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ABSTRACT

Obtaining high-quality experimental designs to optimize statistical efficiency and data

quality is quite challenging for functional magnetic resonance imaging (fMRI). The

primary fMRI design issue is on the selection of the best sequence of stimuli based on

a statistically meaningful optimality criterion. Some previous studies have provided

some guidance and powerful computational tools for obtaining good fMRI designs.

However, these results are mainly for basic experimental settings with simple statisti-

cal models. In this work, a type of modern fMRI experiments is considered, in which

the design matrix of the statistical model depends not only on the selected design,

but also on the experimental subject’s probabilistic behavior during the experiment.

The design matrix is thus uncertain at the design stage, making it difficult to select

good designs. By taking this uncertainty into account, a very efficient approach for

obtaining high-quality fMRI designs is developed in this study. The proposed ap-

proach is built upon an analytical result, and an efficient computer algorithm. It is

shown through case studies that the proposed approach can outperform an existing

method in terms of computing time, and the quality of the obtained designs.
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Chapter 1

INTRODUCTION

Functional neuroimaging experiments utilizing the pioneering functional magnetic

resonance imaging (fMRI) technology help to provide insights into the way that the

brain works. Such experiments are widely conducted in various research fields such as

psychology, neuroscience, and education for studying brain functions in response to

some mental stimuli such as pictures or sounds; see also Lindquist (2008). Researchers

also use fMRI as one of the powerful tools for studying some diseases related to

brain functions as highlighted in a special issue on clinical applications of fMRI in

Neuropsychology Review, Vol. 17 et al. (2007). The use of fMRI is arguably an

important advance in neuroscience, and it has many practical applications.

In an fMRI experiment, it is not uncommon that an experimental subject is pre-

sented with a sequence of stimuli of one or more types, possibly interlaced with rest

periods. For such studies, an fMRI design determines the onset times of each stimu-

lus. For example, a stimulus can be a 1-second picture of smiling face that appears at

multiple time points in the experiment. During the periods when there is no stimulus

presentation, the subject is asked to rest or gaze at a visual fixation. Each stimulus

may evoke neuronal activity at some regions of the subject’s brain. This neuronal

activity leads to a rise or fall in the concentration of the oxygenated blood in the cere-

bral vessels. This leads to a change in the strength of the local magnetic field around

the activated brain regions. The fluctuation in the strength of the magnetic field

is picked up by an fMRI scanner. Specifically, the fMRI scanner collects the blood

oxygenation level dependent (BOLD) measurements at regular time points from each

of the, say, 64× 64× 30 brain voxels (3D imaging units). We will thus have an fMRI
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time series from each brain voxel that reflects the change in the strength of the local

magnetic field. These time series are analyzed to make statistical inference about

the brain activity at the corresponding brain voxels. Such an inference is typically

made based on (some characteristics of) the hemodynamic response function (HRF),

a function of time modeling the change in the strength of the magnetic field following

a stimulus onset (see Chapter 2 for further details).

In traditional fMRI studies, the design matrix of the statistical model for analyzing

fMRI data normally can be completely determined by the selected design. However,

this no longer holds true for some modern experiments that aim at investigating the

brain activity evoked by the subject reactions to the stimuli (e.g., the subject answers

to the presented questions). Cordes et al. (2012) reported an experiment of this sort.

For such experiments, the design matrix will depend not only on the selected design,

but also on the subject’s reaction to each of these stimuli. As the subject’s reactions

are uncertain at the design stage (before the experiment starts), it is unlikely to have

an accurate evaluation of the quality of designs. This makes it very challenging to

select good designs suited to this type of modern experiments.

The goal of this project is to develop an efficient and effective approach for finding

high-quality designs to improve the quality of fMRI experiments when the design ma-

trix is uncertain. Our target is at fMRI designs that are robust to possible reactions

of the subject. To that end, we build our design selection approach on an analytical

result and an efficient computer algorithm. Specifically, we derive an analytical form

for our design selection criterion that allows us to evaluate the robustness of designs

without much computational effort. We then adapt the genetic algorithm considered

by Kao et al. (2009) to search for an fMRI design optimizing this criterion. As demon-

strated in our case studies, our criterion can serve as a cheap, but good surrogate of

the design selection criterion proposed by Cordes et al. (2012). For these cases where
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the latter criterion is considered, our designs can perform similarly to or slightly bet-

ter than the designs obtained by using the method proposed by Cordes et al. (2012).

More importantly, our approach is much faster than that of Cordes et al. (2012).

The following chapters are organized as follows. In Chapter 2, we provide some

background information about fMRI designs and a motivation example. We then

present our methodology in Chapter 3. Chapter 4 illustrates some case studies to

demonstrate the usefulness of our approach. A discussion can be found in Chapter 5.
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Chapter 2

BACKGROUND INFORMATION AND A MOTIVATION EXAMPLE

2.1 Background Information

In an (event-related) fMRI study, there might be tens or hundreds brief stimuli of

one or more types presented to the subject at different time points. Each stimulus may

last several milliseconds or a few seconds, immediately followed by a period of ‘control’

such as a rest period or a presentation of a visual fixation. For example, an experiment

might involve 1-second pictures of familiar faces, which form the first stimulus type,

and 1-second pictures of unfamiliar faces that form the second stimulus type. Each

stimulus can possibly appear every τISI seconds, where τISI is a pre-specified time

(e.g., 4 seconds), and is sometimes termed as the inter-stimulus interval. During

the period from the offset of a stimulus to the onset of the next one, the subject

is exposed to the control (e.g., rest or visual fixation). An experiment can have a

duration of several minutes (e.g., 10 minutes). A design for such an experiment is

often represented as an ordered sequence of N elements; i.e. d = (d1, ..., dN), where

N is typically tens or hundreds. With Q stimulus types, each element dn in a design

can take a value from {0, 1, ..., Q}. For example, a design with Q = 2 may look

like d = (1, 0, 2, 1, ..., 0). The nth position of d corresponds to time (n − 1)τISI ,

n = 1, ..., N . Time 0 is typically set to the time point when the first valid MR

measurement is acquired by an fMRI scanner. When dn = q > 0, there is an onset of

the qth-type stimulus at the nth time point. With dn = 0, there is no stimulus onset

at that time point. For example, a ‘1’ in d may indicate an appearance of a familiar

face, a ‘2’ is for an unfamiliar face, and a ‘0’ means that none of these pictures occurs.
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Figure 2.1: An example Hemodynamic Response Function, HRF.

An fMRI design described previously determines the onset times and the presen-

tation order of the stimuli. When a selected design is presented to the subject, an

fMRI scanner repeatedly scans the subject’s brain to collect data for making statisti-

cal inference about the brain activity evoked by the stimuli. In particular, there will

be, say, 64× 64× 30 three-dimensional image elements, called voxels, each having a

size of, say, 3× 3× 5 mm3. The fMRI scanner repeatedly scans through these voxels.

From each voxel, an MR measurement is collected every τTR seconds (e.g., τTR = 2

seconds) to form an fMRI time series. These collected time series are then analyzed

for making inference about the brain activity in response to the stimuli. Such an

inference is typically made via studying the hemodynamic response function, HRF,

which is a function of time modeling the stimulus-induced change in the concentra-

tions of the oxy- and deoxy-blood in the cerebral blood vessels at a voxel. The HRF

typically has a long duration (e.g., 30 seconds) relative to τISI and τTR. It may look

like the curve presented in Figure 2.1. It is commonly assumed that, at each voxel,
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the stimuli of the same type have the same HRF, whereas stimuli of different types

may have different HRFs. Consequently, there will be Q possibly different HRFs in

cases with Q stimulus types. An study objective of interest is to estimate these Q

HRFs.

A commonly considered linear model for the estimation of the HRFs is (Dale,

1999; Liu and Frank, 2004):

y =

Q∑
q=1

Xd,qhq + Sγ + ε. (2.1)

Here, y = (y1, ..., yT )′ is the MR measurements obtained from a voxel every τTR

seconds. The unknown parameter vector hq = (hq,1, ..., hq,K)′ represents K heights of

the HRF of the qth-type stimulus that can contribute to y, where the pre-specified

integer K is sufficiently large so that the height of the HRF is negligible after hq,K .

The T -by-K matrix Xd,q is the 0-1 design matrix for the qth-type stimulus. Sγ is a

nuisance term modeling the possible drift/trend of y with S being a specified matrix

and γ being the corresponding parameter vector. The vector ε consists of the T

correlated error terms. We note that Xd,q is determined by the selected design d as

presented in the following example. In that example, we only discuss a case where

τISI = τTR and N = T . For simplicity, we lie the focus of the current study on such

cases, but note that a construction of Xq,K for cases where τISI 6= τTR can be found

in Kao et al. (2013).

Example 1. Let the design with two types (Q = 2) be d = {12102 . . . 0}. To

construct Xd,1 and Xd,2, we first construct two indicator vectors δ1 and δ2. The

lengths of these indicator vectors are the same as the length of d. The jth element

of δq is δq,j = 1 when dj = q, where dj denotes the jth entry of the design. Thus we

have δ1 = {10100 . . . 0} and δ2 = {01001 . . . 0} respectively. Since τISI = τTR, Xd,1
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and Xd,2 are,

Xd,1 =



1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

1 0 1 0 0 · · ·

0 1 0 1 0 · · ·

0 0 1 0 0 · · ·
...

...
...

...
... · · ·

0 0 0 0 0 · · ·



;Xd,2 =



0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

1 0 0 1 0 · · ·
...

...
...

...
... · · ·

0 0 0 0 0 · · ·



.

For the qth-type stimulus, the matrix Xd,q is a T -by-K Toeplitz matrix where the

first column is δq and the first row is defined as [(δq)1, 0, . . . , 0].

�

An important design goal is to select an fMRI design d that yields the most precise

generalized least square estimate(GLSE) of h = (h′1, ...,h
′
Q)′. This often is to find

a d that optimizes some statistically meaningful function of the information matrix

of h. With Model (2.1), the information matrix of h with a given design d can be

written as:

M d = X ′dV
′(IT − P V S)V Xd,

whereXd = [Xd,1, ...,Xd,Q], V is a whitening matrix that such that cov(V ε) = σ2IT ,

σ2 > 0 is the error variance, IT is the identify matrix of order T , and P V S =

V S(S′V ′V S)−S′V ′ is the orthogonal projection onto the space spanned by the

columns of V S withA− denoting a generalized inverse of a matrixA. It is noteworthy

that M d is inversely proportional to the covariance of the GLSE of h, and it depends

on the design d through the design matrix Xd. We would like a d that ‘maximizes’

the information matrix M d. However, this goal is often not achievable. A common
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strategy is thus to find a d that optimizes φ(M d) for some real function φ; see Chapter

3 for a further discussion on popularly used φ in fMRI. With a selected φ, one may

utilize a computer algorithm such as the genetic algorithm (GA) of Kao et al. (2009)

to search for an optimal d; see the Appendix for a description about this genetic

algorithm.

The previous described design selection method works for Model (2.1), and some

other models where the design matrix X can be determined once a design d, and the

relevant design parameters, including τISI , τTR, K, and T , are selected. However, it

does not help to construct designs for some modern experiments whereX is uncertain

at the design stage. We describe an example of such an experiment in the next section.

2.2 A Motivation Example

The design selection method described in the previous section is for traditional

settings of fMRI studies, where the design matrixXd can be determined at the design

stage. Here, our focus is on a modern experimental setting, where the design matrix

Xd in the model is uncertain. A study of this sort is reported by Cordes et al.

(2012). Specifically, Cordes and coauthors reported an fMRI experiment for studying

brain activity evoked by the subject’s reactions to the pictures (stimuli) presented

to her/him during the experiment. In the pilot study that they conducted, a list

of pictures was presented asymmetrically about the vertical axis for the subjects to

study. These subjects are then enrolled in an fMRI experiment, in which some of

the pictures that the subjects have studied were presented with the same or opposite

left/right orientation, interlaced with some other new pictures. Consequently, there

are three stimulus types, namely

1. studied pictures with the ‘same’ orientation;

8



2. studied pictures with the ‘different’ orientation; and

3. ‘new’ pictures.

During the fMRI scanning session, each picture was presented to the subject for

3 seconds. The subjects were asked to select an answer among ‘same’, ‘different’

and ‘new’ for each picture. The main objective is to study the brain activity with

respect to the stimulus-response pairs. As described in the next chapter, the model

parameters of interest are linked to both the stimuli, and the subject’s answers, which

are unknown at the design stage. Consequently, the design matrix, the information

matrix, and the value of the optimality criterion φ(M d) for any given d are uncertain

since they all depend on the subject’s answers. This makes it vary challenging to

obtain a good designs for such experiments.Cordes et al. (2012) proposed a method

for tackle this challenging design issue. Briefly speaking, they first approximate the

probabilities of the subject’s answers to each type of pictures. For each candidate

design d, they then simulate, say, 100 realizations of the subject’s answers to obtain

100 realizations of the design matrix, and thus, 100 realizations of the φ-values for d.

A summary statistic such as the median or mean of these 100 φ-values is obtained to

evaluate the goodness of d. Conceptually, this is similar to use E{φ(M d)} to evaluate

the goodness of d, where the expectation E{.} is taken over the probability of the

subject’s answer to each given stimulus type. Since a closed form of E{φ(M d)}

is in general unavailable, an Monte Carlo simulation is considered to approximate

this criterion. Unfortunately, the Monte Carlo simulation is time consuming, and it

needs to be repeated for every candidate design. The procedure thus requires much

computational effort as reported in Cordes et al. (2012). An efficient approach is

called for.

9



Chapter 3

METHODOLOGY

3.1 The General Linear Model

For addressing the design issue described in Section 2.2, we consider an extension

of Model (2.1). For simplicity, we assume that the subject can have R possible

responses for every stimulus. In the motivating example, R = 3. Our approach can

be easily extended to the case where the number of possible responses can vary across

stimulus types. With Q stimulus types, the model that we consider is:

y =
R∑

r=1

Q∑
q=1

K∑
k=1

xr,q,khr,q,k + Sγ + ε = Xdh+ Sγ + ε (3.1)

Here, y is defined as in Model (2.1). Xd is the design matrix whose columns are

the 0-1 vectors xr,q,k’s, The xr,q,k vector indicates the contribution of hr,q,k to y.

In particular, its nth element (xr,q,k)n = 1 if hr,q,k contributes to yn, the nth MR

measurement. Each parameter hr,q,k represents the kth height of the (discretized)

HRF evoked by the event that the subject selected the rth answer to a stimulus of

the qth type, k = 1, ..., K, r = 1, ..., R, q = 1, ..., Q. The discretization interval for

discretizing each HRF is ∆T , and is the greatest real value that makes both (τISI/∆T )

and (τTR/∆T ) integers; see Kao et al. (2009). With this ∆T , hr,q,k is the HRF height

evaluated at (k − 1)∆T seconds after an onset of the corresponding event, where

k = 1, . . . , K, and K = b1 + (32/∆T )c for a 32-second HRF; bac is the integer part

of a. The remaining terms in Model (3.1) are as in Model (2.1).

10



3.2 Design Criterion

With Model (3.1), we would like to find a design that helps to render the most

precise GLSE ĥ of the HRFs, h. The goodness of a design will be evaluated by some

optimality criterion φ of the information matrix. The information matrix is:

M d = X ′dV
′(I − P V S)V Xd = X ′d[V

′V − V ′V S(S′V ′V S)−S′V ′V ]Xd. (3.2)

It is not uncommon to assume that the error term ε follows a stationary first-order

autoregressive (AR1) process. Under this assumption, the V ′V that is needed for

calculating M d is 

1 −ρ 0 · · · · · · 0

−ρ 1 + ρ2 −ρ 0 · · · ...

0 −ρ 1 + ρ2
. . . 0

...

...
. . . . . . . . . . . . 0

0 · · · 0 −ρ 1 + ρ2 −ρ

0 0 · · · 0 −ρ 1


for some ρ ∈ (−1, 1). Other correlation structures for ε may also be considered.

For the optimality criterion φ, we will consider the A- and D-optimality criteria

since they are common in fMRI design studies (Dale, 1999; Wager and Nichols, 2003;

Liu and Frank, 2004; Kao et al., 2009; Maus et al., 2010). Extending our method to

other optimality criteria should be straightforward. For the A-optimality criterion,

we write:

φ (M d) =
RQK

trace
[
M−1

d

] ,
The A-value is set to 0 when M d is singular. In such a case, h is non-estimable. As

for the D-optimality criterion, we have

φ (M d) = det(M d)
− 1

RQK .
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Unfortunately, the design matrix X in Model (3.1), and thus the information ma-

trix M d, will depend on the subject’s reaction during the experiment. Consequently,

φ(M d) is unavailable at the design stage. To tackle this issue, we propose to consider

the expectation E(M d) of the information matrix M d. The expectation is taken over

the probability of the subject’s answer to the presented stimulus. This probability

can be approximated from, say, a pilot study. We then obtain a ‘robust’ design that

maximizes φ1(d) ≡ φ(E(M d)), where φ can be set to the A- or D-optimality crite-

rion. Another possibility is by considering φ2(d) ≡ E{φ(M d)}. Both criteria, which

are sometimes viewed as the Bayesian versions of the optimality criteria, have been

considered in the design literature; see Ch.18 of Atkinson et al. (2007).

As described in Section 2.2, the design selection criterion considered by Cordes

et al. (2012) is linked to φ2(d). A major disadvantage for considering this criterion

is that the φ2-value is in general unavailable for an fMRI design d. For evaluating

the goodness of d’s using φ2, we may follow Cordes et al. (2012) to conduct a Monte

Carlo simulation to generate m, say 100, realizations of φ(M d), and then approximate

φ2(d) by a summary statistic such as the mean/median of the m realizations of the

φ-value. This process unfortunately is computationally very expensive. By contrast,

our proposed criterion value φ1(d) is very easy to compute. This is because a closed

form of E(M d) can be analytically derived (see the next Section). For comparison

purposes, we consider not only φ1(d), but also φ2(d) for design evaluations; the

φ2-value of each d will be approximated by the mean of m realizations of φ(M d).

Hereinafter, this approximation of φ2(d) is denoted by φ2(d;m). With a selected

criterion (φ1(d) or φ2(d;m)), we then adapt the genetic algorithm of Kao et al.

(2009) to search for an d that optimize the criterion. We show, through case studies,

that designs optimizing φ1(d) also tend to perform very well with respect to φ2(d;m).

While φ1(d) is of interest on its own right, this criterion is also demonstrated to be a
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cheap, but good, surrogate for φ2(d).

In the next section, we derive a closed form for E(M d). The genetic algorithm

used to search for designs optimizing a selected criterion is described in the Appendix.

3.3 Formulations

Without loss of generality, we assume that Xd in (3.2) has the form of X =

[X1, . . . ,XK ], where for k = 1, ..., K, and q = 1, ..., Q, Xk = [X1,k, . . . ,XQ,k] with

dimension N × RQ, and Xq,k = [x1,q,k, . . . ,xR,q,k], and x1,q,k is defined as in Model

(3.1). Since most optimality criteria φ are invariant to a simultaneous permutation

of rows and columns, a re-arrangement of the columns of Xd will not change the

value of φ(E{M d}). We have also derived a closed form for E{M d} by setting

Xd = [Xd,1, ...,Xd,Q], where Xd,q contains all the QK vectors xr,q,k of the same q.

We omit this latter result because, comparing with the former arrangement of Xd, it

tends to take more CPU time to calculate E{M d} when the closed form derived by

the latter choice of Xd is considered. For simplicity, the focus of the current study

is on cases with τISI = τTR. We will extend the result to cases where τISI 6= τTR

in a future study. With τISI = τTR, ((xr,q,1))n = 1 when the nth stimulus is of

the qth type, and the subject selected the rth answer for that stimulus. In addition,

xr,q,k = Lk−1xr,q,1, where L is an N -by-N matrix with

L =

 0T 0

IN−1 0

 ,

where Ia is the a-by-a identity matrix. We now derive the expectation of the in-

formation matrix E{M d}. The expectation is taken over p(r | q), the conditional

probability when subject selects the rth answer for a stimulus of the qth type. Here, we

assume that p(r | q) remains the same throughout the experiment, and the subject’s

answer only depends on the current stimulus, and is independent of his/her answers
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to the previous stimuli; we also assume that, for each stimulus, the subject selects

one answer from the R possible answers, and if there is no stimulus, the subject does

not respond, and P (r = 0 | q = 0) = 1. Our results can easily be extended to a

more general case such as P (r | 0) > 1 for r = 1, . . . , R, and/or P (0 | q) > 1 for

q = 1, . . . , Q. For convenience, we also use A to represent V ′(I − P V S)V . Conse-

quently, M d = X ′AX. The main idea is then to make use of the formula for the

expectation of a quadratic form as presented in Ch.5 of Rencher and Schaalje (2008).

We now present some details of our derivations of E{M d}. We note that all the

expectations (and covariances) are conditional on the design d. For simplicity, we

write E{·} (and cov{·}) instead of E{· | d} (and cov{· | d}).

First, the expectation of M d can be written as

E{M d} = (E(X ′iAXj))i,j=1,...,K

= (E([Li−1X1]
′A[Lj−1X1]))i,j=1,...,K

= (E(X ′1(L
i−1)′ALj−1X1))i,j=1,...,K .

Let Ai,j = (Li−1)′ALj−1. We then have

E{M d} = (E(X ′1Ai,jX1))i,j=1,...,K .

Note that

E(X ′1Ai,jX1) = (E(X ′p,1Ai,jXq,1))p,q=1,...,Q.

Here, X ′p,1Ai,jXq,1 can be written as:

x′1,p,1Ai,jx1,q,1 x′1,p,1Ai,jx2,q,1 · · · x′1,p,1Ai,jxR,q,1

x′2,p,1Ai,jx1,q,1 x′2,p,1Ai,jx2,q,1 · · · x′2,p,1Ai,jxR,q,1

...
...

. . .
...

x′R,p,1Ai,jx1,q,1 x′R,p,1Ai,jx2,q,1 · · · x′r,p,1Ai,jxR,q,1


R×R

.
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We now present the expectation of quadratic forms x′u,p,1Ai,jxr,q,1 in the previously

described matrix. First, we define δq as the 0-1 indicator vector for the qth-type

stimulus. Specifically, the nth element (δq)n of δq is 1 if the corresponding dn in the

design d = (d1, . . . , dN) is q (the qth stimulus type); otherwise, (δq)n = 0. We have

the following results. There, diag(δq) indicates the diagonal matrix whose diagonal

elements are the elements of δq.

1. For p = q:

Case 1: u = r,

E(xr,q,1) = E(xr,p,1) = E(xu,q,1) = E(xu,p,1) = p(r|q)δq;

cov(xu,p,1,xr,q,1) = cov(xr,q,1,xr,q,1) = p(r|q)(1− p(r|q))diag(δq);

tr[Ai,jcov(xu,p,1,xr,q,1)] = tr[Ai,jcov(xr,q,1,xr,q,1)]

= tr[Ai,jp(r|q)(1− p(r|q))diag(δq)]

= p(r|q)(1− p(r|q))tr[Ai,jdiag(δq)]

= (p(r|q)− p(r|q)p(r|q))tr[Ai,jdiag(δq)];

E(x′u,p,1Ai,jxr,q,1)

= tr[Ai,jcov(xu,p,1,xr,q,1)] + E(x′u,p,1)Ai,jE(xr,q,1)

= tr[Ai,jcov(xr,q,1,xr,q,1)] + E(x′r,q,1)Ai,jE(xr,q,1)

= (p(r|q)− p(r|q)2)tr[Ai,jdiag(δq)] + p(r|q)2δ′

qAi,jδq.

Case 2: u 6= r,  E(xu,q,1) = p(u|q)δq

E(xr,q,1) = p(r|q)δq
;

cov(xu,p,1,xr,q,1) = cov(xu,q,1,xr,q,1) = −p(u|q)p(r|q)diag(δq);
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tr[Ai,jcov(xu,p,1,xr,q,1)] = tr[Ai,jcov(xu,q,1,xr,q,1)]

= tr[−p(u|q)p(r|q)diag(δq)]

= − p(u|q)p(r|q)tr[Ai,jdiag(δq)]

= − p(u|q)p(r|q)tr[Ai,jdiag(δq)];

E(x′u,p,1Ai,jxr,q,1)

= tr[Ai,jcov(xu,p,1,xr,q,1)] + E(x′u,p,1)Ai,jE(xr,q,1)

= tr[Ai,jcov(xu,q,1,xr,q,1)] + E(x′u,q,1)Ai,jE(xr,q,1)

= − p(u|q)p(r|q)tr[Ai,jdiag(δq)] + p(r|q)p(u|q)δ′qAi,jδq.

We combine Case 1 and Case 2 to obtain the followings.

E(X ′p,1Ai,jXq,1)

= tr[Ai,jdiag(δq)][diag(~P (q))− ~P (q)~P ′(q)] + ~P (q) ~P ′(q)δ
′

qAi,jδq,

where ~P (q) is an R × 1 vector of p(r|q), r = 1, . . . , R for q = 1, . . . , Q, i.e., if

q=1, R=2, we have ~P (1) = [p(1 | 1), p(2 | 1)]′.

2. For p 6= q:  E(xu,p,1) = p(u|p)δp

E(xr,q,1) = p(r|q)δq
;

cov(xu,p,1,xr,q,1) = 0;

tr[Acov(xu,p,1,xr,q,1)] = 0;

E(x′u,p,1Ai,jxr,q,1)

= tr[Ai,jcov(xu,p,1,xr,q,1)] + E(x′u,p,1)Ai,jE(xr,q,1)

= 0 + p(u|p)δ′pAi,jp(r|q)δq

= p(u|p)p(r|q)δ′pAi,jδq.
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Thus,

E(X ′p,1Ai,jXq,1) = ~P (q) ~P ′(p)δ
′

pAi,jδq.

We thus have the following formula, which can be easily built in a computer

program to calculate the elements in E{M d}. In particular, the R × R matrix

E(X ′p,1Ai,jXq,1) = tr[Ai,jdiag(δq)][diag(~P (q))− ~P (q)~P ′(q)] + ~P (q)~P (q)′δ
′

qAi,jδq, p = q;

~P (q) ~P ′(p)δ
′

pAi,jδq, p 6= q.

We make use of this analytical result to conduct some case studies in the next Chapter

to demonstrate the usefulness of our proposed approach.
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Chapter 4

CASE STUDIES

In the following case studies, we consider cases with one stimulus type (Q = 1), and

cases with two stimulus types (Q = 2). The length N of a design d = (d1, ..., dN)′

is 255 for Q = 1, and is 242 for Q = 2. For each stimulus in d, we assume that the

subject selects an ‘answer’ from two possible answers; i.e. R = 2. In other words,

corresponding to d, we have a vector r = (r1, ..., rN)′ that consists of the answers of

the subject; here, rn = 0 if dn = 0 and rn = 1 or 2 when dn > 0. Both the inter-

stimulus interval τISI and the time to repetition τTR are set to 2 seconds. Thus, ∆T

is equal to 2. The drift of time series, Sγ is assumed to be a second-order Legendre

polynomial. We also assume that the noise follows an stationary AR1 process with a

correlation coefficient of 0.3. The duration of HRF is 32 seconds. Consequently, the

number of HRF heights is K = b1 + (32/2)c = 17. Such a model assumption is not

uncommon in the fMRI design literature.

For the conditional probability P (r | q) that the subject select the rth answer

when there is a qth-type stimulus, we consider the following situations. In all these

situations, we set P (0 | 0) = 1, although this assumption is not essential.

1. For cases with one stimulus type (Q = 1), we consider two situations, including

(i) p(1 | 1) = p(2 | 1), i.e., for each stimulus, the subject has equal probability to

select any of the two answers; and (ii) p(1 | 1) 6= p(2 | 1), i.e., the probabilities

for selecting two answers are different. In particular,
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Equal Probability Unequal Probability

p(1 | 1) p(2 | 1) p(1 | 1) p(2 | 1)

0.5 0.5 0.2 0.8

2. For Q = 2, we have the following three situations:

Equal Probability Unequal Probability (I) Unequal Probability (II)

p(1 | 1) p(2 | 1) p(1 | 1) p(2 | 1) p(1 | 1) p(2 | 1)

0.5 0.5 0.5 0.5 0.7 0.3

p(1 | 2) p(2 | 2) p(1 | 2) p(2 | 2) p(1 | 2) p(2 | 2)

0.5 0.5 0.2 0.8 0.2 0.8

We note that the previously specified p(r | q)’s are needed for calculating E(M d)

for each d as described in Chapter 3. These conditional probabilities are also used

to generate m realizations of M d for each given d. These realizations are then used

calculate the approximation φ2(d;m) of φ2(d). In what follows, we will first adapt

the genetic algorithm of Kao (2009) to obtain a design, dGA, that maximizes φ1(d).

With this optimality criterion, we compare our obtained designs with some tradi-

tional designs that are popular in practice (for different purposes). These traditional

designs include random designs, m-sequences, and blocked designs. Each element

of a random design, drand, is generated from a discrete uniform distribution over

{0, 1, ..., Q}. The m-sequences, dmseq, or maximum-length shift register sequences,

are introduced into fMRI by Buračas and Boynton (2002). These designs are known

to be perform well for estimating the HRF, and can be easily generated by the MAT-

LAB program of Liu and Frank (2004). For blocked design dblock, we consider designs

having a 16-s-off-16-s-on pattern. For example, when Q = 1, the first 16 seconds

is the off-period, and no stimulus is shown to the subject. In the next 16 seconds,

stimuli of the same type is shown to the subject every τISI seconds. This is re-

peated for several cycles until the end of the experiment. In particular, a dblock may
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look like {000000001111111100000000 · · · 0} when Q = 1. For Q = 2, dblock may

be {00000000111111112222222200000000 · · · 0}. The blocked designs are known to

useful for another study objective of fMRI, namely the detection of activated brain

voxels. They do not perform well when the focus is on the estimation of the HRF,

and may give rise to confounding psychological effects such as subject habituation or

anticipation. For all these traditional designs, we compare their φ1-values to that of

dGA.

In addition, we use the genetic algorithm to obtain a design dr100 that maximizes

φ2(d; 100). The resulting designs is compared with dGA in terms of φ1. To demon-

strate that φ1 provides a good surrogate for φ2, we also compare the φ2-values of

dr100, and dGA as well as the CPU times needed for generating these two types of

designs. For this latter comparison, φ2(d) is approximated by φ2(d;m = 1000) even

though dr100 is obtained with φ2(d;m = 100). We note that φ2(d; 1000) is expected

to have a higher precision than φ2(d; 100) for approximating φ2(d). However, the

calculation of φ2(d; 1000) is computationally very expensive, and is thus difficult, if

not infeasible, to be considered for obtaining dr100. For φ1 and φ2, we will consider

both A- and D-optimality criteria.

4.1 Design Comparisons in Terms of φ1

We evaluate the designs described above with both A- and D-optimality criteria.

The results are presented in Table 4.1 and 4.2 for cases with Q = 1. Table 4.3 and

4.4 provide results for cases with Q = 2. We also compute the ratio φ1(d)/φ1(dGA)

for the traditional fMRI designs and dr100 in Figure 4.1 and 4.2 for Q = 1 and Q = 2

respectively. For these results, we generate 100 random designs, and the mean and

standard deviation of the φ1-value over these 100 random designs are calculated.

The good performance of dGA is consistently demonstrated in Tables 4.1 to 4.4
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Table 4.1: The values of φ1 for the different designs that we consider with Q = 1
when the A-optimality criterion is considered.

Case dGA drand (mean±std) dBlock dmseq dr100

Equal Probability 40.88 36.45 ± 0.0032 0.64 39.12 40.86

Unqual Probability 30.90 26.72 ± 0.0027 0.64 28.08 30.42

Table 4.2: The values of φ1 for the different designs that we consider with Q = 1
when the D-optimality criterion is considered.

Case dGA drand (mean±std) dBlock dmseq dr100

Equal Probability 48.88 43.38 ± 0.0034 12.08 45.02 48.80

Unqual Probability 39.11 34.44 ± 0.0027 9.66 35.59 38.81

Table 4.3: The values of φ1 for the different designs that we consider with Q = 2
when the A-optimality criterion is considered.

Case dGA drand (mean±std) dBlock dmseq dr100

Equal Probability 24.90 21.92 ± 0.0016 0 23.51 24.52

Unequal Probability (I) 21.15 18.56 ± 0.0014 0 19.15 20.72

Unequal Probability (II) 19.94 17.66 ± 0.0012 0 17.90 19.61

Table 4.4: The values of φ1 for the different designs that we consider with Q = 2
when the D-optimality criterion is considered.

Case dGA drand (mean±std) dBlock dmseq dr100

Equal Probability 31.97 28.67 ± 0.0018 0 29.29 31.90

Unequal Probability (I) 28.60 25.73 ± 0.0016 0 26.07 28.36

Unequal Probability (II) 27.38 24.50 ± 0.0017 0 25.84 27.02
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Figure 4.1: Relative Design Efficiencies for Q = 1: This plot provides the relative
efficiency φ1(d)/φ1(dGA) of different designs d with Q = 1 for four different cases
corresponding to equal p(r | q) with A-optimality/D-optimality criterion and unequal
p(r | q) with A-optimality/D-optimality criterion
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Figure 4.2: Relative Design Efficiencies for Q = 2: This plot provides the relative
efficiency φ1(d)/φ1(dGA) of different designs d with Q = 2 for five different cases
corresponding to equal p(r | q) with A-optimality/D-optimality criterion and the two
unequal p(r | q) settings with A-optimality/D-optimality criterion
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in all the cases that we studied. From Figures 4.1 and 4.2, it also is clear that no

design that we consider has higher φ1-value than dGA since the ratio φ1(d)/φ1(dGA)

is less than 1 for any other d. It is noteworthy that the blocked designs perform

poorly in terms of the φ1 criterion. These designs are not recommended when the

study objective lies in the estimation of the HRF.

4.2 Design Comparisons in Terms of φ2(d; 1000)

In this section, we compare dGA, dr100 in terms of φ2(d; 1000) and the CPU time

required for obtaining them. Specifically, for dGA and dr100, we generate m = 1000

corresponding vectors r of the subject’s answers for the calculation of φ2(dGA; 1000),

and φ2(dr100; 1000).

All the results in Tables 4.5 and 4.6 for Q = 1, and those in Tables 4.7 and

4.8 for Q = 2 suggest that dGA and dr100 have similar performance with respect

to φ2(d; 1000). This observation holds for both A- and D-optimality criteria, and

is even clear as presented in Figures 4.3 and 4.4, where the bars correspond to

φ2(dr100; 1000)/φ2(dGA; 1000). While dGA is obtained by considering φ1-criterion, it

outperforms dr100 in some cases, when φ2(d; 1000) is considered for design evaluations.

Table 4.5: The values of φ2(dGA; 1000) and φ2(dr100; 1000) with Q = 1 under the
A-optimality criterion.

Case dGA (dr100; 1000)

Equal Probability 37.26 37.20

Unequal Probability 27.85 27.28
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Table 4.6: The values of φ2(dGA; 1000) and φ2(dr100; 1000) with Q = 1 under the
D-optimality criterion.

Case dGA (dr100; 1000)

Equal Probability 46.41 46.36

Unequal Probability 37.13 36.75

Table 4.7: The values of φ2(dGA; 1000) and φ2(dr100; 1000) with Q = 2 under the
A-optimality criterion.

Case dGA (dr100; 1000)

Equal Probability 19.71 19.49

Unequal Probability (I) 16.46 16.15

Unequal Probability (II) 15.39 15.19

Table 4.8: The values of φ2(dGA; 1000) and φ2(dr100; 1000) with Q = 2 under the
D-optimality criterion.

Case dGA (dr100; 1000)

Equal Probability 28.40 26.99

Unequal Probability (I) 25.39 25.12

Unequal Probability (II) 24.29 23.95

The current results show that designs optimizing φ1 can also perform well with

respect to φ2. One major advantage for considering the former criterion for obtaining

designs is further evident in Tables 4.9 and 4.10 that present the CPU times needed

for obtaining dGA under φ1 and dr100 under φ2(·; 100). As also can be seen from

Figures 4.5 and 4.6, it takes much less CPU time to obtain a dGA than dr100. The

use of the former design is thus recommended.
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Table 4.9: CPU times for obtaining dGA and dr100 for Q = 1.

A-optimality D-optimality

Case dGA dr100 dGA dr100

Equal Probability 0.88 24.82 0.60 37.97

Unequal Probability 1.17 17.47 0.60 19.53

Table 4.10: CPU times for obtaining dGA and dr100 for Q = 2.

A-optimality D-optimality

Case dGA dr100 dGA dr100

Equal Probability 2.00 15.37 1.54 32.59

Unequal Probability (I) 2.97 44.61 1.53 32.69

Unequal Probability (II) 2.50 52.17 2.46 16.97
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Figure 4.3: Relative efficiency of dr100 to dGA for Q = 1: This plot proces
φ2(dr100; 1000)/φ2(dGA; 1000) for Q = 1 with equal/unequal p(r | q) under A-/D-
optimality.
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Figure 4.5: CPU times for obtaining dGA and dr100 for Q = 1: This plot presents
CPU times needed for obtaining dGA and dr100 for the different cases that we studied.
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Figure 4.6: CPU times for obtaining dGA and dr100 for Q = 1: This plot presents
CPU times needed for obtaining dGA and dr100 for the different cases that we studied.
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Chapter 5

CONCLUSION AND DISCUSSION

We propose an efficient approach to obtain a robust designs for fMRI experiments

when the design matrix depends not only on the selected designs, but also on the

subject’s probabilistic behavior during the experiment. The main idea is by con-

sidering the optimality criterion φ1(d) = φ(E{M d}). A computer algorithm such

as the genetic algorithm technique can then be considered to find a design d that

optimizes φ1. Through case studies, we show that our obtained designs outperform

some traditional fMRI designs. We also show that φ1 provides a very good surrogate

for φ2(d) = E{φ(M d)}, which is also not uncommon in practice. The value of φ2 is

normally unavailable and needs to be approximated. One possible way is to conduct

a Monte Carlo simulation to generate m realizations of M d for each d, and calculate

a summary statistic such as mean/median of the resulting m realizations of φ(M d) as

an approximation of φ2(d). Such an approach has recently been considered by Cordes

et al. (2012) for tackling the same design issue. We show that, with a much less CPU

time than this latter approach, our method can obtain designs that perform very well

in terms of the φ2-value. We thus recommend the proposed method for obtaining

high-quality fMRI designs even when φ2 is considered.
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APPENDIX A

GENETIC ALGORITHM
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We adapt genetic algorithm reported on Kao (2009) ’s paper, here, we provide
some details that described in the paper. This algorithm is an efficient and effective
approach for finding optimal designs for ER-fMRI. The following steps present the
outline of the genetic algorithm:

Step 1 Initial designs: Generate 2G initial designs including block designs of various
block sizes, random designs, m-sequence designs and mixed designs of their
combinations. Evaluate the fitness of each initial design by objective function.
The objective function can set as single design criterion or weighted sum of
standardized criteria for multi-objective studies.

Step 2 Crossover and mutation: Based on the probability proportional to fitness,
select G pairs of different designs with replacement; these G paris are then used
to generate G pair of designs via crossover and mutation, which are the offspring
designs. For crossover, randomly select a cut-point and exchange between the
paired designs. For mutation, randomly select a portion of elements of the
resulting design, replace these elements by integers randomly generated from
discrete uniform distribution over 1, 2, . . . , Q.

Step 3 Immigration: Generate another I designs from random designs, blocked
designs and mixed designs and add to the population.

Step 4 Fitness: Evaluate the fitness of each designs in the population.

Step 5 Natural selection: With the value of fitness, Keep the best 2G designs to
form the parents of the next generation.

Step 6 Stop: Repeat Step 2 through Step 5 until meet a stopping rule (e.g. no
significant improvement is made).
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