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ABSTRACT

Multi-pulse particle tracking velocimetry (multi-pulse PTV) is a recently proposed

flow measurement technique aiming to improve the performance of conventional PTV/

PIV. In this work, multi-pulse PTV is assessed based on PTV simulations in terms of

spatial resolution, velocity measurement accuracy and the capability of acceleration

measurement. The errors of locating particles, velocity measurement and accelera-

tion measurement are analytically calculated and compared among quadruple-pulse,

triple-pulse and dual-pulse PTV. The optimizations of triple-pulse and quadruple-

pulse PTV are discussed, and criteria are developed to minimize the combined error

in position, velocity and acceleration.

Experimentally, the velocity and acceleration fields of a round impinging air jet

are measured to test the triple-pulse technique. A high speed beam-splitting camera

and a custom 8-pulsed laser system are utilized to achieve good timing flexibility and

temporal resolution. A new method to correct the registration error between CCDs

is also presented. Consequently, the velocity field shows good consistency between

triple-pulse and dual-pulse measurements. The mean acceleration profile along the

centerline of the jet is used as the ground truth for the verification of the triple-pulse

PIV measurements of the acceleration fields. The instantaneous acceleration field of

the jet is directly measured by triple-pulse PIV and presented. Accelerations up to

1,000 g’s are measured in these experiments.
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Chapter 1

INTRODUCTION

Advances in the development and application of PIV have made it the dominant ex-

perimental method in fluid mechanics over the last two decades (Adrian, 1991, 2005;

Westerweel et al., 2013). In comparison with two conventional methods, hot-wire

anemometry (HWA) and laser-Doppler velocimetry (LDV), PIV has the advantage of

accessing instantaneous velocity fields, and thus multi-point flow properties and ad-

vanced visualizations. Velocity derivatives, such as velocity gradient tensor, vorticity,

and force, can be estimated by numerically differencing PIV field data. In studies of

turbulence and complex flows, Reynolds stress, spatial correlation, power spectrum,

and dissipation rate can all be directly calculated from PIV measurements (Adrian

and Westerweel, 2011).

In a dual-pulsed planar PIV system, the flow is seeded with micro-scale tracer

particles acting as the fluid markers and illuminated by high-energy pulsed lasers.

Light scattered from particles is collected by the imaging system at two time instants

separated by a small, precise time ∆t. The digital images of the particles are then

processed and interrogated determining the displacement field ∆X in the image do-

main. With the assumption of ideal geometric imaging, the flow velocity field u is

given by

u =
∆x

∆t
=

∆X

M0∆t
, (1.1)

where ∆x denotes the displacement vector in the flow domain, and M0 is the lateral

magnification. Today, cross-correlation has become the standard tool to interrogate

the entire image window by window. Each of the outcome vectors represents the
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average motion of the group of particles within the interrogation window. Particle

tracking algorithms such as the super-resolution technique (Keane et al., 1995) are

also applied to track the motion of individual particles. This method can improve

the spatial resolution of the measurement, but typically at the cost of increasing the

percentage of bad vectors.

The performance of a PIV system is characterized mainly by its dynamic spatial

range (DSR) and dynamic velocity range (DVR) (Adrian, 1997). The dynamic spatial

range is defined as the ratio of the linear dimension of the field of view to the minimum

resolvable length scale of the flow. Let lx and LX be the linear dimensions of the field

of view and the recording medium, respectively, and related by

lx = Lx/M0. (1.2)

If the maximum displacement is denoted by ∆xmax, the minimum resolvable scale

must be less than ∆xmax, and the dynamic spatial range can be defined as

DSR =
lx

∆xmax
=
Lx/M0

∆xmax
. (1.3)

Likewise, the dynamic velocity range is defined as the ratio of the maximum velocity

to the minimum resolvable velocity,

DV R =
umax
σu

=
∆xmaxM0

cτdτ
, (1.4)

where umax = ∆xmax/∆t is the full-scale velocity, and σu = cτdτ/M0∆t is the velocity

measurement uncertainty, with cτ being the uncertainty level in locating the particle

center and dτ being the particle diameter. From the definitions, the DSR and DVR

reveal the amount of information that a PIV system can hold and the measurement

uncertainty level compared to the full-scale velocity. It is also noticed that the product

of DSR and DVR is a constant for a given PIV system,

DSR×DV R =
LX
cτdτ

, (1.5)
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which indicates that it is beneficial to either increase the size of the recording medium

or reduce the measurement uncertainty. Also, the improvement in DSR or DVR has

to be at the sacrifice of the other one. Recently, Westerweel et al. (2013) reviewed

the state-of-art development of PIV technique. By that, the size of the recording

medium had reached 11-14 Mpixel, and some advanced PIV interrogation algorithms

had reduced cτ down to 0.05-0.2. But, both parameters appeared to be reaching

their limit. On the other hand, the total error could result from many sources such

as lens aberration, image distortion, pixel fill-factor and so on. Unless a revolution

occurs in manufacturing technology, significant advances in PIV technology require

fundamental changes in the conventional dual-pulsed system design.

Multi-pulse PIV is a recently proposed, novel technique (Haranandani, 2011; West-

erweel et al., 2013) that is intended to better resolve the particle motion and con-

sequently enhance the velocity measurement accuracy and allow direct measurement

of acceleration. By adding one or two additional pulses and recording the particle

location at more than two time instants, it is possible to fit a polynomial (second

order or higher) representing the trajectory and estimate the particle velocity and

acceleration using the temporal derivative. Furthermore, an optimized t, the time

along the trajectory, can be found (Haranandani, 2011) that will achieve minimum

combined error in position and velocity, assuming the real trajectory of the particle is

a locally circular path. In Haranandani’s study, he also compared the error in position

and velocity between triple-pulse and conventional dual-pulse PTV, and showed that

the triple-pulse method can substantially improve the position and velocity accuracy

when the particle moves a long curved path and exhibits strong tangential accel-

eration. Multi-pulse methods achieve better spatial resolution by more accurately

assigning a Lagrangian vector, i.e. the velocity vector, to a Eulerian point in the

fluid. They also account for the temporal and spatial variations of the particle veloc-
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ity between pulses, whereas dual-pulsed PIV assumes constant velocity between the

two exposures. As pointed out by Boillot and Prasad (1996), one of the constraints

in increasing DVR is that the velocity variation increases as ∆t increases, making

the constant velocity assumption less accurate. In principle, the error due to acceler-

ation can be reduced by multi-pulse method, making improvements of DVR appear

promising. Estimates of acceleration also offer the possibility of correcting for particle

slip in highly accelerated flows. Without knowledge of the acceleration, it must be

assumed that particles have zero slip so that the Eulerian velocity u[xp(t), t] can be

represented by the Lagrangian velocity of the particle, if the ∆t is short enough,

u[xp(t), t] ∼= vp(t) ∼=
∆xp
∆t

=
xp(t+ ∆t)− xp(t)

∆t
. (1.6)

However, if the particle dynamic, i.e. the inertias of the particle and the fluid are

taken into account, a more detailed version of Equation (1.6) is needed. According

to Adrian and Westerweel (2011),

u[xp(t), t] =
∆xp
∆t
− v̇p(t)

∆t

2
+ [v̇p(t)− b]τp +O(∆t2) (1.7)

where b is the particle body force per unit mass, and τp is the particle momentum

response time. The second term is the aforementioned velocity variation between

pulses. The third term represents the particle lag and particle drift caused by body

forces such as gravity. This expression implies that by measuring particle acceleration

with multi-pulse technique, we could actually refine the fluid velocity measurement

accuracy by accounting for velocity variation and particle slip. In addition, as the

Navier-Stokes equation indicates, acceleration measurement by multi-pulse scheme

can also make the direct estimation of the fluid pressure and viscous forces possible.

Various schemes for multiple recordings of the particle locations have been investi-

gated and implemented. Keane and Adrian (1991) numerically studied the optimized
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rules for multiple pulsed PIV systems. They concluded that as the pulse number

increases, the correlation quality improves by effectively increasing the image den-

sity. This implies that we may be able to use lower seeding density and still achieve

good correlation with multiple pulses, which will benefit super-resolution analysis.

They also found that with multiple pulses, the quality of the correlation became less

sensitive to the velocity gradient, a factor that often limits dual-pulsed systems.

Time-resolved PIV (TR-PIV) is now a popular tool for investigating highly un-

steady flows. The combination of high-repetition-rate Nd:YLF lasers and high-frame-

rate CMOS cameras allows the acquisition frequency of TR-PIV to reach up to 5 kHz

with 1024×1024-pixel images (Westerweel et al., 2013). Compared to low-repetition-

rate Nd:YAG lasers, Nd:YLF lasers used in TR-PIV typically has lower energy output.

As an example, Nd:YLF laser can generate 10-20 mJ laser pulses at 1 kHz pulse rate,

while only 1-2 mJ for pulse rate of 10 kHz (Adrian and Westerweel, 2011). Addition-

ally, CMOS camera generally has larger pixel size and higher noise. These two factors

together contribute to the reduction of the quality of TR-PIV particle images. As a

compensation, some interrogation algorithms utilizing coherent particle patterns in

consecutive frames were developed to try to obtain strong correlation signal. Exam-

ples are multiframe PIV (Hain and Kähler, 2007), multi-frame pyramid correlation

(Sciacchitano et al., 2012), fluid-tracking correlation (Lynch and Scarano, 2013) and

so on. The acquisition rate of current TR-PIV is considered enough for most water

flows. For example, Scarano et al. (2010) conducted a decent TR-PIV measurement

of circular and chevron jet transition at acquisition rate 1 kHz with the jet exit ve-

locity 0.45m/s. However for most air flows with flow speed typically being 10 to 100

m/s, TR-PIV is considered not sufficient to resolve the flow and thus not capable

to accurately measure acceleration. In order to record images at multiple times with

small enough ∆t, Christensen and Adrian (2002) developed a 4-pulse system with two
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dual-pulsed lasers and 2 PIV CCD cameras. Cross-polarized light sheet is formed and

the particle images are separated to each camera using cross-polarized filter in front of

the imaging optics. This work is a valuable pioneer of multi-pulse PIV in measuring

instantaneous acceleration field discussed in present paper.

In present work, the optimization and the accuracy assessment of multi-pulse

PTV is a continuation of the investigation by Haranandani (2011). Farrugia et al.

(1995) performed an PIV experiment using three pulses and compute the displacement

field using third-order auto-correlation. To distinguish the flow direction, he set

the time separation ratio α1 to be 1/3. Haranandani (2011) used α = 1/3 in his

work as well. Here, instead, triple-pulse and quadruple-pulse PTV with equal time

spacing are considered since the flow direction is automatically indicated in cross-

correlation analysis. The optimization regarding the minimum combined error in

position, velocity and acceleration is achieved for triple-pulse and quadruple-pulse.

Experiment was conducted on a circular impinging air jet. A 8-pulse laser system

consisted of 4 dual-cavity lasers is used in combination of a 4-imaging-channel beam-

splitting camera to achieve satisfactory temporal resolution for high-speed air flow.

The ensemble-averaged centerline acceleration profiles, obtained by dual-pulse PIV

and triple-pulse PIV respectively, are compared to test capability of triple-pulse PIV

in measuring acceleration.

1Here α is defined as (t2 − t1)/(t3 − t1), where t1,t2, and t3 are time instants at which particles

are recorded.
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Chapter 2

TRIPLE- AND QUADRUPLE-PULSE PTV SIMULATION WITH PARTICLE

DISPLACEMENT RANGE CONSTRAINT

In this chapter, the methodology of calculating particle trajectory, velocity and accel-

eration by triple- and quadruple-pulse PTV is presented. I will also discuss the way of

setting reference trajectory and consequently computing errors in position, velocity,

and acceleration. The optimizations for triple- and quadruple-pulse PTV is achieved

in the sense of minimizing combined position, velocity and acceleration errors. For

this chapter, all evaluations are considered within the particle displacement range

that is considered to be optimal for most current PIV/PTV measurements. Usually

the particle displacement is set to be 8-15 pixels for dual-pulse PIV measurements,

which accounts for the trade-off between DV R and DSR, and avoids strong loss-of-

pair effect due to out-of-plane motion. For multi-pulse measurements in this study,

it is reasonable to extend the range by a factor of 2 or 3. In next chapter, the eval-

uation will show the potential gain if the constraint on particle displacement range

is substantially released. For completeness, some contents overlap with the work by

Haranandani (2011).

2.1 Optimization of triple-pulse PTV

2.1.1 Simulation method

Think of an arbitrary point out of a particle long-term trajectory. A small enough

segment around the point can always be approximated as a segment of a local circle
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with the radius being the local radius of curvature R1. Thus, it is reasonable to

assume that a particle travels along a local circle with in short ∆t. Suppose the laser

is pulsed at time ti and the true particle locations are Xpi
2, i = 1, 2, 3. To simplify

the analysis, all ti are referred to the first pulse and denoted by primes, i.e.

t′i = ti − t1, i = 1, 2, 3. (2.1)

if we use α to represent the location of the second pulse, we get

t′1 = 0, t′2 = α∆t, t′3 = ∆t. (2.2)

Following the prime convention, the true particle trajectory is mathematically de-

scribed as the following,

Xp(t
′) = Xp1 + [R−Rcosϑ(t′)]i +Rsinϑ(t′)j, (2.3)

with t′ ∈ [0,∆t]. Then Xpi are related to Xp(t
′) by

Xp1 = Xp(t
′
1) = Xp(0) = Xp1 (2.4a)

Xp2 = Xp(t
′
2) = Xp(α∆t) = Xp1 + [R−Rcosϑ(α∆t)]i + [Rsinϑ(α∆t)]j (2.4b)

Xp3 = Xp(t
′
3) = Xp(∆t) = Xp1 + [R−Rcosϑ(∆t)]i + [Rsinϑ(∆t)]j (2.4c)

If we also refer the trajectory (2.3) and particle locations (2.4) to Xp1, then

X ′
p(t
′) = [R−Rcosϑ(t′)]i +Rsinϑ(t′)j, (2.5)

and

X ′
p1 = Xp1 −Xp1 = 0, (2.6a)

X ′
p2 = Xp2 −Xp1 = [R−Rcosϑ(α∆t)]i + [Rsinϑ(α∆t)]j, (2.6b)

X ′
p3 = Xp3 −Xp1 = [R−Rcosϑ(∆t)]i + [Rsinϑ(∆t)]j. (2.6c)

1Here, R is defined on image plane.
2If the interrogation window size is small enough and the velocity gradient within the window is

negligible, Xpi could also represent the centroid position of the particle group.
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In equation (2.3), the angular displacement ϑ is modeled by the combination of an

angular velocity term, ϑ̇0t
′, and an angular acceleration term, 1

2
ϑ̈0t
′2, i.e.

ϑ(t′) = ϑ̇0t
′ +

1

2
ϑ̈0t
′2. (2.7)

On the other hand, at each time instants t′i, we have a measured particle location

with some measurement noise δXpi, which is treated as zero-mean (no bias error)

random variables. If the measured locations are denoted by adding a subscript m,

then we have

Xpi,m = Xpi + δXpi. (2.8)

With these three particle location measurements, it is possible to fit a quadratic curve

as an estimation of the true particle trajectory (2.3). The formula of the estimated

trajectory is given by

X̂p(t
′) =

[
1− 1 + α

α

t′

∆t
+

1

α

t′2

∆t2

]
Xp1,m +

[
1

α(1− α)

t′

∆t
− 1

α(1− α)

t′2

∆t2

]
Xp2,m

+

[
− α

1− α
t′

∆t
+

1

1− α
t′2

∆t2

]
Xp3,m. (2.9)

which is organized as the linear interpolation of measured particle locations. Addi-

tionally, the velocity and acceleration estimations are obtained by taking derivatives

of the trajectory estimation (2.9):

˙̂
Xp(t

′) =

[
−1 + α

α
+

2

α

t′

∆t

]
Xp1,m

∆t
+

[
1

α(1− α)
− 2

α(1− α)

t′

∆t

]
Xp2,m

∆t

+

[
− α

1− α
+

2

1− α
t′

∆t

]
Xp3,m

∆t
(2.10)

and

¨̂
Xp(t

′) =
2

α

Xp1,m

∆t2
− 2

α(1− α)

Xp2,m

∆t2
+

2

1− α
Xp3,m

∆t2
(2.11)

Equation (2.3) and (2.9) actually lead to method of analyzing particle position RMS

error σx, which is defined as

σ2
Xp

(t′) , 〈
∣∣∣X̂p(t

′)−Xp(t
′)
∣∣∣2〉. (2.12)
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Similarly, we can also calculate the velocity RMS error, σv, and the acceleration RMS

error, σa, using (2.10) and (2.11):

σ2
v(t
′) , 〈

∣∣∣ ˙̂
Xp(t

′)− Ẋp(t
′)
∣∣∣2〉, (2.13)

σ2
a(t
′) , 〈

∣∣∣ ¨̂Xp(t
′)− Ẍp(t

′)
∣∣∣2〉. (2.14)

For generality, we normalize the position RMS error by the local radius of curvature,

R; normalize the velocity RMS error by the full scale velocity, R(ϑ̇0+ϑ̈0∆t); normalize

the acceleration RMS error by the full scale acceleration, R
√
ϑ̇4
0 + ϑ̈2

0, and denote the

normalized RMS errors by bars on top, i.e.

σ̄Xp =
σXp

R
(2.15)

σ̄v =
σv

R(ϑ̇0 + ϑ̈0∆t)
(2.16)

σ̄a =
σa

R
√
ϑ̇4
0 + ϑ̈2

0

(2.17)

Using (2.4), (2.7), (2.8), (2.9) for X̂p(t
′), and (2.3), (2.7) for Xp(t

′), and assuming

the locating noise for different particles are zero-mean and statistically independent,

i.e.

〈δXpi〉 = 0, 〈δXpi · δXpj〉 = 〈|δXp|2〉δij, (2.18)
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the nomarlized position RMS error (2.15) is given as the following:

σ̄2
Xp

=

([
1

α(1− α)

t′

∆t
− 1

α(1− α)

t′2

∆t2

] [
1− cos(ϑ̇0α∆t+

1

2
ϑ̈0α

2∆t2)

]
−
[

α

1− α
t′

∆t
− 1

1− α
t′2

∆t2

] [
1− cos(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−
[
1− cos(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)

])2

+

([
1

α(1− α)

t′

∆t
− 1

α(1− α)

t′2

∆t2

]
sin(ϑ̇0α∆t+

1

2
ϑ̈0α

2∆t2)

−
[

α

1− α
t′

∆t
− 1

1− α
t′2

∆t2

]
sin(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)− sin(ϑ̇0t
′ +

1

2
ϑ̈0t
′2)

)2

+

([
1− 1 + α

α

t′

∆t
+

1

α

t′2

∆t2

]2
+

[
1

α(1− α)

t′

∆t
− 1

α(1− α)

t′2

∆t2

]2
+

[
− α

1− α
t′

∆t
+

1

1− α
t′2

∆t2

]2) 〈|δXp|2〉
R2

. (2.19)

Likewise, the formulae for the normalized velocity RMS error and acceleration RMS

error are given as the following:

σ̄2
v =

([
1

α(1− α)

1

ϑ̇0∆t
− 2

α(1− α)

t′

∆t

1

ϑ̇0∆t

] [
1− cos(ϑ̇0α∆t+

1

2
ϑ̈0α

2∆t2)

]
−
[

α

1− α
1

ϑ̇0∆t
− 2

1− α
t′

∆t

1

ϑ̇0∆t

] [
1− cos(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−

[
sin(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(1 +

ϑ̈0t
′

ϑ̇0

)

])2
1

(1 + ϑ̈0∆t/ϑ̇0)2

+

([
1

α(1− α)

1

ϑ̇0∆t
− 2

α(1− α)

t′

∆t

1

ϑ̇0∆t

]
sin(ϑ̇0α∆t+

1

2
ϑ̈0α

2∆t2)

−
[

α

1− α
1

ϑ̇0∆t
− 2

1− α
t′

∆t

1

ϑ̇0∆t

]
sin(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

−

[
cos(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(1 +

ϑ̈0t
′

ϑ̇0

)

])2
1

(1 + ϑ̈0∆t/ϑ̇0)2

+

([
−1 + α

α

1

ϑ̇0∆t
+

2

α

t′

∆t

1

ϑ̇0∆t

]2
+

[
1

α(1− α)

1

ϑ̇0∆t
− 2

α(1− α)

t′

∆t

1

ϑ̇0∆t

]2
+

[
− α

1− α
1

ϑ̇0∆t
+

2

1− α
t′

∆t

1

ϑ̇0∆t

]2)
1

(1 + ϑ̈0∆t/ϑ̇0)2
〈|δXp|2〉
R2

, (2.20)
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σ̄2
a =

1

1 + ϑ̇4
0/ϑ̈

2
0

([
− 2

α(1− α)

1

ϑ̈0∆t
2

] [
1− cos(ϑ̇0α∆t+

1

2
ϑ̈0α

2∆t2)

]
−
[
− 2

1− α
1

ϑ̈0∆t
2

] [
1− cos(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−

[
cos(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(

ϑ̇2
0

ϑ̈0

+ ϑ̈0t
′2 + 2ϑ̇0t

′) + sin(ϑ̇0t
′ +

1

2
ϑ̈0t
′2)

])2

+
1

1 + ϑ̇4
0/ϑ̈

2
0

([
− 2

α(1− α)

1

ϑ̈0∆t
2

]
sin(ϑ̇0α∆t+

1

2
ϑ̈0α

2∆t2)

−
[
− 2

1− α
1

ϑ̇0∆t
2

]
sin(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

−

[
−sin(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(

ϑ̇2
0

ϑ̈0

+ ϑ̈0t
′2 + 2ϑ̇0t

′) + cos(ϑ̇0t
′ +

1

2
ϑ̈0t
′2)

])2

+
1

1 + ϑ̇4
0/ϑ̈

2
0

([
2

α

1

ϑ̈0∆t
2

]2
+

[
− 2

α(1− α)

1

ϑ̈0∆t
2

]2
+

[
2

1− α
1

ϑ̈0∆t
2

]2) 〈|δXp|2〉
R2

(2.21)

In Equation (2.19) to (2.21), the first two square terms are respect interpolation errors

for i and j component. The third term represents the error due to inaccurate particle

center location, i.e. δXpi.

As discussed above, PIV measurements assign Lagrangian quantities, such as par-

ticle velocities and accelerations, to Eulerian positions in the fluid. The accuracy of

the Euleraian position determination affects the total performance of the PIV system.

In present analysis, we define two cost funtions for velocity and acceleration measur-

ment, respectively, to account for the position error simultaneously. The velocity cost

function, Kv, is defined as

Kv ,
√
ησ̄2

Xp
+ (1− η)σ̄2

v , (2.22)

where η is a wighting factor taken to be 0.5. Similarly, the acceleration cost function

is defined as

Ka ,
√
ησ̄2

Xp
+ (1− η)σ̄2

a. (2.23)
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It is noted that the RMS errors are functions of t′, and in the meanwhile depend on

parameters including ϑ̇0, ϑ̈0, and 〈|δXp|2〉. The purpose of current analysis is to find

the optimized t′ that minimizing the cost functions for wide ranges of different param-

eters. Three dimensionless parameters are considered, which are normalized particle

displacement, Rϑ̇0∆t/R = ϑ̇0∆t, acceleration factor, 1
2
ϑ̈0∆t

2/ϑ̇0∆t = ϑ̈0∆t/2ϑ̇0, and

normalized particle locating noise,
√
〈|δXp|2〉

/
R . To set a reasonable range for

the noise level, here we need consider some numbers encountered in common PIV

practice. The RMS locating noise
√
〈|δXp|2〉 is proportional to the particle diameter

(Adrian and Westerweel, 2011). Typically, the particle diameter is optimized to be

2-3 pixels, and the noise is 5%-20% of the diameter. This means that the locating

noise is typically around 0.1-0.6 pixels. On the other hand, the fluid motion could

have quite diverse radii of curvature — from 20-30 pixels near the center of a vortex

to hundreds or thousands pixels of laminar Stokes flows. This implies that the noise

level
√
〈|δXp|2〉

/
R can vary over many orders of magnitude and it is dominated

by R. Furthermore, if we consider the particle displacement only within the optimal

range adopted in most PIV measurements, the normalized displacement range, ap-

proximated as the ratio of the displacement to the radius of curvature, is associated

with the noise level. In this chapter, the cost function is evaluated with different

noise levels by setting the normalized displacement range accordingly. Table 2.1 lists

various R and the corresponding noise levels, assuming 0.3 pixels as a representa-

tive locating error. The last column lists the corresponding normalized displacement

ranges, assuming the particle displacement is 10-30 pixels. These ranges are consid-

ered as the optimal in triple-pulse PTV/PIV measurements. Table 2.2 summarizes

the parameter space of the triple-pulse PTV simulation.
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√
〈|δXp|2〉 R

√
〈|δXp|2〉

/
R ϑ̇0∆t

(pix) (pix)

0.3

30 1.0% 0.33-1.0

40 0.75% 0.25-0.75

60 0.5% 0.17-0.5

200 0.15% 0.05-0.15

400 0.075% 0.025-0.075

1000 0.03% 0.01-0.03

Table 2.1: List of noise levels and corresponding normalized displacements with
wide range of the radius of curvature. Assume particle displacement is 10-30 pixels.

dτ 22.5 µm

α 0.5

t′/∆t [0, 1]

ϑ̈0∆t/2ϑ̇0 -0.3, -0.1, 0, 0.2, 0.4√
〈|δXp|2〉

/
R 0.03%, 0.075%, 0.15%, 0.5%, 0.75%, 1.0%

ϑ̇0∆t Corresponds to the noise level, see Table 2.1

Table 2.2: Parameter space for triple-pulse PTV simulation with particle
displacement range constraint

2.1.2 Simulation results of velocity measurement

The simulation is carried out using parameters specified in Table 2.2. For each

combination of ϑ̈0∆t/2ϑ̇0 and
√
〈|δXp|2〉

/
R , the 2-D contour plot of Kv and Ka are

generated over t′/∆t ∈ [0, 1] and the corresponding range of ϑ̇0∆t. In other words,

the cost function Kv and Ka are investigated over a 4-D space spanned by t′/∆t,

ϑ̇0∆t, ϑ̈0∆t/2ϑ̇0, and
√
〈|δXp|2〉

/
R , to find the optimized t′ that minimizes Kv and

Ka, respectively.
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(a) position RMS error (b) velocity RMS error

(c) acceleration RMS error

Figure 2.1: Triple-pulse normalized RMS error in (a) position, (b) velocity, and (c)
acceleration with acceleration factor 0.2 and noise level 0.15%.

Figure 2.1 shows the normalized RMS errors in position, velocity and acceleration,

defined in Equation (2.15) to (2.17), respectively. By comparing the contour values,

it is found that the velocity error is about one order of magnitude greater than the

position error, while the acceleration error is greater than velocity error by another

order of magnitude. This implies that the velocity cost function is dominated by the

velocity error, and the acceleration cost function is dominated by the acceleration

error. It is also found the t′/∆t that minimizes the error is different for position,

velocity and acceleration, which means we have to achieve the optimization for veloc-
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ity and acceleration by sacrificing the position accuracy. However, since the position

error is substantially small, the strategy of evaluating the cost function will still give

reasonable optimizations.

The contour plots of velocity cost function Kv is shown in Figure 2.2 and 2.3. To

present 4-D data on 2-D plane, the 2-D contour plots are organized into a plot array,

in which the noise level varies along the horizontal direction and the acceleration fac-

tor varies vertically. As a general observation, the topology of the plots preserves for

almost all different acceleration factors and noise levels. For most cases, the cost func-

tion approaches the minimum at t′/∆t=0.5 for wide range of normalized displacement

ϑ̇0∆t. However, the contour plots of several cases appear quite different from others,

which are associated with strong acceleration and high noise level. For example, the

one with acceleration factor 0.4 and noise level 1.0% has the minimum at around

t′/∆t=0.21 and 0.78 for ϑ̇0∆t >0.4. Similar topology shows when the acceleration

factor is 0.4 and the noise level is 0.5% and 0.75%, and when the acceleration factor

is 0.2 and the noise level is 0.75% and 1.0%, and when the acceleration factor is -0.3

and the noise level is 1.0%. These exceptions combined with other cases lead to the

conclusion that, for flow exhibiting strong acceleration and close to the center of a

vortex, t′/∆t=0.21 and 0.78 will give more accurate velocity measurement, while for

other regions one should generally use t′/∆t=0.5. From the plot array, a good estima-

tion of the exceptional range might be
√
〈|δXp|2〉

/
R >0.75 and

∣∣∣ϑ̈0∆t/2ϑ̇0

∣∣∣ >0.3.

Note that the radius of curvature and the acceleration factor can be estimated using

the three measured particle positions. They are given as the following:

R ≈ |Xp3,m −Xp1,m|
2sinϕ

(2.24)

where the ϕ is the angle between vector (Xp3,m −Xp2,m) and (Xp1,m −Xp2,m), and

ϑ̈0∆t/2ϑ̇0 ≈
αϕ23 − (1− α)ϕ12

−α2ϕ23 + (1− α2)ϕ12

, (2.25)
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where ϕ23 = 2sin−1(|Xp3,m −Xp2,m| /2R) is the central angle spanned by Xp3,m and

Xp2,m, and likewise for ϕ12. Details of the derivation are provided in APPENDIX B.
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Figure 2.2: Triple-pulse velocity cost function with 0.03%, 0.075%, 0.15% noise
level, with particle displacement range constraint
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Figure 2.3: Triple-pulse velocity cost function with 0.5%, 0.75%, 1.0% noise level,
with particle displacement range constraint
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Figure 2.4: Triple-pulse velocity cost function plotted against acceleration factor
and noise level, with t′/∆t=0.5 and ϑ̇0∆t=0.4

Furthermore, in Figure 2.4, the velocity cost function is plotted against noise

level (0.5%-1.0% horizontal axis) and acceleration factor (-0.4-0.4 vertical axis) with

t′/∆t=0.5 and ϑ̇0∆t=0.4. It shows that the error percentage with respect to the full

scale velocity increases as the noise level increases and the acceleration factor mag-

nitude increases. This implies that the triple-pulse velocity estimator that estimates

the velocity in a linear way performs worse when strong velocity variation presents.

It is also noticed that the error percentage change due to the increasing noise level

becomes less rapid as the acceleration factor increases. In other words, the increase of

noise level has less impact on the relative error percentage when the particle exhibits

strong acceleration or deceleration.
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2.1.3 Simulation results for acceleration measurement

Similarly, the acceleration cost function defined in Equation (2.23) is calculated

and plotted in Figure 2.5 and 2.6. As shown clearly, t′/∆t=0.5 globally yields the

optimized acceleration measurement.
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Figure 2.5: Triple-pulse acceleration cost function with 0.03%, 0.075%, 0.15%
noise level, with particle displacement range constraint
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Figure 2.6: Triple-pulse acceleration cost function with 0.5%, 0.75%, 1.0% noise
level, with particle displacement range constraint
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Figure 2.7: Triple-pulse acceleration cost function plotted against acceleration
factor and noise level, with t′/∆t=0.5 and ϑ̇0∆t=0.4

The acceleration cost function is also compared in terms of varying acceleration

factor and noise level. Figure 2.7 shows the dependencies in the similar way as

in Figure 2.4. The error percentage increases with the noise level increases. On

the other hand, the error percentage becomes smaller for higher acceleration factor

magnitude. That is to say, better acceleration measurement can be achieved when

the flow accelerates more strongly. What is found to be different from velocity cost

function is that the impact of the noise level on the error percentage becomes less

significant as the acceleration factor magnitude grows, while this dependency is with

respect to the acceleration factor for velocity cost function.
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2.2 Optimization of quadruple-pulse PTV

2.2.1 Simulation method

Following the nomenclature defined in section 2.1.1, in quadruple pulse analysis

we use β and γ to indicate the location of the 2nd and the 3rd pulse, i.e.

t′1 = 0, t′2 = β∆t, t′3 = γ∆t, t′4 = ∆t. (2.26)

The particle locations in quadruple-pulse analysis are

X ′
p1 = Xp1 −Xp1 = 0, (2.27a)

X ′
p2 = Xp2 −Xp1 = [R−Rcosϑ(β∆t)]i + [Rsinϑ(β∆t)]j, (2.27b)

X ′
p3 = Xp3 −Xp1 = [R−Rcosϑ(γ∆t)]i + [Rsinϑ(γ∆t)]j, (2.27c)

X ′
p4 = Xp4 −Xp1 = [R−Rcosϑ(∆t)]i + [Rsinϑ(∆t)]j. (2.27d)

We still use Xpi,m defined in Equation (2.8) to denote measured particle locations,

the particle trajectory estimation is given by

X̂p(t
′) = (1 + a1 · t̄′)Xp1,m + (a2 · t̄′)Xp2,m + (a3 · t̄′)Xp3,m + (a4 · t̄′)Xp4,m, (2.28)

in which vector ai, i = 1, 2, 3, 4 are defined as

a1 =
1

βγ
(−βγ − β − γ, 1 + β + γ,−1) , (2.29a)

a2 =
1

β(1− β)(γ − β)
(γ,−γ − 1, 1) , (2.29b)

a3 =
1

γ(1− γ)(γ − β)
(−β, β + 1,−1) , (2.29c)

a4 =
1

(1− β)(1− γ)
(βγ,−β − γ, 1) , (2.29d)

and time vector t̄
′

is defined as

t̄
′
=

(
t′

∆t
,
t′2

∆t2
,
t′3

∆t3

)
. (2.30)
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Subsequently, the velocity estimation is

˙̂
Xp(t

′) = (a1 · ˙̄t′)Xp1,m + (a2 · ˙̄t′)Xp2,m + (a3 · ˙̄t′)Xp3,m + (a4 · ˙̄t′)Xp4,m, (2.31)

with

˙̄t′ =
1

∆t

(
1,

2t′

∆t
,

3t′2

∆t2

)
. (2.32)

The acceleration estimation is

¨̂
Xp(t

′) = (a1 · ¨̄t′)Xp1,m + (a2 · ¨̄t′)Xp2,m + (a3 · ¨̄t′)Xp3,m + (a4 · ¨̄t′)Xp4,m, (2.33)

with

¨̄t′ =
1

∆t2

(
0, 2,

6t′

∆t

)
. (2.34)

The RMS errors in position, velocity, and acceleration are normalized in the same way

as shown in Equation (2.15), (2.16), and (2.17). Thus we can calculate the normalized

RMS errors of quadruple-pulse PTV:

σ̄2
Xp

=

(
a2 · t̄′

[
1− cos(ϑ̇0β∆t+

1

2
ϑ̈0β

2∆t2)

]
+ a3 · t̄′

[
1− cos(ϑ̇0γ∆t+

1

2
ϑ̈0γ

2∆t2)

]
+a4 · t̄′

[
1− cos(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−
[
1− cos(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)

])2

+

(
a2 · t̄′

[
sin(ϑ̇0β∆t+

1

2
ϑ̈0β

2∆t2)

]
+ a3 · t̄′

[
sin(ϑ̇0γ∆t+

1

2
ϑ̈0γ

2∆t2)

]
+a4 · t̄′

[
sin(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
− sin(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)

)2

+
([

1 + a1 · t̄′
]2

+
[
a2 · t̄′

]2
+
[
a3 · t̄′

]2
+
[
a4 · t̄′

]2) 〈|δXp|2〉
R2

. (2.35)
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σ̄2
v =

1

(1 + ϑ̈0∆t/ϑ̇0)2

(
a2 ·

˙̄t′

ϑ̇0

[
1− cos(ϑ̇0β∆t+

1

2
ϑ̈0β

2∆t2)

]
+a3 ·

˙̄t′

ϑ̇0

[
1− cos(ϑ̇0γ∆t+

1

2
ϑ̈0γ

2∆t2)

]
+a4 ·

˙̄t′

ϑ̇0

[
1− cos(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−

[
sin(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(1 +

ϑ̈0t
′

ϑ̇0

)

])2

+
1

(1 + ϑ̈0∆t/ϑ̇0)2

(
a2 ·

˙̄t′

ϑ̇0

[
sin(ϑ̇0β∆t+

1

2
ϑ̈0β

2∆t2)

]
+a3 ·

˙̄t′

ϑ̇0

[
sin(ϑ̇0γ∆t+

1

2
ϑ̈0γ

2∆t2)

]
+a4 ·

˙̄t′

ϑ̇0

[
sin(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−

[
cos(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(1 +

ϑ̈0t
′

ϑ̇0

)

])2

+
1

(1 + ϑ̈0∆t/ϑ̇0)2

[a1 ·
˙̄t′

ϑ̇0

]2
+

[
a2 ·

˙̄t′

ϑ̇0

]2

+

[
a3 ·

˙̄t′

ϑ̇0

]2
+

[
a4 ·

˙̄t′

ϑ̇0

]2 〈|δXp|2〉
R2

. (2.36)
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σ̄2
a =

1

1 + ϑ̇4
0/ϑ̈

2
0

(
a2 ·

¨̄t′

ϑ̈0

[
1− cos(ϑ̇0β∆t+

1

2
ϑ̈0β

2∆t2)

]
+a3 ·

¨̄t′

ϑ̈0

[
1− cos(ϑ̇0γ∆t+

1

2
ϑ̈0γ

2∆t2)

]
+a4 ·

¨̄t′

ϑ̈0

[
1− cos(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−

[
cos(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(

ϑ̇2
0

ϑ̈0

+ ϑ̈0t
′2 + 2ϑ̇0t

′) + sin(ϑ̇0t
′ +

1

2
ϑ̈0t
′2)

])2

+
1

1 + ϑ̇4
0/ϑ̈

2
0

(
a2 ·

¨̄t′

ϑ̈0

[
sin(ϑ̇0β∆t+

1

2
ϑ̈0β

2∆t2)

]
+a3 ·

¨̄t′

ϑ̈0

[
sin(ϑ̇0γ∆t+

1

2
ϑ̈0γ

2∆t2)

]
+a4 ·

¨̄t′

ϑ̈0

[
sin(ϑ̇0∆t+

1

2
ϑ̈0∆t

2)

]
−

[
−sin(ϑ̇0t

′ +
1

2
ϑ̈0t
′2)(

ϑ̇2
0

ϑ̈0

+ ϑ̈0t
′2 + 2ϑ̇0t

′) + cos(ϑ̇0t
′ +

1

2
ϑ̈0t
′2)

])2

+
1

1 + ϑ̇4
0/ϑ̈

2
0

[a1 ·
¨̄t′

ϑ̈0

]2
+

[
a2 ·

¨̄t′

ϑ̈0

]2

+

[
a3 ·

¨̄t′

ϑ̈0

]2
+

[
a4 ·

¨̄t′

ϑ̈0

]2 〈|δXp|2〉
R2

. (2.37)

Using the same cost functions defined in Equation (2.22) and (2.23), we are aiming

to achieve the optimization of quadruple-pulse PTV measurement. The simulation

is conducted in the same fashion as of triple-pulse PTV simulation, except that the

particle displacement is considered between 20 and 40 pixels since we add another

pulse to resolve the particle motion. Table 2.3 lists a wide range of realistic R values

and the corresponding noise levels and normalized displacement ranges. Table 2.4

illustrates the parameter space used in quadruple-pulse PTV simulation.
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√
〈|δXp|2〉 R

√
〈|δXp|2〉

/
R ϑ̇0∆t

(pix) (pix)

0.3

30 1.0% 0.67-1.33

40 0.75% 0.5-1.0

60 0.5% 0.33-0.67

200 0.15% 0.1-0.2

400 0.075% 0.05-0.1

1000 0.03% 0.02-0.04

Table 2.3: List of noise levels and corresponding normalized displacements with
wide range of radius of curvature. Assume particle displacement is 20-40 pixels.

dτ 22.5µm

β 1/3

γ 2/3

t′/∆t [0, 1]

ϑ̈0∆t/2ϑ̇0 −0.3,−0.1, 0, 0.2, 0.4√
〈|δXp|2〉

/
R 0.03%, 0.075%, 0.15%, 0.5%, 0.75%, 1.0%

ϑ̇0∆t Corresponds to the noise level, see Table 2.3

Table 2.4: Parameter space for quadruple-pulse PTV simulation with particle
displacement range constraint

2.2.2 Simulation results for velocity measurement

Figure 2.8 and 2.9 show the velocity cost function for quadruple-pulse simulation.

The minimum cost globally shows at t′/∆t=0.25 and 0.75.
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Figure 2.8: Quadruple-pulse velocity cost function with 0.03%, 0.075%, 0.15%
noise level, with particle displacement range constraint
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Figure 2.9: Quadruple-pulse velocity cost function with 0.5%, 0.75%, 1.0% noise
level, with particle displacement range constraint
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Figure 2.10: Quadruple-pulse velocity cost function plotted against acceleration
factor and noise level, with t′/∆t=0.75 and ϑ̇0∆t=0.6

Figure 2.10 shows the velocity cost function with respect to the noise level and

the acceleration factor. Similarly with triple-pulse simulation, the error percentage

increases with the increasing noise level. Interestingly, the error percentage is larger

when there is less acceleration or more deceleration. In other words, when the full

scale velocity R(ϑ̇0 + ϑ̈0∆t) is smaller, we get higher velocity error percentage. In

comparison with Figure 2.4 of triple-pulse simulation, in which the error percentage

increases with the acceleration factor magnitude increases, we could draw the fol-

lowing interpretation. That is, in triple-pulse case, the difference between a linear

velocity estimation and a curved velocity profile dominates the velocity error percent-

age, whereas in quadruple-pule case, a quadratic velocity estimation works better and

the velocity error percentage is dominated by the magnitude of the full scale velocity.

In addition, we also see that the error percentage change due to noise level becomes

less rapid for higher acceleration factor.
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2.2.3 Simulation results for acceleration measurement

The acceleration cost function is plotted in Figure 2.11 and 2.12. The optimization

is globally observed at t′/∆t=0.5.
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Figure 2.11: Quadruple-pulse acceleration cost function with 0.03%, 0.075%,
0.15% noise level, with particle displacement range constraint
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Figure 2.12: Quadruple-pulse acceleration cost function with 0.5%, 0.75%, 1.0%
noise level, with particle displacement range constraint
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Figure 2.13: Quadruple-pulse acceleration cost function plotted against
acceleration factor and noise level, with t′/∆t=0.5 and ϑ̇0∆t=0.6

3-pulse 4-pulse

velocity
t′/∆t=0.21 or 0.78 for

√
〈|δXp|2〉

/
R >0.75

t′/∆t=0.25 or 0.75

and
∣∣∣ϑ̈0∆t/2ϑ̇0

∣∣∣ >0.3 (approx.); otherwise, t′/∆t=0.5

acceleration t′/∆t=0.5 t′/∆t=0.5

Table 2.5: Summary of the optimization for triple-pulse and quadruple-pulse
velocity and acceleration measurement, with particle displacement range constraint

The acceleration cost function of quadruple-pulse simulation is plotted against the

noise level and the acceleration factor in Figure 2.13. Similar to Figure 2.7, we see the

error percentage increases with the noise level increasing and the acceleration factor

magnitude increasing; the error percentage changes less rapidly with the noise level

for higher acceleration or deceleration, which guide us to achieve better acceleration

measurement by enhancing the full-scale acceleration magnitude.

Table 2.5 summarizes the optimization for triple- and quadruple-pulse velocity
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and acceleration measurement, assuming the particle displacement range is limited

by current PIV systems.
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Chapter 3

TRIPLE- AND QUADRUPLE-PULSE PTV SIMULATION WITHOUT

PARTICLE DISPLACEMENT RANGE CONSTRAINT

In previous chapter, the multi-pulse PTV is investigated with the assumption that the

particle displacement is within the optimal range that is usually used for current PIV

systems. To date, the obstacles that inhibit the significant extension of the maximum

measurable particle displacement include the out-of-plane motion that causes the

loss of particle pairs, as well as the capability of the interrogation algorithms to

capture particle pairs apart by a long distance. While all these constraints are realistic

currently, we would like to move one step forward. That is to evaluate the performance

of multi-pulse PTV by insulating it from the constraint of the particle displacement

range. We assume herein that all particle displacements can be measured properly

regardless of the distance they travel. All simulations in this chapter are conducted

in the same fashion as in Chapter 2, except that the normalized displacement is

considered over a much wider range. In the end, the performances of dual-pulse,

triple-pulse and quadruple-pulse PTV are comprehensively compared based on error

analysis, showing the improvement by multi-pulse PTV technique.

3.1 Optimization of triple-pulse PTV

The simulation of triple-pulse PTV without the constraint on the range of particle

displacement is presented in this section. Table 3.1 shows the parameter space that

the simulation is conducted on. The normalized displacement ϑ̇0∆t is investigated

over a extended range of [0.001,1].
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dτ 22.5 µm

α 0.5

t′/∆t [0, 1]

ϑ̇0∆t [0.001,1]

ϑ̈0∆t/2ϑ̇0 -0.3, -0.1, 0, 0.2, 0.4√
〈|δXp|2〉

/
R 0.03%, 0.075%, 0.15%, 0.5%, 0.75%, 1.0%

Table 3.1: Parameter space for triple-pulse PTV simulation without particle
displacement range constraint

3.1.1 Simulation results of velocity measurement

Figure 3.1 and 3.2 show the velocity cost function of triple-pulse PTV over the

normalized displacement from 0.01 to 1.0. Differently from the previous conclusion,

we see that t′/∆t=0.21 and 0.78 appear as the optimization of the velocity mea-

surement for wide range of ϑ̇0∆t. For several cases with high noise level and mild

acceleration factor, the t′/∆t=0.21 and 0.78 yield the minimum only for high values

of ϑ̇0∆t. For example, the one with zero acceleration factor and 1.0% noise level,

the cost function approaches the minimum at t′/∆t=0.21 and 0.78 for ϑ̇0∆t >0.9.

However, since such exceptions are associated with small radius of curvature, the

corresponding displacement Rϑ̇0∆t is about of the range within which normal PIV

measurements would be done. Thus t′/∆t=0.21 and 0.78 can be generally used to

optimize the velocity measurement by triple-pulse PTV for wide range of normalized

displacement.
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Figure 3.1: Triple-pulse velocity cost function with 0.03%, 0.075%, 0.15% noise
level, without particle displacement range constraint
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Figure 3.2: Triple-pulse velocity cost function with 0.5%, 0.75%, 1.0% noise level,
without particle displacement range constraint
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3.1.2 Simulation results for acceleration measurement

The acceleration cost function over ϑ̇0∆t ∈[0.001,1] is plotted in Figure 3.3 and

3.4. The optimization of the cost function is shown globally at t′/∆t=0.5. This

conclusion is consistent with the previous one for constrained particle displacement

range.
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Figure 3.3: Triple-pulse acceleration cost function with 0.03%, 0.075%, 0.15%
noise level, without particle displacement range constraint
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Figure 3.4: Triple-pulse acceleration cost function with 0.5%, 0.75%, 1.0% noise
level, without particle displacement range constraint
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3.2 Optimization of quadruple-pulse PTV

The performance of quadruple-pulse PTV is assessed over a wide range of nor-

malized displacement in this section. Here the range of ϑ̇0∆t is further released up to

1.35 since we add another pulse to resolve the particle motion. Table 3.2 shows the

parameter space used in this section.

dτ 22.5µm

β 1/3

γ 2/3

t′/∆t [0, 1]

ϑ̇0∆t [0.001,1.35]

ϑ̈0∆t/2ϑ̇0 −0.3,−0.1, 0, 0.2, 0.4√
〈|δXp|2〉

/
R 0.03%, 0.075%, 0.15%, 0.5%, 0.75%, 1.0%

Table 3.2: Parameter space for quadruple-pulse PTV simulation without particle
displacement range constraint

3.2.1 Simulation results for velocity measurement

Figure 3.5 and 3.6 show the velocity cost function of quadruple-pulse PTV sim-

ulation for ϑ̇0∆t ∈[0.001.1.35]. It is observed that for low noise level (approximately

less than 0.1%), which corresponds to small curvature of the particle trajectory, the

minimum is achieved around t′/∆t=0.13 and 0.87, as shown in the two columns with

the noise level of 0.03% and 0.075%. As the noise level increases, the evaluation

moves to the regime of more curved trajectory, and the optimization is achieved at

t′/∆t=0.25 and 0.75.
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Figure 3.5: Quadruple-pulse velocity cost function with 0.03%, 0.075%, 0.15%
noise level, without particle displacement range constraint
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Figure 3.6: Quadruple-pulse velocity cost function with 0.5%, 0.75%, 1.0% noise
level, without particle displacement range constraint

.
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3.2.2 Simulation results for acceleration measurement

Figure 3.7 and 3.8 present the acceleration cost function of quadruple-pulse PTV

without limiting the range of the particle displacement. For the cases with low noise

level, the optimization appears at t′/∆t=0.28 and 0.71. Examples are the columns

with the noise level of 0.03% and 0.075%. If the noise level increases, only those with

strong acceleration/deceleration approach the minimum at t′/∆t=0.28 and 0.71, while

for mild acceleration the optimization shows at t′/∆t=0.5. For example, we see with

noise level 0.15%, those two cases with acceleration factor 0 and -0.1 has the minimum

at t′/∆t=0.5. If the noise level further increases, the minimum generally shows at

t′/∆t=0.5.
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Figure 3.7: Quadruple-pulse acceleration cost function with 0.03%, 0.075%, 0.15%
noise level, without particle displacement range constraint
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Figure 3.8: Quadruple-pulse acceleration cost function with 0.5%, 0.75%, 1.0%
noise level, without particle displacement range constraint
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3-pulse 4-pulse

velocity t′/∆t=0.21 or 0.78
t′/∆t=0.13 or 0.87 for noise level<0.1% (approx.)

t′/∆t=0.25 or 0.75 for noise level>0.1% (approx.)

acceleration t′/∆t=0.5
t′/∆t=0.28 or 0.71 for noise level<0.1% (approx.)

t′/∆t=0.5 for noise level>0.1% (approx.)

Table 3.3: Summary of the optimization for triple-pulse and quadruple-pulse
velocity and acceleration measurement, without particle displacement range

constraint

Table 3.3 summarizes the optimization for triple- and quadruple-pulse velocity and

acceleration measurement, when the constraint of the particle displacement range is

released to a much wider range. The optimization behaves differently from what we

have in Chapter 2.

In the following section, the errors in position, velocity and acceleration are com-

prehensively compared among dual-pulse, triple-pulse and quadruple-pulse PTV. To

provide a complete picture of the multi-pulse PTV performance, the comparison will

also consider the potential we could achieve if the maximum measurable particle

displacement is extended. That depends on the development of more robust interro-

gation algorithms and the improvement of the manufacture technology.
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3.3 Comparison of accuracy

Table 3.4 presents the velocity and position errors for velocity measurements by

quadruple-, triple-, and dual-pulse PTV. The error of quadruple- and triple-pulse

measurement is calculated using the optimization listed in Table 2.5 and Table 3.3.

The value of t′/∆t is adapted accordingly for different cases. The error of the dual-

pulse PTV is calculated using t′/∆t=0.5. It is found that when the curvature of

the trajectory is substantially small and the acceleration is negligible (Case 3), the

performance of multi-pulse method can’t beat conventional dual-pulse PTV. This is

actually the situation that the conventional dual-pulse method is designed for. How-

ever, if some acceleration is added (Case 1), the optimized triple-pulse PTV can

achieve the same accuracy as the dual-pulse PTV, but with much better position

resolution. Similar features are observed from those cases with moderate curvature

and acceleration (Case 4-6). That is, for the situation without large curvature and

acceleration, the triple-pulse PTV works better than dual-pulse in the sense of achiev-

ing better spatial resolution. For large curvature and strong acceleration (Case 8-12),

the triple-pulse enhances the accuracy significantly in both velocity and position than

dual-pulse PTV. It is also found that the performance of the quadruple-pulse PTV

exceeds triple-ulse when the curvature is large and the acceleration is strong (Case

8-12). Comparing Case 9 and 10, as the acceleration increases, we see the quadruple-

pulse PTV is able to achieve less position error while the velocity error is slightly

smaller than that of the triple-pulse. The comparison between Case 11 and 12 indi-

cates that the quadruple-pulse yields better spatial resolution for larger displacement

while the velocity accuracy is slightly better. Lastly, the last two rows show two

extreme cases. Case 13 is in the limit of straight trajectory and zero tangential accel-

eration. In such limit, we see the dual-pulse PTV performs better than multi-pulse
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PTV. This further verifies the result shown in Case 3. Case 14 shows the error com-

parison when there is ideally zero locating error but the trajectory is strongly curved

(large sweeping angle) and with strong tangential acceleration. In this case, we see

the quadruple-pulse can significantly improve the velocity accuracy and achieve fairly

good spatial resolution. Unfortunately, the zero locating error is not achievable in

reality. The comparison in Case 14 also implies that the dominant error in real-

istic multi-pulse PTV measurement comes from the error in locating the center of

the particle, i.e. 〈|δXp|2〉. Additionally, two cases (Case 2 and 7)are presented as

comparisons to show the potential of multi-pulse PTV without the constraint of the

particle displacement range. Case 2 is calculated and compared with Case 1 by re-

leasing the limit on the particle displacement range. Likewise, Case 7 is calculated

and compared to Case 6. From that we see with a large normalized displacement,

the performance of multi-pulse PTV is significantly improved. In addition, in Case 2

the quadruple-pulse PTV can achieve much better spatial resolution than triple-pulse

PTV. The Case 2 and 7 actually imply the great potential of multi-pulse PIV/PTV

when the maximum measurable particle displacement can be extended significantly.

The comparison of acceleration and position errors for acceleration measurements

is illustrated in Table 3.5. Case 1 shows the limit of straight trajectory with strong

tangential acceleration. From that we see quadruple- and triple-pulse PTV can mea-

sure the tangential acceleration within 10% error of the full scale. Case 2 is generated

with slight curvature and mild acceleration. It turns out that the acceleration mea-

surement error is unacceptably high for such circumstance, and one should probably

avoid measuring the acceleration of flow with very small curvature and acceleration.

However, if we remove the constraint on the particle displacement range and extend

that to 1.0 (Case 3), the performance of multi-pulse PTV in measuring acceleration

is quite satisfactory. In addition, the quadruple-pulse is much better than triple-pulse
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Case Noise Disp. Accel. Velocity error (%) Position error (%)√
〈|δXp|2〉

/
R ϑ̇0∆t ϑ̈0∆t/2ϑ̇0 4-PTV 3-PTV 2-PTV 4-PTV 3-PTV 2-PTV

1 0.03% 0.02 0.2 2.94 1.52 1.52 0.032 0.030 0.100

2* 0.03% 0.5 0.2 0.22 0.28 2.48 0.037 0.35 5.09

3 0.05% 0.02 0 6.86 3.54 3.54 0.054 0.050 0.036

4 0.06% 0.04 0.3 2.57 1.35 1.35 0.065 0.060 0.300

5 0.5% 0.35 -0.2 6.53 4.12 4.12 0.54 0.50 2.03

6 0.5% 0.35 -0.3 9.80 6.84 6.84 0.54 0.50 2.74

7* 0.5% 1.0 -0.3 6.43 3.90 13.58 0.50 1.05 9.47

8 0.75% 0.5 0.3 2.59 2.92 3.59 0.81 0.82 6.4

9 1.0% 0.65 0.2 3.03 3.41 3.82 1.08 1.04 8.16

10 1.0% 0.65 0.4 2.46 2.74 5.76 1.09 1.57 11.91

11 1.25% 0.8 0.4 2.64 2.87 7.36 1.36 2.37 16.98

12 1.25% 1.0 0.4 2.62 2.64 9.75 1.38 3.74 25.1

13 1e-12 1e-10 0 2.74 1.41 1.41 1.08e-10 1.00e-10 7.07e-11

14 0 % 0.8 0.4 0.11 1.03 7.26 0.27 2.14 16.96

Table 3.4: Comparison of velocity and position error of velocity measurement
between multi-pulse and dual-pulse PTV. Case 2, 7, 13 of 4-PTV is calculated using
t′/∆t=0.87; other cases of 4-PTV are calculated using t′/∆t=0.75; Case 1, 3-6, 13 of

3-PTV use t′/∆t=0.5; other cases of 3-PTV use t′/∆t=0.78; 2-PTV is calculated
using t′/∆t=0.5. The row with a star indicates the case when the particle

displacement constraint is not considered.

PTV as shown in Case 3. In the case of large curvature and strong tangential ac-

celeration (Case 5 and 8), the error percentage can be reduced to within 15%, and

quadruple-pule PTV works slightly better than triple-pulse PTV. The comparison

between Case 4 and 5 also indicates that the increase in displacement for cases with

strong curvature and acceleration benefits the measurement, and so does the increase

of tangential acceleration magnitude that is shown in Case 7 and 8. Further reduction

of the error percentage is possible if we remove the constraint of the particle displace-

ment range, as shown in Case 6. The last row evaluate the limit of zero locating noise
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Case Noise Disp. Accel. Acceleration (%) Position error (%)√
〈|δXp|2〉

/
R ϑ̇0∆t ϑ̈0∆t/2ϑ̇0 4-PTV 3-PTV 4-PTV 3-PTV

1 1e-12 1e-10 0.6 7.5 8.16 8e-11 1e-10

2 0.03% 0.02 0.1 67.17 73.12 0.024 0.030

3* 0.03% 1.0 0.1 0.94 4.0 0.042 0.030

4 0.5% 0.35 0.3 18.69 20.29 0.4 0.5

5 0.5% 0.5 0.3 12.37 13.19 0.4 0.5

6* 0.5% 1.5 0.3 7.11 19.73 0.63 0.5

7 1.0% 0.7 0.1 17.85 19.37 0.8 1.0

8 1.0% 0.7 -0.4 12.55 13.51 0.8 1.0

9 0 % 0.8 0 0.09 1.33 0.006 0

Table 3.5: Comparison of acceleration and position error of acceleration
measurement between multi-pulse and dual-pulse PTV. t′/∆t=0.5 is used for all

except Case 3 and 8 of 4-PTV are calculated using t′/∆t=0.71. The row with a star
indicates the case when the particle displacement constraint is not considered.

and zero tangential acceleration, i.e. it accounts for only the centrifugal acceleration.

The error percentage is quite satisfactory, and the quadruple-pulse seems better in

handling the centrifugal acceleration. But again the zero locating noise is hardly to

achieve.
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Chapter 4

MULTI-PULSE PIV EXPERIMENT

4.1 Registration error correction

4.1.1 Method description

As discussed previously, the multi-pulse technique is designed to offer better reso-

lution of the particle motion and thus enhance the velocity and acceleration measure-

ment accuracy. In order to satisfy the temporal and spatial scale of various types of

flows, the multi-pulse system must be able to generate laser pulse sequence and record

image sequence with very short time separations. The conventional dual-pulse PIV

camera is manufactured with additional electron storage units so that two consecu-

tive frames can be recorded and transfered with very short time delay. Unfortunately

there hasn’t been such single-CCD camera conceived perfectly for at least three-frame

recording scheme.

In present multi-pulse system, the image recording is realized by a beam-splitting

ultra-high-speed camera (HSFC-Pro) with four individual imaging channels. Each

channel consists of a 1.3 MP CCD and a micro-channel intensifier that serves as a

fast shutter. Light rays go through the lens and are split by optical beam splitters

into each imaging channel. Ideally, all four imaging channels can record identical

images simultaneously despite the electrical noise. However, in the presence of the

misalignment between CCDs, the distortion from different optical beam splitters, and

mounting errors of the beam splitters, the registration error in current system is found

to be comparable to particle image size, i.e. 2-3 pixels. Such error could significantly

pollute the particle displacement measurement when images from different CCDs are
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interrogated. An image registration procedure seems necessary to correct the registra-

tion error before interrogation and thus benefit multi-pulse PTV/PIV measurements.

In the image processing field, one robust and widely-used technique to register

images taken from different circumstances is the so-called control point mapping

technique (Brown, 1992). The idea is to firstly identify some features in the image

pair as control points, followed by fitting a global mapping function to map control

points in the reference image to those in the image to be registered. This technique

features with generality and is able to provide a smooth transform over the entire

image domain. Usually, the control points could be landmarks in satellite images, or

biological tissues in medical images. In PIV measurements, the particles scattered

over the entire image serve perfectly as control points. Wieneke (2005) discussed the

implementation of correcting the error introduced by the misalignment between the

calibration target plane and the laser light sheet in stereoscopic PIV measurements.

In his work, the discrepancy map was obtained using simultaneously recorded particle

images from two cameras.

In present work, the discrepancy map between CCDs is obtained from the ensem-

ble average of the cross-correlation results of simultaneously recorded images. The

mapping function that maps the reference image grid to the corresponding locations

on the other image is a combination of the polynomial mapping model proposed by

Soloff et al. (1997), and the bivariate polynomial model discussed by Brown (1992).

The implementation is described as the following.

1. Cross-correlate simultaneously recorded particle images from different CCDs.

Ensemble-average the correlation results, i.e. the individual discrepancy vector

fields, to obtain a noiseless and reliable discrepancy map e on the reference grid

Xref .
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2. A mapping function F is fitted in the least square sense to map the reference

grid, Xref , on the reference image to the corresponding grid positions, Xref +e,

on the other image, i.e. Xref+e = F (Xref ). The form of the mapping function

is proposed as:

F (X, Y ) =
a1

X2
+

a2

XY
+

a3

Y 2
+

a4

X
+

a5

Y

+a6 + a7X + a8Y + a9X
2 + a10XY + a11Y

2 (4.1)

where ai are coefficient vectors to be determined.

3. Define the pixel grid, Xpix, on the reference image. Calculate the mapped pixel

grid F (Xpix). Re-sample the image to be registered at the mapped pixel grid.

In other words, the image is deformed to eliminate the registration error with

respect to the reference image. In our test, the use of cubic-spline interpolation

for re-sampling images yields good accuracy.

4. Images from different CCDs are re-sampled with respect to a reference CCD

before being analyzed by cross-correlation or particle identification.

4.1.2 Registration error correction test

The method for registration correction is tested with particle images recorded

simultaneously by different CCDs of the HSFC-Pro camera. Here the images of

CCD#3 are considered as the reference as the light rays pass through the least number

of beam splitters to reach CCD#3. In this test, the images of CCD#1 are to be

registered with respect to the reference images. The correlation results of 500 image

pair samples are averaged to calculate the discrepancy map, e, shown in Figure

4.1a. The pattern of the discrepancy vector field indicates the misalignment is sort

of rotation plus some distortions. A 2-D mapping function F (X, Y ), whose form is
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given in Equation (4.1), is fitted in a least-square fashion to represent the discrepancy

between CCD#1 and #3. The fitting residual ε, which is defined as

ε , |F (Xref )−Xref − e| (4.2)

is calculated and plotted in Figure 4.1b. From that plot we see the mapping function

can well represent the discrepancy with the fitting residual less than 0.2 pixels.

A further test on the performance of the registration correction is conducted

by deforming the images of CCD#1 using the mapping function followed by cross-

correlation with the reference images. Again, 500 image pair samples are registered,

correlated and averaged. The outcome is considered as the residual error after the

correction of registration error, which indicates the performance of the proposed map-

ping function model. As we see from the probability density function of the residual

error in Figure 4.2b, the error mostly concentrates in the range of -0.03∼0.03 pixels.

The global mean of the residual error in X is -0.011 pixels and the standard deviation

is 0.021 pixels. The global mean of the residual error in Y is -0.010 pixels and the

standard deviation is 0.018 pixels. Some large values are observed close to the corners

and the borders of the field of view, as shown in Figure 4.2a. This is acceptable since

for more than 95% area in the center we eliminate the registration error with good

accuracy.
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(a) discrepancy map

(b) fitting residual

Figure 4.1: The discrepancy map and the mapping function fitting residual.
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(a) residual error

(b) residual error pdf

Figure 4.2: Residual error after the registration correction.
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4.2 Impinging jet experiment

In this section, the triple-pulse experiment is illustrated and the velocity and

acceleration measurements are presented. Instead of tracking individual particles,

cross-correlation-based PIV technique is implemented to measure the particle group

displacement between neighboring frames. This is a good approximation given the

flow field of the jet doesn’t exhibit strong spatial displacement gradient within the

area of a interrogation spot.

4.2.1 experimental setup

The experiment is conducted to measure a round impinging air jet at Re ≈3000.

The flow along the centerline of the jet has a strong deceleration as it approaches the

stagnation point. This is the flow region that we investigate to test the capability of

triple-pulse technique to measure accelerations.

A schematic of the multi-pulse PIV system is shown in Figure 4.3. To satisfy the

requirement of short time delay, a custom 8-pulse Nd:YAG laser system is utilized to

produce eight independently-triggered 532nm laser pulses. All eight laser beams are

co-linearly combined by beam-combining optics in front of the four dual-cavity laser

heads. The optical beam combining system is designed to achieve identical optical

path lengths and over 90% overlap of all laser beams. Two 8-channel BNC565 Pulse

Generators are used to trigger flash lamps and Q-switches respectively, so that we have

good flexibility and accuracy in the timing control. Particle images are recorded by

HSFC-Pro, which consists of four individual imaging channels and four 1.3MP CCD

chips. The image is split by the integrated beam splitter system that ensures equal

optical path lengths for each channel. This imaging architecture makes it possible to

straddle different frames on different CCDs with acceptable registration errors. The
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Figure 4.3: Schematic of the multiple-pulse PIV system. OBS:optical beam
splitter; BCO: beam combining optics; LH: laser head.

refined registration correction is realized by the method described above. Another

BNC565 Pulse Generator combined with a SRS DG535 unit is used to synchronize

the laser pulses and the exposures of the camera.

The impinging air jet is measured using triple-pulse PIV. The centerline of the

jet is normal to the impinging plate within experimental tolerance. A schematic of

the test section is shown in Figure 4.4. The laser sheet is aligned with the axis of

symmetry of the jet. The diameter D of the exit nozzle is 21.59mm. The nozzle

is mounted with about H = 4D above the impinging plate. An area of 960 by 672

pixels is cropped out of the original image, which corresponds to 3.00D(w)×2.10D(h)

region of interest in the physical space right above the impinging plate. DEHS (Di-

Ethyl-Hexyl-Sebacat) aerosol generated by Laskin nozzle is used as tracer particles.

The lateral magnification is about 0.10 and the effective f-number is about 20. The
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Figure 4.4: Schematic of the impinging jet test section

time separation ∆t between pulses 1 and 3 is 80 µs.

The particle images are processed by cross-correlation to determine the displace-

ment fields. Multi-grid interrogation scheme is utilized to achieve the final inter-

rogation window size of 48×48 pixels, corresponding to 3.24mm × 3.24mm in the

physical space. Interrogation windows are sampled with 75% overlap of the window

size. Window-offset with fractional pixel numbers is used to reduce the displacement

RMS error (Adrian and Westerweel, 2011). Each interrogation window is weighted by

a window function to eliminate the particle cropping effect near the edges as well as

to increase the effective spatial resolution. The window weight function applied here

is with 1 for the one-quarter area in the center and decays to the edge in a cosine way

(Figure 4.5). A Gaussian low-pass filter with kernel size 5×5 and standard deviation

1.8 is used in the intermediate steps and in the post-smoothing.
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Figure 4.5: Window weight function applied to interrogation spots, with 1 in the
center region and decaying by cosine to the edges.

4.2.2 velocity and acceleration measurements

In previous chapters, the multi-pulse measurement is discussed in terms of mea-

sured particle locations. However, in the experiment the cross-correlation directly

outputs the particle displacement field. In this work, the correlation analysis is per-

formed from frame 2 to 1, and from frame 2 to 3, respectively, to effectively resolve

particle locations at three pulse times. This backward-forward correlation scheme

(see Figure 4.6) has the benefit of attenuating the degradation of the correlation due

to loss-of-pair effect when a relatively long ∆t is used. As a comparison, if the corre-

lation is performed on frame 1 to 2 and frame 1 to 3, the latter one would have higher

percentage of invalid vectors because stronger out-of-plane motion is introduced by

setting a longer ∆t. Additionally, as suggested in Table 2.5, the optimized velocity

and acceleration measurements are achieved at t′/∆t=0.5, and assigned to the corre-

sponding locations, i.e. the locations where the particles appear on frame 2. In other
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Figure 4.6: Schematic of the backward-forward correlation scheme. The
correlation is computed from frame 2 to 1, and frame 2 to 3, respectively.

words, by starting the correlation from the center frame, the optimized measurements

are achieved automatically on a regular grid, while for most other implementations

additional interpolation needs to be performed to interpolate the scattered data onto

a regular grid.

Figure 4.7 illustrates the comparison of the mean velocity fields measured by

triple-pulse PIV and dual-pulse PIV. The triple-pulse measurement in Figure 4.7a

is calculated using the optimization stated in Table 2.5, i.e. t′/∆t=0.5. The dual-

pulse PIV velocity field is calculated using the correlation result of frame 2 and 3.

The spatial coordinates are normalized by the diameter of the exit nozzle, D. The

similarity of the comparison verifies the capability of triple-pulse PIV for velocity

measurement. From the velocity magnitude contour, we see that the mean velocity

field is symmetric with respect to the centerline. The velocity magnitude decays

as it goes further away from the centerline. The flow decelerates along the vertical

direction as it approaches the impinging plate.

To verify the capability of triple-pulse PIV for acceleration measurement, the

ensemble-averaged centerline acceleration profile is calculated and compared. Con-
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sidering the flow is statistically stationary, as the temporal derivative vanishes, the

fluid material derivative, i.e. the fluid parcel Lagrangian acceleration is given by:

Du

Dt
= u · ∇u (4.3)

where u = (ux, uy, uz). Along the jet centerline, the mean flow is unidirectional,

i.e. 〈uxc〉=〈uzc〉=0. Furthermore, because of the symmetry of the mean field, the

derivatives of any quantities at centerline with respect to x and z vanish. Therefore,

the mean centerline acceleration along y-axis is given by

〈Duyc
Dt
〉 =

1

2

∂〈uyc〉2

∂y
+

1

2

∂〈u′yc
2〉

∂y
(4.4)

where the centerline velocity uyc is decomposed into the mean 〈uyc〉 and the fluctuation

u′yc, i.e. uyc = 〈uyc〉 + u′yc. Equation (4.4) implies that the jet mean centerline

acceleration can be calculated from the spatial derivatives of the mean centerline

velocities and its RMS fluctuations. Here we use the dual-pulse PIV measurement

of frame 2 and 3 to compute (4.4) as the ground truth. A 8th polynomial is fit to

represent the quantity 〈uyc〉2 +〈u′yc
2〉 in Equation (4.4). The centerline acceleration is

then obtained by analytically differentiating the fitted polynomial. On the other hand,

the acceleration is also computed by triple-pulse method given in Equation (2.11),

and compared to the ground truth. For convenience, Equation (2.11) is rewritten

in physical space in terms of the displacement from frame 2 to 1, ∆x21, and the

displacement from frame 2 to 3, ∆x23:

¨̂xp = 2
α∆x23 + (1− α)∆x21

α(1− α)∆t2
(4.5)

The centerline acceleration comparison is presented in Figure 4.8. The blue tri-

angles are triple-pulse acceleration measurements and solid black line denotes the

ground truth of the mean centerline acceleration profile. Observed from that, the
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flow maintains zero acceleration for approximately y/D > 1.0. As it approaches the

impinging plate, the acceleration sharply increases to the maximum at approximately

y/D=0.2, and then dramatically decreases within a thin layer above the plate. Note

that the decelerating flow has positive acceleration since the y-axis is pointing up

and the flow is downward. Generally speaking, the triple-pulse measurement shows

good agreement with the ground truth, especially for 0.1 < y/D < 0.8 where the

flow exhibits strong deceleration. For the thin layer above the plate, y/D < 0.1, the

triple-pulse data don’t decrease as rapidly as shown by the ground truth. This is con-

sidered as the consequence of using finite interrogation windows to resolve the flow

within such small scales. In the experiment, the thin layer, y/D < 0.1, corresponds

to a 2.1mm thick layer, whereas the interrogation window size is around 3.2mm and

the data spacing is 0.8mm. It turns out to be a tough case since it tries to resolve

the flow with strong gradient within the length of one single interrogation window.

Usually, micro-PIV works properly to resolve the flow within small scales, such as tur-

bulent boundary layers. Another observation from Figure 4.8 is that the triple-pulse

measurement exhibits bias errors toward negative values for the constant velocity re-

gion, y/D > 0.8. The maximum difference in this region is around 1500m/s2, which

is around 10% of the full-scale acceleration. The 1500m/s2 error corresponds to an

error of 0.018 pixels in the displacement measurement for ∆x23 and ∆x21 in Equation

(4.5). This error is acceptably small in PIV experiments. It is also noted that the

residual registration error, shown in Figure 4.2b, is of the same level as 0.018 pixels.

This indicates that the bias error might be introduced by the residual misalignment

between CCDs.

One of the instantaneous acceleration fields is shown in Figure 4.9. The vector

field is validated by the normalized median test (Westerweel and Scarano, 2005) over

a 5-by-5 neighborhood and with the threshold of 2, and smoothed by a Gaussian low-
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pass filter with 5×5 kernel and standard deviation of 2. Some physical aspects of the

jet can be extracted from the instantaneous acceleration field. Strong deceleration is

observed near the stagnation point, x/D = 0. As the flow approaches the plate, it

separates to both sides, and the acceleration field indicates the centrifugal accelera-

tion associated with the separating flow. Also, the pattern of the acceleration field

shows the entrainment of the ambient air into the jet. It is not surprised that the in-

stantaneous acceleration field is noisy, because the acceleration measurement is quite

sensitive to the error in detecting the particle displacement as discussed above. From

the previous analysis for the acceleration measurement, the potential improvement

could be achieved by setting a longer ∆t and thus extend the particle displacement.

The realization of the potential requires robust technique to search larger regions for

the displaced particles.
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(a) Triple-pulse

(b) Dual-pulse

Figure 4.7: Comparison of mean velocity fields of (a) triple-pulse PIV and (b)
dual-pulse PIV
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Figure 4.8: Comparison of mean centerline acceleration. Black solid line: ground
truth from dual-pulse PIV; Blue triangles: acceleration measurement by triple-pulse

PIV.
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Figure 4.9: Instantaneous acceleration field of the jet measured by triple-pulse PIV
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Chapter 5

SUMMARY

Multi-pulse PIV/PTV is a recently proposed technique aiming at better resolution

of the particle motion. In principle, the dynamic range of current PIV systems can be

extended by adding pulses in between to resolve the curvilinear particle trajectory and

the velocity variation. In addition, multi-pulse techniques offer direct measurement

of the acceleration field, opening the way to calculating fluid forces and correcting for

particle inertial lag.

In this study, the performances of triple- and quadruple-pulse PTV are numer-

ically evaluated in terms of the RMS errors in position, velocity and acceleration,

by assuming the particle travels along a locally circular path. The analysis is con-

ducted in two scenarios. Firstly we consider the particle displacement within the

range that is considered to be optimal for most current PIV systems. We define two

cost functions as the combined error in position and velocity, and the combined error

in position and acceleration, for velocity and acceleration measurements, respectively.

The evaluation of the cost functions accounts for the accuracy of assigning a veloc-

ity or acceleration measurement to an Eulerian position in the fluid. By finding the

t′/∆t that minimizes the cost functions, the optimizations for velocity and accelera-

tion measurements are achieved. Secondly, the scope of the analysis is extended to

explore a wider range of the particle displacement. The extension of the maximum

measurable particle displacement has the potential to increase the accuracy and dy-

namic velocity range of PIV/PTV measurements. The optimizations are achieved

in the same way as in the first scenario. Also, the optimal t′/∆t behaves differently

when we release the constraint on the particle displacement range. The performances
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of quadruple-, triple- and dual-pulse PTV are then comprehensively compared for dif-

ferent flow conditions. It is found that for the case with nearly straight trajectory and

mild tangential acceleration, dual-pulse PTV still offers the best accuracy. As the ac-

celeration, the normalized displacement and the noise level increase, multi-pulse PTV

works substantially better than dual-pulse PTV. Furthermore, the quadruple-pulse

PTV performs better than triple-pulse in the cases with even stronger acceleration

and even larger normalized displacement. It is also found that the error percentage

of both velocity and acceleration can be substantially reduced if the measurement of

much larger particle displacements is achievable. The extent to which displacements

can be increased depends on additional factors such as out-of-plane displacement and

the computational cost of searching larger regions for the displaced particles.

Experimentally, the triple-pulse technique is tested by correlation-based PIV with

backward-forward correlation scheme. The experiment measures the velocity and

acceleration fields of a steady, impinging air jet. A multi-pulse PIV system consisting

of a custom 8-pulse laser system and a high-speed beam-splitting camera is used

because it was available and it offered completely flexibility in timing the pulses.

To correct the registration error between CCDs, an image registration technique is

developed and tested based on fitting the global mapping function. The residual root

mean square error after registration correction is found to be under 0.03 pixels.

Comparison of the mean velocity fields measured by triple-pulse PIV and dual-

pulse PIV, respectively, shows good agreement. The mean acceleration profile along

the jet centerline is calculated in two ways. Firstly, since the flow is statistically

stationary, the mean centerline acceleration can be calculated via the spatial deriva-

tives of mean centerline velocity obtained from dual-pulse PIV measurements. This

is considered as the ground truth for the comparison. Secondly, the centerline ac-

celeration profile is measured by triple-pulse acceleration estimator. The comparison
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between the two methods has good consistency, which verifies the capability of triple-

pulse technique for acceleration measurement. The maximum mean acceleration error

shown in the comparison corresponds to 0.018-pixel error of the displacement mea-

surement, which is within the acceptable range of ordinary PIV measurements. This

amount of error might also be associated with the residual registration error between

CCDs. An instantaneous acceleration field of the jet is presented, which reveals some

physical aspects, such as the deceleration near the plate, the flow separation, and the

entrainment of ambient fluid into the jet.

In conclusion, the introduction of third and fourth pulses to the PIV technique

has been shown to increase accuracy in the measurement of position and velocity, and

to offer a means for direct measurement of instantaneous acceleration fields. Further

work will be needed to refine the technique before its full potential can be realized.
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APPENDIX A

MATLAB SCRIPTS: ERROR CALCULATION OF PARTICLE POSITION,
VELOCITY AND ACCELERATION
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A.1 Triple-pulse calculation

% MS Thesis Script Appendix - Triple-Pulse PTV
%
% t_bar - normalized time [1]
% s - normalized displacement [1]
% q - acceleration factor [1]
% u - center location uncertainty [100%]
% d_tau - particle diameter [mm]
% R - radius of curvature [mm]
% a - alpha [1]
% eta - wighting factor [1]
% sigma_x_bar - normalized postiion rms error [1]
% sigma_v_bar - normalized velocity rms error [1]
% sigma_a_bar - normalized acceleration rms error [1]

clc,clear all,close all

N=1000;
M=1000;
t_bar=linspace(0,1,N)’;
d_tau=22.5e-03;
R=2;
a=1/2;
eta=1/2;
path=’E:\Research\Multi-pulse PIV\PTV Simulation\MS Thesis Figures 3pulse\’;
for q=[-0.3 -0.1 eps 0.2 0.4]

for u=[0.03 0.075 0.15 0.5 0.75 1]*1e-02

s=linspace(10/(0.3/u),30/(0.3/u),1000);

filename=sprintf(’q%+04du%+07d’,round(q*100),round(u*100000));

Ax=zeros(N,M);
Bx=zeros(N,M);
C1x=zeros(N,M);
C2x=zeros(N,M);
C3x=zeros(N,M);
for i=1:M

Ax(:,i)=(1/a/(1-a)*t_bar-1/a/(1-a)*t_bar.^2)...
*(1-cos(a*s(i)+a^2*q*s(i)))...
-(a/(1-a)*t_bar-1/(1-a)*t_bar.^2)*(1-cos(s(i)+q*s(i)))...
-(1-cos(s(i)*t_bar+s(i)*q*t_bar.^2));

Bx(:,i)=(1/a/(1-a)*t_bar-1/a/(1-a)*t_bar.^2)...
*sin(a*s(i)+a^2*q*s(i))...
-(a/(1-a)*t_bar-1/(1-a)*t_bar.^2)*sin(s(i)+q*s(i))...
-sin(s(i)*t_bar+s(i)*q*t_bar.^2);

C1x(:,i)=1-(1+a)/a*t_bar+1/a*t_bar.^2;
C2x(:,i)=1/a/(1-a)*t_bar-1/a/(1-a)*t_bar.^2;
C3x(:,i)=-a/(1-a)*t_bar+1/(1-a)*t_bar.^2;

end
sigma_x_bar=sqrt(Ax.^2+Bx.^2+(C1x.^2+C2x.^2+C3x.^2)*u^2);
figure
pcolor(s,t_bar,sigma_x_bar)
hold on
axis square
axis xy
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shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
%set(hx,’Position’,[0.50 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
%set(hy,’Position’,[-0.06 0.5]);
%set(gca,’XTick’,0.05:0.1:0.95,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(sigma_x_bar,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$\sigma_x/R$’,’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
[C,h]=contour(s,t_bar,sigma_x_bar,linspace(clim1,clim2,10),’k--’);
clabel(C,h);
% print(gcf,[path,’sigma_x_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’sigma_x_’,filename,’.eps’],’-depsc ’,’-r300’);
% print(gcf,[path,’sigma_x_’,filename,’.png’],’-dpng’,’-r300’);

Av=zeros(N,M);
Bv=zeros(N,M);
C1v=zeros(N,M);
C2v=zeros(N,M);
C3v=zeros(N,M);
for i=1:M

Av(:,i)=((1/a/(1-a)/s(i)-2/a/(1-a)*t_bar/s(i))...
*(1-cos(a*s(i)+a^2*q*s(i)))...
-(a/(1-a)/s(i)-2/(1-a)*t_bar/s(i))*(1-cos(s(i)+q*s(i)))...
-(sin(s(i)*t_bar+s(i)*q*t_bar.^2).*(1+2*q*t_bar)))/(1+2*q);

Bv(:,i)=((1/a/(1-a)/s(i)-2/a/(1-a)*t_bar/s(i))...
*sin(a*s(i)+a^2*q*s(i))...
-(a/(1-a)/s(i)-2/(1-a)*t_bar/s(i))*sin(s(i)+q*s(i))...
-cos(s(i)*t_bar+s(i)*q*t_bar.^2).*(1+2*q*t_bar))/(1+2*q);

C1v(:,i)=(-(1+a)/a/s(i)+2/a*t_bar/s(i))/(1+2*q);
C2v(:,i)=(1/a/(1-a)/s(i)-2/a/(1-a)*t_bar/s(i))/(1+2*q);
C3v(:,i)=(-a/(1-a)/s(i)+2/(1-a)*t_bar/s(i))/(1+2*q);

end
sigma_v_bar=sqrt(Av.^2+Bv.^2+(C1v.^2+C2v.^2+C3v.^2)*u^2);
figure
pcolor(s,t_bar,sigma_v_bar)
hold on
axis square
axis xy
shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
%set(hx,’Position’,[0.5 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
%set(hy,’Position’,[-0.06 0.5]);
%set(gca,’XTick’,0.05:0.1:0.95,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(sigma_v_bar,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$\sigma_v/R(\dot{\vartheta_0}+\ddot{\vartheta}_0\Deltat)$’...
,’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
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[C,h]=contour(s,t_bar,sigma_v_bar,linspace(clim1,clim2,10),’k--’);
clabel(C,h);
% print(gcf,[path,’sigma_v_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’sigma_v_’,filename,’.eps’],’-depsc ’,’-r300’);
% print(gcf,[path,’sigma_v_’,filename,’.png’],’-dpng’,’-r300’);

Aa=zeros(N,M);
Ba=zeros(N,M);
C1a=zeros(N,M);
C2a=zeros(N,M);
C3a=zeros(N,M);
for i=1:M

Aa(:,i)=((-2/a/(1-a)/2/q/s(i))*(1-cos(a*s(i)+a^2*q*s(i)))...
-(-2/(1-a)/2/q/s(i))*(1-cos(s(i)+q*s(i)))...
-(cos(s(i)*t_bar+s(i)*q*t_bar.^2).*(s(i)/2/q+2*s(i)*q*t_bar.^2+...
2*s(i)*t_bar)+sin(s(i)*t_bar+s(i)*q*t_bar.^2)))...
/sqrt(1+s(i)^2/4/q^2);

Ba(:,i)=((-2/a/(1-a)/2/q/s(i))*sin(a*s(i)+a^2*q*s(i))...
-(-2/(1-a)/2/q/s(i))*sin(s(i)+q*s(i))...
-(-sin(s(i)*t_bar+s(i)*q*t_bar.^2).*(s(i)/2/q+2*s(i)*q*t_bar.^2+...
2*s(i)*t_bar)+cos(s(i)*t_bar+s(i)*q*t_bar.^2)))...
/sqrt(1+s(i)^2/4/q^2);

C1a(:,i)=2/a/2/q/s(i)/sqrt(1+s(i)^2/4/q^2);
C2a(:,i)=-2/a/(1-a)/2/q/s(i)/sqrt(1+s(i)^2/4/q^2);
C3a(:,i)=2/(1-a)/2/q/s(i)/sqrt(1+s(i)^2/4/q^2);

end
sigma_a_bar=sqrt(Aa.^2+Ba.^2+(C1a.^2+C2a.^2+C3a.^2)*u^2);
figure
pcolor(s,t_bar,sigma_a_bar)
hold on
axis square
axis xy
shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
%set(hx,’Position’,[0.5 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
%set(hy,’Position’,[-0.06 0.5]);
%set(gca,’XTick’,0.05:0.1:0.95,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(sigma_a_bar,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$\sigma_a/(R\sqrt{{\ddot{\vartheta_0}}^2...

+{\dot{\vartheta_0}}^4})$’...
,’interpreter’,’latex’,’Fontsize’,12);

set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
[C,h]=contour(s,t_bar,sigma_a_bar,linspace(clim1,clim2,10),’k--’);
clabel(C,h);
% print(gcf,[path,’sigma_a_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’sigma_a_’,filename,’.eps’],’-depsc ’,’-r300’);
% print(gcf,[path,’sigma_a_’,filename,’.png’],’-dpng’,’-r300’);

Kv=sqrt(eta*sigma_x_bar.^2+(1-eta)*sigma_v_bar.^2);
figure
pcolor(s,t_bar,Kv)
hold on
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axis square
axis xy
shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
%set(hx,’Position’,[0.5 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
%set(hy,’Position’,[-0.06 0.5]);
%set(gca,’XTick’,0.05:0.1:0.95,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(Kv,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$K_v$’,’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
[C,h]=contour(s,t_bar,Kv,linspace(clim1,clim2,10),’k--’);
clabel(C,h);
% print(gcf,[path,’Kv_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’Kv_’,filename,’.eps’],’-depsc’,’-r300’);
print(gcf,[path,’Kv_’,filename,’.png’],’-dpng’,’-r300’);

Ka=sqrt(eta*sigma_x_bar.^2+(1-eta)*sigma_a_bar.^2);
figure
pcolor(s,t_bar,Ka)
hold on
axis square
axis xy
shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
%set(hx,’Position’,[0.5 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
%set(hy,’Position’,[-0.06 0.5]);
%set(gca,’XTick’,0.05:0.1:0.95,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(Ka,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$K_a$’,’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
[C,h]=contour(s,t_bar,Ka,linspace(clim1,clim2,10),’k--’);
clabel(C,h);
% print(gcf,[path,’Ka_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’Ka_’,filename,’.eps’],’-depsc ’,’-r300’);
print(gcf,[path,’Ka_’,filename,’.png’],’-dpng’,’-r300’);
close all

end
end
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A.2 Quadruple-pulse calculation

% MS Thesis Script Appendix - Quadruple-Pulse PTV
%
% t_bar - normalized time [1]
% s - normalized displacement [1]
% q - acceleration factor [1]
% u - center location uncertainty [100%]
% d_tau - particle diameter [mm]
% R - radius of curvature [mm]
% b - beta [1]
% c - gamma [1]
% sigma_x_bar - normalized postiion rms error [1]
% sigma_v_bar - normalized velocity rms error [1]
% sigma_a_bar - normalized acceleration rms error [1]

clc,clear all,close all

N=1000;
M=1000;
t_bar=linspace(0,1,N)’;
d_tau=22.5e-03;
R=2;
b=1/3;
c=2/3;
eta=1/2;
path=’E:\Research\Multi-pulse PIV\PTV Simulation\MS Thesis Figures 4pulse\’;
for q=[-0.3 -0.1 eps 0.2 0.4]

for u=[0.03 0.075 0.15 0.5 0.75 1]*1e-02

s=linspace(20/(0.3/u),40/(0.3/u),1000);

filename=sprintf(’q%+04du%+07d’,round(q*100),round(u*100000));

a1=[-(b*c+b+c);1+b+c;-1]/b/c;
a2=[c;-(c+1);1]/b/(1-b)/(c-b);
a3=[-b;b+1;-1]/c/(1-c)/(c-b);
a4=[b*c;-(b+c);1]/(1-b)/(1-c);

Ax=zeros(N,M);
Bx=zeros(N,M);
C1x=zeros(N,M);
C2x=zeros(N,M);
C3x=zeros(N,M);
C4x=zeros(N,M);
for i=1:M

Ax(:,i)=[t_bar,t_bar.^2,t_bar.^3]*a2*(1-cos(b*s(i)+b^2*q*s(i)))...
+[t_bar,t_bar.^2,t_bar.^3]*a3*(1-cos(c*s(i)+c^2*q*s(i)))...
+[t_bar,t_bar.^2,t_bar.^3]*a4*(1-cos(s(i)+q*s(i)))...
-(1-cos(s(i)*t_bar+s(i)*q*t_bar.^2));

Bx(:,i)=[t_bar,t_bar.^2,t_bar.^3]*a2*sin(b*s(i)+b^2*q*s(i))...
+[t_bar,t_bar.^2,t_bar.^3]*a3*sin(c*s(i)+c^2*q*s(i))...
+[t_bar,t_bar.^2,t_bar.^3]*a4*sin(s(i)+q*s(i))...
-sin(s(i)*t_bar+s(i)*q*t_bar.^2);

C1x(:,i)=1+[t_bar,t_bar.^2,t_bar.^3]*a1;
C2x(:,i)=[t_bar,t_bar.^2,t_bar.^3]*a2;
C3x(:,i)=[t_bar,t_bar.^2,t_bar.^3]*a3;
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C4x(:,i)=[t_bar,t_bar.^2,t_bar.^3]*a4;
end
sigma_x_bar=sqrt(Ax.^2+Bx.^2+(C1x.^2+C2x.^2+C3x.^2+C4x.^2)*u^2);
figure
pcolor(s,t_bar,sigma_x_bar)
hold on
axis square
axis xy
shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
% set(hx,’Position’,[0.6 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
%set(hy,’Position’,[-0.08 0.5]);
% set(gca,’XTick’,0.05:0.1:1.2,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(sigma_x_bar,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$\sigma_x/R$’,’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
% print(gcf,[path,’sigma_x_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’sigma_x_’,filename,’.eps’],’-depsc ’,’-r300’);

Av=zeros(N,M);
Bv=zeros(N,M);
C1v=zeros(N,M);
C2v=zeros(N,M);
C3v=zeros(N,M);
C4v=zeros(N,M);
for i=1:M

Av(:,i)=([ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a2...
*(1-cos(b*s(i)+b^2*q*s(i)))...
+[ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a3...
*(1-cos(c*s(i)+c^2*q*s(i)))...
+[ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a4...
*(1-cos(s(i)+q*s(i)))...
-(sin(s(i)*t_bar+s(i)*q*t_bar.^2).*(1+2*q*t_bar)))/(1+2*q);

Bv(:,i)=([ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a2...
*sin(b*s(i)+b^2*q*s(i))...
+[ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a3...
*sin(c*s(i)+c^2*q*s(i))...
+[ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a4...
*sin(s(i)+q*s(i))...
-cos(s(i)*t_bar+s(i)*q*t_bar.^2).*(1+2*q*t_bar))/(1+2*q);

C1v(:,i)=([ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a1)/(1+2*q);
C2v(:,i)=([ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a2)/(1+2*q);
C3v(:,i)=([ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a3)/(1+2*q);
C4v(:,i)=([ones(N,1)/s(i),2*t_bar/s(i),3*t_bar.^2/s(i)]*a4)/(1+2*q);

end
sigma_v_bar=sqrt(Av.^2+Bv.^2+(C1v.^2+C2v.^2+C3v.^2+C4v.^2)*u^2);
figure
pcolor(s,t_bar,sigma_v_bar)
hold on
axis square
axis xy
shading interp
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hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
% set(hx,’Position’,[0.6 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
% set(hy,’Position’,[-0.08 0.5]);
% set(gca,’XTick’,0.05:0.1:1.2,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(sigma_v_bar,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$\sigma_v/R\dot{\vartheta_0}$’,...
’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
% print(gcf,[path,’sigma_v_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’sigma_v_’,filename,’.eps’],’-depsc ’,’-r300’);

Aa=zeros(N,M);
Ba=zeros(N,M);
C1a=zeros(N,M);
C2a=zeros(N,M);
C3a=zeros(N,M);
C4a=zeros(N,M);
for i=1:M

Aa(:,i)=([zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a2...
*(1-cos(b*s(i)+b^2*q*s(i)))...
+[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a3...
*(1-cos(c*s(i)+c^2*q*s(i)))...
+[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a4...
*(1-cos(s(i)+q*s(i)))...
-(cos(s(i)*t_bar+s(i)*q*t_bar.^2)...
.*(s(i)/2/q+2*s(i)*q*t_bar.^2+2*s(i)*t_bar)...
+sin(s(i)*t_bar+s(i)*q*t_bar.^2)))/sqrt(1+s(i)^2/4/q^2);

Ba(:,i)=([zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a2...
*sin(b*s(i)+b^2*q*s(i))...
+[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a3...
*sin(c*s(i)+c^2*q*s(i))...
+[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a4...
*sin(s(i)+q*s(i))...
-(-sin(s(i)*t_bar+s(i)*q*t_bar.^2)...
.*(s(i)/2/q+2*s(i)*q*t_bar.^2+2*s(i)*t_bar)...
+cos(s(i)*t_bar+s(i)*q*t_bar.^2)))/sqrt(1+s(i)^2/4/q^2);

C1a(:,i)=[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a1...
/sqrt(1+s(i)^2/4/q^2);

C2a(:,i)=[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a2...
/sqrt(1+s(i)^2/4/q^2);

C3a(:,i)=[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a3...
/sqrt(1+s(i)^2/4/q^2);

C4a(:,i)=[zeros(N,1),ones(N,1)/q/s(i),3*t_bar/q/s(i)]*a4...
/sqrt(1+s(i)^2/4/q^2);

end
sigma_a_bar=sqrt(Aa.^2+Ba.^2+(C1a.^2+C2a.^2+C3a.^2+C4a.^2)*u^2);
figure
pcolor(s,t_bar,sigma_a_bar)
hold on
axis square
axis xy
shading interp
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hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
% set(hx,’Position’,[0.6 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
% set(hy,’Position’,[-0.08 0.5]);
% set(gca,’XTick’,0.05:0.1:1.2,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(sigma_a_bar,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$\sigma_a/(R\sqrt{{\ddot{\vartheta_0}}^2...

+{\dot{\vartheta_0}}^4})$’...
,’interpreter’,’latex’,’Fontsize’,12);

set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
% print(gcf,[path,’sigma_a_’,filename,’.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’sigma_a_’,filename,’.eps’],’-depsc ’,’-r300’);

Kv=sqrt(eta*sigma_x_bar.^2+(1-eta)*sigma_v_bar.^2);
figure
pcolor(s,t_bar,Kv)
hold on
axis square
axis xy
shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
% set(hx,’Position’,[0.6 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
% set(hy,’Position’,[-0.08 0.5]);
% set(gca,’XTick’,0.05:0.1:1.2,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
[clim1,clim2]=newclim(Kv,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$K_v$’,’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
[C,h]=contour(s,t_bar,Kv,linspace(clim1,clim2,10),’k--’);
clabel(C,h);
% print(gcf,[path,’Kv_’,filename,’_4p.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’Kv_’,filename,’_4p.eps’],’-depsc’,’-r300’);
% print(gcf,[path,’Kv_’,filename,’_4p.png’],’-dpng’,’-r300’);

Ka=sqrt(eta*sigma_x_bar.^2+(1-eta)*sigma_a_bar.^2);
figure
pcolor(s,t_bar,Ka)
hold on
axis square
axis xy
shading interp
hx=xlabel(’$\dot{\vartheta_0}\Delta t$’,...
’interpreter’,’latex’,’Fontsize’,12);
% set(hx,’Position’,[0.6 -0.06]);
hy=ylabel(’$t^\prime/\Delta t$’,’interpreter’,’latex’,’Fontsize’,12);
% set(hy,’Position’,[-0.08 0.5]);
% set(gca,’XTick’,0.05:0.1:1.2,’YTick’,0:0.1:1);
set(gca,’FontSize’,12);
hc=colorbar;
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[clim1,clim2]=newclim(Ka,0,0.2);
caxis([clim1,clim2])
ht=title(hc,’$K_a$’,’interpreter’,’latex’,’Fontsize’,12);
set(ht,’Position’,[0 clim2+(clim2-clim1)*0.03]);
[C,h]=contour(s,t_bar,Ka,linspace(clim1,clim2,10),’k--’);
clabel(C,h);
% print(gcf,[path,’Ka_’,filename,’_4p.pdf’],’-dpdf’,’-r300’);
% print(gcf,[path,’Ka_’,filename,’_4p.eps’],’-depsc ’,’-r300’);
% print(gcf,[path,’Ka_’,filename,’_4p.png’],’-dpng’,’-r300’);
close all

end
end
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APPENDIX B

ESTIMATION OF LOCAL RADIUS OF CURVATURE AND ACCELERATION
FACTOR USING THREE PARTICLE POSITIONS
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This appendix presents the derivation of Equation (2.24) and (2.25), which esti-

mate the local radius of curvature and the acceleration factor using three measured

particle locations.

B.1 Estimation of local radius of curvature

Figure B.1 illustrates the particle trajectory as a locally circular path, as indicated

by the solid line. The dashed line shows a extended fraction of the local circle. Along

the trajectory, three particle position, Xpi,m, i = 1, 2, 3 are measured. The local

radius of curvature is R. The angle spanned by vector Xp1,m −Xp2,m and vector

Xp3,m −Xp2,m is denoted as ϕ, and given by

ϕ = cos−1
[

(Xp1,m −Xp2,m) · (Xp3,m −Xp2,m)

∆12∆23

]
(B.1)

with ∆12 = |Xp1,m−Xp2,m|, and ∆23 = |Xp3,m−Xp2,m|. Assuming that three particle

locations are approximately on the local circle, with the knowledge of fundamental

geometry, the local radius of curvature can be estimated as

R ≈ |Xp3,m −Xp1,m|
2sinϕ

. (B.2)

B.2 Estimation of acceleration factor

The acceleration factor, ϑ̈0∆t/2ϑ̇0, characterizes the ratio of the particle displace-

ment due to the tangential acceleration, Rϑ̈0, to that due to the initial particle veloc-

ity, Rϑ̇0. Recall that the particle motion is modeled in this work as the equation (2.7).

Thus, with known particle positions, Xpi,m, and known particle angular displacement

from equation (2.7) at t′ = α∆t and ∆t, we can build up the following two equalities,
2sin−1(∆12/2R) = ϑ̇0α∆t+

1

2
ϑ̈0α

2∆t2

2sin−1(∆23/2R) = ϑ̇0(1− α)∆t+
1

2
ϑ̈0(1− α2)∆t2

(B.3)
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Figure B.1: Illustration of a particle trajectory as a locally circular path

The left-hand side of equation (B.3) comes from the formula of calculating the central

angle given the chord length and the radius. For simplicity, we use ϕ12 and ϕ23 to

denote the central angles, i.e.

ϕ12 = 2sin−1(∆12/2R), ϕ23 = 2sin−1(∆23/2R) (B.4)

as shown in Figure B.1. The equation (B.3) can be solved in terms of ϑ̇0∆t and

ϑ̈0∆t
2, and thus one can estimate the acceleration factor. Alternatively, by taking

the ratio of the two equations in (B.3), one can get

α21/α + ϑ̈0∆t/2ϑ̇0

1 + ϑ̈0∆t/2ϑ̇0

=
ϕ12

ϕ12 + ϕ23

. (B.5)

From this, the acceleration factor is estimated as

ϑ̈0∆t/2ϑ̇0 ≈
αϕ23 − (1− α)ϕ12

−α2ϕ23 + (1− α2)ϕ12

, (B.6)
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