
Numerical Simulations of Electrically Induced Chloride Ion Transport and Moisture

Permeability through Cracked Concrete

by

Pu Yang

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2014 by the

Graduate Supervisory Committee:

Narayanan Neithalath, Chair

Subramaniam Dharmarajan

Barzin Mobasher

ARIZONA STATE UNIVERSITY

May 2014

i

ABSTRACT

The main objective of this study is to numerically investigate: (i) the ionic transport,

especially chloride ion penetration into cementitious materials under imposed electric

fields, and (ii) moisture transport through cracked concretes as a function of the crack

geometry.

Numerical methods were implemented to simulate the ionic transport process, based on

coupling the Nernst-Planck equation and Poisson’s equation to account for transport

dominated by electromigration. This mathematical model was also modified to account

for the chloride binding mechanism (physical and chemical trapping of chlorides by the

cement hydrates) and the concentration dependence of the diffusion coefficient of each

ion in the transport process. To validate the numerical model, experimental data from a

companion work was used in this study. The non-steady state migration test, which is one

of the common accelerated chloride ion transport test, is numerically simulated. The

simulation provides a linear relationship between ionic concentration and ionic flux,

which indicates that the diffusion part is negligible under a strong external voltage

environment. The numerical models along with adjustments for the concentration-

dependent diffusion coefficients, a pore structure factor (from electrical measurements)

and chloride binding considerations are found to be successful in predicting the chloride

penetration depth into plain and modified concretes under imposed electrical potentials.

Moisture transport through cracked concrete was examined in the second part of this

thesis. To better understand the crack’s influence on the permeability, modified Louis’

equation was chosen to relate the permeability with crack characteritsics. 3D concrete

crack models were developed using a MATLAB program with distinct crack tortuosities,

roughnesses and sizes. As a comparison, Navier-Stokes equation and the Lattice

ii

Boltzmann method were also applied on the 3D model of the cracked concrete to evaluate

their permeability. The methodology developed here is expected to be useful in

understanding the influence of cracking on moisture transport, and when properly

coupled with an ionic transport model that will be further developed, helps

comprehensively understand the coupling effects of moisture and ionic transport on

deterioration in concrete structures.

iii

To my grandmother, may god be with you

To my families and friends who always understand and support me

iv

ACKNOWLEDGEMENTS

I would like to specially thank my advisor Dr. Narayanan Neithalath for guiding me in

my research. I also want to extend my appreciation to Dr. Subramaniam D. Rajan and Dr.

Barzin Mobasher, who served as my committee members, helping and supervising my

progress in Master’s degree program.

I also would like to thank Ben Rehder, who taught me many skills when I started my

work. I also want to thank Sumanta Das, who did a great job in helping me with the

paperwork of my thesis.

I also would like to express my gratitude to my dear colleagues and friends, Akash

Dakhane, Kirk Vance, Matthew Aguayo, Aashay Arora and Sateesh Madavarapu for their

help and support.

v

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... viii

LIST OF TABLES .. x

CHAPTER

PART I. NUMERICAL SIMULATION OF ACCELERATED CHLORIDE ION

TRANSPORT INTO SATURATED CONCRETE

1 INTRODUCTION .. 1

1.1 Introduction to Ionic Transport Phenomenon .. 1

1.1.1 Free Diffusion ... 1

1.1.2 Chloride Ion Diffusion into Saturated Concrete and Implications 2

1.2 Non-Steady State Migration Test ... 4

1.3 Experimental Program used in a Companion Study to Validate the Numerical

Models... 6

2 MATHEMATICAL MODELS TO SIMULATE NON-STEADY STATE

CHLORIDE MIGRATION INTO CONCRETE .. 8

2.1 Basic Ionic Transport Equation .. 8

2.2 Numerical Process to Solve System Equations .. 10

2.3 Optimization of the Solution .. 14

3 NUMERICAL SIMULATION AND MODEL MODIFICATION 15

3.1 Determination of Ionic Concentration in Pore Solution..................................... 15

3.2 Effective Ionic Diffusion Coefficients ... 16

3.2.1 Pore Structure Dependent Effective Diffusion Coefficient 16

vi

CHAPTER Page

3.2.2 “Retarded” Effective Diffusion Coefficient .. 19

3.3 Concentration-Dependent Effective Diffusion Coefficients and Linear Chloride

Binding .. 21

3.3.1 Chloride Binding Mechanism ... 21

3.3.2 Concentration-Dependent Effective Diffusion Coefficients 24

3.4 Effect of Chemical Activity ... 24

3.4.1 Modeling the Chemical Activity ... 24

3.4.2 Simulation Results and Discussion ... 25

4 NUMERICAL SIMULATION RESULTS AND DISCUSSION 27

5 SUMMARY .. 36

PART II. COMPUTATIONAL EVALUATION OF THE INFLUENCE OF

CRACK PROPERTIES ON CONCRETE PERMEABILITY

6 INTRODUCTION .. 38

7 MATHEMATICAL MODELS FOR PERMEABILITY ESTIMATION 40

7.1 Modified Louis Equation ... 40

7.1.1 Effective Crack Width .. 40

7.1.2 Crack Tortuosity ... 42

7.1.3 Crack Roughness .. 42

7.2 Navier-Stokes Equations .. 44

7.3 Lattice Boltzmann Methods ... 44

8 GENERATION OF SINGLE 3D CRACK ... 48

8.1 Surface 2D Crack ... 48

vii

CHAPTER Page

8.2 3D Crack Generation .. 49

9 SIMULATION RESULTS AND ANALYSIS ... 50

9.1 Crack Volume Ratio () .. 51

9.2 Effect of Crack Roughness and Tortuosity .. 54

9.3 System with Multiple Cracks ... 59

10 SUMMARY .. 61

CONCLUSIONS... 62

RREFERENCES ... 64

APPENDIX

 A C
++

 CODE FOR NUMERICAL SIMULATION OF NSSM TEST 68

 B MATLAB CODE FOR GENERATING 3D CRACK MODELS 91

 C MATLAB CODE FOR D2Q9-BGK LATTICE BOLTZMANN METHOD 102

viii

LIST OF FIGURES

Figure Page

Figure 1.1. Schematic diagram of diffusion process (1) ... 1

Figure 1.2. Schematic diagram of diffusion process (2) ... 2

Figure 1.3. NT Build 492 test setup [7] .. 5

Figure 3.1. Chloride concentration profile for original definition of D 19

Figure 3.2. Chloride concentration profile for modified D ... 20

Figure 3.3. Freundlich and linear isotherms which describe Cl
-
 binding in cementitious

mixtures... 23

Figure 3.4. Chloride fluxes profile .. 26

Figure 4.1. Chloride concentration profile @ 24 hours .. 28

Figure 4.2. The relationship between the experimentally measured Cl
-
 penetration depths

and those simulated from the modified PNP formulations for binary and ternary concrete

mixtures... 29

Figure 4.3. Distribution of concentrations of ions of OPC at different times: (a) Chloride;

(b) Sodium; (c) Potassium; (d) Hydroxyl ... 30

Figure 4.4. Electrical potential profile of OPC at different times 32

Figure 4.5. Electrical field profile of OPC at different times ... 32

Figure 4.6. Flux-concentration relationship of different ions for OPC @ 24 hours NSSM

simulation: (a) Chloride; (b) Sodium; (c) Potassium; (d) Hydroxyl 34

Figure 4.7. Chloride penetration development for OPC ... 35

Figure 7.1. Crack generation model (Top surface) ... 40

Figure 7.2. Schematic of a crack profile to illustrate the method of quantifying tortuosity

and roughness [39] .. 43

ix

Figure Page

Figure 7.3. D2Q9 model description for Lattice Boltzmann simulations 46

Figure 8.1. Generation of random 3D crack: (a). Random generated surface 2D crack; (b).

3D reconstruction of crack in a concrete block .. 49

Figure 9.1. Permeability versus crack volume ratio, Navier-Stokes equations and Louis

model... 52

Figure 9.2. Comparison of Louis and Navier-Stokes prediction of permeability 52

Figure 9.3. Permeability – crack volume ratio relationship, Lattice Boltzmann method

and Louis model .. 53

Figure 9.4. Comparison of Louis and Lattice-Boltzmann prediction of permeability...... 54

Figure 9.5. Relationship between roughness and sampling length 55

Figure 9.6. Different crack boundary conditions .. 56

Figure 9.7. Permeability – Global roughness relationship for Louis model 57

Figure 9.8. Permeability – Tortuosity relationship ... 58

Figure 9.9. Multiple cracks with different connection: (a). Crack with branching; (b).

Double-crack ... 59

Figure 9.10. Permeability prediction from Lattice-Boltzmann and Louis model for

different types of cracks .. 60

x

LIST OF TABLES

 Table Page

Table 1.1. Chemical composition of the component materials ... 6

Table 1.2. Mixture proportions used in this study for 1 m
3
 of mortar or concrete 7

Table 1.3. NSSM test results (chloride penetration depth) ... 7

Table 3.1 Initial ionic concentration in pore solution (mol/L).. 16

Table 3.2 Diffusion Coefficients of Species in Infinite Dilution [16] 16

Table 3.3 Equivalent conductivity at infinite dilution and conductivity coefficients for

Na
+
, K

+
 and OH

-
 at ... 17

Table 3.4 Porosity and pore connectivity (dimensionless) of different concretes 18

Table 3.5 Radius of different ions (10
-12

 m) ... 25

Table 4.1 Pore structure factors and the initial and boundary conditions for the

simulations .. 27

Table 9.1 Roughness values with .. 56

1

PART I. NUMERICAL SIMULATION OF ACCELERATED CHLORIDE ION

TRANSPORT INTO SATURATED CONCRETE

1 INTRODUCTION

1.1 Introduction to Ionic Transport Phenomenon

1.1.1 Free Diffusion

Diffusion is one kind of transport phenomena (unlike convection or advection) which

leads to a movement of particles from an area of high concentration to an area of low

concentration, resulting in a uniform distribution of the substance in the medium (Fig.

1.1).

Figure 1.1. Schematic diagram of diffusion process (1)

As shown in Fig 1-2, if the concentration in Region 1 and Region 2 are C1 and C2 (mol/L)

respectively and the distance between them is dx, then the flux from region 1 to region 2

is given as:

 (1-1)

Where D is known as the diffusion coefficient (m
2
/s), and is a property of material.

Eq. (1-1) is known as Fick’s 1
st
 law and is applicable to only steady-state diffusion since

concentration values are independent with time.

When the concentration is variable with time,

2

 (1-2)

where:

 (1-3)

Substituting Eq. (1-3) to Eq. (1-2):

 (

)

(1-4)

This is known as Fick’s
nd

 law, which is the basic representation for non-steady-state

diffusion of any ionic species into another medium.

Figure 1.2. Schematic diagram of diffusion process (2)

1.1.2 Chloride Ion Diffusion into Saturated Concrete and Implications

Chloride-induced corrosion is the most important factor that affects the durability of

reinforced concrete structures. Once the chloride concentration value near the reinforcing

steel reaches a certain level, corrosion begins. Every year, enormous economic loss is

caused by corrosion and huge sums of money is spent to repair corrosion – damaged

structures.

3

During the process of diffusion, a certain fraction of chloride ions are retained by the

hydration products of the binder in concrete, either through chemical binding or physical

adsorption[1], which delays the diffusion. The total chloride ions in the hardened

hydrated cement paste in concretes can be divided into two types: free chloride ions,

existing in the pore solution as mobile ions and contribute to further corrosion of steel

and bound chloride ions, which are attached to various hydration products [1].

Relationships between the total, free and bound chloride ions in concrete are very

important for the development of models for service life prediction of reinforced concrete

structures with respect to reinforcement corrosion [2]. Freundlich adsorption isotherm

and Langmuir adsorption isotherm are two main isotherms which describe the

relationship between free and bound chlorides. They are given as:

 (1-5)

 (1-6)

In which is the binding chloride concentration over the sample and is the free

chloride concentration in pore solution. , , , and are binding constants varying

with concrete binder compositions. Eq. (1-5) corresponds to Freundlich isotherm and Eq.

(1-6) refers to Langmuir isotherm. Tang [3] has showed that Freundlich isotherm can

describe chloride binding in free-chloride concentration ranging from 0.01 – 1 mol/L

while Langmuir isotherm is appropriate for low free-chloride concentration (<0.05

mol/L). Zabara [4] even showed that for a higher chloride concentration, Freundlich

isotherm also describes the binding correctly.

In saturated concrete, the movements of ions only take place in the liquid phase that

occupies a fraction of the total porous volume. When different ionic species move in

4

same solution, their velocities vary due to the changes in diffusion coefficients. Since

ions are charged particles, an electrical field is created, which is known as membrane

potential. It can slow down the faster ions and accelerate the slower ones [5].

1.2 Non-Steady State Migration Test

Several tests have been developed to understand the accelerated transport of chlorides

through concrete. Among them the non-steady state migration test and the rapid chloride

permeability test are the more common ones. Since the RCP test is reported to have

several drawbacks, the predominant one being the joule heating associated with the large

voltages used in the test [6], non-steady state migration test is regarded to be a more

appropriate one to indicate the transport resistance of chlorides to ionic movement.

Non-steady state migration test (NSSM) is generally carried out in accordance with NT

Build 492 [7], on 50 mm thick concrete discs, which are preconditioned by vacuum

saturating with calcium hydroxide solution, after the respective curing durations. 2N

NaCl and 0.3 N NaOH solutions are used as catholyte and anolyte solutions. An initial

voltage of 30 V is applied, and initial current is recorded. The applied voltage and test

duration are chosen based on the initial current. The test setup is shown in Fig. 1.3.

5

Figure 1.3. NT Build 492 test setup [7]

The non-steady state migration coefficient is given as:

 √

 (1-7)

 √

 (

) (1-8)

 (1-9)

In which U is the absolute voltage in V, L is the specimen thickness in m, z is the valence

of the chloride ion, F is the Faraday constant, R is the molar gas constant, T is the

average value of initial and final temperatures in K, is the average value of the

penetration depth in m, t is the test duration in s, is the chloride concentration at which

6

silver nitrate changes to silver chloride (0.07 N), and is the chloride concentration of

the catholyte solution (2 N).

1.3 Experimental Program used in a Companion Study to Validate the Numerical

Models

The materials used in this study are: a commercial Type I/II ordinary portland cement

(OPC) conforming to ASTM C 150, Class F fly ash and metakaolin conforming to

ASTM C 618, and limestone powder conforming to ASTM C 568. The chemical

compositions of these materials are listed in Table 1.1. The concrete mixtures were

proportioned by replacing 20% or 35% of the OPC by (by volume) by limestone or fly

ash in the binary blends, or combination of limestone and fly ash or limestone and

metakaolin in the ternary blends. More details can be found in [8].

Table 1.1. Chemical composition of the component materials

Component (%) OPC Fly ash Metakaolin

SiO2 21.0 58.4 51.7

Al2O3 3.61 23.8 43.2

Fe2O3 3.47 4.19 0.5

CaO 63.0 7.32 --

MgO 3.26 1.11 --

SO3 3.04 0.44 --

Na2O 0.16 1.43 --

K2O 0.36 1.02 --

LOI 2.13 0.50 0.16

All the concretes were proportioned with a water-to-powder ratio of 0.40 by mass. In

addition to the control OPC concrete, the mixtures included binary mixtures of limestone

or fly ash at cement replacement levels of 20 and 35%, and ternary mixtures with either

10% or 25% of fly ash or 10% of metakaolin with limestone being added to achieve the

total 20% or 35% OPC replacement volume (see Table 1.2). The replacement level of

7

OPC with metakaolin was limited to 10% so as to avoid drastic loss of workability. The

aggregate was 70% by volume over the concrete. All the concrete specimens were stored

in a moist chamber for RH > 97% and at a temperature of 23 ± 2
o
C until the desired age

of testing. The non-steady state migration test described in Section 1.2 was performed on

all the specimens after 28 and 56 days of hydration.

Table 1.2. Mixture proportions used in this study for 1 m
3
 of mortar or concrete

Mixture
Cement

(kg)

Limestone

(kg)

Fly ash

(kg)

Metakaolin

(kg)

Coarse

agg. (kg)

Fine agg.

(kg)

Plain 480 0 0 0 1066 661

LS 20 395 85 0 0 1065 660

FA 20 399 0 80 0 1065 660

LS 10 MK 10 398 43 0 38 1063 659

LS 35 327 151 0 0 1061 658

FA 35 333 0 145 0 1061 658

LS 25 MK 10 330 109 0 39 1060 657

The chloride penetration depths from the migration test are shown in Table 1.3. The

concrete with 35% cement replacement by limestone gives the largest penetration depth

while the concrete containing 10% limestone + 10% metakaolin replacement case has a

minimum penetration process.

Table 1.3. NSSM test results (chloride penetration depth)

Mixture Plain LS 20
LS 10 MK

10
LS 35

LS 25 MK

10
FA 20 FA 35

Depth (mm) 25.37 30.71 14.10 32.50 19.75 20.75 19.50

8

2 MATHEMATICAL MODELS TO SIMULATE NON-STEADY STATE

CHLORIDE MIGRATION INTO CONCRETE

2.1 Basic Ionic Transport Equation

As discussed above, transport of chloride into saturated porous concrete is a complex

process. Different parameters influence the process in different ways. Fick’s
nd

 law is no

longer suitable for describing ionic movement in concrete subjected to an electric field. In

this thesis, extended Nernst-Planck equation is chosen to describe the process:

 (

) (2-1)

Here is the flux value of ionic species i, expressed as mole per square meter second

(mol/m
2
s); is the ionic concentration in pore solution, expressed as mole per cubic

meter (mol/m
3
); is the effective diffusion coefficient, expressed as square meter per

second (m
2
/s); is the valence number; is the Faraday constant (9.648534×10

4
 C/mol);

 is the ideal gas constant (8.3145 J/(mol∙K)); is the absolute temperature (K); is the

electrical potential (V); is the chemical activity coefficient and is the bulk velocity

of the fluid.

There are four parts in the right-hand side of the equation, each of them corresponds to a

different mechanism. The first part describes the ionic movement driven by the

concentration gradient. The second part represents the effect of electrical field, which

may be a result from the co-action of membrane potential and external electrical field.

However, when the external electrical field is strong enough [i.e. in a migration test], the

membrane potential can be negligible. The third part is due to the chemical activity. Since

most of test results show that the influence from chemical activity gradient is negligible

[9,10], this part can be omitted. The confirmation for this is shown in this thesis also, in a

9

later section (Sec. 3.4). The fourth part is the advection term. When no pressure gradient

exists, this term can also be omitted. [5]

As a result, Eq. (1-5) becomes:

 (

) (2-2)

In this thesis, Na
+
, K

+
, Cl

-
 and OH

-
 ions are considered as the main ions taking part in the

ions transport process. The Na
+
, K

+
, and OH

-
 ions are the dominant ions in a cement paste

pore solution while the Cl
-
 ions are induced into the system during the NSSM test.

The transport of ionic species in the concrete can be described by the mass conservation

of individual ionic species as follows:

 ()

(

) (2-3)

Where is the porosity of concrete.

Poisson’s equation is needed for evaluating the electrical potential () because the

assumption that the electric potential does not vary with specimen depth is invalid.

∑

 (2-4)

Eq. (2-4) is the dimensionless form of Poisson equation. Where

 () is the permittivity of a vacuum. is the relative permittivity of

water at a temperature of 25°C.

Solving Eq. (2-3) and Eq. (2-4) gives the simulation results of the ionic transport process.

Finite element method or finite difference method are required to solve these equations.

10

2.2 Numerical Process to Solve System Equations

Finite element method is one of the most powerful methods to solve engineering

problems. By discretizing – the process of splitting the problem domain into elements,

complicated problems can be separated into small elements with certain degrees of

freedom, which makes the solving process much easier. In this thesis, both finite element

(FE) and finite difference (FD) method are applied to solve all the partial differential

equations. In this section, detailed deviations have been presented.

A full version of all the system equations is:

(

 ()

) (2-5)

∑

(2-6)

A two-node linear element has been used during the solution process. Uniform mesh is

applied to the problem. Each element has the same length of L/n, where L is the thickness

of the sample and n is the number of elements.

The problem domain is:

 (2-7)

Where is the thickness of the sample and is set to 0.

Only Dirichlet boundary condition is applied to this problem:

 For , {
 ()

 ()
 (2-8)

Where
 and

 are the concentration values in external solutions for i-th species,

which are considered as constants during the test. This is because a non- steady state

11

migration test has highly concentrated ionic solutions as the catholyte and anolyte and

their concentrations do not change appreciably with time.

The initial conditions are:

 At (), ()
 (2-9)

In which
 is the concentration value in pore solution for i-th species at each node.

The element equations have been generated by Galerkin’s method. The trial solution of

the system can be assumed as:

 () ∑ ()
 ()

 (2-10)

In which () is the concentration value of the i-th species, () is the shape function

and
 () is the time-dependent concentration value at j-th node of i-th species.

For two-node linear element, the shape functions are:

 {

 ()

 ()

 (2-11)

The elementary equation of the system is:

 {
 ()

} { ()} { ()} (2-12)

Where () is the unknown variable vector on each element in terms of their nodal

values at each time-step:

 () { }
 (2-13)

In which the subscripts i and j in cij stand for the ion i at node j in a given element.

12

 ∫{ } { }{ } (2-14)

 ∫({ }{ }{ } { }{ }{ } { }{ }{ }) (2-15)

In which is shape function matrix and is it’s first order derivative, is the

weighting matrix and is it’s first order derivative. Here they can be expressed as:

[

]

 (2-16)

[

]

 (2-17)

 (2-18)

 (2-19)

In eq. (2-15) there are three matrices , and , which represent three different

mechanisms: represents on the diffusion process, couples the ionic concentration

together with the electrical potential (Poisson’s equation) and considers the electrical

migration term [11,12]. is the basic capacity matrix including the porosity.Matrixes

from to can be expressed as:

[

]

 (2-20)

13

[

]

 (2-21)

[

]

 (2-22)

[

]

 (2-23)

The time discretization is performed using an explicit Euler scheme,

 {

} (2-24)

Defining the matrices

 ̅

 ̅ { }
(2-25)

The system equation can then be rewritten as

 ̅{ } ̅ (2-26)

This system of equations can be solved by Gauss-Elimination method.

A central finite difference approximation is applied to obtain the flux value based on Eq.

(2-2);

 (2-27)

14

2.3 Optimization of the Solution

Since the governing equation is a convection—diffusion equation, the accuracy of the

solution is heavily dependent on the Peclet number, which is defined as:

 (2-28)

Where h is the length of element and |

| is the migration term.

Any values of Peclet number larger than 1 will cause heavy oscillation and give unstable

solutions. To optimize the calculation method and reduce the number of elements needed,

a Petrov-Garlerkin method is induced [13].

The weighting matrix can be modified as:

() (2-29)

Where

 | |

| |
 (2-30)

The sign is depend on whether U towards or away from the node.

The current density carried by all the four species passing through the specimen can be

calculated by the following equation:

 ∑

 (2-31)

In which is current density, expressed in A/m
2
.

The current at each time step is calculated according to the following equation:

 (2-32)

In which is the surface area of the sample.

15

3 NUMERICAL SIMULATION AND MODEL MODIFICATION

3.1 Determination of Ionic Concentration in Pore Solution

Multiple factors such as the binder proportions, degree of hydration and the chemical

composition of the ingredients can affect the initial ionic concentration of the pore

solution concrete. In this study, pore solution composition is determined using Taylor’s

model. The degrees of hydration of the binders in the concrete at different ages were

obtained from [8].

Taylor [14] proposed a model for predicting alkali ion concentrations in the pore solution

of hydrated cement paste with the total amount of Na2O and K2O in the components and

the water available for the pore solution. The alkali ions exist both in the pore solution

and the hydration products, and the amount of ions occupied by hydration products is

assumed proportional to its concentration in the solution and the amount of products as

adsorbent [15]. Thus, the concentration of ions in the solution can be calculated from the

remaining amount of ions and the volume of solution. Experimental equations are applied

to estimate the amounts of alkali ions released by hydration process and the hydration

products. The pore solution volume is computed from the total water content in the paste

and products. A web interface developed by National Institute of Standards and

Technology (NIST) can do the calculation based on the input information provided by

users.

The pore solution composition of mixtures estimated based on the mixtures proportions

can be found in Table 1.2. The initial ionic concentrations of all the mixtures are listed in

Table 3.1.

16

Table 3.1 Initial ionic concentration in pore solution (mol/L)

Mixtures K
+
 Na

+
 OH

-
 Cl

-

OPC 0.21 0.14 0.35 0.00

LS20 0.16 0.11 0.27 0.00

LS10 MK10 0.16 0.11 0.27 0.00

LS35 0.12 0.08 0.20 0.00

LS25 MK10 0.13 0.09 0.22 0.00

FA20 0.25 0.30 0.55 0.00

FA35 0.27 0.40 0.67 0.00

3.2 Effective Ionic Diffusion Coefficients

Diffusion coefficients of ions determine the ionic diffusing speed in media. The media

environment can drastic influence the effective ionic diffusion coefficients. In this section,

a series of work has been done to find out the effective ionic diffusion coefficients for

ions transportation in saturated concrete.

3.2.1 Pore Structure Dependent Effective Diffusion Coefficient

In many past works, researchers have used several means to define the ionic diffusion

coefficients in predictive models. In this study, the diffusion coefficient is defined as:

 (3-1)

In which is the pore connectivity of the material and is the porosity of the material.

 is the diffusion coefficient of the i-th species in infinite dilution, the values of which

can be found in Table 3-2.

Table 3.2 Diffusion Coefficients of Species in Infinite Dilution [16]

Species Diffusion Coefficient (10
-9

 m
2
/s)

Na
+
 1.334

K
+
 1.957

OH
-
 5.273

Cl
-
 2.032

Ca
2+

 0.792

SO4
2-

 1.065

17

The bulk specimen conductivity is related to the pore solution conductivity () and a

pore structure factor, defined herein as the product of porosity (p) and pore connectivity

() [17,18,19]) as:

 (3-2)

The conductivity of the pore solution was predicted by the procedure developed by

Snyder [20]:

 ∑ (3-3)

Where is the species valence, is the ionic concentration and is the equivalent

conductivity which can be expressed as:

 (3-4)

The values of the equivalent conductivity (
) of ionic species in infinite dilution and the

conductivity coefficient () are given in Table 3-3. The ionic strength is given as:

∑

 (3-5)

Table 3.3 Equivalent conductivity at infinite dilution and conductivity coefficients for

Na
+
, K

+
 and OH

-
 at 25 C [20]

Species λ
0
 (cm

2
S/mol) G (mol/L)

-1/2

Na
+
 50.1 0.733

K
+
 73.5 0.548

OH
-
 198.0 0.353

Thus, the pore connectivity can be calculated as:

 (3-6)

18

A companion study [8] has obtained the porosity of the specimens from mercury

intrusion porosimetry and effective connectivity from electrical impedance spectroscopy

using the measured bulk electrical resistance.

Both the porosity and pore connectivity for the chosen concretes are shown in Table 3.4.

Table 3.4 Porosity and pore connectivity (dimensionless) of different concretes

Mixture Plain LS 20
LS 10

MK 10
LS 35

LS 25

MK 10
FA 20 FA 35

Porosity 0.099 0.122 0.104 0.132 0.129 0.127 0.132

Pore connectivity 0.028 0.030 0.010 0.040 0.014 0.014 0.009

Fig. 3.1 shows the predicted chloride concentration profile at the end of NSSM test for all

the seven mixes. It can be noticed from this figure that, when the diffusion coefficient

mentioned above is used, after 24 hours of NSSM test simulations, the chloride ions are

seen to have penetrated the entire depth of the sample (50 mm). This is contradictory to

the experimental test results where the largest penetration depth was only 33 mm. A

possible reason for such an error could be from the effective diffusion coefficients of the

migrating species used in the simulations, which is taken to be the self-diffusion

coefficients of the ions multiplied by the product of porosity and pore connectivity (Eq.

(3-1)). Such a definition results in an over-prediction of depth-dependent chloride

profiles and the penetration depth.

19

Figure 3.1. Chloride concentration profile for original definition of D

3.2.2 “Retarded” Effective Diffusion Coefficient

To find out the influence of lowering the diffusion coefficients on the overall penetration

depth, the effective diffusion coefficients (Di) were “retarded”. Based on the previous

definition, Eq. (3-1) was modified by multiplying the right hand side by a retardation

factor ranging between 0.125-to-0.200 and the simulations were repeated.

The results of this new series of simulation with depressed diffusion coefficients in terms

of chloride concentration profiles are shown in Fig. 3.2. Compared with the experimental

results, the predicted penetration process is effectively retarded and an expected trend is

obtained. The rationale for reducing the effective diffusion coefficients may lie in the fact

that effective ionic diffusion coefficients of ions in a sample undergoing migration is not

the same at all locations and are concentration dependent. It has also been reported that

the apparent chloride migration coefficient may vary as a function of spatial position

20

during the accelerated migration test due to chloride binding and non-equilibrium

conditions, i.e., equilibrium between the free and bound Cl
-
 ions is not achieved during

NSSM tests [21]. The local binding capacity and the local migration coefficient depend

on the local concentrations of free and bound chlorides. Thus, the low concentration of

chlorides at the penetration front helps progress the front with little binding, but as the

local chloride concentration increases behind the front, so does the binding capacity [21].

These factors are then expected to result in concentration dependent ion transport

functions to adequately represent the ionic movements.

Figure 3.2. Chloride concentration profile for modified D

21

3.3 Concentration-Dependent Effective Diffusion Coefficients and Linear Chloride

Binding

3.3.1 Chloride Binding Mechanism

Chloride binding can occur through physical adsorption of chlorides on the surface of the

C-S-H gel or by chemical reaction with typically the aluminate-bearing reaction products

[22,23,24]. Thus, total chloride ions in the system are consisted by two parts: chloride

ions in liquid phase and chloride ions in solid phase. The relationship can be written as

[2]:

 (3-7)

In which is the total concentration of chlorides in the system, expressed as moles per

cubic meter (mol/m
3
); is the free-chloride concentration in concrete, expressed as

moles per cubic meter (mol/m
3
); is the bound-chloride concentration in concrete,

expressed as moles per kilogram (mol/kg); is the total volume of concrete, expressed

as cubic meter (m
3
); is the volume of pore in concrete, expressed as cubic meter (m

3
);

 is the mass of solid phase, expressed as kilogram (kg).

Eq. (3-7) can be rewritten as:

 () (3-8)

Where is the porosity of concrete and is the dry density of the concrete.

It has been suggested that that chloride binding can be ignored in migration tests because

the rate of electrically induced ion transport is faster than the kinetics of chemical

reaction or that the exposure time to chlorides in a NSSM test is too short [16]. However

the high concentrations of chloride powder residues examined after the NSSM test in

another study [25] indicate binding. Such binding can be described using Fruendlich

22

isotherm, which sketches a non-linear relationship between the bound and free chloride

concentrations as Eq. (1-5), an example of which is shown in Fig. 3.3 [4]. However it has

been shown that the Fruendlich isotherm is not appropriate for NSSM condition [26], and

a linear binding relation is more appropriate in this case [25,27]. In this assumption, the

bound chloride concentration determined by the Fruendlich isotherm is assumed to be

valid at the specimen surface where is exposed to the highest Cl
-
 concentration, below

which it linearly decreases as the mobile chloride abundance decreases (see Fig.3-3).

Thus, the relationship between free and bound chloride can be described as:

 (3-9)

Where k is the new binding constant. k takes values ranging between 0.35×10
-4

-to-

0.5×10
-4

 [28] for OPC concretes and those containing OPC replacement materials,

depending on the chemical composition of the replacement materials. Thus, the lower

bound corresponds to binary mixtures which display suppressed binding, while the upper

bound corresponds to fly ash and metakaolin bearing mixtures which display enhanced

chloride binding.

To account for such Cl
-
 binding, Eq. (3-8) and Eq. (3-9) are substituted into Eq. (2-3) to

generate a new PDE to describe the chloride transportation process:

 (()

)

(

 ()

) (3-10)

23

Figure 3.3. Freundlich and linear isotherms which describe Cl
-
 binding in cementitious

mixtures

Thus, a full version of all the system equations is obtained as shown below:

(

 ()

)

(

 ()

)

(()

)

(

 ()

)

(

 ()

)

∑

(3-11)

24

3.3.2 Concentration-Dependent Effective Diffusion Coefficients

To consider the concentration dependence of the ionic diffusion coefficients, an approach

adopted by [5] is used, as noted in Eq. (3-12):

 {
 ()

 ()
 ()

 (3-12)

In which a is an exponent equal to -0.71 for the mixtures used in this study.

Based on these modifications, numerical simulations for all specimens were repeated.

3.4 Effect of Chemical Activity

As mentioned in Section 2.1, it is assumed that the influence from chemical activity is

negligible during the electro-migration test. In this section, detailed procedure is provided

to validate the assumption.

3.4.1 Modeling the Chemical Activity

In many past works, several models have been developed to calculate the chemical

activity coefficient based on the ionic concentration. However, models such as Debye-

Hückel or extended Debye- Hückel or Davies are unable to describe the thermodynamic

behavior of highly concentrated ionic solution properly [16,29], a modified Davies

equation is applied to calculate the chemical activity coefficient [9]:

 √

 √

(())

√
 (3-13)

In which is the ionic strength of the solution, which can be calculated from Eq. (3-5).

A and B are temperature dependent parameters that can be obtained from the following

equations:

25

√

 ()
 (3-14)

 √

 (3-15)

Where is the electronic charge (1.602×10
-19

 C), is the permittivity of the medium,

which can be found in Section 2.1, F, R and T also have the same meaning as defined in

Section 2.1. represents the radius of ion i, as given in Table 3-5.

Table 3.5 Radius of different ions (10
-12

 m)

Na
+
 K

+
 OH

-
 Cl

-

116 152 110 167

Based on Eq. (2-15), induce the fourth matrix to include the effect from chemical

activity into the system equation. is given as:

[

]

 (3-16)

The updated system stiffness matrix is given as:

 ∫({ } { }{ } { } { }{ } { } { }{ } { } { }{ }) (3-17)

Following the same procedure introduced in Section 2.2, the chemical activity included

simulation can be carried out.

3.4.2 Simulation Results and Discussion

To validate the feeble effect of chemical activity on the electro-diffusion process, one

simulation is carried out. Fig. 3.4 shows the chloride fluxes contributed by different

mechanisms after 24-hours simulation. It is obvious that during the NSSM test, migration

dominates the penetration process. Compared with migration, contribution from chemical

26

activity is much smaller (2-3 magnitudes smaller than migration), which indicates that the

assumption is actually acceptable. Samson et al also got the same conclusion by

comparing the effect of chemical activity in different solutions [9].

Figure 3.4. Chloride fluxes profile

27

4 NUMERICAL SIMULATION RESULTS AND DISCUSSION

Based on Eq. (3-11) and Eq. (3-12), simulations of the NSSM test were implemented for

all the concrete specimens which were cured for 56 days. The initial and boundary

conditions are listed in Table 4.1.

Table 4.1 Pore structure factors and the initial and boundary conditions for the

simulations

Mixture φ β

Pore solution

composition (mol/L)

Upstream

boundary

conditions

(mol/L)

Downstream

boundary

conditions

(mol/L)

K+ Na+ OH- Na+ Cl- Na+ OH-

OPC 0.099 0.028 0.21 0.14 0.35

1.9 1.9 0.3 0.3

LS20 0.122 0.030 0.16 0.11 0.27

LS10+MK10 0.104 0.010 0.16 0.11 0.27

LS35 0.132 0.040 0.12 0.08 0.20

LS25+MK10 0.129 0.014 0.13 0.09 0.22

FA20 0.127 0.014 0.25 0.30 0.55

FA35 0.132 0.009 0.27 0.40 0.67

Fig. 4.1 gives the chloride concentration profile after 24 hours of the NSSM test for all

the seven cases given in Table 4.1. The dotted line indicates the threshold value of

chloride (70 mmol/L) at which the free chloride ions can be measured by the colorimetric

method (spraying silver nitrate solution mentioned earlier). It is obvious from this figure

and Table 4.1 that the pore structure parameter, which includes porosity and pore

connectivity, dominates the speed of chloride penetration process into concrete. The

mixture with 35% of cement replaced by limestone, having both the highest porosity and

pore connectivity has a largest penetration depth while the mixture with 35% of cement

replaced by fly ash has the lowest product value of porosity and pore connectivity, and

correspondingly the smallest calculated penetration depth. It is also noticed that the initial

pore solution composition determines the maximum stable chloride level that can be

28

reached during the NSSM test. That is due to the restriction imposed by the

electroneutrality condition (Poisson’s equation). Chloride ions together with the other

ions in solution, mainly sodium and potassium, equilibrate to maintain the

electroneutrality condition.

Figure 4.1. Chloride concentration profile @ 24 hours

Fig. 4.2 describes the relationship between the simulated penetration depth of chloride

ions and the experimentally measured results. Favorable correlations are observed. This

is significant in that, suitable numerical implementations of the PNP solutions can be

applied to parametrically evaluate the behaviors of various concrete formulations to

discern and rank the effects of different parameters including: (a) porosity, (b) pore

structure factor, (c) solid binder and the pore solution composition, (d) external Cl
-

concentration in solution, (e) applied voltage, and (f) test duration on ionic transport

resistance.

29

Figure 4.2. The relationship between the experimentally measured Cl
-
 penetration depths

and those simulated from the modified PNP formulations for binary and ternary concrete

mixtures

Fig. 4.3 provides concentration profile of different ions at different times during the

NSSM test. While similar curves can be generated for all the concrete mixtures studied

here, only the data for OPC concrete is demonstrated in order to explain the trends in a

concise fashion. These four curves give a general idea that during the test, under the

effect of external potential, the cations (potassium and sodium) move upstream while the

anions (chloride and hydroxyl) move downstream. It should be noted that the simulations

predict a sharp drop in Cl
-
 profiles very close to the exposed surface, after which a stable

regime follows, and then the Cl
-
 ion abundance drops once again. This is likely on

account of the exaggerated Cl
-
 loading in the exposure solution, and the enforcement of

electroneutrality in the simulations, which leads to a mismatch in the early Cl
-

penetration depths as compared to experimental determinations of Cl
-
 intrusion using

30

gravimetric techniques. Several reasons can be ascribed to this observation. Firstly, there

may exist local violations of the electroneutrality condition, especially very close to the

specimen surface, where diffusion and Cl
-
 binding may occur simultaneously. Secondly,

the large amount of Cl
-
 ingress close to the exposed face results in an increased level of

binding predicted by the model, while in reality, the amount of bound Cl
-
 may be much

smaller.

Figure 4.3. Distribution of concentrations of ions of OPC at different times: (a) Chloride;

(b) Sodium; (c) Potassium; (d) Hydroxyl

(a) (b)

(c) (d)

31

Fig. 4.4 gives the electrical potential profile at different times for the OPC concrete. From

this figure, it is obvious that during the NSSM test, due to the influence of the membrane

potential generated by different ionic transport speeds, the potential drop is no more in a

linear relationship. On the bi-linear response relating electrical potential to specimen

depth shown in this figure, the point at which the response changes its slope indicates the

depth of chloride penetration at that particular time. Before this point, due to the

introduced chloride ions, concentration levels of both the cations and anions change

significantly and a strong membrane potential is generated that influence the external

potential, which may also accelerate the penetration process. After this intersection point,

since there are no external ions to redistribute the existing ionic balance system, the

membrane potential can be negligible.

This phenomenon can also be explained using Fig. 4.5, which is the electrical field

profile of the OPC concrete undergoing NSSM test at different times. The trend in this

figure can be described as an “initial increase – stable – sharp drop” process. The sharp

drop front of the curve corresponds to the intersection point in Fig. 4.4 and also denotes

the chloride penetration depth. It also should be noted that at an early age during the test,

i.e. 3 hours, on account of the drastic change in ionic concentrations, a larger electrical

field is generated, which also gives a higher slope to the potential – depth curve. As the

test goes on, this effect is reduced because the ionic concentration changes are gradual.

32

Figure 4.4. Electrical potential profile of OPC at different times

Figure 4.5. Electrical field profile of OPC at different times

33

Fig. 4.6 provides the relationships between concentration and flux of different ions for

OPC concretes after 24 hours of NSSM test. It can be noticed from Fig. 4.3 that chloride

and hydroxyl ions have a synchronous movement, when chloride penetrates into certain

depth, hydroxyl totally moves out from the penetrated part. This is partly the result of the

need to maintain electroneutrality at all times, at all locations. As a result, linear

relationships between ionic flux and concentration are found for anions while separated

two stages of linear relationships are observed for cations. During the electro-migration

process, as chloride penetrating into the media to a fixed depth, hydroxyl concentration

drops to zero up to this level, cations have to redistribute themselves to balance with

chloride ions. Beyond this level, the ionic concentrations change with a smaller rate –

sodium and hydroxyl entre the media from the downstream solution with a much lower

concentration compared with upstream solution while potassium continuously leaching

out from the media. As it is showed in Fig. 4.6(a), during the chloride penetrating process,

with the drop of concentration level, flux value also drops until zero – as the chloride

stops at the sharp front as shown in Fig. 4.3(a). In Fig. 4.6(b) and Fig. 4.6(c), as the ionic

concentrations drop, there’re corresponding drop for ionic fluxes, this describes the status

for chloride-penetrated part. After a short constent concentration status, which indicates

the stable level as showed in Fig. 4.3, there’re again linear relationships for sodium and

potassium with a much smaller slopes. These two curves together with Fig. 4.6(d), gives

the status beyond the chloride-penetrated part, in which ions have smaller fluxes. Fig. 4.6

also gives the general idea that during the NSSM test, migration dominates the process

with a strong external electrical potential, which can be found in previous section.

34

Figure 4.6. Flux-concentration relationship of different ions for OPC @ 24 hours NSSM

simulation: (a) Chloride; (b) Sodium; (c) Potassium; (d) Hydroxyl

Fig. 4.7 describes the chloride penetration process with testing times for OPC and 20%

OPC replacement concrete. It can be found that during the NSSM test, the chloride

penetrating speed varies with time. The penetration process starts with a higher speed and

slows down until a stable level. One reason for that phenomenon is the chloride binding

mechanism. Initially, binding does not happen in the solution since the chloride content is

(a) (b)

(c) (d)

35

little. Once the free chloride content reaches a threshold level, e.g. 0.14% by mass of

concrete [26], chloride ions start bind to solid phases, which retards the penetration

process. Compared the four cases showed in the figure, 20% limestone replacement

concrete has a largest penetration depth with a largest penetrating speed since it has larger

porosity, pore connectivity together with a smallest binding ability. While 10% limestone

10% metakaolin replacement concrete and 20% fly ash replacement concrete have

stronger ability to bind more chloride ions, these two cases have more apparent drop in

penetrating speed.

Figure 4.7. Chloride penetration development for OPC

36

5 SUMMARY

Numerical simulation is a powerful method to implement a virtual analysis of ionic

transport problems. By simulating non-steady state migration test, the process of ionic

transport under electrically induced conditions is explored for OPC and modified

concrete systems. The governing equation of the system is a convection-diffusion

equation, and the accuracy of its solution is heavily dependent on both the element

number and time step used in simulation. In this study, a total of 1000 elements and a

time step of one second were chosen as default values for the models. While decreasing

the numbers of elements leads to oscillatory results, increasing the value of time step

results in totally unstable results. By using the Petrov-Garlerkin method, unconditional

stable solution can be reached without significantly losing accuracy. All the numerical

simulation codes are included in Appendix A.

When there’s strong external electrical voltage exists in the system, diffusion part can be

omitted during simulation since the electrical migration dominates the penetration

process. However, the specific relationship between diffusion and electrical migration is

still unclear. Further work is needed to explore how electrical field influence the ionic

diffusion process. During the NSSM test, the ionic diffusion coefficients varies with the

ionic concentration, a higher concentration level gives a slower diffusion speed. Porosity,

pore connectivity and the binder’s chloride binding ability influence the penetration

process. Larger porosity and pore connectivity, smaller binding ability lead to higher

penetration depth. It is also noticed that the assumption of constant electrical field is

improper. During the NSSM, electrical filed varies with the changing of ionic

concentration. It should be point out that the predicted concentration profile differs from

37

the experimental profile at the penetrated part, which is also need more further work to

explore the reason. It is also noticed that the chloride penetration spped varies with

testing time. As time goes on, increasing of chloride ion concentration level and

increasing of binding slow the penetration process.

38

PART II. COMPUTATIONAL EVALUATION OF THE INFLUENCE OF CRACK

PROPERTIES ON CONCRETE PERMEABILITY

6 INTRODUCTION

The permeability of concrete has important implications on its durability since

permeability controls the rate of penetration of moisture that may contain aggressive

solutes and also controls moisture movement during heating and cooling or freezing and

thawing [30]. During the past several decades, different methods were developed for a

better understanding of concrete permeability. These models generally consider

uncracked concretes. Extensive research has been done [31,32,33,34,35] on the water

permeability of crack-free concrete and this leads to the general conclusion that the

saturated water permeability of concrete is a function of its porosity, pore connectivity,

and the square of a threshold pore diameter [33,34,35], which is similar to what Katz and

Thompson developed and is a well-accepted permeability model for rocks. On the other

hand, research on transport through cracked concrete has been limited. The major reason

for this is that characterizing cracking in concrete is rather difficult and identifying the

parameters of the crack that influence permeability is non-trivial. The pioneering works

of Kermani [36], Tsukamoto and Wörner [37], and Gérard et al. [38] explored changes in

permeability of concrete caused by the application of compressive or tensile stress.

Akhavan et al. [39] explored the effect of geometric parameters of cracks on permeability.

In this part of this thesis, the focus is on numerically modeling the moisture transport

through concretes containing cracks of varying sizes, shapes, and tortuosity. A modified

Louis equation is chosen as the primary model to estimate the crack permeability from its

geometric properties. As a comparison, Navier-Stokes equation and Lattice-Boltzmann

39

method are also studied and discussion about the differences is indicated. This study is a

preliminary effect to discern the geometric effects of cracks on permeability through

numerical simulations.

40

7 MATHEMATICAL MODELS FOR PERMEABILITY ESTIMATION

7.1 Modified Louis Equation

Modified Louis equation is an expression that connects the permeability with geometric

properties of crack – effective crack width, tortuosity and surface roughness [39]:

 (
)

 (7-1)

In which () is the crack permeability, () is the effective crack width, is the

tortuosity factor and is the relative surface roughness of a crack.

7.1.1 Effective Crack Width

In this study, the developed model assumes that the crack propagates into several layers

along depth of concrete with unit thickness in perpendicular direction. At each layer,

crack path consists of circles with different radii along a zig-zag line. Thus, the basic

crack is generated as shown in Fig. 7.1.

Figure 7.1. Crack generation model (Top surface)

According to Darcy’s law, for the first row (surface), the volumetric discharge rate ()

is described as:

 ∑

∑

 (7-2)

41

In which n is the total number of circles in each layer, is the representative width of

each circle,

 and represent the permeability [40] and pressure loss for each

element. Assuming that the elements' length and thickness are chosen to be constants:

 and , and that the flow is one-dimensional ():

 ∑

 (7-3)

Combining Eq. (2-3) with Darcy’s law results in:

 (7-4)

 √

∑

 (7-5)

Finally, the effective crack width of each layer can be expressed as:

 √

∑

 (7-6)

In which is the representative width of i-th circle in j-th layer, is the effective

crack width of j-th layer.

To calculate the total effective through-crack width, , assume

 ,

Then based on Eq. (2-4),

 (7-7)

42

Where is the total discharge rate, is the total pressure loss

across the specimen, and j is the number of layers.

Then

 (

)

 (7-8)

 ∑

 ∑(

)

 (

) (7-9)

And ultimately,

√

∑ (

)

(7-10)

7.1.2 Crack Tortuosity

The tortuosity of crack can be easily determined as:

 (

)

 (7-11)

In the above equation, is the depth of specimen and is the actual crack length. It has

been shown in [41] that permeability drops proportionally with (

)

 but not with

since the larger effective length affects both pressure gradient and fluid velocity.

7.1.3 Crack Roughness

As shown in Fig. 7.2, roughness is determined in two steps in this study. First, the

segment to is selected and its roughness is determined by calculating the

average height of surface asperities with respect to its reference ̅ line as:

∑(| ̅() ()|) (7-12)

43

In which is the local roughness over this segment, and the quantity in front of Σ is

the absolute value of the difference between crack profile and the reference line in the

direction perpendicular to the reference line. Next, the segment is shifted 1 pixel to the

right (to) and the local roughness is recalculated. The segment is swept over

the entire assessment length (to) and the corresponding values are

calculated. A total of () number of values are averaged to determine the

global surface roughness:

∑ ()

 (7-13)

Here, is the relative surface roughness.

Figure 7.2. Schematic of a crack profile to illustrate the method of quantifying tortuosity

and roughness [39]

44

7.2 Navier-Stokes Equations

Absolute permeability appears in Darcy’s law as a constant coefficient relating fluid,

flow and material parameters:

 (7-14)

In the above equation, () is the global flow rate through the crack, () is the

cross section of the crack, () is the absolute permeability, () is the dynamic

viscosity of the flowing fluid and [

] () is the pressure gradient.

To numerically estimate the absolute permeability, the simplified Navier-Stokes

equations as given below can be solved:

 {

 (7-15)

In which is the velocity of the fluid; P is the pressure of the fluid and is the dynamic

viscosity of the flowing fluid.

The simplification is based on the following considerations: 1) Incompressible fluid,

which means constant density of the fluid; 2) Newtonian nature of the fluid, which gives

a constant dynamic viscosity; 3) Steady-state flow, which indicates that the velocity does

not vary over time; and 4) Laminar flow, which means that the concerned velocities are

small enough not to produce turbulence [42].

7.3 Lattice Boltzmann Methods

Lattice Boltzmann methods are special numerical schemes for solving the incompressible

Navier-Stokes equations. The set of equations are given as below:

45

 () ()

(7-16)

In which stands for the fluid velocity, represents density, denotes pressure,

represents viscosity, and stands for the tensor product of two vectors. Fluids fulfilling

those equations for a constant viscosity are called Newtonian fluids, all others are

referred to as non-Newtonian.

In Lattice-Boltzmann methods, instead of discretizing the Navier-Stokes equation directly,

particle dynamics is simulated on a mesoscopic scale. Compared with traditional methods,

they are a serious alternative option for computational fluid dynamics based modeling

[43,44,45,46]. At each time t, consider the concentration of particles () located at

lattice node and moving with lattice velocity , where can only take certain constant

values that make sure the particle density is moving from one lattice point to another

during one time step . The general Lattice Boltzmann equation is expressed as:

 () () (7-17)

where represents the so-called collision operator. Several definitions have been given

for the collision operator, each of them defining a special Lattice Boltzmann scheme.

One of the widely used approximations is the Bhatnagar-Gross-Krook (BGK) model [47].

They noticed that the main effect of the collision operator is to bring the velocity

distribution function closer to the equilibrium distribution. Based on the BGK

approximation [47,48], the collision operator can be defined as:

(()

 ()) (7-18)

In which is the rate of relaxation towards local equilibrium,
 () is the equilibrium

distribution function.

46

In this thesis, two-dimensional square lattice with nine-velocity (D2Q9) BGK model is

applied since it is successful for simulations of two-dimensional flows [49]. The

schematics can be seen in Fig. 7.3.

Figure 7.3. D2Q9 model description for Lattice Boltzmann simulations

The velocity is defined as:

 (7-19)

Where , and are the lattice grid spacing and time step. is the velocity

directions given as:

 {

()
(() ())

√ (() ())

 (7-20)

The relaxation parameter determines the kinematic viscosity of the simulated fluid:

 ()
 (7-21)

Where √ is the speed of sound.

The equilibrium distribution function
 () is defined as:

47

 ()

{

 (())

 (())

 (())

 (7-22)

Where

 (()) [
(())

(())

| ()|

] (7-23)

with the weight coefficient

{

 (7-24)

 , and are parameters satisfying , .

The distribution function satisfies the following conservation laws:

 ∑ () ∑
 () (7-25)

 ∑ () ∑
 () (7-26)

The local fluid pressure and velocity are given by:

[∑ () (())] (7-27)

 () ∑ () (7-28)

48

8 GENERATION OF SINGLE 3D CRACK

For the permeability analysis methods described in this thesis, a controllable random 3D

crack is necessary as a starting point. As discussed in an earlier section, 3D crack was

constructed using 2D square images having a size of 300 pixels x 300 pixels and a total

depth of 300 pixels.

8.1 Surface 2D Crack

Firstly, the surface crack shape was built as a basic model for other layers. Cracks on

different layers are assumed to have the same shape as the surface crack, but they are of

different crack widths and positions in the layer. Another assumption is that the basic

crack has a zig-zag shape. First of all, the total numbers of zig-zags are defined and the

starting point of the crack chosen. A certain number of random numbers are generated

and they are assigned as slopes for those zig-zag lines. A scale factor was used to adjust

the slopes if necessary. Another set of random numbers were generated (between 0.5 and

1) for crack widths. These random numbers are multiplied with appropriate width factor

to get desired crack width at a given point on the zig-zag line. Hence numbers of zig-zag

lines, width factor and scale factor are the parameters that can be controlled in the process

of generation of the crack. Fig. 8.1(a) shows a surface random crack.

The image binarization technology is employed to define the crack location and concrete

region on a 2D image. The default binary value of image is set to be 1 for the concrete

region, whereas 0 is assigned to cracked part. The boundary between crack and solid

phase can then be defined clearly.

49

Figure 8.1. Generation of random 3D crack: (a). Random generated surface 2D crack; (b).

3D reconstruction of crack in a concrete block

8.2 3D Crack Generation

Based on the 2D image generated as explained in the previous section, these images were

stacked together by establishing appropriate relationships between each layer to get the

final 3D image. Since the minimum unit of the image is 1 pixel, each layer has a

thickness of 1 pixel. Another set of random numbers have been generated to control the

change in crack position between different layers. A linear function is used to control the

width change. Finally a random crack can be generated as shown in Fig. 8.1(b). The

random crack can be defined to pass through the entire member or can be terminated at

any desired depth location in the 3D reconstruction of concrete.

50

9 SIMULATION RESULTS AND ANALYSIS

For several sets of 3D crack models, different mathematical models have been applied in

this study to evaluate the influence of crack parameters on permeability. Geometric

parameters are controlled during the generation process of crack. Results from both

Navier-Stokes equation and Lattice-Boltzmann method are compared with Louis

Equation in this section. It should be noticed that since crack width is varied everywhere

on its path, it is difficult to determine the effective width of a crack and is not intuitive to

describe the crack with this parameter alone as is commonly attempted. However,

effective crack width has a linear relationship with the total volume of crack, which is

more convenient to understand the relationship between the permeability and the crack

geometry. Hence, the fraction of crack volume over the total concrete volume, defined as

crack volume ratio () in this study, rather than the effective crack width, is used as an

important factor that influences the crack permeability.

 (9-1)

Where is the effective crack width, is the effective crack length, is the crack

depth and is the total volume of sample concrete. All of the parameters can be

carefully controlled and quantified during the 3D crack generation process.

A parametric study was carried out to understand effect of various parameters such as

effective crack width, crack volume, crack surface roughness, tortuosity on the

permeability of the concrete. Effects of these different parameters are discussed

separately in the following sub-sections.

51

9.1 Crack Volume Ratio ()

Fig. 9.1 shows a typical permeability – crack volume ratio relationship of crack with a

tortuosity of 0.238 and global roughness of 22.54 μm. As shown in the curve, Louis

equation results in larger permeability predictions than the Navier-Stokes equation. Since

during crack width calculation, diameters of each circle are used to calculate the average

crack width of each layer, which is likely to lead to a result that is higher than the actual

value. For both the methods, it is obvious that the rate of permeability increase slows

down drastically after reaches a threshold value of about 0.05. It should also be noted

that the simplified Navier-Stokes equations cannot predict the crack permeability for

crack volume ratio lower than 0.04. This is because during the numerical simulation,

laminar flow is considered as the only flow going through the crack. However, when the

effective crack width is decreased without a change in the pressure gradient, the velocity

of flow will increase and turbulence will occur, which will mathematically invalidate the

Navier-Stokes equations solution.

Fig. 9.2 shows the comparison of the permeability values from these above two methods.

It can be found that for crack volume ratio between 0.05 and 0.14, a power function can

fit the relationship well. With a lower crack volume ratio, the difference between these

two methods drastically enlarges to more than one magnitude. This again gives the idea

that for small effective width, the simplified Navier-Stokes equations cannot predict the

permeability properly.

52

Figure 9.1. Permeability versus crack volume ratio, Navier-Stokes equations and Louis

model

Figure 9.2. Comparison of Louis and Navier-Stokes prediction of permeability

53

Figure 9.3. Permeability – crack volume ratio relationship, Lattice Boltzmann method

and Louis model

Fig. 9.3 shows the permeability – effective crack width relationship determined using the

Louis’ equation and the Lattice-Boltzmann method. As shown here, Louis’ equation

gives a result that is closer to that of the Lattice Boltzmann method at crack volume ratios

between 0.075 and 0.13. Fig. 9.4 shows the comparison of the predictions from Lattice

Boltzmann method and the Louis model. A better linear correlation is found and it shows

that the Lattice Boltzmann method gives a permeability value that is about 1.2 times

larger than that given by Louis’ equation. It can therefore be noticed that the LB equation

adequately captures the predictions by the Louis equation for the conditions simulated in

this study.

54

Figure 9.4. Comparison of Louis and Lattice-Boltzmann prediction of permeability

9.2 Effect of Crack Roughness and Tortuosity

Fig. 9.5 shows a typical curve for the relationship of global roughness and sampling

length, λ, which gives an almost linear relationship between these two parameters. It

indicates that the global roughness increases with an increase in sampling length.

However it needs to be pointed out that the random numbers generated by the MATLAB

code to control the perpendicular zig-zag shape also have a significant effect on

roughness.

55

Figure 9.5. Relationship between roughness and sampling length

Fig. 9.6 shows a series of cracks with different boundary conditions: from smooth surface

to rough surface. Table 9.1 shows the roughness values for a certain sampling length

(). It is obvious that with a significant change in crack boundary conditions,

the values of roughness changes barely with a small sampling length. Thus, for this

roughness measurement method, sampling length has a more significant effect on

roughness. In other words, the value of surface roughness mainly depends on the

sampling length, not the model itself. This needs to be considered while these models are

being implemented, which is an objective of further work.

56

Figure 9.6. Different crack boundary conditions

Table 9.1 Roughness values with
Conditions (a) (b) (c) (d) (e) (f)

Values(pixels) 10.59331 11.86364 13.54534 15.24518 16.92493 18.61767

(a) (b)

(c) (d)

(e) (f)

57

Figure 9.7. Permeability – Global roughness relationship for Louis model

Fig. 9.7 shows a typical permeability – roughness curve based on the Louis’ model. This

relationship shows that with an increasing global roughness, the permeability drops

quickly since large roughness contributes to a larger friction coefficient, which causes an

increase in pressure loss during the flow of the fluid through the crack.

58

Figure 9.8. Permeability – Tortuosity relationship

Fig. 9.8 shows the permeability – tortuosity relationships for all the three methods. It is

clear that Louis model gives a linear relationship between permeability and tortuosity

since it is a linear function of tortuosity. However it will be obvious to the reader when

considering the nature of tortuous pathways through a material, that such a relationship is

not very practical. For the prediction based on Navier-Stokes’ model, the results are quite

invariant with tortuosity, which is not a realistic scenario. Several issues might have

resulted in such an observation – the turbulence in transport pathways which are not

considered by the model, and the simplifications in fluid velocity profiles. However, the

Lattice-Boltzmann method is seen to predict the expected influence of tortuosity on the

permeability of a cracked system. This is attributable to the refinements in this method

that accurately predicts the velocity vectors and the solution of the incompressible flow

equation.

59

9.3 System with Multiple Cracks

Compared to a system with a single crack as discussed above, multiple cracks are more

common in practice. With more than one crack generated in a cubic sample, permeability

will depend also on the crack connectivity (or the lack of it). .

In this part of the study, cracks with branching and a separate-double-crack (Fig. 9.9) are

two basic models that will be discussed. The total crack volume ratio φ and the crack

tortuosities (of the individual crack) are kept as a constant during the test. By varying the

tortuosity and effective width of the crack, differences between single, double and

branching cracks are discussed in the following sections.

Figure 9.9. Multiple cracks with different connection: (a). Crack with branching; (b).

Double-crack

Fig. 9.10 provides a comparison of the permeability values obtained from the Louis’

equation and the Lattice Boltzmann method for single, double, and branching cracks with

a crack volume ratio of 0.1 and a tortuosity of 0.3. The results show that when the Lattice

Boltzmann method is used, despite the geometric shape of crack, a similar total volume

of crack is found to lead to similar permeability values. It also should be noted that the

double crack and branching crack geometries show exactly same permeability values,

which is slightly lower than that of single crack. This phenomenon indicates that by

(a) (b)

60

applying the Lattice Boltzmann method, multiple cracks lead to same permeability values

regardless of their connectivity. However, for a certain total crack volume, increasing

crack numbers reduces the concrete permeability. The Louis equation provides lower

permeability values for both the double and branching cracks. This may indicate that this

method is improper for calculating the permeability of multiple crack system. The

preliminary studies shown here with multiple cracked systems indicate that both the

methods, as applied here, are incapable of predicting the permeability through the crack.

These could be related to the limitations in the Lattice Boltzmann method where flow

paths are maintained irrespective of the connectivity when the sizes of the cracks are

greater than a certain threshold value. More studies are needed to refine these models to

account for the crack characteristics in systems with multiple cracks.

Figure 9.10. Permeability prediction from Lattice-Boltzmann and Louis model for

different types of cracks

0

20

40

60

80

100

120

single double branching

P
er

m
ea

b
ili

ty
 (

u
m

2
)

Louis LB

61

10 SUMMARY

In this part of the work, a method to develop 3D reconstruction of cracks is established.

The major geometric properties of the crack (volume ratio, tortuosity, and the type of

crack) are used as the input information to control the process of generation cracks. Other

geometrical properties like crack roughness are measured during the generation process.

The 3D crack generation models are used as inputs in both Navier-Stokes equation and a

Lattice Boltzmann method for predicting the permeability of simulated cracked concretes.

Louis’ equation estimates the permeability based on all the geometrical properties of

cracks and the empirical equation that relates those properties. Results on comparing the

efficiency of these methods show that:

1) Both Navier-Stokes equations and Lattice Boltzmann method are not sensitive to the

global surface roughness of crack

2) Lattice Boltzmann method and the Louis equation predicts the permeability better

than the Navier-Stokes equation

3) Crack volume ratio and tortuosity are two dominant factors that influence the

permeability of cracks

4) The studied methods do not adequately capture the permeability of concretes with

multiple crack geometries and differing connectivity.

62

CONCLUSIONS

Chloride transport into concrete and crack of concrete are two important aspects that will

drastically influence the durability of concrete. The first part of the thesis gives

fundamental information on the transport of chloride ions into concrete under electrically

induced conditions by considering the simultaneous movement of other ions in the

concrete pore solution. By simulating the non-steady state migration test, the ion

transportprocess is explored for OPC and modified concrete systems. The governing

equation of the system is a convection-diffusion equation, and the accuracy of its solution

is heavily dependent on both the element number and time step used in simulation. In this

study, a total of 1000 elements and a time step of one second are chosen as default values

for the models. While decreasing the numbers of elements leads to oscillatory results,

increasing the value of time step results in unstable results. By using the Petrov-Garlerkin

method, unconditional stable solution can be reached without significantly losing

accuracy. All the numerical simulation codes are included in Appendix A. When a strong

external electrical voltage exists in the system, the diffusion component can be omitted

during simulation since the electrical migration dominates the penetration process.

However, the specific relationship between diffusion and electrical migration is still

unclear. Further work is needed to explore how electrical field influence the ionic

diffusion process. During the NSSM test, the ionic diffusion coefficients varies with the

ionic concentration, and a higher concentration level gives a slower diffusion speed.

Porosity, pore connectivity and the chloride binding ability of the binder are considered

in the numerical model that adequately predicts chloride transport into concretes in this

study. Larger porosity and pore connectivity, and a smaller chloride binding ability lead

63

to higher penetration depth. It is also noticed that the assumption of constant electrical

field is improper. During the NSSM, electrical field varies with the ionic concentration. It

should be pointed out that the predicted concentration profile differed from the

experimentally obtained values even though the overall depths were similar, which also

needs further evaluations.

Second part of this thesis focused on numerically simulating the permeability of concrete

with cracks. 3D crack models of different shapes have been established computationally.

A MATLAB code for generating 3D cracks can be found in Appendix B. The Navier-

Stokes equation and an 8-node Lattice Boltzmann method are applied to predict the

permeability of the simulated cracked concrete along with the empirical Louis’ equation

that considers crack parameters. Numerical results show that: 1) Both Navier-Stokes

equations and Lattice Boltzmann method are not sensitive to the global surface roughness

of crack; 2) Lattice Boltzmann method and the Louis equation predicts the permeability

better than the Navier-Stoke’s equation; 3) rack volume ratio and tortuosity are two

dominant factors that influence the permeability of cracks; and 4) The studied methods

do not adequately capture the permeability of concretes with multiple crack geometries

and differing connectivity. MATLAB code for Lattice Boltzmann method is attached in

Appendix C. More studies are needed to develop adequate numerical solutions for

permeability in cracked concretes.

64

REFERENCES

[1] M.V.A Marinescu and H.J.H Brouwers, Free and bound chloride contents in

Cementitious materials, 8
th

 fib PhD Symposium in Kgs.Lyngby, Denmark, June 20-23,

2010

[2] Ming-Te Liang, Ran Huang and Hao-Yuan Jheng, Revisited to the relationship

between the free and total chloride diffusivity in concrete, Journal of Marine Science and

Technology, Vol. 18, 2010, pp. 442-448

[3] L. Tang, Chloride transport in concrete – measurement and prediction, PhD thesis,

Chalmers University of Technology, Gothenburg, Sweden, 1996

[4] H. Zabara, Binding of external chlorides by cement pastes, PhD thesis, University of

Toronto, Canada, 2001

[5] Qiang Yuan, Caijun Shi, Geert De Schutter, Dehua Deng and Fuqiang He, Numerical

model for chloride penetration into saturated concrete, Journal of Materials in Civil

Engineering, Vol. 23, 2011, pp.305-311

[6] G.A. Julio-Betancourt, R.D. Hooton, Study of the Joule effect on rapid chloride

permeability values and evaluation of related electrical properties of concretes, Cement

and Concrete Research, Vol. 34, 2004, pp. 1007–1015

[7] NT BUILD 492, Concrete, mortar and cement-based repair materials: chloride

migration coefficient from non-steady state migration experiments, Nordtest Method, 492,

1999

[8] A. Matthew, Mechanical and chloride transport performance of particle size classified

limestone cements, MS thesis, Arizona State University, U.S.A, 2014

[9] E.Samson, G.Lemaire, G.Marchand and J.Beaudoin, Modeling the chemical activity

in strong ionic solutions, Computational Material Science, Vol. 15, 1999, pp. 285–294

[10] O.Truc, Prediction of chloride penetration into saturated concrete – Multi-species

approach, PhD. Thesis, Deptartment of Building Materials, Chalmers University of

Technology, Goteborg, Sweden

[11] E. Samson, J. Marchand, J.L. Robert, J.P. Bournazel, Modelling ion diffusion

mechanisms in porous media, International Journal for Numerical Methods in

Engineering, Vol. 46, 1999, pp. 2043-2060

[12] E. Samson, J. Marchand, Numerical solution of the Extended Nernst-Planck model,

Journal of Colloid and Interface Science, Vol. 215, 1999, pp. 1-8

65

[13] O.C. Zienkiewicz, R.L. Taylor, The finite element method, 5
th

 edition, Vol. 3, 2000,

ISBN 0-7506-5050-8

[14] H.F.W. Taylor, A method for predicting alkali ion concentrations in cement pore

solutions, Advanced Cement Research, Vol. 1, 1987, pp. 5–16

[15] W. Chen, Z.H. Shui, H.J.H. Brouwers, A computed-based model for the alkali

concentrations in pore solution of hydrating Portland cement paste, Excellence in

Concrete Construction through Innovation – Limbachiya & Kew (eds), © 2009 Taylor &

Francis Group, London, ISBN 978-0-415-47592-1

[16] E.Samson, J. Marchand and K.A.Snyder, Calculation of ionic diffusion coefficients

on the basis of migration test results, Materials and Structures, Vol. 36, 2003, pp. 156-

165

[17] N. Neithalath, J. Weiss and J. Olek, Modeling the effects of pore structure on the

acoustic absorption of Enhanced Porosity Concrete, Journal of Advanced Concrete

Technology, Japan Concrete Institute, Vol.3, 2005, pp. 29-40

[18] K.B. Sanish, N. Neithalath and M. Santhanam, Monitoring the evolution of material

structure in cement pastes and concretes using electrical property measurements,

Constructing and Building Materials. Vol. 49, 2013, pp. 288–297

[19] E.J. Garboczi, Permeability, diffusivity, and microstructural parameters: A critical

review, Cement and Concrete Research, Vol. 20, 1990, pp. 591–601

[20] K.A. Snyder, X. Feng, B.D. Keen, T.O. Mason, Estimating the conductivity of

cement paste pore solutions from OH
−
, K

+
 and Na

+
 concentrations, Cement and Concrete

Research, Vol. 33, 2003, pp. 793–798

[21] P. Spiesz, H.J.H. Brouwers, The apparent and effective chloride migration

coefficients obtained in migration tests, Cement and concrete Research, Vol. 48, 2013,

pp.116-127

[22] Q. Yuan, C. Shi, G.D. Schutter, K. Audenaert, D. Deng, Chloride binding of cement

based materials subjected to external chloride environment – a review, Construction and

Building Materials, Vol. 23, 2009, pp. 1–13

[23] R. Loser, B. Lothenbach, A. Leemann, M. Tuchschmid, Chloride resistance of

concrete and its binding capacity – comparison between experiments and thermodynamic

modeling, Cement and Concrete Composite, Vol. 32, 2010, pp. 31–42

[24] M. Balonis, B. Lothenbach, G.L. Saout, F.P. Glasser, Impact of chloride on the

mineralogy of hydrated Portland cement systems, Cement and Concrete Research, Vol.

40, 2010, pp. 1009-1022

66

[25] P. Spiesz, M.M. Ballari, H.J.H. Brouwers, RCM: A new model accounting for the

non-linear chloride binding isotherm and the non-equilibrium conditions between the

free- and bound-chloride concentrations, Construction and Building Materials, Vol. 27,

2012, pp. 293-304

[26] M. Castellote, C. Andrade, C. Alonso, Chloride-binding isotherms in concrete

submitted to non-steady-state migration experiments, Cement and Concrete Research,

Vol. 29, 1999, pp. 1799-1806

[27] J.L. Marriaga, P. Claisse, Determination of the concrete chloride diffusion

coefficient based on an electrochemical test and an optimization model, Materials

Chemistry and Physics, Vol. 117, 2009, pp. 536-543

[28] A. Ipavec, T. Vuk, R. Gabrovsek, V. Kaucic, Chloride binding into hydrated blended

cements: The influence of limestone and alkalinity, Cement and Concrete Research, Vol.

48, 2013, pp. 74-85

[29] J. Marchand, B. Gérard, A. Delagrave, Ion transport mechanisms in cement-based

materials, Materials Science of Concrete, Vol. 5, 1998, pp. 307-400

[30] S. Mindess, J.F. Young, and D. Darwin, Concrete, 2
nd

 edition, Prentice Hall, Upper

Saddle River, NJ, 2003

[31] A.S. EI-Dieb, R.D. Hooton, Water-permeability measurement of high performance

concrete using a high-pressure triaxial cell, Cement and Concrete Research, Vol. 25,

1995, pp. 1199-1208

[32] D. Ludirdja, R.L. Berger, J.F. Young, Simple method for measuring water

permeability of concrete, ACI Materials Journal, Vol. 86, 1989, pp. 433–439

[33] A.J. Katz, A.H. Thompson, Quantitative prediction of permeability in porous rock,

Physical Review B, Vol. 34, 1986, pp. 8179–8181

[34] P. Halamickova, R.J. Detwiler, D.P. Bentz, E.J. Garboczi, Water permeability and

chloride ion diffusion in portland cement mortars: relationship to sand content and critical

pore diameter, Cement and Concrete Research, Vol. 25, 1995, pp. 790–802

[35] M.R. Nokken, R.D. Hooton, Using pore parameters to estimate permeability or

conductivity of concrete, Materials and Structures Journal, Vol. 41, 2008, pp. 1–16

[36] A. Kermani, Permeability of stressed concrete, Building Research Information, Vol.

19, 1991, pp. 360–366

[37] M. Tsukamoto, J.D. Wörner, Permeability of cracked fiber-reinforced concrete,

Darmstadt Concrete, Vol. 6, 1991, pp. 123–135

67

[38] B. Gérard, D. Breysse, A. Ammouche, O. Houdusse, O. Didry, Cracking and

permeability of concrete under tension, Materials and Structures, Vol. 29, 1996, pp. 141–

151

[39] A. Akhavan, S.M.H. Shafaatian, F. Rajabipour, Quantifying the effects of crack

width, tortuosity and roughness on water permeability of cracked mortars, Cement and

Concrete Research, Vol. 42, 2012, pp. 313-320

[40] D.Snow, Anisotropic permeability of fractured media, Water Resource Research,

Vol. 5, 1969, pp. 1273-1289

[41] J. Bear, Dynamics of fluids in porous media, Dover Publications, New York, 1988

[42] Avizo 7 users guide, 2011, Visualization Dciences Group

[43] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annual Review of

Fluid Mechanism, Vol. 30, 1998, pp. 329-364

[44] B.Chopard, M. Droz, Cellular Automata Modeling of Physical Systems, Claude

Godrèche (ed.): Collection Aléa-Saclay: monographs and texts in statistical physics, 1998,

Cambridge: Cambridge University Press

[45] D. Kandhai, D.J.E. Vidal, A.G. Hoekstra, H. Hoefsloot, P. Iedema, P.M.A. Sloot,

Lattice-boltzmann and finite element simulations of fluid flow in a SMRX static mixer

reactor, International Journal for Numerical Methods in Fluids, Vol. 31, 1998, pp. 1019-

1033

[46] S. Succi, The lattice Boltzmann Equation: for Fluid Dynamics and Beyond,

Numerical Mathematics and Scientific Computation, 1998, Oxford New York: Oxford

University Press

[47] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases: I.

Small amplitude processes in charged and neutral one-component systems, Physics

Review, Vol. 94, 1954, pp. 511-525

[48] S. Ansumali, I.V. Karlin, E. Frouzakis, K.B. Boulouchos, Entropic lattice Boltzmann

method for microflows, Journal of Statistical Physics, Vol. 107, 2002, pp. 291-309

[49] Z. Guo, B. Shi, N. Wang, Lattice BGK Model for Incompressible Navier-Stokes

Equation, Journal of Computational Physics, Vol. 165, 2000, pp. 288-306

68

APPENDIX A

C
++

 CODE FOR NUMERICAL SIMULATION OF NSSM TEST

69

1. Main program

/*This is a project for 1D diffusion simulation
based on NPP equation in saturated concrete
Author: Pu Yang
Date: Feb. 2014
*/

#include<iostream>
#include"mesh.h"

int main()
{
 CMesh DIFFUSION;

 // read & prepare the model
 DIFFUSION.ReadProblem1();

 DIFFUSION.PrepareModel();

 DIFFUSION.ReadProblem2();

 DIFFUSION.PrepareIO();

 // impose bondary and initial conditions
 DIFFUSION.ConstructIC();

 // construct the capacity matrix
 DIFFUSION.ConstructC();

 // construct the force vector
 DIFFUSION.ConstructF();

 int Step; int total; int kind;
 DIFFUSION.GetStep(Step);
 DIFFUSION.GetTotal(total);
 DIFFUSION.Getkinds(kind);

 while (Step < total)
 {
 std::cout<<"Total Steps: "<<Step<<"\n";

 DIFFUSION.Counter();

 DIFFUSION.GetStep(Step);

 DIFFUSION.Solve();

 for (int i=1;i<=kind;i++)
 {
 DIFFUSION.Solve2(i);
 }

 DIFFUSION.Solve3();

 }
 DIFFUSION.ShowEnd ();

70

 return 0;
}

2. Header file

#ifndef _MESH_H__
#define _MESH_H__

#include <fstream>
#include <iostream>
#include <sstream>
using std::ostringstream;
#include "node.h" // node class
#include "element.h" // element class
#include "constants.h" // program limitations etc.
#include "..\library\vectortemplate.h"
#include "..\library\matrixtemplate.h"
#include "..\library\MatToolBox.h"
#include "..\library\NumericalIntegration.h"

class CMesh
{
public:
 CMesh (); // ctor
 ~CMesh (); // dtor

 // study case
 void Model1 ();void Model2 ();void Model3 ();void Model4 ();
 void Model5 ();void Model6 ();void Model7 ();

 void BD2 ();

 // help function
 void IO ();
 void PrepareIO ();
 void ReadProblem1 ();
 void ReadProblem2 ();
 void PrepareModel ();
 void PrepareMode2 ();
 void ShowEnd ();
 void ConstructK_c ();
 void ConstructK_t ();
 void ConstructC ();
 void ConstructCcl ();
 void ConstructIC ();
 void ConstructE ();
 void ConstructBC ();
 void ConstructF ();
 void ImposeBC ();
 void CalculateCl ();
 void CalculateD ();
 void Solve ();
 void Solve2 (int i);

71

 void Solve3 ();
 void Solve4 ();
 void Counter ();
 int CreateOutputCon (int& j,CMatrix<double>& A, int& T);
 int CreateOutputFlux (int& j,CMatrix<double>& A, int& T);
 int CreateOutputCol (int& j,CMatrix<double>& A, int& T);
 int CreateOutputCon2 (int j,CVector<double>& A, int& T);
 int CreateOutputCol2 (int j,CVector<double>& A, int& T);

 int CreateOutput2 (int j,CVector<double>& A, int& T);
 int WriteReport2 (CVector<double>& A);
 int WriteReport3 (CMatrix<double>& A);
 int WriteReport ();
 void GetStep (int& step);
 void GetTotal (int& total);
 void GetTime (float& t);
 void Getkinds (int& kind);

 //void Crout(int d,CVector<double>S,CVector<double>D);
 void solveCrout(int d,double*LU,double*b,double*x);

private:
 int m_nNodes; // number of nodes
 int m_nElements; // number of element
 int m_nKinds; // total number of ions
 double m_dLength; // thichness of sample
 double m_dArea; // section area of smaple
 double m_fdistance; // distance between two nodes
 double m_fdt; // time step
 int m_nStep; // total step
 int N; // current step
 int TIME; // current time
 double m_dp; // porosity
 double m_dtau; // tortuosity
 double m_da; // constant a
 double m_db; // constant b
 double m_dden; // density
 double m_dPhi; // electrical potential
 double m_E; // electrical potential gradient
 double m_D0; // max cofficient
 double m_C0; // max concentration
 double Pec; // Peclet number
 double a; // constant for binding mechanism
 double b; // constant for binding mechanism
 double m_Cl; // total chloride content in the sample
 int JUDGE; // weither calculate binding or not, 1 yes 0 for no;

 // these store the FE model data
 CVector<CNode> m_NodalData; // nodal data
 CVector<CElement> m_ElementData; // element data

 CVector<ostringstream> m_FileInput; // File Input
 CVector<ostringstream> m_FileOutput; // File Output

72

 std::ofstream m_FileOutputhandle[10];

CVector<double> m_dC_s; // surface concentration of different ions
 CVector<double> m_dC_0; // bottom concentration of different ions
 CVector<double> m_dC_i; // initial concentration of different ions
 CVector<double> m_nZ; // velance of chloride iron
 CVector<double> m_dD; // diffusion cofficient of different ions
 CVector<double> m_dE; // electrical potential at each node
 CVector<double> m_SF; // structural nodal force
 CVector<double> m_I; // current at each node
 CVector<double> m_Phi; // electrical potential at each node
 CMatrix<double> m_SSM1; // structural stiffness matrix, constant part
 CMatrix<double> m_SSM2; // structural stiffness matrix, variable part
 CMatrix<double> m_SSM3; // structural stiffness matrix, variable part
 CMatrix<double> m_SSM4; // structural stiffness matrix, variable part
 CMatrix<double> m_Ke; // structural electric stiffness matrix
 CMatrix<double> m_SSC; // structural capacity matrix
 CMatrix<double> m_J; // flux of ions
 CMatrix<double> m_Coulombs; // coulombs at each node
 CVector<double> coulombs; // arveage coulombs
 CMatrix<double> m_SA0; // "a" vector for initial condition of
different ions
 CVector<double> m_U; // system vector
 CVector<double> m_Ccl; // binding chloride at each node

 CMatrix<double> Kt;
 CVector<double> U_new;
 CVector<double> U_old;
 CVector<double> J_old;
 CMatrix<double> a_old;

 CMatrix<double> KK;
 CVector<double> FF;

 CMatrix<double> D; // Diffusion matrix

 // element-related
 int k1DC0LElement (int nE, CVector<int>& nVNList,
 CMatrix<double>& dMk);

};
#endif

3. Input file

#include"mesh.h"
#include<cmath>

void CMesh::BD2 ()
{
 // Boundary Condition

73

 // Cl- ion
 m_dC_s(1) = 1900;
 m_dC_0(1) = 0;
 // Na+ ion
 m_dC_s(2) = 1900;
 m_dC_0(2) = 300;
 // K+ ion
 m_dC_s(3) = 0;
 m_dC_0(3) = 0;
 // OH- ion
 m_dC_s(4) = 0.0;
 m_dC_0(4) = 300;
}

void CMesh::Model1 ()
{
 a = 0.48e-4;
 b = 1;
 m_dp = 0.099;
 m_dtau = 0.002789;
 // Note: All the values are in the unit of mmol/L

 // Initial Condition
 // Cl-
 m_dC_i(1) = 0;
 m_nZ(1) = -1;
 m_dD(1) = 0.211e-12;
 // Na+
 m_dC_i(2) = 140;
 m_nZ(2) = 1;
 m_dD(2) = 1.334/2.032*0.211e-12;
 // K+
 m_dC_i(3) = 210;
 m_nZ(3) = 1;
 m_dD(3) = 1.957/2.032*0.211e-12;
 // OH-
 m_dC_i(4) = 349.99;
 m_nZ(4) = -1;
 m_dD(4) = 5.273/2.032*0.211e-12;
}

void CMesh::Model2 ()
{
 a = 0.37e-4;
 b = 1;
 m_dp = 0.122;
 m_dtau = 0.003681;
 // Note: All the values are in the unit of mmol/L

 // Initial Condition
 // Cl-
 m_dC_i(1) = 0.001;
 m_nZ(1) = -1;
 m_dD(1) = 0.278e-12;
 // Na+
 m_dC_i(2) = 110;

74

 m_nZ(2) = 1;
 m_dD(2) = 1.334/2.032*0.278e-12;
 // K+
 m_dC_i(3) = 160;
 m_nZ(3) = 1;
 m_dD(3) = 1.957/2.032*0.278e-12;
 // OH-
 m_dC_i(4) = 269.999;
 m_nZ(4) = -1;
 m_dD(4) = 5.273/2.032*0.278e-12;
}

void CMesh::Model3 ()
{
 a = 0.51e-4;
 b = 0;
 m_dp = 0.104;
 m_dtau = 0.001049;
 // Note: All the values are in the unit of mmol/L

 // Initial Condition
 // Cl-
 m_dC_i(1) = 0.001;
 m_nZ(1) = -1;
 m_dD(1) = 0.0792e-12;
 // Na+
 m_dC_i(2) = 110;
 m_nZ(2) = 1;
 m_dD(2) = 1.334/2.032*0.0792e-12;
 // K+
 m_dC_i(3) = 160;
 m_nZ(3) = 1;
 m_dD(3) = 1.957/2.032*0.0792e-12;
 // OH-
 m_dC_i(4) = 269.999;
 m_nZ(4) = -1;
 m_dD(4) = 5.273/2.032*0.0792e-12;
}

void CMesh::Model4 ()
{
 a = 0.35e-4;
 b = 1;
 m_dp = 0.132;
 m_dtau = 0.005333;
 // Note: All the values are in the unit of mmol/L

 // Initial Condition
 // Cl-
 m_dC_i(1) = 0.001;
 m_nZ(1) = -1;
 m_dD(1) = 0.403e-12;
 // Na+
 m_dC_i(2) = 80;
 m_nZ(2) = 1;
 m_dD(2) = 1.334/2.032*0.403e-12;;
 // K+
 m_dC_i(3) = 120;

75

 m_nZ(3) = 1;
 m_dD(3) = 1.957/2.032*0.403e-12;;
 // OH-
 m_dC_i(4) = 199.999;
 m_nZ(4) = -1;
 m_dD(4) = 5.273/2.032*0.403e-12;;
}

void CMesh::Model5 ()
{
 a = 0.48e-4;
 b = 1;
 m_dp = 0.129;
 m_dtau = 0.001816;
 // Note: All the values are in the unit of mmol/L

 // Initial Condition
 // Cl-
 m_dC_i(1) = 0.001;
 m_nZ(1) = -1;
 m_dD(1) = 0.137e-12;
 // Na+
 m_dC_i(2) = 90;
 m_nZ(2) = 1;
 m_dD(2) = 1.334/2.032*0.137e-12;
 // K+
 m_dC_i(3) = 130;
 m_nZ(3) = 1;
 m_dD(3) = 1.957/2.032*0.137e-12;
 // OH-
 m_dC_i(4) = 219.999;
 m_nZ(4) = -1;
 m_dD(4) = 5.273/2.032*0.137e-12;
}

void CMesh::Model6 ()
{
 a = 0.6e-4;
 b = 1;
 m_dp = 0.127;
 m_dtau = 0.001740;
 // Note: All the values are in the unit of mmol/L

 // Initial Condition
 // Cl-
 m_dC_i(1) = 0.001;
 m_nZ(1) = -1;
 m_dD(1) = 0.131e-12;
 // Na+
 m_dC_i(2) = 300;
 m_nZ(2) = 1;
 m_dD(2) = 1.334/2.032*0.131e-12;
 // K+
 m_dC_i(3) = 250;
 m_nZ(3) = 1;
 m_dD(3) = 1.957/2.032*0.131e-12;
 // OH-
 m_dC_i(4) = 549.999;

76

 m_nZ(4) = -1;
 m_dD(4) = 5.273/2.032*0.131e-12;
}

void CMesh::Model7 ()
{
 a = 10e-4;
 b = 0.405;
 m_dp = 0.132;
 m_dtau = 0.001235;
 // Note: All the values are in the unit of mmol/L

 // Initial Condition
 // Cl-
 m_dC_i(1) = 0.001;
 m_nZ(1) = -1;
 m_dD(1) = 0.0932e-12;
 // Na+
 m_dC_i(2) = 400;
 m_nZ(2) = 1;
 m_dD(2) = 1.334/2.032*0.0932e-12;
 // K+
 m_dC_i(3) = 270;
 m_nZ(3) = 1;
 m_dD(3) = 1.957/2.032*0.0932e-12;
 // OH-
 m_dC_i(4) = 669.999;
 m_nZ(4) = -1;
 m_dD(4) = 5.273/2.032*0.0932e-12;

}

4. Functions file

Ed

#include"mesh.h"
#include<cmath>
#include<stdio.h>

CMatToolBox<double> MTB;

CMesh::CMesh()
{
 m_nNodes = 0;
 m_nElements = 0;
 m_nKinds = 0;
 m_dLength = 0;
 m_fdistance = 0;
 m_fdt = 0;
 m_nStep = 0;
 TIME = 0;
 N = 0;
 m_dp=0;
 m_da=0;

77

 m_db=0;
 m_dden = 0;
 m_dArea = 0;
 m_dPhi = 0;
 m_E = 0;
 m_C0 = 0;
 m_D0 = 0;
 Pec = 0;
 m_dtau = 0;
 a = 0;
 b = 0;
 m_Cl = 0;
 JUDGE = 1;
}

CMesh::~CMesh()
{
}

void CMesh::ReadProblem1 ()
{
 std::cout<<"Program starts: \n";
 m_nKinds = 4;
 m_nNodes = 100;
 m_nElements = m_nNodes - 1;
 m_dLength = 0.05;
 m_dArea = 0.1;
 m_dPhi = 30;

 m_dden = 2400;
 //double delta = 2.0f/(PI*PI)*(1/m_dD)*pow((m_dLength/m_nElements),2.0);
 //delta = floor(delta);
 m_nStep = 1200*24;
 m_fdt = 3;

 Pec = F/R/T*m_dPhi*0.5f/m_nElements;

 //std::cout<<delta<<"\n";
 std::cout<<" \nReadProblem: Done! \n";
}

void CMesh::PrepareModel ()
{
 m_fdistance = m_dLength/(m_nElements);
 m_E = m_dPhi/m_dLength;
 m_ElementData.SetSize(m_nElements);
 m_NodalData.SetSize(m_nNodes);
 m_SSM1.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN);
 m_SSM2.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN);
 m_SSM3.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN);
 m_SSM4.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN);
 m_Ke.SetSize(m_nNodes,m_nNodes);
 m_SSC.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN);
 m_SA0.SetSize(m_nKinds,m_nNodes);
 m_J.SetSize(m_nKinds,m_nNodes);
 m_Coulombs.SetSize(m_nKinds,m_nNodes);
 m_U.SetSize(m_nNodes*DOFPN);

78

 m_dE.SetSize(m_nNodes);
 m_SF.SetSize(m_nNodes*DOFPN);
 m_I.SetSize(m_nNodes);
 m_Phi.SetSize(m_nNodes);
 m_dC_0.SetSize(m_nKinds);
 m_dC_i.SetSize(m_nKinds);
 m_dC_s.SetSize(m_nKinds);
 m_nZ.SetSize(m_nKinds);
 m_dD.SetSize(m_nKinds);
 m_FileInput.SetSize(m_nKinds+4);
 m_FileOutput.SetSize(m_nKinds+4);
 m_SSM1.Set(0.0f);
 m_SSM2.Set(0.0f);
 m_SSM3.Set(0.0f);
 m_SSM4.Set(0.0f);
 m_Ke.Set(0.0f);
 m_SSC.Set(0.0f);
 m_SA0.Set(0.0f);
 m_J.Set(0.0f);
 m_Coulombs.Set(0.0f);
 m_U.Set(0.0f);
 m_dC_0.Set(0.0f);
 m_dC_i.Set(0.0f);
 m_dC_s.Set(0.0f);
 m_nZ.Set(0.0f);
 m_dD.Set(0.0f);
 m_dE.Set(0.0f);
 m_I.Set(0.0f);
 m_Phi.Set(0.0f);
 N = 0;
 TIME = 0;

 m_Ccl.SetSize(m_nNodes);
 m_Ccl.Set(0.0f);

 coulombs.SetSize(9);
 coulombs.Set(0.0f);

 Kt.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN);
 Kt.Set(0.0f);
 J_old.SetSize(m_nNodes);
 J_old.Set(0.0f);
 a_old.SetSize(m_nKinds, m_nNodes);
 U_new.SetSize(m_nNodes*DOFPN);
 U_new.Set(0.0f);
 U_old.SetSize(m_nNodes*DOFPN);
 U_old.Set(0.0f);

 KK.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN);
 KK.Set(0.0f);
 FF.SetSize(m_nNodes*DOFPN);
 FF.Set(0.0f);

 D.SetSize(m_nKinds,m_nNodes);
 D.Set(0.0f);

 // set nodal coordinates

79

 for (int i=1;i<=m_nNodes;i++)
 {
 double fVC = (i-1)*m_fdistance;
 m_NodalData(i).SetCoords(fVC);
 //std::cout<<"Coordinate of "<<i<<"th nodal: "<<fVC<<"\n";
 }

 // set elements nodes
 for (int i=1;i<=m_nElements;i++)
 {
 CVector<int> nVNList(NUMENODES);
 nVNList(1) = i;
 nVNList(2) = i+1;
 m_ElementData(i).SetNodes(nVNList);
 }

 std::cout<<"\nPrepare model: Done! \n";

}

void CMesh::ReadProblem2 ()
{
 int m,n;
 std::cout<<"Please select the case you want to analysis:\n";
 std::cout<<"1:OPC, 2:0.2LS, 3:0.1LS+0.1MK, 4:0.35LS, 5:0.25LS+0.1MK,
6:0.2FA, 7:0.35FA\n"<<std::endl;
 std::cout<<"Please enter the case number: ";
 std::cin>>m;
 if (m==1)
 Model1();
 else if (m==2)
 Model2();
 else if (m==3)
 Model3();
 else if (m==4)
 Model4();
 else if (m==5)
 Model5();
 else if (m==6)
 Model6();
 else if (m==7)
 Model7();
 else
 std::cout<<"Wrong case number!";

 n = 2;

 if (n==2)
 BD2();
 else
 std::cout<<"Wrong case number!";

}

80

void CMesh::PrepareMode2 ()
{
 m_C0 = m_dC_s(1);
 m_D0 = m_dD(4);
 for (int i=1;i<=m_nKinds;i++)
 {
 m_dC_s(i) = m_dC_s(i)/m_C0;
 m_dC_i(i) = m_dC_i(i)/m_C0;
 m_dC_0(i) = m_dC_0(i)/m_C0;
 m_dD(i) = m_dD(i)/m_D0;
 }
 m_fdistance = m_fdistance/m_dLength;
 //m_dPhi = m_dPhi*F/R/T;
 m_fdt = m_fdt*m_D0/(m_dLength*m_dLength);
 m_E = m_dPhi/1;
}

void CMesh::ConstructIC ()
{
 for (int i=1;i<=m_nKinds;i++)
 {
 m_SA0(i,1) = m_dC_s(i);
 for (int j=2;j<m_nNodes;j++)
 {
 m_SA0(i,j) = m_dC_i(i);
 }
 m_SA0(i,m_nNodes) = m_dC_0(i);
 CreateOutputCon(i,m_SA0,TIME);
 for (int j=1;j<=m_nNodes;j++)
 {
 m_J(i,j) = 0;
 }
 CreateOutputFlux(i,m_J,TIME);
 CreateOutputCol(i,m_Coulombs,TIME);
 }
 for (int i=1;i<=m_nNodes;i++)
 {
 double Cl = 0;
 Cl = abs(m_SA0(1,i)/1000*35);
 m_Ccl(i) = a*pow(Cl,b); // bound chloride, in g/g-solid
 m_I(i) =
F*(m_nZ(1)*m_J(1,i)+m_nZ(2)*m_J(2,i)+m_nZ(3)*m_J(3,i)+m_nZ(4)*m_J(4,i));
 }
 for (int i=2;i<=m_nNodes;i++)
 {
 m_Phi(i) = m_Phi(i-1) + m_E*m_fdistance;
 }
 CreateOutput2(5,m_I,TIME);
 CreateOutput2(6,m_Phi,TIME);
 CreateOutputCon2(8,m_Ccl,TIME);

 for (int i=1; i<=m_nNodes; i++)
 {
 m_U(5*i-4) = m_SA0(1,i);
 m_U(5*i-3) = m_SA0(2,i);
 m_U(5*i-2) = m_SA0(3,i);
 m_U(5*i-1) = m_SA0(4,i);

81

 m_U(5*i) = m_Phi(i);
 }

 std::cout<<"Construct IC is done!"<<std::endl;
}

void CMesh::ConstructE ()
{

 for (int i=1;i<=m_nNodes;i++)
 {
 m_dE(1) = (-3.0f*m_Phi(1)+4.0f*m_Phi(2)-m_Phi(3))/(2.0f*m_fdistance);
 for (int i=2;i<m_nNodes;i++)
 {
 m_dE(i) = (m_Phi(i+1)-m_Phi(i-1))/(2.0f*m_fdistance);
 }
 m_dE(m_nNodes) = (3.0f*m_Phi(m_nNodes)-4.0f*m_Phi(m_nNodes-
1)+m_Phi(m_nNodes-2))/(2.0f*m_fdistance);
 }

}

void CMesh::CalculateCl ()
{
 double x = 0, y = 0;
 for (int i=1;i<m_nNodes;i++)
 {
 x = 0.5*(m_SA0(1,i)+m_SA0(1,i+1))*m_fdistance;
 y += x;
 }
 m_Cl = y/m_dLength;

 x = m_dden*1.4/35;

 if (m_Cl>x)
 {
 ConstructCcl();
 JUDGE = 1;
 }
 //std::cout<<m_Cl<<"\n";
}

void CMesh::CalculateD()
{
 for (int i=1;i<=m_nNodes;i++)
 {
 if (m_SA0(1,i) >= 2000)
 {
 D(1,i) = m_dD(1);
 D(2,i) = m_dD(2);
 D(3,i) = m_dD(3);
 D(4,i) = m_dD(4);
 }
 else if (m_SA0(1,i) <= 10)
 {
 D(1,i) = m_dD(1)*pow(0.01,EXP);
 D(2,i) = m_dD(2)/m_dD(1)*D(1,i);
 D(3,i) = m_dD(3)/m_dD(1)*D(1,i);

82

 D(4,i) = m_dD(4)/m_dD(1)*D(1,i);
 }
 else
 {
 D(1,i) = m_dD(1)*pow((abs(m_SA0(1,i)/1000)),EXP);
 D(2,i) = m_dD(2)/m_dD(1)*D(1,i);
 D(3,i) = m_dD(3)/m_dD(1)*D(1,i);
 D(4,i) = m_dD(4)/m_dD(1)*D(1,i);
 }
 }
}

void CMesh::ConstructK_t ()
{
 m_SSM4.Set(0.0f);
 int i, j, k;
 const int KSIZE = NUMENODES*DOFPN; // size of the stiffness matrix
 CVector<int> nVEDOF(KSIZE); // dof associated with element
 CVector<int> nVNList(NUMENODES); // list of element nodes
 CMatrix<double> dMk4("k4",KSIZE,KSIZE);

 double E = F/(R*T);
 double alpha = (1.0f/tanh(Pec)-1.0f/Pec);
 //double pe = (1.0f/tanh(Pec)-1.0f/Pec);
 double c11,c12,c13,c14;
 for (i=1; i <= m_nElements; i++)
 {

 m_ElementData(i).GetNodes(nVNList);

 dMk4.Set(0.0f);
 c11=0;c12=0;c13=0;c14=0;

 c11=0.5*(D(1,i)+D(1,i+1))*m_nZ(1)*(alpha*m_SA0(1,nVNList(1))+(1.0f-
alpha)*m_SA0(1,nVNList(2)));
 c14=0.5*(D(4,i)+D(4,i+1))*m_nZ(4)*(alpha*m_SA0(4,nVNList(1))+(1.0f-
alpha)*m_SA0(4,nVNList(2)));
 c12=0.5*(D(2,i)+D(2,i+1))*m_nZ(2)*((1.0f-
alpha)*m_SA0(2,nVNList(1))+alpha*m_SA0(2,nVNList(2)));
 c13=0.5*(D(3,i)+D(3,i+1))*m_nZ(3)*((1.0f-
alpha)*m_SA0(3,nVNList(1))+alpha*m_SA0(3,nVNList(2)));

dMk4(1,5) = E*c11/m_fdistance; dMk4(2,5) = E*c12/m_fdistance;
dMk4(3,5) = E*c13/m_fdistance; dMk4(4,5) = E*c14/m_fdistance;
dMk4(1,10) = -E*c11/m_fdistance; dMk4(2,10) = -E*c12/m_fdistance;
dMk4(3,10) = -E*c13/m_fdistance; dMk4(4,10) = -E*c14/m_fdistance;
dMk4(6,5) = -E*c11/m_fdistance; dMk4(7,5) = -E*c12/m_fdistance;
dMk4(8,5) = -E*c13/m_fdistance; dMk4(9,5) = -E*c14/m_fdistance;
dMk4(6,10) = E*c11/m_fdistance; dMk4(7,10) = E*c12/m_fdistance;
dMk4(8,10) = E*c13/m_fdistance; dMk4(9,10) = E*c14/m_fdistance;

83

 // get global degrees-of-freedom associated with element
 int nIndex = 0;
 for (j=1; j <= NUMENODES; j++)
 {
 int n = (nVNList(j)-1)*DOFPN;
 for (k=1; k <= DOFPN; k++)
 {
 nVEDOF(++nIndex) = n+1;
 n++;
 }
 }

 // assemble into structural K
 for (j=1; j <= KSIZE; j++)
 {
 int nRow = nVEDOF(j);
 for (k=1; k <= KSIZE; k++)
 {
 int nCol = nVEDOF(k);
 m_SSM4(nRow, nCol) += dMk4(j,k);
 }
 }
 }

 // assemble into final K

 MTB.Add(m_SSM1,m_SSM4,Kt);

}

void CMesh::ConstructK_c ()
{
 m_SSM1.Set(0.0f);
 int i, j, k;
 const int KSIZE = NUMENODES*DOFPN; // size of the stiffness matrix
 CVector<int> nVEDOF(KSIZE); // dof associated with element
 CMatrix<double> dMk("k",KSIZE,KSIZE); // to store the element stiffness
matrix
 CVector<int> nVNList(NUMENODES); // list of element nodes
 CMatrix<double> dMk1("k1",KSIZE,KSIZE);
 CMatrix<double> dMk2("k2",KSIZE,KSIZE);

 double A = -F*m_fdistance;
 double E = F/(R*T);

 dMk2.Set(0.0f);

 dMk2(5,1) = A*m_nZ(1)/3.0f; dMk2(5,2) = A*m_nZ(2)/3.0f;

dMk2(5,3) = A*m_nZ(3)/3.0f; dMk2(5,4) = A*m_nZ(4)/3.0f;
 dMk2(5,6) = A*m_nZ(1)/6.0f; dMk2(5,7) = A*m_nZ(2)/6.0f;

dMk2(5,8) = A*m_nZ(3)/6.0f; dMk2(5,9) = A*m_nZ(4)/6.0f;
 dMk2(10,1) = A*m_nZ(1)/6.0f; dMk2(10,2) = A*m_nZ(2)/6.0f;

dMk2(10,3) = A*m_nZ(3)/6.0f; dMk2(10,4) = A*m_nZ(4)/6.0f;
 dMk2(10,6) = A*m_nZ(1)/3.0f; dMk2(10,7) = A*m_nZ(2)/3.0f;

84

dMk2(10,8) = A*m_nZ(3)/3.0f; dMk2(10,9) = A*m_nZ(4)/3.0f;

 // loop thro' all elements
 for (i=1; i <= m_nElements; i++)
 {

 m_ElementData(i).GetNodes(nVNList);

 dMk1.Set(0.0f);
 dMk.Set(0.0f);

 dMk1(1,1) = 0.5*(D(1,i)+D(1,i+1))/m_fdistance;

dMk1(2,2) = 0.5*(D(2,i)+D(2,i+1))/m_fdistance;
dMk1(3,3) = 0.5*(D(3,i)+D(3,i+1))/m_fdistance;
dMk1(4,4) = 0.5*(D(4,i)+D(4,i+1))/m_fdistance;
dMk1(5,5) = DC/m_fdistance;

 dMk1(1,6) = -0.5*(D(1,i)+D(1,i+1))/m_fdistance;
dMk1(2,7) = -0.5*(D(2,i)+D(2,i+1))/m_fdistance;
dMk1(3,8) = -0.5*(D(3,i)+D(3,i+1))/m_fdistance;
dMk1(4,9) = -0.5*(D(4,i)+D(4,i+1))/m_fdistance;
dMk1(5,10) = -DC/m_fdistance;

 dMk1(6,1) = -0.5*(D(1,i)+D(1,i+1))/m_fdistance;
dMk1(7,2) = -0.5*(D(2,i)+D(2,i+1))/m_fdistance;
dMk1(8,3) = -0.5*(D(3,i)+D(3,i+1))/m_fdistance;
dMk1(9,4) = -0.5*(D(4,i)+D(4,i+1))/m_fdistance;
dMk1(10,5) = -DC/m_fdistance;

 dMk1(6,6) = 0.5*(D(1,i)+D(1,i+1))/m_fdistance;
dMk1(7,7) = 0.5*(D(2,i)+D(2,i+1))/m_fdistance;
dMk1(8,8) = 0.5*(D(3,i)+D(3,i+1))/m_fdistance;
dMk1(9,9) = 0.5*(D(4,i)+D(4,i+1))/m_fdistance;
dMk1(10,10) = DC/m_fdistance;

 for (int m=1; m<=KSIZE; m++)
 {
 for (int n=1; n<=KSIZE; n++)
 {
 dMk(m,n) = dMk1(m,n) + dMk2(m,n);
 }
 }

 // get global degrees-of-freedom associated with element
 int nIndex = 0;
 for (j=1; j <= NUMENODES; j++)
 {
 int n = (nVNList(j)-1)*DOFPN;
 for (k=1; k <= DOFPN; k++)
 {
 nVEDOF(++nIndex) = n+1;
 n++;
 }
 }

 // assemble into structural K
 for (j=1; j <= KSIZE; j++)

85

 {
 int nRow = nVEDOF(j);
 for (k=1; k <= KSIZE; k++)
 {
 int nCol = nVEDOF(k);
 m_SSM1(nRow, nCol) += dMk(j,k);
 }
 }
 }
}

void CMesh::ConstructC ()
{

 double L = m_dp*m_fdistance/6.0f;

 m_SSC.Set(0.0f);
 int i, j, k;
 const int CSIZE = NUMENODES*DOFPN; // size of the stiffness matrix
 CVector<int> nVEDOF(CSIZE); // dof associated with element
 CMatrix<double> dc("c",CSIZE,CSIZE); // to store the element stiffness
matrix
 CVector<int> nVNList(NUMENODES); // list of element nodes

 // loop thro' all elements
 for (i=1; i <= m_nElements; i++)
 {

 m_ElementData(i).GetNodes(nVNList);

 dc.Set(0.0f);
 dc(1,1) = 2*L; dc(2,2) = 2*L; dc(3,3) = 2*L; dc(4,4) = 2*L;
 dc(1,6) = 1*L; dc(2,7) = 1*L; dc(3,8) = 1*L; dc(4,9) = 1*L;
 dc(6,1) = 1*L; dc(7,2) = 1*L; dc(8,3) = 1*L; dc(9,4) = 1*L;
 dc(6,6) = 2*L; dc(7,7) = 2*L; dc(8,8) = 2*L; dc(9,9) = 2*L;

 // get global degrees-of-freedom associated with element
 int nIndex = 0;
 for (j=1; j <= NUMENODES; j++)
 {
 int n = (nVNList(j)-1)*DOFPN;
 for (k=1; k <= DOFPN; k++)
 {
 nVEDOF(++nIndex) = n+1;
 n++;
 }
 }

 // assemble into structural K
 for (j=1; j <= CSIZE; j++)
 {
 int nRow = nVEDOF(j);
 for (k=1; k <= CSIZE; k++)
 {
 int nCol = nVEDOF(k);
 m_SSC(nRow, nCol) += dc(j,k);
 }

86

 }
 }
}

void CMesh::ConstructCcl ()
{
 double Lp = 0;
 double c1,c2;
 c1 = 0; c2 = 0;
 double L = m_dp*m_fdistance/6.0f;
 Lp = (a*m_dden*(1-m_dp)+m_dp)*m_fdistance/6.0f;
 double alpha = (1.0f/tanh(Pec)-1.0f/Pec);
 m_SSC.Set(0.0f);
 int i, j, k;
 const int CSIZE = NUMENODES*DOFPN; // size of the stiffness matrix
 CVector<int> nVEDOF(CSIZE); // dof associated with element
 CMatrix<double> dc("c",CSIZE,CSIZE); // to store the element stiffness
matrix
 CVector<int> nVNList(NUMENODES); // list of element nodes

 // loop thro' all elements
 for (i=1; i <= m_nElements; i++)
 {

 m_ElementData(i).GetNodes(nVNList);

 dc.Set(0.0f);
 dc(1,1) = 2*Lp; dc(2,2) = 2*L; dc(3,3) = 2*L; dc(4,4) = 2*L;
 dc(1,6) = 1*Lp; dc(2,7) = 1*L; dc(3,8) = 1*L; dc(4,9) = 1*L;
 dc(6,1) = 1*Lp; dc(7,2) = 1*L; dc(8,3) = 1*L; dc(9,4) = 1*L;
 dc(6,6) = 2*Lp; dc(7,7) = 2*L; dc(8,8) = 2*L; dc(9,9) = 2*L;

 // get global degrees-of-freedom associated with element
 int nIndex = 0;
 for (j=1; j <= NUMENODES; j++)
 {
 int n = (nVNList(j)-1)*DOFPN;
 for (k=1; k <= DOFPN; k++)
 {
 nVEDOF(++nIndex) = n+1;
 n++;
 }
 }

 // assemble into structural K
 for (j=1; j <= CSIZE; j++)
 {
 int nRow = nVEDOF(j);
 for (k=1; k <= CSIZE; k++)
 {
 int nCol = nVEDOF(k);
 m_SSC(nRow, nCol) += dc(j,k);
 }
 }
 }
}

87

void CMesh::ConstructF ()
{
 std::cout<<"Construct F: Done!"<<std::endl;
}

void CMesh::Solve ()
{
 KK.Set(0.0f);
 FF.Set(0.0f);

 CVector<double> A;
 A.SetSize(m_nNodes*DOFPN);
 A.Set(0.0f);

 CVector<double> B;
 B.SetSize(m_nNodes*DOFPN);
 B.Set(0.0f);

 U_new.Set(0.0f);
 U_old.Set(0.0f);

 for (int i=1; i<=m_nNodes*DOFPN; i++)
 {
 U_old(i) = m_U(i);
 }

 ConstructCcl();
 CalculateD();
 ConstructK_c();
 ConstructE();
 ConstructK_t();
 MTB.Scale(Kt,m_fdt);
 MTB.Add(m_SSC,Kt,KK);
 MTB.MatMultVec(m_SSC,U_old,FF);

 // induce boundary condition

 for (int i=1; i<=5; i++)
 {
 FF(i) = m_U(i);
 }

 for (int i=m_nNodes*DOFPN-4; i<=m_nNodes*DOFPN; i++)
 {
 FF(i) = m_U(i);
 }

 for (int i=6; i<=m_nNodes*DOFPN-5; i++)
 {
 for (int j=1; j<=5; j++)
 {
 FF(i) -= KK(i,j)*U_old(j);
 }

 for (int j=m_nNodes*DOFPN-4; j<=m_nNodes*DOFPN; j++)

88

 {
 FF(i) -= KK(i,j)*U_old(j);
 }
 }

 for (int i=1; i<=m_nNodes*DOFPN; i++)
 {
 for (int j=1; j<=5; j++)
 {
 if (j==i)
 {
 KK(i,j) = 1;
 }
 else
 {
 KK(i,j) = 0;
 KK(j,i) = 0;
 }
 }

 for (int j=m_nNodes*DOFPN-4; j<=m_nNodes*DOFPN; j++)
 {
 if (j==i)
 {
 KK(i,j) = 1;
 }
 else
 {
 KK(i,j) = 0;
 KK(j,i) = 0;
 }
 }

 }

 MTB.AxEqb(KK,U_new,FF,TOL);

 for (int i=1; i<=m_nNodes*DOFPN; i++)
 {
 m_U(i) = U_new(i);
 }
 for (int i=1; i<=m_nNodes; i++)
 {
 m_SA0(1,i) = U_new(5*i-4);
 m_SA0(2,i) = U_new(5*i-3);
 m_SA0(3,i) = U_new(5*i-2);
 m_SA0(4,i) = U_new(5*i-1);
 m_Phi(i) = U_new(5*i);
 }

 if (JUDGE == 1)
 {
 for (int i=1;i<=m_nNodes;i++)
 {
 double Cl = 0;
 Cl = abs(m_SA0(1,i)/1000*35);
 m_Ccl(i) = a*pow(Cl,b); // bound chloride, in g/g-solid

89

 }
 }
}

void CMesh::Solve2 (int j)
{
 J_old.Set(0.0f);
 for (int i=1;i<=m_nNodes;i++)
 {
 J_old(i) = m_J(j,i);
 }

 m_J(j,1) = -D(j,1)*((-3*m_SA0(j,1)+4*m_SA0(j,2)-
m_SA0(j,3))/(2.0f*m_fdistance)+m_nZ(j)*F*m_dE(1)*m_SA0(j,1)/(R*T));
 for (int i=2;i<m_nNodes;i++)
 {
 m_J(j,i) = -D(j,i)*((m_SA0(j,i+1)-m_SA0(j,i-
1))/(2.0f*m_fdistance)+m_nZ(j)*F*m_dE(i)*m_SA0(j,i)/(R*T));
 }
 m_J(j,m_nNodes) = -D(j,m_nNodes)*((3*m_SA0(j,m_nNodes)-4*m_SA0(j,m_nNodes-
1)+m_SA0(j,m_nNodes-
2))/(2.0f*m_fdistance)+m_nZ(j)*F*m_dE(m_nNodes)*m_SA0(j,m_nNodes)/(R*T));

 for (int i=1;i<=m_nNodes;i++)
 {
 m_Coulombs(j,i) += -
0.25*pow(m_dArea,2)*PI*F*m_nZ(j)*0.5*(m_J(j,i)+J_old(i))*m_fdt;
 }

 if (N%600==0)
 {

 for (int i=1;i<=m_nNodes;i++)
 {
 coulombs(j) += m_Coulombs(j,i);
 }
 coulombs(j) = coulombs(j)/m_nNodes;

 CreateOutputCon(j,m_SA0,N);
 CreateOutputFlux(j,m_J,N);
 CreateOutputCol(j,m_Coulombs,N);
 }
}

void CMesh::Solve3()
{
 if (N%600==0)
 {
 for (int i=1;i<=m_nNodes;i++)
 {

 m_I(i) = -
0.25*pow(m_dArea,2)*PI*F*(m_nZ(1)*m_J(1,i)+m_nZ(2)*m_J(2,i)+m_nZ(3)*m_J(3,i)+m_nZ(
4)*m_J(4,i));

90

 }

 coulombs(5) = coulombs(1) + coulombs(2) + coulombs(3) + coulombs(4);
 for (int i=1;i<=4;i++)
 {
 coulombs(5+i) = coulombs(i)/coulombs(5);
 }
 CreateOutputCol2(7,coulombs,N);
 CreateOutput2(4,m_I,N);
 CreateOutput2(5,m_Phi,N);
 CreateOutput2(6,m_dE,N);
 CreateOutputCon2(8,m_Ccl,N);
 }
}

void CMesh::Counter ()
{
 TIME += m_fdt;
 N +=1;
}

void CMesh::GetStep (int& Step)
{
 Step = N;
}

void CMesh::GetTotal (int& total)
{
 total = m_nStep;
}

void CMesh::Getkinds (int& kind)
{
 kind = m_nKinds;
}

void CMesh::GetTime(float& t)
{
 t = T;

}

91

APPENDIX B

MATLAB CODE FOR GENERATING 3D CRACK MODELS

92

%%% This program is developed to create 2D images with random cracks
%%% thourgh a concrete cube.
%%% Modified edition: without branching, use crack volume ratio and
%%% tortuosity to control single crack
%%% Author: Pu Yang
%%% Date: November 2013

clc
clear all
close all

%==%
%PART A: Basic parameters
%==%

%**%
% (1). User Input
%**%

dx = 300; % length of 3D image in pixels
dy = 300; % width of 3D image in pixels
dz = 300; % height of 3D image in pixels

Phi = 0.10 % total crack volume ratio
W_surface = 30 % effective crack width of surface crack,in

pxl
Tor = 0.3 % tortuosity of crack
beta = 0.3 % height coefficient
N_lay = 42 % total zig-zag numbers of perpendicular

crack

tor_dz = 0.5 % roughness factor in surface
lemda = 150 % segment factor for tortuosity calculation

%**%
% (2). Varibles based on input data
%**%

L_total = dz/sqrt(Tor); % Total effective length
L_eff = L_total - beta*dz; % effective length starts from notch
W_stable = (dx*dz*Phi - mbeta*dz*0.5*W_surface)/(L_eff+beta*dz*0.5)

% effective crack width in stable level, in pixcel
Num_layer = (1-beta)*dz/N_lay; % number of layer for each zig_zag

line
slope_surface = zeros(1,60); % slpoe of zig_zag line
factor_roughness = zeros(1,dz); % slope of zig_zag line in

perpendicular direction
slope_thru = zeros(1,N_lay); % slope of zig_zag line in

perpendicular direction, for stable crack
L_zig = zeros(1,N_lay); % length of each zig_zag line in

perpendicular direction
R = zeros(1,dy); % crack radius in each point
Y = zeros(dz,dy); % define the crack boundary
R_al = zeros(1,dz-lemda); % roughness matrix

93

w_avg = zeros(1,dz); % average crack width of each layer
l = 0; % initial zig-zag line length
x0 = 0; % start point of the surface crack
y0 = 150; % start point of the surface crack

%==%
%PART B: Random data generation & saving
%==%

[fileout, foldout] = uiputfile('bw', 'Pick a folder to write 2D

images');

Determine_xy = 1; % choose to use excising data for the

slopes of surface zig_zag line (=0) or create a set of new data (=1)
Determine_dz = 1; % choose to use excising data for the

slopes of thru zig_zag line (=0) or create a set of new data (=1)
Determine_R = 1; % choose to use excising data for the

radius of crack circles (=0) or create a set of new datas (=1)
Determine_z = 1; % choose to use excising data for the

slopes of depth zig_zag line (=0) or create a set of new data (=1)

Save_xy = 0; % choose weither to save new data (=1) or not (=0)
Save_yz = 0; % choose weither to save new data (=1) or not (=0)
Save_R = 0; % choose weither to save new data (=1) or not (=0)
Save_z = 0; % choose weither to save new data (=1) or not (=0)

% data generation & saving for all the random generators
if Determine_xy==1

slope_surface = 0.5*randn(1,60);

% creare random slope for each zig_zag lines, need to choose

appropriate coefficient

 if Save_xy==1
 xlswrite('Random_generater_data',slope_surface',1,'A2:A61');
 else
 end
else
 D = xlsread('Random_generater_data',1,'A2:A61');
 slope_surface = D';
end

if Determine_z==1

slope_thru = rand(1,N_lay);

% creare basic random numbers for slope for each depth zig_zag lines
 if Save_z==1
 xlswrite('Random_generater_data',slope_thru',1,'C2:C43');
 else
 end
 else
 G = xlsread('Random_generater_data',1,'C2:C43');
 slope_thru = G';
end

if Determine_dz==1

factor_roughness = randn(1,dz);

% creare basic random numbers for slope for each point on zig_zag lines

94

 if Save_yz==1
 xlswrite('Random_generater_data',factor_roughness',1,'B2:B301');
 else
 end
else
 E = xlsread('Random_generater_data',1,'B2:B301');
 factor_roughness = E';
end

if Determine_R==1
 R = rand(1,dx);% create the basic random crack radius in each point
 if Save_R==1
 xlswrite('Random_generater_data',R',2,'A2:A301');
 else
 end
else
 F = xlsread('Random_generater_data',2,'A2:A301');
 R = F';
end

% Modified the random numbers
for i=1:dz
 if abs(factor_roughness(i))<0.5

factor_roughness(i)=factor_roughness(i)+sign(factor_roughness(i))*0.5;
 else if abs(factor_roughness(i))>1
 factor_roughness(i)=factor_roughness(i)-

sign(factor_roughness(i))*0.5;
 end
 end
 factor_roughness(i) = tor_dz*factor_roughness(i);
end

L_sum = 0;
for i=1:N_lay
 slope_thru(i)=slope_thru(i)-0.5;
 L_zig(1,i) = sqrt(slope_thru(i)^2+1)*Num_layer;
 L_sum = L_sum + L_zig(1,i);
end
if L_eff<= L_sum
 slope_thru = zeros(1,N_lay);
else
 tor_ratio = L_eff/L_sum;
 for i=1:N_lay
 L_zig(1,i) = tor_ratio*L_zig(1,i);
 slope_thru(i) =

sign(slope_thru(i))*sqrt((L_zig(1,i)/Num_layer)^2-1);
 end
end

for i=1:dx
 if abs(R(i))<0.5
 R(i)=R(i)+sign(R(i))*0.5;
 else if abs(R(i))>1

95

 R(i)=R(i)-sign(R(i))*0.5;
 end
 end
end
w_temp = 0;
for j=1:dx
 w_temp = (2*R(j))^3+w_temp;
end
W_avg = (1/dx*w_temp)^(1/3);
Ratio_surface = W_surface/W_avg;
Ratio_stable = W_stable/W_avg;
alpha = (Ratio_surface-Ratio_stable)/(beta*dz); % ratio change rate

%==%
%PART C: Crack generation
%==%

% start to creat the surface crack on the first layer
for z1 = 1
 A = zeros(dx,dy);

 for x1 = 1:5
 y1 = 150+factor_roughness(1,z1)+slope_surface(1,1)*x1;
 t =Ratio_surface*R(1,x1);
 Y(z1,x1) = y1+t; % Record the bc of crack
 for r = 0:t
 for th =0:1:360
 x = x1+r*cos(th);
 y = y1+r*(sin(th));
 x=round(x);
 y=round(y);
 if y <= 0
 y =1;
 end
 if x <= 0
 x =1;
 end
 A(x,y)= 1;
 end
 end
 l = l + sqrt((x1-x0)^2+(y1-y0)^2);
 x0=x1;
 y0=y1;
 end

 x0=x1;
 y0=y1;

 for n = 1:59
 x0=x1;
 y0=y1;
 b=y0-slope_surface(1,n+1)*x0;
 for x1 = 5*n:1:5*(n+1)

96

 y1 = slope_surface(1,n+1)*x1+b; % Record the bc of crack
 t =Ratio_surface*R(1,x1);
 Y(z1,x1) = y1+t;
 for r = 0:t
 for th =0:1:360
 x = x1+r*cos(th);
 y = y1+r*(sin(th));
 x=round(x);
 y=round(y);
 if y <= 0
 y =1;
 end
 if x <= 0
 x =1;
 end
 A(x,y)= 1;
 end
 end
 l = l + sqrt((x1-x0)^2+(y1-y0)^2);
 x0=x1;
 y0=y1;
 end
 end

 im = double(A(1:300,1:300));
 im1 = mat2gray(im);
 if z1<10
 imwrite(im1,[foldout fileout '00' num2str(z1)

'.tif'],'tif','compression','none')
 else if z1<100
 imwrite(im1,[foldout fileout '0' num2str(z1)

'.tif'],'tif','compression','none')
 else
 imwrite(im1,[foldout fileout num2str(z1)

'.tif'],'tif','compression','none')
 end
 end

 w_1 = 0;
 for j=1:dx
 w_1 = (2*Ratio_surface*R(1,j))^3+w_1;
 end
 w_avg(1,z1)= (1/dx*w_1)^(1/3);

end

% creat crack on the width_change layers

w = Ratio_surface - alpha;

for z1 = 2:1:beta*dz
 A = zeros(dx,dy);

 for x1 = 1:5
 y1 = 150+factor_roughness(1,z1)+slope_surface(1,1)*x1;

97

 t =w*R(1,x1);
 Y(z1,x1) = y1+t; % Record the boundary condition of crack
 for r = 0:t
 for th =0:1:360
 x = x1+r*cos(th);
 y = y1+r*(sin(th));
 x=round(x);
 y=round(y);
 if y <= 0
 y =1;
 end
 if x <= 0
 x =1;
 end
 A(x,y)= 1;
 end
 end
 x0=x1;
 y0=y1;
 end

 x0=x1;
 y0=y1;

 for n = 1:59
 x0=x1;
 y0=y1;
 b=y0-slope_surface(1,n+1)*x0;
 for x1 = 5*n:1:5*(n+1)
 y1 = slope_surface(1,n+1)*x1+b;
 t =w*R(1,x1);
 Y(z1,x1) = y1+t; % Record the boundary condition of crack
 for r = 0:t
 for th =0:1:360
 x = x1+r*cos(th);
 y = y1+r*(sin(th));
 x=round(x);
 y=round(y);
 if y <= 0
 y =1;
 end
 if x <= 0
 x =1;
 end
 A(x,y)= 1;
 end
 end
 x0=x1;
 y0=y1;
 end
 end

 im = double(A(1:300,1:300));
 im1 = mat2gray(im);
 if z1<10

98

 imwrite(im1,[foldout fileout '00' num2str(z1)

'.tif'],'tif','compression','none')
 else if z1<100
 imwrite(im1,[foldout fileout '0' num2str(z1)

'.tif'],'tif','compression','none')
 else
 imwrite(im1,[foldout fileout num2str(z1)

'.tif'],'tif','compression','none')
 end
 end

 w_1 = 0;
 for j=1:dx
 w_1 = (2*w*R(1,j))^3+w_1;
 end
 w_avg(1,z1)= (1/dx*w_1)^(1/3);
 w = w - alpha;
end

% creat cracks on stable layers
N = 0;
zz = 0;
for z = 1:N_lay
 for z1 = (beta*dz+1+N):1:(beta*dz+N+(1-beta)*dz/N_lay)
 zz = slope_thru(1,z)+zz;
 A = zeros(dx,dy);
 for x1 = 1:5
 y1 = 150+factor_roughness(1,z1)+slope_surface(1,1)*x1+zz;
 t =Ratio_stable*R(1,x1);
 Y(z1,x1) = y1+t; % Record the boundary condition of crack
 for r = 0:t
 for th =0:1:360
 x = x1+r*cos(th);
 y = y1+r*(sin(th));
 x=round(x);
 y=round(y);
 if y <= 0
 y =1;
 end
 if x <= 0
 x =1;
 end
 A(x,y)= 1;
 end
 end
 x0=x1;
 y0=y1;
 end

 x0=x1;
 y0=y1;

 for n = 1:59
 x0=x1;
 y0=y1;

99

 b=y0-slope_surface(1,n+1)*x0;
 for x1 = 5*n:5*(n+1)
 y1 = slope_surface(1,n+1)*x1+b;
 t =Ratio_stable*R(1,x1);
 Y(z1,x1) = y1+t;% Record the bondary condition of crack
 for r = 0:t
 for th =0:1:360
 x = x1+r*cos(th);
 y = y1+r*(sin(th));
 x=round(x);
 y=round(y);
 if y <= 0
 y =1;
 end
 if x <= 0
 x =1;
 end
 A(x,y)= 1;
 end
 end
 x0=x1;
 y0=y1;
 end
 end

 im = double(A(1:300,1:300));
 im1 = mat2gray(im);
 if z1<10
 imwrite(im1,[foldout fileout '00' num2str(z1)

'.tif'],'tif','compression','none')
 else if z1<100
 imwrite(im1,[foldout fileout '0' num2str(z1)

'.tif'],'tif','compression','none')
 else
 imwrite(im1,[foldout fileout num2str(z1)

'.tif'],'tif','compression','none')
 end
 end

 w_1 = 0;
 for j=1:dx
 w_1 = (2*Ratio_stable*R(1,j))^3+w_1;
 end
 w_avg(1,z1)= (1/dx*w_1)^(1/3);

 end
 N = N+(1-beta)*dz/N_lay;
end

%==%
%PART D: Parameters calculation
%==%

%calculate permeability

100

l_eff = l % effective length of

surface crack

l_thru = L_total % effective length of

prependicular crack

C = 0;
for z1 = 1:dz
 C = C+(1/(w_avg(1,z1))^3);
end
w_eff = (dz/C)^(1/3); % effective width of

the crack

% calculate global roughness

z = zeros(1,300);
for i=1:dz
 z(1,i)=i;
end

for i=1:(dz-lemda)
 m = (Y(i+lemda,1)-Y(i,1))/lemda;
 alpha = atan(m);
 p = 0;
 for j=i:(i+lemda)
 p=p+abs(m*z(1,j)+Y(i,1)-m*z(1,i)-Y(j,1));
 end
 R_al(1,i)=1/lemda*p*cos(alpha);
end

R_ag = 1/(dz-lemda)*sum(R_al); % global surface roughness

R_r = R_ag/(2*w_eff) % relative surface roughness

taun = (dz/l_thru)^2 % turtuosity factor

R_ag = R_ag*5 % change the unit from pixel to um

w_eff = w_eff*5 % change the unit from pixel to um

K = taun*(w_eff)^2/(12*(1+8.8*R_r^1.5)) % permeability

Width_s = w_avg(1,1)*5;

Width_b = w_avg(1,dz)*5;

V = dy*((w_avg(1)+w_avg(dz))/2*beta*dz+w_avg(dz)*(1-

beta)*dz)/(dx*dy*dz);

%==%
%PART E: Saving results
%==%

101

xlswrite('Permeability_data',K,1,'A1');
xlswrite('Permeability_data',w_eff,1,'B1');
xlswrite('Permeability_data',taun,1,'C1');
xlswrite('Permeability_data',R_ag,1,'D1');
xlswrite('Permeability_data',Width_s,1,'E1');
xlswrite('Permeability_data',Width_b,1,'F1');
xlswrite('Permeability_data',V,1,'G1'); % record the test data

% plot the crack width - crack depth curve
plot(1:dz,w_avg)
title('Crack width - Crack depth relationship')
xlabel('Crack depth (pixels)')
ylabel('Crack width (pixels)')
axis([0 320 0 40]); % xmin, xmax, ymin, ymax

102

APPENDIX C

MATLAB CODE FOR D2Q9-BGK LATTICE BOLTZMANN METHOD

103

% Gianni Schena July 2005, schena@units.it
% Lattice Boltzmann LBE, geometry: D2Q9, model: BGK
% Application to permeability in porous media

Restart=false % to restart from an earlier convergence
logical(Restart);

if Restart==false;
close all, clear all % start from scratch and clean ...
Restart=false;
% type of channel geometry ;
% one of the flollowing flags == true
Pois_test=true, % no obstacles in the 2D channel
% porous systems
obs_regolare=false %
obs_irregolare=false %
tic
% IN
% |vvvv| + y
% |vvvv| ^
% |vvvv| | -> + x
% OUT

% Pores in 2D : Wet and Dry locations (Wet ==1 , Dry ==0)
wXh_Dry=[3,1];wXh_Wet=[3,4];

if obs_regolare, % with internal obstacles

A=repmat([zeros(wXh_Dry),ones(wXh_Wet)],[1,3]);A=[A,zeros(wXh_Dry)];
B=ones(size(A));
C=[A;B] ; D=repmat(C,4,1);
D=[B;D]
end

if obs_irregolare, % with int obstacles
A1=repmat([zeros(wXh_Dry),ones(wXh_Wet)],[1,3]);
A1=[A1,zeros(wXh_Dry)] ;
B=ones(size(A1));
C1=repmat([ones(wXh_Wet),zeros(wXh_Dry)],[1,3]); C1=[C1,ones(wXh_Dry)];
E=[A1;B;C1;B];
D=repmat(E,2,1);
D=[B;D]
end

if ~Pois_test
figure,imshow(D,[])
Channel2D=D;
Len_Channel_2D=size(Channel2D,1); % Length
Width=size(Channel2D,2); % should not be hod
Channel_2D_half_Width=Width/2,
end

% test without obstacles (i.e. 2D channel & no obstacles)

if Pois_test

104

%over-writes the definition of the pore space
clear Channel2D
Len_Channel_2D=36, % lunghezza canale 2d
Channel_2D_half_Width=8; Width=Channel_2D_half_Width*2;
Channel2D=ones(Len_Channel_2D,Width); % define wet area
%Channel2D(6:12,6:8)=0; % put fluid obstacle
imshow(Channel2D,[]);
end

[Nr Mc]=size(Channel2D); % Number rows and Munber columns

% porosity
porosity=nnz(Channel2D==1)/(Nr*Mc)

% FLUID PROPERTIES
% physical properties
cs2=1/3; %
cP_visco=1; % [cP] 1 CP Dinamic water viscosity 20 C
density=1.; % fluid density
Lky_visco=cP_visco/density; % lattice kinematic viscosity
omega=(Lky_visco/cs2+0.5).^-1; % omega: relaxation frequency
%Lky_visco=cs2*(1/omega - 0.5) , % lattice kinematic viscosity
%dPdL= Pressure / dL;% External pressure gradient [atm/cm]

uy_fin_max=-0.2;
%dPdL = abs(2*Lky_visco*uy_fin_max/(Channel_2D_half_Width.^2));
dPdL=-0.0125;
uy_fin_max=dPdL*(Channel_2D_half_Width.^2)/(2*Lky_visco); % Poiseuille

Gradient;
% max poiseuille final velocity on the flow profile
uy0=-0.001; ux0=0.0001; % linear vel .. inizialization

%
% uy_fin_max=-0.2; % max poiseuille final velocity on the flow profile
% omega=0.5, cs2=1/3; % omega: relaxation frequency
% Lky_visco=cs2*(1/omega - 0.5) , % lattice kinematic viscosity
% dPdL = abs(2*Lky_visco*uy_fin_max/(Channel_2D_half_Width.^2)); %

Poiseuille Gradient;
%

uyf_av=uy_fin_max*(2/3);; % average fluid velocity on the profile

x_profile=([-Channel_2D_half_Width:+Channel_2D_half_Width-1]+0.5);
uy_analy_profile=uy_fin_max.*(1- (x_profile

/Channel_2D_half_Width).^2); % analytical velocity profile

av_vel_t=1.e+10; % inizialization (t=0)
%PixelSize= 5; % [Microns]
%dL=(Nr*PixelSize*1.0E-4); % sample hight [cm]

%
% EXPERIMENTAL SET-UP
% inlet and outlet buffers

105

inb=2, oub=2; % inlet and outlet buffers thickness
% add fluid at the inlet (top) and outlet (down)
inlet=ones(inb,Mc); outlet=ones(oub,Mc);
Channel2D=[[inlet]; Channel2D ;[outlet]] ; % add flux in and down (E

to W)
[Nr Mc]=size(Channel2D); % update size
% boundaries related to the experimental set up
wb=2; % wall thickness
Channel2D=[zeros(Nr,wb), Channel2D , zeros(Nr,wb)]; % add walls (no

fluid leak)
[Nr Mc]=size(Channel2D); % update size
uy_analy_profile=[zeros(1,wb), uy_analy_profile, zeros(1,wb)] ; % take

into account walls
x_pro_fig=[[x_profile(1)-[wb:-1:1]], [x_profile,

[1:wb]+x_profile(end)]];

% Figure plots analytical parabolic profile
figure(20), plot(x_pro_fig,uy_analy_profile,'-'), grid on,
title('Analytical parab. profile for Poiseuille planar flow in a

channel')

% VISUALIZE PORE SPACE & FLUID OSTACLES & MEDIAL AXIS
figure, imshow(Channel2D); title('Vassel geometry');
Channel2D=logical(Channel2D);
% obstacles for Bounce Back (in front of the grain)
Obstacles=bwperim(Channel2D,8); % perimeter of the grains for bounce

back Bound.Cond.
border=logical(ones(Nr,Mc));
border([1:inb,Nr-oub:Nr],[wb+2:Mc-wb-1])=0;
Obstacles=Obstacles.*(border);
figure, imshow(Obstacles); title(' Fluid obstacles (in the fluid)');
%
Medial_axis=bwmorph(Channel2D,'thin',Inf); %
figure, imshow(Medial_axis); title('Medial axis');
figure(10) % used to visualize evolution of rho
figure(11) % used to visualize ux
figure(12) % used to visualize uy (i.e. top -> down)

% INDICES
% Wet locations etc.
[iabw1 jabw1]=find(Channel2D==1); % indices i,j, of active lattice

locations i.e. pore
lena=length(iabw1); % number of active location i.e. of pore space

lattice cells
ija= (jabw1-1)*Nr+iabw1; % equivalent single index (i,j)->> ija for

active locations
% absolute (single index) position of the obstacles in for bounce back

in Channel2D
% Obstacles
[iobs jobs]=find(Obstacles);lenobs=length(iobs); ijobs= (jobs-

1)*Nr+iobs; % as above
% Medial axis of the pore space
[ima jma]=find(Medial_axis); lenma=length(ima); ijma= (jma-1)*Nr+ima; %

as above
% Internal wet locations : wet & ~obstables

106

% (i.e. internal wet lattice location non in contact with dray

locations)
[iawint jawint]=find((Channel2D==1 & ~Obstacles)); % indices i,j, of

active lattice locations
lenwint=length(iawint); % number of internal (i.e. not border) wet

locations
ijaint= (jawint-1)*Nr+iawint; % equivalent singl
NxM=Nr*Mc;

% DIRECTIONS: E N W S NE NW SW SE ZERO (ZERO:Rest Particle)
% y^
% 6 2 5 ^ NW N NE
% 3 9 1 ... +x-> +y W RP E
% 7 4 8 SW S SE
% -y
% x & y components of velocities , +x is to est , +y is to nord
East=1; North=2; West=3; South=4; NE=5; NW=6; SW=7; SE=8; RP=9;
N_c=9 ; % number of directions
% versors D2Q9
C_x=[1 0 -1 0 1 -1 -1 1 0];
C_y=[0 1 0 -1 1 1 -1 -1 0]; C=[C_x;C_y]

% BOUNCE BACK SCHEME
% after collision the fluid elements densities f are sent back to the
% lattice node they come from with opposite direction
% indices opposite to 1:8 for fast inversion after bounce
ic_op = [3 4 1 2 7 8 5 6]; % i.e. 4 is opposite to 2 etc.

% PERIODIC BOUNDARY CONDITIONS - reinjection rules
yi2=[Nr , 1:Nr , 1]; % this definition allows implemening Period Bound

Cond
%yi2=[1, Nr , 2:Nr-1 , 1,Nr]; % re-inj the second last to as first
% directional weights (density weights)
w0=16/36. ; w1=4/36. ; w2=1/36.;
W=[w1 w1 w1 w1 w2 w2 w2 w2 w0];
%c constants (sound speed related)
cs2=1/3; cs2x2=2*cs2; cs4x2=2*cs2.^2;
f1=1/cs2; f2=1/cs2x2; f3=1/cs4x2;
f1=3., f2=4.5; f3=1.5; % coef. of the f equil.

% declarative statemets
f=zeros(Nr,Mc,N_c); % array of fluid density distribution
feq=zeros(Nr,Mc,N_c); % f at equilibrium
rho=ones(Nr,Mc); % macro-scopic density
temp1=zeros(Nr,Mc);
ux=zeros(Nr,Mc); uy=zeros(Nr,Mc); uyout=zeros(Nr,Mc); %

dimensionless velocities
uxsq=zeros(Nr,Mc); uysq=zeros(Nr,Mc); usq=zeros(Nr,Mc); % higher

degree velocities

% initialization arrays : start values in the wet area
for ia=1:lena % stat values in the active cells only ; 0 outside
 i=iabw1(ia); j=jabw1(ia);
 f(i,j,:)=1/9; % uniform density distribution for a start
end
uy(ija)=uy0; ux(ija)=ux0; % initialize fluid velocities

107

rho(ija)=density;

% EXTERNAL (Body) FORCES e.g. inlet pressure or inlet-outlet gradient
% directions: E N W S NE NW SW SE ZERO
force = -dPdL*(1/6)*1*[0 -1 0 1 -1 -1 1 1 0]'; %;
%... E N E S NE NW SW SE RP ...
% the pressure pushes the fluid down i.e. N to S

% While .. MAIN TIME EVOLUTION LOOP
StopFlag=false; % i.e. logical(0)
Max_Iter=3000; % max allowed number of iteration
Check_Iter=1; Output_Every=20; % frequency of check & output
Cur_Iter=0; % current iteration counter inizialization
toler=1.0e-8; % tollerance to declare convegence
Cond_path=[]; % recording values of the convergence criterium
density_path=[]; % recording aver. density values for convergence
end % ends if restart

if(Restart==true)
 StopFlag=false; Max_Iter=Max_Iter+3000; toler=1.0e-12;
end

while(~StopFlag)
 Cur_Iter=Cur_Iter+1 % iteration counter update

 % density and moments
 rho=sum(f,3); % density

 if Cur_Iter >1 % use inizialization ux uy to start
 % Moments ... Note:C_x(9)=C_y(9)=0
 ux=zeros(Nr,Mc); uy=zeros(Nr,Mc);
 for ic=1:N_c-1;
 ux = ux + C_x(ic).*f(:,:,ic) ; uy = uy +

C_y(ic).*f(:,:,ic) ;
 end
 % uy=f(:,:,2) +f(:,:,5)+f(:,:,6)-f(:,:,4)-f(:,:,7)-f(:,:,8); %

in short !
 % ux=f(:,:,1) +f(:,:,5)+f(:,:,8)-f(:,:,3)-f(:,:,6)-f(:,:,7); %

in short !
 end

 %%%
 ux(ija)=ux(ija)./rho(ija); uy(ija)=uy(ija)./rho(ija);
 uxsq(ija)=ux(ija).^2; uysq(ija)=uy(ija).^2;
 usq(ija)=uxsq(ija)+uysq(ija); %

 % weighted densities : rest particle, principal axis, diagonals
 rt0 = w0.*rho; rt1 = w1.*rho; rt2 = w2.*rho;

 % Equilibrium distribution
 % main directions (+ cross)
 feq(ija)= rt1(ija) .*(1 +f1*ux(ija) +f2*uxsq(ija) -f3*usq(ija));
 feq(ija+NxM*(2-1))= rt1(ija) .*(1 +f1*uy(ija) +f2*uysq(ija) -

f3*usq(ija));

108

 feq(ija+NxM*(3-1))= rt1(ija) .*(1 -f1*ux(ija) +f2*uxsq(ija) -

f3*usq(ija));
 %feq(ija+NxM*(3)=f(ija)-2*rt1(ija)*f1.*ux(ija); % much faster... !!
 feq(ija+NxM*(4-1))= rt1(ija) .*(1 -f1*uy(ija) +f2*uysq(ija) -

f3*usq(ija));

 % diagonals (X diagonals) (ic-1)
 feq(ija+NxM*(5-1))= rt2(ija) .*(1 +f1*(+ux(ija)+uy(ija))

+f2*(+ux(ija)+uy(ija)).^2 -f3.*usq(ija));
 feq(ija+NxM*(6-1))= rt2(ija) .*(1 +f1*(-ux(ija)+uy(ija)) +f2*(-

ux(ija)+uy(ija)).^2 -f3.*usq(ija));
 feq(ija+NxM*(7-1))= rt2(ija) .*(1 +f1*(-ux(ija)-uy(ija)) +f2*(-

ux(ija)-uy(ija)).^2 -f3.*usq(ija));
 feq(ija+NxM*(8-1))= rt2(ija) .*(1 +f1*(+ux(ija)-uy(ija))

+f2*(+ux(ija)-uy(ija)).^2 -f3.*usq(ija));
 % rest particle (.) ic=9
 feq(ija+NxM*(9-1))= rt0(ija) .*(1 - f3*usq(ija));

 %Collision (between fluid elements)omega=relaxation frequency
 f=(1.-omega).*f + omega.*feq;

 %%%
 %add external body force due to the pressure gradient prop. to dPdL
 for ic=1:N_c;%-1
 for ia=1:lena
 i=iabw1(ia); j=jabw1(ia);
 % if Obstacles(i,j)==0 % the i,j is not aderent to the

boundaries
 % if (f(i,j,ic) + force(ic)) >0; %! avoid negative

distributions
 %i=1 ;% force only on the first row !
 f(i,j,ic)= f(i,j,ic) + force(ic);
 % end
 % end
 end
 end

 % % STREAM
 % Forward Propagation step & % Bounce Back (collision fluid with

obstacles)
 %f(:,:,9) = f(:,:,9); % Rest element do not move

 feq = f; % temp storage of f in feq
 for ic=1:1:N_c-1, % select velocity layer

 ic2=ic_op(ic); % selects the layer of the velocity opposite to

ic for BB
 temp1=feq(:,:,ic); %

 % from wet location that are NOT on the border to other wet

locations
 for ia=1:1:lenwint % number of internal (i.e. not border) wet

locations

109

 i=iawint(ia); j=jawint(ia); % so that we care for the wet

space only !
 i2 = i+C_y(ic); j2 = j+C_x(ic); % Expected final locations

to move
 i2=yi2(i2+1); % i2 corrected for PBC when necessary (flow

out re-fed to inlet)
 % i.e the new position (i2,j2) is sure another wet location
 % therefore normal propagation from (i,j) to (i2,j2) on

layer ic
 f(i2,j2,ic)=temp1(i,j); % see circshift(..) fnct for

circularly shifts
 end ; % i and j single loop

 % from wet locations that ARE on the border of obstacles
 for ia=1:1:lenobs % wet border locations
 i=iobs(ia); j=jobs(ia); % so that we care for the wet

space only !
 i2 = i+C_y(ic); j2 = j+C_x(ic); % Expected final locations

to move
 i2=yi2(i2+1); % i2 corrected for PBC

 if(Channel2D(i2,j2) ==0) % i.e the new position (i2,j2)

is dry
 f(i,j,ic2) =temp1(i,j); % invert direction: bounce-back

in the opposite direction ic2
 else % otherwise, normal propagation from (i,j) to (i2,j2)

on layer ic
 f(i2,j2,ic)=temp1(i,j); % see circshift(..) fnct for

circularly shifts
 end ; % b.b. and propagations

 end ; % i and j single loop
 % special treatment for Corners
 % f(1,wb+1,ic)=temp1(Nr,Mc-wb); f(1,Mc-

wb,ic)=temp1(Nr,wb+1);
 % f(Nr,wb+1,ic)=temp1(1,Mc-wb); f(Nr,Mc-

wb,ic)=temp1(1,wb+1);

 end ; % for ic direction

 % ends of Forward Propagation step & Bounce Back Sections

 % re-calculate uy as uyout for convergence
 rho=sum(f,3); % density
 % check velocity
 uyout= zeros(Nr,Mc);
 for ic=1:N_c-1;
 uyout= uyout + C_y(ic).*f(:,:,ic) ; % flow dim.less velocity

out
 end
 % uyout(ija)=uyout(ija)./rho(ija); % from momentum to velocity

 % Convergence check on velocity values

110

 if (mod(Cur_Iter,Check_Iter)==0) ; % check for convergence every

'Check_Iter' iterations

 % variables monitored
 % mean density and
 vect=rho(ija); vect=vect(:);
 cur_density=mean(vect);
 % mean 'interstitial' velocity
 % uy(ija)=uy(ija)/rho(ija); ?
 vect=uy(ija); av_vel_int= mean(vect) ; % seepage velocity (in

the wet area)
 % on the whole cross-sectional area of flow (wet + dry)
 av_vel_int=av_vel_int*porosity, % av. vel. on the wet + dry

area
 %av_vel_int=mean2(uy),
 av_vel_tp1 = av_vel_int;
 Condition=abs(abs(av_vel_t/av_vel_tp1)-1), % should --> 0

 Cond_path=[Cond_path, Condition]; % records the convergence

path (value)
 density_path=[density_path, cur_density];
 %
 av_vel_t=av_vel_tp1; % time t & t+1

 if (Condition < toler) | (Cur_Iter > Max_Iter)
 StopFlag=true;
 display('Stop iteration: Convergence met or iteration

exeeding the max allowed')
 display(['Current iteration: ',num2str(Cur_Iter),...
 ' Max Number of iter: ',num2str(Max_Iter)])
 break % Terminate execution of WHILE .. exit the time

evolution loop.

 end % if(Condition < toler

 end

 if (mod(Cur_Iter,Output_Every)==0) ; % Output from loop every ...
 %if (Cur_Iter>60) ; % Output from loop every ...

 rho=sum(f,3); % density
 figure(10); imshow(rho,[0.1 0.9]); title(' rho'); % visualize

density evolution
 figure(11); imshow(ux,[]); title(' ux'); % visualize fluid

velocity horizontal
 figure(12); imshow(-uy,[]); title(' uy'); % visualize fluid

velocity down
 figure(14), imshow(-uyout,[]), title('uyout'); % vis vel flow

out
 up=2; % linear section to visualize up from the lower row
 figure(15), hold off, feather(ux(Nr-up,:),uy(Nr-up,:)),
 figure(15), hold on , plot(uy_analy_profile,'r-')
 title('Analytical vs LB calculated, fluid velocity parabolic

profile')
 pause(3); % time given to visualize properly

111

 end % every

 % pause(1);

end % End main time Evolution Loop

% Output & Draw after the end of the time evolution

figure, plot(Cond_path(2:end)); title('convergence path')
%figure, plot(density_path(2:end)); title('density convergence path')
figure, plot([uy(Nr-up,:)-uy_analy_profile]); title('difference : LB

- Analytical solution')

toc

% Permeability K

K_Darcy_Porous_Sys= (av_vel_int*porosity)/dPdL*Lky_visco ,

K_Analy_2D_Channel=(Width^2)/12

