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ABSTRACT 

In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown 

from animal stem cells in a laboratory or factory. It is essentially meat that does not 

require an animal to be killed. Although it is still in the research phase of development, 

claims of its potential benefits range from reducing the environmental impacts of food 

production to improving human health. However, technologies powerful enough to 

address such significant challenges often come with unintended consequences and a host 

of costs and benefits that seldom accrue to the same actors. In extreme cases, they can 

even be destabilizing to social, institutional, economic, and cultural systems. This 

investigation explores the sustainability implications of cultured meat before commercial 

facilities are established, unintended consequences are realized, and undesirable effects 

become reified and locked in. The study utilizes expert focus groups to explore the social 

implications, life cycle analysis to project the environmental implications, and economic 

input-output assessment to explore tradeoffs between conventionally-produced meat and 

factory-grown food products. The results suggest that, should cultured meat be widely 

adopted by consumers, food is likely to be increasingly a product of human design, 

perhaps becoming integrated into existing human institutions such as health care delivery 

and education. Environmentally, cultured meat could require smaller quantities of 

agricultural inputs and land than livestock. However, those avoided costs could come at 

the expense of more intensive energy use as biological processes are replaced with 

industrial systems. Finally, the research found that, since livestock production is a driver 

of significant economic activity, shifting away from traditional meat production in favor 

of cultured meat production could result in a net economic contraction. 
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GLOSSARY 

Term Definition 

Basal medium A predefined mixture containing a number of inputs 

including water, glucose, amino acids, lipids, vitamins, 

salts, and other compounds meant to facilitate cell growth.  

Bioreactor An apparatus in which a biological reaction or process is 

carried out, especially on an industrial scale. 

Carnery Facility where meat is produced on a large scale. 

Culture medium A solution of nutrients and growth factors that facilitate 

cell proliferation. Culture medium typically contains basal 

medium with added animal serum and/or other animal-free 

compounds. 

Cultured meat Also called in vitro meat, this is edible muscle and fat 

tissue grown from animal stem cells in a laboratory or 

factory. This is meat that does not require an animal to be 

killed. 
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Term Definition 

Hydrolysate Enzymatic or acid digests of biological materials such as 

animal tissues, milk products, microorganisms, grains, and 

vegetables. They contain “undefined mixtures of low-

molecular weight components, including amino acids, 

peptides, vitamins and trace elements, are frequently 

utilized as SFM additives to provide nutrients in cell 

culture” (Sung, Lim, Chung, & Lee, 2004, p. 527). 

Lysis The disintegration of a cell by rupture of the cell wall or 

membrane. 

Myoblast A type of satellite cell, myoblasts are stem cells derived 

from adult tissue and are responsible for muscle 

regeneration (Post, 2012). Myoblasts are muscle cells with 

a finite proliferative capacity. 

Myosatellite cell Myosatellite cells are adult stem cells that, once activated, 

become myoblasts (precursors to muscle fibers). 

Stirred-tank reactor A simple type of bioreactor consisting primarily of a tank 

outfitted with a mixing device such as an impeller. 
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Chapter 1 

The Unintended Anthropocene 

The earth and its ecosystems have become so significantly influenced by 

engineered processes that some scientists have suggested the Holocene, or "entirely 

recent," epoch has given way to the Anthropocene, the "age of the human." Yet this 

anthropogenic world has been constructed largely unintentionally as individual 

investment and purchase decisions have cumulatively caused unexpected changes in 

earth-scale processes. Thus, this anthropogenic planet, though the direct result of human 

technology, is the product of unintentional – not conscious or conscientious – design. 

Similar dynamics exist in socioeconomic systems where seemingly benign strategies can 

lead to surprising outcomes as they ripple through very complex global linkages. Given 

that the anthropogenic perturbations in global systems are not caused by any one 

individual, institution, or nation, it follows that no party is responsible for managing 

them. Yet engineers and technologists are increasingly being called upon to understand 

the broader social, economic, and environmental dimensions of their work, with an 

implication that they bear some culpability for its ramifications. In order to anticipate the 

impacts of emerging technologies, however, there must be methodologies capable of 

projecting a range of possible futures before they become realities. Thus the goals of this 

investigation are two-fold. First, the investigation will propose a forward-looking 

assessment framework for emerging technologies, aimed at identifying their 

environmental, economic, and social implications before products become widely 

adopted by consumers. Second, the approach will be applied to the specific emerging 

technology of cultured meat. As such, the research will utilize lifecycle impact analysis, 
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economic input-output analysis, and a panel of experts, to project a range of possible 

consequences that could emerge in seemingly disparate systems under various cultured 

meat diffusion scenarios. 

Context and Motivation 

The next generation of food products may not be grown on farms or in fields; in 

fact, the technology exists to produce cultured meat in laboratories, and ongoing research 

could soon enable the growth of meat in a factory without the need to maintain a large 

animal population (Jones, 2010). At first glance, the sustainability of such an endeavor 

might seem obvious: By moving away from concentrated animal feeding operations 

(CAFOs) to factories that can engineer protein, fat, and other nutrient sources, the world 

would experience an increase in food quality concurrent with a reduction in methane 

emissions and water quality degradation. However, the transition to commercial cultured 

meat technologies may not be without significant sustainability challenges ranging from 

impacts to farming culture and jobs to increased demand for feedstocks and nutrients to 

support tissue growth. Thus, the aim of this project is to help guide the emerging 

technology of cultured meat down a sustainable path by applying an interdisciplinary mix 

of research methods to assess its implications for the environment, the economy, and 

society.  

Meat cultivated in factories, or carneries (McLeod, 2011), is not yet 

commercially available, but a significant technological transition away from agricultural 

meat production may be on the horizon as several researchers have suggested that large-

scale production of cultured, or in vitro, meat is possible (Edelman, McFarland, Mironov, 

& Matheny, 2005; Langelaan et al., 2010; Post, 2012). While the industrial shift may at 
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first appear to be decades away, innovation is progressing at a rapid rate: Two US patents 

for commercial production have already been issued (van Eelen, 2007; Vein, 2004); at 

least three American startup firms have expressed an interest in cultured meat 

development (Jones, 2010; McDermott, 2012); and, perhaps most saliently, a prototype 

sample of cultured meat was consumed at a well-publicized event in London on August 

5, 2013 (“Cultured beef: The event,” n.d.). 

Many believe that cultured meat is a benign technology. By some accounts it will 

reduce the environmental impact of meat production (Siegelbaum, 2008), address global 

hunger issues (Tuomisto & Roy, 2012), promote human health by eliminating harmful 

contents such as saturated fats and pathogens (Siegelbaum, 2008), and alleviate the 

ethical concerns associated with industrial livestock operations (Bartholet, 2011). While 

some of these claims may prove correct, supporting scientific evidence is tenuous. Thus 

far, peer-reviewed studies of the implications of this technology have been limited to a 

preliminary life cycle analysis (Tuomisto & Teixeira de Mattos, 2011); a projection of 

future consumer cost (eXmoor Pharma Concepts, 2008); and, though not yet complete, an 

assessment of factors that will influence adoption, with the stated goal of preempting 

prohibitive regulation and public scorn in Europe (Wageningen UR, 2011).  

Meanwhile, technologies powerful enough to address significant global 

challenges often come with unintended consequences and a host of costs and benefits that 

seldom accrue to the same actors. In extreme cases, they can even be destabilizing to 

social, institutional, economic, and cultural systems (Allenby, 2009). Cultured meat may, 

in fact, be such a technology: It has been suggested that a shift away from agricultural 

meat production in favor of factory processes could “have large climatic impacts” and 
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constitute a substantial, though unacknowledged, geoengineering strategy (Olson, 2011, 

p. 3). Yet, to date, no analyses have considered the impact of cultured meat on the global 

nitrogen or phosphorus cycles, economic sector output and employment, human health, 

global development, and factors such as cultural identity. Given that cultured meat may 

appear on store shelves in the coming years, a more comprehensive anticipatory 

sustainability assessment of cultured meat is currently warranted. 

Vision 

This research aims to assess the sustainability of emerging cultured meat 

technologies by identifying a range of environmental, economic, and social implications 

that could result from a shift away from agricultural meat production in favor of factory-

grown substitutes in the United States. Such a transition will have significant and 

unintended impacts within tightly-coupled physical, economic, and social systems; 

therefore, to the extent possible, this investigation is meant to anticipate these impacts in 

order to promote prudent decision making and adaptive management of cultured meat 

development and commercialization.  

To this end, the research described herein (1) defines three diverse “agriculture-

to-factory” transition scenarios (no production of cultured meat, moderate production, 

and complete replacement of conventionally-produced meat with factory-grown 

products); (2) identifies possible environmental, economic, and social ramifications 

associated with the scenarios; (3) assesses the future states associated with each scenario 

as compared to the present; and (4) develops a set of quantitative metrics that can be 

monitored and utilized by other researchers and institutions as part of adaptive 

technology management programs.  
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Chapter 2 

Cultured Meat 

The field of biological tissue engineering is relatively young, but since the 1980s, 

it has made significant strides toward developing tissue for three principal applications: 

grafts that can be implanted in the human body to repair or replace defective tissue, 

models of disease for research purposes, and “in vitro platforms for drug development” 

(Kosztin, Vunjak-Novakovic, & Forgacs, 2012, p. 1792). However, on August 5, 2013, a 

prototype sample of meat grown using tissue engineering techniques was tasted at a well-

publicized event in London (“Cultured beef: The event,” n.d.). This hamburger, 

consisting almost entirely of skeletal muscle cells, was not grown in an animal, but rather 

from bovine stem cells in Dr. Mark Post’s laboratory at Maastricht University in the 

Netherlands. The event may foreshadow a day when traditional livestock production has 

given way to large-scale growth of meat in factories, or carneries. While Dr. Post has 

suggested that commercialization of cultured meat could be ten to twenty years away 

(“Cultured beef: The event,” n.d.), innovation is progressing rapidly and could soon 

transform the way food is produced in the United States along with its agricultural 

landscapes.  

Literature Review 

While this number is difficult to verify, it has been reported that approximately 

thirty cultured meat research programs currently exist around the world (Flynn, 2012) 

including initiatives at the American startup firms Mokshagundam Biotechnologies and 

Pure Bioengineering in California (Jones, 2010), and Modern Meadow in Missouri 

(McDermott, 2012). As a result, a number of cultivation methods have been proposed, 
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but perhaps the most promising (Bhat & Bhat, 2011) begins by isolating adult stem cells 

from a donor animal explant (the animal remains otherwise unharmed). These stem cells 

are then submerged in a culture medium containing nutrients, oxygen, and a cocktail of 

hormones and growth factors (Datar & Betti, 2010), where the cells proliferate and the 

culture increases in mass.  

Even though Dr. Post believes that the process could be scaled up for commercial 

meat production in perhaps 10-20 years (“Cultured beef: Frequently asked questions,” 

n.d.), he has also stated that challenges still exist in terms of ensuring quality and safety 

of the final products (Post, 2012). One of these is the need to develop and optimize 

synthetic (animal-free) nutrient growth media. Another is the need to design production 

facilities that ensure all cells receive sufficient nutrients and oxygen: cells will die if they 

are more than 0.5 mm from a nutrient supply for a significant period of time (Bhat & 

Bhat, 2011). Carneries must also promote cell exercise in order to impart a familiar and 

acceptable texture. Absent exercise, meat grown in vitro could be perceived by 

consumers as “weak and textureless” (Jones, 2010). For the purposes of this 

investigation, it was assumed that all of the aforementioned challenges will be overcome 

and that cultured meat will all but replace traditional, agricultural meat by 2050.  

Social implications. In February, 2011, Wageningen University announced that it 

was receiving a round of funding from the Dutch Ministry of Economic Affairs, 

Agriculture and Innovation (Wageningen UR, 2011). This grant will support cultured 

meat development research by Henk Haagsman at the University of Utrecht, as well as an 

investigation into the social, ethical, and moral aspects of cultured meat. The social 

research will be headed up by Cor van der Weele of Wageningen University and will 
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include an examination of attitudes and factors impacting adoption. The stated 

overarching goal of this research is to avoid any negative perceptions that people may 

develop toward cultured meat, as occurred with genetically modified foods (Wageningen 

UR, 2011). Hence Dutch research is not only limited in scope, but it is meant to influence 

public opinion.  

Environmental Implications. In July, 2011, a partial life cycle analysis (LCA) 

was published comparing cultured meat to conventionally-produced meat. The study was 

funded by New Harvest, a non-profit aimed at supporting the development of meat 

substitutes. The findings indicated that a transition to cultured meat could reduce 

greenhouse gas (GHG) emissions by 78-96%, land use by 99%, and water use by 82-96% 

as compared to the equivalent meats produced by conventional methods (Tuomisto & 

Teixeira de Mattos, 2011). In addition, it showed lower energy consumption for cultured 

meat than for beef, mutton, and pork. In short, the LCA characterized cultured meat as 

being significantly less environmentally detrimental than agricultural meat. However, this 

study did not consider the relevant categories of eutrophication potential, acidification 

potential, ozone depletion potential, or human health impacts. 

Economic Implications. To date, the only known economic analysis of cultured 

meat is a forward-looking European study aimed at determining whether cultured meat is 

likely to become competitive with conventionally-produced meat in terms of factory gate 

prices (eXmoor Pharma Concepts, 2008). This is a reasonable question when one 

considers that the first cultured hamburger cost about $350,000 (“Cultured beef: The 

event,” n.d.), largely due to the high price of the growth medium (one of the primary 

inputs to cultured meat production). At €7000 – 8000 or about $10,000 per tonne of 
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cultured meat (eXmoor Pharma Concepts, 2008), it currently makes up about 90% of the 

production cost (Jones, 2010). 

Using a net present value financial model, the investigators projected that, if 

economies of scale bring the cost of growth medium to about one tenth of its current 

price, cultured meat could become comparable in price to conventional beef but remain 

more expensive than poultry (eXmoor Pharma Concepts, 2008). While this is important 

information, the study failed to explore the farther-reaching economic consequences of 

the findings. If, as they say, cultured meat becomes as affordable as conventional beef, 

and is widely adopted on a regional or global basis, questions remain regarding what 

industries would grow and what industries would contract. 

Needs Analysis: Implications of Cultured Meat 

While cultured meat is beginning to draw more attention from researchers 

interested in its environmental, economic, and social implications, significant questions 

remain. Above all, a more complete life cycle analysis is needed. Such an LCA should 

evaluate the assumptions made by the prior study and take into account flows of nutrients 

such as nitrogen and phosphorus. Economically, there is a need to better understand what, 

if any, regional and global impacts might be felt as a result of widespread adoption of 

cultured meat. Socially, intelligence as to what issues could arise under a high-adoption 

scenario is generally lacking. Whereas these specific knowledge gaps seemingly point to 

the need for discrete analyses, in reality, environmental, economic, and social factors are 

interdependent and coevolve with the technology itself.  
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Chapter 3 

Methods 

The research described herein employs an interdisciplinary set of methods to 

assess the implications of cultured meat for all three pillars of sustainability: 

environment, economy, and society. This section provides background information on the 

tools used for the sustainability assessment. While none of the frameworks described 

below provides a comprehensive “cookbook” approach to assessing emerging 

technologies, each is forward-looking and can lend some value to an anticipatory 

evaluation. Using these tools, an approach will be constructed that can provide 

intelligence to decision makers considering the management or regulation of new 

products, though not the decisions themselves. 

Life Cycle Analysis 

The field of industrial ecology focuses on environmental design and technological 

impacts, but largely excludes social and economic considerations. Nonetheless, industrial 

ecology encompasses a number of analytical tools, life cycle analysis (LCA) in particular, 

that lend themselves well to a technology assessment. LCA enables an investigator to 

quantify and understand the environmental effects of a product or technology over its 

entire life cycle: from material sourcing to manufacture to use and, finally, disposal 

(Graedel & Allenby, 2010). Process life cycle analysis, as described by the ISO 14040 

series (International Organization for Standardization, 2006), will be employed in the 

assessment of cultured meat.  
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Economic Input-Output Assessment 

Economic input-output analysis (EIOA), sometimes known as inter-industry 

analysis, was developed by Wassily Leontief in the late 1930s and later earned him the 

1973 Nobel Prize in Economic Science (Miller & Blair, 1985). Economic input-output 

(EIO) tables aggregate the links between industries in order to quantify interdependencies 

within the economy as a whole. Once constructed, these economic input-output models 

facilitate the exploration of “what if” scenarios whereby a hypothetical condition is 

allowed to propagate through the economy at large. It lends itself to a variety of 

applications including policy analysis and technology assessment. A more detailed 

explanation can be found in APPENDIX C. 

For the purposes of the proposed research, EIOA will be used to address the 

economic pillar of sustainability. An EIO model will be constructed to demonstrate the 

far-reaching and potentially obscure economic implications of simultaneously reducing 

agricultural meat production and scaling-up factory generation. This method will also 

address the coupled nature of environmental and economic systems, allowing the 

complex nature of emerging technologies to be understood at a level that would be 

impossible via an environmental analysis alone. 

Technology Assessment 

Technology assessment (TA) was first proposed in the late 1960s as a means to 

help the U.S. Congress “perceive, appraise, and initiate actions required to secure the 

greatest values from technology” (National Academy of Engineering, 1969, p. 3). While 

TA could extend to environmental and economic analyses, the focus is foremost on social 

implications of technology. In practice, TA has historically consisted primarily of panels 
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of experts constructing in-depth analyses meant to aid Congress in making decisions 

concerning technology policy and “gain political control over the potential negative 

effects of technological development by means of early warnings” (Carlsen et al., 2010). 

This research will draw from the TA literature to develop the conceptual framework for 

the overall investigation as well as its expert panel approach to address the social pillar of 

sustainability.  

Scenarios 

Scenarios are not predictions of the future, but rather they are simply descriptions 

of possible sets of future conditions that can help to assess and select different strategies 

in order to manage risk (Becker, 1983). A number of scenario development methods exist 

for a variety of purposes including corporate planning, public policy, and military tactics 

(Becker, 1983; List, 2007). Given that scenario development can be an integral 

component of TA (Porter, Rossini, Carpenter, & Roper, 1980), EIOA (Leontief, 1986), 

and industrial ecology analyses (Graedel & Allenby, 2010), then it should prove to be a 

useful tool for assessment of emerging technologies as well.  

Earth Systems Engineering and Management 

Earth systems engineering and management (ESEM) “may be thought of as 

sustainable engineering at the planetary scale” (Allenby, 2012, p. 348). At its core are a 

set of guiding principles for technologists that do not provide a framework for analysis, 

but do serve as important considerations for those developing and managing emerging 

technologies. Perhaps most relevantly for cultured meat, ESEM principles indicate that 

“major shifts in technologies and technological systems should be evaluated before, 

rather than after, implementation” (Allenby, 2012). From that perspective, the 
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investigation proposed herein is directly in line with ESEM guidelines. Moreover, ESEM 

principles recommend that a set of metrics be developed that can be used to assess and 

guide development of a technology on an ongoing basis.  

Goals and Objectives 

On its surface, this research is aimed at identifying a broad range of possible 

environmental, economic, and social impacts that could result from large-scale 

replacement of agricultural products with factory-grown food in the United States. 

However, given the inherent unpredictability of complex coupled human, natural, and 

technological systems that increasingly characterize the modern world, sustainability 

arises from the ability to perceive, and then respond with agility and rapidity to, 

unintended perturbations in the system. This work will employ case studies to evaluate 

the emergence of cultured meat as a new technology within a complex system. As such, it 

will illuminate obscure interdependencies that could contribute to unintended 

consequences in seemingly disparate systems and develop a set of metrics to monitor 

progression toward specific outcomes. Hence the research is expected to produce 

objective intelligence for the adaptive management of cultured meat development and 

commercialization. 

To that end, the sustainability of cultured meat emerging technologies via the 

following tasks:  

1. Identification of environmental, economic, and social impacts associated with diverse 

cultured meat transition scenarios (shown in Figure 2 on page 16) via the following 

methods: 

a. Expert focus groups (society); 
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b. Life cycle analysis (environment); 

c. Economic input-output analysis (economy). 

2. Assessment of the sustainability implications of each scenario and identification of 

the most significant deviations from the present state. 

3. Development of a set of sustainability metrics for ongoing monitoring and adaptive 

management of cultured meat production. 

The goal of this investigation is not to determine whether the technology should 

or should not be commercialized, nor to try to predict the degree to which it will be 

adopted and by what groups. Instead, the goal is to project a range of possible 

consequences that could emerge in seemingly disparate systems under various diffusion 

scenarios. In this way, it is meant to provide unbiased intelligence for effective leadership 

and governance. Gaining an understanding of some possible future scenarios can serve to 

minimize overall risk and facilitate a smoother, more tempered technological transition. 

Research Methods 

The conceptual framework for this investigation was modeled on the technology 

assessment practices discussed by Porter et al. (1980) and shown in Figure 1. As such, it 

consists of an environmental, economic, and social assessment of technology 

commercialization and diffusion within a consistent framework of technology transition, 

or cultured meat production, scenarios. Per Table 1, the specific analyses will be as 

follows: the environmental analysis will consist of an LCA, the economic analysis will be 

an EIOA, and social consequences of each scenario will be assessed via expert panel 

discussions. While each analysis will be performed relatively independently, the research 
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will include an impact evaluation step in which synergies between the analyses and their 

findings will be identified and reported. Each component of the overall approach is 

discussed below. 

Table 1 

Overview of Sustainability Assessment Methods

Method Conceptual 
framework 

Environmental 
assessment 

Economic 
assessment 

Social 
assessment 

Industrial ecology N/A LCA for 
environmental 
impacts 

N/A N/A 

Economic input-
output analysis  

N/A EIO-LCA for 
environmental 
impacts 

EIOA for 
impacts on 
related 
economic 
sectors 

N/A 

Technology 
assessment 

TA for 
research 
approach and 
steps 

N/A N/A Expert panels 
for social 
projections 

Scenarios N/A Projections of possible future 
conditions 

ESEM N/A Metrics for ongoing dialog and 
management of the system. 

 
Cultured meat transition scenarios. Diverse technology transition scenarios 

associated with cultured meat were developed for the purposes of comparing the 

sustainability implications of alternative futures. The first scenario is a baseline or 

“business as usual” case that assumes no cultured meat production. Two additional cases 

represent both moderate adoption and complete replacement of conventionally-produced 

meat with factory-grown products in the United States by 2050. These cases, shown in 
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Figure 2, do not reflect predictions or normative judgments regarding the desirability of 

the technology. Instead, they are constructed to provide insight into the possible effects of 

the technology under diverse future conditions. 

 
Figure 1. Conceptual framework for analysis. Based on Porter et al. (1980). 

Because meat consumption occurs on a global basis, the analyses would ideally 

encompass all nations in aggregate. However, despite the fact that meat of various kinds 

is generally a commodity product, production methods and consumption patterns vary 

from nation to nation, as do available economic data sets. For these reasons, this 

particular study will be simplified by focusing exclusively on the United States. As an 

additional simplifying assumption, all factors that would be expected to contribute to 

cultured meat adoption, including prices, regulations, and personal preferences, are 

assumed to precede, and be inherent within, the adoption scenarios. Therefore, by 

presenting three very different technology futures, the specific factors that would bring 

about those futures can be ignored.  

Technology Description and Transition Scenarios 

Task 3: Development of Metrics for Ongoing Monitoring 

Task 1a: TA Expert 
Focus Groups (society) 

Task 1b: Life Cycle 
Analysis (environment) 

Task 1c:  
Economic Input-

Output Assessment 
(economy) 

 

Task 2: Impact Evaluation 
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The cultured meat adoption scenarios to be used in this study are illustrated in 

Figure 2. Meat production (as opposed to consumption) will serve as the independent 

variable since production can be linked to both domestic environmental and economic 

impacts via models developed as part of this research. Production will also serve as an 

approximate indicator of domestic consumption as needed for the social assessment. 

 
Figure 2. Production associated with cultured meat transition scenarios. Projections are 

based on the long-term agricultural projections through 2021 published by the United 

States Department of Agriculture (USDA, 2012). Beyond 2021, US production is 

assumed to grow at the annual world rate estimated by the Organisation for Economic 

Cooperation and Development (OECD) and the Food and Agricultural Organization of 

the United Nations (FAO) (FAO, 2006; OECD-FAO, n.d.). Values are converted from 

dressed carcass weight (excluding byproducts) to live weight by dividing by 0.6 for beef 

and 0.75 for pork and poultry.  

Task 1a: Social framework: TA expert panels. The proposed expert TA process 

will be a modified version of the standard approach discussed by Porter et al. (1980) and 

will be designed to accommodate the same forecasts considered by the environmental and 
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economic analyses. In this task, three groups of 6-10 scholars with expertise in a number 

of areas including law, journalism, agriculture, environmental engineering, tissue 

engineering, technology and society, and emerging technologies will be assembled. 

Because this portion of the research will require human subjects, IRB review was sought, 

and approval #1301008706 was granted on January 17, 2013. 

In order to obtain the best possible input from participants, this investigation will 

take a hybrid approach that combines the creative interaction of focus groups with the 

individual communication enabled by surveys. After an initial briefing, participants will 

be asked to develop and discuss narratives associated with cultured meat adoption as a 

group, where creativity will be encouraged and plausibility will not be requested. Notes 

will be taken during the focus groups, but at the end of the two-hour discussions, 

participants will be asked to write down the details of their own vision of a society that 

includes large-scale cultured meat production. In this way, unique views will be 

contributed by all participants, but only after they have been influenced by a discussion 

meant to stimulate “out-of-the-box” thinking. 

In order to frame the panel discussions, participants will be asked to consider how 

cultured meat will impact the social categories of education, employment, human health, 

family, general population dynamics, religion and culture, and global development (based 

on Bennett, 1999; Organisation for Economic Cooperation and Development [OECD], 

2011; World Bank, n.d.). Should the conversation stagnate, the expert panels will be 

presented with example metrics from each of these categories, but to a large extent, 

participant will be encouraged to identify the social factors that they feel are the most 

important. 
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At the end of this task, the investigator will transcribe, code, and analyze the 

narratives reported, using thematic analysis (Liamputtong, 2011, pp. 173-174) to 

aggregate trends described by the experts. Similar to tasks 1a and 1b, the output of this 

task will be a list of deviations, albeit qualitative, from the present state, organized by 

indicator of interest. Together, these variables and their projected outcomes will form the 

input to the impact evaluation phase of the study (task 2). 

Task 1b: Environmental framework: LCA. The LCA for cultured meat will 

follow accepted procedures as described by the ISO 14040 series standards (ISO, 2006). 

A process-sum approach will be taken to compile the life cycle inventory and expert 

input from cultured meat researchers will be sought to ensure accuracy of the system 

process flow diagram (shown in Figure 3) and inventory data. One of the most common 

challenges facing LCAs of emerging technologies is data availability for the life cycle 

inventory. In this case, a model for cellular growth is available from a peer-reviewed 

source (see Table 2). Impact categories of focus will include land use, water use, energy 

use, greenhouse gas emissions, and eutrophication (a proxy for nitrogen and phosphorus 

flows). The functional unit will be 1 kg of cultured meat and will be compared to the 

impacts of livestock on a live weight basis. As such, life cycle impacts associated with 

livestock production will be obtained from peer-reviewed sources as shown in Table 2. 
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Figure 3. System diagram for hypothetical cultured meat production system. Separation 

(possibly via centrifugation) as well as cultured meat processing and packaging are not 

included in this study. 

 

1 kg cultured meat ready 
for processing and 

packaging 

Byproducts of cell 
culture: Ammonia, 

lactate, alanine 
Cell proliferation 

Deionized water  
for culture 

  Included in LCA Excluded 

Glucose production from 
corn starch (energy source) 

Growth factors 

Basal medium 
production 

Soy hydrolysis (peptide and 
amino acid supplement) 

Products for 
other uses 

Products for 
other uses 

Scaffold 

Other waste products: 
spent medium, CO

2
 

Amino acid 
production 

Bioreactor processes: 
Aeration, agitation 

Temperature regulation 

Vitamins, minerals 

Corn production and wet 
milling 

Soybean production and 
milling 

Deionized water and 
chemicals for cleaning 

(heated) 

pH regulation 

Production facility 

Bioreactor  
cleaning-in-place Cleaning chemicals 

Transportation 

Sterilization of culture 
medium 
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Table 2 

Data sources for the Life Cycle Inventories

Product Life cycle inventory data source 

Cultured meat Flickinger (2013); Hu (2012); Sung, Lim, Chung, and Lee (2004) 
Beef Pelletier, Pirog, & Rasmussen (2010) 
Pork Pelletier, Lammers, Stender, & Pirog (2010) 
Poultry Pelletier (2008) 
 

Task 1c: Economic framework: EIOA. This task will require the construction 

of a very simple economic input-output model that will highlight significant changes in 

sector output associated with cultured meat production. Using Microsoft Excel® software, 

an EIO model will be developed from the 2002 detailed (benchmark) national input-

output tables published by the United States Bureau of Economic Analysis (BEA). These 

tables provide economic flows for approximately 439 US industries. Due to the certainty 

of economic adaptation to changing food production paradigms and the static nature of 

input-output models, projections associated with the three production scenarios outlined 

above will not be constructed. As with all input-output analyses, this model will rely on 

historical data, and therefore will not allow for technological advancement that would 

yield a more realistic analysis (because complex systems react and evolve under changing 

conditions). Hence, while EIOA appears to be the best extant method to provide a 

relatively rigorous and structured analysis of the economic shifts that might result from a 

transition to cultured meat, projections associated with such shifts would be incorrect and 

therefore essentially meaningless. 
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Task 2: Impact evaluation. As depicted in Figure 4, the impact evaluation task 

will encompass the compilation of results of the environmental, economic, and social 

assessments. Trends that constitute unintended and detrimental impacts in any part of the 

system will be highlighted. 

 
Figure 4. Impact evaluation phase of the research. In order to address the 3 pillars of 

sustainability, Task 2 will constitute the results compilation and methodology review 

phase of the research.  

Task 3: Development of metrics for ongoing monitoring. The complexity of 

global interdependent systems all but precludes the ability to control them. Yet the ability 

to manage – or at least influence – coupled human, natural, and technological systems 

can be developed and maintained through a measured dialog. That is, by establishing and 

continuously monitoring a set of metrics indicative of important system benchmarks, 

managers have the capacity to identify undesirable trends before significant problems 

arise (Allenby, 2005). Based on the output from task 3, the most significant changes from 

 

Reported environmental 
factors: Method = LCA 
• Land use 
• Water use 
• Energy use 
• GHG emissions 
• Eutrophication 

Reported economic factors:  
Method = EIOA 

• Aggregate GDP 
• Agricultural output 
• Output in other sectors 

Reported social factors:  
Method = TA expert panels 

• Culture 
• Education 
• Family 
• General statistics 
• Global development 
• Human health 

Impact evaluation: Implications of cultured meat 
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the present state will be identified, along with metrics that would serve as early warning 

indicators for undesirable states.  

Validation, Verification, and Uncertainty 

Due to the anticipatory nature of this investigation, validation of many aspects of 

the approach will be very difficult to accomplish. Realistically, the quality of the model 

output can only be assessed in retrospect as events unfold in the real world, implying that 

refinements in the overall framework must be made based on real-world comparisons 

over time. Moreover, this approach includes a great deal of inherent uncertainty. As 

summarized in Table 3, however, sensitivity to specific factors can be assessed in the 

LCA model, but not the social narratives. Sensitivity analysis methods for economic 

input-output models exist (Mattila, Koskela, Seppälä, & Mäenpää, 2013), but will not be 

pursued as part of this project. 

Verification and validation of the component LCA and EIOA can be 

accomplished via expert and peer review. To this end, a tissue engineer working to 

develop meat production techniques has been engaged to provide advice and feedback as 

the work progresses. Further, verification of the EIO model can be accomplished by 

comparing single-variable cases with results generated by the EIO-LCA database 

maintained by Carnegie Mellon University (Carnegie Mellon University Green Design 

Institute, 2008).  
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Table 3 

Methods of Validation, Verification, and Sensitivity Analysis for All Stages of This 

Investigation 

Research component Validation (does the 
model accurately 
represent the system?) 

Verification (was the 
model built according 
to specifications?) 

Sensitivity 
analysis 

Overall framework Refinement over time Peer review N/A 
Transition scenarios Assessment over time Peer review N/A 
Task 1a: Social 
narratives 

Assessment over time N/A N/A 

Task 1b: LCA Review by cultured 
meat researchers 

Peer review Monte Carlo 
analysis 

Task 1c: EIOA Peer review Comparison to EIO-
LCA database a 

N/A 

Task 2: Impact 
evaluation 

Assessment over time Peer review N/A 

Task 3: Metrics for 
ongoing monitoring 

Assessment over time Peer review N/A 

a Source: Carnegie Mellon University Green Design Institute (2008). 

Intellectual Merit 

In order to realize the benefits of cultured meat while avoiding its unintended 

consequences, society needs to understand the wide spectrum of impacts associated with 

large-scale deployment of this emerging technology before production methods and 

consumer preferences are established. By applying mature analytical methods within an 

anticipatory framework, this project will provide unique insight into what the emerging 

technology of cultured meat might mean for the environment, the economy, and society. 

As such, this interdisciplinary study is meant to provide objective intelligence that can aid 

decision-making by scientists, engineers, regulators, policymakers, and business leaders 
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involved in developing and deploying these technologies. The results of this 

interdisciplinary research will provide novel insight into the implications, and perhaps 

unintended consequences, of an emerging technology. Moreover, they will, for the first 

time, facilitate the adaptive management of a technological transition on a large scale. 

More broadly, the proposed research is designed to produce a widely-applicable 

framework for anticipatory evaluations of emerging technologies. Due to the increasing 

impact of anthropogenic processes on earth-scale systems, a growing chorus of voices is 

calling for greater understanding and responsible management of new products (Allen et 

al., 2008). Unfortunately a suitable assessment methodology is currently lacking. The 

proposed investigation seeks to fill the void by introducing a novel approach to 

anticipating the sustainability implications of new products, thereby facilitating early 

detection of undesirable outcomes and expediting dynamic and effective corrective 

action. Through article submissions to sustainability journals, the research is potentially 

transformative as it could impart engineers and scientists with evolving and widely-

applicable technology assessment tools, allowing them to balance knowledge acquisition 

with prudent and reversible application.  
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Chapter 4 

Social Assessment 

Meat grown from stem cells in a factory and not in an animal, often referred to as 

“cultured meat,” may reach store shelves and restaurants in 10 to 20 years. This paper 

summarizes expert focus group discussions aimed at providing insight into the possible 

social implications of a shift away from agricultural meat in favor of cultured meat. The 

investigation explores relevant dynamics and diverse implications for a number of 

directly- and indirectly-related systems including human health, family dynamics, 

education, culture, ethics, global development, and food system security. 

Introduction 

On August 5, 2013, a prototype sample of cultured, or in vitro, meat was tasted at 

a well-publicized event in London (“Cultured beef: The event,” n.d.). This hamburger 

was not grown in an animal, but rather from bovine stem cells in Dr. Mark Post’s 

laboratory at Maastricht University. The event may foreshadow a day when traditional 

livestock production has given way to large-scale growth of meat in factories, or 

carneries. Dr. Post has suggested that commercialization of cultured meat could be ten to 

twenty years away (“Cultured beef: The event,” n.d.), and the implications are profound. 

By some accounts the technology could reduce the environmental impact of meat 

production (Siegelbaum, 2008), promote human health by eliminating harmful contents 

such as saturated fats and pathogens (Siegelbaum, 2008), address global hunger issues 

(Tuomisto & Roy, 2012), and alleviate the ethical concerns associated with industrial 

livestock operations (Bartholet, 2011). However, technologies powerful enough to 

address such significant challenges often come with unintended consequences and a host 
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of costs and benefits that seldom accrue to the same actors. In extreme cases, they can 

even be destabilizing to social, institutional, economic, and cultural systems (Allenby, 

2009).  

This investigation seeks to complement ongoing technical research efforts in two 

ways. First, a more balanced consideration of the impacts of in vitro meat (IVM) will be 

sought in the areas where potential benefits are already well-publicized. This will include 

unintended and potentially negative consequences for human health, the environment, 

global hunger, and ethics. Second, the implications for seemingly remote, but still 

coupled, systems will be explored. That is, as shown in Figure 5, the complexity inherent 

in the world ensures that changes in food production technologies could have 

repercussions far beyond the selection of foods sold in the grocery store. They will 

modify norms in environmental, economic, and social domains in ways that have not yet 

been considered by prevailing scientific analyses or public discussions. A better 

understanding of the potential implications of cultured meat could serve to facilitate 

effective decision-making as the technology becomes commercialized. 

To address these goals, distinct environmental, economic, and social analyses are 

being performed. This article is a report of the findings from the social assessment which 

consisted of three expert focus groups, or workshops, held on the campus of Arizona 

State University in the spring of 2013. These workshops each brought together 6-8 

scholars with expertise in a number of areas including law, journalism, agriculture, 

environmental engineering, tissue engineering, technology and society, and emerging 

technologies. These diverse groups were asked to qualitatively explore the possible social 

ramifications of IVM at all scales, from personal to systemic. 



 

27 

Cultured Meat 

Meat consists primarily of skeletal muscle and fat cells in varying proportions. 

Emerging engineering techniques have enabled the growth of these cells in vitro, as 

opposed to the traditional in vivo process which requires the raising and slaughtering of a 

whole animal. A number of in vitro cultivation methods have been proposed, but perhaps 

the most promising (Bhat & Bhat, 2011) begins by extracting adult stem cells from a 

donor animal tissue sample (the animal remains otherwise unharmed). These stem cells 

are then submerged in a nutrient broth that enables the cells to grow, divide, and increase 

in mass.  

Even though Dr. Post believes that the process could be scaled up for commercial 

meat production in perhaps 10-20 years (“Cultured beef: Frequently asked questions,” 

n.d.), he has also stated that challenges still exist in terms of ensuring quality and safety 

of the final products (Post, 2012). One of these is the need to develop and optimize 

synthetic (animal-free) nutrient growth media. Another is the need to design production 

facilities that ensure all cells receive sufficient nutrients and oxygen (cells will die if they 

are more than 0.5 mm from a nutrient supply for a significant period of time [Bhat & 

Bhat, 2011]). In order to impart a familiar and acceptable texture, carneries must also 

promote cell exercise. Absent exercise, meat grown in vitro could be “weak and 

textureless” (Jones, 2010). Additional challenges associated with IVM commercialization 

include the high cost of production (eXmoor Pharma Concepts, 2008) and the “yuck” 

response elicited by some individuals (van der Weele & Driessen, 2013). While these 

factors are certainly not trivial, the goal of this investigation was to assess the possible 

social consequences of this technology; therefore, it was assumed that all of the 
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aforementioned challenges had been overcome and that cultured meat had all but 

replaced traditional, agricultural meat by 2050. 

 
Figure 5. Systemic representation of meat production. Note that environmental, social, 

and economic systems are highly interdependent and neither the factors included here nor 

the arrows representing causal links should be considered exhaustive. White ovals 

represent factors addressed in this paper. Based on (Allenby, 2012). 

Social Assessment Workshops 

The series of workshops was designed to create a space for discussing the broader 

aspects of cultured meat and encourage a creative interplay of ideas from diverse 

perspectives. Prospective workshop participants were identified based on their research 

expertise and its relevance to the goals of this investigation. The workshop invitations 

included an article that provided an overview of the technology in question (Jones, 2010), 
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but most participants had little to no prior knowledge of cultured meat. The workshops 

themselves lasted approximately 3 hours and began with a high-level briefing that 

described the research goals as well as cultured meat and the underlying technology. For 

the purposes of the workshops, participants were asked to imagine that a shift toward 

ubiquitous factory meat production would be largely complete by 2050. The briefing was 

followed by participant introductions, a moderated group discussion to encourage 

creative synergy, and a role-play session where participants were invited chose a 

character (i.e. doctor, lawyer, high school student, etc.) and describe the world of 2050 

from that person’s perspective. This was followed by time allotted for participants to 

complete a written questionnaire aimed at capturing information that may not have been 

verbalized during the discussion, but was still considered important to the respondent. 

Notes were taken during the discussion portion of the workshop by a dedicated note-taker 

who wrote down quotes that could be used to illustrate the nuances of the ideas discussed, 

but did not identify the speaker in order to preserve anonymity. Hence, the workshops 

encouraged a dynamic, spontaneous flow of ideas that drew on participants’ personal and 

professional knowledge and linked the technical and social aspects of the technology. 

The resulting novel and vivid future scenarios were captured in the workshop notes and 

participant questionnaires. 

Participants in each workshop were asked to discuss how a transition away from 

agricultural meat in favor of ubiquitous cultured meat might affect five aspects of US 

society: food in general, human health, family and education, culture and ethics, and 

general demographics. While the United States was the focus of the workshops, 

participants were also invited to comment on a sixth category, global development. 
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Discussions were not limited to these areas, however. Participants were encouraged to 

indicate additional variables that they felt would be most significant or important as 

tissue engineering techniques develop. Further, discussions of economic and 

environmental impacts were not discouraged, though participants were informed that 

studies of economic and environmental variables were being accomplished via alternative 

methods.  

The data collected from the workshops should be interpreted as future scenarios 

for consideration and discussion only. The complex nature of technological development 

and its interactions with other systems preclude the ability to accurately assess causal 

relationships and make deterministic predictions. Moreover, the participants were 

predominantly American scholars; their views are thus not representative of a global 

population, nor even all American cultural groups. Nonetheless, the results presented here 

are meant to introduce novel information to discourses and decision-making around 

cultured meat development and commercialization. 

Findings 

The discussions during the three workshops did not result in a unified prediction 

of social changes that will accompany a transition from slaughtered meat to in vitro meat. 

But that was not the goal. Instead participants discussed a wide variety of possible 

futures. Some of the vignettes described could occur simultaneously. In other cases it was 

clear that only one of the options could happen. Discussants did not spend a large amount 

of time debating the likelihood of specific changes. Rather stories were built as a group – 

with one person positing a possibility and others contributing facts or suggestions that 
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developed a broader picture of the original idea. This section does not exhaust everything 

that was discussed, but outlines some of the common themes that arose.  

Adoption and consumption decisions. Even though factors influencing cultured 

meat adoption were not a focus of the research, the workshop groups often could not help 

but speculate about future diffusion patterns. In general, people expected an uneven 

global adoption rate and thought that Americans and Chinese would be open to the 

technology much more than Europeans. In Europe, they said, people are more concerned 

with the source of their food whereas, in the United States, food is already highly 

modified and processed, with a very tenuous connection to the natural source. Even in the 

case of meat, they said, the shift to an “unnatural” product has already happened. It was 

further speculated that a lot of Americans “wouldn’t even know the difference” between 

cultured and real meat. Others thought that cultured meat would appeal to Americans’ 

attempts to remove themselves from the animal. As one participant noted, “People don’t 

want meat that looks like meat necessarily. We want it to appear sterile, wrapped in 

plastic, in the grocery store.” On the other hand, a few people expressed dissenting 

opinions and suggested that, not only do Americans eat a substantial amount of natural 

food, the amount of processing required to produce cultured meat would inhibit people 

from eating it even if they are eager to try novel foods. The “yuck factor” associated with 

cultured meat could play an important role in how cultured meat is diffused, packaged, 

and marketed. 

Additional factors associated with adoption were religion and identity. Some 

participants thought that religious rules about food would probably remain. Some even 

foresaw religious groups with extensive rules about meat – like Judaism, Islam, and 
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Hinduism – to play a role in resistance to in vitro meat. One participant stated, “Religions 

(e.g. Hindu) that consider the cow to be one of their goddesses will not like the idea of 

their god being produced or created in petri dish[es].”  

In general, American values and cultural myths became a prominent point of 

debate in one of the workshops where, as one participant pointed out, if the narratives 

surrounding cultured meat oppose an important myth or cultural value, as with GMOs in 

Europe, adoption could be arrested. For example, Americans value independent farming; 

therefore, a perceived further erosion of Jeffersonian Agrarianism or elimination of the 

cowboy might dissuade Americans from adopting cultured meat. However, another 

participant countered that our society has historically been through many shifts in 

agricultural practices, particularly with respect to labor: “Shifts associated with cultured 

meat would not be very different from what we have seen in the past, and would be 

unlikely to influence cultured meat adoption. In fact,” the participant said, “the cowboy is 

already a myth, along with the family farm. Neither of these lifestyles exists anymore, yet 

their stories persist in romanticized form. Myths remain incredibly stable in the face of 

constant cultural flux and generally do not prevent social change.” The panelists felt that 

cultural touchstones will likely be used in the discussions around in vitro meat in the 

future – in fact the cowboy myth has already been used in futurist projects on the topic 

(see Figure 6) – but exactly how they are used and which configurations will become 

predominant is unclear.  
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Figure 6. Hypothetical marketing campaign for cultured meat brand. As part of his online 

portfolio, designer Grant Parinello (not affiliated with this research) developed a 

marketing campaign for a hypothetical food product called Supermeat (Parrinello, 2011) 

that featured a cowboy as a spokesperson. 

Cultural effects. Just as cultural values will almost certainly influence the 

adoption and development of cultured meat, the technology will likewise impact cultures 

and religions. Specifically, one participant thought that cultured meat might shift both 

secular and religious lifestyles, enabling the “spread of neo-Buddhist systems and 

increase romanticization of nature and animals.”  

Additional questions arose around traditions and ceremonies involving preparing 

and sharing meals, particularly if cultured meat requires less preparation. On this point, 

however, many foresaw adaptation: “Cultural norms would adapt to accommodate it – 

Thanksgiving would still occur, but with cultured turkey.” Moreover, participants 

imagined that food-based traditions and rituals such as potluck dinners would continue to 

draw people together in much the same way in 2050. One argued that “they will serve as 
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an opportunity to eat with like-minded people i.e. a group of vegetarians… or people who 

want to eat meat from animals.” 

Coevolution of food and food preferences. At the core of all focus group 

discussions were perceptions and expectations for how cultured meat will appear when it 

reaches restaurants and grocery stores. Participants imagined variations in quality & type 

of IVM products, from commodity “vat” meat constituting nothing more than a basic 

protein source to specialized luxury and designer products (e.g., “Atkins®-Approved 

Slim-Meat”) with a corresponding range of prices. A number of participants concurred 

that meat of the future would be significantly altered due to greater flexibility in 

production methods, with variable characteristics including nutrients, flavors, textures, 

exotic and extinct species, species mixtures, and even products grown from human 

explants. It was further suggested that cuisine diversity would lead to inevitable pushback 

and desire for “natural” food products, opening up new markets as animals are raised on a 

small scale or hunted to appease “meat purists.” 

While some participants expressed concern that people would miss eating meat 

off the bone, others highlighted human adaptability. For example, “growing meat in an 

aseptic environment and testing it for pathogens and parasites could result in meat that 

does not need to be cooked. This could lead people to develop a taste for tender meat that 

does not need to be exercised as much.” Another suggested that, “while 40 years is too 

short of a timeframe for significant change to take place, by 2150 meat could be radically 

different – perhaps humans would even lose the psychological need to chew.” This last 

scenario illustrates how continuous feedback loops between changing food technology 
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and evolving consumer preferences could result in radical changes to both, perhaps even 

new human psychological and physiological norms. 

Human health. When asked about the health effects of cultured meat, 

participants provided an array of possible outcomes. Several respondents optimistically 

foresaw increases in overall health status and longevity in developed nations due to a 

“clean” (sterile) product with less fat, higher nutrient density, and possibly smaller 

portion sizes. More specifically, one claimed: “There will be vast declines in obesity, 

infectious diseases, food-borne illnesses, auto-immune ailments and health expenditures 

per capita as the system transitions to focus on lifelong [disease] prevention.”  

Some participants went one step further and imagined meat becoming a health 

delivery system where food containing additives such as vitamins, vaccines, antibiotics, 

and other pharmaceuticals would be recommended or prescribed by doctors. Ultimately, 

one participant suggested, meat could be designed for particular human genomes (similar 

to the way some medicines are given to people based on their genotype). 

Still others believed that cultured meat would theoretically enable people to 

become more health-conscious, but were dubious that human health would unequivocally 

improve due to behavioral issues. For example, if people do not exercise or eat 

healthfully, obesity will persist. One participant wondered, even if food is tailored to 

meet individuals’ specific physiological needs, will it matter? “That is, will someone with 

a tendency towards high blood pressure buy a burger designed for him/her?” Another 

indicated that there might be negative effects associated with consuming too much 

protein. 
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Some respondents were more skeptical that cultured meat would indeed be 

healthier. One participant noted “It really depends on what the cultured meat is infused 

with – more fat, less fat, or just different fat.” Another respondent warned, “Perhaps there 

will be more obesity as additives are used to make cultured meat more desirable and 

marketable.” Some participants saw a sinister side to additives: They could have mildly 

addictive properties such as meat with caffeine (“Wakin’ Bacon”), and other, perhaps 

undisclosed, properties. Moreover, some participants expressed concern regarding the 

long term health effects of cultured meat itself: It could cause both physical and genetic 

abnormalities that could be passed from one generation to the next, limiting personal 

development and, on an aggregate basis, national economic growth. 

Population & lifestyle. Workshop participants generally assumed that producing 

meat in factories would lead to decreased agricultural employment which would in turn 

cause an uptick in urbanization. From there, some then reasoned that people would 

respond to decreased urban living space by forming more diverse and extended family 

units. At the same time, participants imagined that cultured meat would be more 

conducive to prepared and take-out (mobile) meals than conventional meat. They 

therefore believed this might lead to more independent lifestyles, smaller families and 

looser, more fragmented family structures even in rural settings. 

Education. Participants were queried about how IVM might impact trends in 

standardized test scores as an indicator of education and intelligence. Those who 

responded were slightly and tentatively optimistic. Assuming that academic test scores 

are correlated with nutrition, they said, increasing school lunch quality could have a 

positive impact on test scores. Another participant simply foresaw an “increased 
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educational emphasis on the food science, engineering and biological fields required to 

generate and support the new cultured meat industry.” As with health care delivery, one 

participant suggested that food might become an integral part of career preparation. The 

participant postulated that in the future, “Children’s diets [will] become as strictly 

controlled as their exposure to strangers has been: scholars, athletes, and models [will all 

be] raised on custom diets from infancy.” This scenario highlights the possibility that 

greater flexibility in food design will facilitate its integration and coevolution with 

existing human institutions. 

Ethics and animal cruelty. Workshop participants believed that cultured meat 

would reduce animal cruelty and suffering, and then went on to suggest that animal rights 

movements might be spurred by cultured meat. One respondent put it this way: “My 

sense is that we will see increasing sensitivity and expansion of ethical concerns as 

regards sentient beings, especially higher order mammals (cows, etc.). We may even see 

widespread acceptance of rights for animals and with this various mechanisms, legal and 

social, to minimize the pain of animals and possibly even protect some from killing for 

the purpose of food.” Another respondent put it more starkly: “There will be a different 

relationship with ‘the farm’ – [we will come to see it] as an inhumane slaughterhouse…”  

Some respondents extended these views to human relations, theorizing that 

enhanced “ethical consciousness may transcend to human interactions, possibly leading 

to fewer violent crimes.” But views on this issue were mixed. Pessimistic participants 

imagined that diverse adoption decisions could be a polarizing factor, leading to 

increased tensions among religions, cultures, and nations: “On the human side I can see a 

backlash against ‘real’ meat eaters as savages, which could lower intercultural relations.”  
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Still others imagined that the elimination of animal slaughter would similarly 

eliminate the need for ethical reflection and forestall change: “I think it will prop up a 

lack of reflexivity in our culture about where the products we consume come from. It 

could slow down the changes in values the vegan community wishes to see in terms of 

[ethical treatment of] animals, humans, and ‘nature’.” Another participant made the same 

point: “If we don’t have to address the violent ways animals are treated in society today, 

will that be an overall loss to cultural values? Or would a transition to cultured meat open 

up this discussion?” A final participant observed that some cultures view nature as being 

separate from human society and, further, that the distinction can lead to political clashes. 

To illustrate the point, the participant queried, “Will we get over the epistemic divide 

engrained in our mindsets between nature and culture, or will cultured meat reinforce this 

great divide and lead to more GMO-like conflicts?” The implication that IVM, an animal-

derived food source cultivated with industrial technology, could incite a shift toward 

integrated views of nature and human society or facilitate institutionalized animal rights 

illustrates the powerful links between technology, personal mental models, and cultural 

values. Simultaneously, the diversity of plausible scenarios discussed by the panels 

reflects the complex and unpredictable nature of these large-scale sociotechnical 

interactions. 

Environment and land use. Workshop participants were not specifically asked 

to comment on the environmental impacts of cultured meat, but many emphasized the 

importance of, and potential for, improvements in environmental sustainability via 

reduced resource consumption (water, fertilizers, etc.), fewer greenhouse gas emissions, 

and decreased pollution due to animal wastes. In addition, they noted that the reduction 
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(but not elimination) of agricultural feedstock requirements for cultured meat as 

compared to livestock could increase availability of arable land. Optimistically, it was 

noted that factory meat production might facilitate enhanced environmental life cycle 

management of food production via water recycling, wastewater treatment, etc.  By 

contrast others expressed concern that, even though cultured meat production might be 

less environmentally-damaging than traditional meat production on an equivalent mass 

basis, significantly greater demand (possibly driven by larger, more affluent populations 

that view IVM as inherently sustainable) could lead to higher production rates and 

therefore more environmental impacts than a “business as usual” scenario with livestock 

production only. 

An important theme also emerged over use and management of the land that cattle 

currently occupy. Participants observed that grazing animals like cattle perform 

landscape management services that reduce vegetation and reduce the risk of wildfires. 

They suggested that cultured meat could result in a kind of landscape unlike anything 

seen in generations, if ever. Hence alternative range management activities might need to 

be adopted. While the potential exists for conversion of grazing land to low-carbon uses, 

some participants believed that the “appropriate balance of land use” would require 

national oversight. 

Economics in the United States. As with many other topics, uncertainty and lack 

of consensus was the result of the economics discussion. The prospect of a shift toward 

cultured meat caused two participants to express concern over a general “employment 

crunch” and other financial challenges in the agricultural supply chain. However, others 

imagined a number of national economic benefits ranging from avoided food-related 
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expenditures to new business opportunities. Avoided expenditures, they said, might stem 

from lower overall food prices due to reduced demand for livestock feed; fewer losses 

associated with animal disease and adverse weather; and fewer cases of food-borne 

illness that can lead to lost wages, lower aggregate labor productivity, and increased 

healthcare expenditures. New business opportunities could take the form of novel food 

products and the application of complementary technologies from other industries such as 

tasty though unnatural flavor additives or self-cooking packages.  

Some participants also discussed the byproducts of animal slaughter (e.g. gelatin, 

soap, pet food, leather, etc.) and the surrounding economic uncertainty. On the one hand, 

development of functional equivalents for these products could lead to economic growth; 

on the other hand, such equivalents could be more expensive than the animal-sourced 

substances. It is also possible that animals could continue to be raised for these products, 

making them both more expensive and, by some standards, ethically questionable. As 

with all areas, the workshop findings stressed that there will be economic opportunities 

and challenges associated with a shift away from agricultural meat in favor of IVM. The 

trends highlighted here are likely only a few, but preparation and monitoring of the 

downstream effects could serve to mitigate the most significant losses. 

Economic equity. Workshop participants generally agreed with the notion that 

technology and society coevolve, but due to the nature of the research, discussions often 

began with a description of a technological change and was followed by a scenario 

describing its downstream social consequences. For example, optimistic individuals 

believed that IVM diffusion would lead to increasing wealth for the rich and poor, 

whereas another wondered if there are politics inherent in cultured meat (like Langdon 
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Winner’s bridges in Long Island example (Winner, 1980)) and went on to pessimistically 

imagine that the IVM industry itself might contribute to inequity by building polluting 

factories in impoverished communities, thereby negatively impacting health. However, 

on this topic, other participants started with projected social behavior and then considered 

what role cultured meat might play. According to this future scenario, the rich might self-

segregate into enclaves according to food values, some of which would procure local and 

organic food whereas others would favor IVM and other engineered fare. It would follow 

that food designed for optimal nutrition would increase in price but impart consumers 

with superior health and productivity. This would in turn widen the gap between rich and 

poor within the United States as well as worldwide. Based on the vision of communities 

segregated by economic class, one member predicted an associated gap in education and 

a less skillful American workforce overall. Reflecting on how the social classes might 

react to such a divide, a final participant predicted that the desire for equity would be a 

defining characteristic of the sustainable development discourse in the future. 

Global hunger and development. With respect to global poverty and hunger, 

many respondents indicated deep uncertainty regarding impacts on developing nations. 

Those who did express opinions were divided. The most optimistic held that IVM would 

provide inexpensive protein to the poor and alleviate global hunger. Other respondents 

predicted little to no change in global hunger and listed three possible reasons. First, 

according to participants, the problem of global hunger is one of distribution rather than 

production and IVM would not impact food distribution. Second, should a company try 

to build a production facility in a developing nation, it would be limited to those nations 

that have a preexisting industrial infrastructure, thereby limiting economic benefits to 
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nations where development is already underway. Third, cultured meat could remain very 

expensive, possibly due to the presence of intellectual property rights, and therefore 

remain unaffordable to the poor. The most pessimistic workshop members reflected on 

the topic of intellectual property rights and feared that IVM could be seen as an economic 

tool for “global corporate crackdowns on rogue producers” and that famines might be 

seen by corporations as opportunities “to lock in brand commitments.” 

Food system security. Uncertainty also surrounded the impact of cultured meat 

on food security, but focused on two factors: vulnerability and centralization. Factory 

production of cultured meat was judged to be less vulnerable to disease and 

environmental changes than livestock operations, and it was therefore determined to be 

more secure. Others considered the role of centralized production in food security, but 

found it to be an ambiguous factor. One respondent associated large, central carneries 

with ease of protection and thus greater security. By contrast, others placed greater 

emphasis on the risk of food supply disruption in the event of a successful attack on a 

large, centralized plant and suggested that building many small carneries would lessen 

the severity of any given attack. This discussion proved to be interesting introduction to 

the issue of food system security, but may serve primarily to highlight the need for 

additional analysis. 

Regulation. The need for adequate regulation of cultured meat was noted around 

two major concerns: sanitary conditions and labeling requirements. Many participants 

wanted to be certain that the meat products were made in clean facilities but 

acknowledged that some standards might favor industrial production and put smaller 

artisan producers at a financial disadvantage.  
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Participants hoped that labeling requirements would reduce ambiguity associated 

with the sources and production methods of natural and cultured meat products. While 

concern was expressed that companies would try to label meat as “real” when, in fact, it 

was cultured, the labeling objective was reversed when it came to selling meat from 

endangered species: Participants were concerned that meat would be labeled cultured 

when in fact an animal had been killed. Simultaneously, participants acknowledged that 

there was no guarantee that the ability to engineer meat from endangered species would 

diminish the culling of protected animals.  

However, some participants anticipated greater regulation of traditional meat 

production. In particular, they said, confined feeding operations (“factory farming”) 

would be made illegal due to animal rights protests, so any livestock meat produced 

would be on the cottage industry level. Yet another expressed concern that these 

“specialty growers of real meat” would also come under scrutiny for a variety of tainting 

problems experienced by those who receive insufficient training in “natural” food 

preparation, i.e. the need to cook it thoroughly. 

Discussion 

The stated goals of this investigation were twofold: to identify previously 

unacknowledged implications of cultured meat in areas already under discussion (human 

health, environmental impacts, global hunger, and ethics), and to consider possible 

consequences in systems that are less obviously and less directly coupled to food 

production. Discussants in three workshops expressed skepticism regarding one-sided, 

entirely positive views of cultured meat; they raised important points regarding the 
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coevolution of this technology with the world at large; and expressed uncertainty about 

all developmental steps related to the emerging technology. 

Among the points of uncertainty was whether IVM would be commercialized and 

adopted at all. Technical challenges remain, but even if these are overcome, consumer 

acceptance is not guaranteed. Food has important meanings for many individuals and is 

often closely related to personal and cultural identities. For this reason, cultured meat 

could be scorned if it comes into conflict with important values and myths. In the United 

States, for example, myths of the family farm and the cowboy lifestyle figure 

prominently. For others, such as many Europeans, the agrarian landscape holds great 

value (Ford, 2011). Elsewhere, the livelihoods of pastoral communities could be a pivotal 

factor (Gathura, 2013). 

Assuming factory production of meat is adopted, it will introduce the potential for 

food to become increasingly designed due to flexible manufacturing practices as well as 

genetic modification. As the technology advances, both humans and human institutions 

are likely to shift in unpredictable ways. For example, human food preferences will 

almost certainly shift to embrace novel food products. Equally possible, though less 

certain, is the potential for designer food to become more integrated with existing social 

institutions, perhaps serving as a pharmaceutical delivery system or an integral part of 

educational curricula. In a longer-term scenario, IVM could eventually contribute to 

modified human physiologies. 

Regulation and policy will play an important role in adoption decisions and 

influence food safety and security. At a basic level, standards of cleanliness and 

manufacturing practices will play a role in human health and perceptions of IVM in 
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general. The need for, and impact of, labeling rules is uncertain. As with genetically-

modified organisms (GMOs), a lack of labeling requirements might not hinder adoption, 

but could incite protests from some groups. While it is also possible that manufacturers 

will voluntarily label cultured meat in order to tout its beneficial properties, labels of any 

kind would have an unforeseeable effect on consumption. In terms of food security and 

range management, specific policies could serve to enhance both if IVM becomes 

ubiquitous, but the complexity and possible unintended consequences of these systems 

suggest that more analysis is required prior to implementing any regulation.  

The workshop participants made one final point not yet discussed in this article: 

they warned that many risks associated with cultured meat production simply cannot be 

conceptualized at this point in the development process. While the authors believe that 

investigations such as this one serve to reduce uncertainties, and so-called “unknown 

unknowns,” they do not alleviate the need for ongoing monitoring of emerging 

technologies and their impacts as they progress. Technologies as potentially significant as 

cultured meat will have equally significant impacts on the world. The complex and 

interconnected nature of global systems ensures that, for every shift in the nature of food 

production, there will be reactions in human norms, cultures, institutions, and landscapes. 

Identifying undesirable consequences before or as they arise can facilitate stabilizing 

decisions that result in more tempered technological transitions. 
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Chapter 5 

Life Cycle Analysis 

On August 5, 2013, a hamburger prototype made from cultured, or in vitro, meat 

was tasted at a well-publicized event in London (“Cultured beef: The event,” n.d.). The 

meat used for preparation of this hamburger was not grown in an animal, but rather from 

bovine skeletal muscle stem cells in Dr. Mark Post’s laboratory at Maastricht University. 

The event may foreshadow a day when traditional livestock production has given way to 

large-scale growth of meat in factories, or carneries. While Dr. Post has suggested that 

commercialization of cultured meat could be ten to twenty years away (“Cultured beef: 

The event,” n.d.), the environmental implications are profound: A life cycle analysis 

published in 2011 acknowledged significant uncertainty, but suggested that, as compared 

to traditionally-produced beef, sheep meat, pork, and poultry, cultured meat would 

require significantly less land, water, and energy (except poultry), and emit fewer 

greenhouse gases (Tuomisto & Teixeira de Mattos, 2011). 

Goal 

This investigation seeks to evaluate previously-published findings by performing 

a similar life cycle assessment using different assumptions (please see Table 21 on page 

175 for a model comparison). It will further estimate the acidification potential, 

eutrophication potential, human toxicity, and ozone-depletion potential of cultured meat 

production that were not included in the original study. Focusing on the United States and 

modeling a large-scale production facility in line with contemporary cell cultivation 

practices, this study will confirm some of the possible benefits of cultured meat while 

highlighting areas for potential caution or targeted innovation. 
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At the heart of this analysis is a model of a large-scale cultured meat production 

plant. It was based on the present state of the art of cell culture techniques, but this model 

does not represent the only cell cultivation method available, and technological 

improvement are likely to change rapidly in the coming years. Inherent in anticipatory 

assessments is a tension between building a model that represents a workable process 

given existing knowledge and estimating how the future commercial process will differ. 

Thus, anticipatory LCAs should be viewed as possible future scenarios for cultured meat 

production but not predictions. Nonetheless, they can provide valuable insight into how 

the technology might evolve and affect other, coupled systems.   

Scope 

Formation of skeletal muscle tissue for cultured meat is a multi-step process 

(shown in Figure 7) that begins with the isolation of myosatellite cells (adult stem cells) 

from a sample of donor animal tissue. Once activated, the myosatellite cells become 

myoblasts (precursors to muscle fibers). When placed in a culture medium containing the 

necessary factors, the myoblasts proliferate, resulting in increased cell number and 

culture biomass. Next, the culture medium is modified to induce myoblast differentiation 

to non-proliferative myocytes, which fuse into multinucleated myotubes. Facilitated by 

physiological stimuli (i.e., mechanical, chemical), myotubes mature into contractile 

myofibers that comprise skeletal muscle tissue. For the purposes of this analysis, it will 

be assumed that all of these steps occur in a single bioreactor and that the culture medium 

is not significantly changed or altered during the phases. Further, it is assumed that all 

metabolic consumption and waste production occurs during the proliferation phase. That 
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is, inputs and outputs associated with activation, differentiation, and physiological stimuli 

phases are ignored. 

 
Figure 7. Phases of skeletal muscle fiber development. This LCA is limited to the 

proliferation phase. 

Media for animal cell cultures typically contains a number of inputs including 

water, glucose, the amino acid glutamine, and predefined mixtures called “basal media” 

that consist of additional amino acids, lipids, vitamins and salts (Hu, 2012). In addition, 

animal serum such as fetal bovine serum (FBS) is generally added to the culture because 

it contains “a cocktail of most of the factors required for cell attachment, growth and 

proliferation and is thus used as an almost universal growth supplement effective for 

[many cell] types” (Brunner et al., 2010, p. 53). However, for a number of reasons 

including high costs, unsteady supplies, lot variation, and the possible presence of 

transmissible diseases such as bovine spongiform encephalopathy (BSE) (Brunner et al., 

2010; Girón-Calle et al., 2008), chemically-defined animal- or serum-free media (SFM) 

is preferred over animal serum. Unfortunately, efforts to develop effective serum-free 

media often result in decreased cell growth as compared to cell culture containing serum. 

As a result, hydrolysates (enzymatic or acid digests) of yeast, rice, soy, and other plant 
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and microbial materials have been added to basal media as a supplementary source of 

amino acids, peptides, vitamins, and trace elements (Sung et al., 2004). This investigation 

will assume that soy hydrolysate will supplement the culture medium, and that it will 

remain serum-free.  

In addition to culture medium, tissue engineering must provide a scaffold or 

“structural and informational template for cell attachment and division” (Kosztin et al., 

2012, p. 1792). Scaffolds mimic the extracellular matrices found in vivo and may be 

composed of natural or synthetic polymers (Kosztin et al., 2012). A number of challenges 

surround scaffold material for cultured meat since it must be edible, dissolve or degrade 

prior to consumption, or be easily excluded from cell harvest. Though various proposals 

have emerged such as collagen mesh or spheres to which cells may adhere (Bhat & Bhat, 

2011), this component has been excluded from the life cycle inventory due to uncertainty 

associated with the solution that will eventually be utilized. A diagram of the cultured 

meat production model is given in Figure 3 on page 19.  

Functional Unit 

The life cycle assessment described herein is a cradle-to-gate analysis of animal 

tissue growth and maturation. Metabolic requirements specific to muscle cell cultivation 

could not be located; therefore the life cycle inventory was constructed based on Chinese 

Hamster Ovary (CHO) cells. Thus, the functional unit is 1 kg of CHO tissue which is 

assumed to have the physical characteristics of a typical animal cell, with a dry mass of 

17% and a protein content of 7% (42% on a dry mass basis) (Hu, 2012). The life cycle 

impacts from this model will be compared to the results for cultured meat production 

obtained by Tuomisto and Teixeira de Mattos (2011) as well as beef (Pelletier, Pirog, et 
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al., 2010), pork (Pelletier, Lammers, et al., 2010), and poultry (Pelletier, 2008) LCAs 

published by Pelletier and coauthors. 

Allocation Procedures 

In order to be consistent with the livestock LCA procedures (Pelletier, Lammers, 

et al., 2010; Pelletier, Pirog, et al., 2010; Pelletier, 2008), process impacts were allocated 

to co-products on a gross chemical (calorific) energy basis (unless otherwise stated). For 

example, corn wet milling produces not only starch that can be made into glucose, but 

also corn steep liquor, corn gluten feed, fiber, and germ from which oil is extracted. 

Allocation fractions were computed as the mass of each co-product, c, multiplied by the 

gross chemical energy per unit mass (see Table 23 in the supporting information) divided 

by the total gross chemical energy contained in all process outputs. This can be expressed 

according the formula: 

 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑚𝑎𝑠𝑠𝑐�

𝑒𝑛𝑒𝑟𝑔𝑦
𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠�𝑐

∑ 𝑚𝑎𝑠𝑠𝑛�
𝑒𝑛𝑒𝑟𝑔𝑦

𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠�𝑛
# 𝑜𝑓 𝑐𝑜−𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑛=1

 (1) 

The gross chemical energy allocation approach becomes less straightforward 

when comparing cultured meat production to processes such as livestock rearing that 

produce both human-edible and non-edible outputs. While roughly half of livestock live 

weights are edible (Pelletier, Lammers, et al., 2010; Pelletier, Pirog, et al., 2010; Pelletier, 

2008; Smil, 2013), only about 14% of bovine and 11% of hog carcasses are lost through 

shrinkage or waste (Marti, Johnson, & Mathews, 2011). Byproducts of slaughter are used 

in leather production, pet food, cosmetics, and pharmaceuticals, among many other 

household and industrial products (Marti et al., 2011). If animal production was replaced 

with engineered processes, substitutes for the byproducts would almost certainly have 
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environmental impacts. For example, Modern Meadow, a start-up firm in Missouri, is 

already attempting to produce leather via a tissue engineering process similar to the one 

modeled herein (M. Keller & Txchnologist, 2012). At the same time, culturing tissue also 

produces non-edible substances such as ammonia, lactate, and alanine that may or may 

not be recycled for industrial applications. In lieu of the substantial undertaking that 

would be required to account for all displaced products associated with both processes, 

this analysis will present the environmental impacts of beef, pork, and poultry primarily 

on a live-weight basis but also include values computed on an edible-weight basis. 

Impact Assessment  

All impacts were calculated using the SimaPro 8 LCA software package from 

PRé Consultants (PRé Consultants, 2013). Energy use was computed using the 

Cumulative Energy Demand method (Frischknecht et al., 2007) which converts final 

energy inputs to primary energy. Land use was found via the Ecological Footprint 

method (Frischknecht et al., 2007), but reported results were limited to land occupation 

(nuclear and carbon dioxide components were excluded). Water intake was computed via 

the Building for Environmental and Economic Sustainability (BEES) method (Gloria, 

Lippiatt, & Cooper, 2007; Lippiatt, 2007). All other impacts were found via the CML 

(Center of Environmental Science of Leiden University) 2001 (World 1995) method. 

These methods were chosen to be consistent with the beef, pork, and poultry life cycle 

analyses (see Table 4 for comparison). The livestock LCA publications did not report 

water consumption; therefore, data from Mekonnen and Hoekstra (2012) was used 

instead. 
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Table 4 

Life Cycle Impact Methods 

Impact category Beef a Pork b Poultry c Cultured meat 

Energy use Cumulative 
energy demand 

Cumulative 
energy demand 

Cumulative 
energy demand 

Cumulative 
energy demand 
v1.08  

Land use Ecological 
footprint (land 
occupation 
portion only) 

Ecological 
footprint (feed 
production 
portion only) 

N/A Ecological 
footprint v1.01 
(land 
occupation 
portion only) 

Greenhouse gas 
emissions 

IPCC 2007, 
100a 

CML 2001, 
100a 

CML 2 
Baseline 2000 

CML 2001 
v2.05, 100ad 

Eutrophication CML 2001 CML 2001 CML 2 
Baseline 2000 

CML 2001 
v2.05 

Acidification N/A N/A N/A CML 2001 
v2.05 

Human toxicity, 
100a 

N/A N/A N/A CML 2001 
v2.05 

Ozone layer 
depletion, 
steady state 

N/A N/A N/A CML 2001 
v2.05 

Water intake N/A N/A N/A BEES v4.02 
a (Pelletier, Pirog, et al., 2010) 

b (Pelletier, Lammers, et al., 2010) 

c (Pelletier, 2008) 

d Total greenhouse gas emissions for this study, as computed by the IPCC 2007 and CML 

2001 methods, differed by only 0.3%. 

 

Unless otherwise stated, processes for which a life cycle inventory is not included 

in this chapter or APPENDIX B were taken from the US LCI (Norris, 2003) and 
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ecoinvent v2 (EcoInvent, 2008) databases. However, one modification to ecoinvent 

processes should be noted: Substantial values of water for turbine use were omitted since 

water for that purpose was assumed to be recycled. In addition, the electricity process 

from the US LCI database was used but modified to include 7.6 L of water per kWh used 

at the consuming facility (2.1 L/MJ of delivered energy) (Torcellini, Long, & Judkoff, 

2003). 

Life Cycle Inventory Analysis 

It bears repeating that no large-scale cultured meat production facilities currently 

exist. The sections below include detailed descriptions of components of the hypothetical 

system depicted in Figure 3. They should be viewed as approximate and subject to 

change as the art and practice of tissue engineering progresses. 

Cell proliferation. Cells in culture typically demonstrate three phases of growth: 

The first is an initial lag phase where cells acclimate to the new culture environment; this 

is followed by a period of rapid or exponential growth; and finally, cells reach a 

stationary phase where growth diminishes. For the purposes of this analysis, it is assumed 

that the cell culture remains at the exponential growth rate (µ) for the duration of the cell 

proliferation period. Moreover, it is assumed that all cells are viable and that no cell death 

or lysis occurs. While both assumptions are unrealistic in practice, it indicates that the 

results of this life cycle analysis are representative of an ideal system with minimal 

material and energy losses. 
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Figure 8. Phases of cell culture growth. This life cycle model assumes that cells grow at 

an exponential rate throughout the growth period. 

As modeled, cultured meat production will begin with a seed culture density, X0, 

of 1x105 cells/mL and proceed in stirred-tank bioreactors until the estimated maximum 

attainable cell density, X1, of 1x107 cells/mL (Yang, Luo, & Chen, 2004) is reached. The 

growth cycle time, t, can then be computed with the following expression (Paredes et al., 

1999):  

 𝑡 = 1
𝜇
𝑙𝑛 �𝑋1

𝑋0
� (2) 

where µ is the specific growth rate of cells in cells/(cell-hour). It is assumed that each cell 

has a mass of 3500 pg (Hu, 2012) so biomass production is given by the equation: 

 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ 

 = (𝑋1 − 𝑋0) ∗ 3500 𝑝𝑔
𝑐𝑒𝑙𝑙

∗ 1𝑘𝑔
1015 𝑝𝑔

∗ 1000 𝑚𝐿
𝐿

∗ 15,000 𝐿
𝑏𝑎𝑡𝑐ℎ

 (3) 
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Between each growth cycle, all bioreactors have a period of 3 days for cleaning and 

preparation for the next growth cycle.  

Feedstocks and waste products. Due to the complexities of intracellular 

reactions, deterministic models of cell metabolism including growth rate, nutrient 

consumption, and waste production are difficult to develop (Hermann, 2003). Ideally, a 

model based on the proliferation and differentiation of myoblast cells (precursors of 

skeletal muscle cells) would form the basis of this life cycle analysis. However, because 

good-quality data for myoblasts could not be located, the well-studied Chinese hamster 

ovary (CHO) cell will serve as the primary cell model for inputs, outputs, and growth rate 

of cultured meat. The reader should be cautioned, however, that CHO tissue is typically 

cultured, not for its biomass, but for its ability to produce human therapeutic proteins 

such as human thrombopoietin (hTPO) (Sung et al., 2004). These cells may thus differ 

significantly from skeletal muscle cells. Nonetheless reasonable nutrient uptake rates and 

waste production rates, q, in the presence of soy hydrolysate were found in Sung et al. 

(2004) and listed in Table 5. The CHO cells were assumed to have a specific growth rate, 

µ, of 0.0254 cells/(cell-hour) (equivalent to a doubling time of about 27 hours) which 

results in a dry mass yield of 0.49 g cells/g glucose. This value is typical for animal cells 

(Sung et al., 2004).  

Based on Sung et al. (2004), the primary feedstocks or metabolic inputs to cell 

culture are assumed to be glucose, oxygen, and the amino acid glutamine. Glutamine is 

singled out from other amino acids in this model because it is delivered to cells in a 

higher concentration, and because a specific uptake rate is available for CHO cells. 
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Hence the requirement for glutamine can be estimated with greater accuracy than other 

amino acids.  

Mole fluxes for the primary feedstocks and waste products (lactate, alanine, and 

ammonia) are computed according to the expression (based on Paredes et al., [1999]): 

 𝑆 = 10−15𝑞𝑆𝑋0
𝜇

(𝑒𝜇𝑡 − 1) (4) 

where S is the consumption or production of the compound of interest in moles, X0 is the 

initial cell concentration in cells/mL, q is the specific consumption or production rate in 

nmol/(106 cells⋅ hour), and t represents time in hours. Mass fluxes are then computed as: 

 𝑀𝑎𝑠𝑠𝑆 = 𝑆 ∙ 𝑀𝑊𝑆 (5) 

where MW is the molecular weight of compound S in grams/mole. Please see Table 5 for 

a list of specific production/consumption rates and molecular weights.  

Table 5 

Mass Fluxes and Molecular Weights of Nutrients and Waste Products 

Substance 
CHO production/consumption 

rate, qS (nmol/106 cells/hour) 
(Sung et al., 2004) 

MW (g/mole) 

Inputs   
Glucose  174.2 180.16 
Glutamine  18.0 146.14 
Oxygen  332.2 32.00 

Waste Products   
Lactate  279.5 90.08 
Alanine  6.3 89.09 
Ammonia  13.5 17.03 
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Direct consumption rates for basal medium and hydrolysates were not readily 

available; however, the basal medium for CHO cells is typically Iscove’s modified 

Dulbecco’s Medium (IMDM) (Sung et al., 2004) which is a standard formulation (see 

Table 30 on page 192). In the case of the Sung et al. (2004) study, the IMDM was 

supplemented with additional amino acids and other components (also given in Table 

30). It is assumed that the basal medium and supplemental components are purchased as 

dry matter and mixed at the appropriate concentrations at the production facility.  

Studies have shown that a hydrolysate concentration of 5 g/liter yields optimal 

biomass growth (Chun, Kim, Lee, & Chung, 2007; Sung et al., 2004); therefore it was 

assumed that soy hydrolysate is added to the culture medium in this concentration. Even 

though soy hydrolysates contain quantities of amino acids, the amino acid profile can 

vary across products so, for the purposes of this LCA, they were assumed to supplement, 

rather than replace, the amino acid quantities listed in Table 30.  

The life cycle inventory associated with the cultured meat production model is 

summarized in Table 7 on page 61. Inventories for the primary feedstocks (glucose, 

glutamine and other amino acids, soy hydrolysate, and basal medium) are provided in 

APPENDIX B starting on page 176. All of these substances are derived from either corn 

or soybeans; the inventories used for crop production can also be found in APPENDIX B 

on page 195.  

Production facility. The livestock LCAs referenced in this study include on-farm 

energy use but not energy embodied in buildings or capital equipment. For consistency, 

this study will follow the same approach. Energy use within the cultured meat production 

facility was included and estimated using the pharmaceutical and beer production 
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industries as guides. Both industries utilize many of the same processes required by tissue 

engineering including cultivation of cell cultures, but have very different facility models. 

The bioreactor configuration in this study was modeled on the Biogen IDEC large-scale 

pharmaceutical manufacturing plant in Research Triangle Park, NC, since it is a flexible 

facility with the ability to produce monoclonal antibodies (MAb) derived from 

mammalian cell cultures (“Biogen’s LSM plant; on line, on time, on budget,” 2003; Hu, 

2012). This facility houses six 15,000 liter (L) stirred-tank reactors on 245,000 ft2 of floor 

space. However, due to significant uncertainties associated with cultured meat production 

and its need for cleanroom facilities and other subsystems, the plant size will be modeled 

on the brewing industry and its smaller bioreactor-capacity-to-floorspace ratio. Thus the 

plant will be assumed to have 7,717 ft2 (717 m2) of floorspace; the derivation of this 

value can be found in APPENDIX B on page 198. 

Table 6 

Delivered Energy for Breweries by Fuel

Component Percent of total Physical units Physical units 

Total  100.0% 1 MJ 1,000 BTU 
Electricity 
(final/delivered) 

15.7% 0.04 kWh 0.05 kWh 

Natural gas 43.1% 0.44 ft3 0.46 ft3 
Coal 33.3% 1.6x10-5 short tons 1.7x10-5 short tons 
Steam 7.8% 0.07 lbs 0.07 lbs 
Water for electricity 
production 

 0.3 L 0.38 L 

Note. Adapted from Galitsky, Martin, Worrell, & Lehman (2003). 

The baseline facility energy required for HVAC and other purposes will be 

assumed equivalent to that of a warehouse: 513.3 MJ/m2/year (45.2 kBTU/ ft2/year) 
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(D&R International Ltd., 2012). The mix of fuels for cultured meat production processes 

was assumed to be the same as for the brewing industry. This mix was derived from 

Galitsky, Martin, Worrell, and Lehman (2003) and shown in Table 6. Per Torcellini et al., 

(2003), water associated with electricity production is also included at the rate of 7.6 

L/kWh (2.1 L/MJ).  

Bioreactor processes. In addition to the facility energy, the cultured meat plant 

will require energy for aerating and mixing the culture medium. Aeration, also known as 

oxygenating or “sparging,” is the process of delivering oxygen to the bioreactor tank. It is 

typically accomplished by pumping ambient air first through a filter to remove 

contaminants and then into the tank via fine-bubble diffusers. The energy required for 

aeration is computed in APPENDIX B on page 196. 

Once air has entered the tank, it must be distributed to ensure all cells receive 

sufficient oxygen. This is accomplished by mixing, or agitating, the fluid in the tank via 

impeller rotation. Stirred-tank reactor (STR) design requires that the impeller speed be 

fast enough to distribute oxygen throughout the culture medium but not so fast that cells 

are damaged (Yang et al., 2004). This is typically accomplished by limiting impeller 

speed to 1.5 m/s (Nienow, 2006), which is equivalent to 0.56 revolutions per second for 

an impeller having a diameter of 0.85 m. However, this mixing rate restricts cellular 

growth to a maximum density of about 107 cells/mL (Yang et al., 2004). The steps 

involved in computing agitation energy are presented in APPENDIX B on page 196. 

Sterilization of culture medium. In order to avoid contamination of the cultured 

meat, sterile techniques must be employed throughout the production process. These 

techniques require that the culture medium be sterilized before any cells are introduced. 
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In batch sterilization approaches, the entire volume of culture medium is heated in the 

bioreactor and maintained at approximately 121°C for 10 to 20 minutes (Heinzle, Biwer, 

& Cooney, 2006, p. 34). However, for the purposes of this model, the culture medium is 

assumed to be heated to 140°C for 2 to 4 minutes as it flows into the bioreactor. Energy 

consumed by this “continuous” method can reportedly be 80% lower than that required 

for batch sterilization (Heinzle, Biwer, & Cooney, 2006, p. 34). Further, heat from the 

continuous process may be recovered by preheating cold incoming medium using the 

waste heat given off by the sterilized medium as it cools to the optimal temperature for 

cell proliferation (37°C for mammal cells) (Heinzle, Biwer, & Cooney, 2006, p. 34). The 

modeled process reflects the assumption that culture medium is heated from 25 to 67.5°C 

using waste heat; the life cycle inventory therefore includes only the energy required to 

heat the medium from 67.5 to 140°C at the beginning of the batch cycle.  

It is assumed that no further energy is required to maintain the culture medium at 

the optimal temperature while cell proliferation is proceeding. Depending on the thermal 

properties of the bioreactor, this may or may not be a valid assumption: Heat could be 

lost via a number of pathways including transfer through the bioreactor walls. At the 

same time, each cell can be expected to produce heat at the rate of about 23 pW 

(Flickinger, 2013). Thus it is possible that both heating and cooling will be required at 

different points in the batch cycle (see analysis on page 207).  

Bioreactor cleaning-in-place. Bioreactors must be cleaned and sanitized between 

each batch cycle to ensure sterile production conditions. Large bioreactors are typically 

cleaned-in-place (CIP) in order to reduce the time and expense associated with 

disassembling the system, cleaning each component, and then reassembling the reactor. 
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This LCA assumes that CIP procedures follow the “water – NaOH (0.5 M) – water” 

sequence described in Flickinger (2013, p. 1596). This means that the tank is first rinsed 

with deionized water and drained; a caustic sodium hydroxide solution is then added, 

heated from 25 to 50°C, and drained; finally, the tank is rinsed once more with deionized 

water. In addition, the agitator and aerator will operate for the duration of the 4-hour 

cleaning process. Values for all modeled energy inputs are summarized in Table 7 and 

detailed calculations can be found in APPENDIX B. 

Table 7 

Inventory Required to Produce 1 kg Cultured Meat 

Substance Per year Per batch Per 1 kg of 
cultured meat 

Inputs    
Land use for production facility 717 m2  0.007 m2 
Seed culture (not included in 
LCA) 

 1x105 cells/mL 350 µg 

Water for cell culture (deionized 

a and sterilized) 
 15,000 L 28.9 L 

Glucose  183.3 kg 352.7 g 
Glutamine  15.4 kg 29.6 g 
Oxygen (not included in LCA 
but used for aeration energy 
computation) 

 60.2 kg 115.9 g 

Soy hydrolysate (dry matter)  75 kg 144.3 g 
Basal medium (dry matter)  15,000 L 28.9 L 
Energy    

Facility 368,034 MJ  3.56 MJ 
Heating water for 
sterilization 

 3,981 MJ 7.7 MJ 

Heating water for cleaning  1,567 MJ 3.0 MJ 

(continued) 
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Substance Per year Per batch Per 1 kg of 
cultured meat 

Agitation  293MJ 0.56 MJ 
Aeration  48.2 MJ 0.09 MJ 
Deionization  390 MJ 0.75 MJ 

Water for cleaning  
(deionized a) 

 45,000 L 86.6 L 

Sodium hydroxide (NaOH) for 
cleaning 

 300 kg 577 g 

Transportation (all dry 
ingredients travel 500 km by 
diesel truck) 

 337 tkm 0.65 tkm 

Outputs    
Cultured meat 103,463 kg 1x107 cells/mL 

or 520 kg 
1 kg 

Lactate  147 kg 283 g 
Alanine  3.3 kg 6.31 g 
Ammonia  13.4 kg 27.3 g 
Sodium hydroxide (NaOH) for 
cleaning 

 300 kg 577 g 

Materials and processes not included in the inventory 
Piping, tubing, and pumps required to transport nutrients to the cell culture 
Nutrient containers 
Materials required to acquire and maintain the cell line 
Production and maintenance of buildings and capital equipment (this is consistent 
with the livestock LCAs referenced) 

a An ecoinvent v3 process, “Water, deionised, from tap water, at user {GLO}| market for | 

Alloc Def, S,” provided the inventory for deionized water (less water for turbine use) 

(EcoInvent, 2013). 
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Results 

The environmental impact comparisons for energy, eutrophication, greenhouse 

gas emissions, and land use are depicted in Figures 9 and 10. Detailed results for all 

impact categories are provided in APPENDIX B beginning on page 202. Figures 9 and 

10 are designed to depict agricultural processes in green, industrial processes in purple, 

and waste products in orange. 

Comparison of this study with prior LCA. Energy consumption and GHG 

emissions in this study exceed that of the Tuomisto and Teixeira de Mattos study by 

about 70 percent. This is due to the inclusion of facility energy in this study, deionized 

water, the bioreactor cleaning cycle, as well as flows associated with production of 

multiple feedstocks including synthetic amino acids. Land use requirements for this study 

total almost ten times that of the previous cultured meat LCA, due solely to the different 

assumptions made with respect to feedstocks. 

Comparison of this study with Agricultural Meat. Based on the color scheme 

followed in Figure 9, it is apparent that cultured meat, as modeled in this study, will 

require more industrial energy than beef on a live-weight basis, but for different 

purposes. Most of beef’s energy is involved in primary production of feed, whereas 

cultured meat requires much smaller feedstock quantities, and therefore occupied land 

(see Figure 10), than animals. This is due to a number of factors including an ideal cell 

growth model that assumed no cell death and a relatively short growing cycle: 7.6 days 

for cell proliferation (excluding differentiation, fusion, physiological stimuli, and 

processing) versus finishing times of more than 303 days for beef (Pelletier, Pirog, et al., 

2010), 151 days for pork (Pelletier, Lammers, et al., 2010), and 48 days for poultry 
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(Pelletier, 2008). However, cultured meat also requires significantly more energy for the 

processing of feedstocks. That is, whereas cows and pigs eat the relatively unprocessed 

byproducts of corn and soybean milling, cultured meat is likely to require additional, 

energy-intensive steps including saccharification of corn starch, hydrolysis of soybean 

meal, and fermentation of glucose into synthetic amino acids. A similar phenomenon 

applies to poultry. As modeled and discussed by Pelletier (2008), poultry feed is 

relatively energy intensive because it contains fishmeal, poultry fat, and poultry 

byproduct meal. All of these are energetically expensive to produce and to process. This 

is why poultry appears to be more energy-intensive than pork. 

In addition, Figure 9 suggests that cultured meat, despite its significant energy 

requirement, may emit fewer greenhouse gases than beef. This is due to the GHG-

intensive nature of methane emissions and manure management for cattle that are absent 

for cultured meat. Cultured meat is not without waste products, however. Ammonia 

emissions are the primary source of its eutrophication potential and will be discussed 

further in the next section. 
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Legend 

Livestock production Cultured meat production 

 
Feed primary production (includes 
processing and transport for beef and pork)  

Feedstock primary production 

 
Feed processing 
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Figure 9. Results: Industrial energy use and global warming potential. Results are 

compared to those of feedlot beef (Pelletier, Pirog, et al., 2010), commodity high-profit 

pork (Pelletier, Lammers, et al., 2010), poultry (Pelletier, 2008), and cultured meat 

produced in California per Tuomisto and Teixeira de Mattos' (2011) LCA. Numbers 

88.8 

17.4 

26.7 

-10

0

10

20

30

40

50

60

B
ee

f

Po
rk

Po
ul

try

C
ul

tu
re

d
(T

uo
m

is
to

…

C
ul

tu
re

d
(th

is
 st

ud
y)

En
er

gy
 (M

J/
kg

 p
ro

du
ct

) 
Industrial Energy Use 

34.4 

4.4 
2.5 

-2

0

2

4

6

8

10

12

14

16

18

B
ee

f

Po
rk

Po
ul

try

C
ul

tu
re

d
(T

uo
m

is
to

…

C
ul

tu
re

d
(th

is
 st

ud
y)

G
H

G
 e

m
is

si
on

s (
kg

 C
O

2 e
q/

kg
 p

ro
du

ct
) 

Global Warming Potential 



 

66 

above the livestock column indicate impacts on an edible-weight basis (see Table 38 on 

page 207 for edible portions). The “other” category is predominantly the cost of bull 

production for beef (Pelletier, Pirog, et al., 2010), sow replacement for pork (Pelletier, 

Lammers, et al., 2010), and hatchery chicks for poultry (Pelletier, 2008).  

Eutrophication potential. As shown in Figure 10, this study found that the 

eutrophication potential associated with cultured meat is slightly less than that of pork on 

a live-weight basis. The relatively small quantity of required feedstock serves to reduce 

the need for fertilizer application and therefore agricultural runoff. However, ammonia is 

a byproduct of cell culture and therefore contributes to this impact category. It could be 

argued that, even though cultured meat has a slightly smaller eutrophication potential 

than pork, the ability to better manage the waste stream emanating from a factory versus 

farm runoff makes the industrial process significantly more advantageous. It is even 

possible that ammonia could be recycled for amino acid production, though the energy 

requirements for such a recovery process are uncertain. 

Just as treatment of waste from slaughterhouses was outside the boundaries of the 

livestock LCAs, this study similarly excluded treatment of waste from cultured meat 

production. However, it is worth mentioning that unmetabolized portions of soy 

hydrolysate, glucose, amino acids, vitamins, and salts will be present in the bioreactor 

waste stream, in addition to the ammonia, lactate, and alanine. 
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Legend 

Livestock production Cultured meat production 

 
Feed primary production (includes 
processing and transport for beef and pork)  

Feedstock primary production 

 
Manure management   

Figure 10. Results: Eutrophication potential and land use. Results are compared to those 

of feedlot beef (Pelletier, Pirog, et al., 2010), commodity high-profit pork (Pelletier, 

Lammers, et al., 2010), poultry (Pelletier, 2008), and cultured meat produced in 

California per Tuomisto and Teixeira de Mattos' (2011) LCA. Numbers above the 

livestock column indicate impacts on an edible-weight basis (see Table 38 on page 207 

for edible portions). Land use consists of land occupation values for beef and feed 

production values for pork; it excludes the area required to sequester atmospheric CO2 

emissions and the area required by nuclear energy. Land occupation for poultry sourced 
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from Williams, Audsley, & Sandars (2006a) and converted to live weight basis based on 

data given therein. 

Water use. As depicted in Figure 11, water requirements for this study as 

compared to the Tuomisto and Teixeira de Mattos LCA depend on whether green water 

(rainwater) is included in the inventory. In total, water use in this study is 2.2 times that 

of the Tuomisto and Teixeira de Mattos LCA, but blue water (ground and surface water) 

withdrawals are slightly less than in the Tuomisto and Teixeira de Mattos model. The 

same phenomenon is evident for livestock: Beef, pork, and poultry are more water-

intensive than cultured meat on a total basis, but comparable in terms of blue water. This 

can be explained by livestock’s larger consumption of feed which contains corresponding 

amounts of embedded water. Most of this water is in the form of rainwater, however, and 

is not sourced from ground or surface sources. 
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Figure 11. Water use comparison. Beef, pork, and poultry values were estimated based 

on Mekonnen and Hoekstra (2012) and converted to a live weight basis using data given 

in Table 38. Numbers above the livestock column indicate impacts on an edible-weight 

basis. Tuomisto and Teixeira de Mattos (2011) included both green and blue water in 

their LCA, but the California production model presented here required no green water. 

Energy return on investment. Energy return on investment (EROI) is a means to 

demonstrate how much useful food energy is produced from invested energy. Whereas 

Figure 9 compares the impacts of cultured meat with those of livestock on a live weight 

basis, EROI focuses on edible weight and gross chemical (calorific) energy produced. 

Figure 12 depicts human-edible energy output divided by various types of energy inputs. 

It further underscores the phenomenon discussed above where cultured meat will utilize 

agricultural feedstocks more efficiently than animals at the expense of industrial energy 
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inputs. Whereas cultured meat produces a great deal more food energy per food energy 

input (human-edible EROI), in terms of return on industrial energy, it is much lower – 

less than that of chicken. 

 
Figure 12. Energy return on investment (EROI). Industrial EROI is the human edible 

energy return on industrial energy investment; human-edible EROI is the human-edible 

energy return on human-edible caloric energy investment; and gross chemical EROI is 

the gross chemical energy return on gross chemical energy input (Pelletier, Pirog, et al., 

2010). Please see Table 35 on page 204 for a detailed description of the sources and 

assumptions inherent in this chart. 

These energy dynamics may be better understood through the analogy of the 

Industrial Revolution: Just as automobiles and tractors burning fossil fuels replaced the 

external work done by horses eating hay on roads and farms, tissue engineering of cells 
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will similarly substitute industrial processes for the internal, biological work done by 

animal physiologies. That is, meat production in animals is made possible due to internal 

biological functions (temperature regulation, digestion, oxygenation, nutrient distribution, 

neutralization of pathogens, etc.). These are accomplished at the expense of biological 

(feed) energy inputs. Producing meat in a bioreactor means that these same functions 

must be performed at the expense of industrial energy, rather than biotic energy. As such, 

tissue engineering could be viewed as a new wave of industrialization.  

Even though industrial energy is required to produce agricultural crops, Figure 12 

indicates that a transition away from livestock rearing (particularly swine and poultry) in 

favor of cultured meat would simultaneously shift energy consumption away from 

agricultural feedstocks and toward industrial energy inputs. Therefore innovations that 

reduce the necessary industrial energy demand of cultured meat would be advantageous. 

The modeled processes that consume the most industrial energy, and therefore present 

significant opportunities for energy reduction, are discussed next. 

Energy Consumption and Process Uncertainty 

As Figure 9 showed, processing of feedstocks, cell proliferation, and bioreactor 

cleaning are the largest consumers of energy as modeled by this study. Figure 13 shows 

the same data broken down by specific input rather than product stage. The figure 

suggests that bioreactor cleaning is responsible for the bulk of the life cycle energy 

embodied in 1 kg of cultured meat, followed by deionizing and sterilizing the water for 

cell culture, basal medium production, glutamine production, and facility energy. All of 

these are important components of cultured meat production and are not likely to be 

eliminated in the near future: cleaning and sterilization procedures, for example, are 
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followed to prevent the growth of microorganisms and essentially do the work that would 

otherwise be accomplished by the animal’s immune system. Nonetheless, a great deal of 

uncertainty surrounds the methods that will be employed and, in some cases, there is 

uncertainty associated with industrial process inventories. 

 
Figure 13. Energy consumption in cultured meat production by input. Water for culture 

includes sterilization and deionization. 

As modeled for this LCA, the bioreactor cleaning process is the largest 

contributor to energy consumption for cultured meat production. Its sub-processes are 

shown in greater detail in Figure 14. While the chart underscores the energy-intensive 

nature of some chemical inputs such as sodium hydroxide, ongoing gains in industrial 

efficiency could serve to reduce life cycle energy consumption. Moreover, different 

sources provide different estimates of energy consumption inherent in the sodium 

hydroxide manufacturing process. This LCA used the inventory from the US LCI 

database (Norris, 2003) which reports that 15.4 MJ are required to produce 1 kg of 

sodium hydroxide. By contrast, other sources suggest that the energy might be closer to 
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3.5 MJ (Thannimalay, Yusoff, & Zawawi, 2013). If this were the case, the total energy 

required to produce 1 kg of cultured meat would be closer to 46.5 MJ (versus 53.6). 

 
Figure 14. Energy consumption associated with bioreactor cleaning process. 

 

Other contributors to the energy-intensive nature of cultured meat include the 

need to sterilize the culture medium prior to the batch cycle. Heating the water makes up 

96% of the 12.6 MJ of energy associated with the water for culture. However, cultured 

meat facilities might adopt alternative techniques to heat such as sterile filtration via 

reverse osmosis. This would reduce the required energy by an uncertain amount, though 

it could have more significant environmental impacts in other categories. 

Amino acids also contribute significantly to energy consumption. The amino acid 

glutamine plus the amino acids that constitute about 23% of the dry mass of the basal 

medium as modeled (shown in Table 30 on page 192) were assumed to be produced via a 

synthetic process. Synthetic amino acid production is a multi-step process involving corn 

production followed by milling, saccharification of the corn starch, and fermentation of 
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the glucose in the presence of a nitrogen source such as ammonia or ammonium sulfate. 

All of these processes require additional industrial energy and contribute to the total 

energy intensity of cultured meat. However, it is possible that amino acids synthesized 

via fermentation could be replaced with a formulation of plant-based hydrolysates 

designed to meet the specific nutritional needs of proliferating muscle cells. This would 

have the advantage of reducing the number of industrial steps required for amino acid 

production, and therefore embedded energy, but could also increase the necessary 

agricultural inputs, and therefore land requirements. Additional uncertainty associated 

with the basal medium comes from the exclusion of vitamins and other compounds from 

the life cycle inventory (see Table 30). Depending on the manufacturing process for 

vitamins and chemicals like sodium bicarbonate, the life cycle energy consumption for 

cultured meat could be much higher than the estimation presented herein. 

Finally, uncertainty surrounds the facility size and energy consumption estimates. 

It was assumed that the facility would be similar in size to a brewery and draw relatively 

little baseline energy for heating, ventilation, air conditioning, and lighting. However, the 

need to follow aseptic protocols could mean that a carnery could require clean room 

facilities that would not only require more baseline energy, but also require more 

floorspace. This and other points of uncertainty are explored in the sensitivity analysis. 

Sensitivity Analysis 

Factors modified for the sensitivity analysis reflect several areas of uncertainty in 

the model. In addition to questions associated with sterilization methods and facility 

energy requirements discussed above, uncertainties surrounding cell growth are explored. 

In particular, the seed cell density is lowered to account for additional energy associated 
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with cell line maintenance and the maximum cell density is increased to simulate growth 

in an optimized bioreactor. Finally, the cell growth rate is increased to simulate one way 

that cells might be modified for more efficient meat production. All variable factors are 

summarized in Table 8. To assess model sensitivity to these factors, a Monte Carlo 

Analysis (MCA) was performed using SimaPro 8. Each simulation consisted of 1000 

samples. 

Table 8 

Factors Modified for the Sensitivity Analysis 

Variable Probability 
distribution 

Distribution 
parameters 

Comments 

Facility size Triangular Minimum: 500; 
most common: 717; 
maximum: 22,761 
m2 

Most common corresponds 
to a brewery and maximum 
corresponds to a 
pharmaceutical model. 
Minimum value allows for 
uncertainty. 

Facility energy 
consumption 
(lighting, HVAC, 
etc) 

Uniform 513.31 to 1033.44 
MJ/year 

Minimum corresponds to a 
warehouse; maximum 
corresponds to an average 
commercial building (D&R 
International Ltd., 2012) 

Sodium hydroxide 
life cycle energy 

Uniform 3.5 to 15.4 MJ Represents uncertainty 
associated with different 
sources 

Sterilization 
temperature/energy 

Triangular Minimum: 0; 
maximum and most 
common: 63.5°C 

Maximum corresponds to a 
culture medium sterilization 
process via heating to 
140°C; minimum 
corresponds to sterile 
filtering of medium via 
reverse osmosis and a cell 
culture that proliferates well 
at ambient temperature. 

 (continued)  
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Variable Probability 
distribution 

Distribution 
parameters 

Comments 

Minimum cell 
density (X0) 

Triangular Minimum: 1; 
maximum and most 
common: 1x107 
cells/mL 

Minimum value is meant to 
capture environmental 
impacts of cell line 
maintenance. Maximum and 
most common value 
corresponds to initial density 
given by Sung et al.(2004)  

Maximum cell 
density (X1) 

Triangular Minimum and most 
common: 1x107; 
maximum: 1x108 
cells/mL 

Most common value 
corresponds to typical limits 
of STRs (Yang et al., 2004). 
Maximum value 
corresponds to densities 
achievable with hollow fiber 
bioreactors (Shipley et al., 
2011). 

Cell growth rate (µ) Triangular Minimum and most 
common: 0.0254; 
most common: 
0.047 nmol/(106 
cells⋅hr) 

Most common value is 
based on experimental data 
(Sung et al., 2004). 
Maximum value 
corresponds to a yield of 0.9 
g cell dry mass/g glucose 
dry mass 

 

As shown in Figure 15, the greatest uncertainty is associated with energy use, 

global warming, acidification, and human toxicity. These factors are most closely related 

to energy consumption which could be significantly higher if factors such as facility 

energy requirements have been underestimated by the model. By contrast, the analysis 

indicates that, given most Monte Carlo scenarios, both land use and water use could be 

significantly reduced with respect to the baseline model. These are most strongly 
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correlated with cell growth rate which, over time, could be increased as cells are selected 

or genetically modified to use feedstocks more efficiently for biomass production.  

 
Figure 15. Results of the sensitivity analysis. Uncertainty bars reflect the 90% confidence 

interval.  

Discussion 

None of the findings presented in this chapter are meant to suggest that cultured 

meat should not be the subject of ongoing research and development. On the contrary, 

cultured meat is likely to come with many advantages including human health benefits 

and reductions in animal suffering. Nonetheless, an understanding of the potential 

environmental, economic, and social implications of emerging technologies can facilitate 

perception and mitigation of unintended consequences prior to and during 

commercialization. 
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Pros and cons of industrialization. The study presented herein should not be 

considered complete. Its scope was limited to one step (cell proliferation) of what will be 

a multistep process required to bring cultured meat to stores and restaurants. While the 

realized environmental impacts of large-scale cultured meat production are as yet highly 

uncertain, it nonetheless suggests that tissue engineering may constitute a new phase of 

the Industrial Revolution. Moreover, further industrialization of meat production will 

potentially come with many pros and cons that extend beyond the environmental realm. 

Even though industrial energy consumption may rise slightly, waste products emanating 

from meat factories may be easier to treat or recycle than those leaching into farm runoff. 

Yet, the manure and litter from animal rearing will similarly be lost as sources of 

fertilizer, leaving the farms more dependent on synthetic nitrogen and phosphorus. 

Decreased feedstock demands for meat production may reduce the cost of crops such as 

soy and cereal grains while increasing availability of these commodities for biofuel 

production. A possible concomitant decline in agricultural land use could bring 

environmental and economic challenges including disruption of certain farm economies 

and declining land prices.  

Anticipatory life cycle analysis. The model underlying this LCA indicates that 

energy consumption, GHG emissions, land use, and total water use could be more 

intensive than those indicated by Tuomisto and Teixeira de Mattos. Much of this 

difference was attributed to diverse feedstock models: this study included glucose, soy 

hydrolysate, and basal medium including synthetic amino acids whereas Tuomisto and 

Teixeira de Mattos relied on cyanobacteria hydrolysate alone. Due to the seemingly 

burdensome nature of the feedstock model used in this study, one might be tempted to 
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conclude that it is the inferior choice compared to cyanobacteria hydrolysate. However, 

the feedstock model developed for this LCA was based on peer-reviewed studies 

demonstrating its effectiveness for supporting cell growth. More research and analysis 

would be required to assess the nutritional adequacy of cyanobacteria hydrolysate alone 

for large-scale cell culture.  

More broadly, the disparate feedstock choices in the two models serve to 

underscore an important point about anticipatory LCA: Until processes have become 

manifested in working manufacturing facilities, the models associated with life cycle 

analyses can be only approximate. Both of the models discussed herein serve to provide 

insight into how diverse manufacturing decisions could impact the environment at large. 

Moreover, they suggest that every production decision will have environmental trade-

offs; being cognizant of those trade-offs can aid in developing a production process that 

is least detrimental to the surrounding region. 

Even though significant uncertainty surrounds this analysis, anticipatory analyses 

can nonetheless be valuable in highlighting the possible implications of, and tradeoffs 

associated with, emerging technologies as they are maturing and before plant 

development manifests undesirable environmental impacts. As industrial bioengineering 

technologies advance, significant leaps forward in cell culture techniques will 

undoubtedly be made. Ongoing reviews of the state of the art will help to illustrate their 

benefits and highlight areas for improvement.  
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Chapter 6 

Economic Input-Output Analysis 

The in vitro hamburger served in London on August 5, 2014, reportedly cost over 

€250,000 (“Cultured beef: Frequently asked questions,” n.d.) (about $350,000), but a 

study published in 2008 suggested cultured meat could one day be as inexpensive as 

unsubsidized beef (eXmoor Pharma Concepts, 2008). This investigation seeks to explore 

the impacts on the US economy if cultured meat were substituted for traditional beef, 

pork, and poultry.  

Output Multipliers 

An output multiplier is defined as “the total value of production in all sectors of 

the economy that is necessary in order to satisfy a dollar’s worth of final demand for [one 

sector’s] output” (Miller & Blair, 1985, p. 245). This can be better understood with an 

example. A hypothetical graduate student decides to have a hamburger for lunch at a 

local restaurant. She pays the restaurant $15 and leaves a $3 tip for the waiter. Because of 

the extra work the waiter did to serve the student’s hamburger, he uses the student’s $3 to 

purchase potato chips from a deli as a snack. The deli, in turn, must purchase additional 

potato chips from its supplier. The supplier must then purchase additional potato chips 

from a processor who must purchase more potatoes from a farm. The farm must plant 

additional potatoes, buy more fertilizer, hire more employees, and so on. In fact, even 

though the student paid the waiter only $3, the total economic activity required to 

produce the $3 snack was much greater than $3.  

This dynamic can be quantified in aggregate via output multipliers. By adding 

down the columns in national input-output tables, the direct impact of spending $1 more 
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in that industry can be ascertained. This is its simple output multiplier. Meat production 

requires a large number of economic inputs including feed, water, energy, and medicine 

which in turn require additional inputs. As such, meat production might be expected to 

have a large multiplier effect, and it does. As shown in Table 9, animal-production 

industries make up two of the ten industries with the largest economic multipliers. 

Animal and byproduct processing industries make up another four. Therefore it is 

hypothesized that a shift away from agricultural meat production in favor of cultured 

meat would result in a net decline in economic activity, at least temporarily. 

Table 9 

Industries with the Largest Economic Multipliers

NAICS code Industry Multiplier 

31161A Animal (except poultry) slaughtering, rendering, and 
processing 3.33424 

316100 Leather and hide tanning and finishing 3.29754 
311513 Cheese manufacturing 3.2088 
112300 Poultry and egg production 3.19034 
311225 Fats and oils refining and blending 3.18257 
311615 Poultry processing 3.1692 
1121A0 Cattle ranching and farming 3.04904 
311119 Other animal food manufacturing 3.04349 
31131A Sugar cane mills and refining 3.03402 
31122A Soybean and other oilseed processing 3.01651 

Note. Data derived from 2002 benchmark industry by commodity total requirements table 

(United States Bureau of Economic Analysis, 2008). 
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Approach 

The hypothesis that replacing agricultural meat with cultured meat would result in 

an aggregate economic decline will be tested by developing an inventory of inputs 

required to produce cultured meat. This will be scaled up to the equivalent of all meat 

produced in the United States in 2002. Using input-output tables for 2002 published by 

the BEA (United States Bureau of Economic Analysis, 2008), a scenario can be 

developed that would simulate replacement of all traditional meat production with 

cultured meat. 

In order to estimate the economic flows associated with cultured meat, a 

hypothetical production facility and an inventory of material inputs for cultivation were 

developed based on cell nutritional requirements published in Sung et al. (2004) and 

large-scale cell production techniques common in the United States at the present time 

(Hu, 2012). A summary of the hypothetical cultured meat production model is presented 

in Figure 16 and described below. This is a simplified version of the model used for the 

life cycle analysis shown in Figure 3 on page 19. It bears repeating that no large-scale 

cultured meat production facilities currently exist. The model described herein should be 

viewed as approximate and subject to change as the art and practice of tissue engineering 

progresses. 



 

83 

 
Figure 16. System diagram for hypothetical cultured meat production process. Separation 

of cultured meat from the broth (possibly via centrifugation) as well as cultured meat 

processing and packaging are not included in this study. 
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Inventory Overview 

The production model for the economic analysis is identical to the life cycle 

inventory discussed in Chapter 5 except that labor costs were added in the economic 

inventory. As with the model for required facility floorspace (discussed in APPENDIX C 

on page 217), the brewing industry was used as a guide for estimating necessary labor 

costs. Please see APPENDIX C on page 218 for details of the labor model. A summary of 

all characteristics of the production model can be found in Table 10.

Table 10 

Inventory to Produce 1 kg Cultured Meat 

Substance Per year Per batch Per 1 kg of 
cultured meat 

Inputs    
Seed culture (not included in 
analysis) 

 1x105 cells/mL 350 µg 

Facility floorspace 717 m2  0.007 m2 
Number of employees 3.74  0.000036 
Water for process (deionized and 
sterilized) 

 15,000 L 28.9 L 

Glucose  183.3 kg 352.7 g 
Glutamine  15.4 kg 29.6 g 
Oxygen (not included in cost of 
production but required for 
aeration energy calculation) 

 60.2 kg 115.9 g 

Soy hydrolysate (dry matter)  75 kg 144.3 g 
Basal medium (dry matter)  15,000 L 28.9 L 
Energy    

Facility 368,034 MJ  3.56 MJ 
Heating water for 
sterilization 

 3,981 MJ 7.7 MJ 

(continued) 
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Substance Per year Per batch Per 1 kg of 
cultured meat 

Heating water for 
cleaning 

 1,567 MJ 3.0 MJ 

Agitation  293MJ 0.56 MJ 
Aeration  48.2 MJ 0.09 MJ 
Deionization  390 MJ 0.75 MJ 

Transportation  337 tkm 0.65 tkm 
Sodium hydroxide (food grade) 
for cleaning 

 300 kg 577 g 

Water for cleaning (deionized)  45,000 L 86.6 L 
Outputs    

Cultured meat 103,463 kg 1x107 cells/mL 
or 520 kg 

1 kg 

Lactate (excluded from analysis)  147 kg 283 g 
Alanine (excluded from analysis)  3.3 kg 6.31 g 
Ammonia (excluded from 
analysis) 

 13.4 kg 25.8 g 

Sodium hydroxide (excluded 
from analysis) 

 300 kg 577 g 

Materials and processes not included in the inventory 
Piping, tubing, and pumps required to transport nutrients to the cell culture 
Nutrient containers 
Construction of the facility and other capital expenditures 
Materials required to acquire and maintain the cell line 

 

Economic Analysis 

In preparation for use with the 2002 benchmark tables published by the US 

Bureau of Economic Analysis (BEA) (2008), 2013 retail prices and 2002 producer prices 



 

86 

for all material and energy inputs were compiled. These are summarized in Table 11 with 

sources and exceptions noted. In general, it was assumed that inputs would arrive in 

ready-to-use condition. The exception to this is water which is assumed to be deionized 

and sterilized in the cultured meat facility. Energy costs associated with deionization and 

sterilization are included but outlays for the purchase of deionization resin were not. 

Energy quantities were converted to physical units using the brewery energy mix 

presented in Table 6 on page 58. Capital expenditures, cost of capital, and value added 

were not considered in this analysis. 

Table 11 

Inputs and Prices for Production of 1 kg Cultured Meat 

Substance Units 2013 retail price 
per unit quantity 

2002 producer price 
per unit quantity 

Industrial space (lease) $/m2/year $61.68 b $43.06 c 

Labor, average total 
compensation for breweries 
(NAICS 312120) 

$/employee 
/year 

$86,909 d $71,436 e 

Tap water for process $/L $0.0023 f  $0.00041 g 

Glucose $/g  $0.02 h  $0.00033  i  
Glutamine $/g  $0.44  j  $0.25523 a 
Soy hydrolysate (dry matter) $/g  $0.07 k  $0.04101 a 
Basal medium (IMDM) $/L $8.10 l  $4.69863 a 
Energy    

Electricity (final/delivered 
energy for industrial use) 

$/kWh  $0.07 m  $0.04830 n  

Natural gas $/ft3  $0.0034 o  $0.00248 p  
Coal $/short ton  $55.64 q  $17.52 r  
Steam $/lb  $0.0023 s $0.0023 s  

Transportation $/tkm $0.26  t  $0.18 u 

(continued) 



Table 11 

Inputs and Prices for Production of 1 kg Cultured Meat 

87 

Substance Units 2013 retail price 
per unit quantity 

2002 producer price 
per unit quantity 

Tap water for cleaning $/L $0.0023 f  $0.00041 g 

Sodium hydroxide $/g $0.0024 v $0.0014 a 
a Computed based on 2013 retail price, 2013 and 2001 consumer price indices (CPIs) 

(U.S. Department of Labor Bureau of Labor Statistics, 2013) and 2002 gross margin 

for NAICS industry 4246 (chemicals and allied products) (United States Census 

Bureau, n.d.-c) according the formula 

2002 producer price=�1-2002 gross margin� �� 2002 CPI
Sept 2013 CPI

� (2013 retail price)� 

b (CBRE Global Research and Consulting, 2013) 

c (Kelly, 2004) for Raleigh, NC 

d (United States Census Bureau, n.d.-b) 

e (United States Census Bureau, n.d.-a) 

f (North Carolina League of Municipalities & UNC Environmental Finance Center, 

2013) 

g (“Central Arizona groundwater replenishment district final 2013/14 - 2014/15 rate 

schedule,” n.d.) 

h (“Glucose, powder,” n.d.) 

I (Economic Research Service of the USDA, 2013) 

j (“L-Glutamine,” n.d.) 

 (continued) 
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k (“Peptone Hy-Soy® T,” n.d.) 

l (“IMDM, Powder,” n.d.) 

m (US Energy Information Administration, n.d.-a) 

n  (US Energy Information Administration, 2004) 

o (“Today in energy: Daily prices,” 2013) 

p (US Energy Information Administration, 2004) 

q (“Today in energy: Daily prices,” 2013) 

r  (US Energy Information Administration, 2004) 

s (How to calculate the true cost of steam, 2003) 

t  (Bureau of Transportation Statistics, n.d.) for 2012 

u  Computed from (Bureau of Transportation Statistics, n.d.); assumes a profit margin of 

5% (Ostria, 2003). 

v (Duda Energy LLC, n.d.) 

 

Based on the input quantities modeled multiplied by the unit prices, cultured meat 

would be expected to cost $267 per kg ($121/lb) in 2013 retail prices and $153 per kg 

($69/lb) in 2002 producer prices. A comparison with contemporary prices of common 

cuts of agricultural meat is given in Table 12.  
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Table 12 

Computed Cultured Meat Costs Compared with Beef, Pork, and Poultry Prices as of 

August 2013 

 Ground 
beef 

Sirloin 
steak 

Pork 
chops 

Broiler 
composite 

Boneless 
chicken 

breast 

Cultured 
based on 2013 

retail prices 

Price ($) per kg 7.61 14.56 7.79 4.41 7.93 267 

Note. Adapted from United States Department of Agriculture (n.d.). 

Scaling of input costs. The high computed price for cultured meat is somewhat 

problematic for an economic analysis. High prices represent large economic flows and 

substituting these for agricultural meat on a mass-equivalent basis would produce 

unrealistic economic growth in the model. Moreover, assuming cultured meat is ever 

widely adopted, the price will almost certainly need to be comparable to existing meat 

products. For this reason, the prices for cultured meat inputs were scaled down 

significantly in order to be equivalent to a computed composite price of $2.02 per kg for 

agricultural meat as produced in the United States. The meat composite is summarized in 

Table 13 and computed as follows. 

 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑒𝑓 (𝑜𝑟 𝑝𝑜𝑟𝑘 𝑜𝑟 𝑝𝑜𝑢𝑙𝑡𝑟𝑦)𝑖𝑛 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

 =   𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑒𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 2002
𝐵𝑒𝑒𝑓 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦+𝑃𝑜𝑟𝑘 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦+𝑃𝑜𝑢𝑙𝑡𝑟𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

× 1 𝑘𝑔 (6) 

 

 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑝𝑟𝑖𝑐𝑒 =  

  (𝐵𝑒𝑒𝑓 𝑝𝑟𝑖𝑐𝑒)(𝐵𝑒𝑒𝑓 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)+(𝑃𝑜𝑟𝑘 𝑝𝑟𝑖𝑐𝑒)(𝑃𝑜𝑟𝑘 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)+(𝑃𝑜𝑢𝑙𝑡𝑟𝑦 𝑝𝑟𝑖𝑐𝑒)(𝑃𝑜𝑢𝑙𝑡𝑟𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)
𝐵𝑒𝑒𝑓 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦+𝑃𝑜𝑟𝑘 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦+𝑃𝑜𝑢𝑙𝑡𝑟𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

  

 = $2.02 𝑝𝑒𝑟 𝑘𝑔 (7) 
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The results of a study by eXmoor Pharma Concepts (2008) suggested that 

cultured meat may one day match the price of unsubsidized beef. It may therefore never 

reach the composite price of $2.02 per kg. Nonetheless this value was chosen to facilitate 

the exploration of impacts associated with cultured meat without introducing economic 

growth into the model. For this reason, scaling factors were applied to prices of inputs 

inconsistently but based on the logic that cultured meat producers are unlikely to receive 

discounts on commodities such as energy and water. By contrast, large scaling factors 

were applied to the processed and chemical inputs including glutamine, soy hydrolysate, 

and basal medium. These components lend themselves to large volume discounts, if not 

production within the cultured meat facility itself. Moderate discounts were applied to 

industrial space, labor, and the commodity glucose. All of these might be subject to small 

variations in price depending on geographic location and quantity purchased. 

Table 13 

Composite Price for 1 kg of Meat Produced in the United States, 2002 Producer Prices

Value Beef Pork Poultry Composite 

2002 production, 
dressed weight 
basis 

12.3 billion kg 8.9 billion kg 17.5 billion kg  

2002 producer 
price 

$3.57/kg $1.44/kg $1.23/kg $2.02/kg 

Amount in 
composite 

0.318 kg 0.230 kg 0.451 kg 1 kg 

Note. Adapted from National Agricultural Statistics Service of the USDA (n.d.). 
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Table 14 

Scaling Factors for Cultured Meat Input Prices 

Substance  Units 2002 producer 
price per unit 
quantity 

Scaling 
factor 

Scaled price 
per unit 
quantity, 
2002 
producer 
cost 

Industrial space (lease) $/m2/year 43.06 0.5 21.53 
Labor for breweries 
(NAICS 312120) 

$/employee 
/year 

71,436 0.5 35,718 

Tap water for culture $/L 0.00041 1.0 0.00041 
Glucose $/g 0.00033  0.2 0.00007 
Glutamine $/g 0.25523 0.005 0.00128 
Soy hydrolysate (dry 
matter) 

$/g 0.04101 0.005 0.00021 

Basal medium (IMDM) $/L 4.69863 0.0008 0.00377 
Energy     

Electricity 
(final/delivered energy 
for industrial use) 

$/kWh 0.04830 1.0 0.04830 

Natural gas $/ft3 0.00248 1.0 0.00248 
Coal $/short ton 17.52 1.0 17.52 
Steam $/lb 0.0023 1.0 0.0023 

Transportation $/tkm 0.18 1.0 0.18 
Tap water for cleaning $/L 0.00041 1.0 0.00041 
Sodium hydroxide $/g 0.00141 0.2 0.00028 
 

Economic input-output. The input costs for 100,000 kg of cultured meat were allocated 

to NAICS industries as shown in Table 15. Simultaneously, the beef, pork, and poultry 

costs associated with the composite described in Table 13 were assigned to the 

corresponding NAICS code. Using Microsoft Excel, this information was formatted into 



 

92 

a matrix of 430 rows and 1 column. It was then multiplied by the 2002 benchmark 

industry by commodity total requirements table (427 rows x 430 columns) (United States 

Bureau of Economic Analysis, 2008) in order to determine the industries impacted by the 

commodity substitution.

Table 15 

Commodity Substitution Matrix for Input-Output Analysis 

Commodity Change in final 
demand based on 
100,000 kg 
substitution ($) 

NAICS 
Code 

NAICS Industry 

Beef -113,447 1121A0 Cattle ranching and 
farming 

Pork -33,144 112A00 Animal production, 
except cattle and poultry 
and eggs 

Poultry -55,721 112300 Poultry and egg 
production 

Industrial space (lease) 14,918 531000 Real estate 
Labor 129,000 814000 Private households 
Tap water for culture 1,189 221300 Water, sewage and other 

systems 
Glucose 2,341 311221 Wet corn milling 
Glutamine 3,773 325414 Biological product 

(except diagnostic) 
manufacturing 

Soy hydrolysate (dry 
matter) 

2,959 31122A Soybean and other 
oilseed processing 

Culture medium (IMDM) 10,868 325414 Biological product 
(except diagnostic) 
manufacturing 

(continued)  



Table 15 

Commodity Substitution Matrix for Input-Output Analysis 
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Commodity Change in final 
demand based on 
100,000 kg 
substitution ($) 

NAICS 
Code 

NAICS Industry 

Energy    
Electricity 
(final/delivered energy 
for industrial use) 

3,291 221100 Electric power 
generation, 
transmission, and 
distribution 

Natural gas 1,707 221200 Natural gas distribution 
Coal 430 324199 All other petroleum and 

coal products 
manufacturing 

Steam 242 221300 Water, sewage and 
other systems 

Transportation 11,787 484000 Truck transportation 
Tap water for cleaning 3,566 221300 Water, sewage and 

other systems 
Total economic change a 0.00   
a Numbers may not add to total due to rounding error.

Results 

As shown in Figure 17, the hypothesis that substituting cultured meat for 

agricultural meat would result in diminished economic output was confirmed. The model 

predicts that total output would fall $3.16 per kg of cultured meat substituted for 

agricultural meat. Industries where growth is observed are those that provide direct inputs 

to cultured meat production: inorganic chemical manufacturing provides the sodium 

hydroxide for cleaning the bioreactors, biological product manufacturing provides 

glutamine and basal medium, and government enterprises provide water for the process.  
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Contracting industries include those directly related to livestock production. 

These include cattle, pork, and poultry production, and animal food manufacturing. 

Projected declines in crop production and processing industries (crop farming, grain 

farming, and support activities for agriculture) indicate that cultured meat will require 

fewer feedstock inputs than livestock. This is supported by the projected decline in the 

real estate industry and was confirmed to be the case in the life cycle analysis. The 

presence of petroleum refineries among the declining industries indicates that cultured 

meat will require less energy than livestock. Despite this seeming contradiction of the life 

cycle analysis results, it is important to remember that the EIOA is based on economic 

allocations, rather than mass allocations as reported by the life cycle analysis. Because 

edible meat makes up the bulk of livestock value, the EIOA is effectively applying most 

of the environmental impacts to the edible weight of the animal. This same approach is 

approximated in the numbers above the livestock columns in Figure 9 on page 65. The 

discrepancy is likely further exacerbated by the scaling down of costs associated with 

energy-intensive cultured meat inputs such as sodium hydroxide, glutamine, and basal 

medium. For that reason, it is likely that this analysis does not provide an accurate 

reflection of relative energy consumption. 

Wholesale trade and monetary industries indicate less obvious trends. Wholesale 

trade is relatively strongly correlated with animal food production which indicates simply 

that it will be negatively impacted as animal food production declines. Industry 52A000, 

monetary authorities and depository credit intermediation, is part of the finance and 

insurance sector and is relatively strongly correlated with cattle farming and ranching as 

well as other crop producing industries. While this is an important relationship to 
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consider, the presence of this industry among those projected to decline may simply be 

the result of the exclusion of the cost of capital from the cultured meat production model. 

 

 
Figure 17. Effects of substituting cultured meat for agricultural meat composite. Only 

industries contributing at least 1% of the total change are included in this chart. Some 

industry names are abbreviated for legibility. 

Discussion 

This analysis suggested that a shift away from livestock production in favor of 

cultured meat would result in economic contraction. However, this should be considered 

in light of the conclusions from the life cycle analysis indicating that cultured meat might 

be a continuation of the Industrial Revolution. As has been the general trend of 
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industrialization historically, innovations that would be expected to cause economic 

decline have instead led to growth. Given that cultured meat production will replace the 

internal work done by livestock with industrial energy, any economic contractions 

associated with cultured meat as a substitute for livestock rearing could be expected to be 

temporary. A similar counterintuitive cause-effect relationship is known as Jevons’ 

paradox which refers the tendency for a reduction in factor inputs to result in greater 

overall consumption of that resource. Because cultured meat production could result in 

more productive use of corn and other feedstocks for meat production, it could 

counterintuitively lead to greater overall consumption of those agricultural commodities. 

More investigation is required to ascertain whether one or both of these counterintuitive 

trends might be likely. 

In addition, this economic analysis was based on an economic input-output model 

that was open with respect to private households. This means that changes in wages 

associated with the shift in commodity production would not be reflected in the results. 

This unfortunately renders the model somewhat incomplete and limits the information 

available from it. Despite the need for further investigation, this analysis suggests that 

substituting cultured meat for livestock could result in economic contraction – 

particularly in the agricultural sectors. 
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Chapter 7 

Impact Evaluation: Implications of Cultured Meat 

This chapter considers the results of the environmental analysis in a national 

context and highlights areas that could be significantly impacted by a general 

replacement of livestock with bioengineered products. Social projections are excluded 

from this section because they are addressed as thoroughly as possible in Chapter 4. 

Moreover, economic projections were not developed because the structure of the US 

economy would shift significantly in response to commercialization of cultured meat. An 

economic projection based on transactions in 2002 would fail to capture these adaptions 

and render it inherently and unavoidably unhelpful.  

Environmental Projections 

Based on the results presented in Chapter 5, projections associated with shifts in 

energy consumption, GHG emissions, eutrophication potential, land use, and water use 

were computed for the three cultured meat production scenarios shown in Figure 2. It 

should be noted that the projections are computed for livestock on a live weight basis 

which reflects an assumption that substitutes for all byproducts of slaughter will be 

produced via a process similar to cultured meat production. The projections also assume 

that all other factors remain unchanged, including technology that could facilitate 

increasing crop yields.  
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Figure 18. Possible shifts in environmental impacts associated with cultured meat 

transition scenarios. Projections are computed by multiplying the results of the life cycle 

analysis discussed in Chapter 5 by the quantities of cultured meat, beef, pork, and poultry 

(on a live weight basis) associated with the transition scenarios shown in Figure 2. 
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Given these caveats, the environmental projections are depicted in Figure 18. Due 

to anticipated increases in US meat production, all environmental impacts could be 

expected to increase in the Baseline scenario. As compared to that projection, the 

Cultured Replacement scenario suggests that energy use and blue water consumption 

would increase even more dramatically. However, GHG emissions could be expected to 

remain roughly stable, and land use, eutrophication potential, and total water 

consumption might decline if cultured meat completely replaces livestock. 

These trends mean little outside the context of aggregate national use, however. 

For this reason, the projected changes in impacts were compared to national aggregate 

values from recent years. As shown in Table 16, cultured meat would have only small 

effects on national energy consumption, GHG emissions, and fresh water withdrawals 

(blue water only). Land use effects could be much more significant, however. The 

Baseline case where US meat production grows from 59 billion kg in 2007 and 2010 to 

94 billion kg (live weight) in 2050 suggests that land use would expand by 6% if all other 

factors remained unchanged. This is equivalent to a 35% increase in cropland. By 

contrast, the Cultured Replacement scenario implies that land use could decline even 

more dramatically, releasing 10% of total US land area (58% of cropland) for other uses.  

Both of these scenarios represent diverse but challenging environmental and 

economic trends. Assuming cultured meat does not offset any anticipated increases in 

meat production, land use devoted to livestock rearing could expand, leading to rising 

land and food prices. On the other hand, a rapid shift toward cultured meat production 

could result in falling land and food prices, as well as continued declines in agricultural 

employment. At the same time, a number of factors could preempt these intuitive effects. 
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Expansion of biofuel production, for example, could absorb agricultural surpluses and 

lead to continued agricultural expansion.  

Table 16 

Environmental Implications of Cultured Meat in a National Context

  Approximate increase (decrease) in 
2050 with respect to present 

Value US aggregate Baseline 
projection 

Cultured 
Replacement 

projection 

2007 energy consumption (PJ) 106,892 a 0.7% 3.5% 
2007 GHG emissions  
(million tonnes CO2-eq) 7,263 b 2.5% 0.2% 

2005 fresh water withdrawals 
(billion m3) 483.5 c 1.6% 2.4% 

2007 total land  
(million hectares) 936 b 6.0% (9.5%) 

2007 crop land  
(million hectares) 159 b 35.1% (55.7%) 

Note. Fresh water values include blue water only. 

a Source: (US Energy Information Administration, 2013) 

b Source: (US Environmental Protection Agency, 2013) 

c Source: (United States Geological Survey, n.d.) 

 
The potential shift being described here is reminiscent of a time in the early 20th 

century when horses and mules were replaced by tractors and automobiles. In 1913, 28% 

of all harvested land (37 million hectares) was devoted to growing feed for horses and 

mules (United States Census Bureau et al. 1997, Series K 496-501). This area slowly 

diminished in the decades that followed, but total cropland did not begin to decline as a 
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general trend until 1950 (United States Census Bureau et al. 1997, Series J 52-53). Thus, 

even though a transition to cultured meat could exceed the land use changes seen as 

tractors and automobiles replaced animals for work and transportation, afforestation or 

reforestation is not guaranteed. Other factors including gains in productivity, economic 

cycles, changes in agricultural exports, and increasing biofuel production would all play 

important roles in land use.  

Potential Tradeoffs Associated with Cultured Meat 

A number of important challenges and tradeoffs are presented elsewhere in the 

document, particularly in the social assessment discussion in Chapter 4. However, a 

number of implications were not highlighted specifically by other assessments and are 

therefore included here. These remain speculative and are included for the purposes of 

further consideration and discussion. 

Environment and economy. An important realization that resulted from 

performing both environmental and economic analyses was that, despite the energy-

intensive nature of cultured meat production, energy is likely to account for only a small 

portion of total costs. This is also reflected in other industries. For example, despite being 

“the second largest user of energy in the manufacturing sector” (US Energy Information 

Administration, n.d.-b), chemical producers as a whole (NAICS 325) spend only about 

3% of their operating budget on fuels and electricity (United States Census Bureau, n.d.-

a). This rather subtle incentive structure inherent in the economy may serve to derail 

efforts to improve environmental sustainability of cultured meat and other industrial 

production processes.  
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Ethics. Many people might find it objectionable to use embryonic stem cells for 

purposes other than propagating a complete organism. Yet growing meat from embryonic 

stem cells could theoretically produce a great deal of cultured meat while reducing or 

eliminating the need to acquire tissue explants from donor animals. A similar dynamic 

may form around propagating genetically-modified cells. While genetic modification of 

animal cells is not a prerequisite for culturing meat, genetic modification is among the 

techniques that can render a cell line immortal, thus reducing the frequency that tissue 

samples would need to be taken from a donor animal. Hence a dilemma may arise 

between reducing donor animal suffering and eating food from embryonic or genetically 

modified stem cells. Genetic modification could also be used to impart specific 

characteristics to the muscle and fat tissue. Some of these might enhance the flavor or 

texture of the meat, while others might increase the growth rate or resource efficiency of 

the culturing process, thus modifying environmental impacts and/or economic costs. 

Species and energy. As discussed in the heat transfer analysis in APPENDIX B 

(page 207), both heating and cooling of the cultured meat bioreactors might be required 

to keep cells at a temperature optimal for growth. For mammals, optimum temperature is 

around 37°C and “variations of 1°C can reduce cell growth, viability, and/or product 

production” (Flickinger, 2013, p. 874). However, other cell types such as those from 

insects or fish have different optimal growth temperatures and may also proliferate well 

over a wider range of temperatures. For this reason, energy required to produce muscle 

and fat tissue may be reduced if consumers were willing to accept meat from non-

traditional species. 
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Antibiotics. Overuse and misuse of antibiotics has been linked to antibiotic-

resistant bacteria and the use antimicrobials to promote growth of livestock has been 

discouraged by the Food and Drug Administration (FDA, 2013). Tissue engineering 

practices dictate that cultured meat would be grown in sterile conditions, thereby not only 

decreasing the risk of food-borne illness, but also antibiotic use. However, it remains 

possible that some producers might introduce antibiotics, antivirals, and antifungals in 

tissue cultures to reduce the energy required to sterilize the culture medium and other 

inputs for cultured meat. On the other hand, antibiotic production itself may be energy-

intensive. Therefore this is another area that is deserving of more analysis. 
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Chapter 8 

Metrics for Ongoing Dialog and Management 

The practice of Earth Systems Engineering and Management (ESEM) encourages 

a dialog between humans and emerging technologies. ESEM principles indicate that 

“major shifts in technologies and technological systems should be evaluated before, 

rather than after, implementation” (Allenby, 2012). Moreover, these principles 

recommend that a set of metrics be developed that can be used to assess and guide 

development of a technology on an ongoing basis. The investigations discussed in this 

document represent at least a partial evaluation of the emerging technology of cultured 

meat prior to commercialization. As such, it forms the basis for recommending metrics 

for ongoing monitoring and management of the technology if and when large-scale 

production facilities are constructed. It is important to understand the characteristics and 

impacts of these production plants for two reasons. First, they represent workable 

processes that could be copied many times over as production expands. Second, 

technological diffusion often follows a characteristic S curve where growth begins slowly 

and then enters a phase of exponential growth before the growth rate finally begins to 

decline. Any undesirable effects associated with cultured meat should be addressed early 

in the commercialization and diffusion process since they will become greatly 

exacerbated during the exponential growth phase.  

It follows that trends in meat products produced and consumed should be 

monitored for signs that cultured meat production might be entering an exponential 

growth phase. This warning would allow outstanding environmental, economic, or social 

concerns to be addressed. The remaining recommended metrics are arranged here 



 

105 

according to their primary domain of concern (environment, economy, society). To the 

extent possible, future trajectories and implications are noted. 

Environmental Metrics 

First and foremost, the production characteristics of cultured meat should be 

monitored in order to assess how large-scale production might impact the environment. 

For reference, Table 17 provides environmental impacts associated with the cultured 

meat plant model developed for the life cycle assessment discussed in Chapter 5, 

excluding the effects of upstream processes. Significantly larger impacts could be cause 

for process review and may represent opportunities for strategic innovation. However, it 

is also likely that some plants will attempt to reduce costs by consolidating production of 

feedstocks, nutrients, and other inputs in the same facility, thus shifting upstream impacts 

into the cultured meat plant itself.  

At the same time, it would be prudent to monitor the primary feedstocks of cell 

culture. The model described herein assumed that glucose made from corn with the 

addition of soy hydrolysate and synthetic amino acids would serve as the primary nutrient 

sources. However, this might not be the case for all processes: Alternative recipes might 

call for inputs that require complex manufacturing processes which could have 

detrimental environmental characteristics; other ingredients might originate from 

relatively scarce sources that disrupt established supply chains. Finally, life cycle impacts 

of other inputs such as vitamins and growth factors fell outside the scope of the life cycle 

analysis described herein, but should be considered for future study. 

Waste streams should not be neglected. Eutrophying emissions and other 

pollutants should also be monitored in plant effluents. Cultured meat facilities might 



 

106 

benefit from recycling byproducts of cell culture such as ammonia and lactate; otherwise 

waste water is likely to require special handling and/or coordination with water treatment 

plants. 

Table 17 

Example Monitoring Metrics for Cultured Meat Production Processes.  

Factor input Quantity per 1 kg cultured meat (this model) 

Direct energy consumption 16 MJ  
Direct water withdrawals 
(blue water only) 

115 Liters 

Feedstocks, dry mass basis Glucose: 353 g 
Soy hydrolysate: 144 g 

Synthetic amino acids (including basal medium):  74 g 
Eutrophying emissions 
(including cleaners) 

10 g PO4 eq  

Note. Values in this table represent factors associated with a cultured meat plant only and 

exclude upstream life cycle impacts. 

Land use. Because cultured meat production could serve to reduce the land 

required for grazing and feed production, the quantity of land in farms should be 

monitored carefully. Moreover, a significant decline in land managed by ranchers could 

result in overgrowth of vegetation and an increased risk for wildfires. For this reason, 

rangelands in the United States would benefit from a monitoring program. At the same 

time, in the event that commercial production of cultured meat fails to materialize, the 

anticipated increase in livestock production over the coming years could expand 

agricultural land significantly. 

Water use. Due to its relatively small requirement for agricultural feedstocks, 

cultured meat requires much less total water than livestock. However, it is roughly 
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equivalent to livestock in terms of fresh water withdrawals. For this reason, it would be 

beneficial to monitor ground and surface water supplies to ensure production facilities are 

not overly taxing available resources and existing infrastructure. On the other hand, the 

industrial nature of cultured meat production presents the opportunity for treatment and 

recycling of waste water flows. 

Nitrogen and phosphorus. Both nitrogen and phosphorus are components of 

agricultural fertilizer as well as animal wastes; they are also responsible for some of the 

environmental degradation associated with food production (Xue & Landis, 2010). Once 

released into the environment, they can contribute to eutrophication of water bodies and 

lead to aquatic dead zones (US Environmental Protection Agency, 2012). Both nutrients 

can also contaminate drinking water sources and increase treatment costs (US 

Environmental Protection Agency, 2012). An increase in livestock production could be 

accompanied by a concurrent increase in the need for synthetic fertilizers. By contrast, a 

shift toward cultured meat could reduce this demand.  

Economic Metrics 

Economic contraction. The economic input-output assessment presented in 

Chapter 5 suggested that economic contraction would accompany a transition away from 

livestock in favor of bioengineered meat. Moreover, it predicted that the agricultural 

sectors would be hardest hit. Even though agriculture represented only 1.2 percent of the 

US GDP in 2012 (United States Bureau of Economic Analysis, 2014b) and supported 

only 2.1 million jobs (1.4% of the total) (United States Bureau of Labor Statistics, 2013), 

a downturn in this sector could be disruptive to rural economies. For this reason, 

economic output as well as employment in these sectors should be monitored for 
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significant declines and increased economic hardship. At the same time, economic 

growth may emerge in new industries such as those related to biotechnology. Through 

early identification of sectors experiencing growth, strategic education and training may 

serve to smooth the transition of workers from agriculture to other industries. 

Economic inequality. The social assessment workshops highlighted the 

possibility that food based in biotechnology might exacerbate economic divisions 

between groups in the United States, particularly if it remains expensive while imparting 

other benefits such as better nutrition. This represents a second metric that could be 

monitored for signs of economic division and inequity. 

Substitutes for byproducts of slaughter. If livestock production diminishes, so 

will the availability of byproducts of slaughter such as blood, fat, internal organs, and 

hide or feathers. These are used for a variety of purposes including pharmaceuticals and 

other therapeutic applications. Supply chains should be monitored for changes in price of 

byproducts of slaughter as well as the identification of non-animal substitutes. Some of 

these substitutes might have significant environmental impacts that should be 

investigated as well. 

Social Metrics 

Human health. A host of factors associated with cultured meat consumption 

could impact human health. Health could be enhanced by sterile culture conditions that 

reduce food-borne illness; declining human-animal interaction could reduce the incidence 

of zoonotic diseases, and limited fat consumption (particularly saturated fat) could lessen 

individuals’ risk of cardiovascular disease and obesity. On the other hand, the iron 

content of cultured meat is currently uncertain but may be lower than agricultural meat 
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due to the lack of blood. Moreover, cultured meat may not inherently contain vitamin 

B12, so supplements may be advisable. At the same time, overconsumption of cultured 

meat and its potential additives could result in a variety of ailments. For this reason, per 

capita consumption of cultured meat should be monitored as well as obesity rates, 

cardiovascular illness, and cases related to overconsumption of protein. Moreover, 

cultured meat additives such as caffeine, vitamins, and supplements should be 

catalogued. The need to assess the health effects of food supplements and their 

interactions might also be prudent as foods that increasingly contain previously-

unavailable substances such as resveratrol in high concentrations.  

Need for regulation. Due to the risk of serious illness associated with 

contamination of the cell culture, inspection of facilities to ensure the use of sterile 

protocols is advisable. However, due to the sterile culture conditions, there may be less of 

a need to cook the meat thoroughly. This might not be the case for agricultural meat; 

therefore, labels with proper cooking instructions might need to be added to packages of 

agricultural meat. 

Intergroup conflict. The ability to produce meat without killing an animal 

presents the opportunity to afford greater protections to animals, up to and including the 

benefit of sentient rights such as the right to life and freedom of movement. It follows 

that conflict might arise between groups with different views on animal rights. 

Monitoring rhetoric surrounding the issue of animal rights could aid in managing 

intergroup conflict before it escalates to violence or impacts international relations. 
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Chapter 9 

Methodology Review 

This chapter represents a reflection on the methodology utilized for this research 

and includes lessons learned throughout the course of the investigations.  

Social Assessment 

As described in Chapter 2, the workshops were structured with a technology 

briefing, followed by a discussion meant to stimulate “out-of-the-box” thinking, and were 

concluded with time allotted for participants to complete a written survey to capture 

unique and diverse individual viewpoints on the implications of cultured meat. Overall, 

this approach worked well and yielded a great deal of compelling information. Several 

techniques and recommendations for future investigations are worth noting, however, and 

are discussed below. These are organized in the order they occurred during the 

workshops: briefing, participant discussion, and questionnaire. This section will conclude 

with a discussion of alternative approaches to social assessment. 

Technology briefing. Of the three analyses that comprise this overall 

investigation (social, environmental, economic), the social assessment was undertaken 

first. As a result, anticipated environmental and economic impacts of the technology were 

not available for presentation in the first workshop with the exception of speculation 

taken from popular media coverage. Subsequently, high-level environmental and 

economic implications were compiled for an extreme case where US livestock production 

is completely eliminated along with the associated greenhouse gas emissions, water 

consumption, land use, and economic growth/decline. These estimates were presented in 

workshops 2 and 3.  
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The outcomes of this addition were mixed. The primary benefit was that 

participants could factor these potential environmental and economic shifts into their 

discussions. However, the workshop notes and questionnaire responses did not indicate 

that this information significantly influenced the participants’ thought processes. 

Moreover, during the third workshop, a participant questioned the relevance and quality 

of the data used for the economic analysis, thereby diverting workshop time away from 

the primary goal and perhaps even invalidating that portion of the briefing in the minds of 

the participants. Finally, due to the approximate nature of the environmental and 

economic data presented, as well as the uncertainty associated with future technology 

trajectories in general, there is no guarantee that the information presented was accurate. 

Therefore, it could have influenced the course of the conversation in a direction that will 

prove to be irrelevant as the technology advances. 

One can further speculate that holding the social assessment workshops last (after 

the environmental and economic analyses have been completed and the data compiled) 

could serve to provide participants with more accurate projections in the environmental 

and economic arenas. However, even with detailed analyses of emerging technologies, 

the same challenges are present: Participants may question the data and/or methodology, 

and the results may prove inaccurate and therefore reduce the value of the social 

assessment that was partly based on them. A possible compromise could be achieved by 

an iterative process where two rounds of the social assessment occur: One without the 

inclusion of environmental and economic implications, and a later round based strongly 

on the results of complementary analyses. 
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Participant discussions. The observation of the Chatham House Rule 

(participants were free to use the information received, but could not reveal the identity 

nor the affiliation of any other participant) facilitated the flow of uninhibited 

conversation. Whereas an audio or video recording of the sessions might have preserved 

a more accurate account of the discussion, both would have eliminated the element of 

anonymity (assuming technology will one day allow voices to be identified).  

Group discussions were encouraged and guided through the use of specific 

questions designed to produce scenarios related to cultured meat in the future. For 

example, “You are a cultured meat designer. What kind of cultured meat would you 

design? What kind of cultured meat would you not want to have a part of?” Moreover, 

each workshop also included a role-playing session where participants were asked to play 

a role as if it was 2050 and cultured meat was ubiquitous. Options were provided such as 

a high school student, a doctor, a recent immigrant to the US, a farmer, etc. Participants 

were allowed to choose one of the suggested roles or another of their liking. Participants 

were then given a few minutes to develop a scenario before each shared their story with 

the group. The researcher, research advisers, and other participants also followed up on 

the narratives with additional questions; participants were invited to respond from the 

perspective of their chosen character. 

The role-play portion proved to be particularly productive since the workshop 

participants imagined themselves in a future world and explained how cultured meat had 

impacted their lives. Moreover, the researcher and advisers were able to ask questions 

that elicited further details about the hypothetical person’s life. In workshops 2 and 3, two 

additional blank pages were added to the questionnaire for participant notes. This had the 
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benefit of allowing the researcher to capture the notes being made by participants during 

the preparatory period. These included details and thought processes that might not have 

been verbalized or captured by the note taker.  

Questionnaires. The participants’ written responses to questions about the 

implications of cultured meat were beneficial to the reported results. While anonymity 

protocols prevented verbal comments from being correlated with the same participant’s 

written responses, the overall results are believed to be more comprehensive due the 

available written responses. However, the questionnaires were not without challenges. 

Time was reserved at the end of the workshop for participants to complete the 

questionnaires, and most people did complete the questionnaires before leaving the 

workshop, but a few asked to take them away so they could complete them later. 

Unfortunately, once the questionnaires left the meeting room, the probability that 

responses would be obtained from that participant declined. Moreover, participants who 

did complete and return the questionnaire at a later date reported perceiving the 

questionnaire to be quite long and time-consuming. Even though a total of 20 completed 

questionnaires were received from 23 participants, the overall process might benefit from 

preventing questionnaires from leaving the room while inviting participants to complete 

only the parts they feel are the most important to them. 

Environmental Assessment 

Life cycle analysis is a relatively mature and reliable means of assessing the 

environmental impacts of agricultural and industrial processes. Its application provided 

significant insight into the implications of a shift from livestock rearing to cultured meat. 

However, the LCA described herein suffered from a number of challenges. Above all, a 
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great deal of energy was spent compiling inventories for feedstocks such as soy 

hydrolysate, but a number of inputs were necessarily excluded from the inventory simply 

because process descriptions were unavailable. This was the case with vitamins, 

recombinant human insulin, and sodium bicarbonate – all of which will constitute 

important inputs to cultured meat production. Additional challenges are discussed below 

and include the need to perform a material flow analysis (MFA) to assess the flows of 

nitrogen and phosphorus, as well as the need for a more comprehensive comparison with 

livestock is needed to fully understand the implications of a shift in technological 

paradigms. 

Nitrogen and phosphorus. Both nitrogen and phosphorus are components of 

agricultural fertilizer as well as animal wastes; they are also responsible for some of the 

environmental degradation associated with food production (Xue & Landis, 2010). Once 

released into the environment, they can contribute to eutrophication of water bodies and 

lead to aquatic dead zones (US Environmental Protection Agency, 2012). Both nutrients 

can also contaminate drinking water sources and increase treatment costs (US 

Environmental Protection Agency, 2012). The LCA discussed in Chapter 5 compared 

cultured meat’s eutrophication potential with that of livestock. This metric is indicative of 

nitrogen and phosphorus waste products, but not necessarily process inputs. 

The phosphorus cycle is further complicated by the reliance of industrial 

agricultural systems on phosphate rock, mined from a few limited deposits around the 

world. Estimates regarding how long supplies will last vary, but one source suggests that 

production could peak as soon as 2033 (Neset & Cordell, 2012). A shift in meat 

production technology could affect the dynamics of nitrogen and phosphorus in a number 
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of ways, including decreasing overall fertilizer demand and pollution associated with 

animal wastes while increasing point sources of nutrient waste streams. A material flow 

analysis (MFA) is thus more useful than LCA for determining the direct changes in 

demand for all process inputs including nitrogen and phosphorus. In addition, an MFA of 

meat products would help to identify categories of pollution that would accompany a 

transition from agricultural to industrial technology, including concentrated streams of 

ammonia and lactate. 

Functional unit and TINA. The inherent need to make assumptions when 

performing an LCA may introduce uncertainty into the reported results. For example, the 

study presented herein compared cultured meat to the live weight of livestock. However, 

in the case of the Tuomisto and Teixeira de Mattos (2011) LCA, the environmental 

impacts of cultured meat were compared to the edible meat obtained from livestock. 

Specifically, that study assumed that all environmental impacts were associated with the 

relatively small portion of the animal considered to be edible by humans (see Table 18 

row 1). However, other sources report larger edible portions of beef, pork, and poultry 

(see Table 18 rows 2-3) and varying this percentage has a significant influence on the 

computed environmental impacts of the products being compared. As shown in Figure 

19, assuming a larger edible livestock percentage serves to decrease the reported impacts 

of livestock production and suggests that cultured meat is less advantageous on a relative 

basis.  
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Table 18 

Estimates of Human-Edible Portions of Livestock from Various Sources 

Row Description Beef Pork Poultry Source 

1 Edible wt as % of live 
weight 

20% 33% 35% Tuomisto & Teixeira de 
Mattos (2011) 

2 Edible wt as % of live 
weight 

40% 53% 60% Smil (2013 p. 140) 

3 Edible wt as % of live 
weight 

43% 56% 56% (Pelletier, Lammers, et al., 
2010; Pelletier, Pirog, et al., 
2010; Pelletier, 2008) 

 

  
Figure 19. Impact of functional unit assumptions on LCA results. Selected results 

reported by Tuomisto & Teixeira de Mattos (2011) compared with the same results 

assuming larger edible livestock portions given by Smil (2013, p. 140). Column 

extensions indicate a range of values given by the source. 

To complicate matters further, much of the inedible byproducts of animal 

slaughter are not thrown away, but rather sold for productive purposes, implying that at 

least some environmental impacts should be allocated to them. Marti, Johnson, and 
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Mathews (2011) report that only about 14.1% of cows and 11% of hogs is lost through 

shrinkage or waste. The remaining byproducts are used in leather production, pet food, 

cosmetics, and pharmaceuticals among many other household and industrial products 

(Marti, Johnson, and Mathews 2011). For poultry, waste products from slaughter include 

offal (heads, feet, and intestines totaling about 17.5% of live weight), feathers (7% of live 

weight), and blood (3.5% of live weight) (Ockerman and Hansen 1999, p. 440). All but 

the feathers can be dried and processed into byproduct meal suitable for animal feed 

(Ockerman and Hansen 1999, p. 440). Feathers and down “may be utilized for clothing, 

insulation, bedding, decorations, sporting equipment, feather meal, and fertilizer” 

(Ockerman and Hansen 1999, p. 441). 

Were production of the primary source of meat byproducts to diminish, a number 

of scenarios might play out. One of these might be the continued raising of livestock 

specifically for commercial and industrial purposes – possibly inflating the cost of the 

final products in the process. Another scenario might be the use of synthetic substitutes 

for the byproducts. Such substitutes would have unforeseen but possibly significant 

environmental impacts or other unintended consequences of their own. For this reason, 

there is value in considering the holistic context in which the technology is emerging – 

not only to more accurately assess the potential environmental impacts, but the economic 

and practical downstream effects as well.  

A more extensive LCA framework is needed in order to better understand 

technological transitions at a system level, including the secondary effects associated 

with co-products. To meet this need,  the “Technological Innovation Network Analysis”, 

or TINA, is proposed. This is a novel method that applies both LCA and MFA techniques 
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to technological transitions at a system level. As shown in Figure 20, it provides insight 

into not only the impact of a new technology, but also the secondary effects associated 

with co-products. In the case of a transition from livestock production to bioengineered 

meat, for example, the edible components of an animal are co-produced, and perhaps 

subsidize, a wide variety of secondary products.  

 
Figure 20. Technology innovation network analysis (TINA). TINA is a means to assess 

the impacts associated with a technological transition. 

Unfortunately, compiling such an inventory for livestock may not be as 

straightforward as it seems: Designer Christien Meindertsma tracked a single pig from an 

industrial slaughterhouse in the Netherlands through sales of all of its component parts 

(Meindertsma, 2010). She discovered that byproducts of pig slaughter find their way into 
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wide variety of everyday products including bread, concrete, human medical devices and 

therapies, renewable energy sources, and even bullets. Moreover, a preliminary 

compilation of cattle byproducts shown in Table 19 suggests a similarly diverse range of 

uses. Hence a reduction or elimination of livestock production could have surprising 

downstream effects including raising prices for vaccines and other therapeutic 

substances: According to Marti et al. (2011), “In many of these treatment uses, no other 

synthetic products function or perform equally well” (p. 4). Hence, despite the required 

investment, a more comprehensive technology innovation network analysis could 

produce a more precise environmental comparison while highlighting areas for targeted 

innovation.

Table 19 

Preliminary Technology Innovation Network Inventory for Beef Production and 

Byproducts of Slaughter 

Product Cattle yield 
(kg)a 

Primary uses Known substitutes 

Live weight 
Dressed carcass 
Retail cuts 

455 
273 
190 

 
 
Human consumption 

 
 
Cultured meat 

Byproducts    
Hide or pelt 36 Leather Cultured leather, fabric, or 

plastic 
Edible fats 50 Shortening and biodiesel Cultured fat, fossil fuels 
Variety meats 17 Pet food, animal feed, 

some is exported for 
human consumptionb 

Cultured meat, fish 
byproducts, vegetables 
and grains 

(continued) 



Table 19 

Preliminary Technology Innovation Network Inventory for Beef Production and 

Byproducts of Slaughter 
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Product Cattle yield 
(kg)a 

Primary uses Known substitutes 

Blood 18   
Thrombin  Blood coagulation, skin 

graft procedures b 
To be investigated 

Fibrin  Surgical repair of 
internal organs b 

To be investigated 

Fibrinolysin  Wound-cleaning agent, 
minor burn treatment b 

To be investigated 

Other 80   
Inedible fats  Soap Vegetable sources 
Bone  Therapeutic hormones, 

enzymes b 
Some substances may be 
produced by recombinant 
cells; others may not have 
ready substitutes b Glands & other 

tissues 
 Serums, vaccines, 

antigens, antitoxins, 
xenotransplants b 

Unaccounted items 
(stomach contents, 
shrinkage, etc.) 

64 N/A N/A 

a Source: Ockerman and Hansen (1999, p. 19) 

b Source: Marti et al. (2011)

Economic Assessment 

As discussed in Chapter 6, the economic input-output assessment failed to 

consider the effect of changing household incomes and spending. In addition, it did not 

consider the employment effects of substituting cultured meat for livestock. The reason 

for this was simply that the economic tables were taken directly from the Bureau of 

Economic Analysis (BEA) and, as published, the tables were open with respect to 
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households. This means that any secondary economic effects induced by gains or losses 

in household income would not be reflected in the tables or models incorporating them. A 

great deal of additional time and effort would have been required to develop a closed 

model based on the information available. The same was true for employment data. 

Employment data is available from the Bureau of Labor Statistics, but significant 

additional time and effort would have been required to build a complete model that 

included employment figures. 

A preferable alternative approach would have been to utilize IMPLAN software 

and datasets. These have a number of benefits over data from the BEA. Primarily, they 

contain not only open and closed models, but employment data as well. IMPLAN also 

compiles detailed tables annually whereas the BEA releases detailed benchmark tables 

only once every five years, and each is typically delayed five years. The IMPLAN 

software and datasets were not utilized for this investigation because the cost exceeded 

the budget available for the project. 

Technological evolution 

The analyses presented in this document were anticipatory in nature: One of the 

most common challenges facing assessments of emerging technologies is the availability 

of a working commercial-scale process on which to base an analytical model. As a result, 

it is less accurate to think of anticipatory assessment results as predictions than as 

scenarios that could be realized as the technology advances. In this way, anticipatory 

analyses can provide insight into the implications of new products, but they should not be 

interpreted as conclusive or definitive. In addition, whereas this assessment was based on 

a hypothetical model of cultured meat production that might be reasonable given existing 
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knowledge, the techniques that ultimately enable the large-scale production of cultured 

meat are likely to deviate significantly and perhaps fundamentally from those in use for 

cell culture today. Moreover, the model will become less realistic the further into the 

future one looks. As depicted in Figure 21, while path dependencies constrain evolution 

in the short-term, complex interactions between natural, human, and technological 

systems become compounded over time, rendering the far future much less predictable 

than the near future. This points to the need to revisit the analyses on an ongoing basis as 

the technology advances and commercial plants are designed. 

 
Figure 21. Path dependency and unpredictability inherent in the evolution of complex 

systems over time. Source: Allenby (2012). 
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Uncertainty 

Any anticipatory technology assessment is inherently fraught with uncertainty. In 

this section, an attempt is made to quantify the degree of uncertainty associated with the 

primary conclusions from each of the three analyses. The estimates listed in Table 20 are 

meant to express the ability of the methods and models used to predict specific outcomes. 

For example, based on the life analysis discussed in Chapter 5, there is a relatively high 

degree of certainty that cultured meat will reduce GHG emissions associated with meat 

production in the short term. In the longer term, however, other factors such as cells 

genetically engineered for rapid growth may require additional energy inputs for active 

cooling, thus increasing GHG emissions once again. In all cases, the certainty estimate 

reflects the ability of cultured meat to influence the trend. For example, the table suggests 

great uncertainty regarding the ability of cultured meat to reduce global hunger in all 

timeframes. This does not preclude the emergence of other effects that do indeed improve 

nourishment among poor populations, but they may have little or nothing to do with 

cultured meat. Thus, uncertainty regarding cultured meat’s ability to address the problem 

remains high.

Table 20 

Estimates of Assessment Uncertainty

Projection Short term  
(< 20 years) 

Medium term  
(20-50 years) 

Long term  
(> 50 years) 

Social trends in the United States    
Cultured meat is commercialized 3 2 1 
Cultured meat is adopted on a large scale 4 2 1 
Human health improves 4 4 4 

(continued) 



Table 20 

Estimates of Assessment Uncertainty 
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Projection Short term  
(< 20 years) 

Medium term  
(20-50 years) 

Long term  
(> 50 years) 

Intra- and inter-group conflict decline 4 4 4 
Animal cruelty diminishes 5 3 3 
Global hunger declines 5 5 5 
Food systems become more secure 5 5 5 
Food becomes increasingly regulated  4 4 4 
Food becomes integrated with other 
systems 

4 3 2 

Environmental factors associated with meat 
production 

   

Industrial energy use increases (live 
weight basis) 

2 3 4 

Global warming potential decreases 2 3 3 
Eutrophication potential decreases 2 2 2 
Land use decreases 2 2 2 
Blue water use increases 3 4 5 

Economic shifts in the United States    
Overall economic contraction 3 5 5 
Contraction in agricultural sectors 2 2 2 
Expansion of biotechnology sectors 2 1 1 

Note. The primary conclusions associated with each assessment are ranked on a scale 

from 1 (most certain) to 5 (least certain) over different time horizons. Excluding the first 

social entry regarding commercialization of cultured meat, all estimates assume that 

cultured meat has been commercialized and is widely manufactured and available in the 

United States.
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Synergies  

Despite the isolated nature of the three analyses performed, taken together, they 

produced more information than each would have by itself. For example, the 

environmental and economic assessments together showed that cultured meat production 

will be a relatively energy-intensive process, but energy will likely make up only a small 

portion of production costs. This may create conflicting environmental and economic 

incentives. 

Additional synergies emerged from the social assessment. Even though 

participants in the workshops were not asked to focus specifically on environmental and 

economic issues (since separate analyses were being done in these areas), important 

points in both of these areas were nonetheless identified that would not have been 

perceived otherwise. Specifically, from an environmental standpoint, participants 

suggested that eliminating cattle grazing from rangelands in the United States could allow 

unchecked growth of vegetation over large areas and result in severe wildfires. This could 

in turn lead to a need for regulation and/or active management of rangelands and a 

consequent public cost. Economically, participants pointed out that foodborne illness 

places a burden on the American economy that could be avoided via cultured meat grown 

in sterile conditions. Neither of these would have been identified via the LCA or EIOA, 

but they constitute potentially significant consequences associated with a technology 

transition. It should be noted that neither of these phenomena were subject to further 

analysis as part of this project, but could be explored in subsequent analysis. From this 

perspective, they further support the value of an iterative approach for technology 

assessments.  
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Potential Benefits of Iteration 

As implied by Figure 5 on page 28, it is impossible to segregate environmental 

changes from social and economic effects in the real world. All human and natural 

systems are interdependent in ways that are difficult, if not impossible, to predict. Thus 

the analyses that made up this investigation are incomplete by their very nature. Yet they 

provided a basic set of technological implications. An additional round of investigations 

aimed at further refining and understanding their results would approximate a more 

comprehensive assessment approach. 

Potential Applications of the Framework 

The approach taken in this study has applications in a number of realms, but this 

discussion will focus on sustainable engineering. The concept of sustainable engineering 

has emerged to characterize an engineering practice that extends beyond the scope of 

traditional boundaries to encompass environmental and social concerns from a local to 

global scale (Allenby, 2012). This means that engineers and managers are charged with 

meeting customer requirements while balancing profitability, concern for natural 

systems, and social equity. In short, sustainable engineering necessitates that social and 

environmental effects of new technologies be assessed prior to commercialization and 

then monitored as they diffuse through diverse populations. However, accepted methods 

for accomplishing these goals are elusive. Before constructing a production plant, firms 

undertake extensive financial analyses. Concurrent environmental and social assessments 

such as those completed as part of this investigation could help them better understand 

economic-environmental tradeoffs as well as how the product might impact diverse 

stakeholders. 
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Chapter 10 

Hypothetical Future Narratives 

Scenarios have to be plausible, but reality is under no such constraints. 

- William Gibson 

As discussed in Chapter 9, the relatively isolated nature of the social, 

environmental, and economic analyses do not accurately reflect the interdependent nature 

of human and natural systems, but the application of an iterative approach can 

approximate a more integrated methodology. Further, while the social assessment 

workshops did cross boundaries to address environmental and economic issues, and their 

relatively unstructured nature was effective for encouraging new ideas to emerge, the 

identified impacts tended to be simple forecasts limited to one area of interest at a time. 

For these reasons, an additional exercise was pursued in order to illustrate how a number 

of seemingly isolated and insignificant phenomena resulting from cultured meat could 

interact and bring about sweeping changes at a global scale. The narratives that appear 

below do not adhere to established scenario planning procedures such as those discussed 

by Amer et al. (2013), Becker (1983), and List (2007), but rather are the product of 

reflection on the part of the researcher and each incorporate a number of the metrics for 

ongoing dialog and management listed in Chapter 8. 

The narratives are not meant to be predictions, or even cautionary tales, but rather 

to illustrate how seemingly implausible – and perhaps undesirable – futures can become 

reality. Further, they are meant to emphasize the power of technology to reshape the 

world as it appears: “From the structure of our economies to the evolution of our 

environment to our ethical standards, a world whose protein supply is significantly 
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provided by factory-grown meat technologies will probably be different in kind from a 

world without these technologies” (Mattick & Allenby, 2013). As such, the stories further 

illustrate the need to maintain a dialog with technologies such as tissue engineering in 

order to better perceive and address unforeseen and unintended consequences as they 

arise. 

Narrative 1: Vital Meat and the Corn Economy 

The first cultured meat plant opened in 2024 near Columbia, Missouri, with very 

little fanfare or press coverage. About the same time, a major fast food chain introduced 

the Om Sandwich™ – a hamburger infused with Omega-3 fatty acids and resveratrol, 

marketed to aging Generation Xers who wanted to preserve cognitive function and 

overall well-being. It cost more and was said to be a bit more dense than the chain’s 

traditional fare, but the public saw value in food that would improve quality of life and 

quickly acquired a taste for so-called “vitality food”. The sandwich became a top seller 

and soon thereafter a competing chain introduced the Essential Taco™ which featured 

edible flowers instead of lettuce and meat that smelled vaguely of cardamom and 

lavender. 

This was followed by various lines of fresh and frozen ready-made meals 

featuring meats tailored to a bewildering array of demographics. These included 

experimental lines of “vital meat” dinners aimed specifically at vegetarians and vegans. 

Despite the early support of the People for the Ethical Treatment of Animals (PETA) for 

cultured meat, many vegetarians and vegans still expressed significant reservations about 

the culturing process: Did it require the input of animal byproducts? How were donor 

animals treated? Most vegan societies gave vital meat their reluctant approval after a long 
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series of Web-based dialogs and, ultimately, the ability to tour production facilities 

according to a predefined schedule.  

Livestock producers tried to compete with vital meat by adding vitamins and 

minerals, but they ultimately lost market share since they could not control the marbling 

the way the bioprinters could, nor could any partner firms produce the same aesthetic 

qualities with sauces that the bioreactors could infuse into the very meat cells themselves. 

The price of animal meat fell and producers began to rely more and more on what were 

previously secondary markets such as pet food, cosmetics and pharmaceuticals – all of 

which became more expensive. Some livestock producers lobbied against vital meat and 

proposed regulating it as a pharmaceutical, rather than a food, since the production 

process resembled pharmaceutical production much more closely than food production. 

These proposals died in committee, however, since many constituents enjoyed vital meat 

and those that did not made arrangements with farm cooperatives to purchase “natural” 

meat. The USDA and FDA, both sympathetic to the livestock producers’ arguments, 

signed a memo of understanding that gave the FDA jurisdiction over vital meat factories. 

They instituted a policy of periodic inspection of production facilities, but generally did 

not interfere with operations unless an illness was reported. 

With fewer animals eating corn and soybeans, the price of agricultural 

commodities dropped quickly, followed by land prices. The Farm Bill, having lapsed in 

the early 2020s, was revived to purchase farms that failed and provide subsidies to the 

growers that remained. Farmers’ enthusiastic supported for these measures was matched 

by those with a stake in vital meat and ethanol since corn was a primary input in both. 

More and more vital meat and ethanol plants sprung up across the Midwest as ethanol 
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was becoming economically competitive with gasoline. Acres of farmland were brought 

back online as the so-called “corn economy” flourished. Meanwhile, even though marine 

dead zones declined in severity due to increased fertilizer application efficiency, demand 

for nitrate and phosphate fertilizer grew, sparking continued concern over fossil fuel use 

and declining global supplies of the latter. 

In most Western nations, at the urging of vital meat marketers, eating animals 

came to be viewed as barbaric. The problem of what to serve at Thanksgiving and 

Christmas never even materialized since vital meat manufacturers paid grocery stores to 

effectively replace commodity turkey and ham with Grateful Table Tom™ roast and 

Mindful Meal Sal™ loaf in the meat case. (Tom the Turkey and Sal the Hog had become 

world-renowned as delicious tissue donors. They could be seen lounging and playing in 

their respective habitats during prearranged factory tours. However, doubt remained as to 

whether they were the actual tissue donors.) Disapproval of the perceived suffering of 

food animals grew and activists began to stage euthanization raids on the remaining 

concentrated animal operations. In an attempt to resolve the conflict, the USDA 

enhanced, and strictly enforced, its animal welfare guidelines. The consequence of this 

fell mostly on the price of meat exports and healthcare (particularly pharmaceuticals). 

Health care was already forcing chronically-ill individuals into bankruptcy. Despite the 

industry’s promises that vital meat “promoted lean vibrancy”, obesity rates continued to 

rise. Many suspected that vital meat contained unhealthy – possibly addictive – additives.  

In contrast to the West, most Asian nations – particularly China – viewed natural 

meat as a status symbol and continued to produce and import meat from around the 

world. This was aided by a botched marketing campaign that inadvertently implied that 
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eating vital meat would make people lonely. As livestock-rearing became more and more 

contentious in Western nations such as the US, Canada, Brazil, and Australia, African 

countries seized the opportunity to set up import tariffs on vital meat and subsidized 

exports of natural beef, pork, and mutton. With their new agriculture-based economy, 

Africa thrived. Its close relationship with China, cemented by a strong trade relationship 

(natural meat for consumer and electronic goods), created a new global alliance. The 

objections of nations committed to eliminating animal suffering set up a Northwest-

Southeast global political divide. It was this alignment that allowed China to secure a 

steady flow of petroleum from the Middle East.  

The United States turned inward, choosing to rely on agriculture as its primary 

source of food and fuel. It began recycling phosphorus from waste streams to reduce its 

dependence on imports that were increasingly being claimed by African livestock. For 

energy, it relied more and more on ethanol and national sources of natural gas. It 

eventually became clear, however, that the Northwestern global region had reached an 

economic plateau. The population had become tired and overweight. It became eclipsed 

by the growth of the Southeast, fueled by a large, industrious population and abundant 

fossil fuel resources. 

Narrative 2: The Global Meat Debates 

Soon after the first prototype factory was constructed in The Netherlands in 2017, 

agricultural companies, livestock producers, and slaughterhouses in the United States 

formed an “anti-bioreactor” coalition and hired a strategic marketing firm. Billboards and 

food magazines were soon dotted with nostalgic pictures of family farms and cowboys 

with captions that read, “This nation was founded on hard work and real food. Support 
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the farms that support the nation. Eat real.” Other variations displayed images of a 

bioreactor and a cow and asked, “Do you know what’s in your hamburger? Eat real.” 

Simultaneously, lobbyists made convincing arguments to Congress that allowing meat to 

be grown in factories (versus farms) would bring swift economic decline, high rural 

unemployment, and rapid urbanization that would quickly overwhelm city 

infrastructures. Controversial but successful legislation reminiscent of Prohibition soon 

banned the nationwide sale, production, importation, and transportation of meat grown by 

artificial means.  

Debates over cultured meat were more heated in Europe where many argued that 

environmental benefits necessitated a shift away from livestock whereas others favored 

preservation of the agrarian landscape and artisan traditions. Arguments suggesting that 

cultured meat was a “gateway process” to genetic design of animals and humans 

ultimately caused the European Union, like the United States, to ban cultured meat. The 

Netherlands, wishing to expand its meat industry without increasing grain imports, 

ultimately seceded from the European Union.  

Given its large population and increasing industrialization and affluence, China 

watched cultured meat research and development efforts in the rest of the world intently 

and began its own nascent production program in 2020. In many ways the process was a 

natural fit for China since the primary feedstock (glucose) could be made from the starch 

in rice, so very few agricultural adaptations were required. Factories sprung up all over 

the landscape and an enterprising government, following established precedent, began to 

subsidize and export its cultured meat. China’s meat became a reliable, inexpensive 
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staple item and nations such as India and many in the Middle East could not get enough 

of it.  

As soon as the first cultured meat plant began production, environmental groups 

began increasing pressure on Brazil to curtail its beef industry in order to limit rain forest 

destruction associated with crop production and cattle grazing. Based on the assumption 

that cultured meat requires fewer agricultural inputs to produce a unit of edible meat, they 

reasoned that a shift away from livestock rearing would slow, or ideally reverse, 

deforestation of the Amazon rainforest. The Brazilian government was cautiously 

optimistic and invested in a pilot plant that used sugar cane as the primary feedstock for 

cultured meat. Realizing that this strategy could divert some sugar away from ethanol 

production (the nation’s primary transportation source), they asked for ongoing updates 

that included quantitative accounting of inputs and outputs and did not actively encourage 

exports. 

Other nations also took up cultured meat production and found specific market 

niches: Japan, for example, was known for its high-quality, bioprinted cuts that were 

almost indistinguishable from natural meat (apparently they cultured bone marrow and 

infused the meat with red blood cells). Japanese exports were expensive and available 

only in high-end restaurants. Australia specialized in cultured meat from wild and 

endangered species and its government had to create a special task force to ensure that 

endangered species were not being killed or otherwise adversely affected. A few specific 

companies advertised meat cultured from human tissue – particularly from celebrities. 

Some famous individuals happily donated tissue and endorsed their products. Due to 

lingering doubt, the American firm 23 and Me began certifying meat products as being 
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genuinely sourced from a specific individual. Less accommodating celebrities had to hire 

additional security to prevent their DNA from being stolen by “gene paparazzi” trying to 

make a living selling unauthorized but viable tissue samples. This practice slowly 

subsided as precedents were set in most countries granting individuals (or the estate in the 

case of the deceased) legal ownership of their genetic material. 

As bioprocess engineering continued to advance, so did the food it produced. In 

most of the world, surf and turf had come to be understood as steak marbled with lobster 

meat. In the US and Europe, deprivation took its toll. Amateur bioengineers set up small-

scale carneries in their basements and garages. Organized crime rings built tunnels under 

the Canadian border specifically for moving meat into the United States. Restaurants 

quietly began purchasing cultured delicacies from the black market and converting to so-

called “eat-easies”. Unfortunately the illegal culture conditions were often unsterile and 

many people died of food poisoning before personal contamination testers were 

developed. Eventually China threatened to recall US government debt if it did not begin 

accepting cultured meat imports and the ban was lifted. The subsequent decline in US 

agricultural sales and land values did precipitate a mild recession, but it was short-lived 

due to a surge in biotech-related economic activity. 

Most of Europe continued to avoid cultured meat and people took pride in the 

sustainable balance that had been achieved between people and their land. Historians, 

noting patterns of history, began to warn that military complacency might leave them 

vulnerable to invasion or colonization by nations hoping to acquire productive 

agricultural land and sources of fresh water. The Netherlands used its revenue from meat 
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exports to expand its military, reinforce its borders, and enter into talks with Belgium to 

secure grain imports in exchange for armaments. 

Meanwhile Chinese pride and prestige soared as it came to be viewed as the 

world’s dinner table. However, problems were already becoming apparent: The need for 

large amounts of sterilized, industrial water taxed the nation’s infrastructure; the growing 

need for supplies of rice to feed the nascent muscle and fat cells diminished availability 

for the poor. Even workers at non-meat factories began to suffer and national productivity 

slowed. China struggled to compete with other industrial nations in the export markets. 

Many people lost their jobs. The hungry and thirsty rural population began to stage riots 

outside cultured meat factories. When farmers collectively agreed not to grow rice for a 

year, the Chinese meat industry finally collapsed. Urban populations returned to farms 

still operated by relatives. Chickens once again became common sights in China as it 

withdrew from the world stage.  

About the same time, Brazil’s monitoring program was beginning to pay off. 

Experts noted that for every kilogram of sugar consumed, about ½ kg of meat was 

produced. Realizing that cultured meat required relatively little supporting agricultural 

land, they discouraged further deforestation by creating tax incentives for sugar 

production on existing farms and construction of new cultured meat plants. As factory 

meat replaced livestock, the government continued to monitor a number of variables 

including national ethanol prices, land prices, energy use, water use, employment, and 

water eutrophication. They noticed a slight upward trend in fossil fuel use, but chose to 

take no action since this was being imported and paid for by the cultured meat 

manufacturers. Analysts commented that, due to its cautious management, cultured meat 
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eventually replaced livestock as one of Brazil’s primary exports with little social or 

economic disruption. 

Narrative 3: Global Adoption 

The first cultured meat plants were built simultaneously in the United States and 

The Netherlands. Canada, China, Brazil, and Australia built their first-generation plants 

soon after. In all cases, the appropriate regulatory bodies were notified well in advance 

and were kept informed regarding process modifications. No regulators pushed for 

mandatory labeling, but due to the substantial intellectual property involved in cultured 

meat production and the premium being charged for the products, branding and sales 

necessitated that cultured meat be labeled anyway – and typically touted unique and 

special features. The first products were somewhat tough and dry but were released with 

great fanfare regarding their low-environmental impact and lack of saturated fat. 

Moreover, the sterile production conditions meant that they could be kept in grocery 

stores and refrigerators much longer which partially made up for their higher prices.  

As quality improved and prices declined, cultured meat products became more 

and more pervasive and livestock numbers in confined operations fell. As the bottom fell 

out of the natural meat market, some producers in the United States found it cheaper to 

set their animals free than to pay for slaughter. Herds of feral cattle now roamed free on 

public lands. In Australia, the last animals were wiped out in the severe drought of 2030. 

Water recycling and desalinization allowed the cultured meat plants to run at normal 

capacity. Twenty years after the first carneries had been built, food animals were 

confined to specialty farms that kept a very low profile and catered to “meat purists”. 

Most people could no longer imagine eating meat from an animal, and most had forgotten 
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how to cook it. Some textbooks now claimed that it was evolving human morals that 

caused a decline in animal consumption. 

The need for grain inputs to meat production fell which resulted in annual 

surpluses. Many people anticipated a surge in population due to the excess food 

production but this never fully materialized. Birth rates remained low, possibly due to 

continued industrialization. On the other hand, death rates also fell due to fewer cases of 

cancer, Alzheimer’s disease, cardiovascular diseases. Some credited these trends to the 

emerging ability to tailor food to specific individuals and others credited less exposure to 

viruses and other pathogens carried by animals.  

The last continent (other than Antarctica) to receive a carnery was Africa. This 

was due to national governments colluding to protect their burgeoning agricultural 

sectors and traditional pastoralists. Once they saw the global price of grains decline 

significantly, however, they set up cultured meat factories to utilize locally-grown corn as 

a feedstock and further protect agriculture-dependent populations. Many African farmers 

complained that removing livestock from the land broke the circle of life and forced them 

to purchase synthetic fertilizers versus the application of naturally-occurring manure, but 

the governments saw no other way to preserve the agriculture that they had worked so 

hard to foster.  

Thirty years after the first carnery was built, the world was a very different place 

in some ways: Less cultivation and few animals allowed landscapes to adapt to different 

purposes– some were managed and some achieved a new natural state; a decline in 

farming and treatment of carnery waste meant that water pollution had declined. Yet 

some familiar problems remained: Fossil fuel consumption continued to increase and, 
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despite the grazing of fewer ruminants, greenhouse gas emissions were still a global 

concern. Fresh water supplies were still limited, but continued to be adequately managed.  
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Chapter 11 

Conclusion 

In July, 2011, a life cycle analysis (LCA) was published comparing cultured meat 

to conventionally-produced meat (Tuomisto & Teixeira de Mattos, 2011). It 

acknowledged significant uncertainty, but found that, “In comparison to conventionally 

produced European meat, cultured meat involves approximately 7-45% lower energy use 

(only poultry has lower energy use), 78-96% lower GHG emissions, 99% lower land use, 

and 82-96% lower water use depending on the product compared” (Tuomisto & Teixeira 

de Mattos, 2011, abstract). These results have been cited extensively, and it is now 

commonly believed that cultured meat will be an environmentally-friendly alternative to 

livestock- rearing. While there is nothing wrong with the results and the subsequent 

acceptance, for a number of reasons discussed below, it would premature to consider the 

environmental discussion closed. 

At the same time, a number of other claims have emerged suggesting that cultured 

meat address global hunger issues (Tuomisto & Roy, 2012), promote human health by 

eliminating harmful contents such as saturated fats and pathogens (Siegelbaum, 2008), 

and alleviate the ethical concerns associated with industrial livestock operations 

(Bartholet, 2011). This assessment acknowledged these claims, but found a great deal of 

uncertainty surrounding each of them. Moreover, it identified other concerns that may 

become more obvious if and when cultured meat becomes ubiquitous. 

Main Findings 

Significant social implications of cultured meat include the possibility that food 

will become more of a design space than it is currently and, consequently, more 
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integrated with existing human institutions. Cultured meat could also lead to greater 

ethical concern for, and possibly extension of sentient rights to, animals. On the other 

hand, divergent views on animal consumption could lead to increased intra- and inter-

group conflict among humans. Finally, over the long term, changing patterns of 

consumption could lead to eventual changes in human physiology.  

The LCA performed by this assessment found that cultured meat will have more 

significant environmental impacts than previously shown. More importantly, it indicated 

that cultured meat will effectively replace a predominantly biological production (muscle 

and fat production) with a predominantly industrial one. This comes with specific 

advantages including a reduced reliance on agricultural feedstocks and the ability to 

better manage input flows and waste streams. At the same time, it comes with challenges 

such as the potential to use industrial energy more intensively and the possible need to 

actively care for vegetation on land that is no longer managed by cattle grazing. 

Economic effects may include a general contraction affecting the agricultural 

sectors most directly. Historical trends suggest that the national impacts will likely be 

temporary but it could facilitate a continuation of existing declines in agricultural value-

added and employment as a percentage of national aggregates. An important area to 

monitor will be the potential loss of byproducts of slaughter as inexpensive inputs for 

household, industrial, and healthcare products. A great deal of uncertainty surrounds the 

availability of substitutes for substances extracted from blood and internal organs, but 

secondary markets for animal byproducts may prove to be the primary markets affected 

in terms of scarcity and rising prices. 
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Future Work 

Anticipated follow-on work associated with this research falls primarily into four 

categories: complementary environmental analyses; a continuing economic assessment of 

cultured meat; larger trends associated with industrialization and innovation; and 

development of a more integrated assessment approach.  

Environmental analyses. As discussed previously, the life cycle analysis did not 

indicate what changes in applied fertilizer such as nitrogen and phosphorus might be 

realized as a result of cultured meat adoption. A shift in meat production technology 

could affect the dynamics of nitrogen and phosphorus in a number of ways, including 

decreasing overall fertilizer demand and pollution associated with animal wastes. A 

material flow analysis (MFA) would be more useful than LCA for determining the direct 

changes in demand for all process inputs including nitrogen and phosphorus. Moreover, a 

technology innovation network assessment (TINA), as described in Chapter 9, would 

provide more insight into the holistic implications of a technology shift, including 

substitutes for animal byproducts.  

Economic assessment. As discussed in Chapter 5, further investigation of a 

transition to cultured meat is possible. This might include the development of a new 

model using the recently-released 2007 benchmark input-output tables from the Bureau 

of Economic Analysis (2014a) or acquisition of IMPLAN national data. Thereafter, a 

closed model could identify the indirect effects of household income as well as 

employment changes associated with the cultured meat commercialization. More subtly, 

an investigation into the anticipated secondary economic impacts of livestock elimination 

would be valuable. These include, as the social assessment implied, an investigation into 
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the economic benefits of reducing food-borne illness as well as the downstream effects of 

eliminating byproducts of slaughter. Specifically, byproducts of slaughter have very little 

economic value compared to meat and therefore do not figure prominently in the input-

output tables. However, it is possible that an economic input-output model could be 

constructed to identify the effects of scarcity and price increases, as well as substitutes for 

the byproducts. 

Larger trends. This technology assessment has suggested that a transition away 

from livestock production and toward cultured meat would be reminiscent of the shift 

from draft animals to automobiles and tractors in the early 20th century. A more extensive 

investigation of this era and other aspects of the Industrial Revolution could provide 

greater insight into what lies ahead as industrial processes continue to replace biological 

ones. For example, the Luddite fallacy refers to the observation that technological 

innovation does not lead to higher unemployment in the overall economy. Could this 

phenomenon be identified using economic input-output analysis? In addition, Jevons’ 

paradox refers to the tendency of increasing technological efficiencies to result in greater 

overall consumption rather than conservation. It implies that more efficient use of corn 

for meat production could lead to greater corn consumption, but more investigation could 

serve to support this hypothesis. 

Integrated assessment. Even though the three analyses performed as part of this 

research were pursued largely independently, there may be opportunities to develop a 

more integrated framework going forward. This would more accurately simulate the 

interdependent nature of real-world systems and possibly serve to highlight less-obvious 

secondary and tertiary effects. For example, as pointed out in one of the workshops, food-
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borne illness, while primarily a human health issue, also has associated economic costs 

including health care expenditures and lost economic productivity. Could an integrated 

assessment methodology, perhaps incorporating complexity principles, be developed that 

would automatically identify such subtle effects?  

Finally, as also indicated by the social assessment, technological transitions are 

likely to have less measurable impacts on the food system such as enhanced food security 

and/or decreased resilience. For example, cultured meat is expected to require smaller 

quantities of agricultural feedstocks per unit output. As a result, it will also require less 

rainwater. This, in turn, could mean that a food system incorporating more cultured meat 

and fewer animals is less vulnerable to drought. Metrics such as vulnerability are difficult 

to quantify, but ongoing research could provide additional insight into these important 

but intangible systemic effects.  

Anticipatory Technology Assessment 

Emerging technologies such as cultured meat may not be viewed as earth systems 

engineering projects – nor even large-scale engineering projects at all. Rather, they are 

more likely to be viewed as isolated corporate production decisions or as simple 

purchasing decisions made by individuals visiting their local grocery stores. As such, 

there is no perceived need for any particular institution to identify or take responsibility 

for the far-reaching consequences of such seemingly minor and innocuous actions. In 

aggregate, however, millions of uncoordinated but nonetheless congruent individual 

decisions can have significant and widespread impacts on coupled human and natural 

systems at a global scale.  
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The investigation discussed in this document represents one attempt to develop 

tools for anticipating the aggregate global impacts of incremental technological decisions 

for purpose of perceiving, and ultimately managing, those impacts. The results presented 

in this document do not represent predictions of the future, but are merely scenarios 

meant for consideration and discussion. Even though significant uncertainty surrounds 

this analysis, anticipatory analyses are nonetheless valuable in highlighting the possible 

implications of, and tradeoffs associated with, emerging technologies as they are 

maturing and before plant development manifests undesirable environmental impacts. It 

is the hope of the researcher that such methodologies continue to be developed, refined, 

and applied. The value of this research lies in its ability to aid human society to respond 

rationally, ethically, and responsibly to the implications of new technologies as they 

emerge. 
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WORKSHOP QUESTIONNAIRE  Participant:  WX-XX 
IRB Approval Date:   1/17/2013 
IRB Protocol #:   1301008706 
 

Part 1 
Please complete before or after the workshop interaction. 

Assuming that cultured meat is not widely adopted anywhere in the world, what changes 
would you expect to see in the United States by 2050? (For example, changes in food 
supply, religion, education, family structures, etc.) 
            

            

            

            

            

            

            

            

            

            

            

            

             

By default, your responses will be associated only with the participant number that 
appears in the upper right hand corner of this page. However, if you are willing to 
provide additional personal information including your profession, employer, 
position/title, or name, please do so here. This information may be repeated in the 
reporting of the research and in associated publications and presentations. 
 
             

(optional) 
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Part 2 
Social Narrative 

Please complete part 2, 3, or 4 (or any combination) after the workshop interaction. 

What social changes might occur in the United States if cultured meat generally replaced 
traditional meat products by 2050? What concerns do you have about such a future? 
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Part 3 
Specific Social Impacts 

Please complete part 2, 3, or 4 (or any combination) after the workshop interaction. 

What do think are the most important changes that could arise in the United States if 
cultured meat generally replaced traditional meat products by 2050? 
 

            

            

            

             

Food 

In terms of food and the food system in general, what changes might occur in the United 
States if cultured meat generally replaced traditional meat products by 2050? Some 
factors to consider might be: 

• Food prices 

• Cuisine diversity 

• Cuisine quality 

• Food consumption patterns 
(quantitative or qualitative 
differences) 

• Vegetarian or vegan diets 

• Food security 

• Food system sustainability 

• Food system resilience: the ability 
of a system to maintain its functions 
and structure in the face of internal 
and external change (e.g., drought 
or rising energy prices) and to 
degrade gracefully when it must 
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Human Health 

What changes in human health and nutrition might occur in the United States if cultured 
meat generally replaced traditional meat products by 2050? Some factors to consider 
might be: 

• Obesity 

• Malnourishment 

• Life expectancy 

• Health expenditure per capita  

• Infectious diseases 

• Food-borne illnesses 

• Cancer rates 

• Mental health 
            

            

            

            

            

            

            

             

Family and Education 

What changes in family dynamics and education might occur in the United States if 
cultured meat generally replaced traditional meat products by 2050? Some factors to 
consider might be: 

• Family size 

• Marriage rate 

• School graduation rate 

• Standardized test scores 
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Ethics and Culture 

What shifts in ethics and culture might occur in the United States if cultured meat 
generally replaced traditional meat products by 2050? Some factors to consider might be 
social trust and social tolerance. 
 
            

            

            

             

Do you think cultured meat could have an impact on the cultural identity of some groups? 
If so, what groups and how could they be impacted? 
            

            

            

             

Demographics and General Statistics 

What changes in population dynamics might occur in the United States if cultured meat 
generally replaced traditional meat products by 2050? Some factors to consider might be: 

• Population and growth rate 

• Median age 

• Fertility rate (births per woman) 

• Immigration 

• Urban population 

• Poverty rate and the poor 

• Income per capita 

• Employment patterns 

• Income equality (GINI index) 

• Gender equity (wages and 
leadership roles) 

• Leisure time 
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Global Impacts 

What global changes might occur if cultured meat generally replaced traditional meat 
products by 2050?  
            

            

            

            

            

            

             

What effects do you think the availability of cultured meat would have on developing 
nations, particularly global poverty and/or hunger? 
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Part 4 
Social Indicators 

Please complete part 2, 3, or 4 (or any combination) after the workshop interaction. 

Please fill in values for factors of interest, indicating whether they will increase or 
decrease, and the importance of change. 
 

Factors of interest Present 
state 

No cultured 
meat in 

2050  
(↑ -- ↓) 

All 
cultured 
meat in 

2050  
(↑ -- ↓) 

Importance of 
change  
1 = very 

important 
2 = important 

3 = trivial 

Food in General     

Food prices, weekly food 
cost of a nutritious diet, 
family of 4 in 2010 (USCB) 

$221    

Cuisine diversity (qualitative 
index) 

100    

Cuisine quality (qualitative 
index) 

100    

Consumption, avg Cal/day 
(USDA) 

2067    

Food insecure households, 
2009 (UCSB) 

14.7%    

Food system resilience 
(index) 

100    

Food system sustainability 
(index) 

100    

Fill in additional factors here     

     

Human Health     

General nutrition (index) 100    

Overweight population, 67%    
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Factors of interest Present 
state 

No cultured 
meat in 

2050  
(↑ -- ↓) 

All 
cultured 
meat in 

2050  
(↑ -- ↓) 

Importance of 
change  
1 = very 

important 
2 = important 

3 = trivial 

2007-2008 (USCB) 

Undernourished population 
(WB) 

5%    

Life expectancy at birth 
(WB) 

78    

Health expenditure per 
capita, 2009 (USCB) 

7,578    

Food-borne illnesses, 2011 
(FoodNet) 

18,964    

Cancer,  new cases, 2010 
(USCB) 

1.53 million    

Suicides (mental health), per 
100,000 persons (WB) 

4.9    

     

Family & Education      

Avg family size, 2011 
(USCB) 

3.25    

Married population, 2011 
(USCB) 

48.3%    

High school completion rate, 
2011 (USCB) 

85.9%    

Avg SAT Critical Reading 
Score, 2011 (IES) 

497    

Avg SAT Math Score, 2011 
(IES) 

514    

Avg SAT Writing Score, 
2011 (IES) 

489    
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Factors of interest Present 
state 

No cultured 
meat in 

2050  
(↑ -- ↓) 

All 
cultured 
meat in 

2050  
(↑ -- ↓) 

Importance of 
change  
1 = very 

important 
2 = important 

3 = trivial 

     

Ethics and culture     

Social trust, people 
expressing high level of trust 
in others, 2008 (OECD) 

49%    

Community tolerance index 
of minority groups, 2010 
(OECD) 

76%    

     

Demographics and General 
Statistics 

    

Population, 2010 (USCB) 308.7 
million 

   

Population growth rate (WB) 0.7%    

Median age, 2010 (USCB) 37.22    

Urban population (WB) 44.7%    

Net migration (WB) 4.95 million    

Fertility rate, births per 
woman (WB) 

2.1    

Poverty rate, 2011 (USCB) 15.9%    

Income equality between rich 
and poor, GINI index, 2011 
(USCB). 0 = perfect 
equality; 1 = maximum 
inequality 

0.475    

Gross national income per 
capita (WB) 

48,620    

Labor force participation 64%    
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Factors of interest Present 
state 

No cultured 
meat in 

2050  
(↑ -- ↓) 

All 
cultured 
meat in 

2050  
(↑ -- ↓) 

Importance of 
change  
1 = very 

important 
2 = important 

3 = trivial 

rate, 2011 (USCB) 

Unemployment rate, Jan 
2013 (BLS) 

7.9%    

Gender equity, women’s 
earnings as % of men’s, 2010 
(BLS) 

81%    

Leisure time, avg hours per 
day, 2011 (BLS) 

5.21    

General happiness, % of 
population reporting they are 
“Very Happy”, 2006 
(NORC) 

32.4%    

     

Global Impacts     

Global poverty headcount 
ratio, 2008 (% of people 
living on < $1.25 per day, 
WB) 

22.4%    

Undernourished population 
(WB) 

12.7%    

     

BLS = US Bureau of Labor Statistics 
IES = Institute of Educational Sciences 

NORC = National Opinion Research Center 
USCB = US Census Bureau 

USDA = US Department of Agriculture 
WB = World Bank 
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NOTES 
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APPENDIX B  

LIFE CYCLE ANALYSIS: SUPPORTING INFORMATION 
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Comparison of this Study with Tuomisto and Teixeira de Mattos (2011) 

Table 21 

Comparison of This Study with Tuomisto & Teixeira de Mattos (2011) 

Model component This study Tuomisto & Teixeira de 
Mattos (2011) 

Feedstocks Glucose, glutamine, soy 
hydrolysate, and basal 
medium 

Cyanobacteria hydrolysate  

Cell respiration Aerobic Anaerobic 
Initial cell density in 
bioreactor 

1x105 cells/mL Not stated 

Maximum cell density 1x107 cells/mL (Yang et al., 
2004) 

~ 1x107 cells/mL 

Mass of one cell 3.5x10-12 kg 
17% dry mass  
7% protein (42% on a dry 
mass basis). 

3.33 x10-12 kg (1x10-12 kg 
dry mass) 
30% dry mass  
19% protein 

Batch duration 7.6 days + 3 day cleaning 
cycle 

60 days 

Facility energy Included 
Size: 717 m2 
Baseline energy demand: 
513.3 MJ/m2/year 

Excluded 

Bioreactor 6x15,000 L stirred-tank 
reactors 
Height: 4.25 m 
Diameter: 2.125 m 
Impeller speed: 0.56 rps 
Filling capacity: 100% 
Weight: not computed 

30x1,000 L Stirred-tank 
reactors 
Height: 1.72 m 
Diameter: 0.86 m 
Impeller speed: 1.67 rps 
Filling capacity: 80% 
Weight: 93 kg 

(continued) 
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Model component This study Tuomisto & Teixeira de 
Mattos (2011) 

Agitation / mixing Included: 449.1 W (29.9 
W/m3) 
Impeller power number: 5.75 

Included: 16 W/m3 

Impeller power number: 
2.14 

Aeration / sparging Included: 4.5 kg O2/MJ 
(Xylem, 2012) 

Included: 0.05 vvm 

Sterilization and 
deionization of culture 
water 

Included. Sterilization 
included via continuous 
heating to 140°C. 

Sterilization included via 
autoclaving 

Bioreactor cleaning-in-
place  

Included Excluded 

Culture temperature 37°C 37°C 
Energy to maintain cell 
culture temperature 

Excluded Excluded 

Capital equipment Excluded Included 
Allocation basis for 
livestock impacts (for 
comparison purposes) 

Live weight  Edible weight 

 

Inventories for Primary Feedstock Production 

Glucose and Corn Steep Liquor via Corn Wet Milling 

Glucose is a white crystalline solid (Silla, 2003) that has a number of applications 

including ethanol production. It is also a common source of carbon for cell cultures. 

Glucose can be obtained from a number of sources including fruits, sugarcane, and sugar 

beets; however, in the United States, it is primarily produced by the hydrolysis of corn 

starch (Renouf, Wegener, & Nielsen, 2008; Silla, 2003). Corn starch, in turn, is an output 

of both dry and wet milling of corn. According to Dale and Tyner (2006), “when 
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producing ethanol, dry milling has a higher efficiency and lower capital and operating 

costs. For this reason, most of the ethanol plants within the U.S. are dry milling 

operations” (p. i). However, wet milling is a more versatile process that can produce a 

wider variety of products including corn starch, corn syrup (Dale & Tyner, 2006), and 

corn steep liquor. Because corn steep liquor is an input to glutamine production (Rose, 

1978) which is also required for cultured meat production, it will be assumed that both 

corn starch and corn steep liquor are produced via corn wet milling for the purposes of 

this life cycle model. The process of corn wet milling is shown in Figure 22. Starch may 

be converted to glucose via an additional hydrolysis step. 

 
Figure 22. Schematic diagram of the corn wet milling process. Adapted from Renouf et 

al. (2008) and van Zeist et al. (2012). Corn steep liquor and the bran/fiber are often 

combined and sold as corn gluten feed, but they may remain separate. 

Corn  1500 
Dry matter 1275 

Corn steep liquor 173 
Dry matter 83 

Starch  1000 
Dry matter 920 

Gluten meal 80 
Dry matter 72 

Cleaning and 
steeping 

Corn oil 

Corn gluten feed 268 
Dry matter 232 

Germ  105 
Dry matter 97 

Dewatering 

Germ meal 

Fiber/bran 158 
Dry matter 150 

Degermination 

Grinding and 
screening 

Starch-gluten 
separation 

Dewatering 

Drying 

Drying 
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Except as otherwise noted, life cycle inventory data for this process were obtained 

from Renouf et al. (2008). This model is believed to represent a consistent and 

conservative estimate of corn wet milling impacts. However, this source indicates that the 

energy required to produce 1000 kg of glucose (including hydrolysis) is 3115 MJ. This is 

rather low compared to Galitsky, Worrell, & Ruth (2003), who estimate final energy 

inputs associated with 1000 kg of starch (excluding hydrolysis) to be about 4734 MJ of 

electricity and fuel plus about 1839 MJ of steam.  

Table 22 

Inventory for Glucose Production

Substance Units Quantity   Impact allocation 

Inputs     
Harvested corn kg 1500   
Energy      

Electricity MJ 934   
Water (for electricity 
production) 

L 1972   

Natural gas MJ 2181   
Chemicals     

Lime (CaO) kg 0.3   
Sulphuric acid (100%) kg 0.45   
Sulphur dioxide kg 3.06   
Urea g 208   
Sodium hydroxide (50%) g 282   
Sodium chloride g 65   
Cyclohexane g 55   
Chlorine g 12   

Water m3 4.9   

(continued) 
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Substance Units Quantity   Impact allocation 

Outputs     
Glucose kg 1000  64.0% 
Co-products     

Bran/fiber kg 158 a 13.5% 
Corn steep liquor kg 173 a 5.8% 
Corn gluten meal kg 80  7.3% 
Corn germ kg 105 a 9.4% 

Air emissions     
Particulate (PM10) g 0.7   

Water emissions     
BOD5 g 0.2   
Chlorides g 118.8   
Sulphate g 0.2   
Suspended matter g 0.7   

Note. Unless otherwise stated, inventory values were taken from Renouf et al. (2008). 

Impacts were allocated to the products of wet corn milling on a gross chemical energy 

basis computed from dry mass and energy contents of corn products listed in Table 23.  

a Computed from Renouf et al. (2008) and van Zeist et al. (2012) 
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Table 23 

Energy Content of Cultured Meat Inputs

Substance Dry matter (%)  Gross energy 
(mcal/kg) 

 

Glucose 92 a 3.75 b 

Corn gluten meal 90 a 5.467 c 
Corn steep liquor 48 a 3.79 d 

Corn bran 95 a 4.847 c 
Corn germ 92 a 5.224 c 
Soybean meal (as fed basis)   4.084 e 

Soybean oil   9.4 f 

Note. Energy values are given on a dry mass basis except as noted. 

a Source: van Zeist et al. (2012) 

b Source: Food and Agriculture Organization of the United Nations (2002) 

c Source: Anderson, Kerr, Weber, Ziemer, and Shurson (2012) 

d Source: Chovatiya, Bhatt, and Shah (2010) 

e Source: Pelletier, Pirog, et al. (2010) 

f Source: Almeida and Godoi (2011) 

Synthetic Amino Acids 

L-glutamine is a non-essential amino acid synthesized in the body predominantly 

by muscle cells; however, it must be added to ex vivo cellular cultures (Hu, 2012). As of 

2001, approximately 2000 tons of glutamine were produced worldwide for use in 

pharmaceuticals and health foods, entirely through fermentation of glucose and ammonia 

and/or ammonium sulfate by glutamic bacteria (Kusumoto, 2001). The process for 

industrial production is given in Figure 23. 
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Figure 23. Diagram of l-glutamine production. Based on Kusumoto (2001). 

A published life cycle analysis for glutamine could not be located. Therefore, the 

inventory was assembled from an article reporting experimental results as well as a life 

cycle analysis of threonine, another amino acid produced via fermentation. Most material 

flows were derived from a cost optimization study published by Li et al. (2007). Using a 

combination of methods, the author attempted to minimize overall glutamine production 

costs by varying primary inputs (glucose and ammonium sulfate) in order to maximize 

glutamine-to-byproduct ratios. Data for the inventory, presented in Table 24, is based on 

the most economical optimal medium (OM-2) scenario. Energy and additional material 

flows were taken from a life cycle analysis of lysine, threonine, and methionine 

conducted by Marinussen and Kool (2010). Threonine was chosen as the model for 

glutamine production since, similar to glutamine, it is crystallized via ion-exchange resins 

Centrifugation 
Membrane filtration 
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Ion exchange resin 
treatment 
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(Hermann, 2003; Marinussen & Kool, 2010) and both have similar amino acid to glucose 

yields of 0.35 (Li et al., 2007; Marinussen & Kool, 2010). Uncertainty regarding the 

differences between threonine and glutamine production remains, however. The life cycle 

analysis for threonine (Marinussen & Kool, 2010) reflects the typical process of 

acidification after the cell separation phase: hydrochloric acid or sulfuric acid is added 

“to ease adsorption of the amino acid to the ion exchange resins” (Hermann, 2003, p. 

167). However, acids are not specifically mentioned in the industrial production model 

published by Li et al. (2007) and fermentation of glutamine occurs at a weakly acidic pH 

of 5.6. It will therefore be assumed that no additional acid is added to the fermentation 

liquor and that a cationic ion exchange resin is used. This assumption should be revisited 

as more information becomes available.

Table 24 

Inventory for Glutamine Production 

Substance Units Quantity  

Inputs   a 
Corynebacterium glutamicum G32, ATCC 13032  -- a 

Stirred-tank fermentors of 100 m3  -- a 
Glucose g 2881.3 a 
Ammonium sulfate g 2044.8 a 
Corn steep liquor g 253.5 a 
Monopotassium phosphate, KH2PO4 † g 52.8 a 
Magnesium sulfate heptahydrate, MgSO4·7H2O g 29.6 a 
Manganese sulfate monohydrate, MnSO4·H2O † g 0.1 a 
Zinc sulfate heptahydrate, ZnSO4·7H2O † g 0.1 a 
Water for process (fermentation/cleaning) g 21033.0 b 

(continued) 
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Substance Units Quantity  

Water for cooling g 8961.3 c 
46% Caustic (NaOH) for cleaning-in-place g 200 c 
Resin g 228 d 
Energy    

Steam for fermentation, evaporation, and drying kg 20 c 
Electricity for fermentation, evaporation, and drying kWh 12.05 c 

Outputs    
Glutamine g 1000.0 a 
Glutamate g 76.7 a 

Note. All impacts were allocated to glutamine production. 

a OM-2 results from Li et al. (2007). 

b Computed from Li et al. (2007). It is assumed that purification and sterilization are 

done in the facility. 

c Threonine inventory from Marinussen & Kool (2010). 

d Computed from Marinussen & Kool (2010) and Dow Chemical (2000). 

† Compound unavailable in SimaPro databases. 
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Table 25 

Inventory for Lysine Production

Substance Units Quantity 

Inputs   
Glucose syrup (70% dry matter) kg 3500 
Corn steep liquor (48% dry matter) kg 300 
Ammonia kg 155 
Ammonium sulfate kg 95 
Sulfuric acid (96%) kg 320 
Phosphoric acid (85% w/w) kg 25 
Vitamins, amino acids (as glutamine) kg 4 
Salts (as magnesium sulphate) kg 5 
Antifoam Liters 10† 
Water for process (fermentation/cleaning) m3 4.6 
Water for cooling (fermentation/evaporation) m3 68 
46% Caustic (NaOH) for cleaning-in-place kg 4.5 
Nitric acid (67%) for cleaning kg 1.5 
Energy   

Steam for fermentation, evaporation, and drying tonne 2.3 
Electricity for fermentation, evaporation, and drying kWh 3935 

Outputs   
Lysine.HCL kg 1000 
Effluent waste water (low BOD assumed to be 10 mg/L) m3 4 

Note. All impacts allocated to lysine. Source: Marinussen & Kool (2010). 

† Compound unavailable in SimaPro databases 
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Table 26 

Inventory for Threonine Production 

Substance Units Quantity 

Inputs   
Glucose syrup (100% dry matter) kg 3000 
Corn steep liquor (48% dry matter) kg 1000 
Ammonia kg 700 
Sulfuric acid (96%) kg 1500 
Phosphoric acid kg 4 
Vitamins, amino acids, salts, antibiotics (as glutamine) kg 5 
Water for process (fermentation/cleaning) m3 120 
Water for cooling (fermentation/evaporation) m3 9 
46% Caustic (NaOH) for cleaning-in-place kg 200 
Nitric acid (67%) for cleaning kg 250 
Resin L 300 
Energy   

Steam for fermentation, evaporation, and drying tonne 20 
Electricity for fermentation, evaporation, and drying kWh 12,050 

Outputs   
L-Threonine kg 1000 

Note. All impacts allocated to threonine. Source: Marinussen & Kool (2010). 

Soy Hydrolysate 

Protein hydrolysates serve as a nitrogen source for biotechnology applications and 

provide “vitamins, minerals and unknown growth factors resulting in higher yields and 

productivities” (Pasupuleti & Braun, 2010, pp. 11-12). For this reason, hydrolysates from 

a number of plant sources including soy, rice, yeast, and wheat have been investigated as 

replacements for animal serum, but results have been mixed (Chun et al., 2007; Girón-

Calle et al., 2008; Sung et al., 2004). While yeast hydrolysates have been shown to 
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increase therapeutic protein production (Sung et al., 2004) and soy hydrolysates have 

increased cell biomass growth (Chun et al., 2007), both fail to achieve performance equal 

to media containing fetal bovine serum. Nonetheless, it will be assumed that soy 

hydrolysate is added to the cultured meat broth at the rate of 5 g/L to supplement the 

synthetic amino acids in the basal medium. This concentration has been shown to 

produce the highest viable cell densities (Chun et al., 2007; Sung et al., 2004). 

Hydrolysis of proteins may be accomplished via acids, alkalis, or enzymes, but 

enzymatic hydrolysis using selective proteases is becoming the more common method 

because the reaction takes place in milder conditions, is safer with few or no undesirable 

side products, and is easier to control than other methods, providing a more uniform 

product (Marinova, Cuc, & Tchorbanov, 2008; Pasupuleti & Braun, 2010; Sun, 2011). 

Hydrolysis of soy protein typically begins with soybean meal (discussed in the next 

section) or soy protein isolate to which enzymes are added (Sun, 2011). Due to their large 

scale availability, enzymes used for industrial hydrolysis are typically of plant or 

microbial origin such as bromelain, papain or ficin (Sun, 2011); however, animal-sourced 

enzymes such as pancreatin, trypsin, and pepsin could also be applied to soy protein 

(Pasupuleti & Braun, 2010; Sun, 2011). Depending on the desired products, mild acid 

(0.2 N HCl) might be added to the slurry, and it might be pressurized or subjected to 

ultrasonic waves (Sun, 2011). Petersen (1981) described a two-step process by which soy 

white flakes (similar in composition to soybean meal) are first washed in an acid bath to 

produce soy protein concentrate. The concentrate is then diluted with water to an 8% 

substrate concentration and enzyme is added to achieve a 2% enzyme:substrate ratio. The 

mixture is heated to 55°C while NaOH is added to maintain a pH of 8. Once the desired 
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degree of hydrolysis has been achieved, the enzyme is inactivated by the addition of acid 

to lower the pH to 4. Centrifugation is then used to separate the hydrolysate from the 

unconverted soy protein to achieve an overall hydrolysate yield of approximately 70%. 

No life cycle analysis of soy protein hydrolysis could be located, so the process 

described above was used to estimate the LCA of soy hydrolysate. However, due to 

significant uncertainties in the process details, only the soybean meal, enzyme, water, and 

energy inputs associated with heating will be included. Therefore, because this estimate 

ignores the acid, base, centrifugation, cleaning, and facilities, it underestimates the full 

environmental impact of hydrolysis. This abbreviated life cycle inventory for soy 

hydrolysate is shown in Table 27. The inventory for the enzyme is shown in Table 28. 

Table 27 

Inventory for Soy Hydrolysate Production

Substance Units Quantity 

Inputs   
Soybean meal g 1428.6 
Chemicals   

Enzyme g 28.6 
NaOH g Unknown 
HCl g Unknown  

Water for process  g 17,857 
Energy for heating water (brewery fuel mix) MJ 2.24 

Outputs   
Soy hydrolysate g 1000 
Air emissions  Unknown 
Water emissions  Unknown 

Note. Computed from Petersen (1981). 
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Table 28 

Inventory for Enzyme Production

Substance Sub-compartment Units Quantity 

Inputs    
Energy, from coal resource/in ground MJ 52.1 
Transformation, from pasture and meadow  resource/land m2 0.723 
Transformation, to industrial area resource/land m2 0.723 
Water, unspecified natural origin/m3 resource/in ground m3 0.0209 

Outputs    
Enzyme, Cellulase, Novozyme Celluclast  kg 1 
Air emissions    

Carbon dioxide, fossil air/unspecified kg 4.09 
Ethene air/unspecified kg 0.002 
Sulfur dioxide air/unspecified kg 0.00937 

Soil emissions    
Phosphate soil/unspecified kg 0.0153 

Note. Adapted from Inman (2013). 
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Soybean Meal 

Soybean meal is a product of soybean milling and is essentially the flour that 

remains after the soybeans are dehulled and defatted (see Figure 24). The life cycle 

inventory for this process was obtained from Dalgaard et al. (2008) and shown in Table 

29. 

 
Figure 24. Diagram of the soybean milling process. Based on Keller (n.d.). Note that the 

values given in this figure were derived from a different source, and therefore differ from, 

those given in Table 29. Product values given here are for information purposes only and 

were not used in the life cycle inventory.   

Soybeans   1000 
Oil   190 ± 10 
Moisture   108 ± 5 
Meats, hulls, impurities 702 ± 14 

Hulls  74 ± 5 
Moisture  7 ± 0.5 
Oil  2 ± 0.2 

Mill feed 
Soybean flakes 

Cleaning, cracking, dehulling 
Impurities 15 ± 5 

Conditioning 
and flaking 

Crude soybean oil  184 ± 10 

Solvent (hexane) 
extraction 

Soybean Meal  715 ± 10 
Oil   4 ± 0.1 
Moisture   89 ± 5.2 
Dry matter  622 ± 12 

Cracked Soybeans  911 ± 8 
Oil   188 ± 10 
Moisture   101 ± 5 
Dry matter  622 ± 12 
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Table 29 

Inventory for Soybean Meal Production

Substance Units Quantity Impact allocation 

Inputs    
Harvested soybeans kg 1000  
Energy     

Transport to mill (28 t lorry) tkm 500  
Electricity (natural gas) kWh 12  
Heat (oil) MJ 145  
Heat (gas) MJ 282  

Chemicals    
Hexane g 400  

Outputs    
Soybean meal (87.5% dry matter, 3.2% oil) kg 826.45 70% 
Co-products   30% 

Soybean oil kg 157.85  
Air emissions    

Hexane g 200  
Water emissions    

BOD5, biological oxygen demand g 0.017  
COD, chemical oxygen demand g 0.061  
Nitrate g 0.004  

Note. Source: Dalgaard et al. (2008). Impacts were allocated to the products of soybean 

milling on a gross chemical energy basis based on energy contents of soy products listed 

in Table 23.  
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Basal Medium 

Basal media are widely available commercially and contain a number of 

ingredients necessary for cell growth including amino acids, vitamins, and salts. The 

CHO cell metabolic data used in this study was obtained in the presence of Iscove’s 

Modified Dulbecco’s Medium (IMDM) (Sung et al., 2004). While commercial-scale 

cultured meat production is likely to use a medium designed and optimized specifically 

for skeletal muscle cells, IMDM supplemented as noted in Sung et al. (2004) serves as a 

reasonable estimate of the compounds that will be necessary for cell proliferation.  

The standard formulation for Iscove’s Modified Dulbecco’s Medium (IMDM) 

includes glucose and glutamine. For the purposes of this LCA, those are removed from 

the IMDM inventory since quantities for both substances are computed based on specific 

cellular uptake rate. Because inventories are not available for all amino acids listed, and 

synthetic amino acids are generally produced via fermentation, threonine and lysine in 

equal portions will be used as proxies for the spectrum of amino acids listed. Other 

compounds that do not exist in SimaPro databases are ignored. Thus, even though the 

concentration of IMDM would actually be 20,686 mg/L, for the purposes of this study, 

the components comprise only 6,747 mg/L including supplementary components.
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Table 30 

Inventory of Iscove’s Modified Dulbecco’s Medium (IMDM)

Components IMDM 
Concentration 

(mg/L) 

Supplementary 
components (mg/L) 

a 

Quantity in 
inventory 

(mg/L) 

Amino Acids    
Glycine 30  30 b 
L-Alanine 25 12.5 37.5 b 
L-Arginine hydrochloride 84  84 b 
L-Asparagine (freebase) 25  25 b 
L-Aspartic acid 30  30 b 
L-Cystine 2HCl 91.4  91.4 b 
L-Glutamic Acid 75  75 b 
L-Glutamine 584  -- 
L-Histidine hydrochloride-
H2O 

42  42 b 

L-Isoleucine 105  105 b 
L-Leucine 105 105 210 b 
L-Lysine hydrochloride 146 146 292 b 
L-Methionine 30  30 b 
L-Phenylalanine 66  66 b 
L-Proline 40  40 b 
L-Serine 42  42 b 
L-Threonine 95  95 b 
L-Tryptophan 16 16 32 b 
L-Tyrosine disodium salt 104  104 b 
L-Valine 94  94 b 

(continued) 
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Components IMDM 
Concentration 

(mg/L) 

Supplementary 
components (mg/L) 

a 

Quantity in 
inventory 

(mg/L) 

Vitamins    
Biotin 0.013  † 
Choline chloride 4  † 
D-Calcium pantothenate 4  † 
Folic Acid 4  † 
Niacinamide 4  † 
Pyridoxal hydrochloride 4  † 
Riboflavin 0.4  † 
Thiamine hydrochloride 4  † 
Vitamin B12 0.013  † 
i-Inositol 7.2  † 

Inorganic salts    
Calcium Chloride (CaCl2) 
(anhyd.) 

165  165 

Magnesium Sulfate (MgSO4) 
(anhyd.) 

97.67  97.67 

Potassium Chloride (KCl) 330  330 
Potassium Nitrate (KNO3) 0.076  0.076 
Sodium Bicarbonate 
(NaHCO3) 

3024  † 

Sodium Chloride (NaCl) 4500  4500 
Copper(II) Chloride (CuCl2)  0.0025 † 

Sodium Phosphate Monobasic 
(NaH2PO4-H2O) 

125  125 

Sodium Selenite (Na2SeO3-
5H20) 

0.0173 0.017 † 

(continued) 
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Components IMDM 
Concentration 

(mg/L) 

Supplementary 
components 

(mg/L) a 

Quantity in 
inventory 

(mg/L) 

Ferric Nitrate (Fe(NO3)3-
9H2O) 

 2 † 

Ferric Citrate  2 † 
Zinc Sulfate Heptahydrate, 
(ZnSO4·7H2O) 

 1 1 

Other components    
Recombinant Human Insulin  5 † 
Ethanolamine  3 3 
Phosphatidylcholine  5 † 
Pluronic F68  1,000 † 
Putrescine  1 † 
D-Glucose (Dextrose) 4500  -- 
HEPES 5958  † 
Phenol Red 15  † 
Sodium Pyruvate 110  † 

Total concentration 20,686  6,747 
a  (Sung et al., 2004) 

b  Excluding glutamine, which is modeled separately, the basal medium utilized by Sung et 

al. (2004) contained 1524.9 mg/L of amino acids. For modeling purposes it was assumed 

that half of these amino acids were produced following a process similar to lysine and 

the other half threonine. 

† Compound unavailable in SimaPro databases 
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Inventories for Crop Production 

Table 31 

Inventory for Corn and Soybean Production

Substance Corn Soybeans 

Inputs   
Fertilizer (kg)   

N 145 4.2 
P2O5 51 11.0 
K2O 65 17.3 

Sulfur 4.2  
Lime 321  
Energy    

Diesel (l) 43.0 31.8 
Gas (l) 11.2 10.2 
LPG (l) 67.3  
Electricity (kWh) 41.5  

Herb/Pesticides (kg active ingredients) 2.8 1.3 
Seed (kg) 216 144 
Green (rain) water (m3) a 5585 4992 
Blue (ground and surface) water (m3) a 674 294 

Outputs   
Yield (tonnes) 10.7 3.2 
Nitrous Oxide (kg) 4.7 1.1 
Ammonia (kg) 21.8 8.6 
Nitric Oxide (kg) 3.1 0.1 
Carbon Dioxide (kg) b 142.7 1.8 

Note. Based on Pelletier, Pirog, et al. (2010). 

a Source of water inputs: Mekonnen & Hoekstra (2010).  

b From lime and urea fraction of N fertilizer as per IPCC (2006). 



 

196 

Bioreactor Energy Calculations 

Aeration / Oxygenation 

Based on oxygen uptake rate given in Table 5 and equation (4) on page 56, the 

total oxygen requirement for a batch of cultured meat can be determined to be 60.2 kg. 

Standard aeration efficiencies (SAE) range from 2-8 kg O2/kWh for diffused systems 

(Xylem, 2012). Assuming an efficiency of 4.5 kg O2/kWh, then the power required to 

deliver 60.2 kg of oxygen the bioreactor can be computed as follows: 

 𝐸𝑠𝑝 = 𝑘𝑔 𝑂2
𝑆𝐴𝐸

= 60.2  𝑘𝑔 𝑂2
�4.5 𝑘𝑔 𝑂2

𝑘𝑊ℎ �� 𝑘𝑊ℎ
3.6 𝑀𝐽�

= 48.2 𝑀𝐽 (8) 

Mixing / Agitation 

Dimensionless numbers are often used to aid in bioreactor design. One of these is 

the Reynolds number (abbreviated “Re”), which is “the ratio of inertial to viscous forces” 

(Taghavi, Zadghaffari, Moghaddas, & Moghaddas, 2011, p. 282). In the bioreactor 

reactor design given herein, 

 𝑅𝑒 = 𝜌𝑏𝑁𝐷2

𝜇
= �993.1𝑘𝑔/𝑚3�(0.56/𝑠)(0.85𝑚)2

0.653𝑥10−3 𝑁𝑠/𝑚2 = 617,228 (9) 

where ρb is the density of the culture medium (assumed to be equivalent to water), N is 

the impeller angular velocity in revolutions per second, D is the impeller diameter, and µ 

is the fluid dynamic viscosity (also assumed to be that of water). Any Reynolds number 

greater than 10,000 in a stirred vessel is said to be turbulent.  

Another dimensionless number is referred to as the power number (Np) which has 

a well-accepted correlation with the power (P) imparted in the bioreactor by the impeller. 

Power number, Np, is given by: 

 𝑁𝑝 = 𝑃
𝜌𝑁3𝐷5

 (10) 
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This number is a function of the type of impeller and is essentially constant for 

turbulent fluids (Re > 1x104). Assuming the bioreactor includes a Rushton impeller with 

a power number of 5.75 (Fusion Fluid Equipment, 2012), then the power and energy 

imparted to the impeller during one batch cycle are computed as follows. 

 𝑃𝑎𝑔 = 𝑁𝑝𝜌𝑏𝑁3𝐷5 = 5.75 �993.1𝑘𝑔
𝑚3 � �0.56

𝑠
�
3

(0.85 𝑚)5 

 = 449.1 𝑘𝑔𝑚2

𝑠3
= 449.1 𝑊 (11) 

 𝐸𝑎𝑔 = 𝑃𝑎𝑔(𝑏𝑎𝑡𝑐ℎ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

 = 449.1 𝑊(181.2 ℎ𝑜𝑢𝑟𝑠) �3600 𝑠
ℎ𝑜𝑢𝑟

� � 𝑀𝐽
1𝑥10 6𝐽

� = 293 M𝐽 (12) 

Heating Water 

Animal cells proliferate well at 37°C. However, the culture medium must be 

sterilized at the beginning of each batch cycle. It assumed that 50% of waste heat 

associated with cooling the sterilized medium is captured in a step that preheats the new, 

incoming media to 67.5°C. Given this scenario, energy must be expended to heat the 

culture medium from 67.5 to 140°C. Assuming each batch requires a total of 15,000 L of 

water, then the energy required to heat the water is 4,545 MJ per batch: 

 𝐸𝐻2𝑂 = 𝐶𝑣𝑉∆𝑇 = 4179.6 𝐽
𝐿𝐾

(15,000 𝐿)(140 − 67.5𝐾) � 𝑀𝐽
1𝑥10 6𝐽

� 

 = 4,545 M𝐽 (13) 

A similar computation is performed to estimate the energy required to heat 15,000 L of 

water from 25 to 50°C for the bioreactor cleaning cycle. 
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Calculation of Facility Floorspace 

In the absence of a full-scale working carnery, the brewing industry was used as a 

model for estimating the required floorspace required for a cultured meat plant. However, 

it is impossible to equate cultured meat to beer production directly: Not only are they 

different substances with different densities, but they also have different batch cycle 

times. However, both products require a common commodity: space and time in a 

bioreactor, expressed here as “bioreactor liter-hours”. Therefore, if it takes 10 days 

(excluding aging) (MillerCoors LLC, n.d.) and 1 liter of bioreactor volume to produce 1 

liter of beer, then it takes 240 bioreactor liter-hours to make 1 liter of beer. It follows that, 

if a brewery can ferment 248,000,000 gallons (“Packaging is as golden as MillerCoors’ 

brews,” 2011) or 939 million liters of beer per year, the brewery has a capacity of 225 

billion bioreactor liter-hours per year: 

 1 𝑙𝑖𝑡𝑒𝑟 𝑜𝑓 𝑏𝑒𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 10 𝑑𝑎𝑦𝑠 ∗ 24 ℎ𝑜𝑢𝑟𝑠
𝑑𝑎𝑦

= 240 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (14) 

 939 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟𝑠 𝑏𝑒𝑒𝑟 �240 𝑙𝑖𝑡𝑒𝑟−ℎ𝑜𝑢𝑟𝑠
𝑙𝑖𝑡𝑒𝑟𝑠 𝑜𝑓 𝑏𝑒𝑒𝑟

� = 225,000,000,000 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (15) 

If the same brewery takes up 2.3 million square feet (213,677 m2) (“Packaging is 

as golden as MillerCoors’ brews,” 2011), then the facility can support 98,000 bioreactor 

liter-hours per square foot. Similarly, the carnery model offers 756 million liter-hours per 

year: 

 6 ∗ 15,000𝐿 �50 𝑤𝑒𝑒𝑘𝑠
𝑦𝑒𝑎𝑟

∗ 7 𝑑𝑎𝑦𝑠
𝑤𝑒𝑒𝑘

∗ 24 ℎ𝑜𝑢𝑟𝑠
𝑑𝑎𝑦

� = 756 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (16) 

Again assuming the industrial brewery model, the carnery would need 7,717 ft2 (717 m2) 

of floor space: 
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 756 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑎𝑟𝑛𝑒𝑟𝑦 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 � 2,300,000 𝑏𝑟𝑒𝑤𝑒𝑟𝑦 𝑓𝑡2

225,000,000,000 𝑏𝑟𝑒𝑤𝑒𝑟𝑦 𝑙𝑖𝑡𝑒𝑟−ℎ𝑜𝑢𝑟𝑠
�  

 = 7717 𝑓𝑡2 (17) 

For reference, a typical 15,000 L bioreactor would have a diameter of about 2 meters (6.5 

feet) so the six bioreactors would actually take up only about 200 ft2.  

Based on this assumption and the life cycle analysis results presented in Chapter 

5, the energy consumption of a cultured meat plant can be computed. As shown in Figure 

25, if feedstocks were processed offsite and ready to add to the bioreactor upon arrival, 

then the cultured meat plant would require significantly less energy than a pharmaceutical 

plant and brewery per unit of floorspace (dark purple). Depending on how similar 

cultured meat production will be to pharmaceutical and beer production, this could 

indicate that the carnery model developed herein understates the energy that will be 

required. However, assuming that breweries prepare the feedstock, or wort, that provides 

nutrients to the yeast themselves, then they could be said to perform some of the 

feedstock processing onsite. For this reason, the light purple portion of the cultured meat 

plant column was added to indicate the energy per facility square foot required to prepare 

the basal medium and other inputs. Even with this significant addition, it still appears that 

the energy required for cultured meat production may be underestimated.  
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Figure 25. Energy consumption by building type. Data for the cultured meat plant was 

computed from the results presented in Chapter 5. Dark purple indicates direct energy 

required by the model plant including baseline facility energy, cleaning-in-place, 

sterilization and deionization of water, agitation, and aeration of the bioreactors; light 

purple represents energy required for processing of cultured meat feedstocks. Source for 

other building types: D&R International Ltd. (2012).  
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Cell Information 

Table 32 

Physical Characteristics of a Typical Animal Cell

Characteristic Value Units 

Cell mass 3500 pg 
Cell dry mass 600 pg 
Protein mass 250 pg 
Cell water mass 2900 pg 
Cell volume 4000 µm3 

Note. Source: Hu (2012). 

Conversion Factors

Table 33 

Conversion Factors

Quantity  Conversion factor Units 

Unit conversion factors 
Energy    

1 BTU = 0.00029307 kWh 
1 BTU = 0.001055056 MJ 
1 kWh = 3412.14163 BTU 
1 kWh = 3.6 MJ 

1 MJ = 238.85 kcal 
Area    

1 acre = 4046.86 m2 
1 m2 = 10.7639 ft2 
1 ft2 = 0.092903 m2 

(continued) 
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Conversion Factors 
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Quantity  Conversion factor Units 

Volume    
1 acre-foot = 1233481.84 liters 

1 beer barrel = 119.24 liters 
1 m3  = 1000 liters 
1 gal  = 3.78541 liters 

Mass    
1 lb = 0.453592 kg 

Physical characteristics 
Water   
Density of water at 37.8C = 993.112  
Energy content of fuels   
Diesel: 1 gallon = 130500 BTU 
Natural gas: 1 ft3 = 930 BTU 
Coal: 1 short ton = 20140000 BTU 
Steam: 1 lb = 1078.9 BTU 
Oil: 1 toe = 41.7 GJ 
Energy content of biomass   
Beef (live weight): 1 kg = 4.63 MJ 
Pork (live weight: 1 kg = 4.63 MJ 
Poultry (live weight: 1 kg = 4.63 MJ 
Cultured meat: 1 kg = 6.57 MJ 
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Detailed Results 

Table 34 

Environmental Impact Comparison with Prior LCA, Beef, Pork, and Poultry Production

Impact category Units Beef a Pork b Poultry c  Cultured 
meat d  

This 
study  

Industrial energy use MJ 38.2 
(88.8) 

9.7 
(17.4) 

15.0 
(26.7) 

31.8 53.7 

Global warming 
potential (100a) 

kg CO2 eq 14.8 
(34.4) 

2.5 
(4.4) 

1.4  
(2.5) 

2.2 3.9 

Eutrophication 
potential 

g PO4 eq 104 
(241.9) 

15.9 
(28.4) 

3.9 
(7.0) 

N/A 12.0 

Land use m2a 44.7e 

(104.0) 
9.6e 

(17.1) 
4.5f  

(8.0) 
0.2 2.5 

Acidification potential g SO2 eq N/A N/A N/A N/A 37.3 
Human toxicity (100a) kg 1,4-DB 

eq 
N/A N/A N/A N/A 0.36 

Ozone layer depletion 
(steady state) 

µg CFC-
11 eq 

N/A N/A N/A N/A 214 

Note. Functional unit is 1 kg cultured meat and1 kg live weight of beef, pork, and poultry. 

(Impacts on edible weight basis are shown in parentheses.) 

a Feedlot (Pelletier, Pirog, et al., 2010) 

b Commodity High Profit (Pelletier, Lammers, et al., 2010) 

c (Pelletier, 2008) 

d California (Tuomisto & Teixeira de Mattos, 2011) 

e Estimated based on data provided in the source. Consists of land occupation values for 

beef and feed production values for pork. 

f Source: Williams, Audsley & Sandars (2006) converted to live weight basis. 
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Table 35 

Energy Return on Investment (EROI)

Type Beef 
(Feedlot)  

Pork (Commodity 
High Profit) 

Poultry This study  

Industrial EROI 5.2% a 26.7% b 17.3% d 12%g 
Human-edible EROI 4.2% a 7.4% b 15%e 54% g 
Gross chemical EROI 2.0% c 13.1% c 16% f 54% g 

Note. Industrial EROI is the human edible energy return on industrial energy investment; 

human-edible EROI is the human-edible energy return on human-edible caloric energy 

investment; and gross chemical EROI is the gross chemical energy return on gross 

chemical energy input (Pelletier, Pirog, et al., 2010). 

a “Assumes 43% yield of boneless meat per live-weight kg produced and an energy 

density of 4.63 MJ/kg of raw, boneless beef.” (Pelletier, Pirog, et al., 2010) 

b “Assumes 56% yield of boneless meat per live-weight kg produced and an energy 

density of 4.63 MJ/kg of raw, boneless pork.” (Pelletier, Lammers, et al., 2010) 

c Assumes 100% yield of boneless meat per live-weight kg produced and an energy 

density of 4.63 MJ/kg of raw, boneless pork.” (Pelletier, Lammers, et al., 2010) 

d Computed based on data given in source. Assumes 56% of live weight poultry is edible 

and an energy density of 4.63 MJ/kg (Pelletier, 2008) 

e Source: Smil (2013, p. 140). Assumes all poultry feed is human-edible. 

f Computed from Smil (2013, p. 140). Assumes an energy density of 4.63 MJ/kg. 

g Assumes 100% edible yield of cultured meat and an energy density of 6.56 MJ/kg 

based on Savinell & Palsson (1992) and Pagan (n.d.). Human-edible and gross 

chemical inputs consist of glucose and soybean meal used at all stages of production. 
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Table 36 

Water Use Comparison with Prior LCA, and US Beef, Pork, and Poultry Production

Water disposition Units Beef a  Pork a  Poultry a  Cultured 
meat in 

Californiab  

This 
study 

Water, industrial meat 
production  

L 2008 
(4670) 

2969b 

(5303) 
1424 

(2542) 
371 815 

Green water  1,792 2,548 1,285  558 
Blue water  216 421 139 371 257 

Water, weighted average 
meat production 

L 8177 3553b 1421   

Green water  7,858 3,071 1,283   
Blue water  319 483 139   

Note. Functional unit is 1 kg of cultured meat and live weight for agricultural meat. 

(Impacts on an edible weight basis are shown in parentheses.) All values include green 

(rainwater) and blue water (surface and groundwater) but exclude grey water (freshwater 

required to assimilate pollutants) (Mekonnen & Hoekstra, 2012). 

a (Mekonnen & Hoekstra, 2012) 

b (Tuomisto & Teixeira de Mattos, 2011) 
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Table 37 

Environmental Impact for Cultured Meat by Product Stage

Impact 
category 

Units Feedstock 
produc-

tion: 
Agricul-

ture 

Feedstock 
produc-

tion: 
Proces-

sing 

Material 
transport 

Cell 
culti-

vation & 
waste 

products 

Facility Clean-
ing  

Industrial 
energy use 

MJ 0.66 16.5 1.99 13.7 5.60 15.3 

Global 
warming 
potential 
(100a) 

kg 
CO2 
eq 

0.17 1.17 0.15 1.0 0.41 1.07 

Eutrophication 
potential 

g 
PO4 
eq 

0.90 0.55 0.13 9.9 0.11 0.46 

Land 
occupation 

m2a 2.47 0.01 -- -- 0.02 0.01 

Acidification 
potential 

g 
SO2 
eq 

3.20 11.3 0.75 8.86 3.67 9.54 

Human 
toxicity (100a) 

kg 
1,4-
DB 
eq 

0.02 0.11 0.01 0.08 0.03 0.11 

Ozone layer 
depletion 
(steady state) 

µg 
CFC-
11 eq 

11.9 5.03 -- 23.8 1.84 172 

Water use L 633 55.6 -- 33.2 1.18 92.3 

Note. Functional unit is 1 kg of cultured meat. 
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Table 38 

Livestock Dressed and Edible Portions

Portion Beef Pork Poultry 

Dressed weight as % of live weight a 60% 75% 75% 
Edible weight as % of live weight b 43% 56% 56% 
a Based on 2010 data from National Agricultural Statistics Service of the USDA (n.d.). 

b Based on livestock LCA sources (Pelletier, Lammers, et al., 2010; Pelletier, Pirog, et 

al., 2010; Pelletier, 2008). 

 
Heat Transfer Analysis 

The optimum temperature for CHO cells is 37°C and “variations of 1°C can 

reduce cell growth, viability, and/or product production” (Flickinger, 2013, p. 874). The 

total heat flux associated with a large-scale cell culture in a stirred-tank bioreactor can be 

expressed as follows: 

 𝑄𝑎𝑐𝑐 = 𝑄𝑚𝑒𝑡 − 𝑄𝑠𝑒𝑛 + 𝑄𝑠𝑝 + 𝑄𝑎𝑔 − 𝑄𝑒𝑣𝑎𝑝 − 𝑄𝑒𝑥 (18) 

where Qmet represents heat produced by cell metabolism, Qsen is sensible enthalpy gain by 

flow streams (outlet-inlet), Qag is heat generated by power input from agitation, Qsp is 

heat generated by sparging, Qevap is heat removed by evaporation, and Qex is heat 

transferred by the heat exchanger  (Flickinger, 2013, p. 875). 
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Figure 26. Heat transfer in a stirred-tank bioreactor. Adapted from Flickinger (2013) and 

(Auschulz, 2009). 

Metabolic Heat Flux 

While metabolic heat flux can vary significantly by cell type and environmental 

conditions, the specific heat flux for recombinant CHO cells of ~23 pW/cell will be used 

here (Flickinger, 2013, p. 875).  

 𝑄𝑚𝑒𝑡 = 23𝑝𝑊
𝑐𝑒𝑙𝑙

∙ 𝑋 (19) 

where X is the cell density. 

Sensible Enthalpy Gain 

The primary substance added to the bioreactor during growth is assumed to be air 

for oxygenation. The heat transfer associated with this flow is 
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 𝑄𝑠𝑒𝑛 = 𝑀𝐶𝑝𝜌𝑔�𝑇𝑏 − 𝑇𝑔� (20) 

where M is the mass flow rate, Cp is the heat capacity of the air (1,012 J/kgK), ρg is the 

density of the air entering the bioreactor (1.6735 kg/m3 at 1.41 atm), Tb is the temperature 

of the bioreactor (37°C or 310.15K) and Tg is the air (25°C or 298.15K).  

 𝑄𝑠𝑒𝑛 = 𝑀𝐶𝑝𝜌𝑔�𝑇𝑏 − 𝑇𝑔� =  𝑀�1012 𝐽
𝑘𝑔𝐾

� �1.6735𝑘𝑔
𝑚3 � (12𝐾) (21) 

Aeration 

Power input due to sparging is given in Flickinger (2013, p. 876) as  

 𝑃𝑠𝑝 = 𝑀𝜌𝑔 �
𝑅𝑇𝑏
𝑀𝑊

𝑙𝑛 𝑝1
𝑝2

+ 𝛼 𝑢𝐺𝑜
2

2
� (22) 

where R is the ideal gas constant, MW is the molecular weight of air (28.97 g/mol), p1 is 

the pressure at the sparger (1.41 atm), p2 is the pressure at the top of the bioreactor (1 

atm), and 𝛼 𝑢𝐺𝑜
2

2
, which represents the jet kinetic energy developed at the sparger holes, is 

small and can be neglected for well-designed spargers (Flickinger, 2013). 

 𝑃𝑠𝑝 = 𝑀�1.6735𝑘𝑔
𝑚3 � �

�8.3144621𝑚
3 𝑃𝑎

𝐾 𝑚𝑜𝑙�(310.15𝐾)
0.02897𝑘𝑔

𝑚𝑜𝑙

𝑙𝑛 1.41
1
� (23) 

Agitation 

Power input due to agitation is given by (Flickinger, 2013): 

 𝑃𝑎𝑔 = 𝑁𝑝𝜌𝑏𝑁3𝐷5 (24) 

where Np is the impeller power number which is essentially constant for turbulent flow. 

ρb is the density of the culture medium, N is the impeller rotation rate (0.56 rev/s), and D 

is the impeller diameter (0.85 m). Assuming a Rushton impeller with a power number of 

5.75 (Fusion Fluid Equipment, 2012),  
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 𝑃𝑎𝑔 = 𝑁𝑝𝜌𝑏𝑁3𝐷5 = 5.75 �993.1𝑘𝑔
𝑚3 � �0.56

𝑠
�
3

(0.85 𝑚)5 

 = 449.1 𝑘𝑔𝑚2

𝑠3
= 449.1 𝑊 (25) 

Evaporation 

For heat transfer due to evaporation, it will be assumed that the compressed air 

entering the bioreactor is dry. This will be the case if it has been sterilized (Riet & 

Tramper, 1991). The outflowing air will be fully saturated, however (Riet & Tramper, 

1991). 

 𝑄𝑒𝑣𝑎𝑝 = 𝑀𝐶𝑣 �
𝑝𝑖𝑛
𝑝𝑜𝑢𝑡

𝜌𝑣,𝑜𝑢𝑡 − 𝜌𝑣,𝑖𝑛� (26) 

where Cv is the heat of vaporization (2260 kJ/kg), ρv,out is the equilibrium water vapor 

concentration at bioreactor temperature and exit pressure (0.04 kg/m3), ρv,out is the water 

vapor concentration of the inflowing air (assumed to be 0). 

 𝑄𝑒𝑣𝑎𝑝 = 𝑀�2,260,000 𝐽
𝑘𝑔

� �1.4 �0.04 𝑘𝑔
𝑚3�� (27) 

Bioreactor Walls 

Heat loss through the walls of the bioreactor is given by (Riet & Tramper, 1991) 

as 

 𝑄𝑒𝑥 = 𝑈𝑏𝐴𝑏(𝑇𝑏 − 𝑇𝑎) (28) 

where Ub is the heat transfer coefficient of the bioreactor walls (assumed to be 2.5 

W/m2/C, but Nienow [2012] suggests that typical values are 2000-3000 W/m2/°C), Ab is 

the bioreactor surface area (= πTH+πT2/4 = 31.9 m2), Tb is the bioreactor temperature 

(37°C), and Ta is the ambient temperature outside the bioreactor (25°C). 

 𝑄𝑒𝑥 = 2.5𝑊
𝑚2𝐶

(31.9𝑚2)(12℃) = 958 𝑊 (29) 
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Overall Heat Flux 

The overall heat flux can then be computed for each of the above factors. For 

simplicity, all values have been plotted over the course of a typical batch process and 

presented here. The largest drivers of heat flux are the cellular metabolic processes and 

the transfer through the walls of the bioreactor. While it is likely that some active heating 

and cooling will need to be applied to the bioreactor, achieving an overall heat transfer 

coefficient through the walls of the bioreactor of 2.5 W/m2/C would maintain a culture 

temperature between about 35°C and 39°C (± 2°C of the optimal temperature). For this 

reason, it will be assumed that, once the water has been heated to 37°C initially, no 

further energy for active heating or cooling will be required. 

 ∆𝑇 = 𝑄𝑡𝑜𝑡𝑎𝑙
𝑉𝑐𝑣

= 𝑄𝑡𝑜𝑡𝑎𝑙
15,000 𝐿�4179.6 𝐽

𝐿−𝐾�
 (30) 

where cv is the volumetric specific heat capacity of water, assumed to be 4.1796 J/(cm3-

K) or 4179.6 J/(L-K) at 25°C and V is the volume of liquid. This gives an increase in 

temperature per unit second. 
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Figure 27. Heat fluxes associated with cultured meat batch production process. 

 
Figure 28. Cell concentration and expected temperature profile of the cultured meat 

production batch process. 
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APPENDIX C  

ECONOMIC ANALYSIS: SUPPORTING INFORMATION 
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Overview of Economic Input-Output Assessment 

Economic input-output assessment (EIOA), sometimes known as interindustry 

analysis, was developed by Wassily Leontief in the late 1930s and later earned him the 

1973 Nobel Prize in Economic Science in (Miller & Blair, 1985). It is a widely-applied 

method of economic analysis, even having been extended to model energy consumption, 

environmental impacts, industrial employment, as well as inter-regional trade flows 

(Miller & Blair, 1985). 

At its core, however, are tables of economic data relating industrial sectors by 

their flows of production and consumption (Miller & Blair, 1985). That is, during normal 

economic activity, each industrial sector requires primary and intermediate inputs of 

goods and services from other sectors. Their output may then be sold to still other 

intervening sectors before ultimately being purchased by end customers. Economic input-

output models aggregate the links between industries in order to quantify and elucidate 

the interdependencies within the economy as a whole. A brief introduction is presented 

below but more comprehensive overviews can be found in Leontief (1986) and Miller 

and Blair (1985).  

Table 39 shows economic flows between sectors in a very simple economy. Total 

economic output (Xi) from each sector includes both intermediate flows to other sectors 

(xij) and the final products and services sold to end customers (Yi). 
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Table 39 

Hypothetical Economic Flows. Values could be measured in terms of units of output or 

currency units. 

  To purchasing sectors Final 
Demand 

Total Output 

  Sector 1 
(xi1) 

Sector 2 
(xi2) 

(Yi) (Xi) 

From selling 
sectors 

Sector 1 150 500 350 1000 
Sector 2 200 100 1700 2000 

Wages paid to labor 1000 2000 3150 6150 
 

If there are n sectors in the economy, then total sector output (Xi) can be written 

in equation form as 

 𝑥𝑖1 + 𝑥𝑖2 + ⋯+ 𝑥𝑖𝑛 + 𝑌𝑖 = 𝑋𝑖 (31) 

If we let 

 𝑎𝑖𝑗 = 𝑥𝑖𝑗
𝑋𝑗

 (32) 

then a table of structural coefficients can be computed based on Table 39. 

Table 40 

Coefficient Matrix of the Hypothetical Economy.  

  To purchasing sectors 

  Sector 1 Sector 2 
From selling 
sectors 

Sector 1 
𝑎11 =

150
1000

= 0.15 𝑎12 =
500

2000
= 0.25 

Sector 2 𝑎21 =
200

1000
= 0.20 𝑎22 =

100
2000

= 0.05 
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Solving equation (32) for xij �𝑥𝑖𝑗 = 𝑎𝑖𝑗𝑋𝑗� and substituting into equation (31) 

gives the following: 

𝑎11𝑋1 + 𝑎12𝑋2 + ⋯+ 𝑎1𝑛𝑋𝑛 + 𝑌1 = 𝑋1 

𝑎21𝑋1 + 𝑎22𝑋2 + ⋯+ 𝑎2𝑛𝑋𝑛 + 𝑌2 = 𝑋2 

 ⋮ (33) 

𝑎𝑛1𝑋1 + 𝑎𝑛2𝑋2 + ⋯+ 𝑎𝑛𝑛𝑋𝑛 + 𝑌𝑛 = 𝑋𝑛 

Rearranging gives 

(1 − 𝑎11)𝑋1 − 𝑎12𝑋2 − ⋯− 𝑎1𝑛𝑋𝑛 = 𝑌1 

−𝑎21𝑋1 + (1 − 𝑎22)𝑋2 −⋯− 𝑎2𝑛𝑋𝑛 = 𝑌2 

 ⋮ (34) 

−𝑎𝑛1𝑋1 − 𝑎𝑛2𝑋2 − ⋯+ (1 − 𝑎𝑛𝑛)𝑋𝑛 = 𝑌𝑛 

 

This may be written in matrix form as 

 ��

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

� − �

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

�� �

𝑋1
𝑋2
⋮
𝑋𝑛

� = �

𝑌1
𝑌2
⋮
𝑌𝑛

� (35) 

or more simply 

 (𝐼 − 𝐴)𝑋 = 𝑌 (36) 

where  

𝐼 = �

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

� ,𝐴 = �

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

� ,𝑋 = �

𝑋1
𝑋2
⋮
𝑋𝑛

� ,𝑎𝑛𝑑 𝑌 = �

𝑌1
𝑌2
⋮
𝑌𝑛

� 
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Finally, equation (36) can be solved for X gives the following form: 

 𝑋 = (𝐼 − 𝐴)−1𝑌 (37) 

This is a very useful result because once the elements of (𝐼 − 𝐴)−1, often referred to as 

the Leontief inverse, are known, then total output of each sector can be determined under 

various demand conditions. 

Once constructed, these economic input-output models facilitate the exploration 

of “what if” scenarios whereby a hypothetical condition is allowed to propagate through 

the economy at large. It lends itself well to a variety of studies including policy analysis 

and technology assessment. Economic input-output scenarios have historically predicted 

a number of surprising trends. For example, due to a high demand for steel in the 1945 

construction and durable-goods industries, it was shown that “a flourishing postwar 

economy would require even more steel than the peak of the war effort” (Leontief, 1986, 

p. 13).  

Calculation of Facility Floorspace 

In the absence of a full-scale working carnery, the brewing industry was used as a 

model for estimating the required floorspace required for a cultured meat plant. It is 

impossible to equate cultured meat to beer production directly: Not only are they 

different substances with different densities, but they also have different batch cycle 

times. However, both products require a common commodity: space and time in a 

bioreactor, expressed here as “bioreactor liter-hours”. If it takes 10 days (excluding 

aging) (MillerCoors LLC, n.d.) and 1 liter of bioreactor volume to produce 1 liter of beer, 

then it takes 240 bioreactor liter-hours to make 1 liter of beer. It follows that, if a brewery 

can ferment 248,000,000 gallons (“Packaging is as golden as MillerCoors’ brews,” 2011) 
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or 939 million liters of beer per year, the brewery has a capacity of 225 billion bioreactor 

liter-hours per year: 

 1 𝑙𝑖𝑡𝑒𝑟 𝑜𝑓 𝑏𝑒𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 10 𝑑𝑎𝑦𝑠 ∗ 24 ℎ𝑜𝑢𝑟𝑠
𝑑𝑎𝑦

= 240 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (38) 

 939 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟𝑠 𝑏𝑒𝑒𝑟 �240 𝑙𝑖𝑡𝑒𝑟−ℎ𝑜𝑢𝑟𝑠
𝑙𝑖𝑡𝑒𝑟𝑠 𝑜𝑓 𝑏𝑒𝑒𝑟

� 

 = 225,000,000,000 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (39) 

If the same brewery takes up 2.3 million square feet (213,677 m2) (“Packaging is 

as golden as MillerCoors’ brews,” 2011), then the facility can support 98,000 bioreactor 

liter-hours per square foot.  

Similarly, the carnery model offers 756 million liter-hours per year: 

 6 ∗ 15,000𝐿 �50 𝑤𝑒𝑒𝑘𝑠
𝑦𝑒𝑎𝑟

∗ 7 𝑑𝑎𝑦𝑠
𝑤𝑒𝑒𝑘

∗ 24 ℎ𝑜𝑢𝑟𝑠
𝑑𝑎𝑦

� = 756 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (40) 

Again assuming the industrial brewery model, the carnery would need 7,717 ft2 (717 m2) 

of floor space: 

 756 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑎𝑟𝑛𝑒𝑟𝑦 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 � 2,300,000 𝑏𝑟𝑒𝑤𝑒𝑟𝑦 𝑓𝑡2

225,000,000,000 𝑏𝑟𝑒𝑤𝑒𝑟𝑦 𝑙𝑖𝑡𝑒𝑟−ℎ𝑜𝑢𝑟𝑠
�  

 = 7717 𝑓𝑡2 (41) 

For reference, a typical 15,000 L bioreactor would have a diameter of about 2 meters (6.5 

feet) so the six bioreactors would actually take up only about 200 ft2.  

Calculation of Employee Requirements 

The brewing industry fermented 200,406,545 barrels or 23.9 billion liters of beer 

in 2002 (Beer Institute, 2013). Following a procedure similar to the floorspace 

calculation, the industry therefore has a capacity of 5.7 trillion bioreactor liter-hours per 

year: 
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 1 𝑙𝑖𝑡𝑒𝑟 𝑜𝑓 𝑏𝑒𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 10 𝑑𝑎𝑦𝑠 ∗ 24 ℎ𝑜𝑢𝑟𝑠
𝑑𝑎𝑦

= 240 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (42) 

 23.9 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟𝑠 𝑏𝑒𝑒𝑟 �240 𝑙𝑖𝑡𝑒𝑟−ℎ𝑜𝑢𝑟𝑠
𝑙𝑖𝑡𝑒𝑟𝑠 𝑜𝑓 𝑏𝑒𝑒𝑟

� = 5.7 𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 (43) 

If breweries employ 28,347 people (United States Census Bureau, n.d.-b), then the 

facility requires 4.94x10-9 employees per liter-hour. Similarly, the carnery model offers 

756 million liter-hours per year (see above section); therefore, again assuming the 

industrial brewery model, the carnery would need 3.74 employees: 

 756 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑎𝑟𝑛𝑒𝑟𝑦 𝑙𝑖𝑡𝑒𝑟 − ℎ𝑜𝑢𝑟𝑠 � 28,347 𝑏𝑟𝑒𝑤𝑒𝑟𝑦 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠
5.7 𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛 𝑏𝑟𝑒𝑤𝑒𝑟𝑦 𝑙𝑖𝑡𝑒𝑟−ℎ𝑜𝑢𝑟𝑠

� 

 = 3.74 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 (44) 

The carnery produces 103,000 kg of cultured meat per year. Therefore 0.000036 

employees are required per kg. 
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Summary of Cultured Meat Production Model for Economic Analysis 

Table 41 

Summary of Hypothetical Cultured Meat Production Model for the Economic Analysis 

System component Description 

Facility  Floorspace: 717 m2 
Baseline energy demand: 513.3 MJ/m2/year 

Employees 3.74 
Type of bioreactor 6x15,000 L stirred-tank reactors 

Height: 4.25 m 
Diameter: 2.125 m 
Impeller speed: 0.56 rps 
Filling capacity: 100% 

Initial cell density in bioreactor 1x105 cells/mL 
Maximum cell density 1x107 cells/mL (Yang et al., 2004) 
Batch duration 7.6 days + 3 day cleaning cycle 
Feedstocks Glucose, synthetic amino acids, soy hydrolysate, and 

basal medium 
Water for culture 15,000 L, deionized and sterilized via heating from 25 

to 140°C with partial recovery of waste heat 
Agitation / mixing power 
requirement 

449.1 W, impeller power number: 5.75 

Aeration / sparging efficiency 4.5 kg O2/MJ (Xylem, 2012) 
Culture temperature 37°C (energy to maintain cell culture temperature is 

excluded from this analysis) 
Bioreactor cleaning-in-place 30,000 L deionized water + 0.5 M sodium hydroxide 

solution, heated from 25 to 50°C 
Capital equipment Excluded 
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