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ABSTRACT  
   

In an effort to stress the benefits of the application of renewable energy to the 

next generation of science, technology, engineering, arts, and mathematics (STEAM) 

professionals, instructional modules on energy and biogas were integrated into a summer 

camp curriculum that challenged students to apply STEAM concepts in the design and 

development of chain reaction machines. Each module comprised an interactive 

presentations and a hands-on component where students operated a manipulative relevant 

to the content. During summer 2013, this camp was implemented at two high schools in 

Arizona and one in Trinidad and Tobago. Assessments showed that the overall modules 

were effective in helping students learn and retain the information presented on energy 

and biogas production. To improve future implementations of these modules, specifically 

the module on biogas production, the anaerobic digester was redesigned. In addition, a 

designed experiment was conducted to determine how to optimize the influent and 

operational environment that is available in an average high school classroom to generate 

maximum biogas yield. Eight plug-flow anaerobic digesters made of PVC piping and 

fixtures were used in a 23 factorial design assessing: co-digestion (20mL or 50mL) used 

cooking oil, temperature (25°C or 40°C), and addition of inoculum (0mL or 200mL). 

Biogas production was captured at two intervals over a 30-day period, and the 

experiments were replicated three times. Results showed that temperature at 40°C 

significantly increased biogas production and should be used over 25°C when using 

anaerobic digesters. Other factors that may potentially increase biogas production are 

combination of temperature at 40°C and 50mL of used cooking oil. In the future, the 

improvements made in the design of the anaerobic digester, and the applications of the 
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finding from the experimental design, are expected to lead to an improved manipulative 

for teaching students about biogas production. 
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CHAPTER 1 

INTRODUCTION 

Background 

Energy is a part of life; it is the driving force for the environment, economics, 

technology, and overall human existence [1]. For example: The environment has a natural 

cycle between predator and prey. The prey is an energy source to the predator [2]. From 

cars to agriculture, fossil fuel to water heating, energy drives the economy [3]. 

Technology and the advancement of technology also rely on energy sources [4]. “The 

brain uses more energy than any other human organ [5].” These are just a few facts that 

prove without energy, life could not be possible. Consequently, energy should not just be 

considered a science, technology, engineering, and mathematics (STEM) topic; it is 

foundational, and should be part of our general knowledge.  

Unfortunately, there are many misconceptions about energy and related concepts 

that can lead to poor decision-making concerning the usage of energy and 

misunderstandings of the planetary challenges related to energy [6]. Primary and 

secondary school students are often mislead and learn the following [7]: 

• Energy degradation means decreasing in quantity 

• Energy degradation is the opposite to energy conservation 

• Energy conservation means saving 

• Energy is used up or lost 

• Global warming [is] associated with skin cancer  

• Energy is stored in food and fuel  
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Misconceptions about energy and energy related concepts can lead to challenges 

in understanding other fundamental concepts, particularly in science, and in turn deter 

students from pursuing STEM careers.  

Research Objective and Rationale 

Knowledge about energy (states, forms, sources, and applications) is often 

presented as a part of STEM curriculum. However, given how essential it is to human 

existence, it should be considered general knowledge and taught to all high school 

students. In the this study, the research focus is to deliver accurate concepts on energy 

and energy conservation, and show the value and benefits of renewable energy through 

the development of energy curriculum for high school students, which will include 

instructional materials and manipulatives for hands-on engagement.  

The research objectives are as follows: 

1. Develop instructional material on energy and biogas 

2. Evaluate the effectiveness of the instructional materials in terms of student 

learning 

3. Design and test an anaerobic digester to serve as an instructional manipulative for 

teaching about biogas 

a. Develop and execute a 23 factorial designed experiment to identify which 

combinations of selected factors lead to maximum production of biogas in 

the anaerobic digester 



    
3 

Accomplishing the research objectives required the combination of techniques 

from three major disciplinary areas, i.e., engineering education, environmental 

engineering, and industrial engineering as seen in Figure 1.  Engineering education, 

which is the study of how engineers learn to be practitioner, served as a platform to the 

development of the curriculum using an engineering design pedagogical framework 

and other prominent learning theories and practices. It also guided the evaluation of the 

curriculum’s effectiveness in helping students learn. Environmental engineering, 

which integrates science and engineering principles to improve the natural environment, 

served as a platform for the design and development of a classroom sized anaerobic 

digester which served as an instructional manipulative for helping students 

understand the production and applications of biogas. Industrial engineering, which deals 

with the optimization of complex systems, served as a platform for the designed 

experiment, conducted to identify which combinations of the selected factors lead to 

the maximum production of biogas.  

As indicated, each of the identified disciplines brings a different lens of analysis 

to bear on this research, which may not always be compatible with each other. As a 

result, this research will be presented in two separate articles to adequately address the 

dual dimension of this work. The first article focuses on the design, implementation, and 

evaluation of the curriculum design. The second article focuses on the development of the 

instructional manipulative: the anaerobic digester; and the 23 factorial designed 

experiment used to identify the combination of selected factors that leads to maximum 

biogas production.  
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Figure 1. Multidisciplinary nature of the proposed work
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Articles 

 This thesis comprises the following  two articles:

1. McCall, S. Teaching Energy Concepts using Chain Reaction Machines. Not 

Submitted1 

2. McCall, S. 23 Designed Experiment to Improve Biogas Production in an Instructional 

Manipulative. Not Submitted 

 

 The following references refer to additional work generated from this thesis. Each 

has been accepted or presented in an academic forum: 

1. McCall, S., Dalrymple, O., Taylor, R., & Jordan, S. (2014). Teaching Energy 

Concepts using Chain Reaction Machines. American Society of Engineering 

Education, 1–10. 

2. McCall, S., Dalrymple, O., & Jordan, S. (2014). Curriculum Exchange: Teaching 

Energy Concepts using Chain Reaction Machines. American Society of Engineering 

Education, 1–2. 

3. McCall, S., & Dalrymple, O. (2014, February 11). Optimizing Plug-Flow Anaerobic 

Digesters to K-12 Basic Process of Anaerobic Digestion. Presented at the 2014 

Gatekeeper Regulatory Roundup- Helping Communities through Climate and 

Environmental Challenges, Scottsdale, Arizona. 

                                                
1  This article is a revision of the following published article: McCall, S., Dalrymple, O., Taylor, R., & 
Jordan, S. (2014). Teaching Energy Concepts using Chain Reaction Machines. American Society of 
Engineering Education, 1–10. 
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4. McCall, S., & Dalrymple, O. (2014, February 11). Optimizing Plug-Flow Anaerobic 

Digesters to K-12 Basic Process of Anaerobic Digestion. Presented at the Biodesign 

Institute at Arizona State University, Tempe, Arizona. 

5. McCall, S., & Dalrymple, O. (2014, April 1). Experimental Design to Improve 

Biogas Production from Cow Manure. Presented at the Third Annual Student 

Conference on Renewable Energy Science, Technology and Policy, Arizona. 
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CHAPTER 2 

ARTICLE 1- TEACHING ENERGY CONCEPTS USING CHAIN REACTION 
MACHINES 

Study Overview 

Background literature. 

The Next Generation Science Standards (NGSS), which are based on the 

Framework for K-12 Science Education, establish principles for overcoming negative 

trends in K-12 educational outcomes in the United States [8].  The NGSS put forth “a 

new vision for American education,” focusing on student performance rather than on 

specific curriculum guidelines.  The goal of instruction is to provide students with a 

context for the concepts being taught in order to enhance their understanding of how 

scientific knowledge relates to the world in which they live [9]. The Framework for K-12 

Science Education for middle and high school students (grades 6-12) addresses topics 

such as [10]: 

• Definitions of energy 

• Conservation of energy and energy transfer 

• Energy and matter 

• Natural resources 

• The influence of science, engineering, and technology on society and the natural 

world  

• Defining and delimiting engineering problems and developing possible solutions  
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The NGSS sets student performance outcomes based on these topics.  One of the 

five energy performance outcomes for high school students states that the students should 

be able to “design, build, and refine a device that works within given constraints to 

convert one form of energy into another form of energy” [10]. 

Study objectives. 

1. Design and implement energy and biogas content modules to fit into the STEAM 

Machines™ Curriculum 

2. Evaluate the effectiveness of the instructional materials and manipulatives in 

terms of student learning 

Implementation Environment 

STEAM Machines™. 

The STEAM Machines™ summer camp curriculum introduces students to the 

previously mentioned science and engineering topics through the construction of Rube 

Goldberg-style chain reaction machines.  After being given a simple task to complete 

(e.g. zipping a zipper or hammering a nail), students learn and apply the engineering 

design process as they plan and build their chain reaction machines.  The construction of 

a chain reaction machine is a powerful vehicle for introducing students to technical 

information because of the ability of these machines to capture students’ interest and to 

spark their imagination.  A 2007 survey of 319,223 students in the United States, Canada, 

Australia, and Mexico found that “a large portion of K-12 students who have experienced 

hands-on, tangible activities and group-oriented learning methods in STEM subjects 

found them to be the most interesting” [11]. The STEAM Machines™ summer camp 
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programs utilize such group-oriented and hands-on activities to teach real-world 

engineering skills, provide experience with systems thinking and multi-team 

collaboration, integrate arts with science, technology, engineering, and math (STEM), 

and create a pathway for students to better understand careers in engineering and other 

STEM fields.  

 The STEAM Machines™ program spans 5-days, with approximately 35 contact 

hours. Students spend a significant amount of time learning the engineering design 

process and applying the process to the design and construction of chain reaction 

machines. Engineering design activities are powerful strategies for the integration of 

science, mathematics, and technology, and for engaging a broad population of students 

[11]. Dispersed throughout the week are hour-long modules on various science, 

technology, math and art concepts. Including art concepts in STEM increases interest in 

science and includes students who are more artistically inclined [12]. These modules are 

presented just-in-time for the students to apply them to the design and development of 

their machines. Many STEM programs use the “just in time” approach by using remote 

access technology as a tool to connect with mentors and students at other schools [13]. 

Table 1 shows a breakdown of a typical camp schedule. 

A chain reaction machine consists of a number of action–reaction steps in 

sequence. According to the official Rube Goldberg Machine Contest rulebook, a step is 

defined as, “the transfer of energy from one action to another action.” [14]. 

Understanding energy and how it facilitates work, is essential to the task of designing and 

building chain reaction machines. It is vital that students establish a strong foundational 

understanding of energy concepts and the roles that energy plays in engineered devices. 
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Given the urgency of energy issues in our world today, it is essential for energy to take a 

prominent role in the science curriculum [15].  

Summer 2013 experience.  

For the Summer 2013 implementation of the STEAM Machines™ summer camp 

programs, new content modules on energy and biogas were integrated into the curriculum 

and introduced at three high school sites, i.e.; two in Arizona and one in Trinidad and 

Tobago. Energy and biogas modules were scheduled on the first day of camp. They were 

both presented in the later part of the day, following a mini exercise in creating a chain 

reaction machine. This mini exercise provided a shared experience that could be referred 

to and used to introduce and explain energy and biogas concepts.  

 

Table 1: In the color-coded schedule, most of the sessions, shown in brown, were geared 
towards learning and applying the engineering design process. The sessions in yellow are 
the science, technology, arts and math content modules. These sessions are presented 
just-in-time for students to apply them to the design and development of the machine.  

Like all of the instructional activities in the STEAM Machine™ curriculum, the 

delivery of the energy and biogas content modules incorporated three key pedagogical 
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strategies [16]: 1) building off of prior knowledge; 2) hands-on engagement; and 3) 

collaborative learning. The implementations of these strategies will become more evident 

through the discussion that follows on the design and implementation of both modules. 

High-school participants.  

A total of 65 students from: Red Mountain High School (RM) in Mesa, AZ, 

Highland High School (HHS) in Gilbert, AZ and  Bishop Anstey High School East & 

Trinity College East (BATCE) in Trincity, Trinidad & Tobago, ranging from ages 13 to 

18, participated in the experience. However, only 39 students were evaluated on the 

STEAM Machines ™ curriculum, and newley added energy, and biogas module as 

shown in Table 2. Complete assessment data i.e., pre- and post-tests were not collected 

from the remaining 26 students.  

Table 2. Demographic break-down of group evaluated  

School Female Male Total 
RM 4 7 11 
HHS 5 14 19 
BATCE 5 4 9 
Total  14 25 39 

Methods 

Outcome-based curriculum design method. 

The curriculum was designed using the outcome-based education (OBE) 

curriculum design method. OBE is an approach where the product defines the process. 

The outcomes that specify what students should be able to know, understand, or do upon 

completion of the modules are defined first, and drive decisions about the instructional 

approach, i.e., the learning activities that help students achieve the outcomes, and the 
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assessment criteria i.e., the metrics usd to assess the extent to which students meet 

outcomes. 

Energy curriculum learning objectives. 

The energy module was designed to help students learn about the different states, 

forms and sources of energy. On completion of the energy module students were 

expected to: 

• Identify the different states and forms of energy 

• Describe the Law of Conservation of Energy 

• Describe the difference between renewable and non-renewable 

sources of energy 

• Describe things that can be done on a national and individual level to 

use energy sustainably  

• Design chain reaction machines with constraints related to forms of 

energy 

Biogas curriculum learning objectives. 

The biogas module was designed and developed to teach students about anaerobic 

digestion, anaerobic digestion process, and the by-products produced. Upon completion 

of the module, students were expected to:  

• Describe the process of anaerobic digestion 

• Describe how biogas is created and its applications 

• Create biogas and use the resulting energy to power a step in a chain 

reaction machine 
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Instructional aproach. 

Three learning theories were chosen as an instructional approach: building off of prior 

knowledge, collaborative learning, and use of instructional manipulatives for hands-on 

engagement as shown in Figure 2.   

 

Figure 2. Applied learning theories  

Assessing prior knowledge. 

Throughout the presentation before a new concept was discussed, the presenter 

gathered information from the students on their prior knowledge and understanding. This 

insight was then tied into the discussion and helped facilitate the presentation of new 

material.  To build off prior knowledge the following steps were followed: 

1. Pose initial question 

2. Gather responses 

3. Acknowledge accurate responses and correct any misconceptions 

4. Build on students’ prior experiences 
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An example of building off prior knowledge can be seen in Figure 3. 

 

Figure 3. Students’ prior knowledge was assessed before discussing content modules 
 

Collaborative learning. 

To continue to engage the students and create a collaborative learning atomosphere, 

challenges were placed throughout the presentation to reinforce concepts that were 

previously covered. For example, in Figure 4 teams of students were given a stack of 

Post-It-Notes™ to label the forms of energy in their mini chain reaction machine. Each 

team then presented their completed challenge, followed by oral feedback from other 

students and the instructor. 

 

Figure 4. Students label their constructed manipulative to show the transition to the 
different states and forms of energy 
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Hands-on engagement. 

 On example of hands-on learning occurred when teams of students engaged in a 

laboratory experiment to produce biogas using a class-room sized anaerobic digester. 

Students were responsible for transferring the knowledge gained from the presentation to 

an application by mixing manure with water to create a slurry. Figure 5 shows the 

instructional manipulative, i.e., the anaerobic digester, being set-up. Students followed 

the laboratory and safety procedures, which are included in Appendix A. 

 
Figure 5. Instructional manipulative used as a hands-on teaching instrument 

Evaluation: results from learning assessments 

Learning from the energy and biogas content modules was assessed using a pre- 

and post-assessment. The energy module consisted of questions that tested students’ 

recall and understanding of: different states and forms of energy, Law of Conservation of 

Energy, difference between renewable and non-renewable sources of energy, and things 

that can be done on a national and individual level to use energy sustainably. The biogas 
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module consisted of questions that tested students’ recall and understanding of: anaerobic 

digestion processes and description of how biogas is created and its applications. 

The pre-test was administered prior to the presentation of the content modules. 

Two to three days after the delivery of content modules the post-tests was administered. 

The results from the two assessments (pre and post assessment) were then compared 

using a paired t-test. Figure 6. shows examples of questions from the pre/post assessment 

tools.  

 

 

Figure 6. Pre and post assessment tools 

Results 

Energy content module assessment results 

Of the 39 participating students, 30 completed both pre/post assessments for the 

energy content module. The pre/post assessments were both scored out of 10 points. 
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Based on the paired t-test analysis, students’ knowledge of energy concepts after 

module (7.47± 1.5) was statistically higher than their knowledge of energy concepts 

before module (5.83 ± 2.18), t (29)= -4.001, p<0.05.  

Only eight participating students in Trinidad and Tobago completed both 

assessments for the biogas content module. Pre/post assessments were both scored out of 

100%. Based on paired t-test analysis, students’ knowledge of biogas production after the 

module (0.84 ±0.16) was statistically higher than their knowledge of biogas before the 

module (0.14 ± 0.15) t (7)= -9.975, p<0.05. 

Conclusion 

Our results indicate that through our energy and biogas content modules the 

students were able to better comprehend energy concepts and biogas as an energy source 

along with the engineering design process. The pre-assessment average score was 5.83 

out of 10 points possible. After the deliberation of the energy content module the student 

post-assessments scores increased to 7.47 out of 10 points. The same increase in 

knowledge was seen in the biogas production module (pre-assessment 0.14 out of 100% 

to post-assessment 0.84 out of 100%). The information gained by the students, especially 

for biogas production, was significant and showed that the content modules increased 

students’ knowledge.  

To advance the study and gain more insight to students learning, an assessment 

administered one-year after the program should be done. This one-year later assessment 

would have the same assessment questions as the pre- and post-test administered 
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previously. The results from this one-year later assessment should show whether or not 

the students were able to retain the information and commit to long-term memory.  
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CHAPTER 3 

ARTICLE 2- DESIGNED EXPERIMENT TO IMPROVE BIOGAS PRODUCTION IN 
AN INSTRUCTIONAL MANIPULATIVE 

Study Overview 

Background literature. 

From reports of early human civilization, people have burned logs, straw, wood, 

and animal waste—to create energy [17]. This form of energy is known as biogas and is 

one of the most used and oldest sources of energy. Biogas is the by-product of 

decomposing organic waste under anaerobic conditions and heat. The chemical formula 

is as follows:  𝐶!𝐻!"𝑂!   → 3𝐶𝑂! + 3𝐶𝐻!. The by-product, decomposed organic waste, is 

high in nitrogen and phosphorus and can be used as fertilizer [18].  

There are suggestions that biogas was used for heating bath water in Assyria as 

early as the 10th century B.C. and that anaerobic digestion of solid waste may well been 

applied in ancient China [19]. As modern technology developed and the cost of energy 

became more affordable and easily accessible, many people in developed countries 

deterred from biogas and used fossil fuels as a primary energy source. As a result, 

greenhouse gas emission increased. Contrary to developed countries, most of the 

biomass-based energy is consumed in developing countries for cooking, heating, and 

lighting; accounting for approximately 10% of the world’s total primary energy supply 

[20].  As time has progressed, research and studies have been conducted to show the 

adverse effect of not using bioenergy as a source. Through research, scientist were able to 

discover that cow burps have twice as much methane as conventional reared cattle—and 

methane is 20 times more powerful a greenhouse gas than carbon dioxide [21]. By not 
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using the burp, let alone the manure from the cow, methane is released into the 

atmosphere instead of being used and combusted and broken down into less harmful 

gases. Recently, modern bioenergy production has grown steadily to achieve significant 

greenhouse gas reduction along with other alternative energy solutions [20]. With recent 

increase in bioenergy for heat and power supply, it is important to educate high school 

students about the applications of biogas production in order to further reduce green 

house gas emissions and encourage a more sustainable lifestyle.  

Study Objectives 

1. Design an anaerobic digester to serve as an instructional manipulative in a high 

school classroom setting 

2. Identify factors which can be easily manipulated in a high school environment 

and impact the production of biogas 

3. Identify the combinations of factors that will yield the highest amount of biogas 

Methods 

Design requirements. 

 Constructing the instructional manipulative, i.e., a plug-flow anaerobic digester 

presents many requriements for the design given the setting, student demographics, 

application, and saftety standards in schools. In order to ensure that the digester serves its 

desired educational purposes the instructional manipulative should be equally accessible 

to schools or programs that have large budgets or limited resources. Therefore, it was 

designed with low-cost materials. In addition,  it is likely the lesson will be conducted in 
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a room that may not have laboratory equipment. Therefore, the instructional manipulative 

was designed to be used in or outside of a laboratory environment.  To adhere to students 

who are visual learners, it is important for the anaerobic digester to serve as an 

instructional manipulative which visually shows the process of anaerobic digestion and 

renders biogas. Therefore, transparent components were used to show the processes 

occuring inside the digester. Figure 8 shows the requirments for the instructional 

manipulative. 

 

Figure 8. Design requirements for instructional manipulative (anaerobic digester) 

Design and factors of anaerobic digester. 

To facilitate learning and understanding of the applications of biogas an 

instructional manipulative, i.e., a plug-flow anaerobic digester, was created using 

polyvinyl chloride (PVC) pipe, PVC fittings, brass ball valves, and pressure gauges. 

Low	  cost	  

Portable	  

Low	  	  
maintenance	  

Reliable	  	  

Easy	  assembly	  

Provide	  visibility	  
of	  concepts	  taught	  
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Plug-flow anaerobic digesters are effective in helping high school students learn about 

renewable energy sources because it is low maintenance and it can be implemented in 

any classroom setting [22]. 

1st design. 

 The 1st design of the plug-flow anaerobic digester had a diameter of 0.051m and 

0.61m in length and positioned on a 45° angled rack. The digester had an inlet and outlet 

located six inches from the top of the digester and at the bottom of the digester 

respectively. The digester was able to hold 1.0L of slurry and had a six-inch gas chamber, 

latex balloon attached to flexible tubing, located in the middle of the digester for 

collecting biogas. PVC piping and connectors were held together by PVC cement glue. 

This design was used as an instructional manipulative in Summer 2013 for students in 

Arizona. The 1st design drawing is seen in figure 9. 

Flaws in 1st design.  

 In order to have the gas collected in the middle of the digester, a hole had to be 

drilled. A PVC connector was attached with plastic epoxy adhesive to attach the PVC 

connector and the 2” pipe, but when the digester was moved it weakened the bond 

allowing gas to escape. Another flaw in the design was using a latex balloon fastened 

with a metal clamp onto the flexible tubing to collect the biogas from the digester. The 

metal clamp did not give an airtight seal and the balloon was destroyed in the sun over 

prolonged periods of time. Since there were flaws in the design students were unable to 

experience the production and application of biogas [22]. 
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Figure 9. 1st design of instructional manipulative, plug-flow anaerobic digester (Drawn 
using SolidWorks®) 

2nd design. 

The 2nd design of the plug-flow anaerobic digester had a diameter of 0.051m and 

0.61m in length and was positioned on a vertical rack allowing sludge to face down and 

created a vacuum. The digester had an inlet and outlet located six inches from the top of 

the digester and at the bottom of the digester respectively. The digester was able to hold 

1.0L of slurry and has a six-inch gas chamber for collecting biogas. In the middle of the 

digester was a threaded 2”coupling which allows the two ball valves with flex pipe 

elbows and one pressure gauge to be screwed in with a 1/2”nipple. Both flex pipe elbow 

ball valves are shut-off and are used for collecting biogas into the balloon. PVC piping 

and connectors were held together by PVC cement glue. Teflon tape was added to all 

threaded PVC fixtures and brass ball valves. The 2nd design drawing is seen in figure 10.  
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Flaws in 2nd design. 

 Since the flex pipe elbow, ball valve, and pressure gauge was located in the 

middle of the digester it was prone to clogging and blocked the collection of biogas.  

 

Figure 10: 2nd design of instructional manipulative, plug-flow anaerobic digester (Drawn 
using SolidWorks®) 

 

Final design.  

The final design of the plug-flow anaerobic digester had a diameter of 0.051m and 

0.61m in length, and was positioned on a vertical rack allowing sludge to face down and 

created a vacuum. The digester had an outlet located six inches from the bottom of the 

digester. The inlet was a ball valve located in the middle of the digester screwed into a 2” 

PVC coupling with a ½” nipple. The digester was able to hold 1.0L of slurry and had a 

six-inch gas chamber for collecting biogas. At the top of the digester is a 2” threaded 

coupling which allows the two ball valves with brass barb adapter and one pressure gauge 

screwed in with a ½” nipple. Both ball valves are shut-off with an aluminum gasbag, used 

for collecting biogas, attached to one of the brass barb adapters. PVC piping and 

connectors were held together by PVC cement glue and Teflon tape was added to all 
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threaded PVC fixtures and brass ball valves. The final design drawing and digester is 

seen in figure 11 and 12. 

 Figure 11&12: Final design of instructional manipulative, plug-flow anaerobic digester 
(Drawn using SolidWorks®) 
 

Testing of final design. 

 The main purpose of adding the pressure gauge was to test the seal and verify 

whether or not there were any leaks. 1.0L of water was added to the digesters and 

pressurized at 10psi and monitored for 72-hours to observe any possible leaks. After a 

72-hour period the digesters remained pressurized at 10psi indicating that there are no 

leaks.  
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23 Designed Experiment 

Organic waste and factors for anaerobic digester.  

The organic waste going into the digester to produce biogas needs to be easily 

accessible, can be used in a non-STEM classroom, and easily manipulated. The following 

materials are used as organic waste: manure, used cooking oil, and inoculum. The manure 

was collected from Superstition Farm located in Mesa, Arizona. The farm has 

approximately 1500 cows that are feed hay, cottonseeds, walnut shells, silage, and 

sometimes corn.  

Objective. 

The goal of the experiment is to find which combinations of factors [temperature, 

inoculum, and used cooking oil] will yield the highest amount of biogas. 

Hyptothesis. 

Ho: The mean biogas for all digester is statistically equal under the 8 different conditions 

Ha: The digester with the factors 20mL used cooking oil and 40°C will produce 

statistically higher biogas than other factors 

Factors. 

 To ensure that students gain the full experience of producing biogas, it is 

important to discover factors that lead to the maximum amount of biogas production. The 

following factors were chosen based on previous studies, typical climate conditions, and 

factors that can be easily manipulated: used cooking oil, temperature, and co-digestion of 
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inoculum. Refer to Table 3. Lipids-rich waste such as used cooking oil, is a favorable 

substrate for anaerobic digestion and co-digestion due to the higher methane yield 

obtained when compared to proteins or carbohydrates [23]. 2.5% of the digester volume 

of used cooking oil added into digester and had the greatest methane production and no 

adverse effects were observed from co-digestion [18]. Use of used cooking oil in 

digesters protect water resources and is a profitable way of disposing oil [24]. Optimum 

temperature of mesophilic digester for biogas production is 35°C. In the mesophilic 

range, the activity and growth rate of bacteria decrease by 50% for each 10°C drop [25]. 

The camps have been conducted in the summer in Arizona and Trinidad & Tobago. The 

average summer monthly temperature in the summer of Trinidad & Tobago is 

approximately 25°C. The average summer monthly temperature in Arizona is 40°C. Co-

digested inoculum increased the amount of gas produced since there is an active 

microbial community [26]. To produce inoculum manure was placed into the digester for 

2-weeks prior to running experiments.  

 
Table 3. Factors that yield greatest amount of biogas production assessed at high and low 
settings  
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23 Factorial Design. 

The study was conducted in Dr. Hinsby Cadillo-Quiroz laboratory at Arizona 

State University. Twelve plug-flow anaerobic digesters made of PVC piping and fixtures 

were used in a 23 factorial design with three replications assessing: co-digestion (2% or 

5% used cooking oil), temperature (25°C or 40°C), and addition of inoculum (0mL or 

200mL). Refer to table 4 and figure 13 to see the digester set-up. Biogas production was 

captured at two intervals over a 30-day period. Table 5 shows the designed experiment 

for the digesters.  

Table 4. Digesters factors and groups 

 
                                                                    Figure 13. Designed experiment set-up 
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Table 5. 23 Designed experiment  

 

Data collection procedures. 

In order to make slurry, 300g of wet manure and 1.0L of water were combined. 

Next, 1.0L of slurry was added into each digester. Those digesters requiring inoculum 

were administered inoculum on Day 1 only. After a 10-day interval digesters were 

relieved half (500mL of the slurry) and fed half of the prescribe mixtures (500mL of 

slurry).  Half of the mixture in each digester remained to ensure microbial community 

activity continued to thrive. 

Influent and effluent samples were collected at 10-day intervals from February 3, 

2014 to March 3, 2014 and March 12 to April 11, 2014. The samples’ pH and 

temperature were analyzed using a hand-held probe. See Appendix B for pH and 

temperature readings. Biogas production was measured by collecting the biogas in 

Sigma-Aldrich 1.0L foil sampling bags and then measured by submerging the bags in 

water and inverting water column over gasbag. This was done once on the 10th and 30th 

day. Biogas composition was determined twice throughout both experiments, once on the 
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10th and 30th day with a gas chromatography. Figure 14 is a pictorial diagram of the 

experimental procedures.  

 

Figure 14. Experimental procedures  
 

Results 

The experimental design aided in discovering the combination of factors that will 

have the most significant impact on the production of biogas. The experimental design 

statistical analysis was evaluated using Minitab®. At α = 0.05 temperature at 40°C 

significantly increased biogas production and should be used over 25°C when using 

anaerobic digesters. Refer to figure 15. Other factors that may potentially increase biogas 
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production are 50mL of used cooing oil and 200 mL of inoculum. Refer to table 6 and 

figure 16, 17, and 18. 

 

Figure 15. Normal plot of standard effect showing temperature is a significant at α = 0.05 
 
Table 6. Factors showing mean effects and p-value outcomes 
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Figure 16. As used cooking oil increased from 20mL to 50mL the biogas production 
increased when inoculum is present. When inoculum is not present biogas production 
decreased as used cooking oil increases.  
 

 
Figure 17. As used cooking oil increased from 20mL to 50mL the biogas production 
increased at 40°C. When temperature is 25°C biogas production decreased slightly as 
used cooking oil increases.  
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Figure 18. When inoculum is present biogas production decreases at 40°C. There is no 
change in biogas production when the temperature is at 25°C. and inoculum present and 
not present. 
 

Average biogas production over 30-days. 

Over the 30-day run time, digester 8 produced the most biogas, while digester 5 

produced the least amount of biogas. Digester 8 factors are: temperature at 40°C, 200mL 

of inoculum, and 50mL of used cooking oil. Digester 5 factors are: temperature at 25°C, 

0mL of inoculum, and 50mL of used cooking oil. Refer to table 7. The null hypothesis, 

the mean biogas for all digester is statistically equal under the 8 different conditions, 

is rejected. The mean biogas for all digester is statistically different under the 8 different 

conditions.  
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Table 7. Results of average biogas production from digesters 

 

Conclusion 

Modification of the instructional manipulative improved the flaws in the 1st and 

2nd design and led to the final design. Modifying and adding features improved design 

efficiency by detecting leaks, alleviating clogging, and providing pliable biogas storage. 

The final design aided in discovering factors that will lead to maximum production of 

biogas. The factor, temperature at 40°C, is shown to produce high yields of biogas rather 

than temperature at 25°C. Other factors that may potentially increase biogas production 

are the combination of 50mL of used cooking oil and 200mL of inoculum.  

Previous literature indicates that inoculum by itself should have increased biogas 

production, however this was not seen. It was later discovered after the experiments that 

the inoculum was exposed to oxygen, possibly annihilating the microbial community 

activity, preventing biogas production. Given this information, future research can now 
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be conducted to establish more specific range needed to identify factors that maximize 

the biogas production.  
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CHAPTER 4 

GENERAL DISCUSSION 

The created energy and biogas content module addresses energy misconceptions, 

encourages students to pursue careers related to energy conservation, and influences 

students’ capabilities and desires to alleviate current energy issues on a global and 

individual scale. 

In Article 1, the students were able to better comprehend not only the energy 

concepts, but also the engineering processes in the energy and anaerobic digestion 

modules. The research shows that students now comprehend energy concepts and are 

familiar with anaerobic digestion. Conducting energy projects is an effective way to 

engage students in the subject matter while applying this knowledge to solve problems 

that the students will ultimately inherit [15].   

In Article 2, a modified instructional manipulative was designed and created to 

improve some of the flaws in the 1st and 2nd design and identified factors that will lead to 

maximum production of biogas. The improved design is shown to be reliable by 

discovering the factor, temperature at 40°C that will produce high yields of biogas.  

In accordance with the NGSS, the energy and biogas production modules 

exemplify a 21st century approach to scientific learning in America.  Students are 

exposed to foundational scientific principles in an interactive environment.  Emphasis is 

placed not only on retaining scientific knowledge but also on applying that knowledge to 

solve a problem and on understanding the roles that scientific principles play in the world 

outside of their classroom. 
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The anaerobic digester module could be incorporated into the renewable resources 

lesson of a science class in order to help students understand the practical application of 

this concept. To aid in teaching of anaerobic digestion and biogas production, the plug-

flow anaerobic digester will be donated to local high school teachers to facilitate learning 

of energy and biogas content. 

To further the research, training offered to teachers would be beneficial to ensure 

that accurate information is taught to the students and understood by students, increase 

teachers’ confidence in teaching energy and biogas modules, and inform teachers on 

how to use and operate instructional manipulatives.  

Hopefully, the introduction of the new energy and biogas content modules will 

influence students and teachers’ capabilities and desire to alleviate current energy issues 

on a global and individual scale. 
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APPENDIX A 

ANAEROBIC DIGESTION LAB PROCEDURES 
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Figure 19. Biogas module lab experiment  
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APPENDIX B 

PH, TEMPERATURE, & BIOGAS READINGS  
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