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ABSTRACT 

The main objective of this study is to investigate the behaviour and applications of strain 

hardening cement composites (SHCC). Application of SHCC for use in slabs of common 

configurations was studied and design procedures are prepared by employing yield line 

theory and integrating it with simplified tri-linear model developed in Arizona State 

University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property 

of moment-curvature response for SHCC was used to derive the relationship between 

applied load and deflection in a two-step process involving the limit state analysis and 

kinematically admissible displacements. For application of SHCC in structures such as 

shear walls, tensile and shear properties are necessary for design. Lot of research has 

already been done to study the tensile properties and therefore shear property study was 

undertaken to prepare a design guide.  Shear response of textile reinforced concrete was 

investigated based on picture frame shear test method. The effects of orientation, volume 

of cement paste per layer, planar cross-section and volume fraction of textiles were 

investigated. Pultrusion was used for the production of textile reinforced concrete. It is an 

automated set-up with low equipment cost which provides uniform production and 

smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement 

technique of digital image correlation (DIC) was used to conduct the image analysis on 

the shear samples by means of tracking the displacement field through comparison 

between the reference image and deformed images. DIC successfully obtained full-field 

strain distribution, displacement and strain versus time responses, demonstrated the 

bonding mechanism from perspective of strain field, and gave a relation between shear 

angle and shear strain.  
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1. CHAPTER 1 - INTRODUCTION 

1.1 Overview 

The civil engineering profession recognizes the reality of limited natural 

resources, the desire for sustainable development and the need for conservative 

consumption of resources. On a global level, there is a great demand of building material 

to sustain the exponential growth of infrastructure [1]. Concrete being one of the most 

consumed building materials; a lot of research is going on in increasing its durability, 

designing light weight structural members, developing building systems with low cement 

and utilizing renewable energy resources. Lowering the cost of building materials is also 

one of the key aspects of sustainable infrastructure especially in the developing nations. 

Plain concrete has always been known to be a brittle material with weak tension 

capacities.  Fabric based cement composites aid in improving tensile strength and 

stiffness along with introduction of ductility in the infrastructure systems and come under 

the broad category of strain hardening or strain softening cement composites [ 2 ].  

Therefore strain hardening cement composites (SHCC) such as textile reinforced concrete 

have become integral research topic. Applications of SHCC material has been further 

extended to panels and shear elements due to their improved performance taking into 

account serviceability and sustainability. This study is majorly based on evaluating the 

performance of strain hardening cement composites for improving durability and 

ductility. 
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1.1.1 Strain Hardening Cement Composite 

Strain hardening materials are well suited for applications that eliminate conventional 

reinforcement or for the structures in seismic regions where high ductility is desired.  In 

addition, these materials offer fatigue and impact resistance and are attractive for use in 

industrial structures, highways, bridges, earthquake, hurricane, and high wind loading 

conditions. The design and implementation of these systems requires one to acknowledge 

and use the strain-hardening response that is attributed to multiple cracking. Propagation 

of initial crack in strain hardening composites is resisted by bridging mechanism.  Since a 

substantial amount of energy is required to further extend existing cracks, secondary 

cracks form. Single crack localization is therefore shifted to multiple distributed cracking 

mechanisms, leading to macroscopic pseudo-strain hardening behaviors. The dominant 

toughening mechanisms in these systems are attributed to matrix cracking, ply 

delamination, and crack deflection mechanisms as studied by means of fluorescent 

microscopy and scanning electron microscopy.   

1.1.2 Textile Reinforced Concrete as a Strain Hardening Cement Composite 

Reinforcement is commonly combined with plain concrete to enhance its tensile strength 

[3]. There are various types of materials and forms used for reinforcing, but the most 

common is round steel bars with ribs. Reinforced concrete structures with steel are 

vulnerable to corrosion attack if the protective medium provided by concrete is 

weakened. In an attempt to improve the durability, other reinforcement options such as 

stainless steel bars, epoxy-coated steel bars, fiber-reinforced polymer (FRP) bars, steel 

welded-wire fabric, and fibers (steel and synthetic) have been explored.  A recent 
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innovative attempt to improve the sustainability of reinforced concrete is the 

development of Textile Reinforced Concrete (TRC). It was discovered that TRC can be 

utilized to build slender, lightweight, modular and freeform structures and eliminate the 

risk of corrosion. TRC provides high strength in compression and tension and is proven 

to be a suitable option for the strengthening of existing structures. This composite 

material is fabricated using a fine-grained concrete matrix reinforced by multi-axial 

textile fabrics. The underlying concept of TRC is based on a combination of traditionally 

used reinforcement bars and FRC, wherein the shortcomings of both reinforcement 

methods, namely durability and design control, are overcome. TRC is explored as a 

sustainable solution because its design minimizes the use of binder material such as 

concrete, which when made of Portland cement is one of the most pollutant and energy 

consuming building materials used in the construction industry. Focusing on the 

reduction and replacement of energy-intensive materials like Portland cement not only 

helps to reduce the extraction of natural resources but also to reduce the high energy 

demands of the production process. The use of textile reinforcement made from non-

corrosive materials, such as carbon and glass can reduce the required concrete material by 

up to 85%. Typical mechanical properties of the textile reinforced concrete measured 

using uniaxial tensile, flexural, and shear tests indicate that the tensile strength of around 

25 MPa, and strain capacity of 1-8% [4].  The fracture toughness as compared to the 

conventional FRC materials is increased by as much as two orders of magnitude. For 

Textile Reinforced Concrete applications, bi- or multi-axial 2D and 3D textile meshes 

can be used as reinforcement. For a simple bi-axial case, the mesh comprises two groups 

of textile fiber yarns (threads), warp (0°) and weft (90°), interwoven perpendicularly to 
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each other. Yarns are composed of multiple single fibers of continuous length, also 

designed as filaments; grouping of continuous fibers is primarily done to obtain the 

desired thickness of yarn. Fabrication methods related to textile meshes are abundant and 

can be tailored to the needs of nearly any given application. In the case of TRC, an open-

grid structure and displacement stability are favored in order to allow for adequate 

penetration of a cementitious matrix, whilst ensuring a relatively constant woven mesh 

structure in composite form.  

   
Figure 1.1 Textile Reinforced Concrete 

1.1.3 Materials 

The choice of fiber material for use in TRC is based on various factors such as material 

properties, corrosion and temperature resistance, bond quality, demand/production cost 

and even environmental impact. In terms of mechanical behavior, tensile strength, 

breaking elongation and modulus of elasticity superior to those related to the 

cementitious matrix is essential. The reinforcement ratio and placement of the textile 

reinforcement will also have a great impact on the composite behavior of a TRC member. 

Fiber materials which have generally been used and explored in TRC include, but are not 

limited to: alkali-resistant glass (AR-glass), carbon, basalt, aramid, polyvinyl-alcohol 

(PVA) with polyvinyl chloride (PVC) coating. In this thesis, only AR-glass has been 

explored, as it is the most readily available and applied material. 
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Glass fibers are chemical fibers derived from inorganic non-metallic raw materials. The 

raw materials needed to produce AR-glass are primarily silica sand (SiO2) and the 

addition of zircon (ZrO2) to provide superior alkali resistance, which are proportioned 

through a batching process. These raw materials undergo a melting process between 1250 

to 1350°C, wherein molten glass is yielded. Fiberization of the molten glass takes places 

afterwards, meaning that fibers are produced through a wet-spinning process. The glass 

fiber filaments are then sized to primarily protect them against damage during packaging 

and finishing. Coating is often applied during sizing to obtain a specified surface wetting 

and bonding of the filaments. AR Glass used in this study had a tensile strength in range 

of 1270 – 2450 MPa and modulus of elasticity of 78 MPa. 

 

1.2 Simplified Strain-hardening Cement composites (SHCC) Model  

In strain hardening cement composites fabric systems are used with an efficient interface 

bond which enhances load transfer across a matrix crack. If fiber volume fraction is 

higher than a critical level, the entire load can be transferred through the fiber, and 

subsequent cracking of the matrix can take place leading to distributed cracking and 

significant strain capacity. Effect of distributed cracking on the stiffness degradation of 

the composite under tensile loading is then used to represent the reduction in the modulus 

and stiffness of the sample in the tension, allowing for the strain capacity to be included 

in the design procedure.  Using damage function modeling, the post crack stiffness is 

calibrated by predicting the ultimate strength of composites under tensile and 

compressive loading and the results are utilized to correlate the distributed cracking in 

strain hardening composites with various fiber types and contents under tension [5]. 
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Application of strain compatibility analysis to a new constitutive model requires layer 

discretization, iterative solution for neutral axis, and numerical integration to determine 

moment and curvature at each strain increment. Since the compression and tension 

response of various cement composites listed above are relatively close, closed-form 

solution of moment-curvature diagram, derived for a generic material can be used to 

predict flexural behavior of homogenized fiber/fabric reinforcement. Closed form 

solutions of a moment-curvature relationship can also be directly implemented in a 

structural analysis code, and/or spreadsheets.  

A general strain hardening tensile, and an elastic perfectly plastic compression model as 

derived by Soranakom and Mobasher [6] [7] [8] and shown in figure 1.2 is used.   

Tensile response is defined by tensile stiffness, E, first crack tensile strain, cr, Cracking 

tensile strength, cr =Ecr, ultimate tensile capacity, peak, and post crack modulus, Ecr.  

The softening range is shown as a constant stress level, Ecr.  The compression 

response is defined by the compressive strength, cy defined as Ecr.  In order to 

simplify material characteristics of strain-hardening material, and yet obtain closed form 

design equation generation several assumptions are made.  Equations can furthermore be 

simplified to idealized tri-linear tension and elastic compression models as shown in 

figure 1.2 (a) and (b) by ignoring the post-peak ranges in both tension and compression. 

In order to reduce the complexity of material response to the useable range, one has to 

disregard the post-peak tensile response and plasticity in the compression region.  It has 

been shown that the difference in compressive and tensile modulus has negligible effect 

to the ultimate moment capacity.  By defining all parameters as normalized with respect 
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to minimum number of variables, closed form derivations are obtained.  Applied tensile 

and compressive strains at bottom and top fibers, and  are defined as 

t

cr







, 

c

cr







      (1-1) 

 Material parameters required for the simplified models are summarized as follows.  

Parameters, , are defined respectively as representing normalized, tensile strain 

at peak strength, post-crack modulus, compressive yield strain: 

peak

cr





 , crE

E
  , cy cy

cr crE

 


 
        (1-2) 

 

    

Figure 1.2 Full option material models for both strain-hardening and strain-softening 

material: (a) tension model; and (b) compression model 

 

For typical strain-hardening material, the compressive strength is several times higher 

than the tensile strength. Thus, the flexural capacity is controlled by the weaker tension 

and the compressive stress is normally low in the elastic range. For this reason, the elastic 

compression model as shown in figure 1.2(b) is used.  For the development of design 

equations, the compressive stress developed in a beam section is limited to the yield 
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compressive stress cy = 0.85fc’ at compressive yield strain cy, where fc’ is the uniaxial 

compressive strength.  

 ctop cr=

 tbot cr=

1

1
hc1

ht1

kd

d
1

1
yc1

yt1

Fc1

yt2ft1

fc1

2 ht2

cr

Ft22

ft2

Ft1

(2.1)

 
 ctop cr=

 tbot cr=

1

1
hc1

ht1

kd

d
1

1
yc1

yt1

Fc1

yt2ft1

fc1

2 ht2

cr

Ft22ft2

Ft1

(3.1)

3 ht3 3 Ft3

yt3

ft3

trn

 

(a) (b) 

Figure 1.3 Strain and stress diagrams at the post crack stage (Ranges 2.1 and 3.1 - Table 

1-2), (a) strain distribution; and (b) stress distribution 

1.2.1. Derivation of Moment-Curvature Capacity 

Moment capacity of a beam section according to the imposed tensile strain at the bottom 

fiber (t = cr) can be derived based on the assumed linear strain distribution as shown in 

Fig. 2(a). By using material models described in figure 1.2 (a) and (b), the corresponding 

stress diagram is obtained as shown in figure 1.3 (b) in which the stress distribution is 

subdivided into a compression zone 1, tension zone 1 and 2. Force components and their 

centroidal distance to the neutral axis in each zone can be expressed as:  
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where F and y are the force and its centroid, respectively; subscripts c1,t1,t2 designate 

compression zone 1, tension zone 1 and 2, respectively; b and h are the width and the 

height of the beam, respectively. The neutral axis parameter k is found by solving the 

equilibrium of net internal forces equal to zero, Fc1 + Ft1 + Ft2 = 0.  

   

 

2
1 1

2
1

C C
k

C









; where  2

1 2 1 2 1C          (1-6) 

 

The nominal moment capacity Mn is obtained by taking the first moment of force about 

the neutral axis, Mn = Fc1yc1 + Ft1yt1 + Ft2yt2, and it is expressed as a product of the 

normalized nominal moment mn and the cracking moment Mcr as follows: 

 
2

,
6

cr
n n cr cr

bh
M m M M


     (1-7) 

 
2 3

2 2

2 1 2

1
n

k k k
m C

k





 
 


; where 2

2 1 12C C C       (1-8) 

 

If the full stress strain response is desired, then the location of neutral axis and moment 

capacity are obtained under the definitions provided in Table 1.2.  In this table the 
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derivations of all potential combinations for the interaction of tensile and compressive 

response are presented.  Note that depending on the relationship among material 

parameters, any of the zones 2.1, and 2.2, or 3.1, and 3.2 are potentially possible.   

Analysis of these equations indicates that the contribution of fibers is mostly apparent in 

the post cracking tensile region, where the response continues to increase after cracking 

[figure 1.2 (a)]. The post-crack modulus Ecr is relatively flat with values of = 0.00-0.4 

for a majority of cement composites.  The tensile strain at peak strength peak is relatively 

large compared to the cracking tensile strain cr and may be as high as  = 100 for 

polymeric based fiber systems.   These unique characteristics cause the flexural strength 

to continue to increase after cracking. Since typical strain-hardening material do not have 

significant post-peak tensile strength, the flexural strength drops after passing the tensile 

strain at peak strength. Furthermore the effect of post crack tensile response parameter  

can be ignored for a simplified analysis.  In the most simplistic way, one needs to 

determine two parameters in terms of post crack stiffness  and post crack ultimate 

strain capacity  to estimate the maximum moment capacity for the design purposes.   

 

According to bilinear tension and elastic compression models shown in figure 1.2 (a) and 

(b), the maximum moment capacity is obtained when the normalized tensile strain at the 

bottom fiber ( = t/cr) reaches the tensile strain at peak strength ( = peak/cr). However, 

the simplified equations 1-6 to 1-8 for moment capacity are applicable for the 

compressive stress in elastic region only. The elastic condition must be checked by 

computing the normalized compressive strain developed at the top fiber  and compare it 
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to the normalized yield compressive strain . The general solutions for all the cases are 

presented in table 1.2.  Using the strain diagram in Fig. 1.3 (a), the relationship between 

the top compressive strain and bottom tensile strain as follow: 

 1

c t

kh k h

 



       (1-9) 

By substituting c = cr and t = cr in equation 1-9, then defining the maximum 

compressive strain to the yield compressive strain cy = cr , equation 1-9 is expressed in 

normalized form: 

1

k

k
   


      (1-10) 

The case represented by case 2.1 of the table 1.2, where the tensile behavior is in elastic-

plastic while the compressive behavior is still elastic is studied in this section.  Equations 

for other cases can also be developed.  The general solution presented in table 1.1 can be 

simplified as follows.  The location of neutral axis represented as a function of applied 

tensile strain is represented as:  

 
       



2A ( 1 2 )k 2
A

A
1   (1-11) 

This equation can be easily simplified by assuming equal tension and compression 

stiffness ( For an elastic perfectly plastic tension material ( equation 1-11 

reduces to: 

2 1

2 1



 




 
k        (1-12) 
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Figure 1.4 Effect of a) Depth of Neutral axis on the moment capacity of a section, and b) 

the moment curvature response in the Range 2.1 

 

Table 1.1 presents the case of (, for different values of post-crack stiffness .5, 

0.2, 0.1, 0.05, 0.01, and 0.001.  Note that the neutral axis is a function and can be used 

in calculation of the moment, or the moment-curvature relationship.  These general 

responses are shown in Figures 1.4a and 1.4b and show that with an increase in applied 

tensile strain, the neutral axis compression zone decreases; however this decrease is a 

function of post crack tensile stiffness factor.  The moment curvature relationship in this 

range in ascending, however, its rate is a function of the post crack tensile stiffness.  The 

parameter based fit equations in the third and fourth column are obtained by curve fitting 

the simulated response from the closed form derivations and are applicable within 1% 

accuracy of the closed form results.  Using these equations, one can generate the moment 
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capacity and moment-curvature response for any cross section using basic tensile 

material parameters in the 2.1 range as defined.  

 


A,  (

A
k

A 



) 

)'(M k   )'(M  

0.5    20.5( 1- 2 ) 2 -1  
1 60.773 0.108 10   x k  0.507 0.686  

0.2    20.2( 1- 2 ) 2 -1  2 60.654 0.516 10  x k  1.105 0.383  

0.1    20.1( 1- 2 ) 2 -1 
2 61.276 0.289 10  x k  1.461 .234  

0.05    20.05( 1- 2 ) 2 -1  2 61.645 .1632 10  x k  1.720 .1401  

0.01    20.01( 1- 2 ) 2 -1 10.852 0.456  k  1.342 0.371   

0.0001    20.0001( 1- 2 ) 2 -1 3.177 3.068 k  3.021 2.047 /   

Table 1-1: Location of Neutral axis, moment, and moment-curvature response of a strain 

hardening composite material with  = 1, = 0.0001- 0.5. 
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Table 1-2 : Neutral axis parameter k, normalized moment m and normalized curvature for each 

stage of normalized tensile strain at bottom fiber (
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1.3 Production Techniques 

Strain hardening cement paste composites were prepared by pultrusion [ 9 ]. In the 

pultrusion process as shown in Figure 1.6 the fabrics were passed through a slurry 

infiltration chamber, and then pulled through a set of rollers to squeeze the paste in 

between the fabric openings while removing excessive paste. Gear motors were attached 

on both the rollers and were made to operate at the same rpm in opposite directions so 

that the infiltrated fabric can easy be passed through the rollers. This technique for the 

production of fabric-cement products requires relatively simple set-up using low cost 

equipment while allowing good control of the laminates alignment giving relatively 

smooth surface and uniform products. Through previous research done [10] it has been 

found that pultrusion process significantly improves the mechanical performance of the 

cement composites as it enables the spaces between the filaments of the bundle to be 

impregnated with the paste, resulting in a much better bond and maximized efficiency of 

the filaments, which leads to improved properties.    

 

 

Figure 1.5 Schematics of pultrusion process 
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Figure 1.6 Pultrusion setup with motors attached to the rollers 

Pultruded samples were very thin and not feasible for testing. Therefore, after the fabrics 

were passed through the rollers, additional cement paste was applied on each surface 

using the traditional hand lay-up technique. This was done to improve the thickness of 

the final composite and make it more workable. Consistent amount of cement paste (by 

weight) was added on each layer depending on the final thickness required. For the 

samples with final thickness of 5 mm, 350 grams of cement paste was added on each 

layer and for 6.5 mm thick samples, 450 grams of cement paste was applied on each layer.  

After forming the samples, pressure was applied on top of the fabric-cement laminates to 

improve penetration of the matrix in between the opening of the fabrics. A constant 

pressure of 13.95 kPa due to a 900 N load was applied on the surface of the fabric cement 

sheet of all specimens. Samples were then left for drying for 24 hours before de-molding 

them and placing them in curing room for next 6 days. 
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Figure 1.7 Hand lay-up 

 

Figure 1.8 Hydraulic press 

To minimize the marginal restriction due to the joints of the fixture, four corners of 

sample were cut into the desired shape by band saw and table saw. The size of the sample 

was smaller than clamped in the picture frame. The final shape of the samples was cut to 

meet the two main requirements. Firstly, there should not be any sharp edges. Sharp 

edges would cause stress concentration. Secondly, edges should be long enough so that 

all the three bolts could be passed through the sample. Clamping using three bolts 

minimized the slipping and twisting caused during the test.   
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2. CHAPTER 2 - LIMIT STATE ANALYSIS OF STRAIN HARDENING 

STRUCTURAL PANELS 

 

An application of the use strain hardening cement composites for design of panels is 

discussed in this chapter. Strain hardening cement composites (SHCC) exhibits strain 

hardening, quasi-ductile behavior due to the bridging of fine multiple cracks by fibers or 

textiles as primary reinforcement. Fibers have been used as reinforcement in many 

applications such as heavily reinforced sections, shear critical regions, slabs-on-grade and 

pavements. The use of fibers in concrete slabs or flat plates supported on piles or columns 

is becoming popular due to practicality of installation, enhanced control of shrinkage 

cracks, durability, toughness, and cost savings in labor and equipment.  

A key advantage is the reduction in construction time compared to the traditional 

installation of double layers of conventional reinforcing bars, stirrups, or other shear 

reinforcement. SHCC material slabs resist high moment intensities as well as high shear 

and punching shear stresses.  Because the fiber-reinforced concrete can be directly 

pumped, the use of cranes for lifting reinforcing bars is eliminated. The total cost saving 

in construction can be as high as 30 percent compared with traditional methods of 

reinforced concrete slab construction. Another advantage of using SHCC materials in 

slabs is to reduce the number of joints.  

The analytical strength of the slabs calculated by means of standard rectangular stress 

block calculations tend to underestimate the experimental results. This suggests that the 

failure mechanisms may be governed by yield-line theory. In this chapter a methodology 

to derive the load deflection response for a SHCC slab has been demonstrated. Moment 
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curvature response which is a material property has been extended to calculate the load 

deflection response of a strain hardening panel with known geometry and end conditions 

by integrating the three aspects of curvature-deflection relationship with applied load-

yield line moment into the moment curvature relationship as shown in figure 2.1. 
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Figure 2.1 Process for applied load-deflection derivation  
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Figure 2.2 Construction and applications of SHCC material slabs [11] 

 

2.1  Yield Line Analysis Approach 

Yield line design is a well-founded method of designing reinforced concrete slabs, and 

similar types of elements. It uses yield line theory to investigate failure mechanisms at 

the ultimate limit state. The theory is based on the principle that work done in rotating 

yield lines is equal to work done in moving the loads [12][13]. When applying the Work 

Method for yield line analysis the calculations for the external work due to loads and the 

internal work due to dissipation of energy within the yield lines are carried out 

independently. The results are then made equal to each other and from the resulting 

equations the unknown, be it the ultimate moment ‘m’ generated in the yield lines or the 

ultimate failure distributed load ‘q’ of the slab is evaluated. 

The slab is divided into rigid regions that rotate about their respective axes of rotation 

along the support lines. If the point of maximum deflection is given a value of unity then 

the vertical displacement of any point in the regions is thereby defined. The work done 
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due to external loads is evaluated by taking all external loads on each region, finding the 

center of gravity of each resultant load and multiplying it by the distance it travels. 

The work done due to dissipation of energy is quantified by projecting all the yield lines 

around a region onto, and at right angles to, that region’s axis of rotation. These projected 

lengths are multiplied by the moment acting on each length and by the angle of rotation 

of the region. At the small angles considered, the angle of rotation is equated to the 

tangent of the angle produced by the deflection of the region.  

 

2.2 2-D Analysis of Panels for Moment-Load Relationship 

Work method has been used to calculate the moment-load relationship for all the basic 

configurations of slabs namely square, rectangle and circular with all possible support 

conditions. It has been assumed that moment about each point on yield line is consistent 

and sagging moment is equal to hogging moment. Yield line formation in square and 

rectangular slabs has been assumed to be at 45° to the edges for simplification. General 

cases for yield lines not at 45° are also calculated. Load deflection results have been 

found out for square and rectangle slabs having uniformly distributed load of magnitude 

q and round slabs having a point load acting at center with a magnitude of P.  Support 

conditions considered include (a) simply supported at the four vertexes in cases of square 

and rectangular panels and (b) clamped along the edges.  

2.2.1 Case 1 – Applied Load vs. Yield Line Moment Relationship for Square Slabs 

Square slab of edge length L is considered here with a distributed load of ‘q’ acting on it. 

It is assumed that yield lines are at 45° to the sides and each point on the yield line is 
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consistent and under tension. Hogging moment about the yield lines and sagging moment 

about the clamped supports are also assumed to be equal in magnitude. Three end 

conditions can be considered which are –
 

i) All sides are simply supported (Case 1.1) 

ii) All sides have clamped supports (Case 1.2) 

iii) Mixed boundary conditions with two adjacent sides simply supported whereas 

other two have clamped supports (Case 1.3) 

 

Case 1.1 – Square Panel with Simply Supported Edges 

Plastic analysis approach uses the principal of virtual work to equate the internal and 

external work to obtain the collapse load.  Similarly the yield pattern is used to define the 

potential collapse mechanism of a plate supported along its two or four edges.  If the 

panel has fixed edges, then the yielding along the edge is also needed to be included in 

the calculations.   

From the relationship of equating the external work done by loads moving to the internal 

energy dissipated by rotations about yield line, one gets:  

 

ext intW W       (2-1) 

( ) ( )N m l            (2-2) 
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m
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0.5L

L
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θ

L

δmax

Section A-A  

Figure 2.3 Simply supported square Panel with (a) yield lines and (b) loading and rotation 

conditions through section A-A. 

 

In left hand side, q is the uniformly distributed load and L
2
/4 is the area of each wedge 

(So the equivalent point load is q x L
2
/4) and δmax/3 is the deflection of the centroid. On 

the right hand side, L is the length of the square as the rotations are projected onto the 

sides. Rotation angle, θ, can be calculated from geometry shown in figure 2.3(b) as 

δmax/0.5L. 

2

max max4 4
4 3 0.5

L
q m L

L

    
   

        (2-3) 

Simplifying equation 2-3 and solving for moment, one gets- 

2 24
8

12 24

L q qL
m            ,           m 

     (2-4) 
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Where m is the moment along the yield lines, q is the uniformly distributed load and L is 

the length of the square side.  

 

Case Study 1.2 – Square Panel with Edges clamped 

External work due to energy expended is independent of the support conditions therefore 

it is the same as the expression obtained for simply supported slab. Internal work due to 

energy dissipation in case of clamped slabs will be higher due to rotation of the corner 

supports. All the four wedges have projection of their positive (sagging) yield line of a 

value m surrounding that region onto its axis of rotation with length as L. Sides also have 

continuous supports (clamped) and negative (hogging) yield line causing moment of 

value m’, that forms along the support.  

m

L

L

m

δmax

A A

 

θ
δ θ δ= max/(L/2)

Section A-A

Negative
yield line

 

Figure 2.4 Applied load and yield line moment for a clamped square slab. 
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ext int

2

max max max

( ) ( )

4 4 '
4 3 0.5 0.5

W W

N m l

L
q m L m L

L L

 

  



  

   
    

  

   (2-5) 

If one assumes m=m’ (that is the sagging is equal to the hogging moment), one gets: 

2 24
16 ,

12 48

L q qL
m                                   m        (2-6) 

Case 1.3 for mixed boundary condition can be derived similarly. Results for yield line 

moment relationship with applied load for square slabs for various end conditions in 

summarized in table 2-1. 

Table 2-1 : Applied load – yield line moment relationship for Cases 1.1 to 1.3 

Case 1.1 

L

L
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24

qL
m   

Case 1.2 
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qL
m   

Case 1.3 

L

L

 

2

36

qL
m   

Where, 
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Free support

Moment Rotation
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2.2.2 Case 2- Applied Load vs. Yield Line Moment Relationship for Rectangular 

Slabs 

Rectangular slab of length ‘a’ and breadth ‘b’ has been considered here and a uniformly 

distributed load ‘q’ is acting on it. It is assumed that yield lines are at 45° to the sides and 

each point on the yield line is consistent and under tension. Hogging moment at yield line 

and sagging moment about the edges are also assumed to be equal in magnitude. Five end 

conditions can be considered and their results are summarized in table 2-2. 

i) Clamped support about one side and simply supported about other three (Case 2.1) 

ii) Clamped support about two adjacent sides and simply supported about other two 

adjacent sides (Case 2.2) 

iii) Clamped support about three sides and simply supported about one side (Case 2.3) 

iv) All 4 sides have same support conditions (Case 2.4) 

v) Fixed on three sides and free about one side (Case 2.5) 

Derivation for two adjacent edges as clamped and remaining two as simply supported is 

presented first. Cases 2.1, 2.3 and 2.4 can be derived similarly. 

 

Case Study 2.2 – Rectangular Slab with two adjacent edges clamped and other two 

as simply supported 

The slab is divided into rigid regions that rotate about their respective axes of rotation 

along the support lines. If the point of maximum deflection is given a value of unity then 

the vertical displacement of any point in the regions is thereby defined. 
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Figure 2.5 Two sides clamped and other two sides simply supported rectangular slab 

 

The expenditure of external loads is evaluated by taking all external loads on each region, 

finding the center of gravity of each resultant load and multiplying it by the distance it 

travels. Two groups are considered the triangles and the trapezoidal sections: 

 21 1
( ) ( ) 3

3 2 6
ext

qb
W N q b q a b b a b

   
         

   
    (2-7) 

In the above expression, the first half of the expression consists of both the triangles 

(regions 1 and 3 completely and parts of region 2 and 4). Their area is b
2
 and therefore 

equivalent point load is expressed as qb
2
 and 1/3 is the deflection of the centroid when 

maximum deflection has been assumed as unity. Second half of the expression is 

composed of the rectangle at the center which consists of the remaining regions of two 

and four.  
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The internal work done due to dissipation of energy is quantified by projecting all the 

yield lines around a region onto, and at right angles to, that region’s axis of rotation. 

These projected lengths are multiplied by the moment acting on each length and by the 

angle of rotation of the region. At the small angles considered, the angle of rotation is 

equated to the tangent of the angle produced by the deflection of the region. Assuming 

the moment caused due to the rotation of yield lines as m (positive/sagging) and moment 

caused due to the rotation about the clamped sides as m’ (negative/hogging). 

int

2 2 2 2 2 2
( ) ' 'W m l mb m b ma m a m b ma

b b b b b b


       
             

       
  (2-8) 

Term 1 and 3 represent the triangular portion, terms 2 and 4 represent the negative 

moments in the triangular portions, and terms 5 and 6 represent the Trapezoidal sections 

contributions.  Assuming the moment acting about the yield line and the moment acting 

about the supports equal to each other, that is the positive and negative moments are 

equal (m = m’), one gets - int 6 1
a

W m
b

 
  

 
 

Energy equilibrium requires: Wext = Wint, from which one gets- 

 2 3

36( )

qb a b
m  

a b





    (2-9) 
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Table 2-2 : Applied load – yield line moment relationship for Cases 2.1 to 2.4 

Case 

# 
Boundary Conditions Failure Modes 

Yield line 

Moment – 

Applied load  

2.1 

Clamped 

about one 

side and 

simply 

supported 

about other 

3 

Clamped 

about long 

side 

a

b1

2

3

4

 

2 (3 )

12(3 2 )

qb a b
m

a b




  

Clamped 

about short 

side 

a

b1

2

3

4

 

2 (3 )

12(2 3 )

qb a b
m

a b




  

2.2 

Clamped about two 

adjacent sides and 

simply supported about 

other two adjacent sides 

a

b1

2

3

4

 

 2 3

12(3 3 )

qb a b
m

a b




  

2.3 

Clamped 

about three 

sides and 

simply 

supported 

about one 

side 

Simple 

support 

about short 

side 

a

b1

2

3

4

 

 2 3

12(4 3 )

qb a b
m

a b




  



30 

 

Simple 

support 

about long 

side 

a

b1

2

3

4

 

 2 3

12(3 4 )

qb a b
m

a b




  

2.4 

All 4 sides 

have same 

support 

conditions 

All 

supports 

clamped 

a

b1

2

3

4

 

 2 3

12(4 4 )

qb a b
m

a b




  

All simply 

supported 

a

b1

2

3

4

 

 2 3

12(2 2 )

qb a b
m

a b




  

Where, 

Clamped support

Simply supported

Free support

Moment Rotation
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Case Study 2.5 – Fixed on three sides and free on fourth side 

This case study addresses a slab with a free edge which is different than the previous 

cases.  The number and pattern of yield lines are changed to accommodate the free 

deformation of the unsupported edge. 

 

a

1

3

2

b

45

 

Figure 2.6 Applied load and yield line moment for a rectangular slab clamped on three 

sides and free on fourth 

 

int

2 2 2 2
( ) ' 'W m l mb m b ma m a

b b b b


       
           

       
   (2-10) 

Term 1 represent the triangular portion, term 2 represent the negative moments in the 

triangular portions, and terms 3 and 5 represent the trapezoidal sections contributions.  

Assuming the moment acting about the yield line and the moment acting about the 

supports equal to each other, that is the positive and negative moments are equal (m = 

m’), we get -  

int 4 1
a

W m
b

 
  

 
      (2-11) 
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21 1
( ) ( )

6 2 2 2 6
ext

b qb b
W N q b q a b a

     
           

     
   (2-12) 

In the above expression, the first half of the expression consists of both the triangles 

(region 1 and parts of region 2 and 3). Their area is 0.5b
2
 and therefore equivalent point 

load is expressed as 0.5qb
2
 and 1/3 is the deflection of the centroid when maximum 

deflection has been assumed as unity. Second half of the expression is composed of the 

rectangle which consists of the remaining regions of 2 and 3.  Energy equilibrium 

requires: Wext = Wint, we get- 

 2 6

48( )

qb a b
m  

a b





      (2-13) 

2.2.3 Case 3 - Applied Load vs. Yield Line Moment for Round Panels 

Round panels of radius R is considered here with a point load of ‘P’ acting at the center 

on it. Yield lines form a fan shaped design and it is considered that each point on the 

yield line is consistent and under tension. Hogging moment along the yields lines and 

sagging moment along the supports are also assumed to be equal in magnitude. Two end 

conditions can be considered which are – 

i) It is simply supported (Case 3.1) 

ii) It has clamped support (Case 3.2) 

In figure 2.7 if one defines number of cracks as n, then the central angle α can be 

calculated as 2π/n. It has been assumed here that when number of cracks, n tends to 

infinity, the angle α becomes zero. In case of a simply supported three point ring 

specimens, n is taken as 3. Flexural capacity of round slab simply supported (Case 3.1) 
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subjected to a center-point loading is shown in figure 2-7.  Note that depending on the 

number of yield lines, the internal energy dissipation changes.   

θ

2R

δ

Section A-A

dα

R

P

 

Figure 2.7 Principle of virtual work to determine the ultimate load carrying capacity of a 

round panel test simply supported in its contour and subjected to center point load 

 

It is however shown that in the case of simply supported round slab, the allowable 

applied load can be related to the bending moment capacity which is determined through 

laboratory tests on flexural samples [22]. 

int extW W ;
R


   

intdW MR d M d      
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extW P  

2

0
2int extW W M d M P



         

2

P
M


      (2-14) 

If the support is fixed (Case 3.2), the solution would yield: 

2

0
2 4

int extW W

M d RM M P


      



  
   (2-15) 

4

P
M


          (2-16) 

Table 2-3 : Applied load – yield line moment relationship for Cases 3.1 and 3.2 

Case 3.1 

 

2

P
m


  

Case 3.2 

 

4

P
m


  

Where, 
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Clamped support

Simply supported

Free support

Moment Rotation

 

 

2.3 Analysis of Panels for Curvature-Deflection Relationship 

Rotations that a slab undergoes at supports for certain deflections were calculated using 

the concepts of kinematics and geometry of slab. This rotation-deflection relationship 

was then further extended to give the curvature-deflection relationship by dividing 

rotation by hinge length, L* to give the curvature. Details for hinge length are shown in 

section 2.3.1. All the case studies undertaken in section 2.2 are taken here as well. It can 

be seen that curvature-deflection relation is independent of end conditions. Yield line 

formation in square and rectangular slabs has been assumed to be at 45° to the edges 

same as what was considered for the derivation of load-moment relationship.  

 

2.3.1 Hinge Length, L* 

A slab under bending can be considered to consist of two distinct regions: the small hinge 

region where concrete crushing is visible, where wide flexural cracks occur, and where 

most of the permanent rotation is concentrated around the wide flexural cracks so that the 

trend of the moment distribution has little effect; and the non-hinge region which applies 

to most of the length so that it is affected by the trend of the moment distribution, where 
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there are much narrower cracks, where, in particular, concrete crushing does not occur 

and where standard procedures of equilibrium can be applied [14][15].   

 

 

Hinge region

Rigid body
rotation

Rotationθ

θ

Primary flexural
crack

 

Figure 2.8 Hinge rotation mechanism (a) Steel fiber reinforced beam (BASF), (b) Rigid 

body hinge rotation [16] 

 

Hinge length has been derived to be a function of span, depth or reinforcement [16]. 

Curvature is a measure of sectional ductility and rotation is a measure of member 

ductility. Product of sectional ductility (curvature) and hinge length gives the member 

ductility (rotation).   

Many researchers have concentrated mainly on quantifying the hinge length, L* 

empirically. Some suggested approaches are as shown in table below [16]: 

Table 2-4 : Empirically derived hinge lengths 

Researcher reference Hinge length (L*) Hinge  length variables 

Baker [17] k(z/d)
1.4

d Span (z), depth (d) 

Sawyer [18] 0.25d+0.075z Span, depth 

Corley [19] 0.5d+0.2(z/d)√d Span, depth 

Mattock [20]  0.5d+0.05z Span, depth 
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2.3.2 Curvature-Deflection Relationship for a Square Slab 

Let us assume a square slab with side L for which yield lines are at 45° to the sides and 

meet at center and maximum deflection, δ also occurs at center. 

L

δ2θ

(0.5L,0.5L, )δ

φL* φL*

E

n1 n2

L

L

(0,0,0) (L,0,0)

(L,L,0)(0,L,0)

(0.5L,0.5L, )δ

A B

D

E

C

 

Figure 2.9 Load-deflection relationship for Square slab 

 

To find the angle of rotation, we first find the angle at center between two surfaces. 

Curvature, φ and angle between the planes, 2θ can then be related as
1

* 2L


 

 
  

 
 

where L* is the hinge length and φL* is the rotation.  For finding the angles between both 

surfaces we find the angle that the normal to these surfaces make with each other.   

1L

(0,0,0)

(0,L,0)

(0.5L,0.5L, )δ

A

E

D
n1

 

3 L

(0.5L,0.5L, )δ

(L,0,0)

(L,L,0)

E

B

Cn2

 

Figure 2.10 Planes AED and EBC 
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For plane # 1 (AED), the normal n1 is the cross product of  vectors AE and AD . 

2
1

(0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) 0.5

0 0

AE L L

AD L

i j k

n AE X AD L L L i L k

L



 





    

 

Equation of the plane # 1 is given as 

2

2

( 0) 0( 0) 0.5 ( 0) 0

( ) 0.5 0

L x y L z

L x L z





      

 
     (2-17) 

For plane # 3 (BCE), the normal n2 is the cross product of vectors BE  and BC . 

2
2

( 0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) 0.5

0 0

BE L L

BC L

i j k

n BE X BC L L L i L k

L



 

 

 

     

 

Equation of the plane # 3 is given as 

2

2 2

( ) 0( 0) 0.5 ( 0) 0

( ) 0.5 0

L x L y L z

L x L z L



 

      

  
     (2-18) 

The angle between planes is the angle between their normal vectors. If A1x + B1y + C1z + 

D1 = 0 and A2x + B2y+C2z+D2 = 0 are plane equations, then angle between planes can be 

found using the following formula: 

1 2 1 2 1 21

2 2 2 1/2 2 2 2 1/2

1 1 1 2 2 2

. . .
cos

( ) ( )

A A B B C C

A B C A B C
 

  
  

    
  

So the angle between two planes under yielding is given as: 
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   

2 2 4 2 2

2 2
2 2 4 2 2 4

2 2
1

2 2

0.25 4
cos2 cos( 2 *)

40.25 0.25

1 4
cos

2 * 4

L L L
L

LL L L L

L

L L

 
  

 








 
   

 

  
  

 

   (2-19) 

Deflection- curvature relationship is given as: 

1 cos2 *

2 1 cos2 *

L L

L










     (2-20) 

Where δ is the deflection, φ is the curvature, L* is the hinge length and L is the 

dimension of the slab.  

2.3.3 Curvature-Deflection Relationship for Rectangular Slab 

Two cases are evaluated, a simplified case where the geometry of deformation is pre-

specified, and a second case where the angle of the deformation is a variable.  These are 

referred to as case (a) and case (b) and are addressed below. 

 

Case (a) Yield Lines at edges are at 45° Angle to the sides 

Let us assume a rectangular slab with length a and breadth b for which yield lines are at 

45° to the sides and meet at points as show in the figure 2.11 below and maximum 

deflection occurs at that point. 
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1

2

3

4

b

Y

X X
Y

45

a  

δ

a

Section X-X

δ

b
Section Y-Y

n1
n3 n2

n4

 

Figure 2.11 Load-deflection relationship for Rectangular slab 

 

To find the angle of rotation, we first find the angle at center between two surfaces. 

Curvature, φ and angle between the planes, 2θ can then be related as
1

* 2L


 

 
  

 
.  For 

finding the angles between both surfaces we find the angle that the normal to these 

surfaces make with each other.   

First we find the angle between planes 1 and 3. This is similar to the case of square slab. 

As we obtain the results we see that deflection expression is same as that obtained for 

square slab of dimension b.   
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1 3
b b

(0,0,0)

(0,b,0)

(0.5b,0.5b, )δ (a-0.5b,0.5b, )δ

(a,0,0)

(a,b,0)

K

O

N

P

L

M
n1

n3

 

Figure 2.12 Planes KON and PLM 

For plane # 1 (KON), normal n1 is obtained by the cross product of vectors KO  and KN . 

2

1

(0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 0.5

0 0

KO b b

KN b

i j k

n KO X KN b b b i b k

b



 





    

 

Equation of the plane # 1 is given as- 

2

2

( 0) 0( 0) 0.5 ( 0) 0

( ) (0.5 ) 0

b x y b z

b x b z





      

 
     (2-21) 

For plane # 3 (PLM), the normal n3 is obtained by the cross product of vectors LP  & LM  

2

( 0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) ( 0.5 )

0 0

LP b b

LM b

i j k

n LP X LM b b b i b bk

b



 

 



      

 

Equation of the plane # 3 is given as 

 2

( ) 0( 0) ( 0.5 ) ( 0) 0

( ) 0.5 0

b x a y b b z

b x b z ab



 

       

  
    (2-22) 
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So the angle between two planes under yielding is given as- 

   

2 2 4 2 2

13 13 2 2
2 2 4 2 2 4

0.25 4
cos2 cos( 2 *)

40.25 0.25

b b b
L

bb b b b

 
  

 

 
     

    
 

 

Deflection in terms of curvature can be simplified as: 

13

13

1 cos2 *

2 1 cos2 *

Lb

L










     (2-23) 

It is known by symmetry that 13 24   

Similarly, we find the angle between planes 1 and 4 by the same procedure – 

0.5b

a

(0.5b,0.5b, )δ

N
(a,b, )0

(a-0.5b,0.5b, )δ

4
1b

(0,0,0)

(0,b,0)

(0.5b,0.5b, )δ

K

O

N
n1

n4

(0,b, )0

O P

M

 

Figure 2.13 Planes KON and NOPM 

For plane # 1 (KON), the normal n1 by the cross product between the vectors KO & KN  

1

(0.5 ,0.5 , )

(0, ,0)

ˆˆ ˆ
( ) ˆˆ0.5 0.5 ( )

2
0 0

KO b b

KN b

i j k
b b

n KO X KN b b b i k

b



 





    

 

Equation of the plane # 1is given as 



43 

 

2

2

( 0) 0( 0) 0.5 ( 0) 0

( ) 0.5 0

b x y b z

b x b z





      

 
     (2-24) 

For plane # 4 (NOPM), the normal n4 is the cross product of vectors NO  and NM  

4

( 0.5 ,0.5 , )

( ,0,0)

ˆˆ ˆ

ˆˆ0.5 0.5 ( ) (0.5 )

0 0

NO b b

NM a

i j k

n NO X NM b b a j ab k

a



 

  

 

     



 

Equation of the plane # 4 is given as 

 

( ) ( 0.5 ) ( 0) 0

( ) 0.5 0

a y b a b z

a y ab z ab



 

    

  
 

So the angle between two planes under yielding is given as- 

   

3 2

14 14 2 2
2 2 4 2 2 2 2

0.25
cos2 cos( 2 *)

40.25 0.25

ab b
L

bb b a a b
  

 

 
     

    
 

 

2
1

14 2 2

1
cos

2 * 4

b

L b




  
  

 
     (2-25) 

Deflection in terms of curvature can be simplified as:  

14

14

1 cos2( *)

2 cos2( *)

Lb

L







      (2-26) 

By the geometry of slab we know that 12 14 23 34       .  
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1

3

2

 

Figure 2.14 Load-deflection for rectangular slab fixed from 3 sides and free from fourth 

 

For a two-way slab supported on 3 sides and free on fourth, the deflection-curvature 

relationship will remain unchanged and will be equal to equation 2-26. 

 

Case (b) General Yield Lines at variable Angles  

This case deals with generalized yield line formation when yield lines are not at 45° to 

the sides. A dimension of length c has been assumed as shown in figure 2.15, below.  

1

2

3

4

b

a

c
0.5(a-c)

 

Figure 2.15 Deflection-curvature relationship when yield lines are not at 45° 
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1 3b b

(0,0,0)

(0,b,0)

(0.5(a-c),0.5b, )δ (0.5(a+c),0.5b, )δ

(a,0,0)

(a,b,0)

K

O

N

P

L

M

n1

n3

 

For plane # 1 (KON), the normal n1 is the cross product of vectors KO  and KN . 

1

(0.5( ),0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5( ) 0.5 0.5( )

0 0

KO a c b

KN b

i j k

n KO X KN a c b b i a c bk

b



 

 



      

 

Equation of the plane # 1 is given as 

( 0) 0( 0) 0.5( ) ( 0) 0

0.5( ) 0

b x y a c b z

b x a c bz





       

  
     (2-27) 

For plane # 3 (PLM), the normal n3 is the cross product of the vectors LP  and LM . 

2

(0.5( ),0.5 , )

(0, ,0)

ˆˆ ˆ

ˆˆ0.5( ) 0.5 ( ) 0.5( )

0 0

LP c a c

LM c

i j k

n LP X LM c a b b i c a bk

b



 

 



      

 

Equation of the plane # 3 is given as 

( ) 0( 0) 0.5( ) ( 0) 0

( ) 0.5( ) 0

b x a y a c b z

b x a c bz ab



 

       

   
     (2-28) 

So the angle between two planes under yielding is given as- 
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2 2 2 2 2 2

2 2 2 2 2 2

0.25( ) 4 ( )
cos2 cos( 2 *)

0.25( ) 4 ( )

b a c b a c
L

b a c b a c

 
  

 

   
   

   
   (2-29) 

Deflection in terms of curvature can be simplified as  

13

13

1 cos2 *1
( )

2 1 cos2 *

L
a c

L







 


     (2-30) 

By defining  c a  

13

13

1 cos2 *
(1 )

2 1 cos2 *

La

L


 




 


     (2-31) 

 

2.3.4 Curvature-Deflection Relationship for Round Panels 

Assume a round slab with radius R for with yield lines are originating at the center and 

extending till the boundary of the slab as shown in the figure 2.16 below and maximum 

deflection occurs at that center [22]. 

 

Figure 2.16 Load-deflection relationship for Circular slab 

 

From figure 2.16 crack segment 1 rigidly rotate around the axis AB. 
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sin(30) 1

2

C BC R

AO R




          

 
2

C


            

Thus, the deflection at the edge (point C) is half that of the center. Assume each crack 

segment is rigid and it rotates around the crack axis represented by vectors OC , OD and 

OE as shown in Fig. 2.23. 

( ,0,0.5 )OC R   

( sin(30), cos(30),0.5 )OD R R     

( sin(30), cos(30),0.5 )OE R R      

The vectors normal to crack segment 1 and 2 can be found by cross product of the two 

adjacent vectors. 

2
1

3 3 3
, ,

4 4 2
n OD OC R R R 

  
    

  
    (2-32) 

  2
2

3 3 3
, ,

4 4 2
n OC OE R R R 

  
     

  
    (2-33) 

The angle of curvature φ between segment 1 and 2 is the angle between these two normal 

vectors, determined by the dot product. 
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2 2
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2 2
1 2

1 1 2
cos cos

* * 2

n n R

L n n L R
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
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 
 

      
    

    
 

   (2-34) 

Deflection in terms of curvature can be simplified as: 

 
22 (1 cos *)

(1 2cos *)

R L

L










     (2-35) 
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2.4 Applied load - Deflection Response 

Algorithm to calculate load deflection response for limit state analysis using yield line 

theory was developed by integrating the three aspects of curvature-deflection relationship 

with applied load-yield line moment into the moment curvature relationship. As shown in 

figure 2.17 all the components of the algorithm are defined and one can develop a step 

wise simplified approach. Using the simplified model for strain hardening cement 

composites model (Section 1.2) one can approach the problem in the following manner: 

i. For a given cross section and material properties and using M’ – φ’ relation 

from expressions in table 1-2 calculate normalized moment for discrete number 

of curvature values. Using the normalized moment relation  2' / 6crM M bh  

and normalized curvature as  ' 2 /cr d   , the moment-curvature response of 

the cross-section is obtained.  

ii. Using a discrete number of moment magnitudes along the moment curvature 

diagram, a load vector is generated using the relationship between moment and 

load for the panel configurations as derived by the yield line methodology in 

section 2.2.   

iii. The slab is segmented into finite sections and maximum deflection is 

calculated using the relationship between curvature and deflection as derived in 

section 2.3. 

iv. This procedure is applied at each step until a complete load deflection response 

is obtained for the corresponding moment curvature relationship. 
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Step 5 – Correlate the load calculated from step 3 
with deflection from step 4 to get the load-deflection 

relationship.

Step 4 – Calculate deflection corresponding to each 
curvature value by using the deflection-curvature 

relationship as derived in section 2.3. 

Step 3 – Calculate load corresponding to each 
moment value by using the load-moment 

relationship as derived in section 2.2

Step 2 – Convert normalized moment (M’) to 
moment by using the relationship – M = M’Mcr and 
normalized curvature (φ’) to curvature by φ=φcrφ’

Step 1 – Calculate the material property of moment-
curvature relation from M’-φ relationship from Table 

1-1 for strain hardening composites for a discrete 
number of points.  

 

Figure 2.17 Flowchart for the derivation of applied load-deflection relationship for SHCC 

materials 

 

2.5 Shortcomings of the Methodology - Increased Load Bearing Strength at 

Large Vertical Displacements 

Concrete slabs at large vertical displacements could support loads considerably greater 

than those calculated using the yield-line approach [21]. The mechanism for supporting 

the load was shown to be tensile membrane action, which could form within the slab 

irrespective of whether it was restrained or unrestrained horizontally at its boundaries. 

For a slab which was unrestrained around its boundaries, compressive in-plane membrane 
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forces were shown to form within the depth of the slab around its perimeter, and these 

provided the required support to the in-plane tensile membrane forces in the central 

region of the slab. The mechanism is shown below in the figure 2.18.  

Compression zone
(’ring’)

Tension zone

  

Figure 2.18 Different zones for slabs subjected to large displacements [21]

 

2.6 Comparison with Experimental Data 

2.6.1 Data Set 1 

Experimental results from round panel tests analyzed by Soranakom et. al are considered 

first [22]. The parameter based fit equations for moment curvature relationship are used 

for stages 2.1 and 3.1 which were obtained by curve fitting the simulated response from 

the closed form derivations and are applicable within 1% accuracy of the closed form 

results. Tabix steel fibers are used as the reinforcement in these SHCC material slabs. 



51 

 

Diameters of experimented slabs were 2000 mm and 1500 mm. Simulation was done in 

following steps: 

(a) Step 1 - Calculate the moment-curvature relationship using the strain hardening 

cement composites model as discussed in section 1.2 for all the stages. Assume that this 

material is governed by following stages –  

(i) Stage 1 – Elastic compression, elastic tension 

(ii) Stage 2.1 – Elastic compression, tension hardening 

(iii) Stage 3.1 – Elastic compression, tension softening.  

 

Stages 2.2 and 3.2 are not considered here as it has been observed that tension governs 

the design instead of compression.  

The following parameters are proposed for the design of these samples:  

η =Ratio of post crack stiffness to elastic stiffness (Ecr/E) = 0.01 

γ= Ratio of stiffness in tension and compression (Ec/E ) = 1  

µ = Post tensile strain capacity, cst

crE


 = 0.6. 

Strain capacity parameter, α= trn

cr




 , α=10.  This parameter represents the ultimate strain 

capacity in the section with the reduced tensile stiffness.  The following simplified 

relations are obtained after the closed form solutions to the moment curvature 

relationship are subjected to a polynomial curve fit approach. For a homogeneous and an 

isotropic plate, the bending stiffness, D will be given as EI/ (1-υ
2
). As square of poisson’s 

ratio will be a very small number, therefore elastic stiffness can be approximated as EI. 
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M = EI(φ)      (Stage 1) 

For stages 2.1 and 3.1, while the closed form equations can be easily used individually, it 

may be easier to apply a curve fit to the entire relationship between normalized moment 

(M’) and normalized curvature (φ’) in these two regions as: 

' 1.342 0.371 'M       (Stage 2.1) 

5 4 3 2' 2.34 ' 0.0017 ' 0.0481 ' 0.5551 ' 3.9454M e            (Stage 3.1) 

(b) Step 2 - Convert from the normalized moment and curvature for stages 2.1 and 

3.1 to moment-curvature by factoring in the cracking moment and curvature 

corresponding to first cracking. 

 

 

2

6

2
' '

’ ' cr

cr
cr

cr

bh
M M M

d

 M



   



 



 

For radius as 1000 mm, thickness 200 mm, cracking strain as 100µstr and cracking stress 

as 3 MPa, one obtains for stage 2: 

6 6 22(100)(10 )
1.342 0.371

0.

3(10 )(4)(0

2

.2)

6
M   

 
 



 

  

51.342 0.371 0.0017.98 10 N m 
 

   

Similar expression can also be calculated for stage 3.1.  

(c) Step 3 - Since the sample is simply supported on all sides subjected to point load, 

from section 2.2 one can use the following moment-load relationship as equation 2-4. 

2

P
m


      Case (3.1) 
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(d) Step 4 – From section 2.3 the appropriate expression for curvature-deflection 

relationship for a square slab is given by equation 2-35 as below is used. From table 2-4, 

it can be seen that hinge length can be approximated to lie in the range of 10 mm to 50 

mm. Hinge length is assumed as 10 mm for simplification. Figure 2-21 shows the effect 

of hinge length 

2(1 cos *)

(1 2cos *)

L
R

L










 

(e) Step 5 – Calculate the load-deflection result using the results from steps 3 and 4. 

From figure 2.20 it can be seen that only stages 1 and 2.1 are applicable and material 

does not go into tension softening corresponding to stage 3.1 as which can be attributed 

to high volume fraction of fibers.  

 

Figure 2.19 Strain hardening-softening tension model with the parameters used for fitting 

the model (η=0.01, µ=0.6, α=5) 
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Figure 2.20 Comparison of experimental results with methodology for round panels 

 

Figure 2.21 shows the effect of hinge length, L* on the load-deflection response. From 

figure 2.21 it can be seen that for a strain capacity parameter, α value of 100, stage 3.1 

can be delayed which is applicable for this dataset.  
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Figure 2.21 Effect of hinge length on simulated results 

2.6.2 Data Set 2 

Experimental results for square slabs are considered in a study published by Khaloo and 

Afshari here [ 23 ]. Results were digitized for comparison. The parameter based fit 

equations for moment curvature relationship are used for stages 2.1 and 3.1 which were 

obtained by curve fitting the simulated response from the closed form derivations and are 

applicable within 1% accuracy of the closed form results. Span of slabs was 680 mm x 

680 mm with 80 mm thickness. Original test data is as shown below: 
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Figure 2.22 Experimental results for square slabs [23] 

Steps for simulation are shown below -  

Step 1 – Similar to data set 1, if one starts with calculating the moment curvature 

relationship using the strain hardening cement composites model as discussed in section 

1.2. One can find the moment curvature response for the stages 1, 2.1 and 3.1.  

The following parameters are proposed for the design of these samples –  

Ratio of post crack stiffness to elastic stiffness (Ecr/E), η = 0.01 

For strain hardening materials (γ = Ec/E), use equal stiffness in tension and compression 

γ=1. 

Post tensile strain capacity, cst

crE


 , µ=0.4. 

Strain capacity parameter, trn

cr




 , α=10. This parameter represents the ultimate strain 

capacity in the section with the reduced tensile stiffness.  The following simplified 

relations are obtained after the closed form solutions to the moment curvature 
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relationship are subjected to a polynomial curve fit approach. For a homogeneous and an 

isotropic plate, the bending stiffness, D will be given as EI/ (1-υ
2
). As square of poisson’s 

ratio will be a very small number, therefore elastic stiffness can be approximated as EI. 

M = EI(φ)     (Stage 1) 

For stages 2.1 and 3.1 we get relationship between normalized moment (M’) and 

normalized curvature (φ’) which we convert to moment-curvature as shown in step 2.   

' 1.342 0.371 'M      (Stage 2.1) 

4 4 3 2' 1.933 ' 0.01435 ' 0.3862 ' 4.4898 ' 20.2440M e           (Stage 3.1) 

Step 2 – We then convert the normalized moment and curvature for stages 2.1 and 3.1 to 

moment-curvature by factoring in the cracking moment and curvature corresponding to 

first cracking. 

 

 

2

6

2
' '

’ ' cr

cr
cr

cr

bh
M M M

d

 M



   



 



 

For clear span as 680 mm, thickness 80 mm, cracking strain as 40µstr and cracking stress 

as 0.6 MPa, we get –  

For stage 2.1 we get – 

 

6 6 22(40)(10 )
1.342 0.371

0.

0.6(10 )(4)(0.2)

0 68
M   

 
 
  

   

51.342 0.371 0.0011.59 10 N m 
 

   

Similar expression can also be calculated for stage 3.1.  
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Step 3 - The end conditions are simply supported on all sides. From section 2.2 we get 

the moment-load relationship as- 

For point load - 
24

q
m     (Case 1.1) 

Step 4 – From section 2.3 the appropriate expression for curvature-deflection relationship 

for a square slab is given by equation 2-20 as below is used. From table 2-4, it can be 

seen that hinge length can be approximated to lie in the range of 10 mm to 25 mm. Hinge 

length is assumed as 10 mm for simplification. 

1 cos2 *

2 1 cos2 *

L L

L










 

Step 5 – Calculate the load-deflection result using the results from steps 3 and 4.  

 

Figure 2.23 Comparison of experimental results with the methodology for square panels 
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2.7 Interaction of the Different Tensile Zones on the Load-Deflection Response 

of the Panels Based on the Moment-Curvature and Limit Analysis 

Assuming that the kinematics of the problem do not change as the sample cracks and 

deforms, one can start the problem from the elastic response using the panel’s initial 

bending stiffness D as, D= EI/(1-υ
2
). This example illustrates how load deflection 

response can be simulated for a strain hardening material with known material properties 

such as moment-curvature relationship, cracking moment, hinge length, geometry and 

end conditions. Additionally the formulation addresses the interactions between the 

different modes of failure in stages 2.1 and 3.1 of the model presented in section 1.2. 

Instead of using various criteria for failure, both mechanisms of 2.1 and 3.1 are used 

independently and the results superposed in order to show the transition from one mode 

to the other.  Let us assume a square slab of length 4000 mm, thickness 200 mm, cracking 

stress 1 MPa and factor η (Ecr/E) as 0.01.  

 

4
0
0
0

 m
m

4000 mm

4000 mm

δ2θ
200 mm

q N/m
2

Simply supported

Yield
lines

φL* φL*

 

Figure 2.24 Problem parameters 
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Step 1 – The starting point of the procedure is the moment curvature relationship using 

the strain hardening cement composites model as discussed earlier obtained for all the 

stages defined as:  

(i) Stage 1 – Elastic compression, elastic tension 

(ii) Stage 2.1 – Elastic compression, tension hardening 

(iii) Stage 3.1 – Elastic compression, tension softening.  

Stages 2.2 and 3.2 are not considered here under the assumption that tension governs the 

design instead of compression.  They can be easily added to the formulation.  In the 

present example the following parameters for design are used:  

η = Ratio of post crack stiffness to elastic stiffness (Ecr/E) = 0.01 

γ = Tensile to compressive stiffness ratio, (Ec/E) = 1 

µ= Post tensile strain capacity, cst

crE


  =0.6 

α=Strain capacity at the ultimate tensile strength, trn

cr




 =10 

The following simplified relations obtained by curve fitting the results of moment 

curvature relationship in accordance with the procedures developed by Mobasher [24] are 

used: 

For a homogeneous and an isotropic plate, the bending stiffness, D will be given as EI/ 

(1-υ
2
). As square of poisson’s ratio will be a very small number, therefore elastic bending 

stiffness can be approximated as EI. 

M = EI(φ)      Stage 1 



61 

 

For stages 2.1 and 3.1 we get relationship between normalized moment (M’) and 

normalized curvature (φ’) which we convert to moment-curvature as shown in step 2. 

M’ = 1.342 0.371 '     Stage 2.1 

5 4 3 2' 2.34 ' 0.0017 ' 0.0481 ' 0.5551 ' 3.9454M e           Stage 3.1 

Step 2 – The normalized moment and curvature for stages 2.1 and 3.1 are scaled to 

sectional moment-curvature by incorporating the moment and curvature corresponding to 

first cracking point. 

 

 

2

6

2
' '

’ ' cr

cr
cr

cr

bh
M M M

d

 M



   



 



 

For stage 2.1, and using a length of 4000 mm, thickness 200 mm, cracking strain as 

100µstr and cracking stress as 1 MPa, one obtains:  

6 6 2

5

(10 )(4)(0.22(100)(10 )
1.342 0.371

0.2

1.342

)

6

2.6 0.371 0.006 101

M   

N m







 



 
 
  

  
 

 

 

Similar expression can also be calculated for stage 3.1.  

Step 3 – The load-moment relationship can be obtained from the equations 2-4.  In this 

case, assume that the end conditions are simply supported on all sides. From section 2.2 

the moment-load relationship is obtained as: 

 

2

24

qL
m      (Uniformly distributed load) 
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Figure 2.25 Moment-curvature relationship for SHCC 

 

Figure 2.26 Moment-load response for (a) uniformly distrib. load, (b) point load at center. 

Step 4 –Computation of Deflection-rotation response is obtained from section 2.3 where 

one obtains the expression for a square slab. 
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 
1

2 21 cos2

4(1 cos2 )

L 




 
  

  
 

 

Figure 2.27 Deflection-curvature relationship 

Step 5 – Finally one can calculate the load-deflection using the results from steps 1 to 4.  

 

Figure 2.28 (a) Applied load-deflection relationship 
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Load-deflection response shown in figure 2.28 can then be integrated to give a response 

as shown in figure 2.29. 

 

Figure 2.29 (b) Equivalent applied load-deflection relationship 

 

2.8 Post-Crack Analysis of ASTM C1550 Test results using the Proposed Yield 

Line Load-Deflection Model 

The proposed methodology can be used to define an effective stiffness of cracked 

concrete slabs under flexure.  Using the moment rotation curve, one can introduce an 

effective stiffness using a tangent stiffness of approach to obtain the instantaneous 

stiffness of the fully cracked panel.  The test results of ASTM C1550 [25] are used in 

order to verify the proposed methodology.  Samples are tested using a round panel of 

dimensions 800 mm diameter and 75 mm thickness, that is resting on three pivotal points 

and subjected to a point load and were made from synthetic macro fibers.  
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Moment deflection relationship was proposed by Johansen [ 26 ] which can also be 

extended to calculate the load deflection response by implementing applied load and 

yield line moment relationship. Johansen showed that by a suitable choice of a one-way 

strip taken out of any slab with a uniformly distributed load, restrained or simply 

supported and analyzed using the yield line theory, the deflection, δ, could be estimated 

by the formula: 

2

8

uM L

EI
       (2-36) 

This method can implemented to SHCC using the tri-linear model as discussed in chapter 

1 with the objective of fitting the results from full scale tests. The yield line method 

shows to be highly effective in the design of 2-D plane members subjected to bending, 

owing to its handiness and closeness to the actual structural behavior.  Inserting the 

moment in terms of point load as found in equation number 2-14, we get the deflection 

load relationship as –  

2
2

2

8 16

P
R

PR

EI EI




       (2-37) 

The stiffness parameter in the load deflection expression has been modified to 

accommodate the post peak behavior as defined in the SHCC model in chapter 1. The 

final equation takes the form as: 

'

'

cr
eff

cr

M M
EI

 
      (2-38) 

2

16 '
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M M
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

 
     (2-39) 
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As this is a yield-line type analysis, therefore it is applicable only after the formation of 

yield lines. By using this approach, one cannot fit the peak response. The comparison 

shows that the yield line method provides a good estimation of the load bearing capacity 

of the slab after the peak load failure (formation of yield lines). 

 

 

Figure 2.30 Round panel tests (a) Test set up, (b) Comparison between the experimental 

data and simplified model based on Johansen’s formula 

The results from the equation 2-39 above and test results on a SHCC material circular 

slab are compared in figure 2.30. As it can be seen that initially yield line approach can 

only be applicable after the post peak phase which is after the formation of yield lines.  
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3. CHAPTER 3 - SHEAR PROPERTIES OF TEXTILE REINFORCED 

CONCRETE BY MECHANICAL TESTS AND DIGITAL IMAGE 

CORRELATION 

 

The study of textile reinforced concrete (TRC) composites has progressed since the mid-

1990s. Researchers have become increasingly interested in TRC composites because of 

their wide range of rheological, mechanical, chemical and aesthetic characteristics [27]. 

This interest is also related to the diversity of TRC applications, primarily for light work 

and potentially for structural work. For structural applications, TRC is primarily used 

under tensile solicitation (e.g. integrated formwork elements and repair and/or 

strengthening of reinforced concrete structures).  However, the deformation behavior of 

the composite is greatly associated with the relative motion, thus primarily depending on 

the shear behavior of the fabric, which determines its performance properties when 

subjected to a wide variety of complex deformations, as well as its conformance to the 

required shape. Therefore, the in-plane shear strain can influence the behavior of certain 

TRC structures and can lead to their failure. The estimation of TRC’s shear resistance 

contribution in design, which is presently deducted from TRC’s tensile property, requires 

various investigations since the shear resistance mechanism is usually complicated [28]. 

Thus, to broaden the spectrum of TRC applications and get more accurate shear 

properties, an experimental study was conducted to characterize the in-plane shear 

behavior of TRC composites.  
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For textile reinforced concrete there is no set standard test method for determining the in-

plane shear behavior. There are three main known techniques used to measure shear 

compliance, namely the Direct Shear Force Measurement (DSFM) method, the Bias-

Extension test method, and the picture frame test method. Literature search indicated that 

the bias extension approach usually brings out a complex combination of shear and 

tension which makes it difficult to isolate the shear deformation in the test and hence 

complicates the characterization of pure shear behavior [29]. In the picture-frame shear 

test, a sample is clamped within a square frame hinged at each corner. The two 

diagonally opposite corners are then displaced using a mechanical testing machine. A 

uniform shear deformation state is produced. Therefore pictures frame was used to 

impose a pure in-plane shear kinematics to the specimen. 

 
 

Figure 3.1 Methods of measuring shear force – (a) direct shear force measurement and (b) 

picture frame test 



69 

 

3.1 Experimental Program 

A partial fly-ash substituted cement based mix design was used in the pultrusion process 

for making the samples as described in section 1.3. Mixture proportions of the ingredients 

are listed in table 3-1. Constituents of the mix are weighted and mixed using standard 

Hobart mixer.  

 

Figure 3.2 Standard Hobart mixer 

Table 3-1 : Mix design 

Material (each batch) Percentage (by weight) 

Cement 49.20 

Fly ash 24.60 

Water ~ Room temperature 25.80 

Super plasticizer  0.01 
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3.2 Shear Test Procedure and Instrumentation 

The specimen was clamped on the picture frame fixture by bolting the three holes on all 

four sides and the bolts were carefully tightened. It is very important that a constant 

amount of force should be applied when tightening the bolts. Loose pinning of the sample 

edges in the clamps may fail to induce the required kinematics, whereas tight clamping of 

the sample edges can cause spurious results if the sample is even slightly misaligned [30]. 

Then the whole fixture with attached specimen was placed onto the hydraulic grips of the 

testing machine, and connected with the crossheads. Top hydraulic grip was attached to 

the load cell to measure the force and bottom hydraulic grip was attached to the actuator. 

After that, the distance between the upper and lower crossheads was adjusted, and it was 

ensured that the angles between the arms of fixture were 90° [31].  The current distance 

was set as the original reference value, i.e., the displacement is made zero, in computer, 

so that later on, all the experiments can automatically begin from this zero point. Also, 

the force was adjusted to be zero at this position. Loading was at a designated speed 

(2.5mm/min) by moving the actuator down until the end of the test. Digital data 

acquisition for the instron machine collected data at every 0.5 seconds.  

After several trials of this test, the average value of load, at each displacement point was 

calculated. The load-displacement relationship of the empty frame was also calculated by 

following the same procedure without the specimen. This is to record the load-

displacement behavior of the empty fixture under the same condition as in the real shear 

experiment to calculate the resistance provided by the frame. 
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Figure 3.3 Test set-up 

 

Simultaneously, the photos were taken of the deforming specimen at a constant rate of 10 

frames per second. This is the slowest speed for the high speed phantom cameras that 

were used. At the end of every test, the crosshead was recovered to the zero point again. 

The deformed specimen was taken down and a new sample was clamped to do another 

round of test.  
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Figure 3.4 Schematics of test set-up 

The rig is jointed at each corner such that its sides can rotate and the interior angle 

between adjacent sides can change. The initially square frame thus becomes of rhomboid 

(or diamond) shape. Figure 3.5 show the different stages during the experiment showing 

the sample going from initial configuration of square to rhomboid. Material inside the rig 

is subjected to pure shear deformation kinematics. The force required to deform the 

material is recorded at the load cell connected to the top crosshead. From this information 

the shear force (or stress) can be determined as a function of shear angle and shear angle 

rate. 
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Figure 3.5 Different stages of experiment 

 

3.3 Data Reduction Methods 

3.3.1 Determination of Shear Force 
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Figure 3.6 Schematics of picture frame tests 
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Figure 3.7 Free body diagram for link BC 

 

The free body diagram of frame link BC is as shown in figure 3.7. All joints are free for 

motion. Using symmetry, it can be determined that the force applied on joint C from links 

CD and BC is equal and opposite in x-direction and equal and in same direction in y-

direction [28][31].  
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Figure 3.8 Simplified Free body diagram for link BC 
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In this study a simplified loading mechanism as shown in figure 3.8 has been assumed to 

find a direct relationship between the load recorded by the data acquisition system and 

shear force. Stress contours from image analysis or finite element modelling need to be 

used for actual mechanisms.  

Using the free body diagram of link BC and performing static analysis for equilibrium in 

y direction, one gets: 

cos

Load BC
shear

F
F


       (3-1) 

 Reaction at B in y-direction, RByy has been assumed to be equal to zero because the joint 

B is free for motion as the resistance provided by empty frame was less than 1% of the 

results. Reaction at B in x-direction can be attributed to resistance to the compressive 

force from the samples. As FLoad-BC and FLoad-CD will be equal due to symmetry and their 

sum will be equal to the load recorded by the data acquisition system, shear force 

expression will be given as:  

2cos

Load
shear

F
F


      (3-2) 

Shear stress, τxy can then be found by dividing shear force by the cross-sectional area of 

material with area parallel to the applied force vector which is the product of thickness 

and length of square.  

3.3.2 Determination of Shear Angle 

Initial configuration of the frame at the start of the test is as shown below. All the sides of 

frame are perpendicular to each other. Distance between top and bottom vertex is L√2. 
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Top is fixed to the load cell and bottom is pulled by the machine. Frame goes from a 

square configuration to rhomboid (diamond like) configuration.  

π/2

L√2

 

Figure 3.9 Initial configuration 

Figure 3.10 below shows the configuration after a certain displacement of D and the 

distance between the top and bottom vertex is now L√2+D. The frame angle, ϕ which 

was initially π/2 has changed now. Frame angle can be related to shear angle, θ (α+β) by 

the relation 2
2


   .  

L√2+D

2ϕ
α

β

ϕL
L/√2+D/2

 

Figure 3.10 Configuration after a displacement of D units 

Frame angle, ϕ after displacement D can be calculated from the figure 3.10 as: 

1 1
cos

22

D

L
   
  

 
      (3-3) 
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The material shear angle can be calculated from the crosshead displacement using: 

1 1
2 2cos

2 2 22

D

L

 
    
     

 
    (3-4) 

Where D is the crosshead displacement, L is the side length of the picture frame (i.e. 

distance between bearings) and Φ is the frame angle. It should be noted that the frame 

had an amplifier link, therefor the displacement of the sample D was a factor of the ratio 

of length of frame and length of amplifier link.   

3.3.3 Determination of Shear Strain 

A B

CD

a

b

c

d

α

β

X

Y

u(x)

u(y)

 

Figure 3.11 Theoretical shear strain 

 

Engineering shear strain can be defined from figure 3.11 as the change in angle between 

the sides AB and AD. Therefore, the shear angle is same as the shear strain 

y x
xy

u u

x y
  

 
   
 

. The shear strain is equal to shear angle and can be calculated 
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from the geometry of sample and displacement induced by actuator on the sample by the 

formula as- 

1 1
2cos

2 22
xy

D

L


   

   
 

     (3-5) 

It should be noted that this expression is only applicable for small displacements and 

small rotations as the approximations 1; 1
yx

uu

x y


 

 
 and ;

yx
uu

x y
 


 
 

 have been 

assumed. Also this approach assumes that the displacement, D of the actuator is the 

displacement of the sample, which is not true. Using three dimensional digital image 

correlation techniques, it will show the difference between the shear angle, which is the 

shear strain for small scale displacements and the shear strains as observed through image 

analysis. For this reason the shear strain calculated from the equation 3-4 has been 

referred as shear angle only throughout this thesis.  

 

3.1 Digital Image Correlation (DIC) method 

3.1.1 Introduction and applications 

In the past decades, contacting deformation measurement techniques and devices 

including linear variable differential transformer (LVDT) and electrical-resistance strain 

gage were widely used in the field of experimental mechanics. However, both LVDT and 

strain gage only measure the displacement or strain at isolate locations that the 

deformation behavior of materials are not fully investigated [ 32 ]. Additionally, the 

experiments are limited by disadvantages of these methods including the effective 

working range, which results in varieties types of LVDT and strain gages; environments 
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such as the effect of temperature on strain gages; extra effort in experiment preparation 

like soldering, wiring and mounting; extra cost due to the disposable devices. Thus there 

is a demand on newer measurement techniques. Optical techniques such as moiré 

interferometry [33], holography [34] and speckle inteferometry [35] have been proven to 

be matured techniques to analyze macroscopic parameters and are being applied 

successfully in many different applications. However, all the interferometric techniques 

have stringent requirements for system’s stability. Moreover, the processing of fringe 

patterns is laborious and time-consuming [36]. This technical difficulty has raised many 

researchers’ attention and computerized procedures [ 37 ] have been developed to 

automate the processing of the data from the fringe patterns.  

In the thirty years, a non-contacting optical technique, digital image correlation, has been 

developed by Sutton et al. [38, 39, 40, 41] and Bruck, et al. [42]. As of recent years, DIC 

was widely applied to measurement of displacements and strains in many fields such as 

material science, mechanical engineering, biomechanics and structural engineering. The 

applications include strain measurements for anisotropic plastic deformation during 

tension testing [43], strain measurements in a CuAlBe shape memory alloy [44], analysis 

of glassy polymer networks under uniaxial compression test [ 45 ], determination of 

displacement distributions in bolted steel tension elements [ 46 ], deformation 

measurement of fiber composite pressure vessel [47]. Besides the applications on full-

field deformation measurement, DIC has also been used for many other further purposes 

including the investigation of the bond between FRP and masonry [48], evaluation of 

kissing bond in composite adhesive lap joints [49], tracking fatigue damage evolution of 
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fiber reinforced composites [50], calibrating the constitutive models of steel beams 

subjected to local buckling [51], etc. 

On the other hand, DIC technique can also be used together with other measurement 

method. For example, Rouchier et. al [52] conducted the damage monitoring in fibre 

reinforced mortar by combined DIC and acoustic emission; damage in CFRP composites 

was conducted by Goidescu et. al [53] using DIC, infrared thermography and X-ray 

tomography. He et. al [54] characterized the nonlinear shear properties for composite 

materials based on a combination of finite element method for stress calculation and DIC 

for measurement of deformation. The combination not only improved the accuracy of 

material properties but also provided an opportunity to extract material properties from 

experiments where the stress and strain fields are non-uniform and simple stress 

approximation is not feasible, reported by authors.    

 

Figure 3.12 Setup of the 3D digital image correlation 
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3.1.2 DIC discipline  

Digital image correlation is no exception, and algorithms are employed that take the 

physics of the underlying deformation processes into account [55]. Due to the miniscule 

motions that are often of interest in engineering applications, the resolution requirements 

are much higher than for most other applications. To accurately measure the stress-strain 

curve for many engineering materials, length changes on the order of 10
-5

 m/m have to be 

resolved. The algorithm developed by Sutton et al. [38, 39, 40, 41] targeted towards 

providing high resolution with minimal systematic errors. At the same time, a state-of-

the-art phantom high camera mounted with high quality lens manufactured by Nikon was 

employed in the research.   

Time t Time t”Time t’

tracking
tracking

 

Figure 3.13 Tracking at different instances [56] 

As shown in figure 3.13, a point on reference image is taken and then tracked over the set 

of images that were taken at sampling rate of 10 fps till the end of test. Deformation 

developed as the load increasing can be observed from the images taken after it starts, 

which is referred to as deformed images. As a result, the speckles at the surface of sample 

displace from their initial locations. These differences between speckle patterns can be 

calculated by correlating the pixels of the reference image and any deformed image. 
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Figure 3.14 Mapping from original to deformed subset 

However, it is not possible to establish the correspondence of a single pixel in terms of 

grey scale level from one image to another. In order to address the correspondence 

problem uniquely, the object surface texture should be isotropic and non-periodic, i.e., it 

should not have a preferred orientation or repeating textures. These requirements 

naturally led to the use of random textures, such as the speckle patterns shown in figure 

3.15. 

 

Figure 3.15 Speckled samples 

The pattern used in DIC adheres to the surface and deforms with it and therefore no loss 

of correlation occurs even under large deformations. One of the key features of good 



83 

 

speckle patterns is their high information content. Since the entire surface is textured, 

information for pattern matching is available everywhere on the surface, and not only on 

a relatively sparse grid. This permits the use of a comparatively small aperture for pattern 

matching, referred to as a subset.  

2
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Figure 3.16 Terms involved in correlation [56] 

 

The principle to measuring the displacement of subset is to match the subset in reference 

image with that in deformed image by means of a mapping function, based on the 

detection of grey level distribution. The grey level as a function of x and y of reference 

image F(x,y) and that of a deformed image G(x’,y’) are related by 

G(x’,y’) = F(x,y+u(x,y))      (3-6) 
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Figure 3.17 Correlation of a displaced surface [56] 

 

Measurement of complex displacement fields is often an interest to engineering 

community; the specimen might experience elongation, compression, shear or rotation. 

An initially square reference subset might assume a distorted shape in a later image after 

deformation. This reduces the similarity between two subsets, which is often referred to 

as decorrelation. One of the significant advantages of DIC algorithm is that it is not only 

limited to determining pure translations but also can be easily extended to account for 

complex deformations. This is accomplished by introducing a subset shape function ξ(x,p) 

that transforms pixel coordinates in the reference subset in to coordinates in the image 

after deformation. The squared sum of differences (SSD) cost function [55] can be 

written as 

χ
2
(p) = ΣG(ξ(x,p)) – F(x))

2   
(3-7) 
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Figure 3.18 Displacement tracking in 3D fields [56] 

 

The normalized cross-correlation criterion is bounded in the interval [0,1], and attains its 

maximum for perfectly matching patterns. Besides the basic principle discussed in this 

part, the solution to issues like changes in lightening was also addressed and integrated. 

Furthermore, optimization in computational efficiency of the algorithm and reduction of 

errors were conducted [55].  
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Figure 3.19 Schematics for 3D image analysis [56] 



86 

 

Even under near ideal experimental conditions, there will be differences between the 

intensity of images recorded at different times, for reasons such as changes in lighting, 

specimen reflectivity due to the strain or changes in the orientation of the specimen. Thus 

it is significant to develop matching algorithms that can accurately measure the correct 

correspondence between subsets even if the intensity values undergo significant changes. 

The way to conduct template matching is to minimize the squared gray value differences 

between the reference subset and the subset after motion. The squared sum of differences 

(SSD) is one of many optimization criteria that can be used for template matching, and 

indeed, gives the name of digital image correlation method. 

2

2 2NCC

FG

F G
 


 

      (3-8) 

 

3.2 Experimental Parameters 

Experimental tests were conducted to study the effects of thickness, planar cross-section, 

orientation of textiles and type of textile on the load bearing and shear strength of the 

composites. Thickness was taken at two levels, which are from here on referred to as T1 

and T2. Thickness T1 corresponds to a thickness of 5.0 mm thick specimens with 

thickness of each layer of textile reinforced concrete as 2.5 mm whereas thickness T2 

corresponds to a thickness of 6.5 mm thick specimens with thickness of each layer as 

3.25 mm.  Planar cross-setion of inner-square was taken at two levels of S1 (75 mm x 75 

mm) and S2 (50 mm x 50 mm). Two levels chosen for orientation were 0° and 45°. 

Orientation of 0° refers to textiles being orientated along the direction of shear force 

which is at 45° to the global axis of the testing machine whereas the orientation of 45° 
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refers to textile being oriented along the direction of tensile force which is at 0° to the 

global axis. 

 

 Table 3-2 : Parameters tested and their levels 

Parameters Levels 

Planar cross-

section of inner 

square 

75 mm x 75 mm (S1) 

 

50 mm x 50 mm (S2) 

 

Orientation 

0° 

25
0 

m
m

250 m
m

 

45° 

250 m
m

25
0 

m
m

 

Thickness 5 mm (T1) 6.5 mm (T2) 

AR Glass 

Textile 

(Bonded 

Weave) 

Yarn thickness = 0.58 mm 

Opening
4.3 x 4.3
mm2

Textile 1

Thickness = 0.58 mm
 

Yarn thickness = 1.41 mm 

Textile 2

Thickness = 1.41 mm

Opening
4.8 x 4.8
mm2
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Two different AR-Glass textiles were used to prepare the samples. Textiles consisted of 

perpendicular set of yarns (warp and weft) which were glued at the junction points and 

were manufactured by Nippon Electric Glass Co., Ltd. (NEG). Both the textiles had 

comparable material properties of tensile strength in range of 1270-2450 MPa and 

modulus of elasticity of 78 MPa. Volume fractions of reinforcement when two layered 

textile 1 was used at 5.0 mm thickness was 4.31% and at 6.5 mm was 5.63% whereas for 

textile 2 at 6.5 mm thickness was 14.82%. Tables 3-2 shows the four parameters tested in 

this study and their two levels. Table 3-3 shows the combinations used to understand the 

effect of the chosen parameters.  

 

Table 3-3 : Test combinations used in the experiment 

Test Combination 

 No. of 

samples 

Thickness,  

mm 

Planar cross-

section, mm x 

mm 

 

Orientation Textile AR Glass 

(Bonded weave) 

Thickness, mm 

Age 

# 1 5 5  75  x 75  0° 0.58 7 days 

# 2 5 5  50  x 50  0° 
0.58 

7 days 

# 3 5 6.5  75  x 75  0° 
0.58 

7 days 

# 4 5 5  75  x 75  45° 
0.58 

7 days 

# 5 5 6.5  75  x 75  45° 
0.58 

7 days 

# 6 5 6.5  75  x 75  0° 1.41 7 days 
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3.3 Analysis of Test Data 

This section discusses the MATLAB program specially developed to analyze the test data 

and calculate some useful properties. The idea behind developing this code was to 

process the raw data through necessary modifications, smoothening and filtering of the 

response to reduce the noise in the data, characteristic of such tests. The code was 

developed in several parts. First section deals with input parameters, which include 

physical specifications of test specimens. Next, the test data is converted to international 

unit (SI) of measurement, and the first row of time, load, acceleration and deflection 

responses is modified to start from zero. Each of these modified responses was further 

smoothened to reduce their inherent noise. Modified test data was then printed onto a 

separate file. Properties such as shear angle (in degrees and radians), shear force, shear 

strength, first cracking strain, toughness and stiffness were then calculated and saved onto 

a separate output file.  

3.4 Test Results 

Samples were tested at different inner square planar cross-sections of 75 mm x 75 mm 

(S1) and 50 mm x 50 mm (S2), different thickness of 5 mm (T1) and 6.5 mm (T2), and 

different textile orientation of 0° and 45° and with different textiles.    

S1-T1- 0° (75 mm x 75 mm, Thickness = 5.0 mm, 0°) 

Figure 3.20 shows the load-displacement response for the S1 – T1 - 0° samples. It can be 

seen that the stiffness and the displacement corresponding to the first crack in consistent 

for all samples. 
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Figure 3.20 Load-deflection response for S1-T1- 0° 

  Displacement corresponding to first crack for all the samples lies in the range of 2.5 to 4 

mm. Average stiffness is 1.105 KN/mm. Peak load varies from 2.8 KN to 5.9 KN with 

the average at 3.4 KN.  

 

S2 – T1 - 0° (50mm x 50mm, Thickness=5 mm, 0°) 

 

Figure 3.21 Load-deflection response for S2-T1- 0° 
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Figure 3.21 shows the load-displacement response for the S2 – T1 - 0° samples. 

Displacement corresponding to first crack for all the samples lies in the range of 2.5 to 4 

mm. Average stiffness is 0.466 KN/mm. Peak load varies from 1.6 KN to 4.1 KN with 

the average at 2.2 KN which means 44% decrease happens when the cross-section is 

reduced from 75 mm square to 50 mm square. 

 

S1 – T1-45° (75mm x 75mm, Thickness=5.0 mm, 45°)  

Figure 3.22 shows the load-displacement response for the S1 – T1 - 45° samples. 

Displacement corresponding to first crack for all the samples lies in the range of 2.75 to 5 

mm. Average stiffness is 1.210 KN/mm. Peak load varies from 2.3 KN to 8.6 KN with 

the average at 4.4 KN which means 23% increase happens compared to S1-T1-0° when 

the orientation is changed from 0° to 45° while all other parameters hold same.  

 

 

Figure 3.22 Load-deflection response for S1-T1- 45° 
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S1 – T2 -0° (75 mm x 75 mm, Thickness = 6.5 mm, 0°) 

Figure 3.23 shows the load-displacement response for the S1 – T2 - 0° samples. 

Displacement corresponding to first crack for all the samples lies in the range of 2.1 to 3 

mm. Average stiffness is 1.260 KN/mm. Peak load varies from 3.1 KN to 6.2 KN with 

the average at 3.8 KN which means 12% increase happens when the thickness is changed 

from 5.0 mm to 6.5 mm.  

 

Figure 3.23 Load-deflection response for S1-T2- 0° 

S1 – T2 - 45° (75mm x 75mm, Thickness=6.5mm, 45°) 

Figure 3.24 shows the load-displacement response for the S1 – T2 - 45° samples. 

Displacement corresponding to first crack for all the sample lies in the range of 2.8 to 4.1 

mm. Average stiffness is 0.861 KN/mm.  
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Figure 3.24 Load-deflection response for S1-T2- 45°  

 

Peak load varies from 4.8 KN to 8.1 KN with the average at 6.8 KN which means 44% 

increase happens when the orientation is changed from 0° to 45° and 35% increase 

happens when thickness is changed from 5.0 mm to 6.5 mm. 

 

Textile 2 – S1 – T2 - 0° (Textile 2 75 mm x 75 mm, Thickness=6.5mm, 0°) 

Figure 3.25 shows the load-displacement response for the textile 2 - S1 – T2 - 0° samples. 

Displacement corresponding to first crack for all the samples lies in the range of 2.6 to 

3.1 mm. Average stiffness is 1.488 KN/mm. Peak load varies from 4.8 KN to 8.1 KN 

with the average at 5.7 KN which means 33% increase happens when the textile 2 used in 

place of textile 1.  
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Figure 3.25 Load-deflection response for Textile 2 - S1-T2- 0° 

 

3.5 Discussion of Experimental Results 

Figure 3.20 and 3.21 shows two sets of experiments at equal thickness, same orientation 

and textile but with different inner square cross-section. From load versus displacement 

response for these two sets it was observed that bigger samples have better load bearing 

capacity. Displacement corresponding to first crack is very much consistent for S1 at 

around 3 mm whereas for S2 it is varying from 2.5 mm to 4 mm with the average around 

2.8 mm only. From figures 3.20 and 3.22 it was observed the effect of orientation on load 

bearing capacity.  The capacity increases as the textiles are stronger in tension as 

compared to shear. Similarly same pattern in figures 3.23 and 3.24 can be seen when 

compared at different orientations and constant thickness of T2. From comparisons of 

figures 3.20 with 3.23 and 3.22 with 3.24, effect of thickness was observed. From figures 

3.23 and 3.25, effect of textiles was observed. The load bearing capacity increases as the 
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surface area increases with textile 2. This is because with more surface area one gets 

better bonding between the paste and the textile giving better matrix properties.  

 

Table 3-4 : Summary of test results 

 S1 – T1 - 0° S2 – T1 - 0° S1 – T2 - 0° S1 – T1 - 45° S1 – T2 - 45° 

Textile 2 

-S1 – T2 

- 0° 

Shear Strength 

(MPa) 

2.284 2.292 1.918 2.602 2.542 2.355 

Energy under τ-

γ curve (MPa) 

0.475 0.461 0.462 0.497 0.500 0.550 

Stiffness 

(KN/mm) 

1.105 0.466 1.260 1.210 0.861 1.448 

First Cracking 

Strain (radians) 

0.080 0.065 0.095 0.075 0.080 0.075 

 

3.6 Effect of Thickness 

Figure 3.26 shows the comparison between 5.0 mm (T1) and 6.5 mm (T2) thick samples 

at 0° and 45° orientations. Planar cross-section of sample was constant at 75 mm x 75 

mm (S1) and textile 1 was used to manufacture all the specimens.  From figure 3.23 it 

was observed that the load bearing had increased with increase in thickness but its effect 

on shear strength is small as shear strength is normalized by the thickness. 
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Figure 3.26 Shear stress versus shear angle response for comparison between the two 

thicknesses - T1 (5.00 mm) and T2 (6.5 mm) for both the orientations 

A drop of 19% in shear strength can be seen when the textiles are orientated at 0° and an 

increase of 14% in shear strength when textiles are orientated at 45°. Also a drop of 2.8% 

can be seen in energy under the shear stress and shear angle for 0° textile orientation and 

increase of 0.6% for 45° textile orientation. 

3.7 Effect of Orientation 

Figure 3.27 shows the details of the orientations 0° and 45° at before and after cutting. It 

can be seen that yarns of 0° orientation is actually at 45° to the direction of force whereas 

45° is along and perpendicular to the direction of applied force. Figure 3.28 shows the 
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results for 0° and 45° for 5.0 mm and 6.5 mm thick specimens. Textile 1 was used in 

manufacturing the specimens at both the orientations.  

 0° 45° 

Before 

cutting 

 
 

After 

cutting 

25
0 

m
m

250 m
m

 

250 m
m

25
0 

m
m

 
Figure 3.27 Orientations before and after cutting 

From figure 3.28 it was observed that the strength increases when textiles are orientated 

at 45° when compared to orientation at 0°. When the textile is orientated at 45°, it is 

controlled by tensile action rather than the shear. Increase in strength can be therefore be 

explained by the previous knowledge of textile reinforced concrete being stronger under 

tensile force when warps and wefts are along and perpendicular to the direction of load 

when compared with shear force [57].  Under tensile regime (45°), the load is applied 

along the direction of longitudinal fibers which takes advantage of the fiber mechanical 

properties. Additionally, after the matrix cracks, textile bridging the cracks directly takes 

the tensile load and the modes of failure are dominated by fiber pullout or fracture, which 



98 

 

results in high strength and energy absorption capability. While on the other hand, textile 

arranged along 0° is not subjected to direct tension, indicating a complicated interaction 

process between fiber and matrix.  

The increase in shear strength of textile reinforced concrete with textiles at 45° is 14% at 

thickness of 5.0 mm and 33% at thickness of 6.5 mm. Increase at higher thickness is 

more because with textile orientation at 45°, paste is more vulnerable to failure and 

therefore increase in thickness due to application of additional paste for each layer of 

textile improves the strength.  

 

Figure 3.28 Shear stress versus shear angle response for comparison between the two 

orientations- 0° and 45° for both the thicknesses 
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3.8 Effect of Planar Cross-Section 

Two planar cross-sections of 75 mm x 75 mm (S1) and 50 mm x 50 mm (S2) were tested 

to study the effects of cross-section. Figure 3.29 shows the samples at each level and 

figure 3.30 shows the dimensional details of these two levels. Figure 3.31 shows the 

comparison between 75 mm x 75 mm (S1) and 50 mm x 50 mm (S2). Orientation and 

thickness were kept constant at 0° and 5.0 mm. Textile 1 was used to manufacture all the 

specimens in the study of planar cross-sectional effects.  

Inner square c/s - 75 mm x 75 mm (S1) Inner square c/s - 50 mm x 50 mm (S2) 

  

Figure 3.29 Pictures of different sample cross-sections 

 

10’’
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3’’
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2’’
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Figure 3.30 Dimensions of the two sample cross-sections  
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From figure 3.31 it was observed that the shear stress versus strain response is similar at 

both the cross-section whereas there was an increase in load bearing capacity as observed 

in figure 3.20.  

 

Figure 3.31 Shear stress versus shear angle response for S1 and S2 

There is no change in shear strength because the shear stress is a material property and 

therefore the effect of dimensions is not there. Difference in the shear strength between 

the two cross-sections is of 0.35% which can be neglected. 

3.9 Effect of Textile Type  

Two different AR-Glass textiles were used in this study. They had different yarn 

thicknesses of 0.58 mm and 1.41 mm. Textile shown on right in figure 3.32 with 
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thickness 0.58 mm is referred as textile 1 whereas textile on right with thickness of 1.41 

mm is referred as textile 2.  

 

Figure 3.32 Two textiles used in this study 

From figure 3.33 it was observed that the shear strength for textile 2 increases by 12%. 

This increase is due to the fact that the area of contact is more in textile 2 providing better 

bonding. 

 

Figure 3.33 Shear stress versus shear angle response for textile 1 vs textile 2 



102 

 

This proves that the strength of matrix is a function of area of contact. This reinstates the 

benefit of using textile reinforced concrete over conventional steel reinforcement as the 

area of contact between paste and reinforcedment in case of textile reinforced concrete is 

higher when compared to steel reinforceemnt.  

3.10 Conclusion of Results 

 

Figure 3.34 Shear strength summary 

In figure 3.34 for summary of shear strengths, the effect of the four parameters used in 

this study can be compared. As shear strength is a material property, therefore it is 

expected that cross-section and thickness should not affect it. It was observed that the 

cross-section has a very negligible effect on shear strength as expected whereas it 

decreases with increase in thickness. This decrease is due to the fact that bonding of 

additional paste is not as good as the rest of the matrix and causes failure due to spalling 
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of the exterior cement layers. Shear strength increases at 45° orientation as textile is 

oriented along and perpendicular to the loading of direction and tensile strength is more 

dominant in that case instead of shear strength. Shear strength increases for textile 2 as it 

has more surface area and bigger openings and therefore better bonding and paste 

penetration takes place in those samples.    
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3.11 Digital Image Correlation Results 

Set 1 - S1 – T1 - 0° (75 mm x 75 mm, Thickness = 5 mm, 0°, Textile 1 - AR Glass thk 0.58 mm) 
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Set 2 – S1 – T1 - 45° (75 mm x 75 mm, Thickness = 5 mm, 45° Textile 1 - AR Glass thk 0.58 

mm) 
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Set 3 – S1 – T2 - 0° (75 mm x 75 mm, Thickness = 6.5 mm, 0°, Textile 2 AR Glass thk 1.41 mm) 
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Set 4 – S2 – T1 - 0° (50 mm x 50 mm, Thickness = 5 mm, 0°, Textile 1 - AR Glass thk 0.58 mm) 
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3.12 Discussion of Digital Image Correlation results 

Set 1 - 75 mm x 75 mm, Thk = 5 mm, O° Textile 1 (AR Glass thk 0.58 mm) - From the 

2-D spectrum for shear strain at 50 seconds and 75 seconds it was seen that the first crack 

initiates from the lower right side edge after a deflection of 5.1 mm. Testing machine 

gives a value of 2.1 MPa for shear stress and 3.7 KN for the load corresponding to the 

first crack initiation. Spectrum has been limited to 100 seconds as all the composite 

material mechanics takes place during this region. Maximum shear strain was 0.019 

mm/mm.   

 

Set 2 – 75 mm x 75 mm, Thk = 5 mm, 45° Textile 1 (AR Glass thk 0.58 mm) - From the 

2-D spectrum for shear strain at 25 seconds and 50 seconds one can see that the first 

deformation takes place around the top right edge after a displacement of 5.3 mm. 

Testing machine gives a value of 3.7 MPa for shear stress and 6.8 KN for the load 

corresponding to the first crack initiation.  But as the textile is oriented at 45°, that is 

along and perpendicular to the direction of loading, tensile properties govern in place of 

shear. As textile reinforced concrete is very strong in tension, compressive buckling takes 

places around the center.  Spectrum has been limited to 75 seconds as all the composite 

material mechanics takes place during this region. Maximum shear strain was 0.01 

mm/mm.   

 

Set 3 - 75 mm x 75 mm, Thk = 6.5 mm, 0° , Textile 2 (AR Glass thk 1.41 mm) - From 

the 2-D spectrum for shear strain at 50 seconds and 75 seconds it can be seen that the 

crack initiation takes place around the bottom right edge after a displacement of 5.2 mm. 
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Testing machine gives a value of 4.1 MPa for shear stress and 9.8 KN for the load 

corresponding to the first crack initiation.  It was seen that the shear stress and load 

values corresponding to first crack are higher for this case when compared with set-1. 

This is because the bonding is better in this case as textile two has higher surface area. 

Spectrum has been limited to 75 seconds as all the composite material mechanics takes 

place during this region. Maximum shear strain was 0.0046 mm/mm.   

 

Set 4 – 50 mm x 50 mm, Thickness = 5 mm, O° - From the 2-D spectrum for shear strain 

at 50 seconds and 75 seconds it can be seen that the crack initiation takes place around 

the bottom right edge after a displacement of 7.2 mm. Testing machine gives a value of 

3.4 MPa for shear stress and 4.3 KN for the load corresponding to the first crack initiation. 

Spectrum has been limited to 75 seconds as all the composite material mechanics takes 

place during this region. Maximum shear strain was 0.006 mm/mm.  

  

3.13 Relationship between Shear Angle and Shear Strain 

In section 3.3.3, it had discussed that the approximation of small scale displacements and 

rotation had been assumed to consider shear angle to be equal to shear strain. To calculate 

the actual strains, digital image correlation technique was used. Comparing the two 

results one can observe that initially shear angle over estimates the shear strain. This is 

because all the internal mechanics cannot be recorded by DIC system and therefore till 

the first crack there is no major displacement for the image analysis system to capture 

and analyze for strain calculations. After cracking it can be seen that high values for shear 

strains are recorded by DIC system. 
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Figure 3.35 Shear strain from DIC versus shear angle 

 

Figure 3.35 shows the five points at which the shear strain was studied. Governing shear 

strain was found out to be at the point where cracking took place as the magnitude was 

maximum at that point compared to remaining four points and overall average shear 

strain.  

In figure 3.36, sample 1 is 75 mm x 75 mm sample with thickness of 5 mm and textiles 

oriented at 0° and sample 2 is 50 mm x 50 mm sample with thickness of 6.5 mm and 

textiles orientated at 0°. Textile 1 was used in both the samples.  
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Figure 3.36 Shear strain from DIC versus shear angle 

 

3.14 Constitutive Model for Calculating Shear Stress 

A constitutive model was set up to explain the shear stress behavior in terms of shear 

angle. Shear stress – angle relationship for two sets of experiments has been derived here. 

Data sets used were S1 – T1- 0° (75 mm x 75 mm, Thickness = 5.0 mm, 0°, Textile 1) 

and S1 – T1-45° (75 mm x 75 mm, Thickness = 5.0 mm, 45°, Textile 1). As cross-section 

and thickness do not have any major effect on shear properties therefore model for S1 – 

T1 - 0° can be used for S2 – T1 - 0° and S1 – T2 - 0° and model for S1 – T1 - 45° can be 

used for S1 – T2 - 45° as well with some tolerance. Two layered of textile 1 is considered 

here only. Shear stress is almost linear till the point of cracking and decreases from there 
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on. Shear stress pattern can thereafter be explained by divided into two parts, elastic 

region (before cracking) and post peak region (after cracking).   

 

Figure 3.37 Constitutive model to calculate the shear stress 

Shear stress-angle relationship has been assumed to be fourth order equation given by:  

4 3 2

1 2 3 4 5(xy xy xy xy xy MPa) C C C C C           

Where the shear angle, γxy is measured  in radians.  

S1 – T1 - 0°  

C1 = -2052.22 C4 = 72.44 

C2 = 1943.31 C5 = -0.80 

C3 = -619.29  

 

S1 – T1 - 45° 

C1 = 0.00 C4 = 69.37 

C2 = 502.72 C5 = -0.79 

C3 = -362.88  
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Similarly shear strain hardening-softening model as discussed in section 1.2 can be 

developed for predicting shear response here as well with the different stages as marked 

in figure 3.38.  

 

Figure 3.38 Different stage during the experiment 

 

 

3.1 Crack Pattern 

Failure pattern of the all the six combinations is shown below.  Failure pattern, origin of 

crack, direction of penetration and number of cracks were a function of design parameters 

chosen. Although the samples did not crack in a uniform or a well-defined manner but the 

basic pattern is discussed.  
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S1 – T1 - 0° (75mm x 75mm, Thickness = 5.0 mm, 0°) 

 

Figure 3.39 Crack pattern for S1 – T1 - 0° 

For S1-T1- 0 samples, failure was seen to occur along the edges as shown in figure 3.39.  

Matrix failure was mostly governed by tension in y-direction and therefore textile pullout 

can be seen at places where paste had de-bonded.  

 

S1 – T1 - 45° (75mm x 75mm, Thickness = 5.0 mm, 45°) 

 

Figure 3.40 Crack pattern for S1 – T1 - 45° 
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Failure of S1 – T1 - 45° was as shown in figure 3.40. Yarns of textile were oriented along 

the global y direction. As the effect of textile is very high in tension therefore 

compressive buckling failure takes place along the center. Failure in paste is the 

governing design aspect for this combination. 

 

S2 – T1 - 0° (50 mm x 50 mm, Thickness = 5.0 mm, 0°) 

 

Figure 3.41 Crack pattern for S2 – T1 - 0° 

 

Failure was seen to occur along the edges similar to S1-T1-0°. Matrix failure was mostly 

governed by tension in y-direction and therefore textile pullout can be seen at places 

where paste had de-bonded. 
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S1 – T0 - 0° (75mm x 75mm, Thickness = 4 mm, 0°) 

 

Figure 3.42 Crack pattern for S1 – T0 - 0° 

Additional samples were made to understand the transition of failure pattern from being 

governed by compression buckling to tension and visa-versa. It was hypothesized that 

this might be a function of thickness of samples and therefore samples with thickness of 

4.0 mm were tested with the cross-section and orientation maintained at S1 and 0°.  As 

the thickness decreased to 4.0 mm it was observed that the failure mode was compressive 

buckling in global x-direction with the main crack traversing through the sample in the 

direction of loading. Therefore it was concluded that the amount of paste controlled the 

failure pattern. For c/s S1 and orientation 0°, samples with thickness 5.0 mm failed due to 

compressive buckling and thicker samples failed due to tension. 

 

S1 – T2 - 0° (75 mm x 75 mm, Thickness = 6.5 mm, 0°) 

When one compares S1 (75 mm x 75 mm) samples at thickness 4.0 mm, 5.0 mm and 6.5 

mm, one can observe that mode of failure goes from compressive buckling at center to 
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tensile failure at the edges. Similarly in this sample as well it can be seen that mode of 

failure is tensile with cracks at edges only.  

 

 

Figure 3.43 Crack pattern for S1 – T2 - 0° 

 

Textile 2 – S1, T2, 0° (Textile 2 - 75mm x 75mm ,Thickness = 6.5 mm, 0°) 

 

Figure 3.44 Crack pattern for Textile 2 – S1 – T2 - 0° 
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Textile 2 had thicker and denser yarns with higher surface area for bonding with the paste. 

Sample was of thickness 2 and it failed due to tensile force. Failure of paste was more 

predominant. 

 

Comparing the failure pattern between the orientations 0° and 45°, one can observe that 

0° had a deflection type of dislocation as shown in figure 3.45 (a). This configuration is 

therefore providing more of a frictional resistance instead of direct tension when 

compared to 45° configuration and therefore has lower capacity. 

Textile Orientation - 0° 

 

Textile Orientation - 45° 

 

Figure 3.45 Comparison between orientations 
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