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ABSTRACT

Research methods based on the frequentist philgsgghprior information in a
priori power calculations and when determiningrtieeessary sample size for the
detection of an effect, but not in statistical sak. Bayesian methods incorporate prior
knowledge into the statistical analysis in the fafa prior distribution. When prior
information about a relationship is available, éséimates obtained could differ
drastically depending on the choice of Bayesiaftemuentist method. Study 1 in this
project compared the performance of five methodslfdaining interval estimates of the
mediated effect in terms of coverage, Type | erabe, empirical power, interval
imbalance, and interval width at N = 20, 40, 600 40d 500. In Study 1, Bayesian
methods with informative prior distributions perfoed almost identically to Bayesian
methods with diffuse prior distributions, and hadrenpower than normal theory
confidence limits, lower Type | error rates thaa pgercentile bootstrap, and coverage,
interval width, and imbalance comparable to northabry, percentile bootstrap, and the
bias-corrected bootstrap confidence limits. Stu@y&uated if a Bayesian method with
true parameter values as prior information outperfothe other methods. The findings
indicate that with true values of parameters agtie information, Bayesian credibility
intervals with informative prior distributions hawsore power, less imbalance, and
narrower intervals than Bayesian credibility intds/with diffuse prior distributions,
normal theory, percentile bootstrap, and bias-cteebootstrap confidence limits. Study
3 examined how much power increases when increéisengrecision of the prior
distribution by a factor of ten for either the actior the conceptual path in mediation
analysis. Power generally increases with increespeecision but there are many sample



size and parameter value combinations where poeciscreases by a factor of 10 do not

lead to substantial increases in power.



DEDICATION

Za baba Jelku, i ostatak porodice



ACKNOWLEDGMENTS
| thank my committee chair, David MacKinnon, and thst of my committee for their
help in the formulation and execution of the projdea. | thank my family and friends
for their support. Last, but not least, | thank ddegfor keeping me company while | was

writing the code for the simulations in this prdjec



TABLE OF CONTENTS

Page
LIST OF TABLES ... ..ot emenenr e e e e e e e e viii
LIST OF FIGURES ... .ot sttt ettt s e e e e e e a s e e as IX
CHAPTER
1 INTRODUCTION ..ottt coeeee e s s s e e e e e e e e e e e e eeeeaaassssnss s smmmmms e s e eeeeennnees 1
Single Mediator MOUE! .........ocuvviiiiii e 2
Interval Estimates for the Mediated EffeCt.....ccc...ccvveieiiiiiiis 4
Bayesian Methods and Application to Mediation...........cccccceeeeeneeen. 8
Properties of Interval EStimates...........co i, 13
Findings from Previous StUIES.............ceeeeee e viviiiieee e 15
Improvements in Interval Estimation with the Ingtrsof Prior Information
........................................................................................................ 20
HYPOTNESES ..o s e e e e 22
2  GENERAL METHOD ..ootiiiiiiiits it ceeee i vmmmmm e 23
3 STUDY L i ittt e e e e e e e e et et et ———— b —————— e eeeereearraanaa, 24
MELNOTAS ...ttt e e et 24
RESUILS ..o emmmmmaa 26
DISCUSSION ....tiiiiiie ettt ee ettt e e e e et e e e e s e st e e e e e e e e snnnne e e e s smmmne 40
A STUDY 2 oo iiii it ettt iremer e e st e e st e e et e e snt e e e st e e esmmmnr e snbe e e neeeanree s 42
MELNOAS ... e 42
RESUIES ... 45



CHAPTER Page

DISCUSSION ...ttt e e e emmen 50
O S TUDY B it et a e 53
MELNOAS ... e 53
RESUIES ... e 55
DISCUSSION ...ttt emmen 60
6 EMPIRICAL EXAMPLE ... e 61
7  SUMMARY AND CONCLUDING DISCUSSION ..o 64
Summary Of RESUIS .........cooiiiiiiiiii s 4.6
Fit with Earlier LIterature ...............c.emmeeeeieee e 6.6
LIMITATIONS. ...t mree e e 67
FULUrE DIFECHIONS......eiiiiiiiie et 68
REFERENGCES. ... oo mmmmmmr ettt mmmmmr e e e e e e e as 70
APPENDIX
A DOCUMENT NOTATION ..ot 97
B EQUATING PRIOR DISTRIBUTIONS FOR REGR&E®N COEFFICIENTS
WITH THE PRIOR DISTRIBUTIONS FOR THE COVARIANCE
MATRIEX e 101
C TABLES CONTAINING VALUES OF TYPEERROR RATE, POWER,

COVERAGE, INTERVAL WIDTH, AND IMBALANCE FOR ALL

PARAMETER COMBINATIONS IN STUDIES 1 AND 2.......... 106

Vi



APPENDIX Page
D SIMULATIONS PROGRAM TO EVALUATE TYPEERROR, POWER,
COVERAGE, IMBALANCE, AND INTERVAL WIDTH FOR ONE
PARAMETER COMBINATION IN STUDY 2 ......cooeeiiiiiiieeeeene 153
E SIMULATION PROGRAM TO EVALUATE CHANGES INNOWER AS A

FUNCTION OF PRECISION IN STUDY 3.....cooiiieemiiieeeeee 168

Vii



LIST OF TABLES

Table Page
1. Study 1 Average Type | EffOr RAte ..cceeeevviivieiiiiiiiee e 73
2. StUdY 1 AVEIage POWET ....coiiiiieeiiiiee et 73
3. Study 1 Average COVEIAJE .........cccemmurreeeeeeeaiiiiiieeeesaassseeesesssammmmeseeesesaans 73
4. Study 1 Average Interval Width ... 73
5. Study 1 Average ImbalancCe ... 74
6. Study 2 Average Type | ErfOr RAte ..ccceeevviiiiieiiiiiiiee e 74
7. StUAY 2 AVEIagE POWET .....ciiiiiieeeiiieee ettt 74
8. Study 2 Average COVEIAQE..........uccmmmurrreeeeeeaiiriieeeeesaannsseeeeesssammmmsseeesessans 75
9. Study 2 Average Interval Width ... 75
10. Study 2 Average ImbalancCe ... 75
11. Study 3 Fractions of True PrecCiSIiON............ueeeeeeiiiiiiieiee e 76
12. Study 3 ReSUILS Or N = 20 ... ettt e 76
13. Study 3 ReSUILS TOr N = 40 ... ettt e 76
14. Study 3 ReSUILS Or N = 60 .......ccumme e e eeiiiiiee et emmmmm e 77

15. Study 3 Results for N = 100......cceeeeeeeeiiiiiieeeeeesiieeeeeesessieessseeesenneee 11
16. Study 3 Results for N = 200 .....ccmeeeeeieeiiiiiieeeeeesiiieee e sieeeee e e eeeeee. 1O

17. Empirical Example RESUILS .......commeeiiiiiiiiieeiiiiiiieee e emmmmmiiieeeee. (8

viii



Figure

10.

11.

12.

13.

LIST OF FIGURES

Page
Study 2 Trellis plot of Type | Error Rate.........ccooovviiiiieiiiiiiiiee e 79
Study 2 Trellis plot Of POWET .....ceemeeeeeiiiiieie e 80
Study 2 Trellis plot Of COVErage ......ccccveeiiiiiiiiiieeiiiiieee e e 82
Study 2 Trellis plot of Interval Width. ... 85
Study 2 Trellis plot of IMbAlANCE . ceeeeeeeei e 88
Study 2 Average Power for Bayesian Methads...............ccoooeecciiiininee, 91
Study 3 Power as a Function of Precisfamandb for N =20........................ 92
Study 3 Power as a Function of Precisfamandb for N =40....................... 92
Study 3 Power as a Function of Precisfamandb for N =60........................ 93
Study 3 Power as a Function of Precisfanandb for N = 100.................... 93
Study 3 Power as a Function of Precisfanandb for N = 200.................... 94
Study 3 Power regressed on the fractidrue precision of........................ 94
Study 3 Power regressed on the fractidrue precision ob......................... 95



CHAPTER 1
INTRODUCTION
The goal of many research projects is to identifg describe a relation between
two variables, X and Y. Sometimes a third variatda improve the understanding of the
relation between two variables. When a third vdead intermediate between X and Y in
a causal chain, it is called a mediator (James &tBt984; MacKinnon, 2008). More
specifically, mediators are operationally definedrariables that transmit the influence
that one variable (X) exerts on another (Y). Acaogdo Judd and Kenny (1981), there
are three main reasons to do mediation analysis: dider to investigate the process
through which X affects Y, 2) in order to betteegict the relationship between X and Y
in different settings and populations, and 3) ideorto learn which variables were key in
a process and to then use this knowledge to desaya effective interventions.
MacKinnon (1994) and MacKinnon and Dwyer (1993jeldsadditional reasons for
analyzing mediating variables: 4) as a manipulatioeck to make sure that the program
changes the intervening variables it was suppasetidnge, 5) in cases where there is no
program effect on the mediator, to find out whetinermeasures of the mediator require
improvement, 6) in cases where program effects ediaors but not on dependent
variables may suggest that effects on the dependeiaible will occur later. Overall,
there are two main uses of mediation models (Mae#in 2008): mediation for
explanation and mediation for design. Mediationdgplanation is used once a relation
has been established between an independent waaalla dependent variable, and the
researchers want to explain this relation in maitl Mediation for design is often used
in prevention studies, and its goal is to seleafiateng variables that are causally related
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to the dependent variable and then design a matipanlthat will target the mediator and
indirectly affect the dependent variable. Mediatgoralysis is used in many research
areas, from psychology, sociology, communicati@gsiculture, and political science to
epidemiology. Upcoming sections will offer an irduaction to the Single Mediator
Model, followed by methods for obtaining intervatienates for the mediated effect, and
an explanation of Bayesian methods and their agjpdic to mediation. Properties of
interval estimates are discussed, followed by gevewf the literature on interval
estimation of the mediated effect. Finally, theeotgd contributions of the current study

are outlined, and the hypotheses of each of tleethitudies are listed.

Single Mediator M odel

The simplest mediation model is the single mediatodel that consists of three
variables: an independent variable (X) relatechéorhediator (M), which is related to the
dependent variable (Y) (MacKinnon, 2008). This maslelescribed using the following

three regression equations:

Y=i,+CcX+¢g (1)
M =i, +aX+e, 2)
Y=i;+bM+c X+g, (3)

wherec represents the total effect of X on & represents the effect of X on Y adjusted
for the effect of the mediator Nb,measures the relation between the mediator M and th
dependent variable Y adjusted for the independanable X, anda measures the

relation between X and M, i, andizrepresent intercepts, and it is assumed that the

three error termsy, &, ande; follow a normal distribution with a mean of zenod



varianceo'l2 ,0'22 and 032 , respectively. There are three general ways tddesnediation

as outlined by MacKinnon, Lockwood, Hoffman, Westd Sheets (2002): causal steps,
product of coefficients, and difference in coefiais.

Causal steps. Baron and Kenny (1986) outlined four causal stepscan use to
test for complete mediation. First, one shouldldist that there is a significant relation
between X and Y coefficient). Secondly, one needs to determine kadrethe relation
between X and M (tha path) is significant. If yes, one should procezthe third step
and test whether the relation between M and Ygsicant when controlling for X (the
b path). Finally, one should establish full mediatipnmaking sure that X affects Y only
through M, and thus that tleé path is zero (Judd, & Kenny, 1981). The fourth
requirement was subsequently relaxed by Baron amhi<(1986) allowing for partial
mediation. Also, the requirement of a significaglition between X and Y is problematic
in the case of inconsistent mediation models wheab product is of the opposite sign
from thec’ path, thus making the total effect zero or closeaim even though the
mediated and direct effects are different from zero

Product of coefficients. One can also test for mediation by computing the
product of coefficientab, dividing it by the standard error of the mediatééd, ab, and
comparing this value with the suitable criticaluafrom the normal distribution. There
are a few ways of computing the standard errohefmediated effect that will be
outlined below, as well as problems with treating dlistribution ofab as normal.

Differencein coefficients. It is also possible to obtain the value of the ratexl
effect by subtracting the direct effect from thateffectc-c’ and test the significance

using the standard error ofc’. The product of coefficients and difference inflioents
3



methods of estimating the mediated effect prodbeesame results in linear single

mediator models with continuous variables.

I nterval estimatesfor the mediated effect

Wilkinson and the APA Task Force on Statisticakhehce recommended that
researchers report an interval estimate whenessilgle (1999). Krantz (1999) outlined
a few characteristics of confidence intervals thake them a better choice than null
hypothesis significance tests: 1) the confidenterval includes a point estimate,
whereas some articles simply repop-@alue, 2) confidence intervals have valid
procedural probability interpretations, 3) wide fidaence intervals communicate
uncertainty, which @-value does not do, 4) if two confidence intervalertap heavily,
then it cannot be said that one experiment doeseptitate the other, and 5) confidence
intervals encourage the researchers to think abeunagnitude of the parameter,
whereas @-value does not.

In the case of the mediated effect, there are pleltvays of constructing an
interval estimate and several standard error faamfdr the mediated effect. The general
form of the confidence interval for the productcokfficients estimate of the mediated

effect is as follows:

~

ab-2z,,(s;)<ab<ab+z,,(s;) (4)

Where abis the sample estimate of the mediated eff@gtis the critical value from the
normal distribution, and . is the product of coefficients sample standardresfahe

mediated effect (MacKinnon, 2008).



The most commonly used formula for the standaror éar the mediated effect is

called the multivariate delta method standard g/$obel 1982):

_ |a2a2 | K22
Sy =+@°s; +b’s] 5)

Two alternative ways of computing the standardresfahe mediated effect are

(MacKinnon & Dwyer, 1993; MacKinnon, Warsi & Dwyet995):

S

second

2202 | R2a2 2.2
=\/a s? + b?s] + s (6)

and

2 2
\/as +b%s Sﬁ. (7)

In simulation studies, the multivariate delta meklstandard error of the mediated

unb|ased

effect performs better than standard errors caiedlaom different formulas, and the
multivariate delta method is also used in many damae structure computer programs
to compute the standard error of the mediated eff@acKinnon, 2008). Thus, it is the
only standard error formula considered for thiggrb

The product of two normal distributions is not natr{Lomnicki, 1967; Springer
& Thompson, 1966); instead it is symmetric withuatksis of six when the two variables
have means equal to zero, and skewed with excessslauwhen the two variables have
means different from zero (Craig, 1936). This i teason why basing the confidence
interval of the mediated effeab on the critical values from the normal distributio
produces inaccurate estimates. Another way of oactgtg the confidence limits would
be to substitute the critical values from the ndrdastribution with critical values from
the distribution of the product (MacKinnon, LockwhdHoffman, West & Sheets, 2002).

Unlike the normal distribution, the distributiontbile product is not symmetric, and thus
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the critical values used to compute the upper angil confidence limits often have
different absolute values. The calculation of thefrlence intervals for the mediated
effect based on the distribution of the producteesn simplified with programs called
PRODCLIN and RMediation (MacKinnon, Fritz, William& Lockwood, 2007; Tofighi
& MacKinnon, 2011). In a simulation study of corditte limits for the mediated effect
MacKinnon, Lockwood, and Williams (2004) comparedmal theory confidence limits
with confidence limits obtained using the distribatof the product, and they found that
the distribution of the product critical valuesdeta fewer problems with coverage and
confidence interval imbalance than the normal theaotical values. In other words, the
distribution of the product confidence limits hag€ | error rates closer to the nominal
level as well as more balanced confidence inteyvaésaning that the Type | error rate
was equally distributed between the left and rigties of the distribution of estimates.
The third way of constructing confidence limits tbe mediated effect is by using
bootstrap methods (Manly, 1997; Shrout & BolgelQ2(MacKinnon, Lockwood &
Williams, 2004; MacKinnon, 2008). Bootstrap methodssist of rearranging the
observed data in order to construct a distributibthe estimate of interest. Once the
estimate of interest has been calculated from ¢#sgedd number of samples, the value of
the observed estimate can be compared to the réagmdpstribution in order to calculate
ap-value, or a confidence interval for the estimate loa formed from the/2 and (1-
a/2) points of the distribution. In the case of thediated effect, bootstrapping would
consist of sampling N observations with replacenfiemh the original sample of size N,
calculating the mediated effect, and repeatingpghisedure a large number of times;
after a distribution of the mediated effect hasbieemed, one would form a 95%
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confidence interval from the 2.5% and 97.5% quastdf the distribution. This method is

called the percentile bootstrap or Efron’s perdemtiethod. Assumé is the parameter
of interest, ancf is an estimate of. The percentile method assumes the existence of a

transformationy = ¢(4) that follows the distributior¢~ |\(¢§Sd)for some standard

deviationsdand that perfectly normalizes the distributionfpthen the percentile

interval of € equals

[t (- 2""Psg)t7(p-2"*sq)]. ®)
The percentile bootstrap tiansformation-respectingneaning that the percentile

interval for any monotone (order-preserving) paremgansformatiory = t(9) is the

percentile interval foébmapped by () :

[$%umerins s #%ouppeint] = [0 i) 0%yt )] 9
In other words, the transformation step of the getite bootstrap procedure does not
change the order of data points from the ordenénariginal sample. Thus, after
computing the 95% interval estimate on the tramséat (normal) distribution, it suffices
to transform the estimates of the 2.5% and 97.58depédiles back into the original
‘metric’ in order to get the lower and upper limitkthe 95% percentile bootstrap
interval. The user does not need to know whichtionds used as the transformation
since the percentile bootstrap makes this transtbom automatically (Efron &
Tibshirani, 1993). However, such a transformatic@aymot always exist, and bias arises
when the true value of the parameter does not gpored to the median of the
distribution of estimates (Manly, 1997). Bias iswtleed by finding the proportion of

7



timesp that the bootstrapped estimates exceed the saofigerged) value of the
estimate, andoeavhich is the z value that corresponds to fislue. This method is

called the bias-corrected percentile bootstrap.|dwer confidence limit is then the

estimate that just exceeds the proportt}fi(azo — Za/z) of all values in the bootstrap

distribution of estimates. The upper confidencaetlior the estimate is the value that

exceeds a proportio#(2Z,+Z,,,) in that same distribution (Manly, 1997). Simulatio

studies of the performance of various intervalneates of the mediated effect showed
that overall the bias-corrected bootstrap methadtih@ most empirical power, though, it
also has excessive Type | error in some parametebinations. On the other hand, the
percentile bootstrap has the best coverage arfulgligss empirical power than the bias-
corrected bootstrap, while the distribution of fineduct confidence limits had more
power and narrower confidence intervals than thiegoeile bootstrap (MacKinnon,

Lockwood, & Williams, 2004).

Bayesian M ethods and Application to Mediation

In a frequentist framework, power and Type | eraie vary together: as one
increases, so does the other. With Bayesian metlboédscan still obtain meaningful
information from a study without having to considepe | error rate and power (Van de
Schoot, Hoijtink, Mulder, Van Aken, Orobio de CastMeeus et al., 2011). The primary
distinction between Bayesian and frequentist pbbses lies in their respective
applications of the probability concept. In the Bsian school of thought, probability is a
measure of uncertainty (Gelman, Carlin, Stern, &iRu2004), and is thus subjective.

For frequentists, however, probability is definadlze long-run frequency of the
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occurrence of an event E, and is thus a propertlyeoéxternal world. In order to reflect
the uncertainty about parameters, the Bayesianefnaork places distributions around
parameters. Thus, in the Bayesian framework, tloe jrformation, the data, and the
final estimate are all in distribution form. They®s Theorem is expressed with the

following formula:

00| datg - P(¢:4213 _ p(d) p(data|)
p(datg p(datg

(10)

where p(@ | data) represents the posterior distributiomg) is the prior distribution
placed on unknown parameters in the mogetata | #) is the sampling distribution of
the data given the parameter, ap(ata) is a constant with respect to the parameter of

interest, and can thus be omitted in order to predusimpler way to compute a quantity
proportional to the posterior distribution:

p(é | data) o« p(@)p(data|@). (11)

The most common criticism of Bayesian methodsestttat the inclusion of a
prior distribution in the statistical analysis mdiuces subjectivity that might lead the
results away from reality, in the researcher’s esdirection. However, Greenland
(2006) points out that carefully chosen prior dlgttions do not introduce any
assumptions that are more questionable than thengs®ns made by frequentist models
(and some are even less questionable than thdesgakntist models, according to
Greenland). Greenland rejects the idea of datagledile to “speak for themselves”, as
frequentists would want them to. Even in a freqgistfitamework, the results are

compared to probability distributions with the (ssiimes unrealistic) assumption of no
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bias. Finally, Bayesian prior distributions are mtmansparent in the assumptions that are
made than are frequentist analyses, which makes #asier to criticize. As Little (2006)
pointed out, both Bayesian and frequentist metlmad® their strengths and weaknesses,
and the choice of method should be tailored taype of study, characteristics of data,
and questions that are being answered by the datgsss.

Just like frequentist methods, Bayesian method=s dibth point and interval
estimates of parameters. One form of interval edsin the Bayesian framework is
called credibility intervals. As opposed to fregtisinconfidence intervals for which one
can say that in the long run (3% confidence intervals will contain the true vabfehe
parameter being estimated, the Bayesian credilmligrvals can be interpreted in terms
of probability. In other words, as long as the agstions of the model hold, a Bayesian
95% credibility interval means that there is 95%lability that the parameter value is
included in the interval, as opposed to “95% caarfice”.

There are two ways to perform a Bayesian mediatialysis and obtain credible
intervals described in the literature on Bayesiadiation analysis (Yuan & MacKinnon,
2009; Enders, Fairchild, & MacKinnon, 2013). Ingthinesis, they are referred to as the
method of coefficients and the method of covariand@&e method of coefficients is
inspired by the Yuan and MacKinnon (2009) approacid, its implementation starts with

the assignment of prior distributions to the partrsein Equations 2 and 3 for the single

mediator model, which aie b, ¢’, 05 and o§ (the regression coefficients and the error

variances of the mediator and dependent variab$pectively). Yuan and MacKinnon
(2009) recommend normal distributions as priorgtierregression coefficiendssandb,

and an inverse gamma distribution (IG) with pararseh (for shapegndn (for scale) as
10



a prior distribution for the variance. Assigningahvalues tanandn gives the prior
distribution a large variance, thus reducing itpact on the shape of the posterior
distribution. Assuming priors are independarmriori, the prior distributions for the five
parameters can be combined into a joint prior itstion expressed as

p(a,b,c’,02,02) = N (4,0 2)N (4,0 EIN (40,0 2)IG (m,, ,ny, )IG (my,ny) - (12)

Using Gibbs sampling (Geman & Geman, 1984) anébuwwe joint prior
distribution with the observed data, one can olfaénposterior distributions for the
parameters of interest, as well the posterioribigtion of any function of those
parameters. In this case, the function of intasete productb. The 95% central
credibility intervals are then obtained by takihg 0.025 and 0.975 quantiles from the
posterior distribution odb.

The method of covariances uses the covariancexwdtthe variables X, M, and
Y (Enders, Fairchild & MacKinnon, 2012). A priorstiibution for the covariance matrix
is modeled as an inverse Wishart distribution (&iwariate generalization of the chi-
squared distribution) with hyperparametelfs (the degrees of freedom) and (the
sum of squares and cross products matrix) thahedifie center and spread of the
distribution (respectively). The prior distributidor the covariance matrix is then written

as:
-1 -1
p(E) ~W(df,, A7), (13)
If a covariance matrix from a prior study is avhlfg the following conversion

can be applied to it in order to obtain a priotrisition for the model:

Ap=(N, =D, (14)
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In the above formulag | is the covariance matrix angl is the sample size from the
previous study. Thelf S value determines the influence of the prior disttibn on the

posterior distribution. The larger the degreeseédlom value, the more weight is given

to the prior distribution. Assigning a value of farample 20 tadf | would be the same

as saying that the prior distribution contribut@sdata points to the analysis (Enders,
Fairchild & MacKinnon, 2013). The posterior distition of a covariance matrix is also
an inverse Wishart denoted as:

p(T |data) ~ W ~1(df ,A™") (15)
where the degrees of freedom are a sum of the eegfdreedom from the prior
distribution and the data, and the sum of squardsceoss product matrix is the sum of
the inverse lambda matrices of the prior distrimui@nd the data. The regression

coefficientsa andb can be obtained from the covariance matrix:

a= M (16)

b= (SMYS)2< _S<MS><Y)
(S8 —San) (17)

and their product can be computed at each draw frenposterior distribution thus
creating a posterior distribution for the mediagéiéct from which the credible interval is
estimated.

The two Bayesian approaches described above aeetexjpto produce nearly
identical estimates because there is a one-to-@aganship between the linear
regression model and a saturated covariance nfatrmultivariate normal outcomes

(Enders, Fairchild, & MacKinnon, 2013).
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Properties of Interval Estimates

Confidence intervals are more informative than isicgmce tests because they
offer a range of plausible values of the estimag is useful in judging the practical
significance of results (Krantz, 1999; Stevens,7J0Confidence intervals are also more
informative than standard error bars because thayiqe inferential information,
whereas standard error bars merely describe tlag(@atnming, 2012). There are certain
characteristics that make some confidence intemal® informative than others.

The width of the confidence interval inherentlyieets the uncertainty of the
point estimate (Ramachandran & Tsokos, 2009).llhvics that a narrower interval with
higher probability of enclosing the true value loé parameter of interest is more
desirable than a wide interval with a lower proligbof enclosing the parameter of
interest. The ‘arm’ of a confidence interval isledla margin of error (Cumming, 2012),
and it is defined as a common summary of sampliray éhat quantifies uncertainty
about an estimate (Ramachandran & Tsokos, 200@Ygilk of error decrease as sample
size increases, and it is possible to calculatesdneple size necessary in order to obtain a
desired value of the margin of error (Cumming, 208ich a calculation is useful in
increasing the precision of the estimate by makiegconfidence interval narrower,
however, this procedure is not implemented in pincgect.

The probability that the confidence interval consaihe parameter of interest is
called the confidence coefficient, and it quangifiee fraction of time the constructed
interval contains the true parameter, under regdesdepling. As already stated, short

arms and large confidence coefficients are twordbk characteristics of a confidence

13



interval. A common choice of confidence coefficien®5%. The length of the margin of
error depends on the standard error of the estjraatethe distribution from which the
critical value for the computation was obtainedriNal theory confidence intervals for
the mediated effect are symmetric, meaning thatlistance between the estimate and
the lower limit of the interval is the same as distance between the estimate and the
upper limit. This is not necessarily the case withfidence intervals formed using the
distribution of the product, resampling methods] Bayesian estimation. Thus, when
comparing normal theory interval estimates to vdeestimates obtained from other
methods, one should not define precision as thgtheof a single arm of the confidence
interval. The width of the entire interval is a rm@ccurate way of evaluating the
precision of an interval estimate. A narrower ingdrestimate is more informative than a
wider one.

There are other criteria to be considered when sihga method of interval
estimation. An interval method that contains theapeeter with the exact frequency the
confidence coefficient indicates it would (nomicalerage) is more desirable than one
that doesn’t. Thus, interval estimates with empirmoverage equal to nominal coverage
are more accurate.

Another important consideration that relates toecage is target miscoverage,
also called imbalance. Ideally, an interval witk tonfidence coefficient of 95% will
have a lower limit higher than the parameter v&i58s of the time, and an upper limit
lower than the parameter value 2.5% under repesategbling (Efron & Tibshirani,

1993). Two interval estimates can have the saned tdhcoverage but different levels of
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imbalance. An interval that has balanced miscowermgnore desirable than an interval
that does not.

The significance testing aspects of interval ediioneare also an important
consideration. An interval with an empirical Typertor rate equal to nominal levels of
Type | error rate is more desirable than an inlemith empirical levels of Type | error
rate different than nominal. Empirical Type | errate higher than nominal Type | error
rate can be especially problematic.

Another consideration regarding the use of inteegtiimates for significance
testing is empirical power. If an interval estiméiethe mediated effect contains the
value of zero, then the mediated effect is notsttedlly significant. However, if the
mediated effect in the population is different fraero, this would be a Type Il error.
Power is defined agl - g) with g being the Type Il error rate. A conventionally ceos
level of power to aim for is 0.80. Empirical powefers to the proportion of times the
interval does not contain the value of zero, oegeated sampling, when a true effect
exists in the population. Simulation studies aterofised to find out the empirical power
of different methods. An interval estimation methaith higher empirical power is more

desirable than an interval estimation method vathdr empirical power.

Findings from previous studies

Coverageand Typel error rate. In a simulation study with normally distributed
data and no prior information, the distributiontloé product and normal theory estimates
of the mediated effect had Type | error rates lotlwan the nominal value, meaning their

coverage was above the nominal 95% level (MacKinhookwood & Williams, 2004;
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MacKinnon, Lockwood, et al., 2002). The bias-coteddootstrap had average coverage
closest to the nominal level with<800, while all other methods had Type | error rates
lower than the nominal level of 0.05 for these ealof sample size. However, for some
combinations the bias-corrected bootstrap had érapifype | error rates above the
nominal level meaning that its empirical coveragesyower than the nominal 0.95 level,
but on average this method performed well. Theesalfucoverage for all methods
approached the nominal level as sample size inedelasm 25 to 200 (MacKinnon,
Lockwood & Williams, 2004). Biesanz, Falk, and Sl&v (2010) compared coverage of
different methods for the mediated effect in foiffedlent situations in a simulation:
complete normally distributed data, MCAR normaligtdbuted data, complete non-
normally distributed data, and MCAR non-normallgtdbuted data. None of the four
combinations incorporated prior information, andtfte purposes of this project, only
the findings with complete normally distributed @ate discussed. Out of the methods
compared in the above simulation that are alsedastthis study, the distribution of the
product and percentile bootstrap confidence limiggntained alpha levels close to the
nominal value, meaning that the coverage was &se ¢o 0.95, while the accelerated
bias-corrected bootstrap (the bias-corrected hamstith an added acceleration
constant, denoted BCa in the article) had inflatgde | error rates, and consequently
lower than nominal coverage for zero effects, fe2B80. All methods had lower than
nominal Type | error rates (and consequently exeelsshigh coverage rates) for N<200,
especially for small effect sizes. Coverage impdowgth increases in effect sizes, and
overall the distribution of the product and norriedory confidence limits using the
Sobel (1982) standard error had better coveragettieaaccelerated bias-corrected
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bootstrap. Preacher and Selig (2012) replicatedkufenon, Lockwood, and Williams
(2004) and found that for complete normally disitdal data with no prior information,
percentile bootstrap and distribution of the prddumfidence limits had comparable
levels of coverage that were better than coveragthé normal theory confidence limits
using the Sobel (1982) standard error. From thdirfs of the four studies it can be
expected that in the case with no prior informatahmethods except the bias-corrected
bootstrap that were tested in previous studies fimgaall except Bayesian credibility
intervals) will have close to nominal coverage at HOO, and excessive coverage as N is
reduced. None of the four studies above testepgehfiermance of the credibility intervals
obtained using the method in Yuan and MacKinno®@3Mor the method proposed by
Enders, Fairchild, and MacKinnon (2012). Therefoie predictions can be made about
the coverage of Bayesian credibility intervals atgd from these two methods relative to
others with or without prior information available.

Imbalance. In Study 1 by MacKinnon, Lockwood, and William©(@) the
liberal robustness criterion proposed by Bradl&7@) was used for evaluating
imbalance. More specifically, instead of callingyanterval estimate that does not
produce 2.5% of Type | errors of each side imbadnthe range of permitted deviation

from 2.5% was expanded (B« /2,15« /2) = (0.0125,0.0375) . The results of this study

indicated that the bias-corrected bootstrap wastiemethod to have imbalance that
satisfied Bradley's liberal robustness criterione Tomparison of the remaining method
showed that the distribution of the product comficke limits had less imbalance than
normal theory confidence limits. Preacher and S@@i.2) computed imbalance as the

ratio of times the true value fell above the upgarfidence limit over the number of
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times the true value of the parameter was lower tha lower confidence limit; the
further this ratio was from one, the more imbalahitee confidence interval. They found
that the normal theory confidence limits using 8ubel (1982) standard error had the
highest ratio of misses (meaning imbalance), aatttie distribution of the product
confidence limits had slightly more imbalance thia@ percentile and bias-corrected
bootstrap confidence limits. For the case with norpnformation, it can be expected
that the normal theory confidence limits will hathe most imbalance, followed by the
distribution of the product confidence limits, athdt the bias-corrected and percentile
bootstrap will produce the least imbalanced comitgeintervals. None of the studies
comparing methods examined Bayesian credibilitgrirdls, nor did any of them include
prior information, thus no predictions can be mableut the performance of this method
compared to others.

Empirical Power. MacKinnon, Lockwood, and Williams (2004) found ttfhar
sample sizes between 25 and 200 the bias-corrbotgdtrap had slightly more empirical
power than the distribution of product and perdertootstrap methods. A previous
study also found that the distribution of produethod has power above 0.80 to detect
small effects at N=500 (MacKinnon, Lockwood, ef 2002). Consistently with their
findings about Type | error rates (power and Typerdr rate have a positive
relationship), Biesanz, Falk, and Savalei (201Q@ntbthat the normal theory confidence
limits had fairly low empirical power whereas thezalerated bias-corrected bootstrap
had the highest value of empirical power followgdle distribution of the product. All
methods had low empirical power for sample sizeallemthan or equal to 200 and small
effect sizes. Also, the empirical power was lowsrthe parameter combination where
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a=0.59 and=0.14 regardless of sample size and method (Ardtylor & MacKinnon,
2012). An increase in effect sizes leads to aress® in power, however, in addition to
this, the authors concluded that the valub wias more related to increases in power than
was the value ad. This means that power fa=0.59 and=0.14 was lower than for
a=0.14 and=0.59 even though the value of the mediated effastthe same for the two
combinations of parameter values. At N = 500 athmds had power of above 0.80 for
most parameter combinations except for the comioimatith a=0.59 andb=0.14. It is
expected that the bias-corrected bootstrap wilehtae highest empirical power,

followed closely by the distribution of the produahd the percentile bootstrap. Normal
theory confidence limits are expected to have @myempirical power. Yuan and
MacKinnon (2009) found that an informative priondacrease power. Since the Enders,
Fairchild, and MacKinnon (2012) approach is closebhated to the Yuan and

MacKinnon (2009) approach with complete data, v @re expected to perform
similarly to each other with and without prior infeation, and better than the normal
theory, distribution of the product, percentile tstap, and bias-corrected bootstrap
confidence limits when prior information is used.

Interval Width. Preacher and Selig (2012) found that the nornedrth
confidence limits had the narrowest confidencervatis followed by the distribution of
the product confidence intervals. It is expectet these results will be replicated when
there is no prior information available. Yuan anddinnon (2009) found that an
informative prior can reduce interval width. Giviire similarity of this approach to the
one proposed by Enders, Fairchild, and MacKinn@122, the two methods are
expected to perform in a similar way in terms aémal width.
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Improvementsin interval estimation with theinclusion of prior information

Frequentist statistical analyses are often perfdroreone sample at a time without
taking into consideration the findings from presaiudies. Even though frequentists use
prior knowledge in calculations afpriori power and the selection of sample size for
studies, the knowledge about the relationshipsgogindied is not included in the
statistical analysis. Bayesian methods incorpgueter knowledge in the statistical
analysis in the form of a prior distribution. L&t(2006) advocated the use of frequentist
methods in model development and assessment, aiesiBa methods in statistical
inference under the assumed model. Given the dlaiatistical tools, the statistical
approach to examining a phenomenon for the finsé¢ ttould differ from the statistical
approach to studying a somewhat familiar relatigndHowever, most analyses are
performed as if there was no prior information &lae. Recently, researchers have
suggested that augmenting data with existing pmi@rmation produces more accurate
estimates than the data set from a given experialene (Leeuw & Klugkist, 2012). The
goal of this project is to examine the benefitshaf inclusion of prior knowledge into the
statistical analysis by evaluating several inteestlmates for the mediated effect and the
smallest sample size necessary to produce acastiteates of the mediated effect. The
project consists of three studies.

The goal of the first study is to examine whiclemtl estimate has coverage closest
to the nominal level of 0.95, Type | error ratesast to the nominal 0.05 level, the lowest
imbalance, smallest width, and highest empiricalgro Normal theory confidence limits

using the multivariate delta standard error, peiteehootstrap confidence limits, bias-
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corrected bootstrap confidence limits, and the Beyecredibility intervals are evaluated

on the following criteria:

V.

The closer coverage is to the nominal 0.95 lewel detter. Values in the range of
Bradley’s robustness criterion (1978), between ®.&2d 0.975, are considered
adequate. Coverage above 0.975 is less problethaticcoverage below 0.925.
The closer the empirical Type | error is to the mahType | error, the better.
Values in the range of Bradley’s robustness cote(iL978), between 0.025 and
0.075, are considered adequate. Type | error kaieea0.075 is considered more
problematic than Type | error rate below 0.025.

Imbalance is defined as the difference betweemptbportion of true values that
fall to the right versus to the left of the intelvand the closer imbalance is to
zero, the better.

Empirical power is defined as the number of intésat of the number of
replications that do not contain the value of aghen a true effect exists in the
simulated population. In most studies empirical powof at least 0.80 is
considered adequate, however, power will be evatbas a continuous variable
in this study.

The smaller the interval width, the better.

The goal of the second study was to examine hosvnmdtive (narrow) the prior

distributions have to be in order for the Bayesrathods to outperform frequentist

methods in small samples. The two Bayesian metheds tested with two different

amounts of prior information, and compared to ndrtim@ory, distribution of the product,

21



percentile bootstrap, and bias-corrected bootstoafidence intervals in order to answer
this question.

The third study examined how power changes withptieeision (inverse
variance) of the prior distributions for regressemefficientsa andb and evaluated the

extent to which more precision can increase power.

Hypotheses

|.  Bayesian methods with informative prior distribumsowill have coverage closer
to the nominal level of 0.95, Type | error ratesser to the nominal level of 0.05,
imbalance closer to 0, higher empirical power, lneer interval width than
Bayesian methods with diffuse prior distributionermal theory confidence
limits, distribution of the product confidence liii percentile bootstrap
confidence limits, and bias-corrected bootstradidence limits.

Il.  The power increase for the Bayesian method of woefits differ depending on
whether the precision parameter was increasedhéoptior distribution of tha

path versus the prior distribution of theath.
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CHAPTER 2
GENERAL METHOD

A Monte Carlo simulation was used to compare irgkestimates for the
mediated effect on five criteria. Appendix A comgaexplanations for document notation
used in the subsequent studies. The data wereatgdubased on Equations 2 and 3. In
the simulation the residual variances of M and Yenset to 1, and X was simulated as a
random variable. There are four values of effestsior regression coefficients (0, 0.14,
0.39, 0.59) that correspond approximately to zemall (2% of the variance), medium
(13% of variance), and large (26% of the variameftct sizes as described by Cohen
(1988). SAS syntax (Version 9.3 of the SAS System/indows) was written to
simulate every possible combination of these vapagametea, b, andc’.

It has been shown that tests of mediation, exd¢eptausal steps test (which is not
studied in this project), are unaffected by theigalof the parameter (Fritz &
MacKinnon, 2007; MacKinnon, Lockwood, et al., 2002pwever, the relationship
between the value @f and interval width has not been documented, thidswa effect
sizes of this coefficient are included in the siatigin for Study 1. Furthermore, Study 1
examined all 64 possible combinations of paramedkres ofa, b, andc’. Due to
computation time required for all combinations afameter values, studies 2 and 3

examined smaller subsets of the 64 combinatiopaEmeter values.
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CHAPTER 3

STUDY 1

Methods

Random samples of size N = 20, 40, 60, 100, and\&®6 drawn from each
population and 95% confidence limits/credibilityarvals for the mediated effect were
calculated using (1) normal theory, (2) the disttibn of the product method, (3)
Bayesian method with diffuse normal prior distribus for regression coefficients
centered at 4 [, = e =0 with variance equal to {0ands?y ands® modeled as
inverse-gamma distributions with shape and inversde parameters equal to .01 (so that
the expectation of this distribution is 1), (4) Balan method with informative normal
prior distributions for regression coefficients tamed at the true value of the regression
coefficients with variance equal to%8ndo?y ands® modeled as inverse-gamma
distributions with shape and inverse-scale parammeigual to .01 (so that the expectation
of this distribution is 1), (5) Bayesian methodwat multivariate normal distribution for
the means of variables X, M, and Y (the means énpitior distribution were set to 0, the
variance of the variables to 1000, and the covaéaaro 0) and a diffuse inverse Wishart
prior distributions for the covariation matrix chnables X, M, and Y constructed so that
the expected covariance between variables is zefdhe expected variance of each
variable was 1 and the degrees of freedom parawateequal to the observed sample
size, (6) Bayesian method with the same priorithstion for the matrix of means as in
method (5) and an informative inverse Wishart pdistributions for the covariation

matrix of variables X, M, and Y constructed so ttit expected variances and
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covariances equal the true variances and covasaaue the degrees of freedom
parameter was equal to the observed sample sizgelcentile bootstrap, and (8) bias-
corrected bootstrap. The highest sample size tastibdas project was N = 500 because
this is the smallest sample size required for b@sected bootstrap to have adequate
Type | error rate and empirical power (Fritz, TayoMacKinnon, 2012).

For each combination of effect size and sample Hd® replications were generated.
Average coverage, Type | error rate for cases wéinera or b equal zero, confidence
interval imbalance (the number of times the estnmsito the right of the upper
confidence/credibility limit (UCL) minus the numbef times the estimate is to the left of
the lower confidence/ credibility limit (LCL)), enmcal power for cases wheee>0 and
b>0, and interval width were obtained for all eighteirval methods in the study.

Type | error rates were evaluated according to Bsésl robustness criterion
(1978). The Type | error rate of a statistical noeltils considered adequate if it falls
within 0.025 (one half of the nominal level of Typerror rate) of the nominal 0.05 level.
Values of Type | error rate above 0.075 are comstlexcessive. Values of Type | error
rates below 0.025 are highlighted in the resultsvbgbut are not a reason to avoid using
the method as long as the Type | error rate isthems 0.05. According to Bradley’'s
robustness criterion (1978), the coverage of &ssital method is considered adequate if
it falls within 0.025 (one half of the nominal ld\a# Type | error rate) of the nominal
0.95 level. Values of coverage below 0.925 are idensd low and problematic. Values
of coverage above 0.975 are highlighted in thelte®elow, but are not a reason to avoid

using the method with these coverage rates.
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ANOVAs were conducted on each of the five outcomeStudy 1 witha, b, and
N as between factors, method as a within factat,cahas a covariate in order to guide
the creation of the plots and the summary of thdifigs. In all of the ANOVAS’ was
always a covariate, and interactions betwadsn N, and method were estimated when
possible. For Type | error rate it was not possiblestimate all interactions. The results

of the analyses are presented below, along witkeaggions of the findings.

Results

After the simulations for Study 1 were complete@pes were caught in the code
for the following methods: (2) distribution of tipeoduct, (5) Bayesian method with a
diffuse prior distribution for the covariance mafrand (6) Bayesian method with an
informative prior distribution for the covarianceatrix, rendering the findings for these
methods unusable. Also, there was an error indleilation for the imbalance of the
bias-corrected bootstrap. Thus, Study 1 resultsisbof Type | error rate, power,
coverage, and interval width for normal theory cdemce limits, Bayesian method of
coefficients credibility intervals with diffuse joris, Bayesian method of coefficients
credibility intervals with informative priors, pesutile bootstrap, and bias corrected
bootstrap. Imbalance is available for normal thezmyfidence limits, Bayesian method
of coefficients credibility intervals with diffuggriors, Bayesian method of coefficients
credibility intervals with informative priors, anmercentile bootstrap. Results for all
combinations of parameteasb, andc’ from Study 1 are summarized in Tables 1-5.

Results for all possible combinations of paramesdues and sample size in Study 1 can
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be found in Appendix C, in Tables 18-42. Coeffitgamandb are referred to as the
mediation paths in the subsequent descriptionseofihdings.
Significance Testing: Typel error rate and Power

Typel error rate

Table 1 contains average Type | error rates fahallmethods and sample sizes in
study 1 across all 64 combinations of parametaregfora, b,andc’. Normal theory
and percentile bootstrap confidence limits had ayeriType | error rates lower than the
nominal 0.05 level at all sample sizes in the stldhe average Type | error rates for the
Bayesian method of coefficients were either belowvithin the limits of the robustness
criterion at all sample sizes in the study. Therage Type | error rates for the bias-
corrected bootstrap were the highest out of alhods at each sample size, became
higher as sample size increased, but still remamwtdn the limits of the robustness

criterion on average.

The results of the ANOVA for Type | error rate indie that the method factor
had statistically significant interactions wahsample sizea and sample sizé, andb
and sample size. Following up these significardraattions in a detailed examination of
the tables revealed that at N = 20 all methodsThge | error rates below 0.025 when
both mediation paths are zero (Table 18). The tatgenon-zero mediation path, the
higher the Type I error rates for all methods.NAt 20, normal theory confidence limits
had Type | error rates consistently lower than B.02he Bayesian method of coefficients
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with diffuse and informative prior distributionsdh@ype | error rates in the range of the
robustness criterion (0.025-0.075) only when the-nero path was large (wheh=0,

this is true whem@=0.59 and=0, but not whem=0.59 anda=0). In all other situations
Type | error rates for the Bayesian method of goieffits were below 0.025. At N = 20,
the percentile bootstrap had values of Type | aatws in the robustness criterion only
when the non-zero path is at least medium, anaalkidhave Type | error rates above
0.075. Type | error rates for the bias-correctedt&ivap were higher than 0.075
wheneverc’>0 and the non-zero mediation path was 0.59; otiserthey were within the
bounds of the robustness criterion, or lower. Tias-sorrected bootstrap had the highest
Type | error rates of all methods at each combomadif effect sizes, and was the only
method to have parameter combinations with Typeor@ates above 0.075 at N = 20. At
N = 40 normal theory confidence limits still hadpByl error rates below 0.025 except in
three cases when the non-zero mediation path &&h8 the Type | error rates were
between 0.025 and 0.075 (Table 19). The Bayesidhadef coefficients with diffuse

and informative prior distributions had Type | arrates in the range of the robustness
criterion (0.025-0.075) only when the non-zero pa#s large; in all other situations
Type | error rates for the Bayesian method of doieffits were below 0.025. As with N =
20, at N = 40 the percentile bootstrap had a Tygredr rates between 0.025 and 0.075
only if the non-zero mediation path is at leasBQ0@herwise Type | error rates were
below 0.025. At N = 40 the bias-corrected bootshrap Type | error rates between 0.025
and 0.075 when the non-zero mediation path is medand was the only method to have

Type | error rates higher than 0.075 for large mere mediation paths.
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At N = 60 normal theory confidence limits still h&gipe | error rates below 0.025
for all parameter combinations except for a fewwanses where the non-zero mediation
path was large (Table 20). At N = 60 the Bayesiathwmd of coefficients with diffuse
and informative prior distributions had Type | errates in the range of the robustness
criterion in the majority of combinations where #ex¥o mediation path is at least 0.39;
otherwise, the Type | error rates for the Bayesmthod of coefficients with diffuse and
informative prior distributions were lower than P The percentile bootstrap had
values of Type | rate in the range of the robustreegerion whenever the non-zero
mediation path was at least 0.39, and the onlants of Type | error rate above 0.075
occurred wher’'=0, a=0.59, and=0. At N = 60 the bias-corrected bootstrap had Tlype
error rates below 0.025 when both mediation pat®W or the non-zero mediation path
was small, and Type | error rates in the uppereargabove the robustness criterion
when the non-zero mediation path was medium oelafrge bias-corrected bootstrap had
Type | error rates in the range of the robustnassrion in only five out of the twenty
eight combinations of parameter values.

At N = 100 normal theory confidence limits had Typror rate below 0.025
whenever both mediation paths were 0, or when éimezero mediation path was small
(Table 21). Type | error rates for normal theorpfadence limits were always in the
range of the robustness criterion when the non-zexdiation path was large, and in half
of the instances wheax=0.39, but not wheb=0.39. At N = 100 the Bayesian method of
coefficients with diffuse and informative prior tlibutions always had Type | error rates
in the range of the robustness criterion whefl andb=0.39, 0.59, and in half of the
cases when=0.14 and=0. Excessive Type | error rates (above 0.075) wedu
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wheneveib=0, anda=0.39 and 0.59. Thus, at N=100 a largeoefficient signified
higher Type | error rates for the Bayesian methiocbefficients with diffuse and
informative prior distributions. The Type | err@te for the percentile bootstrap was
never above 0.075, and was in the range of thestnbss criterion whenever the non-
zero mediation path was at least 0.39. In all ofiteiations Type | error rates for the
percentile bootstrap at N = 100 were below 0.02f Bias-corrected bootstrap had Type
| error rates in the range of the robustness @iteior most combinations @ b, andc’;
values of Type | error rate below 0.025 occurre@mdver both mediation paths were O,
and once foe=0.14 andb=c’=0. Excessive Type | error rates for the bias-abee
bootstrap occurred only in situations when either b was at least 0.39, however, this
was not as consistent of an occurrence as it wakéoBayesian method of coefficients
at N = 100.

At N = 500 normal theory confidence limits had Tyror rates below 0.025
when both mediation paths were zero or when thezeoo path was small, and values of
Type | error rate in the range of the robustnegsran whenever the non-zero mediation
path was at least 0.39. At N = 500 normal theanyfidence limits did not have Type |
error rates above 0.075 for any of the parametebawations (Table 22). The Bayesian
method of coefficients with diffuse and informatipeor distributions and the percentile
bootstrap had Type I error rates below 0.025 whenbkwatha andb were zero, and
values of Type | error rate in the range of theustbess criterion whenever at least one
of the mediation paths was larger than zero. Neitiee Bayesian method of coefficients
nor the percentile bootstrap had Type | error rates/e 0.075 for any of the parameter
combinations. The bias-corrected bootstrap had Typeor rates in the range of
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Bradley’s robustness criterion for all combinatia@i®ffect sizes, except=b=0 when
Type | error rates were below 0.025, and for samséances in which the non-zero
mediation path is 0.14 and Type | error rates vad@ve 0.075.

Overall, Type | error rates increased with same for normal theory
confidence limits, and Bayesian credibility limiBercentile bootstrap was the method
that had Type | error rates in the range of Bradlegbustness criterion the most often
across all sample sizes, and at N = 500 the Bay@es&thods were performing identically
to the percentile bootstrap in terms of Type | erate. Normal theory confidence limits
were the only method never to have Type | erre@sabove 0.075, followed by the
percentile bootstrap that had only one instanaxoéssive Type | error rate across all
parameter combinations and sample size. The Bayestéghod of coefficients with
diffuse and informative prior distributions camexhm terms of the number of instances
of excessive Type | error rate across all paranetbinations and sample size, and the
bias-corrected bootstrap had the highest numbé&ypé | error rates above 0.075 out of
all methods tested in this study.

The Type | error rate for the Bayesian method witbrmative prior distributions
did not differ much from the Type | error rate b&tBayesian method with diffuse prior
distributions suggesting either that prior inforraatcannot make Type | error rate closer
to the nominal level, or that the informative prabstributions used in this study were
still too diffuse to induce such a change in thtenval estimate.

Power

Table 2 contains average values of power for fiethods in Study 1. All
methods had average power greater than 0.8 at00~aHhd the bias-corrected bootstrap
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had the highest average power for each sampl€aiz@lso had the highest value of
Type | error rate as described above). Bayesiahadstwith diffuse and informative

prior distributions for the regression coefficientssistently outperformed normal theory
confidence limits, but had lower average power tin@ntwo bootstrap methods. This
finding suggests that either prior information canimcrease power or that there was not
enough prior information in the informative pridstlibutions to produce an increase in

power in this study.

The full-factorial ANOVA for power revealed that alteractions were
statistically significant, including the four-wanteraction between the factors methad,
b, and sample size. A careful examination of théetabf results revealed that at N = 20
and 40 for all combinations of parameter valuesias-corrected bootstrap had the
highest value of power, followed by the percertibmtstrap (Tables 23 and 24). The
Bayesian method of coefficients had almost idehpoaver for diffuse or informative
prior distributions, and had slightly lower powbkanh the percentile bootstrap (0.008
versus 0.013 at the parameter combination withethst power for all methods and
a=b=0.14,c’=0, and 0.331 versus 0.399 at the parameter cotdyinaith the most
power for all methods armkb=c’=0.59 at N = 20). Normal theory confidence limitgh
the least power out of all methods for all comhbimag of parameter values at N = 20, and
40. At N = 60 and at larger values of mediatiorhpaespecially at larger valuesapf
normal theory confidence limits had power closealt@ther methods except the bias-
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corrected bootstrap (Table 25). For N < 60 the gyt bootstrap had higher power than
the Bayesian method of coefficients, but at N %68 was not the case for all parameter
combinations. At N = 60;'=0, 0.14, and=0.14 the Bayesian method of coefficients had
more power than the percentile bootstrapc’A0.39, 0.59 and=0.59 the Bayesian
method of coefficients and the percentile bootstrag identical power. At N = 60 and

for all other parameter combinations, the perceittdotstrap had slightly more power
than the Bayesian method of coefficients with difand informative prior distributions.
At N = 100 the bias-corrected bootstrap was $tél mmethod that had the highest power
for the majority of combinations of parameter valugowever, some interesting patterns
in the results also emerged (Table 26). The Bagesiethod of coefficients and the
percentile bootstrap would alternate as the mettitddthe second-highest power after
the bias-corrected bootstrap, and wherD, a=0.14, and=0.59 the Bayesian method of
coefficients had power identical to or higher thia@ bias-corrected bootstrap, and higher
power than the percentile bootstrap. There weie @sameter combinations when
normal theory confidence limits had more power ttrenBayesian method of
coefficients; this occurred whenewr0.59 and=0.14. In these instances the bias-
corrected bootstrap and the percentile bootstithinatl more power than normal theory
confidence limits. At N = 100 arakb=0.59 all methods had power equal to 1. At N =
500 all methods had power equal to 1 when one thr tbediation paths were medium or
large (Table 27). The bias-corrected bootstrapstiligshe method with the most power

in the majority of parameter combinations, howettes, power values for all the methods
became more similar as effect size increased, d&hwne or both mediation paths were
medium or large all methods had power of 1. Furtizee, for all parameter
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combinations except wheaxb=0.14 all methods had power values in the range&f
0.9, and whema=b=0.14 the bias-corrected bootstrap had the mosep¢above 0.8),
followed by the percentile bootstrap (0.738-0.758¢, Bayesian method of coefficients
with diffuse and informative priors (0.721-0.74&hd normal theory confidence limits
(0.563-0.596).

When Type | error rates and Power are taken intowad, the percentile
bootstrap and the Bayesian method of coefficientis effuse and informative prior
distributions are the optimal choices because tfiey high power relative to normal
theory confidence limits without excessive Typerberates of the bias-corrected
bootstrap.

Interval Estimation: Coverage, I nterval Width, and I mbalance

Coverage

Table 3 contains average values of coverage ferrfiethods in Study 1. All
methods had average coverage within .02 of the malfevel of 0.95, regardless of
sample size. The coverage for the Bayesian methihdniormative prior distributions
(third method in the table) is not closer to thennmal level than the coverage for the
Bayesian method with diffuse prior distributiongggesting that either coverage cannot
be approximated to the nominal level by addingmnéormation or that the informative

prior distributions used were still too diffuse.
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The full-factorial ANOVA for coverage revealed thak interactions were
statistically significant, including the four-wanteraction between the factors method,
size ofa, size ofb, and sample size. A careful examination of théewabf results
revealed that at N = 20 and 40 (Tables 28 ande2pectively) normal theory confidence
limits have coverage above the robustness crit¢fi@25-0.975) when at least one of the
mediation paths is zero. Coverage for normal theonfidence limits is within the range
of the robustness criterion when at least one®@htlediation paths is small and the other
mediation path is not zero. Coverage equals oele#0.925 in certain combinations of
medium and large mediation paths. In other wortlsl @ 20 and 40 normal theory
confidence limits occasionally had lower coverageldrger effects than for smaller and
zero effects, and this phenomenon occurs less=a40lthan at N = 20.

At N = 60 normal theory confidence limits had fewestances of coverage below
.925 than at N = 40, and overall had coverage ritit@in the range of the robustness
criterion or higher. As with smaller sample siz&sN = 60 normal theory confidence
limits had higher coverage for zero and smallezctff (Table 30).

The Bayesian method of coefficients with diffusel amformative prior
distributions have identical levels of coverag&lat 20, 40, and 60, and never have
coverage below 0.925 at N = 20 and 60. At N = 40pghArameter combinatia=0.39
anda=b=0.59 is the only case where the Bayesian methededficients with diffuse
and informative prior distributions has coveragghdly below the robustness criterion.
Levels of coverage for the Bayesian method are @75 for zero and smaller effects,
and fall within the robustness criterion when assteone of the mediation paths is equal
to or greater than 0.39 and the other path is ®o0-z
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At N = 20 the percentile bootstrap has coveraghemrange of the robustness
criterion for the majority of combinations of vakiefa andb, coverage equal to or
larger than 0.975 when both mediation paths ar@ aed when one mediation path is
zero and the other is small. The only instancegb®percentile bootstrap having
coverage below 0.925 at N = 20 occuc’at0.59,a=0.59, and non-zero valueslofAt N
= 40 the percentile bootstrap has coverage witlerrange of the robustness criterion or
larger for all parameter combinations except wé&ed.59 ando is larger than zero,
which is when coverage is below 0.925. At N = 68 plercentile bootstrap has coverage
above the upper bound of the robustness criterizenvone or both paths are 0 or 0.14,
and coverage within the range of the robustnessrion in all other situations except for
the parameter combinati@=0, a=0.59,b=0 when coverage is 0.924, just below the
lower bound of the robustness criterion.

At N = 20 the bias-corrected bootstrap had covebedaw 0.925 for certain
combinations of effect sizes where at least onk [ganedium or large. At N = 40 the
bias-corrected bootstrap had coverage within thgeaf the robustness criterion or
larger for all combination of parameter values @tde certain combinations where one
mediation path was larger than the other @ ® (69 versu®=0, and eved=0.39 versus
a=0.14). At N = 60 the bias-corrected bootstrapthasmost instances of coverage below
0.925 out of all methods, and the lowest coveragéhis method equals 0.904 and
occurs whert’'=0.59,a=0.14, and=0.39. As with N = 40, at N = 60 the bias-corrected
bootstrap seems to have coverage below 0.925 prEjuations where one of the
mediation paths is much smaller than the other(6r&® versus 0.14), and also when
¢’=0.59 and one mediation path equals 0.39 whil@ther is 0.14. Overall, at N = 20,
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40, and 60 for all methods, coverage would occadipbecome lower with increases in
one mediation coefficient when holding the othedraon coefficient constant, thus
highlighting that the relation between effect sirel coverage is not linear. There was no
clear pattern when this occurred.

At N = 100 normal theory confidence limits have emge above 0.975 for
mediated effects equal to zero, and coverage witl@mange of the robustness criterion
for all other combinations of parameter values egxevhena=b=0.14, anda=b=c’=0.39
when coverage is below 0.925, but still equal talmyve 0.90 (Table 31). At N = 100 the
Bayesian method of coefficients still had almosinigical levels of coverage with diffuse
and informative prior distributions. Coverage atNM00 was within the limits of the
robustness criterion or higher for all combinatiohgarameter values except0.39 and
b=0, 0.14,a=0.59 andb=0, 0.14, and at’=0 and 0.14 whea=0.59 an=0.39. Thus,
coverage for the Bayesian method of coefficientd at100 was at least 0.925 whenever
thea path was not larger than theath. At N = 100 the percentile bootstrap has
coverage within the bounds of the robustness @itdor almost all parameter
combinations; coverage is above 0.975 wémelo=0 and for all parameter combinations
where one mediation path is zero and the otherle@ui4. At N = 100 the bias-corrected
bootstrap had coverage values within the boundseofobustness criterion for the
majority of parameter combinations. Coverage ferlitas-corrected bootstrap at N =100
is consistently below 0.925 wharb=0.14, and for a few other combinations of
parameter values, b, andc’, but never below 0.90.

At N = 500 all methods have coverage in the bowidke robustness criterion
for almost all parameter combinations. When bothliateon paths are zero at N = 500,
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coverage is above 0.975 for all methods, and cgeeisaabove 0.975 for normal theory
confidence limits even when one of the mediatiohg& 0.14 and the other is zero
(Table 32). The bias-corrected bootstrap has cgeesove 0.90 but below 0.925 when
a=0 andb=0.14 regardless of value of, and whera=0.14,b=0, andc’=0.

In summary, coverage was higher for zero effe@s for non-zero effects at all
sample sizes and for all methods. Generally, cgeeveas close to 0.95 for all methods.

I nterval Width

Table 4 contains average values of interval widthfive methods in Study 1.
Normal theory confidence limits had consistenthyéo interval width than the remaining
four methods at each sample size, however, as sasigd increased, the interval width

differed less between the five methods.

The full-factorial ANOVA for interval width reveatdethat the four-way
interaction between the factors method, size, gize ofb, and sample size was
statistically significant. A careful examinationtbie tables of results revealed that at N =
20, 40 normal theory confidence limits have thedstunterval width of all methods at
all combinations of parameter values, followed iy percentile bootstrap (Tables 33 and
34, respectively). The values of interval width eeften similar for the remaining three
methods, and depending on the combination of paeanaalues, either the Bayesian
method of coefficients with diffuse and informatiprors (the two were almost identical)
or the bias-corrected bootstrap had the highestvat width. At N = 60, 100 and 500 the
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trend of the bias-corrected bootstrap and Bayesethod of coefficients having the
highest interval width, followed by the percentieotstrap, and normal theory
confidence limits continues, however, the diffeenm interval width between methods
are less noticeable, especially wtzeandb are larger (Tables 35-37). Interval width got
smaller for all methods as sample size increagedlyalues of interval width varied less
between methods at larger sample sizes. Even thowghal theory confidence limits
had the narrowest interval width, this method loas power relative to others, so other
methods have better performance.

I mbalance

Table 5 contains average values of imbalance far ieethods in Study 1. All
methods had positive imbalance that was withinof0Be ideal level of 0, regardless of
sample size. The fact that imbalance was greader 2Bro indicates that there was more

miscoverage to the right than to the left of thernwal for all four methods in the table.

Imbalance was evaluated for normal theory confiddimaits, the Bayesian
method of coefficients with diffuse and informatigaor distributions, and the percentile
bootstrap. The full-factorial ANOVA for imbalancéddhot converge, thus the reported
results are based solely on a careful examinafidrables 38-42 that contain the values
of imbalance for all parameter combinations in $tudimbalance was fairly close to
zero for zero effects, and increased in absolutgeviar all methods. A comparison
between methods revealed that normal theory camlémits had the highest absolute
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value of imbalance for the highest number of patam@mbinations, followed by the
percentile bootstrap. The Bayesian method of cdefits had almost identical values of
imbalance for diffuse and informative prior distrilons, and had the lowest absolute
value of imbalance out of all methods for most peeter combinations. The absolute
value of imbalance for all methods never exceed&d, @nd became lower as sample

size increased.

Discussion

The Bayesian method of coefficients and the peiledmbotstrap were optimal
methods given their performance on measures refatiedth significance testing and
interval estimation. A notable finding from Studyslthat when the variance of the prior
distributions for the regression coefficients wpsdfied to be 19(the variances of
regression coefficients calculated from the paransah this simulation are usually
smaller than 1; thus, the prior distributions fegression coefficients are extremely
diffuse) the Bayesian credibility intervals did rsbtow much change in simulation
outcomes, such as an increase in power, a Typerl r@ate closer to 0.05, reduced
interval width, imbalance closer to 0, and coverelgser to the nominal level of 0.95
compared to the remaining methods in the study.tDulee large variance of prior
distributions, the difference in results from arsa&ly with non-informative and
informative priors was not substantial. An examorabf plots of normal prior
distributions with different means (0, 0.14, 0.88d 0.59) and the variance parameters

equal to 18 shows that the distributions are almost identical.
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Thus, the Study 1 findings for N = 20, 40, 60, 1&@d 500 lead to the question of
how narrow does the prior distribution have torerder to produce an increase in
power, a Type | error rate closer to 0.05, redunezgtval width, imbalance closer to O,
and coverage closer to the nominal level of 0.95He Bayesian methods compared to
the remaining methods in the study. Given that\far 500 all methods had adequate
power, this sample size was not included in Studyo#vever, the condition N = 200 was

added instead.
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CHAPTER 4
STUDY 2
Due to the duration of the simulation study for@ksible parameter
combinations (64), a smaller subset of parametebamations (13) was chosen based on
the findings in Study 1 and conditions where therde most discrepancy between
methods in confidence limit estimation in prioreasch (MacKinnon, Lockwood &
Williams, 2004). The purpose of the study was teiaeine how informative a prior
distribution would have to be in order to increpsever, produce Type | error rate equal
to the nominal rate of 0.05, reduce interval wigtftgduce imbalance of 0, and coverage
equal to the nominal level of 0.95 for Bayesiarddriity intervals for N = 20, 40, 60,

100, and 200.

Methods

Populations with the following combinations of vedufor parameters were
simulated (example SAS simulation code can be fon#gppendix D):a=0 b=0 c¢’'=0,
a=0b=0.14c’=0,a=0b=0.39¢’=0, a=0 b=0.59¢’=0, a=0.14b=0.14c'=0, a=0.39
b=0.39¢’=0, a=0.59b=0.59¢’=0, a=0.14b=0.39¢’=0, a=0.14b=0.59¢’=0, a=0.39
b=0.59¢’=0, a=0.14b=0.14¢’=0.39,a=0.39b=0.39¢'=0.39,a=0.59b=0.59¢’=0.39.

Two values of the’ coefficient (0 and 0.39) were included in the detion in order to
determine whether performance of interval estimdiféers for complete and incomplete
mediation models.

Random samples of sizes N = 20, 40, 60, 100, aAd\v2®e obtained from each

population and 95% confidence limits/credibilityarvals for the mediated effect were
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calculated using normal theory, the distributiontheff product method, percentile
bootstrap, and bias-corrected bootstrap. Also, Bayesian methods were tested in order
to determine whether prior information could impedte performance of credibility
intervals in comparison to other methods in thelgthe four Bayesian methods were
the method of coefficients with diffuse prior dibtrtions, the method of coefficients with
informative prior distributions, the method of coaaces with a diffuse prior

distribution, and the method of covariances withrdarmative prior distribution. The
informative prior distributions for the methodsaafefficients and covariances consisted
of simulated values and quantities calculated fsomulated values; for simplicity, this
specification of priors will be referred to as tirith” about the parameters. For
information on the arithmetic correspondence ofghmmeters in these two methods see
Appendix B.

Method of coefficientswith diffuse prior distributions. Diffuse normal prior
distributions centered at the true values of coigfitsa, b, andc’ with variance equal to
10® were assigned to the regression coefficients cdndndc?, were assigned inverse-
gamma distributions with shape and inverse-scai@npeters equal to .01 (so that the
expectation of this distribution is 1).

Method of coefficientswith informative prior distributions. Normal prior
distributions centered at the true values of coifitsa, b, andc’ with standard
deviations equal to the standard errors of respectefficients calculated using
simulated values at a given sample size were assigmthe regression coefficients, and
o°w ando®y were assigned inverse-gamma distributions witipslznd inverse-scale
parameters equal to .01 (so that the expectatitmoftlistribution is 1).
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Method of covariances with a diffuse prior distribution. The vector of means of X,
M, and Y was assigned a multivariate normal distrdn, while the covariance matrix
was assigned an inverse Wishart distribution witts 3he degrees of freedom parameter.
The degrees of freedom parameter has to equastttlee number of variables in the
model so the inverse Wishart is not in a degendoate (Gelman, Carlin, Stern, &
Rubin, 2004) so the degrees of freedom were sgfaothis method. The covariation
matrix is the second parameter of the inverse Wigihar, and it was specified so that
the prior expectation for each covariance betwegrables is zero, and the variance of
each variable is 1.

Method of covariances with an informative prior. The vector of means of X, M,
and Y was assigned a multivariate normal distrdoutvith means of 0, variances of
1000, and covariances of 0. The covariance matax assigned an inverse Wishart
distribution. The degrees of freedom parametehefitverse Wishart distribution was
set to equalN,, the size of the observed sample in the cond{gon if the sample size in
the condition examined was 60, the degrees of tregoarameter of the inverse Wishart
was also set to 60 so that the prior and obseraegble are of the same size). The
covariation matrix is the second parameter of tiverise Wishart prior, and it was
specified so that the prior expectations for eaatience and covariance equal their
respective true values.

The simulation consisted of 1000 replications facheof the 13 combinations of
effect size and sample size. Average coverage, Tgper rate for cases where eitlaer
or b equal zero, confidence interval imbalance (nunobéimes the estimate is to the
right of the UCL minus the number of times therastie is to the left of the LCL),
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empirical power for cases wheae0 andb>0, and interval width were obtained for all

eight methods being studied.

Results

Results for all combinations of parametarb, andc’ from Study 2 are
summarized in Tables 6-10. Results for all possiblabinations of parameter values
and sample size in Study 2 can be found in Appe@dix Tables 43-67. Coverage,
power, imbalance, and interval width for combinatiavitha=b with ¢’=0 anda=b with
¢'=0.39 were compared using t-tests in order temine whether the size of the
parameter has an impact on the performance of gikad. None of the t-tests for any of
the methods (normal theory, distribution of thedarct, Bayesian method of coefficients
with diffuse prior distributions, Bayesian methddcoefficients with informative prior
distributions, Bayesian method of covariances witfuse prior distributions, Bayesian
method of covariances with informative prior distrions, percentile bootstrap, and bias-
corrected bootstrap) at any of the sample sizes 2R, 40, 60, 100, and 200) were
statistically significant. Thus, the size of ttiecoefficient did not have an impact on the
statistical performance of the interval estimateslie mediated effect for the parameter
and sample size combinations examined in this study

There were four combinations where the mediategtedvas zero. The average
Type | error rates for these combinations are diggd in Table 6. All eight methods had
Type | error rates lower than the nominal 0.05 letall sample sizes. The bias-
corrected bootstrap had the highest Type | ertesravhereas the Bayesian methods

with prior information had almost no Type | error.
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Figure 1 shows plots of the Type | error rates waen0, ando ranges from 0 to
0.59. When botla andb are 0, all eight methods have comparable Typeol eates that
are close to zero. However, whien0.14, and 0.39 the Type | error rates for all mdtho
except the Bayesian methods with informative pdistributions, increases with sample
size and is highest for the bias-corrected bogistidhe Type | error rates remain close to
0 for Bayesian methods with informative prior disitions regardless of sample size or
the size of thd coefficient. Bayesian methods with diffuse prigstdbutions had Type |
error rates below 0.05 for all combinationdband sample size except whar0.39, and
0.59 and N = 200. ForNI0 andb=0.39 the Type | error rate for the bias-corrected
bootstrap is above 0.05. Whbis large, the Type | error rate for the bias-ccied
bootstrap is above 0.05 for all sample sizes, aabove 0.05 for the percentile bootstrap
for four out of the five sample sizes. Normal theand distribution of the product
confidence limits have Type | error rates consitydower than 0.05 regardless of the
size ofb and N.

- Insert Figure 1 about here -

Table 7 displays average values of power for theribinations o, b,andc’
with non-zero values of the mediated effect. Ovenalrmal theory confidence limits had
the lowest power at each sample size, followecbydistribution of the product,
Bayesian methods with diffuse priors, and the pargebootstrap. The bias-corrected

bootstrap had higher average power (but also hgttehiType | error rate, which is
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important to take into consideration when selectirggatistical method) than normal
theory, distribution of the product, percentile tstap confidence limits, and Bayesian
methods with diffuse priors at each sample sizgeB@an methods with informative prior

distributions had the highest power of all methatall sample sizes.

The only combination of method and sample sizedttained power of above
0.80 was Bayesian credibility intervals at a sanspte of 200 (see Figure 2). All other
combinations of method and sample size had averager of less than 0.80. Power
increased as a consequence of incorporating priormnation in the analysis (Figure 2).
Furthermore, given the same amount of prior infdroma(diffuse or informative prior
distributions), the Bayesian method of coefficiesuisl the Bayesian method of
covariances had almost identical power at all samjzes below 100 (see Figure 2). At N
= 100 the method of covariances with informativiempdistributions had slightly more
power than the method of coefficients with inforimeatprior distributions. Figure 2
contains the plots of power for the nine differeombinations of parameteasb, andc’
and all sample sizes. Wharandb are both small, change in power for the eight imesh
is the same regardless of whetbeis 0 or .39. In both situations, all methods have
power close to O for N = 20, 40, and 60, and with MO0 the two Bayesian methods
with informative prior distributions have at leasice the power of some of the other
methods. Whea is small and is medium and large, the Bayesian methods with

informative prior distributions still have the hegt power of all methods. The bias-
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corrected bootstrap, Bayesian methods with diffus& distributions, and the
distribution of the product have lower values ofveo than the Bayesian methods with
informative prior distributions, but consistentligher power than normal theory
confidence limits. With medium and largendb the values of power for the Bayesian
methods with informative prior distributions platea N = 40. The remaining six
methods have power curves that start plateauiblg=a00 if at least one of the
coefficients & orb) is 0.59. The value af did not change the power profile of any of
the methods.

- Insert Figure 2 about here -

As shown in Table 8, coverage was evaluated fdn esethod at the five sample
sizes and thirteen parameter combinations. Norneary confidence limits and the two
bootstrap methods had coverage levels closesetodminal level of 0.95. The
distribution of the product and the Bayesian meshedh diffuse and informative priors

exceeded the nominal level of coverage at all sarsiges.

Figure 3 displays the trellis plot of coveragetfarteen combinations of effect
sizes. Witha= 0 and b>0 coverage is highest and equals 1 &(\and decreases as
sample size increases for all methods except @Btyesian methods with informative
prior distributions. This decrease in coverageassde size increases is also observed

whena= 0.14 and= 0.14, and 0.39. A finding made clear by all thetgof coverage is
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that the Bayesian methods with informative priatibutions have coverage close to 1
regardless of sample size or effect size, andtfieatemaining six methods are
comparable to each other in terms of coverage bidsecorrected bootstrap has the
lowest coverage faa=0 andb>0, which is consistent with the findings that thas-
corrected bootstrap has higher Type | error thaeranethods foa=0 andb>0.

- Insert Figure 3 about here -

Table 9 displays the average values of intervatwidr the 13 combinations of
parameter values and for all four sample sizeseBiay methods with informative prior
distributions have the lowest values of intervalltiiregardless of sample size and effect
size. All other methods in the study have high&grial widths than Bayesian methods

with informative prior distributions.

As can be seen from Figure 4, the value ofcthepefficient (0 versus 0.39) does
not change the shape of the interval width cureesufiy of the methods.

- Insert Figure 4 about here —

Table 10 displays the average values of imbalaoicthé eight methods at all
four sample sizes. Normal theory confidence lirhas the highest imbalance at N = 20,
however, the bias-corrected bootstrap had the kigitesolute value of imbalance at N =
40 and N = 100. The Bayesian methods with informegpirior distributions had the

lowest imbalance of all eight methods.
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Figure 5 displays the trellis plot for imbalancetloé eight methods for thirteen
combinations of effect sizes. Imbalance of all elglethods is close to zero and
comparable for all eight methods and at all eféenes examined in this study except
whena=b=0.14 (both withc’=0 andc’=0.39) and R60 which is when imbalance for
normal theory confidence limits is positive andyrthan imbalance of the other seven
methods.

- Insert Figure 5 about here -

Discussion

Overall, the addition of prior information into tls&tistical analysis improved
interval estimates of the mediated effect. Powes igher with prior information in the
analysis, imbalance was closer to zero, and intevichh was lower than for methods
that do not incorporate prior information. The Bsig@ method of coefficients and the
Bayesian method of covariances had almost identadaks of power both with and
without prior information (Figure 6).

- Insert Figure 6 about here -

When prior information was included in the analydi® Type | error rate was
below the nominal level of 0.05, and coverage was/a the nominal level of 0.95.
Bayesian credibility intervals with informative pridistributions lower the risk of Type |
error rates and have higher coverage. These prepeftBayesian credibility intervals

50



are difficult to label as positive or negative. @me hand, having a very low Type | error
rate and high coverage is beneficial to the rebearas it translates to fewer false
positives and fewer intervals that do not conthattue value of the parameter. On the
other hand, when choosing a confidence coeffi@&ft95, the researcher is expecting a
Type | error rate of 5% and coverage of 95%, ang thmethod that does not display
Type | error rates and coverage equal to nominalsas performing differently from the
expectation. Furthermore, the notions of Type drerate and coverage are inherently
frequentist, given that they rest on the assumpdfaepeated sampling. Thus, it is not in
the nature of credibility intervals to conform te@ue of Type | error rate and coverage
selected prior to an experiment. For more on tHergince in inference and criteria of the
frequentist and Bayesian frameworks, see Gigerdiig8a3).

Study 2 examined how Bayesian credibility intesvaérform when the prior
information consists of the true values of paramseé@d quantities calculated from true
values in the simulation. However, if one knew tituth about a phenomenon, they
would not be studying it. Thus, it would be benialito examine how Bayesian methods
perform with prior distributions that are more dsg than the priors examined in Study
2, but less diffuse than normal prior distributiavith a variance of 10 Furthermore,
researchers might be more confident in the avalatibrmation for the-path (action
theory) or in the information for thepath (conceptual theory), and thus might assign
different variance parameters to the prior distitms of the two coefficients. Knowing
more about action theory versus conceptual theowce versa (and using this

information to assign a less diffuse prior disttiba for the path in question) might have
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different effects on power. It is unclear whetheraarower prior distribution for the

path or for thé path leads to a greater increase in power.
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CHAPTER 5
STUDY 3

Study 3 examined if the observed increases in pawarinformative prior
distributions are still present with precision paeders in the prior distributions for
regression coefficients that are different thanttbe precisions (calculated from true
parameters in the simulation) investigated in St&d& second goal of Study 3was to
investigate whether more prior information (moregsion) about actiorafpath) or
conceptuall§-path) theory led to greater increases in powettfermediated effect.

Six parameter combinations were selected in thidysbased on the prior studies
to reduce the computation burden. Power of the 8lagenethod of coefficients is
observed as a function of the precision paramatet precision equated across sample
sizes.

Methods

Populations with the following combinations of vedufor parameteis b, andc’
were simulated (example SAS code is in Appendixagp=0.14 withc’=0, a=b=0.39
with ¢’=0, a=b=0.59 withc’=0, a=b=0.14 withc’=0.39,a=b=0.39 withc'=0.39, and
a=b=0.59 withc’=0.39.

Study 3 examined the effect of precision for regi@s coefficienta andb on
changes in power to detect the mediated effedhimBayesian method of coefficients.
Random samples of sizes N = 20, 40, 60, 100, afdv20e generated from each
population and 95% credibility intervals for the dreged effect were calculated using the
method of coefficients with different priors forgression coefficienta andb. Ten

conditions were evaluated in the study: five whteeprecision parameter in the prior for
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the coefficienb was set to I8and the precision parameter in the prior for coaffita
was varied (18, 10%, 1, 10", 1¢), and five where the precision parameter in therpr
for the coefficiena was set to 1®and the precision parameter in the prior for dokffit
b was varied (18, 10%, 1@, 10", 10).

The range (spread) of values of a coefficient moamal prior distribution can be
defined as variance, standard deviation, or pr@tisihe standard deviation is the square
root of the variance, and the precision is thepregal of variance. In Study 3, normal
prior distributions for regression coefficients wersed with the precision
parameterization, so the precision equaled 1 divilethe variance of the coefficient.

The true precisions fa andb are equal to 1 divided by the true derived vamanc
of the respective parameter in the equation at saniple size. The true variance (and
precision) of the coefficient depends on effecésiand sample size. Thus, a fixed value
of the precision parameter in the prior foorb (102, 10%, 1®, 10", 10) is a different
fraction of the true precision of the coefficieht#ferent values of effect size and
sample size. Table 11 shows how the values of sicecare related to the true precision
values of parametessandb at each sample size and for each precision paearnée
entries in Table 11 are the fractions of the triexigion values for values of regression
coefficients examined in Study 3. For example, witenprecision parameter of the prior
distribution for regression coefficieatis set to 10 and the sample size is 100, the
precision parameter of 10 is 10.2% of the trueipre ofa (the fraction entry in the
table is 0.102). The values of precision examime8tudy 3 (16, 10%, 1®, 10", 1) are
generally lower than the true precisions of eaatapater, except with the precision
parameter in the prior equals 100, and sampleisizetween 20 and 100. When the
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precision parameter in the prior distribution floe regression coefficient is smaller than
the true precision of the coefficient, the fractisrsmaller than 1. For a precision
parameter in the prior that is larger than the prexision of the regression coefficient,
the fraction is larger than 1. If the precisiongraeter in the prior distribution for the
regression coefficient is equal to the true precisif the coefficient, then the fraction
equals 1, and this was the way prior distributismese specified in Study 2 for the
Bayesian methods with informative prior distribuiso

In Study 3 the mean parameters in the prior distidms for the regression
coefficientsa andb were always set to equal the true value. In allctenditions, the
coefficientc’ was assigned a normal prior distribution with titue value as the mean
parameter of the prior distribution, and a variapasmeter of T0(which is the same as
setting the precision parameter t6>L0The intercepts in the regression equations
predicting M and Y both received normal prior distitions with the mean parameter
equal to 0 and the variance parameter equaloTt@ priors for the precision of M and
Y were the same for all conditions (gamma distidng with shape and inverse scale
parameters equal to .01 so that the expectatitmeadiistribution equals to 1), as was
done in studies 1 and 2. The simulation consistdd0 iterations per combination of
effect sizes and sample size. Average empiricalgpder all six conditions and sample

sizes was computed for N = 20, 40, 60, 100, and 200

Results

Study 3 examined the extent to which the obsemekases in power are still

present with precision parameters in the priorithgtions for regression coefficients
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equal to powers of 10, which made some precisioarpaters smaller and some
precision parameters larger than the true pregsaba andb. Another research question
was whether more prior information (more precisiabput actiong path) or conceptual
(b path) theory lead to greater increases in powdetect the mediated effect. There was
no consistent pattern that could answer the quesfiszvhether more precision in the
prior fora or more precision in the prior forlead to greater power. In Figures 7-11, the
plots of power as a function of the prior precisadfa are almost identical to the plots of
power as a function of prior precisionlofor each sample size. Thus, there is no
differential increase in power depending on whethere is more precision in the prior
for the action & path) versus the prior for the conceptual thebryath).

Results from Study 3 are summarized in Tables 1arbFigures 7-13. In
addition to graphical displays in Figures 7-11, diféerences in power between
combinations whera=b with ¢’=0 anda=b with ¢’=0.39 were also assessed using t-
tests. None of the t-tests for any of the priotridigtion specifications at any of the
sample sizes (N = 20, 40, 60, 100, and 200) wartesstally significant. Thus, having a
medium size of the’ parameter versus complete mediation has no ingattte power
to detect the mediated effect using the Bayesiahodeof coefficients for the parameter,
precision, and sample size combinations examinguisrstudy.

The question of how much increases in precisioreame power will be answered
in two parts. First, increases in power will be@ted as a function of the values of the
precision parameter farandb, which were 18, 10%, 1, 10, and 16. Then, increases

in power will be assessed as a function of increa@serecision equated across sample
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size; that is, increases in power will be evaluasa@ function of the fraction of the true
precision that was encoded in the prior distributio

The findings indicate that increasing precisiorfa&haffects power differently
depending on the sample size and effect size. AR, the increase in power is most
notable for medium values afandb, slightly less pronounced for high valuesaandb,
and non-existent whea=b=0.14 (Figure 7).

- Insert Figure 7 about here -

As can be seen in Table 12, there are notableases in power wheaxrb=0.59
when the precision parameter in the prior has re@eased from o 1¢ and to 16
(this is equivalent to saying that the varianceapeater in the prior foa is decreased
from 1 to 10" and to 13), however, power at N=20 remains below 0.80 rdgasiof

the precision of the priors for regression coedintsa andb.

At N = 40, fora=b=0.59 the power is already above 0.80, regardieg®eo

precision parameter in the prior distribution foe regression coefficients (Table 13).

The pattern of findings is similar to those at I2G; indicating that increases in

the precision parameter (decreases in the varjaa@eneter) produce the steepest
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increases in power for medium effects, some inesaspower for large effects, and no
increases in power for small effects (Figure 8).
- Insert Figure 8 about here -
At N=60 the increases in precision increase pawy for medium effects (Table
14; Figure 9). Large effects already had powerectosl at the lowest value of precision,
and thus there was a ceiling effect of increasgseanision. Small effects show a very

slight increase in power when the precision paramistincreased from 10 to 100.

- Insert Figure 9 about here -

At N = 100 the ceiling effect of increases in psean on power is still present for
large effects, and is starting to occur for medeffects as well, although atb=0.39
power still increases when the precision paramstexised from 1 to 10 to 100 (Figure
10).

At N = 200 the ceiling effect of increases in psgmn on power occurs for both
medium and large effects (Figure 11). At N = 208 dinly conditions where power
increases are ones whereb=0.14, and this only occurs when the precisionipatar is
increased from 10 to 100. Figures 10-11 and Tal#es6 show that power for medium
and large effects is almost 1 when N = 100, and 280s, the benefits of increasing
precision for N=100, and 200 are not notable givet power is either already
satisfactory (for medium and large effect sizesgannot be increased above 0.40 with
the changes in the precision of the prior distitufor eithera orb.
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- Insert Figures 10 and 11 about here —

Figures 12 and 13 shows the relationship of powéiné fraction of the true
precision ofa andb in the prior distribution, and are useful for exammg how power
increases with increases in precision equated sis@sple sizes. The plots for the two
coefficients are identical for each effect sizeigating that there are no differential
changes in power depending on whether the inciegsecision occurred for coefficient
a orb. In the discussion of the findings the term “tleficient” refers to botla andb
given that everything that is pointed out in thgufie is true for both coefficients.

- Insert Figures 12 and 13 about here —

When N = 20 foa=b=0.14 a precision parameter that is more than &githe
true precision of the coefficient still producesinoreases in power. When N = 40 and 60
the increases in power for small effect si@eh=0.14) are very small even when the
precision parameter is greater than the true poecaf the coefficient. However, for
small effects and N = 100 and 200 an increaseaittibm of true precision does lead to
notable increases in power. Thus, depending opshado-sample size in the prior
(which with the observed sample size in the datls agh to the pseudo-sample size of the
posterior) increasing the fraction of true preasod the coefficient may not lead to

substantial increases in power for small effectessithe sample size is at least 100.
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At medium effect sizesaEb=0.39) power noticeably increases with increases in
the fraction of true precision. At N = 100 and Z0@a=b=0.39 power is already high,
and there is no room for it to increase drastically

At large effect sizesaEb=0.59) increases in fraction of true precision picalthe
greatest benefits at N = 20. The changes in poordafge effects become smaller and

smaller as sample size increases, reaching ageitfact at N = 100.

Discussion

The most notable finding in Study 3 is that fortag combinations of parameter
values and sample size, increasing the precisicanpeter of the prior distribution by a
factor of 10 of eithea or b can have almost no impact on power. For smalteffand
small sample sizes, and for large effects and sasipés of at least 100 there are almost
no changes in power as a consequence of increh@myecision parameter.

When looking at how the precision in the prioratated to the true precision of
the parameter (which is unknown to the researchad,the extent to which prior
precisions larger than the true precision of thefftment lead to more power, the
conclusion is similar: increases in precision reato the true precision may not always
lead to noticeable increases in power. The findfogshe combinations of parameter
values, precision values, and sample sizes irstb@dy indicate that increases in precision
lead to greater power only when the sample sia¢ lsast 100 and the effects are small,
when sample size is below 60 and the effects age Jand the most notable increases in

power were when N<200 and the effects are medium.
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CHAPTER 6
EMPIRICAL EXAMPLE

The data for the empirical example come from aystfdnemory for words
conducted at a large university in the southwedthmited States. The same experiment
was conducted twice, and the data from the two xygats are referred to as Year 1 and
Year 2. In both experiments, students were insdith either make images for words or
repeat them (X), and were subsequently asked a@bew@ixtent to which they made
images for the words (M). The dependent variable manber of words recalled (Y).
There were 44 participants in the Year 1 experimamd 42 participants in the Year 2
experiment.

For the empirical example, interval estimates efriiediated effect for the Year 2
data were computed using the eight methods evauat8tudy 2: normal theory
confidence limits, distribution of the product ca@nce limits, Bayesian method with
diffuse normal priors for the regression coeffitgwith a mean of 0 and variance of 10
Bayesian method with informative prior distributsofor the regression coefficients
(using the information from the Year 1 experimeBgyesian method with a diffuse prior
distribution for the covariance matrix of X, M, aid Bayesian method with an
informative prior distribution for the covarianceatnx of X, M, and Y (using the
information from the Year 1 experiment), percentiotstrap, and bias-corrected
bootstrap. The informative prior distributions the Bayesian method of coefficients
were based on the observed regression coefficgentsheir standard errors. Each
regression coefficient was assigned a normal jliggribution with the observed
coefficient from the Year 1 data as the mean patante= 3.558 b= 0.614 c¢’= 0.332)
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and their standard errors as the standard devipicameters of the normal prior
distributions (0.689, 0.614, 1.292, respectiveBrecision parametetgy ands?y were
modeled as inverse-gamma distributions with shapldraverse-scale parameters equal to
.01 (so that the expectation of this distributisrl). The informative prior distributions

for the method of covariances were a multivariatemwal prior with observed means for
X, M, and Y (0.454, 6.159, 13.227, respectivelyjlsmean parameter, and the
observed covariance matrig= 10.909,5¢=, sxv= 38.818 5= 355.8865uy= 231.4009,
= 607.727) as the covariance parameter. The cowaimatrix was assigned an
inverse Wishart prior distribution with 44 degredégreedom and the observed sums of
squares and cross-products as the scale matrimptea Estimates for all methods
except Bayesian methods with informative priorradisttions have then been computed
using the combined data from Year 1 and Year 2.prloe distributions for the Bayesian
methods with diffuse priors were identical in tivstfand in the second analysis. Table 17

contains the results for all the methods and fah lsamples.

According to the normal theory confidence limitsthanfinite samples, 95% of
the confidence intervals will contain the true \&abf the mediated effect. Normal theory
confidence limits using the Year 2 sample alone2ar® and 10.39, and with both the
Year 1 and 2 samples the limits are 2.36 and ®J8ihg the distribution of the product, it
was found that the mediated effect for the YeaarB e lies between 2.78 and 10.50,
while the mediated effect for both Year 1 and 2 glasilies between 2.44 and 5.90, with
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95% confidence. The results of the Bayesian metli@defficients with diffuse prior
distributions for regression coefficients yield adrated effect between 2.78 and 10.55
with 95% probability for the Year 2 sample, and edmated effect between 2.42 and 6.22
for the combined sample. For the Bayesian methald wiormative prior distributions

for regression coefficients and intercepts oneamatiude that the mediated effect lies
between 1.81 and 4.30 with 95% probability. Accogdio the Bayesian method with a
diffuse prior distribution for the covariance mafrihere is 95% probability that the
mediated effect lies between 2.56 and 7.70 foiytbar 2 sample, and 95% probability
that the mediated effect lies between 2.21 and fa2the combined sample. With prior
information from Year 1, the findings using the Bayan method of covariances indicate
that the mediated effect lies between 2.08 and Wi8595% probability. The percentile
bootstrap results show that with 95% confidence niediated effect for the Year 2
sample alone lies between 4.08 and 10.24, whilenthdiated effect for the combined
sample lies between 0.64 and 3.78. The 95% biasaed bootstrap limits for the Year
2 sample are 4.14 and 10.40, and for the combiaexbke the limits are 0.68 and 3.98.
None of the intervals contain the value of O, tthesmediated effect is statistically
significant according to all methods. In the anatysf the Year 2 sample alone, the
Bayesian methods with informative priors for batlgnession coefficients and the
covariance matrix have the smallest interval winlth of all methods. Combining data
from the two years produced narrower interval estés for all methods that did not

incorporate prior information from Year 1 into thealysis.
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CHAPTER 7
SUMMARY AND CONCLUDING DISCUSSION
The general goal of the project was to evaluatd#refits of using prior information
in the interval estimation of the mediated effddte discussion of the project will begin
with a summary of the findings from the three stsdifollowed by the fit with earlier
literature, and the limitations of the project. Textion will conclude with future

directions for research in interval estimation gddayesian mediation.

Summary of Results

It was hypothesized that Bayesian methods withrimédive prior distributions
would have coverage closer to the nominal levél.85, a Type | error rate closer to the
nominal level of 0.05, imbalance closer to 0, higkmpirical power, and lower interval
width than Bayesian methods with diffuse prior ilgttions, normal theory confidence
limits, distribution of the product confidence lissi percentile bootstrap confidence
limits, and bias-corrected bootstrap confidencétéinStudy 1 was designed to test this
hypothesis, however, due to the errors in the sitrar, only a partial answer was
available. The most important finding from Studig that the variance of the prior
distributions for regression coefficierdsandb plays a big role in the performance of the
Bayesian method of coefficients. If the variancéhef prior distributions is too large and
thus the prior distribution too diffuse, then Bag@smethods with mean parameters in
the prior distributions equal to the true valudhed regression coefficient do not have
coverage closer to the nominal level of 0.95, Tlypeor rate closer to the nominal level

of 0.05, imbalance closer to 0, higher empiricakpg and lower interval width than
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Bayesian methods with diffuse prior distributioneymal theory confidence limits,
distribution of the product confidence limits, pemtile bootstrap confidence limits, and
bias-corrected bootstrap confidence limits.

Study 2 was designed to examine additional methwatsvere absent from Study
1, and to examine the effect of a lower varianaampater in the prior distribution for
regression coefficiensandb. Bayesian methods with informative prior disttibas in
Study 2 examined how Bayesian credibility interyagdsform with prior information that
was the true parameter value and standard errait &t parameters of interest. The
findings indicate that with true values for thegraeters in the prior distribution,
Bayesian methods with informative prior distribuigochave higher power, lower interval
width, and less imbalance than Bayesian methodsdiftuse priors and frequentist
methods.

Study 3 was designed to evaluate whether usingesalther than the true
variance in the prior distribution for regressiarefficients in the Bayesian methods of
coefficients still leads to increases in power careg to using a diffuse prior
distribution. It was also hypothesized that incnegishe precision parameter in the prior
distribution of coefficient and increasing the precision parameter in the prio
distribution of the coefficieriv can have different effects on power. The findimgsrf
Study 3 indicate that power of the Bayesian créditianterval increases with the
increase in precision of the prior distributionf that the extent to which power increases
depends on the size of coefficieatandb, and the sample size. It was found that

Bayesian methods with informative prior distribuisoare a promising way to increase
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power in samples smaller than 100, but the increapewer for a tenfold increase in the
prior precision parameter of eith@or b may not always be substantial.

Overall, the findings from the three studies intkdhat Bayesian methods are a
promising way of improving interval estimates oé tmediated effect when pertinent and
accurate prior information is available. With naopinformation and diffuse prior
distributions, Bayesian methods perform as wethagpercentile bootstrap and the

distribution of the product.

Fit with Earlier Literature

The findings of this study replicate prior findintjgt the bias-correct bootstrap
has excessive Type | error rates in some condiamasthat the distribution of the
product can have coverage above the nominal Ov@5 (Eritz, Taylor & MacKinnon,
2012; MacKinnon, Lockwood & Williams, 2004; MacKion, Lockwood, et al., 2002).
The findings that the bias-corrected bootstrapdtightly higher power than the
distribution of the product and the percentile lstraip are also consistent with earlier
work (MacKinnon, Lockwood & Williams, 2004), and sothe finding that normal
theory confidence limits have smaller interval withan other methods (Preacher &
Selig, 2012). The new insights gained from thislgtare that given enough prior
information, the Bayesian method of coefficientsiév and MacKinnon, 2009) and the
Bayesian method of covariances (Enders, Fairchida&Kinnon, 2013) can have power
as high or greater than the bias-corrected boeptstithout having inflated Type | error
rates in some conditions. Furthermore, it was foilnadl with no available prior

information, the Bayesian methods still perforrnadl as the distribution of the product
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and the percentile bootstrap, and that Bayesiahadstare always a better choice in

terms of power than the normal theory confidencetd.

Limitations

The interval estimates obtained using Bayesian oakstin this study were central
credibility intervals, not highest posterior depsittervals. Central credibility intervals
are formed by taking the’2" and (1e/2)" percentiles of the posterior distribution that
will produce the (1&)% credibility interval. Highest posterior densityervals are
obtained by taking the (@)% area of the posterior distribution that hashighest
probability density and subsequently determinirguhlues of the parameter that
correspond to the lower and upper limit. Highesttpoor density intervals have the
characteristic that the density within the interigahever lower than the density outside
the interval (Gelman, Carlin, Stern, & Rubin, 200@gntral credibility interval limits
and highest posterior distribution credibility intal limits are identical for symmetrical
distributions. However, the mediated effect follave distribution of the product, which
is skewed and kurtotic (Lomnicki, 1967; Springeff&ompson, 1966; Craig, 1936). This
would cause the central credibility limits fab to be different from the highest posterior
density limits forab (Gelman, Carlin, Stern, & Rubin, 2004). The pariance of
Bayesian highest credibility intervals relativeftiequentist methods might be different
than the performance of central credibility intdsvieelative to frequentist methods.
Preliminary work comparing the high posterior dgnsitervals to the central credibility
intervals for the mediated effect for a limited ruen of conditions suggest that they are

similar.
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Another limitation of Study 2 is that the priosttibutions for error precisions of
variables M and Y in the informative case of they&aan method of coefficients were
non-informative as in the noninformative case. Tibathe specification of the gamma
distributions for the error precisions of M and én& identical for the diffuse and
informative cases, and consisted of a gamma disitoi with the expectation of 1. It is
possible that encoding prior information for theoeiprecision parameters of M and Y
could have increased power and coverage, and dectdgpe | error rate, interval width,
and imbalance of the Bayesian method of coeffisienth informative prior

distributions.

Future Directions

Sometimes the necessary prior information for tage8ian method of coefficients is
not available even though the phenomenon has glte2eh studied. This study assumed
prior information about tha andb paths was available, but this may not always be the
case. The articles in the literature may only repstimates of the mediated effect and
one (or neither) of the paths. In that case, aareber would want to incorporate the
knowledge/intuition about mediated effect by spgod a prior distribution for the
productab. The method for specifying a prior fab has not yet been developed. Even if
specifying prior information abouatb, the researcher would have to specify a prior for
one of the regression coefficients as well (everifntuition or information was
available and the only choice was a uniform praorging from so to o), which would
determine the prior of the remaining regressiorffment as the prior for the mediated

effect divided by the prior for the other coefficieFor example, for the mediated effect
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abthe researcher might specify a prior distributionwhich the range of the reported
mediated effects in the literature has the highesbability, and a uniform prior with a
wide range may be chosen for thpath; these two specifications automatically caistr

the prior for theb path because = a_b' This method is more complex than the one

a
proposed by Yuan and MacKinnon (2009). Alternatiyée literature on a topic may
contain the covariance matrix and sample size fpognious studies, but not the values
of aorb, in which case the researchers can use the mstiggpbsted by Enders,
Fairchild, and MacKinnon (2013).

The studies in this project mark a beginning oflexpg how Bayesian methods can
be used to improve interval estimation in mediatimrdels. Findings thus far indicate
that Bayesian methods are a promising way to isereawer and reduce interval width
in the single mediator model, however, these benafe highly dependent on the value
of the variance (or precision) parameter of theruistribution. Future studies will
examine ways to optimize Bayesian mediation forsingle mediator model and will

extend the application of Bayesian statistics tale®with multiple mediators.
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Table 1

Average Type | error rate for N=20, 40, 60, 100d&®00 for normal theory, Bayesian method of
coefficients with diffuse priors, Bayesian methbdaefficients with informative priors,
percentile bootstrap, and bias-corrected bootstiraprval estimates in Study 1 (note: Type |
error is not observable when both a and b are nero)

Method
Sample Size normal YMdiff YMinfo PercBoot BCBoot
n=20 0.007 0.016 0.016 0.024 0.044
n=40 0.008 0.017 0.017 0.027 0.050
n=60 0.011 0.026 0.026 0.030 0.051
n=100 0.019 0.052 0.053 0.036 0.054
n=500 0.030 0.044 0.044 0.041 0.054

Table 2

Average Power for N=20, 40, 60, 100, and %@0normal theory, method of coefficients with
diffuse priors, method of coefficients with infotiva priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Studpdi€: Power is not observable when either a or
b is zero).

Method
Sample Size normal YMdiff YMinfo PercBoot BCBoot
n=20 0.076 0.111 0.111 0.137 0.207
n=40 0.235 0.285 0.285 0.320 0.384
n=60 0.371 0.433 0.432 0.441 0.494
n=100 0.512 0.544 0.544 0.562 0.597
n=500 0.895 0.909 0.910 0.916 0.929

Table 3

Average Coverage for N=20, 40, 60, 100, and 50(htomal theory, Bayesian method of
coefficients with diffuse priors, Bayesian methbdaefficients with informative priors,
percentile bootstrap, and bias-corrected bootstrgprval estimates in Study 1.

Method
Sample Size normal YMdiff YMinfo PercBoot BCBoot
n=20 0.962 0.971 0.970 0.958 0.939
n=40 0.963 0.966 0.966 0.957 0.940
n=60 0.962 0.957 0.958 0.956 0.942
n=100 0.958 0.940 0.940 0.954 0.942
n=500 0.957 0.948 0.948 0.953 0.947

Table 4

Average Interval Width for N=20, 40, 60, 100, ar for normal theory, method of coefficients
with diffuse priors, method of coefficients witformative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 1.
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Method

Sample Size normal YMdiff YMinfo PercBoot BCBoot
n=20 0.461 0.546 0.546 0.533 0.551
n=40 0.325 0.366 0.366 0.352 0.362
n=60 0.265 0.290 0.290 0.282 0.289
n=100 0.190 0.193 0.193 0.197 0.200
n=500 0.081 0.083 0.083 0.082 0.082
Table 5

Average Imbalance for N=20, 40, 60, 100, and 50fomal theory, method of coefficients with
diffuse priors, method of coefficients with infotiwe priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 1.

Method
Sample Size normal YMdiff YMinfo PercBoot
n=20 0.029 0.012 0.012 0.017
n=40 0.026 0.013 0.014 0.016
n=60 0.026 0.014 0.014 0.014
n=100 0.022 0.028 0.028 0.010
n=500 0.011 0.005 0.004 0.005

Table 6

Average Type | error rate for N=20, 40, 60, 100d&®00 fornormal theory, distribution of the
product, Bayesian method of coefficients with défpriors, Bayesian method of coefficients
with informative priors, percentile bootstrap, abihs-corrected bootstrap interval estimates
for 13 combinations of a, b, and ¢’ in Study 2.

Method

Sg?;ngle norm prod YMd YMi EFMd EFMi  PercBoot BCBoot

n=20 0.005 0.017 0.009 0.004 0.008 0.002 0.020 70.03
n=40 0.007 0.025 0.020 0.005 0.015 0.002 0.028 80.04
n=60 0.008 0.019 0.018 0.003 0.014 0.002 0.021 20.04
n=100 0.014 0.027 0.026 0.002 0.027 0.003 0.032 460.0
n=200 0.024 0.037 0.038 0.005 0.040 0.006 0.039 520.0

Table 7

Average Power for N=20, 40, 60, 100, and 200normal theory, distribution of the product,
Bayesian method of coefficients with diffuse pri@ayesian method of coefficients with
informative priors, percentile bootstrap, and bie@rected bootstrap interval estimates for 13
combinations of a, b, and c’in Study 2.

Method
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Sample  orm  prod  YMd  YMi  EFMd  EFMi  PercBoot BCBoot

Size
n=20 0.090 0.162 0.113 0.390 0.123 0.383 0.149 60.21
n=40 0.289 0.379 0.355 0.577 0.353 0.580 0.371 60.43

n=60 0.424 0.501 0.486 0.621 0.478 0.611 0.497 80.54
n=100 0.571 0.613 0.604 0.709 0.605 0.742 0.615 440.6
n=200 0.676 0.717 0.717 0.914 0.739 0.919 0.717 530.7

Table 8

Average Coverage for N=20, 40, 60, 100, and btormal theory, distribution of the
product, Bayesian method of coefficients with défpriors, Bayesian method of coefficients
with informative priors, percentile bootstrap, abis-corrected bootstrap interval estimates
for 13 combinations of a, b, and c¢’in Study 2.

Method
Sg?;g'e noom prod YMd YMi EFMd EFMi PercBoot BCBoot
n=20 0.953 00965 00973 0994 0965 0997 00956  50.94
n=40 0.957 0963 0971 0994 0968 0996 00955  40.94

n=60 0.952 0.964 0.965 0.995 0.967 0.996 0.956 10.94
n=100 0.950 0.960 0.963 0.994 0.957 0.995 0.954 4309
n=200 0.949 0.952 0.953 0.993 0.948 0.993 0.951 470.9

Table 9

Average Interval Width for N=20, 40, 60, 100, ari #or normal theory, distribution of the
product, Bayesian method of coefficients with défpriors, Bayesian method of coefficients
with informative priors, percentile bootstrap, abihs-corrected bootstrap interval estimates
for 13 combinations of a, b, and ¢’ in Study 2.

Method

Sg?;g'e noom prod YMd YMi EFMd EFMi PercBoot BCBoot

n=20 0.527 0.598 0.659 0.350 0.513 0.357 0.621 90.64
n=40 0.332 0.359 0.380 0.227 0.342 0.227 0.358 00.37
n=60 0.259 0.274 0.280 0.179 0.265 0.178 0.272 90.27
n=100 0.193 0.201 0.205 0.135 0.191 0.130 0.199 030.2
n=200 0.133 0.136 0.137 0.093 0.130 0.094 0.135 370.1

Table 10

Average Imbalance for N=20, 40, 60, 100, and 20ymal theory, distribution of the
product, Bayesian method of coefficients with défpriors, Bayesian method of coefficients
with informative priors, percentile bootstrap, abihs-corrected bootstrap interval estimates
for 13 combinations of a, b, and c’in Study 2.

Method
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Sg?;g'e noom prod YMd YMi EFMd EFMi PercBoot BCBoot

n=20 0.038 0.014 0.015 0.002 0.028 0.001 0.020 60.01
n=40 0.032 0.009 0.008 0.002 0.019 0.002 0.015 00.01
n=60 0.037 0.013 0.014 0.003 0.022 0.002 0.017 2.01
n=100 0.035 0.011 0.011 0.002 0.023 0.001 0.012 090.0
n=200 0.027 0.010 0.012 0.002 0.012 0.004 0.011  040.0

Table 11
The fractions of true precision values of a and bbtain the simulated values of precision
parameters in prior distributions for a and b.

prec@) prec)

N 102 10t 10 10" 10° 10° 10t 10 10 10°

20 0.001 0.006 0.056 0.556 5.556 0.000 0.006 0.09%88 5.882
40 0.000 0.003 0.026 0.263 2.632 0.000 0.003 0.00270 2.703
60 0.000 0.002 0.017 0.172 1.724 0.000 0.002 0.007175 1.754
100 0.000 0.001 0.010 0.102 1.020 0.000 0.001 0.000103 1.031
200 0.000 0.000 0.005 0.050 0.505 0.000 0.000 0.00%51 0.508

Table 12

Power for N=20 for the Bayesian method of coeffitidor conditions in which the precision in
the prior for b set to 18 and the precision in the prior for a equal to4a0*, 1¢, 10", 10,
followed by the conditions in which the precisioritie prior for a was set to f0and the
variance in the prior for b equal to £010%, 1, 10}, 1¢in Study 3.

Condition

Prior Precd) Prior Predp)

a b ¢ 10° 108 1@ 10 1¢¢ 102 10t 1@ 10 107

14 14 0 0.003 0.003 0.003 0.002 0.005 0.003 0.003 0.008020 0.002
39 39 0 0.078 0.081 0.113 0.134 0.32 0.079 0.078 0.102 90.13.338
59 59 0 0354 0.374 0428 0.564 0.631 0.357 0.353 0.42 40.98.663
14 .14 .39 0.003 0.004 0.002 0.001 0.006 0.003 0.003 0.004030.00.004
39 .39 .39 0.083 0.086 0.097 0.147 0.369 0.088 0.081 0.099520.10.345
59 .59 .39 0.348 0.363 0.394 0.561 0.627 0.349 0.35 0.383 20.58.665

Table 13

Power for N=40 for the Bayesian method of coeffitidor conditions in which the precision in
the prior for b set to 18 and the precision in the prior for a equal to400", 1¢, 10", 10,
followed by the conditions in which the precisioritie prior for a was set to f0and the
variance in the prior for b equal to £010%, 1, 10}, 1¢in Study 3.
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Condition

Prior Precd) Prior Predp)

a b ¢ 10* 100 1 100 1¢ 10* 10 1@ 10 1C
14 14 0 0.011 0.010 0.010 0.009 0.022 0.011 0.013 0.007 0.010 0.017
39 39 0 0.357 0.353 0.378 0.469 0.625 0.350 0.345 0.379 0.446 0.633
59 59 0 0.860 0.870 0.860 0.914 0.926 0.860 0.845 0.871 0.912 0.917
14 .14 .39 0.007 0.008 0.006 0.011 0.020 0.007 0.008 0.009 0.008 0.018
.39 .39 .39 0.369 0.371 0.383 0.464 0.606 0.368 0.359 0.389 0.461 0.635
59 59 .39 0.857 0.859 0.870 0.917 0.915 0.856 0.844 0.873 0.914 0.918
Table 14

Power for N=60 for the Bayesian method of coeffitidor conditions in which the precision in
the prior for b set to 18 and the precision in the prior for a equal to4a0", 1¢, 10", 10,
followed by the conditions in which the precisioritie prior for a was set to fpand the
variance in the prior for b equal to £010%, 1, 10}, 1¢in Study 3.

Condition

Prior Precd) Prior Predp)
a b ¢ 102 100 1 10 1¢ 10*® 10* 1@ 10" 107
14 14 0 0.029 0.029 0.032 0.025 0.036 0.029 0.028 0.034 0.014 0.036
39 39 0 0.675 0.676 0.660 0.712 0.828 0.673 0.676 0.700 0.718 0.789
59 59 0 0.970 0.974 0.972 0.986 0.982 0.969 0.971 0.965 0.992 0.986
14 .14 .39 0.016 0.018 0.017 0.016 0.044 0.018 0.018 0.020 0.026 0.042
39 .39 .39 0.679 0.673 0.664 0.713 0.817 0.670 0.670 0.698 0.728 0.817
59 59 .39 0.969 0.970 0.970 0.982 0.983 0.970 0.967 0.963 0.980 0.993
Table 15

Power for N=100 for the Bayesian method of coedfits for conditions in which the precision in
the prior for b set to 18 and the precision in the prior for a equal to4a0*, 1¢, 10", 10,
followed by the conditions in which the precisioritie prior for a was set to fpand the
variance in the prior for b equal to 7010", 1, 10, 1¢in Study 3.

Condition
Prior Precd) Prior Predp)
a b ¢ 102 10" 1@ 100 10 10° 10t 1@ 10 10
Jd4 14 0 0.046 0.048 0.052 0.058 0.117 0.046 0.046 0.051550.00.098
39 39 0 0917 0916 0.916 0.939 0.967 0.918 0.915 0.927600.90.964
59 59 0 0.999 0.999 0.999 0.999 1.000 0.999 0.999 0.999 1.000 1.000
14 .14 .39 0.047 0.046 0.045 0.061 0.102 0.049 0.047 0.047480.00.122

e



39 .39 .39 0.911 0.911 0.913 0.922 0.946 0.910 0.913 0.923440.90.961
59 59 .39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000001.01.000

Table 16

Power for N=200 for the Bayesian method of coedfits for conditions in which the precision in

the prior for b set to 18 and the precision in the prior for a equal to4a0*, 1¢, 10", 10,

followed by the conditions in which the precisioritie prior for a was set to fpand the
variance in the prior for b equal to £010%, 1, 10}, 1¢in Study 3.

Condition
Prior Precd) Prior Predf)

a b ¢ 10 100 1 100 1¢ 10* 10 1@ 10 1CF
A4 14 0 0.237 0.24 0.234 0.249 0.323 0.238 0.26231 0.231 0.321
39 39 0 1.000 1.000 1.000 1.000 1.000 1.000 1.00000 0.999 1.000
59 59 0 1.000 1.000 1.000 1.000 1.000 1.000 1.00000 1.000 1.000
A4 14 .39 0.217 0.216 0.217 0.214 0.290 0.21720.20.219 0.204 0.300
39 .39 .39 1.000 1.000 1.000 1.000 1.000 1.000001.00.999 0.999 0.998
59 59 .39 1.000 1.000 1.000 1.000 1.000 1.000001.01.000 1.000 1.000
Table 17

Interval estimates for the indirect effect of makimages for words versus repeating words(X)
on the number of words recalled (Y) through imag&ty computed using the eight methods

evaluated in Study 2.

Method

95% CI Year

2

95% Cl Years 1 and 2

data data
Normal theory [2.70, 10.39] [2.36, 5.81]
Distribution of the product [2.78, 10.50] [2.44, 5.90]
Bayesian method of coefficients with diffuse [2.78,10.55] [2.42, 6.22]
priors
Bayesian method of coefficients with [1.81, 4.30] -
informative priors
Bayesian method of covariances with diffuse [2.65, 7.70] [2.21, 5.28]
priors
Bayesian method of covariances with [2.08, 5.55] -
informative priors
Percentile bootstrap [4.08, 10.24] [0.64, 3.78]
Bias-corrected bootstrap [4.14, 10.40] [0.68, 3.98]
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Figure 1.Trellis plot of Type | error rate for all methodsd all parameter combinations
as a function of sample size in Study 2. The lettarkers indicate the following: D
(distribution) codes normal theory (gray solid )iéd distribution of the product (black
solid line) confidence limits, Y (Yuan & MacKinno8009) codes credibility intervals
formed using the Bayesian method of coefficienth wiffuse (gray dashed line) and
informative (black dashed line) prior distributiois(Enders, Fairchild, and MacKinnon,
2013) codes credibility intervals formed using Bayesian method of covariances with
diffuse (gray dotted line) and informative (blaakttgd line) distributions, and B
(bootstrap) codes the percentile (gray dot-das) lamd bias-corrected (black dot-dash
line) bootstrap confidence limits.
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Figure 2.Trellis plot of Power for all methods and all paeter combinations as a
function of sample size in Study 2. The letter neaskindicate the following: D
(distribution) codes normal theory (gray solid )ieed distribution of the product (black
solid line) confidence limits, Y (Yuan & MacKinno8009) codes credibility intervals
formed using the Bayesian method of coefficienth wiffuse (gray dashed line) and
informative (black dashed line) prior distributios(Enders, Fairchild, and MacKinnon,
2013) codes credibility intervals formed using Bayesian method of covariances with
diffuse (gray dotted line) and informative (blaakttgd line) distributions, and B
(bootstrap) codes the percentile (gray dot-das) lamd bias-corrected (black dot-dash
line) bootstrap confidence limits.
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Figure 3.Trellis plot of coverage for all methods and atgmeter combinations as a
function of sample size in Study 2. The letter neaskindicate the following: D
(distribution) codes normal theory (gray solid )im@d distribution of the product (black
solid line) confidence limits, Y (Yuan & MacKinno8009) codes credibility intervals
formed using the Bayesian method of coefficienthwiffuse (gray dashed line) and
informative (black dashed line) prior distributiois(Enders, Fairchild, and MacKinnon,
2013) codes credibility intervals formed using Begesian method of covariances with
diffuse (gray dotted line) and informative (blacitted line) distributions, and B
(bootstrap) codes the percentile (gray dot-das) Bmd bias-corrected (black dot-dash
line) bootstrap confidence limits.
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Figure 4.Trellis plot of interval width for all methods amadl parameter combinations as
a function of sample size in Study 2. The letterkaes indicate the following: D
(distribution) codes normal theory (gray solid )iéd distribution of the product (black
solid line) confidence limits, Y (Yuan & MacKinno8009) codes credibility intervals
formed using the Bayesian method of coefficienth wiffuse (gray dashed line) and
informative (black dashed line) prior distributios(Enders, Fairchild, and MacKinnon,
2013) codes credibility intervals formed using Bayesian method of covariances with
diffuse (gray dotted line) and informative (blaakttgd line) distributions, and B
(bootstrap) codes the percentile (gray dot-das) lamd bias-corrected (black dot-dash
line) bootstrap confidence limits.
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Figure 5.Trellis plot of imbalance for all methods and@drameter combinations as a
function of sample size in Study 2. The letter neaskindicate the following: D
(distribution) codes normal theory (gray solid )imed distribution of the product (black
solid line) confidence limits, Y (Yuan & MacKinnoB009) codes credibility intervals
formed using the Bayesian method of coefficienthwiffuse (gray dashed line) and
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(bootstrap) codes the percentile (gray dot-das) Bmd bias-corrected (black dot-dash
line) bootstrap confidence limits.
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Figure 6

Average Power for Bayesian methods
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Figure 6.Plot of power for the four Bayesian methods asnetion of sample size in
Study 2; the dashed line with the letter markei¥gn and MacKinnon, 2009)
represents the Bayesian method of coefficients @iftase prior distributions, the solid
line with the letter marker Y (Yuan and MacKinn@®09) represents the Bayesian
method of coefficients with informative prior distions, the dashed line with the letter
marker E (Enders, Fairchild, and MacKinnon, 20Epresents the Bayesian method of
covariances with diffuse prior distributions, ahé solid line with the letter marker E
(Enders, Fairchild, and MacKinnon, 2013) represtmsBayesian method of
covariances with informative prior distributions.
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Figure 7

Power as a function of precisionaandb
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Figure 7.Plot of power for the method of coefficients dsiraction of the precision
parameter in the prior distributions f@andb for N=20 in Study 3; the six lines
represent six combinations of effect size. The nemmbarkers represent the different
combinations of parameter values &t,andc’, and the three line types code for the
different magnitudes of the mediation pa#tendb: solid (small), dash (medium), and
dot (large).

Figure 8

Power as a function of precisionaandb
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Figure 8.Plot of power for the method of coefficients dsiraction of the precision
parameter in the prior distributions f@andb for N=40 in Study 3; the six lines
represent six combinations of effect size. The nemmbarkers represent the different
combinations of parameter values &t,andc’, and the three line types code for the
different magnitudes of the mediation pa#tendb: solid (small), dash (medium), and
dot (large).
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Figure 9

Power as a function of precisionaandb
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Figure 9.Plot of power for the method of coefficients dsiraction of the precision
parameter in the prior distributions f@andb for N=60 in Study 3; the six lines
represent six combinations of effect size. The nemmbarkers represent the different
combinations of parameter values &t,andc’, and the three line types code for the
different magnitudes of the mediation pa#tendb: solid (small), dash (medium), and
dot (large).

Figure 10

Power as a function of precisionatndb
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Figure 10.Plot of power for the method of coefficients dsiaction of the precision
parameter in the prior distributions faandb for N=100 in Study 3; the six lines
represent six combinations of effect size. The nemmbarkers represent the different
combinations of parameter values &,andc’, and the three line types code for the
different magnitudes of the mediation pastendb: solid (small), dash (medium), and
dot (large).
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Figure 11

Power as a function of precisionaandb
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Figure 11.Plot of power for the method of coefficients dsiaction of the precision
parameter in the prior distribution farandb for N=200 in Study 3; the six lines
represent six combinations of effect size. The nemmbarkers represent the different
combinations of parameter values &,andc’, and the three line types code for the
different magnitudes of the mediation pastendb: solid (small), dash (medium), and
dot (large).

Figure 12
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Figure 12.Trellis plot of empirical power for the Bayesiartiod of coefficients for all
sample sizes and all parameter combinations ascidn of fraction of true precision of
parametea in Study 3. The line types and number and lettarkers indicate the sample
size: the number 2 and the solid line stand for 20=the number 4 and the dashed line
stand for N = 40, the number 6 and the dottedditaed for N = 60, the letter H and the
dot-dash line stand for N = 100, and the lettend #ne long-dash line stand for N = 200.
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Figure 13.Trellis plot of empirical power for the Bayesiartiod of coefficients for all
sample sizes and all parameter combinations ascidn of the fraction of the true
precision of parametdrin Study 3. The line types and number and lettarkers
indicate the sample size: the number 2 and thd 8ok stand for N = 20, the number 4
and the dashed line stand for N = 40, the numlzerdbthe dotted line stand for N = 60,
the letter H and the dot-dash line stand for N 8, Hhd the letter T and the long-dash
line stand for N = 200.
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APPENDIX A

DOCUMENT NOTATION
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/uc‘

1-B

Type | error, the rate at which a test incorreidkentifies the presence of a

significant effect when no effect is present.

Type Il error, the rate at which a test failsitalfan effect that is truly
present.

Sums of squares and cross-products of the inWrsleart prior
distribution.

Covariance matrix.

Covariance matrix from a prior study.

Population value of the parameter of interest.

Sample estimate of the parameter of interest.

Estimate of the parameter of interest followingaamsformation in
percentile bootstrap.

Mean of the prior distribution for coefficieat

Mean of the prior distribution for coefficieht

Mean of the prior distribution for coefficieat

True variance of M.

True variance of Y.

Population error variance from the equation witpr¥dicting Y.

Population error variance from the equation witpr¥dicting M for the
single mediator model.

Population error variance from the equation withil M predicting Y
for the single mediator model.

Power, a test’s ability to detect an effect whareffect is truly present.
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a»

(@ pp)

Np
n

p-value
P(o)
p(data | 8)
p(f | data)
p(data)

Sab

ab

Population path coefficient representing relatop between X and M.
Sample path coefficient representing relationgigpveen X and M.

Population path coefficient representing relatip between M and Y.

Sample path coefficient representing relationgi@pveen M and .
Population path coefficient representing relalop between X and Y.

Population path coefficient representing relatiopdetween X and Y
controlling for M in the single mediator model.

Degrees of freedom parameter of the inverse Wiginant distribution.

Sample error variability in the mediation regres®quations.
Population intercept in the mediation regressiquations.

Mediator in the single mediator model.

Shape parameter of the Inverse-gamma distribution.
Sample size.

Sample size from a prior study.

Scale parameter of the Inverse-gamma distribution
Significance level of a statistical test.

Prior distribution for a parameter of interest.
Sampling distribution of the data given the pareane
Posterior distribution of a parameter of interest.
Normalizing constant in Bayes’ theorem.

Multivariate delta standard error for the singiediator model.

Sample multivariate delta standard error fordimgle mediator model.
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sd

Sy
Sk

Z0:/2

Zlfa 12

Standard deviation of a distribution.

Population variance of M.

Population covariance of M and Y.
Population covariance of X and M.
Population covariance of X and Y.

Population variance of X.

Normalizing transformation of a sample estimateluse percentile
bootstrap.

Inverse Wishart distribution.
Independent variable.

Dependent variable.
Thez value that corresponds to the proportion of tithesbootstrap
estimate exceeds the observed sample estimtie parameter of

interest.

Value of z corresponding to the 2.5th percentidmpof the standard
normal distribution when = 0.05, with a value df96.

Value ofz corresponding to the 97'%ercentile point of the standard
normal distribution wher® = 0.05, with a value of 1.96.
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APPENDIX B
EQUATING PRIOR DISTRIBUTIONS FOR REGRESSION COEFH®BITS WITH THE

PRIOR DISTRIBUTIONS FOR THE COVARIANCE MATRIX
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The purpose of this appendix is to show the diagithmetic correspondence between the
method of coefficients and the method of covarianGven the information for the regression
coefficients and error variances of M and Y, ipassible to calculate the values of the elements
of the covariance matrix of X, M, and Y, and vieasa. The equations below outline the
relationships between the parameters in the mathodefficients and the parameters in the
method of covariances.

Equations in the method of coefficients:

X=X
M =aX+e,
Y=bM+c'X+eg,

Variance-Covariance Matrix of X, M, and Y:

Var(X)
Cov(X,M)Var(M)
| Cov(X,Y)Cov(M,Y)Var(Y) |

Expressing the model parameters in variance andriamce terms from MacKinnon (2008) on
pages 86-89:

5= CoV(X, M)
- Var(X)
Var(M)_Cov(X,M)Z
o2 = Var(X)
o (N —1)Var(X)

b Co\M,Y)Var(X)—-Co\¥X,M)Co\(X,Y)
~ VarX)Vaf(M)-Co¥X,M)?
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Var(y) {Cov(M Y)Var(X) - CoyX,M )Cov(x,Y)}/ar(x) ~

Var(X)Var(M) —Coy X,M)?

CoM,Y)Var(X) - CoX,M)Co\ X,Y) ZVar(M)_
Var(X)Var(M) —Coy X,M)?
CovM,Y)Var(X)-Cou X,M)Coy X,Y) | CoyM,Y)Var(X) —CoyX,M)CoV X,Y) Cov(X,M)] 1
2 _ Var(X)Var(M) —Co\yX,M)? Var(X)Var(M) —Co\yX,M)? " var(M)
(N-pa- o0
ar(X)Var(Y)
o CoM, Y)var(X)~CoyX,M)CoyX,Y)
Var(X)VariM)—-Co\X, M)?
_| CoyM,Y)Var(X) - CoyX,M)Co\X,Y) B
Var(¥) { Var(X)Var(M) —CoVX,M)? ar(x)
CoM,Y)Var(X) - CoX,M)Cou X,Y) ZVar(M)_
Var(X)Var(M) —CoVX,M)?
CovM,Y)Var(X)—-Cou X,M)CouX,Y) | CoMM,Y)Var(X)—-Co«X,M)Co\uX,Y) CovX,M)] 1
o2 — Var(X)Var(M) —CoyX,M)? Var(X)Var(M) —CoyX,M)? " var(X)
ar(X)Var(Y)
0% =Va(X)
2 _ B _ CoX,M)?
o: =Var(M)-a*var(X) =Var(M) “Var(x)
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os =Var(Y) -c'Var(X) -b*Var(M) - 2bc Co(X,M) =

CoyM,Y)Var(X)—CoyX,M)CoVu X,Y)
Var(X)Var(M) — Coy X, M)?

Var(Y) —[ ar(X) -

CoM,Y)Var(X) —CoyX,M)Co\V X,Y)
Var(X)Var(M) —CoyX,M)?
CovM,Y)Var(X) —Cou X,M)CoY X,Y) || CoyM,Y)Var(X)—Cou X,M)Co\( X,Y)
Var(X)Var(M) — CoWX,M)? Var(X)Var(M) — Coy X, M)?

} Var(M) —

}COV(X,M)

Expressing the variance and covariance terms instef model parameters:
VafX)=o%
VarM) =aVar(X)+o; +2Co\X,g,)=a’cy +o,

Var(Y) =b*Var(M)+c?Var(X)+o. +2bcCoyM, X) =

b?(a’c% + GSM )+C% ok + O'; +2bcac}

CoyX,M)=ac%

CovM,Y)=CovaX +e,,,bM +c'X +¢,) =abCo( X,M)+acVar(X) =
a’bol +ac o}

CovX,Y)=CoUX,bM +c'X +e,) =bCo(X,M) +c'Var(X) =

bacs +c'o}

The difference in the two specifications of priggtdbutions lies in how X is modeled. In
the method of coefficients, X is not modeled aaradlom variable, and consequently does not
have a prior or posterior distribution. In the nuetlof covariances, X is treated as a random
variable, and the variance of X and the covarian¢eswith M and Y have prior and posterior
distributions. Thus, even though there is an argtiercorrespondence between the two methods,

they may not be conceptually and numerically edaimMan the Bayesian framework.
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In the case of prior distributions, it is possitdeencode the same information under both
frameworks by using the formulas above to numdsieauate the regression coefficients and
covariance matrix elements. In Study 2 of this @cbthis was not done for the diffuse prior
distribution case, but in theory it is possiblaltoit for all parameters in the two frameworks.
The informative prior distributions in Study 2 wdyased on the true values of parameters, thus
even though the above formulas were not used tatequior distributions for the method of
coefficients and the method of covariances, theristributions were constructed from the
same data set and therefore represent the samagsiamptions. The only differences that may
exist between the two informative prior distributispecifications are due to the fact that in the
method of covariances X is modeled as a randonaiiayi whereas in the method of coefficients

it is not.
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APPENDIX C
TABLES CONTAINING VALUES OF TYPE | ERROR RATE, POWE COVERAGE,
INTERVAL WIDTH, AND IMBALANCE FOR ALL PARAMETER COMBINATIONS IN

STUDIES 1 AND 2
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Table 18

Type | error rate for N=20 in Study 1 (note: Typertor is not observable when both a and b
are non-zero). The column names refer to normairsheonfidence limits, Bayesian method of
coefficients with diffuse prior distributions, Bay@n method of coefficients with informative
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal Y Mdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.001 0.002 0.002 0.004 0.013
0 14 0.000 0.001 0.001 0.006 0.011
0 .39 0.005 0.012 0.012 0.026 0.039
0 .59 0.011 0.020 0.021 0.038 0.064
14 0 0.000 0.000 0.000 0.008 0.018
.39 0 0.007 0.021 0.021 0.025 0.052
.59 0 0.009 0.030 0.029 0.034 0.067
c=.14
0 0 0.001 0.002 0.002 0.006 0.013
0 14 0.000 0.001 0.001 0.005 0.013
0 .39 0.002 0.005 0.005 0.021 0.043
0 .59 0.017 0.035 0.034 0.045 0.084
14 0 0.005 0.008 0.007 0.013 0.028
.39 0 0.007 0.013 0.013 0.018 0.040
.59 0 0.024 0.051 0.051 0.063 0.088
c'=.39
0 0 0.000 0.002 0.002 0.002 0.008
0 14 0.000 0.004 0.004 0.006 0.014
0 .39 0.007 0.018 0.019 0.036 0.064
0 .59 0.018 0.039 0.039 0.057 0.086
14 0 0.001 0.003 0.004 0.006 0.020
.39 0 0.005 0.022 0.022 0.025 0.052
.59 0 0.015 0.047 0.047 0.053 0.088
c'=.59
0 0 0.001 0.002 0.002 0.004 0.010
0 14 0.000 0.001 0.001 0.002 0.011
0 .39 0.005 0.018 0.018 0.029 0.060
0 .59 0.022 0.043 0.043 0.063 0.094
14 0 0.002 0.005 0.005 0.010 0.025
.39 0 0.009 0.018 0.019 0.029 0.043
.59 0 0.017 0.035 0.038 0.048 0.081
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Table 19

Type | error rate for N=40 in Study 1 (note: Typertor is not observable when both a and b
are non-zero). The column names refer to normairgheonfidence limits, Bayesian method of
coefficients with diffuse prior distributions, Bay@n method of coefficients with informative
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal Y Mdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.000 0.002 0.002 0.005 0.014
0 14 0.000 0.002 0.002 0.008 0.022
0 .39 0.007 0.021 0.021 0.038 0.067
0 .59 0.024 0.035 0.034 0.049 0.080
14 0 0.002 0.005 0.005 0.006 0.019
.39 0 0.012 0.023 0.023 0.033 0.062
.59 0 0.026 0.036 0.036 0.062 0.092
c'=.14
0 0 0.000 0.000 0.000 0.003 0.010
0 14 0.001 0.003 0.003 0.006 0.013
0 .39 0.009 0.020 0.020 0.029 0.058
0 .59 0.025 0.042 0.041 0.054 0.093
14 0 0.000 0.002 0.002 0.002 0.016
.39 0 0.006 0.019 0.019 0.044 0.076
.59 0 0.018 0.028 0.028 0.044 0.073
c'=.39
0 0 0.000 0.004 0.004 0.002 0.009
0 14 0.001 0.004 0.004 0.009 0.019
0 .39 0.004 0.017 0.017 0.023 0.057
0 .59 0.015 0.034 0.033 0.050 0.086
14 0 0.001 0.002 0.002 0.006 0.017
.39 0 0.008 0.014 0.014 0.029 0.060
.59 0 0.016 0.033 0.034 0.056 0.093
c'=.59
0 0 0.001 0.004 0.004 0.008 0.014
0 14 0.001 0.006 0.006 0.012 0.026
0 .39 0.004 0.020 0.020 0.029 0.058
0 .59 0.017 0.038 0.038 0.050 0.080
14 0 0.000 0.003 0.002 0.007 0.018
.39 0 0.003 0.013 0.012 0.043 0.072
.59 0 0.025 0.039 0.039 0.063 0.088
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Table 20

Type | error rate for N=60 in Study 1 (note: Typertor is not observable when both a and b
are non-zero). The column names refer to normairgheonfidence limits, Bayesian method of
coefficients with diffuse prior distributions, Bay@n method of coefficients with informative
prior distributions, Percentile bootstrap, and Biegrrected bootstrap (respectively).

normal Y Mdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.000 0.002 0.002 0.003 0.010
0 14 0.001 0.014 0.010 0.010 0.022
0 .39 0.015 0.040 0.042 0.043 0.076
0 .59 0.022 0.048 0.045 0.059 0.080
14 0 0.001 0.003 0.003 0.011 0.024
.39 0 0.010 0.051 0.050 0.045 0.078
.59 0 0.041 0.074 0.074 0.076 0.106
c'=.14
0 0 0.000 0.003 0.002 0.001 0.008
0 14 0.001 0.004 0.004 0.005 0.013
0 .39 0.011 0.025 0.025 0.045 0.067
0 .59 0.017 0.033 0.033 0.047 0.070
14 0 0.001 0.002 0.002 0.006 0.019
.39 0 0.018 0.058 0.055 0.055 0.089
.59 0 0.019 0.040 0.042 0.042 0.062
c'=.39
0 0 0.000 0.000 0.000 0.002 0.009
0 14 0.000 0.001 0.001 0.005 0.015
0 .39 0.005 0.016 0.017 0.036 0.076
0 .59 0.026 0.041 0.041 0.053 0.081
14 0 0.000 0.008 0.007 0.004 0.017
.39 0 0.016 0.049 0.052 0.044 0.075
.59 0 0.029 0.064 0.069 0.054 0.085
c'=.59
0 0 0.000 0.001 0.001 0.005 0.008
0 14 0.000 0.003 0.003 0.005 0.014
0 .39 0.003 0.013 0.014 0.025 0.054
0 .59 0.020 0.040 0.040 0.059 0.090
14 0 0.000 0.008 0.009 0.011 0.023
.39 0 0.012 0.037 0.038 0.038 0.073
.59 0 0.028 0.063 0.061 0.056 0.084
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Table 21

Type | error rate for N=100 in Study 1 (note: Tyliperror is not observable when both a and b
are non-zero). The column names refer to normairgheonfidence limits, Bayesian method of
coefficients with diffuse prior distributions, Bay@n method of coefficients with informative
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal Y Mdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.000 0.005 0.005 0.002 0.010
0 14 0.003 0.009 0.009 0.011 0.027
0 .39 0.022 0.073 0.073 0.062 0.088
0 .59 0.040 0.071 0.071 0.064 0.083
14 0 0.002 0.026 0.026 0.013 0.024
.39 0 0.031 0.105 0.108 0.063 0.097
.59 0 0.043 0.093 0.095 0.055 0.072
c'=.14
0 0 0.000 0.003 0.003 0.001 0.005
0 14 0.000 0.009 0.009 0.013 0.025
0 .39 0.022 0.052 0.051 0.048 0.072
0 .59 0.035 0.067 0.068 0.055 0.076
14 0 0.000 0.024 0.024 0.010 0.033
.39 0 0.021 0.096 0.096 0.059 0.082
.59 0 0.041 0.099 0.100 0.067 0.077
c'=.39
0 0 0.000 0.004 0.004 0.002 0.005
0 14 0.001 0.010 0.009 0.011 0.033
0 .39 0.020 0.053 0.054 0.047 0.069
0 .59 0.045 0.061 0.061 0.057 0.074
14 0 0.001 0.030 0.030 0.011 0.026
.39 0 0.027 0.110 0.110 0.052 0.087
.59 0 0.037 0.100 0.100 0.050 0.068
c'=.59
0 0 0.001 0.004 0.004 0.005 0.009
0 14 0.001 0.011 0.013 0.011 0.031
0 .39 0.021 0.063 0.061 0.050 0.079
0 .59 0.042 0.074 0.075 0.056 0.075
14 0 0.004 0.023 0.024 0.015 0.036
.39 0 0.030 0.097 0.098 0.056 0.077
.59 0 0.033 0.097 0.098 0.057 0.072

110



Table 22

Type | error rate for N=500 in Study 1 (note: Tylperor is not observable when both a and b
are non-zero). The column names refer to normairgheonfidence limits, Bayesian method of
coefficients with diffuse prior distributions, Bay@n method of coefficients with informative
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal Y Mdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.000 0.003 0.003 0.001 0.003
0 14 0.016 0.054 0.056 0.053 0.090
0 .39 0.049 0.062 0.061 0.053 0.056
0 .59 0.044 0.054 0.056 0.055 0.061
14 0 0.011 0.054 0.055 0.045 0.078
.39 0 0.047 0.057 0.059 0.048 0.055
.59 0 0.043 0.047 0.051 0.050 0.052
c'=.14
0 0 0.000 0.002 0.003 0.003 0.005
0 14 0.012 0.036 0.036 0.032 0.064
0 .39 0.052 0.062 0.062 0.058 0.060
0 .59 0.036 0.045 0.041 0.037 0.042
14 0 0.013 0.045 0.044 0.040 0.084
.39 0 0.042 0.054 0.051 0.051 0.055
.59 0 0.060 0.066 0.066 0.067 0.070
c'=.39
0 0 0.000 0.000 0.000 0.000 0.005
0 14 0.016 0.045 0.046 0.047 0.079
0 .39 0.054 0.058 0.057 0.061 0.071
0 .59 0.039 0.047 0.043 0.043 0.046
14 0 0.015 0.045 0.043 0.037 0.060
.39 0 0.039 0.054 0.052 0.046 0.051
.59 0 0.044 0.045 0.045 0.042 0.046
c'=.59
0 0 0.000 0.002 0.002 0.001 0.006
0 14 0.018 0.053 0.055 0.049 0.082
0 .39 0.045 0.058 0.059 0.048 0.052
0 .59 0.044 0.055 0.055 0.049 0.057
14 0 0.016 0.040 0.041 0.045 0.071
.39 0 0.043 0.051 0.049 0.049 0.058
.59 0 0.040 0.046 0.046 0.047 0.046
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Table 23

Power for N=20 in Study 1. The column names rieferormal theory confidence limits, Bayesian
method of coefficients with diffuse prior distrilaunts, Bayesian method of coefficients with informeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
14 .14 0.005 0.008 0.008 0.013 0.030
14 .39 0.032 0.061 0.063 0.087 0.140
14 .59 0.068 0.097 0.100 0.137 0.192
.39 14 0.011 0.030 0.030 0.037 0.069
.39 .39 0.046 0.083 0.083 0.125 0.201
.39 .59 0.128 0.161 0.162 0.204 0.304
.59 14 0.019 0.059 0.058 0.061 0.107
.59 .39 0.117 0.186 0.189 0.211 0.308
.59 .59 0.273 0.335 0.339 0.384 0.518
c'=14
14 14 0.000 0.002 0.002 0.020 0.038
14 .39 0.028 0.052 0.051 0.093 0.149
14 .59 0.061 0.084 0.084 0.125 0.181
.39 14 0.011 0.029 0.028 0.032 0.064
.39 .39 0.044 0.084 0.086 0.119 0.203
.39 .59 0.125 0.157 0.159 0.202 0.319
.59 14 0.023 0.065 0.066 0.066 0.111
.59 .39 0.115 0.183 0.183 0.214 0.303
.59 .59 0.287 0.359 0.365 0.378 0.516
c'=.39
14 14 0.004 0.011 0.011 0.021 0.049
14 .39 0.025 0.054 0.054 0.086 0.151
.14 .59 0.076 0.105 0.105 0.145 0.205
.39 14 0.006 0.016 0.016 0.027 0.052
.39 .39 0.051 0.093 0.093 0.120 0.206
.39 .59 0.121 0.150 0.152 0.214 0.309
.59 .14 0.029 0.055 0.055 0.070 0.111
.59 .39 0.118 0.198 0.199 0.221 0.324
.59 .59 0.271 0.358 0.354 0.383 0.527
c'=.59
.14 .14 0.001 0.007 0.007 0.012 0.027
14 .39 0.007 0.016 0.016 0.030 0.064
.14 .59 0.020 0.030 0.030 0.062 0.120
.39 .14 0.010 0.030 0.031 0.039 0.083
.39 .39 0.052 0.090 0.089 0.112 0.181
.39 .59 0.123 0.162 0.161 0.214 0.319
.59 .14 0.026 0.056 0.056 0.074 0.115
.59 .39 0.108 0.199 0.198 0.206 0.328
.59 .59 0.286 0.331 0.331 0.399 0.512
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Power for N=40 in Study 1. The column names rieferormal theory confidence limits, Bayesian
method of coefficients with diffuse prior distrilauts, Bayesian method of coefficients with informeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
14 14 0.002 0.005 0.005 0.016 0.034
14 .39 0.022 0.045 0.046 0.073 0.137
14 .59 0.065 0.096 0.094 0.140 0.184
.39 14 0.036 0.070 0.070 0.090 0.147
.39 .39 0.231 0.330 0.330 0.396 0.514
.39 .59 0.462 0.542 0.542 0.585 0.673
.59 14 0.055 0.083 0.084 0.116 0.178
.59 .39 0.434 0.522 0.522 0.568 0.659
.59 .59 0.780 0.832 0.836 0.867 0.906
c'=.14
14 14 0.002 0.011 0.011 0.015 0.038
14 .39 0.024 0.052 0.052 0.088 0.145
14 .59 0.060 0.093 0.092 0.142 0.206
.39 .14 0.031 0.069 0.069 0.097 0.155
.39 .39 0.265 0.371 0.371 0.431 0.544
.39 .59 0.456 0.520 0.521 0.583 0.671
.59 .14 0.066 0.109 0.109 0.127 0.174
.59 .39 0.445 0.533 0.535 0.560 0.640
.59 .59 0.758 0.812 0.811 0.863 0.903
c'=.39
.14 .14 0.006 0.009 0.009 0.013 0.031
14 .39 0.029 0.073 0.072 0.107 0.165
14 .59 0.068 0.090 0.088 0.129 0.180
.39 .14 0.035 0.069 0.069 0.086 0.142
.39 .39 0.227 0.340 0.341 0.398 0.523
.39 .59 0.433 0.516 0.515 0.571 0.665
.59 .14 0.072 0.101 0.102 0.127 0.170
.59 .39 0.477 0.563 0.564 0.594 0.681
.59 .59 0.785 0.831 0.831 0.861 0.900
c'=.59
.14 .14 0.003 0.006 0.005 0.019 0.037
.14 .39 0.023 0.050 0.050 0.076 0.131
14 .59 0.068 0.098 0.097 0.126 0.176
.39 .14 0.025 0.060 0.059 0.084 0.146
.39 .39 0.232 0.329 0.328 0.396 0.514
.39 .59 0.458 0.531 0.529 0.588 0.686
.59 14 0.068 0.109 0.109 0.128 0.187
.59 .39 0.449 0.549 0.549 0.608 0.700
.59 .59 0.797 0.833 0.833 0.856 0.899

Table 25
Power for N=60 in Study 1. The column names rieferormal theory confidence limits, Bayesian
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method of coefficients with diffuse prior distriloums, Bayesian method of coefficients with infoimeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
14 .14 0.006 0.032 0.035 0.029 0.065
14 .39 0.070 0.144 0.145 0.159 0.222
14 .59 0.119 0.156 0.156 0.192 0.237
.39 .14 0.067 0.167 0.163 0.141 0.226
.39 .39 0.490 0.641 0.644 0.650 0.758
.39 .59 0.766 0.792 0.795 0.821 0.865
.59 .14 0.095 0.169 0.172 0.162 0.216
.59 .39 0.747 0.802 0.794 0.798 0.838
.59 .59 0.964 0.968 0.970 0.973 0.978
c'=.14
14 .14 0.005 0.039 0.035 0.027 0.056
14 .39 0.071 0.150 0.150 0.154 0.246
14 .59 0.142 0.200 0.197 0.217 0.268
.39 .14 0.071 0.159 0.155 0.151 0.221
.39 .39 0.487 0.630 0.629 0.646 0.741
.39 .59 0.746 0.796 0.801 0.821 0.868
.59 .14 0.136 0.201 0.198 0.194 0.244
.59 .39 0.742 0.793 0.796 0.813 0.854
.59 .59 0.967 0.979 0.978 0.981 0.986
c'=.39
.14 .14 0.002 0.031 0.033 0.028 0.054
.14 .39 0.053 0.114 0.121 0.125 0.197
14 .59 0.147 0.189 0.193 0.211 0.261
.39 14 0.069 0.149 0.145 0.155 0.219
.39 .39 0.498 0.625 0.628 0.658 0.739
.39 .59 0.736 0.771 0.772 0.800 0.847
.59 14 0.119 0.176 0.179 0.178 0.231
.59 .39 0.736 0.800 0.795 0.799 0.834
.59 .59 0.972 0.976 0.976 0.978 0.987
c'=.59
14 14 0.011 0.038 0.036 0.036 0.062
.14 .39 0.065 0.135 0.127 0.163 0.231
.14 .59 0.132 0.183 0.176 0.192 0.255
.39 14 0.071 0.170 0.170 0.186 0.261
.39 .39 0.506 0.648 0.653 0.682 0.787
.39 .59 0.726 0.787 0.785 0.797 0.848
.59 14 0.130 0.200 0.201 0.198 0.239
.59 .39 0.745 0.796 0.797 0.806 0.853
.59 .59 0.961 0.969 0.970 0.973 0.982

Table 26
Power for N=100 in Study 1. The column names rieferormal theory confidence limits, Bayesian
method of coefficients with diffuse prior distrilaus, Bayesian method of coefficients with informeat
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prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
.14 .14 0.019 0.061 0.060 0.066 0.124
14 .39 0.141 0.293 0.294 0.240 0.317
14 .59 0.234 0.316 0.319 0.289 0.334
.39 .14 0.166 0.182 0.184 0.272 0.331
.39 .39 0.866 0.899 0.900 0.924 0.942
.39 .59 0.966 0.972 0.972 0.969 0.977
.59 14 0.233 0.190 0.189 0.277 0.315
.59 .39 0.943 0.916 0.917 0.956 0.960
.59 .59 0.999 0.999 0.999 0.999 0.999
c'=.14
14 14 0.013 0.058 0.057 0.067 0.125
14 .39 0.151 0.313 0.314 0.258 0.339
14 .59 0.240 0.338 0.342 0.289 0.337
.39 14 0.182 0.196 0.192 0.280 0.337
.39 .39 0.884 0.916 0.915 0.933 0.953
.39 .59 0.955 0.974 0.974 0.963 0.976
.59 14 0.262 0.217 0.219 0.314 0.348
.59 .39 0.956 0.934 0.934 0.962 0.971
.59 .59 1.000 1.000 1.000 1.000 1.000
c'=.39
14 14 0.014 0.064 0.064 0.061 0.119
.14 .39 0.164 0.308 0.310 0.272 0.360
.14 .59 0.233 0.344 0.345 0.306 0.341
.39 14 0.187 0.212 0.211 0.281 0.356
.39 .39 0.847 0.893 0.892 0.918 0.946
.39 .59 0.955 0.975 0.976 0.962 0.973
.59 14 0.230 0.187 0.188 0.282 0.320
.59 .39 0.948 0.917 0.917 0.955 0.969
.59 .59 1.000 0.997 0.997 1.000 1.000
c'=.59
14 14 0.016 0.056 0.056 0.077 0.136
14 .39 0.185 0.312 0.311 0.288 0.362
.14 .59 0.241 0.351 0.350 0.290 0.333
.39 .14 0.178 0.203 0.202 0.284 0.348
.39 .39 0.839 0.881 0.883 0.922 0.943
.39 .59 0.960 0.975 0.975 0.970 0.976
.59 .14 0.260 0.214 0.214 0.330 0.360
.59 .39 0.960 0.929 0.929 0.965 0.972
.59 .59 1.000 1.000 1.000 1.000 1.000

Table 27

Power for N=500 in Study 1. The column names referormal theory confidence limits, Bayesian
method of coefficients with diffuse prior distrilauts, Bayesian method of coefficients with informeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).
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normal YMdiff YMinfo PercBoot BCBoot

a b c'=0
.14 .14 0.596 0.733 0.736 0.751 0.826
.14 .39 0.877 0.887 0.884 0.886 0.902
.14 .59 0.880 0.879 0.879 0.875 0.878
.39 .14 0.847 0.842 0.844 0.860 0.867
.39 .39 1.000 1.000 1.000 1.000 1.000
.39 .59 1.000 1.000 1.000 1.000 1.000
.59 .14 0.857 0.836 0.836 0.856 0.871
.59 .39 1.000 1.000 1.000 1.000 1.000
.59 .59 1.000 1.000 1.000 1.000 1.000
c'=.14
.14 .14 0.584 0.746 0.743 0.758 0.845
.14 .39 0.877 0.876 0.875 0.887 0.892
14 .59 0.873 0.869 0.873 0.869 0.878
.39 .14 0.855 0.850 0.852 0.863 0.873
.39 .39 1.000 1.000 1.000 1.000 1.000
.39 .59 1.000 1.000 1.000 1.000 1.000
.59 .14 0.890 0.867 0.871 0.895 0.899
.59 .39 1.000 1.000 1.000 1.000 1.000
.59 .59 1.000 1.000 1.000 1.000 1.000
c'=.39
.14 .14 0.563 0.721 0.726 0.743 0.826
.14 .39 0.874 0.872 0.874 0.884 0.894
.14 .59 0.879 0.881 0.882 0.888 0.894
.39 .14 0.851 0.833 0.835 0.859 0.873
.39 .39 1.000 1.000 1.000 1.000 1.000
.39 .59 1.000 1.000 1.000 1.000 1.000
.59 .14 0.876 0.845 0.853 0.868 0.876
.59 .39 1.000 1.000 1.000 1.000 1.000
.59 .59 1.000 1.000 1.000 1.000 1.000
c'=.59
.14 .14 0.587 0.742 0.739 0.738 0.826
14 .39 0.853 0.859 0.861 0.869 0.884
.14 .59 0.869 0.874 0.875 0.875 0.881
.39 .14 0.859 0.853 0.855 0.865 0.880
.39 .39 1.000 1.000 1.000 1.000 1.000
.39 .59 1.000 1.000 1.000 1.000 1.000
.59 .14 0.876 0.853 0.853 0.876 0.882
.59 .39 1.000 1.000 1.000 1.000 1.000
.59 .59 1.000 1.000 1.000 1.000 1.000
Table 28

Coverage for N=20 in Study 1. The column names tefnormal theory confidence limits, Bayesian
method of coefficients with diffuse prior distrilauts, Bayesian method of coefficients with informeat
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prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.999 0.998 0.998 0.996 0.987
0 14 1.000 0.999 0.999 0.994 0.989
0 .39 0.995 0.988 0.988 0.974 0.961
0 .59 0.989 0.980 0.979 0.962 0.936
.14 0 1.000 1.000 1.000 0.992 0.982
14 14 0.963 0.990 0.990 0.989 0.954
14 .39 0.947 0.949 0.948 0.947 0.902
.14 .59 0.970 0.958 0.957 0.944 0.920
.39 0 0.993 0.979 0.979 0.975 0.948
.39 14 0.965 0.976 0.976 0.964 0.924
.39 .39 0.908 0.955 0.954 0.938 0.923
.39 .59 0.914 0.955 0.955 0.930 0.924
.59 0 0.991 0.970 0.971 0.966 0.933
.59 14 0.962 0.955 0.955 0.950 0.910
.59 .39 0.914 0.947 0.947 0.939 0.939
.59 .59 0.925 0.958 0.958 0.937 0.945
c'=14
0 0 0.999 0.998 0.998 0.994 0.987
0 14 1.000 0.999 0.999 0.995 0.987
0 .39 0.998 0.995 0.995 0.979 0.957
0 .59 0.983 0.965 0.966 0.955 0.916
.14 0 0.995 0.992 0.993 0.987 0.972
.14 .14 0.968 0.996 0.996 0.986 0.955
14 .39 0.946 0.955 0.956 0.945 0.907
.14 .59 0.950 0.949 0.948 0.943 0.920
.39 0 0.993 0.987 0.987 0.982 0.960
.39 14 0.974 0.973 0.973 0.970 0.929
.39 .39 0.904 0.956 0.956 0.940 0.922
.39 .59 0.915 0.952 0.952 0.929 0.934
.59 0 0.976 0.949 0.949 0.937 0.912
.59 14 0.957 0.950 0.952 0.943 0.899
.59 .39 0.904 0.940 0.940 0.923 0.920
.59 .59 0.904 0.938 0.938 0.906 0.922
c'=.39
0 0 1.000 0.998 0.998 0.998 0.992
0 14 1.000 0.996 0.996 0.994 0.986
0 .39 0.993 0.982 0.981 0.964 0.936
0 .59 0.982 0.961 0.961 0.943 0.914
.14 0 0.999 0.997 0.996 0.994 0.980
.14 .14 0.962 0.994 0.994 0.984 0.951
14 .39 0.959 0.960 0.961 0.960 0.918
14 .59 0.946 0.939 0.939 0.928 0.905
.39 0 0.995 0.978 0.978 0.975 0.948
.39 .14 0.959 0.990 0.990 0.979 0.941
.39 .39 0.888 0.960 0.960 0.930 0.921
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.39 .59 0.915 0.956 0.955 0.932 0.937

.59 0 0.985 0.953 0.953 0.947 0.912
.59 .14 0.964 0.955 0.955 0.945 0.896
.59 .39 0.902 0.939 0.941 0.922 0.922
.59 .59 0.907 0.944 0.944 0.922 0.945
c'=.59
0 0 0.999 0.998 0.998 0.996 0.990
0 14 1.000 0.999 0.999 0.998 0.989
0 .39 0.995 0.982 0.982 0.971 0.940
0 .59 0.978 0.957 0.957 0.937 0.906
14 0 0.998 0.995 0.995 0.990 0.975
14 14 0.989 0.996 0.996 0.992 0.970
.14 .39 0.966 0.990 0.990 0.972 0.929
.14 .59 0.967 0.982 0.982 0.954 0.908
.39 0 0.991 0.982 0.981 0.971 0.957
.39 .14 0.961 0.975 0.975 0.963 0.920
.39 .39 0.915 0.956 0.956 0.924 0.920
.39 .59 0.905 0.952 0.952 0.927 0.934
.59 0 0.983 0.965 0.962 0.952 0.919
.59 .14 0.963 0.954 0.954 0.941 0.903
.59 .39 0.896 0.943 0.944 0.913 0.927
.59 .59 0.910 0.938 0.938 0.916 0.938
Table 29

Coverage for N=40 in Study 1. The column names tefnormal theory confidence limits, Bayesian
method of coefficients with diffuse prior distriloums, Bayesian method of coefficients with infoimeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot

a b c'=0

0 0 1.000 0.998 0.998 0.995 0.986
0 14 1.000 0.998 0.998 0.992 0.978
0 .39 0.993 0.979 0.979 0.962 0.933
0 .59 0.976 0.965 0.966 0.951 0.920
14 0 0.998 0.995 0.995 0.994 0.981
.14 .14 0.965 0.996 0.996 0.991 0.962
.14 .39 0.950 0.967 0.967 0.953 0.917
14 .59 0.958 0.950 0.950 0.952 0.924
.39 0 0.988 0.977 0.977 0.967 0.938
.39 .14 0.944 0.954 0.956 0.945 0.906
.39 .39 0.910 0.943 0.943 0.933 0.945
.39 .59 0.929 0.944 0.944 0.936 0.947
.59 0 0.974 0.964 0.964 0.938 0.908
.59 .14 0.949 0.948 0.947 0.939 0.918
.59 .39 0.924 0.939 0.938 0.926 0.934
.59 .59 0.941 0.950 0.949 0.947 0.953

c'=.14
0 0 1.000 1.000 1.000 0.997 0.990
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0 .14 0.999 0.997 0.997 0.994 0.987
0 .39 0.991 0.980 0.980 0.971 0.942
0 .59 0.975 0.958 0.959 0.946 0.907
.14 0 1.000 0.998 0.998 0.998 0.984
.14 .14 0.964 0.990 0.990 0.988 0.954
14 .39 0.937 0.958 0.957 0.957 0.915
.14 .59 0.950 0.950 0.950 0.930 0.910
.39 0 0.994 0.981 0.981 0.956 0.924
.39 .14 0.941 0.945 0.946 0.931 0.892
.39 .39 0.908 0.926 0.926 0.926 0.938
.39 .59 0.934 0.936 0.938 0.932 0.938
.59 0 0.982 0.972 0.972 0.956 0.927
.59 .14 0.954 0.954 0.955 0.940 0.924
.59 .39 0.923 0.946 0.946 0.932 0.936
.59 .59 0.933 0.943 0.944 0.941 0.960
c'=.39
0 0 1.000 0.996 0.996 0.998 0.991
0 .14 0.999 0.996 0.996 0.991 0.981
0 .39 0.996 0.983 0.983 0.977 0.943
0 .59 0.985 0.966 0.967 0.950 0.914
.14 0 0.999 0.998 0.998 0.994 0.983
.14 .14 0.966 0.992 0.992 0.991 0.961
14 .39 0.938 0.939 0.938 0.931 0.886
.14 .59 0.949 0.943 0.942 0.933 0.914
.39 0 0.992 0.986 0.986 0.971 0.940
.39 .14 0.935 0.953 0.953 0.938 0.896
.39 .39 0.920 0.949 0.950 0.932 0.943
.39 .59 0.935 0.945 0.945 0.943 0.956
.59 0 0.984 0.967 0.966 0.944 0.907
.59 .14 0.962 0.963 0.963 0.944 0.928
.59 .39 0.926 0.945 0.946 0.943 0.948
.59 .59 0.917 0.924 0.923 0.928 0.936
c'=.59
0 0 0.999 0.996 0.996 0.992 0.986
0 .14 0.999 0.994 0.994 0.988 0.974
0 .39 0.996 0.980 0.980 0.971 0.942
0 .59 0.983 0.962 0.962 0.950 0.920
.14 0 1.000 0.997 0.998 0.993 0.982
.14 .14 0.974 0.995 0.995 0.994 0.963
.14 .39 0.934 0.961 0.960 0.946 0.909
14 .59 0.949 0.939 0.941 0.933 0.916
.39 0 0.997 0.987 0.988 0.957 0.928
.39 .14 0.943 0.953 0.953 0.948 0.897
.39 .39 0.904 0.935 0.936 0.929 0.947
.39 .59 0.938 0.941 0.941 0.936 0.942
.59 0 0.975 0.961 0.961 0.937 0.912
.59 .14 0.956 0.959 0.959 0.840 0.845
.59 .39 0.940 0.959 0.959 0.863 0.876



.59 .59 0.945 0.952 0.952 0.847 0.857

Table 30

Coverage for N=60 in Study 1. The column names tefnormal theory confidence limits, Bayesian
method of coefficients with diffuse prior distriloums, Bayesian method of coefficients with infoimeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 1.000 0.998 0.998 0.997 0.990
0 14 0.999 0.986 0.990 0.990 0.978
0 .39 0.985 0.960 0.958 0.957 0.924
0 .59 0.978 0.952 0.955 0.941 0.920
14 0 0.999 0.997 0.997 0.989 0.976
14 .14 0.941 0.981 0.978 0.982 0.922
14 .39 0.930 0.941 0.944 0.940 0.918
14 .59 0.960 0.952 0.953 0.945 0.930
.39 0 0.990 0.949 0.950 0.955 0.922
.39 .14 0.946 0.946 0.943 0.946 0.935
.39 .39 0.930 0.946 0.946 0.938 0.952
.39 .59 0.934 0.937 0.942 0.942 0.941
.59 0 0.959 0.926 0.926 0.924 0.894
.59 .14 0.958 0.942 0.948 0.946 0.937
.59 .39 0.941 0.935 0.938 0.947 0.956
.59 .59 0.948 0.943 0.943 0.946 0.958
c'=.14
0 0 1.000 0.997 0.998 0.999 0.992
0 14 0.999 0.996 0.996 0.995 0.987
0 .39 0.989 0.975 0.975 0.955 0.933
0 .59 0.983 0.967 0.967 0.953 0.930
14 0 0.999 0.998 0.998 0.994 0.981
14 14 0.945 0.976 0.980 0.981 0.940
14 .39 0.947 0.948 0.953 0.942 0.930
14 .59 0.954 0.954 0.952 0.946 0.931
.39 0 0.982 0.942 0.945 0.945 0.911
.39 .14 0.946 0.942 0.944 0.949 0.928
39 .39 0.918 0.937 0.943 0.937 0.952
39 .59 0.934 0.940 0.940 0.942 0.955
59 0 0.981 0.960 0.958 0.958 0.938
59 .14 0.946 0.935 0.936 0.942 0.930
59 .39 0.927 0.931 0.930 0.937 0.942
59 .59 0.930 0.942 0.935 0.939 0.949
c'=.39
0 0 1.000 1.000 1.000 0.998 0.991
0 14 1.000 0.999 0.999 0.995 0.985
0 .39 0.995 0.984 0.983 0.964 0.924
0 .59 0.974 0.959 0.959 0.947 0.919
14 0 1.000 0.992 0.993 0.996 0.983
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14 14 0.933 0.982 0.982 0.994 0.927

.14 .39 0.945 0.955 0.951 0.945 0.928
.14 .59 0.958 0.944 0.943 0.930 0.922
.39 0 0.984 0.951 0.948 0.956 0.925
.39 14 0.948 0.935 0.946 0.944 0.926
.39 .39 0.914 0.927 0.925 0.926 0.935
.39 .59 0.928 0.938 0.935 0.943 0.939
.59 0 0.971 0.936 0.931 0.946 0.915
.59 .14 0.954 0.924 0.929 0.940 0.924
.59 .39 0.934 0.932 0.930 0.938 0.946
.59 .59 0.942 0.954 0.956 0.938 0.947
c'=.59
0 0 1.000 0.999 0.999 0.995 0.992
0 14 1.000 0.997 0.997 0.995 0.986
0 .39 0.997 0.987 0.986 0.975 0.946
0 .59 0.980 0.960 0.960 0.941 0.910
14 0 1.000 0.992 0.991 0.989 0.977
14 14 0.943 0.982 0.983 0.975 0.927
14 .39 0.939 0.937 0.935 0.926 0.904
14 .59 0.963 0.961 0.959 0.954 0.944
.39 0 0.988 0.963 0.962 0.962 0.927
39 14 0.940 0.94 0.939 0.944 0.922
39 .39 0.939 0.934 0.935 0.938 0.951
39 .59 0.935 0.940 0.942 0.956 0.961
59 0 0.972 0.937 0.939 0.944 0.916
59 14 0.955 0.941 0.943 0.943 0.929
59 .39 0.922 0.927 0.929 0.933 0.952
59 .59 0.936 0.934 0.934 0.936 0.942
Table 31

Coverage for N=100 in Study 1. The column namks te normal theory confidence limits, Bayesian
method of coefficients with diffuse prior distriloums, Bayesian method of coefficients with infoimeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 1 0.995 0.995 0.998 0.99
0 14 0.997 0.991 0.991 0.989 0.973
0 .39 0.978 0.927 0.927 0.938 0.912
0 .59 0.960 0.929 0.929 0.936 0.917
14 0 0.998 0.974 0.974 0.987 0.976
14 14 0.907 0.949 0.949 0.956 0.92
.14 .39 0.945 0.944 0.945 0.941 0.936
14 .59 0.942 0.928 0.927 0.933 0.927
.39 0 0.969 0.895 0.892 0.937 0.903
.39 .14 0.947 0.908 0.908 0.950 0.927
.39 .39 0.930 0.939 0.938 0.935 0.951
.39 .59 0.953 0.964 0.964 0.963 0.966

121



122

.59 0 0.957 0.907 0.905 0.945 0.928
.59 .14 0.956 0.92 0.919 0.947 0.940
.59 .39 0.945 0.924 0.922 0.945 0.947
.59 .59 0.937 0.945 0.946 0.940 0.946
c'=.14
0 0 1.000 0.997 0.997 0.999 0.995
0 .14 1.000 0.991 0.991 0.987 0.975
0 .39 0.978 0.948 0.949 0.952 0.928
0 .59 0.965 0.933 0.932 0.945 0.924
.14 0 1.000 0.976 0.976 0.990 0.967
14 14 0.901 0.958 0.958 0.962 0.917
14 .39 0.947 0.946 0.949 0.943 0.933
.14 .59 0.951 0.932 0.933 0.940 0.932
.39 0 0.979 0.904 0.904 0.941 0.918
.39 14 0.941 0.887 0.888 0.931 0.917
.39 .39 0.941 0.953 0.949 0.956 0.964
.39 .59 0.950 0.959 0.959 0.947 0.950
.59 0 0.959 0.901 0.900 0.933 0.923
.59 14 0.956 0.908 0.908 0.945 0.936
.59 .39 0.935 0.922 0.920 0.949 0.949
.59 .59 0.952 0.949 0.950 0.952 0.959
c'=.39
0 0 1.000 0.996 0.996 0.998 0.995
0 14 0.999 0.990 0.991 0.989 0.967
0 .39 0.980 0.947 0.946 0.953 0.931
0 .59 0.955 0.939 0.939 0.943 0.926
.14 0 0.999 0.970 0.970 0.989 0.974
.14 .14 0.895 0.942 0.941 0.958 0.894
14 .39 0.949 0.944 0.944 0.949 0.938
14 .59 0.946 0.938 0.937 0.938 0.930
.39 0 0.973 0.890 0.890 0.948 0.913
.39 14 0.947 0.900 0.902 0.937 0.923
.39 .39 0.917 0.931 0.931 0.936 0.949
.39 .59 0.952 0.962 0.962 0.955 0.959
.59 0 0.963 0.900 0.900 0.950 0.932
.59 14 0.951 0.889 0.890 0.948 0.942
.59 .39 0.948 0.925 0.924 0.944 0.944
.59 .59 0.939 0.948 0.948 0.945 0.948
c'=.59
0 0 0.999 0.996 0.996 0.995 0.991
0 14 0.999 0.989 0.987 0.989 0.969
0 .39 0.979 0.937 0.939 0.950 0.921
0 .59 0.958 0.926 0.925 0.944 0.925
14 0 0.996 0.977 0.976 0.985 0.964
14 .14 0.916 0.939 0.937 0.962 0.909
14 .39 0.941 0.954 0.952 0.939 0.928
14 .59 0.944 0.927 0.926 0.923 0.915
.39 0 0.970 0.903 0.902 0.944 0.923



.39 14 0.948 0.911 0.911 0.940 0.932

.39 .39 0.925 0.935 0.937 0.940 0.960

.39 .59 0.942 0.957 0.958 0.953 0.958

.59 0 0.967 0.903 0.902 0.943 0.928

.59 14 0.959 0.902 0.905 0.952 0.934

.59 .39 0.952 0.933 0.934 0.946 0.947

.59 .59 0.953 0.955 0.954 0.960 0.952
Table 32

Coverage for N=500 in Study 1. The column namks te normal theory confidence limits, Bayesian
method of coefficients with diffuse prior distriloums, Bayesian method of coefficients with infoimeat
prior distributions, Percentile bootstrap, and Biesrrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot

a b c'=0

0 0 1.000 0.997 0.997 0.999 0.997

0 14 0.984 0.946 0.944 0.947 0.910

0 .39 0.951 0.938 0.939 0.947 0.944

0 .59 0.956 0.946 0.944 0.945 0.939
14 0 0.989 0.946 0.945 0.955 0.922
14 14 0.930 0.935 0.937 0.947 0.952
14 .39 0.948 0.943 0.942 0.945 0.940
14 .59 0.963 0.949 0.946 0.955 0.958
.39 0 0.953 0.943 0.941 0.952 0.945
.39 .14 0.936 0.934 0.938 0.940 0.942
.39 .39 0.952 0.941 0.938 0.954 0.959
.39 .59 0.950 0.943 0.947 0.950 0.948
.59 0 0.957 0.953 0.949 0.950 0.948
.59 .14 0.952 0.947 0.949 0.949 0.947
.59 .39 0.954 0.950 0.943 0.958 0.957
.59 .59 0.951 0.937 0.941 0.955 0.950

c'=.14

0 0 1.000 0.998 0.997 0.997 0.995
0 14 0.988 0.964 0.964 0.968 0.936
0 .39 0.948 0.938 0.938 0.942 0.940
0 .59 0.964 0.955 0.959 0.963 0.958
.14 0 0.987 0.955 0.956 0.960 0.916
14 14 0.929 0.940 0.938 0.947 0.950
.14 .39 0.964 0.947 0.950 0.957 0.955
.14 .59 0.957 0.939 0.944 0.950 0.948
.39 0 0.958 0.946 0.949 0.949 0.945
.39 14 0.940 0.942 0.943 0.946 0.943
.39 .39 0.952 0.935 0.931 0.954 0.950
.39 .59 0.948 0.942 0.948 0.941 0.942
.59 0 0.940 0.934 0.934 0.933 0.930
.59 .14 0.958 0.949 0.943 0.950 0.945
.59 .39 0.950 0.935 0.935 0.949 0.944
.59 .59 0.946 0.949 0.949 0.949 0.945
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c'=.39

0 0 1.000 1.000 1.000 1.000 0.995
0 14 0.984 0.955 0.954 0.953 0.921
0 .39 0.946 0.942 0.943 0.939 0.929
0 .59 0.961 0.953 0.957 0.957 0.954
.14 0 0.985 0.955 0.957 0.963 0.940
.14 .14 0.931 0.952 0.951 0.952 0.966
14 .39 0.952 0.934 0.937 0.947 0.944
14 .59 0.960 0.941 0.940 0.951 0.945
.39 0 0.961 0.946 0.948 0.954 0.949
.39 14 0.947 0.941 0.939 0.949 0.949
.39 .39 0.945 0.940 0.940 0.945 0.949
.39 .59 0.931 0.929 0.932 0.940 0.939
.59 0 0.956 0.955 0.955 0.958 0.954
.59 14 0.949 0.933 0.939 0.944 0.936
.59 .39 0.949 0.934 0.940 0.949 0.944
.59 .59 0.951 0.948 0.948 0.950 0.947
c'=.59
0 0 1.000 0.998 0.998 0.999 0.994
0 14 0.982 0.947 0.945 0.951 0.918
0 .39 0.955 0.942 0.941 0.952 0.948
0 .59 0.956 0.945 0.945 0.951 0.943
14 0 0.984 0.960 0.959 0.955 0.929
14 .14 0.925 0.942 0.940 0.947 0.958
14 .39 0.940 0.923 0.920 0.941 0.932
14 .59 0.956 0.950 0.949 0.952 0.950
.39 0 0.957 0.949 0.951 0.951 0.942
39 .14 0.950 0.952 0.954 0.949 0.950
39 .39 0.937 0.939 0.943 0.933 0.942
39 .59 0.953 0.943 0.943 0.959 0.961
59 0 0.960 0.954 0.954 0.953 0.954
59 14 0.948 0.946 0.941 0.946 0.948
.59 .39 0.954 0.936 0.937 0.954 0.954
.59 .59 0.951 0.946 0.944 0.951 0.946
Table 33

Interval Width for N=20 in Study 1. The column namefer to normal theory confidence limits,
Bayesian method of coefficients with diffuse pdistributions, Bayesian method of coefficients with
informative prior distributions, Percentile bootafr, and Bias-corrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot

a b c'=0

0 0 0.287 0.424 0.424 0.416 0.437
0 14 0.305 0.455 0.455 0.426 0.446
0 .39 0.442 0.602 0.602 0.544 0.565
0 .59 0.599 0.763 0.762 0.677 0.694
14 0 0.156 0.209 0.210 0.203 0.213
14 .14 0.171 0.227 0.227 0.212 0.222
14 .39 0.286 0.335 0.335 0.311 0.321
14 .59 0.404 0.452 0.452 0.421 0.428
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.39 0 0.435 0.505 0.507 0.540 0.561
.39 14 0.467 0.553 0.553 0.565 0.586
.39 .39 0.578 0.688 0.689 0.663 0.688
.39 .59 0.722 0.841 0.842 0.793 0.821
.59 0 0.617 0.658 0.660 0.718 0.733
.59 .14 0.628 0.684 0.683 0.723 0.743
.59 .39 0.717 0.791 0.791 0.796 0.821
.59 .59 0.836 0.935 0.934 0.900 0.929
c'=.14
0 0 0.282 0.426 0.425 0.406 0.428
0 14 0.300 0.458 0.459 0.425 0.448
0 .39 0.443 0.600 0.601 0.540 0.562
0 .59 0.389 0.446 0.446 0.410 0.416
14 0 0.157 0.211 0.211 0.203 0.212
14 14 0.176 0.231 0.231 0.222 0.232
14 .39 0.291 0.341 0.340 0.316 0.328
14 .59 0.403 0.451 0.451 0.422 0.429
.39 0 0.452 0.519 0.520 0.555 0.574
.39 14 0.473 0.560 0.561 0.574 0.594
.39 .39 0.587 0.699 0.699 0.673 0.702
.39 .59 0.707 0.828 0.827 0.776 0.800
.59 0 0.611 0.652 0.652 0.703 0.721
.59 14 0.621 0.678 0.678 0.710 0.727
.59 .39 0.705 0.782 0.781 0.784 0.812
.59 .59 0.825 0.923 0.923 0.892 0.922
c'=.39
0 0 0.132 0.196 0.196 0.183 0.193
0 14 0.154 0.222 0.221 0.201 0.211
0 .39 0.271 0.330 0.330 0.298 0.306
0 .59 0.390 0.447 0.446 0.412 0.417
14 0 0.152 0.208 0.208 0.201 0.216
14 14 0.176 0.232 0.232 0.219 0.230
14 .39 0.293 0.340 0.340 0.317 0.327
.14 .59 0.404 0.452 0.452 0.422 0.429
.39 0 0.450 0.526 0.527 0.550 0.569
.39 14 0.463 0.553 0.552 0.570 0.592
.39 .39 0.567 0.674 0.674 0.649 0.676
.39 .59 0.714 0.836 0.835 0.786 0.812
.59 0 0.620 0.664 0.663 0.718 0.735
.59 14 0.626 0.689 0.688 0.711 0.728
.59 .39 0.716 0.796 0.797 0.783 0.808
.59 .59 0.827 0.925 0.925 0.893 0.926
c'=.59
0 0 0.130 0.192 0.192 0.182 0.191
0 14 0.154 0.220 0.220 0.201 0.211
0 .39 0.274 0.332 0.332 0.301 0.309
0 .59 0.395 0.451 0.451 0.414 0.420
14 0 0.152 0.208 0.208 0.201 0.209



14 14 0.330 0.468 0.469 0.445 0.467

.14 .39 0.467 0.603 0.604 0.554 0.576
.14 .59 0.610 0.766 0.766 0.696 0.715
.39 0 0.446 0.528 0.527 0.555 0.573
.39 14 0.470 0.559 0.559 0.564 0.588
.39 .39 0.570 0.673 0.673 0.655 0.680
.39 .59 0.702 0.823 0.823 0.772 0.800
.59 0 0.629 0.676 0.676 0.722 0.743
.59 .14 0.626 0.683 0.682 0.719 0.741
.59 .39 0.720 0.798 0.798 0.795 0.822
.59 .59 0.820 0.917 0.916 0.888 0.916
Table 34

Interval Width for N=40 in Study 1. The column namefer to normal theory confidence limits,
Bayesian method of coefficients with diffuse pdistributions, Bayesian method of coefficients with
informative prior distributions, Percentile bootafr, and Bias-corrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot

a b c'=0

0 0 0.129 0.193 0.193 0.181 0.191
0 14 0.154 0.221 0.221 0.201 0.212
0 .39 0.275 0.335 0.335 0.302 0.310
0 .59 0.388 0.445 0.444 0.407 0.412
14 0 0.151 0.206 0.206 0.199 0.208
.14 .14 0.180 0.234 0.234 0.222 0.233
.14 .39 0.290 0.340 0.341 0.318 0.329
14 .59 0.406 0.451 0.451 0.423 0.431
.39 0 0.275 0.314 0.314 0.306 0.315
.39 .14 0.292 0.326 0.327 0.322 0.332
.39 .39 0.370 0.393 0.393 0.385 0.399
.39 .59 0.470 0.491 0.491 0.483 0.494
.59 0 0.397 0.432 0.432 0.419 0.424
.59 .14 0.406 0.436 0.436 0.428 0.435
.59 .39 0.473 0.489 0.489 0.484 0.495
.59 .59 0.551 0.561 0.561 0.557 0.572

c'=.14

0 0 0.130 0.193 0.193 0.184 0.193
0 14 0.153 0.220 0.220 0.201 0.210
0 .39 0.271 0.332 0.332 0.301 0.309
0 .59 0.391 0.446 0.446 0.412 0.417
14 0 0.156 0.208 0.209 0.205 0.215
14 14 0.175 0.231 0.230 0.220 0.232
.14 .39 0.286 0.336 0.336 0.314 0.324
14 .59 0.402 0.450 0.450 0.421 0.429
.39 0 0.279 0.318 0.318 0.308 0.317
.39 .14 0.296 0.329 0.328 0.324 0.335
.39 .39 0.377 0.400 0.400 0.394 0.409
.39 .59 0.468 0.490 0.491 0.478 0.491
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.59 0 0.395 0.430 0.430 0.422 0.426

.59 .14 0.409 0.438 0.438 0.429 0.436
.59 .39 0.471 0.488 0.489 0.485 0.498
.59 .59 0.547 0.557 0.558 0.555 0.569
c'=.39
0 0 0.131 0.195 0.195 0.184 0.193
0 .14 0.154 0.221 0.221 0.201 0.211
0 .39 0.273 0.333 0.333 0.303 0.312
0 .59 0.392 0.448 0.448 0.412 0.418
14 0 0.152 0.206 0.207 0.200 0.210
14 14 0.178 0.234 0.235 0.220 0.231
14 .39 0.290 0.337 0.337 0.314 0.325
.14 .59 0.402 0.451 0.452 0.422 0.429
.39 0 0.275 0.312 0.312 0.304 0.312
39 14 0.286 0.319 0.319 0.312 0.322
39 .39 0.377 0.402 0.402 0.392 0.407
39 .59 0.465 0.486 0.486 0.474 0.487
59 0 0.401 0.435 0.435 0.425 0.430
59 14 0.404 0.432 0.432 0.428 0.435
59 .39 0.473 0.492 0.492 0.489 0.502
59 .59 0.549 0.559 0.560 0.558 0.572
c'=.59
0 0 0.132 0.195 0.195 0.185 0.194
0 14 0.158 0.223 0.223 0.204 0.214
0 .39 0.270 0.329 0.329 0.299 0.308
0 .59 0.378 0.434 0.434 0.399 0.405
14 0 0.153 0.207 0.207 0.200 0.209
14 .14 0.175 0.232 0.231 0.220 0.232
14 .39 0.286 0.333 0.334 0.313 0.323
14 .59 0.404 0.455 0.455 0.426 0.433
.39 0 0.273 0.311 0.311 0.304 0.312
.39 14 0.288 0.321 0.321 0.314 0.324
39 .39 0.371 0.396 0.396 0.387 0.402
39 .59 0.467 0.486 0.487 0.477 0.490
59 0 0.399 0.432 0.432 0.424 0.428
59 14 0.398 0.427 0.427 0.420 0.427
59 .39 0.473 0.491 0.492 0.484 0.497
59 .59 0.550 0.561 0.562 0.556 0.568
Table 35

Interval Width for N=60 in Study 1. The column namefer to normal theory confidence limits,
Bayesian method of coefficients with diffuse pdistributions, Bayesian method of coefficients with
informative prior distributions, Percentile bootapr, and Bias-corrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.087 0.127 0.127 0.120 0.127
0 14 0.106 0.141 0.141 0.135 0.142
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0 .39 0.212 0.239 0.238 0.228 0.233
0 .59 0.313 0.336 0.336 0.324 0.326
.14 0 0.159 0.212 0.212 0.203 0.213
.14 .14 0.128 0.158 0.158 0.151 0.159
.14 .39 0.223 0.242 0.243 0.237 0.243
14 .59 0.320 0.339 0.338 0.327 0.330
.39 0 0.215 0.236 0.235 0.232 0.236
.39 .14 0.229 0.243 0.244 0.241 0.248
.39 .39 0.293 0.298 0.297 0.298 0.308
.39 .59 0.375 0.383 0.383 0.376 0.384
.59 0 0.312 0.328 0.330 0.323 0.325
.59 .14 0.322 0.335 0.336 0.334 0.337
.59 .39 0.376 0.375 0.376 0.380 0.388
.59 .59 0.443 0.445 0.445 0.446 0.455
c'=.14
0 0 0.086 0.126 0.125 0.120 0.127
0 14 0.107 0.143 0.143 0.136 0.143
0 .39 0.271 0.333 0.333 0.302 0.311
0 .59 0.390 0.447 0.447 0.409 0.414
14 0 0.157 0.211 0.211 0.205 0.215
.14 .14 0.128 0.157 0.157 0.154 0.162
.14 .39 0.228 0.248 0.248 0.241 0.247
.14 .59 0.321 0.337 0.338 0.329 0.333
.39 0 0.216 0.235 0.236 0.234 0.239
.39 .14 0.224 0.238 0.239 0.238 0.245
.39 .39 0.296 0.300 0.300 0.301 0.312
.39 .59 0.375 0.383 0.383 0.378 0.387
.59 0 0.313 0.330 0.329 0.325 0.327
.59 .14 0.325 0.337 0.337 0.334 0.338
.59 .39 0.374 0.379 0.378 0.376 0.384
.59 .59 0.443 0.447 0.447 0.446 0.455
c'=.39
0 0 0.134 0.196 0.196 0.186 0.196
0 .14 0.150 0.215 0.216 0.197 0.207
0 .39 0.273 0.333 0.333 0.302 0.311
0 .59 0.391 0.449 0.449 0.413 0.418
14 0 0.106 0.139 0.138 0.135 0.142
.14 .14 0.125 0.155 0.156 0.150 0.158
.14 .39 0.226 0.247 0.247 0.238 0.245
.14 .59 0.319 0.337 0.337 0.325 0.329
.39 0 0.213 0.233 0.232 0.229 0.234
.39 .14 0.230 0.246 0.245 0.244 0.250
.39 .39 0.297 0.307 0.307 0.301 0.312
.39 .59 0.376 0.385 0.385 0.381 0.389
.59 0 0.317 0.334 0.335 0.328 0.330
.59 .14 0.321 0.332 0.330 0.331 0.335
.59 .39 0.374 0.379 0.379 0.378 0.387
.59 .59 0.441 0.448 0.448 0.442 0.451
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c'=.59

0 0 0.132 0.195 0.195 0.185 0.194
0 .14 0.156 0.221 0.221 0.204 0.214
0 .39 0.273 0.334 0.333 0.305 0.313
0 .59 0.386 0.446 0.446 0.405 0.411
.14 0 0.108 0.143 0.143 0.137 0.144
.14 .14 0.131 0.162 0.161 0.155 0.163
.14 .39 0.227 0.246 0.247 0.238 0.245
.14 .59 0.323 0.341 0.341 0.329 0.334
.39 0 0.213 0.233 0.232 0.229 0.233
.39 .14 0.231 0.248 0.247 0.243 0.250
.39 .39 0.298 0.304 0.304 0.304 0.314
.39 .59 0.377 0.387 0.386 0.382 0.391
.59 0 0.316 0.333 0.333 0.330 0.333
.59 .14 0.331 0.343 0.345 0.341 0.345
.59 .39 0.372 0.378 0.378 0.377 0.385
.59 .59 0.438 0.443 0.443 0.439 0.447
Table 36

Interval Width for N=100 in Study 1. The column eamefer to normal theory confidence limits,
Bayesian method of coefficients with diffuse pdistributions, Bayesian method of coefficients with
informative prior distributions, Percentile bootapr, and Bias-corrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot

a b c'=0

0 0 0.051 0.071 0.071 0.071 0.075
0 14 0.070 0.086 0.086 0.086 0.091
0 .39 0.158 0.161 0.161 0.166 0.168
0 .59 0.237 0.234 0.234 0.242 0.243
.14 0 0.071 0.086 0.086 0.087 0.092
14 14 0.090 0.101 0.101 0.101 0.107
14 .39 0.170 0.174 0.173 0.174 0.178
.14 .59 0.242 0.243 0.243 0.246 0.248
.39 0 0.159 0.158 0.158 0.165 0.167
.39 14 0.171 0.171 0.171 0.176 0.180
.39 .39 0.223 0.225 0.225 0.224 0.230
.39 .59 0.286 0.288 0.288 0.286 0.291
.59 0 0.239 0.234 0.234 0.245 0.246
.59 .14 0.243 0.240 0.240 0.246 0.248
.59 .39 0.285 0.282 0.282 0.286 0.290
.59 .59 0.335 0.337 0.337 0.334 0.338

c'=14

0 0 0.051 0.070 0.070 0.070 0.074
0 14 0.073 0.088 0.087 0.089 0.093
0 .39 0.160 0.162 0.162 0.167 0.168
0 .59 0.237 0.234 0.234 0.243 0.243
14 0 0.073 0.087 0.087 0.088 0.093
14 .14 0.088 0.100 0.100 0.100 0.106
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14 .39 0.168 0.172 0.172 0.173 0.177
.14 .59 0.244 0.243 0.244 0.247 0.248
.39 0 0.162 0.160 0.160 0.169 0.171
.39 14 0.172 0.172 0.172 0.177 0.181
.39 .39 0.225 0.227 0.227 0.225 0.231
.39 .59 0.285 0.288 0.289 0.286 0.290
.59 0 0.238 0.232 0.232 0.243 0.244
.59 14 0.244 0.240 0.240 0.247 0.249
.59 .39 0.282 0.278 0.277 0.283 0.287
.59 .59 0.334 0.336 0.335 0.334 0.339
c'=.39
0 0 0.051 0.069 0.068 0.071 0.075
0 .14 0.072 0.086 0.086 0.088 0.092
0 .39 0.157 0.159 0.159 0.165 0.167
0 .59 0.238 0.233 0.233 0.244 0.244
14 0 0.072 0.084 0.084 0.087 0.092
14 .14 0.088 0.098 0.098 0.100 0.105
14 .39 0.171 0.174 0.174 0.176 0.179
14 .59 0.243 0.242 0.242 0.247 0.249
.39 0 0.162 0.158 0.158 0.168 0.170
.39 14 0.173 0.171 0.171 0.177 0.181
39 .39 0.223 0.226 0.226 0.225 0.231
39 .59 0.285 0.287 0.287 0.285 0.290
59 0 0.238 0.230 0.229 0.245 0.245
59 14 0.242 0.235 0.235 0.247 0.248
59 .39 0.286 0.283 0.283 0.287 0.291
59 .59 0.336 0.338 0.339 0.336 0.341
c'=.59
0 0 0.051 0.069 0.069 0.071 0.075
0 14 0.074 0.088 0.088 0.089 0.093
0 .39 0.159 0.161 0.161 0.167 0.169
0 .59 0.240 0.234 0.234 0.245 0.245
14 0 0.071 0.084 0.084 0.086 0.091
.14 .14 0.090 0.101 0.101 0.109 0.107
.14 .39 0.173 0.176 0.176 0.177 0.181
14 .59 0.245 0.244 0.244 0.249 0.250
.39 0 0.160 0.158 0.158 0.168 0.169
.39 .14 0.172 0.172 0.172 0.177 0.181
.39 .39 0.223 0.224 0.224 0.222 0.228
.39 .59 0.284 0.287 0.286 0.284 0.288
.59 0 0.240 0.230 0.230 0.245 0.245
.59 .14 0.245 0.238 0.238 0.249 0.251
.59 .39 0.287 0.284 0.284 0.288 0.292
.59 .59 0.336 0.337 0.337 0.335 0.339
Table 37

Interval Width for N=500 in Study 1. The column eamefer to normal theory confidence limits,
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Bayesian method of coefficients with diffuse pdistributions, Bayesian method of coefficients with
informative prior distributions, Percentile bootafr, and Bias-corrected bootstrap (respectively).

normal YMdiff YMinfo PercBoot BCBoot
a b c'=0
0 0 0.010 0.014 0.014 0.014 0.015
0 14 0.026 0.028 0.028 0.028 0.028
0 .39 0.068 0.070 0.070 0.069 0.069
0 .59 0.104 0.105 0.105 0.104 0.104
14 0 0.026 0.029 0.029 0.028 0.029
14 14 0.036 0.037 0.037 0.037 0.038
.14 .39 0.073 0.074 0.074 0.074 0.074
14 .59 0.107 0.107 0.107 0.107 0.108
.39 0 0.069 0.072 0.072 0.070 0.070
.39 .14 0.073 0.075 0.075 0.073 0.074
.39 .39 0.097 0.099 0.099 0.097 0.098
.39 .59 0.125 0.128 0.128 0.125 0.125
.59 0 0.104 0.108 0.108 0.104 0.104
.59 .14 0.107 0.110 0.110 0.107 0.107
.59 .39 0.125 0.127 0.127 0.126 0.126
.59 .59 0.147 0.150 0.150 0.146 0.147
c'=.14
0 0 0.010 0.014 0.014 0.014 0.015
0 14 0.025 0.028 0.028 0.027 0.028
0 .39 0.069 0.070 0.070 0.070 0.070
0 .59 0.103 0.104 0.104 0.104 0.104
14 0 0.026 0.029 0.029 0.028 0.029
14 14 0.036 0.037 0.037 0.036 0.038
14 .39 0.073 0.074 0.074 0.074 0.074
14 .59 0.106 0.107 0.107 0.106 0.107
.39 0 0.069 0.071 0.072 0.069 0.070
.39 14 0.073 0.075 0.075 0.074 0.074
39 .39 0.097 0.098 0.098 0.097 0.098
39 .59 0.125 0.129 0.128 0.124 0.125
59 0 0.104 0.106 0.106 0.104 0.104
59 .14 0.107 0.109 0.109 0.107 0.107
59 .39 0.125 0.127 0.126 0.124 0.125
59 .59 0.147 0.151 0.151 0.147 0.148
c'=.39
0 0 0.010 0.014 0.014 0.014 0.015
0 .14 0.026 0.028 0.028 0.028 0.028
0 .39 0.069 0.070 0.070 0.069 0.070
0 .59 0.104 0.105 0.105 0.104 0.104
.14 0 0.026 0.029 0.029 0.028 0.029
14 14 0.036 0.037 0.037 0.036 0.038
14 .39 0.073 0.074 0.073 0.073 0.074
14 .59 0.106 0.107 0.107 0.106 0.106
.39 0 0.069 0.072 0.072 0.070 0.070
.39 .14 0.073 0.074 0.074 0.073 0.073
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.39 .39 0.097 0.099 0.099 0.097 0.098

.39 .59 0.124 0.127 0.127 0.124 0.124
.59 0 0.104 0.107 0.107 0.104 0.104
.59 .14 0.107 0.108 0.108 0.107 0.108
.59 .39 0.125 0.126 0.126 0.125 0.125
.59 .59 0.147 0.150 0.150 0.147 0.148
c'=.59
0 0 0.010 0.014 0.014 0.014 0.015
0 .14 0.026 0.0281 0.028 0.028 0.028
0 .39 0.069 0.071 0.071 0.070 0.070
0 .59 0.104 0.105 0.105 0.104 0.104
14 0 0.026 0.029 0.029 0.028 0.028
14 .14 0.036 0.037 0.037 0.036 0.038
14 .39 0.073 0.073 0.073 0.073 0.073
.14 .59 0.107 0.108 0.108 0.107 0.107
.39 0 0.069 0.072 0.072 0.070 0.070
39 .14 0.073 0.076 0.076 0.073 0.074
39 .39 0.097 0.100 0.100 0.097 0.098
39 .59 0.125 0.126 0.126 0.125 0.125
59 0 0.104 0.107 0.107 0.105 0.105
59 .14 0.107 0.108 0.108 0.108 0.108
59 .39 0.124 0.128 0.128 0.124 0.125
59 .59 0.147 0.148 0.148 0.147 0.148
Table 38

Imbalance for N=20 in Study 1. The column namésr te normal theory confidence limits, Bayesian
method of coefficients with diffuse prior distrilauts, Bayesian method of coefficients with informeat
prior distributions, and Percentile bootstrap (respively).

normal Y Mdiff YMinfo PercBoot
a b c=0
0 0 -0.001 0.000 0.000 0.002
0 14 0.000 -0.001 -0.001 -0.002
0 .39 -0.001 -0.006 -0.006 0.002
0 .59 -0.003 -0.002 -0.001 -0.002
14 0 0.000 0.000 0.000 0.000
14 14 0.033 -0.002 -0.002 0.001
14 .39 0.043 0.025 0.024 0.027
14 .59 0.020 0.014 0.015 0.016
.39 0 -0.001 0.003 0.003 -0.001
.39 14 0.031 0.004 0.004 0.010
.39 .39 0.086 0.027 0.028 0.038
.39 .59 0.074 0.025 0.025 0.044
.59 0 -0.001 -0.004 -0.003 -0.004
.59 .14 0.026 0.021 0.021 0.032
.59 .39 0.080 0.035 0.035 0.043
.59 .59 0.059 0.020 0.020 0.031
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c'=.14
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0 0 -0.001 0.000 0.000 -0.002
0 14 0.000 -0.001 -0.001 -0.003
0 .39 0.000 -0.001 -0.001 0.001
0 .59 0.007 0.021 0.020 0.003
14 0 0.001 -0.002 -0.001 0.001
14 .14 0.032 0.004 0.004 0.006
14 .39 0.042 0.021 0.020 0.033
14 .59 0.034 0.029 0.030 0.033
.39 0 -0.001 -0.007 -0.007 -0.002
.39 .14 0.024 0.005 0.005 0.012
.39 .39 0.094 0.036 0.036 0.042
.39 .59 0.075 0.030 0.030 0.047
.59 0 -0.002 -0.011 -0.011 0.003
.59 .14 0.029 0.026 0.026 0.037
.59 .39 0.084 0.046 0.048 0.053
.59 .59 0.084 0.046 0.046 0.060
c'=.39
0 0 0.000 0.002 0.002 0.002
0 14 0.000 0.002 0.002 0.000
0 .39 0.007 0.008 0.009 -0.002
0 .59 0.002 0.009 0.009 -0.007
14 0 0.001 0.003 0.002 0.000
14 14 0.034 -0.002 -0.002 0.002
14 .39 0.039 0.022 0.021 0.024
14 .59 0.034 0.023 0.023 0.020
.39 0 -0.005 -0.002 -0.002 0.009
.39 14 0.037 0.000 0.000 0.009
.39 .39 0.098 0.018 0.018 0.048
.39 .59 0.077 0.034 0.035 0.040
.59 0 0.007 0.011 0.011 0.009
.59 .14 0.020 0.021 0.021 0.015
.59 .39 0.084 0.033 0.033 0.044
.59 .59 0.071 0.028 0.028 0.048
c’'=.59
0 0 -0.001 -0.002 -0.002 -0.004
0 14 0.000 0.001 0.001 0.000
0 .39 -0.001 0.008 0.008 -0.003
0 .59 -0.004 0.009 0.009 -0.001
14 0 -0.002 -0.003 -0.003 0.000
14 14 0.009 -0.002 -0.002 -0.006
14 .39 0.026 -0.002 -0.002 0.004
14 .59 0.027 0.000 0.000 0.026
.39 0 0.003 0.004 0.003 0.013
.39 14 0.035 0.005 0.005 0.017
.39 .39 0.081 0.040 0.040 0.050
.39 .59 0.077 0.028 0.028 0.045
.59 0 0.007 0.007 0.006 0.008



.59 14 0.021 0.020 0.020 0.025

.59 .39 0.086 0.043 0.042 0.061
.59 .59 0.072 0.032 0.032 0.054
Table 39

Imbalance for N=40 in Study 1. The column namés te normal theory confidence limits, Bayesian
method of coefficients with diffuse prior distriloums, Bayesian method of coefficients with infoimeat
prior distributions, and Percentile bootstrap (respively).

normal YMdiff YMinfo PercBoot

a b c=0
0 0 0.000 0.002 0.002 0.003
0 14 0.000 0.002 0.002 0.004
0 .39 -0.001 0.009 0.009 -0.002
0 .59 -0.002 0.007 0.008 0.009
14 0 -0.002 -0.001 -0.001 -0.002
14 .14 0.031 -0.002 -0.002 -0.001
14 .39 0.046 0.017 0.017 0.025
14 .59 0.036 0.026 0.026 0.022
.39 0 0.000 -0.003 -0.003 0.001
.39 .14 0.050 0.020 0.022 0.023
.39 .39 0.082 0.041 0.041 0.045
.39 .59 0.055 0.030 0.030 0.036
.59 0 0.006 -0.006 -0.004 0.012
.59 .14 0.029 0.010 0.011 0.023
.59 .39 0.056 0.025 0.026 0.042
.59 .59 0.039 0.016 0.017 0.017

c'=.14
0 0 0.000 0.000 0.000 -0.001
0 14 -0.001 0.001 0.001 0.002
0 .39 0.001 0.010 0.010 0.003
0 .59 -0.007 0.006 0.007 -0.008
14 0 0.000 0.000 0.000 0.000
14 14 0.036 0.004 0.004 0.006
14 .39 0.055 0.028 0.027 0.021
14 .59 0.028 0.018 0.018 0.036
.39 0 -0.002 -0.005 -0.005 0.012
39 14 0.051 0.037 0.036 0.041
39 .39 0.072 0.030 0.030 0.034
39 .59 0.048 0.026 0.024 0.030
59 0 -0.002 -0.002 -0.002 0.006
59 .14 0.024 0.014 0.013 0.012
59 .39 0.061 0.030 0.030 0.040
59 .59 0.051 0.029 0.030 0.031

c'=.39
0 0 0.000 0.002 0.002 0.002
0 .14 -0.001 0.004 0.004 0.003
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0 .39 -0.002 0.005 0.005 0.001

0 .59 -0.003 0.008 0.009 -0.004
14 0 -0.001 0.000 0.000 0.000
14 14 0.032 0.000 0.000 0.005
14 .39 0.052 0.045 0.046 0.043
14 .59 0.031 0.025 0.026 0.033
.39 0 -0.004 -0.008 -0.008 -0.005
.39 14 0.057 0.025 0.025 0.026
.39 .39 0.064 0.027 0.028 0.026
.39 .59 0.057 0.031 0.031 0.037
.59 0 0.000 -0.007 -0.008 0.004
.59 .14 0.022 0.013 0.013 0.018
.59 .39 0.060 0.029 0.028 0.017
.59 .59 0.063 0.028 0.031 0.036
c’'=.59
0 0 -0.001 -0.002 -0.002 -0.004
0 14 -0.001 -0.002 -0.002 -0.006
0 .39 0.000 0.002 0.002 0.003
0 .59 0.001 0.012 0.012 0.010
14 0 0.000 0.003 0.002 0.003
14 14 0.024 -0.001 -0.001 -0.002
14 .39 0.062 0.027 0.028 0.036
14 .59 0.029 0.023 0.023 0.023
.39 0 -0.001 -0.003 -0.002 0.003
39 14 0.051 0.027 0.027 0.036
39 .39 0.080 0.033 0.032 0.033
39 .59 0.052 0.029 0.027 0.034
59 0 0.007 0.003 0.003 0.005
59 14 0.032 0.021 0.021 0.025
59 .39 0.048 0.021 0.021 0.022
59 .59 0.047 0.022 0.022 0.037
Table 40

Imbalance for N=60 in Study 1. The column namés te normal theory confidence limits, Bayesian
method of coefficients with diffuse prior distriloums, Bayesian method of coefficients with infoimeat
prior distributions, and Percentile bootstrap (respively).

normal YMdiff YMinfo PercBoot
a b c=0
0 0 0.000 0.000 0.000 0.001
0 14 -0.001 0.002 0.002 0.002
0 .39 0.007 0.006 0.006 0.001
0 .59 0.006 0.010 0.011 0.007
14 0 0.001 0.001 0.001 0.005
14 .14 0.059 0.001 0.004 0.002
14 .39 0.060 0.029 0.030 0.044
14 .59 0.024 0.016 0.013 0.019
.39 0 0.002 0.001 0.004 0.005
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.39 14 0.050 0.024 0.023 0.036
.39 .39 0.062 0.024 0.022 0.036
.39 .59 0.052 0.037 0.032 0.026
.59 0 0.007 0.010 0.014 0.006
.59 14 0.026 0.030 0.026 0.020
.59 .39 0.051 0.033 0.028 0.031
.59 .59 0.042 0.021 0.019 0.024
c'=14
0 0 0.000 0.001 0.000 -0.001
0 14 -0.001 0.000 0.000 -0.001
0 .39 -0.001 0.005 0.005 0.009
0 .59 -0.003 0.001 0.001 -0.005
14 0 0.001 0.002 0.002 0.004
14 .14 0.053 0.004 0.002 0.005
14 .39 0.039 0.014 0.013 0.024
14 .59 0.026 0.008 0.008 0.014
.39 0 0.002 0.010 0.007 0.013
.39 14 0.054 0.036 0.036 0.033
.39 .39 0.068 0.035 0.035 0.025
.39 .59 0.048 0.026 0.024 0.028
.59 0 0.001 0.004 0.006 0.006
.59 14 0.028 0.029 0.026 0.024
.59 .39 0.047 0.021 0.022 0.019
.59 .59 0.038 0.026 0.033 0.019
c'=.39
0 0 0.000 0.000 0.000 0.000
0 14 0.000 -0.001 -0.001 -0.001
0 .39 0.001 0.006 0.005 0.004
0 .59 0.002 0.017 0.017 0.013
14 0 0.000 -0.006 -0.007 -0.002
14 14 0.067 0.006 0.000 0.000
14 .39 0.045 0.023 0.023 0.033
14 .59 0.022 0.004 0.005 0.010
.39 0 -0.004 -0.005 -0.004 -0.006
.39 14 0.040 0.027 0.028 0.030
.39 .39 0.072 0.041 0.039 0.042
.39 .59 0.050 0.020 0.025 0.015
.59 0 -0.003 -0.006 -0.003 -0.006
.59 .14 0.022 0.026 0.025 0.018
.59 .39 0.042 0.024 0.026 0.032
.59 .59 0.040 0.014 0.014 0.020
c’'=.59
0 0 0.000 -0.001 -0.001 -0.001
0 .14 0.000 0.001 0.001 0.001
0 .39 0.001 0.009 0.010 0.003
0 .59 0.014 0.018 0.018 0.017
14 0 0.000 0.004 0.005 0.003
14 14 0.051 0.000 -0.003 0.003



14 .39 0.049 0.039 0.037 0.040

14 .59 0.017 0.005 0.007 0.010
.39 0 0.002 -0.003 -0.006 0.004
.39 14 0.046 0.022 0.021 0.022
.39 .39 0.049 0.016 0.019 0.024
.39 .59 0.051 0.024 0.022 0.020
.59 0 -0.004 0.003 0.001 0.004
.59 14 0.021 0.015 0.013 0.005
.59 .39 0.066 0.055 0.053 0.043
.59 .59 0.044 0.032 0.032 0.022
Table 41

Imbalance for N=100 in Study 1. The column nareésrito normal theory confidence limits,
Bayesian method of coefficients with diffuse pdistributions, Bayesian method of coefficients with
informative prior distributions, and Percentile detvap (respectively).

normal YMdiff YMinfo PercBoot
a b c=0
0 0 0.000 -0.001 -0.001 0.000
0 14 0.001 0.003 0.003 0.003
0 .39 0.002 -0.015 -0.015 -0.006
0 .59 -0.004 -0.005 -0.005 0.008
14 0 -0.002 0.012 0.012 -0.001
14 .14 0.089 0.035 0.035 0.026
14 .39 0.037 0.026 0.027 0.023
14 .59 0.016 0.004 0.003 0.013
.39 0 -0.001 0.063 0.064 0.011
.39 .14 0.043 0.068 0.068 0.028
.39 .39 0.056 0.031 0.032 0.031
.39 .59 0.027 0.012 0.012 0.015
.59 0 0.001 0.057 0.059 0.003
.59 .14 0.016 0.050 0.051 0.005
.59 .39 0.037 0.052 0.052 0.027
.59 .59 0.033 0.021 0.020 0.012

c'=.14

0 0 0.000 0.001 0.001 -0.001
0 14 0.000 -0.001 -0.001 0.001
0 .39 -0.002 -0.008 -0.009 -0.002
0 .59 -0.005 -0.013 -0.012 0.001
14 0 0.000 0.018 0.018 0.002
14 14 0.097 0.034 0.034 0.028
14 .39 0.035 0.010 0.013 0.011
14 .59 0.017 0.004 0.003 0.008
39 0 0.007 0.074 0.074 0.009
39 14 0.033 0.081 0.080 0.023
39 .39 0.045 0.023 0.025 0.020
39 .59 0.036 0.021 0.021 0.023
59 0 -0.005 0.057 0.054 -0.011
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.59 14 0.022 0.068 0.068 0.011

.59 .39 0.049 0.062 0.062 0.023
.59 .59 0.028 0.015 0.016 0.012
c'=.39
0 0 0.000 -0.002 -0.002 -0.002
0 14 -0.001 -0.008 -0.007 -0.007
0 .39 -0.004 -0.009 -0.010 0.003
0 .59 -0.009 -0.017 -0.017 -0.007
14 0 0.001 0.024 0.024 0.001
14 .14 0.101 0.046 0.047 0.030
14 .39 0.039 0.020 0.020 0.023
14 .59 0.030 0.012 0.013 0.018
.39 0 0.005 0.094 0.094 0.014
39 .14 0.045 0.076 0.076 0.019
39 .39 0.053 0.029 0.029 0.022
39 .59 0.034 0.014 0.014 0.015
59 0 -0.003 0.070 0.070 0.000
59 .14 0.025 0.079 0.078 0.016
59 .39 0.024 0.035 0.036 0.004
59 .59 0.033 0.018 0.018 0.021
c'=.59
0 0 0.001 0.002 0.002 0.001
0 14 -0.001 -0.005 -0.005 0.001
0 .39 -0.001 -0.001 -0.001 0.002
0 .59 -0.008 -0.020 -0.021 -0.010
14 0 0.000 0.015 0.016 -0.003
14 14 0.082 0.047 0.049 0.022
14 .39 0.045 0.024 0.026 0.029
14 .59 0.018 0.005 0.004 0.015
.39 0 -0.004 0.055 0.056 -0.010
39 14 0.038 0.067 0.065 0.018
39 .39 0.057 0.021 0.021 0.026
39 .59 0.038 0.011 0.010 0.017
59 0 -0.009 0.073 0.074 -0.007
59 .14 0.021 0.072 0.067 0.014
59 .39 0.032 0.043 0.040 0.006
59 .59 0.027 0.021 0.020 0.016
Table 42

Imbalance for N=500 in Study 1. The column nanaésrito normal theory confidence limits,
Bayesian method of coefficients with diffuse pdistributions, Bayesian method of coefficients with
informative prior distributions, and Percentile etrap (respectively).

normal Y Mdiff YMinfo PercBoot
a b c=0
0 0 0.000 0.003 0.003 0.001
0 14 0.008 0.006 0.006 0.009
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0 .39 0.009 0.006 0.005 0.005
0 .59 0.004 0.008 0.006 0.009
.14 0 -0.005 -0.016 -0.013 -0.007
.14 .14 0.044 0.007 0.009 0.007
.14 .39 0.008 0.011 0.006 0.003
.14 .59 0.015 0.005 0.002 0.013
.39 0 -0.003 -0.007 -0.007 -0.002
.39 .14 0.028 0.024 0.018 0.014
.39 .39 0.016 0.019 0.022 0.002
.39 .59 0.012 -0.003 -0.003 -0.002
.59 0 -0.001 0.001 -0.003 0.000
.59 .14 0.016 0.011 0.013 0.011
.59 .39 0.024 0.012 0.013 0.020
.59 .59 0.009 0.003 -0.001 0.003
c'=.14
0 0 0.000 0.000 0.001 0.001
0 14 0.002 -0.002 0.000 0.004
0 .39 0.008 0.008 0.008 0.010
0 .59 -0.006 -0.005 -0.011 -0.003
.14 0 0.001 0.001 0.000 0.002
.14 .14 0.055 0.020 0.024 0.021
.14 .39 0.008 -0.003 -0.006 0.001
.14 .59 0.009 0.001 0.002 0.002
.39 0 -0.004 0.008 0.005 -0.001
.39 .14 0.020 0.008 0.007 0.006
.39 .39 0.014 0.011 0.017 0.008
.39 .59 0.014 0.004 -0.002 0.005
.59 0 0.006 0.010 0.008 0.003
.59 .14 0.004 0.003 0.003 -0.002
.59 .39 0.020 0.011 0.011 0.007
.59 .59 0.018 0.005 0.005 0.013
c'=.39
0 0 0.000 0.000 0.000 0.000
0 .14 -0.006 -0.007 -0.004 -0.003
0 .39 0.000 0.002 0.003 0.005
0 .59 -0.003 0.001 -0.001 0.001
.14 0 -0.007 -0.011 -0.013 -0.009
.14 .14 0.055 0.024 0.023 0.024
.14 .39 0.016 0.004 0.009 0.007
.14 .59 0.004 -0.003 0.000 -0.003
.39 0 -0.003 0.012 0.006 0.000
.39 .14 0.037 0.025 0.029 0.019
.39 .39 0.027 0.014 0.012 0.017
.39 .59 0.025 0.001 0.002 0.012
.59 0 -0.002 0.001 0.001 0.002
.59 .14 0.007 0.009 0.005 0.004
.59 .39 0.017 0.014 0.014 0.003
.59 .59 -0.001 -0.006 -0.006 -0.012
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c'=.59

0 0 0.000 0.000 0.000 -0.001
0 .14 -0.006 -0.007 -0.005 -0.003
0 .39 0.001 0.006 0.005 0.000
0 .59 -0.006 -0.003 -0.009 -0.001
14 0 -0.004 -0.012 -0.011 -0.007
14 .14 0.059 0.018 0.016 0.025
14 .39 0.020 0.007 0.012 0.013
14 .59 0.012 0.014 0.011 0.012
.39 0 -0.007 -0.003 -0.005 -0.005
.39 14 0.022 0.006 0.006 0.013
.39 .39 0.033 0.021 0.023 0.021
.39 .59 0.015 0.001 0.001 0.011
.59 0 0.000 0.004 0.008 -0.003
.59 14 0.014 0.002 0.007 0.010
.59 .39 0.016 -0.008 -0.007 0.004
.59 .59 0.007 -0.002 -0.002 0.003
Table 43

Type | error ratefor N=20 for normal theory, distribution of the pitoct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffigamith informative priors, percentile bootstrap,dan
bias-corrected bootstrap interval estimates in $t2dc’=0).

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
0 0 o0.001 0.004 0.002 0.000 0.002 0.000 0.006 0.010
0 .14 0.000 0.004 0.004 0.000 0.001 0.000 0.006 0.019
0 .39 0.005 0.022 0.011 0.004 0.009 0.003 0.016 0.032
0 .59 0.014 0.039 0.021 0.013 0.019 0.005 0.054 0.089
Table 44

Type | error ratefor N=40 for normal theory, distribution of the pitoct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffiganith informative priors, percentile bootstrap,dan
bias-corrected bootstrap interval estimates in $t2dc’=0).

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
0 0 0 0.002 0.002 0 0 0 0.004 0.01
0 .14 0 0.006 0.004 0.001 0.003 0 0.005 0.016
0 .39 0.009 0.038 0.028 0.012 0.021 0.005 0.041 0.071
0 59 o018 0.055 0.047 0.006 0.036 0.002 0.062 0.097
Table 45
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Type | error ratfor N=60 for normal theory, distribution of the mtoct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffiganith informative priors, percentile bootstrap,dan
bias-corrected bootstrap interval estimates in $tAdc’'=0).

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
0 0 0 0.001 0 0 0 0 0 0.006
0 .14 0 0.007 0.006 0 0.004 0.001 0.009 0.026
0 39 o0.016 0.028 0.026 0.006 0.021 0.003 0.037 0.071
0 .59 0.018 0.04 0.039 0.007 0.031 0.005 0.04 0.066
Table 46

Type | error ratefor N=100 for normal theory, distribution of theqatuct, Bayesian method of
coefficients with diffuse priors, Bayesian methbdaefficients with informative priors, percentile
bootstrap, and bias-corrected bootstrap intervdlmeates in Study 2 (¢'=0).

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
0 0  0.001 0.002 0.003 0 0.002 0 0.003 0.007
0 .14  0.003 0.015 0.01 0.001 0.011 0.002 0.013 0.031
0 39 0022 0.047 0.05 0.002 0.047 0.005 0.06 0.085
0 .39 0.032 0.044 0.042 0.007 0.047 0.006 0.054 0.063
Table 47

Type | error ratefor N=200 for normal theory, distribution of theqatuct, Bayesian method of
coefficients with diffuse priors, Bayesian methbdaefficients with informative priors, percentile
bootstrap, and bias-corrected bootstrap intervdlmeates in Study 2 (¢’'=0).

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
0 0 0 0 0 0 0.001 0 0.001 0.004
0 .14  0.005 0.03 0.032 0.005 0.035 0.006 0.033 0.056
0 39 0042 0.058 0.061 0.009 0.065 0.01 0.061 0.083
0 .39 0.051 0.059 0.059 0.007 0.061 0.007 0.061 0.064
Table 48

Powerfor N=20 for normal theory, distribution of the miact, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot

c'=0
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14 14 0.002 0.007  0.005 0 0.003 0 0.008 0.019
14 .39 0.006 0.03  0.013 0.023 0.014 0.024 0.025 0.063
14 .59 0.026 0.065  0.029 0.048 0.036 0.042 0.069 0.112
39 .39 0.053 0.133  0.077 0.424 0.084 0.413 0.122 0.211
39 .59 0.12 0.221  0.147 0.641 0.167 0.64 0.205 0.296
29 .59 0.277 0.433  0.329 0.976 0.359 0.964 0.374 0.501
c'=.39
14 .14 0.001 0.006  0.003 0 0.002 0 0.006 0.019
39 .39 0.052 0.115  0.072 0.425 0.072 0.401 0.115 0.193
29 .59 0.275 0.448  0.344 0.969 0.368 0.966 0.42 0.528
Table 49

Powerfor N=40 for normal theory, distribution of the piact, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
14 .14 0 0.007  0.005 0.003 0.003 0.002 0.01 0.032
14 .39 0.03 0.081  0.059 0.125 0.058 0.139 0.073 0.131
14 .59 0.081 0.154  0.135 0.162 0.123 0.173 0.151 0.201
39 .39 0.231 0.387  0.356 0.951 0.353 0.957 0.379 0.504
39 .59 0455 0.609  0.569 0.975 0.544 0.977 0.594 0.689
29 .59 0.773 0.873  0.849 0.999 0.841 1 0.845 0.907
c'=.39
14 .14 0.004 0.021  0.012 0.015 0.016 0.009 0.02 0.04
39 .39 0.243 0.411  0.361 0.964 0.385 0.962 0.405 0.514
29 .59 0.786 0.872  0.845 1 0.857 1 0.861 0.908
Table 50

Powerfor N=60 for normal theory, distribution of the piact, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
14 .14 0.006 0.037 0.03 0.045 0.028 0.03 0.036 0.065
14 .39 0.06 0.141  0.127 0.269 0.113 0.232 0.151 0.233
14 .59 0122 0.182  0.158 0.25 0.148 0.23 0.198 0.253
39 .39 0484 0.677  0.646 0.995 0.622 0.995 0.653 0.739
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39 .59 0.737 0.819  0.794 0.996 0.788 0.997 0.813 0.855

59 .59 0.969 0.985 0.98 1 0.983 1 0.972 0.982
c'=.39

14 .14 0.002 0.025  0.024 0.039 0.016 0.018 0.03 0.064

39 .39 0.48 0.671  0.645 0.997 0.633 0.996 0.652 0.758

29 .59 0.955 0976  0.972 1 0.972 1 0.971 0.986

Table 51

Powerfor N=100 for normal theory, distribution of thequuct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
14 14 0.022 0.064  0.052 0.197 0.055 0.254 0.068 0.123
14 .39 0.18 0.283  0.277 0.488 0.26 0.589 0.299 0.36
14 .59 0.239 029 0.281 0.497 0.269 0.563 0.296 0.328
39 .39 0.85 0.921  0.898 1 0.916 1 0.918 0.939
39 .59 0.955 0.967 0.964 1 0.96 1 0.964 0.971
.59 .59 1 1 1 1 1 1 1 1
c'=.39
14 14 0.025 0.066  0.055 0.202 0.056 0.271 0.073 0.129
39 .39 0.868 0.924 0.91 1 0.929 1 0.921 0.945
.59 .59 1 1 0.999 1 1 1 1 1
Table 52

Powerfor N=200 for normal theory, distribution of thequuct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
14 14 0.074 0.196  0.201 0.735 0.240 0.761 0.199 0.315
14 39 0.447 0.515  0.506 0.878 0.574 0.885 0.521 0.567
14 .59 0483 0.505  0.502 0.878 0.561 0.883 0.501 0.543
39 .39 0.996 0.999  0.998 1 0.999 1 0.996 0.999
39 .59 0.999 0.999 1 1 1 1 1 1
59 .59 1 1 1 1 1 1 1 1
c'=.39
14 14 0.09 0.244  0.244 0.739 0.278 0.74 0.238 0.353
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39 .39 0.996 0.997  0.998 1 0.998 1 0.996 0.998
.59 .59 1 1 1 1 1 1 1 1

Table 53

Coveragdor N=20 for normal theory, distribution of the mtoct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 0 0.999 0.996 0.998 1 0.998 1 0.994 0.99
0 14 1 0.996  0.996 1 0.999 1 0.994  0.981
0 39 0.995 0.978 0.989 0.996 0.991 0.997 0.984  0.968
0 59 0.986 0961 0.979  0.987 0.981 0.995 0.946  0.911
14 14 0.992 0.993 0.996 1 0.997 1 0.991  0.984
14 39 0.966 0.982 0.989  0.993 0.993 0.997 0.975 0.94
14 99 0.967 0.948 0.965  0.992 0.97 0.996 0.936  0.896

.39 39 0.901 0.947 0.953 0.989 0.933 0.995 0.928  0.917
.39 59 0.889 0.926 0.937 0.99 0.917 0.998 0.914 0.916
.59 59 0.905 0.943 0.948 0.995 0.91 0.998 0935 0.952

c'=.39

14 14 0.986 0.993 0.996 1 0.998 1 0.994 0.981
.39 39 0.903 0.951 0.962 0.992 0.946 0.991 0.929 0.916
.59 59 0.902 0.928 0.937 0.988 0.919 0.993 0.915 0.931

Table 54

Coveragdor N=40 for normal theory, distribution of the gioct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 0 1 0.998  0.998 1 1 1 0.996 0.99
0 14 1 0.994 0996  0.999 0.997 1 0.995 0.984
0 39 0.991 0.962 0.972  0.988 0.979 0.995 0.959 0.929
0 59 0.982 0.945 0.953  0.994 0.964 0.998 0.938 0.903
14 14 0.962 0.999 0.999 1 1 1 0.995 0.966

14 39 0.944 0.959 0.966 0.994 0.964 0.995 0.943 0.91
14 59 0.955 0.945 0.955 0.993 0.958 0.995 0.936 0.911
.39 39 0.923 0.944 0.953 0.99 0.948 0.993 0.932 0.943
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39 59 0.932 0.944 096  0.995 0.942 0.997 0.938 0.948

.59 59 0.925 0.948  0.96 0.99 0.937 0.992 0.923 0.944
c'=.39

14 14 0.966 0.987 0.991  0.999 0.991 1 0.981 0.944

39 39 0.934 0.947 0.965  0.991 0.957 0.992 0.937 0.955

.59 59 0.933 095 0.957  0.992 0.946 0.993 0.94 0.944

Table 55

Coveragdor N=60 for normal theory, distribution of the gtoct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 O 1 0.999 1 1 1 1 1 0.994
o .14 1 0.993 0.994 1 0.996 0.999 0.991 0.974
0 .39 0984 0.972 0.974 0.994 0.979 0.997 0.963 0.929
0 .39 00982 0.96 0.961 0.993 0.969 0.995 0.96 0.934
14 .14 0,937 0.985 0.989 0.994 0.988 0.997 0.976 0.914
14 .39 094 0.951 0.952 0.997 0.954 0.997 0.94 0.924
14 .59 0.954 0.948 0.951 0.997 0.952 0.997 0.938 0.919
39 .39 0.913 0.94 0.935 0.986 0.942 0.993 0.922 0.932
39 .59 003 0.944 0.945 0.99 0.944 0.992 0.936 0.94
29 .59 0.932 0.953 0.954 0.996 0.942 0.995 0.939 0.943
c'=.39
14 .14 0945 0.993 0.993 0.996 0.995 0.997 0.981 0.934
39 .39 0923 0.95 0.949 0.993 0.955 0.995 0.933 0.945
99 .59 0934 0.95 0.953 0.996 0.951 0.991 0.945 0.951
Table 56

Coveragdor N=100 for normal theory, distribution of theqauct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 0 0.999 0.998  0.997 1 0.998 1 0.997 0.993
0 .14 0997 0.985 0.99 0.999 0.989 0.998 0.987 0.969
0 39 00978 0.953 0.95 0.998 0.953 0.995 0.94 0.915
0 59 00968 0.956  0.958 0.993 0.953 0.994 0.946 0.937
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14 14 0.906 0.965 0.97 0.991 0.966 0.989 0.958 0.903
14 39 0.934 094 0.944 0.993 0.936 0.991 0.934 0.923
14 .59 0.961 0.96  0.966 0.992 0.945 0.994 0.949 0.947
39 .39 0.937 0.955  0.957 0.994 0.949 0.995 0.958 0.962
39 .59 0.937 0.946  0.954 0.991 0.937 0.992 0.94 0.947
29 .59 0.935 0.945  0.946 0.993 0.935 0.996 0.939 0.95
c'=.39
14 .14 0.9 097 00972 0.99 0.965 0.994 0.953 0.913
39 .39 0.948 096  0.963 0.995 0.959 0.995 0.954 0.96
929 .59 0.946 0.952  0.956 0.994 0.952 0.997 0.947 0.947
Table 57

Coveragdor N=200 for normal theory, distribution of theqauct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 0 1 1 1 1 0.999 1 0.999 0.996
0 .14 00995 0.97  0.968 0.995 0.965 0.994 0.967 0.944
0 39 00958 0.942  0.939 0.991 0.935 0.99 0.939 0.917
0 .39 0949 0.941  0.941 0.993 0.939 0.993 0.939 0.936
14 .14 0.905 0.96 0.96 0.994 0.953 0.993 0.957 0.957
14 .39 0.949 0.954  0.949 0.995 0.949 0.995 0.95 0.948
14 .59 0.953 0.948  0.949 0.994 0.945 0.994 0.943 0.941
39 .39 0.943 0.942  0.945 0.995 0.934 0.993 0.942 0.947
39 .59 0.947 0.947  0.951 0.988 0.941 0.989 0.948 0.943
29 .59 0.948 0.948  0.953 0.987 0.943 0.989 0.95 0.949
c'=.39
14 .14 0.904 0.943  0.941 0.992 0.94 0.996 0.942 0.944
39 .39 0935 0.936 0.94 0.992 0.935 0.992 0.937 0.937
929 .59 0.946 0.95 0.954 0.992 0.944 0.994 0.949 0.956
Table 58

Interval Widthfor N=20 for normal theory, distribution of the mtoct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffigamith informative priors, percentile bootstrap,dan
bias-corrected bootstrap interval estimates in $tad

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
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0 0 028 0.397 0.449 0.166 0.344 0.161 0.412 0.435
0 .14 0318 0421 0.480 0.190 0.363 0.184 0.437 0.460
0 .39 0435 0516 0.590 0.299 0.447 0.297 0.538 0.557
0 .39 0594 0.658 0.746 0.418 0.571 0.422 0.675 0.691
14 14 0331 0.433 0.480 0.207 0.372 0.206 0.457 0.479
14 .39 0465 0.539 0.604 0.312 0.460 0.316 0.557 0.579
14 59 0615 0.674 0.757 0.427 0.578 0.437 0.695 0.716
39 .39 0588 0.642 0.691 0.380 0.539 0.397 0.669 0.694
39 .59 0706 0.751 0.820 0.476 0.634 0.502 0.780 0.808
99 .59 0812 0.842 0.900 0.544 0.712 0.574 0.874 0.902
c'=.39
14 .14 0.310 0.413 0.462 0.200 0.360 0.199 0.432 0.451
39 .39 0570 0.627 0.677 0.378 0.545 0.387 0.656 0.687
59 .59 0827 0.858 0.916 0.5518  0.748 0.563 0.891 0.922
Table 59

Interval Widthfor N=40 for normal theory, distribution of the moct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffiganith informative priors, percentile bootstrap,dan
bias-corrected bootstrap interval estimates in $t2d

Method

a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0

0 0.133 0.186 0.197 0.0794 0.175 0.0758 0.185 0.194

14 0.160 0.207  0.220 0.101 0.195 0.096 0.206 0.215
39 0.271 0.301 0.319 0.192 0.288 0.185 0.301 0.310
29 0.392 0.415  0.438 0.279 0.400 0.268 0.415 0.421
14 .14 0472 0.216  0.231 0.114 0.203 0.111 0.216 0.227
14 .39 0.202 0.319  0.339 0.202 0.304 0.200 0.321 0.331
14 .59 0.404 0.424  0.447 0.284 0.406 0.282 0.423 0.430
39 .39 0.375 0.390 0.414 0.253 0.367 0.259 0.390 0.406
39 .59 0475 0.486  0.513 0.325 0.462 0.332 0.487 0.501
929 .59 0.543 0.550  0.580 0.373 0.523 0.385 0.549 0.564

c'=.39

14 14 0.182 0.224 0.239 0.117 0.218 0.117 0.225 0.236
39 .39 0375 0.390 0.412 0.253 0.378 0.262 0.391 0.408
.59 .59 0.546 0.553 0.584 0.372 0.533 0.385 0.551 0.565

Table 60

Interval Widthfor N=60 for normal theory, distribution of the moct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffigamith informative priors, percentile bootstrap,dan
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bias-corrected bootstrap interval estimates in $t2d

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 0 0.088 0.122  0.126 0.052 0.118 0.051 0.121 0.127
0 .14 0.108 0.138  0.143 0.072 0.134 0.071 0.137 0.144
0 39 0213 0.230  0.237 0.152 0.221 0.152 0.229 0.234
0 .39 0.309 0.321 0.331 0.221 0.306 0.225 0.318 0.320
14 .14 0.129 0.154  0.158 0.086 0.152 0.087 0.152 0.161
14 39 0.225 0.239  0.246 0.158 0.231 0.159 0.236 0.242
14 .59 0.323 0.333  0.341 0.228 0.318 0.230 0.332 0.336
39 .39 0.203 0.300  0.306 0.203 0.292 0.200 0.298 0.309
39 .59 0372 0.378  0.385 0.259 0.365 0.253 0.374 0.382
29 .59 0.438 0.442  0.451 0.302 0.426 0.301 0.441 0.449
c'=.39
14 14 0182 0.224  0.239 0.117 0.218 0.117 0.225 0.236
39 .39 0375 0.390 0.412 0.253 0.378 0.262 0.391 0.408
29 .59 05546 0.553  0.584 0.372 0.533 0.385 0.551 0.565
Table 61

Interval Widthfor N=100 for normal theory, distribution of theqatuct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffigamith informative priors, percentile bootstrap,dan
bias-corrected bootstrap interval estimates in $tAd

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
0 O 0.049 0.070  0.072 0.030 0.069 0.028 0.069 0.074
0 14 o072 0.088  0.090 0.050 0.082 0.046 0.087 0.091
0 39 0159 0.167  0.169 0.117 0.155 0.109 0.166 0.168
0 59 0232 0.239  0.242 0.167 0.217 0.160 0.237 0.238
14 .14 0.001 0.103  0.105 0.061 0.098 0.058 0.103 0.108
14 39 o171 0.177 0.181 0.120 0.167 0.114 0.176 0.179
14 .59 0.246 0.251  0.254 0.173 0.233 0.169 0.249 0.251
39 .39 0.221 0.223  0.230 0.155 0.214 0.148 0.222 0.228
39 .59 0.286 0.288  0.295 0.199 0.274 0.191 0.286 0.290
59 .59 0.336 0.337  0.346 0.232 0.324 0.226 0.336 0.340

c'=.39
14 .14 0.090 0.103  0.104 0.061 0.099 0.060 0.102 0.108
39 .39 0.223 0.225 0.231 0.155 0.222 0.154 0.223 0.229
29 .59 0.335 0.337 0.344 0.231 0.332 0.233 0.334 0.339
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Table 62

Interval Widthfor N=200 for normal theory, distribution of theqatuct, Bayesian method of coefficients
with diffuse priors, Bayesian method of coeffiganith informative priors, percentile bootstrap,dan
bias-corrected bootstrap interval estimates in $tad

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0

0 O 0.025 0.035  0.035 0.015 0.033 0.015 0.035 0.037
0 .14 0.045 0.052  0.052 0.032 0.048 0.031 0.052 0.056
0 39 o111 0.114  0.114 0.078 0.108 0.076 0.113 0.114
0 59 0.166 0.168  0.169 0.117 0.161 0.115 0.167 0.168

14 14 0.058 0.062 0.063 0.040 0.058 0.040 0.062 0.065
14 39 0.116 0.118 0.118 0.082 0.111 0.079 0.117 0.119
14 .59 0.170 0.172 0.173 0.120 0.165 0.118 0.171 0.172

39 .39 0.156 0.156  0.157 0.108 0.148 0.111 0.156 0.158
39 .59 0.199 0.200 0.201 0.139 0.188 0.139 0.199 0.200
59 59 0234 0.234  0.236 0.162 0.223 0.168 0.233 0.235

c'=.39

14 .14 0.060 0.064  0.064 0.041 0.062 0.041 0.064 0.067
39 .39 0.155 0.156 0.157 0.108 0.152 0.112 0.155 0.157
59 .59 0232 0.233  0.235 0.162 0.229 0.171 0.232 0.234

Table 63

Imbalancefor N=20 for normal theory, distribution of the gioct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0

0 0 0.001  -0.002 0 0 0 0 0 0
0 14 0 0 0 0 -0.001 0 0 0.005
0 39 0001 -0.002 0.001 0 -0.003 0.001 -0.004 0.002
0 .59 .0.004 0.003 -0.001  -0.003 -0.009 -0.001 -0.002 0.001
14 14 0.008 -0.001 0 0 0.001 0 -0.001 0
14 .39 0.028 0.006  0.001 0.005 0.003 -0.001 0.013 0.034
14 .59 0.027 0.02 0.021 0.006 0.024 0.004 0.034 0.052
39 .39 0.083 0.025  0.029 0.007 0.061 0.003 0.03 0.031
39 .59 0.097 0.036  0.049 0.004 0.079 0 0.046 0.014
59 .59 0.081 0.029  0.038 0.003 0.088 0 0.043 0.018
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c'=.39

A4 14 0.014 0.005 0.004 0 0.002 0 0.004 0.009
39 .39 0.087 0.027 0.024 0.006 0.05 0.007 0.047 0.034
.59 .59 0.07 0.032 0.035 0.004 0.071 -0.001 0.051 0.015
Table 64

Imbalancefor N=40 for normal theory, distribution of the gtoct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 O 0 -0.002  -0.002 0 0 0 -0.002  -0.994
o .14 0 0 -0.002 -0.001 0.001 0 -0.001  -0.002
0 39 0007 -0012 -0.008 -0.004 -0.011 -0.005 -0.005  -0.007
0 .59  0.002 0.007  0.009 0.002 0.006 0.002 0.006 0.007
14 14 0,038 -0.001 -0.001 0 0 0 0.001 0.024
14 .39 0.046 0.015 0.01 0.002 0.022 0.001 0.019 0.04
14 .59 0.025 0.015  0.015 0.001 0.026 0.005 0.014 0.021
39 .39 0.061 0.02  0.017 0.006 0.036 0.003 0.032 0.005
39 .59 0.05 0.02 0.014 0.003 0.044 0.001 0.022 0
59 .59 0.065 0.022  0.024 0.006 0.053 0.006 0.045 0.014
c'=.39
14 14 0.032 -0.001 -0.001 -0.001 -0.001 0 0.001 0.022

39 .39 0.056 0.021 0.019 0.005 0.035 0.006 0.031 0.001
59 .59 0.045 0.018 0.015 0.006 0.036 0.003 0.028 0.008

Table 65

Imbalancefor N=60 for normal theory, distribution of the gioct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0

0 0 0 -0.001 0 0 0 0 0 0.004
o .14 0 0.001  0.002 0 0.002 0.001 -0.001  -0.008
0 39 0.002 0.006  0.006 0.006 0.007 0.003 0.009 0.003
0 .59  0.004 0.004  0.009 0.001 0.009 0.003 0.004  -0.002
14 14 0.059 0.005  0.001 0.006 0.006 0.003 0.008 0.046
14 .39 0.048 0.027 0.03  -0.003 0.032 -0.003 0.032 0.03
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14 59 0.034 0.024  0.023  -0.001 0.034 0.001 0.024 0.023
39 .39 0.063 0.028 0.029 0.004 0.036 0.003 0.038 0.01

39 .59 0.054 0.03 0.029 0.006 0.046 0.006 0.02 0.008
.59 .59 0.054 0.013 0.014 0.004 0.052 0.003 0.027 0.001
c'=.39

14 14 0.055 0.003 0.005 0.004 0.003 0.003 0.005 0.036
39 .39 0.061 0.012 0.021 0.003 0.025 0.003 0.021  -0.007
.59 .59 0.044 0.022 0.019 0.004 0.035 0.007 0.029 0.007

Table 66

Imbalancefor N=100 for normal theory, distribution of theqatuct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 0 -0.001  -0.002 -0.001 0 -0.002 0 -0.001  -0.994
0 .14 .0.001 0.003 0 0.001 0.007 -0.002 0.005  -0.001
0 .39 0.004 0.007  0.008 0.002 0.019 -0.001 0.004 0.007
0 .59 0 -0.002 -0.002  -0.001 0.007 -0.004 0 -0.001
14 .14 0.094 0.017  0.022 0.009 0.024 0.011 0.024 0.059
14 .39 0.046 0.028 0.02  -0.001 0.04 -0.003 0.024 0.007
14 .59 0.017 0.01 0.004 0.002 0.033 0 0.011 0.011
39 .39 0.051 0.023 0.021 0.004 0.033 0.003 0.018 0.002
39 .59 0.033 0.006 0.01  -0.001 0.033 0 0.01  -0.009
929 .59 0.033 0.015 0.02  -0.003 0.037 0 0.015  -0.006
c'=.39
14 .14 0.096 0.006  0.006 0.008 0.017 0.002 0.017 0.047
39 .39 0.038 0.01  0.015 0.001 0.021 0.005 0.012  -0.002
929 .59 0.038 0.02 0.024 0 0.03 0.003 0.021 0.003

Table 67

Imbalancefor N=200 for normal theory, distribution of theqatuct, Bayesian method of coefficients with
diffuse priors, Bayesian method of coefficientviformative priors, percentile bootstrap, and fia
corrected bootstrap interval estimates in Study 2.

Method
a b normal prodclin  YMdiff YMinfo EFMdiff EFMinfo PercBot BCBoot
c'=0
0 0 0 0 0 0 0.001 0 -0.001 0
0 .14  0.001 0.006  0.008 -0.001 -0.011 0.002 0.005 0
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0O 39 .0002 -0008 -0.007 0.003 -0.023 0.006 -0.007  -0.007
0 59 .0005 -0.005 -0.005 0.001 -0.015 0.001 -0.007  -0.004
14 14 0.089 0.022  0.024 0.006 0.027 0.007 0.023 0.019
14 .39 0.029 0.01  0.017 0.003 0.011 0.005 0.014 0.002
14 .59 0.015 0.004  0.007 0.002 0.003 0.002 0.003  -0.001
39 .39 0.033 0.006 0.011 -0.003 0.022 0.001 0.012  -0.001
39 .59 0.031 0.021  0.019 0.008 0.033 0.009 0.02 0.011
929 .59 0.018 0.008  0.007 0.003 0.027 0.003 0.006  -0.003
c'=.39
14 .14 0.09 0.039  0.045 0.004 0.042 0.004 0.04 0.03
39 .39 0.029 0.004  0.008 0.004 0.013 0.006 0.011  -0.005
29 .59 0.03 0.022 0.02 0.002 0.032 0.002 0.029 0.014
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APPENDIX D
SIMULATIONS PROGRAM TO EVALUATE TYPE | ERROR, POWERCOVERAGE,
IMBALANCE, AND INTERVAL WIDTH FOR ONE PARAMETER COMBINATION IN

STUDY 2
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FILENAMENULLOG DUMMYC:\NULL" ;
PRCC PRI NTTO LOG-NULLOG;

PROC DATASETS LIBRARY=WORKKILL NOLIST; RUN,
LIBNAMEN40 "C:\MILICA\n20output" ;

%VACRO SIMULATE(NSIM,NOBS,BMX,BYX,BYM,FILE, TYPE,ERROR);

DATA SUMMARY; SET _NULL_;

%D0O= 1 %TC&NSIM;

TITLE 'SIMULATION OF MEDIATION" ;
DATA SIM;

DO I= 1 TO &NOBS;

X=(&error)*RANNOR( 0);
M=&BMX*X+(&error)*RANNOR( 0);
Y=&BYX*X+&BYM*M+(&error)*RANNOR( 0);

X2=X*X;

OUTPUT;

END;

*This code obtains estimates of the mediation regre ssion

equations for the sample generated in the macro pro gram;

*Estimating the (Y=X) regression and saving the val ue of bm1 or ¢ in the

text;
PROC REG OUTEST=FILE COVOUT noprint; MODEL Y=X/;

DATA B; SET FILE;

IF_TYPE_= 'PARMS'; BM1=X;MSE1= RMSE_* RMSE_;

DROP MODEL__NAME__TYPE__DEPVAR__RMSE_INTERCEKX Y;
KEEP BM1 MSEL;

DATA C; SET FILE;IF_NAME_= ‘X' ; SEBM1=SQRT(X);
DROP MODEL__NAME__TYPE__DEPVAR__RMSE_INTERCEMX Y;
KEEP SEBM1;

DATA MODEL1; MERGE B C;

*Estimating the (Y=X M) regression and saving the v alues of
¢ prime and b;

PROC REG DATA=SIM OUTEST=FILE COVOUT NOPRINT;

MODEL Y=X M/;

DATA B; SET FILE;

IF _TYPE_= 'PARMS'; C=X;

BM2=X; MSE2=_RMSE_*_RMSE_;

DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEKX Y M;
KEEP MSE2 BM2 C;

DATA C; SET FILE;

IF _NAME_="'X' ; SEBM2=SQRT(X); SEC=SQRT(X);

KEEP SEBM2 SEC;

DATA D; SET FILE; IF_NAME_= 'M' ; SEB=SQRT(M);

DROP MODEL__NAME__TYPE__DEPVAR__RMSE_INTERCEMX Y M;
KEEP SEB;

DATA E; SET FILE; B=M; IF_TYPE_= 'PARMS';

DROP MODEL__NAME__TYPE__DEPVAR__RMSE_INTERCEMX Y M:;
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KEEP B;
DATAF; SETFILE; IF_NAME_= 'M' ; CBC=X;

DROP MODEL__NAME__TYPE__DEPVAR__RMSE_ INTERCEMX Y M:;
KEEP CBC;

DATA MODEL2; MERGEBCDE F;

*Estimating the (M=X) regression and saving the val ue of a;
PROC REG DATA=SIM OUTEST=FILE COVOUT NOPRINT;

MODEL M=X;

DATA BB; SET FILE;

IF _TYPE_= 'PARMS'; M=X;

BM2=X; MSE3=_RMSE_* RMSE_;

KEEP MSES;

DATA B; SET FILE; A=X; IF_TYPE_= 'PARMS' ;
DROP MODEL__NAME__TYPE__DEPVAR__RMSE_ INTERCEX M;
KEEP A;

DATA C; SETFILE; IF_NAME_= X' : SEA=SQRT(X);
DROP MODEL__NAME__TYPE__DEPVAR__RMSE_ INTERCEMX M;
KEEP SEA;

DATA MODEL3; MERGE BB B C;

*This code saves value of X squared in the sample;
PROC MEANS DATA=SIM SUM NOPRINT; VAR X2;
OUTPUT OUT=0UT SUM=SUMX;

*This code saves the variance of X in the sample;
PROC MEANS DATA=SIM STD NOPRINT; VAR X;
OUPUT OUT=0OUTA STD=VARX;

DATA VARS; SET OUTA;

VARXX=VARX*VARX;

KEEP VARXX;

*This code saves the variance of M in the sample;
PROC MEANS DATA=SIM STD NOPRINT; VAR M;
OUPUT OUT=0OUTA STD=VARM,;

DATA VARSM; SET OUTA;
VARMM=VARM*VARM,;

KEEP VARMM,;

*This code saves the correlation between X and M in the sample;
PROC CORR DATA=SIM OUTPUT=COV NOPRINT;

DATA FR; SET COV; IF_NAME_= 'M' ; CORRXM=X;

KEEP CORRXM,;

*This code merges the different datasets that conta in
estimates from the simulation replication;

DATA ALL; MERGE OUT MODEL1 MODEL2 MODEL3 VARS VARSMR ;
RUN;

*This code calculates the population values for emp irical
values estimated in the simulation;

DATA TEST;SET ALL;

TYPE=&TYPE;
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ERROR=&ERROR;

DOF=_FREQ_2;

NOBS=&NOBS;
BMX=&BMX;BYX=&BYX:BYM=&BYM:

*This section computes true variances and covarianc es as in Section 4.10
based

on residual error variance equal to 1. Note that VX 1X1, VX2X2, and VX3X3 are
the residual variance in equations 3.1, 3.2, and 3. 3, respectively;
EMOD1=(&ERROR)*%;

EMOD2=(&ERROR)*%;

EMOD3=(&ERROR)*%;

VX1X1=EMOD1,;

CY1X1=BMX*EMOD1;

CY2X1=BYM*BMX*VX1X1+BYX*EMOD1,

CY1Y1=BMX*BMX*VX1X1+EMOD?2;
CY2Y1=BMX*BMX*BYM*VX1X1+BMX*BYX*EMOD1+BYM*EMOD?2;
CY2Y2=BYM*BYM*(BMX*BMX*EMOD1+EMOD2}BMX*BYM*BY X*VX1X1+BYX*BYX*EMOD1
+EMOD3;

*The following code computes standard errors for
product of coefficients methods;

AB=A*B;
SOBEL=SQRT(A*A*SEB*SEB+B*B*SEA*SEA);

TRUEAB=&BMX*&BYM;

[*attempt*/

zaobs=A/SEA,
RZAOBS=ROUND(zaobs, . 1);
za=RZAOBS;

zbobs=B/SEB;
RZBOBS=ROUND(zbobs, . 1);
zb=RZBOBS;

/*may need to move the chunk above*/

data TESTsobel; set TEST;

*The following code computes two simulation outcome measures (confidence
limits and cases where the true value is outside th e confidence limits)

for methods to test mediation;

LSOBEL=AB-1. 96*SOBEL; USOBEL=AB+1. 96*SOBEL;

RGSOBELS; LFSOBEL= 0;

IF TRUEAB=0 && LSOBEL GT 0 && USOBEL GT 0 THEN LFSOBEL=1;

IF TRUEAB=0 && LSOBEL LT 0 && USOBEL LT 0 THEN RGSOBEL4;

TYPEIERRORRATE=RGSOBEL+LFSOBEL,;

CIWIDTH=USOBEL-LSOBEL,;

IF TRUEAB GT 0 && LSOBELLT 0 && USOBEL GT 0 THEN empbeta= 1;
ELSE empbeta= 0;

POWEREempbeta;

IMBRSOBEL®9; IMBLSOBEL= 0;

IF TRUEAB GT USOBEL THEN IMBRSOBEL=1;

IF TRUEAB LT LSOBEL THEN IMBLSOBEL= 1;
IMBALANCE=IMBRSOBEL-IMBLSOBEL,;
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IF TRUEAB GT LSOBEL && TRUEAB LT USOBEL THEN COVERA GE=l,;

ELSE COVERAGES;

/*ADDING PRODCLIN */
options noxwait ;

*Designate location of prdclinforSAS.sas and prodcl insas2.exe;

libname save "C:\Users\psyripl\Desktop\"
%racr o prodclin(a, sea, b, seb, rho, alpha);

data proddatal;

*Change file address to match the location of the f ile prodclin.exe;
file  "C:\Users\psyripl\Desktop\raw.txt"

a=&a; sea=&sea; b=&b; seb=&seb; rho=&rho; aIpha—&aI pha;

puta @; put sea @; putb @; put seb @; put rho @; put alpha @;
*Change file address to match the location of the f ile prodclin.exe;

X cd C:\Users\psyripl\Desktop;

*Change file address to match the location of the f ile prodclin.exe;

Xcall  "C:\Users\psyripl\Desktop\ProdClin2_Sas.exe" ;

data proddata?;

do;

rc=system( "call C:\Users\psyrip\Desktop\ProdClin2_Sas.exe"
end;

run;

data proddata?;

infile "C:\Users\psyripl\Desktop\critval.txt" ;
input lowz highz;

a=&a; sea=&sea; b=&b; seb=&seb; rho=&rho; alpha=&al pha;
r=rho;

da=a/sea;

db=b/seb;

sedadb=sqrt(da*da+db*db+ 1);

dadb=da*db;

ab=a*b;

sobelse=sqrt(a*a*seb*seb+b*b*sea*sea);

MVDSE = sqgrt(a*a*seb*seb+b*b*sea*sea);

if dadb gt 0 then prodlow=lowz;
if dadb gt 0 then produp=highz;
if dadb= 0 then prodlow=lowz;
if dadb= 0 then produp=highz;
if dadb It 0 then prodlow=lowz;
if dadb It 0 then produp=highz;

%rend;

DATA ALL;
SET ALL;
call symput( "A"LA);
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call symput( "SEA" ,SEA);
call symput( "B" ,B);
call symput( "SEB" ,SEB);

RUN;

%pr odcl i n(a=&A, sea=&SEA, b=&B, seb=&SEB, rho= 0, alpha =

run;
quit;

data prodquant; merge proddata2 TEST;

RGprod=0; LFprod= 0O;

. 05);

IF TRUEAB=0 && prodlow GT 0 && produp GT 0 THEN LFprod= 1;
IF TRUEAB=0 && prodlow LT 0 && produp LT 0 THEN RGprod= 1;

TYPEIERRORRATEprod=RGprod+LFprod;

if dadb gt 0 then CIWIDTHprod=produp-prodlow;
if dadb= 0 then CIWIDTHprod=produp-prodlow;

if dadb It 0 then CIWIDTHprod=produp-prodlow;

IF TRUEAB GT 0 && prodlow LT 0 && produp GT 0 THEN empbetaprod= 1;

ELSE empbetaprod= 0;

POWERprod< -empbetaprod,;

IMBLPROD®; IMBRPROD=0;

IF TRUEAB GT produp THEN IMBRPROD= 1,

IF TRUEAB LT prodlow THEN IMBLPROD= 1,
IMBALANCEprod=IMBRPROD-IMBLPROD;

IF TRUEAB GT prodlow && TRUEAB LT produp THEN COVER
else COVERAGEprod= 0;

upperlimit=produp;
lowerlimit=prodlow;

/*YUAN AND MACKINNON */

data priorsl; set SIM;

BMX=&BMX;

BYM=&BYM,;

BYX=&BYX;

NOBS=&NOBS;
TRUEAB=&BMX*&BYM;

proc mcmc data=priorsl outpost=out nmc= 5000 thin=
diag=none;

parmsa Ob Ocpr 0i2 0i3 O;
parms sigmaem 1 sigmaey 1;

prior a ~ normal (mean=BMX, prec= le- 3);

prior b ~ normal (mean=BYM, prec= le- 3);

prior cpr ~ normal (mean=BYX, prec= le- 3);

prior i2 i3 ~ normal (mean= 0, prec= 1le-3);

prior sigmaem sigmaey ~ gamma(shape= 0. 01, iscale=
mums=i2+a*X;

muy=i3+b*M+cpr*X;
model M~ n(mum, prec=sigmaem);
model Y~ n(muy, prec=sigmaey);
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run;

data ab; set out;
ab=a*b;
run;

proc sort data=ab out=percentiles;
by ab;
run;

proc univariate data=percentiles noprint;

var ab;

output out=p pctlpre=P_ pctlpts= 2.5 97.5;
run;

data cl; set p;

rename P_2 5=LCL;
rename P_97 5=UCL,;
run;

/*Computing the quantities of interest*/
data quant; set cl;

BMX=&BMX;

BYM=&BYM,;

BYX=&BYX;

NOBS=&NOBS;
TRUEAB=&BMX*&BYM;

LYM=LCL;

UYM=UCL;

RGYMS;

LFYM=O;

IF TRUEAB=0 && LYM GT 0 && UYM GT 0 THEN LFYM=1;
IF TRUEAB=0 && LYM LT 0 &&UYMLT O THEN RGYM=;
TYPEIERRORRATEYMd=RGYM+LFYM;
CIWIDTHymd=UYM-LYM,;

IF TRUEAB GT 0 &&LYMLT 0&&UYMGT 0 THEN empbetaymd=
ELSE empbetaymd= 0;

POWERymd:=empbetaymd;

IMBLYMD=; IMBRYMD=0,;

IF TRUEAB GT UYM THEN IMBRYMD=1,
IF TRUEAB LT LYM THEN IMBLYMD= 1;
IMBALANCEymMd=IMBRYMD-IMBLYMD;

IF TRUEAB GT LYM && TRUEAB LT UYM THEN COVERAGEymd=1;
ELSE COVERAGEymd3

data priors2; set SIM;
BMX=&BMX;
BYM=&BYM;
BYX=&BYX;
NOBS=&NOBS;
TRUEAB=&BMX*&BYM;
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proc mcmc data=priors2 outpost=outi nmc= 5000 thin= 5 seed= 2 stats=none
diag=none;

parmsai  Obi Ocpri  0i2i 0i3i O;

parms sigmaemi 1 sigmaeyi 1;

prior ai ~ normal (mean=BMX, sd= 0. 23570226);

prior bi ~ normal (mean=BYM, sd= 0. 242535625);

prior cpri ~ normal (mean=BYX, sd= 0.260327848);

prior i2i i3i ~ normal (mean= 0, prec= 1le-3);

prior sigmaemi sigmaeyi ~ gamma(shape= 0. 01, iscale= 0. 01);

mumi=i2i+ai*X;
muyi=i3i+bi*M+cpri*X;

model M~ n(mumi, prec=sigmaemi);
model Y~ n(muyi, prec=sigmaeyi);
run;

data abi; set outi;
abi=ai*bi;

TRUEAB=&BMX*&BYM,;
run;

proc sort data=abi out=percentilesi;
by abi;
run;

proc univariate data=percentilesi noprint;

var abi;

output out=pi pctlpre=P__ pctlpts= 2.5 97.5;
run;

data cli; set pi;

rename P_2 5=LCLi;
rename P_97 5=UCLi;
run;

/*Computing the quantities of interest*/
data quanti; set cli;

BMX=&BMX;

BYM=&BYM;

BYX=&BYX;

NOBS=&NOBS;

TRUEAB=BMX*BYM;

LYMi=LCLi;

UYMi=UCLi;

RGYMi=0;

LFYMi=0;

IF TRUEAB=0 && LYMi GT 0 && UYMiGT 0 THEN RGYMi=1;
IF TRUEAB=0 && LYMiLT 0 && UYMiLT O THEN LFYMi= 1;
TYPEIERRORRATEI=RGYMi+LFYMi;

CIWIDTHi=UYMi-LY Mi;

IF TRUEAB GT 0 &&LYMIiLT 0&&UYMiGT O THEN empbetai= 1;
ELSE empbetai= 0;

POWERI4 -empbetai;

160



IMBRYMI=0; IMBLYMI= 0O,

IF TRUEAB GT UYMi THEN IMBRYMI= 1;
IF TRUEAB LT LYMi THEN IMBLYMI=  1;
IMBALANCEi=IMBRYMI-IMBLYMI,

IF TRUEAB GT LYMi && TRUEAB LT UYMi THEN COVERAGEiI= 1,
ELSE COVERAGEI®;

COVERAGECHECK#VBRYMI-IMBLYMI;

/*END OF YUAN AND MACKINNON */

/*calculating elements from the SS matrix for SDIFF USE*/
[*the inverse-Wishart SS matrix is constructed so t hat it is based on as many
prior

observations as there are in the current sample*/
data SIMcov; set SIM;

NOBS=&NOBS;

SVX1X1=2;

SCY1X1-=0;

SCY2X10;

SCY1Y1=2;

SCY2Y10;

SCY2Y2=2;

run;

proc mcmc data=SIMcov outpost=efmD thin= 5 seed= 2 nmc=5000 diag=none;

array data[ 3] XMY;

array mu[ 3];

array Sigma] 3, 3];

array muoO[ 3]( 0 0 0)

array SigmaoO[ 3,3]( 1000 0 0 O 1000 O O O 1000);

array SDIFFUSE] 3, 3] SVX1X1 SCY1X1 SCY2X1 SCY1X1 SCY1Y1 SCY2Y1 SCY2X1
SCY2Y1 SCY2Y2;

parm mu Sigma;

prior mu ~ mvn(mu0, Sigma0);

prior Sigma ~ iwish( 3, SDIFFUSE);

model data ~ mvn(mu, Sigma);

run;

data abefmD; set efmD;

abefmD=(Sigma4/Sigmal)*(Sigmal*Sigma6-Sigma4*Sigma3 )/(Sigmal*Sigmas-
Sigmad** 2);

RUN;

proc sort data=abefmD out=percentilesefmD;
by abefmD;
run;

proc univariate data=percentilesefmD noprint;

var abefmbD;

output out=pefmD pctlpre=P__ pctlpts= 2.5 97.5;
run;
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data clefmD; set pefmD;
rename P_2 5=LCLefmD;
rename P_97 5=UCLefmD;
run;

data QUANTEFMD; set clefmD;

ERROR=&ERROR;

NOBS=&NOBS;

BMX=&BMX;BYX=&BYX;BYM=&BY M,;

TRUEAB=&BMX*&BYM;

RGEFMDIFF9;

LFEFMDIFF=0;

IF TRUEAB=0 && LCLefmD GT 0 && UCLefmD GT 0 THEN LFEFMDIFF=1;
IF TRUEAB=0 && UCLefmD LT 0 && LCLefmD LT 0 THEN RGEFMDIFF=1;
TYPEIERRORRATEEFMDIFF=RGEFMDIFF+LFEFMDIFF;
CIWIDTHEFMDIFF=UCLefmD-LCLefmD;

IF TRUEAB GT 0 && LCLefmD LT 0 && UCLefmD GT 0 THEN empbetaEFMDIFF= 1;
ELSE empbetaEFMDIFF= 0;

POWEREFMDIFF=empbetaEFMDIFF;

IMBREFMDIFF=0; IMBLEFMDIFF= 0;

IF TRUEAB GT UCLefmD THEN IMBREFMDIFF= 1;

IF TRUEAB LT LCLefmD THEN IMBLEFMDIFF= 1;
IMBALANCEEFMDIFF=IMBREFMDIFF-IMBLEFMDIFF;

IF TRUEAB GT LCLefmD && TRUEAB LT UCLefmD THEN COVE RAGEEFMDIFF%;
ELSE COVERAGEEFMDIFR3

/* EFM informative */

data info; set SIM;

ERROR=&ERROR;

DOF=_FREQ _2;

NOBS=&NOBS;
BMX=&BMX;BYX=&BYX;:BYM=&BYM;

*This section computes true variances and covarianc es as in Section 4.10
based

on residual error variance equal to 1. Note that VX 1X1, VX2X2, and VX3X3 are
the residual variance in equations 3.1, 3.2, and 3. 3, respectively;
EMOD1=(&ERROR)*%;

EMOD2=(&ERROR)*%;

EMOD3=(&ERROR)*%;

VX1X1=EMOD1;

CY1X1=BMX*EMOD1;

CY2X1=BYM*BMX*VX1X1+BYX*EMOD1,;

CY1Y1=BMX*BMX*VX1X1+EMOD2;
CY2Y1=BMX*BMX*BYM*VX1X1+BMX*BYX*EMOD1+BYM*EMOD?2;
CY2Y2=BYM*BYM*(BMX*BMX*EMOD1+EMOD2MBMX*BYM*BY X*VX1X1+BYX*BYX*EMOD1
+EMODS;

SVX1X1=(NOBS-1)*VX1X1;

SCY1X1=(NOBS-1)*CY1X1,;

SCY2X1=(NOBS-1)*CY2X1,;

SCY1Y1=(NOBS-1)*CY1Y1,;

SCY2Y1=(NOBS-1)*CY2Y1,;

SCY2Y2=(NOBS-1)*CY2Y2;
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run;

proc mcmc data=info outpost=efmi thin= 5 seed= 2 nmc=5000 diag=none;
ods select PostSummaries Postintervals;

array datainfo[ 3] XMY;

array mul[ 3];

array Sigmal[ 3, 3];

array muOI[ 3]( 0 0 0)

array Sigma0Ol[ 3,3]( 1000 0 0 O 1000 O O O 1000);

array SINFOI[ 3, 3] SVX1X1 SCY1X1 SCY2X1 SCY1X1 SCY1Y1 SCY2Y1 SCY2X1 SCY2Y1
SCY2Y2;

parm mul Sigmal,

prior mul ~ mvn(muOl, Sigma0l);

prior Sigmal ~ iwish(&NOBS, SINFO);

model datainfo ~ mvn(mul, Sigmal);

run;
data abefmi; set efmi;
abefmi=(Sigmal4/Sigmall)*(Sigmal1*Sigmal6-Sigmal4*S igmal3)/(Sigmall*Sigmal5-
Sigmal4**  2);
RUN;

proc sort data=abefmi out=percentilesefmi;
by abefmi;
run;

proc univariate data=percentilesefmi noprint;

var abefmi;

output out=pefmi pctlpre=P__ pctlpts= 2.5 97.5;
run;

data clefmi; set pefmi;
rename P_2 5=LCLefmi;
rename P_97 5=UCLefmi;
run;

data QUANTEFMI; set clefmi;

ERROR=&ERROR;

NOBS=&NOBS;

BMX=&BMX;BYX=&BYX;BYM=&BYM,;

TRUEAB=&BMX*&BYM;

RGEFMinfo=0;

LFEFMinfo= 0;

IF TRUEAB=0 && LCLefmi GT 0 && UCLefmi GT 0 THEN LFEFMinfo= 1;
IF TRUEAB=0 && LCLefmi LT 0 && UCLefmi LT 0 THEN RGEFMinfo= 1;
TYPEIERRORRATEEFMinfo=RGEFMinfo+LFEFMinfo;
CIWIDTHEFMinfo=UCLefmi-LCLefmi;

IF TRUEAB GT 0 && LCLefmi LT 0 && UCLefmi GT 0 THEN empbetaEFMinfo= 1;
ELSE empbetaEFMinfo= 0O;

POWEREFMinfo=-empbetaEFMinfo;

IMBREFMINFO®; IMBLEFMINFO= 0;

IF TRUEAB GT UCLefmi THEN IMBREFMINFO=1;

IF TRUEAB LT LCLefmi THEN IMBLEFMINFO=  1;
IMBALANCEEFMinfo=IMBREFMINFO-IMBLEFMINFO;
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IF TRUEAB GT LCLefmi && TRUEAB LT UCLefmi THEN COVE
ELSE COVERAGEEFMinfo=0;

/*Bootstrap*/

*This is where the bootstrap samples are made.;
*sampsize should be equal to the number of observat
*rep is the number of bootstrap samples you want;

proc reg data=SIM outest=outl noprint;

model y = m x;

model m = x;

run;

quit;

data outl; set outl;

if MODEL_= 'MODEL1" then call symput ( "b" , m);
if MODEL_= 'MODELZ2" then call symput ( "a" , x);
run;

quit;

%let nboot=1000;

proc surveyselect data=SIM noprint out=out2 method=
rep=&NBOOT outhits;
run;

proc reg data=out2 outest=out3 noprint;
by Replicate;

model y = m x;

model m = x;

data b; set out3;

if MODEL_"= 'MODEL1' then delete;
b=m;

keep Replicate b;

data c; set out3;

if MODEL_"= 'MODELZ2' then delete;
a=x;

keep Replicate a;

data d; merge b c; by Replicate;
ab=a*Db;
if ab<=&a*&b then z= 1;elsez= 0;

proc means data=d noprint;
var z;
output out=out4 mean(z)=meanz;

data out4; set out4;
call symput( "meanz" , meanz);
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proc sort data=d;

by ab;

proc univariate data=d NOPRINT;

var ab;

*Percentile Bootstrap and Bias-Corrected Bootstrap;

data e; set d;

z0=probit(&meanz);

if _N_=(ceil( . 025*&nboot)) then call symput( "LCL95" , ab);
if _N_=(ceil( . 975*&nboot)) then call symput( "UCL95" , ab);
if _N_=(ceil(&nboot*probnorm(( 2*z0)+probit( . 025)))) then call
symput( "BCLCL95" , ab);

if _N_=(ceil(&nboot*probnorm(( 2*z0)+probit( . 975)))) then call

symput( "BCUCL95", ab);
run;

data f; SET €;

LCL95=&L CL95;

UCL95=&UCL95;
BCLCL95=&BCLCL95;
BCUCL95=&BCUCL95;
NOBS=&NOBS;
BMX=&BMX;BYX=&BYX;BYM=&BYM;

TRUEAB=BMX*BYM,;

*QUANTITIES OF INTEREST*/

*PERCENTILE BOOTSTRAP?*/

RGBOOTE; LFBOOT=0;

IF TRUEAB=0 && LCL95 GT 0 && UCL95 GT 0 THEN LFBOOT=1;

IF TRUEAB=0 && UCL95LT 0 &&LCL95LT 0O THEN RGBOOTH;
TYPEIERRORRATEBOOT=RGBOOT+LFBOOT;
CIWIDTHBOOT=UCL95-LCL95;

IF TRUEABGT 0&&LCL95LT 0 &&UCL95GT 0 THEN empbetaB= 1;
ELSE empbetaB= 0;

POWERBOOT=empbetaB;

IMBRPERCS; IMBLPERC= 0;

IF TRUEAB GT UCL95 THEN IMBRPERC= 1;

IF TRUEAB LT LCL95 THEN IMBLPERC= 1;
IMBALANCEBOOT=IMBRPERC-IMBLPERC;

IF TRUEAB GT LCL95 && TRUEAB LT UCL95 THEN COVERAGE BOOT4;
ELSE COVERAGEBOOT:

/*BC BOOTSTRAP */

RGBCBOOT:; LFBCBOOT=0;

IF TRUEAB=0 && BCLCL95 GT 0 && BCUCL95 GT 0 THEN LFBCBOOTA;
IF TRUEAB=0 && BCUCL95 LT 0 && BCLCL95LT 0 THEN RGBCBOOT%;
TYPEIERRORRATEBC=RGBCBOOT+LFBCBOOT;
CIWIDTHBC=BCUCL95-BCLCL95;

IF TRUEAB GT 0 &&BCLCL95LT 0 &&BCUCL95 GT 0 THEN empbetaBC= 1;
ELSE empbetaBC= 0;

POWERBCU=empbetaBC;

IMBRBC=); IMBLBC= 0;

IF TRUEAB GT BCUCL95 THEN IMBRBC= 1;

IF TRUEAB LT BCLCL95 THEN IMBLBC= 1;
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IMBALANCEBC=IMBRBC-IMBLBC,;
IF TRUEAB GT BCLCL95 && TRUEAB LT BCUCL95 THEN COVE RAGEBC#%;
ELSE COVERAGEBGCxs

PROC MEANS DATA=F MEAN NOPRINT;

VAR AB

NOBS BMX BYX BYM TRUEAB

LCL95 UCL95 BCLCL95 BCUCL95

TYPEIERRORRATEBOOT CIWIDTHBOOT POWERBOOT IMBALANGEBCOVERAGEBOOT
TYPEIERRORRATEBC CIWIDTHBC POWERBC IMBALANCEBC C®AGEBC

OUTPUT OUT=OUTA MEAN=MAB

MNOBS MBMX MBYX MBYM MTRUEAB

MLCL95 MUCL95 MBCLCL95 MBCUCL95

MTYPEIERRORRATEBOOT MCIWIDTHBOOT MPOWERBOOT MIMBZ2EBOOT MCOVERAGEBOOT
MTYPEIERRORRATEBC MCIWIDTHBC MPOWERBC MIMBALANCEBOVERAGEBC;

*PROC PRINT DATA=0OUTA;*/

DATA NEW; SET SUMMARY;
DATA SUMMARY; SET NEW TESTsobel prodquant quant qua nti quantefmd quantefmi
OUTA;

proc datasets;

delete ab abefmd abefmi abi all b bb ¢ cl clefmd cl efmi cli cov d e efmd efmi
f file

fr info modell model2 model3 out outl out2 out3 out 4 outi p pefmd pefmi
percentiles

percentilesefmd percentilesefmi percentilesi pi pri ors proddatal proddata?

test
vars varsm;
run;

proc means data=summary noprint;

VAR NOBS TRUEAB

TYPEIERRORRATE TYPEIERRORRATEPROD TYPEIERRORRATEVMEEIERRORRATE:I
TYPEIERRORRATEefmdiff TYPEIERRORRATEefminfo MTYPEI ERRORRATEBOOT
MTYPEIERRORRATEBC

COVERAGE COVERAGEPROD COVERAGEymd COVERAGEiI COMERAAFTK COVERAGEefmdiff
COVERAGEefminfo MCOVERAGEBOOT MCOVERAGEBC

CIWIDTH CIWIDTHPROD CIWIDTHymd CIWIDTHi CIWIDTHefmd iff CIWIDTHefminfo
MCIWIDTHBOOT MCIWIDTHBC

POWER POWERPROD POWERymd POWERI powerefmdiff powerefminfo MPOWERBOOT MPOWERBC
IMBALANCE IMBALANCEPROD IMBALANCEymd IMBALANCE:I imlalanceefmdiff
imbalanceefminfo MIMBALANCEBOOT MIMBALANCEBC;

output out= MSUMMARY;

%END

DATA N40. &FILE;
SET MSUMMARY;
RUN;

RUN;
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%VEND,
%8| MULATE(NSIM=1000,NOBS=20,BMX=. 39,BYX=. 39,BYM=. 39,
FILE=n20a39b39cp39,TYPE= 'CCC' ,ERROR-);

RUN;

quit;

dat a final;
set
n20a39b39cp39

’

run;
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APPENDIX E

SIMULATION PROGRAM TO EVALUATE CHANGES IN POWER A& FUNCTION OF

PRECISION IN STUDY 3
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FILENAMENULLOG DUMMYC:\NULL" ;
PRCC PRI NTTO LOG-NULLOG;

PROC DATASETS LIBRARY=WORKKILL NOLIST; RUN,
LIBNAMEN40O "C:AMILICAY"
%VACRO SIMULATE(NSIM,NOBS,BMX,BYX,BYM,FILE, TYPE,ERROR);

DATA SUMMARY; SET _NULL_;

%D0O= 1 %TC&NSIM;

TITLE 'SIMULATION OF MEDIATION" ;
DATA SIM;

DO I= 1 TO &NOBS;
X=(&error)*RANNOR( 0);
M=&BMX*X+(&error)*RANNOR( 0);
Y=&BYX*X+&BYM*M+(&error)*RANNOR( 0);
X2=X*X;

OUTPUT;

END;

data priors; set SIM;
BMX=&BMX;
BYM=&BYM;
BYX=&BYX;
NOBS=&NOBS;
TRUEAB=&BMX*&BYM;

*YUAN AND MACKINNON */

proc mcmc data=priors outpost=outanl nmc= 5000 thin= 1 seed= 2 stats=none
diag=none;

parmsa Ob Ocpr 0i2 0i3 O;

parms sigmaem 1 sigmaey 1;

prior a ~ normal (mean=BMX, prec= lel);

prior b ~ normal (mean=BYM, prec= le- 3);

prior cpr ~ normal (mean=BYX, prec= le- 3);

prior i2 i3 ~ normal (mean= 0, prec= 1le-3);

prior sigmaem sigmaey ~ gamma(shape= 0. 01, iscale= 0. 01);

mums=i2+a*X;

muy=i3+b*M+cpr*X;

model M~ n(mum, prec=sigmaem);
model Y~ n(muy, prec=sigmaey);
run;

data abanl; set outanl;

ab=a*Db;

run;

proc sort data=abanl out=percentilesani;
by ab;

run;

proc univariate data=percentilesanl noprint;
var ab;
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output out=panl pctlpre=P_ pctlpts= 2.5 97.5;
run;

data clanl; set pani,;
rename P_2 5=LCL;
rename P_97 5=UCL;
run;

/*Computing the quantities of interest*/
data quantanl; set clani;
BMX=&BMX;

BYM=&BYM,;

BYX=&BYX;

NOBS=&NOBS;
TRUEAB=&BMX*&BYM;

LYM=LCL;

UYM=UCL;

RGYMS;

LFYM=D;

IF TRUEAB=0 && LYM GT 0 && UYM GT 0 THEN LFYM=1;
IF TRUEAB=0 && LYM LT 0&&UYMLT O THEN RGYM=;
TYPEIERRORRATEan1=RGYM+LFYM;
CIWIDTHan1=UYM-LYM;

IF TRUEAB GT 0 &&LYMLT 0&&UYMGT 0 THEN empbetaymd= 1;
ELSE empbetaymd= 0;

POWERanl1x-empbetaymd;

IMBLYMD=; IMBRYMD=0,;

IF TRUEAB GT UYM THEN IMBRYMD=1,
IF TRUEAB LT LYM THEN IMBLYMD= 1;
IMBALANCEan1=IMBRYMD-IMBLYMD;

IF TRUEAB GT LYM && TRUEAB LT UYM THEN COVERAGEanl1= 1;
ELSE COVERAGEan1s;

[*b2*/

proc mcmc data=priors outpost=outbnl nmc= 5000 thin= 1 seed= 2 stats=none
diag=none;

parmsa Ob Ocpr 0i2 0i3 O;

parms sigmaem 1 sigmaey 1;

prior a ~ normal (mean=BMX, prec= le- 3);

prior b ~ normal (mean=BYM, prec= le- 2);

prior cpr ~ normal (mean=BYX, prec= le- 3);

prior i2 i3 ~ normal (mean= 0, prec= 1le-3);

prior sigmaem sigmaey ~ gamma(shape= 0. 01,iscale= 0. 01);

mum=i2+a*X;

muy=i3+b*M+cpr*X;

model M~ n(mum, prec=sigmaem);
model Y~ n(muy, prec=sigmaey);
run;

data abbnl; set outbni;
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ab=a*b;
run;

proc sort data=abbnl out=percentilesbni;
by ab;
run;

proc univariate data=percentilesbnl noprint;

var ab;

output out=pbnl pctlpre=P_ pctlpts= 2.5 97.5;
run;

data clbnl; set pbn1;
rename P_2 5=LCL,;
rename P_97 5=UCL;
run;

/*Computing the quantities of interest*/
data quantbn1l; set clbnl;
BMX=&BMX;

BYM=&BYM,;

BYX=&BYX;

NOBS=&NOBS;
TRUEAB=&BMX*&BYM;

LYM=LCL;

UYM=UCL;

RGYMS;

LFYM=D;

IF TRUEAB=0 && LYM GT 0 && UYM GT 0 THEN LFYM=1;
IF TRUEAB=0 && LYM LT 0&&UYMLT O THEN RGYM=;
TYPEIERRORRATEbN1=RGYM+LFYM;
CIWIDTHbn1=UYM-LYM;

IF TRUEABGT 0&&LYMLT O0&&UYMGT O THEN empbetaymd= 1;
ELSE empbetaymd= 0;

POWERbn1£-empbetaymd;

IMBLYMD=; IMBRYMD=0,;

IF TRUEAB GT UYM THEN IMBRYMD=1;
IF TRUEAB LT LYM THEN IMBLYMD= 1;
IMBALANCEbN1=IMBRYMD-IMBLYMD;

IF TRUEAB GT LYM && TRUEAB LT UYM THEN COVERAGEDbN1=1;
ELSE COVERAGEbN18;

DATA NEW; SET SUMMARY;
DATA SUMMARY; SET NEW quantanl quantbnl ;

%END
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DATA N40. &FILE;
SET SUMMARY;
RUN;

RUN;
%VEND,;

%8l MULATE(NSIM=1000,NOBS=100,BMX=.

FILE=abc140,TYPE= 'CCC' ,ERROR-);

%8l MULATE(NSIM=1000,NOBS=100,BMX=.

FILE=abc390,TYPE= 'CCC' ,ERROR-);

%Sl MULATE(NSIM=1000,NOBS=100,BMX=.

FILE=abc590,TYPE= 'CCC' ,ERROR-);

%8l MULATE(NSIM=1000,NOBS=100,BMX=.

FILE=abc1439,TYPE= 'CCC' ,ERROR-);

%Sl MULATE(NSIM=1000,NOBS=100,BMX=.

FILE=abc3939,TYPE= 'CCC' ,ERROR-4);

%8l MULATE(NSIM=1000,NOBS=100,BMX=.

FILE=abc5939,TYPE= 'CCC' ,ERROR-);

RUN;
quit;
dat a final;
set
abc140
abc390
abc590
abc1439
abc3939
abc5939

’

run;

14,BYX=.
39,BYX=.
59,BYX=.
14,BYX=.
39,BYX=.

59,BYX=.
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0,BYM=. 14,
0,BYM=. 39,
0,BYM=. 59,
39,BYM=. 14,
39,BYM=. 39,

39,BYM=. 59,



