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ABSTRACT 

The main objective of this study is to numerically investigate: (i) the ionic transport, 

especially chloride ion penetration into cementitious materials under imposed electric 

fields, and (ii) moisture transport through cracked concretes as a function of the crack 

geometry.  

Numerical methods were implemented to simulate the ionic transport process, based on 

coupling the Nernst-Planck equation and Poisson’s equation to account for transport 

dominated by electromigration. This mathematical model was also modified to account 

for the chloride binding mechanism (physical and chemical trapping of chlorides by the 

cement hydrates) and the concentration dependence of the diffusion coefficient of each 

ion in the transport process. To validate the numerical model, experimental data from a 

companion work was used in this study. The non-steady state migration test, which is one 

of the common accelerated chloride ion transport test, is numerically simulated. The 

simulation provides a linear relationship between ionic concentration and ionic flux, 

which indicates that the diffusion part is negligible under a strong external voltage 

environment. The numerical models along with adjustments for the concentration-

dependent diffusion coefficients, a pore structure factor (from electrical measurements) 

and chloride binding considerations are found to be successful in predicting the chloride 

penetration depth into plain and modified concretes under imposed electrical potentials.  

Moisture transport through cracked concrete was examined in the second part of this 

thesis. To better understand the crack’s influence on the permeability, modified Louis’ 

equation was chosen to relate the permeability with crack characteritsics. 3D concrete 

crack models were developed using a MATLAB program with distinct crack tortuosities, 

roughnesses and sizes. As a comparison, Navier-Stokes equation and the Lattice 
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Boltzmann method were also applied on the 3D model of the cracked concrete to evaluate 

their permeability. The methodology developed here is expected to be useful in 

understanding the influence of cracking on moisture transport, and when properly 

coupled with an ionic transport model that will be further developed, helps 

comprehensively understand the coupling effects of moisture and ionic transport on 

deterioration in concrete structures.   
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PART I. NUMERICAL SIMULATION OF ACCELERATED CHLORIDE ION 

TRANSPORT INTO SATURATED CONCRETE  

1 INTRODUCTION 

1.1 Introduction to Ionic Transport Phenomenon  

1.1.1 Free Diffusion 

Diffusion is one kind of transport phenomena (unlike convection or advection) which 

leads to a movement of particles from an area of high concentration to an area of low 

concentration, resulting in a uniform distribution of the substance in the medium (Fig. 

1.1). 

 
Figure 1.1. Schematic diagram of diffusion process (1) 

 

As shown in Fig 1-2, if the concentration in Region 1 and Region 2 are C1 and C2 (mol/L) 

respectively and the distance between them is dx, then the flux from region 1 to region 2 

is given as: 

    
     

  
   

  

  
 (1-1) 

Where D is known as the diffusion coefficient (m
2
/s), and is a property of material.  

Eq. (1-1) is known as Fick’s 1
st
 law and is applicable to only steady-state diffusion since 

concentration values are independent with time. 

When the concentration is variable with time,  
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 (1-2) 

where:  

          
   
  

   (1-3) 

Substituting Eq. (1-3) to Eq. (1-2):  

   

  
  

   
  

  
 (  

  
  

)

  
  

   

   
 

(1-4) 

This is known as Fick’s  
nd

 law, which is the basic representation for non-steady-state 

diffusion of any ionic species into another medium.  

 
Figure 1.2. Schematic diagram of diffusion process (2) 

 

1.1.2 Chloride Ion Diffusion into Saturated Concrete and Implications 

Chloride-induced corrosion is the most important factor that affects the durability of 

reinforced concrete structures. Once the chloride concentration value near the reinforcing 

steel reaches a certain level, corrosion begins.  Every year, enormous economic loss is 

caused by corrosion and huge sums of money is spent to repair corrosion – damaged 

structures. 
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During the process of diffusion, a certain fraction of chloride ions are retained by the 

hydration products of the binder in concrete, either through chemical binding or physical 

adsorption[ 1 ], which delays the diffusion. The total chloride ions in the hardened 

hydrated cement paste in concretes can be divided into two types: free chloride ions, 

existing in the pore solution as mobile ions and contribute to further corrosion of steel 

and bound chloride ions, which are attached to various hydration products [1]. 

Relationships between the total, free and bound chloride ions in concrete are very 

important for the development of models for service life prediction of reinforced concrete 

structures with respect to reinforcement corrosion [2]. Freundlich adsorption isotherm 

and Langmuir adsorption isotherm are two main isotherms which describe the 

relationship between free and bound chlorides. They are given as: 

        
  (1-5) 

 
   

   

     
 (1-6) 

In which    is the binding chloride concentration over the sample and    is the free 

chloride concentration in pore solution.   ,  ,  , and   are binding constants varying 

with concrete binder compositions. Eq. (1-5) corresponds to Freundlich isotherm and Eq. 

(1-6) refers to Langmuir isotherm. Tang [3] has showed that Freundlich isotherm can 

describe chloride binding in free-chloride concentration ranging from 0.01 – 1 mol/L 

while Langmuir isotherm is appropriate for low free-chloride concentration (<0.05 

mol/L). Zabara [4] even showed that for a higher chloride concentration, Freundlich 

isotherm also describes the binding correctly. 

In saturated concrete, the movements of ions only take place in the liquid phase that 

occupies a fraction of the total porous volume. When different ionic species move in 



 

4 

  

same solution, their velocities vary due to the changes in diffusion coefficients. Since 

ions are charged particles, an electrical field is created, which is known as membrane 

potential. It can slow down the faster ions and accelerate the slower ones [5]. 

 

1.2 Non-Steady State Migration Test 

Several tests have been developed to understand the accelerated transport of chlorides 

through concrete. Among them the non-steady state migration test and the rapid chloride 

permeability test are the more common ones. Since the RCP test is reported to have 

several drawbacks, the predominant one being the joule heating associated with the large 

voltages used in the test [6], non-steady state migration test is regarded to be a more 

appropriate one to indicate the transport resistance of chlorides to ionic movement.  

Non-steady state migration test (NSSM) is generally carried out in accordance with NT 

Build 492 [7], on 50 mm thick concrete discs, which are preconditioned by vacuum 

saturating with calcium hydroxide solution,  after the respective curing durations. 2N 

NaCl and 0.3 N NaOH solutions are used as catholyte and anolyte solutions. An initial 

voltage of 30 V is applied, and initial current is recorded. The applied voltage and test 

duration are chosen based on the initial current. The test setup is shown in Fig. 1.3. 
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Figure 1.3. NT Build 492 test setup [7] 

 

The non-steady state migration coefficient is given as: 

       
  

   

    √  

 
 (1-7) 

    √
  

   
     (  

   

  
) (1-8) 

   
   

 
 (1-9) 

In which U is the absolute voltage in V, L is the specimen thickness in m, z is the valence 

of the chloride ion, F is the Faraday constant, R is the molar gas constant, T is the 

average value of initial and final temperatures in K,    is the average value of the 

penetration depth in m, t is the test duration in s,    is the chloride concentration at which 
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silver nitrate changes to silver chloride (0.07 N), and    is the chloride concentration of 

the catholyte solution (2 N). 

 

1.3 Experimental Program used in a Companion Study to Validate the Numerical 

Models 

The materials used in this study are: a commercial Type I/II ordinary portland cement 

(OPC) conforming to ASTM C 150, Class F fly ash and metakaolin conforming to 

ASTM C 618, and limestone powder conforming to ASTM C 568. The chemical 

compositions of these materials are listed in Table 1.1. The concrete mixtures were 

proportioned by replacing 20% or 35% of the OPC by (by volume) by limestone or fly 

ash in the binary blends, or combination of limestone and fly ash or limestone and 

metakaolin in the ternary blends. More details can be found in [8]. 

Table 1.1. Chemical composition of the component materials 

Component (%) OPC Fly ash Metakaolin 

SiO2 21.0 58.4 51.7 

Al2O3 3.61 23.8 43.2 

Fe2O3 3.47 4.19 0.5 

CaO 63.0 7.32 -- 

MgO 3.26 1.11 -- 

SO3 3.04 0.44 -- 

Na2O  0.16 1.43 -- 

K2O 0.36 1.02 -- 

LOI 2.13 0.50 0.16 

   

All the concretes were proportioned with a water-to-powder ratio of 0.40 by mass. In 

addition to the control OPC concrete, the mixtures included binary mixtures of limestone 

or fly ash at cement replacement levels of 20 and 35%, and ternary mixtures with either 

10% or 25% of fly ash or 10% of metakaolin with limestone being added to achieve the 

total 20% or 35% OPC replacement volume (see Table 1.2). The replacement level of 
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OPC with metakaolin was limited to 10% so as to avoid drastic loss of workability. The 

aggregate was 70% by volume over the concrete. All the concrete specimens were stored 

in a moist chamber for RH > 97% and at a temperature of 23 ± 2
o
C until the desired age 

of testing. The non-steady state migration test described in Section 1.2 was performed on 

all the specimens after 28 and 56 days of hydration. 

Table 1.2. Mixture proportions used in this study for 1 m
3
 of mortar or concrete 

Mixture 
Cement 

(kg) 

Limestone 

(kg) 

Fly ash 

(kg) 

Metakaolin 

(kg) 

Coarse 

agg. (kg) 

Fine agg. 

(kg) 

Plain 480 0 0 0 1066 661 

LS 20 395 85 0 0 1065 660 

FA 20 399 0 80 0 1065 660 

LS 10 MK 10 398 43 0 38 1063 659 

LS 35 327 151 0 0 1061 658 

FA 35 333 0 145 0 1061 658 

LS 25 MK 10 330 109 0 39 1060 657 

 

The chloride penetration depths from the migration test are shown in Table 1.3. The 

concrete with 35% cement replacement by limestone gives the largest penetration depth 

while the concrete containing 10% limestone + 10% metakaolin replacement case has a 

minimum penetration process. 

Table 1.3. NSSM test results (chloride penetration depth) 

Mixture Plain LS 20 
LS 10 MK 

10 
LS 35 

LS 25 MK 

10 
FA 20 FA 35 

Depth (mm) 25.37 30.71 14.10 32.50 19.75 20.75 19.50 
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2 MATHEMATICAL MODELS TO SIMULATE NON-STEADY STATE 

CHLORIDE MIGRATION INTO CONCRETE  

2.1 Basic Ionic Transport Equation 

As discussed above, transport of chloride into saturated porous concrete is a complex 

process. Different parameters influence the process in different ways. Fick’s  
nd

 law is no 

longer suitable for describing ionic movement in concrete subjected to an electric field. In 

this thesis, extended Nernst-Planck equation is chosen to describe the process: 

       (
   

  
 

   

  
  

  

  
   

     

  
     ) (2-1) 

Here    is the flux value of ionic species i, expressed as mole per square meter second 

(mol/m
2
s);    is the ionic concentration in pore solution, expressed as mole per cubic 

meter (mol/m
3
);    is the effective diffusion coefficient, expressed as square meter per 

second (m
2
/s);    is the valence number;   is the Faraday constant (9.648534×10

4
 C/mol); 

  is the ideal gas constant (8.3145 J/(mol∙K));   is the absolute temperature (K);   is the 

electrical potential (V);    is the chemical activity coefficient and    is the bulk velocity 

of the fluid.  

There are four parts in the right-hand side of the equation, each of them corresponds to a 

different mechanism. The first part describes the ionic movement driven by the 

concentration gradient. The second part represents the effect of electrical field, which 

may be a result from the co-action of membrane potential and external electrical field. 

However, when the external electrical field is strong enough [i.e. in a migration test], the 

membrane potential can be negligible. The third part is due to the chemical activity. Since 

most of test results show that the influence from chemical activity gradient is negligible 

[9,10], this part can be omitted. The confirmation for this is shown in this thesis also, in a 
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later section (Sec. 3.4). The fourth part is the advection term. When no pressure gradient 

exists, this term can also be omitted. [5] 

As a result, Eq. (1-5) becomes: 

       (
   

  
 

   

  
  

  

  
) (2-2) 

In this thesis, Na
+
, K

+
, Cl

-
 and OH

-
 ions are considered as the main ions taking part in the 

ions transport process. The Na
+
, K

+
, and OH

-
 ions are the dominant ions in a cement paste 

pore solution while the Cl
-
 ions are induced into the system during the NSSM test. 

The transport of ionic species in the concrete can be described by the mass conservation 

of individual ionic species as follows: 

 
 (   )

  
   

 

  
(
   

  
 

   

  
  

  

  
) (2-3) 

Where   is the porosity of concrete. 

Poisson’s equation is needed for evaluating the electrical potential  (   ) because the 

assumption that the electric potential does not vary with specimen depth is invalid.  

      
 

    
∑     

 
 (2-4) 

Eq. (2-4) is the dimensionless form of Poisson equation. Where          

       (   ) is the permittivity of a vacuum.         is the relative permittivity of 

water at a temperature of 25°C.  

Solving Eq. (2-3) and Eq. (2-4) gives the simulation results of the ionic transport process. 

Finite element method or finite difference method are required to solve these equations. 
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2.2 Numerical Process to Solve System Equations 

Finite element method is one of the most powerful methods to solve engineering 

problems. By discretizing – the process of splitting the problem domain into elements, 

complicated problems can be separated into small elements with certain degrees of 

freedom, which makes the solving process much easier. In this thesis, both finite element 

(FE) and finite difference (FD) method are applied to solve all the partial differential 

equations. In this section, detailed deviations have been presented. 

A full version of all the system equations is: 

  
   

  
 

 

  
(  

   

  
     

 

  
  

  (   )

  
) (2-5) 

 
     

 

    
∑     

 
 

(2-6) 

A two-node linear element has been used during the solution process. Uniform mesh is 

applied to the problem. Each element has the same length of L/n, where L is the thickness 

of the sample and n is the number of elements. 

The problem domain is: 

            (2-7) 

Where   is the thickness of the sample and    is set to 0. 

Only Dirichlet boundary condition is applied to this problem: 

 For     , {
  (    )    

 

  (    )    
  (2-8) 

Where   
  and   

  are the concentration values in external solutions for i-th species, 

which are considered as constants during the test. This is because a non- steady state 
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migration test has highly concentrated ionic solutions as the catholyte and anolyte and 

their concentrations do not change appreciably with time.  

The initial conditions are: 

 At   (     ),   (    )    
  (2-9) 

In which   
  is the concentration value in pore solution for i-th species at each node. 

The element equations have been generated by Galerkin’s method. The trial solution of 

the system can be assumed as: 

   (   )  ∑  ( )  
 ( )

 

   

 (2-10) 

In which   (   ) is the concentration value of the i-th species,   ( ) is the shape function 

and   
 ( ) is the time-dependent concentration value at j-th node of i-th species.  

For two-node linear element, the shape functions are: 

 {

  ( )  
    

     

  ( )  
    

     

 (2-11) 

The elementary equation of the system is: 

  {
  ( )

  
}   { ( )}  { ( )} (2-12) 

Where  ( ) is the unknown variable vector on each element in terms of their nodal 

values at each time-step: 

  ( )  {                            }
  (2-13) 

In which the subscripts i and j in cij stand for the ion i at node j in a given element. 
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   ∫{ } {  }{ }   (2-14) 

   ∫({ }{  }{ }  { }{  }{ }  { }{  }{ })    (2-15) 

In which   is shape function matrix and   is it’s first order derivative,   is the 

weighting matrix and   is it’s first order derivative. Here they can be expressed as: 

   

[
 
 
 
 
  

  

  
  

  

  

  

  
  

  ]
 
 
 
 

 (2-16) 

   

[
 
 
 
 
   

   

   
   

   

   

   

   
   

   ]
 
 
 
 

 (2-17) 

      (2-18) 

      (2-19) 

In eq. (2-15) there are three matrices   ,    and   , which represent three different 

mechanisms:    represents on the diffusion process,    couples the ionic concentration 

together with the electrical potential (Poisson’s equation) and    considers the electrical 

migration term [11,12].    is the basic capacity matrix including the porosity.Matrixes 

from    to    can be expressed as: 

     

[
 
 
 
 
 

 
 

 
 ]

 
 
 
 

 (2-20) 
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[
 
 
 
 
  

  

  
  

 ]
 
 
 
 

 (2-21) 

    

[
 
 
 
 

             ]
 
 
 
 

 (2-22) 

    

[
 
 
 
 
 
 
 
 

     

  
  

     

  
  

     

  
  

     

  
  

 ]
 
 
 
 
 
 
 
 

 (2-23) 

The time discretization is performed using an explicit Euler scheme, 

  {
       

  
}         (2-24) 

Defining the matrices 

 

 ̅        

 ̅   {  } 
(2-25) 

The system equation can then be rewritten as 

  ̅{    }   ̅ (2-26) 

This system of equations can be solved by Gauss-Elimination method.  

A central finite difference approximation is applied to obtain the flux value based on Eq. 

(2-2); 

 
   

 

  
 

  
   

   
   

   
 (2-27) 
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2.3 Optimization of the Solution 

Since the governing equation is a convection—diffusion equation, the accuracy of the 

solution is heavily dependent on the Peclet number, which is defined as: 

     
 

 

 

 
 (2-28) 

Where h is the length of element and   | 
 

  

  

  
| is the migration term. 

Any values of Peclet number larger than 1 will cause heavy oscillation and give unstable 

solutions. To optimize the calculation method and reduce the number of elements needed, 

a Petrov-Garlerkin method is induced [13]. 

The weighting matrix can be modified as: 

           

 

 

   

  
(      ) (2-29) 

Where 

          |  |  
 

|  |
 (2-30) 

The sign is depend on whether U towards or away from the node. 

The current density carried by all the four species passing through the specimen can be 

calculated by the following equation: 

    ∑     

 

   

 (2-31) 

In which   is current density, expressed in A/m
2
. 

The current at each time step is calculated according to the following equation: 

        (2-32) 

In which   is the surface area of the sample. 
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3 NUMERICAL SIMULATION AND MODEL MODIFICATION 

3.1 Determination of Ionic Concentration in Pore Solution 

Multiple factors such as the binder proportions, degree of hydration and the chemical 

composition of the ingredients can affect the initial ionic concentration of the pore 

solution concrete. In this study, pore solution composition is determined using Taylor’s 

model. The degrees of hydration of the binders in the concrete at different ages were 

obtained from [8].  

Taylor [14] proposed a model for predicting alkali ion concentrations in the pore solution 

of hydrated cement paste with the total amount of Na2O and K2O in the components and 

the water available for the pore solution. The alkali ions exist both in the pore solution 

and the hydration products, and the amount of ions occupied by hydration products is 

assumed proportional to its concentration in the solution and the amount of products as 

adsorbent [15]. Thus, the concentration of ions in the solution can be calculated from the 

remaining amount of ions and the volume of solution. Experimental equations are applied 

to estimate the amounts of alkali ions released by hydration process and the hydration 

products. The pore solution volume is computed from the total water content in the paste 

and products. A web interface developed by National Institute of Standards and 

Technology (NIST) can do the calculation based on the input information provided by 

users. 

The pore solution composition of mixtures estimated based on the mixtures proportions 

can be found in Table 1.2. The initial ionic concentrations of all the mixtures are listed in 

Table 3.1. 
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Table 3.1 Initial ionic concentration in pore solution (mol/L) 

Mixtures K
+
 Na

+
 OH

-
 Cl

-
 

OPC 0.21 0.14 0.35 0.00 

LS20 0.16 0.11 0.27 0.00 

LS10 MK10 0.16 0.11 0.27 0.00 

LS35 0.12 0.08 0.20 0.00 

LS25 MK10 0.13 0.09 0.22 0.00 

FA20 0.25 0.30 0.55 0.00 

FA35 0.27 0.40 0.67 0.00 

 

 

3.2 Effective Ionic Diffusion Coefficients  

Diffusion coefficients of ions determine the ionic diffusing speed in media. The media 

environment can drastic influence the effective ionic diffusion coefficients. In this section, 

a series of work has been done to find out the effective ionic diffusion coefficients for 

ions transportation in saturated concrete. 

3.2.1 Pore Structure Dependent Effective Diffusion Coefficient 

In many past works, researchers have used several means to define the ionic diffusion 

coefficients in predictive models. In this study, the diffusion coefficient    is defined as: 

        
   

 (3-1) 

In which   is the pore connectivity of the material and   is the porosity of the material.  

  
   

 is the diffusion coefficient of the i-th species in infinite dilution, the values of which 

can be found in Table 3-2. 

Table 3.2 Diffusion Coefficients of Species in Infinite Dilution [16] 

Species  Diffusion Coefficient (10
-9

 m
2
/s) 

Na
+
  1.334 

K
+
  1.957 

OH
-
  5.273 

Cl
-
  2.032 

Ca
2+

  0.792 

SO4
2-

  1.065 
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The bulk specimen conductivity is related to the pore solution conductivity (  ) and a 

pore structure factor, defined herein as the product of porosity (p) and pore connectivity 

() [17,18,19]) as: 

           (3-2) 

The conductivity of the pore solution was predicted by the procedure developed by 

Snyder [20]: 

    ∑       (3-3) 

Where    is the species valence,    is the ionic concentration and    is the equivalent 

conductivity which can be expressed as: 

    
  

 

      
   

 (3-4) 

The values of the equivalent conductivity (  
 ) of ionic species in infinite dilution and the 

conductivity coefficient (  ) are given in Table 3-3. The ionic strength    is given as: 

    
 

 
∑  

    (3-5) 

 

Table 3.3 Equivalent conductivity at infinite dilution and conductivity coefficients for 

Na
+
, K

+
 and OH

-
 at 25  C [20] 

Species λ
0
 (cm

2
S/mol) G (mol/L)

-1/2
 

Na
+
 50.1 0.733 

K
+
 73.5 0.548 

OH
-
 198.0 0.353 

 

Thus, the pore connectivity can be calculated as: 

   
    

   
 (3-6) 
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A companion study [8] has obtained the porosity of the specimens from mercury 

intrusion porosimetry and effective connectivity from electrical impedance spectroscopy 

using the measured bulk electrical resistance.  

Both the porosity and pore connectivity for the chosen concretes are shown in Table 3.4. 

Table 3.4 Porosity and pore connectivity (dimensionless) of different concretes 

Mixture Plain LS 20 
LS 10 

MK 10 
LS 35 

LS 25 

MK 10 
FA 20 FA 35 

Porosity 0.099 0.122 0.104 0.132 0.129 0.127 0.132 

Pore connectivity 0.028 0.030 0.010 0.040 0.014 0.014 0.009 

 

Fig. 3.1 shows the predicted chloride concentration profile at the end of NSSM test for all 

the seven mixes. It can be noticed from this figure that, when the diffusion coefficient 

mentioned above is used, after 24 hours of NSSM test simulations, the chloride ions are 

seen to have penetrated the entire depth of the sample (50 mm). This is contradictory to 

the experimental test results where the largest penetration depth was only 33 mm. A 

possible reason for such an error could be from the effective diffusion coefficients of the 

migrating species used in the simulations, which is taken to be the self-diffusion 

coefficients of the ions multiplied by the product of porosity and pore connectivity (Eq. 

(3-1)). Such a definition results in an over-prediction of depth-dependent chloride 

profiles and the penetration depth.  
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Figure 3.1. Chloride concentration profile for original definition of D  

 

3.2.2 “Retarded” Effective Diffusion Coefficient 

To find out the influence of lowering the diffusion coefficients on the overall penetration 

depth, the effective diffusion coefficients (Di) were “retarded”. Based on the previous 

definition, Eq. (3-1) was modified by multiplying the right hand side by a retardation 

factor ranging between 0.125-to-0.200 and the simulations were repeated.  

The results of this new series of simulation with depressed diffusion coefficients in terms 

of chloride concentration profiles are shown in Fig. 3.2. Compared with the experimental 

results, the predicted penetration process is effectively retarded and an expected trend is 

obtained. The rationale for reducing the effective diffusion coefficients may lie in the fact 

that effective ionic diffusion coefficients of ions in a sample undergoing migration is not 

the same at all locations and are concentration dependent. It has also been reported that 

the apparent chloride migration coefficient may vary as a function of spatial position 
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during the accelerated migration test due to chloride binding and non-equilibrium 

conditions, i.e., equilibrium between the free and bound Cl
-
 ions is not achieved during 

NSSM tests [21]. The local binding capacity and the local migration coefficient depend 

on the local concentrations of free and bound chlorides. Thus, the low concentration of 

chlorides at the penetration front helps progress the front with little binding, but as the 

local chloride concentration increases behind the front, so does the binding capacity [21]. 

These factors are then expected to result in concentration dependent ion transport 

functions to adequately represent the ionic movements. 

 

Figure 3.2. Chloride concentration profile for modified D  
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3.3 Concentration-Dependent Effective Diffusion Coefficients and Linear Chloride 

Binding 

3.3.1 Chloride Binding Mechanism 

Chloride binding can occur through physical adsorption of chlorides on the surface of the 

C-S-H gel or by chemical reaction with typically the aluminate-bearing reaction products 

[22,23,24]. Thus, total chloride ions in the system are consisted by two parts: chloride 

ions in liquid phase and chloride ions in solid phase. The relationship can be written as 

[2]: 

                (3-7) 

In which    is the total concentration of chlorides in the system, expressed as moles per 

cubic meter (mol/m
3
);     is the free-chloride concentration in concrete, expressed as 

moles per cubic meter (mol/m
3
);     is the bound-chloride concentration in concrete, 

expressed as moles per kilogram (mol/kg);    is the total volume of concrete, expressed 

as cubic meter (m
3
);     is the volume of pore in concrete, expressed as cubic meter (m

3
);  

   is the mass of solid phase, expressed as kilogram (kg). 

Eq. (3-7) can be rewritten as: 

      

  

  
   

  

  
       (   )     (3-8) 

Where   is the porosity of concrete and     is the dry density of the concrete. 

It has been suggested that that chloride binding can be ignored in migration tests because 

the rate of electrically induced ion transport is faster than the kinetics of chemical 

reaction or that the exposure time to chlorides in a NSSM test is too short [16]. However 

the high concentrations of chloride powder residues examined after the NSSM test in 

another study [25] indicate binding. Such binding can be described using Fruendlich 
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isotherm, which sketches a non-linear relationship between the bound and free chloride 

concentrations as Eq. (1-5), an example of which is shown in Fig. 3.3 [4]. However it has 

been shown that the Fruendlich isotherm is not appropriate for NSSM condition [26], and 

a linear binding relation is more appropriate in this case [25,27]. In this assumption, the 

bound chloride concentration determined by the Fruendlich isotherm is assumed to be 

valid at the specimen surface where is exposed to the highest Cl
-
 concentration, below 

which it linearly decreases as the mobile chloride abundance decreases (see Fig.3-3). 

Thus, the relationship between free and bound chloride can be described as:  

        (3-9) 

Where k is the new binding constant. k takes values ranging between 0.35×10
-4

-to-

0.5×10
-4

 [ 28 ] for OPC concretes and those containing OPC replacement materials, 

depending on the chemical composition of the replacement materials. Thus, the lower 

bound corresponds to binary mixtures which display suppressed binding, while the upper 

bound corresponds to fly ash and metakaolin bearing mixtures which display enhanced 

chloride binding.  

To account for such Cl
-
 binding, Eq. (3-8) and Eq. (3-9) are substituted into Eq. (2-3) to 

generate a new PDE to describe the chloride transportation process: 

 (  (   )    

    
 

    
 
)

    
 

  
 

 

  
(   

    
 

  
    

   

  
   

   (   )

  
) (3-10) 
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Figure 3.3. Freundlich and linear isotherms which describe Cl
-
 binding in cementitious 

mixtures 

 

Thus, a full version of all the system equations is obtained as shown below: 
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3.3.2 Concentration-Dependent Effective Diffusion Coefficients 

To consider the concentration dependence of the ionic diffusion coefficients, an approach 

adopted by [5] is used, as noted in Eq. (3-12): 

 {
                         (            )                    

                                     (                  )
                                        (        )                          

 (3-12) 

In which a is an exponent equal to -0.71 for the mixtures used in this study. 

Based on these modifications, numerical simulations for all specimens were repeated.  

 

3.4 Effect of Chemical Activity 

As mentioned in Section 2.1, it is assumed that the influence from chemical activity is 

negligible during the electro-migration test. In this section, detailed procedure is provided 

to validate the assumption. 

3.4.1 Modeling the Chemical Activity 

In many past works, several models have been developed to calculate the chemical 

activity coefficient based on the ionic concentration. However, models such as Debye-

Hückel or extended Debye- Hückel or Davies are unable to describe the thermodynamic 

behavior of highly concentrated ionic solution properly [16,29 ], a modified Davies 

equation is applied to calculate the chemical activity coefficient [9]: 

       
   

 √ 

     √ 
 

(    (          ) )   
  

√    
 (3-13) 

In which   is the ionic strength of the solution, which can be calculated from Eq. (3-5).  

A and B are temperature dependent parameters that can be obtained from the following 

equations: 
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√     

  (      )   
 (3-14) 

   √
   

      
 (3-15) 

Where    is the electronic charge (1.602×10
-19

 C),      is the permittivity of the medium, 

which can be found in Section 2.1, F, R and T also have the same meaning as defined in 

Section 2.1.    represents the radius of ion i, as given in Table 3-5. 

Table 3.5 Radius of different ions (10
-12

 m) 

Na
+
 K

+
 OH

-
 Cl

-
 

116 152 110 167 

 

Based on Eq. (2-15), induce the fourth matrix    to include the effect from chemical 

activity into the system equation.    is given as: 

    

[
 
 
 
 
   

     

    

     

    

     

  
  

     

   ]
 
 
 
 
 

 (3-16) 

The updated system stiffness matrix is given as:  

   ∫({ } {  }{ }  { } {  }{ }  { } {  }{ }  { } {  }{ })    (3-17) 

Following the same procedure introduced in Section 2.2, the chemical activity included 

simulation can be carried out. 

3.4.2 Simulation Results and Discussion 

To validate the feeble effect of chemical activity on the electro-diffusion process, one 

simulation is carried out. Fig. 3.4 shows the chloride fluxes contributed by different 

mechanisms after 24-hours simulation. It is obvious that during the NSSM test, migration 

dominates the penetration process. Compared with migration, contribution from chemical 
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activity is much smaller (2-3 magnitudes smaller than migration), which indicates that the 

assumption is actually acceptable. Samson et al also got the same conclusion by 

comparing the effect of chemical activity in different solutions [9]. 

 

Figure 3.4. Chloride fluxes profile 
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4 NUMERICAL SIMULATION RESULTS AND DISCUSSION 

Based on Eq. (3-11) and Eq. (3-12), simulations of the NSSM test were implemented for 

all the concrete specimens which were cured for 56 days. The initial and boundary 

conditions are listed in Table 4.1.  

Table 4.1 Pore structure factors and the initial and boundary conditions for the 

simulations 

Mixture φ β 

Pore solution 

composition (mol/L) 

Upstream 

boundary 

conditions 

(mol/L) 

Downstream 

boundary 

conditions 

(mol/L) 

K+ Na+ OH- Na+ Cl- Na+ OH- 

OPC 0.099 0.028 0.21 0.14 0.35 

1.9 1.9 0.3 0.3 

LS20 0.122 0.030 0.16 0.11 0.27 

LS10+MK10 0.104 0.010 0.16 0.11 0.27 

LS35 0.132 0.040 0.12 0.08 0.20 

LS25+MK10 0.129 0.014 0.13 0.09 0.22 

FA20 0.127 0.014 0.25 0.30 0.55 

FA35 0.132 0.009 0.27 0.40 0.67 

 

Fig. 4.1 gives the chloride concentration profile after 24 hours of the NSSM test for all 

the seven cases given in Table 4.1. The dotted line indicates the threshold value of 

chloride (70 mmol/L) at which the free chloride ions can be measured by the colorimetric 

method (spraying silver nitrate solution mentioned earlier). It is obvious from this figure 

and Table 4.1 that the pore structure parameter, which includes porosity and pore 

connectivity, dominates the speed of chloride penetration process into concrete. The 

mixture with 35% of cement replaced by limestone, having both the highest porosity and 

pore connectivity has a largest penetration depth while the mixture with 35% of cement 

replaced by fly ash has the lowest product value of porosity and pore connectivity, and 

correspondingly the smallest calculated penetration depth. It is also noticed that the initial 

pore solution composition determines the maximum stable chloride level that can be 
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reached during the NSSM test. That is due to the restriction imposed by the 

electroneutrality condition (Poisson’s equation). Chloride ions together with the other 

ions in solution, mainly sodium and potassium, equilibrate to maintain the 

electroneutrality condition.   

 
Figure 4.1. Chloride concentration profile @ 24 hours 

 

Fig. 4.2 describes the relationship between the simulated penetration depth of chloride 

ions and the experimentally measured results. Favorable correlations are observed. This 

is significant in that, suitable numerical implementations of the PNP solutions can be 

applied to parametrically evaluate the behaviors of various concrete formulations to 

discern and rank the effects of different parameters including:  (a) porosity, (b) pore 

structure factor, (c) solid binder and the pore solution composition, (d) external Cl
-
 

concentration in solution, (e) applied voltage, and (f) test duration on ionic transport 

resistance. 
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Figure 4.2. The relationship between the experimentally measured Cl
-
 penetration depths 

and those simulated from the modified PNP formulations for binary and ternary concrete 

mixtures 

 

Fig. 4.3 provides concentration profile of different ions at different times during the 

NSSM test. While similar curves can be generated for all the concrete mixtures studied 

here, only the data for OPC concrete is demonstrated in order to explain the trends in a 

concise fashion. These four curves give a general idea that during the test, under the 

effect of external potential, the cations (potassium and sodium) move upstream while the 

anions (chloride and hydroxyl) move downstream. It should be noted that the simulations 

predict a sharp drop in Cl
-
 profiles very close to the exposed surface, after which a stable 

regime follows, and then the Cl
-
 ion abundance drops once again. This is likely on 

account of the exaggerated Cl
-
 loading in the exposure solution, and the enforcement of 

electroneutrality in the simulations, which leads to a mismatch in the early  Cl
-
 

penetration depths as compared to experimental determinations of Cl
-
 intrusion using 
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gravimetric techniques. Several reasons can be ascribed to this observation. Firstly, there 

may exist local violations of the electroneutrality condition, especially very close to the 

specimen surface, where diffusion and Cl
-
 binding may occur simultaneously. Secondly, 

the large amount of Cl
-
 ingress close to the exposed face results in an increased level of 

binding predicted by the model, while in reality, the amount of bound Cl
-
 may be much 

smaller.  

 
Figure 4.3. Distribution of concentrations of ions of OPC at different times: (a) Chloride; 

(b) Sodium; (c) Potassium; (d) Hydroxyl 

 

(a) (b)

(c) (d)
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Fig. 4.4 gives the electrical potential profile at different times for the OPC concrete. From 

this figure, it is obvious that during the NSSM test, due to the influence of the membrane 

potential generated by different ionic transport speeds, the potential drop is no more in a 

linear relationship. On the bi-linear response relating electrical potential to specimen 

depth shown in this figure, the point at which the response changes its slope indicates the 

depth of chloride penetration at that particular time. Before this point, due to the 

introduced chloride ions, concentration levels of both the cations and anions change 

significantly and a strong membrane potential is generated that influence the external 

potential, which may also accelerate the penetration process. After this intersection point, 

since there are no external ions to redistribute the existing ionic balance system, the 

membrane potential can be negligible.  

This phenomenon can also be explained using Fig. 4.5, which is the electrical field 

profile of the OPC concrete undergoing NSSM test at different times. The trend in this 

figure can be described as an “initial increase – stable – sharp drop” process. The sharp 

drop front of the curve corresponds to the intersection point in Fig. 4.4 and also denotes 

the chloride penetration depth. It also should be noted that at an early age during the test, 

i.e. 3 hours, on account of the drastic change in ionic concentrations, a larger electrical 

field is generated, which also gives a higher slope to the potential – depth curve. As the 

test goes on, this effect is reduced because the ionic concentration changes are gradual.  
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Figure 4.4. Electrical potential profile of OPC at different times 

 

 
Figure 4.5. Electrical field profile of OPC at different times 
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Fig. 4.6 provides the relationships between concentration and flux of different ions for 

OPC concretes after 24 hours of NSSM test. It can be noticed from Fig. 4.3 that chloride 

and hydroxyl ions have a synchronous movement, when chloride penetrates into certain 

depth, hydroxyl totally moves out from the penetrated part. This is partly the result of the 

need to maintain electroneutrality at all times, at all locations.  As a result, linear 

relationships between ionic flux and concentration are found for anions while separated 

two stages of linear relationships are observed for cations. During the electro-migration 

process, as chloride penetrating into the media to a fixed depth, hydroxyl concentration 

drops to zero up to this level, cations have to redistribute themselves to balance with 

chloride ions. Beyond this level, the ionic concentrations change with a smaller rate – 

sodium and hydroxyl entre the media from the downstream solution with a much lower 

concentration compared with upstream solution while potassium continuously leaching 

out from the media. As it is showed in Fig. 4.6(a), during the chloride penetrating process, 

with the drop of concentration level, flux value also drops until zero – as the chloride 

stops at the sharp front as shown in Fig. 4.3(a). In Fig. 4.6(b) and Fig. 4.6(c), as the ionic 

concentrations drop, there’re corresponding drop for ionic fluxes, this describes the status 

for chloride-penetrated part. After a short constent concentration status, which indicates 

the stable level as showed in Fig. 4.3, there’re again linear relationships for sodium and 

potassium with a much smaller slopes. These two curves together with Fig. 4.6(d), gives 

the status beyond the chloride-penetrated part, in which ions have smaller fluxes. Fig. 4.6 

also gives the general idea that during the NSSM test, migration dominates the process 

with a strong external electrical potential, which can be found in previous section. 

  



 

34 

  

 
Figure 4.6. Flux-concentration relationship of different ions for OPC @ 24 hours NSSM 

simulation: (a) Chloride; (b) Sodium; (c) Potassium; (d) Hydroxyl 

 

Fig. 4.7 describes the chloride penetration process with testing times for OPC and 20% 

OPC replacement concrete. It can be found that during the NSSM test, the chloride 

penetrating speed varies with time. The penetration process starts with a higher speed and 

slows down until a stable level. One reason for that phenomenon is the chloride binding 

mechanism. Initially, binding does not happen in the solution since the chloride content is 

(a) (b)

(c) (d)
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little. Once the free chloride content reaches a threshold level, e.g. 0.14% by mass of 

concrete [26], chloride ions start bind to solid phases, which retards the penetration 

process. Compared the four cases showed in the figure, 20% limestone replacement 

concrete has a largest penetration depth with a largest penetrating speed since it has larger 

porosity, pore connectivity together with a smallest binding ability. While 10% limestone 

10% metakaolin replacement concrete and 20% fly ash replacement concrete have 

stronger ability to bind more chloride ions, these two cases have more apparent drop in 

penetrating speed. 

 
Figure 4.7. Chloride penetration development for OPC 
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5 SUMMARY 

Numerical simulation is a powerful method to implement a virtual analysis of ionic 

transport problems. By simulating non-steady state migration test, the process of ionic 

transport under electrically induced conditions is explored for OPC and modified 

concrete systems. The governing equation of the system is a convection-diffusion 

equation, and the accuracy of its solution is heavily dependent on both the element 

number and time step used in simulation. In this study, a total of 1000 elements and a 

time step of one second were chosen as default values for the models. While decreasing 

the numbers of elements leads to oscillatory results, increasing the value of time step 

results in totally unstable results. By using the Petrov-Garlerkin method, unconditional 

stable solution can be reached without significantly losing accuracy. All the numerical 

simulation codes are included in Appendix A. 

When there’s strong external electrical voltage exists in the system, diffusion part can be 

omitted during simulation since the electrical migration dominates the penetration 

process. However, the specific relationship between diffusion and electrical migration is 

still unclear.  Further work is needed to explore how electrical field influence the ionic 

diffusion process. During the NSSM test, the ionic diffusion coefficients varies with the 

ionic concentration, a higher concentration level gives a slower diffusion speed. Porosity, 

pore connectivity and the binder’s chloride binding ability influence the penetration 

process. Larger porosity and pore connectivity, smaller binding ability lead to higher 

penetration depth. It is also noticed that the assumption of constant electrical field is 

improper. During the NSSM, electrical filed varies with the changing of ionic 

concentration. It should be point out that the predicted concentration profile differs from 
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the experimental profile at the penetrated part, which is also need more further work to 

explore the reason. It is also noticed that the chloride penetration spped varies with 

testing time. As time goes on, increasing of chloride ion concentration level and 

increasing of binding slow the penetration process.  
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PART II. COMPUTATIONAL EVALUATION OF THE INFLUENCE OF CRACK 

PROPERTIES ON CONCRETE PERMEABILITY 

6 INTRODUCTION 

The permeability of concrete has  important implications on its durability since 

permeability controls the rate of penetration of moisture that may contain aggressive 

solutes and also controls moisture movement during heating and cooling or freezing and 

thawing [30]. During the past several decades, different methods were developed for a 

better understanding of concrete permeability. These models generally consider 

uncracked concretes. Extensive research has been done [31,32,33,34,35] on the water 

permeability of crack-free concrete and this leads to the general conclusion that the 

saturated water permeability of concrete is a function of its porosity, pore connectivity, 

and the square of a threshold pore diameter [33,34,35], which is similar to what Katz and 

Thompson developed and is a well-accepted permeability model for rocks. On the other 

hand, research on transport through cracked concrete has been limited. The major reason 

for this is that characterizing cracking in concrete is rather difficult and identifying the 

parameters of the crack that influence permeability is non-trivial. The pioneering works 

of Kermani [36], Tsukamoto and Wörner [37], and Gérard et al. [38] explored changes in 

permeability of concrete caused by the application of compressive or tensile stress. 

Akhavan et al. [39] explored the effect of geometric parameters of cracks on permeability. 

In this part of this thesis, the focus is on numerically modeling the moisture transport 

through concretes containing cracks of varying sizes, shapes, and tortuosity. A modified 

Louis equation is chosen as the primary model to estimate the crack permeability from its 

geometric properties. As a comparison, Navier-Stokes equation and Lattice-Boltzmann 
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method are also studied and discussion about the differences is indicated. This study is a 

preliminary effect to discern the geometric effects of cracks on permeability through 

numerical simulations.  
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7 MATHEMATICAL MODELS FOR PERMEABILITY ESTIMATION 

7.1 Modified Louis Equation 

Modified Louis equation is an expression that connects the permeability with geometric 

properties of crack – effective crack width, tortuosity and surface roughness [39]: 

   
   

  (       
   )

 (7-1) 

In which   (  ) is the crack permeability,   ( ) is the effective crack width,   is the 

tortuosity factor and    is the relative surface roughness of a crack. 

7.1.1 Effective Crack Width 

In this study, the developed model assumes that the crack propagates into several layers 

along depth of concrete with unit thickness in perpendicular direction. At each layer, 

crack path consists of circles with different radii along a zig-zag line. Thus, the basic 

crack is generated as shown in Fig. 7.1. 

 
Figure 7.1. Crack generation model (Top surface) 

 

According to Darcy’s law, for the first row (surface), the volumetric discharge rate (    ) 

is described as: 

      ∑    

 

   

 
 

 
∑         

    

   

 

   

 (7-2) 
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In which n is the total number of circles in each layer,     is the representative width of 

each circle,     
   

 

  
 and      represent the permeability [40] and pressure loss for each 

element. Assuming that the elements' length and thickness are chosen to be constants: 

      and      , and that the flow is one-dimensional (                ): 
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 (7-3) 

Combining Eq. (2-3) with Darcy’s law results in: 

      
 

   

  

 
         

  (7-4) 
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 (7-5) 

Finally, the effective crack width of each layer can be expressed as: 

        √
 

 
∑    

 

 

   

 

 (7-6) 

In which     is the representative width of i-th circle in j-th layer,        is the effective 

crack width of j-th layer. 

To calculate the total effective through-crack width,     , assume              

      , 

Then based on Eq. (2-4),  

          
           

             
  (7-7) 
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Where    is the total discharge rate,              is the total pressure loss 

across the specimen, and j is the number of layers.  

Then  

        (
      

      
)

 

 (7-8) 
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And ultimately, 
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(7-10) 

7.1.2 Crack Tortuosity 

The tortuosity of crack can be easily determined as: 

   (
 

  
)

 

 (7-11) 

In the above equation,   is the depth of specimen and    is the actual crack length. It has 

been shown in [41] that permeability drops proportionally with (
 

  
)
 

 but not with 
 

  
 

since the larger effective length affects both pressure gradient and fluid velocity.  

7.1.3 Crack Roughness 

As shown in Fig. 7.2, roughness is determined in two steps in this study. First, the 

segment     to      is selected and its roughness is determined by calculating the 

average height of surface asperities with respect to its reference  ̅ line as: 

      
 

 
∑(| ̅( )   ( )|     ) (7-12) 
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In which       is the local roughness over this segment, and the quantity in front of Σ is 

the absolute value of the difference between crack profile and the reference line in the 

direction perpendicular to the reference line. Next, the segment is shifted 1 pixel to the 

right (    to    ) and the local roughness is recalculated. The segment is swept over 

the entire assessment length (    to       ) and the corresponding      values are 

calculated. A total of (      ) number of      values are averaged to determine the 

global surface roughness: 

      
 

      
∑ (    ) 

      

   

 (7-13) 

Here,               is the relative surface roughness.  

 

Figure 7.2. Schematic of a crack profile to illustrate the method of quantifying tortuosity 

and roughness [39] 
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7.2 Navier-Stokes Equations 

Absolute permeability appears in Darcy’s law as a constant coefficient relating fluid, 

flow and material parameters:  

 
 

 
 

 

 

  

  
 (7-14) 

In the above equation,   (    ) is the global flow rate through the crack,   (  ) is the 

cross section of the crack,   (  ) is the absolute permeability,   (    ) is the dynamic 

viscosity of the flowing fluid and [
  

  
] (    ) is the pressure gradient. 

To numerically estimate the absolute permeability, the simplified Navier-Stokes 

equations as given below can be solved: 

 {
                    
         

 (7-15) 

In which   is the velocity of the fluid; P is the pressure of the fluid and   is the dynamic 

viscosity of the flowing fluid. 

The simplification is based on the following considerations: 1) Incompressible fluid, 

which means constant density of the fluid; 2) Newtonian nature of the fluid, which gives 

a constant dynamic viscosity; 3) Steady-state flow, which indicates that the velocity does 

not vary over time; and 4) Laminar flow, which means that the concerned velocities are 

small enough not to produce turbulence [42]. 

 

7.3 Lattice Boltzmann Methods 

Lattice Boltzmann methods are special numerical schemes for solving the incompressible 

Navier-Stokes equations. The set of equations are given as below:  
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  (  )   (    )           

(7-16) 

In which   stands for the fluid velocity,   represents density,   denotes pressure,   

represents viscosity, and   stands for the tensor product of two vectors. Fluids fulfilling 

those equations for a constant viscosity are called Newtonian fluids, all others are 

referred to as non-Newtonian. 

In Lattice-Boltzmann methods, instead of discretizing the Navier-Stokes equation directly, 

particle dynamics is simulated on a mesoscopic scale. Compared with traditional methods, 

they are a serious alternative option for computational fluid dynamics based modeling 

[43,44,45,46]. At each time t, consider the concentration of particles   (   ) located at 

lattice node   and moving with lattice velocity  , where   can only take certain constant 

values that make sure the particle density is moving from one lattice point to another 

during one time step   . The general Lattice Boltzmann equation is expressed as:  

   (           )    (   )     (7-17) 

where    represents the so-called collision operator. Several definitions have been given 

for the collision operator, each of them defining a special Lattice Boltzmann scheme.  

One of the widely used approximations is the Bhatnagar-Gross-Krook (BGK) model [47]. 

They noticed that the main effect of the collision operator is to bring the velocity 

distribution function closer to the equilibrium distribution. Based on the BGK 

approximation [47,48], the collision operator can be defined as: 

     
 

 
(  (   )    

  (   )) (7-18) 

In which   is the rate of relaxation towards local equilibrium,   
  (   ) is the equilibrium 

distribution function.  
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In this thesis, two-dimensional square lattice with nine-velocity (D2Q9) BGK model is 

applied since it is successful for simulations of two-dimensional flows [ 49 ]. The 

schematics can be seen in Fig. 7.3. 

 
Figure 7.3. D2Q9 model description for Lattice Boltzmann simulations 

 

The velocity is defined as: 

        (7-19) 

Where        ,    and    are the lattice grid spacing and time step.    is the velocity 

directions given as: 

    {

(   )                                                                                                         
(    (   )         (   )    )                                             

√ (    (   )             (   )        )              

 (7-20) 

The relaxation parameter   determines the kinematic viscosity   of the simulated fluid: 

   (     )  
    (7-21) 

Where      √  is the speed of sound. 

The equilibrium distribution function   
  (   ) is defined as: 
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  (   )  
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 (7-22) 

Where  

   ( (   ))    [ 
(    (   ))

 
    

(    (   ))
 

  
    

| (   )| 

  
] (7-23) 

with the weight coefficient 

    

{
 
 

 
 

 

 

 
                         

 

 
                      

 

  
                    

 (7-24) 

 ,   and   are parameters satisfying      ,       . 

The distribution function satisfies the following conservation laws: 

 ∑  (   )  ∑  
  (   ) (7-25) 

 ∑    (   )  ∑    
  (   ) (7-26) 

The local fluid pressure and velocity are given by: 

   
  

  
[∑  (   )    ( (   ))] (7-27) 

  (   )  ∑    (   ) (7-28) 
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8 GENERATION OF SINGLE 3D CRACK 

For the permeability analysis methods described in this thesis, a controllable random 3D 

crack is necessary as a starting point. As discussed in an earlier section, 3D crack was 

constructed using 2D square images having a size of 300 pixels x 300 pixels and a total 

depth of 300 pixels.  

 

8.1 Surface 2D Crack 

Firstly, the surface crack shape was built as a basic model for other layers. Cracks on 

different layers are assumed to have the same shape as the surface crack, but they are of 

different crack widths and positions in the layer. Another assumption is that the basic 

crack has a zig-zag shape. First of all, the total numbers of zig-zags are defined and the 

starting point of the crack chosen. A certain number of random numbers are generated 

and they are assigned as slopes for those zig-zag lines. A scale factor was used to adjust 

the slopes if necessary. Another set of random numbers were generated (between 0.5 and 

1) for crack widths. These random numbers are multiplied with appropriate width factor 

to get desired crack width at a given point on the zig-zag line. Hence numbers of zig-zag 

lines, width factor and scale factor are the parameters that can be controlled in the process 

of generation of the crack. Fig. 8.1(a) shows a surface random crack. 

The image binarization technology is employed to define the crack location and concrete 

region on a 2D image. The default binary value of image is set to be 1 for the concrete 

region, whereas 0 is assigned to cracked part. The boundary between crack and solid 

phase can then be defined clearly. 
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Figure 8.1. Generation of random 3D crack: (a). Random generated surface 2D crack; (b). 

3D reconstruction of crack in a concrete block 

 

 

8.2 3D Crack Generation 

Based on the 2D image generated as explained in the previous section, these images were 

stacked together by establishing appropriate relationships between each layer to get the 

final 3D image. Since the minimum unit of the image is 1 pixel, each layer has a 

thickness of 1 pixel. Another set of random numbers have been generated to control the 

change in crack position between different layers. A linear function is used to control the 

width change. Finally a random crack can be generated as shown in Fig. 8.1(b). The 

random crack can be defined to pass through the entire member or can be terminated at 

any desired depth location in the 3D reconstruction of concrete.  
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9 SIMULATION RESULTS AND ANALYSIS 

For several sets of 3D crack models, different mathematical models have been applied in 

this study to evaluate the influence of crack parameters on permeability. Geometric 

parameters are controlled during the generation process of crack. Results from both 

Navier-Stokes equation and Lattice-Boltzmann method are compared with Louis 

Equation in this section. It should be noticed that since crack width is varied everywhere 

on its path, it is difficult to determine the effective width of a crack and is not intuitive to 

describe the crack with this parameter alone as is commonly attempted.  However, 

effective crack width has a linear relationship with the total volume of crack, which is 

more convenient to understand the relationship between the permeability and the crack 

geometry. Hence, the fraction of crack volume over the total concrete volume, defined as 

crack volume ratio ( ) in this study, rather than the effective crack width, is used as an 

important factor that influences the crack permeability.  

   
  

  
 

     

  
 (9-1) 

Where    is the effective crack width,    is the effective crack length,   is the crack 

depth and   is the total volume of sample concrete. All of the parameters can be 

carefully controlled and quantified during the 3D crack generation process. 

A parametric study was carried out to understand effect of various parameters such as 

effective crack width, crack volume, crack surface roughness, tortuosity on the 

permeability of the concrete. Effects of these different parameters are discussed 

separately in the following sub-sections. 
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9.1 Crack Volume Ratio ( ) 

Fig. 9.1 shows a typical permeability – crack volume ratio relationship of crack with a 

tortuosity of 0.238 and global roughness of 22.54 μm. As shown in the curve, Louis 

equation results in larger permeability predictions than the Navier-Stokes equation. Since 

during crack width calculation, diameters of each circle are used to calculate the average 

crack width of each layer, which is likely to lead to a result that is higher than the actual 

value. For both the methods, it is obvious that the rate of permeability increase slows 

down drastically after   reaches a threshold value of about 0.05. It should also be noted 

that the simplified Navier-Stokes equations cannot predict the crack permeability for 

crack volume ratio lower than 0.04. This is because during the numerical simulation, 

laminar flow is considered as the only flow going through the crack. However, when the 

effective crack width is decreased without a change in the pressure gradient, the velocity 

of flow will increase and turbulence will occur, which will mathematically invalidate the 

Navier-Stokes equations solution.  

Fig. 9.2 shows the comparison of the permeability values from these above two methods. 

It can be found that for crack volume ratio between 0.05 and 0.14, a power function can 

fit the relationship well. With a lower crack volume ratio, the difference between these 

two methods drastically enlarges to more than one magnitude. This again gives the idea 

that for small effective width, the simplified Navier-Stokes equations cannot predict the 

permeability properly. 
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Figure 9.1. Permeability versus crack volume ratio, Navier-Stokes equations and Louis 

model 

 

 
Figure 9.2. Comparison of Louis and Navier-Stokes prediction of permeability 
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Figure 9.3. Permeability – crack volume ratio relationship, Lattice Boltzmann method 

and Louis model 

 

Fig. 9.3 shows the permeability – effective crack width relationship determined using the 

Louis’ equation and the Lattice-Boltzmann method. As shown here, Louis’ equation 

gives a result that is closer to that of the Lattice Boltzmann method at crack volume ratios 

between 0.075 and 0.13. Fig. 9.4 shows the comparison of the predictions from Lattice 

Boltzmann method and the Louis model. A better linear correlation is found and it shows 

that the Lattice Boltzmann method gives a permeability value that is about 1.2 times 

larger than that given by Louis’ equation. It can therefore be noticed that the LB equation 

adequately captures the predictions by the Louis equation for the conditions simulated in 

this study.  



 

54 

  

 
Figure 9.4. Comparison of Louis and Lattice-Boltzmann prediction of permeability 

 

 

9.2 Effect of Crack Roughness and Tortuosity 

Fig. 9.5 shows a typical curve for the relationship of global roughness and sampling 

length, λ, which gives an almost linear relationship between these two parameters. It 

indicates that the global roughness increases with an increase in sampling length. 

However it needs to be pointed out that the random numbers generated by the MATLAB 

code to control the perpendicular zig-zag shape also have a significant effect on 

roughness.  
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Figure 9.5. Relationship between roughness and sampling length 

 

Fig. 9.6 shows a series of cracks with different boundary conditions: from smooth surface 

to rough surface. Table 9.1 shows the roughness values for a certain sampling length 

(          ). It is obvious that with a significant change in crack boundary conditions, 

the values of roughness changes barely with a small sampling length. Thus, for this 

roughness measurement method, sampling length has a more significant effect on 

roughness. In other words, the value of surface roughness mainly depends on the 

sampling length, not the model itself. This needs to be considered while these models are 

being implemented, which is an objective of further work.  
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Figure 9.6. Different crack boundary conditions 

 

Table 9.1 Roughness values with            
Conditions (a) (b) (c) (d) (e) (f) 

Values(pixels) 10.59331 11.86364 13.54534 15.24518 16.92493 18.61767 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 9.7. Permeability – Global roughness relationship for Louis model 

 

Fig. 9.7 shows a typical permeability – roughness curve based on the Louis’ model. This 

relationship shows that with an increasing global roughness, the permeability drops 

quickly since large roughness contributes to a larger friction coefficient, which causes an 

increase in pressure loss during the flow of the fluid through the crack.  
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Figure 9.8. Permeability – Tortuosity relationship 

 

Fig. 9.8 shows the permeability – tortuosity relationships for all the three methods. It is 

clear that Louis model gives a linear relationship between permeability and tortuosity 

since it is a linear function of tortuosity. However it will be obvious to the reader when 

considering the nature of tortuous pathways through a material, that such a relationship is 

not very practical. For the prediction based on Navier-Stokes’ model, the results are quite 

invariant with tortuosity, which is not a realistic scenario. Several issues might have 

resulted in such an observation – the turbulence in transport pathways which are not 

considered by the model, and the simplifications in fluid velocity profiles. However, the 

Lattice-Boltzmann method is seen to predict the expected influence of tortuosity on the 

permeability of a cracked system. This is attributable to the refinements in this method 

that accurately predicts the velocity vectors and the solution of the incompressible flow 

equation.  
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9.3 System with Multiple Cracks  

Compared to a system with a single crack as discussed above, multiple cracks are more 

common in practice. With more than one crack generated in a cubic sample, permeability 

will depend also on the crack connectivity (or the lack of it). . 

In this part of the study, cracks with branching and a separate-double-crack (Fig. 9.9) are 

two basic models that will be discussed. The total crack volume ratio φ and the crack 

tortuosities (of the individual crack) are kept as a constant during the test. By varying the 

tortuosity and effective width of the crack, differences between single, double and 

branching cracks are discussed in the following sections.  

          

 

Figure 9.9. Multiple cracks with different connection: (a). Crack with branching; (b). 

Double-crack 

 

Fig. 9.10 provides a comparison of the permeability values obtained from the Louis’ 

equation and the Lattice Boltzmann method for single, double, and branching cracks with 

a crack volume ratio of 0.1 and a tortuosity of 0.3. The results show that when the Lattice 

Boltzmann method is used, despite the geometric shape of crack, a similar total volume 

of crack is found to lead to similar permeability values. It also should be noted that the 

double crack and branching crack geometries show exactly same permeability values, 

which is slightly lower than that of single crack. This phenomenon indicates that by 

(a) (b) 
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applying the Lattice Boltzmann method, multiple cracks lead to same permeability values 

regardless of their connectivity. However, for a certain total crack volume, increasing 

crack numbers reduces the concrete permeability. The Louis equation provides lower 

permeability values for both the double and branching cracks. This may indicate that this 

method is improper for calculating the permeability of multiple crack system. The 

preliminary studies shown here with multiple cracked systems indicate that both the 

methods, as applied here, are incapable of predicting the permeability through the crack. 

These could be related to the limitations in the Lattice Boltzmann method where flow 

paths are maintained irrespective of the connectivity when the sizes of the cracks are 

greater than a certain threshold value. More studies are needed to refine these models to 

account for the crack characteristics in systems with multiple cracks.  

 

Figure 9.10. Permeability prediction from Lattice-Boltzmann and Louis model for 

different types of cracks 
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10 SUMMARY 

In this part of the work, a method to develop 3D reconstruction of cracks is established. 

The major geometric properties of the crack (volume ratio, tortuosity, and the type of 

crack) are used as the input information to control the process of generation cracks. Other 

geometrical properties like crack roughness are measured during the generation process. 

The 3D crack generation models are used as inputs in both Navier-Stokes equation and a 

Lattice Boltzmann method for predicting the permeability of simulated cracked concretes. 

Louis’ equation estimates the permeability based on all the geometrical properties of 

cracks and the empirical equation that relates those properties. Results on comparing the 

efficiency of these methods show that:  

1) Both Navier-Stokes equations and Lattice Boltzmann method are not sensitive to the 

global surface roughness of crack 

2) Lattice Boltzmann method and the Louis equation predicts the permeability better 

than the Navier-Stokes equation 

3) Crack volume ratio and tortuosity are two dominant factors that influence the 

permeability of cracks 

4) The studied methods do not adequately capture the permeability of concretes with 

multiple crack geometries and differing connectivity.  
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CONCLUSIONS 

Chloride transport into concrete and crack of concrete are two important aspects that will 

drastically influence the durability of concrete. The first part of the thesis gives 

fundamental information on the transport of chloride ions into concrete under electrically 

induced conditions by considering the simultaneous movement of other ions in the 

concrete pore solution. By simulating the non-steady state migration test, the ion 

transportprocess is explored for OPC and modified concrete systems. The governing 

equation of the system is a convection-diffusion equation, and the accuracy of its solution 

is heavily dependent on both the element number and time step used in simulation. In this 

study, a total of 1000 elements and a time step of one second are chosen as default values 

for the models. While decreasing the numbers of elements leads to oscillatory results, 

increasing the value of time step results in unstable results. By using the Petrov-Garlerkin 

method, unconditional stable solution can be reached without significantly losing 

accuracy. All the numerical simulation codes are included in Appendix A. When a strong 

external electrical voltage exists in the system, the diffusion component can be omitted 

during simulation since the electrical migration dominates the penetration process. 

However, the specific relationship between diffusion and electrical migration is still 

unclear.  Further work is needed to explore how electrical field influence the ionic 

diffusion process. During the NSSM test, the ionic diffusion coefficients varies with the 

ionic concentration, and a higher concentration level gives a slower diffusion speed. 

Porosity, pore connectivity and the chloride binding ability of the binder are considered 

in the numerical model that adequately predicts chloride transport into concretes in this 

study. Larger porosity and pore connectivity, and a smaller chloride binding ability lead 
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to higher penetration depth. It is also noticed that the assumption of constant electrical 

field is improper. During the NSSM, electrical field varies with the ionic concentration. It 

should be pointed out that the predicted concentration profile differed from the 

experimentally obtained values even though the overall depths were similar, which also 

needs further evaluations. 

Second part of this thesis focused on numerically simulating the permeability of concrete 

with cracks. 3D crack models of different shapes have been established computationally. 

A MATLAB code for generating 3D cracks can be found in Appendix B. The Navier-

Stokes equation and an 8-node Lattice Boltzmann method are applied to predict the 

permeability of the simulated cracked concrete along with the empirical Louis’ equation 

that considers crack parameters. Numerical results show that: 1) Both Navier-Stokes 

equations and Lattice Boltzmann method are not sensitive to the global surface roughness 

of crack; 2) Lattice Boltzmann method and the Louis equation predicts the permeability 

better than the Navier-Stoke’s equation; 3)  rack volume ratio and tortuosity are two 

dominant factors that influence the permeability of cracks; and 4) The studied methods 

do not adequately capture the permeability of concretes with multiple crack geometries 

and differing connectivity. MATLAB code for Lattice Boltzmann method is attached in 

Appendix C. More studies are needed to develop adequate numerical solutions for 

permeability in cracked concretes.  
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APPENDIX A 

C
++

 CODE FOR NUMERICAL SIMULATION OF NSSM TEST 
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1. Main program 

/*This is a project for 1D diffusion simulation 
based on NPP equation in saturated concrete 
Author: Pu Yang 
Date: Feb. 2014 
*/ 
 
#include<iostream> 
#include"mesh.h" 
 
int main() 
{ 
 CMesh DIFFUSION; 
 
 // read & prepare the model 
 DIFFUSION.ReadProblem1(); 
 
 DIFFUSION.PrepareModel(); 
 
 DIFFUSION.ReadProblem2(); 
 
 DIFFUSION.PrepareIO(); 
 
 // impose bondary and initial conditions 
 DIFFUSION.ConstructIC(); 
 
 // construct the capacity matrix 
 DIFFUSION.ConstructC(); 
 
 // construct the force vector 
 DIFFUSION.ConstructF(); 
 
 int Step; int total; int kind; 
 DIFFUSION.GetStep(Step); 
 DIFFUSION.GetTotal(total); 
 DIFFUSION.Getkinds(kind); 
 
 while (Step < total) 
 { 
  std::cout<<"Total Steps: "<<Step<<"\n"; 
 
  DIFFUSION.Counter(); 
 
  DIFFUSION.GetStep(Step); 
 
  DIFFUSION.Solve(); 
 
  for (int i=1;i<=kind;i++) 
  { 
   DIFFUSION.Solve2(i); 
  } 
 
  DIFFUSION.Solve3(); 
 
 } 
 DIFFUSION.ShowEnd (); 
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 return 0; 
} 

 

2. Header file 

#ifndef _MESH_H__ 
#define _MESH_H__ 
 
#include <fstream> 
#include <iostream> 
#include <sstream>  
using std::ostringstream;  
#include "node.h"                       // node class 
#include "element.h"                    // element class 
#include "constants.h"                  // program limitations etc. 
#include "..\library\vectortemplate.h" 
#include "..\library\matrixtemplate.h" 
#include "..\library\MatToolBox.h" 
#include "..\library\NumericalIntegration.h" 
 
class CMesh 
{ 
public: 
 CMesh ();  // ctor 
 ~CMesh (); // dtor 
 
 
 
  // study case 
  void Model1 ();void Model2 ();void Model3 ();void Model4 (); 
  void Model5 ();void Model6 ();void Model7 (); 
   
  void BD2 ();  
 
 
  // help function 
  void IO (); 
  void PrepareIO (); 
       void ReadProblem1 (); 
  void ReadProblem2 (); 
  void PrepareModel (); 
  void PrepareMode2 (); 
       void ShowEnd (); 
      void ConstructK_c (); 
  void ConstructK_t (); 
  void ConstructC (); 
  void ConstructCcl (); 
  void ConstructIC (); 
  void ConstructE (); 
  void ConstructBC (); 
      void ConstructF (); 
      void ImposeBC ();  
  void CalculateCl (); 
  void CalculateD (); 
  void Solve (); 
  void Solve2 (int i); 
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  void Solve3 (); 
  void Solve4 (); 
  void Counter (); 
       int CreateOutputCon (int& j,CMatrix<double>& A, int& T); 
  int CreateOutputFlux (int& j,CMatrix<double>& A, int& T); 
  int CreateOutputCol (int& j,CMatrix<double>& A, int& T); 
  int CreateOutputCon2 (int j,CVector<double>& A, int& T); 
  int CreateOutputCol2 (int j,CVector<double>& A, int& T); 
 
  int CreateOutput2 (int j,CVector<double>& A, int& T); 
  int WriteReport2 (CVector<double>& A); 
  int WriteReport3 (CMatrix<double>& A); 
  int WriteReport (); 
  void GetStep (int& step); 
  void GetTotal (int& total); 
  void GetTime (float& t); 
  void Getkinds (int& kind); 
 
 
  //void Crout(int d,CVector<double>S,CVector<double>D); 
  void solveCrout(int d,double*LU,double*b,double*x); 
 
private: 
 int m_nNodes;        // number of nodes 
 int m_nElements;     // number of element 
 int m_nKinds;        // total number of ions 
 double m_dLength;    // thichness of sample 
 double m_dArea;      // section area of smaple 
 double m_fdistance;  // distance between two nodes 
 double m_fdt;   // time step 
 int m_nStep;         // total step 
 int N;                    // current step 
 int TIME;               // current time 
 double m_dp;           // porosity 
 double m_dtau;         // tortuosity 
 double m_da;           // constant a 
 double m_db;           // constant b 
 double m_dden;         // density 
 double m_dPhi;         // electrical potential 
 double m_E;           // electrical potential gradient 
 double m_D0;          // max cofficient 
 double m_C0;          // max concentration 
 double Pec;            // Peclet number 
 double a;              // constant for binding mechanism 
 double b;              // constant for binding mechanism 
 double m_Cl;           // total chloride content in the sample 
 int JUDGE;             // weither calculate binding or not, 1 yes 0 for no; 
 
 
 
 
 // these store the FE model data 
    CVector<CNode>            m_NodalData;           // nodal data 
    CVector<CElement>         m_ElementData;         // element data 
 
 
    CVector<ostringstream> m_FileInput;  // File Input 
    CVector<ostringstream> m_FileOutput; // File Output 
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    std::ofstream m_FileOutputhandle[10]; 
 

CVector<double> m_dC_s;      // surface concentration of different ions 
 CVector<double> m_dC_0;      // bottom concentration of different ions 
 CVector<double> m_dC_i;      // initial concentration of different ions 
 CVector<double> m_nZ;        // velance of chloride iron 
 CVector<double> m_dD;        // diffusion cofficient of different ions 
 CVector<double> m_dE;   // electrical potential at each node 
 CVector<double> m_SF;        // structural nodal force 
 CVector<double> m_I;         // current at each node 
 CVector<double> m_Phi;       // electrical potential at each node 
       CMatrix<double> m_SSM1;      // structural stiffness matrix, constant part 
 CMatrix<double> m_SSM2;      // structural stiffness matrix, variable part 
 CMatrix<double> m_SSM3;      // structural stiffness matrix, variable part 
 CMatrix<double> m_SSM4;      // structural stiffness matrix, variable part 
 CMatrix<double> m_Ke;        // structural electric stiffness matrix 
 CMatrix<double> m_SSC;       // structural capacity matrix 
  CMatrix<double> m_J;         // flux of ions 
 CMatrix<double> m_Coulombs;  // coulombs at each node 
 CVector<double> coulombs;    // arveage coulombs 
 CMatrix<double> m_SA0;       // "a" vector for initial condition of 
different ions 
 CVector<double> m_U;           // system vector 
 CVector<double> m_Ccl;       // binding chloride at each node 
 
  
 
 CMatrix<double> Kt; 
 CVector<double> U_new; 
 CVector<double> U_old; 
 CVector<double> J_old; 
 CMatrix<double> a_old; 
 
 CMatrix<double> KK; 
 CVector<double> FF; 
 
 
 CMatrix<double> D;            // Diffusion matrix 
 
 
 // element-related 
    int k1DC0LElement (int nE, CVector<int>& nVNList, 
                           CMatrix<double>& dMk); 
 
 
}; 
#endif 

 

3. Input file 

#include"mesh.h" 
#include<cmath> 
 
void CMesh::BD2 () 
{ 
 // Boundary Condition 
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 // Cl- ion 
 m_dC_s(1) = 1900; 
 m_dC_0(1) = 0; 
 // Na+ ion 
 m_dC_s(2) = 1900; 
 m_dC_0(2) = 300; 
 // K+ ion 
 m_dC_s(3) = 0; 
 m_dC_0(3) = 0; 
 // OH- ion 
 m_dC_s(4) = 0.0;    
 m_dC_0(4) = 300;  
} 
 
 
 
void CMesh::Model1 () 
{ 
 a = 0.48e-4; 
 b = 1; 
 m_dp = 0.099; 
 m_dtau = 0.002789; 
 // Note: All the values are in the unit of mmol/L 
  
 // Initial Condition 
 // Cl- 
 m_dC_i(1) = 0; 
 m_nZ(1) = -1; 
 m_dD(1) = 0.211e-12; 
 // Na+ 
 m_dC_i(2) = 140; 
 m_nZ(2) = 1; 
 m_dD(2) = 1.334/2.032*0.211e-12; 
 // K+ 
 m_dC_i(3) = 210; 
 m_nZ(3) = 1; 
 m_dD(3) = 1.957/2.032*0.211e-12; 
 // OH- 
 m_dC_i(4) = 349.99;   
 m_nZ(4) = -1; 
 m_dD(4) = 5.273/2.032*0.211e-12; 
} 
 
void CMesh::Model2 () 
{ 
 a = 0.37e-4; 
 b = 1; 
 m_dp = 0.122; 
 m_dtau = 0.003681; 
 // Note: All the values are in the unit of mmol/L 
  
 // Initial Condition 
 // Cl- 
 m_dC_i(1) = 0.001; 
 m_nZ(1) = -1; 
 m_dD(1) = 0.278e-12; 
 // Na+ 
 m_dC_i(2) = 110; 
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 m_nZ(2) = 1; 
 m_dD(2) = 1.334/2.032*0.278e-12; 
 // K+ 
 m_dC_i(3) = 160; 
 m_nZ(3) = 1; 
 m_dD(3) = 1.957/2.032*0.278e-12; 
 // OH- 
 m_dC_i(4) = 269.999;   
 m_nZ(4) = -1; 
 m_dD(4) = 5.273/2.032*0.278e-12; 
} 
 
void CMesh::Model3 () 
{ 
 a = 0.51e-4; 
 b = 0; 
 m_dp = 0.104; 
 m_dtau = 0.001049; 
 // Note: All the values are in the unit of mmol/L 
  
 // Initial Condition 
 // Cl- 
 m_dC_i(1) = 0.001; 
 m_nZ(1) = -1; 
 m_dD(1) = 0.0792e-12; 
 // Na+ 
 m_dC_i(2) = 110; 
 m_nZ(2) = 1; 
 m_dD(2) = 1.334/2.032*0.0792e-12; 
 // K+ 
 m_dC_i(3) = 160; 
 m_nZ(3) = 1; 
 m_dD(3) = 1.957/2.032*0.0792e-12; 
 // OH- 
 m_dC_i(4) = 269.999;   
 m_nZ(4) = -1; 
 m_dD(4) = 5.273/2.032*0.0792e-12; 
} 
 
void CMesh::Model4 () 
{ 
 a = 0.35e-4; 
 b = 1; 
 m_dp = 0.132; 
 m_dtau = 0.005333; 
 // Note: All the values are in the unit of mmol/L 
  
 // Initial Condition 
 // Cl- 
 m_dC_i(1) = 0.001; 
 m_nZ(1) = -1; 
 m_dD(1) = 0.403e-12; 
 // Na+ 
 m_dC_i(2) = 80; 
 m_nZ(2) = 1; 
 m_dD(2) = 1.334/2.032*0.403e-12;; 
 // K+ 
 m_dC_i(3) = 120; 
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 m_nZ(3) = 1; 
 m_dD(3) = 1.957/2.032*0.403e-12;; 
 // OH- 
 m_dC_i(4) = 199.999;   
 m_nZ(4) = -1; 
 m_dD(4) = 5.273/2.032*0.403e-12;; 
} 
 
void CMesh::Model5 () 
{ 
 a = 0.48e-4; 
 b = 1; 
 m_dp = 0.129; 
 m_dtau = 0.001816; 
 // Note: All the values are in the unit of mmol/L 
  
 // Initial Condition 
 // Cl- 
 m_dC_i(1) = 0.001; 
 m_nZ(1) = -1; 
 m_dD(1) = 0.137e-12; 
 // Na+ 
 m_dC_i(2) = 90; 
 m_nZ(2) = 1; 
 m_dD(2) = 1.334/2.032*0.137e-12; 
 // K+ 
 m_dC_i(3) = 130; 
 m_nZ(3) = 1; 
 m_dD(3) = 1.957/2.032*0.137e-12; 
 // OH- 
 m_dC_i(4) = 219.999;   
 m_nZ(4) = -1; 
 m_dD(4) = 5.273/2.032*0.137e-12; 
} 
 
void CMesh::Model6 () 
{ 
 a = 0.6e-4; 
 b = 1; 
 m_dp = 0.127; 
 m_dtau = 0.001740; 
 // Note: All the values are in the unit of mmol/L 
  
 // Initial Condition 
 // Cl- 
 m_dC_i(1) = 0.001; 
 m_nZ(1) = -1; 
 m_dD(1) = 0.131e-12; 
 // Na+ 
 m_dC_i(2) = 300; 
 m_nZ(2) = 1; 
 m_dD(2) = 1.334/2.032*0.131e-12; 
 // K+ 
 m_dC_i(3) = 250; 
 m_nZ(3) = 1; 
 m_dD(3) = 1.957/2.032*0.131e-12; 
 // OH- 
 m_dC_i(4) = 549.999;   
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 m_nZ(4) = -1; 
 m_dD(4) = 5.273/2.032*0.131e-12; 
} 
 
void CMesh::Model7 () 
{ 
 a = 10e-4; 
 b = 0.405; 
 m_dp = 0.132; 
 m_dtau = 0.001235; 
 // Note: All the values are in the unit of mmol/L 
  
 // Initial Condition 
 // Cl- 
 m_dC_i(1) = 0.001; 
 m_nZ(1) = -1; 
 m_dD(1) = 0.0932e-12; 
 // Na+ 
 m_dC_i(2) = 400; 
 m_nZ(2) = 1; 
 m_dD(2) = 1.334/2.032*0.0932e-12; 
 // K+ 
 m_dC_i(3) = 270; 
 m_nZ(3) = 1; 
 m_dD(3) = 1.957/2.032*0.0932e-12; 
 // OH- 
 m_dC_i(4) = 669.999;   
 m_nZ(4) = -1; 
 m_dD(4) = 5.273/2.032*0.0932e-12; 

} 

 

4. Functions file 

Ed  

#include"mesh.h" 
#include<cmath> 
#include<stdio.h> 
 
 
CMatToolBox<double> MTB; 
 
 
CMesh::CMesh() 
{ 
 m_nNodes = 0; 
 m_nElements = 0; 
 m_nKinds = 0; 
 m_dLength = 0; 
 m_fdistance = 0; 
 m_fdt = 0; 
 m_nStep = 0; 
 TIME = 0; 
 N = 0; 
 m_dp=0; 
 m_da=0; 



 

77 

  

 m_db=0; 
 m_dden = 0; 
 m_dArea = 0; 
 m_dPhi = 0; 
 m_E = 0; 
 m_C0 = 0; 
 m_D0 = 0; 
 Pec = 0; 
 m_dtau = 0; 
 a = 0; 
 b = 0; 
 m_Cl = 0; 
 JUDGE = 1; 
} 
 
CMesh::~CMesh() 
{ 
} 
 
 
void CMesh::ReadProblem1 () 
{ 
 std::cout<<"Program starts: \n"; 
 m_nKinds = 4; 
 m_nNodes = 100; 
 m_nElements = m_nNodes - 1; 
 m_dLength = 0.05; 
 m_dArea = 0.1; 
 m_dPhi = 30; 
 
 m_dden = 2400; 
 //double delta = 2.0f/(PI*PI)*(1/m_dD)*pow((m_dLength/m_nElements),2.0); 
 //delta = floor(delta); 
 m_nStep = 1200*24; 
 m_fdt = 3; 
 
 Pec = F/R/T*m_dPhi*0.5f/m_nElements; 
 
 //std::cout<<delta<<"\n"; 
 std::cout<<" \nReadProblem: Done! \n"; 
} 
 
void CMesh::PrepareModel () 
{ 
 m_fdistance = m_dLength/(m_nElements); 
 m_E = m_dPhi/m_dLength; 
 m_ElementData.SetSize(m_nElements); 
 m_NodalData.SetSize(m_nNodes); 
 m_SSM1.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN); 
 m_SSM2.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN); 
 m_SSM3.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN); 
 m_SSM4.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN); 
 m_Ke.SetSize(m_nNodes,m_nNodes); 
 m_SSC.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN); 
 m_SA0.SetSize(m_nKinds,m_nNodes); 
 m_J.SetSize(m_nKinds,m_nNodes); 
 m_Coulombs.SetSize(m_nKinds,m_nNodes); 
 m_U.SetSize(m_nNodes*DOFPN); 
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 m_dE.SetSize(m_nNodes); 
 m_SF.SetSize(m_nNodes*DOFPN); 
 m_I.SetSize(m_nNodes); 
 m_Phi.SetSize(m_nNodes); 
 m_dC_0.SetSize(m_nKinds); 
 m_dC_i.SetSize(m_nKinds); 
 m_dC_s.SetSize(m_nKinds); 
 m_nZ.SetSize(m_nKinds); 
 m_dD.SetSize(m_nKinds); 
 m_FileInput.SetSize(m_nKinds+4); 
 m_FileOutput.SetSize(m_nKinds+4); 
 m_SSM1.Set(0.0f); 
 m_SSM2.Set(0.0f); 
 m_SSM3.Set(0.0f); 
 m_SSM4.Set(0.0f); 
 m_Ke.Set(0.0f); 
 m_SSC.Set(0.0f); 
 m_SA0.Set(0.0f); 
 m_J.Set(0.0f); 
 m_Coulombs.Set(0.0f); 
 m_U.Set(0.0f); 
 m_dC_0.Set(0.0f); 
 m_dC_i.Set(0.0f); 
 m_dC_s.Set(0.0f); 
 m_nZ.Set(0.0f); 
 m_dD.Set(0.0f); 
 m_dE.Set(0.0f); 
 m_I.Set(0.0f); 
 m_Phi.Set(0.0f); 
 N = 0; 
 TIME = 0; 
 
 m_Ccl.SetSize(m_nNodes); 
 m_Ccl.Set(0.0f); 
 
 coulombs.SetSize(9); 
 coulombs.Set(0.0f); 
 
 
 Kt.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN); 
 Kt.Set(0.0f); 
 J_old.SetSize(m_nNodes); 
 J_old.Set(0.0f); 
 a_old.SetSize(m_nKinds, m_nNodes); 
 U_new.SetSize(m_nNodes*DOFPN); 
 U_new.Set(0.0f); 
 U_old.SetSize(m_nNodes*DOFPN); 
 U_old.Set(0.0f); 
 
 KK.SetSize(m_nNodes*DOFPN,m_nNodes*DOFPN); 
 KK.Set(0.0f); 
 FF.SetSize(m_nNodes*DOFPN); 
 FF.Set(0.0f); 
 
 D.SetSize(m_nKinds,m_nNodes); 
 D.Set(0.0f); 
 
 // set nodal coordinates 
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 for (int i=1;i<=m_nNodes;i++) 
 { 
  double fVC = (i-1)*m_fdistance; 
  m_NodalData(i).SetCoords(fVC); 
  //std::cout<<"Coordinate of "<<i<<"th nodal: "<<fVC<<"\n"; 
 } 
 
 // set elements nodes 
 for (int i=1;i<=m_nElements;i++) 
 { 
  CVector<int> nVNList(NUMENODES); 
  nVNList(1) = i; 
  nVNList(2) = i+1; 
  m_ElementData(i).SetNodes(nVNList); 
 }  
 
  
 
 std::cout<<"\nPrepare model: Done! \n"; 
  
} 
 
void CMesh::ReadProblem2 () 
{ 
 int m,n; 
 std::cout<<"Please select the case you want to analysis:\n"; 
 std::cout<<"1:OPC, 2:0.2LS, 3:0.1LS+0.1MK, 4:0.35LS, 5:0.25LS+0.1MK, 
6:0.2FA, 7:0.35FA\n"<<std::endl; 
 std::cout<<"Please enter the case number: "; 
 std::cin>>m; 
 if (m==1) 
  Model1(); 
 else if (m==2) 
  Model2(); 
 else if (m==3) 
  Model3(); 
 else if (m==4) 
  Model4(); 
 else if (m==5) 
  Model5(); 
 else if (m==6) 
  Model6(); 
 else if (m==7) 
  Model7(); 
 else  
  std::cout<<"Wrong case number!"; 
 
 
 n = 2; 
 
 if (n==2) 
  BD2(); 
 else  
  std::cout<<"Wrong case number!"; 
 
} 
 
 



 

80 

  

void CMesh::PrepareMode2 () 
{ 
 m_C0 = m_dC_s(1); 
 m_D0 = m_dD(4); 
 for (int i=1;i<=m_nKinds;i++) 
 { 
  m_dC_s(i) = m_dC_s(i)/m_C0; 
  m_dC_i(i) = m_dC_i(i)/m_C0; 
  m_dC_0(i) = m_dC_0(i)/m_C0; 
  m_dD(i) = m_dD(i)/m_D0; 
 } 
 m_fdistance = m_fdistance/m_dLength; 
 //m_dPhi = m_dPhi*F/R/T; 
 m_fdt = m_fdt*m_D0/(m_dLength*m_dLength); 
 m_E = m_dPhi/1; 
} 
 
 
void CMesh::ConstructIC () 
{ 
 for (int i=1;i<=m_nKinds;i++) 
 { 
  m_SA0(i,1) = m_dC_s(i); 
  for (int j=2;j<m_nNodes;j++) 
  { 
   m_SA0(i,j) = m_dC_i(i); 
  } 
  m_SA0(i,m_nNodes) = m_dC_0(i); 
  CreateOutputCon(i,m_SA0,TIME); 
  for (int j=1;j<=m_nNodes;j++) 
  { 
   m_J(i,j) = 0; 
  } 
  CreateOutputFlux(i,m_J,TIME); 
  CreateOutputCol(i,m_Coulombs,TIME); 
 } 
 for (int i=1;i<=m_nNodes;i++) 
 { 
  double Cl = 0; 
  Cl = abs(m_SA0(1,i)/1000*35); 
  m_Ccl(i) = a*pow(Cl,b);  // bound chloride, in g/g-solid 
  m_I(i) = 
F*(m_nZ(1)*m_J(1,i)+m_nZ(2)*m_J(2,i)+m_nZ(3)*m_J(3,i)+m_nZ(4)*m_J(4,i)); 
 } 
 for (int i=2;i<=m_nNodes;i++) 
 { 
  m_Phi(i) =  m_Phi(i-1) + m_E*m_fdistance; 
 } 
 CreateOutput2(5,m_I,TIME); 
 CreateOutput2(6,m_Phi,TIME); 
 CreateOutputCon2(8,m_Ccl,TIME); 
 
 for (int i=1; i<=m_nNodes; i++) 
 { 
  m_U(5*i-4) = m_SA0(1,i); 
  m_U(5*i-3) = m_SA0(2,i); 
  m_U(5*i-2) = m_SA0(3,i); 
  m_U(5*i-1) = m_SA0(4,i); 
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  m_U(5*i)   = m_Phi(i); 
 } 
 
 std::cout<<"Construct IC is done!"<<std::endl; 
} 
 
void CMesh::ConstructE () 
{ 
  
 for (int i=1;i<=m_nNodes;i++) 
 { 
  m_dE(1) = (-3.0f*m_Phi(1)+4.0f*m_Phi(2)-m_Phi(3))/(2.0f*m_fdistance); 
  for (int i=2;i<m_nNodes;i++) 
  { 
   m_dE(i) = (m_Phi(i+1)-m_Phi(i-1))/(2.0f*m_fdistance); 
  } 
  m_dE(m_nNodes) = (3.0f*m_Phi(m_nNodes)-4.0f*m_Phi(m_nNodes-
1)+m_Phi(m_nNodes-2))/(2.0f*m_fdistance); 
 } 
  
} 
 
void CMesh::CalculateCl () 
{ 
 double x = 0, y = 0; 
 for (int i=1;i<m_nNodes;i++) 
 { 
  x = 0.5*(m_SA0(1,i)+m_SA0(1,i+1))*m_fdistance; 
  y += x; 
 } 
 m_Cl = y/m_dLength; 
 
 x = m_dden*1.4/35; 
 
 if (m_Cl>x) 
 { 
  ConstructCcl(); 
  JUDGE = 1; 
 } 
 //std::cout<<m_Cl<<"\n"; 
} 
 
void CMesh::CalculateD() 
{ 
 for (int i=1;i<=m_nNodes;i++) 
 { 
  if (m_SA0(1,i) >= 2000) 
  { 
   D(1,i) = m_dD(1); 
   D(2,i) = m_dD(2); 
   D(3,i) = m_dD(3); 
   D(4,i) = m_dD(4); 
  } 
  else if (m_SA0(1,i) <= 10) 
  { 
   D(1,i) = m_dD(1)*pow(0.01,EXP); 
   D(2,i) = m_dD(2)/m_dD(1)*D(1,i); 
   D(3,i) = m_dD(3)/m_dD(1)*D(1,i); 
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   D(4,i) = m_dD(4)/m_dD(1)*D(1,i); 
  } 
  else  
  { 
   D(1,i) = m_dD(1)*pow((abs(m_SA0(1,i)/1000)),EXP); 
   D(2,i) = m_dD(2)/m_dD(1)*D(1,i); 
   D(3,i) = m_dD(3)/m_dD(1)*D(1,i); 
   D(4,i) = m_dD(4)/m_dD(1)*D(1,i); 
  } 
 } 
} 
 
void CMesh::ConstructK_t () 
{ 
 m_SSM4.Set(0.0f); 
    int i, j, k; 
    const int KSIZE = NUMENODES*DOFPN;     // size of the stiffness matrix 
    CVector<int>    nVEDOF(KSIZE);         // dof associated with element 
    CVector<int>    nVNList(NUMENODES);    // list of element nodes 
 CMatrix<double> dMk4("k4",KSIZE,KSIZE);  
 
 double E = F/(R*T); 
 double alpha = (1.0f/tanh(Pec)-1.0f/Pec); 
 //double pe = (1.0f/tanh(Pec)-1.0f/Pec); 
 double c11,c12,c13,c14; 
    for (i=1; i <= m_nElements; i++) 
    { 
 
        m_ElementData(i).GetNodes(nVNList); 
 
  dMk4.Set(0.0f); 
  c11=0;c12=0;c13=0;c14=0; 
   
 
  c11=0.5*(D(1,i)+D(1,i+1))*m_nZ(1)*(alpha*m_SA0(1,nVNList(1))+(1.0f-
alpha)*m_SA0(1,nVNList(2)));  
  c14=0.5*(D(4,i)+D(4,i+1))*m_nZ(4)*(alpha*m_SA0(4,nVNList(1))+(1.0f-
alpha)*m_SA0(4,nVNList(2)));  
  c12=0.5*(D(2,i)+D(2,i+1))*m_nZ(2)*((1.0f-
alpha)*m_SA0(2,nVNList(1))+alpha*m_SA0(2,nVNList(2)));  
  c13=0.5*(D(3,i)+D(3,i+1))*m_nZ(3)*((1.0f-
alpha)*m_SA0(3,nVNList(1))+alpha*m_SA0(3,nVNList(2)));  
 
   
 
 

dMk4(1,5) = E*c11/m_fdistance;   dMk4(2,5) = E*c12/m_fdistance;   
dMk4(3,5) = E*c13/m_fdistance;   dMk4(4,5) = E*c14/m_fdistance;  
dMk4(1,10) = -E*c11/m_fdistance; dMk4(2,10) = -E*c12/m_fdistance; 
dMk4(3,10) = -E*c13/m_fdistance; dMk4(4,10) = -E*c14/m_fdistance;  
dMk4(6,5) = -E*c11/m_fdistance;  dMk4(7,5) = -E*c12/m_fdistance;  
dMk4(8,5) = -E*c13/m_fdistance;  dMk4(9,5) = -E*c14/m_fdistance;  
dMk4(6,10) = E*c11/m_fdistance;  dMk4(7,10) = E*c12/m_fdistance;  
dMk4(8,10) = E*c13/m_fdistance;  dMk4(9,10) = E*c14/m_fdistance;  
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        // get global degrees-of-freedom associated with element 
        int nIndex = 0; 
        for (j=1; j <= NUMENODES; j++) 
        { 
            int n = (nVNList(j)-1)*DOFPN; 
            for (k=1; k <= DOFPN; k++) 
   { 
                nVEDOF(++nIndex) = n+1; 
    n++; 
   } 
        } 
 
        // assemble into structural K 
        for (j=1; j <= KSIZE; j++) 
        { 
            int nRow = nVEDOF(j); 
            for (k=1; k <= KSIZE; k++) 
            { 
                int nCol = nVEDOF(k); 
    m_SSM4(nRow, nCol) += dMk4(j,k); 
            } 
        } 
    } 
 
 // assemble into final K 
 
 MTB.Add(m_SSM1,m_SSM4,Kt); 
 
} 
 
void CMesh::ConstructK_c () 
{ 
 m_SSM1.Set(0.0f); 
    int i, j, k; 
    const int KSIZE = NUMENODES*DOFPN;     // size of the stiffness matrix 
    CVector<int>    nVEDOF(KSIZE);         // dof associated with element 
    CMatrix<double> dMk("k",KSIZE,KSIZE);  // to store the element stiffness 
matrix 
    CVector<int>    nVNList(NUMENODES);    // list of element nodes 
 CMatrix<double> dMk1("k1",KSIZE,KSIZE);  
 CMatrix<double> dMk2("k2",KSIZE,KSIZE);  
 
 double A = -F*m_fdistance; 
 double E = F/(R*T); 
 
  
 dMk2.Set(0.0f); 
 
  
 
 dMk2(5,1) = A*m_nZ(1)/3.0f;  dMk2(5,2) = A*m_nZ(2)/3.0f;   

dMk2(5,3) = A*m_nZ(3)/3.0f;  dMk2(5,4) = A*m_nZ(4)/3.0f; 
 dMk2(5,6) = A*m_nZ(1)/6.0f;  dMk2(5,7) = A*m_nZ(2)/6.0f;   

dMk2(5,8) = A*m_nZ(3)/6.0f;  dMk2(5,9) = A*m_nZ(4)/6.0f; 
 dMk2(10,1) = A*m_nZ(1)/6.0f; dMk2(10,2) = A*m_nZ(2)/6.0f;  

dMk2(10,3) = A*m_nZ(3)/6.0f; dMk2(10,4) = A*m_nZ(4)/6.0f; 
 dMk2(10,6) = A*m_nZ(1)/3.0f; dMk2(10,7) = A*m_nZ(2)/3.0f;  
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dMk2(10,8) = A*m_nZ(3)/3.0f; dMk2(10,9) = A*m_nZ(4)/3.0f; 
 
     
    // loop thro' all elements 
    for (i=1; i <= m_nElements; i++) 
    { 
 
        m_ElementData(i).GetNodes(nVNList); 
 
  dMk1.Set(0.0f); 
  dMk.Set(0.0f); 
 
 
 
  dMk1(1,1) = 0.5*(D(1,i)+D(1,i+1))/m_fdistance;   

dMk1(2,2) = 0.5*(D(2,i)+D(2,i+1))/m_fdistance;   
dMk1(3,3) = 0.5*(D(3,i)+D(3,i+1))/m_fdistance;   
dMk1(4,4) = 0.5*(D(4,i)+D(4,i+1))/m_fdistance;   
dMk1(5,5) = DC/m_fdistance; 

  dMk1(1,6) = -0.5*(D(1,i)+D(1,i+1))/m_fdistance;  
dMk1(2,7) = -0.5*(D(2,i)+D(2,i+1))/m_fdistance;  
dMk1(3,8) = -0.5*(D(3,i)+D(3,i+1))/m_fdistance;  
dMk1(4,9) = -0.5*(D(4,i)+D(4,i+1))/m_fdistance;  
dMk1(5,10) = -DC/m_fdistance; 

  dMk1(6,1) = -0.5*(D(1,i)+D(1,i+1))/m_fdistance;  
dMk1(7,2) = -0.5*(D(2,i)+D(2,i+1))/m_fdistance;  
dMk1(8,3) = -0.5*(D(3,i)+D(3,i+1))/m_fdistance;  
dMk1(9,4) = -0.5*(D(4,i)+D(4,i+1))/m_fdistance;  
dMk1(10,5) = -DC/m_fdistance; 

  dMk1(6,6) = 0.5*(D(1,i)+D(1,i+1))/m_fdistance;   
dMk1(7,7) = 0.5*(D(2,i)+D(2,i+1))/m_fdistance;   
dMk1(8,8) = 0.5*(D(3,i)+D(3,i+1))/m_fdistance;   
dMk1(9,9) = 0.5*(D(4,i)+D(4,i+1))/m_fdistance;   
dMk1(10,10) = DC/m_fdistance; 

 
  for (int m=1; m<=KSIZE; m++) 
  { 
   for (int n=1; n<=KSIZE; n++) 
   { 
    dMk(m,n) = dMk1(m,n) + dMk2(m,n); 
   } 
  } 
 
 
        // get global degrees-of-freedom associated with element 
        int nIndex = 0; 
        for (j=1; j <= NUMENODES; j++) 
        { 
            int n = (nVNList(j)-1)*DOFPN; 
            for (k=1; k <= DOFPN; k++) 
   { 
                nVEDOF(++nIndex) = n+1; 
    n++; 
   } 
        } 
 
        // assemble into structural K 
        for (j=1; j <= KSIZE; j++) 
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        { 
            int nRow = nVEDOF(j); 
            for (k=1; k <= KSIZE; k++) 
            { 
                int nCol = nVEDOF(k); 
                m_SSM1(nRow, nCol) += dMk(j,k); 
            } 
        } 
    } 
} 
 
void CMesh::ConstructC () 
{ 
 
 double L = m_dp*m_fdistance/6.0f; 
 
 m_SSC.Set(0.0f); 
    int i, j, k; 
    const int CSIZE = NUMENODES*DOFPN;     // size of the stiffness matrix 
    CVector<int>    nVEDOF(CSIZE);         // dof associated with element 
    CMatrix<double> dc("c",CSIZE,CSIZE);   // to store the element stiffness 
matrix 
    CVector<int>    nVNList(NUMENODES);    // list of element nodes 
     
    // loop thro' all elements 
    for (i=1; i <= m_nElements; i++) 
    { 
 
  m_ElementData(i).GetNodes(nVNList); 
 
        dc.Set(0.0f); 
  dc(1,1) = 2*L; dc(2,2) = 2*L; dc(3,3) = 2*L; dc(4,4) = 2*L; 
  dc(1,6) = 1*L; dc(2,7) = 1*L; dc(3,8) = 1*L; dc(4,9) = 1*L; 
  dc(6,1) = 1*L; dc(7,2) = 1*L; dc(8,3) = 1*L; dc(9,4) = 1*L; 
  dc(6,6) = 2*L; dc(7,7) = 2*L; dc(8,8) = 2*L; dc(9,9) = 2*L; 
   
 
        // get global degrees-of-freedom associated with element 
        int nIndex = 0; 
        for (j=1; j <= NUMENODES; j++) 
        { 
            int n = (nVNList(j)-1)*DOFPN; 
            for (k=1; k <= DOFPN; k++) 
   { 
                nVEDOF(++nIndex) = n+1; 
    n++; 
   } 
        } 
 
        // assemble into structural K 
        for (j=1; j <= CSIZE; j++) 
        { 
            int nRow = nVEDOF(j); 
            for (k=1; k <= CSIZE; k++) 
            { 
                int nCol = nVEDOF(k); 
                m_SSC(nRow, nCol) += dc(j,k); 
            } 
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        } 
    } 
} 
 
void CMesh::ConstructCcl () 
{ 
 double Lp = 0; 
 double c1,c2; 
 c1 = 0; c2 = 0; 
 double L = m_dp*m_fdistance/6.0f; 
 Lp = (a*m_dden*(1-m_dp)+m_dp)*m_fdistance/6.0f; 
 double alpha = (1.0f/tanh(Pec)-1.0f/Pec); 
 m_SSC.Set(0.0f); 
    int i, j, k; 
    const int CSIZE = NUMENODES*DOFPN;     // size of the stiffness matrix 
    CVector<int>    nVEDOF(CSIZE);         // dof associated with element 
    CMatrix<double> dc("c",CSIZE,CSIZE);   // to store the element stiffness 
matrix 
    CVector<int>    nVNList(NUMENODES);    // list of element nodes 
     
    // loop thro' all elements 
    for (i=1; i <= m_nElements; i++) 
    { 
 
  m_ElementData(i).GetNodes(nVNList); 
 
        dc.Set(0.0f); 
  dc(1,1) = 2*Lp; dc(2,2) = 2*L; dc(3,3) = 2*L; dc(4,4) = 2*L; 
  dc(1,6) = 1*Lp; dc(2,7) = 1*L; dc(3,8) = 1*L; dc(4,9) = 1*L; 
  dc(6,1) = 1*Lp; dc(7,2) = 1*L; dc(8,3) = 1*L; dc(9,4) = 1*L; 
  dc(6,6) = 2*Lp; dc(7,7) = 2*L; dc(8,8) = 2*L; dc(9,9) = 2*L; 
   
 
        // get global degrees-of-freedom associated with element 
        int nIndex = 0; 
        for (j=1; j <= NUMENODES; j++) 
        { 
            int n = (nVNList(j)-1)*DOFPN; 
            for (k=1; k <= DOFPN; k++) 
   { 
                nVEDOF(++nIndex) = n+1; 
    n++; 
   } 
        } 
 
        // assemble into structural K 
        for (j=1; j <= CSIZE; j++) 
        { 
            int nRow = nVEDOF(j); 
            for (k=1; k <= CSIZE; k++) 
            { 
                int nCol = nVEDOF(k); 
                m_SSC(nRow, nCol) += dc(j,k); 
            } 
        } 
    } 
} 
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void CMesh::ConstructF () 
{ 
 std::cout<<"Construct F: Done!"<<std::endl; 
} 
 
void CMesh::Solve () 
{ 
 KK.Set(0.0f); 
 FF.Set(0.0f); 
 
 CVector<double> A; 
 A.SetSize(m_nNodes*DOFPN); 
 A.Set(0.0f); 
 
 CVector<double> B; 
 B.SetSize(m_nNodes*DOFPN); 
 B.Set(0.0f); 
 
 U_new.Set(0.0f); 
 U_old.Set(0.0f); 
  
  
 for (int i=1; i<=m_nNodes*DOFPN; i++) 
 { 
  U_old(i) = m_U(i); 
 } 
 
 ConstructCcl(); 
 CalculateD(); 
 ConstructK_c(); 
 ConstructE(); 
 ConstructK_t(); 
 MTB.Scale(Kt,m_fdt); 
 MTB.Add(m_SSC,Kt,KK); 
 MTB.MatMultVec(m_SSC,U_old,FF); 
 
 
 
 // induce boundary condition 
 
 for (int i=1; i<=5; i++) 
 { 
  FF(i) = m_U(i); 
 } 
 
 for (int i=m_nNodes*DOFPN-4; i<=m_nNodes*DOFPN; i++) 
 { 
  FF(i) = m_U(i); 
 } 
 
 for (int i=6; i<=m_nNodes*DOFPN-5; i++) 
 { 
  for (int j=1; j<=5; j++) 
  { 
   FF(i) -= KK(i,j)*U_old(j); 
  } 
 
  for (int j=m_nNodes*DOFPN-4; j<=m_nNodes*DOFPN; j++) 
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  { 
   FF(i) -= KK(i,j)*U_old(j); 
  } 
 } 
 
 for (int i=1; i<=m_nNodes*DOFPN; i++) 
 { 
  for (int j=1; j<=5; j++) 
  { 
   if (j==i) 
   { 
    KK(i,j) = 1; 
   } 
   else  
   { 
    KK(i,j) = 0; 
    KK(j,i) = 0; 
   } 
  } 
 
  for (int j=m_nNodes*DOFPN-4; j<=m_nNodes*DOFPN; j++) 
  { 
   if (j==i) 
   { 
    KK(i,j) = 1; 
   } 
   else  
   { 
    KK(i,j) = 0; 
    KK(j,i) = 0; 
   } 
  } 
   
 } 
 
  
 MTB.AxEqb(KK,U_new,FF,TOL); 
 
 for (int i=1; i<=m_nNodes*DOFPN; i++) 
 { 
  m_U(i) = U_new(i); 
 } 
 for (int i=1; i<=m_nNodes; i++) 
 { 
  m_SA0(1,i) = U_new(5*i-4); 
  m_SA0(2,i) = U_new(5*i-3); 
  m_SA0(3,i) = U_new(5*i-2); 
  m_SA0(4,i) = U_new(5*i-1); 
  m_Phi(i)   = U_new(5*i); 
 } 
 
 if (JUDGE == 1) 
 { 
  for (int i=1;i<=m_nNodes;i++) 
  { 
   double Cl = 0; 
   Cl = abs(m_SA0(1,i)/1000*35); 
   m_Ccl(i) = a*pow(Cl,b);  // bound chloride, in g/g-solid 
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  } 
 } 
} 
 
void CMesh::Solve2 (int j)  
{ 
 J_old.Set(0.0f); 
 for (int i=1;i<=m_nNodes;i++) 
 { 
  J_old(i) = m_J(j,i); 
 } 
 
 m_J(j,1) = -D(j,1)*((-3*m_SA0(j,1)+4*m_SA0(j,2)-
m_SA0(j,3))/(2.0f*m_fdistance)+m_nZ(j)*F*m_dE(1)*m_SA0(j,1)/(R*T)); 
 for (int i=2;i<m_nNodes;i++) 
 { 
  m_J(j,i) = -D(j,i)*((m_SA0(j,i+1)-m_SA0(j,i-
1))/(2.0f*m_fdistance)+m_nZ(j)*F*m_dE(i)*m_SA0(j,i)/(R*T)); 
 } 
 m_J(j,m_nNodes) = -D(j,m_nNodes)*((3*m_SA0(j,m_nNodes)-4*m_SA0(j,m_nNodes-
1)+m_SA0(j,m_nNodes-
2))/(2.0f*m_fdistance)+m_nZ(j)*F*m_dE(m_nNodes)*m_SA0(j,m_nNodes)/(R*T)); 
 
 
 
 for (int i=1;i<=m_nNodes;i++) 
 { 
  m_Coulombs(j,i) += -
0.25*pow(m_dArea,2)*PI*F*m_nZ(j)*0.5*(m_J(j,i)+J_old(i))*m_fdt; 
 } 
 
 if (N%600==0) 
 { 
   
 
  for (int i=1;i<=m_nNodes;i++) 
  { 
   coulombs(j) += m_Coulombs(j,i); 
  } 
  coulombs(j) = coulombs(j)/m_nNodes; 
 
  CreateOutputCon(j,m_SA0,N); 
  CreateOutputFlux(j,m_J,N); 
  CreateOutputCol(j,m_Coulombs,N); 
 } 
} 
 
 
void CMesh::Solve3() 
{ 
 if (N%600==0) 
 { 
  for (int i=1;i<=m_nNodes;i++) 
  { 
    
   m_I(i) = -
0.25*pow(m_dArea,2)*PI*F*(m_nZ(1)*m_J(1,i)+m_nZ(2)*m_J(2,i)+m_nZ(3)*m_J(3,i)+m_nZ(
4)*m_J(4,i)); 
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  } 
 
  coulombs(5) = coulombs(1) + coulombs(2) + coulombs(3) + coulombs(4); 
  for (int i=1;i<=4;i++) 
  { 
   coulombs(5+i) = coulombs(i)/coulombs(5); 
  } 
  CreateOutputCol2(7,coulombs,N); 
  CreateOutput2(4,m_I,N); 
  CreateOutput2(5,m_Phi,N); 
  CreateOutput2(6,m_dE,N); 
  CreateOutputCon2(8,m_Ccl,N); 
 } 
} 
 
void CMesh::Counter () 
{ 
 TIME += m_fdt; 
 N +=1; 
} 
 
void CMesh::GetStep (int& Step) 
{ 
 Step = N; 
} 
 
void CMesh::GetTotal (int& total) 
{ 
 total = m_nStep; 
} 
 
void CMesh::Getkinds (int& kind) 
{ 
 kind = m_nKinds; 
} 
 
 
void CMesh::GetTime(float& t) 
{ 
 t = T; 

} 
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APPENDIX B 

MATLAB CODE FOR GENERATING 3D CRACK MODELS 
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%%% This program is developed to create 2D images with random cracks 
%%% thourgh a concrete cube.   
%%% Modified edition: without branching, use crack volume ratio and 
%%% tortuosity to control single crack 
%%% Author: Pu Yang 
%%% Date: November 2013 

  
clc   
clear all 
close all 

  
%======================================================================% 
%PART A: Basic parameters 
%======================================================================% 

  
%**********************************************************************% 
% (1). User Input 
%**********************************************************************% 

  
dx = 300;                   % length of 3D image in pixels 
dy = 300;                   % width of 3D image in pixels 
dz = 300;                   % height of 3D image in pixels 

  
Phi = 0.10                  % total crack volume ratio 
W_surface = 30              % effective crack width of surface crack,in 

pxl 
Tor = 0.3                   % tortuosity of crack 
beta   = 0.3                % height coefficient 
N_lay  = 42                 % total zig-zag numbers of perpendicular 

crack  

  
tor_dz = 0.5                % roughness factor in surface 
lemda  = 150                % segment factor for tortuosity calculation 

  

  
%**********************************************************************% 
% (2). Varibles based on input data 
%**********************************************************************% 

  
L_total = dz/sqrt(Tor);            % Total effective length 
L_eff = L_total - beta*dz;         % effective length starts from notch 
W_stable = (dx*dz*Phi - mbeta*dz*0.5*W_surface)/(L_eff+beta*dz*0.5)       

% effective crack width in stable level, in pixcel 
Num_layer = (1-beta)*dz/N_lay;      % number of layer for each zig_zag 

line 
slope_surface = zeros(1,60);        % slpoe of zig_zag line 
factor_roughness = zeros(1,dz);     % slope of zig_zag line in 

perpendicular direction 
slope_thru = zeros(1,N_lay);        % slope of zig_zag line in 

perpendicular direction, for stable crack 
L_zig = zeros(1,N_lay);             % length of each zig_zag line in 

perpendicular direction 
R = zeros(1,dy);                    % crack radius in each point 
Y = zeros(dz,dy);                   % define the crack boundary 
R_al = zeros(1,dz-lemda);           % roughness matrix 
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w_avg = zeros(1,dz);                % average crack width of each layer 
l = 0;                              % initial zig-zag line length 
x0 = 0;                             % start point of the surface crack 
y0 = 150;                           % start point of the surface crack 

  
%======================================================================% 
%PART B: Random data generation & saving 
%======================================================================% 

  
[fileout, foldout] = uiputfile('bw', 'Pick a folder to write 2D 

images' ); 

  
Determine_xy = 1;            % choose to use excising data for the 

slopes of surface zig_zag line (=0) or create a set of new data (=1) 
Determine_dz = 1;            % choose to use excising data for the 

slopes of thru zig_zag line (=0) or create a set of new data (=1) 
Determine_R  = 1;            % choose to use excising data for the 

radius of crack circles (=0) or create a set of new datas (=1) 
Determine_z  = 1;            % choose to use excising data for the 

slopes of depth zig_zag line (=0) or create a set of new data (=1) 

  
Save_xy = 0;          % choose weither to save new data (=1) or not (=0) 
Save_yz = 0;          % choose weither to save new data (=1) or not (=0) 
Save_R  = 0;          % choose weither to save new data (=1) or not (=0) 
Save_z  = 0;          % choose weither to save new data (=1) or not (=0) 

  
% data generation & saving for all the random generators 
if Determine_xy==1 

slope_surface = 0.5*randn(1,60);      

% creare random slope for each zig_zag lines, need to choose 

appropriate coefficient  

    if Save_xy==1 
            xlswrite('Random_generater_data',slope_surface',1,'A2:A61');  
    else  
    end 
else 
    D = xlsread('Random_generater_data',1,'A2:A61'); 
    slope_surface = D'; 
end 

  
if Determine_z==1 

slope_thru = rand(1,N_lay);     

% creare basic random numbers for slope for each depth zig_zag lines 
    if Save_z==1 
    xlswrite('Random_generater_data',slope_thru',1,'C2:C43');  
    else 
    end 
 else 
    G = xlsread('Random_generater_data',1,'C2:C43'); 
    slope_thru = G';    
end 

  
if Determine_dz==1 

factor_roughness = randn(1,dz);     

% creare basic random numbers for slope for each point on zig_zag lines 
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    if Save_yz==1 
    xlswrite('Random_generater_data',factor_roughness',1,'B2:B301');  
    else 
    end 
else 
    E = xlsread('Random_generater_data',1,'B2:B301'); 
    factor_roughness = E'; 
end 

  
if Determine_R==1 
    R = rand(1,dx);% create the basic random crack radius in each point 
    if Save_R==1 
    xlswrite('Random_generater_data',R',2,'A2:A301');  
    else 
    end 
else 
    F = xlsread('Random_generater_data',2,'A2:A301'); 
    R = F'; 
end 

  

  
% Modified the random numbers     
for i=1:dz 
    if abs(factor_roughness(i))<0.5 
        

factor_roughness(i)=factor_roughness(i)+sign(factor_roughness(i))*0.5; 
    else if abs(factor_roughness(i))>1 
            factor_roughness(i)=factor_roughness(i)-

sign(factor_roughness(i))*0.5; 
        end 
    end 
    factor_roughness(i) = tor_dz*factor_roughness(i); 
end 

  
L_sum = 0; 
for i=1:N_lay 
    slope_thru(i)=slope_thru(i)-0.5; 
    L_zig(1,i) = sqrt(slope_thru(i)^2+1)*Num_layer; 
    L_sum = L_sum + L_zig(1,i); 
end 
if L_eff<= L_sum 
    slope_thru = zeros(1,N_lay); 
else 
    tor_ratio = L_eff/L_sum; 
    for i=1:N_lay 
        L_zig(1,i) = tor_ratio*L_zig(1,i); 
        slope_thru(i) = 

sign(slope_thru(i))*sqrt((L_zig(1,i)/Num_layer)^2-1); 
    end 
end 

  

  
for i=1:dx 
    if abs(R(i))<0.5 
        R(i)=R(i)+sign(R(i))*0.5; 
    else if abs(R(i))>1 
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            R(i)=R(i)-sign(R(i))*0.5; 
        end 
    end 
end 
w_temp = 0; 
for j=1:dx 
    w_temp = (2*R(j))^3+w_temp; 
end 
W_avg = (1/dx*w_temp)^(1/3); 
Ratio_surface = W_surface/W_avg; 
Ratio_stable = W_stable/W_avg; 
alpha  = (Ratio_surface-Ratio_stable)/(beta*dz);    % ratio change rate 

  

     
%======================================================================% 
%PART C: Crack generation 
%======================================================================% 

     

  
% start to creat the surface crack on the first layer 
for z1 = 1 
    A = zeros(dx,dy); 

     
    for x1 = 1:5          
        y1 = 150+factor_roughness(1,z1)+slope_surface(1,1)*x1; 
        t =Ratio_surface*R(1,x1); 
        Y(z1,x1) = y1+t;                   % Record the bc of crack 
        for r = 0:t  
            for th =0:1:360  
                x  = x1+r*cos(th); 
                y  = y1+r*(sin(th)); 
                x=round(x); 
                y=round(y); 
                if y <= 0 
                    y =1; 
                end 
                if x <= 0 
                    x =1; 
                end 
                A(x,y)= 1;  
            end  
        end  
        l = l + sqrt((x1-x0)^2+(y1-y0)^2); 
        x0=x1; 
        y0=y1;      
    end 

     
    x0=x1; 
    y0=y1;   

    
    for n = 1:59    
        x0=x1; 
        y0=y1; 
        b=y0-slope_surface(1,n+1)*x0;   
        for x1 = 5*n:1:5*(n+1)                  



 

96 

  

            y1 = slope_surface(1,n+1)*x1+b; % Record the bc of crack 
            t =Ratio_surface*R(1,x1); 
            Y(z1,x1) = y1+t;                  
            for r = 0:t  
                for th =0:1:360          
                    x  = x1+r*cos(th); 
                    y  = y1+r*(sin(th)); 
                    x=round(x); 
                    y=round(y); 
                    if y <= 0 
                        y =1; 
                    end 
                    if x <= 0 
                        x =1; 
                    end 
                    A(x,y)= 1; 
                end 
            end           
            l = l + sqrt((x1-x0)^2+(y1-y0)^2); 
            x0=x1; 
            y0=y1;             
        end 
    end 

     
    im = double(A(1:300,1:300)); 
    im1 = mat2gray(im); 
    if z1<10 
        imwrite(im1,[foldout fileout '00' num2str(z1) 

'.tif'],'tif','compression','none') 
    else if z1<100 
            imwrite(im1,[foldout fileout '0' num2str(z1) 

'.tif'],'tif','compression','none') 
        else 
            imwrite(im1,[foldout fileout num2str(z1) 

'.tif'],'tif','compression','none') 
        end 
    end 

     
    w_1 = 0;    
    for j=1:dx 
        w_1 = (2*Ratio_surface*R(1,j))^3+w_1; 
    end 
    w_avg(1,z1)= (1/dx*w_1)^(1/3); 

   
end 

  
% creat crack on the width_change layers 

  
w = Ratio_surface - alpha; 

  
for z1 = 2:1:beta*dz 
    A = zeros(dx,dy);     

    
    for x1 = 1:5          
        y1 = 150+factor_roughness(1,z1)+slope_surface(1,1)*x1; 
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        t =w*R(1,x1); 
        Y(z1,x1) = y1+t;       % Record the boundary condition of crack 
        for r = 0:t  
            for th =0:1:360  
                x  = x1+r*cos(th); 
                y  = y1+r*(sin(th)); 
                x=round(x); 
                y=round(y); 
                if y <= 0 
                    y =1; 
                end 
                if x <= 0 
                    x =1; 
                end 
                A(x,y)= 1;  
            end  
        end      
        x0=x1; 
        y0=y1;         
    end  

  
    x0=x1; 
    y0=y1; 

        
    for n = 1:59    
        x0=x1; 
        y0=y1; 
        b=y0-slope_surface(1,n+1)*x0;   
        for x1 = 5*n:1:5*(n+1)                  
            y1 = slope_surface(1,n+1)*x1+b; 
            t =w*R(1,x1); 
            Y(z1,x1) = y1+t; % Record the boundary condition of crack 
            for r = 0:t  
                for th =0:1:360            
                    x  = x1+r*cos(th); 
                    y  = y1+r*(sin(th)); 
                    x=round(x); 
                    y=round(y); 
                    if y <= 0 
                        y =1; 
                    end 
                    if x <= 0 
                        x =1; 
                    end 
                    A(x,y)= 1; 
                end 
            end 
            x0=x1; 
            y0=y1;    
        end 
    end 

  
    im = double(A(1:300,1:300)); 
    im1 = mat2gray(im); 
    if z1<10 
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        imwrite(im1,[foldout fileout '00' num2str(z1) 

'.tif'],'tif','compression','none') 
    else if z1<100 
            imwrite(im1,[foldout fileout '0' num2str(z1) 

'.tif'],'tif','compression','none') 
        else 
            imwrite(im1,[foldout fileout num2str(z1) 

'.tif'],'tif','compression','none') 
        end 
    end 

     
    w_1 = 0;    
    for j=1:dx 
        w_1 = (2*w*R(1,j))^3+w_1; 
    end 
    w_avg(1,z1)= (1/dx*w_1)^(1/3); 
    w = w - alpha; 
end 

  

  
% creat cracks on stable layers 
N  = 0; 
zz = 0; 
for z = 1:N_lay 
    for z1 = (beta*dz+1+N):1:(beta*dz+N+(1-beta)*dz/N_lay) 
        zz = slope_thru(1,z)+zz; 
        A = zeros(dx,dy);     
        for x1 = 1:5          
            y1 = 150+factor_roughness(1,z1)+slope_surface(1,1)*x1+zz; 
            t =Ratio_stable*R(1,x1); 
            Y(z1,x1) = y1+t;   % Record the boundary condition of crack 
            for r = 0:t  
                for th =0:1:360              
                    x  = x1+r*cos(th); 
                    y  = y1+r*(sin(th)); 
                    x=round(x); 
                    y=round(y); 
                    if y <= 0 
                        y =1; 
                    end 
                    if x <= 0 
                        x =1; 
                    end 
                    A(x,y)= 1;  
                end  
            end        
            x0=x1; 
            y0=y1;        
        end 

     
        x0=x1; 
        y0=y1;   

    
        for n = 1:59     
            x0=x1; 
            y0=y1; 
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            b=y0-slope_surface(1,n+1)*x0;   
            for x1 = 5*n:5*(n+1)       
                y1 = slope_surface(1,n+1)*x1+b; 
                t =Ratio_stable*R(1,x1); 
                Y(z1,x1) = y1+t;% Record the bondary condition of crack 
                for r = 0:t  
                    for th =0:1:360  
                        x  = x1+r*cos(th); 
                        y  = y1+r*(sin(th)); 
                        x=round(x); 
                        y=round(y); 
                        if y <= 0 
                            y =1; 
                        end 
                        if x <= 0 
                            x =1; 
                        end 
                        A(x,y)= 1; 
                    end 
                end 
                x0=x1; 
                y0=y1;   
            end 
        end 

       
        im = double(A(1:300,1:300)); 
        im1 = mat2gray(im); 
        if z1<10 
            imwrite(im1,[foldout fileout '00' num2str(z1) 

'.tif'],'tif','compression','none') 
        else if z1<100 
                 imwrite(im1,[foldout fileout '0' num2str(z1) 

'.tif'],'tif','compression','none') 
            else 
                 imwrite(im1,[foldout fileout num2str(z1) 

'.tif'],'tif','compression','none') 
            end 
        end 

     

     
        w_1 = 0;    
        for j=1:dx 
            w_1 = (2*Ratio_stable*R(1,j))^3+w_1; 
        end 
        w_avg(1,z1)= (1/dx*w_1)^(1/3); 

         
    end  
    N = N+(1-beta)*dz/N_lay; 
end 

  
%======================================================================% 
%PART D: Parameters calculation 
%======================================================================% 

  
%calculate permeability 
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l_eff = l                                      % effective length of 

surface crack 

  

  
l_thru = L_total                               % effective length of 

prependicular crack 

  
C = 0; 
for z1 = 1:dz 
    C = C+(1/(w_avg(1,z1))^3); 
end 
w_eff = (dz/C)^(1/3);                           % effective width of 

the crack 

  
% calculate global roughness 

  
z = zeros(1,300); 
for i=1:dz 
    z(1,i)=i; 
end 

  
for i=1:(dz-lemda) 
    m = (Y(i+lemda,1)-Y(i,1))/lemda; 
    alpha = atan(m); 
    p = 0; 
    for j=i:(i+lemda) 
        p=p+abs(m*z(1,j)+Y(i,1)-m*z(1,i)-Y(j,1)); 
    end 
    R_al(1,i)=1/lemda*p*cos(alpha); 
end 

  
R_ag = 1/(dz-lemda)*sum(R_al);     % global surface roughness 

  
R_r = R_ag/(2*w_eff)               % relative surface roughness 

  
taun = (dz/l_thru)^2               % turtuosity factor 

  
R_ag = R_ag*5                      % change the unit from pixel to um 

  
w_eff = w_eff*5                    % change the unit from pixel to um 

  
K = taun*(w_eff)^2/(12*(1+8.8*R_r^1.5))    % permeability 

  
Width_s = w_avg(1,1)*5; 

  
Width_b = w_avg(1,dz)*5; 

  
V = dy*((w_avg(1)+w_avg(dz))/2*beta*dz+w_avg(dz)*(1-

beta)*dz)/(dx*dy*dz); 

  
%======================================================================% 
%PART E: Saving results 
%======================================================================% 
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xlswrite('Permeability_data',K,1,'A1');  
xlswrite('Permeability_data',w_eff,1,'B1');  
xlswrite('Permeability_data',taun,1,'C1'); 
xlswrite('Permeability_data',R_ag,1,'D1'); 
xlswrite('Permeability_data',Width_s,1,'E1');  
xlswrite('Permeability_data',Width_b,1,'F1');  
xlswrite('Permeability_data',V,1,'G1');       % record the test data 

  

  
% plot the crack width - crack depth curve 
plot(1:dz,w_avg) 
title('Crack width - Crack depth relationship') 
xlabel('Crack depth (pixels)') 
ylabel('Crack width (pixels)') 
axis([0 320 0 40]); % xmin, xmax, ymin, ymax         
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APPENDIX C 

MATLAB CODE FOR D2Q9-BGK LATTICE BOLTZMANN METHOD 
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% Gianni Schena  July 2005, schena@units.it 
% Lattice Boltzmann LBE, geometry: D2Q9, model: BGK 
% Application to permeability in porous media  

  
Restart=false % to restart from an earlier convergence 
logical(Restart); 

  
if Restart==false; 
close all, clear all % start from scratch and clean ... 
Restart=false; 
% type of channel geometry ;  
% one of the flollowing flags == true 
Pois_test=true, % no obstacles in the 2D channel 
% porous systems 
obs_regolare=false %  
obs_irregolare=false %  
tic 
%   IN 
% |vvvv|    + y 
% |vvvv|     ^ 
% |vvvv|     | -> + x 
%  OUT 

  
% Pores in 2D : Wet and Dry locations (Wet ==1 , Dry ==0 ) 
wXh_Dry=[3,1];wXh_Wet=[3,4]; 

  
if obs_regolare, % with internal obstacles  

     
A=repmat([zeros(wXh_Dry),ones(wXh_Wet)],[1,3]);A=[A,zeros(wXh_Dry)]; 
B=ones(size(A));  
C=[A;B]  ; D=repmat(C,4,1); 
D=[B;D] 
end 

  
if obs_irregolare, % with int obstacles  
A1=repmat([zeros(wXh_Dry),ones(wXh_Wet)],[1,3]);  
A1=[A1,zeros(wXh_Dry)]  ; 
B=ones(size(A1));  
C1=repmat([ones(wXh_Wet),zeros(wXh_Dry)],[1,3]); C1=[C1,ones(wXh_Dry)]; 
E=[A1;B;C1;B];  
D=repmat(E,2,1); 
D=[B;D] 
end 

  
if ~Pois_test 
figure,imshow(D,[])  
Channel2D=D; 
Len_Channel_2D=size(Channel2D,1); % Length 
Width=size(Channel2D,2); % should not be hod 
Channel_2D_half_Width=Width/2, 
end 

  
% test without obstacles (i.e. 2D channel & no obstacles) 

  
if Pois_test 
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%over-writes the definition of the pore space 
clear Channel2D 
Len_Channel_2D=36, % lunghezza canale 2d 
Channel_2D_half_Width=8; Width=Channel_2D_half_Width*2; 
Channel2D=ones(Len_Channel_2D,Width); % define wet area 
%Channel2D(6:12,6:8)=0; % put fluid obstacle 
imshow(Channel2D,[]); 
end 

  
[Nr Mc]=size(Channel2D); % Number rows and Munber columns 

  
% porosity 
porosity=nnz(Channel2D==1)/(Nr*Mc) 

  

  
% FLUID PROPERTIES 
% physical properties 
cs2=1/3; %  
cP_visco=1; % [cP] 1 CP Dinamic water viscosity 20 C 
density=1.; % fluid density  
Lky_visco=cP_visco/density; % lattice kinematic viscosity  
omega=(Lky_visco/cs2+0.5).^-1; %  omega: relaxation frequency 
%Lky_visco=cs2*(1/omega - 0.5) , % lattice kinematic viscosity 
%dPdL= Pressure / dL;% External pressure gradient [atm/cm] 

  
uy_fin_max=-0.2;  
%dPdL = abs( 2*Lky_visco*uy_fin_max/(Channel_2D_half_Width.^2) );  
dPdL=-0.0125; 
uy_fin_max=dPdL*(Channel_2D_half_Width.^2)/(2*Lky_visco); % Poiseuille 

Gradient; 
% max poiseuille final  velocity on the flow profile 
uy0=-0.001; ux0=0.0001; %  linear vel .. inizialization 

  
%  
% uy_fin_max=-0.2; % max poiseuille final  velocity on the flow profile 
% omega=0.5, cs2=1/3; % omega: relaxation frequency 
% Lky_visco=cs2*(1/omega - 0.5) , % lattice kinematic viscosity 
% dPdL = abs( 2*Lky_visco*uy_fin_max/(Channel_2D_half_Width.^2) ); % 

Poiseuille Gradient; 
%  

  
uyf_av=uy_fin_max*(2/3);; % average fluid velocity on the profile 

  
x_profile=([-Channel_2D_half_Width:+Channel_2D_half_Width-1]+0.5); 
uy_analy_profile=uy_fin_max.*(1-  ( x_profile 

/Channel_2D_half_Width).^2 ); % analytical velocity profile 

  
av_vel_t=1.e+10; % inizialization (t=0) 
%PixelSize= 5; % [Microns] 
%dL=(Nr*PixelSize*1.0E-4); % sample hight [cm] 

  

  
% 
% EXPERIMENTAL SET-UP 
% inlet and outlet buffers 
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inb=2, oub=2; % inlet and outlet buffers thickness 
% add fluid at the inlet (top) and outlet (down) 
inlet=ones(inb,Mc); outlet=ones(oub,Mc); 
Channel2D=[ [inlet]; Channel2D ;[outlet] ] ; % add flux in and down (E 

to W) 
[Nr Mc]=size(Channel2D); % update size 
% boundaries related to the experimental set up 
wb=2; % wall thickness 
Channel2D=[zeros(Nr,wb), Channel2D , zeros(Nr,wb)]; % add walls (no 

fluid leak) 
[Nr Mc]=size(Channel2D); % update size 
uy_analy_profile=[zeros(1,wb), uy_analy_profile, zeros(1,wb) ] ; % take 

into account walls 
x_pro_fig=[[x_profile(1)-[wb:-1:1]], [x_profile, 

[1:wb]+x_profile(end)] ]; 

  
% Figure plots analytical parabolic profile 
figure(20), plot(x_pro_fig,uy_analy_profile,'-'), grid on, 
title('Analytical parab. profile for Poiseuille planar flow in a 

channel') 

  

  
% VISUALIZE PORE SPACE & FLUID OSTACLES & MEDIAL AXIS 
figure, imshow(Channel2D); title('Vassel geometry'); 
Channel2D=logical(Channel2D); 
% obstacles for Bounce Back ( in front of the grain) 
Obstacles=bwperim(Channel2D,8); % perimeter of the grains for bounce 

back Bound.Cond. 
border=logical(ones(Nr,Mc)); 
border([1:inb,Nr-oub:Nr],[wb+2:Mc-wb-1])=0; 
Obstacles=Obstacles.*(border); 
figure, imshow(Obstacles); title(' Fluid obstacles (in the fluid)' ); 
%  
Medial_axis=bwmorph(Channel2D,'thin',Inf); % 
figure, imshow(Medial_axis); title('Medial axis'); 
figure(10) % used to visualize evolution of rho 
figure(11) % used to visualize ux 
figure(12) % used to visualize uy (i.e. top -> down) 

  
% INDICES 
% Wet locations etc. 
[iabw1 jabw1]=find(Channel2D==1); % indices i,j, of active lattice 

locations i.e. pore 
lena=length(iabw1); % number of active location i.e. of pore space 

lattice cells 
ija= (jabw1-1)*Nr+iabw1; % equivalent single index (i,j)->> ija for 

active locations 
% absolute (single index) position of the obstacles in for bounce back 

in Channel2D 
% Obstacles  
[iobs jobs]=find(Obstacles);lenobs=length(iobs); ijobs= (jobs-

1)*Nr+iobs; % as above 
% Medial axis of the pore space 
[ima jma]=find(Medial_axis); lenma=length(ima);  ijma= (jma-1)*Nr+ima; % 

as above 
% Internal wet locations : wet & ~obstables 
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% (i.e. internal wet lattice location non in contact with dray 

locations) 
[iawint jawint]=find(( Channel2D==1 & ~Obstacles)); % indices i,j, of 

active lattice locations 
lenwint=length(iawint); % number of internal (i.e. not border) wet 

locations 
ijaint= (jawint-1)*Nr+iawint; % equivalent singl 
NxM=Nr*Mc; 

  
% DIRECTIONS: E N W S NE NW SW SE ZERO (ZERO:Rest Particle) 
%    y^ 
%  6 2 5           ^         NW  N  NE 
%  3 9 1 ... +x-> +y         W   RP  E 
%  7 4 8                     SW  S  SE 
%   -y 
% x & y components of velocities , +x is to est , +y is to nord 
East=1; North=2; West=3; South=4; NE=5; NW=6; SW=7; SE=8; RP=9; 
N_c=9 ; % number of directions 
% versors D2Q9 
C_x=[1 0 -1  0 1 -1 -1  1 0];  
C_y=[0 1  0 -1 1  1 -1 -1 0]; C=[C_x;C_y] 

  
% BOUNCE BACK SCHEME 
% after collision the fluid elements densities f are sent back to the 
% lattice node they come from with opposite direction 
% indices opposite to 1:8 for fast inversion after bounce 
ic_op = [3 4 1 2 7 8 5 6]; %   i.e. 4 is opposite to 2 etc. 

  
% PERIODIC BOUNDARY CONDITIONS - reinjection rules 
yi2=[Nr , 1:Nr , 1]; % this definition allows implemening Period Bound 

Cond 
%yi2=[1, Nr , 2:Nr-1 , 1,Nr]; % re-inj the second last to as first 
% directional weights (density weights) 
w0=16/36. ; w1=4/36. ; w2=1/36.; 
W=[ w1 w1 w1 w1 w2 w2 w2 w2 w0]; 
%c constants (sound speed related) 
cs2=1/3; cs2x2=2*cs2; cs4x2=2*cs2.^2; 
f1=1/cs2; f2=1/cs2x2; f3=1/cs4x2; 
f1=3., f2=4.5; f3=1.5; % coef. of the f equil. 

  
% declarative statemets 
f=zeros(Nr,Mc,N_c); % array of fluid density distribution 
feq=zeros(Nr,Mc,N_c); % f at equilibrium 
rho=ones(Nr,Mc); % macro-scopic density 
temp1=zeros(Nr,Mc); 
ux=zeros(Nr,Mc);   uy=zeros(Nr,Mc); uyout=zeros(Nr,Mc);  % 

dimensionless velocities 
uxsq=zeros(Nr,Mc); uysq=zeros(Nr,Mc);   usq=zeros(Nr,Mc);  % higher 

degree velocities 

  
% initialization arrays : start values in the wet area 
for ia=1:lena % stat values in the active cells only ; 0 outside 
    i=iabw1(ia);  j=jabw1(ia); 
    f(i,j,:)=1/9; % uniform density distribution for a start 
end 
uy(ija)=uy0; ux(ija)=ux0; % initialize fluid velocities 
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rho(ija)=density; 

  
% EXTERNAL (Body) FORCES e.g. inlet pressure or inlet-outlet gradient 
% directions: E N W S NE NW SW SE ZERO 
force = -dPdL*(1/6)*1*[0 -1 0 1 -1 -1 1  1  0]'; %; 
%...                   E  N E S NE NW SW SE RP ... 
% the pressure pushes the fluid down i.e. N to S 

  
% While .. MAIN TIME EVOLUTION LOOP 
StopFlag=false; % i.e. logical(0) 
Max_Iter=3000; % max allowed number of iteration 
Check_Iter=1; Output_Every=20; % frequency of check & output 
Cur_Iter=0; % current iteration counter inizialization 
toler=1.0e-8; % tollerance to declare convegence 
Cond_path=[]; % recording values of the convergence criterium 
density_path=[]; % recording aver. density values for convergence 
end % ends if restart 

  
if(Restart==true) 
 StopFlag=false;  Max_Iter=Max_Iter+3000; toler=1.0e-12;  
end 

  

  
while(~StopFlag) 
    Cur_Iter=Cur_Iter+1 % iteration counter update 

  
    % density and moments 
    rho=sum(f,3); % density 

  
    if Cur_Iter >1 % use inizialization ux uy to start 
        % Moments ... Note:C_x(9)=C_y(9)=0 
        ux=zeros(Nr,Mc); uy=zeros(Nr,Mc); 
        for ic=1:N_c-1; 
            ux = ux + C_x(ic).*f(:,:,ic) ; uy = uy + 

C_y(ic).*f(:,:,ic)  ; 
        end 
       % uy=f(:,:,2) +f(:,:,5)+f(:,:,6)-f(:,:,4)-f(:,:,7)-f(:,:,8); % 

in short ! 
       % ux=f(:,:,1) +f(:,:,5)+f(:,:,8)-f(:,:,3)-f(:,:,6)-f(:,:,7); % 

in short ! 
    end 

  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    ux(ija)=ux(ija)./rho(ija); uy(ija)=uy(ija)./rho(ija); 
    uxsq(ija)=ux(ija).^2; uysq(ija)=uy(ija).^2;  
    usq(ija)=uxsq(ija)+uysq(ija); % 

  
    % weighted densities : rest particle, principal axis, diagonals 
    rt0 = w0.*rho; rt1 = w1.*rho; rt2 = w2.*rho; 

     
    % Equilibrium distribution 
    % main  directions ( + cross) 
    feq(ija)= rt1(ija) .*(1 +f1*ux(ija) +f2*uxsq(ija) -f3*usq(ija)); 
    feq(ija+NxM*(2-1))= rt1(ija) .*(1 +f1*uy(ija) +f2*uysq(ija) -

f3*usq(ija)); 
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    feq(ija+NxM*(3-1))= rt1(ija) .*(1 -f1*ux(ija) +f2*uxsq(ija) -

f3*usq(ija)); 
    %feq(ija+NxM*(3)=f(ija)-2*rt1(ija)*f1.*ux(ija); % much faster... !! 
    feq(ija+NxM*(4-1))= rt1(ija) .*(1 -f1*uy(ija) +f2*uysq(ija) -

f3*usq(ija)); 

     
    % diagonals (X diagonals) (ic-1) 
    feq(ija+NxM*(5-1))= rt2(ija) .*(1 +f1*(+ux(ija)+uy(ija)) 

+f2*(+ux(ija)+uy(ija)).^2 -f3.*usq(ija)); 
    feq(ija+NxM*(6-1))= rt2(ija) .*(1 +f1*(-ux(ija)+uy(ija)) +f2*(-

ux(ija)+uy(ija)).^2 -f3.*usq(ija)); 
    feq(ija+NxM*(7-1))= rt2(ija) .*(1 +f1*(-ux(ija)-uy(ija)) +f2*(-

ux(ija)-uy(ija)).^2 -f3.*usq(ija)); 
    feq(ija+NxM*(8-1))= rt2(ija) .*(1 +f1*(+ux(ija)-uy(ija)) 

+f2*(+ux(ija)-uy(ija)).^2 -f3.*usq(ija)); 
    % rest particle (.) ic=9 
    feq(ija+NxM*(9-1))= rt0(ija) .*(1 - f3*usq(ija)); 

  
    %Collision (between fluid elements)omega=relaxation frequency 
    f=(1.-omega).*f + omega.*feq; 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %add external body force due to the pressure gradient prop. to dPdL 
    for ic=1:N_c;%-1 
        for ia=1:lena 
            i=iabw1(ia);  j=jabw1(ia); 
            % if Obstacles(i,j)==0 % the i,j is not aderent to the 

boundaries 
            % if ( f(i,j,ic) + force(ic) ) >0; %! avoid negative 

distributions 
            %i=1 ;% force only on the first row ! 
            f(i,j,ic)= f(i,j,ic) + force(ic); 
            % end 
            % end 
        end 
    end 

  

    

  
    % % STREAM 
    % Forward Propagation step & % Bounce Back (collision fluid with 

obstacles) 
    %f(:,:,9) = f(:,:,9); % Rest element do not move 

    
    feq = f; % temp storage of f in feq 
        for ic=1:1:N_c-1, % select velocity layer 

  
        ic2=ic_op(ic); % selects the layer of the velocity opposite to 

ic for BB 
        temp1=feq(:,:,ic); % 

  
        % from wet location that are NOT on the border to other wet 

locations 
        for ia=1:1:lenwint % number of internal (i.e. not border) wet 

locations 
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            i=iawint(ia);  j=jawint(ia);  % so that we care for the wet 

space only ! 
            i2 = i+C_y(ic); j2 = j+C_x(ic); % Expected final locations 

to move 
            i2=yi2(i2+1); % i2 corrected for PBC when necessary (flow 

out re-fed to inlet) 
            % i.e the new position (i2,j2) is sure another wet location 
            % therefore normal propagation from (i,j) to (i2,j2) on 

layer ic 
            f(i2,j2,ic)=temp1(i,j); % see circshift(..) fnct for 

circularly shifts 
        end ; % i and j single loop 

  

  
        % from wet locations that ARE on the border of obstacles 
        for ia=1:1:lenobs % wet border locations 
            i=iobs(ia);  j=jobs(ia);  % so that we care for the wet 

space only ! 
            i2 = i+C_y(ic); j2 = j+C_x(ic); % Expected final locations 

to move 
            i2=yi2(i2+1); % i2 corrected for PBC 

  
            if( Channel2D(i2,j2) ==0 ) % i.e the new position (i2,j2) 

is dry 
                f(i,j,ic2) =temp1(i,j); % invert direction: bounce-back 

in the opposite direction ic2 
            else % otherwise, normal propagation from (i,j) to (i2,j2) 

on layer ic 
                f(i2,j2,ic)=temp1(i,j); % see circshift(..) fnct for 

circularly shifts 
            end ; % b.b. and propagations 

  
        end ; % i and j single loop 
        % special treatment for Corners 
        %   f(1,wb+1,ic)=temp1(Nr,Mc-wb);      f(1,Mc-

wb,ic)=temp1(Nr,wb+1); 
        %   f(Nr,wb+1,ic)=temp1(1,Mc-wb);      f(Nr,Mc-

wb,ic)=temp1(1,wb+1); 

  
    end ; %  for ic direction 

  
    % ends of Forward Propagation step &  Bounce Back Sections 

  
    % re-calculate  uy as uyout for convergence 
    rho=sum(f,3); % density 
    % check velocity 
    uyout= zeros(Nr,Mc); 
    for ic=1:N_c-1; 
        uyout= uyout + C_y(ic).*f(:,:,ic) ; % flow dim.less velocity 

out 
    end 
   % uyout(ija)=uyout(ija)./rho(ija); % from momentum to velocity 

  
    % Convergence check on velocity values 
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    if (mod(Cur_Iter,Check_Iter)==0) ; % check for convergence every 

'Check_Iter' iterations 

  
        % variables monitored 
        % mean density and 
        vect=rho(ija); vect=vect(:);  
        cur_density=mean(vect); 
        % mean 'interstitial' velocity 
        % uy(ija)=uy(ija)/rho(ija); ? 
        vect=uy(ija); av_vel_int= mean(vect)  ; % seepage velocity (in 

the wet area) 
        % on the whole cross-sectional area of flow (wet + dry) 
        av_vel_int=av_vel_int*porosity, % av. vel. on the wet + dry 

area 
        %av_vel_int=mean2(uy), 
        av_vel_tp1 = av_vel_int;  
        Condition=abs( abs(av_vel_t/av_vel_tp1 )-1), % should --> 0 

  
        Cond_path=[Cond_path, Condition]; % records the convergence 

path (value) 
        density_path=[density_path, cur_density]; 
        % 
        av_vel_t=av_vel_tp1; % time t & t+1  

  
        if (Condition < toler) | (Cur_Iter > Max_Iter) 
            StopFlag=true; 
            display( 'Stop iteration: Convergence met or iteration 

exeeding the max allowed' ) 
            display( ['Current iteration: ',num2str(Cur_Iter),... 
                ' Max Number of iter: ',num2str(Max_Iter)] ) 
            break % Terminate execution of WHILE .. exit the time 

evolution loop. 

  
        end    % if(Condition < toler 

  
    end 

  
    if (mod(Cur_Iter,Output_Every)==0) ;  % Output from loop every ... 
        %if (Cur_Iter>60) ;  % Output from loop every ... 

  
        rho=sum(f,3); % density 
        figure(10); imshow(rho,[0.1 0.9]); title(' rho'); % visualize 

density evolution 
        figure(11); imshow(ux,[ ]); title(' ux' ); % visualize fluid 

velocity horizontal 
        figure(12); imshow(-uy,[ ]); title(' uy' ); % visualize fluid 

velocity down 
        figure(14), imshow(-uyout,[]), title('uyout'); % vis vel flow 

out 
        up=2; % linear section to visualize up from the lower row 
        figure(15), hold off, feather(ux(Nr-up,:),uy(Nr-up,:)), 
        figure(15), hold on , plot(uy_analy_profile,'r-') 
        title('Analytical vs LB calculated, fluid velocity parabolic 

profile') 
        pause(3); % time given to visualize properly 
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    end % every 

  

  
   % pause(1); 

  

     
end %  End main time Evolution Loop 

  
% Output & Draw after the end of the time evolution 

  
figure, plot(Cond_path(2:end)); title('convergence path') 
%figure, plot(density_path(2:end)); title('density convergence path') 
figure, plot( [uy(Nr-up,:)-uy_analy_profile] ); title('difference : LB 

- Analytical solution') 

  
toc 

  
% Permeability K 

  
K_Darcy_Porous_Sys= (av_vel_int*porosity)/dPdL*Lky_visco , 

  
K_Analy_2D_Channel=(Width^2)/12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


