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ABSTRACT  

   

Tall buildings are spreading across the globe at an ever-increasing rate (www.ctbuh.org). 

The global number of buildings 200m or more in height has risen from 286 to 602 in the 

last decade alone. The increasing complexity of building architecture poses unique 

challenges in the structural design of modern tall buildings. Hence, innovative structural 

systems need to be evaluated to create an economical design that satisfies multiple design 

criteria. Design using traditional trial-and-error approach can be extremely time-

consuming and the resultant design uneconomical. Thus, there is a need for an efficient 

numerical optimization tool that can explore and generate several design alternatives in 

the preliminary design phase which can lead to a more desirable final design.  

In this study, we present the details of a tool that can be very useful in preliminary design 

optimization - finite element modeling, design optimization, translating design code 

requirements into components of the FE and design optimization models, and pre-and 

post-processing to verify the veracity of the model. Emphasis is placed on development 

and deployment of various FE models (static, modal and dynamic analyses; linear, beam 

and plate/shell finite elements), design optimization problem formulation (sizing, shape, 

topology and material selection optimization) and numerical optimization tools (gradient-

based and evolutionary optimization methods) [Rajan, 2001]. The design optimization 

results of full scale three dimensional buildings subject to multiple design criteria 

including stress, serviceability and dynamic response are discussed. 
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1 INTRODUCTION 

 

1.1 Tall Buildings  

Tall buildings are spreading across the globe at an ever-increasing rate. The global 

number of buildings 200m or more in height has risen from 286 to 602 in the last decade 

alone. The recent increase in the number of tall buildings has been fueled by a large 

variety of local and global motivations and therefore cannot be directly related to any 

single factor. Rapid economic growth in cities, scarcity of land and increasing population 

density demanded the need for tall buildings. 

 

Figure 1-1 Global population and increase in number of buildings 200+m height, 1950-

2011(Data source: http://www.ctbuh.org) 

 

A building can be attributed as “tall” if it contains the specific vertical transport 

technologies, structural wind bracings etc. [http://www.ctbuh.org]. The number of floors 

in a building is a poor indicator of defining a tall building due to the changing floor to 
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floor height between differing buildings and functions (e.g., office versus residential 

usage), a building of 14 or more stories or over 50 meters (165 feet) in height can be used 

as a threshold for considering it a “tall building”. 

1.2 Structural Systems in Steel Buildings  

Structural systems for tall buildings have undergone a dramatic evolution throughout the 

previous two decades (Bungale, 2012). Initially, the role of steel members in a structure 

was to carry the gravity loads. Gradually, it was enhanced to include wind and seismic 

resistance using innovative systems. Today there are various lateral load resisting systems 

to choose for a tall building depending on the height of the building. 

i. Rigid Frame 

ii. Concentrically braced frame 

iii. Eccentric braced frame 

iv. Outrigger and belt truss system 

v. Framed tube 

A rigid frame is a vertical support system that also serves as a lateral load resisting 

system. It derives its unique strength to resist lateral loads from the moment interaction 

between beams and columns. A rigid frame is efficient for buildings that have less than 

20 stories. A braced frame improves upon the efficiency of a rigid frame by eliminating 

the bending of columns and girders. The diagonal bracing members carry the lateral shear 

predominantly by axial forces and thus minimize the bending of beams and columns. A 

braced frame can be concentric or eccentric with respect to the beams and columns at the 
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intersection joint. In concentric braced frames the member forces in bracing members are 

axial without significant moments. In eccentric braced frames, the axis is at an offset to 

deliberately introduce flexure and shear in beam segments to increase ductility.  

  
Figure 1-2 Rigid frames and braced frames 

 

 

Modern high-rise buildings always incorporate central elevator core. The core is very 

effective in resisting the lateral forces and shear deformations but it is ineffective in 

resisting the overturning component of the drift. The core and out rigger system’s unique 

feature is to invoke the axial stiffness of the perimeter columns for increasing the 

resistance of overturning moments. Structural form consists of central core with 

horizontal outrigger trusses connecting the core to the outer columns. Under lateral loads 

the column restrained outriggers resist the rotation of core causing smaller lateral 

deflections of the building than if the free standing core alone resisted the loading. The 

result is to increase the effective depth of the structure when it flexes as a vertical 
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cantilever by inducing tension in the wind ward columns and compression in the lee ward 

columns.

 

Figure 1-3 Outrigger braced system (Source: Beedle & Iyengar 1982) 

 

A framed tube system can be defined as a three dimensional system that utilizes the entire 

building perimeter to resist lateral loads. The exterior columns are placed close to each 

other and deep spandrels are rigidly connected to the columns. The structural 

optimization reduces to examining the column spacing and member proportions. 

Typically the column spacing is 10ft. to 20 ft. and spandrels depth varies from 3ft. to5 ft. 
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In order to allow larger column spacing diagonal bracings can be used at the exterior and 

such a system is called braced tube system. 

 

 
Figure 1-4 (a) Framed tube (b) Braced tube (Source: http://www.yousaytoo.com) 

 

 

The structural design of modern tall buildings involves the challenging task of finding the 

most economical option that satisfies the safety and serviceability performance 

requirements. The structural design of a tall building involves conceptual design, 

approximate analysis, and preliminary design optimization, followed by detailed and final 

design (Jayachandran, 2009). With the rapid advancement of computing technology, 

structural analysis of a complex building model with thousands of members can be 

accurately performed within few seconds. But structural design of such buildings 
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following the traditional trial-and-error approach is highly iterative, extremely time-

consuming and the resultant design could be uneconomical (Ng and Lam, 2005). An 

efficient optimization tool for conceptual and numerical design of tall buildings can 

provide a good preliminary design which will in turn lead to an efficient structural design 

in terms of lower fabrication and erection costs, and better construction (Jayachandran, 

2009).  Several topology and sizing optimization techniques are currently available in the 

literature.  
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2 LITERATURE REVIEW 

2.1 Sizing Optimization 

Chan et al. developed a optimization algorithm for the minimum weight design of lateral 

load-resisting steel frameworks subjected to multiple inter-story drift and member 

strength and sizing constraints in accordance with building code and fabrication 

requirements (Chan, Grierson, & Sherbourne, 1995). The most economical standard steel 

sections to use for the structural members were automatically selected from commercially 

available standard section databases. A full-scale 50-story three-dimensional (3D) 

asymmetrical building framework example was discussed to illustrate the effectiveness, 

efficiency, and practicality of the automatic resizing technique. 

 

An optimum bracing design method using GA optimization technique was developed for 

multistory non-swaying steel frames in order to obtain the least weight design by 

selecting appropriate sections for beams, columns and bracing members from the 

standard set of steel sections (Kameshki and Saka, 2001). The algorithm accounts for 

serviceability and strength constraints as specified in BS 5950. A planar frame with three-

bays and  fifteen stories was considered with different bracing types - X bracing, V 

bracing, Z bracing, X bracing (outrigger),  Rigid frame (fixed base) with no bracings were 

designed using the optimizer and the normalized weights were used to choose the 

optimum bracing design. 
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Figure 2-1 Comparison of normalized weights of tall frames with different bracing 

systems against fixed support frame (Source: Kameshki and Saka, 2001) 

 

Park et.al presented three algorithms for sizing optimization by formulating the drift 

design process into an optimization problem in order to minimize lateral displacement of 

the system without changing the weight of a structure (Park et al., 2002). In his work, he 

reported the results for a 60-storey hybrid structure with reinforced concrete walls, steel 

frames and outrigger trusses. The lateral drift of 34.07 cm at the top of the structure and 

the maximum inter-story drift of 0.74 cm are reduced to 21.15 cm and 0.49 cm, 

respectively.  Chan & Chui discussed optimality criteria method to minimize structural 

cost of steel buildings subjected to target frequency constraints (Chan and Chui, 2006). 

They presented an integrated wind-induced vibration analysis and optimal resizing 

technique for element stiffness design of tall steel building structures subject to occupant 

comfort serviceability design criteria. 
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2.2 Topology Optimization 

Chan and Wong used optimality criteria (OC) design method for simultaneous sizing and 

topological optimization. The method explored topologies using GA and then refined the 

element sizes using OC algorithm. The examples used were 40 storied three bay planar 

frames shown below in Fig2-2. The topology optimization yielded over 35% material 

savings when compared to using only element sizing optimization. 

 

 
Figure 2-2 Final topologies for braced frame work (Source: Chan& Wong 2008) 

 

Liang et al enumerated a performance-based optimization method for the minimum-

weight and maximum-stiffness topology design of bracing systems. This method 
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systematically removes inefficient materials from a continuum design domain that is used 

to stiffen the framework subjected to performance-based optimization criterion (Liang et 

al., 2000). Planar frame examples showed that the design method presented can generate 

efficient topologies, for multistory steel building frameworks. It did not however include 

any sizing optimization for bracing members.  Another continuum topology optimization 

formulation using Voigt and Reuss rules for mixing materials is applied to the concept 

design optimization of structural bracing systems needed to stiffen tall structures against 

side sway under lateral-wind and seismic-type loading (Mijar et al., 1998). 

Fawzia & Fatima (2010) studied the effect of belt truss and outrigger system on laeral 

deflection control of a composite building. Asymmetric building model was analyzed for 

DL, LL, WL load combinations in two stages. Stage 1 to obtain desired belt truss layout 

and location that can control lateral deflections and stage-2 included resizing based on 

strength requirements using OC method. They created the different models placing the 

belt truss at various locations to obtain the optimal location in stage-1.  

An effective optimization tool that can provide optimal location for belt trusses and 

perform sizing optimization for strength and lateral deflection constraints is desirable in 

such studies to compare and evaluate various design alternatives. 

2.3 Optimization of RC Structures 

Sarma et al. concluded that for concrete structures, the goal should be minimization of 

cost and not weight because these structures are made of more than one material and 

include additional formwork cost (Sarma and Adeli, 1998). He emphasized the need to 
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perform research on cost optimization of realistic three-dimensional structures, especially 

large structures with hundreds of members where optimization can result in substantial 

savings. Another simplified algorithm for RC member design was enumerated by Choi 

and Kwak with a ten story RC building example (Choi & Kwak, 1990). Chan & Wong 

presented a hybrid optimization method using optimality criteria (OC) technique and 

genetic algorithm (GA) (Chan and Wong, 2008). It can be applied for optimal structural 

design of tall hybrid steel and concrete buildings subject to multiple serviceability wind 

drift and acceleration constraints and practical element sizing requirements. The 

effectiveness and practicality of the optimization technique is illustrated through an 

actual application to the preliminary design of an 88-storey building in Hong Kong. 

2.4 Motivation and Research Objectives 

Most of the research (Chan and Grierson 1993; Kameshki & Saka, 2001; Park et al., 

2002) considered sizing optimization with strength and drift constraints as design 

requirements. Some researchers addressed the topology optimization (Liang, Xie, & 

Steven, 2000, Li et al. 1999, Mijar, Swan, Arora, & Kosaka, 1998), but they considered 

planar frames and not full scale three dimensional buildings. 

This study presents the results for structural design optimization of –six, sixteen and forty 

story buildings subject to multiple design criteria, such as the stress, lateral drift, and 

frequency,  requirements as specified in the ACI and ASCE codes of practice. The 

structural analysis and design optimization of the building models are accomplished 

using the Frame3D program (Sirigiri and Rajan, 2013).  
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3 FINITE ELEMENT MODEL 

3.1 Frame3D 

The GS-USA Frame3D© computer program can be used for the linear analysis and 

optimal design of three dimensional structural systems using beam and thin plate/shell 

elements.  The different steps in the program are shown in Fig 3-1. 

   

                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Flow chart in Frame3D program for design optimization 
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3.2 Building Layout 

The 180ft x 90ft rectangular floor layout as shown in fig1.1 is used for the design 

optimization model of three buildings with six, sixteen and forty stories. The height from 

the basement to the lobby is 16 ft. All the other floor heights are 13 ft each. The floor 

system consists of 3” cellular steel deck with 2.5 inch concrete slab, supported on the 

steel joists. The unique layout is of irregular building, with large unsupported spans in 

both N-S (40’) and E-W (30’). The first floor is taller than other floors and leads to a soft 

story effect under seismic loads.  

 
Figure 3-2 Typical floor plan 
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3.2.1 Elevator shaft 

The elevator shaft is located in between grids 2A and 2B and along girds C, D and E. 

There are two elevators surrounded by reinforced concrete walls on all the three sides 

with the common wall located along grid D. The walls are 10 in. thick and are rigidly 

connected with the columns from top to bottom of the building. 

3.2.2 Bracing Systems 

The bracing system provides additional lateral stiffness to the structure, and especially in 

tall buildings, it effectively controls lateral deflections and increases torsional resistance 

due to wind loading. Typical bracing systems are placed symmetrically in order to be safe 

in design for both directions of wind loads. All the models with bracing elements are 

assumed to be symmetrical in this study. 

3.3 Material Properties 

All the columns, beams and bracings of the building are made of steel. The floor slabs 

and elevator shaft walls are made of concrete. The grade of structural steel is assumed to 

be A992/A992M and steel properties are as per ASTM specifications. 

3.4 Loads 

3.4.1 Gravity Loads 

Apart from the assumed dead loads due to the steel deck and floor finishes, the live load 

on the roof is as per the specification in Table 4-1, ASCE-7-10.
 
 



15 

 

Table 3-1 Material Properties 

Type of 

material 

Structural 

element 
Material Property Value 

Steel, Grade 

A992/A992M 

Columns, 

beams, and 

bracings 

Mass density 

Elastic Modulus  

Yield stress   

slugs/in
3 

 psi 

 ksi 

Concrete 

Slab & 

elevator shaft 

walls 

Mass density
 

Elastic Modulus  

 slugs/in
3
 

psi 

 

Table3-2  Dead and Live Loads 

 

Location 
Item 

Load 

(psf) 

Load 

(psi) 

Total Load 

(psi) 

 

Floor 

3” Steel deck 125 0.87 
0.87+0.11 =1.0 

Floor finishes 16 0.11 

Roof 
Decking 42 0.29 0.29+0.04 = 

0.3 Felt +Gravel 6 0.04 

Lobby Live load 100 0.7 0.7 

Floors Live load 80 0.56 0.56 

Roof Live load 20 0.14 0.14 

3.4.2 Wind Loads 

The assumed layout is flat enclosed building and is considered as the Main Wind-Force 

Resisting System (MWFRS). As per ASCE 7-2010,  

 If the building is rigid then assumed value for  gust factor is , G=0.85  

 If the building is flexible or dynamically sensitive, the gust effect factor  Gf   is 

computed using Eq. 26.9-10 in Sec.26.9.5 ASCE7-2010. 

Wind pressure loads are computed using directional procedure
 
with positive internal 

pressure condition. The wind is assumed to be blowing in both N-S and E-W directions. 
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The building is designed to be symmetrical and hence wind blowing from S-N and W-E 

directions was ignored. The detailed wind pressure calculations for the six, sixteen and 

forty floor buildings are provided in Table A-1, A-2 and A-3 in Appendix A. 

Table 3-3 Summary of Wind Load Parameters 

Basic wind speed, V 

Risk category. 

Exposure Category 

Importance factor, I 

Directionality Factor, Kd 

Topographic Factor, Kzt 

Gust Factor, G 

(for rigid structures) 

Internal Pressure Coefficient, GCpi 

Cp(Windward) 

Cp(Leeward) 

120 mph 

III  

C 

1.0 

0.85 

1.00 

0.85 

 

0.18 

0.8 

0.5 

 

Table 3-4 Wind Load Parameters 

Parameter Six- Floor Sixteen- Floor Forty- Floor 

Height of building ( ft) 81 211 510 

Mean roof height( ft) 81 211 510 

Velocity Pressure 

Coefficient (Kz) 
1.22 1.48 1.77 

Velocity Pressure at mean 

roof height qh  (psf) 
38.01 46.23 55.46 

 

3.4.3 Dynamic Response 

Wind is a dynamic and random phenomenon in both time and space (Boggs and 

Dragovich, 2008). The dynamic response of a low-rise building is likely insignificant, 
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assuming it has been adequately designed for both strength and stiffness limits states. 

However, it is important to quantify the case where dynamic response may be neglected. 

The building’s fundamental natural frequency of vibration , is the most widely accepted 

property of a structure used to determine whether dynamic response will be significant 

under wind loading. The ASCE Standard [ASCE 7-2010] classifies a structure as 

dynamically sensitive, or “flexible” if  < 1 Hz, otherwise it is considered to be “rigid.” 

The classification used by the ASCE Standard is widely accepted as a reasonable 

boundary between dynamic and rigid behavior. If the structure is flexible, it is essential 

that the designer determine the natural frequency and mode shapes of the first few modes 

of vibration accurately using eigenvalue analysis. ASCE Standard specifies that for 

flexible or dynamically sensitive the gust effect factor shall be calculated using the 

Eq. 26.9.10 which contains certain parameters that are specified as a function of the 

fundamental natural frequency of the structure. 

The dynamic response in terms of serviceability with respect to occupier perception of 

lateral vibrations can become the governing the design issue and requires the purpose-

designed damping systems to reduce the vibrations to acceptable level (Mendis et.al, 

2007) Dynamic responses also play an important role in the detailed design of façade 

systems. 

f

f

fG
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3.5 Finite Element Model  

3.5.1 Element Type 

The beam element uses a three-dimensional two-node formulation with six independent 

degrees of freedom (three translations and three rotations) at each end of the element.  

Table 3-5 Element Properties 

Type of finite 

element 
Structural elements 

Beam2 
Beams , Columns & 

Bracings 

QB4 Slab & Walls 

 

 
Figure 3-3 Beam2 element for beams, columns and bracing members 

 

 

Figure 3-4 QB4 shell element for slab and walls 
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In Frame 3D, the stresses in space beam elements are computed using the formulae given 

below. The beam orientation is assumed such that the origin of the coordinate system is at 

the centroid of the cross-section and the axial direction is x, and the cross-section is 

oriented in the y-z plane. Assumptions in stress computations  

Normal stress (Tension is positive) 

 
max max ,0

y zt x

y z

M MN

A S S


 
   
 
 

 (1) 

 
max min ,0

y zc x

y z

M MN

A S S


 
   
 
 

 (2) 

Shear stress  

 
yy

y

V

SF
   (3) 

 
zz

z

V

SF
   (4) 

 
xT

J

T

T
   (5) 

  max max ,conservative y T z T        (6) 

 

 

3.5.2 Element Properties 

The element type and boundary conditions remain same for all the three building models. 

The cross sectional properties however vary in each model. The longitudinal beams in all 
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floors are assumed to have the same cross section. Similarly the transverse beams in all 

floors have the same cross section. The cross section properties of columns are varied 

with height. 

 

Figure 3-5 Typical floor plan with longitudinal beams highlighted in red 

 

Figure 3-6 Typical floor plan with transverse beams highlighted in red 
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Figure 3-7 Plot showing different column groups for six floor model 

 

Figure 3-8 Plot showing different column groups for sixteen floor model 
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Figure 3-9 Plot showing different column groups for forty floor model 

 

Table 3-6 Classification of Column Property Groups 

Case Floor numbers Column group 

1-Six story 
1-3 Column 1 

4-6 Column 2 

2-Sixteen story 

1-6 Column 1 

7-12 Column 2 

13-16 Column 3 

3-Forty story  

1-7 Column 1 

8-14 Column 2 

15-21 Column 3 

22-27 Column 4 

28-33 Column 5 

34-40 Column 6 
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3.6 Naming Convention for members 

A naming convention is specified in order to identify the location of members and nodes 

in the finite element models.  

Table 3-7 Naming Convention for Nodes and Elements 

Item Naming 

Node N-Floor#-grid tag(E-W) –grid tag (N-S) 

Column  C - Floor # – grid tag (E-W)- grid tag (N-S) 

Longitudinal beam  LB- grid tag (N-S)- Floor #- grid1(E-W) –grid2(E-W)(*) 

Transverse beam  LB- grid tag (E-W)- Floor # - grid1(N-S)- grid2 (N-S)(*) 

 

(*) Beam spans between grid1 and grid 2 

A column in the 4
th

 floor at the intersection of grids A and 3 will be written as C-4-A-3. 

A beam in the first floor between grids A and B and along grid 2 will be named as LB-2-

1-A-B. 
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4 DESIGN OPTIMIZATION 

4.1 Constrained Optimization Problem  

In general, a constrained optimization can be formulated as, 

Find        

To minimize  (7) 

Subject to  (8) 

  (9) 

 is an n-dimensional design vector,  is the objective function, and Eq.2 and Eq.3 

are inequality constraints and design variable bounds, respectively. In order to define a 

structural design optimization problem following are the required assumptions. 

1. All the structural elements are straight and prismatic.  

2. Materials are homogeneous and isotropic. 

3. Material properties are assumed to be constant throughout the design process. 

4. Response from small strains, small displacement linear elastic finite element 

analysis 

i. Nodal displacements 

ii. (Beam) Element nodal forces 

iii. (Beam + shell) Element max. tensile, compressive and shear stresses 

iv. Support reactions 

v. Fundamental frequency 

nRx

( )f x

( ) 0 1,2,..,ig i m x

        1, 2....  L U

j j jx x x j n  

x ( )f x
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4.2 Design Variables 

The variables in a design optimization problem are the element sizing variables and 

topological variables. If only sizing optimization is considered in a particular case, then 

the topology is presumed to be fixed. Element sizing variables vary the cross-sectional 

properties of structural elements. They can be continuous, or discrete. In practical 

structural design, steel structures use standard AISC sections which are discrete variables 

or built–up sections which are continuous variables. Discrete and simple-continuous 

variables have been considered in this study.  In order to solve the problem with 

continuous design variables, we assumed all the members are assigned wide flange 

sections. The wide flange sections from the AISC steel data base were examined for 

approximate relationship between the four dimensions, web height , flange width , 

web thickness  and flange thickness . The custom wide flange sections are thus based 

on the relative dimensions of standard wide flange sections. Using the relationships from 

Fig 4-1, 4-2 and 4-3 and web height, as the independent variable, the following equations 

are derived. 

 (10) 

 (11) 

 (12) 

Since in a building with thousands of members, each member cannot be designed 

uniquely, we group the members into property groups. If using the discrete sizing 

wh
fb

wt ft

  0.22 7f wb h 

20.01 0.05 0.38f f ft b b  

0.58 0.035 w ft t 
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variables  and   belong to DDVs set of standard steel sections 

from AISC steel data base where is the wide flange section tag  for the property 

group.  Similarly for the optimization with CDVs , where is the web 

height for the property group. The cross sectional properties are evaluated using Eq. 4 

to 6. In this study, we used the set of 267 discrete AISC wide flange sections for sizing 

variables. The list of AISC wide flange sections used in this study can be found in 

Appendix B. Hence the bounds for DDVs are 1 and 267. The bounds for CDVs have 

been specified based on engineering judgment.  

 (13) 

 (14) 

 
 

Figure 4-1 Relationship between flange thickness and web thickness for AISC W sections 
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Figure 4-2 Relationship between flange width and flange thickness for AISC W sections 

 

 

 
 

Figure 4-3 Relationship between web height and flange width for AISC W sections 
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4.3  Topology Design Variables 

Pure rigid frame systems alone are not efficient in resisting lateral loads for tall steel 

buildings due to associated high costs. Truss members such as diagonals are often used to 

brace steel frameworks to maintain lateral drifts within acceptable limits. The optimal 

layout design of bracing systems is a challenging task for structural designers, because it 

involves a large number of possibilities for the arrangement of bracing members. In the 

absence of an efficient optimization technique, the selection of lateral bracing systems for 

multistory steel frameworks is usually undertaken by the designer based on a trial-and-

error process or previous design experiences. 

In topology optimization of a building structure, Boolean design variables are defined to 

structural elements. The value of variable is “1” if the element exists in the model and 

“0” if it does not.  Frame3D program generates several topology designs for the structure 

to yield the optimized solution. In Chapter 6, test cases are presented for topology 

optimization using bracing elements of a building model as topological design variables. 

4.4 Stress Constraints 

The strength of structural members is the primary factor to be considered in structural 

design, because loads on a structure are transferred through structural elements to the 

foundation. The failure of these elements due to excessive stresses can lead to the 

collapse of the entire building. The DO problem formulation is based on Allowable 

Strength Design (ASD). ASD requires that the allowable strength of each structural 
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component equals or exceeds the required strength. According to Eq. B3-1, in 

AISC Specification (2005),  

The allowable tensile stress for gross steel cross section, 

 (15) 

The allowable compressive stress for gross steel cross section, 

 (16) 

The allowable shear stress for gross steel cross section 

 (17) 

As per Table 3-1, the yield stress for grade A992 steel = 50000 psi.  Therefore, the 

stress constraints in the design problem are specified as: 

 (18) 

 (19) 

 (20) 

4.5 Displacement Constraints 

The design of a multistory steel building under lateral loads is usually governed by 

overall stiffness rather than strength criteria (Liang et al., 2000). The stiffness of a 

structure can be evaluated based on allowable serviceability limits. In the ultimate limit 

state design, the second-order P-Delta effect is prevented by limiting the lateral 

deflections of the building (Ng & Lam, 2005). Drifts (lateral deflections) of concern in 

0.6t

a yf 

0.6c

a yf 

0.4a yf 

yf

max, 30000t

i psi 

max, 30000t

i psi 

max, 20000i psi 
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serviceability checking arise primarily from the effects of wind (ASCE 7-10). The drift at 

the top of the building should be less than 1/600 to 1/400 of the total building height 

(ASCE Task Committee on Drift Control of Steel Building Structures 1988 and Griffis 

1993). The allowable limits for longitudinal and transverse drifts vary with the height of 

the building.  

 (21) 

 (22) 

Table 4-1 Lateral Drift Limits  

Parameter Six Floor Sixteen Floor Forty Floor 

Total Height (ft) 81 211 510 

(in) 1.9 5.0 12.2 

(in) 1.9 5.0 12.2 

4.5.1 Vertical Deflection 

The common deflection limits for horizontal members have been 1/360 of the span for 

floors subjected to full nominal live load. This is applicable for checking deflection in 

slabs and beams. The longest span of the beams in the building layout is 40 ft. and the 

post processing analysis results show the vertical deflection of these beams was critical 

for design. Thus the vertical deflection constraint is specified as: 

 (23) 

max

L L

a 

max

T T

a 

L

a

T

a

max 1.33V 
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4.5.2 Inter story Drift 

 

Figure 4-4 Inter-story drift in a planar frame 

The inter-story drift is another serviceability criterion for design requirements. According 

to BS 8110-2:1997 (British Standards Institution 1997), the inter-story drift should be 

less than 1/500 of the story height. For a story height , the drift of story and 

are   and  respectively then, 

 (24) 

As per the building layout description the typical story height is 13 ft. Therefore, the 

inter-story drift constraints in the design problem are specified as (in inches): 

 
 
 (25) 
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4.6 Frequency Constraints 

We are designing for rigid building and hence the design constraint for frequency is 

specified as: 

 
 (26) 

4.7 Optimization Problem Formulation - Minimum Weight Design (MWD) 

As seen from literature review, the minimization of weight is the main goal for the 

optimization of steel buildings. For a general building structure with  structural 

elements having cross sectional area of members as , for , the weight of 

structure is calculated as   

 (27) 

W is the total weight of structure 

is the weight density of material for the 
 
structural member and  

 is the length of structural members. 

To minimize 

 (28) 

Subject to   

 (29) 

 (30) 
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 (31) 

 (32) 

 (33) 

max

V V

a   (34) 

 (35) 

 (36) 

4.8 Optimization Problem Formulation - Maximum Frequency Design (MFD) 

In some cases, where dynamic response plays more significant role than the weight of the 

structure, maximization of natural frequency can be the desirable goal subjected to stress, 

displacement and a maximum weight limitation specifiedW .  

To minimize 

                             lowestf                                                       (37) 

Subject to   

 (38) 

 (39) 

 (40) 

 (41) 

 (42) 
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max

V V

a   (43) 

specifiedW W  (44) 

 (45) 
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5 CASE STUDIES 

The building layout shown in Fig 3-2 is used to in this study to create three different test 

cases of six, sixteen and forty floor models for design optimization. These test cases show 

the effect of stresses and displacements in buildings of different heights. The results 

enumerate the efficiency of Frame3D but one may not expect to generate similar results 

for all types of buildings because load resisting capacity of the system depends on a 

various factors such as architectural features, layout of columns and beams. However, the 

tool is applicable to all building models and allows generating several design alternatives 

as required by the designer. 

 

5.1 Naming Convention for Test Cases 

A naming convention is specified in order to denote the problem formulation for the 

different test cases presented in this chapter. It is designated using: 

Number of floors - Design variable type - Objective function - Design constraints 

6F-DDV-W-S+D+F denotes the DO problem for minimizing total weight of the six floor 

building with discrete design variables subjected to stress ,displacement and frequency 

constraints. 6F-DDV-F-S+D+W –denotes the DO problem for maximizing lowest 

frequency of the six floor building with discrete design variables subjected to stress 

,displacement and total weight  constraints. 
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5.2 Six Floor: Sizing Optimization 

5.2.1 Case 1- Effect of RC Elevator Shaft core (MWD) 

The two models considered in Case 1 are: 

a) Six story model with steel framework and floor slabs  

b) Six  story model with steel framework, floor slabs and elevator shaft 

Both the models are subjected to all the performance design constraints for minimizing 

the total weight of the structure using discrete design variables from the set of AISC W 

sections for cross section groups. 

 

Figure 5-1 Six floor model with steel framework and floor slabs  
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  Figure 5-2 Six floor model with steel framework, floor slabs and elevator shaft 

Table 5-1 Maximum Element Stresses and Location  

Model Description 
Tensile stress 

(psi) 

Compressive 

stress 

(psi) 

Shear stress 

(psi) 

6F-DDV-W-S 
27583 27773 8308 

TB-1-B-2-2A C-1-F-2 TB-5-F-2B-3 

6F-DDV-W-S+D 
27583 27773 8308 

TB-1-B-2-2A C-1-F-2 TB-5-F-2B-3 

6F-DDV-W-S+D+F 
28095 28051 8683 

TB-1-F-2B-3 TB-2-B-2-2A TB-5-B-2-2A 

6F-ES-DDV-W-S 

 

18932 27586 6315 

TB-2-B-2-2A C-1-B-3 7-C-2A 

6F-ES-DDV-W-S+D 
18932 27586 6315 

TB-2-B-2-2A C-1-B-3 7-C-2A 

6F-ES-DDV-W-

S+D+F 

18932 27586 6315 

TB-2-B-2-2A C-1-B-3 7-C-2A 

 

The design results for element stresses and nodal displacements show that: 

1. Stress constraints govern the design in both models 

2. Largest compressive stress values are in the lower most columns of the building 

3. The total weight of frame work increases by 3.4 % with frequency constraint 
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4. The elevator shaft provides a lot of stiffness to the structure leading to an increase 

in the natural frequency with a total weight increase of 39% when compared to 

the model without elevator shaft. 

Table 5-2 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

Displacement 

(in) 

Transverse 

Displacement 

(in) 

Vertical 

Displacement 

(in) 

6F-DDV-W-S 
0.68 0.15 0.66 

6-F-2A 6-G-1 5-F-2A 

6F-DDV-W-S+D 
0.68 0.15 0.66 

6-F-2A 6-G-1 6-G-1 

6F-DDV-W-

S+D+F 

0.44 0.14 0.63 

6-F-2A 6-G-1 6-G-1 

6F-ES-DDV-W-S 

 

0.01 0.05 0.64 

7-C-2A 6-A-1 5-B-2B 

6F-ES-DDV-W-

S+D 

0.01 0.05 0.64 

7-C-2A 6-A-1 5-B-2B 

6F-ES-DDV-W-

S+D+F 

0.01 0.05 0.64 

7-C-2A 6-A-1 5-B-2B 

 

Table 5-3 Total Weight and Lowest frequency 

Model Description 
Weight 

(Mlb) 

Lowest 

frequency 

(Hz) 

Constraint Location 

6F-DDV-W-S 4.72 0.88 
Compressive 

stress 
First floor column 

6F-DDV-W-S+D 4.72 0.88 
Compressive 

stress 
First floor column 

6F-DDV-W-S+D+F 4.88 1.1 Tensile stress 
First floor 

transverse beam 

6F-ES-DDV-W-S 6.54 3.2 
Compressive 

stress 
First floor column 

6F-ES-DDV-W-S+D 6.54 3.2 
Compressive 

stress 
First floor column 

6F-ES-DDV-W-S+D+F 6.54 3.2 
Compressive 

stress 
First floor column 
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5.3 Six Floor: Sizing + Topology Optimization 

5.3.1 Case 2- Optimization of Bracing system (MWD) 

The models considered in Case 2 are: 

a) Six story model with framework with no bracing members and floor slabs 

b) Six story model with framework with X-bracing on periphery and floor slabs. 

Two types of braced models are created, a model with initial design in which all bracing 

members are assigned Boolean design variable values of “1” and another model, with 

initial design in which all the Boolean design variable values are “0”. . The bracing 

members of each story and on either sides of the building were grouped together for 

symmetry. The optimization tool is then allowed to remove or retain the members in 

generating several topology alternatives. All the models are subjected to stress and 

displacement design constraints for minimizing the total weight of the structure using 

discrete design variables from the set of AISC W sections for cross section groups.  

The design results for element stresses and nodal displacements show that: 

1. Both the braced models had the same final topology even though the initial design 

was different. 

2. Compressive stress governs the design in all three models. 

3. Largest compressive stress values are in the lower most columns of the building 

4. Simultaneous topology and sizing optimization yields a reduction in the total 

weight of steel frame work by 3.5 %. 
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Figure 5-3 Six story model with framework with X-bracing 

 

Table 5-4 Total Weight and Lowest frequency 

Model description 
Weight 

(Mlb) 
Constraint Location 

6F-DDV-W-S+D 4.72 
Compressive 

stress 
First floor column 

6F-BDV+DDV-W-S+D  

(BDVs =1) 
4.56 

Compressive 

stress 
First floor column 

6F-BDV+DDV-W-S+D 

(BDVs =0) 
4.56 

Compressive 

stress 
First floor column 

 

Table 5-5 Maximum Element Stresses and Location 

Model Description 
Tensile stress 

(psi) 

Compressive 

stress 

(psi) 

Shear stress 

(psi) 

6F-DDV-W-S+D 
27583 27773 8308 

TB-1-B-2-2A C-1-F-2 TB-5-F-2B-3 

6F-DDV+BDV-W-

S+D 

22000 29412.3 7710 

TB-4-B-22-A C-1-F-2B TB-5-F-2B-3 

6F-DDV+BDV-W-

S+D  

22000 29412.3 7710 

TB-4-B-22-A C-1-F-2B TB-5-F-2B-3 
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Table 5-6 Six Floor - Topology of Elevation View 

Topology of elevation view Description 

 

 

Initial topology 

with full bracing 

 

 

Initial topology 

with no bracing 

 

 
 

Final topology 

for the braced 

models 

 



42 

 

Table 5-7 Six Floor - Topology of Side View 

Topology of side view Description 

 

Initial topology with full bracing 

 

Initial topology with no bracing 

 

Final topology for the braced models 
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Table 5-8 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

Displacement 

(in) 

Transverse 

Displacement 

(in) 

Vertical 

Displacement 

(in) 

6F-DDV-W-S+D 
0.68 0.15 0.66 

6-F-2A 6-G-1 6-G-1 

6F-DDV+BDV-W-S+D 

(BDVs=1) 

1.77 0.13 0.63 

6-B-1 6-F-1 5-F-2A 

6F-DDV+BDV-W-S+D  

(BDVs=0) 

1.77 0.13 0.63 

6-B-1 6-F-1 5-F-2A 

 

 

5.3.2 Case 3- Optimization of Bracing system (MLF) 

The models used in Case 3 are same in Case 2. The models are subjected to stress, 

displacement and weight design constraints for maximizing the lowest frequency of the 

structure using discrete design variables from the set of AISC W sections for cross 

section groups. The design results for element stresses and nodal displacements show 

that: 

1. Both the braced models had the same final topology even though the initial design 

was different when weight constraint was imposed. 

2. Weight constraint was governing constraint in the braced models. 

3. Sizing optimization yields a reduction in the total weight of steel frame work by 

32 % in the model with weight constraint. 

4. Simultaneous topology and sizing optimization gives a 15.6 % reduction in total 

weight in the braced models. 
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Table 5-9 Total Weight and Lowest frequency 

Model description 
Weight 

(Mlb) 

Lowest 

Frequency 

(Hz) 

Constraint 

Value 
Location 

6F-DDV-F-S+D 6.83 1.2 
Compressive 

stress 
First floor column 

6F-DDV-F-S+D+W 5.16 1.19 Tensile stress 
First floor 

transverse beams 

6F-BDV+DDV-F-S+D 

(Initial guess :full bracing ) 
5.99 1.6 Tensile stress 

First floor 

transverse beams 

6F-BDV+DDV-F-S+D+W 

(Initial guess :full bracing )) 
5.71 1.32 Total Weight - 

6F-BDV+DDV-F-S+D 

(Initial guess :no bracing )) 
6.6 1.45 

Compressive 

stress 
First floor column 

6F-BDV+DDV-F-S+D+W 

(Initial guess :no bracing ) 
5.71 1.32 Total Weight - 

 

Table 5-10 Maximum Element Stresses and Location 

 

Model Description 
Tensile stress 

(psi) 

Compressive 

stress (psi) 

Shear stress 

(psi) 

6F-DDV-F-S+D 
27583 27773 8308 

TB-1-B-2-2A C-1-F-2 TB-5-F-2B-3 

6F-DDV-F-S+D+W 
27730 27616 8307 

TB-1-B-2-2A TB-2-F-2B-3 TB-5-F-2B-3 

6F-BDV+DDV-F-S+D 

(Initial guess :full bracing )) 

28099 28056 8682 

TB-1-B-2-2A TB-2-F-2B-3 TB-5-F-2B-3 

6F-BDV+DDV-F-S+D+W 

(Initial guess :full bracing )) 

21706 24977 6614 

TB-1-B-2-2A C-1-F-2 TB-5-F-2B-3 

6F-BDV+DDV-F-S+D 

(Initial guess :no bracing )) 

11000 16650 4579 

TB-1-B-2-2A C-1-F-2 TB-5-B-2-2A 

6F-BDV+DDV-F-S+D+W 

(Initial guess :no bracing )) 

21706 24977 6614 

TB-1-B-2-2A C-1-F-2 TB-5-F-2B-3 
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Table 5-11 Six Floor - Topology of Elevation View 

Topology of elevation view Description 

 

 

Initial topology with full bracing 

 

 

Initial topology with no bracing 

 

 
 

Best design topology in both 

cases 
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Table 5-12 Six Floor - Topology of Side View 

Topology of side view Description 

 

Initial topology with full bracing 

 

Initial topology with no bracing 

 

Best design topology in both models 
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Table 5-13 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

Displacement 

(in) 

Transverse 

Displacement 

(in) 

Vertical 

Displacement 

(in) 

6F-DDV-F-S+D 
0.68 0.15 0.66 

6-F-2A 6-G-1 6-G-1 

6F-DDV-F-S+D+W 
0.34 0.14 0.64 

6-G-2 6-G-1 5-B-2B 

6F-BDV+DDV-F-S+D 

(Initial guess :full bracing ) 

0.17 0.13 0.63 

6-F-2A 6-G-1 5-F-2A 

6F-BDV+DDV-F-S+D+W 

(Initial guess :full bracing ) 

0.25 0.13 0.62 

6-G-3 6-G-1 5-F-2A 

6F-BDV+DDV-F-S+D 

(Initial guess :full bracing ) 

0.19 0.06 0.36 

6-G-3 6-G-1 5-F-2A 

6F-BDV+DDV-F-S+D+W 

(Initial guess :full bracing ) 

0.25 0.13 0.62 

6-G-3 6-G-1 5-F-2A 

 

 

5.4 Sixteen Floor: Sizing Optimization 

5.4.1 Case 4 - Effect of RC Elevator Shaft core (MWD) 

The two models considered in Case 4 are: 

a) Sixteen story model with steel framework and floor slabs  

b) Sixteen story model with steel framework, floor slabs and elevator shaft 

Models are subjected to different types of design constraints for minimizing the total 

weight of the structure using web height as continuous design variable for each of cross 

section groups. The flange width, web thickness and flange thickness are defined using 

Eq.4 to Eq.6 
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Figure 5-4 Sixteen story model with steel framework and floor slabs  

 
Figure 5-5  Sixteen story model with steel framework, floor slabs and elevator shaft 
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The design results for element stresses and nodal displacements show that: 

1. Total weight of frame work increases 163% with frequency constraint when 

elevator shaft is not included in the model. 

2. Total weight of frame work increases 3% with frequency constraint when elevator 

shaft is included in the model. 

Table 5-14 Maximum Element Stresses and Location 

 

Model Description 
Tensile stress 

(psi) 

Compressive 

stress (psi) 

Shear stress 

(psi) 

16F-CDV-W-S+D 
25353 25221 5707 

TB-1-B-2B-3 C-1-F-3 TB-14-F-2B-3 

16F-CDV-W-S+D+F 
22505 22523 5109 

TB-1-B-2B-3 TB-12-B-2B-3 TB-15-F-2B-3 

16F-ES- CDV-W-S+D 
23890 23685 5461 

TB-1-B-2-2A TB-2-B-2-2A TB-15-B-2-2A 

16F-ES-CDV-W-

S+D+F 

15395 24598 3721 

TB-2-B-2-2A C-7-B-3 TB-15-B-2-2A 

 

Table 5-15 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

Displacement 

(in) 

Transverse 

Displacement 

(in) 

Vertical 

Displacement 

(in) 

16F-CDV-W-S+D 4.98 1.48 1.32 

16-G-2 16-B-1 15-B-2B 

16F-CDV-W-S+D+F 0.27 0.63 0.54 

16-G-3 16-A-1 15-F-2A 

16F-ES-CDV-W-S+D 0.17 0.77 1.29 

17-C-2B 17-D-2B 15-B-2A 

16F-ES-CDV-W-

S+D+F 
0.17 0.62 1.29 

17-C-2A 17-D-2B 15-B-2A 
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Table 5-16 Total Weight and Lowest frequency 

Model description 
Weight 

(Mlb) 

Lowest 

frequency 

(Hz) 

Constraint Location 

16F-CDV-W-S+D 18.51 0.32 
Vertical 

Displacement 
15

th
 floor slab 

16F-CDV-W-S+D+F 48.82 1.0 Lowest Frequency - 

16F-ES-CDV-W-S+D 22.07 0.32 
Vertical 

Displacement 
15

th
 floor slab 

16F-ES-CDV-W-

S+D+F 
22.73 1.0 

Vertical 

Displacement 
15

th
 floor slab 

 

 

5.5 Sixteen Floor: Sizing + Topology Optimization 

5.5.1 Case 5 -Optimization of Bracing system (MWD) 

The models considered in Case 5 are: 

a) Sixteen story with steel framework with no bracing members and floor slabs  

b) Sixteen story with steel framework with X-bracing and floor slabs. 

The braced model is with initial design in which all bracing members are assigned 

Boolean design variable values of “1”. The bracing members of each story and on either 

sides of the building were grouped together for symmetry. The optimization tool in 

Frame3D is then allowed to remove or retain the members in generating several topology 

alternatives. All the models are subjected to stress displacement and weight design 

constraints for minimizing the total weight of the structure using web height as 

continuous design variables for cross section groups. The design results for element 

stresses and nodal displacements show that: 
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1. Vertical deflection in floor slab governs the design in all three models. 

2. Simultaneous topology and sizing optimization yields a reduction in the 

total weight of steel frame work by 3.2%. 

3. By adding the weight constraint yields a reduction in the total weight of 

steel frame work by 5.3%. 

Table 5-17 Total Weight and Lowest Frequency 

Model description 
Weight 

(Mlb) 
Constraint Location 

16F-CDV-W-S+D 18.51 
Vertical 

Displacement 
15

th
 floor slab 

16F-BDV+CDV-W-S+D (BDVs =1)  17.91 
Vertical 

Displacement 

15
th
 floor slab 

16F-BDV+CDV-W-S+D+W (BDVs 

=1) 
17.52 

Vertical 

Displacement 

15
th
 floor slab 

 

Table 5-18 Maximum Element Stresses and Location 

Model Description 
Tensile stress 

(psi) 

Compressive 

stress (psi) 

Shear stress 

(psi) 

16F-CDV-W-S+D 
25315 25138 5698 

TB-1-B-2-2A TB-2-B-2-2A TB-14-B-2-2A 

16F-BDV+CDV-W-S+D 

(Initial guess: full bracing) 

20450 25790 4603 

TB-4-F-2B-3 C-6-F-2 TB-15-F-2-2A 

16F-BDV+CDV-W-S+D+W 

(Initial guess: full bracing) 

20452 25697 4665 

TB-4-B-2B-3 C-1-F-3 TB-2-F-2B-3 

 

Table 5-19 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

displacement  

(in) 

Transverse 

displacement 

(in) 

Vertical 

displacement 

(in) 

16F-CDV-W-S+D 
4.98 1.47 1.32 

16-G-2 16-B-1 15-B-2B 

16F-BDV+CDV-W-S+D 

(Initial guess: full bracing) 

3.29 1.48 1.27 

16-F-2B 16-F-1 15-F-2A 

16F-BDV+CDV-W-S+D+W 

(Initial guess: full bracing) 

4.78 1.74 1.25 

16-F-2B 16-B-1 15-F-2A 
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Table 5-20 Sixteen Floor - Topology of Elevation View 

Topology of elevation view Description 

 

 

Initial topology with full bracing 

 

 
 

Best design topology without weight 

constraint 

 

 

Best design topology with weight 

constraint 
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Table 5-21 Sixteen Floor - Topology of Side View 

Topology of side view Description 

 

 

Initial topology with full bracing 

 

Best design topology without weight 

constraint 

 

Best design topology with weight 

constraint 
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5.5.2 Case 6 -Optimization of Bracing system (MLF) 

The models considered in Case 6 are: 

a) Sixteen story model with steel framework with no bracing members and floor 

slabs  

b) Sixteen story model with steel framework with X-bracing on periphery and 

floor slabs. 

The models are subjected to stress displacement and weight design constraints for 

maximizing the lowest frequency of the structure using web height as continuous design 

variables for cross section groups. The design results for element stresses and nodal 

displacements show that: 

1. With stress and displacement constraints a highly feasible solution was 

obtained with lowest frequency of 2.0Hz 

2. When the weight constraint restricted the weight to be less than 50 Mlb, 

the solution was governed by tensile stress in transverse beams. 

3. Simultaneous topology and sizing optimization yields a reduction in the 

total weight of steel frame work by 50% to achieve the lowest frequency 

of nearly 1.0Hz 

4. Simultaneous topology and sizing optimization with the weight constraint 

did not yield a favorable design. 
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Table 5-22 Total Weight and Lowest frequency  

Model description 
Weight 

(Mlb) 

Lowest 

Frequency 

(Hz) 

Constraint Location 

16F-CDV-F-S+D 240 2.0 
No Active 

constraints 
- 

16F-CDV-F-S+D+W 43.6 0.9 Tensile stress 
First floor 

Transverse beam 

16F-BDV+CDV-F-

S+D 
23.3 1.08 

Vertical 

displacement 
15

th
 floor slab 

16F-BDV+CDV-F-

S+D+W 
23.0 0.75 Tensile stress 

First floor 

Transverse beam 

 

Table 5-23 Maximum Element Stresses and Location 

Model Description 
Tensile stress 

(psi) 

Compressive 

stress (psi) 

Shear stress 

(psi) 

16F-CDV-F-S+D 
2043 2559 712 

TB-1-B-2B-3 C-1-B-3 TB-12-C-2-2A 

16F-CDV-F-S+D+W 
24940 24907 5597 

TB-1-F-2-2A TB-6-B-2-2A TB-15-B-2B-3 

16F-BDV+CDV-F-S+D 
18740 18582 4346 

TB-1-F-2-2A TB-6-B-2B-3  TB-14-B-2-2A 

16F-BDV+CDV-F-S+D+W 
29973 29813 6577 

TB-1-F-2B-3 TB-6-B-2-2A TB-15-B-2-2A 

 

Table 5-24 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

displacement 

(in) 

Transverse 

displacement 

(in) 

Vertical 

displacement 

(in) 

16F-CDV-F-S+D 
0.012 0.03 0.12 

16-G-1 16-A-1 15-B-2B 

16F-CDV-F-S+D+W 
0.32 0.79 0.61 

16-G-2 16-A-1 15-B-2B 

16F-BDV+CDV-F-S+D 
0.4 0.67 0.95 

16-G-2 16-F-1 15-B-2A 

16F-BDV+CDV-F-S+D+W 
0.79 0.82 1.31 

16-G-2 16-B-1 15-F-2A 
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Table 5-25 Sixteen Floor - Topology of Elevation View 

Topology of elevation view Description 

 

Initial topology with full bracing 

 

Final topology for the braced model 

without weight constraint 

 

Final topology for the braced model 

with weight constraint 
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Table 5-26 Sixteen Floor - Topology of Side View 

Topology of side view Description 

 

Initial topology with full bracing 

 

Best design topology without weight 

constraint 

 

Best design topology with weight 

constraint 
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5.6 Forty Floor: Sizing Optimization (MWD) 

The forty story model with steel frame work, floor slabs, and elevator shaft is subjected 

to different types of design constraints for minimizing the total weight of the structure 

using web height as continuous design variable for each cross section group. The flange 

width, web thickness and flange thickness are defined using Eq.4 to Eq.6. 

 

Figure 5-6 Forty story model with steel framework, floor slabs and elevator shaft 
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The design results for element stresses and nodal displacements show that: 

1. When subjected to stress constraints alone, the design is governed by 

tensile stresses in transverse floor beams. 

2. When subjected to stress and displacement constraints, vertical deflection 

in floor slab governs the design. 

3. There is more than 100% increase in the total weight of steel frame work 

with the displacement constraints. 

4. The maximum vertical displacement decreased from 4.5 in. to 1.29 in. 

5. The maximum transverse displacement decreases form 10 in. to 3 in. 

 

Table 5-27 Maximum Element Stresses and Location 

Model Description 
Tensile stress 

(psi) 

Compressive stress 

(psi) 

Shear stress 

(psi) 

40F-ES-CDV-W-S 
29996 29869 7430 

TB-17-F-2B-3 TB-15-F-2B-3 TB-6-D-2-2A 

40F-ES-CDV-W-S+D 
11981 11980 3127 

TB-13-F-2B-3 TB-15-F-2B-3 TB-7-D-2B-3 

 

Table 5-28 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

Displacement 

(in) 

Transverse 

Displacement 

(in) 

Vertical 

Displacement 

(in) 

40F-ES-CDV-W-S 
3.75 10 4.63 

41-C-2A 41-C-2B 41-B-2B 

40F-ES-CDV-W-S+D 
1.36 2.68 1.29 

41-C-2A 41-C-2A 40-F-2A 
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Table 5-29 Total Weight and Lowest frequency 

Model description 
Weight 

(Mlb) 

Lowest 

frequency 

(Hz) 

Constraint Location 

40F-ES-CDV-W-S 55.9 0.3 Tensile stress 
Transverse floor 

beam 17
th
 floor 

40F-ES-CDV-W-S+D 118 0.42 
Vertical 

Displacement 
40

th
 Floor Slab 

 

 

5.7 Forty Floor: Sizing + Topology Optimization (MWD) 

 The models considered are: 

 

a) Forty story model with steel framework with no bracing members and floor slabs.  

b) Forty story model with steel framework with belt trusses and floor slabs. 

Two types of braced models are created, a model with initial design in which all bracing 

members are assigned Boolean design variable values of “1” and another model, with 

initial design in which all the Boolean design variable values are “0”. The bracing 

members of four stories and on either sides of the building were grouped together for 

symmetry. The optimization tool in Frame3D is then allowed to remove or retain the 

members in generating several topology alternatives. All the models are subjected to 

stress and displacement design constraints for maximizing the lowest frequency of the 

structure using web height as continuous design variables for cross section groups 
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Table 5-30 Total Weight and Lowest Frequency  

Model description 
Weight 

(Mlb) 

Lowest 

Frequency 

(Hz) 

Constraint 

40F-ES-CDV-F-S+D 180.8 0.63 No active constraints 

40F-ES-BDV+CDV-F-

S+D 

(Initial guess: No bracing ) 

420.7 0.68 No active constraints 

40F-ES-BDV+CDV-F-

S+D 

(Initial guess: full bracing ) 

561.1 0.79 No active constraints 

 

Table 5-31 Maximum Element Stresses and Location 

Model Description 
Tensile stress 

(psi) 

Compressive 

stress (psi) 

Shear stress 

(psi) 

40F-ES-CDV-F-S+D 
4941 5550 940 

BB-36-4-E-F BB-35-4-E-F TB-39-E-2B-3 

40F-ES-BDV+CDV-F-

S+D 

(Initial guess: No bracing ) 

4845.7 5673.7 1484 

C-15-B-3 C-40-E-2 TB-39-E-2-2A 

40F-ES-BDV+CDV-F-

S+D 

(Initial guess: Full bracing ) 

6697.8 7009.1 928.3 

BB-29-4-E-F BB-28-4-E-F TB-7-D-2-2A 

  

 

Table 5-32 Maximum Nodal Displacements and Location 

Model Description 

Longitudinal 

displacement 

(in) 

Transverse 

displacement 

(in) 

Vertical 

displacement 

(in) 

40F-ES-CDV-F-S+D 
0.15 0.34 0.21 

41-C-2A 41-C-2B 40-F-2A 

40F-ES-BDV+CDV-F-S+D 

(Initial guess: No bracing ) 

0.07 0.27 0.69 

41-C-2A 41-C-2B 40-G-2A 

40F-ES-BDV+CDV-F-S+D 

(Initial guess: full bracing ) 

0.21 0.35 0.49 

41-C-2A 41-C-2B 40-F-2A 
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Figure 5-7 Initial topology with no bracing  

 

Figure 5-8 Best design topology with initial guess- no bracing  
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Figure 5-9 Initial topology with full bracing 

 
Figure 5-10 Best design topology with initial guess- full bracing  
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5.8 Forty Floor: Mesh Convergence  

In order to understand the effect of finite element size on member stresses and nodal 

displacements, three forty floor models with different element sizes were analyzed. The 

models for analysis were the best design obtained from sizing optimization. 

 

Table 5-33 Forty Floor: Model Details for Mesh Convergence 

Model Mesh #1 Mesh #2 Mesh #3 

Nodes 2512 9913 31055 

Shell elements 1200 6880 26560 

Smallest size (ft.) 30x10 10x6.5 5x3.25 

Largest size (ft.) 30x30 10x12.5 5x6.25 

Beam elements 3816 6918 13440 

Smallest size (ft.) 10 6.5 3.25 

Largest size (ft.) 30 16 16 

Total DOF 9864 43740 168456 

 

The mesh convergence study with the three models –Mesh#1, Mesh#2, and Mesh #3 

show that: 

1. Nodal displacements are accurate even with a coarse mesh. 

2. Accuracy of beam and plate element stresses increases with mesh refinement. 

3. Both displacements and stresses converge from below. 
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Table 5-34 Forty Floor: Maximum Beam Element Stresses 

 

Model Description 
Tensile stress 

 (psi) 
Compressive 

stress (psi) 
Shear stress 

(psi) 

Mesh #1 7214 15260 1715 

Mesh #2 19427 19249 10260 

Mesh #3 20044 19847 12673 

 
Table 5-35 Forty Floor: Maximum Stresses in Slab Elements 

 

Model Description Tensile stress (psi) 
Compressive 

stress (psi) 

Mesh #1 67 82 

Mesh #2 12457 0 

Mesh #3 17195 465 

  
Table 5-36 Forty Floor: Maximum Stresses in Wall Elements 

 

Model Description Tensile stress (psi) 
Compressive 

stress (psi) 

Mesh #1 103 779 

Mesh #2 275 771 

Mesh #3 499 833 

  

Table 5-37 Forty Floor: Maximum Nodal Displacements 

 

Model 

Description 

Longitudinal 

Displacement (in) 

Transverse 

Displacement (in) 

Vertical 

Displacement 

(in) 

Mesh #1 0.767 1.33 1.03 

Mesh #2 0.778 1.34 14 

Mesh #3 0.778 1.34 16 
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Figure 5-11 Forty Floor: FE mesh sizes of wall elements 

                

  
Figure 5-12 Forty Floor: FE mesh sizes of slab/beam elements 
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Figure 5-13 Mesh #1: Contour plot showing maximum element stresses in 

plate elements 

 

 
Figure 5-14  Mesh #2: Contour plot showing maximum element stresses in 

plate elements 
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Figure 5-15 Mesh #3: Contour plot showing maximum element stresses in 

plate elements 
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APPENDIX A 

DESIGN WIND PRESSURE CALCULATIONS  

Table A-1 Six Floor Building 

Surface 
Height 

(ft) 

qz 

(psf) 

qh 

(psf) 
Cp +Gcpi 

p(+internal) 

(psi) 

LW wall 81 38.01 38.01 -0.5 0.18 -0.065 

Side wall 81 38.01 38.01 -0.7 0.18 -0.109 

WW wall 

16 26.95 38.01 0.8 0.18 0.175 

29 30.46 38.01 0.8 0.18 0.191 

42 32.90 38.01 0.8 0.18 0.203 

55 34.78 38.01 0.8 0.18 0.212 

68 36.41 38.01 0.8 0.18 0.219 

81 38.01 38.01 0.8 0.18 0.227 

 

Table A-2 Sixteen Floor Building 

Surface 
Height 

(ft) 

qz 

(psf) 

qh 

(psf) 
Cp +Gcpi 

p(+internal) 

(psi) 

LW wall 211 46.230 46.230 -0.5 0.18 -0.079 

Side wall 211 46.230 46.230 -0.7 0.18 -0.133 

WW wall 

16 26.947 46.230 0.8 0.18 0.185 

29 30.457 46.230 0.8 0.18 0.202 

42 32.901 46.230 0.8 0.18 0.213 

55 34.781 46.230 0.8 0.18 0.222 

68 36.410 46.230 0.8 0.18 0.230 

81 38.008 46.230 0.8 0.18 0.237 

94 39.105 46.230 0.8 0.18 0.242 

107 40.029 46.230 0.8 0.18 0.247 

120 41.048 46.230 0.8 0.18 0.252 

133 42.066 46.230 0.8 0.18 0.256 

146 42.896 46.230 0.8 0.18 0.260 

159 43.507 46.230 0.8 0.18 0.263 

172 44.306 46.230 0.8 0.18 0.267 

185 45.043 46.230 0.8 0.18 0.271 

198 45.654 46.230 0.8 0.18 0.273 

211 46.230 46.230 0.8 0.18 0.276 
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Table A-3 Forty Floor Building 

Surface 
Height 

(ft) 

qz 

(psf) 

qh 

(psf) 
Cp +Gcpi 

p(+internal) 

(psi) 

LW wall 510 55.460 55.460 -0.5 0.18 -0.0944 

Side wall 510 55.460 55.460 -0.7 0.18 -0.1598 

WW wall 

16 26.947 55.460 0.8 0.18 0.1966 

29 30.457 55.460 0.8 0.18 0.2131 

42 32.901 55.460 0.8 0.18 0.2247 

55 34.781 55.460 0.8 0.18 0.2336 

68 36.410 55.460 0.8 0.18 0.2413 

81 38.008 55.460 0.8 0.18 0.2488 

94 39.105 55.460 0.8 0.18 0.2540 

107 40.029 55.460 0.8 0.18 0.2584 

120 41.048 55.460 0.8 0.18 0.2632 

133 42.066 55.460 0.8 0.18 0.2680 

146 42.896 55.460 0.8 0.18 0.2719 

159 43.507 55.460 0.8 0.18 0.2748 

172 44.306 55.460 0.8 0.18 0.2785 

185 45.043 55.460 0.8 0.18 0.2820 

198 45.654 55.460 0.8 0.18 0.2849 

211 46.230 55.460 0.8 0.18 0.2876 

224 46.800 55.460 0.8 0.18 0.2903 

237 47.37074 55.460 0.8 0.18 0.2930 

250 47.94102 55.460 0.8 0.18 0.2957 

263 48.42983 55.460 0.8 0.18 0.2980 

276 48.91864 55.460 0.8 0.18 0.3003 

289 49.40745 55.460 0.8 0.18 0.3026 

302 49.82106 55.460 0.8 0.18 0.3046 

315 50.29107 55.460 0.8 0.18 0.3068 

328 50.69841 55.460 0.8 0.18 0.3087 

341 51.10575 55.460 0.8 0.18 0.3107 

354 51.5131 55.460 0.8 0.18 0.3126 

367 51.92044 55.460 0.8 0.18 0.3145 

380 52.32778 55.460 0.8 0.18 0.3164 

393 52.73512 55.460 0.8 0.18 0.3184 

406 53.10486 55.460 0.8 0.18 0.3201 
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Surface 
Height 

(ft) 

qz 

(psf) 

qh 

(psf) 
Cp +Gcpi 

p(+internal) 

(psi) 

WW Wall 

419 53.43074 55.460 0.8 0.18 0.3216 

432 53.75661 55.460 0.8 0.18 0.3232 

445 54.08248 55.460 0.8 0.18 0.3247 

458 54.40836 55.460 0.8 0.18 0.3263 

471 54.73423 55.460 0.8 0.18 0.3278 

484 55.0601 55.460 0.8 0.18 0.3293 

497 55.38598 55.460 0.8 0.18 0.3309 

510 55.46118 55.460 0.8 0.18 0.3312 
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APPENDIX B  

AISC WIDE FLANGE SECTIONS 

Symbol  Property description 

$tag Cross section tag for wide flange section 

Area Cross sectional area 

Iz Moment of inertia about local z axis  

Iy Moment of inertia about y axis 

J Torsional constant 

Az 0.833*Cross sectional area 

Ay 1.0*Az 

Sz Section modulus about the local z axis 

Sy Section modulus about the local y axis 

SFz 
“Shear factor” for computing shear stress (shear force acting in the local z 

direction) 

SFy 
“Shear factor” for computing shear stress (shear force acting in the local y 

direction) 

Js “Torsional factor” for computing the shear stress due to torsional moment 

 

 

$ tag area  Iz  Iy J  Az Ay Sz Sy SFz  SFy  Js

WF44X335 98.3 31100 1200 74.0874 81.917 1 1410 151 17.9177 39.3234 48.063

WF44X290 85.8 27100 1050 50.7702 71.5 1 1240 132 16.1958 33.5691 36.897

WF44X262 77.2 24200 927 37.0428 64.333 1 1120 118 14.3426 30.2756 29.952

WF44X230 67.2 20800 796 24.0995 56 1 971 101 12.3411 26.9983 22.681

WF40X593 174 50400 2520 451.2055 145 1 2340 302 33.9379 65.7857 158.629

WF40X503 148 41700 2050 277.7621 123.333 1 1980 250 28.8047 55.9426 114.385

WF40X431 127 34800 1690 173.1892 105.833 1 1690 208 24.4612 48.1483 83.459

WF40X397 117 3200 1540 137.7735 97.5 1 1560 191 22.6812 4.3795 71.199

WF40X372 109 29600 1420 112.5265 90.833 1 1460 177 20.9448 41.4012 62.398

WF40X362 107 28900 1380 104.6918 89.167 1 1420 173 20.6421 40.0663 59.23

WF40X324 95.3 25600 1220 75.6519 79.417 1 1280 153 18.5611 35.5716 47.523

WF40X297 87.4 23200 1090 57.5458 72.833 1 1170 138 16.8206 33.0839 39.676

WF40X277 81.4 21900 1040 48.8123 67.833 1 1100 132 16.1487 29.588 35.049

WF40X249 73.3 19600 926 35.5009 61.083 1 993 118 14.4191 26.6609 28.361

WF40X215 63.4 16700 796 22.5854 52.833 1 859 101 12.4389 22.9626 20.998

WF40X199 58.5 14900 695 16.3485 48.75 1 770 88.2 10.8231 22.6981 17.359

WF40X392 115 29900 803 169.5906 95.833 1 1440 130 19.0751 50.0779 78.764

WF40X331 97.5 24700 644 102.0035 81.25 1 1210 106 15.9399 42.6795 56.086

WF40X327 96 24500 640 99.1317 80 1 1200 105 16.1664 41.5816 54.546

WF40X278 81.8 20500 521 61.0179 68.167 1 1020 87.1 13.4875 35.5901 39.522

WF40X264 77.6 19400 493 55.312 64.667 1 971 82.6 12.8047 24.6094 38.572

WF40X235 69 17400 444 38.557 57.5 1 875 74.6 11.8736 29.0648 28.558

WF40X211 62 15500 390 27.8655 51.667 1 786 66.1 10.6498 26.2116 22.984

WF40X183 53.8 13300 3336 17.7431 44.833 1 683 56.9 91.6669 22.7176 17.029
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$ tag area  Iz  Iy J  Az Ay Sz Sy SFz  SFy  Js

WF40X167 49.2 11600 283 11.7947 41 1 600 47.9 7.7098 22.4675 13.487

WF40X149 43.8 9800 229 7.6128 36.5 1 513 38.8 6.1902 21.4267 10.363

WF36X798 235 62600 4200 1116.903 195.833 1 2980 467 48.546 83.3145 292.051

WF36X650 191 48900 3230 614.7035 159.167 1 2420 367 39.3807 67.5351 194.85

WF36X527 155 38300 2490 333.0463 129.167 1 1950 289 32.056 54.4519 128.457

WF36X439 129 31000 1990 173.5195 107.5 1 1620 235 26.3269 46.5977 83.704

WF36X393 116 27500 1750 140.8057 96.667 1 1450 208 23.847 40.5188 71.87

WF36X359 105 24800 1570 106.9828 87.5 1 1320 188 21.7071 37.0367 59.778

WF36X328 96.4 22500 1420 82.5392 80.333 1 1210 171 19.9332 33.5773 50.1

WF36X300 88.3 20300 1300 62.6414 73.583 1 1110 156 18.0712 30.8137 41.847

WF36X280 88.4 18900 1200 50.8974 73.667 1 130 144 16.9085 28.9243 36.398

WF36X260 76.5 17300 1090 39.9321 63.75 1 953 132 15.3658 27.2175 31.147

WF36X245 72.1 16100 1010 32.9948 60.083 1 895 123 14.42 25.8332 27.461

WF36X230 67.6 15000 940 27.0728 56.333 1 837 114 13.4333 24.467 24.133

WF36X256 75.4 16800 528 52.6316 62.833 1 895 86.5 13.3772 31.3374 35.3

WF36X232 68.1 15000 468 39.016 56.75 1 809 77.2 12.109 28.1918 28.848

WF36X210 61.8 13200 411 25.7329 51.5 1 719 67.5 10.5283 25.0202 21.937

WF36X194 57 12100 375 20.6128 47.5 1 664 61.9 9.7721 23.5015 18.981

WF36X182 53.6 11300 347 16.9347 44.667 1 623 57.6 9.0683 22.0402 16.645

WF36X170 50.1 10500 320 13.8611 41.75 1 581 53.2 8.5033 20.9623 14.623

WF36X160 47 9760 295 11.3363 39.167 1 542 49.1 7.8404 20.0541 12.878

WF36X150 44.2 9040 270 9.1618 36.833 1 504 45.1 7.1754 19.1002 11.264

WF36X135 39.7 7800 225 6.4506 33.083 1 439 37.7 5.9308 18.5861 9.17

WF33X387 114 24300 1620 150.4896 95 1 1350 200 23.7027 39.3332 73.987

WF33X354 104 22000 1460 115.4233 86.667 1 1240 181 21.6839 36.0995 61.915

WF33X318 93.6 19500 1290 84.5033 78 1 1110 161 19.4724 32.0894 50.112

WF33X291 85.7 17700 1160 64.6365 71.417 1 1020 146 17.767 29.6704 41.884

WF33X263 77.5 15900 1040 47.991 64.583 1 919 131 16.1742 26.8403 34.272

WF33X241 71 14200 933 35.3379 59.167 1 831 118 14.3243 25.2184 28.308

WF33X221 65 12800 840 26.8989 54.167 1 759 106 13.0723 23.3791 23.661

WF33X201 59.1 11500 749 19.882 49.25 1 686 95.2 11.8202 21.5433 19.386

WF33X169 33.8 9290 310 14.9333 28.167 1 549 53.9 8.9597 20.8171 15.025

WF33X152 44.7 8160 273 11.8256 37.25 1 487 47.2 7.8077 18.7659 12.945

WF33X141 41.6 7450 246 9.1937 34.667 1 448 42.7 7.0713 17.7726 11.036

WF33X130 38.3 6710 218 6.8925 31.917 1 406 37.9 6.2891 16.9206 9.224

WF33X118 34.7 5900 187 4.8826 28.917 1 359 32.6 5.4123 15.8966 7.43

WF30X391 115 20700 1550 176.8704 95.833 1 1250 198 24.4004 39.0042 80.882

WF30X357 105 18700 1390 135.5629 87.5 1 1140 179 22.2427 35.4104 67.512

WF30X326 95.8 16800 1240 103.4369 79.833 1 1040 162 20.1519 32.2858 56.293

WF30X292 85.9 14900 1100 75.2477 71.583 1 930 144 18.1782 28.7399 45.366

WF30X261 76.9 13100 959 53.5504 64.083 1 829 127 16.0867 25.9945 36.223

WF30X235 69.2 11700 855 39.6548 57.667 1 748 114 14.5837 23.0897 29.493

WF30X211 62.2 10300 757 27.4876 51.833 1 665 100 12.9139 21.4719 23.339

WF30X191 56.3 9200 673 20.1589 46.917 1 600 89.5 11.6526 19.6 18.998

WF30X173 51 8230 598 14.8311 42.5 1 541 79.8 10.3683 17.9538 15.543

WF30X148 43.5 6680 227 14.2035 36.25 1 436 43.3 7.8735 17.4987 13.904

WF30X132 38.9 5770 196 9.3059 32.417 1 380 37.2 6.7206 16.4116 10.729

WF30X124 36.5 5360 181 7.5925 30.417 1 355 34.4 6.2479 15.5503 9.401

WF30X116 34.2 4930 164 6.052 28.5 1 329 31.3 5.6764 14.917 8.16
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$ tag area  Iz  Iy J  Az Ay Sz Sy SFz  SFy  Js

WF30X108 31.7 4470 146 4.6356 26.417 1 299 27.9 5.0623 14.2994 6.914

WF30X99 29.1 3990 128 3.4536 24.25 1 269 24.5 4.4555 13.5125 5.739

WF30X90 26.4 3610 115 2.5736 22 1 245 22.1 4.0607 12.2395 4.707

WF27X539 159 25600 2110 526.2943 132.5 1 1570 277 34.029 53.4585 165.286

WF27X368 108 16200 1310 173.9379 90 1 1060 179 23.2004 36.0251 77.998

WF27X336 98.9 14600 1180 133.8464 82.417 1 972 162 21.2596 32.6573 65.267

WF27X307 90.4 13100 1050 101.955 75.333 1 887 146 19.4857 29.9331 54.273

WF27X281 82.9 11900 953 79.881 69.083 1 814 133 17.7496 27.0636 46.01

WF27X258 76 10800 859 61.4074 63.333 1 745 120 16.2538 24.9614 38.584

WF27X235 69.4 9700 769 46.3118 57.833 1 677 108 14.7748 23.016 32.016

WF27X217 64 8910 704 36.852 53.333 1 627 99.8 13.7606 21.0451 27.327

WF27X194 57.2 7860 619 26.2201 47.667 1 559 88.1 12.2979 18.9192 21.776

WF27X178 52.5 7020 555 19.1096 43.75 1 505 78.8 11.011 18.1541 17.881

WF27X161 47.6 6310 497 14.3146 39.667 1 458 70.9 9.8568 16.3926 14.751

WF27X146 43.1 5660 443 10.5812 35.917 1 414 63.5 8.8629 14.9707 12.075

WF27X129 37.8 4760 184 10.8783 31.5 1 345 36.8 7.0568 14.8946 11.354

WF27X114 33.5 4080 159 6.9896 27.917 1 299 31.5 6.0895 13.7895 8.621

WF27X102 30 3620 139 5.0075 25 1 267 27.8 5.3429 12.3784 6.914

WF27X94 27.7 3270 124 3.7804 23.083 1 243 24.8 4.7739 11.6944 5.791

WF27X84 24.8 2850 106 2.5865 20.667 1 213 21.2 4.1004 10.9 4.559

WF24X370 109 13400 1160 213.3888 90.833 1 957 170 23.5209 35.877 87.041

WF24X335 98.4 11900 1030 159.195 82 1 864 152 21.5815 32.4242 71.236

WF24X306 89.8 10700 919 122.4308 74.833 1 789 137 19.615 29.3618 59.574

WF24X279 82 9600 823 93.1426 68.333 1 718 124 18.1388 26.9632 49.478

WF24X250 73.5 8490 724 68.5638 61.25 1 644 110 16.028 23.8367 40.235

WF24X229 67.2 7650 651 52.3762 56 1 588 99.4 14.661 21.8583 33.594

WF24X207 60.7 6820 578 38.8356 50.583 1 531 88.8 13.254 19.6734 27.45

WF24X192 56.3 6260 530 31.2305 46.917 1 491 81.8 12.1788 18.1247 23.731

WF24X176 51.7 5680 479 24.0478 43.083 1 450 74.3 11.1957 16.787 19.916

WF24X162 47.7 5170 443 18.5149 39.75 1 414 68.4 10.2076 15.6145 16.839

WF24X146 43 4580 391 13.3022 35.833 1 371 60.5 9.1579 14.3384 13.548

WF24X131 38.5 4020 340 9.3213 32.083 1 329 53 8.0151 13.2414 10.771

WF24X117 34.4 3540 297 6.5388 28.667 1 291 46.5 7.0776 11.9933 8.526

WF24X104 30.6 3100 259 4.5572 25.5 1 258 40.7 6.2289 10.8194 6.724

WF24X103 30.3 3000 119 6.9515 25.25 1 245 26.5 5.6346 11.9003 8.134

WF24X94 27.7 2700 109 5.1156 23.083 1 222 24 5.0939 11.0616 6.699

WF24X84 24.7 2370 94.4 3.5527 20.583 1 196 20.9 4.4635 10.0425 5.283

WF24X76 22.4 2100 82.5 2.5444 18.667 1 176 18.4 3.9271 9.3307 4.271

WF24X68 20.1 1830 70.4 1.748 16.75 1 154 15.7 3.3647 8.7199 3.374

WF24X62 18.2 1550 34.5 1.5774 15.167 1 132 9.8 2.599 8.8355 3.061

WF24X55 16.2 1360 29.1 1.0753 13.5 1 115 8.3 2.2148 8.1485 2.391

WF21X201 59.2 5310 542 41.7462 49.333 1 461 56.1 13.2377 18.3191 28.217

WF21X182 53.6 4730 483 31.0594 44.667 1 417 77.2 12.0116 16.5851 23.126

WF21X166 48.8 4280 435 23.7672 40.667 1 380 70 11.0231 14.935 19.254

WF21X147 43.2 3630 376 15.2856 36 1 329 60.1 9.3443 14.0855 14.643

WF21X132 38.8 3220 333 11.0986 32.333 1 295 53.5 8.3886 12.6391 11.813

WF21X122 35.9 2960 305 8.7998 29.917 1 273 49.2 7.76 11.6451 10.099

WF21X111 32.7 2670 274 6.6556 27.25 1 249 44.5 7.0396 10.6223 8.379

WF21X101 29.8 2420 248 5.0517 24.833 1 227 40.3 6.4361 9.6432 6.957
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$ tag area  Iz  Iy J  Az Ay Sz Sy SFz  SFy  Js

WF21X93 27.3 2070 92.9 5.8607 22.75 1 192 22.1 4.9899 10.9829 7.175

WF21X83 24.3 1830 81.4 4.1805 20.25 1 171 19.5 4.4637 9.7184 5.704

WF21X73 21.5 1600 70.6 2.8846 17.917 1 151 17 3.9457 8.5521 4.443

WF21X68 20 1480 64.7 2.3139 16.667 1 140 15.7 3.642 8.0662 3.847

WF21X62 18.3 1330 57.5 1.7125 15.25 1 127 14 3.2639 7.4773 3.164

WF21X55 16.2 1140 48.4 0.9757 13.5 1 110 11.8 4.2735 8.0881 2.137

WF21X48 14.1 959 38.7 0.6328 11.75 1 93 9.52 3.4353 7.4201 1.625

WF21X57 16.7 1170 30.6 1.6521 13.917 1 111 9.35 2.6924 7.492 2.962

WF21X50 14.7 984 24.9 1.0378 12.25 1 94.5 7.64 2.1983 6.9248 2.223

WF21X44 13 843 20.7 0.6837 10.833 1 81.6 6.37 1.8425 6.3262 1.703

WF18X175 51.3 3450 391 34.8757 42.75 1 344 68.8 11.6586 15.4823 24.074

WF18X158 46.3 3060 347 25.7291 38.583 1 310 61.4 10.5534 13.9869 19.615

WF18X143 42.1 2750 311 19.5305 35.083 1 282 55.5 9.6551 12.5214 16.239

WF18X130 38.2 2460 278 14.717 31.833 1 256 49.9 8.6469 11.3238 13.46

WF18X119 35.1 2190 253 10.6261 29.25 1 231 44.9 7.7594 11.0152 11.003

WF18X106 31.1 1910 220 7.4196 25.917 1 204 39.4 6.8451 9.8345 8.662

WF18X97 28.5 1750 201 5.7994 23.75 1 188 36.1 6.326 8.9223 7.317

WF18X86 25.3 1530 175 4.0248 21.083 1 166 31.6 5.5773 7.9595 5.737

WF18X76 22.3 1330 152 2.7628 18.583 1 146 27.6 4.8985 6.9884 4.459

WF18X71 20.8 1170 60.3 3.419 17.333 1 127 15.8 3.9644 8.0242 4.782

WF18X65 19.1 1070 54.8 2.6693 15.917 1 117 14.4 3.6605 7.2883 4.034

WF18X60 17.6 984 50.1 2.1088 14.667 1 108 13.3 3.3871 6.7175 3.44

WF18X55 16.2 890 44.9 1.6009 13.5 1 98.3 11.9 3.0578 6.2763 2.879

WF18X50 14.7 800 40.1 1.1851 12.25 1 88.9 10.7 2.7637 5.7017 2.355

WF18X46 13.5 712 22.5 1.1661 11.25 1 78.8 7.43 2.3359 5.7247 2.233

WF18X40 11.8 612 19.1 0.7613 9.833 1 68.4 6.35 2.0226 4.9926 1.68

WF18X35 10.3 510 15.3 0.4625 8.583 1 57.6 5.12 1.6197 4.6828 1.241

WF16X100 29.4 1490 186 7.7118 24.5 1 177 35.7 6.6792 8.8435 8.57

WF16X89 26.2 1300 163 5.3971 21.833 1 157 31.4 5.9327 7.8639 6.752

WF16X77 22.6 1110 138 3.5091 18.833 1 136 26.9 5.1048 6.7809 5.054

WF16X67 19.7 954 119 2.3294 16.417 1 119 23.2 4.4646 5.8473 3.834

WF16X57 16.8 758 43.1 2.1515 14 1 92.2 12.1 3.2755 6.2567 3.395

WF16X50 14.7 659 37.2 1.4644 12.25 1 81 10.5 2.8779 5.5042 2.623

WF16X45 13.3 586 32.8 1.059 11.083 1 72.7 9.34 2.569 4.975 2.115

WF16X40 11.8 518 28.9 0.7472 9.833 1 64.7 8.25 2.2977 4.393 1.67

WF16X36 10.6 448 24.5 0.5023 8.833 1 56.5 7 1.948 4.1997 1.309

WF16X31 9.12 375 12.4 0.4208 7.6 1 47.2 4.49 1.559 3.8913 1.102

WF16X26 7.68 301 9.59 0.2305 6.4 1 38.4 3.49 1.2136 3.4854 0.756

WF14X808 237 16000 5510 1972.602 197.5 1 1400 594 60.6967 65.356 407.492

WF14X730 215 14300 4720 1580.649 179.167 1 1280 527 56.8426 52.8952 342.539

WF14X665 196 12400 4170 1215.94 163.333 1 1150 472 51.6912 47.4819 286.102

WF14X605 178 10800 3680 933.6848 148.333 1 1040 423 46.9306 42.5427 238.596

WF14X550 162 9430 3250 712.9735 135 1 931 378 42.5976 38.2562 198.329

WF14X500 147 8210 2880 542.5711 122.5 1 838 339 38.6612 34.397 164.654

WF14X455 134 7190 2560 414.4508 111.667 1 756 304 35.1221 31.0031 137.078

WF14X426 125 6600 2360 345.5985 104.167 1 706 283 32.9853 28.551 120.874

WF14X398 117 6000 2170 283.2329 97.5 1 656 262 30.7621 26.5755 105.649

WF14X370 109 5440 1990 229.8394 90.833 1 607 241 28.6251 24.5106 91.67

WF14X342 101 4900 1810 182.7015 84.167 1 558 221 26.4525 22.5224 78.454
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$ tag area  Iz  Iy J  Az Ay Sz Sy SFz  SFy  Js

WF14X311 91.4 4330 1610 138.7825 76.167 1 506 199 23.9445 20.3163 65.112

WF14X283 83.3 3840 1440 105.7583 69.417 1 459 179 21.769 18.3327 54.157

WF14X257 75.6 3400 1290 79.8489 63 1 415 161 19.8003 16.4806 44.771

WF14X233 68.5 3010 1150 59.7512 57.083 1 375 145 17.9208 14.8472 36.804

WF14X211 62 2660 1030 44.4313 51.667 1 338 130 16.2513 13.4402 30.167

WF14X193 56.8 2400 931 34.5725 47.333 1 310 119 14.88 12.104 25.425

WF14X176 51.8 2140 838 26.1063 43.167 1 291 107 13.5033 11.1669 21.099

WF14X159 46.7 1900 748 19.3926 38.917 1 254 96.2 12.1942 9.9307 17.25

WF14X145 42.7 1710 677 14.8168 35.583 1 232 87.3 11.1476 9.0041 14.387

WF14X132 38.8 1530 548 11.9497 32.333 1 209 74.5 9.9855 8.4929 12.308

WF14X120 35.3 1380 495 9.0501 29.417 1 190 67.5 9.1017 7.7495 10.213

WF14X109 32 1240 447 6.8444 26.667 1 173 61.2 8.2981 6.8542 8.44

WF14X99 29.1 1110 402 5.1183 24.25 1 157 55.2 7.5075 6.2852 6.959

WF14X90 26.5 999 362 3.8425 22.083 1 143 49.9 6.8126 5.6835 5.739

WF14X82 24.1 882 148 4.816 20.083 1 123 29.3 5.6633 6.5774 6.103

WF14X74 21.8 796 134 3.6541 18.167 1 112 26.6 5.2024 5.7929 5.04

WF14X68 20 723 121 2.8156 16.667 1 103 24.2 4.7308 5.3219 4.235

WF14X61 17.9 640 107 2.0208 14.917 1 92.1 21.5 4.2262 4.787 3.393

WF14X53 15.6 541 57.7 1.7687 13 1 77.8 14.3 3.4827 4.6975 2.946

WF14X48 14.1 485 51.4 1.3005 11.75 1 70.2 12.8 3.1291 4.309 2.404

WF14X43 12.6 428 45.2 0.9177 10.5 1 62.6 11.3 2.7804 3.854 1.904

WF14X38 11.2 385 26.7 0.7514 9.333 1 54.6 7.88 2.2698 3.9387 1.632

WF14X34 10 340 23.3 0.5279 8.333 1 48.6 6.91 1.9974 3.6103 1.297

WF14X30 8.85 291 19.6 0.3443 7.375 1 42 5.82 1.6849 3.3871 0.992

WF14X26 7.69 245 8.91 0.3228 6.408 1 35.3 3.55 1.3571 3.1745 0.883

WF14X22 6.49 199 7 0.1797 5.408 1 29 2.8 1.0756 2.8362 0.61

WF12X336 98.8 4060 1190 256.182 82.333 1 483 177 25.7147 23.9649 92.509

WF12X305 89.6 3550 1050 194.1763 74.667 1 435 159 23.2529 21.5266 76.569

WF12X279 81.9 3110 937 147.9802 68.25 1 393 143 21.0764 19.8351 63.884

WF12X252 74.1 2720 828 110.7032 61.75 1 353 127 19.0369 17.7833 52.445

WF12X230 67.7 2420 742 85.4602 56.417 1 321 115 17.381 16.1609 43.994

WF12X210 61.8 2140 664 65.5002 51.5 1 292 104 15.849 14.5793 36.727

WF12X190 55.8 1890 589 49.1349 46.5 1 263 93 14.3605 12.9456 30.162

WF12X170 50 1650 517 35.4915 41.667 1 235 82.3 12.8266 11.6004 24.224

WF12X152 44.7 1430 454 25.5321 37.25 1 209 72.8 11.443 10.3258 19.413

WF12X136 39.9 1240 398 18.1443 33.25 1 186 64.2 10.1736 9.242 15.446

WF12X120 35.3 1070 345 12.5151 29.417 1 163 56 8.9453 8.2265 12.048

WF12X106 31.2 933 301 8.8051 26 1 145 49.3 7.9536 7.0213 9.461

WF12X96 28.2 833 270 6.5647 23.5 1 131 44.4 7.2145 6.2926 7.757

WF12X87 25.6 740 241 4.8312 21.333 1 118 39.7 6.4731 5.8416 6.342

WF12X79 23.2 662 216 3.6007 19.333 1 107 35.8 5.855 5.3014 5.208

WF12X72 21.1 597 195 2.721 17.583 1 97.4 32.4 5.3254 4.8341 4.317

WF12X65 19.1 533 174 1.9992 15.917 1 87.9 29.1 4.7877 4.3668 3.512

WF12X58 17 475 107 1.929 14.167 1 78 21.4 4.2249 4.0375 3.232

WF12X53 15.6 425 95.8 1.424 13 1 70.6 19.2 3.793 3.8448 2.659

WF12X50 14.7 394 56.3 1.6071 12.25 1 64.2 13.2 3.3888 4.1217 2.733

WF12X45 13.2 350 50 1.1635 11 1 57.7 12.4 3.0401 3.7165 2.203

WF12X40 11.8 310 44.1 0.8267 9.833 1 51.5 11 2.7138 3.2732 1.747

WF12X35 10.3 285 24.5 0.7227 8.583 1 45.6 7.47 2.226 3.3717 1.542
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$ tag area  Iz  Iy J  Az Ay Sz Sy SFz  SFy  Js

WF12X30 8.79 238 20.3 0.44 7.325 1 38.6 6.24 1.8714 2.9 1.11

WF12X26 7.65 204 17.3 0.2854 6.375 1 33.4 5.34 1.6124 2.5534 0.834

WF12X22 6.48 156 4.66 0.2759 5.4 1 25.4 2.31 1.0867 2.8076 0.753

WF12X19 5.57 130 3.76 0.1656 4.642 1 21.3 1.88 0.8876 2.5175 0.544

WF12X16 4.71 103 2.82 0.0911 3.925 1 17.1 1.41 0.6648 2.3098 0.376

WF12X14 4.16 88.6 2.36 0.0613 3.467 1 14.9 1.19 0.5626 2.0842 0.29

WF10X112 32.9 716 236 15.0181 27.417 1 126 45.3 8.5355 7.38 12.775

WF10X100 29.4 623 207 10.7306 24.5 1 112 40 7.6142 6.5721 10.185

WF10X88 25.9 534 179 7.3704 21.583 1 98.5 34.8 6.6847 5.768 7.912

WF10X77 22.6 455 154 4.9563 18.833 1 85.9 30.1 5.8518 4.9896 6.053

WF10X68 20 394 134 3.4164 16.667 1 75.7 26.4 5.1594 4.3913 4.713

WF10X60 17.6 341 116 2.3486 14.667 1 66.7 23 4.5156 3.8901 3.668

WF10X54 15.8 303 103 1.7154 13.167 1 60 20.6 4.0556 3.4124 2.961

WF10X49 14.4 272 93.4 1.2942 12 1 54.6 18.7 3.7021 3.1125 2.454

WF10X45 13.3 248 53.4 1.4097 11.083 1 49.1 13.3 3.2763 3.2144 2.442

WF10X39 11.5 209 45 0.8904 9.583 1 42.1 11.3 2.7868 2.8673 1.806

WF10X33 9.71 170 36.6 0.5124 8.092 1 35 9.2 2.2797 2.6032 1.265

WF10X30 8.84 170 16.7 0.6034 7.367 1 32.4 5.75 1.9312 2.8169 1.306

WF10X26 7.61 144 14.1 0.3856 6.342 1 27.9 4.89 1.6579 2.4223 0.968

WF10X22 6.49 118 11.4 0.2241 5.408 1 23.2 3.97 1.3484 2.2069 0.685

WF10X19 5.62 96.3 4.29 0.2164 4.683 1 18.8 2.14 1.0149 2.2697 0.623

WF10X17 4.99 81.9 3.56 0.1411 4.158 1 16.2 17.78 0.8424 2.1482 0.479

WF10X15 4.41 68.9 2.89 0.0919 3.675 1 13.8 1.45 0.683 2.0274 0.366

WF10X12 3.54 53.8 2.18 0.0465 2.95 1 10.9 1.1 0.5287 1.6655 0.233

WF8X67 19.7 272 88.6 5.0099 16.417 1 60.4 21.4 5.0776 4.4499 5.699

WF8X58 17.1 228 75.1 3.2634 14.25 1 52 18.3 4.3718 3.9186 4.284

WF8X48 14.1 184 60.9 1.9045 11.75 1 43.2 15 3.6574 3.0351 2.954

WF8X40 11.7 146 49.1 1.0644 9.75 1 35.5 12.2 2.978 2.6729 2.019

WF8X35 10.3 127 42.6 0.7242 8.583 1 31.2 10.6 2.621 2.3016 1.554

WF8X31 9.13 110 37.1 0.4971 7.608 1 27.5 9.27 2.2977 2.0948 1.213

WF8X28 8.25 98 21.7 0.4966 6.875 1 24.3 6.63 2.0033 2.092 1.148

WF8X24 7.08 82.8 18.3 0.314 5.9 1 20.9 5.63 1.7135 1.7891 0.843

WF8X21 6.16 75.3 9.77 0.2659 5.133 1 18.2 3.71 1.3781 1.8724 0.726

WF8X18 5.26 61.9 7.97 0.1575 4.383 1 15.2 3.04 1.132 1.7001 0.519

WF8X15 4.44 48 3.41 0.1219 3.7 1 11.8 1.7 0.8103 1.7704 0.422

WF8X13 3.84 39.6 2.73 0.0756 3.2 1 9.91 1.37 0.6509 1.6401 0.31

WF8X10 2.96 30.8 2.09 0.0352 2.467 1 7.81 1.06 0.5208 1.2198 0.184

WF6X25 7.34 53.4 17.1 0.4465 6.117 1 16.8 5.61 1.82 1.8194 1.041

WF6X20 5.87 41.4 13.3 0.2293 4.892 1 13.4 4.41 1.4477 1.4579 0.666

WF6X15 4.43 29.1 9.32 0.0934 3.692 1 9.77 3.11 1.0231 1.2576 0.371

WF6X16 4.74 32.1 4.43 0.2129 3.95 1 10.2 2.2 1.0612 1.4472 0.573

WF6X12 3.55 22.1 2.99 0.0819 2.958 1 7.31 1.5 0.7241 1.2458 0.31

WF6X9 2.68 16.4 2.19 0.0354 2.233 1 5.56 1.11 0.5512 0.916 0.176

WF6X8.5 2.51 14.8 1.989 0.0284 2.092 1 5.08 1.01 0.4995 0.904 0.153

WF5X19 5.54 26.2 9.13 0.2976 4.617 1 10.2 3.63 1.423 1.2355 0.735

WF5X16 4.68 21.3 7.51 0.1769 3.9 1 8.55 3 1.1853 1.0791 0.521

WF4X13 3.83 11.3 3.86 0.1391 3.192 1 5.46 1.9 0.9148 1.0229 0.422


