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ABSTRACT  

 

Neural activity tracking using electroencephalography (EEG) and 

magnetoencephalography (MEG) brain scanning methods has been widely used in the 

field of neuroscience to provide insight into the nervous system. However, the tracking 

accuracy depends on the presence of artifacts in the EEG/MEG recordings. Artifacts 

include any signals that do not originate from neural activity, including physiological 

artifacts such as eye movement and non-physiological activity caused by the 

environment. 

This work proposes an integrated method for simultaneously tracking multiple 

neural sources using the probability hypothesis density particle filter (PPHDF) and 

reducing the effect of artifacts using feature extraction and stochastic modeling. Unique 

time-frequency features are first extracted using matching pursuit decomposition for both 

neural activity and artifact signals. 

The features are used to model probability density functions for each signal type 

using Gaussian mixture modeling for use in the PPHDF neural tracking algorithm. The 

probability density function of the artifacts provides information to the tracking algorithm 

that can help reduce the probability of incorrectly estimating the dynamically varying 

number of current dipole sources and their corresponding neural activity localization 

parameters. Simulation results demonstrate the effectiveness of the proposed algorithm in 

increasing the tracking accuracy performance for multiple dipole sources using 

recordings that have been contaminated by artifacts. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Neuroscience is an interdisciplinary research field that encompasses techniques 

devoted to a better understanding of the human brain [1]. Using various methods to 

measure brain activity has helped to improve our basic understanding of the brain 

mechanisms of cognitive processes, and more importantly, to develop better 

characterization of neurological disorders that impair normal function. Among the 

available neuroimaging techniques, the electroencephalography (EEG) and 

magnetoencephalography (MEG) methods are extensively used in neuroscience as they 

have many advantages over other techniques [2]. EEG sensors, in particular, can be easily 

moved and they are tolerant to patient movement. Both the EEG and MEG techniques 

have very high temporal resolutions, in the order of milliseconds, and involve 

noninvasive procedures [1]. EEG and MEG sensors measure external electromagnetic 

signals that can then be processed to identify and localize neural electrical activity. The 

electromagnetic signals are formed when information is transferred between neurons in 

the brain. The neurons are excitable cells whose resting state is characterized by a 

cross-membrane voltage difference. The signal transfer between neurons occurs in a 

chemical process performed by neurotransmitters over the synaptic gap, and the resulting 

postsynaptic potential can be modeled as a current dipole [3]. 

Although the EEG/MEG measurements have high temporal resolution, they are 

characterized by low spatial sensitivity. As a result, accurate processing is required to 
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solve the EEG/MEG inverse problem, which is the problem of using EEG/MEG signals 

to estimate localization information on the current dipoles, and on their associated neural 

activity [4-6]. Tracking electrical neural activity by estimating current dipole information 

is very important for understanding the nervous system. It can help diagnose and treat 

neurological disorders such as epilepsy, multiple sclerosis and Alzheimer’s disease as 

well as brain disorders such as tumors and stroke [7]. 

Many approaches have been proposed to solve the EEG/MEG inverse problems 

including local autoregressive average (LAURA) method [8], the recursively applied and 

projected multiple-signal classification (RAP-MUSIC) method [8-9], beamforming [10] 

and various Bayesian techniques [11-16]. Kalman filtering in [13] was used to estimate 

dipole parameters, however this filtering method cannot be effectively applied to systems 

that cannot be described by linear models. For nonlinear and/or non-Gaussian systems, 

the sequential Bayesian method can result in higher estimation performance than the 

Kalman filter. As the EEG/MEG measurement models are highly nonlinear, the particle 

filter outperformed the Kalman filter when used to estimate dipole parameters [12-14]. In 

[17], multiple particle filters were used to track the parameters of a known number of 

current sources in real time. When the number of dipoles is unknown, as in most realistic 

scenarios, both the number of dipoles and parameters of dipoles were estimated using the 

probability hypothesis density filtering (PHDF) implemented using particle filters [17]. 

Although the methodologies for extracting brain activity from neural recordings 

have improved over the years, a major concern that still remains in neural tracking is the 

presence of artifact signals that often corrupt the recordings. Artifacts are irregularly 

occurring signal that do not originate from brain activity. They can include patient 
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movement, normal heart electrical activity, muscle and eye movement, or equipment and 

environmental clutter. As artifacts can affect the neural activity estimation accuracy, their 

detention, identification and removal from the EEG/MEG measurements are very 

important and necessary as their performance accuracy can affect the neural localization 

results [18]. Different methods for identifying and suppressing artifact signals from 

EEG/MEG recordings have been proposed in the literature. One of these methods uses 

independent component analysis (ICA), which is a statistical approach for separating a 

signal into its individual components based on the assumption that the components are 

statistically independent according to the kurtosis property of their amplitude 

distributions over time [19-21]. Brain activity and artifacts signals can be assumed 

independent as they are caused from different physiological and/or anatomical processes. 

In [22], it was shown that simply using ICA for artifact suppression could lead to 

removing important activity signals that were falsely classified as artifact; the proposed 

improved method integrated ICA with wavelet thresholding (wICA). In [23], a cascaded 

spatio-temporal processing method was used to remove ocular (or eye related) 

contaminated artifacts. The empirical mode decomposition (EMD) data adaptive filtering 

technique was used in [24] to separate ocular artifacts from EEG recordings, and it was 

shown to outperform wavelet thresholding. In [25], blind source separation was first 

applied to EEG recordings before applying the EMD to recover neural components that 

leaked into artifact components. In [26], blind source separation is integrated with the 

recursive least squares algorithm to suppress ocular artifacts based on the amplitude 

relationship between the two different types of signals. This hybrid method was 

compared to the use of other regression algorithms as well as to the wICA approach; the 
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comparison considered both the performance of the algorithms in removing artifacts as 

well as the distortion caused by the algorithm to the brain activity using time and 

frequency analysis. In [27], ocular artifacts are suppressed using second order blind 

identification methods and muscle artifacts are suppressed using canonical correlation 

analysis (CCA) methods; these methods appear as part of an automatic artifact removal 

(AAR) toolbox in EEGLAB [28]. Note that EEGLAB is an interactive Matlab toolbox for 

processing continuous and event-related EEG and MEG recordings. In [29], the wavelet 

transform was applied with selected frequency bands of neural signals to detect and 

remove artifacts; this approach was compared with and shown to outperform artifact 

removal algorithms based on the ICA, wICA, EMD and CCA methods.  

The aforementioned methods of artifact suppression involved a two-step 

procedure to achieve neural tracking: an artifact suppression algorithm was first applied 

to provide neural recordings with a higher artifact-to-signal ratio and then a suitable 

neural tracking algorithm would need to be selected to estimate the current dipole 

parameters from the artifact-suppressed signals. The approach proposed in [7, 30] 

performed both steps simultaneously. In particular, the ICA recording components, 

without first undergoing artifact identification and suppression, were directly applied as 

input to a multiple dipole tracking algorithm. The artifacts were modeled as clutter drawn 

from a point Poisson process uniformly distributed in a region of the measurement space, 

and characteristic frequency-domain features of the artifacts were used to obtain a model 

of their probability density function. The particle filter and the probabilistic data 

association filter (PDAF) [31-32] were used to estimate the parameters of multiple 

dipoles in the presence of artifact clutter. Note that the PDAF is a data association 
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method that was applied in order to compute the posterior probabilities of all possible 

association measurements and find the measurements that most likely originated from 

neural activities. This approach performed well in estimating the parameters of neural 

activity based on a known but small number of current dipoles and/or artifacts. As the 

number of dipoles and/or artifacts increased, however, the method did not always 

converge to provide estimates of the parameters of more than a few dipoles, as data 

association is very computationally intensive. Another problem with this method is the 

characterization of the probability density function of the artifacts based on observed 

frequency domain features. This feature selection approach was not shown to be robust as 

it necessitates pre-processing of recordings with known artifacts to observe and extract 

specific frequency bands for each different type of artifact. 

1.2 Proposed Thesis Work 

In this work, we propose an integrated one-step algorithm of neural tracking while 

suppressing artifacts, in a similar fashion to the algorithm in [30]. Our proposed 

algorithm aims to improve the neural tracking performance for an increased and unknown 

number of current dipoles as well as to increase the effect of artifact suppression by 

incorporating better-matched artifact features. 

In particular, we avoid the use of data association methods by using the 

probability hypothesis density filter (PHDF) as in [17]. The PHDF is an approach that is 

based on random finite sets, and as a result, it does not require each measurement 

component to be associated to the corresponding neural source it originated from [16, 33]. 

It can be implemented using particle filtering and is less computationally intensive than 
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data association as its computational complexity is linearly proportional to both the 

number of current dipoles and measurements. 

In our approach, we also model artifacts as clutter drawn from a point Poisson 

process uniformly distributed within measurement space. However, we improve the 

statistical characterization of the artifact signals for use in the particle filter 

implementation by selecting well-matched features for different types of artifacts. These 

features do not need to be observed but can be directly obtained by pre-processing the 

ICA recording components. The feature selection is performed in two parts. We first use 

the matching pursuit decomposition (MPD) algorithm [34-35] to extract discriminatory 

deterministic features for both neural and artifact signals in the time-frequency plane. The 

MPD features are then used as input to a Gaussian mixture model (GMM) clustering 

algorithm [36-38] to provide estimates of the parameters of two unique probability 

density functions. These are the functions needed for the neural activity and artifact 

signals in the PHDF particle filtering neural tracking algorithm. This approach provides 

for a more accurate statistical representation needed to separate artifacts from neural 

activity. 

1.3 Thesis Organization 

This thesis is organized as follows. In Chapter 2, we discuss the measurement 

model for neural dipole sources and the problem of measurement contamination by the 

presence of artifact signals. In Chapter 3, we provide a summary on particle filtering for 

estimating time-varying parameters, and we discuss the PHDF and particle filter 

(PHDF-PF) implementation. In Chapter 4, we present our new approach of obtaining 
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marched characterizations of the artifacts using GMMs with time-frequency features, and 

we provide our overall PHDF-PF tracking algorithm with the improved artifact 

characterizations. In chapter 5, we demonstrate the improved performance of our 

proposed algorithm using both simulated and real neural measurements. Our overall 

conclusions and future work plans are provided in Chapter 6. 
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CHAPTER 2 

MODELS OF NEURAL SOURCES AND THE PRESENCE OF ARTIFACTS 

2.1 Dipole Source Model 

Neuroscience is a broad research area that studies the nervous system, including 

the mechanisms of how neurons process signals electrochemically. As many studies have 

shown, groups of neurons encode information with electrical signals and then transmit 

the information by synapses to other group of neurons. The chemical postsynaptic 

potential created when an electromagnetic signal is transferred between groups of 

neurons can be modeled as a localized current dipole [7]. The electrical fields produced 

can be recorded from the scalp as electroencephalography (EEG) signals whereas the 

magnetic fields produced can be recorded at a short distance from the scalp as magneto 

encephalography (MEG) signals. 

Current dipoles are thus models for populations of neurons. Using physical-based 

source models for current dipoles and measurements of EEG/MEG can provide 

information on the location and orientation of neural activity. This can be very useful, for 

example, during brain surgery for patients with neurological disorders. Obtaining this 

information on neural source location and orientation is called the inverse problem [1] [6]. 

In order to solve the EEG/MEG inverse problem, a person’s head is assumed to consist of 

nested concentric spheres of constant conductivity [2]. Based on current dipole models, 

the primary current kI  at time k  can be represented in terms of dN  current dipoles as 

[39] 
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here r  is the radius of the head model, jmkd ,,  is the distance between the thj dipole 

source and the thm sensor and the vector pointing to the thi dipole location, jk ,  is the 
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angle between the thj  dipole orientation and the vector pointing to the thj dipole 

location, jk ,  is the angle between the plane performed by the thj dipole and the origin, 

  is the head tissue conductivity constant. In Equation (2.4), 
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2)(

,

2)(

,

2)(

,,

z

jk

y

jk

x

jkjk rrr r                       (2.5) 

the following figure shows the equivalent current dipole model for EEG localization for 

the thj dipole source and thm EEG sensor. 

 

Figure 1 Equivalent Current Dipole Model for EEG Localization for the thj  Dipole and 

thm EEG Sensor 

2.2 State Space Representation of Neural Tracking System 

The neural activity tracking problem is the estimation of the location and moment 

vector parameters of the current dipole model sources. These parameters vary 

dynamically, and they are related to the EEG/MEG measurements as described in 

Equation (2.3). This equation provides the measurement model of the state space system 

that uniquely characterizes neural dipole source tracking. In an overall state space 

dynamic system representation, as there is no physiological time source evolution model, 
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the state model is assumed to follow a random walk model [11]. The dynamic state model 

for the thj  EEG current dipole at time step k  is given by: 

1,11,1, )(   kjkkjkjk vf vxxx                     (2.6) 

where T

jk

T

jk

T

jkjk s ],,[ ,,,, qrx   is a 7-D state vector, jk ,r , jk ,q are the position vector and 

orientation vector of the thj  EEG current dipole at time step k  respectively. jks ,  is 

amplitude factor and 1kv  is the error model random vector. 

2.3 Artifacts in Neural Recordings 

Although EEG is designed to record the cerebral activities, it also record 

unavoidable activities from artifacts. EEG artifacts are usually divided into two 

categories based on the cause. Physiological artifacts are from patients, includes muscle, 

tongue, eye, skin, heart movement and/or respiration during recording the brain activity. 

Extra-physiological artifacts can caused by environment or/and equipment, like 

electrodes popping, alternating current, surrounding movements and interference in the 

environment. 

Among all the above artifacts, the most common artifact is eye blinking artifact 

since it is a spontaneous and natural behavior and is hard to be controlled in the recording 

procedure. In clinical experiment, eye blinking artifact appears as a sharp transients (see 

figure 4). 

EEG waveforms are generally grouped into bands according to their frequency. 

Alpha waves lie in the range of 8-15 Hz, frequency of Beta waves is in 16-31 Hz, Theta 

waves’ range is from 4 to 7 Hz and Delta waves is between 0 Hz and 4 Hz. Frequency is 
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a key characteristic to classify the normal EEG and abnormal EEG [39]. Delta rhythmic 

activity is normally located frontally in adults and posteriorly in children, and it 

frequently appears in babies, or adults who are in deep sleep. Deep sleep is referred to as 

slow-wave sleep, since the EEG activity is synchronized, producing slow waves with 

frequency of less than 1 Hz and a relatively high amplitude. It consists of stages three and 

four of non-rapid eye movement sleep [45]. 
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CHAPTER 3 

NEURAL ACTIVITY ESTIMATION 

The neural tracking problem is described in Chapter 2 as the problem of 

estimating the location and moment state parameters of the current dipole model sources. 

The state space representation of the neural tracking system is described in Equations (2.3) 

and (2.6). This chapter discusses Bayesian estimation methods for estimating the state of 

single and multiple dipole source models. 

3.1 Bayesian Estimation 

Recursive Bayesian estimation [40] is a general probabilistic approach for 

estimating the unknown probability density function over time of the hidden state of a 

dynamic system. The dynamic system model is, in general, described by two 

mathematical models. The measurement model relates the observed data to the hidden 

system states that need to be estimated, the state model describes how state parameters 

change over time a. The state space representation of a dynamic system is given by: 

11)(   kkk f vxx                         (3.1) 

kkk h uxz  )(                          (3.2) 

where kx  is a vector of unknown state parameters at time step k , )(f  is a general 

function that describes the state evolution, and 1kv  is a modeling error vector that 

characterizes the random error process between the model used and the actual model. In 

(3.2), kz is the vector of measurements at time k , )(h  is a function that defines the 

relationship between the measurement and the state, and ku  is the measurement noise 
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vector. The tracking problem is to recursively estimate kx  from a set of measurements 

},...,,{ 21:1 kk zzzz  . 

Recursive Bayesian filtering is based on the concept of feedback control. The 

system predicts the process state at some time and then observes feedback in the form of 

noisy measurements to update the state. The two main components of the algorithm are: 

prediction and update. 

During prediction step, and assuming that the probability density function 

)|( 1:11  kkp zx at time 1k  is obtained recursively from the assumed initial density 

)()|( 000 xzx pp  , then the system model is used with the Chapman-Kolmogorov 

equation [41] to obtain the prior probability density function )|( 1:1 kkp zx  at time k  as: 

11:111:1 )|()|()|(   kkkkkkk dppp xzxxxzx             (3.3) 

where )|( 1kkp xx is the state prior density function. During the update step, the new 

available measurement kz  is used to update the predicted state using Bayes' rule [41] to 

obtain the posterior density function: 



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where )|( kkp xz  is the measurement likelihood function. 

If the functions )(f and )(h  in Equations (3.1) and (3.2) are linear, 

kv and ku are Gaussian, then the Kalman filter [42] can be used to estimate the state 

analytically. For systems described by nonlinear equations, modifications of Kalman 

filter such as the extended Kalman filter and the unscented Kalman filter [43] yield 
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higher estimation performance than the Kalman filter. However, for highly nonlinear 

systems, such as the EEG/MEG neural measurement models, traditional Bayesian 

methods perform poorly and require the use of sequential Monte Carlo methods such as 

particle filtering [12, 44]. 

3.2 Particle Filtering Estimation 

Particle filtering estimates the posterior density of the unknown state of a dynamic 

system implementing the recursive Bayes filter [44]. The basic idea behind particle 

filtering is to estimate the posterior density of the unknown state parameters using a set of 

particles and associated weights. The technique has been successfully used in many 

applications including visual tracking, quality control in the semiconductor industry, 

positioning systems, radar tracking and missile guidance. 

The Particle filter uses a set of particles to represent samples from a posterior 

distribution, and each particle has a weight associated with it, the joint posterior 

probability density function of the state at time step k , and thus an estimate of the state 

can be approximated by this set of N  random weighted samples. 

The probability density function at time k  can be described as 

)()|( )(

1
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n

kkk wp xxzx 


                         (3.5) 

where )(n

kw  is the weight of the thn  particle at time k  and )(  is the Dirac 

delta function. The state estimate is obtained directly from (3.5) as 
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The sequential importance resampling particle filter (SIR-PF) is a very commonly 

used particle filtering algorithm. An importance density function ),|( 1 kkkq zxx   is 

chosen to minimize the variance of the weights, and to sample the posterior probabilistic 

density function. The SIR-PF has three main steps: 

1) Particle generation 

The particles )(n

kx  are drawn from an importance density function ),|( :1

)(

1 k

n

kkq zxx  , 

where },...,,{ 21:1 kk zzzz  . 

2) Weights calculation 

The importance density function is chosen as the prior density function 
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the weights are normalized and summed to one. 

1
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n

n

kw                            (3.8) 

3) Resampling 

The particles are resampled to avoid particle degeneracy, which occurs when most 

weights are very small and thus provide a poor representation of the posterior probability 

density function [44]. This step eliminates particles with low weights and replicates 

particles with high weights, to make sure sufficient particles are used at each time step 

and present probability density function well. 
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The main steps of the particle filter algorithm for state estimation are described in 

Algorithm 1. 

Algorithm 1 SIR Particle Filter algorithm 

• Initialization at time k=0 

Draw N  particles from a uniform distribution 

Compute the initial weights Nw n /1)(

0    

• Prediction step 

For Kk :1  

    For Nn :1  

Predict for each particle )(

1

)(

1

)( n

k

n

k

n

k   uxx  and keep weights )(

1-

n

kw  

• Update step 

Update corresponding weights )|( )()(

1

)( n

kk

n

k

n

k pww xz  

Normalize weights 



N

i

n

kw
1

)( 1  

•Resampling step [44] 
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3.3 Probability Hypothesis Density Filtering for Multiple Object Tracking 

In many real applications, the number of objects whose dynamic parameters need 

to be estimated also changes with time. In neural activity tracking, as the current dipoles 

model neural sources, the number of dipoles at time step k  depend on the number of 

new dipoles tracked at time step k , the number of dipoles that are no longer present at 

time step k  but were present at time step 1k , and the number of dipoles that were 

present at time step 1k  and remain present at time step k . The neural recordings may 

also be contaminated by a varying number of artifact signals. Their presence at time step 

k  can be considered as clutter, resulting in reducing the probability of dipole detection 

as well as increasing the probability of false mistaking artifact signals for neural activity 

signals. For such realistic scenarios with an unknown varying number of dipoles, it is 

important to be able to associate each sensor measurement component to its 

corresponding dipole or determine that it originated from artifacts. 

As it is known that EEG measurements can contain both neural activity and 

artifacts components, estimating brain activity requires knowledge of which measurement 

most likely originated from neural activity. Although data association provides a solution, 

it is computationally intensive and requires that the number of dipoles is fixed at each 

time step, it also result in poor estimation performance when the dipoles are close to each 

other. In order to avoid the measurement association problem, the probability hypothesis 

density filter (PHDF) is a filter that can recursively estimate the number and states of 

objects in environments of nonzero probability of detection [45-46]. The PHDF has been 

applied in many practical problems, such as multi-beam forward-looking sonar images 
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[47], simultaneous localization and mapping (SLAM) [48], and multi-target visual 

tracking [49]. 

3.3.1 Probability Hypothesis Density Filtering Formulation 

The PHDF is based on a recursion propagating the first moment of the posterior 

density function of the multiple object state and uses random finite sets (RFS). For the 

neural tracking application, for example, due to the complexity of brain activity, current 

dipole sources may randomly appear or disappear, which causes the number of dipoles to 

vary a each time step. The number of measurements can also change, especially since 

some of the recordings can correspond to artifacts. It is also not known a prior which 

dipole source has generated a given measurement, assuming that dipoles generate activity 

independently. RFS are thus appropriate to use for representing the dipole source model 

states and the measurements. An RFS is defined as a finite set-valued random vector 

whose elements can be characterized by a discrete probability distribution and a family of 

joint probability density functions [50]. When used with neural tracking, the cardinality 

of the multi-object state RFS is the random number of dipoles sources, and the unknown 

state of each object is represented by each RFS element. 

Using the RFS formulation and assuming that at time step k , there are kN  

dipole source models and kM  measurements, then the multiple dipole sources state RFS 

and multiple sensor measurement RFS are given respectively by: 
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where T

jk

T

jk

T

jkjk s ],,[ ,,,, qrx   is the state vector of thj  dipole source in Equation (2.6), 

and mk ,z  is the measurement for the thm  sensor in Equation (2.3). Note that the 

measurements can also include artifact signals. 

In order to formulate the PHDF for multi-object estimation, assume that kx  is a 

vector element of the RFS kX  in (3.9) at time k  and kz  is a vector element of the 

RFS kZ  in (3.10), multi-target states and sensor measurements can be represented as 

random finite sets. Given the source state vector 1kx  at time 1k , the state random 

finite set kx  is formed by combining the state vectors from sources still present from the 

previous time step, from sources that spawned from sources from previous time steps 

spn

kk 1| x  and from new sources at the present time step new

kx . Due to the possible presence 

of artifacts, the measurements can be due to both the source and clutter or due to only 

clutter. It is assumed that the clutter RFS and the source measurement RFS are 

independent, and that the source measurements RFS are mutually independent. 

In the PHDF algorithm, the predicted posterior density function )|( 1kkp zx can 

be completely characterized by the corresponding intensity function )|( 1kk zx . This is 

because integrating the intensity function over a specified region provides the expected 

number of sources present in that region. Also, the locations of the peaks of the intensity 

function provide estimates of the parameters of the sources in the region. Thus, given the 

posterior intensity )|( 11  kk zx  at time step 1k , the predicted intensity is obtained as 
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where )|( 1kk

sp
zx  is the intensity function of the sources spawned from the existed 

sources at the previous time step 1k , )|( kk

new
zx  is the intensity functions of the new 

sources at the current time step k, and )(P 11-k|k kx  is the probability that a source that was 

present at time step 1k  is still present at time step k . 

The posterior intensity function is updated given the information from the 

prediction step. And it given by 
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where )( k

clutter
z  is the clutter intensity function in the measurement space and )(P k

D

k x  

is the probability of detecting a source at time k . Here we assume that the likelihood 

function )|( kkp xz  is Gaussian likelihood with mean )( kh x  and covariance k , M is 

sensor number. 
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3.3.2 Probability Hypothesis Density Filter Implementation using Particle Filtering 

In our work, the PHDF is implemented using particle filtering (PF) [51] which is 

applicable to nonlinear system models as in the neural tracking problem. 

Similar to particle filtering, the particle probability hypothesis density filter 

(PPHDF) has the three main steps of prediction, update and resampling. It is a recursive 

algorithm whose prior intensity function is estimated and then the posterior intensity 
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function is updated based on the prior intensity function. The recursion requires an 

initialization of the intensity function at time step 0k . 

At time step ( 1k ), the intensity function )|( 11  kk zx  can be approximated by 

1kT  particles )(

1

n

kx  and their corresponding weights )(
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n

kw  , 1,..,2,1  kTn : 
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We assume that 1

1

)( }{ 


kT

n

n

kx  are drawn from the proposal density ),|( )(

1 k

n

kkq zx   and 

kk

k

JT

Ti

n

k








1

1 1

)( }{x  are drawn from another density )|( kkp z , 













kkkkk

kk

n

kkn

k
JTTip

Tnq

11

1

)(

1)(

,...,1),|(

,..,1),,|(
~

z

zx
x                (3.15) 

1kT  particles are used to approximate the surviving targets from time step 1k  to time 

step k , kJ particles are for new born targets RFS at time step k . Then the predicted 

intensity function is  
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In the update step, the particle weights are changed to: 
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where 
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)( k

clutter
z  is the clutter intensity function in the measurement space and )(P k

D

k x  is the 

probability of a source to be detected at time k , and. )|( kkp xz  is Gaussian likelihood in 

Equation in (3.15). 

Similarly, resampling is used to avoid the particle degeneracy by eliminating low 

weights particles and replicating high weights particles, and make particles focus on 

important regions of the intensity function.  

The particle filter implementation of the PHDF is robust and computationally 

possible when compare to existing multiple objects tracking techniques, and it has been 

applied successfully in radar tracking and sonar image [47]. 
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Algorithm 2 Probability Hypothesis Density Particle Filtering 

 

• Initialization )( 0x , 0T , 00 /1 Tw  ,  

• Step 1 prediction step 

For 1,...2,1  kTn , sample and compute weights 
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),|(

),(
)(

1

)(

)(

1

)(

1

)(

1|)(

1|

k

n

k

n

kk

n

k

n

k

n

kkkn

kk
q

w
w

zxx

xx





 


 

For kkk JTTn   11 ,...,1 , sample and compute weights 
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• Step 2 update step 

For kk :1zz  , compute  
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• Step 3 resampling step [44] 

Compute the total mass 
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CHAPTER 4 

ARTIFACT FEATURE CHARACTERIZATION WITH MULTIPLE NEURAL 

SOURCE TRACKING 

4.1 Proposed Algorithm of Neural Sources Tracking with Stochastic Artifact Modeling 

In our work, we propose an integrated algorithm for simultaneously tracking 

multiple neural sources using the probability hypothesis density particle filter (PPHDF), 

discussed in Section 3.4, and suppressing artifact signals by estimating their statistical 

representations using time-frequency methods and Gaussian mixture modeling. For the 

rest of the thesis, we refer to our proposed algorithm as NEST-SAM (or Neural Sources 

Tracking with Stochastic Artifact Modeling). 

The main steps of the NEST-SAM algorithm are depicted in Figure 4.1. EEG 

recordings from multiple sensors or channels are first preprocessed by performing 

highpass filtering to remove linear trends in the data and by extracting specific events of 

interest [52]. Independent component analysis (ICA) is then used to separate the channel 

recordings into independent components, with each component corresponding to a single 

measurement. The different signal components correspond to either dipole source model 

or artifacts signals. We extract unique features for each type of signal using the matching 

pursuit decomposition time-frequency (MPD-TF) algorithm. The resulting feature vectors 

are used as input to the Gaussian mixture model (GMM) algorithm that results in two 

clusters with unique probability density functions for each type of signal. These density 

functions are then used in the PPHDF algorithm that estimates the number of dipole 

source models and their parameters at each time step; the PPHDF incorporated the 
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estimated artifact information as clutter to improve the performance accuracy of the 

overall tracking algorithm. 

The different steps of the NEST-SAM algorithm are discussed in detail in the rest 

of the chapter. 

 

Figure 2 Block Diagram of the Proposed Neural Sources Tracking with Stochastic 

Artifact Modeling (NEST-SAM) algorithm. 

4.2 Independent Component Analysis 

The problem in neural activity estimation is that EEG data consists of electrical 

potentials from brain activities that can be contaminated by artifacts. All current dipole 

sources contribute to EEG measurements. In order to associate each component to one 

current dipole, the EEG measurements must be decomposed into independent 

components using ICA. 
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As a computational and statistical signal processing technique, the general idea of 

ICA is to search for a linear transformation of sets of random variables, measurements or 

signals that minimize the statistical dependence between their components. A 

well-known linear transformation method is principal component analysis (PCA) [55], 

which can only impose independence up to second order and defines directions that are 

orthogonal. ICA is the extension of PCA, and its goal is to decompose a multivariate 

signal into independent non-Gaussian signal components are statistically independent. 

Theoretically using ICA assumes that the EEG sources do not have a Gaussian 

distribution, since in the case of Gaussian statistics, the ICA model can only be estimated 

up to an orthogonal transformation.. 

If we assume that the t  random measurement vector T

tmmm ]...[ 21m  is a 

linear mixture of p  random source signal vector T

psss ]...[ 21s , the ICA can be 

expressed as 

Asz                                (4.1) 

where A  is the pt  mixing matrix of full rank. The source signals are assumed 

independent with non-Gaussian distributions (or just one component is Gaussian) and 

cannot be observed directly. ICA is used to estimate both the mixing matrix and s  using 

the measurement z . If we assume that z  and s  have the same dimensionality, then 

we can rewrite Equation (4.1) as : 

WmmA  1ŝ                           (4.2) 

where W  is called the unmixed matrix or weight matrix. ICA can now estimate ŝ  as 

an approximation to the source signal s  by estimating the weight matrix which goes 
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from source signal space to observed space. The independent components are optimal 

when W  is an accurate estimate. 

4.3 Time-frequency Feature Extraction using the Matching Pursuit Decomposition 

Analysis of EEG mostly relies on visual inspection which is rather very subjective 

and hardly allows any statistical analysis or standardization. One of the methods to 

quantify the information of EEG is Fourier analysis. The Fourier transform provides the 

spectral part of the signal, but no information on the time localization of the frequency 

components. In order to analyze the time-varying EEG signals, the time and frequency 

domain characteristics must be considered jointly. Time-frequency analysis [35] is an 

effective solution for EEG signals. 

The matching pursuit decomposition (MPD) is a popular technique for sparse 

signal representation [21]. The general idea behind the MPD algorithm is the 

decomposition of any signal into a linear expansion of waveforms that are selected from a 

redundant dictionary of functions, to find the best matches of the signal time-frequency 

structures. Decomposition of signals over both time and frequency domain is widely used 

in signal processing and harmonic analysis. For these dictionaries of time-frequency 

atoms, the MPD is an adaptive transform that decomposes any function into a sum of 

complex time-frequency atoms that can best match its residues. As Gaussian signals are 

the most localized signals in both time and frequency, a Gaussian dictionary is the 

optimal choice. 

The MPD is a time-frequency based technique that decomposes a signal into 

highly localized time-frequency atoms and can provide a highly concentrated 



 

29 

time-frequency representation. This is done by performing an exhaustive search over all 

the Gaussian time-frequency atoms in the dictionary [33]. Suppose we have a real 

signal )(ty , then the steps of the MPD algorithm are as follows. 

With )()(0 tytr  , at the thi iteration, 1,...,1,0  Ni , the projection of the 

residue )(tri  onto every dictionary element Dtg d )()( is computed to obtain 
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d
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d

i )()(, )*()()(                        (4.3) 

The selected dictionary atom )(tgi  is the one that maximizes the magnitude of the 

projection, 
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The corresponding expansion coefficient is 
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 dttgtrgra iiiii )()(,                        (4.5) 

The residue at the thi  and th)1( i  iterations are related as )()()(1 tgatrtr iiii  . 

Thus after N  MPD iterations, the residue is given by 
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)(tg is generated by scaling, translating and modulating a simple Gaussian window 

function centered at origin. With 0 , and any initial phase ]2,0[  , )(tg  is 

defined as 
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here the coefficient constant K  is the adjust factor to keep 1)( tg , s  is scale,   

is frequency modulating and   is time delay. 

Although the matching pursuit decomposition is nonlinear, the energy 

conversation is maintained to guarantee its convergence. In our simulation, we use 

conventional Gabor (Gaussian) dictionary since it is the most concentrated signal in the 

time-frequency plane. The Gaussian atom belongs to the dictionary is given by 
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where  
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2)( tet                              (4.9) 

and Wigner distribution of a Gaussian atom is 
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MPD iterations will stop when the signal energy residue reaches certain threshold, and 

based on the dictionary, we obtain the 4-D feature )(  sK from input EEG signals, 

here K  is coefficient, s  is scale,   is frequency modulation and   is time delay. 
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Algorithm 3 MPD based on Gaussian Atom Time-frequency dictionary 

 

• Initialize K , dictionary size 
aN , 

fN , residue R=input EEG signal, energy En=|R|
2
 

• Create Gaussian atom time-frequency dictionary 

For i = 1 : 
aN  

   For j = 1 : 
fN  

    ))()(2cos()))()((exp( 22 itjfisitdictionary   

     normalize the dictionary 

    End for 

End for 

• MPD Iteration 

  For i = 1: K  

     Compute inner product for each atom,  dictionaryRP ,  

     Find the dictionary atoms for maximum P 

     Update residue R and energy E=R
2
/En 

     i=i+1; 

     if E <= EnEnd if 

  End for  

Input: EEG signals 

Output: characteristic factors  

Feature vector = [coefficient K , scale s , time-shift  , frequency-shift  ] 
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4.4 Gaussian Mixture Model (GMM) 

We use MPD feature vectors to uniquely represent and differentiate between 

neural activity and artifacts. As this information needed to be integrated with the PPHDF, 

we use Gaussian Mixture Modeling (GMM) [36-38] to obtain stochastic representations 

of the MPD features. GMM is a simple and effective method to represent the probability 

density functions of the characteristic feature vectors. This method is commonly used as a 

parametric model of the probability distribution of continuous measurements or features 

of biometric system. The basic idea of using Gaussian mixtures is to model the unknown 

PDFs as a linear combination of several weighted Gaussian component densities. Assume 

we have N  single Gaussians distributions with each own mean k  and variance 

k , Nk ,...,2,1 . and a given random signal could be approximated by these N 

Gaussians as follows: 
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here k  is the thk  weight for the thk  Gaussian component and all the weights sum 

up to one. In our work, the input of the GMM is the characteristic vector, which contains 

coefficient K , scale a , time-shift   and frequency-shift  , thus the Gaussian Mixture 

model for the these deterministic features is 
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where ][ aKx , k  is the thk  weight for thk  Gaussian component, kμ  is the 

mean vector and k  is the covariance matrix of input features. Each component is a 

multivariate Gaussian. 

Given training vectors and a GMM configuration, we wish to estimate the 

parameters of the GMM, which in some sense best matches the distribution of the 

training feature vectors [36]. By far there are several techniques available to estimate the 

parameters, but the most popular and commonly used is the maximum-likelihood (ML) 

estimation, and ML parameter estimates can be obtained iteratively using a special case 

of the expectation-maximization (EM) algorithm [37]. The EM algorithm is an iterative 

method to expect better parameters based on the old estimates and to maximize the result. 

The iteration stops once some certain converge threshold is achieved. Each iteration has 

expectation (E)-step and maximization (M)-step. 

Assume each cluster has responsibilities [38] for each data point, responsibilities 

assign data point to the corresponding clusters. In the E-step, we estimate distributions of 

the hidden variables given the data point : 









N

j

jjnj

kknkn

g

g

1

)(

k

),|(

),|(

μx

μx




                (4.16) 

where )(n

k
  stands for responsibility for thn  data point corresponds to thk cluster, k  is 

the weights for thk  cluster, )(g  is Gaussian distribution for thk cluster. The estimated 

parameters are grouped by calculating the probabilities from the equation (4.13). 
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In the M-step, each cluster’s parameters is computed to match the responsible 

data points, and accordingly, the weighted means and variances for thk  cluster are 

updated, and they will be used as input for the next iteration. 
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                (4.18) 

where kN  is the total responsibility of thk  cluster, 



T

n

n

kkN
1

  and weights for each 

cluster is updated as : 


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
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k
k

N

N

1


                        (4.19) 

With the mean and covariance matrix, we can model the probability density 

functions for the two clusters representing neural activity and artifacts and then apply 

them in the PPHDF algorithm. The steps of the EM algorithm for GMM are provided in 

Algorithm 4. 

4.5 Probability Distribution of Artifacts 

Due to the received measurements are either from dipole targets or artifacts, the 

way to model artifacts is another significant factor in multiple targets tracking. In target 

tracking applications, the presence of clutter or false alarm is often modeled as Poisson 

distribution. Similarly, we model the presence of artifact measurements using Poisson 

distribution with average rate  , which provides a measure of the probability of the 
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number of artifacts present at a certain time step, and we assume the number of clutter 

per scan is independent of the time. Then the discrete probability distribution for t  

artifact measurements is given as: 


  e

t
t

t

)!(
)(                           (4.20) 
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Algorithm 4 EM algorithm for Gaussian Mixture Model 

• Initialization of parameters 
1

k , 
1

k , 
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k , 
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• M step: compute each cluster's parameters to match the responsible data 

points. 

      Add up total responsibility of cluster k 
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•Repeat EM steps until convergence. 
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CHAPTER 5 

DIPOLE TRACKING USING PHDF IN ARTIFACT ENVIRONMENT 

5.1 EEGLAB Software and EEG Recordings 

EEGLAB is an open source toolbox for MATLAB environment that is used for 

processing collections of single-trial and/or averaged EEG data of any number of 

channels [52-53]. It stores data, acquisition parameters, channel locations, epochs and 

events in a single structure which can be accessed directly from the MATLAB command 

line. There are various types of functions available in this toolbox such as multi-trial data 

visualization, data processing, independent component analysis (ICA) and 

time-frequency decompositions. 

We download the data from EEGLAB and extract a desired number of time steps 

or epochs for processing data into certain number of epochs, and run ICA on these source 

signals. First, we preprocess the real EEG data and use independent component analysis 

(ICA) to separate the channel recordings into independent components. These steps are 

computed directly within the EEGLAB software package [52, 54].For our simulation, 

EEG data was taken from 32 sensors over the human scalp, where the sensors are 

distributed as shown in Figure 3. We selected dataset segments centered on the 

presentation of a square stimulus, from one second prior to presentation to two seconds 

after presentation. Figure 4 shows the channel raw signals collected directly from sensors. 
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Figure 3 EEG Sensor Locations, Created Using EEGLAB. 

 

Figure 4 EEG Signals Segment from 32 Sensors. 

In our work, we used the EEGLAB software package which contains an 

automated version “runica” of infomax ICA decomposition to get the independent 

components. Figure 5 shows the 32 separated independent components by using ICA in 
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EEGLAB toolbox. The toolbox also allows users to select up to 20 available ICA 

algorithms [27]. Each one of the obtained independent components can be seen as an 

independent measurement that we can use to obtain the dipole source and artifacts 

characteristic parameters. 

 

Figure 5 Separated EEG Components after ICA from -1s to 2s 

5.2 Simulation Set Up 

In order to demonstrate the effectiveness and performance of the proposed 

algorithm, we provide MATLAB simulations for multiple dipole current sources tracking 

in the clutter environment. Block diagram in Figure 2 illustrates the whole procedure of 

simulation for the proposed approach and will be detailed in the following sub sections. 

There are three main parts in the proposed algorithm for multiple targets tracking with 

PHDF-PF and artifacts suppression. The first part includes preprocessing the EEG data 

with low pass filter and whitening, separation of the original EEG data into independent 
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components by using ICA decomposition, this part is done with the EEGLAB toolbox. 

The second part focuses on analysis of discriminative features for neural activity and 

artifacts, we obtained amplitude, dilation time-shift and frequency shift features of 

components by using the MPD with Gaussian time-frequency atom dictionary, and we 

used the features to model the PDFs for artifacts and neural activity with Gaussian 

mixture model. The last part is to track the multiple dipoles with PHDF, PDF of neural 

activity and PDF of artifact is applied in the PHDF to suppress artifacts, we implemented 

PHDF with a set of weighted particles, which is used to represent the intensity function, 

and update the posterior intensity function by updating the assigned weights of each 

particle. 

In our work, we modeled the head as a hemisphere with radius of 85mm, x and y 

axis ranged from -85mm to 85mm while z is from 0 to 85mm. The EEG data are sampled 

at 128Hz. The state space model for the dipoles parameters Tk

i

Tk

i

Tk

i

k

i s ],)(,)[( qrx   to be 

estimated is a random walk model: 

),()()( 1   tt kk xx                        (5.1) 

),(   is the Gaussian distribution with mean 0 and variance 5 mm for position 

parameters. 

Measurement noise ku in equation (3.10) is Gaussian with 0 mean and variance 

10
-9

. We apply 1000 particles for each dipole and initialize these particles with uniform 

distribution. Each dipole source has a probability )(P 11-k|k kx = 0.9 to survive from the 

previous time step, and a probability )(P k

D

k x  = 0.95 to be detected at the measurement 

space. The number of dipoles is three and the number of artifacts at each time step is 
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modeled to have a Poisson distribution with average rate 1. By given the ground truth, we 

performed 100 Monte Carlo simulations with synthetic data for two tracking scenarios, 

which are with artifacts and without artifacts. We evaluated of the tracking result using 

root mean-squared error (RMSE) analysis. 

5.3 Independent Components Separation 

5.3.1 Synthetic Data Generation 

In our simulations, synthetic data is reconstructed based on the real EEG data, by 

given EEG data the ground truth, we can estimate the tracking performance. The block 

diagram below shows the synthetic data generation procedure. 

 

Figure 6 Block Diagram for Synthetic Data Reconstruction 

5.3.2 Eigenvalue Threshold Selection 

EEGLAB toolbox is a powerful toolbox which integrated many signal processing 

techniques. We use ‘runica’ to separate EEG data into independent components. ICA 

provides 32 independent components (see Figure 4) which correspond to 32 sensors that 



 

42 

are placed over the scalp. According to the clinical experience and proof, we can tell that 

several components are distinguished from others, for example, in the 61
st
 and 62

nd
 

interval, on the 3
rd

 channel, there is a sharp spike. This spike is from sensor 3 which is 

placed near the frontal part of scalp, this indicates the presence of eye artifact. 

Component 11 is considered as lateral eye movement artifact which shows a bump in 

signal amplitude ends at a different value than when it started. These artifacts appear in 

different intervals out of total 80 intervals. Components with smooth fluctuation in all 80 

intervals like component 17, component 20 and component 27 are considered as the 

normal neural activity. 

ICA algorithm integrated in EEGLAB works constantly for 32 channel signals. In 

order to separate mixed signals well and reduce the dimension of EEG data, the threshold 

based eigenvalue decomposition can be used to obtain independent components by 

setting a threshold to choose the leading eigenvalues instead of all of them. Eigenvalue 

selection method is significant since it determines the number of independent 

components and the reconstruction error of ICA. Figure 7 shows all 32 eigenvalue 

amplitudes of EEG covariance matrix in the simulated dataset, there are four leading 

eigenvalues in this plot. The threshold of eigenvalues in our simulation is set to be 1 × 

10
-10

 in case of more than four leading eigenvalues. 

Figure 8 gives an example of components separation with ICA in simulation at a 

single time step, the isolated five components consist of two neural activity components 

and three blinking artifact components. ICA is the first significant step in the proposed 

method to ensure artifact components and normal EEG component are separated 

independently and correctly. 
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Figure 7 Eigenvalue Plot of EEG Covariance Matrix 

 

Figure 8 Separated Components of Synthetic Data 

5.4 Features Extraction and Analysis 

MPD with Gaussian atom time-frequency dictionary is used to optimize the 

approximation of signal by decomposing into different Gaussian components. According 
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to Equation (4.5), Gaussian dictionary is decided by four parameters: coefficient constant 

(amplitude of the Gaussian), time shift, frequency shift and scale (dilation of the 

Gaussian). Frequency range is chosen from 0-30 Hz on the basis of brain activity 

frequency characteristic discussed in section 2.3. Time shift parameter can be decided by 

3-sigma rule of normal distribution, shown in Figure 9. Three standard deviations σ 

account for probability of over 99%. To fit a single wave in the normal neural component 

signal with a Gaussian, 6σ corresponds to time interval of the single wave, as shown in 

Figure 10. Then the scale s  can be determined with knowledge of standard deviation σ.  

 

Figure 9 Three-Sigma Rule 

 

Figure 10 Single Gaussian Approximation of Neural Activity 
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With the same threshold (say 90%) to keep the signal energy, MPD iterations of 

artifacts and normal activity are different. This means 90 percent of artifact signal is 

decomposed into several Gaussian components, while the normal activity signal is 

decomposed into many more. 
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Figure 11 MPD Approximation for Blinking Artifact and Normal Activity 
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Figure 12 Energy Residue vs MPD Iteration Times 
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Figure 11 shows the MPD approximation for blinking artifact and normal activity 

signal, the blue curve is the original signal and the red curve is MPD approximation with 

different Gaussians. The sharp spike in blinking signal is a discriminative feature which 

indicates dominant energy is centered at this spike. Figure 12 shows the iteration numbers 

of MPD needed for blinking artifact and normal neural activity are different. To keep the 

same energy, Only 2 Gaussian components are sufficient to represent the envelope of 

blinking artifact, while for normal activity signal, 40 Gaussians are required. This 

difference is shown clearer in time-frequency plane. 
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Figure 13 Cross-term Free Time-Frequency Representation for Blinking Artifact and 

Normal Neural Activity 

Figure 13 shows the cross-term free time-frequency representations for blinking 

artifact and normal neural activity respectively. It can be seen that Gaussian components 

for blinking artifact are more centered near the 4Hz in frequency band, and Gaussian 

components of normal neural activity are more spread out in time- frequency plane, from 

0 to 20 Hz in frequency domain and 0 to 3 seconds in time domain. 
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Figure 14 Two Different Artifacts in Time-Frequency Plane 

Figure 14 gives two examples of artifacts: eye blinking artifact and lateral eye 

movement artifact and their cross-term free time-frequency representations. Eye blinking 

artifact is centered near 4 Hz in frequency domain while the lateral eye movement artifact 

is centered near 2 Hz, and variances of Gaussian components for blinking artifact are 

smaller than for eye movement artifact. 

However, among the four features we obtained from Equation (4.7), time delay   

feature does not provide useful information since the blinking of eyes occurs randomly, 

thus we keep the rest three features in the PDFs modeling. Other problem we have met is 

the features overlap. When both artifacts signals and normal neural signals are 

decomposed into many Gaussian components, MPD features of artifacts have overlap with 

features of normal neural signals. Figure 15 shows the features overlap problem. Features 

overlap makes it hard to tell the difference between artifacts and normal neural activity, 
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thus we consider the iteration number as priority instead of energy reservation. With 

one-time iteration in MPD, we can separate the blinking artifact from normal neural 

activity since the sharp spike of artifact is distinguished from other waves. 
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Figure 15 Features Overlap 

When modeling the PDFs for normal neural activity and artifact with Gaussian 

mixture model, there is no information on which probability density function corresponds 

to which cluster, thus we use data training to classify the probability density functions. 

Table 1 shows the partial three features of blinking artifact and neural activity. Among the 

three features, there are slightly differences in the scale and frequency shift between 

normal neural signal and artifacts, but the coefficient difference between two groups is the 

most obvious, coefficient of artifacts is about two times bigger than normal neural signal's. 

Based on these differences, we trained the data obtained from the Gaussian mixture 

modeling and assigned the probability density functions to the corresponding groups.  
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 Coefficient(absolute value) Scale Frequency-shift(Hz) 

neural artifact neural artifact neural artifact 

1 9.1212 17.6993 5.0000 11.7677 0.5000 3.1818 

2 7.0870 17.2432 11.7677 14.1367 0.7980 2.8838 

3 7.7798 16.2559 5.0000 7.2157 2.2879 2.8838 

4 6.0193 18.3960 9.2148 18.0532 3.1818 1.6919 

5 7.2870 18.3053 5.0000 14.1367 0.5000 1.6919 

6 8.2628 18.4356 5.0000 18.0532 0.5000 1.9899 

7 9.7250 17.6513 7.2157 5.3152 8.8434 1.9899 

8 6.1678 18.4649 19.1914 7.2157 5.8636 1.9899 

9 7.7604 18.4176 5.0000 12.5096 10.0354 2.2879 

10 7.0952 15.4458 5.0000 12.5096 0.5000 3.7778 

Table 1Three Features of Normal Neural Activity and Artifacts 

5.5 Dipoles Estimation Results with PHD-PF and Artifacts Suppression 

To estimate three dipoles as well as suppress artifacts, we combined the PDF of 

artifacts with clutter intensity function in PHDF, and combined probability density 

functions of normal neural signal with likelihood function in PHDF.  

Figure 16-18 show the particles motion towards dipole sources at different time 

step. It can be seen that position estimates at the first step is inaccurate, this is because the 

particles are uniformly distributed. After updating the weights, particles start to lock on 

the dipoles at time step 2, and with more time steps, the position estimates are getting 

closer to dipoles true positions. Figure 19 shows a typical run of three dipoles tracking 

result with 20 time steps, the continuous red, green and cyan-blue curves are true motion 

locus of three dipoles, and the sparse blue stars are the position estimations with applying 

K-means clustering algorithm on weighted particles. 
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Figure 16 Particles Distribution and Estimate Result at time k=1 
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Figure 17 Particles Distribution and Estimate Result at time k = 2 
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Figure 18 Particles Distribution and Estimate Result at time k= 7 
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Figure 19 Three Targets Tracking using PHDF-PF  

As number of artifacts at each step is time varying, it affects the dipoles estimation 

result. In order to further investigate the performance of the PHDF, we estimated the 

number of dipoles at 20 steps based on PHDF algorithm. Table 2 and Figure 20 provide 

the information of artifacts number in a single run, and the estimated number of dipoles in 

20 time steps. The estimated number of dipoles with 20 time steps is shown in Figure 21, 

which is the average of 100 Monte Carlo (MC) simulations. 

Time step k 1 2 3 4 5 6 7 8 9 10 

Clutter number 0 2 0 1 2 0 1 0 1 0 

Estimated number 3 4 3 3 3 3 3 3 3 3 

Time step k 11 12 13 14 15 16 17 18 19 20 

Clutter number 0 1 0 2 3 0 1 1 1 2 

Estimated number 3 3 3 4 4 3 3 3 3 4 

Table 2 Artifacts Number and Estimated Diploes Number in a typical run 
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Figure 20 Estimated Dipoles Number and Artifacts Number in a typical run with PPHDF 
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Figure 21 Estimated Average Dipoles Number of 100 MC Simulations with PPHDF 
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RMSE is the Root-Mean-Square Error that is a frequently used in measuring 

difference between the actual observed values and the predicted values. It is a commonly 

used measure of estimation accuracy. RMSE in the simulation is described as: 

K

N
RMSE

K

k

T




 1

)ˆ()ˆ(
1

rrrr

                    (5.3) 

222 )()()( zyx rrr r                      (5.4) 

K is time step and N is sensor number. Table 3 and Figure 23 show the position RMSE of 

three dipoles with 100 MC simulations, this is the case in the absence of artifacts when 

tracking dipoles. 

Time 

step(k) 

Dipole1 

RMSE(mm) 

Dipole2 

RMSE(mm) 

Dipole3 

RMSE(mm) 

1 26.888 28.326 27.814 

2 6.402 10.196 10.837 

3 5.735 5.312 5.702 

4 4.596 4.522 4.575 

5 5.153 4.487 3.880 

6 4.118 5.079 4.759 

7 4.781 3.974 5.227 

8 4.745 4.524 4.207 

9 5.019 4.806 4.461 

10 4.773 4.785 4.408 

11 4.547 4.216 4.672 

12 4.420 4.732 4.814 

13 4.208 5.138 4.313 

14 5.070 5.842 4.147 

15 4.891 5.449 4.923 

16 4.579 4.266 4.589 

17 4.830 5.374 4.977 

18 4.546 4.542 4.016 

19 4.726 4.093 4.184 

20 5.060 4.607 4.093 

Table 3 Position RMSE of 100 MC Simulations with Artifacts 
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Figure 22 Position RMSE of 100 MC Simulations with Artifacts 

Time 

step(k) 

Dipole1 

RMSE(mm) 

Dipole2 

RMSE(mm) 

Dipole3 

RMSE(mm) 

1 28.122 27.090 28.962 

2 7.035 10.103 12.130 

3 5.362 4.547 4.302 

4 4.403 3.777 3.844 

5 3.938 3.413 3.953 

6 3.842 4.008 4.036 

7 4.694 3.965 4.485 

8 4.034 4.023 3.896 

9 4.077 4.800 3.976 

10 4.029 3.964 4.108 

11 4.799 3.807 4.788 

12 4.591 4.224 3.821 

13 4.096 4.109 4.205 

14 4.378 4.029 4.453 

15 4.258 4.277 4.703 

16 3.754 4.013 3.961 

17 4.476 3.967 4.421 

18 4.231 3.705 3.810 

19 4.408 3.689 5.007 

20 3.532 4.083 4.796 

Table 4 Position RMSE of 100 MC Simulations without Artifacts 
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Figure 23 Position RMSE of 100 MC Simulations without Artifacts 

In order to compare the tracking result with the non-artifact scenario, we provide 

the position RMSE of 100 MC simulations without artifacts in Table 4 and Figure 23. Plot 

in Figure 23 and Figure 23 both show a rapid drop from time step 1 to time step 2. The 

large position RMSE in the first step is caused by uniformly distributed particles. As 

particles spread out all over the scalp, the K-means algorithm randomly estimate three 

clusters as the position estimate. From step 4, the RMSE curves in both figures have 

slightly changes and their fluctuation is in a small range near 5mm. From Table 3 and 

Table 4, we can see there is a small RMSE difference between scenario with artifacts and 

scenario without artifact, tracking with artifacts has a RMSE of about 5mm, while without 

artifacts, the tracking result has a RMSE of near 4mm. Compare to the radius of the head 

in our model, 85mm, the RMSE 5mm is relatively small. The error would be from the 
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EEG dataset since the synthetic data is reconstructed from EEG dataset, and we have no 

knowledge of the measurement noise on this dataset.  

Overall, the results from applying PHDF to neural source localization are 

encouraging. It proved the effectiveness of proposed method to suppress the artifacts in 

neural activity with characteristic analysis, and realize the multiple dipoles tracking with 

presence of artifacts.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis, we proposed an integrated method of stochastic modeling artifacts 

present in EEG/MEG recordings and tracking neural activity. In order to optimize the 

tracking results, we used the matching pursuit decomposition (MPD) algorithm to 

decompose signals into different Gaussian components and extract time-frequency based 

features. These unique features for both neural activity and artifacts are then used as input 

to the Gaussian mixture modeling (GMM) algorithm to estimate corresponding probability 

density functions. These functions are incorporated in the probability hypothesis density 

particle filter (PPHDF) to help reduce the probability of falsely using measurements from 

artifacts to estimate localization information on the current dipole sources. 

Simulation results demonstrated the effectiveness of our proposed neural sources 

tracking with stochastic artifact modeling (NEST-SAM) algorithm. Using NEST-SAM, 

we demonstrated that our algorithm improves the estimation of tracking three dipoles 

compare to only using independent component analysis for artifact suppression when a 

varying of artifacts is present in the recordings at each time step. In particular, with 100 

MC simulations, the estimated average number of dipoles using PPHDF algorithm at each 

step is around 3.2, which is close to the true number of three dipole sources. We also 

demonstrated that our neural dipole tracking accuracy only slightly decreased from when 

PPHDF is used with data without any artifacts. Specifically, the root mean-squared error 
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(RMSE) of the location of the dipoles was 5mm, note that we assumed that the human 

brain model has a radius of 85mm. 

6.2 Future Work 

Some ideas for future work include the following: 

1. In our simulations, we use the real EEG data to generate synthetic EEG 

data in order to obtain ground truth, for comparison, the tracking estimates 

can be improved by estimating the covariance of the actual measurement 

noise in the real EEG data. 

2. We only analyzed ocular artifacts presents in EEG recordings. Future work 

will be extended to include more kinds of artifacts with our approach in 

more complex situations. 

3. In our work, we only evaluate accuracy performance using the RMSE 

metric. However, using the PPHDF algorithm, we also estimate the correct 

number of dipole sources at each time step. A better matched PPHDF 

metric to use in future work in order to include this estimation result is the 

Optimal Sub Pattern Assignment (OSPA). 

4. We applied PPHDF instead of data association for multiple-dipole tracking 

since it is computational intensive. In future work, we need to include a 

performance comparison between the two methods. 
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