The reader may encounter some level of 

redundancy in the writing of this dissertation, this is because each Chapter is written as a 

standalone paper for scholarly journal publication. 

Chapter 2 provides a generative/ discriminative model fusion based approach CSG to tackle the 

imbalanced classification problem. CSG is built mainly based on the discriminative classifier 

cSVM, and use the posterior probability provided by GMM as supplement information to aid the 

classification process. Comparison experiments between the proposed approach and the existing 

methods are conducted using KEEL benchmark datasets. 

Furthermore, Chapter 3 provides a generative/ discriminative model fusion based approach KNG 

to tackle the imbalance and noise issues jointly. KNG is built mainly based on the generative 

classifier GMM, and apply the idea of k nearest neighbor on the extracted data characteristics to 

achieve classification. Comparison experiments between the proposed approach and four widely 

used classification methods are conducted using UCI benchmark datasets. 

Lastly, Chapter 4 provides PSO based method to further improve KNG algorithm by tackling 

feature selection and parameter tuning issues. Comparison experiments between the proposed 

approach and the original KNG algorithm are conducted using UCI benchmark datasets. 

The conclusions and future work are discussed in Chapter 5. 
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CHAPTER 2 

IMBALANCED CLASSIFICATION 

2.1 Introduction 

Classification is a supervised learning problem which identifies the labels of new observations 

given a training dataset. Based on the number of classes studied, there exists multiclass 

classification and binary classification. Multiclass classification is usually treated under the one-

versus-one or one-versus-all framework (Duan & Keerthi, 2005) both of which use binary 

classifier as the base classifier. One of the most commonly used binary classifier is support 

vector machine (SVM) developed by Cortes and Vapnik (1995). Extensive research has explored 

the performance of SVM and concludes that SVM outperforms many other conventional 

methods in classification. For example, Bazzani1 et al. (2001) apply a SVM classifier to separate 

false signals from micro calcifications in digital mammograms. The result shows that the SVM 

achieves better/comparable performance than multi-layer perceptron (MLP) (Collobert & 

Bengio, 2004) and linear discriminant analysis (LDA) (McLachlan, 2004). Shon et al. (2005) 

propose a SVM based classification method to tackle the internet anomaly detection and 

conclude that SVM outperforms the real-world employed Network Intrusion Detection Systems 

(NIDS) (Scarfone & Mell, 2007), just to name a few. 

While promising, SVM is known to be ineffective in dealing with imbalanced dataset 

(Veropoulos et al., 1999),(Wu  & Chang, 2002),(He & Garcia, 2009) where the minority class 

(named positive class in this paper) is greatly outnumbered by the majority class (negative class). 

Indeed, in many applications, minority class possesses higher misclassification cost than 

majority class. For example, in the field of medical diagnosis (diseased patients), fraud detection 

(true fraud), identifying the minority examples is more of interest. Unfortunately, the 
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performance of the standard SVM on minority class labeling is less than satisfactory. This is 

because the SVM algorithm assumes balanced class distribution and assigns same penalty 

considerations to both majority and minority classes in the training process. As a result, the class 

boundary of SVM skews towards the minority class leading to high false-negative rate (Wu & 

Chang, 2004).  

Due to the significance and the prevalence of imbalanced datasets, many researchers explore 

ways to extend SVM for imbalanced classification. In general, the extensions can be divided into 

two categories: data preprocessing approach and algorithmic approach. The data preprocessing 

approach uses different sampling techniques to alter the input data distribution to reduce the 

degree of class imbalance. The representative methods are: undersampling(US)(Chawla, 2005), 

oversampling(OS)(Chawla, 2005) and synthetic minority oversampling technique 

(SMOTE)(Chawla et al., 2002). The preprocessing approach is usually combined with different 

classifiers to achieve classification. For instance, Akbani et al (2004) compare the performance 

of SMOTE-SVM and SMOTE-cSVM on imbalanced datasets. Instead of modifying the 

distribution of the input data, the algorithmic approach modifies SVM algorithm directly to make 

it less sensitive to class imbalance. Some examples of algorithmic approaches are: boundary 

movement (BM-SVM) (Wu & Chang, 2003) which shifts the decision boundary by adjusting the 

threshold parameter of the standard SVM; kernel modification method (Wu & Chang, 2004),(Wu 

& Chang, 2003) which modifies the associated kernel matrix K; and cost sensitive SVM (cSVM) 

(Veropoulos et al., 1999) which applies cost sensitive learning in SVM training by assigning 

different costs to different classes. It has been noted from the literature (Chawla et al., 

2004),(Masnadi-Shirazi et al., 2012),(Maloof, 2003) that cSVM method is promising in dealing 

with imbalanced classification problems. This is because in Bayes decision theory, the costs of 
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false positive and false negative are generally unequal. Taking cancer diagnosis as an example, if 

a cancer patient is diagnosed as non-cancer, the associated cost would be missing the best timing 

for treatment which can be life threaten. On the other hand, the associate cost is much less if a 

non-cancer patient is diagnosed as cancer, in which case only follow-up tests are needed for 

confirmation. The unequalness of this false positive/ false negative costs can be further 

aggravated by the class imbalance due to the limited number of target-class examples to learn. 

Therefore, classifier designed using cost sensitive algorithms (e.g. cSVM) should be optimal in 

dealing with imbalanced dataset (Masnadi-Shirazi et al., 2012). However, many empirical 

studies (Wu & Chang, 2004),(Masnadi-Shirazi et al., 2012),(Cao et al., 2013) show that cSVM 

does not work as well as expected. As explained by Wu et al. (2004), this is due to the fact that 

cSVM has limited ability to enforce cost sensitivity. Specifically, cSVM assigns higher cost to 

the positive class in order to increase the influences of the positive support vectors. The impact 

of a support vector is directly reflected by the value of its coefficient. However, the cost function 

serves as the upper bound, rather than lower bound, of support vector coefficients according to 

the Karush Kuhn Tucker (KKT) conditions. Thus, increasing of the cost does not necessarily 

affect the coefficients. In addition, the overall influences from positive and negative support 

vectors are forced to be equal according to the KKT condition (see validation in Section 2.3.2). 

As a result, the increase of positive support vector coefficients will inevitably increase some 

negative support vector coefficients which may lead to the unsatisfactory classification 

performance. 

To address these issues, many researchers propose ways to improve cSVM’s. Masnadi-Shirazi et 

al. (2012) replace the hinge lose function of cSVM with cost sensitive hinge lose function to 

enforce cost sensitivity. Akbani et al. (2004) combine cSVM with SMOTE method to make the 
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boundary well-defined. Brefeld et al. (2003) use example dependent cost instead of class 

dependent cost to further enforce cost sensitivity of cSVM. Note these extensions focus on the 

discriminative models only which are designed to discriminate positive and negative class 

examples directly based on the provided input data (Jordan, 2002). While being directive to 

classify the data, the potential contributions from the underlying knowledge of the input data 

(e.g., distributions, clusters) may be ignored. Alternatively, generative models (Jordan, 2002) 

study the probability distribution of the training data, and apply Bayes rules to obtain the 

posterior probability for classification. In addition, generative models can incorporate the domain 

knowledge of the training data, i.e. the prior knowledge about the interaction among the 

variables, the data clustering and the parameter’s range of values into the classification process. 

The complementary nature of discriminative and generative models motivates us to take a model 

fusion approach, termed CSG, by integrating cSVM with a generative model, Gaussian mixture 

model (GMM), to tackle imbalanced classification problem. GMM is chosen here because it is 

computationally inexpensive and has less subjective parameters to adjust (Bishop & Nasrabadi, 

2006). In addition, probability outputs from cSVM and GMM enable us to develop a unified 

formulation for integration. To test the performance of CSG, we conduct experiments on eleven 

KEEL benchmark datasets and one medical imaging dataset collected from Mayo Clinic, 

Arizona. Experimental results show that CSG is effective in dealing with imbalanced 

classification problem.  

The rest of the paper is organized as follows: in Section 2.2 we discuss the related works. In 

Section 2.3 we describe the CSG algorithm in detail followed by the comparison experiments in 

Section 2.4. We conclude the findings and future work in Section 2.5. 
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2.2 Related works 

2.2.1 Data preprocessing approach 

The data preprocessing approaches use different sampling techniques to alter the size and 

distribution of the training data in order to reduce class imbalance. Some common data 

preprocessing methods used in imbalanced classification are: undersampling, oversampling and 

SMOTE. 

Undersampling and oversampling are designed to rebalance the training data in different ways: 

undersampling reduces the size of majority class, while oversampling increases the size of 

minority class. The problematic consequences thus are different (Batista et al., 2004),(Holte et 

al., 1989),(Estabrooks et al., 2004). Undersampling reduces the imbalanced ratio by randomly 

removing the majority examples and thus may lead to the loss of information about the majority 

class. Oversampling increases the size of the minority class by randomly duplicating the minority 

examples which may lead to over fitting (He & Garcia, 2009). Instead of using simple 

duplication, SMOTE increases the size of the minority class by generating artificial data which 

are convex combinations of the existing ones with its nearest neighbor, thus improves learning.  

2.2.2 Algorithmic approach 

The algorithmic approach augments the SVM formulation to make it more tolerating to the class 

imbalance. Based on the parameters to be adjusted, the algorithmic approach is in general 

classified into three subcategories: boundary movement (BM-SVM), kernel modification and 

cSVM. 

Let the decision function of SVM be:  

    
1

,
n

i i i

i

sgn f x y K x x b


 
  

 


 
(2.1) 
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As seen in Equation 2.1, there are three parameters which impact the formation of the class 

boundary: b, K and α. BM-SVM method shifts the class boundary by adjusting b, the threshold 

of the standard SVM. In the cases the data is non-separable, where the expected modifications 

should be on both the separating hyperplane w and threshold b, BM-SVM may not be performed 

(Masnadi-Shirazi et al., 2012). The kernel modification method, Kernel-boundary alignment on 

the other hand, tackles the imbalanced learning problem by modifying the associated kernel 

matrix K. This method adjusts the class boundary by using adaptive conformal transformation 

(ACT) method based on the consideration of the feature-space distance and class-imbalanced 

ratio, and reduces the imbalanced support-vector ratio by reducing the number of support vectors 

from majority class. However, removing existing negative support vectors may lead to the loss of 

information of the majority class and thus may introduce new bias. The cSVM assigns different 

cost functions which are used as upper bounds to constrain α (formulations are presented in 

Section 2.3.2). Since it assigns higher cost to the minority class than majority class, the skewed 

class boundary can be pushed away from the minority class thus the accuracy of minority class 

classification is improved. Based on the Bayes decision theory, cSVM is supposed to be optimal 

in dealing with imbalanced classification problems. Yet, a number of empirical studies (Wu & 

Chang, 2004),(Masnadi-Shirazi et al., 2012),(Cao et al., 2013) show cSVM does not always have 

expected performance. The reason, as discussed by Wu et al. (2004), is that cSVM has issues for 

enforcing cost sensitivity. Though research proposes cost sensitive hinge lose function into 

cSVM (Masnadi-Shirazi et al., 2012), integrating SMOTE with cSVM (Akbani et al., 2004) and 

employing example dependent cost in cSVM training process (Brefeld et al., 2003), only 

discriminative models have been of the focus. In this research, we integrate cSVM with a 

generative model, GMM, which incorporates the data distribution information into the training 
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process to tackle the imbalanced classification problem. The detail of our proposed CSG is 

explained in the following section.  

2.3 Proposed algorithm: Cost SVM fusing with Gaussian Mixture Model (CSG) 

2.3.1 SVM Basics 

SVM finds the decision boundary by constructing the separation hyperplane with maximum 

margin between two classes. The data points closest to the hyperplane are called support vectors 

in the soft-margin formulation (Cortes & Vapnik, 1995). 

 
  

1

1
min   

2

s.t.    1

0,     i=1,...,n

n

i

i

i i i

i

y w

w w C

x b 






  







 

 

(2.2) 

Finding the support vectors is the key issue for the SVM classifier. This is because the decision 

function (in Equation 2.1) of a new testing data x is calculated based on the similarity 

measurement (kernel function K) between x and all the existing support vectors. The coefficients 

for non-support vector data points are zero (αi=0) in Equation 2.1. This indicates that the non-

support vector data points have no impact on classification of the new testing data x once the 

support vectors has been determined.  

The performance of the SVM classifier mainly relies on the choice of kernel function and tuning 

of parameters in the kernel function. The kernel function K (xi, xj) is a similarity measure 

between the pair of data points xi and xj. Kernel method works by mapping the two data points 

from original input space (xi and xj) onto the high-dimensional feature space (ϕ(xi) and ϕ(xj)). 

The kernel function is calculated by taking the inner product of transformed data vector: 

  2

( , ) ( ), ( ) , 0
i jx x

i j i jK x x x x e



 

    
 

(2.3) 
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In this paper, we choose the most commonly used radial basis function (RBF) kernel (in 

Equation 2.3) for its good performance on various domain applications (Bishop, 1995). 

The SVM algorithm predicts the label of a testing example x by computing the sign function in 

Equation 2.1. Instead of predicting the label, many research requires the posterior class 

probability P (y|x). Platt (2000) proposes a method to approximate the posterior probability by 

using 

      , ( )

1
1|

1
A B Af x B

P x P Y X x
e


   

  
(2.4) 

where A and B are estimated by minimizing the negative log likelihood of training dataset (xi, 

yi): 
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In our proposed method, we also use the probability output of cSVM to fuse with the GMM 

probability in order to benefit from both methods. 

2.3.2 cSVM 

In cSVM, the formulation is given as: 
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(2.6) 

The Lagrangian for the cSVM formulation is: 
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With the constraints on αi as follows: 
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(2.8) 

cSVM assigns different cost functions C+ and C-  to the positive and negative classes 

respectively. The unequal setting of cost functions will allow the class boundary to be skewed 

towards the class with higher costs. In cSVM, one can assign higher costs to the minority class 

examples to push the class boundary toward the majority class. Yet, cSVM suffers from two 

drawbacks: first, cSVM changes the upper bound (C+, C-) of the support vector coefficients αi, 

instead of working on αi directly. Thus, increasing of C+ does not always guarantee a change of 

αi. Second, the KKT condition ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1  (in Equation 2.8) imposes equal influences from 

positive/negative support vectors. As a result, the increase of some positive support vector 

coefficients will inevitably increase some coefficients of negative support vectors which may 

weaken the discrimination power in identifying the minority examples. 

2.3.3 GMM Basics 

GMM is a generative model applied in many applications such as object classification (Kim & 

Lee, 2012),(Wang & Ren, 2007) and speech recognition (Reynolds & Rose, 1995),(Fauve et al., 

2007). Based on the training data, GMM models the probability density function of the feature 

vector x by using a mixture of weighted Gaussians.  
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cim, µim, and σ2
im are the weight, mean and covariance of the mth mixture for class i. M is the 

number of mixtures which should be defined by user. GMM method is an unsupervised method 

only reflects the intra-class information. Given a training dataset with binary class labels {(x1, 

y1),…, (xn, yn)}, 𝑦 ∈ {−1,1}, the data are separated into two groups according to their class label. 

Then the coefficients cim, µim, and σ2
im for each mixture are computed using an Expectation 

Maximization (Allouani et al., 2012) algorithm (Dempster et al., 1977). The EM algorithm is an 

iterative method for finding the maximum likelihood function of the parameters. Starting from 

some initial estimate of parameters, the iteration alternates between E step and M step where in 

the E step, the algorithm evaluates the expectation of the log-likelihood using the current 

parameters; in the M step, it computes the new parameters to maximize the log-likelihood 

function found in the E step. The stopping criterion for the iterations could be either convergence 

to a local maxima, or the difference between two consecutive iterations is smaller than a small 

value. Once the coefficients were obtained, Bayesian rules can be used to calculate the posterior 

class probability: 
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GMM i i im im im

m
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(2.11) 

2.3.4 Proposed Algorithm: CSG   

In this research, we propose a model fusion based approach to integrate discriminative algorithm 

(cSVM) with generative algorithm (GMM) which is explained in Figure 2-1.  
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Table 2-1 Notations used in CSG algorithm 

Symbol Meaning 

xtrain training dataset 

xtest testing dataset 

y True label  

ypred 

NumF 

Predicted label  

Number of folds in cross validation 

n+ , n- Number of Gaussian centers for 

positive/negative class 

c, µ, σ2 GMM parameters 

q Cost for positive class in cSVM 

PcSVM (+1|x), 

PcSVM (-1|x) 

Probability outputs of cSVM  

PGMM (x|+1), 

PGMM (x|-1)     

Probability distribution of GMM 

PGMM (+1|x), 

PGMM (-1|x) 

Posterior probabilities of GMM 

Pfinal (+1|x) Modified posterior probability for 

positive class 

β1, β2 Combining coefficients 

A Search range of 𝛽1 

B Search range of 𝛽2 

C-matrix Confusion matrix 

Sen Sensitivity 

Spe Specificity 

 

Input:     

 xtrain ; /* training data */ 

 xtest  ; /* testing data */ 

 K; /* kernel function */ 

 q; /* cost of positive class */ 

 n+; /* number of Gaussian centers for positive class */ 

 n-; /* number of Gaussian centers for negative class */ 

 A; /* search range of 𝛽1 */ 

 B; /* search range of 𝛽2 */ 

Output: 

 bestGmean; /* the best Gmean found */ 

 Classifier; /* output classifier with bestGmean */ 

Function Calls: 

 cSVMtrain() ; /* train cost SVM classifier */ 

 GMMtrain(); /* train GMM classifier */ 

 BayesRule(); /* apply Bayes rules to obtain posterior probability */ 

 ComputeCM(); /* compute confusion matrix */ 

 ComputeEval(); /* compute evaluation metrics: Gmean, sensitivity and 

specificity  */ 

Begin 

1) foreach 𝛽1 ∈ A 
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2)      foreach 𝛽2 ∈ B 

3)          for h= 1: NumF 

4)            [PcSVM (+1|x), PcSVM (-1|x)]  ←  cSVMtrain (xtrain
h , K, q); 

5)            [c, 𝜇, 𝜎2, PGMM (x|+1), PGMM (x|-1)]  ← GMMtrain (xtrain
h , n+ , n-); 

6)       [PGMM (+1|x), PGMM (-1|x)] ←  BayesRule (c, 𝜇, 𝜎2, PGMM (x|+1), PGMM (x|-

1)); 

7)              foreach xi ∈ Xtest
h    

8)               Pfinal (+1|xi) =  PcSVM (+1|xi) + 𝛽1 * PGMM (+1|xi) - 𝛽2 * PGMM (-1|xi); 

9)                    if Pfinal (+1| xi) >= PcSVM (-1|xi)  

10)                       then yi 
pred = +1; 

11)                  end if 

12)                  otherwise  yi 
pred = -1; 

13)            end foreach 

14)         end for 

15)         CM ← ComputeCM (y, ypred); 

16)         [Gmean, Sen, Spe] ← ComputeEval (CM); 

17)         if Gmean>= bestGmean 

18)             then bestGmean ← Gmean 

19)         end if 

20)     end foreach 

21) end foreach 

22) return [bestGmean, Classifier]; 

End 
 

Figure 2-1 CSG Algorithm 

Note that the parameters: RBF kernel parameters γ, c, combining coefficients β1 and β2, cost 

ratio q, are obtained by the grid search method. The search ranges of parameters are defined 

according to the empirical experience. The detailed parameter setting is discussed in Section 2.4. 

In the CSG algorithm, we combine posterior probabilities of cSVM and GMM for the final 

classification. The Gaussian mixtures from both positive and negative classes are used to modify 

the class boundary by adjusting the positive class posterior probability (in Equation 2.12). The 

prediction is made by comparing the posterior probability for each class. 

        1 21| 1| 1| 1|i i i icSVM GMM GMMfinalP x P x P x P x           (2.12) 

The assumption of integrating the cSVM and GMM posterior probabilities as in Equation 2.12 

is: a positive testing example xi should generally be closer to the positive Gaussian mixture 

centers than negative Gaussian mixture centers. Therefore, PGMM (+1|xi) should be greater than 
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PGMM (-1|xi). On the other hand, a negative testing example should have PGMM (+1|xi) less than its 

PGMM (-1|xi) in general. By carefully tuning the coefficients β1 and β2, the positive test examples 

may have a better chance being predicted as positive, while the negative test examples remain 

negative in prediction. 

Let us use Figure 2-2 to explain the ideas behind the CSG algorithm using simulated data. 

(a) positive Gaussian mixtures  (b) negative Gaussian mixtures  (c) Estimated boundaries  

Figure 2-2 Illustration example of CSG algorithm 

As seen in Figure 2-2, circles are positive class examples and dots are negative class examples. 

In Figure 2-2(a) and Figure 2-2(b), CSG finds the mixture of Gaussians for positive/negative 

class respectively. Figure 2-2(c) shows that CSG pushes the class boundary of cSVM towards 

the negative class. This is achieved by modifying the cSVM probability output with the GMM 

probabilities using Equation 2.12. For illustration, let C be a positive class example, assume 

cSVM predicts C as negative class with PcSVM (+1|C) = 0.45 and PcSVM (-1|C) = 0.55. By using 

GMM method, we find PGMM (+1|C) = 0.3 and PGMM (-1|C) = 0.1. If we choose β1=β2=1, 

according to (12), we have Pfinal (+1|C) = 0.45 +1*0.3-1*0.1 = 0.65. Then, C will be predicted as 

positive since Pfinal (+1|C) > PcSVM (-1|C). This example shows CSG can push the class boundary 

of cSVM towards the negative class to improve the discrimination power in identifying the 

positive examples. 
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2.4 Experiments and results 

In this section, we first test the performance of CSG using eleven KEEL benchmark datasets 

(Alcalá et al., 2011). Next, we use a medical imaging dataset to test the applicability of CSG on 

real world application. To evaluate the performance of the classifiers, we use Gmean (Kubat et 

al., 1997) metric which has been widely used for evaluating classifiers on imbalanced datasets 

(Akbani et al., 2004),(Wang, 2008),(Imam et al., 2006). Gmean is defined as √𝑎𝑐𝑐+ ∗ 𝑎𝑐𝑐− , 

where acc+(also called sensitivity) and acc- (also called specificity) are positive and negative 

class prediction accuracy, respectively. Other than Gmean, sensitivity is of great interest in many 

imbalanced learning domains (Akbani et al., 2004),(Maciejewski & Stefanowski, 2011),(Hui et 

al., 2005), because improving the prediction accuracy on the minority class is the focus of many 

domain applications. In this section, we focus the discussion on Gmean and sensitivity to show 

the outperformance of CSG. Specificity measure is also provided. 

2.4.1 KEEL benchmark datasets 

The eleven benchmark datasets we used in the experiments are collected from KEEL-dataset 

repository. The details of the datasets are listed in Table 2-2. The imbalance ratio (IR) varies 

from 2 to 130 among these datasets. The original multiclass datasets are preprocessed as binary 

class problems, and the number in the name of the dataset indicates positive class. For example, 

in vehicle2, class 2 is used as positive class and all the other classes in the original data have 

been joined to represent the negative class. 

In the experiments, we first compare CSG with the standard SVM and cSVM algorithms to show 

fusing GMM knowledge into cSVM can improve the classification on imbalanced datasets. Then 

we compare the performance of CSG with SMOTE based algorithms such as SMOTE-SVM and 

SMOTE-cSVM which has been compared in many literatures (Akbani et al., 2004),(Cao et al., 
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2013),(Hui et al., 2005). Lastly, we further explore the effect of sampling on CSG by combining 

SMOTE with CSG algorithm.  

We use libSVM (Chang & Lin, 2011) MATLAB codes to build the SVM and cSVM models. 

SMOTE method is applied to preprocess the datasets using KEEL data mining software (Alcalá 

et al., 2011). The datasets are oversampled until both the classes are equal in number. We apply 

10-fold stratified cross validation on each dataset so that the GMM method would have equal 

number of positive examples to train in each fold. In each fold, we use the SMOTE data to train 

the model and original data to test the model performance. The results of the 10-folds are 

aggregated to form the final result. Due to the random nature of the GMM algorithm, each 

experiment of CSG algorithm has been run 20 times and the mean and standard deviation has 

been listed. The parameters: RBF kernel parameters γ, c, combining coefficients β1, β2, cost ratio 

q are obtained by the grid search method. The searching ranges of the parameters are defined 

according to the empirical experience. γ is searched from 0 to 512, c from 0 to 2048, β1, β2 from 

0 to 10^10. q is related to the class imbalance ratio (IR). The search range for q is from 1 to 

IR^1.4. 

Table 2-2 The KEEL dataset used in the experiments 

Dataset #Examples #Attributes #Positive #Negative 
Imbalance 

Ratio 

pima 768 8 268 500 1.9 

haberman 306 3 81 225 2.8 

contraceptive2 1473 9 333 1140 3.4 

hepatitis 80 18 13 67 5.2 

yeast3 1484 8 163 1321 8.1 

glass2 214 9 17 197 11.6 

cleveland_0_vs_4 173 13 13 160 12.3 

pageblocks2 548 10 33 515 15.6 

flareF 1066 11 43 1023 23.8 

winequality_red_4 1599 11 53 1546 29.2 
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abalone19 4174 9 32 4142 129.4 

 

Table 2-3 Results of sensitivity, specificity and Gmean 

Dataset 

 Algorithmic approach Preprocessing approach 

SVM cSVM CSG SMOTE-

SVM 

SMOTE-

cSVM 

SMOTE 

-CSG 

pima 

Sen 0.519 0.705 0.746 ± 

0.000 

0.728 0.746 0.761 ± 

0.000 

Spe 0.876 0.708 0.688 ± 

0.000 

0.742 0.738 0.734 ± 

0.000 

Gmean 0.674 0.707 0.717 ± 

0.000 

0.735 0.742 0.747 ± 

0.000 

haberman 

Sen 0.198 0.333 0.527 ± 

0.033 

0.593 0.654 0.679 ± 

0.000 

Spe 0.951 0.907 0.760 ± 

0.026 

0.742 0.680 0.671 ± 

0.000 

Gmean 0.433 0.550 0.633 ± 

0.017 

0.663 0.667 0.675 ± 

0.000 

contracep

tive2 

Sen 0.159 0.270 0.592 ± 

0.000 

0.423 0.471 0.588 ± 

0.003 

Spe 0.969 0.932 0.669 ± 

0.000 

0.807 0.768 0.710 ± 

0.001 

Gmean 0.393 0.502 0.629 ± 

0.000 

0.585 0.602 0.646 ± 

0.002 

hepatitis 

Sen 0.231 0.385 0.769 ± 

0.000 

0.769 0.846 0.923 ± 

0.000 

Spe 0.985 0.955 0.821 ± 

0.000 

0.866 0.866 0.821 ± 

0.002 

Gmean 0.477 0.606 0.795 ± 

0.000 

0.816 0.856 0.870 ± 

0.001 

yeast3 

Sen 0.791 0.840 0.945 ± 

0.000 

0.963 0.963 0.963 ± 

0.000 

Spe 0.976 0.953 0.871 ± 

0.000 

0.907 0.907 0.916 ± 

0.000 

Gmean 0.879 0.895 0.907 ± 

0.000 

0.935 0.935 0.939 ± 

0.000 

glass2 

Sen 0.000 0.118 0.838 ± 

0.025 

0.706 0.882 0.941 ± 

0.000 

Spe 0.990 0.995 0.625 ± 

0.013 

0.858 0.711 0.727 ± 

0.002 

Gmean 0.000 0.342 0.724 ± 

0.012 

0.778 0.792 0.827 ± 

0.001 
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cleveland_

0_vs_4 

Sen 0.077 0.077 0.673 ± 

0.068 

0.615 0.538 0.731 ± 

0.052 

Spe 1.000 1.000 0.585 ± 

0.041 

0.688 0.800 0.823 ± 

0.042 

Gmean 0.277 0.277 0.625 ± 

0.012 

0.650 0.656 0.774 ± 

0.015 

pageblock

s2 

Sen 0.485 0.515 0.636 ± 

0.000 

0.606 0.636 0.636 ± 

0.000 

Spe 0.996 0.996 0.917 ± 

0.000 

0.963 0.922 0.922 ± 

0.000 

Gmean 0.695 0.716 0.764 ± 

0.000 

0.764 0.766 0.766 ± 

0.000 

flareF 

Sen 0.023 0.116 0.684 ± 

0.020 

0.907 0.907 0.907 ± 

0.000 

Spe 0.999 0.994 0.819 ± 

0.011 

0.833 0.833 0.836 ± 

0.000 

Gmean 0.152 0.340 0.748 ± 

0.011 

0.869 0.869 0.871 ± 

0.000 

winequalit

y_red_4 

Sen 0.000 0.000 0.509 ± 

0.000 

0.585 0.585 0.604 ± 

0.000 

Spe 1.000 1.000 0.577 ± 

0.000 

0.735 0.735 0.738 ± 

0.000 

Gmean 0.000 0.000 0.542 ± 

0.000 

0.656 0.656 0.668 ± 

0.000 

abalone19 

Sen 0.000 0.031 0.700 ± 

0.041 

0.813 0.813 0.813 ± 

0.000 

Spe 1.000 0.990 0.608 ± 

0.021 

0.733 0.772 0.773 ± 

0.000 

Gmean 0.000 0.176 0.652 ± 

0.016 

0.772 0.792 0.792 ± 

0.000 

 

Table 2-3 presents the sensitivity, specificity and Gmean measures of each method. For 

algorithmic approaches, SVM shows good specificity but poor sensitivity in general for all 

eleven experiments since it tends to predict all examples as majority (negative) class. Both 

cSVM and CSG show improvements on the sensitivity with sacrifice on specificity to some 

extent. CSG achieves highest sensitivity for all eleven datasets, and for five datasets (glass2, 

cleveland_0_vs_4, flareF, winequality_red_4, abalone19) on which SVM and cSVM fails 

completely, CSG works reasonably well. This is because CSG exploits the underlying 
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knowledge of the imbalanced data distribution in the model building and thus further improves 

the discrimination power of positive examples. For SMOTE-based methods, SMOTE-CSG 

shows best sensitivity on seven out of eleven datasets, and equal sensitivity on the remaining 

four datasets (yeast3, pageblocks2, flareF, abalone19). In conclusion, CSG method is effective in 

dealing with imbalanced classification problems. 

In all eleven datasets, CSG achieves best Gmean among all three algorithmic approaches, while 

SMOTE-CSG achieves best Gmean among all three preprocessing approaches. Comparing with 

SVM, cSVM shows better Gmean measures in nine out of eleven datasets, while CSG further 

improves cSVM in all eleven datasets by fusing the underlying knowledge of the data 

distributions to the model training process. As a result, CSG is able to further enhance the 

Gmean measure on datasets, such as abalone19 and winequality_red_4, where cSVM shows little 

or even no improvement over SVM.  Comparing with SVM and cSVM, SMOTE based methods, 

SMOTE-SVM and SMOTE-cSVM show improved Gmean on all eleven datasets. This indicates 

that SMOTE is effective in enhancing the classifiers (SVM and cSVM) on imbalanced datasets. 

Similarly, the SMOTE-CSG method also achieves better Gmean than CSG method. Among all 

three SMOTE based methods, SMOTE-CSG outperforms others in nine out of eleven datasets, 

and in the rest two datasets it has equal Gmean with the second best method SMOTE-cSVM. 

These results show that CSG is effective in dealing with imbalanced datasets. 

SMOTE-CSG shows significant improved performance than CSG on ten out of eleven datasets 

and marginal improvements on the remaining dataset (pageblocks2). SMOTE oversamples the 

data by adding synthetic data instances which are generated using convex combinations of the 

existing data. In SMOTE-CSG method, SMOTE provides more training data to CSG algorithm 

which can aid the training process of cSVM and GMM, and thus lead to better class separation. 
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In all, the experimental results indicate that the preprocessing method SMOTE is necessary in 

order to achieve better performance. 

 

 

 

Figure 2-3 Gmeans for Low IR datasets and High IR datasets 

 

To evaluate the effect of IR on each method, we divide the datasets into Low IR group (IR<10) 

and High IR group (IR>=10). Figure 2-3 shows the Gmean measures of each datasets in each 

group. Figure 2-3(a) and Figure 2-3(b) are the comparison of SVM, cSVM and CSG, and Figure 

2-3(c) and Figure 2-3(d) are for SMOTE-SVM, SMOTE-cSVM and SMOTE-CSG. Figure 2-
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3(a) and Figure 2-3(b) show that CSG greatly improves Gmean over SVM and cSVM on High 

IR datasets than Low IR datasets which indicates CSG is very effective in dealing with highly 

imbalanced datasets on which SVM and cSVM performs poorly. This is because in highly 

imbalanced datasets, the majority class dominates the training of SVM and thus the class 

boundary is high skewed. cSVM shows improved performance by assigning higher cost to the 

minority class, but its performance is still less than satisfactory due to the limited ability to 

enforce cost sensitivity as we discussed in Section 2.3.2. CSG tackles the highly imbalance issue 

by fusing the underlying knowledge of the data distribution (GMM) into the training process of 

cSVM, and thus the skewed class boundary can be adjusted towards the majority class. In all, the 

performance of CSG is much better on High IR group than on Low IR group.  

For SMOTE-based methods (Figure 2-3(c) and Figure 2-3(d)), SMOTE-CSG marginally 

improves Gmean over both SMOTE-SVM and SMOTE-cSVM methods. This is because the 

SMOTE method oversamples the minority class until the whole dataset is balanced and SVM 

generally performs well on balanced datasets since the class boundary of SVM is not skewed. As 

a result, methods such as cSVM and CSG which aims to adjust the skewed class boundary would 

have marginal performance improvement over SVM on balanced datasets. 

To further test the performance of CSG, a real world renal stone medical image dataset is 

collected from Mayo Clinic, Arizona. The comparison experiment is conducted and the results 

are shown in the next section. 

2.4.2 Renal stone dataset 

Renal stones, also called kidney calculi, are the solid crystal aggregations formed in the kidneys 

from dietary minerals in the urine. Renal stone disease can cause nausea and vomiting with sharp 

pain in the back or lower abdomen and sometimes blood in urine (e.g., hematuria) (NKUDIC, 
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2013). It affects approximately one in eleven people in the United States (Scales et al., 2012). 

Each year, more than one million visits to health care providers are related to the renal stone 

disease (NKUDIC, 2013). Based on the chemical composition, clinically relevant renal stones 

can be categorized into four types: uric acid, calcium oxalate, struvite and cystine. The 

determination of the chemical composition of renal stone is a key factor in preoperative patient 

evaluation, treatment planning and recurrence prevention (Eliahou et al., 2010). The commonly 

used stone analysis techniques include in vitro x-ray diffraction, infrared spectroscopy and 

polarization microscopy (Hidas et al., 2010). These tests, unfortunately, are performed only after 

the stones are extracted from the patients. In renal stone preoperative evaluation, minimally 

invasive intervention is preferred for the benefits of the patients. Utilizing noninvasive tests such 

as radiology imaging studies to identify the renal stone composition draws many attentions 

(Abdel-Halim & Abdel-Halim, 2006),(Goel & Wasserstein, 2012).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 The DECT image of renal stones (phantom study) 

Dual Energy CT (DECT) is a recently developed technique used for diagnostic imaging purpose. 

Instead of acquiring a single data set as per conventional CT, it acquires two simultaneous or 

near simultaneous data sets, one low and one high energy, during a single acquisition. This 
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setting enables DECT to differentiate materials with similar electron densities but varying photon 

absorption abilities (Riedel, 2010), improving noninvasive renal stone characterization (Graser et 

al., 2008). Figure 2-4 is an example of DECT image of renal stones from a phantom study where 

the stones are placed in test tubes and scanned by DECT scanner. 

In this study, we collect 65 stones from stone analysis laboratory at Mayo Clinic Arizona. All 

stones are extracted from previous patients through surgical and endoscopic intervention. The 

chemical composition has been determined with stereo microscopy and infrared 

spectrophotometry. According to the chemical composition, the 65 stones are divided into four 

groups: uric acid (n = 34), calcium oxalate (n = 18), cystine (n = 9) and struvite (n = 4). The 

diameter of the stones varies from 2.6 mm to 6.2 mm (mean size 3.5 mm). Among all the four 

types of renal stones, cystine stone is of great interest for the following reasons: first, cystine 

stone is usually too dense to be broken up by applying extracorporeal shock wave lithotripsy as 

can be done for some other types of stones. Instead, techniques designed for removing dense 

stones, such as percutaneous nephrolithotripsy (PNL), may be applied. Second, cysteine stone is 

the result of cystinuria, which is a genetic autosomal recessive metabolic disorder (Wu, 2012). 

Patients with cysteine stones may also need to take additional genetic screening tests other than 

medical treatment (Breuning & Hamdy, 2003). In this experiment, cystine stone has been 

selected as target class, and the rest stone types are combined as non-target class. Thus, the 

imbalance ratio is 6.2 (n=56 for non-cystine stones and n=9 for cystine stones). The detail of the 

DECT renal stone dataset is shown in Table 2-4. 

In this comparison experiment, we are interested in showing the outperformance of CSG over 

cSVM. In addition, some commonly used machine learning algorithms in medical data 

classification problems such as SVM (Dal Moro et al., 2006), artificial neural network 
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(ANN)(Chiang et al., 2003), C4.5 (Kaladhar et al., 2012) and NaiveBayes (NB) (Lavanya & 

Rani, 2011) are also implemented for comparison. The SVM, cSVM and CSG methods are 

performed using the same settings as in Section 2.4.1. The ANN, C4.5 and NB methods are 

performed using a data mining software Weka 3.6.9 (Hall et al., 2009). 5-fold stratified cross 

validation is applied. In addition to sensitivity, specificity and Gmean, we also use two other 

important evaluation metrics for medical diagnosis field: Positive Predictive Value (PPV) and 

Negative Predictive Value (NPV). PPV indicates the probability patients with positive screening 

tests truly have the disease, while NPV shows the probability patients with negative screening 

tests truly don’t have the disease. The results are shown in Figure 2-5 and Figure 2-6. 

Table 2-4 The RenalStone_cys dataset 

Dataset #Examples #Features #Positive #Negative IR 
Feature 

Description 

RenalStone_

cys 
65 18 9 56 6.2 

11 energy level 

measures 

1 effective 

atomic number 

6 material 

density measures 
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Figure 2-5 Sensitivity, Specificity and Gmean on RenalStone_cys dataset 

 

                           (a) PPV       (b) NPV 

Figure 2-6 PPV and NPV on RenalStone_cys dataset 

Figure 2-5 shows the standard SVM method performs poorly on this imbalanced dataset. The 

zero sensitivity shows that SVM has no recognition ability of the cystine stones. cSVM improves 

the sensitivity very little (11.1%), and still far less than satisfactory. CSG method has much 

better sensitivity than SVM and cSVM (77.8% vs. 0% and 11.1%). ANN has equal sensitivity 

with C4.5 (44.4%) but higher specificity (96.4% vs. 92.9%). Compare with ANN, NB has better 

sensitivity (66.6%), but lower specificity (83.9%). CSG method achieves highest sensitivity 

(77.8%) and Gmean (86.6%) among all six methods while maintains high specificity (96.4%). 

CSG method also achieves second highest values in PPV (77.8%) and highest value in NPV 

(96.4%) according to Figure 2-6. In conclusion, CSG outperforms other five methods in 

classification of cystine stones. 

0

100

66.5

50

39.9

77.6

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
eg

e 
(%

)

SVM cSVM ANN C4.5 NB CSG

86.2 87.5
91.5 91.2 94 96.4

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
eg

e 
(%

)

SVM cSVM ANN C4.5 NB CSG



30 

2.5 Conclusion and discussion 

In this research, we propose a model fusion based approach integrating cSVM with GMM for 

imbalanced classification problem. CSG method augments cSVM by incorporating the GMM 

modeling of imbalanced data distribution into the training process and thus leads to better 

identification of the minority class examples. Experimental results on KEEL benchmark datasets 

and the medical imaging dataset show CSG method to be effective in dealing with imbalanced 

classification problems.  

We also find from the experiments that the preprocessing method SMOTE is effective in 

achieving better performance of CSG on imbalanced datasets. This is because the synthetic data 

instances generated by SMOTE creates larger and less specific decision regions for the cSVM 

and GMM models to learn from, thus the decision boundary can be further adjusted towards the 

majority class and thus lead to better class separation. Thus, the performance of CSG method can 

be further improved by SMOTE method. 
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CHAPTER 3 

IMBLANCED CLASSIFICATION WITH NOISY DATASET 

3.1 Introduction 

Classification is a supervised learning problem which identifies the labels of new observations 

given a training dataset. Classification methods extract knowledge from the training dataset, and 

use the learned information to build models to predict the class of new observations. Therefore, 

the success of the classification methods highly depends on the quality of the training dataset. 

The real world datasets suffer from many quality issues (He & Garcia, 2009),(Seiffert et al., 

2014),(Zhu & Wu, 2004). Among them, the presences of imbalance and noise are the key factors 

which draw great attentions (Chawla, 2005),(He & Garcia, 2009),(Sáez et al., 2013). Data 

imbalance occurs when one class (minority class) is greatly outnumbered by another class 

(majority class). Most classification methods generally tend to ignore the minority class due to 

the fact that majority class dominates the whole dataset. As a result, the performance of most 

classification methods degrades for imbalanced dataset. Data noise occurs when the data has 

been corrupted by various reasons such as systematic uncertainty, measurement error, human 

error, etc (Sáez et al., 2013),(Zhu & Wu, 2004). It can be characterized as (1) attribute noise, 

which refers to the corruption in the features, and (2) class noise, which occurs when the 

instances are incorrectly labeled. Noise may hinder the knowledge extraction from the data and 

thus makes the classifier less effective, particularly if the classifier is noise-sensitive. 

Data imbalance and data noise often coexist in the real world datasets, that is, the dataset is 

imbalanced as well as noisy. Taking the CT imaging dataset as an example, the cancer patient 

often has a small portion of cancer tissues compared with normal tissues on the CT images which 
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makes the dataset imbalanced. And the reconstruction methods (Hsieh et al., 2013) used to 

generate the CT images comes with a systematic uncertainty making the images inherently noisy. 

Data imbalance affects the learning classifier by degrading the recognition power of the classifier 

on the minority class because the majority class dominates, while data noise affects the learning 

classifier by providing inaccurate information to the classifier and thus misleads the classifier. 

Because of these differences, data imbalance and data noise issues have been treated separately 

in the data mining field. Yet, such approaches ignore the mutual effects and as a result may lead 

to new problems. For example, data cleaning techniques (Galhardas et al., 2000) have been 

widely used in dealing with data noise which removes the noisy instances. If the removed 

instances happen to be the minority class, doing so may aggravate the level of imbalance. On the 

other hand, sampling method such as SMOTE (Chawla et al., 2002), which has been widely used 

for imbalanced datasets, may cause the data even noisier if the oversampled instances happen to 

be the noisy ones. One may argue that techniques may be carefully chosen to handle the data 

imbalance followed by data noises or vice versa, however, this two-step procedure may not be 

computational efficient. A desirable solution is to tackle these two issues jointly.  

Most research on addressing the dataset imbalance and data noises employs discriminative 

models (Jordan, 2002) which are effective in finding the class boundaries (Jordan, 

2002),(Lasserre, 2008) but also sensitive to data imbalance and noise since they work on the raw 

training data directly. Alternatively, generative models (Jordan, 2002) study the probability 

distribution of the training data and extract data characteristics from the training data which can 

be used to achieve classification, yet, may be less effective in identifying the class boundaries 

than discriminative models. Noticing the complementary nature of the generative and 

discriminative classifiers, in this research, we propose a novel generative-discriminative model 
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fusion based framework, termed K Nearest Gaussian (KNG). A generative classifier, Gaussian 

Mixture Model (GMM) is used to model the training data as Gaussian mixtures and form 

adjustable confidence regions of each Gaussian. GMM is chosen here due to its capability in 

modeling arbitrary shaped densities (Lindsay, 1995). Motivated by the idea of K-nearest 

neighbor (KNN), KNG finds nearest Gaussians modeled by GMM to classify the testing data 

instances. To test the performance of KNG, we use 7 UCI benchmark dataset. We purposely 

modify the datasets with added imbalance and noise. Experimental study shows that KNG 

method is more effective and robust than other widely used classification methods, such as 

Support Vector Machine (SVM) (Cortes & Vapnik, 1995), Artificial Neural Network (ANN) 

(Kriesel, 2011), Decision Tree (C4.5) (Quinlan, 1993) and KNN (Tan et al., 2006).  

3.2 Literature review 

3.2.1 Review of Techniques on Handling Imbalanced Dataset 

Presently, there are a number of studies attempting to overcome the classification problem with 

imbalance issue. They can be categorized into two approaches: data-level approach and 

algorithm-level approach. 

The data-level approach uses different sampling techniques to increase/decrease the size of the 

training data in order to generate a balanced dataset. The representative methods are: 

undersampling (Chawla, 2005), oversampling (Chawla, 2005) and synthetic minority 

oversampling technique (SMOTE) (Chawla et al., 2002). Undersampling randomly removes the 

data instances of majority class and thus may lead to information loss. Oversampling increases 

the size of the data by duplicating the existing instances of minority class which may lead to over 

fitting (He & Garcia, 2009). SMOTE oversamples the minority class by generating artificial data 

which are the convex combination of the existing ones and thus improves learning. However, 
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SMOTE may not perform well when the data instances used to generate new instances happen to 

be outliers and noisy examples (He et al., 2008). Generally, the data-level approach alters the 

original training data distributions to make the dataset less imbalanced. However, the change of 

original data may compromise the underlying knowledge of the training data and thus is 

expected to be avoided.  

The algorithm-level approach augments the existing methods to make them less sensitive to data 

imbalance. Many of the existing studies tackle the imbalance data by developing extensions of 

existing algorithms such as SVM. For example, boundary movement (BM-SVM) (Wu & Chang, 

2003) method changes the threshold value in SVM decision function to push the class boundary 

towards the majority class, Kernel-boundary alignment (Akbani et al., 2004) (Wu & Edward, 

2004) modifies the kernel matrix used in SVM training, and cSVM applies different penalty to 

different classes. There are also a number of studies works on extensions of ANN to tackle the 

imbalance issue. For example, two-step ANN (Adam, 2012) optimizes the weights and decision 

threshold values by using particle swarm optimization (PSO) to recognize the minority class, 

HIPPO method (Japkowicz et al., 1995) trains the ANN in a novelty detection approach, and cost 

sensitive ANN (Berardi & Zhang, 1999) integrates the misclassification cost to ANN. In 

summary, most of the algorithm-level approaches are extensions of the base classifiers such as 

SVM and ANN. Generally, these extensions are algorithm dependent and application dependent. 

Thus their effectiveness is limited by certain application context. 

3.2.2 Review of Techniques on Handling Noisy Dataset 

The existing noise handling techniques can also be categorized into two approaches: data-level 

approach and algorithm-level approach. 
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Data-level approach, also known as noise elimination techniques, handles the noise issue by 

removing the noise instances from the training data. For example, AJAX method (Galhardas et 

al., 2000) uses four types of data transformations—mapping, matching, clustering, and merging 

to detect and remove the noise data, Brodley and Friedl (2011) compare the single algorithm 

filter, majority vote filter and consensus filter to identify and eliminate mislabeled training 

instances, Miranda et al. (2009) combine the prediction of four different machine learning 

methods to guide the noise detection and removal. These data-level approach focuses on 

detecting and removing the noise instances. However, these methods generally cannot 

distinguish the noisy cases from rare cases. The removal of rare cases may lead bias to the 

training data. In addition, noise instances which contain error in some features may still contain 

correct (and useful) information in other features. Thus, the removal of noise under this 

circumstances may lead to loss of valuable information.  

Algorithm-level approach tackles the noisy dataset by improving the mechanism of a learning 

algorithm to make it less sensitive to data noise. For example, Pechenizkiy et al. (2006) use 

feature extraction technique as a preprocessing step in the training to diminish the effect of class 

noise, Mingers (1989) compares different search heuristics and stopping criteria in decision tree 

construction in dealing with noise data, Quinlan (1986) applies a post-pruning decision tree 

building procedure to deal with noise data. Although most of the algorithm-level approach does 

not require data preprocessing, they are generally algorithm dependent or application dependent, 

thus are effective only when applied under certain context. 

As a summary of both imbalance handling and noise handling techniques, data-level approach 

alters the original distribution of training dataset which may lead to loss of valuable information 

and thus is expected to be avoided. The algorithm-level approach are developed based on 
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existing classifiers (such as SVM, ANN, C4.5), all of which employ discriminative models 

which are sensitive to data imbalance and noise since they work on the raw training data directly. 

3.3 Proposed approach: K Nearest Gaussian (KNG) 

In this study, we propose a novel method, K Nearest Gaussian (KNG). Specifically, we employ a 

generative model, GMM, into the training process to extract the data characteristics from training 

data. GMM is shown promising in dealing with data imbalance issue in our previous study (He et 

al., 2014) since the extracted data characteristics are expected to be less sensitive to data 

imbalance and noise. The idea of KNN to draw the class boundary is adopted here to 

differentiate the classes based on the extracted Gaussian mixtures and their corresponding 

confidence regions. In the following, we review the basics of KNN in section 3.3.1 and the detail 

of our proposed KNG in section 3.3.2. 

3.3.1 K Nearest Neighbor (KNN) 

KNN is a discriminative model that classifies instance based on the majority voting of its k 

nearest neighbor (Cover & Hart, 1967). Figure 3-1 is the illustration example of KNN algorithm. 
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Figure 3-1 Illustration example of KNN algorithm 

In Figure 3-1, X is a testing instance, circles and triangles are positive and negative class 

instances, respectively. KNN first calculates the distances from X to other training instances, and 

classify X according to the majority voting of its k nearest neighbors. K is predefined by the 

user. In Figure 3-1, when k=1, X is classified as negative class since the nearest neighbor is 

negative, while when k=3, X is classified as positive class since the majority of its three nearest 

neighbors is positive. Thus, X can be classified based on the neighboring instances. 

3.3.2 K Nearest Gaussian (KNG) 

Inspired by the KNN algorithm, which classifies an instance based on neighboring instances, we 

propose our KNG algorithm to tackle the imbalance and noise data issues. Instead of using the 

neighboring data instances, KNG uses the neighboring Gaussian mixtures to achieve 

classification. Specifically, KNG first applies GMM method to model the distributions of each 

class, and the data characteristics (such as centroid, variance) of each Gaussian can be then used 

to calculate the distances of the testing instance to the confidence region of each Gaussian. The 

smaller the distance, the higher probability that the testing instance belongs to the corresponding 

Gaussian distribution. Thus based on the distance to each Gaussian, the testing instance can be 

classified by majority voting. The data characteristics extracted by GMM method, comparing 

with raw training data, are expected to be less sensitive to imbalanced and noisy dataset. This 

makes KNG a promising method to deal with imbalanced dataset with noisy features. The 

notations and pseudo code of KNG algorithm can be found in Table 3-1 and Figure 3-2.  
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Table 3-1 Notations used in KNG algorithm 

Symbol Meaning 

Xtrain training dataset 

Xtest testing dataset 

y True label  

ypred 

NumF 

Predicted label  

Number of folds in cross validation 

n+ , n- Number of Gaussian centers for +1/-1 class 

µ+, σ2+ Centers and variances for  GMM (+1 class) 

µ-, σ2- Centers and variances for  GMM (-1 class) 

β+ Confidence region adjusting coefficient (+1 

class) 

β- Confidence region adjusting coefficient (-1 

class) 

A Search range of 𝛽1 

B Search range of 𝛽2 

K Number of nearest Gaussians  

CM Confusion matrix 

EvalMetric Evaluation metric 

 

Input:     

 𝑿𝒕𝒓𝒂𝒊𝒏  ; /* training data */ 

 𝑿𝒕𝒆𝒔𝒕  ; /* testing data */ 

 K; /* number of nearest Gaussians */ 

 n+; /* number of Gaussian centers for positive class */ 

 n-; /* number of Gaussian centers for negative class */ 

 A; /* search range of 𝜷𝟏 */ 

 B; /* search range of 𝜷𝟐 */ 

Output: 

 bestEvalMetric; /* the best Evaluation metric found */ 

 Classifier; /* output classifier with EvalMetric*/ 

Function Calls: 

 GMMtrain (); /* train GMM classifier */ 

 ComputeDist_PR (); /* compute point to region distance  */ 

 Sort (); /* sort the distances in ascending order  */ 

 ComputeCM (); /* compute confusion matrix */ 

 ComputeEval (); /* compute evaluation metrics */ 

Begin 

1) foreach 𝜷+ ∈ A 

2)      foreach 𝜷− ∈ B 

3)          for h= 1: NumF 

4)            [𝝁+, 𝝈𝟐+, 𝝁−, 𝝈𝟐−]  ← GMMtrain (𝑿𝒕𝒓𝒂𝒊𝒏
𝒉 , n+ , n-); 

5)              foreach xi ∈ 𝑿𝒕𝒆𝒔𝒕
𝒉    

6)                foreach j ∈ n+ 

7)                  Dist_PR (xi, j)  ← ComputeDist_PR (xi, 𝝁𝒋
+, 𝝈𝒋

𝟐+, 𝜷+); 

8)                end foreach 

9)                foreach q ∈ n- 
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10)                 Dist_PR (xi, q + n+)  ← ComputeDist_PR (xi, 𝝁𝒒
−, 𝝈𝒒

𝟐−, 𝜷−); 

11)              end foreach 

12)                [order]  ← Sort (Dist_PR(xi,:)); 

13)                yi 
pred  =  sum(y(order(1:K))); 

14)             end foreach 

15)         end for 

16)         CM ← ComputeCM (y, ypred); 

17)         EvalMetric ← ComputeEval (CM); 

18)         if EvalMetric >= bestEvalMetric 

19)             then bestEvalMetric ← EvalMetric 

20)         end if 

21)     end foreach 

22) end foreach 

23) return [bestEvalMetric, Classifier]; 

End 

Figure 3-2 Pseudo code for KNG Algorithm 

In KNG algorithm, the ComputeDist_PR function is used to compute point to region distance, 

which is defined as following: 

 
2

(_ ( , , , ) , )
i i i i i i

uclideanDiDist PR x E xst       (3.1) 

β+ and β- are used to adjust the radius of the confidence regions for positive(minority) and 

negative (majority) Gaussians, respectively. They can be seen as weights for positive/negative 

classes. The unequal settings of β+ and β- afford the KNG algorithm the flexibility to favor one 

class more than another. This property is very useful in dealing with imbalanced data in which 

the majority class dominates. Thus, by assigning higher β+, KNG can be more inclined to 

positive class and more positive instances can be recognized. This can be shown in the following 

illustration example.  In Figure 3-3, we apply GMM to find the Gaussian mixtures for 

positive/negative classes. Circles are positive instances and triangles are negative instances. The 

Gaussian mixtures are represented by the concentric circles where different circles represent 

different β values.  
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(a) Original data         (b) positive Gaussian mixture        (c) negative Gaussian mixture 

Figure 3-3 Finding Gaussian mixtures for positive/negative classes 

KNG algorithm has five parameters to tune in order to achieve its best classification 

performance: number of nearest Gaussians k, number of positive Gaussians n+, number of 

negative Gaussians n-, and adjusting factors β+, β-. Number of nearest Gaussians k adjusts the 

number of Gaussians in finding the class boundary. When k is small, only the nearby Gaussians 

are essential in finding the boundary, while when k is large, many far-away Gaussians are 

involved in finding the boundary. 

Figure 3-4 shows the impact of number of Gaussians to formation of class boundary. We keep k, 

β+, β-, n+ as constant (all equal to one) while just change n- to see how the increasing of number 

of Gaussians for one class would affect the formation of class boundary. When n- equals n+, the 

two classes are linearly separated by a straight line. When we increase n- to 2(Figure 3-4(b)), the 

class boundary bends more towards the positive class (dark gray region) and thus more instances 

can be classified as negative. In addition, the linear boundary (in Figure 3-4(a)) becomes the 

intersection of two linear borderlines. If we further increase n- (Figure 3-4(c)), the class boundary 

can be further refined, which shows as two intersections of three linear borderlines.  
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    (a) n+=1, n-=1      (b) n+=1, n-=2    (c) n+=1, n-=3 

Figure 3-4 Impact of number of Gaussians settings to formation of class boundary 

          (a) β+=1, β-=1             (b) β+=2, β-=1              (c) β+=1, β-=2                (d) β+=2, β-=2 

Figure 3-5 Impact of different β+, β- settings to formation of class boundary 

Figure 3-5 shows different settings of β+ and β- can push of class boundary towards certain class. 

Figure 3-5(a) shows the positive (dark gray) and negative (light gray) class regions with the 

equal setting of β+ and β- (β+=1, β-=1). The border of the two regions is the class boundary. From 

Figure 3-5(b) and Figure 3-5(c), we observe that increasing β+ (β+=2, β-=1) can push the 

boundary towards negative class and thus more instances can be classified as positive while 

increasing β- (β+=1, β-=2) can push the boundary towards positive class and thus more instances 

can be classified as negative. As aforementioned, β+ and β- are used as class-specific weights to 

adjust the radius of the confidence region for positive/ negative Gaussians (circles with dash 
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line). Thus the tuning of β+ and β- can push the class boundary towards certain class. For 

imbalanced datasets, the class boundary is always skewed towards the positive class since the 

negative class dominates. Thus, by assigning higher β+, KNG can push the class boundary back 

to positive class and more positive instances can be recognized. 

3.4 Experiments and results 

In this section, we test the performance of KNG using seven UCI benchmark datasets. To 

evaluate the performance of the classifier, we use Gmean measure which has been widely used 

(Akbani et al., 2004),(Wang, 2008),(Imam et al., 2006) on imbalanced classifier for its ability to 

evaluate the performance of a classifier on both positive and negative classes. Gmean is defined 

as √𝑎𝑐𝑐+ ∗ 𝑎𝑐𝑐− , where 𝑎𝑐𝑐+ (also called sensitivity) and 𝑎𝑐𝑐− (also called specificity) are 

positive and negative class prediction accuracy, respectively. 

The seven benchmark datasets we used in the experiments are collected from UCI Machine 

Learning Repository (Bache & Lichman, 2013). We call these datasets original datasets. The 

details of the original datasets are summarized in Table 3-2. The original multiclass datasets are 

preprocessed as binary class problems, and the number in name of dataset indicates the positive 

class. For example, in iris2, class 2 is used as positive class and all the other classes in the 

original data have been joined to represent the negative class. Based on the original datasets, we 

generate the imbalanced datasets by randomly removing 80% of the negative class instances. 

Then, we further add 20% of random noise to make the datasets both imbalanced and noisy. We 

call these datasets are I+N datasets. The noise is introduced using the following rules as literature 

(Sáez et al., 2013) did: 

 Class noise:  20% of the class labels are randomly replaced by the opposite class labels 
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 Attribute noise: 20% of each attribute data are replaced by random values from the 

domain (value range) of that attribute 

Table 3-2 The UCI dataset used in the experiments 

Dataset #Instance #Features 

Imbalance Ratio  

of Original 

dataset 

Imbalance Ratio  

of Imbalanced 

dataset 

breast_cancer 683 10 1.9 9.3 

diabetes 768 8 1.9 9.3 

iris2 150 4 2 10.0 

mammographic 830 5 1.1 5.3 

yeast1 1484 8 2.2 11.0 

wine2 178 13 1.5 7.6 

glass3 214 9 1.8 9.2 

 

We compare the performance of KNG method with SVM, ANN, C4.5 and KNN. These methods 

are chosen because they are widely used in classification problems. The KNG method is 

developed using MATLAB. SVM is performed using the libsvm MATLAB codes (Chang & Lin, 

2011). ANN, C4.5 and KNN are performed using a machine learning software WEKA 3.6.1 

(Hall et al., 2009). In this study, we use grid search technique (Bergstra & Bengio, 2012) in the 

parameter tuning process since it’s easy to implement. The search ranges of the parameters are 

summarized in Table 3-3. Each method is performed using a 10 fold cross validation technique. 

Because of the random nature of GMM method, the result of KNG algorithm is performed 20 

times for each dataset, and the mean and standard deviation are reported. 

Table 3-3 Search ranges of Parameters 

Method Parameter Range 

SVM(rbf_kernel) 
γ 0-512 

C 0-2048 

C4.5 confidence factor 0.1-0.5 

KNN # nearest neighbor k 1-9 
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ANN 
learning rate 0.1-0.8 

momentum 0.2(constant) 

KNG 

# nearest Gaussians k 1-5 

#centers(+1 class, -1 class) 1-5 

adjusting factors β+, β- 0-3 

 

Table 3-4 Experimental results of Gmean measures 

Dataset 
SVM C4.5 ANN KNN KNG 

Orig I+N Orig I+N Orig I+N Orig I+N Orig I+N 

breast_c

ancer 
0.976 0.787 0.959 0.000 0.962 0.517 0.970 0.457 

0.977 ± 

0.001 

0.967 ± 

0.000 

diabetes 0.712 0.136 0.690 0.000 0.710 0.331 0.683 0.283 
0.721 ± 

0.012 

0.705 ± 

0.000 

iris2 0.954 0.548 0.910 0.000 0.960 0.763 0.960 0.000 
0.959 ± 

0.013 

0.941 ± 

0.011 

mammo

graphic 
0.836 0.111 0.838 0.435 0.816 0.237 0.800 0.564 

0.797 ± 

0.000 

0.789 ± 

0.000 

yeast1 0.618 0.179 0.658 0.000 0.643 0.000 0.647 0.418 
0.674 ± 

0.000 

0.654 ± 

0.000 

wine2 0.986 0.463 0.952 0.000 0.979 0.497 0.964 0.676 
0.981 ± 

0.000 

0.957 ± 

0.000 

glass3 0.716 0.509 0.710 0.246 0.673 0.392 0.808 0.448 
0.728 ± 

0.019 

0.721 ± 

0.059 

 

Table 3-4 shows the experimental results of Gmean measures for both original and I+N datasets. 

For original datasets, KNG achieves best Gmean in three out of seven datasets, and for iris2, 

wine2 datasets, KNG is just marginal worse than the best method. This shows that KNG is 

comparable to other major widely used classification methods on original datasets. For I+N 

datasets, KNG greatly outperforms other methods in all seven datasets: for breast_cancer dataset, 

KNG (0.967) outperforms the second best method SVM (0.787) by 0.180; for diabetes dataset, 

KNG (0.705) outperforms the second best method ANN (0.331) by 0.374; for iris2 dataset, KNG 

(0.941) outperforms the second best method ANN (0.763) by 0.178; for mammographic dataset, 

KNG (0.789) outperforms the second best method KNN (0.564) by 0.225; for yeast1 dataset, 
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KNG (0.654) outperforms the second best method KNN (0.418) by 0.236; for wine2 dataset, 

KNG (0.957) outperforms the second best method KNN (0.676) by 0.281; for glass3 dataset, 

KNG (0.721) outperforms the second best method SVM (0.509) by 0.212. In summary, the 

average outperformance of KNG to the second best method is 0.24. In all, KNG method is very 

effective in dealing with imbalanced classification problem with noisy dataset. 

Table 3-5 Robustness evaluation (Change of Gmean) 

Dataset SVM C4.5 ANN KNN KNG 

breast_cancer -18.9% -95.9% -44.5% -51.3% -1.0% 

diabetes -57.6% -69.0% -37.9% -40.0% -1.6% 

iris2 -40.6% -91.0% -19.7% -96.0% -1.8% 

Mammographic -72.5% -40.3% -57.9% -23.6% -0.8% 

yeast1 -43.9% -65.8% -64.3% -22.9% -2.0% 

wine2 -52.3% -95.2% -48.2% -28.8% -2.4% 

glass3 -20.7% -46.4% -28.1% -36.0% -0.7% 

Average  -43.8% -71.9% -42.9% -42.7% -1.5% 

 

We further analyze the robustness of each method using the change of Gmean as robustness 

measure. Change of Gmean is defined using Gmean values of I+N datasets substracts that of 

original datasets. This measure shows that to what extent the co-existence of imbalance and 

noise can affect the performance of a classifier. The smaller the value is, the more robust the 

model is. As seen, SVM, C4.5, ANN and KNN all show dramatic performance drop for I+N 

datasets compared with original datasets. However, KNG maintains the minimal change of 

Gmean for all seven datasets, which is shown in Table 3-5.  The average change of Gmean for 

KNG is less than 1.5 %, which is far better than the remaining four methods. This is because the 

traditional classification methods, SVM, C4.5, ANN, KNN work on the training raw data 

directly which is sensitive to data imbalance and noise and thus their performances are highly 
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affected by the co-existence of imbalance and noise. However, KNG works on data 

characteristics extracted from the training data which are less sensitive to data imbalance and 

noise, and thus KNG is able to preserve the performance when imbalance and noise occurs in 

datasets. In conclusion, KNG has very robust performance when imbalance and noise co-exist in 

the datasets. 

3.5 Conclusion and discussion 

In this research, we propose a discriminative and generative model fusion approach, KNG, to 

tackle classification problems with imbalance and noise issues jointly. Instead of modeling on 

the raw data directly, KNG applies GMM to model the training data as Gaussian mixtures and 

form adjustable confidence regions of each Gaussian which are less sensitive to data imbalance 

and noise. The classification is achieved by majority voting of the neighboring Gaussians for the 

testing instances. The experimental results on seven UCI datasets show that KNG is more 

effective in dealing with imbalanced dataset with noisy features than other commonly used 

classification methods. 

In the experiments, we find the performance of KNG is highly dependent on the proper settings 

of parameters. As we can see in Table 3-3, there are five parameters to tune in the KNG 

algorithm, each of which has a wide search range. The parameters are tuned through grid search 

method in the experiments which is criticized for being inefficient (Bergstra & Bengio, 2012). In 

addition, the search ranges and step size of these parameters are determined by empirical 

experience which may not lead to optimal model performance. Facing all the above challenges, 

we plan to further improve the performance of KNG algorithm by employing advanced 

optimizer, such as Particle Swarm Optimization (Kennedy, 2010), in parameter optimization for 

future research. 
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CHAPTER 4 

FEATURE SELECTION AND PARAMETER TUNING BASED ON  

PARTICLE SWARM OPTIMIZATION 

4.1 Introduction 

In Chapter 3, we propose a K Nearest Gaussian (KNG) algorithm to tackle the problem of 

imbalanced classification with noisy datasets. KNG applies Gaussian Mixture Model (GMM) to 

model the training data as Gaussian mixtures and form adjustable confidence regions of each 

Gaussian. Classification is achieved in a K-nearest neighbor (KNN) manner, where the majority 

voting of the neighboring Gaussians is used to classify the testing instances. Although 

experimental studies show that KNG algorithm is very promising, two issues may hinder the 

performance of KNG. Firstly, KNG may suffer from the redundancy among the features in the 

training data. This is because redundant features increase the sparseness of the training data in 

the feature space and thus make the EM modeling of the GMM less effective (Figueiredo et al., 

2003). As a result, the Gaussian mixtures modeled by GMM may not be robust, which may 

undermine the applicability of GMM. Secondly, the success of the KNG algorithm, by our 

empirical experience, depends heavily on the tuning of parameters. However, the parameter 

tuning technique, grid search, has been criticized to be both ineffective and inefficient. 

To further improve the performance of KNG, a refined subset of most informative features and a 

finely tuned set of parameters are expected. These issues are called feature selection problem and 

parameter tuning problem, respectively, in machine learning field. Feature selection and 

parameter tuning are generally treated as separate processes. That is, by applying certain feature 

selection technique, a feature subset is chosen. Then based on the chosen subset, certain 
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parameter tuning technique is applied to achieve best model performance. In this study, we 

propose a Particle Swarm Optimization (PSO) based framework to perform feature selection and 

parameter tuning jointly. PSO is a stochastic optimization algorithm which is widely used in 

many domain applications (Robinson, 2005),(Chen et al., 2008),(Xue, et al., 2012). It performs 

search using a swarm of particles that is updated by iterations. The feature and parameter settings 

can be put together to form a high dimensional particle space. Thus, the best particle achieved 

can reflect the joint contribution of features and parameters to the optimal model performance.  

The rest of the paper is organized as follows: in Section 4.2 we discuss the related works. In 

Section 4.3 we describe the PSO-KNG algorithm in detail followed by the comparison 

experiments in Section 4.4. We conclude the findings and future work in Section 4.5. 

4.2 Related works 

4.2.1 Feature selection techniques 

Feature selection is an important issue in machine learning field, especially for classification 

problems. This is mainly because the redundancy among the massive features can heavily 

increase computational cost and also hinder classification accuracy due to the phenomena of 

“curse of dimensionality” (Chen, 2009). Feature selection techniques attempt to find a subset of 

features which improves or reserves classification accuracy comparing to the full feature set, but 

significantly reduces computational cost. The reduced set of features can also improve the 

interpretability of the classification results which is crucial important for many application 

domains, such as medical diagnosis and credit card risk management fields.  

Feature selection techniques generally fall into two broad categories: filter method and wrapper 

method (Yu & Liu, 2003). Filter method is a type of preprocessing method which explores the 

general properties of the data to select subset of features without involving any classification 
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algorithm. The commonly used filter methods include Relief, fast correlation-based filtering 

(FCF), Minimum-Redundancy-Maximum-Relevance (mRmR), just to name a few. Filter method 

runs fast, and can be easily applied to many domain applications since it is classifier 

independent. However, it ignores the interaction between features and classifiers which may lead 

to sub-optimal classification performance. Wrapper method uses a predefined search procedure 

in the feature space to generate feature subsets, and the best subset is chosen based on its 

performance of certain predefined classifier. The commonly used wrapper methods include 

Sequential forward selection, SVM Recursive Feature Elimination (SVM-RFE), etc. Wrapper 

method shows better performance than filter methods since it considers the feature- classifier 

interaction by using the classifier performance as evaluation of the selected feature subsets. 

However, wrapper method shows higher computational cost comparing to filter method, due to 

the fact that predefined classifier needs to run on many different feature subsets until it finds the 

best subset. Besides, wrapper method is classifier dependent and thus its effectiveness is limited 

by certain application context.   

4.2.2 Parameter tuning techniques 

Parameter tuning is another important issue in machine learning field. It refers to the process of 

selecting proper parameters to build the classification model. Generally, the success of a 

classifier highly depends on the proper selection of parameters. In practice, the most commonly 

used parameter tuning technique is grid search method which searches the parameters 

exhaustively with predefined search range and step size. However, grid search has been 

criticized in many literatures being inefficient for its high computational cost. Besides, the 

predefined step size discretizes the search space of parameters which hinders its effectiveness. 

Gradient based method (Keerthi et al., 2007) is another commonly used parameter tuning 
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technique which finds the parameters in an iterative manner. The search direction and step size 

are determined by the gradient of some validation function (such as accuracy, Gmean measure, 

etc) with respect to the parameters. Gradient based method requires the validation function to be 

differentiable with respect to the parameter in order to calculate the gradient. However, in many 

applications the validation function does not meet the differentiation requirement and thus the 

application of gradient based method is limited by certain application context.  

In this study, we use PSO method to perform feature selection and parameter tuning jointly. PSO 

is a population-based stochastic optimization technique. It is able to search very large space of 

candidate solutions with fast speed and can be used in almost any domain applications since it 

does not have specific requirement for the optimization problem (such as differentiable 

requirement). The detail of PSO is introduced in the following section.  

4.2.3 Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based stochastic approach for optimization 

problems. It is first proposed by Kennedy and Eberhart (1995) to simulate the social behavior of 

bird flocks and fish school. PSO uses a number of particles to form a swarm, and the swarm 

moves around in the predefined N-dimensional search space to search for the best solution. To 

update the position, particles keep tracking their own best positions (personal best, pbest) and 

also the best value of the whole swarm (global best, gbest) by exchanging information with other 

particles. The velocity and position of each particle are updated by pbest and gbest values in each 

iteration. The mathematical equations for velocity and position are: 

 𝑉𝑖
𝑡+1 = 𝜔𝑡𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑆𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑆𝑖
𝑡) (4.1) 

 𝑆𝑖
𝑡+1 = 𝑆𝑖

𝑡 + 𝑉𝑖
𝑡+1 (4.2) 
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Where i is the particle index, t is time, Vi
t+1  is the velocity of the particle i at time t+1 , Vi

t  is the 

velocity of the particle i at time t, wt is the inertial weight for time t , c1, c2 are acceleration 

coefficients, r1, r2 are random number between 0 and 1. Si
t is the position of particle i at time t. 

pbesti
t is the pbest of particle i at time t, gbestt is the gbest of the swarm at time t. There are three 

parts of the right side of Equation 4.1. The first part provides the particle the ability of exploring 

new search space areas. The second part is a “self- learning” part, which allows the particle to 

learn its personal history. The third part can be seen as a “social” part, which allows the particle 

to collaborate with other particles. These three parts enables the particle to stochastically search 

for best solution. 

4.2.4 Variants of PSO 

Over the years, extensive research has been made to further improve the performance of PSO. 

Generally, the variants of PSO fall into three broad areas. The first area of research focuses on 

the formulation of PSO. For example, Shi et al. (1998) introduce the inertia weight w into the 

original version of PSO to balance the global search and local search. Clerc and Kennedy (2002) 

conduct theoretical analysis on swarm dynamics and introduce constriction coefficients to 

control the convergence tendency of particles. Barrera and Coello (2009) use electrostatic 

interaction between particles to update the positions of particles to solve the multimodal 

optimization problem. Kennedy and Eberhart (1997) revise the position updating function using 

certain discretization rules to make the PSO algorithm work for discrete domain problems. 

The second area of research concentrates on the learning strategies for each particle. In FIPSO 

(Mendes et al., 2004), a fully informed PSO is proposed where the velocity of particle is updated 

by all the neighbors instead of only the best performer of the swarm.  In dynamic multi-swarm 

(DMS-PSO) (Liang & Suganthan, 2005), the particle population is divided into many small 
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swarms in a dynamic way that they are regrouped frequently and the information is exchanged 

among them. In UPSO (Parsopoulos & Vrahatis, 2005), a unified framework is proposed where 

the local and global variant of PSO is combined into one framework. In example-based learning 

PSO (ELPSO) (Huang et al., 2012), particles are learning from an example set of multiple global 

best particles to update the position. The diversity of the particles in the example set helps 

ELPSO to avoid premature convergence. 

The third area of research explores the integration of PSO with other optimization techniques. 

Higashi and Iba (2003) combine PSO with Gaussian mutation of genetic algorithm to expand the 

search space. Wang et al (2007) propose a hybrid PSO (HPSO) where they add a Cauchy 

mutation on the global best particle so that the swarm is able to escape from local optima. Kao 

and Zahara (2008) combine the crossover and mutation operations in GA with the flying of 

particles in PSO into one optimization algorithm, which results in better solution quality and 

convergence rate. Hu et al. (2012) integrate PSO with multiple adaptive search methods (PSO-

MAM) so that the algorithm can select the most appropriate search method for a given 

optimization problem. In addition, an adaptive Cauchy mutation is integrated to prevent PSO-

MAM from premature convergence. 

4.2.5 Applications of PSO 

PSO has been widely used in many domain applications. For instance, Chen et al. (2008) apply 

PSO on medical imaging registration where PSO is used to adjust the parameters of the 

registration method to maximize the similarity measure between the reference images and testing 

images. Robinson (2005) applies PSO to characterize the reliability of bulk power networks. 

Specifically, a swarm of particles plays the role as ‘virtual power engineers’ which are used to 

identify vulnerable network elements that may cause wide spread damage. Chen and Zhu (2010) 
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apply PSO to portfolio management where PSO is used to construct optimal risky portfolios for 

financial investments. The experimental results show PSO outperforms other optimization 

method such as Genetic Algorithm. Ujjin and Bentley (2003) employ PSO to fine-tune a profile-

matching algorithm of a recommender system to learn personal preference of users and provide 

tailored suggestions. The experiments show that PSO outperforms genetic algorithm and pearson 

algorithm with improved prediction accuracy and much less running time. 

PSO has also been widely used to improve the performance of many classification algorithms for 

general classification problems. For instance, in (Garšva & Danenas, 2014), PSO is used to find 

the best parameter settings of SVM with different kernel functions. The experimental results on 

UCI datasets show that PSO outperforms other optimization methods such as direct search (grid 

search) and simulated annealing in terms of accuracy and sum of TP ratios. In (Vilovic et al., 

2009), PSO is used to train the weights of a feedfoward ANN model. The paper concludes that 

PSO has faster convergence and better sum of the square measure than gradient descent method 

for ANN algorithm. In PSODT (Chen et al., 2014), a PSO based decision tree method is used in 

gene selection for cancer identification. Experiment shows that PSODT outperforms SVM and 

other benchmark methods in accuracy measure. In RFC+PSO (Sami et al., 2012), a random 

forest classifier with PSO algorithm is proposed to deal with the automatic image annotation 

problem. The experiments show that PSO greatly improves the performance of RFC with respect 

to precision and recall measures.  

In this research, we apply PSO to improve the performance of KNG algorithm. Especially, we 

tackle two specific issues, feature selection and parameter tuning, which might have big impacts 

on KNG algorithm. Based on the superior performance of PSO technique on various 

applications, we believe that PSO would also improve the KNG algorithm with respect to 
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classification accuracy as well as computational cost. The detail of the proposed PSO-KNG 

algorithm is discussed in next section. 

4.3 Proposed algorithm: PSO-KNG 

In this study, we propose a PSO-based method to tackle the feature selection and parameter 

tuning issues jointly to improve the performance of KNG algorithm. Recall that KNG algorithm 

has five parameters to be finely tuned. In the grid search settings, these five parameters form five 

nested loops which makes the KNG algorithm computational costly. The search range and 

number of search steps are listed in Table 4-1. 

Table 4-1 Parameters in KNG algorithm 

Parameter Range # Search Steps 

# positive GMM centers n+ [1:1:5] 5 

# negative GMM centers n- [1:1:5] 5 

# nearest Gaussians k [1,3,5] 3 

adjusting factors β+ [0.1:0.1:3] 30 

adjusting factors β- [0.1:0.1:3] 30 

 

4.3.1 Particle representation 

As we mentioned before, in PSO algorithm, the swarm of particles moves around in the N-

dimensional search space. Each dimension in the search space is corresponding to one digit of 

the particle. The structure of particles (number of digits, range of each digit) is usually defined 

by the user. By properly setting the structure of particle, feature selection and parameter tuning 

can be accomplished jointly. Figure 4-1 illustrates the particle representation. Assuming that we 

have an input dataset with d features, the particle can be defined as: 
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1 2 3 …… d+1 d+2 d+3 d+4 d+5 

F1 F2 F3 …… n+ n- β+ β- k 

 

 

  

Figure 4-1 Particle representation 

The formulation of the particle includes two parts, feature digits and parameter digits (shown in 

Figure 4-1). The feature digits are the features of the data, while the parameter digits are the 

parameters of KNG model. This formulation incorporates the features and parameters as one 

particle vector so that the search of PSO is toward the best feature and parameter combination. 

As a result, the feature selection and parameter tuning issues of KNG can be tackled jointly. In 

Figure 4-1, Fi represents the ith feature in the feature set. The digits from 1 to d are the features in 

the input data, and the digits from d+1 to d+5 are the parameters of KNG algorithm. The Fi digits 

are binary digits with ‘1’ or ‘0’ values which refer to the selection or removal of the 

corresponding features. The position of Fi digits are updated using the following rules: 

 𝑺𝒊
𝒕+𝟏 = {

𝟏,  𝒊𝒇 𝒓 <  
𝟏

𝟏 + 𝒆−𝑽𝒊
𝒕+𝟏

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (4.3) 

Where r is a random number in [0,1]. 

4.3.2 PSO-KNG algorithm 

Step 1 Input:  number of particles in swarm (N), number of total iteration (iter_max), 

acceleration coefficients c1 and c2 and initial value of inertial weight w. 

Step 2 At t = 0, initialize the swarm randomly. 

Parameters Features 
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Step 3 For each particle, select features based on the Fi values, and pass the values of parameters 

into KNG algorithm.  

Step 4 Run KNG algorithm, obtain the values of fitness function and the corresponding pbest and 

gbest values. Update pbestt> pbestt-1, and gbestt> gbestt-1 

Step 5 Update the particle position using Equation 4.1, Equation 4.2 and Equation 4.3. 

Step 6 Repeat steps 3 and 4 until number of iteration reaches iter_max. 

Step 7 Output best fitness function values with corresponding particle position. 

Based on the superior ability of PSO in searching large spaces of candidate solutions, we believe 

that our proposed method PSO-KNG can further improve the KNG algorithm with higher 

classification performance and lower computational costs.  To test the performance of PSO-

KNG, we conduct experiments on the same datasets which has been used in Chapter 3. The 

details of the experiments are shown in Section 4.4. 

4.4 Experiments and results 

In this section, we test the performance of PSO-KNG algorithm on the same seven imbalanced 

and noise datasets as we used in Chapter 3. To compare with the original KNG algorithm, we 

mainly focus on the Gmean measure which shows the discrimination power of the model, and 

running time measure to show the computation cost.  

We use the same search range of the parameters as in KNG algorithm. The step size is not 

needed since PSO can adjust the searching direction and speed automatically by learning the 

pbest and gbest, according to Equation 4.1. The parameters of PSO are chosen according to 

literatures (Xue et al., 2012),(Hu et al., 2012),(Allouani et al., 2012). The number of birds in 

swarm is set to 30, number of iteration (iter_max) is set to 100, acceleration coefficients c1 and c2 

are set to 2, and the inertial weight w is updated according to the following function: 
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t max min

max

w w
w  w *t

iter _ max

 
  
 

 (4.4) 

where wmax and wmin are set to 0.9 and 0.4, respectively. 

Table 4-2 Experimental results of Gmean measures 

Dataset KNG 
PSO-KNG  

(without FS) 
PSO-KNG 

breast_cancer 96.7 ± 0.0 97.6 ± 0.0 98.2 ± 0.0 

diabetes 70.5 ± 0.0 70.7 ± 0.0 74.3 ± 0.0 

iris2 93.4 ± 1.5 97.2 ± 0.3 99.5 ± 0.0 

mammographic 78.9 ± 0.0 79.1 ± 0.0 79.2 ± 0.0 

yeast1 65.4 ± 0.0 65.8 ± 0.0 66.7 ± 0.0 

wine2 95.7 ± 0.0 97.0 ± 0.2 98.1 ± 0.0 

glass3 72.1 ± 5.9 75.6 ± 5.2 83.5 ± 2.0 

 

Table 4-2 shows the experimental results of Gmean measures for PSO-KNG, PSO-KNG 

(without FS) and original KNG algorithm. It also shows the number of original features and 

selected features using PSO-KNG. Both PSO based method, PSO-KNG and PSO-KNG (without 

FS), improves Gmean measure for all seven datasets. Comparing with original KNG algorithm, 

PSO-KNG (without FS) improves the learning by tuning parameters in a more refined way 

without predefined step size, and  PSO-KNG further improves the learning by removing 

redundant features from the model and thus achieves the best performance among all three 

methods. PSO-KNG outperforms PSO-KNG (without FS) for all seven datasets, which indicates 

that handling the parameter tuning jointly with feature selection can achieve better model 

performance than dealing with parameter tuning alone. This also shows that the mutual influence 
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exists between data features and model parameters and should be considered in building the 

models. 

Table 4-3 Optimized Parameters of PSO-KNG 

Dataset 

Number of  

original 

features 

Number of  

selected 

features 

k n+ n- β+ β- 

breast_cancer 10 7 1 1 1 0.10 0.10 

Diabetes 8 5 1 1 1 3.00 3.00 

iris2 4 1 1 1 2 0.14 0.10 

mammographic 5 3 3 2 2 1.76 3.00 

yeast1 8 4 1 1 1 2.14 2.07 

wine2 13 7 1 1 2 0.10 0.10 

glass3 9 5 1 2 5 0.10 0.10 

 

Table 4-3 lists the optimized parameters of PSO-KNG algorithm. PSO-KNG reduces the number 

of selected features to about half size of the full feature set for all seven datasets averagely, but 

achieves better Gmean measures for all seven datasets(as in Table 4-2). This shows that feature 

redundancy exists among the features and removing the redundant features improves learning. 

Six of seven datasets use 1 as the value for the number of nearest Gaussians k, which means the 

very nearest Gaussian contributes most to learning. The number of GMM centers n+ and n- show 

different combinations for different datasets, eg, (1,1), (1,2), (2,2), (2,5). However, n- is always 

bigger than or equal to n+, simply because negative class is the majority class which has more 

data instances than positive class. Most of the β+ and β- are equal or roughly equal, which shows 

that class boundary is mainly determined by the variance of the Gaussian mixtures.  
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Figure 4-2 Experimental results of running time 

Figure 4-2 shows the running time for each method. We can observe that the original KNG 

algorithm has the longest running time, while PSO based methods (with and without FS) show 

much less running time for all seven datasets. This is because, as aforementioned, the grid search 

method in original KNG algorithm uses nested loops to search for all five parameters. Each 

parameter setting is independent from other settings and thus the search must perform 

exhaustively for all possible combinations. However, PSO-KNG methods use stochastic search 

where the search direction and step size for each iteration can be learned based on the previous 

learning experience. This property makes PSO-KNG methods run much faster to find the best 

particle solution. PSO-KNG shows shorter running time than PSO-KNG (without FS) for all 

seven datasets, but not by much. This is because the reduced feature set for PSO-KNG leads to a 

reduced training time for KNG model in the EM modeling of Gaussian mixtures, which results in 

reduced total running time comparing with PSO-KNG (without FS). 
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In conclusion, PSO-KNG shows improved discrimination power and much lower computational 

cost than the original KNG algorithm. 

4.5 Conclusion and discussion 

In this study, we propose a PSO-KNG method to jointly tackle the feature selection and 

parameter issues in KNG algorithm. PSO considers the mutual influence of data features and 

model parameters by formulating them into one particle vector and thus can search the best 

feature and parameter combination jointly. Comparing with the grid search technique which is 

used in original KNG algorithm, PSO-KNG runs much faster since it searches the solutions 

stochastically where the search is toward the direction updated by the particle’s learning 

experience of previous iterations and thus avoids exhaustive search. The experimental results 

show that PSO-KNG outperforms the original KNG algorithms in better Gmean measure and 

much lower computational cost. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, we tackle the imbalanced classification problem with noisy dataset. Existing 

literature shows discriminative models are more effective in finding the class boundary, but the 

performance dropdown dramatically when imbalance and noise exists in data. On the other hand, 

generative models focus on modeling the data distributions which are less sensitive to data 

imbalance and noise, but are less effective in finding the class boundary. Due to the 

complementary nature of discriminative and generative models, we propose the model fusion 

based framework to tackle the imbalance classification problem with noisy dataset.  

In Chapter 2, we focus on the general imbalanced classification problem. A comprehensive 

literature review on imbalanced classification methods has been made. Especially, we summarize 

the pros and cons of the existing studies on cost sensitive learning of support vector machines. A 

model fusion based method, CSG has been proposed which employs Gaussian mixture models to 

enforce the cost-sensitivity of the discriminative model cSVM. Experimental results on 

benchmark datasets and the medical imaging dataset show the effectiveness of CSG in dealing 

with imbalanced classification problems. 

In Chapter 3, we expand the research scope to include data noise issue into the imbalanced 

classification problem. A comprehensive literature review on imbalance handing and noise 

handling techniques has been made. A model fusion based framework, KNG has been proposed 

which employs a generative model, GMM, to establish Gaussian mixtures and their 

corresponding confidence regions, and the final classification is achieved in a K nearest neighbor 

manner by majority voting of the neighboring Gaussians. Experimental results on benchmark 
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datasets show KNG greatly outperforms other commonly used classification methods in dealing 

with imbalanced classification problems with noisy dataset. 

In Chapter 4, we address feature selection and parameter tuning issues which may hinder the 

performance the KNG algorithm in terms of classification accuracy and computational cost. 

Particle swarm optimization (PSO), a stochastic optimization technique, is comprehensively 

reviewed in this study and a PSO-KNG algorithm is proposed to tackle the feature selection and 

parameter tuning issues jointly. The experimental results show that PSO-KNG outperforms the 

original KNG algorithms in better Gmean measure and much lower computational cost. 

This dissertation provides the ground work for discriminative and generative model fusion based 

framework for the problem of imbalanced classification with noisy dataset. Each chapter sets the 

stage for future research to take place. Specifically,  

 For CSG algorithm, it follows a rear-end framework which is easy to understand and 

implement, but requires the fully execution of GMM and cSVM before the fusion step, 

which may be costly. To make the fusion in one step, we plan to explore ways of fusing 

GMM and cSVM in a front-end framework. A promising research direction is to combine 

the mathematical formulation of GMM and cSVM due to the fact that the mathematical 

formulation of Gaussian mixtures in GMM and that of RBF kernel in cSVM do share 

certain level of similarities (which can be seen in Chapter 2.3). Some work has been done 

by Deselaers et al. (2010) in which GMM is integrated with standard SVM in one 

mathematical formulation. However, their work does not take into account the cost 

sensitive learning, a critical issue for imbalanced classification problem.  Thus, in future 

research, we plan to explore the ways of combining the mathematical formulations of 

GMM and cSVM to better handle the imbalanced classification problem.  
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 For KNG algorithm, although experimental results show its superior performance, we do 

find two issues which may hinder the performance of KNG. Thus, we employ PSO 

technique to further improve the performance of KNG in terms of classification accuracy 

and computational cost.  Although the experimental results show that PSO-KNG greatly 

outperforms original KNG with better Gmean measure and much lower computational 

cost, the PSO technique we used in our study is just the basic version of PSO. It is our 

intention to explore various variants of PSO which can be used to better improve KNG 

algorithm on imbalanced classification with noisy dataset. 



64 

REFERENCES 

Abdel-Halim, R. E., & Abdel-Halim, M. R. (2006). A review of urinary stone analysis 

techniques. Saudi medical journal, 27(10), 1462.  

Adam, A., Ibrahim, Z., Shapiai, M. I., Chew, L. C., Jau, L. W., Khalid, M., & Watada, J. (2012). 

A TWO-STEP SUPERVISED LEARNING ARTIFICIAL NEURAL NETWORK FOR 

IMBALANCED DATASET PROBLEMS. INTERNATIONAL JOURNAL OF 

INNOVATIVE COMPUTING INFORMATION AND CONTROL, 8(5a), 3163-3172.  

Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying Support Vector Machines to 

Imbalanced Datasets. Paper presented at the Machine Learning: ECML 2004, Berlin 

Heidelberg. 

Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2011). 

KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and 

Experimental Analysis Framework. Journal of Multiple-Valued Logic and Soft Computing, 

17(2-3), 255-287.  

Allouani, F., Boukhetala, D., & Boudjema, F. (2012). Particle swarm optimization based fuzzy 

sliding mode controller for the Twin Rotor MIMO system. Paper presented at the 

Electrotechnical Conference (MELECON), 2012 16th IEEE Mediterranean. 

Bache, K. L., M. (2013). UCI Machine Learning Repository. Irvine, CA: University of 

California, School of Information and Computer Science. 

Barrera, J., & Coello, C. A. C. (2009). A particle swarm optimization method for multimodal 

optimization based on electrostatic interaction. In MICAI 2009: Advances in Artificial 

Intelligence, 622-632.  

Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A Study of the Behavior of Several 

Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations 

Newsletter, 6(1), 20-29.  

Bazzani, A., Bevilacqua, A., Bollini, D., Brancaccio, R., Campanini, R., Lanconelli, N., ...& 

Romani, D. (2001). An SVM Classifier to Separate False Signals from Microcalcifications in 

Digital Mammograms. Physics in Medicine and Biology, 46(5), 1651.  

Berardi, V. L., & Zhang, G. P. (1999). The effect of misclassification costs on neural network 

classifiers. Decision Sciences, 30(3), 659-682.  

Bergstra, J. B., Y. (2012). Random search for hyper-parameter optimization. The Journal of 

Machine Learning Research, 13, 281-305.  



65 

Bishop, C. M. (1995). Neural Networks for Pattern Recognition: Oxford university press. 

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern Recognition and Machine Learning. New 

York: springer. 

Brefeld, U., Geibel, P., & Wysotzki, F. (2003). Support Vector Machines with Example 

Dependent Costs. Paper presented at the In Machine Learning: ECML 2003. 

Breuning, M. H., & Hamdy, N. A. (2003). From gene to disease; SLC3A1, SLC7A9 and 

cystinuria. Nederlands tijdschrift voor geneeskunde, 147(6), 245.  

Brodley, C. E., & Friedl, M. A. (2011). Identifying mislabeled training data. arXiv 

preprint(arXiv:1106.0219).  

Cao, P., Zhao, D., & Zaiane, O. (2013). An Optimized Cost-Sensitive SVM for Imbalanced Data 

Learning. In Advances in Knowledge Discovery and Data Mining, 280-292.  

Chang, C. C., & Lin, C. J. (2011). LIBSVM : A Library for Support Vector Machines. ACM 

Transac-tions on Intelligent Systems and Technology, 2(27), 1-27.  

Chawla, N. V. (2005). Data Mining for Imbalanced Datasets: An Overview In Data Mining and 

Knowledge Discovery Handbook (pp. 853-867): Springer. 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic 

Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.  

Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: Special Issue on Learning from 

Imbalanced Data Sets. ACM SIGKDD Explorations Newsletter, 6(1), 1-6.  

Chen, K. H., Wang, K. J., Tsai, M. L., Wang, K. M., Adrian, A. M., Cheng, W. C., ... & Chang, 

K. S. (2014). Gene selection for cancer identification: a decision tree model empowered by 

particle swarm optimization algorithm. BMC bioinformatics, 15(1), 49.  

Chen, L. (2009). Curse of Dimensionality. In Encyclopedia of Database Systems, 545-546.  

Chen, Y., & Zhu, H. (2010). PSO heuristics algorithm for portfolio optimization. In Advances in 

Swarm Intelligence (pp. 183-190). Springer Berlin Heidelberg. 

Chen, Y. W., Lin, C. L., & Mimori, A. (2008). Multimodal medical image registration using 

particle swarm optimization. Paper presented at the In Intelligent Systems Design and 

Applications, 2008. ISDA'08. Eighth International Conference on. 

Chiang, D., Chiang, H. C., Chen, W. C., & Tsai, F. J. (2003). Prediction of Stone Disease by 

Discriminant Analysis and Artificial Neural Networks in Genetic Polymorphisms: a New 

Method. BJU International 91, 7, 661-666.  



66 

Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a 

multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 6(1), 58-

73.  

Collobert, R., & Bengio, S. (2004). Links Between Perceptrons, MLPs and SVMs. Paper 

presented at the In Proceedings of the Twenty-first International Conference on Machine 

Learning, ACM. 

Cortes, C., & Vapnik, V. (1995). Support-vector Networks. Machine learning, 20(3), 273-297.  

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Information Theory, IEEE 

Transactions on, 13(1), 21-27.  

Dal Moro, F., Abate, A., Lanckriet, G. R. G., Arandjelovic, G., Gasparella, P., Bassi, P., ... & 

Pagano, F. (2006). A Novel Approach for Accurate Prediction of Spontaneous Passage of 

Ureteral Stones: Support Vector Machines. Kidney international, 69(1), 157-160.  

De Falco, I., Della Cioppa, A., & Tarantino, E. (2007). Facing classification problems with 

particle swarm optimization. Applied Soft Computing, 3, 652-658.  

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete 

Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B 

(Methodological), 1-38.  

Deselaers, T., Heigold, G., & Ney, H. (2010). Object classification by fusing SVMs and 

Gaussian mixtures. Pattern Recognition, 43(7), 2476-2484.  

Duan, K. B., & Keerthi, S. S. (2005). Which is the best Multiclass SVM method? An Empirical 

Study: Springer Berlin Heidelberg. 

Eliahou, R., Hidas, G., Duvdevani, M., & Sosna, J. (2010). Determination of renal stone 

composition with dual-energy computed tomography: an emerging application. In Seminars in 

Ultrasound, CT, and MRI, 31(4), 315-320.  

Esmin, A. A., & Lambert-Torres, G. (2012). Application of particle swarm optimization to 

optimal power systems. International Journal of Innovative Computing, Information and 

Control, 8(3A), 1705-1716.  

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A Multiple Resampling Method for Learning 

from Imbalanced Data Sets. Computational Intelligence, 20(1), 18-36.  

Fauve, B. G., Evans, N. W., Pearson, N., Bonastre, J. F., & Mason, J. S. (2007). Influence of 

Task Duration in Text-independent Speaker Verification. Paper presented at the In Proc. 

Interspeech. 



67 

Figueiredo, M. A., Jain, A. K., & Law, M. H. (2003). A feature selection wrapper for mixtures. 

In Pattern Recognition and Image Analysis, 229-237.  

Galhardas, H., Florescu, D., Shasha, D., & Simon, E. (2000). AJAX: an extensible data cleaning 

tool. ACM SIGMOD Record, 29(2), 590.  

Garšva, G., & Danenas, P. (2014). Particle swarm optimization for linear support vector 

machines based classifier selection. Nonlinear Analysis, 19(1), 26-42.  

GOEL, R., & WASSERSTEIN, A. G. (2012). Kidney Stones: Diagnostic and Treatment 

Strategies. Consultant, 52, 121-130.  

Graser, A., Johnson, T. R., Bader, M., Staehler, M., Haseke, N., Nikolaou, K., . . . Becker, C. R. 

(2008). Dual energy CT characterization of urinary calculi: initial in vitro and clinical 

experience. Investigative radiology, 43(2), 112-119.  

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The 

WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1).  

He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. Knowledge and Data 

Engineering, IEEE Transactions on, 21(9), 1263-1284.  

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive Synthetic Sampling 

Approach for Imbalanced Learning. Paper presented at the In Neural Networks, IJCNN 

2008.(IEEE World Congress on Computational Intelligence). IEEE International Joint 

Conference on. 

He, M., Wu, T., Silva, A., Zhao, D. Y., & Qian, W. (2014). Augmenting Cost-SVM with 

Gaussian Mixture Models for Imbalanced Classification. 

Hidas, G., Eliahou, R., Duvdevani, M., Coulon, P., Lemaitre, L., Gofrit, O. N., . . . Sosna, J. 

(2010). Determination of renal stone composition with dual-energy CT: in vivo analysis and 

comparison with x-ray diffraction. Radiology, 257(2), 394-401.  

Higashi, N., & Iba, H. (2003). Particle swarm optimization with Gaussian mutation. Paper 

presented at the In Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 

IEEE. 

Holte, R. C., Acker, L., & Porter, B. W. (1989). Concept Learning and the Problem of Small 

Disjuncts. Paper presented at the Proceedings of the Eleventh International Joint Conference 

on Artificial Intelligence. 

Hsieh, J., Nett, B., Yu, Z., Sauer, K., Thibault, J. B., & Bouman, C. A. (2013). Recent advances 

in CT image reconstruction. Current Radiology Reports, 1(1), 39-51.  



68 

Hu, M., Wu, T., & Weir, J. D. (2012). An intelligent augmentation of particle swarm 

optimization with multiple adaptive methods. Information Sciences, 213, 68-83.  

Huang, H., Qin, H., Hao, Z., & Lim, A. (2012). Example-based learning particle swarm 

optimization for continuous optimization. Information Sciences, 1(182), 125-138.  

Hui, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: A new Over-sampling 

Method in Imbalanced Data Sets Learning. Paper presented at the In Advances in Intelligent 

Computing, Berlin Heidelberg. 

Imam, T., Ting, K. M., & Kamruzzaman, J. (2006). z-SVM: An SVM for Improved 

Classification of Imbalanced Data. Paper presented at the In AI 2006: Advances in Artificial 

Intelligence, Berlin Heidelberg. 

Japkowicz, N., Myers, C., & Gluck, M. (1995). A novelty detection approach to classification. 

Paper presented at the In IJCAI. 

Jordan, A. (2002). On Discriminative vs. Generative Classifiers: A Comparison of Logistic 

Regression and Naive Bayes. Advances in Neural Information Processing Systems(14), 841.  

Kaladhar, D., Krishna, A. R., & Varahalarao, V. (2012). Statistical and Data Mining Aspects on 

Kidney Stones: A Systematic Review and Meta-analysis (pp. 543): 1:543 

doi:10.4172/scientificreports. 

Kao, Y.-T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for 

multimodal functions. Applied Soft Computing, 8(2), 849-857.  

Karakoulas, G., & Shawe-Taylor, J. (1999). Optimizing Classifiers for Imbalanced Training Sets. 

In Proceedings of the 1998 Conference on Advances in Neural Information Processing 

Systems II, 253-259.  

Keerthi, S. S., Sindhwani, V., & Chapelle, O. (2007). An Efficient Method for Gradient-Based 

Adaptation of Hyperparameters in SVM Models. In Advances in Neural Information 

Processing Systems, 673-680.  

Kennedy, J. (2010). Particle swarm optimization In Encyclopedia of Machine Learning (pp. 760-

766): Springer US. 

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE 

International Conference on Neural Networks, IV, 1942–1948.  

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. 

In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 

IEEE International Conference on, 5, 4104-4108.  



69 

Kim, D., & Lee, S. C. (2012). Pairwise Threshold for Gaussian Mixture Classification and its 

Application on Human Tracking Enhancement. Paper presented at the Advanced Video and 

Signal-Based Surveillance (AVSS) 2012 IEEE Ninth International Conference on. 

Kriesel, D. (2011). A brief introduction to neural networks: Retrieved August,15. 

Kubat, M., Holte, R., & Matwin, S. (1997). Learning when Negative Examples Abound. 

In Machine Learning: ECML-97 (pp. 146-153). Springer Berlin Heidelberg. 

Lasserre, J. (2008). Hybrid of generative and discriminative methods for machine learning PhD 

diss., PhD thesis: University of Cambridge. 

Lavanya, D., & Rani, K. U. (2011). Performance Evaluation of Decision Tree Classifiers on 

Medical Datasets. International Journal of Computer Applications, 26(4), 1-4.  

Lee, M. L., Ling, T. W., & Low, W. L. (2000). IntelliClean: a knowledge-based intelligent data 

cleaner. Paper presented at the In Proceedings of the sixth ACM SIGKDD international 

conference on Knowledge discovery and data mining. 

Liang, J. J., & Suganthan, P. N. (2005). Dynamic multi-swarm particle swarm optimizer with 

local search. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, 1, 522-528.  

Lindsay, B. G. (1995). Mixture models: Theory, geometry, and applications: Mathematics. 

Long, P. M., & Servedio, R. A. (2008). Random classification noise defeats all convex potential 

boosters. Paper presented at the In Proceedings of the 25th international conference on 

Machine learning. 

Maciejewski, T., & Stefanowski, J. (2011). Local Neighbourhood Extension of SMOTE for 

Mining Imbalanced Data. Paper presented at the In Computational Intelligence and Data 

Mining (CIDM), 2011 IEEE Symposium on. 

Maloof, M. A. (2003). Learning when Data Sets are Imbalanced and when Costs are Unequal 

and Unknown. Paper presented at the In ICML-2003 Workshop on Learning from Imbalanced 

Data Sets II. 

Masnadi-Shirazi, H., Vasconcelos, N., & Iranmehr, A. (2012). Cost-Sensitive Support Vector 

Machines.    

McLachlan, G. (2004). Discriminant Analysis and Statistical Pattern Recognition (Vol. 544): 

Wiley. com. 

Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe 

better. Evolutionary Computation, IEEE Transactions on, 8(3), 204-210.  



70 

Mingers, J. (1989a). An empirical comparison of pruning methods for decision tree induction. 

Machine learning, 4(2), 227-243.  

Mingers, J. (1989b). An empirical comparison of selection measures for decision-tree induction. 

Machine learning, 3(4), 319-342.  

Miranda, André LB, Garcia, L. P. F., Carvalho, A. C., & Lorena, A. C. (2009). Use of 

classification algorithms in noise detection and elimination. In Hybrid Artificial Intelligence 

Systems, 417-424.  

NKUDIC. (2013). Kidney Stones in Adults. 

http://kidney.niddk.nih.gov/kudiseases/pubs/stonesadults/?control=Pubs 

Parsopoulos, K. E., & Vrahatis, M. N. (2005). Unified particle swarm optimization in dynamic 

environments. In Applications of Evolutionary Computing, 590-599.  

Pechenizkiy, M., Tsymbal, A., Puuronen, S., & Pechenizkiy, O. (2006). Class noise and 

supervised learning in medical domains: The effect of feature extraction. Paper presented at 

the In Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International 

Symposium on. 

Platt, J. (2000). Probabilistic Outputs for Support Vector Machines and Comparisons to 

Regularized Likelihood Methods Advances in Large Margin Classifiers (pp. 61-74): the MIT 

Press. 

Quinlan, J. R. (1986). The effect of noise on concept learning Machine learning: An artificial 

intelligence approach (pp. 149-166): Morgan Kaufmann. 

Quinlan, J. R. (1993). C4. 5: programs for machine learning: Vol. 1. Morgan Kaufmann. 

Reynolds, D. A., & Rose, R. C. (1995). Robust Text-independent Speaker Identification using 

Gaussian Mixture Speaker Models. Speech and Audio Processing, IEEE Transactions on, 

3(1), 72-83.  

Riedel, M. An Introduction to Dual Energy Computed Tomography. 

http://ric.uthscsa.edu/personalpages/lancaster/DI2_Projects_2010/dual-energy_CT.pdf 

Robinson, D. G. (2005). Reliability analysis of bulk power systems using swarm intelligence. 

Paper presented at the In Reliability and Maintainability Symposium, 2005. Proceedings. 

Annual. 

Sáez, J. A., Galar, M., Luengo, J., & Herrera, F. (2013). Tackling the Problem of Classification 

with Noisy Data using Multiple Classifier Systems: Analysis of the Performance and 

Robustness. Information Sciences(247), 1-20.  



71 

Sami, M., Hassanien, A. E., El-Bendary, N., & Berwick, R. C. (2012). Incorporating random 

forest trees with particle swarm optimization for automatic image annotation. Paper presented 

at the In Computer Science and Information Systems (FedCSIS), 2012 Federated Conference 

on, IEEE. 

Scales Jr, C. D., Smith, A. C., Hanley, J. M., & Saigal, C. S. (2012). Prevalence of kidney stones 

in the United States. European urology, 62(1), 160-165.  

Scarfone, K., & Mell, P. (2007). Guide to Intrusion Detection and Prevention Systems (IDPS). 

NIST Special Publication, 800, 94.  

Seiffert, C., Khoshgoftaar, T. M., Hulse, J. V., & Folleco, A. (2014). An empirical study of the 

classification performance of learners on imbalanced and noisy software quality data. 

Information Sciences, 259, 571-595.  

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Evolutionary 

Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, 69-73.  

Shon, T., Kim, Y., Lee, C., & Moon, J. (2005). A Machine Learning Framework for Network 

Anomaly Detection using SVM and GA. Paper presented at the In Information Assurance 

Workshop, 2005. IAW'05. Proceedings from the Sixth Annual IEEE SMC. 

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining: Pearson Addison 

Wesley. 

Ujjin, S., & Bentley, P. J. (2003). Particle swarm optimization recommender system. Paper 

presented at the In Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 

IEEE. 

Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the Sensitivity of Support 

Vector Machines. Paper presented at the Proceedings of the International Joint Conference on 

Artificial Intelligence. 

Vilovic, I., Burum, N., & Milic, D. (2009). Using particle swarm optimization in training neural 

network for indoor field strength prediction. Paper presented at the In ELMAR, 2009. 

ELMAR'09. International Symposium. 

Wang, H.-Y. (2008). Combination Approach of SMOTE and Biased-SVM for Imbalanced 

Datasets. Paper presented at the In Neural Networks, 2008. IJCNN 2008.(IEEE World 

Congress on Computational Intelligence). IEEE International Joint Conference on, IEEE. 

Wang, H., Liu, Y., & Zeng, S. (2007). A hybrid particle swarm algorithm with Cauchy mutation. 

In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, 356-360.  



72 

Wang, K., & Ren, Z. (2007). Enhanced Gaussian Mixture Models for Object Recognition using 

Salient Image Features. Paper presented at the Mechatronics and Automation, 2007. ICMA 

2007. International Conference on. 

Wu , G., & Chang, E. Y. (2002). Adaptive Feature-space Conformal Transformation for 

Imbalanced-data Learning. Paper presented at the MACHINE LEARNING-

INTERNATIONAL WORKSHOP THEN CONFERENCE. 

Wu, G., & Chang, E. Y. (2003). Class-boundary Alignment for Imbalanced Dataset Learning. 

Paper presented at the ICML 2003 Workshop on Learning from Imbalanced Data Sets II, 

Washington, DC. 

Wu, G., & Chang, E. Y. (2004). Aligning Boundary in Kernel Space for Learning Imbalanced 

Dataset. Data Mining,  ICDM'04. Fourth IEEE International Conference on. IEEE.  

Wu, J. (2012). Chapter 58 – Urolithiasis Integrative Medicine, 3rd ed: WB Saunders Company. 

Xiong, H., Pandey, G., Steinbach, M., & Kumar, V. (2006). Enhancing data analysis with noise 

removal. Knowledge and Data Engineering, IEEE Transactions on, 18(3), 304-319.  

Xue, B., Zhang, M., & Browne, W. N. (2012). Multi-objective particle swarm optimisation 

(PSO) for feature selection. Paper presented at the In Proceedings of the fourteenth 

international conference on Genetic and evolutionary computation conference. 

Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based 

filter solution. Paper presented at the In ICML. 

Zhu, X., & Wu, X. (2004). Class noise vs. attribute noise: A quantitative study. Artificial 

Intelligence Review, 22(3), 177-210.  

 


