
An SDN-based IPS Development Framework in Cloud Networking Environment

by

Zhengyang Xiong

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved July 2014 by the
Graduate Supervisory Committee:

Dijiang Huang, Chair
Guoliang Xue

Hasan Davulcu

ARIZONA STATE UNIVERSITY

August 2014

ABSTRACT

Security has been one of the top concerns in cloud community while cloud resource

abuse and malicious insiders are considered as top threats. Traditionally, Intrusion

Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely

deployed to manipulate cloud security, with the latter one providing additional pre-

vention capability. However, as one of the most creative networking technologies,

Software-Defined Networking (SDN) is rarely used to implement IDPS in the cloud

computing environment because the lack of comprehensive development framework

and processing flow. Simply migration from traditional IDS/IPS systems to SDN

environment are not effective enough for detecting and defending malicious attacks.

Hence, in this thesis, we present an IPS development framework to help user easily

design and implement their defensive systems in cloud system by SDN technology.

This framework enables SDN approaches to enhance the system security and per-

formance. A Traffic Information Platform (TIP) is proposed as the cornerstone with

several upper layer security modules such as Detection, Analysis and Prevention com-

ponents. Benefiting from the flexible, compatible and programmable features of SDN,

Customized Detection Engine, Network Topology Finder, Source Tracer and further

user-developed security appliances are plugged in our framework to construct a SDN-

based defensive system. Two main categories Python-based APIs are designed to sup-

port developers for further development. This system is designed and implemented

based on the POX controller and Open vSwitch in the cloud computing environment.

The efficiency of this framework is demonstrated by a sample IPS implementation

and the performance of our framework is also evaluated.

i

DEDICATION

To my family.

ii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor and committee

chair Dr. Dijiang Huang, for his invaluable guidance and persistent help. I am

fortune to have him as my advisor. I am pleased to thank my other committee

members, Dr. Guoliang Xue and Dr. Hasan Dalvucu, for their helpful suggestions

and comments. This thesis was made possible due to the masterly guidances of my

committee members.

I would like to thank my colleague Tianyi Xing for mentoring me in this amazing

research area. It is such a pleasure to work with him in last two years. I would also

like to thank my friends, Chris Kawa and Qiangqiang Liu, for their encouragements

and advices. I would never forget the help I got from them.

Finally, I would like to thank my parents, who support me and trust me all the

time. I hope that this achievement will complete the dream that you had for me all

those many years ago when you choose to give me the best education you could.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1

1.1 Overview. 1

1.2 OpenFlow Technology . 4

1.3 Motivation and Contribution . 5

1.4 Organization . 7

2 RELATED WORK . 8

2.1 Traditional Security Solution for Cloud Computing Environment . . . 8

2.2 SDN-based Network Security Solutions . 10

2.3 SDN Security Extension . 13

2.4 SDN-based IDPS . 14

3 SYSTEM ARCHITECTURE . 16

3.1 Comprehensive Defensive System Lifecycle . 16

3.2 System Overall Architecture . 16

4 TRAFFIC INFORMATION PLATFORM . 19

4.1 Architecture of TIP . 19

4.2 OpenFlow Monitor. 20

4.2.1 OpenFlow Flowtable Request and Connection 20

4.2.2 Lightweight Anomaly Traffic Detection Engine 21

4.2.3 CUSUM Algorithm for Flooding Detection 23

4.3 Traffic Preprocessor . 26

4.4 Traffic and System Information DS/DB . 27

4.5 Traffic Packet Acquisition . 30

iv

CHAPTER Page

5 SDN-BASED IPS SECURITY MODULES . 31

5.1 Detection Module . 31

5.1.1 Snort Agent . 31

5.1.2 Flow Expander . 31

5.2 Analysis Module . 33

5.2.1 Source Tracer . 33

5.2.2 Topology Manager . 35

5.3 Prevention Module . 37

5.3.1 Network Reconfiguration . 37

5.3.2 Representative NR Actions in Prevention Module 40

5.4 Python-based Security Application Development API 42

6 HOW TO BUILD A DEFENSIVE SYSTEM . 45

6.1 Problem Analysis . 45

6.2 Processing Flow . 46

6.3 Implementation . 47

7 EVALUATION . 49

7.1 How SDN-based Countermeasure Improve Network Security 49

8 CONCLUSION . 56

REFERENCES . 57

v

LIST OF TABLES

Table Page

2.1 Security Solutions Comparison Table . 15

4.1 Openflow Statistics Information Request Type . 21

5.1 Network Reconfiguration Actions. 39

5.2 TIP API Summarization . 43

5.3 SDN-based Security Application Module API Summarization 44

vi

LIST OF FIGURES

Figure Page

1.1 OpenFlow Architecture . 3

3.1 Comprehensive Lifecycle . 16

3.2 System Overall Architecture. 17

4.1 Traffic Information Platform . 20

4.2 Openflow Statistical Request Procedure . 22

5.1 Tree-based Rule Auto Spanning Model . 33

5.2 Source Tracer for Spoofing IP . 34

5.3 Topology Finder Procedures . 38

6.1 DDoS Defensive Solution Construction Flow . 46

6.2 DDoS Detection Engine Implementation Screenshot 47

6.3 Screenshot of Source Tracer in DDoS Attack Scenario 48

7.1 Comparison Evaluation between SDN-based and Traditional Mitigation 49

7.2 Major Mitigation Options Evaluation . 50

7.3 TR Traffic Handle Capacity . 52

7.4 Health Traffic Impact . 53

7.5 Bandwidth Performance of QA. 54

vii

Chapter 1

INTRODUCTION

1.1 Overview

Cloud computing refers the use of computing resources like hardware and soft-

ware which can be delivered as a service over a network [1]. It is a solution for

providing on-demand access to computing infrastructure. End users can visit cloud-

based applications by web browser, lightweight desktop, mobile devices at a remote

location while user’s data, information and computing resources are stored in cloud

infrastructures. It has been widely deployed today because the demanding resource

provisioning capabilities. However, security has been one of the top concerns in cloud

community while cloud resource abuse and malicious insiders are considered as top

threats. Some attacks, such as spam, cracking passwords, performing malicious code

and compromising vulnerable virtual machines can happen in a high possibility in

current cloud system.

Traditionally, Intrusion Detection Systems (IDS) such as Snort [2] are regarded

as the common tools to detect and prevent malicious attacks within a networking

system. They monitor network events and traffic to identify malicious activities, and

then issue alerts and report to system administrators. The ’detection and alerting’

nature of current IDS solutions demands the cloud security team to hire professional

security experts. Moreover, the current cloud IDS lacks of proactive capability to

prevent attacks at its initial stage. Thus, Intrusion Prevention Systems (IPS) is

preferred over IDS in order to automatically take action towards the suspect network

activities. Basically, the IPS can be constructed based on IDS because the detection

1

function is needed in an IPS solution. However. most existing IPS solutions are

designed for traditional network and simple migration is not effective enough to detect

and defend malicious attacks. There are several issues in the current traditional IPS

system:

1. Latency : in-bound IPS requires inspection and blocking on each network packet,

some IPS detection mechanism even need to mirror network traffic for sniffer to

investigate packet content. This definitely degrades the performance and results

in a high latency. For some real-time cloud services, it might not be appropriate

to apply this IPS in the cloud.

2. Flexibility : Traditional IPS solution only provides simple prevention actions,

which is block. However, when detection system can not confidently confirm the

happen of attacking, simple block action is not the suitable choice for a cloud

security solution. For a suspect traffic flow, QoS or functionally redirection may

be the better countermeasures than drop.

3. Flexibility : Because of the characteristics of cloud computing, dynamical config-

uration, service-oriented function and user-friendly deployment are very neces-

sary for an IPS in the cloud and traditional IPS contradicts with these features.

4. Extensibility : Many existing IPS solutions are not extensible. Even they are

open source softwares, different coding styles, development environments and

interfaces make customized function really hard to be deployed in the system.

Software-Defined Networking (SDN), as one of the most creative network

technologies, makes security detection and prevention more agile and dynamical in

responding malicious behaviors [3, 4]. Main idea of SDN is to decouple control plane

and data plane to open traditional networking devices. This idea evolves networking

2

Host 1

Controller

OpenFlow Protocol

SSL

In Port
VLAN

ID

Ethernet
src dst type

Match

Fields
Priority Counters Instructions Timeouts Cookie

IP
src dst Protocol

Port
src dst

Flow Entry 1
Flow Entry 2
Flow Entry 3

Flow Entry n

Secure ChannelS
w

itch
 P

o
rts

P
o

rt 0
P

o
rt 1

P
o

rt m

Host 2

Host m

Figure 1.1: OpenFlow Architecture

technologies to a brand new level. SDN enables us to define and configure our network

by programming or using software to define it. OpenFlow is the most representative

protocol implementing the SDN concept. SDN-enabled devices could be manipulated

by OpenFlow. It defines standard control interfaces, implement pre-programmed

control policy, such as packet-forwarding rules in OpenFlow switches, inserts rules

to flow tables and then handle data packets delivery. As we see, the programmable

network interface gives us a great opportunity to define and configure network in

an extremely flexible and efficient way. Thus, the emerging of SDN introduces an

innovative approach to protect network with both flexibility and compatibility, which

is a great fit for cloud environment.

3

1.2 OpenFlow Technology

OpenFlow is the most representative standard and protocol implementing SDN

concept. This novel technology significantly improves the way of how current net-

working devices work. As shown in Fig. 1.1, it introduces a centralized and separate

controller. This controller uses defined openflow interfaces [5] to manipulate network-

ing on the control plane. The flow table in the figure is located in the data plane.

It is able to handle incoming packets in line rate. It has match, priority, counters,

instructions, timeouts and cookie fields. Match fields play a huge role in the openflow.

We can find in port, vlan id, ethernet information, ip information and switch port

information from match fields. All these fields work together to identify and define

a traffic flow. The action field is used to guide how to handle a specific traffic flow,

such as drop, forward or flood. The statistics information also can be found in the

flowtable, all the traffic passing through the openflow-enable switch will be recorded

by the table. OFPacketIn, OFPacketOut and OFFlowmod are very frequent openflow

events, controller can listen to them and response to these events. The OFPacketIn

counters are further classifies into separate broadcast, multicast, unicast counters and

different Layer 3 and Layer 4 protocol counters to give the visibility of the types of

flows in the network. It also keeps track of the number of active flows per switch. In

the OpenFlow architecture, a controller executes all control tasks of the switches and

is also used for deploying new networking frameworks, such as new routing protocols

or optimized cross-layer packet-switching algorithms.

When a packet arrives at an OpenFlow switch (OFS), the switch processes the

packet in the following three steps:

1. It checks the header fields of the packets and tries to match any entry in the

local flow table. If there is no any matching entry in the flow table, the packet

4

will be sent to the controller for further processing. There can be multiple flow

control rules. It follows a best matching procedure to pick the best rule, e.g.,

the one with the highest priority.

2. It then updates the byte and packet counting information associated with the

rules for statistics logging purposes, which will be used to collect the traffic

information to detect any anomaly traffic.

3. Once a matching rule is decided, the OpenFlow switch takes the action based

on the corresponding flow table entry, e.g., forwarding to a specific port, or

dropping.

Open vSwitch[6] is a production quality, multilayer open virtual switch. It has

been widely planted into major cloud orchestration system such as XenServer [7],

OpenStack [8], CloudStack [9], to replace the traditional Linux bridge to serve as the

network back end implementation. It enables the implementation of OpenFlow in the

virtual networking environment and makes OpenFlow development easier.

1.3 Motivation and Contribution

As we discussed before, SDN technology opens a new chapter for network security

because of its flexibility, extensibility and feasibility. SDN-based security approaches

have been considered as a trend for future network security solutions [10].

Current OpenFlow related works like OpenNetMon [11] and OpenSafe [12] both

propose the network monitoring service in cloud environment to efficiently collect

the traffic usage statistics and detect the malicious activities. However, they do not

propose a comprehensive solution for cloud system. These works do not go beyond the

stage of detection and are not able to provide further analysis and countermeasures

for any attack. The ‘detecting and alerting’ nature of monitoring solutions demands

5

the human-in-the-loop to inspect the generated security alerts and manually take

actions, which can not respond to attacks in a prompt fashion.

OpenFlow Random Host Mutation (OFRHM) [13] proposes a countermeasure

by using Moving Target Defense (MTD) to protect the targets from being attacked

through changing its identity representation, i.e., a mapping between the real internal

IP and extremal floating IP. But it only works in a proactive fashion and does not

work for malicious insider who knows the real internal IP address of victims.

The reason current SDN-based solution is not automated and comprehensive be-

cause SDN-based development framework is rare. Fresco [14] is the most famous

existing SDN security development framework. It facilitates the rapid design and

modularize OpenFlow-based monitor and mitigation. However, this framework still

could be improved because: (1) The detection capability in this framework is not

strong because this function is developed based on simple traffic counter. (2) Fresco

designs a script language for developers to code their own security applications. Al-

though this new script language makes development easier, it restricts the flexibility

of deep extension. (3) Most of Fresco interfaces are single directional, it can not help

third part security application to efficient fetch traffic packet and perform proper ac-

tions. Hence, in this thesis, we propose a new SDN-based IPS development framework

in cloud computing environment as it is a key demand in this research area.

This framework provides following unique features:

• Propose three security modules for SDN-based security application develop-

ment. Detection, analysis and prevention modules can work together to build

a defensive system in cloud environment.

• Design a Traffic Information Platform (TIP) as the cornerstone of the framework

to monitor traffic information. It classifies traffic and stores them into variety

6

databases. It sits in the middle of lower layer SDN devices and upper layer

customized security applications. It has interfaces to communicate with data

planes and export traffic information to applications.

• Develop a set of Python-based APIs to facilitate SDN-based security application

development in cloud system.

• Develop default security applications as guideline for development. Integrated

Snort to the framework as default detection engine, build a Topology Manager

to discovery and manipulate network architecture. Create a countermeasure

pool for system to defend different attacks in variety situations.

1.4 Organization

This thesis is organized as follow. Chapter 2 introduces the related works of

traditional cloud computing security and SDN-based solutions. Chapter 3 gives the

overview of the whole framework. Chapter 4 elaborates the architecture of TIP.

Chapter 5 describes the three security modules and how default security applications

are build in the system. Chapter 6 gives a sample of how to build a defensive system

in the cloud based on our framework. Chapter 7 conducts the performance of SDN-

based security applications and chapter 8 concludes the results of this research.

7

Chapter 2

RELATED WORK

The related and representative security solutions in cloud system are discussed in

the following fashion: we first discuss the traditional security solutions for cloud com-

puting and then we investigate the SDN-based security solutions and its extensions.

At last, we discuss current SDN-enabled IDS/IPS solutions.

2.1 Traditional Security Solution for Cloud Computing Environment

Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) are tra-

ditional efforts to monitor and secure cloud computing system. As an efficient secu-

rity appliance, IDS can utilize signature-based, statistical-based and stateful protocol

analysis methods to achieve its detection capability. Furthermore, IPS can respond

detected threats by triggering variety prevention actions to tackle malicious activities.

[15] is a Host-based intrusion detection system which deploys IDS to each host in

the cloud computing environment. This design enables behavior-based technique to

detect unknown attacks and knowledge-based one to identify known attacks. How-

ever, the data is captured from system logs, services, and node messages. It can not

detect any intrusion which running on the VM. Another architecture is provided in

[16] to detect the vulnerability in the virtual machines. It extends the capability of

typical IDS to incorporate virtual machine based detection approach to the system.

The provided IDS management can detect, configure, recover and prevent the VMs

from visualization layer threats. However, it is not a lightweight solution.

A stateful intrusion detection system is introduced in [17]. This paper applies a

slicing mechanism to divide overall traffic into subsets of manageable size and each

8

subset contains enough evidences to detect a specific attack. As a distributed network

detection system, after the system is configured, it is not easy to reconfigure and

migrate detection senors for users on demand.

In [18], authors introduce an effective management model to optimally distribute

different NIDS and NIPS across the whole network. This work differs from single-

vantage-point view NIDS/NIPS placement, it is a scalable solution for network wide

deployment.

Packet marking technique is widely used for IP traceback even tracing back the

source of attacks is extremely difficult. In [19], the authors present a marking mech-

anism for DDoS traceback, which injects an unique mark to each packet for traffic

identification. As a Probabilistic Packet Marking(PPM) method, it has a potential

that leads attackers to inject marked packet and spoofed the traffic. [20] is another

important traceback method by using Deterministic Packet Marking(DPM). The vic-

tim could track the packets from the router which splits the IP address into two

segments. Differ from previous methods, in [21], the authors present an independent

method to traceback attacker based on entropy variations. However, most of these

works do not handle the IP spoofing very well and packet modification is needed to

implement these methods.

FireCol [22] is a dedicated flooding DDoS attacks detection solution implemented

in traditional network system. In this design, IPSs are distributed in the network

system to form several virtual protection rings with selected traffic exchange to detect

and defend DDoS attacks. This collaborative system addresses the hardly detection

problem and single IDS/IPS crashing problem under overwhelming attacking traffic.

However, this method is not a lightweight solution such as [23], the flexibility and

dynamism is limited in this system and the deployment and management is also

complicate.

9

Similar to the FireCol, [24] presents a multiple layers game-theoretic framework

for DDoS attack and defense evaluation. An innovative point in this work is the

strategic thinking of attacker’s perspective benefit the defense decision maker in this

interaction between attacks and defenses. However, this framework is not suitable

for deploying dynamic network threats countermeasures and has no real time security

solution for real time attack.

Data mining technology is normally applied in flooding attack detection. [25] uses

an incremental mining approach to detect large-scale attacks for network intrusion

detection system. This work is different from other works because traffic information

is obtained in real time and the analysis is not done by static data. This dynamic

approach with fuzzy associations rules enable system to detect anomaly activities and

make a decision every two seconds, but it is not a adaptive system, which can not

provide countermeasure in real time.

2.2 SDN-based Network Security Solutions

SDN has been well researched to establish monitoring system [26] [12] [11] due

to its centralized abstract architecture and its statistics capability. OpenSafe[12] is a

network monitoring system that allows administrators to easily collect usage statis-

tics of networking and detect malicious activities by leveraging programmable network

fabric. It uses OpenFlow technique to enable some manipulations of traffic, such as se-

lective rules matching and arbitrary flows directing, to achieve its goal. Furthermore,

ALARMS is designed as a policy language to articulate paths of switches for easily

network management. OpenNetMon [11] is another approach for network monitoring

application based on OpenFlow platform. This work is implemented to monitor per-

flow metrics to deliver fine-grained input for traffic engineering. Benefiting from the

OpenFlow interfaces that enable statistics query from controller, authors proposed

10

an accurate way to measure per-flow throughput, delay and packet loss metrics. In

[26], authors proposed a new framework to address the detection problem by manip-

ulating network flows to security nodes for investigation . This flow-based detection

mechanism guarantees all necessary traffic packets are inspected by security nodes.

For dynamism purpose, provided services could be easily deployed by users through

a simple script language. However, all three studies above do not further discuss the

countermeasures for intrusion malicious activities but only provide the monitoring

services.

FortNox[27] is a Security Enforcement Kernel to address the conflict of rule to

secure OpenFlow network. Different rules are inserted by various OpenFlow applica-

tions can generate rule conflicts, which has potential to allow malicious packets bypass

the strict system security policy. FortNox applies a rule reduction algorithm to detect

conflicts and resolves a conflict by assigning authorization roles with different priv-

ileges for the candidate flow rule. This kernel overcomes the potential vulnerability

of OpenFlow rules installment and enables an enforceable flow constraint to enhance

SDN security. It is considered as a SDN extension like [28] [29]. The authors’ another

research, Fresco, [14] implements an OpenFlow Security Application Development

Framework based on Security Enforcement Kernel. It encapsulates the network secu-

rity mitigations in the framework and provides APIs to enable legacy application to

trigger FRESCO module. However, this work does not have the capability to defend

and protect network assets independently because predefined policies are needed to

drive this system.

SDN technology is also used to detect specific threat, e.g., DDoS, in cloud system.

In [23], the authors present a flow-based lightweight method for DDoS attack de-

tection. This solution is implemented on NOX/OpenFlow platform to collect traffic

statistics information from flow table by Flow Collector. Important DDoS relevant

11

features will be extracted from feature extractor module and be sent to classifier

where classification algorithm comes from Self Organizing Maps (SOM)[30] method.

By deploying SOM, this classifier could classify normal and malicious traffic with very

low overhead. This work is more lightweight than others that may require heavy pro-

cessing in order to extract feature information needed for traffic analysis. However,

this paper does not provide a corresponding countermeasure for the DDoS attack.

Besides detection, utilizing the nature of SDN to propose prevention solutions is

another key direction for SDN based security research. CONA [31] is a Content-

oriented Networking Architecture build on NetFPGA-OpenFlow platform. In this

design, hosts request contents and agents to deliver the requested contents while the

hosts can not. Under the content-aware supervision, system can perform prevention

by: (1) collecting suspect flows information from others agents for analysis, and (2)

applying rate limit to each of relevant agents to slow down the overwhelming malicious

traffic.

OpenFlow Random Host Mutation (OFRHM) [13] is another innovative solution

by using Moving Target Defense (MTD) to protect the targets from being attacked

through changing its identity representation. As a common action, scanning attack

is considered as the first step to discover vulnerability of the system when performing

network malicious behavior. In this research, they add a transparent virtual IP layer

above real IP and make real IP addresses untouchable by unauthorized entities. The

system will assign a virtual IP to each host after each mutation interval. However,

this work does not provide a forensic evidence or analysis for future threats detection

and prevention, and does not work when the attack is initiated from malicious insiders

who are aware of the real IP address of victims.

12

2.3 SDN Security Extension

With the emerging of Software-Defined Network, researchers start to concern the

security of SDN itself. In [29], a replication mechanism is brought up to handle the

weakness of centralized controlled network architecture, which is one single point of

failure could lead a downgrade of network resilient for the whole system. CPRecovery

component is able to update the flow entry in secondary controller dynamically and

secondary controller can control the switch automatically when primary controller is

down due to overwhelming traffic or DDoS attack. This work could be considered as

a solution for DDoS attack, however, simple replication mechanism hardly promises

that all the secondary controllers are able to tolerate high pressure attack even more

backups could be deployed in this system.

AvantGuard [28] is a SDN extension, which enhances the security and resilience

of OpenFlow itself. To address the two bottlenecks, scalability and responsiveness

challenge, in OpenFlow, this paper introduces two new modules: connection migra-

tion module and actuating trigger module. The former component is efficient to filter

incomplete TCP connections by establishing a handshake session before packets arriv-

ing the controller. TCP connections are maintained by migration connection module

to avoid the threats of TCP saturation attack. Actuating trigger module enables the

data plane to report network status and active a specific flow rule based on prede-

fined traffic conditions. This research improved the robustness of SDN system and

provide additional data plane information to control plane to acquire higher security

performance.

13

2.4 SDN-based IDPS

As we talked before, IDS and IPS are critical security appliances to protect cloud

computing network. When we apply SDN to the cloud system, the decoupled switch

with separated control plane and data plane, creates a network OS layer to allow

programmable interface and open network control. This feature leads a flexibility

and dynamic network reconfiguration, which can efficiently and effectively control

the network and enable security manipulation for higher level guards. However, only

a small number of works are done to implement SDN-based IDS and even fewer works

on SDN-based IPS.

L-IDS [32] is a Learning Intrusion Detection System to provide a network service

for mobile devices protection. It is able to detect and respond to malicious attack

with the deployment of existing security system. It is more like a network service

which can transparently configured for end-host mobility and enable already known

countermeasures to mitigate detected threats. The authors do not provide a compre-

hensive solution for detected attack and more evaluations are needed to figure the

most efficient response action for threats.

In a recent work [3], we presented an SDN-based IDS/IPS solution to deploy attack

graph to dynamically generate appropriate countermeasures to enable the IDS/IPS

in the cloud environment. The originality and contribution of this work main comes

from utilizing the attack graph theory to generate a vulnerability graph and achieve

the optimal decision result on selecting the countermeasure. SnortFlow [4] is another

recent work focusing on the design of OpenFlow based IPS with preliminary result.

However, both of our previous work did not address the following issues: (1) they did

not consider the multi-tenancy issue that is the key characteristic for all major cloud

platform. (2) generating the attack graph for cloud virtual topology is slow (minutes

14

Work SDN Cloud Detection Prevention

[25] X

[24] X

[33] X

[19] X X

[20] X X

[21] X X

[26] X X X

[12] X X X

[11] X X X

[23] X X

[28] X X X

[13] X X X

[31] X X X

[3] X X X

[4] X X X

Table 2.1: Security Solutions Comparison Table

level) and is not practical in a dynamic changing system. (3) they only evaluated the

performance between placing the detection agent at user domain and management

domain, which provide evidence for design this framework where detection agent is

at the management domain and directly monitor the OVS.

We believe the dynamic and adaptive capability of the SDN framework could ben-

efit the development of IDPS. This area is worth to be well explored for SDN-enabled

cloud system to build suitable and on demand IDS/IPS system. Thus, we have been

setting our research target on establishing the SDN-based IPS in cloud environment.

As this thesis focus on providing a SDN-based IPS development framework, we sum-

marized some of the works to show that lack of comprehensive IPS solution in cloud

environment.All related work are summarized in Table 2.1.

15

Chapter 3

SYSTEM ARCHITECTURE

3.1 Comprehensive Defensive System Lifecycle

Motivated by the aforementioned research challenges, we are aiming to build a IPS

development framework with a full lifecycle. The complete lifecycle can be divided

intro three stages as shown in Fig. 3.1: Traffic Monitor, Attack Analysis and Actions

Execution. In the traffic monitor stage, all traffic should be monitored through net-

work monitoring approaches, e.g., sFlow, NetFlow, SPAN port, etc. Then, different

algorithms or mechanisms are run to analyze the traffic pattern in order to determine

what kind of this attack is. Finally, mitigation actions should be efficiently executed

to prevent and tackle malicious activities in the cloud system.

3.2 System Overall Architecture

Fig. 3.2 is the framework of proposed SDN-based IPS Development System. It

is composed by Data Plane Elements and OpenFlow Controller. All SDN enabled

data plane elements including OpenFlow switch, Open vSwitch, additional virtual &

physical devices are connected and controlled by a SDN Network Controller. It is

implemented based on POX controller [34]. This component is designed to guarantee

Attack

Analysis

Action

Execution

Traffic

Monitor

Detection Mitigation

Figure 3.1: Comprehensive Lifecycle

16

the regular network routing and switching. All the daily network communication is

operated and delivered by this controller. The proposed SDN Traffic Information

Platform is designed on the top of SDN network controller. It grabs network view,

detailed traffic information such as IP/MAC addresses, port number from lower layer

Data Plane Elements. It also exposes several traffic and management related inter-

faces (e.g., data access, detail traffic statistics and operational functions) to upper

layer security applications.

SDN Network Controller

OpenFlow Enabled

Devices

OpenFlow Controller

Snort Agent

Open vSwitch
Additional Virtual

& Physical Devices

Data Plane Elements

SDN Traffic Information Platform

Local IDS

Source Tracer

Topo Manager

Mitigation

Executor

Third-part

IPS

Customized

Detection Engine

Customized

Analyzer

CustomIzed

 NR

Detction Analysis Prevention

Figure 3.2: System Overall Architecture.

Above the TIP, there are three highly integrated security application modules:

Detection, Analysis and Prevention Module. Each module has default pre-developed

security applications and extensible interfaces for customized security appliances. A

Snort Agent is plugged in Detection Engine by default while local IDS service is en-

17

abled as the alternative solution for Detection Module. Developers also could design

their own detection engine by using proposed Python-APIs and the statistical traffic

information from SDN TIP. Source Tracer and Topo Manager are two default security

analysis tools provided by system. Users can easily apply their own analysis algo-

rithms to their IPS because TIP is the cornerstone of upper layer security applications

and all the network information can be easily fetched from it. Finally, the prevention

modules come with Mitigation Executor and Third-part IPS component as the de-

fault prevention solutions. More flexible and comprehensive countermeasures could

be performed when users design them through proposed API.

18

Chapter 4

TRAFFIC INFORMATION PLATFORM

When we talk about the network security, traffic information is really important to

any kinds of security system. From the perspective of defenders, we need to monitor

the traffic patterns to realize the existing of networking attacks. Anomaly behaviors

always come with uncommon traffic flows. We need collect and analyze these infor-

mation to decide further countermeasures. On the other hand, from the perspective

of attackers, they always try to bypass the networking monitor, perform spoofing and

try to avoid any kinds of tracking. In OpenFlow network, most traffic information

is stored in flowtables. We can find basic flow information such as destination IP,

source IP, destination port, source port ,e.g, there. With the help of counter, we can

know the volume of a flow and the transited packets. However, flowtables are always

dynamically updated by openflow and its original statistics information is very sim-

ple. Thus, we propose a Traffic Information Platform in our development framework

to support constructing security appliances easily and efficiently.

4.1 Architecture of TIP

TIP is designed to collect detail traffic information and provide flexible data access

as well as operational functions. There are three goals of TIP design: (1) Retrieving

traffic information fast and easily. (2) Providing detail statistics information for upper

layer application inquiry. (3) Accessing traffic and packet flexibly.

The architecture of TIP is shown if Fig. 4.1. Four main components are planted in

the platform, which are OpenFlow Monitor, Traffic and System Information DS/DB,

Traffic Preprocessor and Traffic Packet Acquisition. The flowtable monitor watches

19

Traffic& System Information DS/DB

VM

Flow Table Information Proxy

In Port VLAN ID
Ethernet

src dst type
Priority Counters Instructions Timeouts Cookie

IP

src dst Protocol

Port

src dst

Traffic Packet

Acquisition

Traffic Operator

Traffic Information Platform

Traffic Volume

DB

Traffic History

DB

Traceback

DB

Customized

DB

User

DB

Topology

DB

Traffic

Matcher

Traffic

Expander

OpenFlow-enabled Swithc

VM VM VM VM

Figure 4.1: Traffic Information Platform

the traffic flows go through the OpenFlow-enabled switches. It also retrieves flowtable

information periodically. The Traffic Preprocessor includes two modules, which are

traffic matcher and traffic trimmer.

4.2 OpenFlow Monitor

OpenFlow monitor maintains the connections to all OpenFlow devices. All the

active openflow connections are monitored periodically. Every interval time, monitor

will send a request to all switches to collect useful flowtable information.

The main function of openflow monitor is to establish a connection from monitor

controller to openflow switches and warn the anomaly traffic behavior earlier.

4.2.1 OpenFlow Flowtable Request and Connection

OpenFlow messages are how OpenFlow switches communicate with controllers

and they are defined in openflow specification. The newest version of openflow spec-

20

Request Message Type Openflow Request Type

Description Statistics opf desc stats

Individual Flow Statistics ofp flow stats request

Aggregate Flow Statistics ofp aggregate stats request

Table Statistics ofp table stats

Port Statistcs ofp port stats request

Queue Statistics ofp queue stats request

Vendor Statistics OFPST VENDOR

Table 4.1: Openflow Statistics Information Request Type

ification is 1.4 version and could be found in [5]. In this system, we are using POX

controller and it supports version 1.0 currently. The procedure of how to fetch open-

flow statistical information is shown in Fig. 4.2. To communicate with openflow

switch for statistical information, firstly, openflow controller needs to check how many

connections from controller to switches are active. For the example in the figure, two

connections are active, so controller will send two opf stats request to each switch.

There are several request types are provided for controllers to request. More request

information types could be found in table 4.1. In our monitor implementation, we

send individual flow type to switches and handle openflow statistics reply event.

4.2.2 Lightweight Anomaly Traffic Detection Engine

We planted a lightweight anomaly detection engine in our openflow monitor to

report the suspect of tenant in the cloud system is under anomaly overwhelming

traffic attack in time. The goal of deploying this detection engine in the monitor

is to reduce the traffic pressure of detection module in the upper layer when over-

21

Openflow Switch 1

Host 1 Host 2 Host m

Openflow Controller

Openflow Switch 2

Host 1 Host 2 Host m

1. Check core.openflow.connections ,

find current active connections from

controller to switches.

2. Send of.ofp_stats_request() by active

connections instance.

3. Handle openflow statistics event.

Figure 4.2: Openflow Statistical Request Procedure

whelming attacking traffic is performed. The detection accuracy of Snort and other

detection applications will downgrade when detection engined is flooded. So we build

this anomaly traffic detection engine in the monitor to tackle flooding traffic. We

propose a lightweight collaborative detection engine to detect if cloud system is un-

der overwhelming traffic attacks, such as DDoS attack. All openflow switches are

connected and controlled by a centralized detection engine over POX-based openflow

controller. The statistics module natively collects all the counter information from

each connected OVS, which means that statistics information of every matched flow

is collected. After the raw statistics data is collected from all connected switches or

OVS, the detection engine aggregates those flow entry statistics information into a

centralized statistics data set for our proposed detection algorithm to read data. This

is a lightweight detection process, which means we can realize the anomaly network

traffic in time with least overhead. It is common to see that traditional network

monitor mechanisms collect all the traffic features at the first stage and inspect their

22

headers and content to alert the anomaly network behaviors as well as classifying

legitimate traffic and malicious traffic by using some data mining algorithms which is

heavily overheaded. We decouple the whole complicate monitoring phases to two sep-

arate stage: (1) Build a lightweight flooding detection engine in the openflow monitor.

(2) Implement the complete detection components in detection modules.

The two main benefits of this design are:

• A simplified detection engine can realized traffic anomaly in time.

• This fast detection mechanism can enhance the performance of security mod-

ules, improve the detection accuracy and reduce the traffic pressure.

4.2.3 CUSUM Algorithm for Flooding Detection

We propose a lightweight flooding detection engine in the openflow monitor to

report the anomaly overwhelming traffic in time and trigger the corresponding mit-

igation to tackle the flooding attacks. This engine applies a change point detection

algorithm to report the traffic spikes. As one of the major sequential change point

detection algorithms, non-parametric Cumulative Sum (CUSUM) [35] algorithm is se-

lected to detect the occurrence of abrupt change of the system overall traffic volume.

CUSUM algorithm could minimize the detection delay with a fixed false alarm rate

[36] and efficiently report the anomaly change. The idea behind this approach is that

if a change occurs, the probability distribution of the random sequence will also be

changed[37]. Our following proposed method is inspired by previous work [38, 39]. In

[38], authors apply a CUSUM algorithm to detect the occurrence of large difference

between the number of SYNs and FINs while authors in [39] detects the anomaly

increase of new source IP ratio by the CUSUM algorithm, which are different from

our work.

23

To simplify the engine and reduce the overhead, we only focuses on the system

overall traffic volume. Different from other detection engine which based on machine

learning and data mining methodologies, less features are considered and involved in

the computation will reduce the overhead and enhance the detection delay. The sys-

tem overall traffic volume information is captured by openflow monitor. For different

detection requirement, the engine could modify the record resolution of tip module

to acquire different date sequence with selected time interval ∆T

In this stage, our goal is to implement a quick response alert engine which detects

the abrupt traffic volume change in the cloud and figures out the potential victim in

the cloud system. This detection engine answer one question: Is there any VM in

the system which its ingress traffic increase abruptly? To answer this question, we

formulate a problem :

Given a sequence of observed random variables {Xi,n} for each VM i, report if

there exists a VM k which the statement is changed abruptly from statement θ0 to

θ1.

To keep the computation and storage cost low, we only focus on the ingress traffic

volume to each VM because this type attacks are designed to delivery overwhelming

traffic to exhaust the network resources of target victim. So from the perspective of

victim, the continuous and abrupt increase of ingress traffic to one VM is reasonable

to be considered as an anomaly behaviors and is needed for further investigation. So

we create a profile-based monitoring table in the centralized controller with simple

data structure to watch the ingress traffic of each VM. The data structure of the

monitor table in the controller is : {Destination IP, Source VM IP sets, Traffic

Volume, Time Stamp}. The controller fetches the traffic volume statistics information

from data plane of each OVS every ∆t period and accumulate all the traffic volume

reports from each OVS based on the same destination IP Address. Let Ri(t) be

24

the traffic volume record for VM i at monitor table at time stamp t, where t is the

discrete time index. For each sample data sequence {Si(t), t = 0, 1, ..., n}, we have

Si(t) = Ri(t + ∆t) − Ri(t) for each VM i. To make our approach more general, we

normalize the sample data sequence by following equation:

Xi(t) =
Si(t)

Ŝi(t)
(4.1)

where S̄i(t) is the exponential moving average (EMA) of data sequence Si(t) and it

could be calculated by :

S̄i(t) =


Si(t) if t = 1,

αSi(t) + (1− α)S̄i(t− 1) if t > 1.

(4.2)

where α is a constant smoothing factor between 0 and 1, which represents the degree

of weighting decrease.

We apply the non-parametric Cumulative Sum (CUSUM) algorithm [35] to detect

the occurrence of abrupt change of the ingress traffic volume sequence of each VM.

CUSUM is an efficient algorithm for change point detection, the idea behind this ap-

proach is that if a change occurs, the probability distribution of the random sequence

will also be changed[37].

Given a data sequence Xi(t) = {xi,1, xi,2, .., xi,n}, xi,n is the traffic volume in the

nth time interval for VM i. The non-parametric CUSUM algorithm assumes that

the mean value of sequence is negative during the normal conditions and it becomes

to positive when a change occurs. So we needs to pull down the sequence Xi(t) to

a new sequence Zi(t), which Zi(t) = Xi(t) − β without compromising the statistical

feature. β is a constant to help us transform the random variate sequence Xi(t) to

suitable sequence Zi(t) where both majority data value and mean of normal data are

negative.

25

The non-parametric CUSUM could be presented by following:

yi(t) = Si(t)− min
1≤k≤t

Si(k) (4.3)

where Si(k) =
∑k

n=1 Zi(n),with Si(0) = 0.

To make computation easier, this algorithm can be simplified as follow based

on[35]:

yi,t = (yi,t−1 + Zi(t))
+, yi,0 = 0, (4.4)

To determine a potential flooded attack to VM i, the decision function can be pre-

sented as follows:

dN(yi,t) =


0 if yi,t ≤ N,

1 if yi,t > N.

(4.5)

N is the flood threshold and yi,t > N indicates the occurrence of flood traffic to

specific VM i at time stamp t.

4.3 Traffic Preprocessor

The returned flowtable information from OpenFlow switches is raw data and fur-

ther processing is needed. Traffic Preprocessor is designed to trim, organize, compute

and classify raw statistics traffic data read from flowtable monitor.

Traffic Matcher is an openflow object which can match a specific traffic flow.

This matching fucntion is the native feature of openflow protocol and packets or flow

could be matched by a single field of a set of combinations.

Traffic Trimmer can be used to trim raw statistics data into a desired or cus-

tomized format. This module works with database interfaces to generate the following

statistics DB/DS, i.e., Traffic Volume DS, Traceback DB, History Traffic DB. Users

can also use these modules to build their own customized data set, i.e., Customized

DS, to fulfill their own design purposes.

26

4.4 Traffic and System Information DS/DB

In this section, we explicitly discuss the design of database and data sets in traffic

information platform. By default, all these data information is stored in the MySQL

[40] database. For some security applications which need high speed read and write,

data set is designed for this situation. We also provide programmable data inter-

faces and database APIs for users to design and create their own customized data

structures. This compatible extension facilitate upper layer security applications to

easy read and store data information. Currently, we introduce six default databases

storing corresponding real time traffic information and processed data.

Traffic Volume DB is designed to help the lightweight anomaly detection engine

in openflow monitor to identify anomaly behaviors in the system. It also can be used

for users to develop their own volume-based upper layer detection engines. Most this

kind engine needs the traffic volume sequences to watch system status and detect the

anomaly traffic behaviors. TIP will request each openflow switch to return its current

ingress traffic volume of each port attached by an active VM every ∆T time interval.

Then the Traffic Trimmer will trim the raw data as follows formation: {Destination

IP, Source VM IP sets, Traffic Volume, Time Stamp}.

For each VM i in the system, let Ri(t) be the summation of traffic volume record

from all the source IP addresses to the destination VM i at time stamp t, where t is

the discrete time index. So at time stamp t, the system overall traffic volume record

V (t) could be calculated by V (t) =
∑k

i=1Ri(t), k it the total number of current active

VMs in the system. After we have the system traffic volume record at each time stamp

t, to generate the system traffic volume data sequence {St, t = 0, 1, ..., n}, we have

S(t) = V (t + ∆t) − V (t). The request time period ∆t is selected by corresponding

Detection Engine and detection resolution.

27

User DB is designed to support user-based security applications. This database

can be extended for user authentication, group-based authentication and management

system.

Traceback DB is designed to support upper layer application Source Tracer to

track back the attacking sources in cloud system. In traditional cloud environment,

when attack is performed with spoofing technique, it is truly difficult to trace them

back. However, when we apply openflow in the cloud system, the decoupled data and

control plane enable us to track the attacking sources by looking up the traffic ingress

and egress ports of flow table, which can not be forged. Thus, as the database behind

source tracer, traceback database provides the real Source VM and Destination VM

pairs, which means even the source IP address of traffic packet is spoofed, we still

can traceback the source virtual machine by looking up this database. To generate

the real source and destination pairs, TIP obtains the raw statistics data from flow

table of each openflow switch, the traffic trimmer will trim the data into following

structure: {DPID, Ingress Port, Interface type, Destination IP, Egress port,}. This

table information is stored in each openflow switch and its flow table. DPID indicates

which switch this flow belongs to. Ingress Port and Egress Port represent which port

a flow comes through and which port this flow is delivered to. Interface Type shows

the type of the ingress port of this flow, which could be Controller, switch or Virtual

Machine. We could derive the interface information by ovs-ofctl show bridge command

and request detail flow table information by openflow protocol. This table tells us the

abstract topology of current network connection and the true location of each switch

with its attached active VMs. It also shows that where each traffic flow is exactly

delivered to. We can have an accurate picture of real source & destination pairs from

this database. The Source Tracer will traceback the attacking sources based on this

database.

28

Customized DB is an empty dataset for users to develop their own real time

dataset based on their requirements. Traffic Trimmer provides several basic methods

for developers to trim the raw statistics information to their own data structure and

sequence. Those basic methods could be found in Table. 5.2. This dataset provides

a flexible interface for upper layer applications to acquire customized real time data

set.

For example, authors in [39] present a method to proactively detect the DDoS

attack by using source IP address monitoring. To plug-in this detection method, a

IP address monitoring data set is required. Users could use get active switch func-

tion to find all the connected OVS and use get raw data (dpid, start time stamp,

end time stamp) to query the history traffic information. We can create the IP Ad-

dress Database from the history traffic database. Then based on the detection method

mentioned in [39], we apply the customized monitor (match, start time stamp, time period,

recurring = true) function to watch all the real time traffic information. We set the

∆n(n = 1, 2, 3, ...) as the detection resolution and the parameter in the function, then

collect IP address information during each time slot ∆n and format a real time system

IP address data set. This data set could support upper layer detection engine and

algorithm to analyze the system status and report the potential DDoS attack.

Topology DB works closely with Topology Manager in analysis module. Topol-

ogy manager discoveries network topology in an openflow network and store the

topology information in the database. Topology DB includes three main tables which

are openflow devices table, network nodes table and connections. Openflow switches

information is stored in openflow devices table and unique openflow dpid serves as

primary key in the table. Network nodes table stores the node information in the

cloud system. It includes IP address, MAC address, node type and other related

information. MAC address is the primary key because it is the unique identity for

29

network nodes. Connections table stores all the discovered connections in the net-

work. We also could save all these information to a wrapped JSON file when we want

to handle web-based data exchange.

4.5 Traffic Packet Acquisition

Some detection engines or DPI agents might need to investigate a packet content

for some deep detection purpose. Traffic packet acquisition is designed to fulfill this

requirement. TIP not only can obtain traffic statistics information, but also fetch

a complete traffic packet and redirect it to security agent. This modular will poll

the real packets instead of traffic statistics information to the controller that further

forwards to the security applications. Users are able to define what traffic packet or

a traffic flow is needed to be polled to the controller or other agents to be inspected.

The traffic matcher in the preprocessor module, enables developers to specify what

packets they are looking for. After users determines the packet they are interested

in, new flow table rule will be injected into all connected OpenFlow devices so that

forwarding plane in openflow will redirect all the following matching packets to desired

security agents or controllers.

30

Chapter 5

SDN-BASED IPS SECURITY MODULES

5.1 Detection Module

5.1.1 Snort Agent

Snort is a multi-mode packet analysis tool dominating the IDS/IPS market and

has overall performance strength over other products [41]. Sniffer, packet logger, data

acquisition tools are main components of Snort. In its detection engine, rules form

signatures to judge if the detected behavior is a malicious activity or not. It has

both host and network-based detection engines and it has a wide range of detection

capabilities including stealth scans, OS fingerprinting, buffer overflows, back doors,

and so on.

5.1.2 Flow Expander

When we develop SDN-based detection applications, we need to deep investigate

traffic information and packet contents. Traffic packet acquisition can be used to

fetch specific traffic packets to the DPI agent. However, due to the different flow

rules configuration in different openflow switches, sometimes there is not enough

detail information for each flow in the flowtable. At this point, we would like to

expand raw traffic flow rules and informations in the flowtable to further analyze the

traffic patterns. So we plant a flow expander in the system to expand raw flows to

several more detailed flows in the system.

The core of flow expander is a Rule Expander Algorithm. It can expand raw

traffic rules into detail one for further analysis. By default, the openflow switch only

31

maintains the IP or lower layer flow table entries if it is configured as a layer2/3 switch.

Once the Flow Expander is triggered, all openflow switch will capture all the traffic

going to the network nodes, it will look into the transport protocol and corresponding

port information. If the flowtable entry exists, the counter in openflow switch will be

incremented; if the flowtable entry does not include the transport layer information,

then the switch will create a set of flow table entries including the transport layer

information, i.e, TCP port number. Once the detailed flow entry is injected into the

flowtable, the network monitor and customized SDN-based detection application is

able to collect more detailed statistics information of the targeted traffic and traffic

trimmer is able to acquire them to formulate the customized data sets.

Another example is shown in the Fig. 5.1. The packets come from node A is

forwarded to node B by the rule with only source IP, destination IP and action

information which is {A-B, forward}. However, this information is insufficient for a

detection engine to differentiate the malicious traffic type from healthy traffic types.

Thus, the traffic expander will inject more detailed rules based on a spanning model.

In this example, two medium priority rule {A-B, TCP, forward} and {A-B, UDP}

are injected. If detection engine would like to know more detail information, four

highest priority rules {A-B, UDP, 53, forward}, {A-B, UDP, 2049, forward},{A-B,

TCP, 22, forward} and {A-B, TCP, 80, forward} can be injected to the flowtable.

Due to the different priority, the TCP traffic with port 80 from A to B only matches

the highest priority rule, which is {A-B, TCP, 80, forward} and it will not create

duplicate counter information. In summary, we utilize the priority feature of the flow

table entry and we always want to match leaf node rule to get the most detailed

rule statistics information. After collecting sufficient statistics information, SDN-

based customized detection application can identify potential malicious traffic more

confidently.

32

A-B

UDP

2049

A-B

TCP

22

A-B

TCP

80

A-B

UDP

A-B

TCP

A-B

A-B

UDP 53

Increment

Priority

Increment

Priority

SrcIP DstIP

SrcIP, DstIP,

IP Protocol

SrcIP DstIP,

IP Protocol,

Port

Figure 5.1: Tree-based Rule Auto Spanning Model

5.2 Analysis Module

5.2.1 Source Tracer

To support the analysis module, we plant source tracer in our system. As we see,

IP spoofing is widely used to forge the source of attackers and bypass the forensic

and prevention system. So when this technique is performed, we can not simply

trace back to locate all attackers by using the source IP in the flowtable record

because the source IP addresses are spoofed. Traditional solution such as packet

marking technique[42, 43] to perform IP traceback always needs to modify the packets

and leads overhead which does not handle IP spoofing very well. However, in SDN

environment, the openness of data plane and control plane gives us an opportunity

to look at the detail of data exchange inside the switch, which benefits the traceback

of attacking sources. When a network node is performing malicious attack with IP

Spoofing, we can find several fake IP addresses in the flow table pointed to the victim

IP address come from the same ingress port, which means as long as the traffic is

33

OVS 1

Z-1 Z-2 Z-3 Z-4 Z-5

Bridge 1

1 2 3 4 5

OVS 2

Z-6 Z-7 Z-8 Z-9 V

Bridge 2

4 5 6 7 8

6 3

In_port Src_IP Dst_IP Src_PortDst_Port Action

1 172.168.4.2 172.168.6.2 60700 80 Output:6

1 172.168.4.3 172.168.6.2 60700 80 Output:6

1 172.168.4.4 172.168.6.2 60700 80 Output:6

1 172.168.4.5 172.168.6.2 60700 80 Output:6

2 172.168.4.6 172.168.6.2 60700 80 Output:6

3 172.168.4.7 172.168.6.2 60700 80 Output:6

4 172.168.4.8 172.168.6.2 60700 80 Output:6

5 172.168.4.9 172.168.6.2 60700 80 Output:6

5 172.168.4.10172.168.6.2 60700 80 Output:6

In_port Src_IP Dst_IP Src_PortDst_Port Action

3 172.168.4.2 172.168.6.2 60700 80 Output:8

3 172.168.4.3 172.168.6.2 60700 80 Output:8

3 172.168.4.4 172.168.6.2 60700 80 Output:8

3 172.168.4.5 172.168.6.2 60700 80 Output:8

3 172.168.4.6 172.168.6.2 60700 80 Output:8

3 172.168.4.7 172.168.6.2 60700 80 Output:8

3 172.168.4.8 172.168.6.2 60700 80 Output:8

3 172.168.4.9 172.168.6.2 60700 80 Output:8

3 172.168.4.10172.168.6.2 60700 80 Output:8

4 172.168.6.4 172.168.6.2 60700 80 Output:8

5 172.168.6.5 172.168.6.2 60700 80 Output:8

6 172.168.6.6 172.168.6.2 60700 80 Output:8

6 172.168.6.7 172.168.6.2 60700 80 Output:8

Figure 5.2: Source Tracer for Spoofing IP

delivered through the switch, the ingress port of OVS can not be forged and it is an

essential clue to traceback all the spoofed attacking sources.

Fig. 5.2 gives an example of IP Spoofing scenario. We can see all the VMs in the

system are connected to the OVS bridge by virtual interface (VIF) and each network

interface has attached to one switch port. IP Spoofing is performed in this situation,

so we can find more source IP addresses than current active VMs in the system.

Zombie machine 1 inserts 4 flow entries in the flow table and it is sending 4 kinds

of traffic to victim VM with forged source IP addresses. Zombie machine 5 and 9

also apply IP Spoofing technique to challenge the traceback of zombie machines. In

this situation, we can not track the zombie machines by IP address because they are

spoofed and changed intentionally. However, the good news here is the ingress port

34

of OVS can not be changed. From the flow table of OVS 1, we can see the source

IP address {172.168.4.2, 172.168.4.3, 172.168.4.4, 172.168.4.5} come from the same

ingress port and this ingress port is connected to only one active VM. So when we

traceback the zombie machines, we only focus on the ingress port, no matter how IP

address is spoofed or not, the goal here is to find out the specific ”physical” zombie

machines who are sending flooding traffic.

Thus, we propose an IP spoofing prevented trace back mechanism based on the

OVS virtual port tracing. The benefit of considering the OVS port over the traditional

network switch port is that it is possible for us to know if dedicated OVS port is

connecting a VM directly or another OVS’s tunnel port. As shown in Fig. 1.1, each

flow entry has a field called in port. Through this way, we are able to trace back to

the zombie VM from the OVS that victim directly connects. Since the connectivity

of all OVS can be modeled as a graph. We first need to define a function called

traceback as below:

v.traceback(dst IP, transport type) = {OV S/VM}, (5.1)

for all OVS/VM sending traffic with destination IP = dst IP, transport type = trans-

port type directly to OVS v. Thus we propose a trace back algorithm based on

depth-first search, which is described in Algorithm 1.

5.2.2 Topology Manager

Topology Manager is planted in the analysis module to help security application

to analyze attacking in the network and evaluate the corresponding countermeasures.

Topology Manager is composed with two main components: Topology Finder and

Mininet Generator. Topology finder can discovery all the network devices and nodes

in current cloud system. It also can depict the connections between network nodes

35

Algorithm 1 Source Trace Back Algorithm

Input: TrafficTypeDDoS, VMvictim, OV Svictim

Output: {Set of Zombie VMs}

1: v ← OV Svictim

TraceRecursion (OVS v, Set ZVM)

2: if v = VM then

3: ZVM.add(v)

return

4: end if

5: for each x ∈ v.traceback(dst IP, TrafficTypeDDoS) do

6: if x.visited = FALSE then

7: TraceRecursion(x, list)

8: end if

9: end for

10: RETURN list

and devices. This component helps attack graph applications development and pro-

vide overview architecture for developers to deal with malicious activities. Mininet

Generator can depict the network architecture as well, but it also could create a vir-

tual networking environment through Mininet [44]. Mininet contains a real network

switch kernel and application. It runs on a virtual machine or a single PC and cre-

ates a real virtual network. It is a great experiment environment for Openflow and

software-defined networking systems.

Topology Finder could be used to depict the network architecture in cloud

computing system. There are three main components in the topology finer: topology

discovery, host tracker and data manager. In the topology discovery, controller will

send link layer data packets (LLDP) every certain time. This module can discover

36

the connectivity between all active openflow switches. Each openflow switch listens

to a LLDP event and parse this LLDP packet to instance handler. Each LLDP

comes with the dpid of original switch, so we maintain a table with original dpid

and confirm the connection when original dpid is received and this dpid is in current

active openflow core connection lists. All the topology information including openflow

switch, network host, links between host and switch is stored in the topology database

in traffic information platform. If users would like to display the topology in the web,

a JSON manager will translate the topology information to a JSON file and send it

to the web service by HTTP request or other type of web services.

Experiment Mininet Generator could be used to generate a virtual network-

ing environment in a single host or on a virtual machine for developers to run security

related experiments. After the network topology is discovered by topology finder, a

embedded translator in the mininet generator will create a python-based mininet

script based on the input topology. This translator can translate JSON format infor-

mation of switch dpid, host mac address and ip address, connection between network

devices into python language. Then we can simulate the this real environment based

on the mininet application as a custom topology.

5.3 Prevention Module

5.3.1 Network Reconfiguration

Network reconfiguration is a flexible approach to manipulate the network charac-

teristics. It can change network topology, traffic packet header, connection speed and

network parameters and so on. When we enable SDN in the cloud system, network

reconfiguration is used to counter malicious activities in a IPS system. Major network

reconfiguration can be found in Table 5.1 : 1) Traffic Redirection (TR) is an action

37

Openflow

Switch 1

Openflow Controller

1. Controller periodically commands switches to flood LLDP all of its ports.

2. Listen to PortStatus Event, add port or del port when port changes. Flood LLDP to all of its ports.

3. Handle PacketIn event, parse LLDP packet and fetch DPID & port.

Openflow

Switch 2

Openflow

Switch 3

Openflow

Switch 4

Figure 5.3: Topology Finder Procedures

which redirect a traffic flow to a secure agent (e.g. DPI unit, Honeypot) by mod-

ifying the packet header. It is usually implemented by rewriting MAC/IP address

in header. Controller also can push entry to flowtable which could rewrite packet

header on matching packets instead of sending the packet to remote controller. 2)

QoS Adjustment (QA) is an efficient reconfiguration to handle overwhelming traffic

in some specific scenarios. Openflow switch can adjust the QoS parameters of any

attached virtual ports. We can make sure suspect attacking traffic only generate

limited impact on the network and hosts by decreasing the QoS rate in the openflow

switch. QA also can be applied to work with other NRs such traffic isolation or redi-

rection. 3) Traffic Isolation (TI) is a high level implementation of traffic redirection.

It provides an isolated virtual networking channel separated, e.g., separated virtual

bridges, isolated ports or GRE tunnel. Malicious traffic will be redirected into those

virtual bridges and only hosts on isolated channel can be impacted. 4) Filtering is

similar with the filter action in Iptables, but they are different in that filtering in NR

will handle packets at openflow switch kernel space and will not be forwarded to a

38

remote controller or snort agent. MAC/IP address change is a very straightforward

way to prevent the victim from being attacked by the malicious traffic. The default

IPS action, i.e., drop, can be also regarded as a filtering rule that drop the matching

packets. 5) Blocking is a common action both in traditional IPS or openflow network

reconfiguration. Some attacks are performed by exhausting network resource of a

public service port. By blocking ports, the attack can be prevented as the attacking

path is disconnected. 6) Quarantine is a comprehensive approach to isolate traffic in

cloud virtual networking environment. It works similarly with TI but it isolates the

suspect network resources (not just the suspect traffic) such as virtual machines or

servers. Quarantine mode can apply more flexible and self-defined rules to reconfig-

ure a network envrionment. For example, you can quarantine suspect VMs with only

ingress permission and decline all egress requests. Thus, such VMs can only receive

traffic but can not send traffic to network.

No. Countermeasure

1 Traffic Redirection

2 QoS Adjustment

3 Traffic Isolation

4 Deep Packet Inspection

5 Filtering

6 MAC address change

7 Packet Header (MAC/IP Address) Change

8 Block Port

9 Quarantine

Table 5.1: Network Reconfiguration Actions

39

5.3.2 Representative NR Actions in Prevention Module

In this section, we would like to discuss two main network reconfiguration ap-

proaches which are traffic redirection and QoS adjustment.

Traffic Redirection

Traffic redirection can be implemented by three methods: MAC Address Rewriting,

IP Address Rewriting, and Port Rewriting. When detection engine detects suspect

packets, the controller will firstly inject corresponding openflow entries (i.e., matching

packet header fields and corresponding actions) to openflow switch to update the

flowtable. Header changing is done by flowtable when certain packets matches certain

entries. Then corresponding redirection will be performed for matched traffic flows.

Actions are defined in the traffic rules. When the header fields of flowtable are

changed, e.g., source IP, destination IP, source MAC, destination MAC, the original

traffic flows will be handled based on the new flowtable rules and they will be delivered

to new destination. When these information is changed, the OVS will naturally

forward packets to the changed destination address. It is especially efficient when

dealing with the suspect packets which can not be confidently confirmed as attack

and are expected to redirect to a detection agent for further checking, e.g., Deep

Packet Inspection (DPI) or honeypot.

Port rewriting can be used to implement TR as well. It also comes from the

natively feature of openflow. Each virtual bridge or physical switch in openflow en-

vironment can be considered to provide virtual ports or physical ports. All virtual

machines are connected these ports via their network interfaces. Thus, openflow

switch can simply forward a traffic packet by outputting it to a specific port or flood-

ing. Then the VM connected port can receive this packet. Thus, SDN-based network

40

reconfiguration can set any virtual or physical port as output to implement the traffic

redirection function without changing the packet header. One of the obvious benefits

of this implementation is that any packet header will not be changed while traffic is

being redirected, which is efficient and effective to some components when collecting

original network packets for further study.

QoS Adjustment

QoS Adjustment (QA) is a desired countermeasure to defend cloud networking from

flooding attacks such as DoS and DDoS. It is also suitable for delay suspect traffic.

For example, the network connections of suspect victims are under high workload,

but detection engines can not confirm the flooding attacks exist, it is not supposed to

shutdown all the connections to victims, so QoS adjust is introduced to handle this

kind of situation.

Based on the configuration of Open vSwitch, reseting QoS parameters on virtual

interface or port are two ways to implement QA. These two implementations are

used in different scenarios. When setting the QoS limitation on virtual interface,

packet source, i.e., attacker, is needed to be located. Thus, the number of suspect

attackers can not be too large. On the other hand, if the attacking sources is a huge

set, such as the zombie machines in a DDoS attack, it is infeasible and impractical

to locate all attackers and limit rate by through their virtual interfaces. So another

implementation of QA, by limiting the incoming port on OVS, is introduced to solve

this issues. When packets arrive at OVS, there is a packet in event port, which is

also called in port, as shown on the flowtable in Fig. 1.1. We can adjust the QoS

of this incoming port, then all arriving packet which are exceeding the limit will be

dropped without further process. Also, when IP spoofing is used by attackers , QA

is also efficient in this situation.

41

5.4 Python-based Security Application Development API

Table. 5.2 illustrates all Python-based APIs for TPI modules. Table. 5.3 illus-

trates all Python-based APIs for service modules including detection module, analysis

module and prevention module.

42

Table 5.2: TIP API Summarization

Function Parameters Explanation

get active switch return all active connections

get active port dpid return all active ports of specified OpenFlow switch

get port volume dpid, port, start time, end time,

ingress

get history port traffic volume from start time to

end time, time format shoud be python standard

time format, ingress value is true by default and set

it to false to watch the egress traffic volume of the

port

monitor port volume dpid, port, start time, time period,

recurring, ingress

monitor port ingress or egress traffic volume

from start time every time period seconds the

method monitor ingress traffic by default, when

ingress=false, it will monitor the egress traffic vol-

ume

monitor volume match, start time, time period, re-

curring

monitor traffic volume from start time every

time period time, user needs to set the attribute of

match to define the flow to be monitored and the

function will return real time data set

get volume match, start time, end time,

time period, ingress

return the history traffic volume information for the

matched flow from start time to end time, by default

ingress value is true and set it to false to monitor the

egress traffic volume

flow table expander in port, out port, ethernet layer,

ip layer, transport layer

expand the raw flow table rules to detail flow rules

automatically, set the ethernet layer, ip layer, trans-

port layer parameter to false to disable the expand

for corresponding layer

get packet match,controller port send all matched packets to controller

traceback IP destination IP, traffic type this function return all the source ip addresses who

are sending specific traffic type to destination ip

customized monitor match, start time, time period, re-

curring

set up a monitor, match flow and start time, return

the match flows information every time period

check customized counter match, start time, counter check if the number of matched packets exceed the

counter value

get raw data dpid, start time, end tim get raw traffic statistics information of selected

switch from start time to end time. It returns a

python dictionary with dpid and record time as the

key

43

Table 5.3: SDN-based Security Application Module API Summarization

Function Parameters Explanation

detection engine connectormatch, detection engine ip get the matched packet from the OVS and forward

it to the third party detection engine

traffic volume monitor ovs, port, threshold set up a monitor to watch the system traffic volume,

when the traffic exceed the threshold, return a noti-

fication

customized counter match, start time stamp, counter set up a counter for matched flow, when the number

of matched flows reach the threshold, it will return

a notification

attack source traceback victim ip, victim ovs, ip proto,

port number

return the list of port and the attached OVS at-

tack traffic type is needed to traceback the source

attackers from victim ovs

traffic drop match drop all the traffic based on the match fields

traffic redirect match, destination ip redirect all the matched traffic to new destination ip

traffic redirect spoof match, destination ip, spoof ip redirect all the matched traffic to new destination ip

and change the source ip to spoof ip

traffic qos dpid, port, qos rate, ingress, egress set the port of openvswitch ingress and egress traffic

rate ingress and egress traffic rate is limited by de-

fault, set ingress or egress to false to disable the rate

limit

44

Chapter 6

HOW TO BUILD A DEFENSIVE SYSTEM

In this chapter, I will introduce how to build a DDoS Defensive System by using pro-

posed development framework. We first present the DDoS attack model and analyze

the feature of this attack. Then we design a DDoS defensive architecture to address

this problem. At last, we build this defensive system based on our development

framework and show the processing flow of this implementation.

6.1 Problem Analysis

Distributed Denial-of-Services(DDoS) is an attack which uses many computer

hosts to launch a coordinated DoS attack against one or more targets [45]. Attacker

is able to multiply the damage of DoS significantly by controlling the resources of

multiple innocent computer hosts, which can be considered as the platform of attack.

This attack is distinguished from other attacks because the locations of attackers are

“distributed” over the network and it aggregates these forces to create lethal traffic.

DDoS can be simply divided into two categories, the bandwidth exhausting attack

and the resource exhausting attack. The first one is performed to flood the victim’s

network with overwhelming traffic that prevents legitimate traffic from reaching the

victim, while the resource exhausting attack is trying to break the victim’s system by

either compromising the protocol running on victim’s system or crashing the victim’s

system by sending incorrect data packets.

45

Detection Engine

(Anomaly/Signature)

DDoS Attack Detected

No

Identify Victim

Yes

Trace All Zombies

Execute Mitigation Action

DDoS Detection

Zombie Trace

Mitigation Execution

DDoS Traffic

Analysis

monitor_volume

flow_table_expander

attack_source_traceback

CloudArmour API

Identify DDoS Traffic Type

get_packet

traffic_drop

Figure 6.1: DDoS Defensive Solution Construction Flow

6.2 Processing Flow

To construct the DDoS defensive solution based on our framework, we first divide

the defensive solution into four phases: DDoS detection, attack analysis, zombie

machines traceback and mitigation execution. These four modules are executed in

an assembly line fashion. The processing phases of the DDoS defensive solution is

illustrated in Fig. 6.1.

The DDoS detection engine is designed to detect the DDoS attack behavior.

It can be implemented as either a signature-based approach or an anomaly-based

one. The anomaly-based detection engine can be simply build by calling moni-

tor volume(match,start time, time period,recurring) function. We can also plant an

existing signature-based detection engine such as Snort and call detection engine conn-

ector(match,detection engine ip) function to forward traffic flows to Snort or other

46

Figure 6.2: DDoS Detection Engine Implementation Screenshot

detection engine. After the attacking behavior is detected, further inspection needs

to be done to determine: (1) which host is victim; (2) what is the type of DDoS

traffic initiated from zombies. So, we can call Flow table expander(in port, out port,

ethernet layer, ip layer, transport layer) function to generate more elaborated traffic

statistics information, which can be further analyzed to answer previous questions.

When DDoS behavior, DDoS traffic type, and victim are all confirmed by the previ-

ous steps, attack source traceback(victim ip, victim ovs, attack traffic type) function

is called to identify all DDoS traffic sources in zombie traceback phase. After zombie

machines are all identified by traceback function, mitigation will be performed to stop

the DDoS attacking traffic at all port entries of the OpenFlow devices.

6.3 Implementation

We implemented this DDoS Defensive Solution based on our framework. Fig. 6.2

is the snapshot of detection engine. We choose the detection resolution ∆T equals 60

seconds so that the DDoS detection engine queries the traffic volume, average traffic

volume, and CUSUM statistics score every 60 seconds. When the CUSUM statistics

score exceeds the threshold, Traffic Analyzer and Mitigation Executor will be trigged

to protect the system.

47

Figure 6.3: Screenshot of Source Tracer in DDoS Attack Scenario

Seagull[46] is used to generate background traffic at a normal speed and Pktgen[47]

is used to emulate DDoS traffic due to its ability of generating packets at extremely

high speed in the kernel.

Source Tracer module is able to track all the packets even they are intentionally

spoofed to bypass security agent. This module can find the attacker who is send-

ing malicious packets with certain pattern or distributed attackers who are sending

overwhelming traffic at the same time and forge their sources. In this scenario, we

develop a zombie tracer application based on our module and APIs.

Fig. 6.3 is the screenshot of the this zombie traceback application. All the VMs in

the system are connected to OVS bridge by virtual interface. Some of VMs are zombie

machines who are sending overwhelming traffic with spoofed source IP addresses.

This application is able to find the zombie machines in the network and will identify

the ports that zombie machines are connected to in the openflow switch. From the

screenshow we can see that the victim IP address is 10.0.2.6 and attack traffic type

is ICMP. It also reports the number of current active IP addresses, i.e., 23, and the

number of active OVS ports, i.e., 5, and then it tracebacks all the ports of suspect

zombie machines in each OVS. From the screenshot, ports 1,2,3,4,5 on OVS1 and

ports 2,3,4,5 on OVS2 are determined as the ports that the zombie machines are

connected.

48

Chapter 7

EVALUATION

7.1 How SDN-based Countermeasure Improve Network Security

In this section, we are comparing the performance of SDN-based mitigation ap-

proaches and traditional IPS mitigation approaches, i.e, Iptables-based IPS. In SDN

experiment, we only deploys the default NR action (drop) to make the comparison

fair, since Snort/Iptables IPS does not have extra NR capability beside drop.

Fig. 7.1 is the comparison evaluation result between SDN-based mitigation and

traditional mitigation. In the openflow-based mitigation, we can find openflow switch

25
00

50
00

75
00

10
00
0

12
50
0

15
00
0

17
50
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

45
00
0

50
00
0

55
00
0

60
00
0

65
00
0

70
00
0

75
00
0

80
00
0

85
00
0

90
00
0

95
00
0

10
00
00

12
50
00

35
00
00

Attack Rate(packets per second)

0

10

20

30

40

50

60

70

80

90

100

110

120

P
a
ck

e
ts

 P
ro

ce
ss

in
g

 R
a
te

 (
%

)

OpenFlow-based Mitigation
Traditional IPS

Figure 7.1: Comparison Evaluation between SDN-based and Traditional Mitigation

49

can handle 100% packets even the attack rate reaches to 350,000 packets per second.

The reason why openflow switch has such a good performance is that it can block

all the already known malicious packets before they are forwarded. However, in

traditional mitigation, the mechanism of Iptables and Snort can not fully prevent the

impact of flooding attack because all the traffic packets are always congested into

Iptables Queue. The capability of Snort or other traditional mitigation is not able

to process all the traffic packets when the attack rate exceeds 17,550 packets per

second. In SDN-based mitigation mechanism, the detection kernel is separated from

countermeasure module, the mitigation is applied in the data plane of the switch

in line-rate, which guarantees the detection engine is free of already known flooding

attack and packet processing function still can work properly even system is under

overwhelming network traffic.

1 1000 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 30000

Attack Rate(packets/second)

0

10

20

30

40

50

60

70

C
P

U
 U

ti
li

za
ti

o
n

(%
)

CPU Utilization Performance of Major NRs
Drop
TR
TR with Spoofing
QA

Figure 7.2: Major Mitigation Options Evaluation

50

In Fig. 7.2, we evaluate four major network reconfiguration in terms of the CPU

utilization in an Open vSwitch. We attack a host in our network by using packet

generator[47] to create certain traffic packets. We apply four major SDN-based mit-

igation options to tackle this attack and evaluate their performance. The traffic

redirection approach is implemented by using destination IP & MAC rewriting; while

TR with fake reply is implemented by modifying not only destination IP & MAC

address but also source IP & MAC of victims to forge attackers. By using this action,

attacking traffic will be forwarded to a security appliance that is able to spoof the

attacker by replacing the source address of reply packet with victims’ IP & MAC

address. TR with spoofing feature consumes a more resources than the pure TR

because switch modifies more packet fields to spoof attackers. The default counter-

measure, i.e., drop packets, consumes less system resources because the switch does

not modify the fields of matching flows and it just simply drops them (output to a

non-existing virtual port in POX controller implementation). In the QA scenario, it

has the best performance among all mitigations because the rate limiting action is

performed based on Open vSwitch native mechanism, which means excess packets

will be discarded and OVS does not have to inspect and match the packet with all

kinds of fields.

Beside evaluating the system (CPU) and network (TCP bandwidth) performance

of TR, Fig. 7.3 provides the performance on the capacity of OVS and secure appliance

VM, e.g., DPI checker. In this scenario, we use TR (port rewriting) to redirect all

the attacking traffic to a DPI checker VM (4 vCPUs, 2,048 MB memory, Ubuntu

12.04 server OS). When the attacking packet rate is increased from 1,000 packets per

second up to 400,000 packets per second, the OVS can handle all the traffic without

any packet loss, which validates that the packet process capacity of OVS is expected.

The receive packet means the percentile of OVS redirected traffic has been received

51

5000

10000

15000

20000

25000

30000

50000

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

337500

350000

375000

400000

Atack Packet Rate (packets/second)

0

20

40

60

80

100

120

P
e
rc

e
n

ta
tg

e
(%

)

TR Traffic Handle Capacity
OVS Process
Receive Rate

Figure 7.3: TR Traffic Handle Capacity

by the DPI checker’s VIF. When the packet rate reaches the 400,000 packets per

second (we assume that there is no more than 400,000 packets generated in a single

physical server per second), the OVS can still handle 100% of the packet and security

appliance can receive 60% of them due to its VIF capacity.

Fig. 7.4 shows the health traffic forwarding capability when we use both miti-

gations to protect our network from flooding attack. To compare the difference, we

apply SDN-based mitigation and traditional mitigation as security proxy to sit be-

tween two virtual hosts. This security proxy is responsible to forward health traffic

packets and block malicious packets. We use hacking tools [48] to generate the DoS

attacking packets towards the security gateway at different attacking rate. Ping of

Death (PoD) and SYN flood attack are two major DoS attacks that are used in this

experiment. We ask one VM to send health packets to another VM through gateway

at the rate of average normal traffic rate and the gateway is attacked as the same

52

20000

40000

60000

80000

100000

110000

120000

130000

140000

150000

160000

1700000

180000

190000

200000

210000

220000

Attacking Rate (packets per second)

0

10

20

30

40

50

60

70

80

90

100

110

120

H
e
a
lt

h
y

T
ra

ff
ic

 S
u

cc
e
ss

 F
o
rw

a
rd

in
g

 R
a
te

 (
%

)

Health Traffic Impact
SDNIPS PoD & SYNFlood
IPS SYNFlood
IPS PoD

Figure 7.4: Health Traffic Impact

time. In traditional mitigation, malicious packets are firstly captured by detection

engine and they will be dropped by Iptables in the queue. In SDN-based mitigation,

the openflow switch fulfills the same goal and it drops these packets in the data plane

which is more efficient and faster. This mechanism increases the system performance

dramatically because the malicious traffic is handled by openflow switch fast path

in line rate. As we can see from the Fig. 7.4, SDN-based mitigation under both

type of flooding attacks can protect health traffic 100 % from malicious traffic flows.

This means all normal traffic can be properly forwarded when we apply SDN-based

mitigation to protect network even they are under significant traffic stress. For tradi-

tional mitigation, the health traffic success forwarding rate has decreased around 69%

and 37% under PoD attack and SYN flood respectively when the attack increases to

150,000 packets per second because of the weakness of traditional mitigation mecha-

nism.

53

1000
1500

2000
2500

3000
3500

4000
4500

5000
5500

100000

400000

500000

550000

600000

700000

1000000

Rate Limit(kbits/s)

0

1000

2000

3000

4000

5000

6000

7000

8000

A
va

il
a
b

le
 T

C
P

 B
a
n

d
w

id
th

 (
M

B
it

s/
s)

Bandwidth Performance of QA
IP Flood
TCP SYN Flood

Figure 7.5: Bandwidth Performance of QA

Fig. 7.5 shows how QA can protect TCP bandwidth at different speed limit rate.

We attack our network by IP flood and SYN flood in two experiments. Both of

them try to crush our network by sending overwhelming traffic packets at a rate of

300,000 packets per second. We configure the incoming port of attacker in the OVS

to restrict attacking traffic before being processed. The default incoming speed is

10Gbits/s without any rate limit in XenServer OVS. The range of the speed limit is

from 1 Mbits/s to 10Gbits/s. For IP flooding attack, the available TCP bandwidth is

in good condition (around 8 Gbits/s) when the rate limit is less than 5 Mbits/s.This

means we can make sure the victim host will not be affected by flooding attack when

we set the rate limit under 5 Mbits/s. We we raise the rate limit of incoming port,

more bandwidth is occupied by the attacking traffic and less bandwidth is available

for victim. In SYN flood attack, when the speed limit increases to 4 Mbits/s, the TCP

54

bandwidth starts degrading because TCP SYN flood will establish TCP connection

between attacker and victim. This will definitely impact the TCP bandwidth perfor-

mance. When the speed limit is above 5.5 Mbits/s, almost no available bandwidth

can be used for the victim. This evaluation result provides a valuable reference for

any system when deploying the QA NR as a security mitigation.

In summary, the evaluation comparing between proposed SDN-based mitigation

and traditional IPS mitigation validates the analysis mentioned before, which is that

the SDN-based IPS mitigation has better network and security performance in cloud

networking environment.

55

Chapter 8

CONCLUSION

In this thesis, we propose a SDN-based IPS development framework in cloud com-

puting environment. The goal of this framework is to efficiently and effectively devel-

opment a SDN-based defensive system with detection,analysis module, and perform

the mitigation. The key challenge, which we address, is to build a traffic informa-

tion platform to collect, organize traffic information for developer. Furthermore, we

generate three security modules for developers to construct a full lifecycle defensive

system. Some security applications such as Snort Agent, Topology Manager, Net-

work Reconfiguration Pool are planted in the module as the applicable security tools

and guideline to facilitate IPS development. We build a DDoS defensive system as a

sample to explain how our system works and how to address a realistic security prob-

lem. We evaluate the proposed development framework, the advantage of SDN-based

mitigation and how SDN technology improve cloud system security. We provide all

these evidences to prove that our development framework benefits SDN-based IPS

development in cloud system.

56

References

[1] Wikipedia, “Cloud Computing.” [Online]. Available:
http://en.wikipedia.org/wiki/Cloud computing

[2] “SourceFire Inc.” [Online]. Available: http://www.snort.org

[3] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “Nice: Network in-
trusion detection and countermeasure selection in virtual network systems,” in
IEEE Transactions on Dependable and Secure Computing (TDSC), Special Issue
on Cloud Computing Assessment, 2013.

[4] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “Snortflow: A openflow-
based system in cloud environment,” in GENI Research and Educational Exper-
iment Workshop, GREE, 2013.

[5] “Openflow switch specification version 1.4.0.” [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[6] Open vSwitch, http://openvswitch.org/.

[7] Citrix System Inc. [Online]. Available: http://www.citrix.com

[8] docs.openstack.org, OpenStack Compute Starter Guide, August 2011.

[9] CloudStack, http://cloudstack.apache.org/.

[10] V. Inc., “Vmware vcloud networking and security overview,” in white paper,
2012.

[11] N. L. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network
monitoring in openflow software-defined networks.”

[12] J. R. Ballard, I. Rae, and A. Akella, “Extensible and Scalable Network Monitor-
ing Using OpenSAFE,” in INM/WREN, 2010.

[13] J. H. Jafarian, E. AI-Shaer, and Q. Duan, “Openflow random host muta-
tion: Transparent moving target defense using software defined networking,”
in HotSDN, 2012.

57

[14] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson,
“Fresco: Modular composable security services for software-defined networks,”
in NDSS. The Internet Society, 2013.

[15] K. Vieira, A. Schulter, C. Westphall, and C. Westphall, “Intrusion detection for
grid and cloud computing,” IT Professional, vol. 12, no. 4, pp. 38–43, July 2010.

[16] S. Roschke, F. Cheng, and C. Meinel, “An extensible and virtualization-
compatible ids management architecture,” in Information Assurance and Se-
curity, 2009. IAS ’09. Fifth International Conference on, vol. 2, Aug 2009, pp.
130–134.

[17] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer, “Stateful intrusion detec-
tion for high-speed network’s,” in Security and Privacy, 2002. Proceedings. 2002
IEEE Symposium on, 2002, pp. 285–293.

[18] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter, “Network-
wide deployment of intrusion detection and prevention systems,” in
Proceedings of the 6th International COnference, ser. Co-NEXT ’10.
New York, NY, USA: ACM, 2010, pp. 18:1–18:12. [Online]. Available:
http://doi.acm.org/10.1145/1921168.1921192

[19] M. T. Goodrich, “Probabilistic packet marking for large-scale ip traceback,”
IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 15–24, Feb. 2008. [Online].
Available: http://dx.doi.org/10.1109/TNET.2007.910594

[20] A. Belenky and N. Ansari, “Ip traceback with deterministic packet marking,”
IEEE Communications Letters, vol. 7, no. 4, pp. 162–164, 2003.

[21] S. Yu, W. Zhou, R. Doss, and W. Jia, “Traceback of ddos attacks using entropy
variations,” Parallel and Distributed Systems, IEEE Transactions on, vol. 22,
no. 3, pp. 412–425, 2011.

[22] J. Francois, I. Aib, and R. Boutaba, “Firecol: A collaborative protection network
for the detection of flooding ddos attacks,” Networking, IEEE/ACM Transac-
tions on, vol. 20, no. 6, pp. 1828–1841, Dec 2012.

[23] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack detec-
tion using nox/openflow,” in Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, Oct 2010, pp. 408–415.

[24] G. Yan, R. Lee, A. Kent, and D. Wolpert, “Towards a bayesian network
game framework for evaluating DDoS attacks and defense,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security, ser.
CCS ’12. New York, NY, USA: ACM, 2012, pp. 553–566. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382255

[25] M.-Y. Su, G.-J. Yu, and C.-Y. Lin, “A real-time network intrusion detection
system for large-scale attacks based on an incremental mining approach,” in
Computers & Security, Feb 2009, pp. 301–309.

58

[26] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using
openflow in dynamic cloud networks (or: How to provide security monitoring
as a service in clouds?),” in Proceedings of the 2012 20th IEEE International
Conference on Network Protocols (ICNP), ser. ICNP ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 1–6. [Online]. Available:
http://dx.doi.org/10.1109/ICNP.2012.6459946

[27] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of the
First Workshop on Hot Topics in Software Defined Networks, ser. HotSDN
’12. New York, NY, USA: ACM, 2012, pp. 121–126. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342466

[28] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable and
vigilant switch flow management in software-defined networks,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, ser. CCS ’13, 2013, pp. 413–424.

[29] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication component for
resilient openflow-based networking,” in Network Operations and Management
Symposium (NOMS), 2012 IEEE, April 2012, pp. 933–939.

[30] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9,
pp. 1464–1480, Sep 1990.

[31] Y. Choi, “Implementation of content-oriented networking architecture (cona): A
focus on DDoS countermeasure.”

[32] R. Skowyra, S. Bahargam, and A. Bestavros, “Software-defined ids for securing
embedded mobile devices,” in High Performance Extreme Computing Conference
(HPEC), 2013 IEEE, Sept 2013, pp. 1–7.

[33] S. Yu, Y. Tian, S. Guo, and D. Wu, “Can we beat DDoS attacks in clouds?” pp.
1–1, 2013.

[34] Murphy McCauley. [Online]. Available: http://www.noxrepo.org/pox/

[35] E. Brodsky and B. Darkhovsky, Nonparametric Methods in Change Point
Problems, ser. Mathematics and Its Applications. Springer, 1993. [Online].
Available: http://books.google.com/books?id=Lu XN8KswvwC

[36] A. Tartakovsky, B. Rozovskii, R. Blazek, and H. Kim, “A novel approach to
detection of intrusions in computer networks via adaptive sequential and batch-
sequential change-point detection methods,” Signal Processing, IEEE Transac-
tions on, vol. 54, no. 9, pp. 3372–3382, Sept 2006.

[37] W. Lu and H. Tong, “Detecting network anomalies using cusum and em cluster-
ing,” in Advances in Computation and Intelligence. Springer, 2009, pp. 297–308.

59

[38] H. Wang, D. Zhang, and K. Shin, “Detecting syn flooding attacks,” in INFO-
COM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 3, June 2002, pp. 1530–1539.

[39] T. Peng, C. Leckie, and K. Ramamohanarao, “Proactively detecting distributed
denial of service attacks using source ip address monitoring,” in In Proceedings
of the Third International IFIP-TC6 Networking Conference (Networking 2004.
Springer, 2004, pp. 771–782.

[40] “MySQL.” [Online]. Available: http://www.mysql.com/

[41] A. Alhomoud, R. Munir, J. P. Disso, I. Awan, and A. Al-Dhelaan, “Performance
evaluation study of intrusion detection systems,” in The 2nd International Con-
ference on Ambient System, Networks and Technologies, 2011.

[42] A. Yaar, A. Perrig, and D. Song, “Stackpi: New packet marking and filtering
mechanisms for ddos and ip spoofing defense,” Selected Areas in Communica-
tions, IEEE Journal on, vol. 24, no. 10, pp. 1853–1863, Oct 2006.

[43] D. X. Song and A. Perrig, “Advanced and authenticated marking schemes for ip
traceback,” in INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 2, 2001, pp.
878–886 vol.2.

[44] “Mininet.” [Online]. Available: http://mininet.org/

[45] L. D. Stein and J. N. Stewart, in The World Wide Web Security FAQ, Version
3.1.2, Feb 2002.

[46] HP Opencall Software, “http://gull.sourceforge.net/.”

[47] R. Olsson, “pktgen the linux packet generator.”

[48] “Back Track Linux.” [Online]. Available: http://www.backtrack-linux.org

60

