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ABSTRACT  
   

Research methods based on the frequentist philosophy use prior information in a 

priori power calculations and when determining the necessary sample size for the 

detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior 

knowledge into the statistical analysis in the form of a prior distribution. When prior 

information about a relationship is available, the estimates obtained could differ 

drastically depending on the choice of Bayesian or frequentist method. Study 1 in this 

project compared the performance of five methods for obtaining interval estimates of the 

mediated effect in terms of coverage, Type I error rate, empirical power, interval 

imbalance, and interval width at N = 20, 40, 60, 100 and 500. In Study 1, Bayesian 

methods with informative prior distributions performed almost identically to Bayesian 

methods with diffuse prior distributions, and had more power than normal theory 

confidence limits, lower Type I error rates than the percentile bootstrap, and coverage, 

interval width, and imbalance comparable to normal theory, percentile bootstrap, and the 

bias-corrected bootstrap confidence limits. Study 2 evaluated if a Bayesian method with 

true parameter values as prior information outperforms the other methods. The findings 

indicate that with true values of parameters as the prior information, Bayesian credibility 

intervals with informative prior distributions have more power, less imbalance, and 

narrower intervals than Bayesian credibility intervals with diffuse prior distributions, 

normal theory, percentile bootstrap, and bias-corrected bootstrap confidence limits. Study 

3 examined how much power increases when increasing the precision of the prior 

distribution by a factor of ten for either the action or the conceptual path in mediation 

analysis. Power generally increases with increases in precision but there are many sample 
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size and parameter value combinations where precision increases by a factor of 10 do not 

lead to substantial increases in power. 
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CHAPTER 1 

INTRODUCTION 

The goal of many research projects is to identify and describe a relation between 

two variables, X and Y. Sometimes a third variable can improve the understanding of the 

relation between two variables. When a third variable is intermediate between X and Y in 

a causal chain, it is called a mediator (James & Brett, 1984; MacKinnon, 2008). More 

specifically, mediators are operationally defined as variables that transmit the influence 

that one variable (X) exerts on another (Y). According to Judd and Kenny (1981), there 

are three main reasons to do mediation analysis: 1) in order to investigate the process 

through which X affects Y, 2) in order to better predict the relationship between X and Y 

in different settings and populations, and 3) in order to learn which variables were key in 

a process and to then use this knowledge to design more effective interventions. 

MacKinnon (1994) and MacKinnon and Dwyer (1993) listed additional reasons for 

analyzing mediating variables: 4) as a manipulation check to make sure that the program 

changes the intervening variables it was supposed to change, 5) in cases where there is no 

program effect on the mediator, to find out whether the measures of the mediator require 

improvement, 6) in cases where program effects on mediators but not on dependent 

variables may suggest that effects on the dependent variable will occur later. Overall, 

there are two main uses of mediation models (MacKinnon, 2008): mediation for 

explanation and mediation for design. Mediation for explanation is used once a relation 

has been established between an independent variable and a dependent variable, and the 

researchers want to explain this relation in more detail. Mediation for design is often used 

in prevention studies, and its goal is to select mediating variables that are causally related 
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to the dependent variable and then design a manipulation that will target the mediator and 

indirectly affect the dependent variable. Mediation analysis is used in many research 

areas, from psychology, sociology, communications, agriculture, and political science to 

epidemiology. Upcoming sections will offer an introduction to the Single Mediator 

Model, followed by methods for obtaining interval estimates for the mediated effect, and 

an explanation of Bayesian methods and their application to mediation. Properties of 

interval estimates are discussed, followed by a review of the literature on interval 

estimation of the mediated effect. Finally, the expected contributions of the current study 

are outlined, and the hypotheses of each of the three studies are listed. 

Single Mediator Model  
 

The simplest mediation model is the single mediator model that consists of three 

variables: an independent variable (X) related to the mediator (M), which is related to the 

dependent variable (Y) (MacKinnon, 2008). This model is described using the following 

three regression equations: 

11 ecXiY ++=                                                                                               (1) 

22 eaXiM ++=                                                                                             (2) 

33 ' eXcbMiY +++=                                                                                      (3) 

 
where c represents the total effect of X on Y, c’ represents the effect of X on Y adjusted 

for the effect of the mediator M, b measures the relation between the mediator M and the 

dependent variable Y adjusted for the independent variable X, and  a measures the 

relation between X and M. i1, i2, and i3 represent intercepts, and it is assumed that the 

three error terms, e1, e2, and e3  follow a normal distribution with  a mean of zero and 
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variance 
2
2

2
1 ,σσ and 

2
3σ , respectively. There are three general ways to test for mediation 

as outlined by MacKinnon, Lockwood, Hoffman, West, and Sheets (2002): causal steps, 

product of coefficients, and difference in coefficients. 

Causal steps. Baron and Kenny (1986) outlined four causal steps one can use to 

test for complete mediation. First, one should establish that there is a significant relation 

between X and Y (c coefficient). Secondly, one needs to determine whether the relation 

between X and M (the a path) is significant. If yes, one should proceed to the third step 

and test whether the relation between M and Y is significant when controlling for X (the 

b path). Finally, one should establish full mediation by making sure that X affects Y only 

through M, and thus that the c’ path is zero (Judd, & Kenny, 1981). The fourth 

requirement was subsequently relaxed by Baron and Kenny (1986) allowing for partial 

mediation. Also, the requirement of a significant relation between X and Y is problematic 

in the case of inconsistent mediation models where the ab product is of the opposite sign 

from the c’ path, thus making the total effect zero or close to zero even though the 

mediated and direct effects are different from zero. 

Product of coefficients. One can also test for mediation by computing the 

product of coefficients ab, dividing it by the standard error of the mediated effect, ab, and 

comparing this value with the suitable critical value from the normal distribution. There 

are a few ways of computing the standard error of the mediated effect that will be 

outlined below, as well as problems with treating the distribution of ab as normal. 

Difference in coefficients. It is also possible to obtain the value of the mediated 

effect by subtracting the direct effect from the total effect c-c’ and test the significance 

using the standard error of c-c’. The product of coefficients and difference in coefficients 
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methods of estimating the mediated effect produce the same results in linear single 

mediator models with continuous variables. 

Interval estimates for the mediated effect 
 

Wilkinson and the APA Task Force on Statistical Inference recommended that 

researchers report an interval estimate whenever possible (1999). Krantz (1999) outlined 

a few characteristics of confidence intervals that make them a better choice than null 

hypothesis significance tests: 1) the confidence interval includes a point estimate, 

whereas some articles simply report a p-value, 2) confidence intervals have valid 

procedural probability interpretations, 3) wide confidence intervals communicate 

uncertainty, which a p-value does not do, 4) if two confidence intervals overlap heavily, 

then it cannot be said that one experiment does not replicate the other, and 5) confidence 

intervals encourage the researchers to think about the magnitude of the parameter, 

whereas a p-value does not. 

In the case of the mediated effect, there are multiple ways of constructing an 

interval estimate and several standard error formulas for the mediated effect. The general 

form of the confidence interval for the product of coefficients estimate of the mediated 

effect is as follows: 

)(ˆˆ)(ˆˆ ˆˆ2/ˆˆ2/ baba
szbaabszba αα +≤≤−                                                                     (4) 

Where ba ˆˆ is the sample estimate of the mediated effect, 2/αz is the critical value from the 

normal distribution, and 
ba

s ˆˆ
is the product of coefficients sample standard error of the 

mediated effect (MacKinnon, 2008). 
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The most commonly used formula for the standard error for the mediated effect is 

called the multivariate delta method standard error (Sobel 1982):  

2
ˆ

22
ˆ

2
ˆˆ

ˆˆ abba
sbsas +=

                                                                                               (5) 

Two alternative ways of computing the standard error of the mediated effect are 

(MacKinnon & Dwyer, 1993; MacKinnon, Warsi & Dwyer, 1995):
 

2
ˆ

2
ˆ

2
ˆ

22
ˆ

2
sec

ˆˆ
baabond sssbsas ++=                                                                                  (6) 

and 

2
ˆ

2
ˆ

2
ˆ

22
ˆ

2 ˆˆ
baabunbiased sssbsas −+=

.                                                                              (7)
 

In simulation studies, the multivariate delta method standard error of the mediated 

effect performs better than standard errors calculated from different formulas, and the 

multivariate delta method is also used in many covariance structure computer programs 

to compute the standard error of the mediated effect (MacKinnon, 2008). Thus, it is the 

only standard error formula considered for this project. 

The product of two normal distributions is not normal (Lomnicki, 1967; Springer 

& Thompson, 1966); instead it is symmetric with a kurtosis of six when the two variables 

have means equal to zero, and skewed with excess kurtosis when the two variables have 

means different from zero (Craig, 1936). This is the reason why basing the confidence 

interval of the mediated effect ab on the critical values from the normal distribution 

produces inaccurate estimates. Another way of constructing the confidence limits would 

be to substitute the critical values from the normal distribution with critical values from 

the distribution of the product (MacKinnon, Lockwood, Hoffman, West & Sheets, 2002). 

Unlike the normal distribution, the distribution of the product is not symmetric, and thus 
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the critical values used to compute the upper and lower confidence limits often have 

different absolute values. The calculation of the confidence intervals for the mediated 

effect based on the distribution of the product has been simplified with programs called 

PRODCLIN and RMediation (MacKinnon, Fritz, Williams, & Lockwood, 2007; Tofighi 

& MacKinnon, 2011). In a simulation study of confidence limits for the mediated effect 

MacKinnon, Lockwood, and Williams (2004) compared normal theory confidence limits 

with confidence limits obtained using the distribution of the product, and they found that 

the distribution of the product critical values lead to fewer problems with coverage and 

confidence interval imbalance than the normal theory critical values. In other words, the 

distribution of the product confidence limits had Type I error rates closer to the nominal 

level as well as more balanced confidence intervals, meaning that the Type I error rate 

was equally distributed between the left and right sides of the distribution of estimates.  

The third way of constructing confidence limits for the mediated effect is by using 

bootstrap methods (Manly, 1997; Shrout & Bolger, 2002; MacKinnon, Lockwood & 

Williams, 2004; MacKinnon, 2008). Bootstrap methods consist of rearranging the 

observed data in order to construct a distribution of the estimate of interest. Once the 

estimate of interest has been calculated from the desired number of samples, the value of 

the observed estimate can be compared to the resampling distribution in order to calculate 

a p-value, or a confidence interval for the estimate can be formed from the α/2 and (1- 

α/2) points of the distribution. In the case of the mediated effect, bootstrapping would 

consist of sampling N observations with replacement from the original sample of size N, 

calculating the mediated effect, and repeating this procedure a large number of times; 

after a distribution of the mediated effect has been formed, one would form a 95% 
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confidence interval from the 2.5% and 97.5% quantiles of the distribution. This method is 

called the percentile bootstrap or Efron’s percentile method. Assume θ is the parameter 

of interest, and θ̂ is an estimate of θ. The percentile method assumes the existence of a 

transformation )ˆ(ˆ θφ t= that follows the distribution ̂ φ ~N(φ,sd2)for some standard 

deviation sd and that perfectly normalizes the distribution of θ̂; then the percentile 

interval of θ̂ equals  

)]ˆ(),ˆ([ 2/1)2/1(1 sdztsdzt αα φφ −− −−−
.                                                                    (8) 

The percentile bootstrap is transformation-respecting, meaning that the percentile 

interval for any monotone (order-preserving) parameter transformation )(θφ t= is the 

percentile interval for θmapped by )(θt : 

)]%ˆ(),%ˆ([]%ˆ,%ˆ[ limlimlimlim itupperitloweritupperitlower tt θθφφ = .                                    (9) 

In other words, the transformation step of the percentile bootstrap procedure does not 

change the order of data points from the order in the original sample. Thus, after 

computing the 95% interval estimate on the transformed (normal) distribution, it suffices 

to transform the estimates of the 2.5% and 97.5% percentiles back into the original 

‘metric’ in order to get the lower and upper limits of the 95% percentile bootstrap 

interval. The user does not need to know which function is used as the transformation 

since the percentile bootstrap makes this transformation automatically (Efron & 

Tibshirani, 1993). However, such a transformation may not always exist, and bias arises 

when the true value of the parameter does not correspond to the median of the 

distribution of estimates (Manly, 1997). Bias is handled by finding the proportion of 
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times p that the bootstrapped estimates exceed the sample (observed) value of the 

estimate, and z0 which is the z value that corresponds to this p-value. This method is 

called the bias-corrected percentile bootstrap. The lower confidence limit is then the 

estimate that just exceeds the proportion )2( 2/0 αφ zz − of all values in the bootstrap 

distribution of estimates. The upper confidence limit for the estimate is the value that 

exceeds a proportion )2( 2/0 αφ zz +  in that same distribution (Manly, 1997). Simulation 

studies of the performance of various interval estimates of the mediated effect showed 

that overall the bias-corrected bootstrap method has the most empirical power, though, it 

also has excessive Type I error in some parameter combinations. On the other hand, the 

percentile bootstrap has the best coverage and slightly less empirical power than the bias-

corrected bootstrap, while the distribution of the product confidence limits had more 

power and narrower confidence intervals than the percentile bootstrap (MacKinnon, 

Lockwood, & Williams, 2004). 

Bayesian Methods and Application to Mediation 
 

In a frequentist framework, power and Type I error rate vary together: as one 

increases, so does the other. With Bayesian methods, one can still obtain meaningful 

information from a study without having to consider Type I error rate and power (Van de 

Schoot, Hoijtink, Mulder, Van Aken, Orobio de Castro, Meeus et al., 2011). The primary 

distinction between Bayesian and frequentist philosophies lies in their respective 

applications of the probability concept. In the Bayesian school of thought, probability is a 

measure of uncertainty (Gelman, Carlin, Stern, & Rubin, 2004), and is thus subjective. 

For frequentists, however, probability is defined as the long-run frequency of the 
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occurrence of an event E, and is thus a property of the external world. In order to reflect 

the uncertainty about parameters, the Bayesian framework places distributions around 

parameters. Thus, in the Bayesian framework, the prior information, the data, and the 

final estimate are all in distribution form. The Bayes Theorem is expressed with the 

following formula: 

)(

)|()(

)(

),(
)|(

datap

datapp

datap

datap
datap

θθθ
θ == ,                                                                  (10) 

 

where )|( datap θ represents the posterior distribution, )(θp is the prior distribution 

placed on unknown parameters in the model, )|( θdatap is the sampling distribution of 

the data given the parameter, and )(datap is a constant with respect to the parameter of 

interest, and can thus be omitted in order to produce a simpler way to compute a quantity 

proportional to the posterior distribution: 

)|()()|( θθθ datappdatap ∝ .                                                                                        (11) 
 

The most common criticism of Bayesian  methods states that the inclusion of a 

prior distribution in the statistical analysis introduces subjectivity that might lead the 

results away from reality, in the researcher’s desired direction. However, Greenland 

(2006) points out that carefully chosen prior distributions do not introduce any 

assumptions that are more questionable than the assumptions made by frequentist models 

(and some are even less questionable than those of frequentist models, according to 

Greenland).  Greenland rejects the idea of data being able to “speak for themselves”, as 

frequentists would want them to. Even in a frequentist framework, the results are 

compared to probability distributions with the (sometimes unrealistic) assumption of no 



  10 

bias. Finally, Bayesian prior distributions are more transparent in the assumptions that are 

made than are frequentist analyses, which makes them easier to criticize. As Little (2006) 

pointed out, both Bayesian and frequentist methods have their strengths and weaknesses, 

and the choice of method should be tailored to the type of study, characteristics of data, 

and questions that are being answered by the data analysis.  

Just like frequentist methods, Bayesian methods offer both point and interval 

estimates of parameters. One form of interval estimates in the Bayesian framework is 

called credibility intervals. As opposed to frequentist confidence intervals for which one 

can say that in the long run (1-α)% confidence intervals will contain the true value of the 

parameter being estimated, the Bayesian credibility intervals can be interpreted in terms 

of probability. In other words, as long as the assumptions of the model hold, a Bayesian 

95% credibility interval means that there is 95% probability that the parameter value is 

included in the interval, as opposed to “95% confidence”. 

There are two ways to perform a Bayesian mediation analysis and obtain credible 

intervals described in the literature on Bayesian mediation analysis (Yuan & MacKinnon, 

2009; Enders, Fairchild, & MacKinnon, 2013). In this thesis, they are referred to as the 

method of coefficients and the method of covariances. The method of coefficients is 

inspired by the Yuan and MacKinnon (2009) approach, and its implementation starts with 

the assignment of prior distributions to the parameters in Equations 2 and 3 for the single 

mediator model, which are a, b, c’, 
2
2σ  and 

2
3σ  (the regression coefficients and the error 

variances of the mediator and dependent variable, respectively). Yuan and MacKinnon 

(2009) recommend normal distributions as priors for the regression coefficients a and b, 

and an inverse gamma distribution (IG) with parameters m (for shape) and n (for scale) as 
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a prior distribution for the variance. Assigning small values to m and n gives the prior 

distribution a large variance, thus reducing its impact on the shape of the posterior 

distribution. Assuming priors are independent a priori, the prior distributions for the five 

parameters can be combined into a joint prior distribution expressed as 

),(),(),(),(),(),,',,( 2
''

222
3

2
2 YYMMccbbaa nmIGnmIGNNNcbap σµσµσµσσ = .        (12) 

Using Gibbs sampling (Geman & Geman, 1984) and the above joint prior 

distribution with the observed data, one can obtain the posterior distributions for the 

parameters of interest, as well the posterior distribution of any function of those 

parameters. In this case, the function of interest is the product ab. The 95% central 

credibility intervals are then obtained by taking the 0.025 and 0.975 quantiles from the 

posterior distribution of ab. 

The method of covariances uses the covariance matrix of the variables X, M, and 

Y (Enders, Fairchild & MacKinnon, 2012). A prior distribution for the covariance matrix 

is modeled as an inverse Wishart distribution (a multivariate generalization of the chi-

squared distribution) with hyperparameters df p  (the degrees of freedom) and Λ p (the 

sum of squares and cross products matrix) that define the center and spread of the 

distribution (respectively). The prior distribution for the covariance matrix is then written 

as: 

p(Σ) ~W−1(dfp,Λp
−1).                                                                                          (13) 

If a covariance matrix from a prior study is available, the following conversion 

can be applied to it in order to obtain a prior distribution for the model: 

Λ p = (N p − 1)Σ p  .                                                                                                (14) 
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In the above formula, Σ p  is the covariance matrix and  Np is the sample size from the 

previous study. The df p value determines the influence of the prior distribution on the 

posterior distribution. The larger the degrees of freedom value, the more weight is given 

to the prior distribution. Assigning a value of for example 20 to df p  would be the same 

as saying that the prior distribution contributes 20 data points to the analysis (Enders, 

Fairchild & MacKinnon, 2013). The posterior distribution of a covariance matrix is also 

an inverse Wishart denoted as: 

),(~)|( 11 −− ΛΣ dfWdatap                                                                                  (15) 

where the degrees of freedom are a sum of the degrees of freedom from the prior 

distribution and the data, and the sum of squares and cross product matrix is the sum of 

the inverse lambda matrices of the prior distribution and the data. The regression 

coefficients a and b can be obtained from the covariance matrix: 

a =
sXM

sX
2

                                                                                                                          
(16) 

b=
(sMYsX

2 − sXMsXY)
(sX

2sM
2 − sXM

2)                                                                                                        (17)
 

and their product can be computed at each draw from the posterior distribution thus 

creating a posterior distribution for the mediated effect from which the credible interval is 

estimated. 

The two Bayesian approaches described above are expected to produce nearly 

identical estimates because there is a one-to-one relationship between the linear 

regression model and a saturated covariance matrix for multivariate normal outcomes 

(Enders, Fairchild, & MacKinnon, 2013).  
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Properties of Interval Estimates 
 

Confidence intervals are more informative than significance tests because they 

offer a range of plausible values of the estimate that is useful in judging the practical 

significance of results (Krantz, 1999; Stevens, 2007). Confidence intervals are also more 

informative than standard error bars because they provide inferential information, 

whereas standard error bars merely describe the data (Cumming, 2012). There are certain 

characteristics that make some confidence intervals more informative than others.  

The width of the confidence interval inherently reflects the uncertainty of the 

point estimate (Ramachandran & Tsokos, 2009). It follows that a narrower interval with 

higher probability of enclosing the true value of the parameter of interest is more 

desirable than a wide interval with a lower probability of enclosing the parameter of 

interest. The ‘arm’ of a confidence interval is called a margin of error (Cumming, 2012), 

and it is defined as a common summary of sampling error that quantifies uncertainty 

about an estimate (Ramachandran & Tsokos, 2009).  Margins of error decrease as sample 

size increases, and it is possible to calculate the sample size necessary in order to obtain a 

desired value of the margin of error (Cumming, 2012). Such a calculation is useful in 

increasing the precision of the estimate by making the confidence interval narrower, 

however, this procedure is not implemented in this project. 

The probability that the confidence interval contains the parameter of interest is 

called the confidence coefficient, and it quantifies the fraction of time the constructed 

interval contains the true parameter, under repeated sampling. As already stated, short 

arms and large confidence coefficients are two desirable characteristics of a confidence 
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interval. A common choice of confidence coefficient is 95%. The length of the margin of 

error depends on the standard error of the estimate, and the distribution from which the 

critical value for the computation was obtained. Normal theory confidence intervals for 

the mediated effect are symmetric, meaning that the distance between the estimate and 

the lower limit of the interval is the same as the distance between the estimate and the 

upper limit. This is not necessarily the case with confidence intervals formed using the 

distribution of the product, resampling methods, and Bayesian estimation. Thus, when 

comparing normal theory interval estimates to interval estimates obtained from other 

methods, one should not define precision as the length of a single arm of the confidence 

interval. The width of the entire interval is a more accurate way of evaluating the 

precision of an interval estimate. A narrower interval estimate is more informative than a 

wider one.  

There are other criteria to be considered when choosing a method of interval 

estimation. An interval method that contains the parameter with the exact frequency the 

confidence coefficient indicates it would (nominal coverage) is more desirable than one 

that doesn’t. Thus, interval estimates with empirical coverage equal to nominal coverage 

are more accurate. 

Another important consideration that relates to coverage is target miscoverage, 

also called imbalance. Ideally, an interval with the confidence coefficient of 95% will 

have a lower limit higher than the parameter value 2.5% of the time, and an upper limit 

lower than the parameter value 2.5% under repeated sampling (Efron & Tibshirani, 

1993). Two interval estimates can have the same level of coverage but different levels of 
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imbalance. An interval that has balanced miscoverage is more desirable than an interval 

that does not. 

The significance testing aspects of interval estimation are also an important 

consideration. An interval with an empirical Type I error rate equal to nominal levels of 

Type I error rate is more desirable than an interval with empirical levels of Type I error 

rate different than nominal. Empirical Type I error rate higher than nominal Type I error 

rate can be especially problematic.  

Another consideration regarding the use of interval estimates for significance 

testing is empirical power. If an interval estimate for the mediated effect contains the 

value of zero, then the mediated effect is not statistically significant. However, if the 

mediated effect in the population is different from zero, this would be a Type II error. 

Power is defined as )1( β− with β being the Type II error rate. A conventionally chosen 

level of power to aim for is 0.80. Empirical power refers to the proportion of times the 

interval does not contain the value of zero, over repeated sampling, when a true effect 

exists in the population. Simulation studies are often used to find out the empirical power 

of different methods. An interval estimation method with higher empirical power is more 

desirable than an interval estimation method with lower empirical power. 

Findings from previous studies 
 

Coverage and Type I error rate. In a simulation study with normally distributed 

data and no prior information, the distribution of the product and normal theory estimates 

of the mediated effect had Type I error rates lower than the nominal value, meaning their 

coverage was above the nominal 95% level (MacKinnon, Lockwood & Williams, 2004; 
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MacKinnon, Lockwood, et al., 2002). The bias-corrected bootstrap had average coverage 

closest to the nominal level with N≤200, while all other methods had Type I error rates 

lower than the nominal level of 0.05 for these values of sample size. However, for some 

combinations the bias-corrected bootstrap had empirical Type I error rates above the 

nominal level meaning that its empirical coverage was lower than the nominal 0.95 level, 

but on average this method performed well. The value of coverage for all methods 

approached the nominal level as sample size increased from 25 to 200 (MacKinnon, 

Lockwood & Williams, 2004).  Biesanz, Falk, and Savalei (2010) compared coverage of 

different methods for the mediated effect in four different situations in a simulation: 

complete normally distributed data, MCAR normally distributed data, complete non-

normally distributed data, and MCAR non-normally distributed data. None of the four 

combinations incorporated prior information, and for the purposes of this project, only 

the findings with complete normally distributed data are discussed. Out of the methods 

compared in the above simulation that are also tested in this study, the distribution of the 

product and percentile bootstrap confidence limits maintained alpha levels close to the 

nominal value, meaning that the coverage was also close to 0.95, while the accelerated 

bias-corrected bootstrap (the bias-corrected bootstrap with an added acceleration 

constant, denoted BCa in the article) had inflated Type I error rates, and consequently 

lower than nominal coverage for zero effects, for N<200. All methods had lower than 

nominal Type I error rates (and consequently excessively high coverage rates) for N<200, 

especially for small effect sizes. Coverage improved with increases in effect sizes, and 

overall the distribution of the product and normal theory confidence limits using the 

Sobel (1982) standard error had better coverage than the accelerated bias-corrected 
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bootstrap. Preacher and Selig (2012) replicated MacKinnon, Lockwood, and Williams 

(2004) and found that for complete normally distributed data with no prior information, 

percentile bootstrap and distribution of the product confidence limits had comparable 

levels of coverage that were better than coverage for the normal theory confidence limits 

using the Sobel (1982) standard error. From the findings of the four studies it can be 

expected that in the case with no prior information, all methods except the bias-corrected 

bootstrap that were tested in previous studies (meaning all except Bayesian credibility 

intervals) will have close to nominal coverage at N = 500, and excessive coverage as N is 

reduced. None of the four studies above tested the performance of the credibility intervals 

obtained using the method in Yuan and MacKinnon (2009) nor the method proposed by 

Enders, Fairchild, and MacKinnon (2012). Therefore, no predictions can be made about 

the coverage of Bayesian credibility intervals obtained from these two methods relative to 

others with or without prior information available. 

Imbalance. In Study 1 by MacKinnon, Lockwood, and Williams (2004) the 

liberal robustness criterion proposed by Bradley (1978) was used for evaluating 

imbalance. More specifically, instead of calling any interval estimate that does not 

produce 2.5% of Type I errors of each side imbalanced, the range of permitted deviation 

from 2.5% was expanded to )0375.0,0125.0()2/5.1,2/5(. =αα . The results of this study 

indicated that the bias-corrected bootstrap was the only method to have imbalance that 

satisfied Bradley's liberal robustness criterion. The comparison of the remaining method 

showed that the distribution of the product confidence limits had less imbalance than 

normal theory confidence limits. Preacher and Selig (2012) computed imbalance as the 

ratio of times the true value fell above the upper confidence limit over the number of 
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times the true value of the parameter was lower than the lower confidence limit; the 

further this ratio was from one, the more imbalanced the confidence interval. They found 

that the normal theory confidence limits using the Sobel (1982) standard error had the 

highest ratio of misses (meaning imbalance), and that the distribution of the product 

confidence limits had slightly more imbalance than the percentile and bias-corrected 

bootstrap confidence limits. For the case with no prior information, it can be expected 

that the normal theory confidence limits will have the most imbalance, followed by the 

distribution of the product confidence limits, and that the bias-corrected and percentile 

bootstrap will produce the least imbalanced confidence intervals. None of the studies 

comparing methods examined Bayesian credibility intervals, nor did any of them include 

prior information, thus no predictions can be made about the performance of this method 

compared to others. 

Empirical Power. MacKinnon, Lockwood, and Williams (2004) found that for 

sample sizes between 25 and 200 the bias-corrected bootstrap had slightly more empirical 

power than the distribution of product and percentile bootstrap methods.  A previous 

study also found that the distribution of product method has power above 0.80 to detect 

small effects at N=500 (MacKinnon, Lockwood, et al., 2002). Consistently with their 

findings about Type I error rates (power and Type I error rate have a positive 

relationship), Biesanz, Falk, and Savalei (2010) found that the normal theory confidence 

limits had fairly low empirical power whereas the accelerated bias-corrected bootstrap 

had the highest value of empirical power followed by the distribution of the product. All 

methods had low empirical power for sample sizes smaller than or equal to 200 and small 

effect sizes. Also, the empirical power was lower for the parameter combination where 
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a=0.59 and b=0.14 regardless of sample size and method (Fritz, Taylor & MacKinnon, 

2012). An increase in effect sizes leads to an increase in power, however, in addition to 

this, the authors concluded that the value of b was more related to increases in power than 

was the value of a. This means that power for a=0.59 and b=0.14 was lower than for 

a=0.14 and b=0.59 even though the value of the mediated effect was the same for the two 

combinations of parameter values.  At N = 500 all methods had power of above 0.80 for 

most parameter combinations except for the combination with a=0.59 and b=0.14. It is 

expected that the bias-corrected bootstrap will have the highest empirical power, 

followed closely by the distribution of the product, and the percentile bootstrap. Normal 

theory confidence limits are expected to have very low empirical power. Yuan and 

MacKinnon (2009) found that an informative prior can increase power. Since the Enders, 

Fairchild, and MacKinnon (2012) approach is closely related to the Yuan and 

MacKinnon (2009) approach with complete data, the two are expected to perform 

similarly to each other with and without prior information, and better than the normal 

theory, distribution of the product, percentile bootstrap, and bias-corrected bootstrap 

confidence limits when prior information is used. 

Interval Width. Preacher and Selig (2012) found that the normal theory 

confidence limits had the narrowest confidence intervals followed by the distribution of 

the product confidence intervals. It is expected that these results will be replicated when 

there is no prior information available. Yuan and MacKinnon (2009) found that an 

informative prior can reduce interval width. Given the similarity of this approach to the 

one proposed by Enders, Fairchild, and MacKinnon (2012), the two methods are 

expected to perform in a similar way in terms of interval width. 
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Improvements in interval estimation with the inclusion of prior information 
 

Frequentist statistical analyses are often performed on one sample at a time without 

taking into consideration the findings from previous studies. Even though frequentists use 

prior knowledge in calculations of a priori power and the selection of sample size for 

studies, the knowledge about the relationships being studied is not included in the 

statistical analysis. Bayesian methods incorporate prior knowledge in the statistical 

analysis in the form of a prior distribution. Little (2006) advocated the use of frequentist 

methods in model development and assessment, and Bayesian methods in statistical 

inference under the assumed model. Given the available statistical tools, the statistical 

approach to examining a phenomenon for the first time could differ from the statistical 

approach to studying a somewhat familiar relationship. However, most analyses are 

performed as if there was no prior information available. Recently, researchers have 

suggested that augmenting data with existing prior information produces more accurate 

estimates than the data set from a given experiment alone (Leeuw & Klugkist, 2012). The 

goal of this project is to examine the benefits of the inclusion of prior knowledge into the 

statistical analysis by evaluating several interval estimates for the mediated effect and the 

smallest sample size necessary to produce accurate estimates of the mediated effect. The 

project consists of three studies. 

The goal of the first study is to examine which interval estimate has coverage closest 

to the nominal level of 0.95, Type I error rate closest to the nominal 0.05 level, the lowest 

imbalance, smallest width, and highest empirical power. Normal theory confidence limits 

using the multivariate delta standard error, percentile bootstrap confidence limits, bias-
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corrected bootstrap confidence limits, and the Bayesian credibility intervals are evaluated 

on the following criteria:  

I. The closer coverage is to the nominal 0.95 level, the better. Values in the range of 

Bradley’s robustness criterion (1978), between 0.925 and 0.975, are considered 

adequate. Coverage above 0.975 is less problematic than coverage below 0.925. 

II.  The closer the empirical Type I error is to the nominal Type I error, the better. 

Values in the range of Bradley’s robustness criterion (1978), between 0.025 and 

0.075, are considered adequate. Type I error rate above 0.075 is considered more 

problematic than Type I error rate below 0.025. 

III.  Imbalance is defined as the difference between the proportion of true values that 

fall to the right versus to the left of the interval, and the closer imbalance is to 

zero, the better. 

IV.  Empirical power is defined as the number of intervals out of the number of 

replications that do not contain the value of zero when a true effect exists in the 

simulated population. In most studies empirical power of at least 0.80 is 

considered adequate, however, power will be evaluated as a continuous variable 

in this study. 

V. The smaller the interval width, the better. 

The goal of the second study was to examine how informative (narrow) the prior 

distributions have to be in order for the Bayesian methods to outperform frequentist 

methods in small samples. The two Bayesian methods were tested with two different 

amounts of prior information, and compared to normal theory, distribution of the product, 
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percentile bootstrap, and bias-corrected bootstrap confidence intervals in order to answer 

this question. 

The third study examined how power changes with the precision (inverse 

variance) of the prior distributions for regression coefficients a and b and evaluated the 

extent to which more precision can increase power. 

Hypotheses 
 

I. Bayesian methods with informative prior distributions will have coverage closer 

to the nominal level of 0.95, Type I error rates closer to the nominal level of 0.05, 

imbalance closer to 0, higher empirical power, and lower interval width than 

Bayesian methods with diffuse prior distributions, normal theory confidence 

limits, distribution of the product confidence limits, percentile bootstrap 

confidence limits, and bias-corrected bootstrap confidence limits. 

II.  The power increase for the Bayesian method of coefficients differ depending on 

whether the precision parameter was increased for the prior distribution of the a 

path versus the prior distribution of the b path. 
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CHAPTER 2 

GENERAL METHOD 

A Monte Carlo simulation was used to compare interval estimates for the 

mediated effect on five criteria. Appendix A contains explanations for document notation 

used in the subsequent studies. The data were simulated based on Equations 2 and 3. In 

the simulation the residual variances of M and Y were set to 1, and X was simulated as a 

random variable. There are four values of effect sizes for regression coefficients (0, 0.14, 

0.39, 0.59) that correspond approximately to zero, small (2% of the variance), medium 

(13% of variance), and large (26% of the variance) effect sizes as described by Cohen 

(1988). SAS syntax (Version 9.3 of the SAS System for Windows) was written to 

simulate every possible combination of these values parameter a, b, and c’. 

It has been shown that tests of mediation, except the causal steps test (which is not 

studied in this project), are unaffected by the values of the parameter c’ (Fritz & 

MacKinnon, 2007; MacKinnon, Lockwood, et al., 2002). However, the relationship 

between the value of c’ and interval width has not been documented, thus all four effect 

sizes of this coefficient are included in the simulation for Study 1. Furthermore, Study 1 

examined all 64 possible combinations of parameter values of a, b, and c’. Due to 

computation time required for all combinations of parameter values, studies 2 and 3 

examined smaller subsets of the 64 combinations of parameter values. 
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CHAPTER 3 

STUDY 1 

Methods 
 

Random samples of size N = 20, 40, 60, 100, and 500 were drawn from each 

population and 95% confidence limits/credibility intervals for the mediated effect were 

calculated using (1) normal theory, (2) the distribution of the product method, (3) 

Bayesian method with diffuse normal prior distributions for regression coefficients 

centered at µa= µb = µc’ =0 with variance equal to 106, and σ2
M and σ2

Y modeled as 

inverse-gamma distributions with shape and inverse-scale parameters equal to .01 (so that 

the expectation of this distribution is 1), (4) Bayesian method with informative normal 

prior distributions for regression coefficients centered at the true value of the regression 

coefficients with variance equal to 106, and σ2
M and σ2

Y modeled as inverse-gamma 

distributions with shape and inverse-scale parameters equal to .01 (so that the expectation 

of this distribution is 1), (5) Bayesian method with a multivariate normal distribution for 

the means of variables X, M, and Y (the means in the prior distribution were set to 0, the 

variance of the variables to 1000, and the covariances to 0) and a diffuse inverse Wishart 

prior distributions for the covariation matrix of variables X, M, and Y constructed so that 

the expected covariance between variables is zero and the expected variance of each 

variable was 1 and the degrees of freedom parameter was equal to the observed sample 

size, (6) Bayesian method with the same prior distribution for the matrix of means as in 

method (5) and an informative inverse Wishart prior distributions for the covariation 

matrix of variables X, M, and Y constructed so that the expected variances and 
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covariances equal the true variances and covariances and the degrees of freedom 

parameter was equal to the observed sample size,  (7) percentile bootstrap, and (8) bias-

corrected bootstrap. The highest sample size tested in this project was N = 500 because 

this is the smallest sample size required for bias-corrected bootstrap to have adequate 

Type I error rate and empirical power (Fritz, Taylor & MacKinnon, 2012).  

For each combination of effect size and sample size 1000 replications were generated. 

Average coverage, Type I error rate for cases where either a or b equal zero, confidence 

interval imbalance (the number of times the estimate is to the right of the upper 

confidence/credibility limit (UCL) minus the number of times the estimate is to the left of 

the lower confidence/ credibility limit (LCL)), empirical power for cases where a>0 and 

b>0, and interval width were obtained for all eight interval methods in the study. 

Type I error rates were evaluated according to Bradley’s robustness criterion 

(1978). The Type I error rate of a statistical method is considered adequate if it falls 

within 0.025 (one half of the nominal level of Type I error rate) of the nominal 0.05 level. 

Values of Type I error rate above 0.075 are considered excessive. Values of Type I error 

rates below 0.025 are highlighted in the results below, but are not a reason to avoid using 

the method as long as the Type I error rate is less than 0.05. According to Bradley’s 

robustness criterion (1978), the coverage of a statistical method is considered adequate if 

it falls within 0.025 (one half of the nominal level of Type I error rate) of the nominal 

0.95 level. Values of coverage below 0.925 are considered low and problematic. Values 

of coverage above 0.975 are highlighted in the results below, but are not a reason to avoid 

using the method with these coverage rates. 
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ANOVAs were conducted on each of the five outcomes in Study 1 with a, b, and 

N as between factors, method as a within factor, and c’ as a covariate in order to guide 

the creation of the plots and the summary of the findings. In all of the ANOVAs c’ was 

always a covariate, and interactions between a, b, N, and method were estimated when 

possible. For Type I error rate it was not possible to estimate all interactions. The results 

of the analyses are presented below, along with explanations of the findings. 

Results 
 

After the simulations for Study 1 were complete, errors were caught in the code 

for the following methods: (2) distribution of the product, (5) Bayesian method with a 

diffuse prior distribution for the covariance matrix, and (6) Bayesian method with an 

informative prior distribution for the covariance matrix, rendering the findings for these 

methods unusable. Also, there was an error in the calculation for the imbalance of the 

bias-corrected bootstrap. Thus, Study 1 results consist of Type I error rate, power, 

coverage, and interval width for normal theory confidence limits, Bayesian method of 

coefficients credibility intervals with diffuse priors, Bayesian method of coefficients 

credibility intervals with informative priors, percentile bootstrap, and bias corrected 

bootstrap. Imbalance is available for normal theory confidence limits, Bayesian method 

of coefficients credibility intervals with diffuse priors, Bayesian method of coefficients 

credibility intervals with informative priors, and percentile bootstrap. Results for all 

combinations of parameters a, b, and c’ from Study 1 are summarized in Tables 1-5. 

Results for all possible combinations of parameter values and sample size in Study 1 can 
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be found in Appendix C, in Tables 18-42. Coefficients a and b are referred to as the 

mediation paths in the subsequent descriptions of the findings. 

Significance Testing: Type I error rate and Power 

Type I error rate 

Table 1 contains average Type I error rates for all the methods and sample sizes in 

study 1 across all 64 combinations of parameter values for a, b, and c’. Normal theory 

and percentile bootstrap confidence limits had average Type I error rates lower than the 

nominal 0.05 level at all sample sizes in the study. The average Type I error rates for the 

Bayesian method of coefficients were either below or within the limits of the robustness 

criterion at all sample sizes in the study. The average Type I error rates for the bias-

corrected bootstrap were the highest out of all methods at each sample size, became 

higher as sample size increased, but still remained within the limits of the robustness 

criterion on average.  

------------------------------- 

Insert Table 1 about here 

------------------------------- 

The results of the ANOVA for Type I error rate indicate that the method factor 

had statistically significant interactions with a, sample size, a and sample size, b, and b 

and sample size. Following up these significant interactions in a detailed examination of 

the tables revealed that at N = 20 all methods had Type I error rates below 0.025 when 

both mediation paths are zero (Table 18). The larger the non-zero mediation path, the 

higher the Type I error rates for all methods.  At N = 20, normal theory confidence limits 

had Type I error rates consistently lower than 0.025. The Bayesian method of coefficients 
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with diffuse and informative prior distributions had Type I error rates in the range of the 

robustness criterion (0.025-0.075) only when the non-zero path was large (when c’=0, 

this is true when a=0.59 and b=0, but not when b=0.59 and a=0). In all other situations 

Type I error rates for the Bayesian method of coefficients were below 0.025. At N = 20, 

the percentile bootstrap had values of Type I error rates in the robustness criterion only 

when the non-zero path is at least medium, and did not have Type I error rates above 

0.075. Type I error rates for the bias-corrected bootstrap were higher than 0.075 

whenever c’>0 and the non-zero mediation path was 0.59; otherwise they were within the 

bounds of the robustness criterion, or lower. The bias-corrected bootstrap had the highest 

Type I error rates of all methods at each combination of effect sizes, and was the only 

method to have parameter combinations with Type I error rates above 0.075 at N = 20. At 

N = 40 normal theory confidence limits still had Type I error rates below 0.025 except in 

three cases when the non-zero mediation path is 0.59 and the Type I error rates were 

between 0.025 and 0.075 (Table 19). The Bayesian method of coefficients with diffuse 

and informative prior distributions had Type I error rates in the range of the robustness 

criterion (0.025-0.075) only when the non-zero path was large; in all other situations 

Type I error rates for the Bayesian method of coefficients were below 0.025. As with N = 

20, at N = 40 the percentile bootstrap had a Type I error rates between 0.025 and 0.075 

only if the non-zero mediation path is at least 0.39, otherwise Type I error rates were 

below 0.025. At N = 40 the bias-corrected bootstrap had Type I error rates between 0.025 

and 0.075 when the non-zero mediation path is medium, and was the only method to have 

Type I error rates higher than 0.075 for large non-zero mediation paths.  
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At N = 60 normal theory confidence limits still had Type I error rates below 0.025 

for all parameter combinations except for a few instances where the non-zero mediation 

path was large (Table 20). At N = 60 the Bayesian method of coefficients with diffuse 

and informative prior distributions had Type I error rates in the range of the robustness 

criterion in the majority of combinations where the zero mediation path is at least 0.39; 

otherwise, the Type I error rates for the Bayesian method of coefficients with diffuse and 

informative prior distributions were lower than 0.025. The percentile bootstrap had 

values of Type I rate in the range of the robustness criterion whenever the non-zero 

mediation path was at least 0.39, and the only instance of Type I error rate above 0.075 

occurred when c’=0, a=0.59, and b=0. At N = 60 the bias-corrected bootstrap had Type I 

error rates below 0.025 when both mediation paths were 0 or the non-zero mediation path 

was small, and Type I error rates in the upper range or above the robustness criterion 

when the non-zero mediation path was medium or large; the bias-corrected bootstrap had 

Type I error rates in the range of the robustness criterion in only five out of the twenty 

eight combinations of parameter values.  

At N = 100 normal theory confidence limits had Type I error rate below 0.025 

whenever both mediation paths were 0, or when the non-zero mediation path was small 

(Table 21). Type I error rates for normal theory confidence limits were always in the 

range of the robustness criterion when the non-zero mediation path was large, and in half 

of the instances when a=0.39, but not when b=0.39. At N = 100 the Bayesian method of 

coefficients with diffuse and informative prior distributions always had Type I error rates 

in the range of the robustness criterion when a=0 and b=0.39, 0.59, and in half of the 

cases when a=0.14 and b=0. Excessive Type I error rates (above 0.075) occurred 
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whenever b=0, and a=0.39 and 0.59. Thus, at N=100 a larger a coefficient signified 

higher Type I error rates for the Bayesian method of coefficients with diffuse and 

informative prior distributions. The Type I error rate for the percentile bootstrap was 

never above 0.075, and was in the range of the robustness criterion whenever the non-

zero mediation path was at least 0.39. In all other situations Type I error rates for the 

percentile bootstrap at N = 100 were below 0.025. The bias-corrected bootstrap had Type 

I error rates in the range of the robustness criterion for most combinations of a, b, and c’; 

values of Type I error rate below 0.025 occurred whenever both mediation paths were 0, 

and once for a=0.14 and b=c’=0. Excessive Type I error rates for the bias-corrected 

bootstrap occurred only in situations when either a or b was at least 0.39, however, this 

was not as consistent of an occurrence as it was for the Bayesian method of coefficients 

at N = 100.  

At N = 500 normal theory confidence limits had Type I error rates below 0.025 

when both mediation paths were zero or when the non-zero path was small, and values of 

Type I error rate in the range of the robustness criterion whenever the non-zero mediation 

path was at least 0.39.  At N = 500 normal theory confidence limits did not have Type I 

error rates above 0.075 for any of the parameter combinations (Table 22). The Bayesian 

method of coefficients with diffuse and informative prior distributions and the percentile 

bootstrap had Type I error rates below 0.025 whenever both a and b were zero, and 

values of Type I error rate in the range of the robustness criterion whenever at least one 

of the mediation paths was larger than zero. Neither the Bayesian method of coefficients 

nor the percentile bootstrap had Type I error rates above 0.075 for any of the parameter 

combinations. The bias-corrected bootstrap had Type I error rates in the range of 
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Bradley’s robustness criterion for all combinations of effect sizes, except a=b=0 when 

Type I error rates were below 0.025, and for some instances in which the non-zero 

mediation path is 0.14 and Type I error rates were above 0.075.  

Overall, Type I error rates increased with sample size for normal theory 

confidence limits, and Bayesian credibility limits. Percentile bootstrap was the method 

that had Type I error rates in the range of Bradley’s robustness criterion the most often 

across all sample sizes, and at N = 500 the Bayesian methods were performing identically 

to the percentile bootstrap in terms of Type I error rate. Normal theory confidence limits 

were the only method never to have Type I error rates above 0.075, followed by the 

percentile bootstrap that had only one instance of excessive Type I error rate across all 

parameter combinations and sample size. The Bayesian method of coefficients with 

diffuse and informative prior distributions came next in terms of the number of instances 

of excessive Type I error rate across all parameter combinations and sample size, and the 

bias-corrected bootstrap had the highest number of Type I error rates above 0.075 out of 

all methods tested in this study. 

The Type I error rate for the Bayesian method with informative prior distributions 

did not differ much from the Type I error rate of the Bayesian method with diffuse prior 

distributions suggesting either that prior information cannot make Type I error rate closer 

to the nominal level, or that the informative prior distributions used in this study were 

still too diffuse to induce such a change in the interval estimate. 

Power 

Table 2 contains average values of power for five methods in Study 1. All 

methods had average power greater than 0.8 at N = 500, and the bias-corrected bootstrap 
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had the highest average power for each sample size (but also had the highest value of 

Type I error rate as described above). Bayesian methods with diffuse and informative 

prior distributions for the regression coefficients consistently outperformed normal theory 

confidence limits, but had lower average power than the two bootstrap methods. This 

finding suggests that either prior information cannot increase power or that there was not 

enough prior information in the informative prior distributions to produce an increase in 

power in this study. 

------------------------------- 

Insert Table 2 about here 

------------------------------- 

The full-factorial ANOVA for power revealed that all interactions were 

statistically significant, including the four-way interaction between the factors method, a, 

b, and sample size. A careful examination of the tables of results revealed that at N = 20 

and 40 for all combinations of parameter values the bias-corrected bootstrap had the 

highest value of power, followed by the percentile bootstrap (Tables 23 and 24). The 

Bayesian method of coefficients had almost identical power for diffuse or informative 

prior distributions, and had slightly lower power than the percentile bootstrap (0.008 

versus 0.013 at the parameter combination with the least power for all methods and 

a=b=0.14, c’=0, and 0.331 versus 0.399 at the parameter combination with the most 

power for all methods and a=b=c’=0.59 at N = 20). Normal theory confidence limits had 

the least power out of all methods for all combinations of parameter values at N = 20, and 

40. At N = 60 and at larger values of mediation paths, especially at larger values of a, 

normal theory confidence limits had power closer to all other methods except the bias-
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corrected bootstrap (Table 25). For N < 60 the percentile bootstrap had higher power than 

the Bayesian method of coefficients, but at N = 60 this was not the case for all parameter 

combinations. At N = 60, c’=0, 0.14, and b=0.14 the Bayesian method of coefficients had 

more power than the percentile bootstrap. At c’=0.39, 0.59 and a=0.59 the Bayesian 

method of coefficients and the percentile bootstrap had identical power. At N = 60 and 

for all other parameter combinations, the percentile bootstrap had slightly more power 

than the Bayesian method of coefficients with diffuse and informative prior distributions. 

At N = 100 the bias-corrected bootstrap was still the method that had the highest power 

for the majority of combinations of parameter values, however, some interesting patterns 

in the results also emerged (Table 26). The Bayesian method of coefficients and the 

percentile bootstrap would alternate as the method with the second-highest power after 

the bias-corrected bootstrap, and when c’>0, a=0.14, and b=0.59 the Bayesian method of 

coefficients had power identical to or higher than the bias-corrected bootstrap, and higher 

power than the percentile bootstrap. There were also parameter combinations when 

normal theory confidence limits had more power than the Bayesian method of 

coefficients; this occurred whenever a=0.59 and b=0.14. In these instances the bias-

corrected bootstrap and the percentile bootstrap still had more power than normal theory 

confidence limits. At N = 100 and a=b=0.59 all methods had power equal to 1. At N = 

500 all methods had power equal to 1 when one or both mediation paths were medium or 

large (Table 27). The bias-corrected bootstrap was still the method with the most power 

in the majority of parameter combinations, however, the power values for all the methods 

became more similar as effect size increased, and when one or both mediation paths were 

medium or large all methods had power of 1. Furthermore, for all parameter 
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combinations except when a=b=0.14 all methods had power values in the range of 0.8-

0.9, and when a=b=0.14 the bias-corrected bootstrap had the most power (above 0.8), 

followed by the percentile bootstrap (0.738-0.758), the Bayesian method of coefficients 

with diffuse and informative priors (0.721-0.746), and normal theory confidence limits 

(0.563-0.596). 

When Type I error rates and Power are taken into account, the percentile 

bootstrap and the Bayesian method of coefficients with diffuse and informative prior 

distributions are the optimal choices because they offer high power relative to normal 

theory confidence limits without excessive Type I error rates of the bias-corrected 

bootstrap.  

Interval Estimation: Coverage, Interval Width, and Imbalance 

Coverage 

Table 3 contains average values of coverage for five methods in Study 1. All 

methods had average coverage within .02 of the nominal level of 0.95, regardless of 

sample size. The coverage for the Bayesian method with informative prior distributions 

(third method in the table) is not closer to the nominal level than the coverage for the 

Bayesian method with diffuse prior distributions, suggesting that either coverage cannot 

be approximated to the nominal level by adding prior information or that the informative 

prior distributions used were still too diffuse. 

------------------------------- 

Insert Table 3 about here 

------------------------------- 
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The full-factorial ANOVA for coverage revealed that all interactions were 

statistically significant, including the four-way interaction between the factors method, 

size of a, size of b, and sample size. A careful examination of the tables of results 

revealed that at N = 20 and 40 (Tables 28 and 29, respectively) normal theory confidence 

limits have coverage above the robustness criterion (0.925-0.975) when at least one of the 

mediation paths is zero. Coverage for normal theory confidence limits is within the range 

of the robustness criterion when at least one of the mediation paths is small and the other 

mediation path is not zero. Coverage equals or is below 0.925 in certain combinations of 

medium and large mediation paths. In other words, at N = 20 and 40 normal theory 

confidence limits occasionally had lower coverage for larger effects than for smaller and 

zero effects, and this phenomenon occurs less at N = 40 than at N = 20.  

At N = 60 normal theory confidence limits had fewer instances of coverage below 

.925 than at N = 40, and overall had coverage either within the range of the robustness 

criterion or higher. As with smaller sample sizes, at N = 60 normal theory confidence 

limits had higher coverage for zero and smaller effects (Table 30).  

The Bayesian method of coefficients with diffuse and informative prior 

distributions have identical levels of coverage at N = 20, 40, and 60, and never have 

coverage below 0.925 at N = 20 and 60. At N = 40 the parameter combination c’=0.39 

and a=b=0.59 is the only case where the Bayesian method of coefficients with diffuse 

and informative prior distributions has coverage slightly below the robustness criterion. 

Levels of coverage for the Bayesian method are above 0.975 for zero and smaller effects, 

and fall within the robustness criterion when at least one of the mediation paths is equal 

to or greater than 0.39 and the other path is non-zero.  
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At N = 20 the percentile bootstrap has coverage in the range of the robustness 

criterion for the majority of combinations of values of a and b, coverage equal to or 

larger than 0.975 when both mediation paths are zero and when one mediation path is 

zero and the other is small. The only instances of the percentile bootstrap having 

coverage below 0.925 at N = 20 occur at c’=0.59, a=0.59, and non-zero values of b. At N 

= 40 the percentile bootstrap has coverage within the range of the robustness criterion or 

larger for all parameter combinations except when a=0.59 and b is larger than zero, 

which is when coverage is below 0.925. At N = 60 the percentile bootstrap has coverage 

above the upper bound of the robustness criterion when one or both paths are 0 or 0.14, 

and coverage within the range of the robustness criterion in all other situations except for 

the parameter combination c’=0, a=0.59, b=0 when coverage is 0.924, just below the 

lower bound of the robustness criterion.  

At N = 20 the bias-corrected bootstrap had coverage below 0.925 for certain 

combinations of effect sizes where at least one path is medium or large. At N = 40 the 

bias-corrected bootstrap had coverage within the range of the robustness criterion or 

larger for all combination of parameter values except in certain combinations where one 

mediation path was larger than the other one (a=0.59 versus b=0, and even b=0.39 versus 

a=0.14). At N = 60 the bias-corrected bootstrap has the most instances of coverage below 

0.925 out of all methods, and the lowest coverage for this method equals 0.904 and 

occurs when c’=0.59, a=0.14, and b=0.39. As with N = 40, at N = 60 the bias-corrected 

bootstrap seems to have coverage below 0.925 only in situations where one of the 

mediation paths is much smaller than the other one (0.59 versus 0.14), and also when 

c’=0.59 and one mediation path equals 0.39 while the other is 0.14. Overall, at N = 20, 
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40, and 60 for all methods, coverage would occasionally become lower with increases in 

one mediation coefficient when holding the other mediation coefficient constant, thus 

highlighting that the relation between effect size and coverage is not linear. There was no 

clear pattern when this occurred. 

At N = 100 normal theory confidence limits have coverage above 0.975 for 

mediated effects equal to zero, and coverage within the range of the robustness criterion 

for all other combinations of parameter values, except when a=b=0.14, and a=b=c’=0.39 

when coverage is below 0.925, but still equal to or above 0.90 (Table 31). At N = 100 the 

Bayesian method of coefficients still had almost identical levels of coverage with diffuse 

and informative prior distributions. Coverage at N = 100 was within the limits of the 

robustness criterion or higher for all combinations of parameter values except a=0.39 and 

b=0, 0.14, a=0.59 and b=0, 0.14, and at c’=0 and 0.14 when a=0.59 and b=0.39. Thus, 

coverage for the Bayesian method of coefficients at N = 100 was at least 0.925 whenever 

the a path was not larger than the b path. At N = 100 the percentile bootstrap has 

coverage within the bounds of the robustness criterion for almost all parameter 

combinations; coverage is above 0.975 when a=b=0 and for all parameter combinations 

where one mediation path is zero and the other equals 0.14. At N = 100 the bias-corrected 

bootstrap had coverage values within the bounds of the robustness criterion for the 

majority of parameter combinations. Coverage for the bias-corrected bootstrap at N =100 

is consistently below 0.925 when a=b=0.14, and for a few other combinations of 

parameter values a, b, and c’, but never below 0.90.  

At N = 500 all methods have coverage in the bounds of the robustness criterion 

for almost all parameter combinations. When both mediation paths are zero at N = 500, 
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coverage is above 0.975 for all methods, and coverage is above 0.975 for normal theory 

confidence limits even when one of the mediation paths is 0.14 and the other is zero 

(Table 32). The bias-corrected bootstrap has coverage above 0.90 but below 0.925 when 

a=0 and b=0.14 regardless of value of c’, and when a=0.14, b=0, and c’=0. 

In summary, coverage was higher for zero effects than for non-zero effects at all 

sample sizes and for all methods. Generally, coverage was close to 0.95 for all methods. 

Interval Width 

Table 4 contains average values of interval width for five methods in Study 1. 

Normal theory confidence limits had consistently lower interval width than the remaining 

four methods at each sample size, however, as sample size increased, the interval width 

differed less between the five methods. 

------------------------------- 

Insert Table 4 about here 

------------------------------- 

The full-factorial ANOVA for interval width revealed that the four-way 

interaction between the factors method, size of a, size of b, and sample size was 

statistically significant. A careful examination of the tables of results revealed that at N = 

20, 40 normal theory confidence limits have the lowest interval width of all methods at 

all combinations of parameter values, followed by the percentile bootstrap (Tables 33 and 

34, respectively). The values of interval width were often similar for the remaining three 

methods, and depending on the combination of parameter values, either the Bayesian 

method of coefficients with diffuse and informative priors (the two were almost identical) 

or the bias-corrected bootstrap had the highest interval width. At N = 60, 100 and 500 the 
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trend of the bias-corrected bootstrap and Bayesian method of coefficients having the 

highest interval width, followed by the percentile bootstrap, and normal theory 

confidence limits continues, however, the differences in interval width between methods 

are less noticeable, especially when a and b are larger (Tables 35-37). Interval width got 

smaller for all methods as sample size increased, and values of interval width varied less 

between methods at larger sample sizes. Even though normal theory confidence limits 

had the narrowest interval width, this method has low power relative to others, so other 

methods have better performance.  

Imbalance 

Table 5 contains average values of imbalance for four methods in Study 1. All 

methods had positive imbalance that was within .03 of the ideal level of 0, regardless of 

sample size. The fact that imbalance was greater than zero indicates that there was more 

miscoverage to the right than to the left of the interval for all four methods in the table.  

------------------------------- 

Insert Table 5 about here 

------------------------------- 

Imbalance was evaluated for normal theory confidence limits, the Bayesian 

method of coefficients with diffuse and informative prior distributions, and the percentile 

bootstrap. The full-factorial ANOVA for imbalance did not converge, thus the reported 

results are based solely on a careful examination of Tables 38-42 that contain the values 

of imbalance for all parameter combinations in Study 1. Imbalance was fairly close to 

zero for zero effects, and increased in absolute value for all methods. A comparison 

between methods revealed that normal theory confidence limits had the highest absolute 
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value of imbalance for the highest number of parameter combinations, followed by the 

percentile bootstrap. The Bayesian method of coefficients had almost identical values of 

imbalance for diffuse and informative prior distributions, and had the lowest absolute 

value of imbalance out of all methods for most parameter combinations. The absolute 

value of imbalance for all methods never exceeded 0.10, and became lower as sample 

size increased. 

Discussion 
 

The Bayesian method of coefficients and the percentile bootstrap were optimal 

methods given their performance on measures related to both significance testing and 

interval estimation. A notable finding from Study 1 is that when the variance of the prior 

distributions for the regression coefficients was specified to be 106 (the variances of 

regression coefficients calculated from the parameters in this simulation are usually 

smaller than 1; thus, the prior distributions for regression coefficients are extremely 

diffuse) the Bayesian credibility intervals did not show much change in simulation 

outcomes, such as an increase in power, a Type I error rate closer to 0.05, reduced 

interval width, imbalance closer to 0, and coverage closer to the nominal level of 0.95 

compared to the remaining methods in the study. Due to the large variance of prior 

distributions, the difference in results from analyses with non-informative and 

informative priors was not substantial. An examination of plots of normal prior 

distributions with different means (0, 0.14, 0.39, and 0.59) and the variance parameters 

equal to 106 shows that the distributions are almost identical. 
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Thus, the Study 1 findings for N = 20, 40, 60, 100, and 500 lead to the question of 

how narrow does the prior distribution have to be in order to produce an increase in 

power, a Type I error rate closer to 0.05, reduced interval width, imbalance closer to 0, 

and coverage closer to the nominal level of 0.95 for the Bayesian methods compared to 

the remaining methods in the study. Given that for N = 500 all methods had adequate 

power, this sample size was not included in Study 2, however, the condition N = 200 was 

added instead. 
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CHAPTER 4 

STUDY 2 

Due to the duration of the simulation study for all possible parameter 

combinations (64), a smaller subset of parameter combinations (13) was chosen based on 

the findings in Study 1 and conditions where there is the most discrepancy between 

methods in confidence limit estimation in prior research (MacKinnon, Lockwood & 

Williams, 2004). The purpose of the study was to determine how informative a prior 

distribution would have to be in order to increase power, produce Type I error rate equal 

to the nominal rate of 0.05, reduce interval width, produce imbalance of 0, and coverage 

equal to the nominal level of 0.95 for Bayesian credibility intervals for N = 20, 40, 60, 

100, and 200. 

Methods 
 

Populations with the following combinations of values for parameters were 

simulated (example SAS simulation code can be found in Appendix D): a=0 b=0 c’=0, 

a=0 b=0.14 c’=0, a=0 b=0.39 c’=0, a=0 b=0.59 c’=0, a=0.14 b=0.14 c’=0, a=0.39 

b=0.39 c’=0, a=0.59 b=0.59 c’=0, a=0.14 b=0.39 c’=0, a=0.14 b=0.59 c’=0, a=0.39 

b=0.59 c’=0, a=0.14 b=0.14 c’=0.39, a=0.39 b=0.39 c’=0.39, a=0.59 b=0.59 c’=0.39. 

Two values of the c’ coefficient (0 and 0.39) were included in the simulation in order to 

determine whether performance of interval estimates differs for complete and incomplete 

mediation models. 

Random samples of sizes N = 20, 40, 60, 100, and 200 were obtained from each 

population and 95% confidence limits/credibility intervals for the mediated effect were 
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calculated using normal theory, the distribution of the product method, percentile 

bootstrap, and bias-corrected bootstrap. Also, four Bayesian methods were tested in order 

to determine whether prior information could improve the performance of credibility 

intervals in comparison to other methods in the study. The four Bayesian methods were 

the method of coefficients with diffuse prior distributions, the method of coefficients with 

informative prior distributions, the method of covariances with a diffuse prior 

distribution, and the method of covariances with an informative prior distribution. The 

informative prior distributions for the methods of coefficients and covariances consisted 

of simulated values and quantities calculated from simulated values; for simplicity, this 

specification of priors will be referred to as the “truth” about the parameters. For 

information on the arithmetic correspondence of the parameters in these two methods see 

Appendix B. 

Method of coefficients with diffuse prior distributions. Diffuse normal prior 

distributions centered at the true values of coefficients a, b, and c’ with variance equal to 

103 were assigned to the regression coefficients, and σ
2
M and σ2

Y were assigned inverse-

gamma distributions with shape and inverse-scale parameters equal to .01 (so that the 

expectation of this distribution is 1). 

Method of coefficients with informative prior distributions. Normal prior 

distributions centered at the true values of coefficients a, b, and c’ with standard 

deviations equal to the standard errors of respective coefficients calculated using 

simulated values at a given sample size were assigned to the regression coefficients, and 

σ
2
M and σ2

Y were assigned inverse-gamma distributions with shape and inverse-scale 

parameters equal to .01 (so that the expectation of this distribution is 1).  
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Method of covariances with a diffuse prior distribution. The vector of means of X, 

M, and Y was assigned a multivariate normal distribution, while the covariance matrix 

was assigned an inverse Wishart distribution with 3 as the degrees of freedom parameter. 

The degrees of freedom parameter has to equal at least the number of variables in the 

model so the inverse Wishart is not in a degenerate form (Gelman, Carlin, Stern, & 

Rubin, 2004) so the degrees of freedom were set to 3 for this method. The covariation 

matrix is the second parameter of the inverse Wishart prior, and it was specified so that 

the prior expectation for each covariance between variables is zero, and the variance of 

each variable is 1. 

Method of covariances with an informative prior. The vector of means of X, M, 

and Y was assigned a multivariate normal distribution with means of 0, variances of 

1000, and covariances of 0. The covariance matrix was assigned an inverse Wishart 

distribution. The degrees of freedom parameter of the inverse Wishart distribution was 

set to equal Np, the size of the observed sample in the condition (e.g. if the sample size in 

the condition examined was 60, the degrees of freedom parameter of the inverse Wishart 

was also set to 60 so that the prior and observed sample are of the same size). The 

covariation matrix is the second parameter of the inverse Wishart prior, and it was 

specified so that the prior expectations for each variance and covariance equal their 

respective true values. 

The simulation consisted of 1000 replications for each of the 13 combinations of 

effect size and sample size. Average coverage, Type I error rate for cases where either a 

or b equal zero, confidence interval imbalance (number of times the estimate is to the 

right of the UCL minus the number of times the estimate is to the left of the LCL), 
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empirical power for cases where a>0 and b>0, and interval width were obtained for all 

eight methods being studied. 

Results 
 

Results for all combinations of parameters a, b, and c’ from Study 2 are 

summarized in Tables 6-10. Results for all possible combinations of parameter values 

and sample size in Study 2 can be found in Appendix C, in Tables 43-67. Coverage, 

power, imbalance, and interval width for combinations with a=b with c’=0 and a=b with 

c’=0.39 were compared using t-tests in order to determine whether the size of the c’ 

parameter has an impact on the performance of the method. None of the t-tests for any of 

the methods (normal theory, distribution of the product, Bayesian method of coefficients 

with diffuse prior distributions, Bayesian method of coefficients with informative prior 

distributions, Bayesian method of covariances with diffuse prior distributions, Bayesian 

method of covariances with informative prior distributions, percentile bootstrap, and bias-

corrected bootstrap) at any of the sample sizes (N = 20, 40, 60, 100, and 200) were 

statistically significant. Thus, the size of the c’ coefficient did not have an impact on the 

statistical performance of the interval estimates for the mediated effect for the parameter 

and sample size combinations examined in this study. 

 There were four combinations where the mediated effect was zero. The average 

Type I error rates for these combinations are displayed in Table 6. All eight methods had 

Type I error rates lower than the nominal 0.05 level at all sample sizes. The bias-

corrected bootstrap had the highest Type I error rates, whereas the Bayesian methods 

with prior information had almost no Type I error.  
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------------------------------- 

Insert Table 6 about here 

------------------------------- 

Figure 1 shows plots of the Type I error rates when a is 0, and b ranges from 0 to 

0.59. When both a and b are 0, all eight methods have comparable Type I error rates that 

are close to zero. However, when b=0.14, and 0.39 the Type I error rates for all methods, 

except the Bayesian methods with informative prior distributions, increases with sample 

size and is highest for the bias-corrected bootstrap.  The Type I error rates remain close to 

0 for Bayesian methods with informative prior distributions regardless of sample size or 

the size of the b coefficient. Bayesian methods with diffuse prior distributions had Type I 

error rates below 0.05 for all combinations of b and sample size except when b=0.39, and 

0.59 and N = 200. For N≥40 and b=0.39 the Type I error rate for the bias-corrected 

bootstrap is above 0.05. When b is large, the Type I error rate for the bias-corrected 

bootstrap is above 0.05 for all sample sizes, and is above 0.05 for the percentile bootstrap 

for four out of the five sample sizes. Normal theory and distribution of the product 

confidence limits have Type I error rates consistently lower than 0.05 regardless of the 

size of b and N. 

- Insert Figure 1 about here - 

Table 7 displays average values of power for the 9 combinations of a, b, and c’ 

with non-zero values of the mediated effect. Overall, normal theory confidence limits had 

the lowest power at each sample size, followed by the distribution of the product, 

Bayesian methods with diffuse priors, and the percentile bootstrap. The bias-corrected 

bootstrap had higher average power (but also had higher Type I error rate, which is 
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important to take into consideration when selecting a statistical method) than normal 

theory, distribution of the product, percentile bootstrap confidence limits, and Bayesian 

methods with diffuse priors at each sample size. Bayesian methods with informative prior 

distributions had the highest power of all methods at all sample sizes.  

------------------------------- 

Insert Table 7 about here 

------------------------------- 

The only combination of method and sample size that attained power of above 

0.80 was Bayesian credibility intervals at a sample size of 200 (see Figure 2). All other 

combinations of method and sample size had average power of less than 0.80. Power 

increased as a consequence of incorporating prior information in the analysis (Figure 2). 

Furthermore, given the same amount of prior information (diffuse or informative prior 

distributions), the Bayesian method of coefficients and the Bayesian method of 

covariances had almost identical power at all sample sizes below 100 (see Figure 2). At N 

= 100 the method of covariances with informative prior distributions had slightly more 

power than the method of coefficients with informative prior distributions. Figure 2 

contains the plots of power for the nine different combinations of parameters a, b, and c’ 

and all sample sizes. When a and b are both small, change in power for the eight methods 

is the same regardless of whether c’ is 0 or .39. In both situations, all methods have 

power close to 0 for N = 20, 40, and 60, and with N = 100 the two Bayesian methods 

with informative prior distributions have at least twice the power of some of the other 

methods. When a is small and b is medium and large, the Bayesian methods with 

informative prior distributions still have the highest power of all methods. The bias-
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corrected bootstrap, Bayesian methods with diffuse prior distributions, and the 

distribution of the product have lower values of power than the Bayesian methods with 

informative prior distributions, but consistently higher power than normal theory 

confidence limits. With medium and large a and b the values of power for the Bayesian 

methods with informative prior distributions plateau at N = 40. The remaining six 

methods have power curves that start plateauing at N = 100 if at least one of the 

coefficients (a or b) is 0.59. The value of c’ did not change the power profile of any of 

the methods. 

- Insert Figure 2 about here - 

As shown in Table 8, coverage was evaluated for each method at the five sample 

sizes and thirteen parameter combinations. Normal theory confidence limits and the two 

bootstrap methods had coverage levels closest to the nominal level of 0.95. The 

distribution of the product and the Bayesian methods with diffuse and informative priors 

exceeded the nominal level of coverage at all sample sizes.  

------------------------------- 

Insert Table 8 about here 

------------------------------- 

Figure 3 displays the trellis plot of coverage for thirteen combinations of effect 

sizes. With a= 0 and b>0 coverage is highest and equals 1 at N= 20, and decreases as 

sample size increases for all methods except for the Bayesian methods with informative 

prior distributions. This decrease in coverage as sample size increases is also observed 

when a= 0.14 and b= 0.14, and 0.39. A finding made clear by all the plots of coverage is 
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that the Bayesian methods with informative prior distributions have coverage close to 1 

regardless of sample size or effect size, and that the remaining six methods are 

comparable to each other in terms of coverage. The bias-corrected bootstrap has the 

lowest coverage for a=0 and b>0, which is consistent with the findings that the bias-

corrected bootstrap has higher Type I error than other methods for a=0 and b>0. 

- Insert Figure 3 about here -  

Table 9 displays the average values of interval width for the 13 combinations of 

parameter values and for all four sample sizes. Bayesian methods with informative prior 

distributions have the lowest values of interval width regardless of sample size and effect 

size. All other methods in the study have higher interval widths than Bayesian methods 

with informative prior distributions.  

------------------------------- 

Insert Table 9 about here 

------------------------------- 

As can be seen from Figure 4, the value of the c’ coefficient (0 versus 0.39) does 

not change the shape of the interval width curves for any of the methods. 

- Insert Figure 4 about here – 

Table 10 displays the average values of imbalance for the eight methods at all 

four sample sizes. Normal theory confidence limits had the highest imbalance at N = 20, 

however, the bias-corrected bootstrap had the highest absolute value of imbalance at N = 

40 and N = 100. The Bayesian methods with informative prior distributions had the 

lowest imbalance of all eight methods.  



  50 

------------------------------- 

Insert Table 10 about here 

------------------------------- 

Figure 5 displays the trellis plot for imbalance of the eight methods for thirteen 

combinations of effect sizes. Imbalance of all eight methods is close to zero and 

comparable for all eight methods and at all effect sizes examined in this study except 

when a=b=0.14 (both with c’=0 and c’=0.39) and N≥60 which is when imbalance for 

normal theory confidence limits is positive and larger than imbalance of the other seven 

methods. 

- Insert Figure 5 about here - 

Discussion 
 
 Overall, the addition of prior information into the statistical analysis improved 

interval estimates of the mediated effect. Power was higher with prior information in the 

analysis, imbalance was closer to zero, and interval width was lower than for methods 

that do not incorporate prior information. The Bayesian method of coefficients and the 

Bayesian method of covariances had almost identical values of power both with and 

without prior information (Figure 6).  

- Insert Figure 6 about here - 

When prior information was included in the analysis, the Type I error rate was 

below the nominal level of 0.05, and coverage was above the nominal level of 0.95. 

Bayesian credibility intervals with informative prior distributions lower the risk of Type I 

error rates and have higher coverage. These properties of Bayesian credibility intervals 
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are difficult to label as positive or negative. On one hand, having a very low Type I error 

rate and high coverage is beneficial to the researcher, as it translates to fewer false 

positives and fewer intervals that do not contain the true value of the parameter. On the 

other hand, when choosing a confidence coefficient of 0.95, the researcher is expecting a 

Type I error rate of 5% and coverage of 95%, and thus a method that does not display 

Type I error rates and coverage equal to nominal levels is performing differently from the 

expectation. Furthermore, the notions of Type I error rate and coverage are inherently 

frequentist, given that they rest on the assumption of repeated sampling. Thus, it is not in 

the nature of credibility intervals to conform to a value of Type I error rate and coverage 

selected prior to an experiment. For more on the difference in inference and criteria of the 

frequentist and Bayesian frameworks, see Gigerenzer (1993). 

 Study 2 examined how Bayesian credibility intervals perform when the prior 

information consists of the true values of parameters and quantities calculated from true 

values in the simulation. However, if one knew the truth about a phenomenon, they 

would not be studying it. Thus, it would be beneficial to examine how Bayesian methods 

perform with prior distributions that are more diffuse than the priors examined in Study 

2, but less diffuse than normal prior distributions with a variance of 103. Furthermore, 

researchers might be more confident in the available information for the a-path (action 

theory) or in the information for the b-path (conceptual theory), and thus might assign 

different variance parameters to the prior distributions of the two coefficients. Knowing 

more about action theory versus conceptual theory or vice versa (and using this 

information to assign a less diffuse prior distribution for the path in question) might have 
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different effects on power. It is unclear whether a narrower prior distribution for the a 

path or for the b path leads to a greater increase in power. 
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CHAPTER 5 

STUDY 3 

Study 3 examined if the observed increases in power with informative prior 

distributions are still present with precision parameters in the prior distributions for 

regression coefficients that are different than the true precisions (calculated from true 

parameters in the simulation) investigated in Study 2. A second goal of Study 3was to 

investigate whether more prior information (more precision) about action (a-path) or 

conceptual (b-path) theory led to greater increases in power for the mediated effect. 

Six parameter combinations were selected in this study based on the prior studies 

to reduce the computation burden. Power of the Bayesian method of coefficients is 

observed as a function of the precision parameter, and precision equated across sample 

sizes. 

Methods 
Populations with the following combinations of values for parameters a, b, and c’ 

were simulated (example SAS code is in Appendix E): a=b=0.14 with c’=0, a=b=0.39 

with c’=0, a=b=0.59 with c’=0, a=b=0.14 with c’=0.39, a=b=0.39 with c’=0.39, and 

a=b=0.59 with c’=0.39. 

Study 3 examined the effect of precision for regression coefficients a and b on 

changes in power to detect the mediated effect for the Bayesian method of coefficients. 

Random samples of sizes N = 20, 40, 60, 100, and 200 were generated from each 

population and 95% credibility intervals for the mediated effect were calculated using the 

method of coefficients with different priors for regression coefficients a and b. Ten 

conditions were evaluated in the study: five where the precision parameter in the prior for 
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the coefficient b was set to 10-3 and the precision parameter in the prior for coefficient a 

was varied (10-2, 10-1, 100, 101, 102), and five where the precision parameter in the prior 

for the coefficient a was set to 10-3 and the precision parameter in the prior for coefficient 

b was varied (10-2, 10-1, 100, 101, 102).  

The range (spread) of values of a coefficient in a normal prior distribution can be 

defined as variance, standard deviation, or precision. The standard deviation is the square 

root of the variance, and the precision is the reciprocal of variance. In Study 3, normal 

prior distributions for regression coefficients were used with the precision 

parameterization, so the precision equaled 1 divided by the variance of the coefficient. 

The true precisions for a and b are equal to 1 divided by the true derived variance 

of the respective parameter in the equation at each sample size. The true variance (and 

precision) of the coefficient depends on effect sizes and sample size. Thus, a fixed value 

of the precision parameter in the prior for a or b (10-2, 10-1, 100, 101, 102) is a different 

fraction of the true precision of the coefficient at different values of effect size and 

sample size. Table 11 shows how the values of precision are related to the true precision 

values of parameters a and b at each sample size and for each precision parameter. The 

entries in Table 11 are the fractions of the true precision values for values of regression 

coefficients examined in Study 3. For example, when the precision parameter of the prior 

distribution for regression coefficient a is set to 10 and the sample size is 100, the 

precision parameter of 10 is 10.2% of the true precision of a (the fraction entry in the 

table is 0.102). The values of precision examined in Study 3 (10-2, 10-1, 100, 101, 102) are 

generally lower than the true precisions of each parameter, except with the precision 

parameter in the prior equals 100, and sample size is between 20 and 100. When the 
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precision parameter in the prior distribution for the regression coefficient is smaller than 

the true precision of the coefficient, the fraction is smaller than 1. For a precision 

parameter in the prior that is larger than the true precision of the regression coefficient, 

the fraction is larger than 1. If the precision parameter in the prior distribution for the 

regression coefficient is equal to the true precision of the coefficient, then the fraction 

equals 1, and this was the way prior distributions were specified in Study 2 for the 

Bayesian methods with informative prior distributions. 

In Study 3 the mean parameters in the prior distributions for the regression 

coefficients a and b were always set to equal the true value. In all ten conditions, the 

coefficient c’ was assigned a normal prior distribution with the true value as the mean 

parameter of the prior distribution, and a variance parameter of 103 (which is the same as 

setting the precision parameter to 10-3). The intercepts in the regression equations 

predicting M and Y both received normal prior distributions with the mean parameter 

equal to 0 and the variance parameter equal to 103. The priors for the precision of M and 

Y were the same for all conditions (gamma distributions with shape and inverse scale 

parameters equal to .01 so that the expectation of the distribution equals to 1), as was 

done in studies 1 and 2. The simulation consisted of 1000 iterations per combination of 

effect sizes and sample size. Average empirical power for all six conditions and sample 

sizes was computed for N = 20, 40, 60, 100, and 200. 

Results 
 

Study 3 examined the extent to which the observed increases in power are still 

present with precision parameters in the prior distributions for regression coefficients 
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equal to powers of 10, which made some precision parameters smaller and some 

precision parameters larger than the true precisions of a and b. Another research question 

was whether more prior information (more precision) about action (a path) or conceptual 

(b path) theory lead to greater increases in power to detect the mediated effect. There was 

no consistent pattern that could answer the question of whether more precision in the 

prior for a or more precision in the prior for b lead to greater power. In Figures 7-11, the 

plots of power as a function of the prior precision of a are almost identical to the plots of 

power as a function of prior precision of b for each sample size. Thus, there is no 

differential increase in power depending on whether there is more precision in the prior 

for the action (a path) versus the prior for the conceptual theory (b path).  

Results from Study 3 are summarized in Tables 12-16 and Figures 7-13. In 

addition to graphical displays in Figures 7-11, the differences in power between 

combinations where a=b with c’=0 and a=b with c’=0.39 were also assessed using t-

tests. None of the t-tests for any of the prior distribution specifications at any of the 

sample sizes (N = 20, 40, 60, 100, and 200) were statistically significant. Thus, having a 

medium size of the c’ parameter versus complete mediation has no impact on the power 

to detect the mediated effect using the Bayesian method of coefficients for the parameter, 

precision, and sample size combinations examined in this study. 

The question of how much increases in precision increase power will be answered 

in two parts. First, increases in power will be observed as a function of the values of the 

precision parameter for a and b, which were 10-2, 10-1, 100, 101, and 102. Then, increases 

in power will be assessed as a function of increases in precision equated across sample 
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size; that is, increases in power will be evaluated as a function of the fraction of the true 

precision that was encoded in the prior distribution. 

The findings indicate that increasing precision tenfold affects power differently 

depending on the sample size and effect size. At N = 20, the increase in power is most 

notable for medium values of a and b, slightly less pronounced for high values of a and b, 

and non-existent when a=b=0.14 (Figure 7). 

- Insert Figure 7 about here - 

 As can be seen in Table 12, there are notable increases in power when a=b=0.59 

when the precision parameter in the prior has been increased from 100 to 101 and to 102 

(this is equivalent to saying that the variance parameter in the prior for a is decreased 

from 100 to 10-1 and to 10-2), however, power at N=20 remains below 0.80 regardless of 

the precision of the priors for regression coefficients a and b. 

------------------------------- 

Insert Table 12 about here 

------------------------------- 

 At N = 40, for a=b=0.59 the power is already above 0.80, regardless of the 

precision parameter in the prior distribution for the regression coefficients (Table 13).  

------------------------------- 

Insert Table 13 about here 

------------------------------- 
The pattern of findings is similar to those at N = 20, indicating that increases in 

the precision parameter (decreases in the variance parameter) produce the steepest 
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increases in power for medium effects, some increases in power for large effects, and no 

increases in power for small effects (Figure 8). 

- Insert Figure 8 about here - 

 At N=60 the increases in precision increase power only for medium effects (Table 

14; Figure 9). Large effects already had power close to 1 at the lowest value of precision, 

and thus there was a ceiling effect of increases in precision. Small effects show a very 

slight increase in power when the precision parameter is increased from 10 to 100. 

------------------------------- 

Insert Table 13 about here 

------------------------------- 

- Insert Figure 9 about here - 

 At N = 100 the ceiling effect of increases in precision on power is still present for 

large effects, and is starting to occur for medium effects as well, although at a=b=0.39 

power still increases when the precision parameter is raised from 1 to 10 to 100 (Figure 

10).  

At N = 200 the ceiling effect of increases in precision on power occurs for both 

medium and large effects (Figure 11). At N = 200 the only conditions where power 

increases are ones where a=b=0.14, and this only occurs when the precision parameter is 

increased from 10 to 100. Figures 10-11 and Tables 15-16 show that power for medium 

and large effects is almost 1 when N = 100, and 200. Thus, the benefits of increasing 

precision for N=100, and 200 are not notable given that power is either already 

satisfactory (for medium and large effect sizes) or cannot be increased above 0.40 with 

the changes in the precision of the prior distribution for either a or b. 
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- Insert Figures 10 and 11 about here – 

------------------------------- 

Insert Tables 15 and 16 about here 

------------------------------- 

Figures 12 and 13 shows the relationship of power to the fraction of the true 

precision of a and b in the prior distribution, and are useful for examining how power 

increases with increases in precision equated across sample sizes. The plots for the two 

coefficients are identical for each effect size indicating that there are no differential 

changes in power depending on whether the increase in precision occurred for coefficient 

a or b. In the discussion of the findings the term “the coefficient” refers to both a and b 

given that everything that is pointed out in the figure is true for both coefficients.  

- Insert Figures 12 and 13 about here – 

When N = 20 for a=b=0.14 a precision parameter that is more than 5 times the 

true precision of the coefficient still produces no increases in power. When N = 40 and 60 

the increases in power for small effect sizes (a=b=0.14) are very small even when the 

precision parameter is greater than the true precision of the coefficient. However, for 

small effects and N = 100 and 200 an increase in fraction of true precision does lead to 

notable increases in power. Thus, depending on the pseudo-sample size in the prior 

(which with the observed sample size in the data adds up to the pseudo-sample size of the 

posterior) increasing the fraction of true precision of the coefficient may not lead to 

substantial increases in power for small effects unless the sample size is at least 100.  
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At medium effect sizes (a=b=0.39) power noticeably increases with increases in 

the fraction of true precision. At N = 100 and 200 and a=b=0.39 power is already high, 

and there is no room for it to increase drastically. 

At large effect sizes (a=b=0.59) increases in fraction of true precision produce the 

greatest benefits at N = 20. The changes in power for large effects become smaller and 

smaller as sample size increases, reaching a ceiling effect at N = 100.  

Discussion 
 
 The most notable finding in Study 3 is that for certain combinations of parameter 

values and sample size, increasing the precision parameter of the prior distribution by a 

factor of 10 of either a or b can have almost no impact on power. For small effects and 

small sample sizes, and for large effects and sample sizes of at least 100 there are almost 

no changes in power as a consequence of increasing the precision parameter.  

When looking at how the precision in the prior is related to the true precision of 

the parameter (which is unknown to the researcher), and the extent to which prior 

precisions larger than the true precision of the coefficient lead to more power, the 

conclusion is similar: increases in precision relative to the true precision may not always 

lead to noticeable increases in power. The findings for the combinations of parameter 

values, precision values, and sample sizes in this study indicate that increases in precision 

lead to greater power only when the sample size is at least 100 and the effects are small, 

when sample size is below 60 and the effects are large, and the most notable increases in 

power were when N<200 and the effects are medium. 
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CHAPTER 6 

EMPIRICAL EXAMPLE 

The data for the empirical example come from a study of memory for words 

conducted at a large university in the southwestern United States. The same experiment 

was conducted twice, and the data from the two experiments are referred to as Year 1 and 

Year 2. In both experiments, students were instructed to either make images for words or 

repeat them (X), and were subsequently asked about the extent to which they made 

images for the words (M). The dependent variable was number of words recalled (Y). 

There were 44 participants in the Year 1 experiment, and 42 participants in the Year 2 

experiment. 

For the empirical example, interval estimates of the mediated effect for the Year 2 

data were computed using the eight methods evaluated in Study 2: normal theory 

confidence limits, distribution of the product confidence limits, Bayesian method with 

diffuse normal priors for the regression coefficients with a mean of 0 and variance of 106, 

Bayesian method with informative prior distributions for the regression coefficients 

(using the information from the Year 1 experiment), Bayesian method with a diffuse prior 

distribution for the covariance matrix of X, M, and Y, Bayesian method with an 

informative prior distribution for the covariance matrix of X, M, and Y (using the 

information from the Year 1 experiment), percentile bootstrap, and bias-corrected 

bootstrap. The informative prior distributions for the Bayesian method of coefficients 

were based on the observed regression coefficients and their standard errors. Each 

regression coefficient was assigned a normal prior distribution with the observed 

coefficient from the Year 1 data as the mean parameter (a= 3.558, b= 0.614, c’=  0.332) 
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and their standard errors as the standard deviation parameters of the normal prior 

distributions (0.689, 0.614, 1.292, respectively). Precision parameters σ2
M and σ2

Y  were 

modeled as inverse-gamma distributions with shape and inverse-scale parameters equal to 

.01 (so that the expectation of this distribution is 1). The informative prior distributions 

for the method of covariances were a multivariate normal prior with observed means for 

X, M, and Y (0.454, 6.159, 13.227, respectively) as the mean parameter, and the 

observed covariance matrix (s2
X= 10.909, sXY=, sXM= 38.818, s2

M= 355.886, sMY= 231.409, 

s2
Y= 607.727) as the covariance parameter. The covariance matrix was assigned an 

inverse Wishart prior distribution with 44 degrees of freedom and the observed sums of 

squares and cross-products as the scale matrix parameter. Estimates for all methods 

except Bayesian methods with informative prior distributions have then been computed 

using the combined data from Year 1 and Year 2. The prior distributions for the Bayesian 

methods with diffuse priors were identical in the first and in the second analysis. Table 17 

contains the results for all the methods and for both samples. 

------------------------------- 

Insert Table 17 about here 

------------------------------- 

According to the normal theory confidence limits, with infinite samples, 95% of 

the confidence intervals will contain the true value of the mediated effect. Normal theory 

confidence limits using the Year 2 sample alone are 2.70 and 10.39, and with both the 

Year 1 and 2 samples the limits are 2.36 and 5.81. Using the distribution of the product, it 

was found that the mediated effect for the Year 2 sample lies between 2.78 and 10.50, 

while the mediated effect for both Year 1 and 2 samples lies between 2.44 and 5.90, with 
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95% confidence. The results of the Bayesian method of coefficients with diffuse prior 

distributions for regression coefficients yield a mediated effect between 2.78 and 10.55 

with 95% probability for the Year 2 sample, and a mediated effect between 2.42 and 6.22 

for the combined sample. For the Bayesian method with informative prior distributions 

for regression coefficients and intercepts one can conclude that the mediated effect lies 

between 1.81 and 4.30 with 95% probability. According to the Bayesian method with a 

diffuse prior distribution for the covariance matrix, there is 95% probability that the 

mediated effect lies between 2.56 and 7.70 for the Year 2 sample, and 95% probability 

that the mediated effect lies between 2.21 and 5.28 for the combined sample. With prior 

information from Year 1, the findings using the Bayesian method of covariances indicate 

that the mediated effect lies between 2.08 and 5.55 with 95% probability. The percentile 

bootstrap results show that with 95% confidence, the mediated effect for the Year 2 

sample alone lies between 4.08 and 10.24, while the mediated effect for the combined 

sample lies between 0.64 and 3.78. The 95% bias-corrected bootstrap limits for the Year 

2 sample are 4.14 and 10.40, and for the combined sample the limits are 0.68 and 3.98. 

None of the intervals contain the value of 0, thus the mediated effect is statistically 

significant according to all methods. In the analyses of the Year 2 sample alone, the 

Bayesian methods with informative priors for both regression coefficients and the 

covariance matrix have the smallest interval width out of all methods. Combining data 

from the two years produced narrower interval estimates for all methods that did not 

incorporate prior information from Year 1 into the analysis. 
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CHAPTER 7 

SUMMARY AND CONCLUDING DISCUSSION 

The general goal of the project was to evaluate the benefits of using prior information 

in the interval estimation of the mediated effect. The discussion of the project will begin 

with a summary of the findings from the three studies, followed by the fit with earlier 

literature, and the limitations of the project. The section will conclude with future 

directions for research in interval estimation using Bayesian mediation.  

Summary of Results 
 

It was hypothesized that Bayesian methods with informative prior distributions 

would have coverage closer to the nominal level of 0.95, a Type I error rate closer to the 

nominal level of 0.05, imbalance closer to 0, higher empirical power, and lower interval 

width than Bayesian methods with diffuse prior distributions, normal theory confidence 

limits, distribution of the product confidence limits, percentile bootstrap confidence 

limits, and bias-corrected bootstrap confidence limits. Study 1 was designed to test this 

hypothesis, however, due to the errors in the simulation, only a partial answer was 

available. The most important finding from Study 1 is that the variance of the prior 

distributions for regression coefficients a and b plays a big role in the performance of the 

Bayesian method of coefficients. If the variance of the prior distributions is too large and 

thus the prior distribution too diffuse, then Bayesian methods with mean parameters in 

the prior distributions equal to the true value of the regression coefficient do not have 

coverage closer to the nominal level of 0.95, Type I error rate closer to the nominal level 

of 0.05, imbalance closer to 0, higher empirical power, and lower interval width than 
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Bayesian methods with diffuse prior distributions, normal theory confidence limits, 

distribution of the product confidence limits, percentile bootstrap confidence limits, and 

bias-corrected bootstrap confidence limits. 

Study 2 was designed to examine additional methods that were absent from Study 

1, and to examine the effect of a lower variance parameter in the prior distribution for 

regression coefficients a and b.  Bayesian methods with informative prior distributions in 

Study 2 examined how Bayesian credibility intervals perform with prior information that 

was the true parameter value and standard error about the parameters of interest. The 

findings indicate that with true values for the parameters in the prior distribution, 

Bayesian methods with informative prior distributions have higher power, lower interval 

width, and less imbalance than Bayesian methods with diffuse priors and frequentist 

methods.  

Study 3 was designed to evaluate whether using values other than the true 

variance in the prior distribution for regression coefficients in the Bayesian methods of 

coefficients still leads to increases in power compared to using a diffuse prior 

distribution. It was also hypothesized that increasing the precision parameter in the prior 

distribution of coefficient a and increasing the precision parameter in the prior 

distribution of the coefficient b can have different effects on power. The findings from 

Study 3 indicate that power of the Bayesian credibility interval increases with the 

increase in precision of the prior distribution, but that the extent to which power increases 

depends on the size of coefficients a and b, and the sample size. It was found that 

Bayesian methods with informative prior distributions are a promising way to increase 
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power in samples smaller than 100, but the increase in power for a tenfold increase in the 

prior precision parameter of either a or b may not always be substantial. 

Overall, the findings from the three studies indicate that Bayesian methods are a 

promising way of improving interval estimates of the mediated effect when pertinent and 

accurate prior information is available. With no prior information and diffuse prior 

distributions, Bayesian methods perform as well as the percentile bootstrap and the 

distribution of the product. 

Fit with Earlier Literature 
 

The findings of this study replicate prior findings that the bias-correct bootstrap 

has excessive Type I error rates in some conditions and that the distribution of the 

product can have coverage above the nominal 0.95 level (Fritz, Taylor & MacKinnon, 

2012; MacKinnon, Lockwood & Williams, 2004; MacKinnon, Lockwood, et al., 2002). 

The findings that the bias-corrected bootstrap has slightly higher power than the 

distribution of the product and the percentile bootstrap are also consistent with earlier 

work (MacKinnon, Lockwood & Williams, 2004), and so is the finding that normal 

theory confidence limits have smaller interval width than other methods (Preacher & 

Selig, 2012). The new insights gained from this study are that given enough prior 

information, the Bayesian method of coefficients (Yuan and MacKinnon, 2009) and the 

Bayesian method of covariances (Enders, Fairchild & MacKinnon, 2013) can have power 

as high or greater than the bias-corrected bootstrap without having inflated Type I error 

rates in some conditions. Furthermore, it was found that with no available prior 

information, the Bayesian methods still perform as well as the distribution of the product 
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and the percentile bootstrap, and that Bayesian methods are always a better choice in 

terms of power than the normal theory confidence limits. 

Limitations 
 
 The interval estimates obtained using Bayesian methods in this study were central 

credibility intervals, not highest posterior density intervals. Central credibility intervals 

are formed by taking the α/2th and (1-α/2)th percentiles of the posterior distribution that 

will produce the (1-α)% credibility interval. Highest posterior density intervals are 

obtained by taking the (1-α)% area of the posterior distribution that has the highest 

probability density and subsequently determining the values of the parameter that 

correspond to the lower and upper limit. Highest posterior density intervals have the 

characteristic that the density within the interval is never lower than the density outside 

the interval (Gelman, Carlin, Stern, & Rubin, 2004). Central credibility interval limits 

and highest posterior distribution credibility interval limits are identical for symmetrical 

distributions. However, the mediated effect follows the distribution of the product, which 

is skewed and kurtotic (Lomnicki, 1967; Springer & Thompson, 1966; Craig, 1936). This 

would cause the central credibility limits for ab to be different from the highest posterior 

density limits for ab (Gelman, Carlin, Stern, & Rubin, 2004). The performance of 

Bayesian highest credibility intervals relative to frequentist methods might be different 

than the performance of central credibility intervals relative to frequentist methods. 

Preliminary work comparing the high posterior density intervals to the central credibility 

intervals for the mediated effect for a limited number of conditions suggest that they are 

similar.  
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 Another limitation of Study 2 is that the prior distributions for error precisions of 

variables M and Y in the informative case of the Bayesian method of coefficients were 

non-informative as in the noninformative case. That is, the specification of the gamma 

distributions for the error precisions of M and Y were identical for the diffuse and 

informative cases, and consisted of a gamma distribution with the expectation of 1. It is 

possible that encoding prior information for the error precision parameters of M and Y 

could have increased power and coverage, and decreased Type I error rate, interval width, 

and imbalance of the Bayesian method of coefficients with informative prior 

distributions. 

Future Directions 
 

Sometimes the necessary prior information for the Bayesian method of coefficients is 

not available even though the phenomenon has already been studied. This study assumed 

prior information about the a and b paths was available, but this may not always be the 

case. The articles in the literature may only report estimates of the mediated effect and 

one (or neither) of the paths. In that case, a researcher would want to incorporate the 

knowledge/intuition about mediated effect by specifying a prior distribution for the 

product ab. The method for specifying a prior for ab has not yet been developed. Even if 

specifying prior information about ab, the researcher would have to specify a prior for 

one of the regression coefficients as well (even if no intuition or information was 

available and the only choice was a uniform prior ranging from -∞ to ∞), which would 

determine the prior of the remaining regression coefficient as the prior for the mediated 

effect divided by the prior for the other coefficient. For example, for the mediated effect 
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ab the researcher might specify a prior distribution for which the range of the reported 

mediated effects in the literature has the highest probability, and a uniform prior with a 

wide range may be chosen for the a path; these two specifications automatically constrain 

the prior for the b path because 
a

ab
b = . This method is more complex than the one 

proposed by Yuan and MacKinnon (2009). Alternatively, the literature on a topic may 

contain the covariance matrix and sample size from previous studies, but not the values 

of a or b, in which case the researchers can use the method suggested by Enders, 

Fairchild, and MacKinnon (2013). 

The studies in this project mark a beginning of exploring how Bayesian methods can 

be used to improve interval estimation in mediation models. Findings thus far indicate 

that Bayesian methods are a promising way to increase power and reduce interval width 

in the single mediator model, however, these benefits are highly dependent on the value 

of the variance (or precision) parameter of the prior distribution. Future studies will 

examine ways to optimize Bayesian mediation for the single mediator model and will 

extend the application of Bayesian statistics to models with multiple mediators. 
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Table 1 
Average Type I error rate for N=20, 40, 60, 100, and 500 for normal theory, Bayesian method of 
coefficients with diffuse priors, Bayesian method of coefficients with informative priors, 
percentile bootstrap, and bias-corrected bootstrap interval estimates in Study 1 (note: Type I 
error is not observable when both a and b are non-zero). 
 Method 

Sample Size normal YMdiff YMinfo PercBoot BCBoot 
n=20 0.007 0.016 0.016 0.024 0.044 
n=40 0.008 0.017 0.017 0.027 0.050 
n=60 0.011 0.026 0.026 0.030 0.051 
n=100 0.019 0.052 0.053 0.036 0.054 
n=500 0.030 0.044 0.044 0.041 0.054 
 

Table 2 
Average Power for N=20, 40, 60, 100, and 500 for normal theory, method of coefficients with 
diffuse priors, method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 1 (note: Power is not observable when either a or 
b is zero). 
 Method 

Sample Size normal YMdiff YMinfo PercBoot BCBoot 
n=20 0.076 0.111 0.111 0.137 0.207 
n=40 0.235 0.285 0.285 0.320 0.384 
n=60 0.371 0.433 0.432 0.441 0.494 
n=100 0.512 0.544 0.544 0.562 0.597 
n=500 0.895 0.909 0.910 0.916 0.929 
 

Table 3 
Average Coverage for N=20, 40, 60, 100, and 500 for normal theory, Bayesian method of 
coefficients with diffuse priors, Bayesian method of coefficients with informative priors, 
percentile bootstrap, and bias-corrected bootstrap interval estimates in Study 1. 
 Method 

Sample Size normal YMdiff YMinfo PercBoot BCBoot 
n=20 0.962 0.971 0.970 0.958 0.939 
n=40 0.963 0.966 0.966 0.957 0.940 
n=60 0.962 0.957 0.958 0.956 0.942 
n=100 0.958 0.940 0.940 0.954 0.942 
n=500 0.957 0.948 0.948 0.953 0.947 
 

 

Table 4 
Average Interval Width for N=20, 40, 60, 100, and 500 for normal theory, method of coefficients 
with diffuse priors, method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 1. 
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 Method 

Sample Size normal YMdiff YMinfo PercBoot BCBoot 
n=20 0.461 0.546 0.546 0.533 0.551 
n=40 0.325 0.366 0.366 0.352 0.362 
n=60 0.265 0.290 0.290 0.282 0.289 
n=100 0.190 0.193 0.193 0.197 0.200 
n=500 0.081 0.083 0.083 0.082 0.082 
 

Table 5 
Average Imbalance for N=20, 40, 60, 100, and 500 for normal theory, method of coefficients with 
diffuse priors, method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 1. 
 Method 

Sample Size normal YMdiff YMinfo PercBoot 
n=20 0.029 0.012 0.012 0.017 
n=40 0.026 0.013 0.014 0.016 
n=60 0.026 0.014 0.014 0.014 
n=100 0.022 0.028 0.028 0.010 
n=500 0.011 0.005 0.004 0.005 
 

Table 6 
Average Type I error rate for N=20, 40, 60, 100, and 200 for normal theory, distribution of the 
product, Bayesian method of coefficients with diffuse priors, Bayesian method of coefficients 
with informative priors, percentile bootstrap, and bias-corrected bootstrap interval estimates 
for 13 combinations of a, b, and c’ in Study 2. 

  Method 

Sample 
Size 

norm prod YMd YMi EFMd EFMi PercBoot BCBoot 

n=20 0.005 0.017 0.009 0.004 0.008 0.002 0.020 0.037 
n=40 0.007 0.025 0.020 0.005 0.015 0.002 0.028 0.048 
n=60 0.008 0.019 0.018 0.003 0.014 0.002 0.021 0.042 
n=100 0.014 0.027 0.026 0.002 0.027 0.003 0.032 0.046 
n=200 0.024 0.037 0.038 0.005 0.040 0.006 0.039 0.052 
 

 

Table 7 
Average Power for N=20, 40, 60, 100, and 200 for normal theory, distribution of the product, 
Bayesian method of coefficients with diffuse priors, Bayesian method of coefficients with 
informative priors, percentile bootstrap, and bias-corrected bootstrap interval estimates for 13 
combinations of a, b, and c’in Study 2. 

  Method 



  75 

Sample 
Size 

norm prod YMd YMi EFMd EFMi PercBoot BCBoot 

n=20 0.090 0.162 0.113 0.390 0.123 0.383 0.149 0.216 
n=40 0.289 0.379 0.355 0.577 0.353 0.580 0.371 0.436 
n=60 0.424 0.501 0.486 0.621 0.478 0.611 0.497 0.548 
n=100 0.571 0.613 0.604 0.709 0.605 0.742 0.615 0.644 
n=200 0.676 0.717 0.717 0.914 0.739 0.919 0.717 0.753 
 

Table 8 
Average Coverage for N=20, 40, 60, 100, and 200 for normal theory, distribution of the 
product, Bayesian method of coefficients with diffuse priors, Bayesian method of coefficients 
with informative priors, percentile bootstrap, and bias-corrected bootstrap interval estimates 
for 13 combinations of a, b, and c’in Study 2. 

  Method 

Sample 
Size 

norm prod YMd YMi EFMd EFMi PercBoot BCBoot 

n=20 0.953 0.965 0.973 0.994 0.965 0.997 0.956 0.945 
n=40 0.957 0.963 0.971 0.994 0.968 0.996 0.955 0.944 
n=60 0.952 0.964 0.965 0.995 0.967 0.996 0.956 0.941 
n=100 0.950 0.960 0.963 0.994 0.957 0.995 0.954 0.943 
n=200 0.949 0.952 0.953 0.993 0.948 0.993 0.951 0.947 
 

Table 9 
Average Interval Width for N=20, 40, 60, 100, and 200 for normal theory, distribution of the 
product, Bayesian method of coefficients with diffuse priors, Bayesian method of coefficients 
with informative priors, percentile bootstrap, and bias-corrected bootstrap interval estimates 
for 13 combinations of a, b, and c’ in Study 2. 

  Method 

Sample 
Size 

norm prod YMd YMi EFMd EFMi PercBoot BCBoot 

n=20 0.527 0.598 0.659 0.350 0.513 0.357 0.621 0.645 
n=40 0.332 0.359 0.380 0.227 0.342 0.227 0.358 0.370 
n=60 0.259 0.274 0.280 0.179 0.265 0.178 0.272 0.279 
n=100 0.193 0.201 0.205 0.135 0.191 0.130 0.199 0.203 
n=200 0.133 0.136 0.137 0.093 0.130 0.094 0.135 0.137 
 

Table 10 
Average Imbalance for N=20, 40, 60, 100, and 200 for normal theory, distribution of the 
product, Bayesian method of coefficients with diffuse priors, Bayesian method of coefficients 
with informative priors, percentile bootstrap, and bias-corrected bootstrap interval estimates 
for 13 combinations of a, b, and c’in Study 2. 

  Method 
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Sample 
Size 

norm prod YMd YMi EFMd EFMi PercBoot BCBoot 

n=20 0.038 0.014 0.015 0.002 0.028 0.001 0.020 0.016 
n=40 0.032 0.009 0.008 0.002 0.019 0.002 0.015 0.010 
n=60 0.037 0.013 0.014 0.003 0.022 0.002 0.017 0.012 
n=100 0.035 0.011 0.011 0.002 0.023 0.001 0.012 0.009 
n=200 0.027 0.010 0.012 0.002 0.012 0.004 0.011 0.004 
 

Table 11 
The fractions of true precision values of a and b to obtain the simulated values of precision 
parameters in prior distributions for a and b. 
 prec(a)  prec(b) 

N 10-2  10-1  100 101 102  10-2  10-1  100  101 102 
20 0.001 0.006 0.056 0.556 5.556 0.000 0.006 0.059 0.588 5.882 
40 0.000 0.003 0.026 0.263 2.632 0.000 0.003 0.027 0.270 2.703 
60 0.000 0.002 0.017 0.172 1.724 0.000 0.002 0.017 0.175 1.754 
100 0.000 0.001 0.010 0.102 1.020 0.000 0.001 0.010 0.103 1.031 
200 0.000 0.000 0.005 0.050 0.505 0.000 0.000 0.005 0.051 0.508 

 

 

Table 12 
 
Power for N=20 for the Bayesian method of coefficients for conditions in which the precision in 
the prior for b set to 10-3, and the precision in the prior for a equal to 10-2, 10-1, 100, 101, 102, 
followed by the conditions in which the precision in the prior for a was set to 10-3, and the 
variance in the prior for b equal to 10-2, 10-1, 100, 101, 102 in Study 3. 

   Condition 

    Prior Prec(a) Prior Prec(b) 

a b c’ 10-2 10-1 100 101 102 10-2 10-1 100 101 102 

.14 .14 0 0.003 0.003 0.003 0.002 0.005 0.003 0.003 0.003 0.002 0.002 

.39 .39 0 0.078 0.081 0.113 0.134 0.32 0.079 0.078 0.102 0.139 0.338 

.59 .59 0 0.354 0.374 0.428 0.564 0.631 0.357 0.353 0.42 0.564 0.663 

.14 .14 .39 0.003 0.004 0.002 0.001 0.006 0.003 0.003 0.004 0.003 0.004 

.39 .39 .39 0.083 0.086 0.097 0.147 0.369 0.088 0.081 0.099 0.152 0.345 

.59 .59 .39 0.348 0.363 0.394 0.561 0.627 0.349 0.35 0.383 0.592 0.665 
 

Table 13 
 
Power for N=40 for the Bayesian method of coefficients for conditions in which the precision in 
the prior for b set to 10-3, and the precision in the prior for a equal to 10-2, 10-1, 100, 101, 102, 
followed by the conditions in which the precision in the prior for a was set to 10-3, and the 
variance in the prior for b equal to 10-2, 10-1, 100, 101, 102 in Study 3. 
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   Condition 

    Prior Prec(a) Prior Prec(b) 

a b c’ 10-2  10-1  100 101 102  10-2  10-1  100  101 102 

.14 .14 0 0.011 0.010 0.010 0.009 0.022 0.011 0.013 0.007 0.010 0.017 

.39 .39 0 0.357 0.353 0.378 0.469 0.625 0.350 0.345 0.379 0.446 0.633 

.59 .59 0 0.860 0.870 0.860 0.914 0.926 0.860 0.845 0.871 0.912 0.917 

.14 .14 .39 0.007 0.008 0.006 0.011 0.020 0.007 0.008 0.009 0.008 0.018 

.39 .39 .39 0.369 0.371 0.383 0.464 0.606 0.368 0.359 0.389 0.461 0.635 

.59 .59 .39 0.857 0.859 0.870 0.917 0.915 0.856 0.844 0.873 0.914 0.918 
 

Table 14 
 
Power for N=60 for the Bayesian method of coefficients for conditions in which the precision in 
the prior for b set to 10-3, and the precision in the prior for a equal to 10-2, 10-1, 100, 101, 102, 
followed by the conditions in which the precision in the prior for a was set to 10-3, and the 
variance in the prior for b equal to 10-2, 10-1, 100, 101, 102 in Study 3. 

   Condition 

    Prior Prec(a) Prior Prec(b) 

a b c’  10-2  10-1  100  101  102  10-2  10-1  100  10-1  102 

.14 .14 0 0.029 0.029 0.032 0.025 0.036 0.029 0.028 0.034 0.014 0.036 

.39 .39 0 0.675 0.676 0.660 0.712 0.828 0.673 0.676 0.700 0.718 0.789 

.59 .59 0 0.970 0.974 0.972 0.986 0.982 0.969 0.971 0.965 0.992 0.986 

.14 .14 .39 0.016 0.018 0.017 0.016 0.044 0.018 0.018 0.020 0.026 0.042 

.39 .39 .39 0.679 0.673 0.664 0.713 0.817 0.670 0.670 0.698 0.728 0.817 

.59 .59 .39 0.969 0.970 0.970 0.982 0.983 0.970 0.967 0.963 0.980 0.993 
 

 
Table 15 
 
Power for N=100 for the Bayesian method of coefficients for conditions in which the precision in 
the prior for b set to 10-3, and the precision in the prior for a equal to 10-2, 10-1, 100, 101, 102, 
followed by the conditions in which the precision in the prior for a was set to 10-3, and the 
variance in the prior for b equal to 10-2, 10-1, 100, 101, 102 in Study 3. 

   Condition 

    Prior Prec(a) Prior Prec(b) 

a b c’ 10-2  10-1 100  101 102  10-2 10-1  100 101  102 

.14 .14 0 0.046 0.048 0.052 0.058 0.117 0.046 0.046 0.051 0.055 0.098 

.39 .39 0 0.917 0.916 0.916 0.939 0.967 0.918 0.915 0.927 0.960 0.964 

.59 .59 0 0.999 0.999 0.999 0.999 1.000 0.999 0.999 0.999 1.000 1.000 

.14 .14 .39 0.047 0.046 0.045 0.061 0.102 0.049 0.047 0.047 0.048 0.122 
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.39 .39 .39 0.911 0.911 0.913 0.922 0.946 0.910 0.913 0.923 0.944 0.961 

.59 .59 .39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 

Table 16 
 
Power for N=200 for the Bayesian method of coefficients for conditions in which the precision in 
the prior for b set to 10-3, and the precision in the prior for a equal to 10-2, 10-1, 100, 101, 102, 
followed by the conditions in which the precision in the prior for a was set to 10-3, and the 
variance in the prior for b equal to 10-2, 10-1, 100, 101, 102 in Study 3. 

   Condition 

    Prior Prec(a) Prior Prec(b) 

a b c’ 10-2  10-1  100 101 102  10-2  10-1  100  101 102 

.14 .14 0 0.237 0.24 0.234 0.249 0.323 0.238 0.239 0.231 0.231 0.321 

.39 .39 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 

.59 .59 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.14 .14 .39 0.217 0.216 0.217 0.214 0.290 0.217 0.220 0.219 0.204 0.300 

.39 .39 .39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 

.59 .59 .39 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 

Table 17 

Interval estimates for the indirect effect of making images for words versus repeating words(X) 
on the number of words recalled (Y) through imagery (M) computed using the eight methods 
evaluated in Study 2. 

Method 95% CI Year 2 
data 

95% CI Years 1 and 2 
data 

Normal theory 
[2.70, 10.39] [2.36, 5.81] 

Distribution of the product 
[2.78, 10.50] [2.44, 5.90] 

Bayesian method of coefficients with diffuse 
priors 

[2.78, 10.55] [2.42, 6.22] 

Bayesian method of coefficients with 
informative priors 

[1.81, 4.30] - 

Bayesian method of covariances with diffuse 
priors 

[2.65, 7.70] [2.21, 5.28] 

Bayesian method of covariances with 
informative priors 

[2.08, 5.55] - 

Percentile bootstrap [4.08, 10.24] [0.64, 3.78] 

Bias-corrected bootstrap [4.14, 10.40] [0.68, 3.98] 
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Figure 1 

 

  

   
Figure 1. Trellis plot of Type I error rate for all methods and all parameter combinations 
as a function of sample size in Study 2. The letter markers indicate the following: D 
(distribution) codes normal theory (gray solid line) and distribution of the product (black 
solid line) confidence limits, Y (Yuan & MacKinnon, 2009) codes credibility intervals 
formed using the Bayesian method of coefficients with diffuse (gray dashed line) and 
informative (black dashed line) prior distributions, E (Enders, Fairchild, and MacKinnon, 
2013) codes credibility intervals formed using the Bayesian method of covariances with 
diffuse (gray dotted line) and informative (black dotted line) distributions, and B 
(bootstrap) codes the percentile (gray dot-dash line) and bias-corrected (black dot-dash 
line) bootstrap confidence limits. 

 

 

 

 

 

Type I error rate 
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Figure 2 

   

   

   

Power 
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Figure 2. Trellis plot of Power for all methods and all parameter combinations as a 
function of sample size in Study 2. The letter markers indicate the following: D 
(distribution) codes normal theory (gray solid line) and distribution of the product (black 
solid line) confidence limits, Y (Yuan & MacKinnon, 2009) codes credibility intervals 
formed using the Bayesian method of coefficients with diffuse (gray dashed line) and 
informative (black dashed line) prior distributions, E (Enders, Fairchild, and MacKinnon, 
2013) codes credibility intervals formed using the Bayesian method of covariances with 
diffuse (gray dotted line) and informative (black dotted line) distributions, and B 
(bootstrap) codes the percentile (gray dot-dash line) and bias-corrected (black dot-dash 
line) bootstrap confidence limits. 
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Figure 3 
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Figure 3. Trellis plot of coverage for all methods and all parameter combinations as a 
function of sample size in Study 2. The letter markers indicate the following: D 
(distribution) codes normal theory (gray solid line) and distribution of the product (black 
solid line) confidence limits, Y (Yuan & MacKinnon, 2009) codes credibility intervals 
formed using the Bayesian method of coefficients with diffuse (gray dashed line) and 
informative (black dashed line) prior distributions, E (Enders, Fairchild, and MacKinnon, 
2013) codes credibility intervals formed using the Bayesian method of covariances with 
diffuse (gray dotted line) and informative (black dotted line) distributions, and B 
(bootstrap) codes the percentile (gray dot-dash line) and bias-corrected (black dot-dash 
line) bootstrap confidence limits. 
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Figure 4 
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Figure 4. Trellis plot of interval width for all methods and all parameter combinations as 
a function of sample size in Study 2. The letter markers indicate the following: D 
(distribution) codes normal theory (gray solid line) and distribution of the product (black 
solid line) confidence limits, Y (Yuan & MacKinnon, 2009) codes credibility intervals 
formed using the Bayesian method of coefficients with diffuse (gray dashed line) and 
informative (black dashed line) prior distributions, E (Enders, Fairchild, and MacKinnon, 
2013) codes credibility intervals formed using the Bayesian method of covariances with 
diffuse (gray dotted line) and informative (black dotted line) distributions, and B 
(bootstrap) codes the percentile (gray dot-dash line) and bias-corrected (black dot-dash 
line) bootstrap confidence limits. 

 



  88 

Figure 5 
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Figure 5. Trellis plot of imbalance for all methods and all parameter combinations as a 
function of sample size in Study 2. The letter markers indicate the following: D 
(distribution) codes normal theory (gray solid line) and distribution of the product (black 
solid line) confidence limits, Y (Yuan & MacKinnon, 2009) codes credibility intervals 
formed using the Bayesian method of coefficients with diffuse (gray dashed line) and 
informative (black dashed line) prior distributions, E (Enders, Fairchild, and MacKinnon, 
2013) codes credibility intervals formed using the Bayesian method of covariances with 
diffuse (gray dotted line) and informative (black dotted line) distributions, and B 
(bootstrap) codes the percentile (gray dot-dash line) and bias-corrected (black dot-dash 
line) bootstrap confidence limits. 
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Figure 6 

 

Figure 6. Plot of power for the four Bayesian methods as a function of sample size in 
Study 2; the dashed line with the letter marker Y (Yuan and MacKinnon, 2009) 
represents the Bayesian method of coefficients with diffuse prior distributions, the solid 
line with the letter marker Y (Yuan and MacKinnon, 2009) represents the Bayesian 
method of coefficients with informative prior distributions, the dashed line with the letter 
marker E (Enders, Fairchild, and MacKinnon, 2013) represents the Bayesian method of 
covariances with diffuse prior distributions, and the solid line with the letter marker E 
(Enders, Fairchild, and MacKinnon, 2013) represents the Bayesian method of 
covariances with informative prior distributions. 
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Figure 7 

 

Figure 7. Plot of power for the method of coefficients as a function of the precision 
parameter in the prior distributions for a and b for N=20 in Study 3; the six lines 
represent six combinations of effect size. The number markers represent the different 
combinations of parameter values for a, b, and c’, and the three line types code for the 
different magnitudes of the mediation paths a and b: solid (small), dash (medium), and 
dot (large). 

Figure 8 

 
Figure 8. Plot of power for the method of coefficients as a function of the precision 
parameter in the prior distributions for a and b for N=40 in Study 3; the six lines 
represent six combinations of effect size. The number markers represent the different 
combinations of parameter values for a, b, and c’, and the three line types code for the 
different magnitudes of the mediation paths a and b: solid (small), dash (medium), and 
dot (large). 

 

 

 

Power as a function of precision of a and b 

Power as a function of precision of a and b 
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Figure 9 

  

Figure 9. Plot of power for the method of coefficients as a function of the precision 
parameter in the prior distributions for a and b for N=60 in Study 3; the six lines 
represent six combinations of effect size. The number markers represent the different 
combinations of parameter values for a, b, and c’, and the three line types code for the 
different magnitudes of the mediation paths a and b: solid (small), dash (medium), and 
dot (large). 

Figure 10 

  

Figure 10. Plot of power for the method of coefficients as a function of the precision 
parameter in the prior distributions for a and b for N=100 in Study 3; the six lines 
represent six combinations of effect size. The number markers represent the different 
combinations of parameter values for a, b, and c’, and the three line types code for the 
different magnitudes of the mediation paths a and b: solid (small), dash (medium), and 
dot (large). 

 

 

Power as a function of precision of a and b 

Power as a function of precision of a and b 
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Figure 11 

 

Figure 11. Plot of power for the method of coefficients as a function of the precision 
parameter in the prior distribution for a and b for N=200 in Study 3; the six lines 
represent six combinations of effect size. The number markers represent the different 
combinations of parameter values for a, b, and c’, and the three line types code for the 
different magnitudes of the mediation paths a and b: solid (small), dash (medium), and 
dot (large). 

Figure 12 

   

Power regressed on the fraction of true precision of a 

Power as a function of precision of a and b 
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Figure 12. Trellis plot of empirical power for the Bayesian method of coefficients for all 
sample sizes and all parameter combinations as a function of fraction of true precision of 
parameter a in Study 3. The line types and number and letter markers indicate the sample 
size: the number 2 and the solid line stand for N = 20, the number 4 and the dashed line 
stand for N = 40, the number 6 and the dotted line stand for N = 60, the letter H and the 
dot-dash line stand for N = 100, and the letter T and the long-dash line stand for N = 200. 
 

Figure 13 

   

Power regressed on the fraction of true precision of b 

Fraction of true precision of a Fraction of true precision of a 

Fraction of true precision of a Fraction of true precision of a 
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Figure 13. Trellis plot of empirical power for the Bayesian method of coefficients for all 
sample sizes and all parameter combinations as a function of the fraction of the true 
precision of parameter b in Study 3. The line types and number and letter markers 
indicate the sample size: the number 2 and the solid line stand for N = 20, the number 4 
and the dashed line stand for N = 40, the number 6 and the dotted line stand for N = 60, 
the letter H and the dot-dash line stand for N = 100, and the letter T and the long-dash 
line stand for N = 200. 
  

Fraction of true precision of b Fraction of true precision of b 

Fraction of true precision of b Fraction of true precision of b 
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APPENDIX A  

DOCUMENT NOTATION 
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α  Type I error, the rate at which a test incorrectly identifies the presence of a 
  significant effect when no effect is present. 
 
β Type II error, the rate at which a test fails to find an effect that is truly 

present. 
 

pΛ   Sums of squares and cross-products of the inverse Wishart prior   

  distribution. 
 
Σ   Covariance matrix. 
 

pΣ   Covariance matrix from a prior study. 

 
θ  Population value of the parameter of interest. 
 

θ̂  Sample estimate of the parameter of interest. 
 
φ̂   Estimate of the parameter of interest following a transformation in   
  percentile bootstrap. 
 

aµ   Mean of the prior distribution for coefficient a. 

 

bµ   Mean of the prior distribution for coefficient b. 

 

'cµ   Mean of the prior distribution for coefficient c’. 

 
2
Mσ   True variance of M. 

 
2
Yσ   True variance of Y. 

 
2
1σ  Population error variance from the equation with X predicting Y. 

 
2
2σ  Population error variance from the equation with X predicting M for the 

single mediator model. 
 

2
3σ  Population error variance from the equation with X and M predicting Y 

for the single mediator model. 
 
1 – β  Power, a test’s ability to detect an effect when an effect is truly present. 
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a  Population path coefficient representing relationship between X and M. 
 
â  Sample path coefficient representing relationship between X and M. 
 
b  Population path coefficient representing relationship between M and Y. 
 

b̂  Sample path coefficient representing relationship between M and Y. 
 
c  Population path coefficient representing relationship between X and Y. 
 
c’ Population path coefficient representing relationship between X and Y 

controlling for M in the single mediator model. 
 
dfp Degrees of freedom parameter of the inverse Wishart prior distribution. 
 

je   Sample error variability in the mediation regression equations. 

 

ji   Population intercept in the mediation regression equations. 

 
M  Mediator in the single mediator model. 
 
m  Shape parameter of the Inverse-gamma distribution. 
 
N  Sample size. 
 
Np  Sample size from a prior study. 
 
n  Scale parameter of the Inverse-gamma distribution. 
 
p-value Significance level of a statistical test. 
 

)(θp   Prior distribution for a parameter of interest. 
 

)|( θdatap  Sampling distribution of the data given the parameter.  
 

)|( datap θ  Posterior distribution of a parameter of interest. 
 

)(datap  Normalizing constant in Bayes’ theorem. 
 
sab  Multivariate delta standard error for the single mediator model. 
 

ba
s ˆˆ

  Sample multivariate delta standard error for the single mediator model. 
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sd  Standard deviation of a distribution. 
 

2
Ms   Population variance of M. 

 

MYs   Population covariance of M and Y. 
 

XMs   Population covariance of X and M. 
 

XYs   Population covariance of X and Y. 
 

2
Xs   Population variance of X. 

 
t  Normalizing transformation of a sample estimate used for percentile  
  bootstrap. 
 
W-1  Inverse Wishart distribution. 
 
X  Independent variable. 
 
Y  Dependent variable. 
 

0z   The z value that corresponds to the proportion of times the bootstrap  

  estimate exceeds the observed sample estimate of the parameter of   
  interest.  
 

2/αz  Value of z corresponding to the 2.5th percentile point of the standard 

normal distribution when  = 0.05, with a value of -1.96. 
 

2/1 α−z  Value of z corresponding to the 97.5th percentile point of the standard 

normal distribution when α = 0.05, with a value of 1.96. 
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APPENDIX B  

EQUATING PRIOR DISTRIBUTIONS FOR REGRESSION COEFFICIENTS WITH THE 

PRIOR DISTRIBUTIONS FOR THE COVARIANCE MATRIX 
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The purpose of this appendix is to show the direct arithmetic correspondence between the 

method of coefficients and the method of covariances. Given the information for the regression 

coefficients and error variances of M and Y, it is possible to calculate the values of the elements 

of the covariance matrix of X, M, and Y, and vice versa. The equations below outline the 

relationships between the parameters in the method of coefficients and the parameters in the 

method of covariances. 

Equations in the method of coefficients:  

X = X

M = aX + eM

Y = bM + c' X + eY

 

Variance-Covariance Matrix of X, M, and Y: 

Var(X)

Cov(X,M )Var(M )

Cov(X,Y)Cov(M ,Y)Var(Y)

 

 

 
 
 

 

 

 
 
 

 

Expressing the model parameters in variance and covariance terms from MacKinnon (2008) on 
pages 86-89: 
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Expressing the variance and covariance terms in terms of model parameters: 
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The difference in the two specifications of prior distributions lies in how X is modeled. In 

the method of coefficients, X is not modeled as a random variable, and consequently does not 

have a prior or posterior distribution. In the method of covariances, X is treated as a random 

variable, and the variance of X and the covariances of X with M and Y have prior and posterior 

distributions. Thus, even though there is an arithmetic correspondence between the two methods, 

they may not be conceptually and numerically equivalent in the Bayesian framework. 
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In the case of prior distributions, it is possible to encode the same information under both 

frameworks by using the formulas above to numerically equate the regression coefficients and 

covariance matrix elements. In Study 2 of this project this was not done for the diffuse prior 

distribution case, but in theory it is possible to do it for all parameters in the two frameworks. 

The informative prior distributions in Study 2 were based on the true values of parameters, thus 

even though the above formulas were not used to equate prior distributions for the method of 

coefficients and the method of covariances, the prior distributions were constructed from the 

same data set and therefore represent the same prior assumptions. The only differences that may 

exist between the two informative prior distribution specifications are due to the fact that in the 

method of covariances X is modeled as a random variable, whereas in the method of coefficients 

it is not. 
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APPENDIX C  
 

TABLES CONTAINING VALUES OF TYPE I ERROR RATE, POWER, COVERAGE, 

INTERVAL WIDTH, AND IMBALANCE FOR ALL PARAMETER COMBINATIONS IN 

STUDIES 1 AND 2   
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Table 18 
Type I error rate for N=20 in Study 1 (note: Type I error is not observable when both a and b 
are non-zero). The column names refer to normal theory confidence limits, Bayesian method of 
coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.001 0.002 0.002 0.004 0.013 
0 .14 0.000 0.001 0.001 0.006 0.011 
0 .39 0.005 0.012 0.012 0.026 0.039 
0 .59 0.011 0.020 0.021 0.038 0.064 

.14 0 0.000 0.000 0.000 0.008 0.018 

.39 0 0.007 0.021 0.021 0.025 0.052 

.59 0 0.009 0.030 0.029 0.034 0.067 
  c'=.14 
0 0 0.001 0.002 0.002 0.006 0.013 
0 .14 0.000 0.001 0.001 0.005 0.013 
0 .39 0.002 0.005 0.005 0.021 0.043 
0 .59 0.017 0.035 0.034 0.045 0.084 

.14 0 0.005 0.008 0.007 0.013 0.028 

.39 0 0.007 0.013 0.013 0.018 0.040 

.59 0 0.024 0.051 0.051 0.063 0.088 
  c'=.39 
0 0 0.000 0.002 0.002 0.002 0.008 
0 .14 0.000 0.004 0.004 0.006 0.014 
0 .39 0.007 0.018 0.019 0.036 0.064 
0 .59 0.018 0.039 0.039 0.057 0.086 

.14 0 0.001 0.003 0.004 0.006 0.020 

.39 0 0.005 0.022 0.022 0.025 0.052 

.59 0 0.015 0.047 0.047 0.053 0.088 
  c'=.59 
0 0 0.001 0.002 0.002 0.004 0.010 
0 .14 0.000 0.001 0.001 0.002 0.011 
0 .39 0.005 0.018 0.018 0.029 0.060 
0 .59 0.022 0.043 0.043 0.063 0.094 

.14 0 0.002 0.005 0.005 0.010 0.025 

.39 0 0.009 0.018 0.019 0.029 0.043 

.59 0 0.017 0.035 0.038 0.048 0.081 
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Table 19 
Type I error rate for N=40 in Study 1 (note: Type I error is not observable when both a and b 
are non-zero). The column names refer to normal theory confidence limits, Bayesian method of 
coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.000 0.002 0.002 0.005 0.014 
0 .14 0.000 0.002 0.002 0.008 0.022 
0 .39 0.007 0.021 0.021 0.038 0.067 
0 .59 0.024 0.035 0.034 0.049 0.080 

.14 0 0.002 0.005 0.005 0.006 0.019 

.39 0 0.012 0.023 0.023 0.033 0.062 

.59 0 0.026 0.036 0.036 0.062 0.092 
  c'=.14 
0 0 0.000 0.000 0.000 0.003 0.010 
0 .14 0.001 0.003 0.003 0.006 0.013 
0 .39 0.009 0.020 0.020 0.029 0.058 
0 .59 0.025 0.042 0.041 0.054 0.093 

.14 0 0.000 0.002 0.002 0.002 0.016 

.39 0 0.006 0.019 0.019 0.044 0.076 

.59 0 0.018 0.028 0.028 0.044 0.073 
  c'=.39 
0 0 0.000 0.004 0.004 0.002 0.009 
0 .14 0.001 0.004 0.004 0.009 0.019 
0 .39 0.004 0.017 0.017 0.023 0.057 
0 .59 0.015 0.034 0.033 0.050 0.086 

.14 0 0.001 0.002 0.002 0.006 0.017 

.39 0 0.008 0.014 0.014 0.029 0.060 

.59 0 0.016 0.033 0.034 0.056 0.093 
  c'=.59 
0 0 0.001 0.004 0.004 0.008 0.014 
0 .14 0.001 0.006 0.006 0.012 0.026 
0 .39 0.004 0.020 0.020 0.029 0.058 
0 .59 0.017 0.038 0.038 0.050 0.080 

.14 0 0.000 0.003 0.002 0.007 0.018 

.39 0 0.003 0.013 0.012 0.043 0.072 

.59 0 0.025 0.039 0.039 0.063 0.088 
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Table 20 
Type I error rate for N=60 in Study 1 (note: Type I error is not observable when both a and b 
are non-zero). The column names refer to normal theory confidence limits, Bayesian method of 
coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.000 0.002 0.002 0.003 0.010 
0 .14 0.001 0.014 0.010 0.010 0.022 
0 .39 0.015 0.040 0.042 0.043 0.076 
0 .59 0.022 0.048 0.045 0.059 0.080 

.14 0 0.001 0.003 0.003 0.011 0.024 

.39 0 0.010 0.051 0.050 0.045 0.078 

.59 0 0.041 0.074 0.074 0.076 0.106 
  c'=.14 
0 0 0.000 0.003 0.002 0.001 0.008 
0 .14 0.001 0.004 0.004 0.005 0.013 
0 .39 0.011 0.025 0.025 0.045 0.067 
0 .59 0.017 0.033 0.033 0.047 0.070 

.14 0 0.001 0.002 0.002 0.006 0.019 

.39 0 0.018 0.058 0.055 0.055 0.089 

.59 0 0.019 0.040 0.042 0.042 0.062 
  c'=.39 
0 0 0.000 0.000 0.000 0.002 0.009 
0 .14 0.000 0.001 0.001 0.005 0.015 
0 .39 0.005 0.016 0.017 0.036 0.076 
0 .59 0.026 0.041 0.041 0.053 0.081 

.14 0 0.000 0.008 0.007 0.004 0.017 

.39 0 0.016 0.049 0.052 0.044 0.075 

.59 0 0.029 0.064 0.069 0.054 0.085 
  c'=.59 
0 0 0.000 0.001 0.001 0.005 0.008 
0 .14 0.000 0.003 0.003 0.005 0.014 
0 .39 0.003 0.013 0.014 0.025 0.054 
0 .59 0.020 0.040 0.040 0.059 0.090 

.14 0 0.000 0.008 0.009 0.011 0.023 

.39 0 0.012 0.037 0.038 0.038 0.073 

.59 0 0.028 0.063 0.061 0.056 0.084 
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Table 21 
Type I error rate for N=100 in Study 1 (note: Type I error is not observable when both a and b 
are non-zero). The column names refer to normal theory confidence limits, Bayesian method of 
coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.000 0.005 0.005 0.002 0.010 
0 .14 0.003 0.009 0.009 0.011 0.027 
0 .39 0.022 0.073 0.073 0.062 0.088 
0 .59 0.040 0.071 0.071 0.064 0.083 

.14 0 0.002 0.026 0.026 0.013 0.024 

.39 0 0.031 0.105 0.108 0.063 0.097 

.59 0 0.043 0.093 0.095 0.055 0.072 
  c'=.14 
0 0 0.000 0.003 0.003 0.001 0.005 
0 .14 0.000 0.009 0.009 0.013 0.025 
0 .39 0.022 0.052 0.051 0.048 0.072 
0 .59 0.035 0.067 0.068 0.055 0.076 

.14 0 0.000 0.024 0.024 0.010 0.033 

.39 0 0.021 0.096 0.096 0.059 0.082 

.59 0 0.041 0.099 0.100 0.067 0.077 
  c'=.39 
0 0 0.000 0.004 0.004 0.002 0.005 
0 .14 0.001 0.010 0.009 0.011 0.033 
0 .39 0.020 0.053 0.054 0.047 0.069 
0 .59 0.045 0.061 0.061 0.057 0.074 

.14 0 0.001 0.030 0.030 0.011 0.026 

.39 0 0.027 0.110 0.110 0.052 0.087 

.59 0 0.037 0.100 0.100 0.050 0.068 
  c'=.59 
0 0 0.001 0.004 0.004 0.005 0.009 
0 .14 0.001 0.011 0.013 0.011 0.031 
0 .39 0.021 0.063 0.061 0.050 0.079 
0 .59 0.042 0.074 0.075 0.056 0.075 

.14 0 0.004 0.023 0.024 0.015 0.036 

.39 0 0.030 0.097 0.098 0.056 0.077 

.59 0 0.033 0.097 0.098 0.057 0.072 
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Table 22 
Type I error rate for N=500 in Study 1 (note: Type I error is not observable when both a and b 
are non-zero). The column names refer to normal theory confidence limits, Bayesian method of 
coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.000 0.003 0.003 0.001 0.003 
0 .14 0.016 0.054 0.056 0.053 0.090 
0 .39 0.049 0.062 0.061 0.053 0.056 
0 .59 0.044 0.054 0.056 0.055 0.061 

.14 0 0.011 0.054 0.055 0.045 0.078 

.39 0 0.047 0.057 0.059 0.048 0.055 

.59 0 0.043 0.047 0.051 0.050 0.052 
  c'=.14 
0 0 0.000 0.002 0.003 0.003 0.005 
0 .14 0.012 0.036 0.036 0.032 0.064 
0 .39 0.052 0.062 0.062 0.058 0.060 
0 .59 0.036 0.045 0.041 0.037 0.042 

.14 0 0.013 0.045 0.044 0.040 0.084 

.39 0 0.042 0.054 0.051 0.051 0.055 

.59 0 0.060 0.066 0.066 0.067 0.070 
  c'=.39 
0 0 0.000 0.000 0.000 0.000 0.005 
0 .14 0.016 0.045 0.046 0.047 0.079 
0 .39 0.054 0.058 0.057 0.061 0.071 
0 .59 0.039 0.047 0.043 0.043 0.046 

.14 0 0.015 0.045 0.043 0.037 0.060 

.39 0 0.039 0.054 0.052 0.046 0.051 

.59 0 0.044 0.045 0.045 0.042 0.046 
  c'=.59 
0 0 0.000 0.002 0.002 0.001 0.006 
0 .14 0.018 0.053 0.055 0.049 0.082 
0 .39 0.045 0.058 0.059 0.048 0.052 
0 .59 0.044 0.055 0.055 0.049 0.057 

.14 0 0.016 0.040 0.041 0.045 0.071 

.39 0 0.043 0.051 0.049 0.049 0.058 

.59 0 0.040 0.046 0.046 0.047 0.046 
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Table 23 
Power for N=20 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 

.14 .14 0.005 0.008 0.008 0.013 0.030 

.14 .39 0.032 0.061 0.063 0.087 0.140 

.14 .59 0.068 0.097 0.100 0.137 0.192 

.39 .14 0.011 0.030 0.030 0.037 0.069 

.39 .39 0.046 0.083 0.083 0.125 0.201 

.39 .59 0.128 0.161 0.162 0.204 0.304 

.59 .14 0.019 0.059 0.058 0.061 0.107 

.59 .39 0.117 0.186 0.189 0.211 0.308 

.59 .59 0.273 0.335 0.339 0.384 0.518 
  c’=.14 

.14 .14 0.000 0.002 0.002 0.020 0.038 

.14 .39 0.028 0.052 0.051 0.093 0.149 

.14 .59 0.061 0.084 0.084 0.125 0.181 

.39 .14 0.011 0.029 0.028 0.032 0.064 

.39 .39 0.044 0.084 0.086 0.119 0.203 

.39 .59 0.125 0.157 0.159 0.202 0.319 

.59 .14 0.023 0.065 0.066 0.066 0.111 

.59 .39 0.115 0.183 0.183 0.214 0.303 

.59 .59 0.287 0.359 0.365 0.378 0.516 
  c’=.39 

.14 .14 0.004 0.011 0.011 0.021 0.049 

.14 .39 0.025 0.054 0.054 0.086 0.151 

.14 .59 0.076 0.105 0.105 0.145 0.205 

.39 .14 0.006 0.016 0.016 0.027 0.052 

.39 .39 0.051 0.093 0.093 0.120 0.206 

.39 .59 0.121 0.150 0.152 0.214 0.309 

.59 .14 0.029 0.055 0.055 0.070 0.111 

.59 .39 0.118 0.198 0.199 0.221 0.324 

.59 .59 0.271 0.358 0.354 0.383 0.527 
  c’=.59 

.14 .14 0.001 0.007 0.007 0.012 0.027 

.14 .39 0.007 0.016 0.016 0.030 0.064 

.14 .59 0.020 0.030 0.030 0.062 0.120 

.39 .14 0.010 0.030 0.031 0.039 0.083 

.39 .39 0.052 0.090 0.089 0.112 0.181 

.39 .59 0.123 0.162 0.161 0.214 0.319 

.59 .14 0.026 0.056 0.056 0.074 0.115 

.59 .39 0.108 0.199 0.198 0.206 0.328 

.59 .59 0.286 0.331 0.331 0.399 0.512 
 

Table 24 
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Power for N=40 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 

.14 .14 0.002 0.005 0.005 0.016 0.034 

.14 .39 0.022 0.045 0.046 0.073 0.137 

.14 .59 0.065 0.096 0.094 0.140 0.184 

.39 .14 0.036 0.070 0.070 0.090 0.147 

.39 .39 0.231 0.330 0.330 0.396 0.514 

.39 .59 0.462 0.542 0.542 0.585 0.673 

.59 .14 0.055 0.083 0.084 0.116 0.178 

.59 .39 0.434 0.522 0.522 0.568 0.659 

.59 .59 0.780 0.832 0.836 0.867 0.906 
  c’=.14 

.14 .14 0.002 0.011 0.011 0.015 0.038 

.14 .39 0.024 0.052 0.052 0.088 0.145 

.14 .59 0.060 0.093 0.092 0.142 0.206 

.39 .14 0.031 0.069 0.069 0.097 0.155 

.39 .39 0.265 0.371 0.371 0.431 0.544 

.39 .59 0.456 0.520 0.521 0.583 0.671 

.59 .14 0.066 0.109 0.109 0.127 0.174 

.59 .39 0.445 0.533 0.535 0.560 0.640 

.59 .59 0.758 0.812 0.811 0.863 0.903 
  c’=.39 

.14 .14 0.006 0.009 0.009 0.013 0.031 

.14 .39 0.029 0.073 0.072 0.107 0.165 

.14 .59 0.068 0.090 0.088 0.129 0.180 

.39 .14 0.035 0.069 0.069 0.086 0.142 

.39 .39 0.227 0.340 0.341 0.398 0.523 

.39 .59 0.433 0.516 0.515 0.571 0.665 

.59 .14 0.072 0.101 0.102 0.127 0.170 

.59 .39 0.477 0.563 0.564 0.594 0.681 

.59 .59 0.785 0.831 0.831 0.861 0.900 
  c’=.59 

.14 .14 0.003 0.006 0.005 0.019 0.037 

.14 .39 0.023 0.050 0.050 0.076 0.131 

.14 .59 0.068 0.098 0.097 0.126 0.176 

.39 .14 0.025 0.060 0.059 0.084 0.146 

.39 .39 0.232 0.329 0.328 0.396 0.514 

.39 .59 0.458 0.531 0.529 0.588 0.686 

.59 .14 0.068 0.109 0.109 0.128 0.187 

.59 .39 0.449 0.549 0.549 0.608 0.700 

.59 .59 0.797 0.833 0.833 0.856 0.899 
 

Table 25 
Power for N=60 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
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method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 

.14 .14 0.006 0.032 0.035 0.029 0.065 

.14 .39 0.070 0.144 0.145 0.159 0.222 

.14 .59 0.119 0.156 0.156 0.192 0.237 

.39 .14 0.067 0.167 0.163 0.141 0.226 

.39 .39 0.490 0.641 0.644 0.650 0.758 

.39 .59 0.766 0.792 0.795 0.821 0.865 

.59 .14 0.095 0.169 0.172 0.162 0.216 

.59 .39 0.747 0.802 0.794 0.798 0.838 

.59 .59 0.964 0.968 0.970 0.973 0.978 
  c’=.14 

.14 .14 0.005 0.039 0.035 0.027 0.056 

.14 .39 0.071 0.150 0.150 0.154 0.246 

.14 .59 0.142 0.200 0.197 0.217 0.268 

.39 .14 0.071 0.159 0.155 0.151 0.221 

.39 .39 0.487 0.630 0.629 0.646 0.741 

.39 .59 0.746 0.796 0.801 0.821 0.868 

.59 .14 0.136 0.201 0.198 0.194 0.244 

.59 .39 0.742 0.793 0.796 0.813 0.854 

.59 .59 0.967 0.979 0.978 0.981 0.986 
  c’=.39 

.14 .14 0.002 0.031 0.033 0.028 0.054 

.14 .39 0.053 0.114 0.121 0.125 0.197 

.14 .59 0.147 0.189 0.193 0.211 0.261 

.39 .14 0.069 0.149 0.145 0.155 0.219 

.39 .39 0.498 0.625 0.628 0.658 0.739 

.39 .59 0.736 0.771 0.772 0.800 0.847 

.59 .14 0.119 0.176 0.179 0.178 0.231 

.59 .39 0.736 0.800 0.795 0.799 0.834 

.59 .59 0.972 0.976 0.976 0.978 0.987 
  c’=.59 

.14 .14 0.011 0.038 0.036 0.036 0.062 

.14 .39 0.065 0.135 0.127 0.163 0.231 

.14 .59 0.132 0.183 0.176 0.192 0.255 

.39 .14 0.071 0.170 0.170 0.186 0.261 

.39 .39 0.506 0.648 0.653 0.682 0.787 

.39 .59 0.726 0.787 0.785 0.797 0.848 

.59 .14 0.130 0.200 0.201 0.198 0.239 

.59 .39 0.745 0.796 0.797 0.806 0.853 

.59 .59 0.961 0.969 0.970 0.973 0.982 
 

Table 26 
Power for N=100 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
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prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 

.14 .14 0.019 0.061 0.060 0.066 0.124 

.14 .39 0.141 0.293 0.294 0.240 0.317 

.14 .59 0.234 0.316 0.319 0.289 0.334 

.39 .14 0.166 0.182 0.184 0.272 0.331 

.39 .39 0.866 0.899 0.900 0.924 0.942 

.39 .59 0.966 0.972 0.972 0.969 0.977 

.59 .14 0.233 0.190 0.189 0.277 0.315 

.59 .39 0.943 0.916 0.917 0.956 0.960 

.59 .59 0.999 0.999 0.999 0.999 0.999 
  c’=.14 

.14 .14 0.013 0.058 0.057 0.067 0.125 

.14 .39 0.151 0.313 0.314 0.258 0.339 

.14 .59 0.240 0.338 0.342 0.289 0.337 

.39 .14 0.182 0.196 0.192 0.280 0.337 

.39 .39 0.884 0.916 0.915 0.933 0.953 

.39 .59 0.955 0.974 0.974 0.963 0.976 

.59 .14 0.262 0.217 0.219 0.314 0.348 

.59 .39 0.956 0.934 0.934 0.962 0.971 

.59 .59 1.000 1.000 1.000 1.000 1.000 
  c’=.39 

.14 .14 0.014 0.064 0.064 0.061 0.119 

.14 .39 0.164 0.308 0.310 0.272 0.360 

.14 .59 0.233 0.344 0.345 0.306 0.341 

.39 .14 0.187 0.212 0.211 0.281 0.356 

.39 .39 0.847 0.893 0.892 0.918 0.946 

.39 .59 0.955 0.975 0.976 0.962 0.973 

.59 .14 0.230 0.187 0.188 0.282 0.320 

.59 .39 0.948 0.917 0.917 0.955 0.969 

.59 .59 1.000 0.997 0.997 1.000 1.000 
  c’=.59 

.14 .14 0.016 0.056 0.056 0.077 0.136 

.14 .39 0.185 0.312 0.311 0.288 0.362 

.14 .59 0.241 0.351 0.350 0.290 0.333 

.39 .14 0.178 0.203 0.202 0.284 0.348 

.39 .39 0.839 0.881 0.883 0.922 0.943 

.39 .59 0.960 0.975 0.975 0.970 0.976 

.59 .14 0.260 0.214 0.214 0.330 0.360 

.59 .39 0.960 0.929 0.929 0.965 0.972 

.59 .59 1.000 1.000 1.000 1.000 1.000 
 

Table 27 
Power for N=500 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
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  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 

.14 .14 0.596 0.733 0.736 0.751 0.826 

.14 .39 0.877 0.887 0.884 0.886 0.902 

.14 .59 0.880 0.879 0.879 0.875 0.878 

.39 .14 0.847 0.842 0.844 0.860 0.867 

.39 .39 1.000 1.000 1.000 1.000 1.000 

.39 .59 1.000 1.000 1.000 1.000 1.000 

.59 .14 0.857 0.836 0.836 0.856 0.871 

.59 .39 1.000 1.000 1.000 1.000 1.000 

.59 .59 1.000 1.000 1.000 1.000 1.000 
  c’=.14 

.14 .14 0.584 0.746 0.743 0.758 0.845 

.14 .39 0.877 0.876 0.875 0.887 0.892 

.14 .59 0.873 0.869 0.873 0.869 0.878 

.39 .14 0.855 0.850 0.852 0.863 0.873 

.39 .39 1.000 1.000 1.000 1.000 1.000 

.39 .59 1.000 1.000 1.000 1.000 1.000 

.59 .14 0.890 0.867 0.871 0.895 0.899 

.59 .39 1.000 1.000 1.000 1.000 1.000 

.59 .59 1.000 1.000 1.000 1.000 1.000 
  c’=.39 

.14 .14 0.563 0.721 0.726 0.743 0.826 

.14 .39 0.874 0.872 0.874 0.884 0.894 

.14 .59 0.879 0.881 0.882 0.888 0.894 

.39 .14 0.851 0.833 0.835 0.859 0.873 

.39 .39 1.000 1.000 1.000 1.000 1.000 

.39 .59 1.000 1.000 1.000 1.000 1.000 

.59 .14 0.876 0.845 0.853 0.868 0.876 

.59 .39 1.000 1.000 1.000 1.000 1.000 

.59 .59 1.000 1.000 1.000 1.000 1.000 
  c’=.59 

.14 .14 0.587 0.742 0.739 0.738 0.826 

.14 .39 0.853 0.859 0.861 0.869 0.884 

.14 .59 0.869 0.874 0.875 0.875 0.881 

.39 .14 0.859 0.853 0.855 0.865 0.880 

.39 .39 1.000 1.000 1.000 1.000 1.000 

.39 .59 1.000 1.000 1.000 1.000 1.000 

.59 .14 0.876 0.853 0.853 0.876 0.882 

.59 .39 1.000 1.000 1.000 1.000 1.000 

.59 .59 1.000 1.000 1.000 1.000 1.000 
 

 

Table 28 
Coverage for N=20 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
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prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 
0 0 0.999 0.998 0.998 0.996 0.987 
0 .14 1.000 0.999 0.999 0.994 0.989 
0 .39 0.995 0.988 0.988 0.974 0.961 
0 .59 0.989 0.980 0.979 0.962 0.936 

.14 0 1.000 1.000 1.000 0.992 0.982 

.14 .14 0.963 0.990 0.990 0.989 0.954 

.14 .39 0.947 0.949 0.948 0.947 0.902 

.14 .59 0.970 0.958 0.957 0.944 0.920 

.39 0 0.993 0.979 0.979 0.975 0.948 

.39 .14 0.965 0.976 0.976 0.964 0.924 

.39 .39 0.908 0.955 0.954 0.938 0.923 

.39 .59 0.914 0.955 0.955 0.930 0.924 

.59 0 0.991 0.970 0.971 0.966 0.933 

.59 .14 0.962 0.955 0.955 0.950 0.910 

.59 .39 0.914 0.947 0.947 0.939 0.939 

.59 .59 0.925 0.958 0.958 0.937 0.945 
  c’=.14 

0 0 0.999 0.998 0.998 0.994 0.987 
0 .14 1.000 0.999 0.999 0.995 0.987 
0 .39 0.998 0.995 0.995 0.979 0.957 
0 .59 0.983 0.965 0.966 0.955 0.916 

.14 0 0.995 0.992 0.993 0.987 0.972 

.14 .14 0.968 0.996 0.996 0.986 0.955 

.14 .39 0.946 0.955 0.956 0.945 0.907 

.14 .59 0.950 0.949 0.948 0.943 0.920 

.39 0 0.993 0.987 0.987 0.982 0.960 

.39 .14 0.974 0.973 0.973 0.970 0.929 

.39 .39 0.904 0.956 0.956 0.940 0.922 

.39 .59 0.915 0.952 0.952 0.929 0.934 

.59 0 0.976 0.949 0.949 0.937 0.912 

.59 .14 0.957 0.950 0.952 0.943 0.899 

.59 .39 0.904 0.940 0.940 0.923 0.920 

.59 .59 0.904 0.938 0.938 0.906 0.922 
  c’=.39 

0 0 1.000 0.998 0.998 0.998 0.992 
0 .14 1.000 0.996 0.996 0.994 0.986 
0 .39 0.993 0.982 0.981 0.964 0.936 
0 .59 0.982 0.961 0.961 0.943 0.914 

.14 0 0.999 0.997 0.996 0.994 0.980 

.14 .14 0.962 0.994 0.994 0.984 0.951 

.14 .39 0.959 0.960 0.961 0.960 0.918 

.14 .59 0.946 0.939 0.939 0.928 0.905 

.39 0 0.995 0.978 0.978 0.975 0.948 

.39 .14 0.959 0.990 0.990 0.979 0.941 

.39 .39 0.888 0.960 0.960 0.930 0.921 
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.39 .59 0.915 0.956 0.955 0.932 0.937 

.59 0 0.985 0.953 0.953 0.947 0.912 

.59 .14 0.964 0.955 0.955 0.945 0.896 

.59 .39 0.902 0.939 0.941 0.922 0.922 

.59 .59 0.907 0.944 0.944 0.922 0.945 
  c’=.59 

0 0 0.999 0.998 0.998 0.996 0.990 
0 .14 1.000 0.999 0.999 0.998 0.989 
0 .39 0.995 0.982 0.982 0.971 0.940 
0 .59 0.978 0.957 0.957 0.937 0.906 

.14 0 0.998 0.995 0.995 0.990 0.975 

.14 .14 0.989 0.996 0.996 0.992 0.970 

.14 .39 0.966 0.990 0.990 0.972 0.929 

.14 .59 0.967 0.982 0.982 0.954 0.908 

.39 0 0.991 0.982 0.981 0.971 0.957 

.39 .14 0.961 0.975 0.975 0.963 0.920 

.39 .39 0.915 0.956 0.956 0.924 0.920 

.39 .59 0.905 0.952 0.952 0.927 0.934 

.59 0 0.983 0.965 0.962 0.952 0.919 

.59 .14 0.963 0.954 0.954 0.941 0.903 

.59 .39 0.896 0.943 0.944 0.913 0.927 

.59 .59 0.910 0.938 0.938 0.916 0.938 
 

Table 29 
Coverage for N=40 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 
0 0 1.000 0.998 0.998 0.995 0.986 
0 .14 1.000 0.998 0.998 0.992 0.978 
0 .39 0.993 0.979 0.979 0.962 0.933 
0 .59 0.976 0.965 0.966 0.951 0.920 

.14 0 0.998 0.995 0.995 0.994 0.981 

.14 .14 0.965 0.996 0.996 0.991 0.962 

.14 .39 0.950 0.967 0.967 0.953 0.917 

.14 .59 0.958 0.950 0.950 0.952 0.924 

.39 0 0.988 0.977 0.977 0.967 0.938 

.39 .14 0.944 0.954 0.956 0.945 0.906 

.39 .39 0.910 0.943 0.943 0.933 0.945 

.39 .59 0.929 0.944 0.944 0.936 0.947 

.59 0 0.974 0.964 0.964 0.938 0.908 

.59 .14 0.949 0.948 0.947 0.939 0.918 

.59 .39 0.924 0.939 0.938 0.926 0.934 

.59 .59 0.941 0.950 0.949 0.947 0.953 
  c’=.14 

0 0 1.000 1.000 1.000 0.997 0.990 
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0 .14 0.999 0.997 0.997 0.994 0.987 
0 .39 0.991 0.980 0.980 0.971 0.942 
0 .59 0.975 0.958 0.959 0.946 0.907 

.14 0 1.000 0.998 0.998 0.998 0.984 

.14 .14 0.964 0.990 0.990 0.988 0.954 

.14 .39 0.937 0.958 0.957 0.957 0.915 

.14 .59 0.950 0.950 0.950 0.930 0.910 

.39 0 0.994 0.981 0.981 0.956 0.924 

.39 .14 0.941 0.945 0.946 0.931 0.892 

.39 .39 0.908 0.926 0.926 0.926 0.938 

.39 .59 0.934 0.936 0.938 0.932 0.938 

.59 0 0.982 0.972 0.972 0.956 0.927 

.59 .14 0.954 0.954 0.955 0.940 0.924 

.59 .39 0.923 0.946 0.946 0.932 0.936 

.59 .59 0.933 0.943 0.944 0.941 0.960 
  c’=.39 

0 0 1.000 0.996 0.996 0.998 0.991 
0 .14 0.999 0.996 0.996 0.991 0.981 
0 .39 0.996 0.983 0.983 0.977 0.943 
0 .59 0.985 0.966 0.967 0.950 0.914 

.14 0 0.999 0.998 0.998 0.994 0.983 

.14 .14 0.966 0.992 0.992 0.991 0.961 

.14 .39 0.938 0.939 0.938 0.931 0.886 

.14 .59 0.949 0.943 0.942 0.933 0.914 

.39 0 0.992 0.986 0.986 0.971 0.940 

.39 .14 0.935 0.953 0.953 0.938 0.896 

.39 .39 0.920 0.949 0.950 0.932 0.943 

.39 .59 0.935 0.945 0.945 0.943 0.956 

.59 0 0.984 0.967 0.966 0.944 0.907 

.59 .14 0.962 0.963 0.963 0.944 0.928 

.59 .39 0.926 0.945 0.946 0.943 0.948 

.59 .59 0.917 0.924 0.923 0.928 0.936 
  c’=.59 

0 0 0.999 0.996 0.996 0.992 0.986 
0 .14 0.999 0.994 0.994 0.988 0.974 
0 .39 0.996 0.980 0.980 0.971 0.942 
0 .59 0.983 0.962 0.962 0.950 0.920 

.14 0 1.000 0.997 0.998 0.993 0.982 

.14 .14 0.974 0.995 0.995 0.994 0.963 

.14 .39 0.934 0.961 0.960 0.946 0.909 

.14 .59 0.949 0.939 0.941 0.933 0.916 

.39 0 0.997 0.987 0.988 0.957 0.928 

.39 .14 0.943 0.953 0.953 0.948 0.897 

.39 .39 0.904 0.935 0.936 0.929 0.947 

.39 .59 0.938 0.941 0.941 0.936 0.942 

.59 0 0.975 0.961 0.961 0.937 0.912 

.59 .14 0.956 0.959 0.959 0.840 0.845 

.59 .39 0.940 0.959 0.959 0.863 0.876 
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.59 .59 0.945 0.952 0.952 0.847 0.857 
 

Table 30 
Coverage for N=60 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 
0 0 1.000 0.998 0.998 0.997 0.990 
0 .14 0.999 0.986 0.990 0.990 0.978 
0 .39 0.985 0.960 0.958 0.957 0.924 
0 .59 0.978 0.952 0.955 0.941 0.920 

.14 0 0.999 0.997 0.997 0.989 0.976 

.14 .14 0.941 0.981 0.978 0.982 0.922 

.14 .39 0.930 0.941 0.944 0.940 0.918 

.14 .59 0.960 0.952 0.953 0.945 0.930 

.39 0 0.990 0.949 0.950 0.955 0.922 

.39 .14 0.946 0.946 0.943 0.946 0.935 

.39 .39 0.930 0.946 0.946 0.938 0.952 

.39 .59 0.934 0.937 0.942 0.942 0.941 

.59 0 0.959 0.926 0.926 0.924 0.894 

.59 .14 0.958 0.942 0.948 0.946 0.937 

.59 .39 0.941 0.935 0.938 0.947 0.956 

.59 .59 0.948 0.943 0.943 0.946 0.958 
  c’=.14 

0 0 1.000 0.997 0.998 0.999 0.992 
0 .14 0.999 0.996 0.996 0.995 0.987 
0 .39 0.989 0.975 0.975 0.955 0.933 
0 .59 0.983 0.967 0.967 0.953 0.930 

.14 0 0.999 0.998 0.998 0.994 0.981 

.14 .14 0.945 0.976 0.980 0.981 0.940 

.14 .39 0.947 0.948 0.953 0.942 0.930 

.14 .59 0.954 0.954 0.952 0.946 0.931 

.39 0 0.982 0.942 0.945 0.945 0.911 

.39 .14 0.946 0.942 0.944 0.949 0.928 

.39 .39 0.918 0.937 0.943 0.937 0.952 

.39 .59 0.934 0.940 0.940 0.942 0.955 

.59 0 0.981 0.960 0.958 0.958 0.938 

.59 .14 0.946 0.935 0.936 0.942 0.930 

.59 .39 0.927 0.931 0.930 0.937 0.942 

.59 .59 0.930 0.942 0.935 0.939 0.949 
  c’=.39 

0 0 1.000 1.000 1.000 0.998 0.991 
0 .14 1.000 0.999 0.999 0.995 0.985 
0 .39 0.995 0.984 0.983 0.964 0.924 
0 .59 0.974 0.959 0.959 0.947 0.919 

.14 0 1.000 0.992 0.993 0.996 0.983 
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.14 .14 0.933 0.982 0.982 0.994 0.927 

.14 .39 0.945 0.955 0.951 0.945 0.928 

.14 .59 0.958 0.944 0.943 0.930 0.922 

.39 0 0.984 0.951 0.948 0.956 0.925 

.39 .14 0.948 0.935 0.946 0.944 0.926 

.39 .39 0.914 0.927 0.925 0.926 0.935 

.39 .59 0.928 0.938 0.935 0.943 0.939 

.59 0 0.971 0.936 0.931 0.946 0.915 

.59 .14 0.954 0.924 0.929 0.940 0.924 

.59 .39 0.934 0.932 0.930 0.938 0.946 

.59 .59 0.942 0.954 0.956 0.938 0.947 
  c’=.59 

0 0 1.000 0.999 0.999 0.995 0.992 
0 .14 1.000 0.997 0.997 0.995 0.986 
0 .39 0.997 0.987 0.986 0.975 0.946 
0 .59 0.980 0.960 0.960 0.941 0.910 

.14 0 1.000 0.992 0.991 0.989 0.977 

.14 .14 0.943 0.982 0.983 0.975 0.927 

.14 .39 0.939 0.937 0.935 0.926 0.904 

.14 .59 0.963 0.961 0.959 0.954 0.944 

.39 0 0.988 0.963 0.962 0.962 0.927 

.39 .14 0.940 0.94 0.939 0.944 0.922 

.39 .39 0.939 0.934 0.935 0.938 0.951 

.39 .59 0.935 0.940 0.942 0.956 0.961 

.59 0 0.972 0.937 0.939 0.944 0.916 

.59 .14 0.955 0.941 0.943 0.943 0.929 

.59 .39 0.922 0.927 0.929 0.933 0.952 

.59 .59 0.936 0.934 0.934 0.936 0.942 
 

Table 31 
Coverage for N=100 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 
0 0 1 0.995 0.995 0.998 0.99 
0 .14 0.997 0.991 0.991 0.989 0.973 
0 .39 0.978 0.927 0.927 0.938 0.912 
0 .59 0.960 0.929 0.929 0.936 0.917 

.14 0 0.998 0.974 0.974 0.987 0.976 

.14 .14 0.907 0.949 0.949 0.956 0.92 

.14 .39 0.945 0.944 0.945 0.941 0.936 

.14 .59 0.942 0.928 0.927 0.933 0.927 

.39 0 0.969 0.895 0.892 0.937 0.903 

.39 .14 0.947 0.908 0.908 0.950 0.927 

.39 .39 0.930 0.939 0.938 0.935 0.951 

.39 .59 0.953 0.964 0.964 0.963 0.966 
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.59 0 0.957 0.907 0.905 0.945 0.928 

.59 .14 0.956 0.92 0.919 0.947 0.940 

.59 .39 0.945 0.924 0.922 0.945 0.947 

.59 .59 0.937 0.945 0.946 0.940 0.946 
  c’=.14 

0 0 1.000 0.997 0.997 0.999 0.995 
0 .14 1.000 0.991 0.991 0.987 0.975 
0 .39 0.978 0.948 0.949 0.952 0.928 
0 .59 0.965 0.933 0.932 0.945 0.924 

.14 0 1.000 0.976 0.976 0.990 0.967 

.14 .14 0.901 0.958 0.958 0.962 0.917 

.14 .39 0.947 0.946 0.949 0.943 0.933 

.14 .59 0.951 0.932 0.933 0.940 0.932 

.39 0 0.979 0.904 0.904 0.941 0.918 

.39 .14 0.941 0.887 0.888 0.931 0.917 

.39 .39 0.941 0.953 0.949 0.956 0.964 

.39 .59 0.950 0.959 0.959 0.947 0.950 

.59 0 0.959 0.901 0.900 0.933 0.923 

.59 .14 0.956 0.908 0.908 0.945 0.936 

.59 .39 0.935 0.922 0.920 0.949 0.949 

.59 .59 0.952 0.949 0.950 0.952 0.959 
  c’=.39 

0 0 1.000 0.996 0.996 0.998 0.995 
0 .14 0.999 0.990 0.991 0.989 0.967 
0 .39 0.980 0.947 0.946 0.953 0.931 
0 .59 0.955 0.939 0.939 0.943 0.926 

.14 0 0.999 0.970 0.970 0.989 0.974 

.14 .14 0.895 0.942 0.941 0.958 0.894 

.14 .39 0.949 0.944 0.944 0.949 0.938 

.14 .59 0.946 0.938 0.937 0.938 0.930 

.39 0 0.973 0.890 0.890 0.948 0.913 

.39 .14 0.947 0.900 0.902 0.937 0.923 

.39 .39 0.917 0.931 0.931 0.936 0.949 

.39 .59 0.952 0.962 0.962 0.955 0.959 

.59 0 0.963 0.900 0.900 0.950 0.932 

.59 .14 0.951 0.889 0.890 0.948 0.942 

.59 .39 0.948 0.925 0.924 0.944 0.944 

.59 .59 0.939 0.948 0.948 0.945 0.948 
  c’=.59 

0 0 0.999 0.996 0.996 0.995 0.991 
0 .14 0.999 0.989 0.987 0.989 0.969 
0 .39 0.979 0.937 0.939 0.950 0.921 
0 .59 0.958 0.926 0.925 0.944 0.925 

.14 0 0.996 0.977 0.976 0.985 0.964 

.14 .14 0.916 0.939 0.937 0.962 0.909 

.14 .39 0.941 0.954 0.952 0.939 0.928 

.14 .59 0.944 0.927 0.926 0.923 0.915 

.39 0 0.970 0.903 0.902 0.944 0.923 
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.39 .14 0.948 0.911 0.911 0.940 0.932 

.39 .39 0.925 0.935 0.937 0.940 0.960 

.39 .59 0.942 0.957 0.958 0.953 0.958 

.59 0 0.967 0.903 0.902 0.943 0.928 

.59 .14 0.959 0.902 0.905 0.952 0.934 

.59 .39 0.952 0.933 0.934 0.946 0.947 

.59 .59 0.953 0.955 0.954 0.960 0.952 
 

Table 32 
Coverage for N=500 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 

  normal YMdiff YMinfo PercBoot BCBoot 
a b c’=0 
0 0 1.000 0.997 0.997 0.999 0.997 
0 .14 0.984 0.946 0.944 0.947 0.910 
0 .39 0.951 0.938 0.939 0.947 0.944 
0 .59 0.956 0.946 0.944 0.945 0.939 

.14 0 0.989 0.946 0.945 0.955 0.922 

.14 .14 0.930 0.935 0.937 0.947 0.952 

.14 .39 0.948 0.943 0.942 0.945 0.940 

.14 .59 0.963 0.949 0.946 0.955 0.958 

.39 0 0.953 0.943 0.941 0.952 0.945 

.39 .14 0.936 0.934 0.938 0.940 0.942 

.39 .39 0.952 0.941 0.938 0.954 0.959 

.39 .59 0.950 0.943 0.947 0.950 0.948 

.59 0 0.957 0.953 0.949 0.950 0.948 

.59 .14 0.952 0.947 0.949 0.949 0.947 

.59 .39 0.954 0.950 0.943 0.958 0.957 

.59 .59 0.951 0.937 0.941 0.955 0.950 
  c’=.14 

0 0 1.000 0.998 0.997 0.997 0.995 
0 .14 0.988 0.964 0.964 0.968 0.936 
0 .39 0.948 0.938 0.938 0.942 0.940 
0 .59 0.964 0.955 0.959 0.963 0.958 

.14 0 0.987 0.955 0.956 0.960 0.916 

.14 .14 0.929 0.940 0.938 0.947 0.950 

.14 .39 0.964 0.947 0.950 0.957 0.955 

.14 .59 0.957 0.939 0.944 0.950 0.948 

.39 0 0.958 0.946 0.949 0.949 0.945 

.39 .14 0.940 0.942 0.943 0.946 0.943 

.39 .39 0.952 0.935 0.931 0.954 0.950 

.39 .59 0.948 0.942 0.948 0.941 0.942 

.59 0 0.940 0.934 0.934 0.933 0.930 

.59 .14 0.958 0.949 0.943 0.950 0.945 

.59 .39 0.950 0.935 0.935 0.949 0.944 

.59 .59 0.946 0.949 0.949 0.949 0.945 
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  c’=.39 
0 0 1.000 1.000 1.000 1.000 0.995 
0 .14 0.984 0.955 0.954 0.953 0.921 
0 .39 0.946 0.942 0.943 0.939 0.929 
0 .59 0.961 0.953 0.957 0.957 0.954 

.14 0 0.985 0.955 0.957 0.963 0.940 

.14 .14 0.931 0.952 0.951 0.952 0.966 

.14 .39 0.952 0.934 0.937 0.947 0.944 

.14 .59 0.960 0.941 0.940 0.951 0.945 

.39 0 0.961 0.946 0.948 0.954 0.949 

.39 .14 0.947 0.941 0.939 0.949 0.949 

.39 .39 0.945 0.940 0.940 0.945 0.949 

.39 .59 0.931 0.929 0.932 0.940 0.939 

.59 0 0.956 0.955 0.955 0.958 0.954 

.59 .14 0.949 0.933 0.939 0.944 0.936 

.59 .39 0.949 0.934 0.940 0.949 0.944 

.59 .59 0.951 0.948 0.948 0.950 0.947 
  c’=.59 

0 0 1.000 0.998 0.998 0.999 0.994 
0 .14 0.982 0.947 0.945 0.951 0.918 
0 .39 0.955 0.942 0.941 0.952 0.948 
0 .59 0.956 0.945 0.945 0.951 0.943 

.14 0 0.984 0.960 0.959 0.955 0.929 

.14 .14 0.925 0.942 0.940 0.947 0.958 

.14 .39 0.940 0.923 0.920 0.941 0.932 

.14 .59 0.956 0.950 0.949 0.952 0.950 

.39 0 0.957 0.949 0.951 0.951 0.942 

.39 .14 0.950 0.952 0.954 0.949 0.950 

.39 .39 0.937 0.939 0.943 0.933 0.942 

.39 .59 0.953 0.943 0.943 0.959 0.961 

.59 0 0.960 0.954 0.954 0.953 0.954 

.59 .14 0.948 0.946 0.941 0.946 0.948 

.59 .39 0.954 0.936 0.937 0.954 0.954 

.59 .59 0.951 0.946 0.944 0.951 0.946 
Table 33 
Interval Width for N=20 in Study 1. The column names refer to normal theory confidence limits, 
Bayesian method of coefficients with diffuse prior distributions, Bayesian method of coefficients with 
informative prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.287 0.424 0.424 0.416 0.437 
0 .14 0.305 0.455 0.455 0.426 0.446 
0 .39 0.442 0.602 0.602 0.544 0.565 
0 .59 0.599 0.763 0.762 0.677 0.694 

.14 0 0.156 0.209 0.210 0.203 0.213 

.14 .14 0.171 0.227 0.227 0.212 0.222 

.14 .39 0.286 0.335 0.335 0.311 0.321 

.14 .59 0.404 0.452 0.452 0.421 0.428 
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.39 0 0.435 0.505 0.507 0.540 0.561 

.39 .14 0.467 0.553 0.553 0.565 0.586 

.39 .39 0.578 0.688 0.689 0.663 0.688 

.39 .59 0.722 0.841 0.842 0.793 0.821 

.59 0 0.617 0.658 0.660 0.718 0.733 

.59 .14 0.628 0.684 0.683 0.723 0.743 

.59 .39 0.717 0.791 0.791 0.796 0.821 

.59 .59 0.836 0.935 0.934 0.900 0.929 
  c’=.14 

0 0 0.282 0.426 0.425 0.406 0.428 
0 .14 0.300 0.458 0.459 0.425 0.448 
0 .39 0.443 0.600 0.601 0.540 0.562 
0 .59 0.389 0.446 0.446 0.410 0.416 

.14 0 0.157 0.211 0.211 0.203 0.212 

.14 .14 0.176 0.231 0.231 0.222 0.232 

.14 .39 0.291 0.341 0.340 0.316 0.328 

.14 .59 0.403 0.451 0.451 0.422 0.429 

.39 0 0.452 0.519 0.520 0.555 0.574 

.39 .14 0.473 0.560 0.561 0.574 0.594 

.39 .39 0.587 0.699 0.699 0.673 0.702 

.39 .59 0.707 0.828 0.827 0.776 0.800 

.59 0 0.611 0.652 0.652 0.703 0.721 

.59 .14 0.621 0.678 0.678 0.710 0.727 

.59 .39 0.705 0.782 0.781 0.784 0.812 

.59 .59 0.825 0.923 0.923 0.892 0.922 
  c’=.39 

0 0 0.132 0.196 0.196 0.183 0.193 
0 .14 0.154 0.222 0.221 0.201 0.211 
0 .39 0.271 0.330 0.330 0.298 0.306 
0 .59 0.390 0.447 0.446 0.412 0.417 

.14 0 0.152 0.208 0.208 0.201 0.216 

.14 .14 0.176 0.232 0.232 0.219 0.230 

.14 .39 0.293 0.340 0.340 0.317 0.327 

.14 .59 0.404 0.452 0.452 0.422 0.429 

.39 0 0.450 0.526 0.527 0.550 0.569 

.39 .14 0.463 0.553 0.552 0.570 0.592 

.39 .39 0.567 0.674 0.674 0.649 0.676 

.39 .59 0.714 0.836 0.835 0.786 0.812 

.59 0 0.620 0.664 0.663 0.718 0.735 

.59 .14 0.626 0.689 0.688 0.711 0.728 

.59 .39 0.716 0.796 0.797 0.783 0.808 

.59 .59 0.827 0.925 0.925 0.893 0.926 
  c’=.59 

0 0 0.130 0.192 0.192 0.182 0.191 
0 .14 0.154 0.220 0.220 0.201 0.211 
0 .39 0.274 0.332 0.332 0.301 0.309 
0 .59 0.395 0.451 0.451 0.414 0.420 

.14 0 0.152 0.208 0.208 0.201 0.209 
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.14 .14 0.330 0.468 0.469 0.445 0.467 

.14 .39 0.467 0.603 0.604 0.554 0.576 

.14 .59 0.610 0.766 0.766 0.696 0.715 

.39 0 0.446 0.528 0.527 0.555 0.573 

.39 .14 0.470 0.559 0.559 0.564 0.588 

.39 .39 0.570 0.673 0.673 0.655 0.680 

.39 .59 0.702 0.823 0.823 0.772 0.800 

.59 0 0.629 0.676 0.676 0.722 0.743 

.59 .14 0.626 0.683 0.682 0.719 0.741 

.59 .39 0.720 0.798 0.798 0.795 0.822 

.59 .59 0.820 0.917 0.916 0.888 0.916 
 

Table 34 
Interval Width for N=40 in Study 1. The column names refer to normal theory confidence limits, 
Bayesian method of coefficients with diffuse prior distributions, Bayesian method of coefficients with 
informative prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.129 0.193 0.193 0.181 0.191 
0 .14 0.154 0.221 0.221 0.201 0.212 
0 .39 0.275 0.335 0.335 0.302 0.310 
0 .59 0.388 0.445 0.444 0.407 0.412 

.14 0 0.151 0.206 0.206 0.199 0.208 

.14 .14 0.180 0.234 0.234 0.222 0.233 

.14 .39 0.290 0.340 0.341 0.318 0.329 

.14 .59 0.406 0.451 0.451 0.423 0.431 

.39 0 0.275 0.314 0.314 0.306 0.315 

.39 .14 0.292 0.326 0.327 0.322 0.332 

.39 .39 0.370 0.393 0.393 0.385 0.399 

.39 .59 0.470 0.491 0.491 0.483 0.494 

.59 0 0.397 0.432 0.432 0.419 0.424 

.59 .14 0.406 0.436 0.436 0.428 0.435 

.59 .39 0.473 0.489 0.489 0.484 0.495 

.59 .59 0.551 0.561 0.561 0.557 0.572 
  c’=.14 

0 0 0.130 0.193 0.193 0.184 0.193 
0 .14 0.153 0.220 0.220 0.201 0.210 
0 .39 0.271 0.332 0.332 0.301 0.309 
0 .59 0.391 0.446 0.446 0.412 0.417 

.14 0 0.156 0.208 0.209 0.205 0.215 

.14 .14 0.175 0.231 0.230 0.220 0.232 

.14 .39 0.286 0.336 0.336 0.314 0.324 

.14 .59 0.402 0.450 0.450 0.421 0.429 

.39 0 0.279 0.318 0.318 0.308 0.317 

.39 .14 0.296 0.329 0.328 0.324 0.335 

.39 .39 0.377 0.400 0.400 0.394 0.409 

.39 .59 0.468 0.490 0.491 0.478 0.491 
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.59 0 0.395 0.430 0.430 0.422 0.426 

.59 .14 0.409 0.438 0.438 0.429 0.436 

.59 .39 0.471 0.488 0.489 0.485 0.498 

.59 .59 0.547 0.557 0.558 0.555 0.569 
  c’=.39 

0 0 0.131 0.195 0.195 0.184 0.193 
0 .14 0.154 0.221 0.221 0.201 0.211 
0 .39 0.273 0.333 0.333 0.303 0.312 
0 .59 0.392 0.448 0.448 0.412 0.418 

.14 0 0.152 0.206 0.207 0.200 0.210 

.14 .14 0.178 0.234 0.235 0.220 0.231 

.14 .39 0.290 0.337 0.337 0.314 0.325 

.14 .59 0.402 0.451 0.452 0.422 0.429 

.39 0 0.275 0.312 0.312 0.304 0.312 

.39 .14 0.286 0.319 0.319 0.312 0.322 

.39 .39 0.377 0.402 0.402 0.392 0.407 

.39 .59 0.465 0.486 0.486 0.474 0.487 

.59 0 0.401 0.435 0.435 0.425 0.430 

.59 .14 0.404 0.432 0.432 0.428 0.435 

.59 .39 0.473 0.492 0.492 0.489 0.502 

.59 .59 0.549 0.559 0.560 0.558 0.572 
  c’=.59 

0 0 0.132 0.195 0.195 0.185 0.194 
0 .14 0.158 0.223 0.223 0.204 0.214 
0 .39 0.270 0.329 0.329 0.299 0.308 
0 .59 0.378 0.434 0.434 0.399 0.405 

.14 0 0.153 0.207 0.207 0.200 0.209 

.14 .14 0.175 0.232 0.231 0.220 0.232 

.14 .39 0.286 0.333 0.334 0.313 0.323 

.14 .59 0.404 0.455 0.455 0.426 0.433 

.39 0 0.273 0.311 0.311 0.304 0.312 

.39 .14 0.288 0.321 0.321 0.314 0.324 

.39 .39 0.371 0.396 0.396 0.387 0.402 

.39 .59 0.467 0.486 0.487 0.477 0.490 

.59 0 0.399 0.432 0.432 0.424 0.428 

.59 .14 0.398 0.427 0.427 0.420 0.427 

.59 .39 0.473 0.491 0.492 0.484 0.497 

.59 .59 0.550 0.561 0.562 0.556 0.568 
 

Table 35 
Interval Width for N=60 in Study 1. The column names refer to normal theory confidence limits, 
Bayesian method of coefficients with diffuse prior distributions, Bayesian method of coefficients with 
informative prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.087 0.127 0.127 0.120 0.127 
0 .14 0.106 0.141 0.141 0.135 0.142 
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0 .39 0.212 0.239 0.238 0.228 0.233 
0 .59 0.313 0.336 0.336 0.324 0.326 

.14 0 0.159 0.212 0.212 0.203 0.213 

.14 .14 0.128 0.158 0.158 0.151 0.159 

.14 .39 0.223 0.242 0.243 0.237 0.243 

.14 .59 0.320 0.339 0.338 0.327 0.330 

.39 0 0.215 0.236 0.235 0.232 0.236 

.39 .14 0.229 0.243 0.244 0.241 0.248 

.39 .39 0.293 0.298 0.297 0.298 0.308 

.39 .59 0.375 0.383 0.383 0.376 0.384 

.59 0 0.312 0.328 0.330 0.323 0.325 

.59 .14 0.322 0.335 0.336 0.334 0.337 

.59 .39 0.376 0.375 0.376 0.380 0.388 

.59 .59 0.443 0.445 0.445 0.446 0.455 
  c’=.14 

0 0 0.086 0.126 0.125 0.120 0.127 
0 .14 0.107 0.143 0.143 0.136 0.143 
0 .39 0.271 0.333 0.333 0.302 0.311 
0 .59 0.390 0.447 0.447 0.409 0.414 

.14 0 0.157 0.211 0.211 0.205 0.215 

.14 .14 0.128 0.157 0.157 0.154 0.162 

.14 .39 0.228 0.248 0.248 0.241 0.247 

.14 .59 0.321 0.337 0.338 0.329 0.333 

.39 0 0.216 0.235 0.236 0.234 0.239 

.39 .14 0.224 0.238 0.239 0.238 0.245 

.39 .39 0.296 0.300 0.300 0.301 0.312 

.39 .59 0.375 0.383 0.383 0.378 0.387 

.59 0 0.313 0.330 0.329 0.325 0.327 

.59 .14 0.325 0.337 0.337 0.334 0.338 

.59 .39 0.374 0.379 0.378 0.376 0.384 

.59 .59 0.443 0.447 0.447 0.446 0.455 
  c’=.39 

0 0 0.134 0.196 0.196 0.186 0.196 
0 .14 0.150 0.215 0.216 0.197 0.207 
0 .39 0.273 0.333 0.333 0.302 0.311 
0 .59 0.391 0.449 0.449 0.413 0.418 

.14 0 0.106 0.139 0.138 0.135 0.142 

.14 .14 0.125 0.155 0.156 0.150 0.158 

.14 .39 0.226 0.247 0.247 0.238 0.245 

.14 .59 0.319 0.337 0.337 0.325 0.329 

.39 0 0.213 0.233 0.232 0.229 0.234 

.39 .14 0.230 0.246 0.245 0.244 0.250 

.39 .39 0.297 0.307 0.307 0.301 0.312 

.39 .59 0.376 0.385 0.385 0.381 0.389 

.59 0 0.317 0.334 0.335 0.328 0.330 

.59 .14 0.321 0.332 0.330 0.331 0.335 

.59 .39 0.374 0.379 0.379 0.378 0.387 

.59 .59 0.441 0.448 0.448 0.442 0.451 



129 

 

  c’=.59 
0 0 0.132 0.195 0.195 0.185 0.194 
0 .14 0.156 0.221 0.221 0.204 0.214 
0 .39 0.273 0.334 0.333 0.305 0.313 
0 .59 0.386 0.446 0.446 0.405 0.411 

.14 0 0.108 0.143 0.143 0.137 0.144 

.14 .14 0.131 0.162 0.161 0.155 0.163 

.14 .39 0.227 0.246 0.247 0.238 0.245 

.14 .59 0.323 0.341 0.341 0.329 0.334 

.39 0 0.213 0.233 0.232 0.229 0.233 

.39 .14 0.231 0.248 0.247 0.243 0.250 

.39 .39 0.298 0.304 0.304 0.304 0.314 

.39 .59 0.377 0.387 0.386 0.382 0.391 

.59 0 0.316 0.333 0.333 0.330 0.333 

.59 .14 0.331 0.343 0.345 0.341 0.345 

.59 .39 0.372 0.378 0.378 0.377 0.385 

.59 .59 0.438 0.443 0.443 0.439 0.447 
 

Table 36 
Interval Width for N=100 in Study 1. The column names refer to normal theory confidence limits, 
Bayesian method of coefficients with diffuse prior distributions, Bayesian method of coefficients with 
informative prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.051 0.071 0.071 0.071 0.075 
0 .14 0.070 0.086 0.086 0.086 0.091 
0 .39 0.158 0.161 0.161 0.166 0.168 
0 .59 0.237 0.234 0.234 0.242 0.243 

.14 0 0.071 0.086 0.086 0.087 0.092 

.14 .14 0.090 0.101 0.101 0.101 0.107 

.14 .39 0.170 0.174 0.173 0.174 0.178 

.14 .59 0.242 0.243 0.243 0.246 0.248 

.39 0 0.159 0.158 0.158 0.165 0.167 

.39 .14 0.171 0.171 0.171 0.176 0.180 

.39 .39 0.223 0.225 0.225 0.224 0.230 

.39 .59 0.286 0.288 0.288 0.286 0.291 

.59 0 0.239 0.234 0.234 0.245 0.246 

.59 .14 0.243 0.240 0.240 0.246 0.248 

.59 .39 0.285 0.282 0.282 0.286 0.290 

.59 .59 0.335 0.337 0.337 0.334 0.338 
  c’=.14 

0 0 0.051 0.070 0.070 0.070 0.074 
0 .14 0.073 0.088 0.087 0.089 0.093 
0 .39 0.160 0.162 0.162 0.167 0.168 
0 .59 0.237 0.234 0.234 0.243 0.243 

.14 0 0.073 0.087 0.087 0.088 0.093 

.14 .14 0.088 0.100 0.100 0.100 0.106 
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.14 .39 0.168 0.172 0.172 0.173 0.177 

.14 .59 0.244 0.243 0.244 0.247 0.248 

.39 0 0.162 0.160 0.160 0.169 0.171 

.39 .14 0.172 0.172 0.172 0.177 0.181 

.39 .39 0.225 0.227 0.227 0.225 0.231 

.39 .59 0.285 0.288 0.289 0.286 0.290 

.59 0 0.238 0.232 0.232 0.243 0.244 

.59 .14 0.244 0.240 0.240 0.247 0.249 

.59 .39 0.282 0.278 0.277 0.283 0.287 

.59 .59 0.334 0.336 0.335 0.334 0.339 
  c’=.39 

0 0 0.051 0.069 0.068 0.071 0.075 
0 .14 0.072 0.086 0.086 0.088 0.092 
0 .39 0.157 0.159 0.159 0.165 0.167 
0 .59 0.238 0.233 0.233 0.244 0.244 

.14 0 0.072 0.084 0.084 0.087 0.092 

.14 .14 0.088 0.098 0.098 0.100 0.105 

.14 .39 0.171 0.174 0.174 0.176 0.179 

.14 .59 0.243 0.242 0.242 0.247 0.249 

.39 0 0.162 0.158 0.158 0.168 0.170 

.39 .14 0.173 0.171 0.171 0.177 0.181 

.39 .39 0.223 0.226 0.226 0.225 0.231 

.39 .59 0.285 0.287 0.287 0.285 0.290 

.59 0 0.238 0.230 0.229 0.245 0.245 

.59 .14 0.242 0.235 0.235 0.247 0.248 

.59 .39 0.286 0.283 0.283 0.287 0.291 

.59 .59 0.336 0.338 0.339 0.336 0.341 
  c’=.59 

0 0 0.051 0.069 0.069 0.071 0.075 
0 .14 0.074 0.088 0.088 0.089 0.093 
0 .39 0.159 0.161 0.161 0.167 0.169 
0 .59 0.240 0.234 0.234 0.245 0.245 

.14 0 0.071 0.084 0.084 0.086 0.091 

.14 .14 0.090 0.101 0.101 0.109 0.107 

.14 .39 0.173 0.176 0.176 0.177 0.181 

.14 .59 0.245 0.244 0.244 0.249 0.250 

.39 0 0.160 0.158 0.158 0.168 0.169 

.39 .14 0.172 0.172 0.172 0.177 0.181 

.39 .39 0.223 0.224 0.224 0.222 0.228 

.39 .59 0.284 0.287 0.286 0.284 0.288 

.59 0 0.240 0.230 0.230 0.245 0.245 

.59 .14 0.245 0.238 0.238 0.249 0.251 

.59 .39 0.287 0.284 0.284 0.288 0.292 

.59 .59 0.336 0.337 0.337 0.335 0.339 
 

Table 37 
Interval Width for N=500 in Study 1. The column names refer to normal theory confidence limits, 
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Bayesian method of coefficients with diffuse prior distributions, Bayesian method of coefficients with 
informative prior distributions, Percentile bootstrap, and Bias-corrected bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot BCBoot 

a b c’=0 
0 0 0.010 0.014 0.014 0.014 0.015 
0 .14 0.026 0.028 0.028 0.028 0.028 
0 .39 0.068 0.070 0.070 0.069 0.069 
0 .59 0.104 0.105 0.105 0.104 0.104 

.14 0 0.026 0.029 0.029 0.028 0.029 

.14 .14 0.036 0.037 0.037 0.037 0.038 

.14 .39 0.073 0.074 0.074 0.074 0.074 

.14 .59 0.107 0.107 0.107 0.107 0.108 

.39 0 0.069 0.072 0.072 0.070 0.070 

.39 .14 0.073 0.075 0.075 0.073 0.074 

.39 .39 0.097 0.099 0.099 0.097 0.098 

.39 .59 0.125 0.128 0.128 0.125 0.125 

.59 0 0.104 0.108 0.108 0.104 0.104 

.59 .14 0.107 0.110 0.110 0.107 0.107 

.59 .39 0.125 0.127 0.127 0.126 0.126 

.59 .59 0.147 0.150 0.150 0.146 0.147 
  c’=.14 

0 0 0.010 0.014 0.014 0.014 0.015 
0 .14 0.025 0.028 0.028 0.027 0.028 
0 .39 0.069 0.070 0.070 0.070 0.070 
0 .59 0.103 0.104 0.104 0.104 0.104 

.14 0 0.026 0.029 0.029 0.028 0.029 

.14 .14 0.036 0.037 0.037 0.036 0.038 

.14 .39 0.073 0.074 0.074 0.074 0.074 

.14 .59 0.106 0.107 0.107 0.106 0.107 

.39 0 0.069 0.071 0.072 0.069 0.070 

.39 .14 0.073 0.075 0.075 0.074 0.074 

.39 .39 0.097 0.098 0.098 0.097 0.098 

.39 .59 0.125 0.129 0.128 0.124 0.125 

.59 0 0.104 0.106 0.106 0.104 0.104 

.59 .14 0.107 0.109 0.109 0.107 0.107 

.59 .39 0.125 0.127 0.126 0.124 0.125 

.59 .59 0.147 0.151 0.151 0.147 0.148 
  c’=.39 

0 0 0.010 0.014 0.014 0.014 0.015 
0 .14 0.026 0.028 0.028 0.028 0.028 
0 .39 0.069 0.070 0.070 0.069 0.070 
0 .59 0.104 0.105 0.105 0.104 0.104 

.14 0 0.026 0.029 0.029 0.028 0.029 

.14 .14 0.036 0.037 0.037 0.036 0.038 

.14 .39 0.073 0.074 0.073 0.073 0.074 

.14 .59 0.106 0.107 0.107 0.106 0.106 

.39 0 0.069 0.072 0.072 0.070 0.070 

.39 .14 0.073 0.074 0.074 0.073 0.073 
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.39 .39 0.097 0.099 0.099 0.097 0.098 

.39 .59 0.124 0.127 0.127 0.124 0.124 

.59 0 0.104 0.107 0.107 0.104 0.104 

.59 .14 0.107 0.108 0.108 0.107 0.108 

.59 .39 0.125 0.126 0.126 0.125 0.125 

.59 .59 0.147 0.150 0.150 0.147 0.148 
  c’=.59 

0 0 0.010 0.014 0.014 0.014 0.015 
0 .14 0.026 0.0281 0.028 0.028 0.028 
0 .39 0.069 0.071 0.071 0.070 0.070 
0 .59 0.104 0.105 0.105 0.104 0.104 

.14 0 0.026 0.029 0.029 0.028 0.028 

.14 .14 0.036 0.037 0.037 0.036 0.038 

.14 .39 0.073 0.073 0.073 0.073 0.073 

.14 .59 0.107 0.108 0.108 0.107 0.107 

.39 0 0.069 0.072 0.072 0.070 0.070 

.39 .14 0.073 0.076 0.076 0.073 0.074 

.39 .39 0.097 0.100 0.100 0.097 0.098 

.39 .59 0.125 0.126 0.126 0.125 0.125 

.59 0 0.104 0.107 0.107 0.105 0.105 

.59 .14 0.107 0.108 0.108 0.108 0.108 

.59 .39 0.124 0.128 0.128 0.124 0.125 

.59 .59 0.147 0.148 0.148 0.147 0.148 
 

Table 38 
Imbalance for N=20 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, and Percentile bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot 

a b c’=0 
0 0 -0.001 0.000 0.000 0.002 
0 .14 0.000 -0.001 -0.001 -0.002 
0 .39 -0.001 -0.006 -0.006 0.002 
0 .59 -0.003 -0.002 -0.001 -0.002 

.14 0 0.000 0.000 0.000 0.000 

.14 .14 0.033 -0.002 -0.002 0.001 

.14 .39 0.043 0.025 0.024 0.027 

.14 .59 0.020 0.014 0.015 0.016 

.39 0 -0.001 0.003 0.003 -0.001 

.39 .14 0.031 0.004 0.004 0.010 

.39 .39 0.086 0.027 0.028 0.038 

.39 .59 0.074 0.025 0.025 0.044 

.59 0 -0.001 -0.004 -0.003 -0.004 

.59 .14 0.026 0.021 0.021 0.032 

.59 .39 0.080 0.035 0.035 0.043 

.59 .59 0.059 0.020 0.020 0.031 
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  c’=.14 
0 0 -0.001 0.000 0.000 -0.002 
0 .14 0.000 -0.001 -0.001 -0.003 
0 .39 0.000 -0.001 -0.001 0.001 
0 .59 0.007 0.021 0.020 0.003 

.14 0 0.001 -0.002 -0.001 0.001 

.14 .14 0.032 0.004 0.004 0.006 

.14 .39 0.042 0.021 0.020 0.033 

.14 .59 0.034 0.029 0.030 0.033 

.39 0 -0.001 -0.007 -0.007 -0.002 

.39 .14 0.024 0.005 0.005 0.012 

.39 .39 0.094 0.036 0.036 0.042 

.39 .59 0.075 0.030 0.030 0.047 

.59 0 -0.002 -0.011 -0.011 0.003 

.59 .14 0.029 0.026 0.026 0.037 

.59 .39 0.084 0.046 0.048 0.053 

.59 .59 0.084 0.046 0.046 0.060 
  c’=.39 

0 0 0.000 0.002 0.002 0.002 
0 .14 0.000 0.002 0.002 0.000 
0 .39 0.007 0.008 0.009 -0.002 
0 .59 0.002 0.009 0.009 -0.007 

.14 0 0.001 0.003 0.002 0.000 

.14 .14 0.034 -0.002 -0.002 0.002 

.14 .39 0.039 0.022 0.021 0.024 

.14 .59 0.034 0.023 0.023 0.020 

.39 0 -0.005 -0.002 -0.002 0.009 

.39 .14 0.037 0.000 0.000 0.009 

.39 .39 0.098 0.018 0.018 0.048 

.39 .59 0.077 0.034 0.035 0.040 

.59 0 0.007 0.011 0.011 0.009 

.59 .14 0.020 0.021 0.021 0.015 

.59 .39 0.084 0.033 0.033 0.044 

.59 .59 0.071 0.028 0.028 0.048 
  c’=.59 

0 0 -0.001 -0.002 -0.002 -0.004 
0 .14 0.000 0.001 0.001 0.000 
0 .39 -0.001 0.008 0.008 -0.003 
0 .59 -0.004 0.009 0.009 -0.001 

.14 0 -0.002 -0.003 -0.003 0.000 

.14 .14 0.009 -0.002 -0.002 -0.006 

.14 .39 0.026 -0.002 -0.002 0.004 

.14 .59 0.027 0.000 0.000 0.026 

.39 0 0.003 0.004 0.003 0.013 

.39 .14 0.035 0.005 0.005 0.017 

.39 .39 0.081 0.040 0.040 0.050 

.39 .59 0.077 0.028 0.028 0.045 

.59 0 0.007 0.007 0.006 0.008 
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.59 .14 0.021 0.020 0.020 0.025 

.59 .39 0.086 0.043 0.042 0.061 

.59 .59 0.072 0.032 0.032 0.054 
 

Table 39 
Imbalance for N=40 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, and Percentile bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot 

a b c’=0 
0 0 0.000 0.002 0.002 0.003 
0 .14 0.000 0.002 0.002 0.004 
0 .39 -0.001 0.009 0.009 -0.002 
0 .59 -0.002 0.007 0.008 0.009 

.14 0 -0.002 -0.001 -0.001 -0.002 

.14 .14 0.031 -0.002 -0.002 -0.001 

.14 .39 0.046 0.017 0.017 0.025 

.14 .59 0.036 0.026 0.026 0.022 

.39 0 0.000 -0.003 -0.003 0.001 

.39 .14 0.050 0.020 0.022 0.023 

.39 .39 0.082 0.041 0.041 0.045 

.39 .59 0.055 0.030 0.030 0.036 

.59 0 0.006 -0.006 -0.004 0.012 

.59 .14 0.029 0.010 0.011 0.023 

.59 .39 0.056 0.025 0.026 0.042 

.59 .59 0.039 0.016 0.017 0.017 
  c’=.14 

0 0 0.000 0.000 0.000 -0.001 
0 .14 -0.001 0.001 0.001 0.002 
0 .39 0.001 0.010 0.010 0.003 
0 .59 -0.007 0.006 0.007 -0.008 

.14 0 0.000 0.000 0.000 0.000 

.14 .14 0.036 0.004 0.004 0.006 

.14 .39 0.055 0.028 0.027 0.021 

.14 .59 0.028 0.018 0.018 0.036 

.39 0 -0.002 -0.005 -0.005 0.012 

.39 .14 0.051 0.037 0.036 0.041 

.39 .39 0.072 0.030 0.030 0.034 

.39 .59 0.048 0.026 0.024 0.030 

.59 0 -0.002 -0.002 -0.002 0.006 

.59 .14 0.024 0.014 0.013 0.012 

.59 .39 0.061 0.030 0.030 0.040 

.59 .59 0.051 0.029 0.030 0.031 
  c’=.39 

0 0 0.000 0.002 0.002 0.002 
0 .14 -0.001 0.004 0.004 0.003 
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0 .39 -0.002 0.005 0.005 0.001 
0 .59 -0.003 0.008 0.009 -0.004 

.14 0 -0.001 0.000 0.000 0.000 

.14 .14 0.032 0.000 0.000 0.005 

.14 .39 0.052 0.045 0.046 0.043 

.14 .59 0.031 0.025 0.026 0.033 

.39 0 -0.004 -0.008 -0.008 -0.005 

.39 .14 0.057 0.025 0.025 0.026 

.39 .39 0.064 0.027 0.028 0.026 

.39 .59 0.057 0.031 0.031 0.037 

.59 0 0.000 -0.007 -0.008 0.004 

.59 .14 0.022 0.013 0.013 0.018 

.59 .39 0.060 0.029 0.028 0.017 

.59 .59 0.063 0.028 0.031 0.036 
  c’=.59 

0 0 -0.001 -0.002 -0.002 -0.004 
0 .14 -0.001 -0.002 -0.002 -0.006 
0 .39 0.000 0.002 0.002 0.003 
0 .59 0.001 0.012 0.012 0.010 

.14 0 0.000 0.003 0.002 0.003 

.14 .14 0.024 -0.001 -0.001 -0.002 

.14 .39 0.062 0.027 0.028 0.036 

.14 .59 0.029 0.023 0.023 0.023 

.39 0 -0.001 -0.003 -0.002 0.003 

.39 .14 0.051 0.027 0.027 0.036 

.39 .39 0.080 0.033 0.032 0.033 

.39 .59 0.052 0.029 0.027 0.034 

.59 0 0.007 0.003 0.003 0.005 

.59 .14 0.032 0.021 0.021 0.025 

.59 .39 0.048 0.021 0.021 0.022 

.59 .59 0.047 0.022 0.022 0.037 
 

Table 40 
Imbalance for N=60 in Study 1.  The column names refer to normal theory confidence limits, Bayesian 
method of coefficients with diffuse prior distributions, Bayesian method of coefficients with informative 
prior distributions, and Percentile bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot 

a b c’=0 
0 0 0.000 0.000 0.000 0.001 
0 .14 -0.001 0.002 0.002 0.002 
0 .39 0.007 0.006 0.006 0.001 
0 .59 0.006 0.010 0.011 0.007 

.14 0 0.001 0.001 0.001 0.005 

.14 .14 0.059 0.001 0.004 0.002 

.14 .39 0.060 0.029 0.030 0.044 

.14 .59 0.024 0.016 0.013 0.019 

.39 0 0.002 0.001 0.004 0.005 
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.39 .14 0.050 0.024 0.023 0.036 

.39 .39 0.062 0.024 0.022 0.036 

.39 .59 0.052 0.037 0.032 0.026 

.59 0 0.007 0.010 0.014 0.006 

.59 .14 0.026 0.030 0.026 0.020 

.59 .39 0.051 0.033 0.028 0.031 

.59 .59 0.042 0.021 0.019 0.024 
  c’=.14 

0 0 0.000 0.001 0.000 -0.001 
0 .14 -0.001 0.000 0.000 -0.001 
0 .39 -0.001 0.005 0.005 0.009 
0 .59 -0.003 0.001 0.001 -0.005 

.14 0 0.001 0.002 0.002 0.004 

.14 .14 0.053 0.004 0.002 0.005 

.14 .39 0.039 0.014 0.013 0.024 

.14 .59 0.026 0.008 0.008 0.014 

.39 0 0.002 0.010 0.007 0.013 

.39 .14 0.054 0.036 0.036 0.033 

.39 .39 0.068 0.035 0.035 0.025 

.39 .59 0.048 0.026 0.024 0.028 

.59 0 0.001 0.004 0.006 0.006 

.59 .14 0.028 0.029 0.026 0.024 

.59 .39 0.047 0.021 0.022 0.019 

.59 .59 0.038 0.026 0.033 0.019 
  c’=.39 

0 0 0.000 0.000 0.000 0.000 
0 .14 0.000 -0.001 -0.001 -0.001 
0 .39 0.001 0.006 0.005 0.004 
0 .59 0.002 0.017 0.017 0.013 

.14 0 0.000 -0.006 -0.007 -0.002 

.14 .14 0.067 0.006 0.000 0.000 

.14 .39 0.045 0.023 0.023 0.033 

.14 .59 0.022 0.004 0.005 0.010 

.39 0 -0.004 -0.005 -0.004 -0.006 

.39 .14 0.040 0.027 0.028 0.030 

.39 .39 0.072 0.041 0.039 0.042 

.39 .59 0.050 0.020 0.025 0.015 

.59 0 -0.003 -0.006 -0.003 -0.006 

.59 .14 0.022 0.026 0.025 0.018 

.59 .39 0.042 0.024 0.026 0.032 

.59 .59 0.040 0.014 0.014 0.020 
  c’=.59 

0 0 0.000 -0.001 -0.001 -0.001 
0 .14 0.000 0.001 0.001 0.001 
0 .39 0.001 0.009 0.010 0.003 
0 .59 0.014 0.018 0.018 0.017 

.14 0 0.000 0.004 0.005 0.003 

.14 .14 0.051 0.000 -0.003 0.003 
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.14 .39 0.049 0.039 0.037 0.040 

.14 .59 0.017 0.005 0.007 0.010 

.39 0 0.002 -0.003 -0.006 0.004 

.39 .14 0.046 0.022 0.021 0.022 

.39 .39 0.049 0.016 0.019 0.024 

.39 .59 0.051 0.024 0.022 0.020 

.59 0 -0.004 0.003 0.001 0.004 

.59 .14 0.021 0.015 0.013 0.005 

.59 .39 0.066 0.055 0.053 0.043 

.59 .59 0.044 0.032 0.032 0.022 
 

Table 41 
Imbalance for N=100 in Study 1.  The column names refer to normal theory confidence limits, 
Bayesian method of coefficients with diffuse prior distributions, Bayesian method of coefficients with 
informative prior distributions, and Percentile bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot 

a b c’=0 
0 0 0.000 -0.001 -0.001 0.000 
0 .14 0.001 0.003 0.003 0.003 
0 .39 0.002 -0.015 -0.015 -0.006 
0 .59 -0.004 -0.005 -0.005 0.008 

.14 0 -0.002 0.012 0.012 -0.001 

.14 .14 0.089 0.035 0.035 0.026 

.14 .39 0.037 0.026 0.027 0.023 

.14 .59 0.016 0.004 0.003 0.013 

.39 0 -0.001 0.063 0.064 0.011 

.39 .14 0.043 0.068 0.068 0.028 

.39 .39 0.056 0.031 0.032 0.031 

.39 .59 0.027 0.012 0.012 0.015 

.59 0 0.001 0.057 0.059 0.003 

.59 .14 0.016 0.050 0.051 0.005 

.59 .39 0.037 0.052 0.052 0.027 

.59 .59 0.033 0.021 0.020 0.012 
  c’=.14 

0 0 0.000 0.001 0.001 -0.001 
0 .14 0.000 -0.001 -0.001 0.001 
0 .39 -0.002 -0.008 -0.009 -0.002 
0 .59 -0.005 -0.013 -0.012 0.001 

.14 0 0.000 0.018 0.018 0.002 

.14 .14 0.097 0.034 0.034 0.028 

.14 .39 0.035 0.010 0.013 0.011 

.14 .59 0.017 0.004 0.003 0.008 

.39 0 0.007 0.074 0.074 0.009 

.39 .14 0.033 0.081 0.080 0.023 

.39 .39 0.045 0.023 0.025 0.020 

.39 .59 0.036 0.021 0.021 0.023 

.59 0 -0.005 0.057 0.054 -0.011 
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.59 .14 0.022 0.068 0.068 0.011 

.59 .39 0.049 0.062 0.062 0.023 

.59 .59 0.028 0.015 0.016 0.012 
  c’=.39 

0 0 0.000 -0.002 -0.002 -0.002 
0 .14 -0.001 -0.008 -0.007 -0.007 
0 .39 -0.004 -0.009 -0.010 0.003 
0 .59 -0.009 -0.017 -0.017 -0.007 

.14 0 0.001 0.024 0.024 0.001 

.14 .14 0.101 0.046 0.047 0.030 

.14 .39 0.039 0.020 0.020 0.023 

.14 .59 0.030 0.012 0.013 0.018 

.39 0 0.005 0.094 0.094 0.014 

.39 .14 0.045 0.076 0.076 0.019 

.39 .39 0.053 0.029 0.029 0.022 

.39 .59 0.034 0.014 0.014 0.015 

.59 0 -0.003 0.070 0.070 0.000 

.59 .14 0.025 0.079 0.078 0.016 

.59 .39 0.024 0.035 0.036 0.004 

.59 .59 0.033 0.018 0.018 0.021 
  c’=.59 

0 0 0.001 0.002 0.002 0.001 
0 .14 -0.001 -0.005 -0.005 0.001 
0 .39 -0.001 -0.001 -0.001 0.002 
0 .59 -0.008 -0.020 -0.021 -0.010 

.14 0 0.000 0.015 0.016 -0.003 

.14 .14 0.082 0.047 0.049 0.022 

.14 .39 0.045 0.024 0.026 0.029 

.14 .59 0.018 0.005 0.004 0.015 

.39 0 -0.004 0.055 0.056 -0.010 

.39 .14 0.038 0.067 0.065 0.018 

.39 .39 0.057 0.021 0.021 0.026 

.39 .59 0.038 0.011 0.010 0.017 

.59 0 -0.009 0.073 0.074 -0.007 

.59 .14 0.021 0.072 0.067 0.014 

.59 .39 0.032 0.043 0.040 0.006 

.59 .59 0.027 0.021 0.020 0.016 
 

Table 42 
Imbalance for N=500 in Study 1.  The column names refer to normal theory confidence limits, 
Bayesian method of coefficients with diffuse prior distributions, Bayesian method of coefficients with 
informative prior distributions, and Percentile bootstrap (respectively). 
  normal YMdiff YMinfo PercBoot 

a b c’=0 
0 0 0.000 0.003 0.003 0.001 
0 .14 0.008 0.006 0.006 0.009 
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0 .39 0.009 0.006 0.005 0.005 
0 .59 0.004 0.008 0.006 0.009 

.14 0 -0.005 -0.016 -0.013 -0.007 

.14 .14 0.044 0.007 0.009 0.007 

.14 .39 0.008 0.011 0.006 0.003 

.14 .59 0.015 0.005 0.002 0.013 

.39 0 -0.003 -0.007 -0.007 -0.002 

.39 .14 0.028 0.024 0.018 0.014 

.39 .39 0.016 0.019 0.022 0.002 

.39 .59 0.012 -0.003 -0.003 -0.002 

.59 0 -0.001 0.001 -0.003 0.000 

.59 .14 0.016 0.011 0.013 0.011 

.59 .39 0.024 0.012 0.013 0.020 

.59 .59 0.009 0.003 -0.001 0.003 
  c’=.14 

0 0 0.000 0.000 0.001 0.001 
0 .14 0.002 -0.002 0.000 0.004 
0 .39 0.008 0.008 0.008 0.010 
0 .59 -0.006 -0.005 -0.011 -0.003 

.14 0 0.001 0.001 0.000 0.002 

.14 .14 0.055 0.020 0.024 0.021 

.14 .39 0.008 -0.003 -0.006 0.001 

.14 .59 0.009 0.001 0.002 0.002 

.39 0 -0.004 0.008 0.005 -0.001 

.39 .14 0.020 0.008 0.007 0.006 

.39 .39 0.014 0.011 0.017 0.008 

.39 .59 0.014 0.004 -0.002 0.005 

.59 0 0.006 0.010 0.008 0.003 

.59 .14 0.004 0.003 0.003 -0.002 

.59 .39 0.020 0.011 0.011 0.007 

.59 .59 0.018 0.005 0.005 0.013 
  c’=.39 

0 0 0.000 0.000 0.000 0.000 
0 .14 -0.006 -0.007 -0.004 -0.003 
0 .39 0.000 0.002 0.003 0.005 
0 .59 -0.003 0.001 -0.001 0.001 

.14 0 -0.007 -0.011 -0.013 -0.009 

.14 .14 0.055 0.024 0.023 0.024 

.14 .39 0.016 0.004 0.009 0.007 

.14 .59 0.004 -0.003 0.000 -0.003 

.39 0 -0.003 0.012 0.006 0.000 

.39 .14 0.037 0.025 0.029 0.019 

.39 .39 0.027 0.014 0.012 0.017 

.39 .59 0.025 0.001 0.002 0.012 

.59 0 -0.002 0.001 0.001 0.002 

.59 .14 0.007 0.009 0.005 0.004 

.59 .39 0.017 0.014 0.014 0.003 

.59 .59 -0.001 -0.006 -0.006 -0.012 
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  c’=.59 
0 0 0.000 0.000 0.000 -0.001 
0 .14 -0.006 -0.007 -0.005 -0.003 
0 .39 0.001 0.006 0.005 0.000 
0 .59 -0.006 -0.003 -0.009 -0.001 

.14 0 -0.004 -0.012 -0.011 -0.007 

.14 .14 0.059 0.018 0.016 0.025 

.14 .39 0.020 0.007 0.012 0.013 

.14 .59 0.012 0.014 0.011 0.012 

.39 0 -0.007 -0.003 -0.005 -0.005 

.39 .14 0.022 0.006 0.006 0.013 

.39 .39 0.033 0.021 0.023 0.021 

.39 .59 0.015 0.001 0.001 0.011 

.59 0 0.000 0.004 0.008 -0.003 

.59 .14 0.014 0.002 0.007 0.010 

.59 .39 0.016 -0.008 -0.007 0.004 

.59 .59 0.007 -0.002 -0.002 0.003 
 

 
Table 43 
Type I error rate for N=20 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
bias-corrected bootstrap interval estimates in Study 2 (c’=0). 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

0 0 0.001 0.004 0.002 0.000 0.002 0.000 0.006 0.010 
0 .14 0.000 0.004 0.004 0.000 0.001 0.000 0.006 0.019 
0 .39 0.005 0.022 0.011 0.004 0.009 0.003 0.016 0.032 
0 .59 0.014 0.039 0.021 0.013 0.019 0.005 0.054 0.089 
 

 
Table 44 
Type I error rate for N=40 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
bias-corrected bootstrap interval estimates in Study 2 (c’=0). 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

0 0 0 0.002 0.002 0 0 0 0.004 0.01 
0 .14 0 0.006 0.004 0.001 0.003 0 0.005 0.016 
0 .39 0.009 0.038 0.028 0.012 0.021 0.005 0.041 0.071 
0 .59 0.018 0.055 0.047 0.006 0.036 0.002 0.062 0.097 
 

Table 45 
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Type I error rate for N=60 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
bias-corrected bootstrap interval estimates in Study 2 (c’=0). 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

0 0 0 0.001 0 0 0 0 0 0.006 
0 .14 0 0.007 0.006 0 0.004 0.001 0.009 0.026 
0 .39 0.016 0.028 0.026 0.006 0.021 0.003 0.037 0.071 
0 .59 0.018 0.04 0.039 0.007 0.031 0.005 0.04 0.066 
 

Table 46 

Type I error rate for N=100 for normal theory, distribution of the product, Bayesian method of 
coefficients with diffuse priors, Bayesian method of coefficients with informative priors, percentile 
bootstrap, and bias-corrected bootstrap interval estimates in Study 2 (c’=0). 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

0 0 0.001 0.002 0.003 0 0.002 0 0.003 0.007 
0 .14 0.003 0.015 0.01 0.001 0.011 0.002 0.013 0.031 
0 .39 0.022 0.047 0.05 0.002 0.047 0.005 0.06 0.085 
0 .59 0.032 0.044 0.042 0.007 0.047 0.006 0.054 0.063 
 

Table 47 

Type I error rate for N=200 for normal theory, distribution of the product, Bayesian method of 
coefficients with diffuse priors, Bayesian method of coefficients with informative priors, percentile 
bootstrap, and bias-corrected bootstrap interval estimates in Study 2 (c’=0). 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

0 0 0 0 0 0 0.001 0 0.001 0.004 
0 .14 0.005 0.03 0.032 0.005 0.035 0.006 0.033 0.056 
0 .39 0.042 0.058 0.061 0.009 0.065 0.01 0.061 0.083 
0 .59 0.051 0.059 0.059 0.007 0.061 0.007 0.061 0.064 
 

Table 48 

Power for N=20 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 
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.14 .14 0.002 0.007 0.005 0 0.003 0 0.008 0.019 

.14 .39 0.006 0.03 0.013 0.023 0.014 0.024 0.025 0.063 

.14 .59 0.026 0.065 0.029 0.048 0.036 0.042 0.069 0.112 

.39 .39 0.053 0.133 0.077 0.424 0.084 0.413 0.122 0.211 

.39 .59 0.12 0.221 0.147 0.641 0.167 0.64 0.205 0.296 

.59 .59 0.277 0.433 0.329 0.976 0.359 0.964 0.374 0.501 
  c’=.39 
.14 .14 0.001 0.006 0.003 0 0.002 0 0.006 0.019 
.39 .39 0.052 0.115 0.072 0.425 0.072 0.401 0.115 0.193 
.59 .59 0.275 0.448 0.344 0.969 0.368 0.966 0.42 0.528 
 

Table 49 

Power for N=40 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

.14 .14 0 0.007 0.005 0.003 0.003 0.002 0.01 0.032 

.14 .39 0.03 0.081 0.059 0.125 0.058 0.139 0.073 0.131 

.14 .59 0.081 0.154 0.135 0.162 0.123 0.173 0.151 0.201 

.39 .39 0.231 0.387 0.356 0.951 0.353 0.957 0.379 0.504 

.39 .59 0.455 0.609 0.569 0.975 0.544 0.977 0.594 0.689 

.59 .59 0.773 0.873 0.849 0.999 0.841 1 0.845 0.907 
  c’=.39 
.14 .14 0.004 0.021 0.012 0.015 0.016 0.009 0.02 0.04 
.39 .39 0.243 0.411 0.361 0.964 0.385 0.962 0.405 0.514 
.59 .59 0.786 0.872 0.845 1 0.857 1 0.861 0.908 
 

Table 50 

Power for N=60 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

.14 .14 0.006 0.037 0.03 0.045 0.028 0.03 0.036 0.065 

.14 .39 0.06 0.141 0.127 0.269 0.113 0.232 0.151 0.233 

.14 .59 0.122 0.182 0.158 0.25 0.148 0.23 0.198 0.253 

.39 .39 0.484 0.677 0.646 0.995 0.622 0.995 0.653 0.739 
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.39 .59 0.737 0.819 0.794 0.996 0.788 0.997 0.813 0.855 

.59 .59 0.969 0.985 0.98 1 0.983 1 0.972 0.982 
  c’=.39 
.14 .14 0.002 0.025 0.024 0.039 0.016 0.018 0.03 0.064 
.39 .39 0.48 0.671 0.645 0.997 0.633 0.996 0.652 0.758 
.59 .59 0.955 0.976 0.972 1 0.972 1 0.971 0.986 
 

Table 51 

Power for N=100 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

.14 .14 0.022 0.064 0.052 0.197 0.055 0.254 0.068 0.123 

.14 .39 0.18 0.283 0.277 0.488 0.26 0.589 0.299 0.36 

.14 .59 0.239 0.29 0.281 0.497 0.269 0.563 0.296 0.328 

.39 .39 0.85 0.921 0.898 1 0.916 1 0.918 0.939 

.39 .59 0.955 0.967 0.964 1 0.96 1 0.964 0.971 

.59 .59 1 1 1 1 1 1 1 1 
  c’=.39 
.14 .14 0.025 0.066 0.055 0.202 0.056 0.271 0.073 0.129 
.39 .39 0.868 0.924 0.91 1 0.929 1 0.921 0.945 
.59 .59 1 1 0.999 1 1 1 1 1 
 

Table 52 

Power for N=200 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

.14 .14 0.074 0.196 0.201 0.735 0.240 0.761 0.199 0.315 

.14 .39 0.447 0.515 0.506 0.878 0.574 0.885 0.521 0.567 

.14 .59 0.483 0.505 0.502 0.878 0.561 0.883 0.501 0.543 

.39 .39 0.996 0.999 0.998 1 0.999 1 0.996 0.999 

.39 .59 0.999 0.999 1 1 1 1 1 1 

.59 .59 1 1 1 1 1 1 1 1 
  c’=.39 
.14 .14 0.09 0.244 0.244 0.739 0.278 0.74 0.238 0.353 
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.39 .39 0.996 0.997 0.998 1 0.998 1 0.996 0.998 

.59 .59 1 1 1 1 1 1 1 1 
 

Table 53 

Coverage for N=20 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0.999 0.996 0.998 1 0.998 1 0.994 0.99 
0 .14 1 0.996 0.996 1 0.999 1 0.994 0.981 
0 .39 0.995 0.978 0.989 0.996 0.991 0.997 0.984 0.968 
0 .59 0.986 0.961 0.979 0.987 0.981 0.995 0.946 0.911 
 .14  .14 0.992 0.993 0.996 1 0.997 1 0.991 0.984 
 .14  .39 0.966 0.982 0.989 0.993 0.993 0.997 0.975 0.94 
 .14  .59 0.967 0.948 0.965 0.992 0.97 0.996 0.936 0.896 
 .39  .39 0.901 0.947 0.953 0.989 0.933 0.995 0.928 0.917 
 .39  .59 0.889 0.926 0.937 0.99 0.917 0.998 0.914 0.916 
 .59  .59 0.905 0.943 0.948 0.995 0.91 0.998 0.935 0.952 
  c’=.39 
 .14  .14 0.986 0.993 0.996 1 0.998 1 0.994 0.981 
 .39  .39 0.903 0.951 0.962 0.992 0.946 0.991 0.929 0.916 
 .59  .59 0.902 0.928 0.937 0.988 0.919 0.993 0.915 0.931 
 

Table 54 

Coverage for N=40 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 1 0.998 0.998 1 1 1 0.996 0.99 
0 .14 1 0.994 0.996 0.999 0.997 1 0.995 0.984 
0 .39 0.991 0.962 0.972 0.988 0.979 0.995 0.959 0.929 
0 .59 0.982 0.945 0.953 0.994 0.964 0.998 0.938 0.903 
 .14  .14 0.962 0.999 0.999 1 1 1 0.995 0.966 
 .14  .39 0.944 0.959 0.966 0.994 0.964 0.995 0.943 0.91 
 .14  .59 0.955 0.945 0.955 0.993 0.958 0.995 0.936 0.911 
 .39  .39 0.923 0.944 0.953 0.99 0.948 0.993 0.932 0.943 
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 .39  .59 0.932 0.944 0.96 0.995 0.942 0.997 0.938 0.948 
 .59  .59 0.925 0.948 0.96 0.99 0.937 0.992 0.923 0.944 
  c’=.39 
 .14  .14 0.966 0.987 0.991 0.999 0.991 1 0.981 0.944 
 .39  .39 0.934 0.947 0.965 0.991 0.957 0.992 0.937 0.955 
 .59  .59 0.933 0.95 0.957 0.992 0.946 0.993 0.94 0.944 
 

Table 55 

Coverage for N=60 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 1 0.999 1 1 1 1 1 0.994 
0 .14 1 0.993 0.994 1 0.996 0.999 0.991 0.974 
0 .39 0.984 0.972 0.974 0.994 0.979 0.997 0.963 0.929 
0 .59 0.982 0.96 0.961 0.993 0.969 0.995 0.96 0.934 

 .14  .14 0.937 0.985 0.989 0.994 0.988 0.997 0.976 0.914 
 .14  .39 0.94 0.951 0.952 0.997 0.954 0.997 0.94 0.924 
 .14  .59 0.954 0.948 0.951 0.997 0.952 0.997 0.938 0.919 
 .39  .39 0.913 0.94 0.935 0.986 0.942 0.993 0.922 0.932 
 .39  .59 0.93 0.944 0.945 0.99 0.944 0.992 0.936 0.94 
 .59  .59 0.932 0.953 0.954 0.996 0.942 0.995 0.939 0.943 
  c’=.39 
.14 .14 0.945 0.993 0.993 0.996 0.995 0.997 0.981 0.934 
.39 .39 0.923 0.95 0.949 0.993 0.955 0.995 0.933 0.945 
.59 .59 0.934 0.95 0.953 0.996 0.951 0.991 0.945 0.951 
 

Table 56 

Coverage for N=100 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0.999 0.998 0.997 1 0.998 1 0.997 0.993 
0 .14 0.997 0.985 0.99 0.999 0.989 0.998 0.987 0.969 
0 .39 0.978 0.953 0.95 0.998 0.953 0.995 0.94 0.915 
0 .59 0.968 0.956 0.958 0.993 0.953 0.994 0.946 0.937 
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.14 .14 0.906 0.965 0.97 0.991 0.966 0.989 0.958 0.903 

.14 .39 0.934 0.94 0.944 0.993 0.936 0.991 0.934 0.923 

.14 .59 0.961 0.96 0.966 0.992 0.945 0.994 0.949 0.947 

.39 .39 0.937 0.955 0.957 0.994 0.949 0.995 0.958 0.962 

.39 .59 0.937 0.946 0.954 0.991 0.937 0.992 0.94 0.947 

.59 .59 0.935 0.945 0.946 0.993 0.935 0.996 0.939 0.95 
  c’=.39 
.14 .14 0.9 0.97 0.972 0.99 0.965 0.994 0.953 0.913 
.39 .39 0.948 0.96 0.963 0.995 0.959 0.995 0.954 0.96 
.59 .59 0.946 0.952 0.956 0.994 0.952 0.997 0.947 0.947 
 

Table 57 

Coverage for N=200 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 1 1 1 1 0.999 1 0.999 0.996 
0 .14 0.995 0.97 0.968 0.995 0.965 0.994 0.967 0.944 
0 .39 0.958 0.942 0.939 0.991 0.935 0.99 0.939 0.917 
0 .59 0.949 0.941 0.941 0.993 0.939 0.993 0.939 0.936 
.14 .14 0.905 0.96 0.96 0.994 0.953 0.993 0.957 0.957 
.14 .39 0.949 0.954 0.949 0.995 0.949 0.995 0.95 0.948 
.14 .59 0.953 0.948 0.949 0.994 0.945 0.994 0.943 0.941 
.39 .39 0.943 0.942 0.945 0.995 0.934 0.993 0.942 0.947 
.39 .59 0.947 0.947 0.951 0.988 0.941 0.989 0.948 0.943 
.59 .59 0.948 0.948 0.953 0.987 0.943 0.989 0.95 0.949 
  c’=.39 
.14 .14 0.904 0.943 0.941 0.992 0.94 0.996 0.942 0.944 
.39 .39 0.935 0.936 0.94 0.992 0.935 0.992 0.937 0.937 
.59 .59 0.946 0.95 0.954 0.992 0.944 0.994 0.949 0.956 
 

Table 58 

Interval Width for N=20 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
bias-corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 
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0 0 0.285 0.397 0.449 0.166 0.344 0.161 0.412 0.435 
0 .14 0.318 0.421 0.480 0.190 0.363 0.184 0.437 0.460 
0 .39 0.435 0.516 0.590 0.299 0.447 0.297 0.538 0.557 
0 .59 0.594 0.658 0.746 0.418 0.571 0.422 0.675 0.691 
.14 .14 0.331 0.433 0.480 0.207 0.372 0.206 0.457 0.479 
.14 .39 0.465 0.539 0.604 0.312 0.460 0.316 0.557 0.579 
.14 .59 0.615 0.674 0.757 0.427 0.578 0.437 0.695 0.716 
.39 .39 0.588 0.642 0.691 0.380 0.539 0.397 0.669 0.694 
.39 .59 0.706 0.751 0.820 0.476 0.634 0.502 0.780 0.808 
.59 .59 0.812 0.842 0.900 0.544 0.712 0.574 0.874 0.902 
  c’=.39 
.14 .14 0.310 0.413 0.462 0.200 0.360 0.199 0.432 0.451 
.39 .39 0.570 0.627 0.677 0.378 0.545 0.387 0.656 0.687 
.59 .59 0.827 0.858 0.916 0.5518 0.748 0.563 0.891 0.922 
 

Table 59 

Interval Width for N=40 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
bias-corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0.133 0.186 0.197 0.0794 0.175 0.0758 0.185 0.194 
0 .14 0.160 0.207 0.220 0.101 0.195 0.096 0.206 0.215 
0 .39 0.271 0.301 0.319 0.192 0.288 0.185 0.301 0.310 
0 .59 0.392 0.415 0.438 0.279 0.400 0.268 0.415 0.421 
.14 .14 0.172 0.216 0.231 0.114 0.203 0.111 0.216 0.227 
.14 .39 0.292 0.319 0.339 0.202 0.304 0.200 0.321 0.331 
.14 .59 0.404 0.424 0.447 0.284 0.406 0.282 0.423 0.430 
.39 .39 0.375 0.390 0.414 0.253 0.367 0.259 0.390 0.406 
.39 .59 0.475 0.486 0.513 0.325 0.462 0.332 0.487 0.501 
.59 .59 0.543 0.550 0.580 0.373 0.523 0.385 0.549 0.564 
  c’=.39 
.14 .14 0.182 0.224 0.239 0.117 0.218 0.117 0.225 0.236 
.39 .39 0.375 0.390 0.412 0.253 0.378 0.262 0.391 0.408 
.59 .59 0.546 0.553 0.584 0.372 0.533 0.385 0.551 0.565 
 

Table 60 

Interval Width for N=60 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
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bias-corrected bootstrap interval estimates in Study 2. 

  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0.088 0.122 0.126 0.052 0.118 0.051 0.121 0.127 
0 .14 0.108 0.138 0.143 0.072 0.134 0.071 0.137 0.144 
0 .39 0.213 0.230 0.237 0.152 0.221 0.152 0.229 0.234 
0 .59 0.309 0.321 0.331 0.221 0.306 0.225 0.318 0.320 
.14 .14 0.129 0.154 0.158 0.086 0.152 0.087 0.152 0.161 
.14 .39 0.225 0.239 0.246 0.158 0.231 0.159 0.236 0.242 
.14 .59 0.323 0.333 0.341 0.228 0.318 0.230 0.332 0.336 
.39 .39 0.293 0.300 0.306 0.203 0.292 0.200 0.298 0.309 
.39 .59 0.372 0.378 0.385 0.259 0.365 0.253 0.374 0.382 
.59 .59 0.438 0.442 0.451 0.302 0.426 0.301 0.441 0.449 
  c’=.39 
.14 .14 0.182 0.224 0.239 0.117 0.218 0.117 0.225 0.236 
.39 .39 0.375 0.390 0.412 0.253 0.378 0.262 0.391 0.408 
.59 .59 0.546 0.553 0.584 0.372 0.533 0.385 0.551 0.565 
 

Table 61 

Interval Width for N=100 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
bias-corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0.049 0.070 0.072 0.030 0.069 0.028 0.069 0.074 
0 .14 0.072 0.088 0.090 0.050 0.082 0.046 0.087 0.091 
0 .39 0.159 0.167 0.169 0.117 0.155 0.109 0.166 0.168 
0 .59 0.232 0.239 0.242 0.167 0.217 0.160 0.237 0.238 
.14 .14 0.091 0.103 0.105 0.061 0.098 0.058 0.103 0.108 
.14 .39 0.171 0.177 0.181 0.120 0.167 0.114 0.176 0.179 
.14 .59 0.246 0.251 0.254 0.173 0.233 0.169 0.249 0.251 
.39 .39 0.221 0.223 0.230 0.155 0.214 0.148 0.222 0.228 
.39 .59 0.286 0.288 0.295 0.199 0.274 0.191 0.286 0.290 
.59 .59 0.336 0.337 0.346 0.232 0.324 0.226 0.336 0.340 
  c’=.39 
.14 .14 0.090 0.103 0.104 0.061 0.099 0.060 0.102 0.108 
.39 .39 0.223 0.225 0.231 0.155 0.222 0.154 0.223 0.229 
.59 .59 0.335 0.337 0.344 0.231 0.332 0.233 0.334 0.339 
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Table 62 

Interval Width for N=200 for normal theory, distribution of the product, Bayesian method of coefficients 
with diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and 
bias-corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0.025 0.035 0.035 0.015 0.033 0.015 0.035 0.037 
0 .14 0.045 0.052 0.052 0.032 0.048 0.031 0.052 0.056 
0 .39 0.111 0.114 0.114 0.078 0.108 0.076 0.113 0.114 
0 .59 0.166 0.168 0.169 0.117 0.161 0.115 0.167 0.168 
.14 .14 0.058 0.062 0.063 0.040 0.058 0.040 0.062 0.065 
.14 .39 0.116 0.118 0.118 0.082 0.111 0.079 0.117 0.119 
.14 .59 0.170 0.172 0.173 0.120 0.165 0.118 0.171 0.172 
.39 .39 0.156 0.156 0.157 0.108 0.148 0.111 0.156 0.158 
.39 .59 0.199 0.200 0.201 0.139 0.188 0.139 0.199 0.200 
.59 .59 0.234 0.234 0.236 0.162 0.223 0.168 0.233 0.235 
  c’=.39 
.14 .14 0.060 0.064 0.064 0.041 0.062 0.041 0.064 0.067 
.39 .39 0.155 0.156 0.157 0.108 0.152 0.112 0.155 0.157 
.59 .59 0.232 0.233 0.235 0.162 0.229 0.171 0.232 0.234 
 

Table 63 

Imbalance for N=20 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0.001 -0.002 0 0 0 0 0 0 
0 .14 0 0 0 0 -0.001 0 0 0.005 
0 .39 0.001 -0.002 0.001 0 -0.003 0.001 -0.004 0.002 
0 .59 -0.004 0.003 -0.001 -0.003 -0.009 -0.001 -0.002 0.001 
.14 .14 0.008 -0.001 0 0 0.001 0 -0.001 0 
.14 .39 0.028 0.006 0.001 0.005 0.003 -0.001 0.013 0.034 
.14 .59 0.027 0.02 0.021 0.006 0.024 0.004 0.034 0.052 
.39 .39 0.083 0.025 0.029 0.007 0.061 0.003 0.03 0.031 
.39 .59 0.097 0.036 0.049 0.004 0.079 0 0.046 0.014 
.59 .59 0.081 0.029 0.038 0.003 0.088 0 0.043 0.018 
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  c’=.39 
.14 .14 0.014 0.005 0.004 0 0.002 0 0.004 0.009 
.39 .39 0.087 0.027 0.024 0.006 0.05 0.007 0.047 0.034 
.59 .59 0.07 0.032 0.035 0.004 0.071 -0.001 0.051 0.015 
 

Table 64 

Imbalance for N=40 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0 -0.002 -0.002 0 0 0 -0.002 -0.994 
0 .14 0 0 -0.002 -0.001 0.001 0 -0.001 -0.002 
0 .39 -0.007 -0.012 -0.008 -0.004 -0.011 -0.005 -0.005 -0.007 
0 .59 0.002 0.007 0.009 0.002 0.006 0.002 0.006 0.007 
.14 .14 0.038 -0.001 -0.001 0 0 0 0.001 0.024 
.14 .39 0.046 0.015 0.01 0.002 0.022 0.001 0.019 0.04 
.14 .59 0.025 0.015 0.015 0.001 0.026 0.005 0.014 0.021 
.39 .39 0.061 0.02 0.017 0.006 0.036 0.003 0.032 0.005 
.39 .59 0.05 0.02 0.014 0.003 0.044 0.001 0.022 0 
.59 .59 0.065 0.022 0.024 0.006 0.053 0.006 0.045 0.014 
  c’=.39 
.14 .14 0.032 -0.001 -0.001 -0.001 -0.001 0 0.001 0.022 
.39 .39 0.056 0.021 0.019 0.005 0.035 0.006 0.031 0.001 
.59 .59 0.045 0.018 0.015 0.006 0.036 0.003 0.028 0.008 
 

Table 65 

Imbalance for N=60 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0 -0.001 0 0 0 0 0 0.004 
0 .14 0 0.001 0.002 0 0.002 0.001 -0.001 -0.008 
0 .39 0.002 0.006 0.006 0.006 0.007 0.003 0.009 0.003 
0 .59 0.004 0.004 0.009 0.001 0.009 0.003 0.004 -0.002 
.14 .14 0.059 0.005 0.001 0.006 0.006 0.003 0.008 0.046 
.14 .39 0.048 0.027 0.03 -0.003 0.032 -0.003 0.032 0.03 
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.14 .59 0.034 0.024 0.023 -0.001 0.034 0.001 0.024 0.023 

.39 .39 0.063 0.028 0.029 0.004 0.036 0.003 0.038 0.01 

.39 .59 0.054 0.03 0.029 0.006 0.046 0.006 0.02 0.008 

.59 .59 0.054 0.013 0.014 0.004 0.052 0.003 0.027 0.001 
  c’=.39 
.14 .14 0.055 0.003 0.005 0.004 0.003 0.003 0.005 0.036 
.39 .39 0.061 0.012 0.021 0.003 0.025 0.003 0.021 -0.007 
.59 .59 0.044 0.022 0.019 0.004 0.035 0.007 0.029 0.007 
 

Table 66 

Imbalance for N=100 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 -0.001 -0.002 -0.001 0 -0.002 0 -0.001 -0.994 
0 .14 -0.001 0.003 0 0.001 0.007 -0.002 0.005 -0.001 
0 .39 0.004 0.007 0.008 0.002 0.019 -0.001 0.004 0.007 
0 .59 0 -0.002 -0.002 -0.001 0.007 -0.004 0 -0.001 
.14 .14 0.094 0.017 0.022 0.009 0.024 0.011 0.024 0.059 
.14 .39 0.046 0.028 0.02 -0.001 0.04 -0.003 0.024 0.007 
.14 .59 0.017 0.01 0.004 0.002 0.033 0 0.011 0.011 
.39 .39 0.051 0.023 0.021 0.004 0.033 0.003 0.018 0.002 
.39 .59 0.033 0.006 0.01 -0.001 0.033 0 0.01 -0.009 
.59 .59 0.033 0.015 0.02 -0.003 0.037 0 0.015 -0.006 
  c’=.39 
.14 .14 0.096 0.006 0.006 0.008 0.017 0.002 0.017 0.047 
.39 .39 0.038 0.01 0.015 0.001 0.021 0.005 0.012 -0.002 
.59 .59 0.038 0.02 0.024 0 0.03 0.003 0.021 0.003 
 

Table 67 

Imbalance for N=200 for normal theory, distribution of the product, Bayesian method of coefficients with 
diffuse priors, Bayesian method of coefficients with informative priors, percentile bootstrap, and bias-
corrected bootstrap interval estimates in Study 2. 
  Method 

a b normal prodclin YMdiff YMinfo EFMdiff EFMinfo PercBoot BCBoot 

  c’=0 

0 0 0 0 0 0 0.001 0 -0.001 0 
0 .14 0.001 0.006 0.008 -0.001 -0.011 0.002 0.005 0 



152 

 

0 .39 -0.002 -0.008 -0.007 0.003 -0.023 0.006 -0.007 -0.007 
0 .59 -0.005 -0.005 -0.005 0.001 -0.015 0.001 -0.007 -0.004 
.14 .14 0.089 0.022 0.024 0.006 0.027 0.007 0.023 0.019 
.14 .39 0.029 0.01 0.017 0.003 0.011 0.005 0.014 0.002 
.14 .59 0.015 0.004 0.007 0.002 0.003 0.002 0.003 -0.001 
.39 .39 0.033 0.006 0.011 -0.003 0.022 0.001 0.012 -0.001 
.39 .59 0.031 0.021 0.019 0.008 0.033 0.009 0.02 0.011 
.59 .59 0.018 0.008 0.007 0.003 0.027 0.003 0.006 -0.003 
  c’=.39 
.14 .14 0.09 0.039 0.045 0.004 0.042 0.004 0.04 0.03 
.39 .39 0.029 0.004 0.008 0.004 0.013 0.006 0.011 -0.005 
.59 .59 0.03 0.022 0.02 0.002 0.032 0.002 0.029 0.014 
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APPENDIX D  

SIMULATIONS PROGRAM TO EVALUATE TYPE I ERROR, POWER, COVERAGE, 

IMBALANCE, AND INTERVAL WIDTH FOR ONE PARAMETER COMBINATION IN 

STUDY 2 
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FILENAME NULLOG DUMMY 'C:\NULL' ; 
PROC PRINTTO LOG=NULLOG; 
 
PROC DATASETS LIBRARY=WORK KILL  NOLIST; RUN;  
LIBNAME N40 "C:\MILICA\n20output" ;          
 
 
%MACRO SIMULATE(NSIM,NOBS,BMX,BYX,BYM,FILE,TYPE,ERROR); 
 
DATA SUMMARY; SET _NULL_; 
%DO I= 1 %TO &NSIM; 
TITLE 'SIMULATION OF MEDIATION' ; 
DATA SIM; 
DO I= 1 TO &NOBS; 
X=(&error)*RANNOR( 0); 
M=&BMX*X+(&error)*RANNOR( 0); 
Y=&BYX*X+&BYM*M+(&error)*RANNOR( 0); 
X2=X*X; 
OUTPUT; 
END; 
 
 
*This code obtains estimates of the mediation regre ssion 
equations for the sample generated in the macro pro gram;  
 
*Estimating the (Y=X) regression and saving the val ue of bm1 or c in the 
text;  
PROC REG OUTEST=FILE COVOUT noprint; MODEL Y=X/; 
DATA B; SET FILE; 
IF _TYPE_= 'PARMS' ; BM1=X;MSE1=_RMSE_*_RMSE_; 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y; 
KEEP BM1 MSE1; 
DATA C; SET FILE;IF _NAME_= 'X' ; SEBM1=SQRT(X); 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y; 
KEEP SEBM1; 
DATA MODEL1; MERGE B C; 
 
*Estimating the (Y=X M) regression and saving the v alues of 
c prime and b;  
PROC REG DATA=SIM OUTEST=FILE COVOUT NOPRINT; 
MODEL Y=X M/; 
DATA B; SET FILE; 
IF _TYPE_= 'PARMS' ; C=X; 
BM2=X; MSE2=_RMSE_*_RMSE_; 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y M; 
KEEP MSE2 BM2 C; 
DATA C; SET FILE; 
IF _NAME_= 'X' ; SEBM2=SQRT(X); SEC=SQRT(X); 
KEEP SEBM2 SEC; 
DATA D; SET FILE; IF _NAME_= 'M' ; SEB=SQRT(M); 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y M; 
KEEP SEB; 
DATA E; SET FILE; B=M; IF _TYPE_= 'PARMS' ; 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y M; 
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KEEP B; 
DATA F; SET FILE; IF _NAME_= 'M' ; CBC=X; 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X Y M; 
KEEP CBC; 
DATA MODEL2; MERGE B C D E F; 
 
*Estimating the (M=X) regression and saving the val ue of a;  
PROC REG DATA=SIM OUTEST=FILE COVOUT NOPRINT; 
MODEL M=X; 
DATA BB; SET FILE; 
IF _TYPE_= 'PARMS' ; M=X; 
BM2=X; MSE3=_RMSE_*_RMSE_; 
KEEP MSE3; 
 
DATA B; SET FILE; A=X; IF _TYPE_= 'PARMS' ; 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M; 
KEEP A; 
DATA C; SET FILE; IF _NAME_= 'X' ; SEA=SQRT(X); 
DROP _MODEL_ _NAME_ _TYPE_ _DEPVAR_ _RMSE_ INTERCEP X M; 
KEEP SEA; 
DATA MODEL3; MERGE BB B C; 
 
*This code saves  value of X squared in the sample;  
PROC MEANS DATA=SIM SUM NOPRINT; VAR X2; 
OUTPUT OUT=OUT SUM=SUMX; 
 
*This code saves the variance of X in the sample;  
PROC MEANS DATA=SIM STD NOPRINT; VAR X; 
OUPUT OUT=OUTA STD=VARX; 
DATA VARS; SET OUTA; 
VARXX=VARX*VARX; 
KEEP VARXX; 
 
*This code saves the variance of M in the sample;  
PROC MEANS DATA=SIM STD NOPRINT; VAR M; 
OUPUT OUT=OUTA STD=VARM; 
DATA VARSM; SET OUTA; 
VARMM=VARM*VARM; 
KEEP VARMM; 
 
*This code saves the correlation between X and M in  the sample;  
PROC CORR DATA=SIM OUTPUT=COV NOPRINT; 
DATA FR; SET COV; IF _NAME_= 'M' ; CORRXM=X; 
KEEP CORRXM; 
 
*This code merges the different datasets that conta in  
estimates from the simulation replication;  
DATA ALL; MERGE OUT MODEL1 MODEL2 MODEL3 VARS VARSM FR ; 
RUN; 
 
*This code calculates the population values for emp irical 
values estimated in the simulation;  
DATA TEST;SET ALL; 
TYPE=&TYPE; 
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ERROR=&ERROR; 
DOF=_FREQ_-2; 
NOBS=&NOBS; 
BMX=&BMX;BYX=&BYX;BYM=&BYM; 
 
*This section computes true variances and covarianc es as in Section 4.10 
based 
on residual error variance equal to 1. Note that VX 1X1, VX2X2, and VX3X3 are  
the residual variance in equations 3.1, 3.2, and 3. 3, respectively;   
EMOD1=(&ERROR)**2; 
EMOD2=(&ERROR)**2; 
EMOD3=(&ERROR)**2; 
VX1X1=EMOD1; 
CY1X1=BMX*EMOD1; 
CY2X1=BYM*BMX*VX1X1+BYX*EMOD1; 
CY1Y1=BMX*BMX*VX1X1+EMOD2; 
CY2Y1=BMX*BMX*BYM*VX1X1+BMX*BYX*EMOD1+BYM*EMOD2; 
CY2Y2=BYM*BYM*(BMX*BMX*EMOD1+EMOD2)+2*BMX*BYM*BYX*VX1X1+BYX*BYX*EMOD1 
+EMOD3; 
 
*The following code computes standard errors for  
product of coefficients methods;  
AB=A*B; 
SOBEL=SQRT(A*A*SEB*SEB+B*B*SEA*SEA); 
 
TRUEAB=&BMX*&BYM; 
/*attempt*/  
zaobs=A/SEA; 
RZAOBS=ROUND(zaobs, .1); 
za=RZAOBS; 
zbobs=B/SEB; 
RZBOBS=ROUND(zbobs, .1); 
zb=RZBOBS; 
/*may need to move the chunk above*/  
 
data TESTsobel; set TEST; 
 
*The following code computes two simulation outcome  measures (confidence 
limits and cases where the true value is outside th e confidence limits) 
for methods to test mediation;  
LSOBEL=AB-1.96*SOBEL; USOBEL=AB+1.96*SOBEL; 
RGSOBEL=0; LFSOBEL= 0;  
IF TRUEAB= 0 && LSOBEL GT 0 && USOBEL GT 0 THEN LFSOBEL=1; 
IF TRUEAB= 0 && LSOBEL LT 0 && USOBEL LT 0 THEN RGSOBEL=1; 
 
TYPEIERRORRATE=RGSOBEL+LFSOBEL; 
CIWIDTH=USOBEL-LSOBEL; 
IF TRUEAB GT 0 && LSOBEL LT 0 && USOBEL GT 0 THEN empbeta= 1; 
ELSE empbeta= 0; 
POWER=1-empbeta; 
IMBRSOBEL=0; IMBLSOBEL= 0; 
IF TRUEAB GT USOBEL THEN IMBRSOBEL=1; 
IF TRUEAB LT LSOBEL THEN IMBLSOBEL= 1; 
IMBALANCE=IMBRSOBEL-IMBLSOBEL; 
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IF TRUEAB GT LSOBEL && TRUEAB LT USOBEL THEN COVERA GE=1; 
ELSE COVERAGE=0; 
 
/*ADDING PRODCLIN */  
options noxwait ; 
*Designate location of prdclinforSAS.sas and prodcl insas2.exe;  
libname save "C:\Users\psyripl\Desktop\" ; 
 
%macro prodclin(a, sea, b, seb, rho, alpha); 
 
data proddata1;  
*Change file address to match the location of the f ile prodclin.exe;  
file "C:\Users\psyripl\Desktop\raw.txt" ; 
a=&a; sea=&sea; b=&b; seb=&seb; rho=&rho; alpha=&al pha; 
put a @; put sea @; put b @; put seb @; put rho @; put alpha @; 
 
*Change file address to match the location of the f ile prodclin.exe;   
X cd C:\Users\psyripl\Desktop; 
*Change file address to match the location of the f ile prodclin.exe;  
X call "C:\Users\psyripl\Desktop\ProdClin2_Sas.exe" ; 
 
data proddata2; 
do; 
rc=system( "call C:\Users\psyripl\Desktop\ProdClin2_Sas.exe" ); 
end; 
run; 
 
data proddata2;  
infile "C:\Users\psyripl\Desktop\critval.txt" ; 
input lowz highz; 
a=&a; sea=&sea; b=&b; seb=&seb; rho=&rho; alpha=&al pha; 
r=rho; 
da=a/sea; 
db=b/seb; 
sedadb=sqrt(da*da+db*db+ 1); 
dadb=da*db; 
ab=a*b; 
sobelse=sqrt(a*a*seb*seb+b*b*sea*sea); 
MVDSE = sqrt(a*a*seb*seb+b*b*sea*sea); 
 
if dadb gt 0 then prodlow=lowz; 
if dadb gt 0 then produp=highz; 
if dadb= 0 then prodlow=lowz; 
if dadb= 0 then produp=highz; 
if dadb lt 0 then prodlow=lowz; 
if dadb lt 0 then produp=highz; 
 
 
%mend; 
 
DATA ALL; 
SET ALL; 
call symput( "A" ,A); 
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call symput( "SEA" ,SEA); 
call symput( "B" ,B); 
call symput( "SEB" ,SEB); 
 
RUN; 
 
%prodclin(a=&A, sea=&SEA, b=&B, seb=&SEB, rho= 0, alpha = .05); 
run; 
quit; 
 
data prodquant; merge proddata2 TEST; 
 
RGprod=0; LFprod= 0;  
 
IF TRUEAB= 0 && prodlow GT 0 && produp GT 0 THEN LFprod= 1; 
IF TRUEAB= 0 && prodlow LT 0 && produp LT 0 THEN RGprod= 1; 
 
TYPEIERRORRATEprod=RGprod+LFprod; 
if dadb gt 0 then CIWIDTHprod=produp-prodlow; 
if dadb= 0 then CIWIDTHprod=produp-prodlow; 
if dadb lt 0 then CIWIDTHprod=produp-prodlow; 
IF TRUEAB GT 0 && prodlow LT 0 && produp GT 0 THEN empbetaprod= 1; 
ELSE empbetaprod= 0; 
POWERprod=1-empbetaprod; 
IMBLPROD=0; IMBRPROD=0; 
IF TRUEAB GT produp THEN IMBRPROD= 1; 
IF TRUEAB LT prodlow THEN IMBLPROD= 1; 
IMBALANCEprod=IMBRPROD-IMBLPROD; 
IF TRUEAB GT prodlow && TRUEAB LT produp THEN COVER AGEprod=1; 
else COVERAGEprod= 0; 
 
upperlimit=produp; 
lowerlimit=prodlow; 
 
/*YUAN AND MACKINNON */  
data priors1; set SIM; 
BMX=&BMX; 
BYM=&BYM; 
BYX=&BYX; 
NOBS=&NOBS; 
TRUEAB=&BMX*&BYM; 
proc mcmc data=priors1 outpost=out nmc= 5000 thin= 5 seed= 2 stats=none 
diag=none; 
parms a 0 b 0 cpr 0 i2 0 i3 0; 
parms sigmaem 1 sigmaey 1; 
prior a ~ normal (mean=BMX, prec= 1e-3); 
prior b ~ normal (mean=BYM, prec= 1e-3); 
prior cpr ~ normal (mean=BYX, prec= 1e-3); 
prior i2 i3 ~ normal (mean= 0, prec= 1e-3); 
prior sigmaem sigmaey ~ gamma(shape= 0.01, iscale= 0.01); 
mum=i2+a*X; 
muy=i3+b*M+cpr*X; 
model M~ n(mum, prec=sigmaem); 
model Y~ n(muy, prec=sigmaey); 
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run; 
 
data ab; set out; 
ab=a*b; 
run; 
 
proc sort data=ab out=percentiles; 
by ab; 
run; 
 
proc univariate data=percentiles noprint; 
var ab; 
output out=p pctlpre=P_ pctlpts= 2.5 97.5; 
run;  
 
data cl; set p; 
rename P_2_5=LCL; 
rename P_97_5=UCL; 
run; 
 
/*Computing the quantities of interest*/  
data quant; set cl; 
BMX=&BMX; 
BYM=&BYM; 
BYX=&BYX; 
NOBS=&NOBS; 
TRUEAB=&BMX*&BYM; 
 
LYM=LCL;  
UYM=UCL; 
RGYM=0;  
LFYM=0; 
IF TRUEAB= 0 && LYM GT 0 && UYM GT 0 THEN LFYM=1; 
IF TRUEAB= 0 && LYM LT 0 && UYM LT 0 THEN RGYM=1; 
TYPEIERRORRATEymd=RGYM+LFYM; 
CIWIDTHymd=UYM-LYM; 
IF TRUEAB GT 0 && LYM LT 0 && UYM GT 0 THEN empbetaymd= 1; 
ELSE empbetaymd= 0; 
POWERymd=1-empbetaymd; 
 
IMBLYMD=0; IMBRYMD=0; 
IF TRUEAB GT UYM THEN IMBRYMD=1; 
IF TRUEAB LT LYM THEN IMBLYMD= 1; 
IMBALANCEymd=IMBRYMD-IMBLYMD; 
 
IF TRUEAB GT LYM && TRUEAB LT UYM THEN COVERAGEymd=1; 
ELSE COVERAGEymd=0; 
 
data priors2; set SIM; 
BMX=&BMX; 
BYM=&BYM; 
BYX=&BYX; 
NOBS=&NOBS; 
TRUEAB=&BMX*&BYM; 
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proc mcmc data=priors2 outpost=outi nmc= 5000 thin= 5 seed= 2 stats=none 
diag=none; 
parms ai 0 bi 0 cpri 0 i2i 0 i3i 0; 
parms sigmaemi 1 sigmaeyi 1; 
prior ai ~ normal (mean=BMX, sd= 0.23570226); 
prior bi ~ normal (mean=BYM, sd= 0.242535625); 
prior cpri ~ normal (mean=BYX, sd= 0.260327848); 
prior i2i i3i ~ normal (mean= 0, prec= 1e-3); 
prior sigmaemi sigmaeyi ~ gamma(shape= 0.01, iscale= 0.01); 
mumi=i2i+ai*X; 
muyi=i3i+bi*M+cpri*X; 
model M~ n(mumi, prec=sigmaemi); 
model Y~ n(muyi, prec=sigmaeyi); 
run; 
 
data abi; set outi; 
abi=ai*bi; 
 
TRUEAB=&BMX*&BYM; 
run; 
 
proc sort data=abi out=percentilesi; 
by abi; 
run; 
 
proc univariate data=percentilesi noprint; 
var abi; 
output out=pi pctlpre=P_ pctlpts= 2.5 97.5; 
run;  
 
data cli; set pi; 
rename P_2_5=LCLi; 
rename P_97_5=UCLi; 
run; 
 
/*Computing the quantities of interest*/  
data quanti; set cli; 
BMX=&BMX; 
BYM=&BYM; 
BYX=&BYX; 
NOBS=&NOBS; 
TRUEAB=BMX*BYM; 
 
LYMi=LCLi;  
UYMi=UCLi; 
RGYMi=0;  
LFYMi=0; 
IF TRUEAB= 0 && LYMi GT 0 && UYMi GT 0 THEN RGYMi=1; 
IF TRUEAB= 0 && LYMi LT 0 && UYMi LT 0 THEN LFYMi= 1; 
TYPEIERRORRATEi=RGYMi+LFYMi; 
CIWIDTHi=UYMi-LYMi; 
IF TRUEAB GT 0 && LYMi LT 0 && UYMi GT 0 THEN empbetai= 1; 
ELSE empbetai= 0; 
POWERi=1-empbetai; 
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IMBRYMI=0; IMBLYMI= 0; 
IF TRUEAB GT UYMi THEN IMBRYMI= 1; 
IF TRUEAB LT LYMi THEN IMBLYMI= 1; 
IMBALANCEi=IMBRYMI-IMBLYMI; 
 
IF TRUEAB GT LYMi && TRUEAB LT UYMi THEN COVERAGEi= 1; 
ELSE COVERAGEi=0; 
COVERAGECHECK=1-IMBRYMI-IMBLYMI; 
/*END OF YUAN AND MACKINNON */  
 
/*calculating elements from the SS matrix for SDIFF USE*/  
/*the inverse-Wishart SS matrix is constructed so t hat it is based on as many 
prior 
observations as there are in the current sample*/  
data SIMcov; set SIM; 
NOBS=&NOBS; 
SVX1X1=2; 
SCY1X1=0; 
SCY2X1=0; 
SCY1Y1=2; 
SCY2Y1=0; 
SCY2Y2=2; 
run; 
 
 
proc mcmc data=SIMcov outpost=efmD thin= 5 seed= 2 nmc= 5000 diag=none; 
   array data[ 3] X M Y; 
   array mu[ 3]; 
   array Sigma[ 3, 3]; 
   array mu0[ 3] ( 0 0 0); 
   array Sigma0[ 3, 3] ( 1000 0 0 0 1000 0 0 0 1000); 
   array SDIFFUSE[ 3, 3] SVX1X1 SCY1X1 SCY2X1 SCY1X1 SCY1Y1 SCY2Y1 SCY2X1 
SCY2Y1 SCY2Y2; 
   parm mu Sigma; 
   prior mu ~ mvn(mu0, Sigma0); 
   prior Sigma ~ iwish( 3, SDIFFUSE); 
   model data ~ mvn(mu, Sigma); 
   run; 
 
data abefmD; set efmD; 
abefmD=(Sigma4/Sigma1)*(Sigma1*Sigma6-Sigma4*Sigma3 )/(Sigma1*Sigma5-
Sigma4** 2); 
RUN; 
 
proc sort data=abefmD out=percentilesefmD; 
by abefmD; 
run; 
 
proc univariate data=percentilesefmD noprint; 
var abefmD; 
output out=pefmD pctlpre=P_ pctlpts= 2.5 97.5; 
run;  
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data clefmD; set pefmD; 
rename P_2_5=LCLefmD; 
rename P_97_5=UCLefmD; 
run; 
 
data QUANTEFMD; set clefmD; 
ERROR=&ERROR; 
NOBS=&NOBS; 
BMX=&BMX;BYX=&BYX;BYM=&BYM; 
TRUEAB=&BMX*&BYM; 
RGEFMDIFF=0; 
LFEFMDIFF=0; 
IF TRUEAB= 0 && LCLefmD GT 0 && UCLefmD GT 0 THEN LFEFMDIFF= 1; 
IF TRUEAB= 0 && UCLefmD LT 0 && LCLefmD LT 0 THEN RGEFMDIFF=1; 
TYPEIERRORRATEEFMDIFF=RGEFMDIFF+LFEFMDIFF; 
CIWIDTHEFMDIFF=UCLefmD-LCLefmD; 
IF TRUEAB GT 0 && LCLefmD LT 0 && UCLefmD GT 0 THEN empbetaEFMDIFF= 1; 
ELSE empbetaEFMDIFF= 0; 
POWEREFMDIFF=1-empbetaEFMDIFF; 
IMBREFMDIFF=0; IMBLEFMDIFF= 0; 
IF TRUEAB GT UCLefmD THEN IMBREFMDIFF= 1; 
IF TRUEAB LT LCLefmD THEN IMBLEFMDIFF= 1; 
IMBALANCEEFMDIFF=IMBREFMDIFF-IMBLEFMDIFF; 
 
IF TRUEAB GT LCLefmD && TRUEAB LT UCLefmD THEN COVE RAGEEFMDIFF=1; 
ELSE COVERAGEEFMDIFF=0; 
 
/* EFM informative */  
data info; set SIM; 
ERROR=&ERROR; 
DOF=_FREQ_-2; 
NOBS=&NOBS; 
BMX=&BMX;BYX=&BYX;BYM=&BYM; 
 
*This section computes true variances and covarianc es as in Section 4.10 
based 
on residual error variance equal to 1. Note that VX 1X1, VX2X2, and VX3X3 are  
the residual variance in equations 3.1, 3.2, and 3. 3, respectively;   
EMOD1=(&ERROR)**2; 
EMOD2=(&ERROR)**2; 
EMOD3=(&ERROR)**2; 
VX1X1=EMOD1; 
CY1X1=BMX*EMOD1; 
CY2X1=BYM*BMX*VX1X1+BYX*EMOD1; 
CY1Y1=BMX*BMX*VX1X1+EMOD2; 
CY2Y1=BMX*BMX*BYM*VX1X1+BMX*BYX*EMOD1+BYM*EMOD2; 
CY2Y2=BYM*BYM*(BMX*BMX*EMOD1+EMOD2)+2*BMX*BYM*BYX*VX1X1+BYX*BYX*EMOD1 
+EMOD3; 
SVX1X1=(NOBS-1)*VX1X1; 
SCY1X1=(NOBS-1)*CY1X1; 
SCY2X1=(NOBS-1)*CY2X1; 
SCY1Y1=(NOBS-1)*CY1Y1; 
SCY2Y1=(NOBS-1)*CY2Y1; 
SCY2Y2=(NOBS-1)*CY2Y2; 
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run; 
 
proc mcmc data=info outpost=efmi thin= 5 seed= 2 nmc= 5000 diag=none; 
   ods select PostSummaries PostIntervals; 
   array datainfo[ 3] X M Y; 
   array muI[ 3]; 
   array SigmaI[ 3, 3]; 
   array mu0I[ 3] ( 0 0 0); 
   array Sigma0I[ 3, 3] ( 1000 0 0 0 1000 0 0 0 1000); 
   array SINFO[ 3, 3] SVX1X1 SCY1X1 SCY2X1 SCY1X1 SCY1Y1 SCY2Y1 SCY2X1 SCY2Y1 
SCY2Y2; 
   parm muI SigmaI; 
   prior muI ~ mvn(mu0I, Sigma0I); 
   prior SigmaI ~ iwish(&NOBS, SINFO); 
   model datainfo ~ mvn(muI, SigmaI); 
   run; 
data abefmi; set efmi; 
abefmi=(SigmaI4/SigmaI1)*(SigmaI1*SigmaI6-SigmaI4*S igmaI3)/(SigmaI1*SigmaI5-
SigmaI4** 2); 
RUN; 
 
proc sort data=abefmi out=percentilesefmi; 
by abefmi; 
run; 
 
proc univariate data=percentilesefmi noprint; 
var abefmi; 
output out=pefmi pctlpre=P_ pctlpts= 2.5 97.5; 
run;  
 
data clefmi; set pefmi; 
rename P_2_5=LCLefmi; 
rename P_97_5=UCLefmi; 
run; 
 
data QUANTEFMi; set clefmi; 
ERROR=&ERROR; 
NOBS=&NOBS; 
BMX=&BMX;BYX=&BYX;BYM=&BYM; 
TRUEAB=&BMX*&BYM; 
RGEFMinfo= 0; 
LFEFMinfo= 0; 
IF TRUEAB= 0 && LCLefmi GT 0 && UCLefmi GT 0 THEN LFEFMinfo= 1; 
IF TRUEAB= 0 && LCLefmi LT 0 && UCLefmi LT 0 THEN RGEFMinfo= 1; 
TYPEIERRORRATEEFMinfo=RGEFMinfo+LFEFMinfo; 
CIWIDTHEFMinfo=UCLefmi-LCLefmi; 
IF TRUEAB GT 0 && LCLefmi LT 0 && UCLefmi GT 0 THEN empbetaEFMinfo= 1; 
ELSE empbetaEFMinfo= 0; 
POWEREFMinfo=1-empbetaEFMinfo; 
IMBREFMINFO=0; IMBLEFMINFO= 0; 
IF TRUEAB GT UCLefmi THEN IMBREFMINFO= 1; 
IF TRUEAB LT LCLefmi THEN IMBLEFMINFO= 1; 
IMBALANCEEFMinfo=IMBREFMINFO-IMBLEFMINFO; 
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IF TRUEAB GT LCLefmi && TRUEAB LT UCLefmi THEN COVE RAGEEFMinfo=1; 
ELSE COVERAGEEFMinfo=0; 
 
 
 
/*Bootstrap*/  
*This is where the bootstrap samples are made.;  
*sampsize should be equal to the number of observat ions in the dataset;  
*rep is the number of bootstrap samples you want;  
 
proc reg data=SIM outest=out1 noprint; 
model y = m x; 
model m = x; 
run; 
quit; 
data out1; set out1; 
if _MODEL_= 'MODEL1'  then call symput ( "b" , m); 
if _MODEL_= 'MODEL2'  then call symput ( "a" , x); 
run; 
quit; 
%let  nboot=1000; 
 
proc surveyselect data=SIM noprint out=out2 method= urs sampsize=&NOBS 
rep=&NBOOT outhits; 
run; 
 
 
proc reg data=out2 outest=out3 noprint; 
by Replicate; 
model y = m x; 
model m = x; 
 
data b; set out3; 
if _MODEL_^= 'MODEL1'  then delete; 
b=m; 
keep Replicate b; 
 
data c; set out3; 
if _MODEL_^= 'MODEL2'  then delete; 
a=x; 
keep Replicate a; 
 
data d; merge b c; by Replicate; 
ab=a*b; 
if ab<=&a*&b then z= 1; else z= 0; 
 
proc means data=d noprint; 
var z; 
output out=out4 mean(z)=meanz; 
 
data out4; set out4; 
call symput( "meanz" , meanz); 
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proc sort data=d; 
by ab; 
proc univariate data=d NOPRINT; 
var ab; 
*Percentile Bootstrap and Bias-Corrected Bootstrap;  
data e; set d; 
z0=probit(&meanz); 
if _N_=(ceil( .025*&nboot)) then call symput( "LCL95" , ab); 
if _N_=(ceil( .975*&nboot)) then call symput( "UCL95" , ab); 
if _N_=(ceil(&nboot*probnorm(( 2*z0)+probit( .025)))) then call 
symput( "BCLCL95" , ab); 
if _N_=(ceil(&nboot*probnorm(( 2*z0)+probit( .975)))) then call 
symput( "BCUCL95" , ab); 
run; 
 
 
data f; SET e; 
LCL95=&LCL95; 
UCL95=&UCL95; 
BCLCL95=&BCLCL95; 
BCUCL95=&BCUCL95; 
NOBS=&NOBS; 
BMX=&BMX;BYX=&BYX;BYM=&BYM; 
 
TRUEAB=BMX*BYM; 
 
/*QUANTITIES OF INTEREST*/  
/*PERCENTILE BOOTSTRAP*/  
RGBOOT=0; LFBOOT= 0; 
IF TRUEAB= 0 && LCL95 GT 0 && UCL95 GT 0 THEN LFBOOT=1; 
IF TRUEAB= 0 && UCL95 LT 0 && LCL95 LT 0 THEN RGBOOT=1; 
TYPEIERRORRATEBOOT=RGBOOT+LFBOOT; 
CIWIDTHBOOT=UCL95-LCL95; 
IF TRUEAB GT 0 && LCL95 LT 0 && UCL95 GT 0 THEN empbetaB= 1; 
ELSE empbetaB= 0; 
POWERBOOT=1-empbetaB; 
IMBRPERC=0; IMBLPERC= 0; 
IF TRUEAB GT UCL95 THEN IMBRPERC= 1; 
IF TRUEAB LT LCL95 THEN IMBLPERC= 1; 
IMBALANCEBOOT=IMBRPERC-IMBLPERC; 
IF TRUEAB GT LCL95 && TRUEAB LT UCL95 THEN COVERAGE BOOT=1; 
ELSE COVERAGEBOOT=0; 
/*BC BOOTSTRAP */  
RGBCBOOT=0; LFBCBOOT=0; 
IF TRUEAB= 0 && BCLCL95 GT 0 && BCUCL95 GT 0 THEN LFBCBOOT=1; 
IF TRUEAB= 0 && BCUCL95 LT 0 && BCLCL95 LT 0 THEN RGBCBOOT=1; 
TYPEIERRORRATEBC=RGBCBOOT+LFBCBOOT; 
CIWIDTHBC=BCUCL95-BCLCL95; 
IF TRUEAB GT 0 && BCLCL95 LT 0 && BCUCL95 GT 0 THEN empbetaBC= 1; 
ELSE empbetaBC= 0; 
POWERBC=1-empbetaBC; 
IMBRBC=0; IMBLBC= 0; 
IF TRUEAB GT BCUCL95 THEN IMBRBC= 1; 
IF TRUEAB LT BCLCL95 THEN IMBLBC= 1; 



166 

 

IMBALANCEBC=IMBRBC-IMBLBC; 
IF TRUEAB GT BCLCL95 && TRUEAB LT BCUCL95 THEN COVE RAGEBC=1; 
ELSE COVERAGEBC=0; 
 
PROC MEANS DATA=F MEAN NOPRINT;  
VAR AB  
NOBS BMX BYX BYM TRUEAB 
LCL95 UCL95 BCLCL95 BCUCL95 
TYPEIERRORRATEBOOT CIWIDTHBOOT POWERBOOT IMBALANCEBOOT COVERAGEBOOT 
TYPEIERRORRATEBC CIWIDTHBC POWERBC IMBALANCEBC COVERAGEBC 
; 
OUTPUT OUT=OUTA MEAN=MAB 
MNOBS MBMX MBYX MBYM MTRUEAB 
MLCL95 MUCL95 MBCLCL95 MBCUCL95 
MTYPEIERRORRATEBOOT MCIWIDTHBOOT MPOWERBOOT MIMBALANCEBOOT MCOVERAGEBOOT 
MTYPEIERRORRATEBC MCIWIDTHBC MPOWERBC MIMBALANCEBC MCOVERAGEBC; 
/*PROC PRINT DATA=OUTA;*/  
 
DATA NEW; SET SUMMARY; 
DATA SUMMARY; SET NEW TESTsobel prodquant quant qua nti quantefmd quantefmi 
OUTA ; 
 
proc datasets; 
delete ab abefmd abefmi abi all b bb c cl clefmd cl efmi cli cov d e efmd efmi 
f file  
fr info model1 model2 model3 out out1 out2 out3 out 4 outi p pefmd pefmi 
percentiles  
percentilesefmd percentilesefmi percentilesi pi pri ors proddata1 proddata2 
test 
vars varsm; 
run; 
 
proc means data=summary noprint; 
VAR NOBS TRUEAB  
TYPEIERRORRATE TYPEIERRORRATEPROD TYPEIERRORRATEymd TYPEIERRORRATEi 
TYPEIERRORRATEefmdiff TYPEIERRORRATEefminfo  MTYPEI ERRORRATEBOOT 
MTYPEIERRORRATEBC  
COVERAGE COVERAGEPROD COVERAGEymd COVERAGEi COVERAGECHECK COVERAGEefmdiff 
COVERAGEefminfo MCOVERAGEBOOT MCOVERAGEBC  
CIWIDTH CIWIDTHPROD CIWIDTHymd CIWIDTHi CIWIDTHefmd iff CIWIDTHefminfo 
MCIWIDTHBOOT MCIWIDTHBC  
POWER POWERPROD POWERymd POWERi powerefmdiff powerefminfo MPOWERBOOT MPOWERBC  
IMBALANCE IMBALANCEPROD IMBALANCEymd IMBALANCEi imbalanceefmdiff 
imbalanceefminfo MIMBALANCEBOOT MIMBALANCEBC; 
output out= MSUMMARY; 
%END; 
 
 
DATA N40. &FILE;  
SET MSUMMARY;  
RUN;  
 
 
RUN; 
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%MEND; 
%SIMULATE(NSIM= 1000,NOBS=20,BMX=.39,BYX=.39,BYM=.39,     
FILE=n20a39b39cp39,TYPE= 'CCC' ,ERROR=1); 
 
RUN; 
quit; 
data final; 
 set   
 n20a39b39cp39 
 ; 
run; 
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APPENDIX E 

SIMULATION PROGRAM TO EVALUATE CHANGES IN POWER AS A FUNCTION OF 

PRECISION IN STUDY 3 
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FILENAME NULLOG DUMMY 'C:\NULL' ; 
PROC PRINTTO LOG=NULLOG; 
 
PROC DATASETS LIBRARY=WORK KILL  NOLIST; RUN;  
 
LIBNAME N40 "C:\MILICA\" ;          
 
%MACRO SIMULATE(NSIM,NOBS,BMX,BYX,BYM,FILE,TYPE,ERROR); 
 
DATA SUMMARY; SET _NULL_; 
%DO I= 1 %TO &NSIM; 
TITLE 'SIMULATION OF MEDIATION' ; 
DATA SIM; 
DO I= 1 TO &NOBS; 
X=(&error)*RANNOR( 0); 
M=&BMX*X+(&error)*RANNOR( 0); 
Y=&BYX*X+&BYM*M+(&error)*RANNOR( 0); 
X2=X*X; 
OUTPUT; 
END; 
 
data priors; set SIM; 
BMX=&BMX; 
BYM=&BYM; 
BYX=&BYX; 
NOBS=&NOBS; 
TRUEAB=&BMX*&BYM; 
 
/*YUAN AND MACKINNON */  
proc mcmc data=priors outpost=outan1 nmc= 5000 thin= 1 seed= 2 stats=none 
diag=none; 
parms a 0 b 0 cpr 0 i2 0 i3 0; 
parms sigmaem 1 sigmaey 1; 
prior a ~ normal (mean=BMX, prec= 1e1); 
prior b ~ normal (mean=BYM, prec= 1e-3); 
prior cpr ~ normal (mean=BYX, prec= 1e-3); 
prior i2 i3 ~ normal (mean= 0, prec= 1e-3); 
prior sigmaem sigmaey ~ gamma(shape= 0.01, iscale= 0.01); 
mum=i2+a*X; 
muy=i3+b*M+cpr*X; 
model M~ n(mum, prec=sigmaem); 
model Y~ n(muy, prec=sigmaey); 
run; 
 
data aban1; set outan1; 
ab=a*b; 
run; 
 
proc sort data=aban1 out=percentilesan1; 
by ab; 
run; 
 
proc univariate data=percentilesan1 noprint; 
var ab; 
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output out=pan1 pctlpre=P_ pctlpts= 2.5 97.5; 
run;  
 
data clan1; set pan1; 
rename P_2_5=LCL; 
rename P_97_5=UCL; 
run; 
 
/*Computing the quantities of interest*/  
data quantan1; set clan1; 
BMX=&BMX; 
BYM=&BYM; 
BYX=&BYX; 
NOBS=&NOBS; 
TRUEAB=&BMX*&BYM; 
 
LYM=LCL;  
UYM=UCL; 
RGYM=0;  
LFYM=0; 
IF TRUEAB= 0 && LYM GT 0 && UYM GT 0 THEN LFYM=1; 
IF TRUEAB= 0 && LYM LT 0 && UYM LT 0 THEN RGYM=1; 
TYPEIERRORRATEan1=RGYM+LFYM; 
CIWIDTHan1=UYM-LYM; 
IF TRUEAB GT 0 && LYM LT 0 && UYM GT 0 THEN empbetaymd= 1; 
ELSE empbetaymd= 0; 
POWERan1=1-empbetaymd; 
 
IMBLYMD=0; IMBRYMD=0; 
IF TRUEAB GT UYM THEN IMBRYMD=1; 
IF TRUEAB LT LYM THEN IMBLYMD= 1; 
IMBALANCEan1=IMBRYMD-IMBLYMD; 
 
IF TRUEAB GT LYM && TRUEAB LT UYM THEN COVERAGEan1= 1; 
ELSE COVERAGEan1=0; 
 
 
/*b2*/  
proc mcmc data=priors outpost=outbn1 nmc= 5000 thin= 1 seed= 2 stats=none 
diag=none; 
parms a 0 b 0 cpr 0 i2 0 i3 0; 
parms sigmaem 1 sigmaey 1; 
prior a ~ normal (mean=BMX, prec= 1e-3); 
prior b ~ normal (mean=BYM, prec= 1e-2); 
prior cpr ~ normal (mean=BYX, prec= 1e-3); 
prior i2 i3 ~ normal (mean= 0, prec= 1e-3); 
prior sigmaem sigmaey ~ gamma(shape= 0.01, iscale= 0.01); 
mum=i2+a*X; 
muy=i3+b*M+cpr*X; 
model M~ n(mum, prec=sigmaem); 
model Y~ n(muy, prec=sigmaey); 
run; 
 
data abbn1; set outbn1; 
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ab=a*b; 
run; 
 
proc sort data=abbn1 out=percentilesbn1; 
by ab; 
run; 
 
proc univariate data=percentilesbn1 noprint; 
var ab; 
output out=pbn1 pctlpre=P_ pctlpts= 2.5 97.5; 
run;  
 
data clbn1; set pbn1; 
rename P_2_5=LCL; 
rename P_97_5=UCL; 
run; 
 
/*Computing the quantities of interest*/  
data quantbn1; set clbn1; 
BMX=&BMX; 
BYM=&BYM; 
BYX=&BYX; 
NOBS=&NOBS; 
TRUEAB=&BMX*&BYM; 
 
LYM=LCL;  
UYM=UCL; 
RGYM=0;  
LFYM=0; 
IF TRUEAB= 0 && LYM GT 0 && UYM GT 0 THEN LFYM=1; 
IF TRUEAB= 0 && LYM LT 0 && UYM LT 0 THEN RGYM=1; 
TYPEIERRORRATEbn1=RGYM+LFYM; 
CIWIDTHbn1=UYM-LYM; 
IF TRUEAB GT 0 && LYM LT 0 && UYM GT 0 THEN empbetaymd= 1; 
ELSE empbetaymd= 0; 
POWERbn1=1-empbetaymd; 
 
IMBLYMD=0; IMBRYMD=0; 
IF TRUEAB GT UYM THEN IMBRYMD=1; 
IF TRUEAB LT LYM THEN IMBLYMD= 1; 
IMBALANCEbn1=IMBRYMD-IMBLYMD; 
 
IF TRUEAB GT LYM && TRUEAB LT UYM THEN COVERAGEbn1= 1; 
ELSE COVERAGEbn1=0; 
 
 
 
DATA NEW; SET SUMMARY; 
DATA SUMMARY; SET NEW quantan1 quantbn1 ; 
 
 
%END; 
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DATA N40. &FILE;  
SET SUMMARY;  
RUN;  
 
 
 
RUN; 
%MEND; 
 
%SIMULATE(NSIM= 1000,NOBS=100,BMX=.14,BYX=.0,BYM=.14,     
FILE=abc140,TYPE= 'CCC' ,ERROR=1); 
%SIMULATE(NSIM= 1000,NOBS=100,BMX=.39,BYX=.0,BYM=.39,     
FILE=abc390,TYPE= 'CCC' ,ERROR=1); 
%SIMULATE(NSIM= 1000,NOBS=100,BMX=.59,BYX=.0,BYM=.59,     
FILE=abc590,TYPE= 'CCC' ,ERROR=1); 
%SIMULATE(NSIM= 1000,NOBS=100,BMX=.14,BYX=.39,BYM=.14,     
FILE=abc1439,TYPE= 'CCC' ,ERROR=1); 
%SIMULATE(NSIM= 1000,NOBS=100,BMX=.39,BYX=.39,BYM=.39,     
FILE=abc3939,TYPE= 'CCC' ,ERROR=1); 
%SIMULATE(NSIM= 1000,NOBS=100,BMX=.59,BYX=.39,BYM=.59,     
FILE=abc5939,TYPE= 'CCC' ,ERROR=1); 
 
RUN; 
quit; 
data final; 
 set   
abc140 
abc390 
abc590 
abc1439 
abc3939 
abc5939 
 ; 
run; 
 
 


