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ABSTRACT

Recently, the location of the nodes in wireless networks has been modeled as

point processes. In this dissertation, various scenarios of wireless communications in

large-scale networks modeled as point processes are considered.

The first part of the dissertation considers signal reception and detection prob-

lems with symmetric alpha stable noise which is from an interfering network modeled

as a Poisson point process. For the signal reception problem, the performance of

space-time coding (STC) over fading channels with alpha stable noise is studied. We

derive pairwise error probability (PEP) of orthogonal STCs. For general STCs, we

propose a maximum-likelihood (ML) receiver, and its approximation. The resulting

asymptotically optimal receiver (AOR) does not depend on noise parameters and is

computationally simple, and close to the ML performance. Then, signal detection in

coexisting wireless sensor networks (WSNs) is considered. We define a binary hypoth-

esis testing problem for the signal detection in coexisting WSNs. For the problem, we

introduce the ML detector and simpler alternatives. The proposed mixed-fractional

lower order moment (FLOM) detector is computationally simple and close to the ML

performance.

Stochastic orders are binary relations defined on probability. The second part of

the dissertation introduces stochastic ordering of interferences in large-scale networks

modeled as point processes. Since closed-form results for the interference distribu-

tions for such networks are only available in limited cases, it is of interest to compare

network interferences using stochastic. In this dissertation, conditions on the fading

distribution and path-loss model are given to establish stochastic ordering between

interferences. Moreover, Laplace functional (LF) ordering is defined between point

processes and applied for comparing interference. Then, the LF orderings of general

classes of point processes are introduced. It is also shown that the LF ordering is pre-
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served when independent operations such as marking, thinning, random translation,

and superposition are applied. The LF ordering of point processes is a useful tool

for comparing spatial deployments of wireless networks and can be used to establish

comparisons of several performance metrics such as coverage probability, achievable

rate, and resource allocation even when closed form expressions for such metrics are

unavailable.
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Chapter 1

INTRODUCTION

1.1 Stochastic Wireless Networks

With the proliferation of wireless devices at home and outdoors, modeling their

spatial location is of utmost importance in applications such as cellular, cognitive,

sensor networks, just to name a few. For the last several decades, deterministic

models include square, triangular, and hexagonal lattices [1, 2] have been considered

as network models since it provides highly simplified system models for analysis and

system level simulations for design. As an example, the hexagonal deterministic

cellular system is shown in Fig. 1.1 (A). However, the deterministic models can not

reflect the irregularity of real networks due to geographical factors such as buildings

and hills and irregular deployment of various types of transmitters such as microcells,
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(A) Deterministic network
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(B) Stochastic network

Figure 1.1: Illustration of deterministic and stochastic networks
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picocells, and femtocells in cellular networks. In real systems, it is also impossible

for each node to know or predict the locations and channels of all but perhaps a few

other nodes. This has led to an increasing interest in stochastic geometry recently

[3, 4, 5] as shown in Fig. 1.1 (B). The stochastic geometry is the main mathematical

tool that has recently proved most helpful in circumventing the above unrealistic

assumptions. Stochastic geometry allows to study the average behavior over many

spatial realizations of a network whose nodes are placed according to some probability

distribution. Stochastic geometry is a rich branch of applied probability which allows

the study of random phenomena on the plane or in higher dimensions. Random point

pattern or point processes are the most basic and important such objects, hence point

process theory is often considered to be the main sub-field of stochastic geometry [6].

Point processes provide an appropriate framework for modeling spatial distributions of

random networks, and enable the study of performance of these systems measured in

terms of throughput, error rate, coverage, and amount of interference. Unfortunately,

for most realistic wireless node distributions, these performance metrics which are

often averaged across the point process, are intractable. Stationary Poisson processes

provide a tractable framework, but suffer from notorious modeling issues in matching

real network distributions. In this dissertation, we propose to use stochastic orders

to address this issue.

Stochastic orders are binary relations defined on probability distributions which

capture intuitive notions like being larger or being more variable. The theory of

stochastic orders (or dominance) provides a comprehensive framework to compare two

random variables (RVs) or vectors [7]. The simplest and most widely used stochastic

order compares the cumulative distribution functions (CDF) of two RVs, which defines

a partial order between pairs of RVs. There are many other stochastic orders that

capture comparisons of RVs in terms of size, and variability. In this dissertation,
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we extend the stochastic ordering concept to compare point processes. Stochastic

ordering of point processes provide an ideal framework for comparing two deployment

/ usage scenarios even in cases where the performance metrics cannot be computed

in closed form. These partial orders capture intuitive notions like one point process

being “greater”, or “more variable”. More generally, different definitions of ordering

can capture effects of clustering, variability of interference, and density or mobility

of nodes. Existing works on point process modeling for wireless networks have paid

little attention to how two intractable scenarios can be nevertheless compared to aid

in system optimization.

In this dissertation, the main quantity of interest is the network interference.

We study on the statistics of the (aggregate) interference amplitude and power in

large wireless networks as shown in Fig. 1.2. The receiver is being interfered by

interference sources distributed as a point process. The point process describes all

interfering nodes [8]. The accumulated interference to the receiver at the origin is of

interest to quantify and it is given by

I =
∑

x∈Φ
h
(x)
I g(‖x‖) (1.1)

where Φ denotes the set of all interfering nodes which is modeled as a point process on

R
d and h

(x)
I is a random variable capturing the fading coefficient between the receiver

and the xth interfering node. Here, typically d = 2 or d = 3, though this assumption

is not necessary. Moreover, {h(x)I }x are i.i.d. random variables and independent of

the point process. The path-loss is captured by a function g(·) : R+ → R
+ which is a

continuous, positive, non-increasing function of ‖x‖ and assumed to depend only on

the Euclidean distance ‖x‖ from the node x to the receiver at the origin. The locations

of the interfering nodes Φ, together with the path loss law g(‖x‖), and the fading

statistics h
(x)
I determine the interference. In this dissertation, we study the statistics
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Figure 1.2: Illustration of a wireless network. The black dots represent interfering

nodes which form a point process Φ and the dotted lines represent their interfering

signals. The white dot and the triangle at the origin are the desired transmit/receiver

pair which are not part of the point process.

of the (aggregate) interference amplitude and power in large-scale wireless networks

that are subject to several sources of randomness, including the fading statistics, the

signal attenuations and the node distribution. We also propose receivers for several

systems such as multiple antennas systems and sensor network systems in the presence

of the network interference.

One of the primary focus area of this dissertation is a cellular network, where base

stations (BSs) are usually modeled by fixed pattern on the plane. Lattice points can

be used to model such a regularly fixed pattern as shown in Fig. 1.1 (A). However, this

approach fails to capture the irregularity and randomness of a real network. In order

to introduce an additional source of randomness: the positions of the base stations,
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instead of assuming they are placed deterministically on a regular grid, their location

can be modeled as a homogeneous Poisson point process (please see Fig. 1.1 (B)). Such

an approach for modeling base station (BS) locations has been considered as early

as 1997 [9, 10]. This approach has been recently applied to the analysis of cellular

networks due to the ability to derive tractable expressions for coverage and rate for

one-tier [11] and heterogeneous networks [12, 13, 14, 15, 16, 17]. In addition to these

papers, heterogeneous network with load-aware modeling has been studied in [18]. In

the case of uplink scenario, [19] has proposed the framework. The effect of fractional

frequency reuse in cellular networks has been analyzed in [20, 21]. In order to improve

a cell-edge performance, cooperative transmission schemes have been analyzed in

[22, 23, 24]. Non-uniform user distribution [25], load balancing between users [26],

mobility [27] and data offloading [28] in cellular networks with point processes have

been studied. Energy efficiency and power consumption have been also analyzed in

[29, 30]. The handover rate and sojourn time in mobile networks have been analyzed

in [31]. The device to device (D2D) communication in cellular network has been

studied in [32, 33]. In [34], the point processes which are different from stationary

Poisson point process have been assumed and approximation of performance using

deployment gap has been proposed. However, most of works have focused averaged

single user performance and assumed a stationary Poisson point process. In the

network performance point of view, it is important to consider all of served users or

a group of users in especially multicast/broadcast scenario. Other point processes

than a stationary Poisson should be also considered to capture various real effects

such as geographical factors and randomness even though a closed form expressions

for the performance metrics such as coverage probability and achievable rate is not

analytically tractable with this assumption. In the literature on modeling cellular

device location, there is a need to relate the performance metrics, which often have
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convexity or monotonicity properties, to the stochastic orders that capture intuitive

notions such as clustering (variability) and node density (monotonicity). Therefore,

this dissertation sheds light on the connections between spatial modeling of cellular

systems and their performances.

For another important application, consider a cognitive network. In a cognitive

network, there is an increasing interest in developing efficient methods for spectrum

management and sharing. This motivates to exploit spectrum opportunities in space,

time, frequency while protecting users of the primary network from excessive in-

terference due to spectrum access from secondary networks. The interference from

secondary networks is the performance limiting factor of primary network. There-

fore, interference analysis has been studied in [35, 36, 37], where secondary users are

modeled as a stationary Poisson point process. In [38], the outage probability has

been analyzed in the presence of interference from secondary users and the interfer-

ence has been approximated using a Poisson cluster process. Most of works with

point processes have focused interference analysis and assumed a stationary Poisson

point process. The works of this dissertation provide the chance to overcome such a

limited scenario and also devote some attention to find another useful applications to

cognitive networks.

1.2 Contributions of the Dissertation

In what follows, we clearly identify and summarize the contributions of this dis-

sertation.

To the best of our knowledge, there is no analysis of MIMO systems over fading

channels with symmetric α-stable noise which is from Poisson distributed interferers.

In this dissertation, we design receivers for, and analyze the effect of, symmetric α-

stable noise on space-time coded systems. We derive the pairwise error probability
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(PEP) of orthogonal space-time block codes (STBCs) with a benchmark genie-aided

receiver (GAR) and the minimum distance receiver (MDR), which is optimal in the

Gaussian case. Based on the analytical result, it is revealed that the conventional

MDR receiver is not suitable for symmetric α-stable noise environments. As For

general space-time codes, we propose a maximum-likelihood (ML) receiver and its

approximation at high signal-to-noise ratio (SNR) which does not depend on noise

parameters and is computationally simple. Based on the simulation results, we pro-

pose to use the resulting asymptotically optimal receiver (AOR) for the impulsive

noise which provides close performance to the ML receiver with relatively low com-

plexity.

We consider the detection of the aggregated sensing signal from the desired wire-

less sensor network in the presence of aggregated interference from the interfering

network. To the best of our knowledge, in the literature, there is no study on the

signal detection with interference in coexisting wireless sensor networks. In this dis-

sertation, we show that the problem becomes a binary hypothesis testing problem

of detecting α-stable random signals in α-stable random noise, which has not been

considered in the literature. We design simple and robust detectors for the detection

problem which show the reasonable detection performance and robustness to uncer-

tainties in the knowledge of parameters of α-stable random variables compared to the

ML detector which has high computational complexity due to the lack of closed-form

expression.

In general, the closed-form expression and exact analysis for aggregate interference

are not tractable except for some limited cases. Using stochastic ordering, however,

we can compare the scenarios and decide which one is the better situation than other.

We derive the conditions on the fading distribution and path-loss model to establish

stochastic ordering between interferences. By definition of new stochastic ordering for
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point processes, the Laplace functional (LF) order, the condition on spatial distribu-

tion for interferes is given in this dissertation. From the results in this dissertation, we

gain insights about qualitative behaviors for system design. These insights can help

guide the placement of additional nodes and judge the goodness of a concrete deploy-

ment of nodes, which includes how to deploy the additional nodes for less interference

to other system. Moreover, by obtaining the statistical property of fading channels

or estimating the path-loss exponent, we can compare the performance metrics such

as coverage probability and ergodic capacity without actual system evaluation. The

stochastic ordering also provides important keys as a upper or lower bound of actual

performances.

The stochastic ordering can be applied to general classes of point processes.

Through the preservation properties of LF ordering with respect to independent

operations on a point process such as marking, thinning, random translation, and

superposition, we consider several effects of real systems such as propagation effects

over wireless channels, multiple access schemes, heterogeneous network scenarios, and

mobile networks and compare performances without having to obtain closed-form re-

sults for a wide range of performance metrics such as a coverage probability, an

achievable rate, and a resource allocation under these real system effects. In addition

to the performance comparison, the stochastic ordering of point processes provides

guidelines for system design such as network deployments and user selection schemes.

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter 3 analyzes the per-

formance of space-time coding over fading channels with impulsive noise which is

from the interfering network modeled by the homogeneous Point point process and

proposes the asymptotically optimal receiver for the impulsive noise. Chapter 4 con-

8



siders signal detection in coexisting Poisson distributed networks and proposes the

mixed-FLOM detector which is simple and robust to errors in system parameters.

Chapter 5 compares the interferences in various scenarios using stochastic ordering

tools and derives several analytical conditions for stochastic ordering of interferences.

The stochastic ordering of point processes is extended to general classes of point pro-

cesses and the preservation properties of the stochastic ordering is studied in Chapter

6. Chapter 6 also introduces useful applications of the stochastic ordering of point

processes to various wireless network setups. Finally the conclusions are presented in

Chapter 7.
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Chapter 2

MATHEMATICAL PRELIMINARIES

In this chapter, we give a brief overview of some terminology and mathematical tools

used in the forthcoming chapters.

2.1 Some Special Classes of Functions

In what follows, some classes of functions such as completely monotone functions

and completely monotone derivative functions are described.

2.1.1 Completely Monotonic Functions

A function g : (0,∞) → R is completely monotonic (c.m.), if and only if it has

derivatives of all orders which satisfy

(−1)n
dn

dxn
g(x) ≥ 0, (2.1)

for all n ∈ N ∪ {0}, where the derivative of order n = 0 is defined as g(x) itself. The

celebrated Bernstein’s theorem [39] asserts that, g : (0,∞) → R is c.m. if and only if

it can be written as a mixture of decaying exponentials:

g(x) =

∫ ∞

0

exp(−ux)µ(du), (2.2)

which is a Lebesgue integral with respect to a positive measure µ on [0,∞). As an

example, g(x) = 0.5 exp(−x) is a c.m. function in a wireless communications context,

as it corresponds to the SER of differential phase shift keying in AWGN.

If the first derivative of a function g : (0,∞) → R satisfy the c.m. property in

(2.1), the function is called a completely monotonic derivative (c.m.d.) function. As
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an example, log(1 + x) is a c.m.d. function with x in a wireless communications

context, as it corresponds to the achievable rate.

2.2 Stochastic Ordering of Random Variables

Stochastic orders are binary relations between random variables, which can be

used to compare them based on a variety of criteria. We briefly review some common

stochastic orders between random variables, which can be found in [7, 40].

2.2.1 Usual Stochastic Ordering

Let X and Y be two random variables (RVs) such that

P (X > x) ≤ P (Y > x) ,−∞ < x <∞. (2.3)

Then X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st

Y ). Roughly speaking, (2.3) says that X is less likely than Y to take on large values.

To see the interpretation of this in the context of wireless communications, when X

and Y are distributions of instantaneous SNRs due to fading, (2.3) is a comparison

of outage probabilities. Since X, Y are positive in this case, x ∈ R
+ is sufficient in

(2.3).

2.2.2 Laplace Transform Ordering

Let X and Y be two non-negative random variables such that

LX(s) = E[exp (−sX)] ≥ E[exp (−sY )] = LY (s) for s > 0. (2.4)

Then X is said to be smaller than Y in the Laplace transform (LT) order (denoted by

X ≤Lt Y ). For example, when X and Y are the instantaneous SNR distributions of a

fading channel, (2.4) can be interpreted as a comparison of average bit error rates for
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exponentially decaying instantaneous error rates (as in the case for differential-PSK

(DPSK) modulation and Chernoff bounds for other modulations) [41]. The LT order

X ≤Lt Y is equivalent to

E[l(X)] ≥ E[l(Y )], (2.5)

for all completely monotonic (c.m.) functions l(·) [40, pp. 96]. By definition, the

derivatives of a c.m. function l(x) alternate in sign: (−1)ndnl(x)/dxn ≥ 0, for n =

0, 1, 2, . . . , and x ≥ 0. An equivalent definition is that c.m. functions are positive

mixtures of decaying exponentials [40]. A similar result to (2.5) with a reversal in the

inequality states that

X ≤Lt Y ⇐⇒ E[l(X)] ≤ E[l(Y )], (2.6)

for all l(·) that have a completely monotonic derivative (c.m.d.). Finally, note that

X ≤st Y ⇒ X ≤Lt Y . This can be shown by invoking the fact that X ≤st Y is

equivalent to E[l(X)] ≤ E[l(Y )] whenever l(·) is an increasing function [40], and that

c.m.d. functions in (2.6) are increasing.

2.3 Point Processes

Point processes have been used to model large-scale networks [42, 3, 5, 43, 44, 45,

8, 38, 46, 47]. Since wireless nodes are usually not co-located, our focus is on simple

point processes, where only one point can exist at a given location. In addition, we

assume the point processes are locally finite, i.e., there are finitely many points in

any bounded set. In what follows, we introduce some fundamental notions that will

be useful.
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2.3.1 Properties of Point Processes

In this section, we introduce and define several important properties of point

processes.

Stationary: A point process Φ in R
d is stationary if its characteristics are invariant

under translation: the point processes Φ and Φx = Φ + x have the same distribution

for all x in R
d.

Isotropy: A point process Φ in R
d is isotropic if its characteristics are invariant

under rotation: which is to say that Φ and rΦ have the same distribution for every

rotation r around the origin.

Motion-invariance: A stationary and isotropic point process is called motion-

invariant.

2.3.2 Campbell’s Theorem

It is often necessary to evaluate the expected sum of a function evaluated at the

point process Φ. Campbell’s theorem helps in evaluating such expectations. For any

non-negative measurable function u,

E

[
∑

x∈Φ
u(x)

]
=

∫

Rd

u(x)Λ(dx). (2.7)

The intensity measure Λ of Φ in (2.7) is a characteristic analogous to the mean of

a real-valued random variable and defined as Λ(B) = E [Φ(B)] for bounded subsets

B ⊂ R
d. So Λ(B) is the mean number of points in B. If Φ is stationary then the

intensity measure simplifies as Λ(B) = λ|B| for some non-negative constant λ, which

is called the intensity of Φ, where |B| denotes the d dimensional volume of B. For

stationary point processes, the right side in (2.7) is equal to λ
∫
Rd u(x)dx. Therefore,
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any two stationary point processes with same intensity lead to equal average sum of

a function (when the mean value exists).

2.3.3 Laplace Functional

The Laplace functional L of random measure Ψ is defined by the following formula

LΦ(u) := E

[
e−

∫
Rd

u(x)Ψ(dx)
]

(2.8)

where u(·) runs over the set U of all non-negative functions on R
d. The Laplace

functional completely characterizes the distribution of the random measure [3]. A

point process Φ is a special case of a random measure Ψ. In the case of the Laplace

functional of a point process,
∫
Rd u(x)Φ(dx) can be also expressed as

∑
x∈Φ u(x) in

(2.8). As an important example, the Laplace functional L of Poisson point process of

intensity measure Λ is

LΦ(u) = exp

{
−
∫

Rd

[1 − exp(−u(x))] Λ(dx)

}
(2.9)

If the Poisson point process is stationary, the Laplace functional L of stationary

Poisson point process Φ
PPP

is

LΦPPP
(u) = exp

{
−λ
∫

Rd

[1 − exp(−u(x))] dx

}
(2.10)

where λ is the intensity.

2.3.4 Voronoi Cell and Tessellation

In this section, we will introduce the concept of Voronoi cells and Voronoi tessel-

lations. The Voronoi cell V (x) of a point x of a general point process Φ ⊂ R
d consists

of those locations of Rd whose distance to x is not greater than their distance to any

other point in Φ, i.e.,

V (x) := {y ∈ R
d : ‖x− y‖ ≤ ‖z − y‖ ∀z ∈ Φ \ x}. (2.11)
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The Voronoi tessellation (or Voronoi diagram) is a decomposition of the space into

the Voronoi cells of a general point process.

2.4 Alpha Stable Distribution

The interference in a wireless network follows a heavy-tailed distribution when the

path loss model is given by g(x) = ‖x‖−δ, δ > d and x ∈ R
d, and it follows a stable

distribution when the transmitting nodes form a Poisson point process.

2.4.1 The Characteristic Function

We first introduce real valued symmetric α-stable (SαS) random variables, which

will later be used to define its complex counterpart used in this dissertation. A real

valued (not necessarily symmetric) α-stable random variable, w ∼ Sα (σ, β, µ) has a

characteristic function given by [48, 49]

ϕ(t) = exp {jµt− |σt|α(1 − jβ sign(t)ω(t, α))} , (2.12)

where

ω(t, α) =





tan
(
πα
2

)
α 6= 1

− 2
π

log |t| α = 1

, (2.13)

and

sign(t) =





t = 1 if t > 0

t = 0 if t = 0

t = −1 if t < 0

, (2.14)

α ∈ (0, 2] is the characteristic exponent, β ∈ [−1, 1] is the skew, σ ∈ (0,∞) is the

scale and µ ∈ (−∞,∞) is the shift parameter. When β = 0, w has a symmetric

distribution about µ. When β = 0 and µ = 0, w is a SαS random variable. When
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Figure 2.1: α-stable distributions

α = 2 and β = 0, w is Gaussian, which is the only SαS random variable with finite

variance. Since the Gaussian case is widely studied, we focus on α ∈ (0, 2) throughout.

When σ = 1 and µ = 0, w is said to be standardized [50, pp. 20]. Any SαS random

variable w ∼ Sα (σ, 0, 0) can be written as compound Gaussian, i.e., of the form

w =
√
AG, where A and G are independent, with A ∼ Sα/2

(
[cos(πα/4)]2/α , 1, 0

)

is positive skewed α-stable random variable and G ∼ S2 (σ, 0, 0) is Gaussian random

variable with mean zero and variance 2σ2 [48, pp. 38], [50, pp. 20]. The α-stable

distributions for a few values of the characteristic exponent α are shown in Fig. 2.1.

2.4.2 Property and Asymptotic Expansions of Alpha Stable Distribution

In this section, we introduce an useful property of α-stable distribution. The α-

stable random variables have many useful properties, a complete list of which can be

found in [50, 48]. A property which is useful in this dissertation is reproduced below.

Proposition 2.4.1. If xi ∼ Sα (σi, βi, µi), i = 1, ..., N are independent, then
∑N

i=1 xi ∼

Sα (σ, β, µ), where σ =

(
N∑
i=1

σα
i

)1/α

, β =

(
N∑
i=1

βiσ
α
i

)(
N∑
i=1

σα
i

)−1

and µ =
N∑
i=1

µi.
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Although a closed-form expression for the PDF of SαS random variables exists

only for a few special cases (e.g. Gaussian (α = 2) and Cauchy (α = 1)), asymptotic

expansions for α ∈ (0, 2) are well known as w → ∞:

fα(w) = αCασ
α(1 + β)w−α−1 +O(w−2α−1) (2.15)

where the constant Cα := Γ(α) sin(πα/2)/π [49]. Additionally, if w ∼ Sα (σ, β, 0), the

complementary cumulative distribution function (CCDF) of w satisfies the asymptotic

relation as λ→ ∞:

P (w > λ) = Cασ
α(1 + β)λ−α +O

(
λ−2α

)
. (2.16)
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Chapter 3

SPACE-TIME CODING OVER FADING CHANNELS WITH STABLE NOISE

3.1 Literature Survey and Motivation

The additive Gaussian noise model has long been used because it produces simple

and tractable mathematical models which are useful for gaining insight into the un-

derlying behavior of communication systems. As the physical reality of most practical

channels demonstrate much more sophisticated effects such as bursts and impulses,

which arise as a consequence of man-made activity such as automobile spark plugs

[51], microwave ovens [52], and network interference [53, 54, 55, 56, 57, 43], the Gaus-

sian noise model may not be accurate. Such environments are also observed in urban

and indoor channels as well as underwater acoustic channels [58, 59]. Therefore,

impulsive noise which captures these physical effects should be considered. In such

wireless environments, the performance is degraded both by fading and impulsive

noise. To combat fading, antenna arrays are often used, giving rise to multi-input

multi-output (MIMO) systems. Space-time coding has been used as one of the pow-

erful diversity techniques in MIMO systems.

A number of performance analyses of STBC have been reported in the literature

where the noise is Gaussian (see e.g., [60, 61, 62]). Recently, some works in the area

of STBC in the presence of impulsive noise have also been reported. Performance

of space-time diversity/coding for power line channels with Middleton Class-A noise

model was studied by simulations in [63]. In [64] the code design criteria and the

PEP upper bound were derived over a fading channel with Middleton Class-A noise.

Subsequent work in [65] provided a closed-form expression for symbol error rate (SER)
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of orthogonal STBC (OSTBC) when the noise follows a Gaussian mixture model.

Symmetric α-Stable (SαS) distributions are an important class of noise distribu-

tions which can successfully model a number of impulsive noise processes. Studies

[53, 54, 55, 56, 57, 43] show that, in a multi-user network with power-law path loss,

the multiple access interference results in a SαS distribution, when the interfering

nodes are scattered according to a spatial Poisson point process (PPP). In [66], the

performance evaluation of a MIMO system in SαS noise was performed by simulation

with no closed-form expression for the error probability. Subsequent works in [43] and

[67] provided closed form expressions for the bit error rate (BER) of linear diversity

combining schemes for SαS noise environments in single-input multi-output (SIMO)

environments. In [68, 69], the optimal linear receivers for SαS noise were studied in

SIMO systems. To the best of our knowledge there is no analysis of MIMO systems

over fading channels with SαS noise. To close this gap in the literature, our goal is to

design receivers for, and analyze the effect of SαS noise on space-time coded systems.

While the receivers derived herein apply to all space-time codes, the (PEP-based)

performance analysis holds for OSTBCs.

Throughout this chapter, we use (·)H for Hermitian, (·)T for transpose, diag(x)

for a diagonal matrix with elements of x along the diagonal, ‖·‖ for the Frobenius

norm for matrices and Euclidean norm for vectors, λi(·) for the ith largest eigenvalue

of a matrix, ℜ{·} to denote the real part, ℑ{·} to denote the imaginary part. Also,

we use EA,B(C) to denote the expected value of the random variable C with respect

to the distributions of the random variables A,B. Finally, we write f(x) = O(g(x))

as x→ a to indicate that lim supx→a |f(x)/g(x)| <∞.
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Figure 3.1: Space-Time Coding

3.2 System Model

A space-time code (STC) is a method employed to improve the reliability of data

transmission in wireless communication systems using multiple transmit antennas.

STCs rely on transmitting multiple, redundant copies of a data stream to the receiver

to obtain coding gain and diversity gain as shown in Fig. 3.1. We consider a wireless

communication system where the transmitter is equipped with Nt antennas and the

receiver with Nr antennas. We consider the following standard MIMO flat-fading

channel model:

Y =
√
ρHS + W (3.1)

where Y is the Nr×Ts received signal matrix, and Ts is the length of the transmitted

data block; H is an Nr×Nt matrix, with independent and identical distributed (i.i.d.)

circularly symmetric complex Gaussian entries with mean zero and variance 1; the

average transmitted power at each transmitting antenna is denoted by the scalar ρ;

S is the Nt × Ts transmitted data block, which is transmitted from a codeword set

S with equal probability; W is the Nr × Ts network interference matrix. In this

dissertation, W is the Nr × Ts additive impulsive noise matrix, with elements that
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have a SαS distribution. In the following, we will briefly introduce two noise models

(Model I and II) which assume dependent and independent noise components across

antennas. In both Model I and II, the Ts columns of W, w1, ...,wTs
, in (3.1) are

independent.

• Under Model I, we assume wk := [w1,k, w2,k, ..., wNr,k]T is a complex isotropic SαS

random vector, defined as

wk =
√
Ak(GR

k + jGI
k) (3.2)

where the scalar random variable Ak ∼ Sα/2

(
[cos(πα/4)]2/α , 1, 0

)
is indepen-

dent of GR
k and GI

k which are Gaussian random vectors with i.i.d. elements

which have mean zero and variance σ2. This is a good assumption when the

receiving antennas are influenced by the same physical process creating the

impulse, thereby making the Ak of each branch the same. This might, for ex-

ample, be an accurate model for a multi-antenna system where the antenna

elements spaced closely. Mathematically, it is not difficult to see that in this

case w1,k, w2,k, ..., wNr,k will be statistically dependent [50, pp. 83].

• Under Model II, the j, k element of W is given by

[W]j,k =
√
Aj,k(G

R
j,k + jGI

j,k) (3.3)

where Aj,k, G
R
j,k and GI

j,k are distributed as in Model I, but are i.i.d., and [W]j,k

is the (j, k) element of matrix W.

In both Model I and II, wj,k has a unity scale parameter (σ = 1), since any scale

is subsumed in ρ in (3.1). It can be shown that only the moments of order α or less

exist for any SαS random variable [48, pp. 22], as a result of which the conventional

definition of SNR holds only for the Gaussian case (α = 2). However, with a slight
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abuse of terminology, we will refer to ρ as the SNR, even when α < 2, since ρ quantifies

the relative scale of the signal versus the noise.

3.3 Receiver Design and Performance

We assume throughout that the channel H is known at the receiver. Under Model

I, we start with the GAR for which Ak are assumed known at the receiver at each

time k = 1, ..., Ts. The GAR is optimal when Ak are known, so that its performance

can serve as a benchmark for any practical receiver that does not have this knowledge.

3.3.1 Genie-aided Receiver

The GAR maximizes the posterior probability and hence minimizes the probability

of error, when H and A1, ..., ATs are known. In the following, we are going to derive the

decoding rule. To express in matrix form, we define A = diag
([

1/
√
A1, ..., 1/

√
ATs

])
.

Right multiplying (3.1) by A, we obtain:

YA =
√
ρHSA + WA (3.4)

so that the product WA has i.i.d. CN (0, 1) entries. Since the elements of WA are

now white Gaussian and the codewords are equally likely, the optimal decision rule

is to minimize the Euclidean distance:

Ŝ = argmin
S

‖YA−√
ρHSA‖2. (3.5)

To express the PEP that S is transmitted and S′ is received for the GAR in (3.5),

we follow the derivation in the Gaussian noise case and obtain,

P (S → S′|H,A) = Q

(√
ρ‖H (S− S′)A‖2

2

)
. (3.6)

Using (3.6) and Craig’s representation of the Q function,

Q(x) =
1

π

∫ π
2

0

exp

(
− x2

2 sin2 θ

)
dθ, (3.7)
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(3.6) can be expressed as follows:

P (S → S′|H,A) =
1

π

∫ π
2

0

exp

(
ρ‖H (S− S′)A‖2

4 sin2 θ

)
dθ. (3.8)

Taking expectation with respect to H and A, we get

EH,AP (S → S′|A) =
1

π

∫ π
2

0

EA

[
Nt∏

i=1

(
1

1 + ρ
4 sin2 θ

λi(B)

)Nr
]

dθ (3.9)

where B := (S− S′)AAH(S− S′)H . Using (3.9), we can show that the code design

criterion under SαS noise remains the same as the Gaussian noise case as follows.

To obtain the maximum diversity order, we need B to be a full rank matrix for any

realization of A in (3.9). Since A is diagonal with nonzero diagonal elements, it is a

full rank matrix. Therefore, if the codeword different matrix S− S′ is full rank, B is

guaranteed to be a full rank matrix.

When S− S′ is square and unitary which is satisfied by e.g., the Alamouti code

[70], the eigenvalues satisfy λi(B) = 1/Ai. Since {Ai}i=1,...,Nt are i.i.d., each term of

the product in (3.9) has the same expected value, which results in

EH,AP (S → S′|A) =
1

π

∫ π
2

0


EA



(

1

1 + ρ
4 sin2 θ

1
A

)Nr





Nt

dθ (3.10)

where A represents any of the random variables Ai. To simplify the expectation in

the RHS of (3.10), recall that A ∼ Sα/2([cos(πα/4)]2/α, 1, 0), so that

EA




(

1

1 + ρ
4 sin2 θ

1
A

)Nr


 =

∫ ∞

0

(
4A sin2 θ

4A sin2 θ + ρ

)Nr

fα/2(A) dA. (3.11)

The PDF fα/2(A) as suggested by the asymptotic expansion for the PDF of α-stable

distribution in (2.15) as A→ ∞ is given by

fα/2(A) = α cos(πα/4)Cα/2A
−(1+α/2) +O

(
A−(1+α)

)
. (3.12)
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Substituting (3.12) in (3.11), we get

∫ ∞

0

(
4A sin2 θ

4A sin2 θ + ρ

)Nr [
αCα/2 cos

(πα
4

)
A−(1+α

2 ) +O
(
A−(1+α)

)]
dA

=

(
α

2

Γ
(
α
2

)
Γ
(
Nr − α

2

)

Γ
(
1 − α

2

)
Γ(Nr)

)( ρ

4 sin2 θ

)−α
2

+O
(
ρ−α(4 sin2 θ)α

)

=

(
Γ
(
1 + α

2

)
Γ
(
Nr − α

2

)

Γ
(
1 − α

2

)
Γ(Nr)

)( ρ

4 sin2 θ

)−α
2

+O
(
ρ−α
)

. (3.13)

Plugging (3.13) in (3.10), and using the binomial expansion, we get

P (S → S′) =
1

π

∫ π
2

0

[(
Γ
(
1 + α

2

)
Γ
(
Nr − α

2

)

Γ
(
1 − α

2

)
Γ(Nr)

)(ρ
4

)−α
2

]Nt

sinαNt

+O
(
ρ−

α
2
(Nt+1)

)
sinα(Nt−1) θ dθ. (3.14)

Solving the integral in (3.14), we get

P (S → S
′) =

[(
1

2
√
π

Γ
(
αNt+1

2

)

Γ
(
αNt

2 + 1
)
)

−
2

αNt

(
Γ
(
1 + α

2

)
Γ
(
Nr − α

2

)

Γ
(
1− α

2

)
Γ(Nr)

4
α

2

)
−

2

α

︸ ︷︷ ︸
=:GGAR(Nt,Nr,α)

ρ

]
−

αNt

2

+O
(
ρ−

α

2
(Nt+1)

)
. (3.15)

Using (Gc ·ρ)−Gd expression to present PEP, we can define the diversity order, Gd, and

the coding gain, Gc, from the PEP. The coding gain is defined as the amount that

bit energy or signal-to-noise power ratio can be reduced under the coding technique

for a given bit error rate. In (3.15), the Gc is GGAR(Nt, Nr, α) and the Gd is αNt/2.

The implications of (3.15) are interesting, because it suggests that the diversity order

depends on the number of transmit antennas, Nt, and the noise parameter, α. How-

ever, the number of receive antennas, Nr, does not contribute to the diversity order.

This is due to the fact that the noise is not i.i.d. across antennas in Model I.

In order to investigate the behavior of the coding gain as a function of Nr, by

differentiating the natural logarithm of the coding gain with respect to Nr, we get

∂

∂Nr

logGGAR = − 1

α

[
ψ
(
Nr −

α

2

)
− ψ (Nr)

]
(3.16)
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where ψ(x) := d log Γ(x)
dx

is the digamma function as defined in [71, pp. 258-259]. In

(3.16), since ψ(x) is a monotonically increasing function for x > 0, the term inside

the brackets is negative ∀α ∈ (0, 2). Therefore, the coding gain is a monotonically

increasing function of Nr. So, even though Nr does not contribute to diversity, it does

improve the coding gain.

Regarding the analysis ofGGAR(Nt, Nr, α) in (3.15) with respect to Nt as explained

next. To prove the coding gain, GGAR(Nt, Nr, α), is a monotonically decreasing and

convex function with respect to Nt, we will show a stronger statement which states

that the coding gain is a logarithmically completely monotonic (c.m.) function which

means that the derivatives of the logarithm satisfy:

(−1)n
(

∂

∂Nt

)n

logGGAR(Nt, Nr, α) ≥ 0 (3.17)

for n ∈ Z
+. Letting αNt/2 = x in the coding gain of (3.15), it suffices to show that

h(x) :=
(2
√
π)

1
x Γ(x+ 1)

1
x

Γ
(
x+ 1

2

) 1
x

(3.18)

is a logarithmically c.m. function. Taking logarithm in (3.18), we get

f(x) = log h(x) =
1

x
log 2

√
π +

1

x
log Γ(x+ 1) − 1

x
log Γ

(
x +

1

2

)
. (3.19)

Using Leibnitz’ rule, [u(x)v(x)](n) =
∑n

k=0

(
n
k

)
u(k)(k)v(n−k)(k), in each of the last two

terms in (3.19), we obtain

f (n)(x) = (−1)n
n!

xn+1
log 2

√
π +

n∑

k=0

(
n

k

)(
1

k

)(n−k)

×
[

[log Γ(x+ 1)](k) −
[
log Γ

(
x +

1

2

)](k)]

=
(−1)nn!

xn+1
g(x) (3.20)
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where

g(x) := log 2
√
π + log Γ(x+ 1) − log Γ(x +

1

2
) +

n∑

k=1

(−1)kxk

k!
ψ(k−1)(x+ 1)

−
n∑

k=1

(−1)kxk

k!
ψ(k−1)

(
x+

1

2

)
(3.21)

and ψ(n)(x) is the polygamma function as defined follows [71, pp. 260]:

ψ(n)(x) = (−1)n+1

∫ ∞

0

tn

1 − e−t
e−xt dt. (3.22)

The proof will be complete when we show g(x) ≥ 0 for x > 0 since that would make

(3.20) positive. The first derivative of g(x) can be expressed as follows:

g′(x) =
(−1)nxn

n!

[
ψ(n)(x + 1) − ψ(n)

(
x +

1

2

)]
. (3.23)

Using (3.22), we conclude

1

xn
g′(x) =

1

n!

∫ ∞

0

(
e−

t
2 − e−t

1 − e−t

)
tne−xt dt > 0, (3.24)

since
(

e−
t
2−e−t

1−e−t

)
> 0 for t > 0. Thus, the function g(x) is increasing and g(x) >

g(0) > 0 on (0,∞), which implies (−1)nf (n)(x) > 0 and n = 0, 1, 2, . . . . Thus, h(x)

is a logarithmically c.m. function. Since a logarithmically c.m. function is also c.m.

[72], h(x) is a c.m. function, which in turn has convex and decreasing functions as

a special case. Therefore, it is proved the coding gain is a monotonically decreasing

and convex function with respect to Nt.

For Model II the GAR can also be derived by using the Hadamard product with

A which is a matrix with (j, k) element 1/
√
Aj,k. However, its performance is not

tractable.

3.3.2 Minimum Distance Receiver

The MDR, which is optimal over Gaussian noise minimizes the Euclidean distance:

Ŝ = argmin
S

‖Y −√
ρHS‖2. (3.25)
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Note that unlike the GAR in (3.5), the MDR does not depend on A. We now derive

the PEP for the MDR. Define E := H(S− S′)/‖H(S− S′)‖, and let ej,k be the (j, k)

element of E. The PEP and its upper bound for the MDR are given by:

P (S → S′|H,A) = Q

(√
ρ‖H (S− S′)‖2

2
∑Ts

k=1Ak

∑Nr

j=1|ej,k|2

)
(3.26)

≤ Q

(√
ρ‖H (S− S′)‖2

2Amax

∑Ts

k=1

∑Nr

j=1|ej,k|2

)
(3.27)

= Q




√
ρ‖H (S− S′)‖2

2Amax



 (3.28)

=
1

π

∫ π
2

0

exp

(
ρ‖H (S− S′)‖2

4 sin2 θAmax

)
dθ (3.29)

where Amax := maxk Ak is the maximum value among A1, ..., ATs . In (3.28) we used

the fact that ‖E‖ = 1, and in (3.29) we used (3.7). Taking expectation with respect

to H and Amax, the following upper bound on the average PEP is obtained:

EH,AmaxP (S → S′|Amax) ≤
1

π

∫ π
2

0

EAmax




Nt∏

i=1

(
1

1 + ρ
4 sin2 θ

λi(C)
Amax

)Nr

 dθ (3.30)

where C := (S− S′)(S− S′)H . When S− S′ is square and unitary, we can rewrite

(3.30) as follows:

EH,AmaxP (S → S′|Amax) ≤
1

π

∫ π
2

0

EAmax



(

1

1 + ρ
4 sin2 θ

1
Amax

)NrNt

 dθ. (3.31)

Using the asymptotic CCDF of α-stable distribution in (2.16) and order statistics,

we can find the PDF of Amax as follows:

fAmax(x) =
α

2
Ts2Cα/2 cos

(πα
4

)
x−(1+α

2 )
(

1 − 2Cα/2 cos
(πα

4

)
x−

α
2

)Ts−1

+O
(
x−

α
2
(Ts+1)−1

)
. (3.32)
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If Ts ≥ 2 and is equal to Nt, plugging (3.32) in (3.31) and using binomial expansion,

we can get as follows:

∫ ∞

0

(
4x sin2 θ

4x sin2 θ + ρ

)NrNt (
αNt

2

Nt−1∑

k=0

(−1)k
(
2Cα/2 cos

(πα
4

))k+1
x−(1+

α
2
+αk

2 )

+O
(
x−

α
2
(Nt+1)−1

))
dx

=
αNt

2

Nt−1∑

k=0


(−1)k



Γ
(
α(1+k)

2

)
Γ
(
NrNt − α(1+k)

2

)

(
Γ
(
1− α

2

))(k+1)
Γ(NrNt)



( ρ

4 sin2 θ

)−α(1+k)
2




+O
(
ρ−

α(Nt+1)
2

)

=

(
αNt

2

Γ
(
α
2

)
Γ
(
NrNt − α

2

)

Γ
(
1− α

2

)
Γ(NrNt)

)( ρ

4 sin2 θ

)−α
2
+O

(
ρ−α(4 sin2 θ)α

)
+ · · ·

+O
(
ρ−

α(Nt+1)
2

)

=

(
NtΓ

(
1 + α

2

)
Γ
(
NrNt − α

2

)

Γ
(
1− α

2

)
Γ(NrNt)

)( ρ

4 sin2 θ

)−α
2
+O (ρ)−α . (3.33)

Plugging (3.33) in (3.31), we get

P (S → S′) =
1

π

∫ π
2

0

(
NtΓ

(
1 + α

2

)
Γ
(
NrNt − α

2

)

Γ
(
1 − α

2

)
Γ(NrNt)

)(ρ
4

)−α
2

sinα θ +O (ρ)−α dθ.

(3.34)

Solving the integral in (3.34), we get

P (S → S′) ≤




(
Nt

2
√
π

Γ
(
1+α
2

)
Γ
(
NrNt − α

2

)

Γ
(
1 − α

2

)
Γ(NrNt)

4
α
2

)− 2
α

︸ ︷︷ ︸
=:GMDR(Nt,Nr,α)

ρ




−α
2

+O
(
ρ−α
)

. (3.35)

Equation (3.35) suggests that the diversity order is always α/2 regardless the number

of antennas which is reduced compared to the GAR where it was αNt/2.

The behavior of the coding gain as a function of Nr can be obtained from the

derivative given by

∂

∂Nr

logGMDR = −2Nt

α

[
ψ
(
NrNt −

α

2

)
− ψ (NrNt)

]
. (3.36)
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In (3.36), since ψ(x) is a monotonically increasing function for x > 0, we can verify

the term inside the brackets is negative ∀α ∈ (0, 2). Therefore, the coding gain is a

monotonically increasing function of Nr. Next, by differentiating the log-coding gain

with respect to Nt, we get

∂

∂Nt
logGMDR = − 2

α

[
1

Nt
+Nr

[
ψ
(
NrNt −

α

2

)
− ψ (NrNt)

]]
. (3.37)

It can be shown numerically that the GMDR(Nt, Nr, α) monotonically decreases with

Nt when α ∈ (0, α0) for some constant α0. Unlike the GAR, in case of the MDR the

number of transmit antennas, Nt, does not contribute to the diversity order. Hence

when α ∈ (0, α0) the performance of MDR will be worse as Nt increases. Intuitively,

the reason for the deterioration in performance is that when α is small, the sum of

independent noise samples do not “average out” like it does when the noise has a

finite variance. In other words, when α is small enough the performance bound of

MDR suffers from increased transmit antennas! On the other hand, the coding gain

is a monotonically increasing function of Nt when α ∈ (α1, 2) for some constant α1.

In other words, when α ∈ (α1, 2) the coding gain increases as the number of transmit

antennas increase. When α ∈ (α0, α1), the coding gain is a concave function of Nt.

The values of α0 and α1 depend on Nr (e.g. when Nr = 1, α0 ≈ 1.333 and α1 ≈ 1.799).

For Model II the PEP of MDR can be derived by using Amax := maxj,kAj,k in

(3.27). Following the same derivation, the PEP of MDR for Model II is obtained

by multiplying GMDR(Nt, Nr, α) in (3.35) with N
−2/α
r which implies less coding gain

and the same diversity order. This is in contrast with the GAR which will be shown

in the simulations to have better performance under Model II compared to Model I.

In conclusion, for SαS noise environments the conventional MDR receiver has poor

performance especially for small α.
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3.3.3 Maximum Likelihood Receiver

We introduce the optimal ML receiver for Model I and II. Firstly, the optimal ML

receiver for Model I is given by

Ŝ = argmax
S

Ts∏

k=1

fα (‖yk −
√
ρHsk‖) (3.38)

= argmax
S

Ts∑

k=1

log fα (‖yk −
√
ρHsk‖) (3.39)

where fα(‖x‖) is a probability density function of amplitude distribution of d-dimensional

multivariate isotropic stable random variables and is given by [73]:

fα(r) =
2

2d/2Γ(d/2)

∫ ∞

0

(rt)d/2Jd/2−1(rt)e
σαtαdt (3.40)

where r = ‖x‖ =
√
X2

1 + · · · +X2
d and Jν(·) is the Bessel function of order ν.

In case of Model II, complex symmetric α-stable random variables are independent

in both space and time. Thus, we can modify the optimal ML receiver for Model II

as follows:

Ŝ = argmax
S

Ts∑

k=1

Nr∑

j=1

log fα(‖[Y]j,k −
√
ρ[HS]j,k‖). (3.41)

Since fα(r) cannot be expressed in terms of closed-form elementary functions, these

ML receivers are seen to be computationally complex, and dependent on the noise

parameters σ and α. We now consider receivers that perform nearly optimally, with

the advantage of reduced complexity and not requiring knowledge of noise parameters,

when compared to the ML receivers.

3.3.4 Asymptotically Optimal Receiver

To simplify (3.38), we use the expression for the tail of fα(·) in [73]

fα(r) = α2α sin(πα/2)

πα/2

Γ((α+ 2)/2)Γ((α+ d)/2)

Γ(d/2)
r−(α+1) +O(r−(2α+1)) (3.42)
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as r → ∞, where we note that α2α sin(πα/2)
πα/2

Γ((α+2)/2)Γ((α+d)/2)
Γ(d/2)

> 0. Now, using the

dominant term of (3.42) in (3.38) and simplifying, we get

Ŝ = argmin
S

Ts∏

k=1

‖yk −
√
ρHsk‖ (3.43)

= argmin
S

Ts∑

k=1

log‖yk −
√
ρHsk‖. (3.44)

Using same approach as Model I, we can modify the asymptotically optimal receiver

for Model II as follows:

Ŝ = argmin
S

Ts∑

k=1

Nr∑

j=1

log‖[Y]j,k −
√
ρ[HS]j,k‖. (3.45)

The resulting receivers are asymptotically optimal at high SNR and relatively simple.

A few comments about complexity of the ML receiver and AOR follow. In (3.39)

and (3.44), we need to evaluate matrix norms. The only difference between (3.39) and

(3.44) is that the equation (3.39) needs to evaluate the metric in (3.40) additionally.

In (3.40), it is needed to evaluate an elementary function, a special function (i.e., the

Bessel function) and an integration of these functions for each candidate codeword S.

Instead of evaluation of (3.40), we can alternatively use a lookup table for the numer-

ical values of (3.40). Such a lookup table would have sizable memory requirements

since a lookup table would contain values for each of the α and σ values corresponding

to the noise parameters. For example, if the sizes of quantized α and σ values are Nα

and Nσ respectively, we need the Nα · Nσ entries in the table. In addition to these

kinds of high computational complexity, the ML receiver also requires to estimate α

and σ values of SαS noise. However in case of the AOR which performs within a

tenth of a dB of the ML receiver which will be shown in Section 3.4, we do not need

to evaluate the equation (3.40) and estimate the α and σ values.

Therefore we propose to use the AOR for impulsive noise due to its relatively

low complexity and its reasonable performance. Though our analysis is based on
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Figure 3.2: Performance comparison of GAR, MDR, ML receiver, and AOR over a

channel with highly impulsive noise (α = 0.5) with Nt = 2 and Nr = 1

the receivers for Model I, it will be similar in case of Model II. We note that the

asymptotically optimal receivers in (3.44) and (3.45) are additive and therefore can

be used in conjunction with the Viterbi algorithm when S is a codeword on a trellis.

3.4 Simulations

In this section, we verify our results through Monte Carlo simulations. In our

simulations, we assume that α = 1.43, which corresponds to the value estimated in

[74] for modeling radio frequency interference in laptop receivers. We also consider a

“highly impulsive” scenario, with α = 0.5, which corresponds to a path loss exponent

of 2/α = 4 in an environment where the interfering nodes are scattered according to

a PPP on a two-dimensional plane [43].
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Figure 3.3: Performance comparison of GAR, MDR, ML receiver, and AOR over a

channel with highly impulsive noise (α = 0.5) with Nt = 2 and Nr = 2

3.4.1 Performance Results under Model I

We show in Fig. 3.2 the performance bound of GAR for Alamouti code with

Nt = 2, Nr = 1 over highly impulsive noise with BPSK. We calculate the BER

union bound using the PEP of GAR in (3.15). We also plot the upper bounds

for the MDR obtained using (3.35). In Fig. 3.2, we also show the simulated BER

results of Alamouti code for GAR, MDR, ML receiver, and AOR. Comparing between

theoretical and simulated results, we observe the diversity orders of GAR and MDR

are αNt/2 and α/2. We also observe the performance gap between ML receiver and

GAR is about 1.3 dB at 10−2 BER. We also found the performance for AOR which

does not need the noise parameters shows a difference less than a tenth of a dB to

the ML receiver.

In Fig. 3.3, we show the performance of Alamouti code with Nt = 2, Nr = 2. It
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is noted that the diversity orders do not change even though the number of receiver

antennas increases in accordance with our theoretical result. In this case, the ML

receiver and AOR are seen to be within 0.6 dB of the GAR.

In the following, we show the performance of Alamouti code over impulsive noise

with α = 1.43. In Fig. 3.4, we show the theoretical and simulated BER with Nt =

2, Nr = 1. The performances with Nt = 2, Nr = 2 are shown in Fig. 3.5. Under the

less impulsive noise environment with α = 1.43, we observe that the diversity orders

of GAR and MDR are also αNt/2 and α/2 which are in line with our theoretical

results. It is also observed the performances for ML receiver and AOR are within 2.5

dB of the GAR at 10−3 BER, as suggested by Fig. 3.4. In Fig. 3.5, the ML receiver

and AOR are seen to be within 1 dB of the GAR.

In Fig. 3.6 and 3.7, we show the performances of OSTBC with Nt = 4 which is a
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Figure 3.4: Performance comparison of GAR, MDR, ML receiver, and AOR over a

channel with moderately impulsive noise (α = 1.43) with Nt = 2 and Nr = 1
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Figure 3.5: Performance comparison of GAR, MDR, ML receiver, and AOR over a

channel with moderately impulsive noise (α = 1.43) with Nt = 2 and Nr = 2
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Figure 3.6: Performance comparison of GAR, MDR and AOR over a channel with

highly impulsive noise (α = 0.5) with Nr = 1
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Figure 3.7: Performance comparison of GAR, MDR and AOR over a channel with

moderately impulsive noise (α = 1.43) with Nr = 1

space-time code borrowed from [70]. In Fig. 3.6, we show the performance of OSTBC

with Nt = 4 over highly impulsive noise under Model I. Comparing the theoretical

and simulated results, we observe the diversity orders of GAR and MDR are αNt/2

and α/2 as expected from our results. It is noted that the diversity order of GAR

with Nt = 4 is larger than that with Nt = 2 in accordance with our theoretical result.

We also observe the performance gap between AOR and GAR is about 3 dB at 10−3

BER. The diversity of MDR does not change regardless the number of antennas, and

the MDR performance is worse as Nt increases for small α as predicted from our

theoretical result.

In Fig. 3.7, we show the performance of OSTBC with Nt = 4 over impulsive noise

with α = 1.43. We observe the diversity orders of GAR and MDR with Nt = 4 are

also αNt/2 and α/2 which are larger than that with Nt = 2.
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3.4.2 Performance Comparison between Model I and II

In Fig. 3.8, we compare the simulated performances of Alamouti code over highly

impulsive noise under Model I and II. Under Model II, we can observe that the

diversity order of GAR will be larger than that of Model I, because additional diversity

can be obtained due to the independence of the noise in the space domain. However,

the diversity order of MDR does not change even under Model II. We can also observe

the performance difference for AOR and ML receiver is less than a tenth of a dB.

Additionally, we show the simulated performances over impulsive noise with α = 1.43

under Model I and II in Fig. 3.9 where we observe the diversity order of GAR of

Model II is larger than that of Model I and the diversity orders of MDR are always

α/2. It is also observed the performance difference for AOR and ML receiver is less

than a tenth of a dB.
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Figure 3.8: Performance comparison of GAR, MDR, ML receiver, and AOR over a

channel with highly impulsive noise (α = 0.5) with Nt = 2 and Nr = 2 under Model

I and II
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Figure 3.9: Performance comparison of GAR, MDR, ML receiver, and AOR over a

channel with moderately impulsive noise (α = 1.43) with Nt = 2 and Nr = 2 under

Model I and II
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Chapter 4

DISTRIBUTED DETECTION IN COEXISTING LARGE-SCALE SENSOR

NETWORKS

4.1 Literature Survey and Motivation

A homogeneous Poisson point process is widely used in the literature to model

large-scale wireless sensor networks (WSNs) [75, 76, 77]. It is a natural model to use

when little is known about the spatial distribution of the network, aside from the area

it is spread over, and the spatial density of nodes. The complete spatial randomness

or independence property makes the Poisson point process easy to analyze. A number

of studies about network interference have been reported in the literature when the

interfering nodes are scattered according to a spatial Poisson point process. In [53,

54, 55, 56, 57, 43], a multi-user network is considered with power-law path loss, where

the multiple access interference follows a symmetric α-stable distribution.

As unlicensed band utilization increases, it becomes important to understand how

different wireless services, operating in the same band, may affect each other. In an

effort to understand the effect of coexistence between networks, the network perfor-

mance was investigated in the presence of interference from a coexisting network in

[78]. Coexistence issues such as congestion control and interference between WSNs

and other wireless applications have been studied in [79, 80]. In [81] the authors

proposed a multiple access control (MAC) scheme to avoid interference between coex-

isting WSNs. Most WSNs may not have a sophisticated MAC scheme which requires

high complexity and exchange of information. Consequently when two WSNs coexist

in the same unlicensed band, the WSNs interfere with each other.
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In this dissertation, we consider signal detection in coexisting WSNs. The spatial

distribution of sensors is modeled as a Poisson point process. The sensors measure the

phenomenon of interest and transmit their local binary decisions via wireless channel

to a central site for global processing. We also assume there is a coexisting sensor

network which causes interference to the desired sensor network and also is modeled

as an independent Poisson point process. As a result, we consider the detection of

the aggregate sensing signal from the desired network in the presence of aggregate

interference from the interfering network. To the best of our knowledge, in the litera-

ture, there is no study on the signal detection with interference in coexisting WSNs.

In this dissertation, we show that the problem becomes a binary hypothesis testing

problem of detecting α-stable random signals in α-stable random noise, which has

not been considered in the literature. In the literature on detection in α-stable noise,

the signal has always assumed to be deterministic [82, 83, 84, 85]. We design simple

and robust detectors for α-stable signal in the presence of α-stable interference which

arises naturally from a Poisson network interference context where the signal is also

from a set of Poisson sensors.

4.2 Preliminaries

Since the brief sketch of the α-stable distribution was introduced in Section 2.4,

we show the derivation of the characteristic function of the aggregate signal from

nodes which are distributed according to a homogeneous Poisson point process in the

two-dimensional infinite plane. Let Y denote the aggregate signal from the Poisson

distributed network, such that

Y =
∞∑

i=1

Xi

rδi
(4.1)

where Xi are independent and identically distributed (i.i.d.) random sensor emissions

which are used to model various propagation effects such as fading channel, trans-
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mitting power and/or shadowing; ri is the distance between the receiver and sensor i,

and δ is a power loss exponent. The characteristic function of Y follows immediately

from Campbell’s theorem [86] and is given by

ϕ
Y

(t) = exp

(
−2πλ

∫ ∞

0

[
1 − ϕ

X

(
t

rδ

)]
rdr

)
(4.2)

where λ is the spatial density of nodes and ϕ
X

(·) is the characteristic function of Xi.

The following theorem which follows from (4.2) gives the characteristic function of

the aggregate signal Y and depends on characteristic functions of random variables

Xi.

Theorem 4.2.1. When {Xi}∞i=1 are i.i.d. sequence of symmetric random variables,

the characteristic function of the aggregate signal Y in (4.1) is given by [43]

ϕ
Y

(t) = exp (−σα|t|α) (4.3)

where α = 2
δ
, σα = λπ

2
C−1

α E [|Xi|α] and Cα = 1−α
Γ(2−α)2 cos(πα/2)

.

Proof. Let {ri}∞i=1 denote the sequence of distances between the origin and random

points of a two-dimensional Poisson process with spatial density λ and {Xi}∞i=1 be a

sequence of spherically symmetric1 random variables, i.i.d. in i, independent of the

sequence {ri}. Let Y denote the aggregate signal at the origin generated by the nodes

scattered in the infinite plane, such that

Y =

∞∑

i=1

Xi

rδi
(4.4)

for δ > 1. If the random variable X has a spherically symmetric pdf, its characteristic

function is also spherically symmetric, i.e., ϕ
X

(t) = ϕ0(|t|) for some ϕ0(·). Using this

property of spherically symmetric random variable and (4.2), we can get

ϕ
Y

(t) = exp

(
−2πλ

∫ ∞

0

[
1 − ϕ0

(∣∣∣∣
t

rδ

∣∣∣∣
)]

rdr

)
(4.5)

1A random variable X is said to be spherically symmetric if its pdf fX(x) depends only on |x|.
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which, using the change of variable |t|r−δ = s, can be written as

ϕ
Y

(t) = exp

(
−πλ|t|2/δ 2

δ

∫ ∞

0

1 − ϕ
0
(s)

s2/δ+1
ds

)
(4.6)

The characteristic function ϕ0(s) in (4.6) can be rewritten as follows

ϕ0(s) = ϕ
Xi

(s) (4.7)

= E
[
ejsXi

]
(4.8)

= E [cos(sXi)] + j E [sin(sXi)]︸ ︷︷ ︸
=0

(4.9)

= E [cos(sXi)] (4.10)

Using the elementary integral [87, Eq. 3.823], we can write

∫ ∞

0

1 − cos(zs)

sα+1
ds =

Γ(1 − α) cos
(
πα
2

)

α
|z|α (4.11)

for any real constants z and 0 < α < 2. For z = Xi and taking expectations with

respect to Xi on both sides, we obtain

∫ ∞

0

1 − ϕ0(s)

sα+1
ds =

Γ(1 − α) cos
(
πα
2

)

α
E [|z|α] (4.12)

Noting that Γ(1 − α) = Γ(2 − α)/(1 − α) for α 6= 1, we can rewrite (4.12) as

∫ ∞

0

1 − ϕ
0
(s)

sα+1
ds =

C−1
α

α
E [|z|α] (4.13)

where Cα is defined in (4.17). By setting 2/δ = α and substituting (4.13) in (4.6), we

can get the characteristic function ϕ
Y

(t) = E[ejtY ] as follow

ϕ
Y

(t) = exp (−γ|t|α) (4.14)

where

α =
2

δ
(4.15)

γ = λ
π

2
C−1

α E [|Xi|α] (4.16)
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and Cα is defined as

Cα ,





1−α
Γ(2−α)2 cos(πα/2)

, α 6= 1

2
π
, α = 1

(4.17)

with Γ(·) denoting the gamma function.

Random variables with characteristic function of the form of ϕ
Y

(t) in (4.3) belong

to the class of symmetric α-stable random variables. In the following, we consider the

case that {Xi}∞i=1 is a sequence of real nonnegative random variables.

Theorem 4.2.2. When {Xi}∞i=1 are i.i.d. sequence of real nonnegative random vari-

ables, the characteristic function of the aggregate signal Y in (4.1) is given by [43]

ϕ
Y

(t) = exp
(
−σα|t|α

[
1 − jβsign(t) tan

(πα
2

)])
(4.18)

where α = 2
δ
, β = 1, σα = λπ

2
C−1

α E [Xα
i ] and Cα = 1−α

Γ(2−α)2 cos(πα/2)
.

Proof. Let {ri}∞i=1 denote the sequence of distances between the origin and random

points of a two-dimensional Poisson process with spatial density λ same as Symmetric

case. Let {Xi}∞i=1 be a sequence of i.i.d. real nonnegative random variables and

independent of the sequence {ri}. Let Y denote the aggregate signal at the origin

generated by the nodes scattered in the infinite plane, such that

Y =
∞∑

i=1

Xi

rδi
(4.19)

for δ > 2. Using (4.2), we can get

ϕ
Y

(t) = exp

(
−2πλ

∫ ∞

0

[
1 − ϕ

X

(
t

rδ

)]
rdr

)
(4.20)

where ϕ
X

(t) is the characteristic function of Xi. Using the change of variable |t|r−δ =

s, can be written as

ϕ
Y

(t) = exp

(
−πλ|t|2/δ 2

δ

∫ ∞

0

1 − E
[
ejsign(t)Xis

]

s2/δ+1
ds

)
(4.21)
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Using the elementary integral [88, Eq. (4.11), p. 542], we can write

∫ ∞

0

1 − ejzs

sα+1
ds =

Γ(1 − α)

α
|z|α

[
cos
(πα

2

)
− jsign(z) sin

(πα
2

)]
(4.22)

for any real constants z and 0 < α < 1. For z = sign(t)Xi and taking expectations

on both sides, we obtain

∫ ∞

0

1 −E
[
ejsign(t)Xis

]

sα+1
ds = E [Xα

i ]
Γ(1 − α) cos

(
πα
2

)

α

[
1 − jsign(t) tan

(πα
2

)]

(4.23)

Noting that Γ(1 − α) = Γ(2 − α)/(1 − α), we can rewrite (4.23) as

∫ ∞

0

1 − E
[
ejsign(t)Xis

]

sα+1
ds = E [Xα

i ]
C−1

α

α

[
1 − jsign(t) tan

(πα
2

)]
(4.24)

where Cα is defined in (4.17). By setting 2/δ = α and substituting (4.24) in (4.21),

we can get the characteristic function ϕ
Y

(t) = E[ejtY ] as follow

ϕ
Y

(t) = exp
(
−γ|t|α

[
1 − jβsign(t) tan

(πα
2

)])
(4.25)

where

α =
2

δ
(4.26)

β = 1 (4.27)

γ = λ
π

2
C−1

α E [Xα
i ] (4.28)

and Cα is defined in (4.17).

Random variables with characteristic function of the form of ϕ
Y

(t) in (4.18) belong

to the class of totally positive skewed α-stable random variables. Note that only when

β = 1 each realization of Y is positive.
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λ=0.002

 

 
Desired sensors
Interfering nodes
Desired FC

Figure 4.1: Realization of the spatial distribution of two networks according to the

homogeneous Poisson point process (λ = 0.002)

4.3 System Model

We consider the coexistence of two WSNs which are distributed according to

Poisson point process as shown in Fig. 4.1. We assume one is a desired network

where active sensors transmit their measurements to the Fusion Center (FC), and the

other is a interfering network which causes interference to the desired network. The

interfering network also may have a FC which is not shown in Fig. 4.1. It is also

assumed that the spatial density of the Poisson point process for the desired network

is λD and the spatial density of interfering network is λI respectively. Under these

assumptions, we will consider the distributed detection and data fusion problem with

channel knowledge to be transmitted at each sensor [89] and show that both aggregate

signal and interference converge to the class of α-stable distributions with different

parameters. We will also consider imperfect local detection error at each sensor and
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study how this error affects the detection performance.

4.3.1 Decision Fusion

In the desired sensor network, we can consider a binary hypothesis testing problem

with two hypotheses H0,H1 where P0, P1 are their respective prior probabilities. In

this dissertation, we assume the two hypotheses equally likely (P0 = P1 = 1/2). Let

the sensed signal at the ith sensor be,

xi = θ + ni, (4.29)

where θ = 1 under H1 and θ = 0 under H0, is a deterministic parameter whose

presence or absence has to be detected, and ni is the noise sample at the ith sensor. We

consider a setting where the ith sensor transmits its measurement using a distributed

detection scheme. It is also assumed that hi is a symmetric real-valued fading channel

coefficient from the ith sensor to the FC satisfying E[|h|2] = 1.

In the system, each local sensor makes a decision based on its decision rule

γ(xi) = Mi =





1 under H1

0 under H0

, (4.30)

where the function γ(·) is the local decision rule that minimizes the error probability

at the local ith sensor and Mi is the local decision at the ith local sensor. Therefore,

the transmitting signal at the local sensor is sent to the FC as follows:

f(xi) = hiγ(xi), (4.31)

At the desired FC, the received signal at a sample time is given by

Y =
∞∑

i=1

hi
f(xi)

rδi
+W (4.32)
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where W is the interference from interfering network which will be shown to have

a symmetric α-stable distribution as explained later in this section. By substituting

(4.31) in (4.32), we obtain

Y =
∞∑

i=1

|hi|2
rδi

Mi +W (4.33)

where {|hi|2}∞i=1 is a sequence of real non-negative random variables. In (4.33),

|hi|2 corresponds to Xi in (4.1). Using Theorem 4.2.2 in (4.33), we can show that

S =
∑∞

i=1 |hi|2Mi/r
δ
i converges to the totally positive skewed α-stable distribution as

follows:

S ∼ Sα (σS, βS, 0) (4.34)

where α = 2
δ
, σα

S = λD
π
2
C−1

α MαE[|h|2α], and βS = 1.

In the following, we will show the interference from the interfering network, W

in (4.33), can be modeled as a symmetric α-stable distribution. Similar to the sig-

nal part in (4.32), we assume that the nodes in interfering network transmit their

measurements with channel information between the nodes and their FC. Then the

aggregate interference at the desired FC at a sample time is as follows:

W =

∞∑

i=1

higi
wi

rδi
(4.35)

where gi is the channel coefficient between the interfering node and its FC, hi is the

channel between the interfering node and the desired FC, and wi is the emission at

the interfering node i. The random variable higiwi is a symmetric regardless wi is a

constant or any random variable depending on a transmission scheme of interfering

network [90]. Using Theorem 4.2.1, we can show that (4.35) converges to a symmetric

α-stable distribution as follows:

W ∼ Sα (σW , 0, 0) (4.36)

where α = 2
δ

and σα
W = λI

π
2
C−1

α E[|hgw|α].
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By using the property of α-stable random variable in Section 2.4.2, we can define

the binary hypothesis testing problem as a positive α-stable random signal detection

in a symmetric α-stable random noise. It is given as follows:

Y =





S +W ∼ Sα(σH1 , βH1, 0) under H1

W ∼ Sα(σH0 , 0, 0) under H0

(4.37)

where σH1 = (σα
S + σα

W )1/α, βH1 =
(βSσ

α
S)

(σα
S
+σα

W )
and σH0 = σα

W . Note that 0 < βH1 < 1

since σS > 0, σW > 0, and βS = 1.

4.3.2 Detection Error at a Local Sensor

Each local sensor makes a decision and forwards its decision to the FC. In Section

4.3.1, we assume each local sensor can detect the phenomenon of interest perfectly. In

this section, we consider the effect of detection error at the local sensor. We define the

error probability for detection at a local sensor as PL,e < 1. It is also assumed that the

detection error at a local sensor occurs independently across sensors. The detecting

error will reduce the number of sensors which transmit their detection message to the

FC. Therefore the spatial density of actual transmitting nodes will be λD,e = λDPL,e

by the thinning property of Poisson point process [3]. As a result, σα
S in (4.34) will be

reduced to σα
S,e = λD,e

π
2
C−1

α MαE[|h|2α] due to the detection error at a local sensor.

This is related with the following SNR definition.

The usual SNR definition using the variance of the noise process is not suitable

when the additive noise is α-stable random noise since α-stable random variables

do not have finite variance when α < 2. Therefore, we propose the modified SNR

definition as follows [83, 84]:

SNRm = 10 log10

σα
S

σα
W

(dB) (4.38)
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where σS is the scale parameter of the signal, σW is the scale parameter of the noise

and α is the characteristic exponent. Since σα
S,e < σα

S , the SNR defined in (4.38) will

decrease due to the detection error at each local sensor. Consequently, the perfor-

mance will be degraded due to the detection error at a local sensor as expected.

4.4 Signal Detection

In this section, we will introduce the Maximum Likelihood (ML) detector for α-

stable signal detection in α-stable interference which has considerable computational

complexity. To surmount the complexity of the ML detector, we will also propose

several simple detectors. For the signal detection, it is assumed that the desired FC

observes {Yj}Lj=1 which are L independent measurements across time.

4.4.1 Maximum Likelihood Detector

The optimal ML detector computes the following test statistics:

TML =
L∑

j=1

log
fα(Yj, σH1 , βH1, 0;H1)

fα(Yj, σH0 , βH0, 0;H0)

H1

≷
H0

0 (4.39)

where fα(Y, σ, β, µ) is a probability density function of α-stable random variable whose

characteristic function is introduced in Section 2.4.1. Because there is no closed form

expression for the PDF of α-stable random variables, the PDF can be obtained by

taking inverse Fourier transform numerically! Instead of numerical integration, we can

alternatively use a lookup table for the numerical values of α-stable random variables.

Such a lookup table would have sizable memory requirements since a lookup table

would contain values for each of the α, σ, and β values corresponding to the noise

parameters. Therefore, the ML detector requires high computational complexity.

Thus, we propose several simple detectors in following sections.

50



4.4.2 Fractional Lower Order Moments (FLOM) Detector

Although the second-order moment of a α-stable random variable with 0 < α < 2

does not exist, all moments of order less than α do exist and are called the Fractional

Lower-Order Moments or FLOMs. The FLOMs of a α-stable random variable Y ∼
Sα(σ, β, 0) are given by [91]:

E[|Y |p] = Γ
(
1− p

α

)

Γ(1− p) cos
(pπ

2

)
(
1 + β2 tan2

απ

2

) p
2α

cos
( p
α
arctan

(
β tan

(απ
2

)))
σp (4.40)

for p < α. The FLOM in (4.40) is an even function of β and increases with |β|. Now

|Y |p has a finite mean from (4.40) and a finite variance as follows:

var[|Y |p] = E[|Y |2p] −E[|Y |p]2, p < α/2, (4.41)

which can be computed using (4.40). Since |Y |p has a finite mean and a finite variance,

by the central limit theorem the mean of |Yj|p, j = 1, 2, ..., L will be approximately

normally distributed as follows:

Z =
1

L

L∑

j=1

|Yj|p =





N (µH1, σ
2
G,H1

) under H1

N (µH0, σ
2
G,H0

) under H0

(4.42)

where µHk
and σ2

G,Hk
are the means and variances of Gaussian random variables

under hypotheses Hk, k = 0, 1. The mean µHk
can be calculated from (4.40), and

σ2
G,Hk

= var[|Y |p]/L using (4.41). The suboptimal FLOM detector computes the

following test statistics:

TFLOM(Z) = log

1√
2πσ2

G,H1

exp
(
− (Z−µH1

)2

2σ2
G,H1

)

1√
2πσ2

G,H0

exp
(
− (Z−µH0

)2

2σ2
G,H0

)
H1

≷
H0

0 (4.43)

The theoretical detection performance can be approximated as

Pe,FLOM =
1

2

[
Q

(
t1 − µH0

σG,H0

)
−Q

(
t2 − µH0

σG,H0

)]
+

1

2

[
1−Q

(
t1 − µH1

σG,H1

)
+Q

(
t2 − µH1

σG,H1

)]
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where t1 and t2 are thresholds to decide H1 if t1 ≤ Z ≤ t2 and otherwise H0. These

thresholds can be obtained by solving the quadratic equation arising from TFLOM(Z) =

0 in (4.43). By numerical computation, it is easy to see (4.44) is an increasing function

of p. Thus, the detection performance becomes better as p → 0. The FLOM of α-

stable random variable has been used for the estimation of the parameters of α-stable

random variables [91]. In this dissertation, the FLOM is used for the detection

problem. For radar systems, the FLOM detector for the detection of distorted known

signal sequence due to α-stable clutter with α-stable noise has been studied in [92].

However, it is different from our system which is α-stable random signal detection in α-

stable noise. The FLOM detector is not the best detector among multiple candidates

we propose in this dissertation, and is improved next.

4.4.3 Signed-FLOM Detector

In this section, we propose a simple detector for the α-stable random signal de-

tection in α-stable noise. We denote the signed pth power of a number x by

x<p> := sign(x)|x|p (4.44)

The signed FLOMs of a α-stable random variable can be found as follows [91]:

E[Y <p>] =
Γ
(
1− p

α

)

Γ(1− p) sin
(pπ

2

)
(
1 + β2 tan2

απ

2

) p
2α

sin
( p
α
arctan

(
β tan

(απ
2

)))
σp. (4.45)

The variance of Y <p> can be defined by

var[Y <p>] = E[Y <2p>] − E[Y <p>]2, p < α/2. (4.46)

Using same approach with the FLOM detector, we can define the binary hypothesis

test and its test statistics same as (4.42) and (4.43) with different means and vari-

ances which can be calculated using (4.45) and (4.46). The theoretical performance

also can be approximated using the Q-function. It is numerically observed that the
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performance of the signed-FLOM detector is a convex function of p. Therefore, one

can find the optimal p value numerically. This signed-FLOM of α-stable random

variable has also been used for estimation problem of the parameters of the random

variable [91].

4.4.4 Logarithm Detector

In this section, we propose the another simple detector. We define log |Y | as a

new random variable and a following relationship.

E[|Y |p] = E[ep log |Y |] = Mlog |Y |(p) (4.47)

where E[ep log |Y |] can be regarded as the moment generating function of log |Y |. Then,

moment of log |Y | of any order can be obtained by

E[log |Y |k] =
dkMlog |Y |(0)

dpk
. (4.48)

Using (4.48) log |Y | has a mean and a finite variance as follows [91]:

E[log |Y |] = −Ce +
Ce

α
+ log σ +

log(1 + β2 tan(απ
2

)2)

2α
, (4.49)

var[log |Y |] =
π2

4
− π2

6
+

π2

6α2
− arctan2(β tan(απ

2
))

α2
(4.50)

where Ce is the Euler constant. Since log |Y | has a mean and a finite variance, using

same approach with the previous two detectors we can define the binary hypothesis

test and its test statistics same as (4.42) and (4.43) with different means and variances

which can be calculated from (4.49) and (4.50). The theoretical performance also can

be approximated using the Q-function and it does not depend on any parameter

unlike FLOM-based detectors. Like previous FLOM-based methods, the log method

has also been used for parameter estimation of the parameters of α-stable random

variable [91].
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4.4.5 Mixed-FLOM Detector

Even though we proposed several simple detectors in previous sections, the de-

tectors have moderate performances compared with the ML detector which will be

shown in Section 4.5. Therefore, we propose the novel mixed-FLOM detector which

combines the FLOM and the signed-FLOM detectors with better performance and

without any serious increase of computational complexity. Since |Y |p1 and Y <p2> are

functions of same random variable Y , there is a dependence between two random

variables. The covariance between |Y |p1 and Y <p2> is derived by

cov[|Y |p1, Y <p2>] = E[Y <p1+p2>] −E[|Y |p1]E[Y <p2>], p1 + p2 < α/2. (4.51)

By using these two random variables, the binary hypothesis test can be approximated

as follows:

Z =



Z1

Z2


 =




1
L

∑L
j=1 |Yj|p1

1
L

∑L
j=1 Y

<p2>
j


 =





N (µH1
,CH1) under H1

N (µH0
,CH0) under H0

(4.52)

where µHk
= [µ1,k µ2,k]

T , k = 0, 1 can be calculated by using (4.40) and (4.45).

In covariance matrix CHk
= [c11,k c12,k; c21,k c22,k], k = 0, 1, the diagonal terms are

c11,k = var[|Y |p1]/L and c22,k = var[Y <p2>]/L which can be calculated using (4.41) and

(4.46). The covariance between Z1 and Z2 is c12,k = c21,k = cov[|Y |p1, Y <p2>]/L from

(4.51). The covariance can be computed by using (4.40) and (4.45). The suboptimal

mixed-FLOM detector computes the following test statistics:

Tmixed-FLOM(Z) = log

1
2π det |CH1

| exp
(
−(Z − µH1

)TC−1
H1

(Z− µH1
)
)

1
2π det |CH0

| exp
(
−(Z − µH0

)TC−1
H0

(Z− µH0
)
)

H1

≷
H0

0 (4.53)

The theoretical detection performance can be approximated as

Pe,mixed−FLOM =
1

2
(Pe,H1 + Pe,H0) (4.54)
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where

Pe,H0
=

∫ s2

s1

[
Q

(
t1(Z1)− µ2,0√

c22,0

)
−Q

(
t2(Z1)− µ2,0√

c22,0

)]
1√

2πc11,0
exp

(
− (Z1 − µ1,0)2

2c11,0

)
dZ1,

and

Pe,H1
=

∫ s2

s1

[
1−Q

(
t1(Z1)− µ2,1√

c22,1

)
+Q

(
t2(Z1)− µ2,1√

c22,1

)]
1√

2πc11,1
exp

(
− (Z1 − µ1,1)2

2c11,1

)
dZ1,

where t1(Z1) = (−bt +
√
b2t − atct)/at and t2(Z1) = (−bt−

√
b2t − atct)/at are thresh-

olds that are functions of Z1 as seen in (4.55) to decide H1 if t1(Z1) ≤ Z2 ≤ t2(Z1)

and otherwise H0. In order for the thresholds t1(Z1) and t2(Z1) to have real val-

ues, the ranges for Z1 are defined as s1 := (−bs +
√
b2s − ascs)/as and s2 := (−bs −

√
b2s − ascs)/as. We have also defined

at = [A]2,2

bt = [A]1,2Z1 + [bT ]1,2

ct = [A]1,1Z
2
1 + 2[bT ]1,1Z1 + c

as = [A]21,2 − [A]2,2[A]1,1

bs = [A]1,2[b
T ]1,2 − [A]2,2[b

T ]1,1

cs = [bT ]21,2 − c[A]2,2,

(4.55)

where A = C−1
H0

−C−1
H1

, bT = µ
T
H1
C−1

H1
−µ

T
H0
C−1

H0
, c = µ

T
H0
µH0

−µ
T
H1
µH1

+ log
det |CH0

|
det |CH1

| ,

and [D]i,j is the (i, j)th element of matrix D. Using (4.54), we can obtain optimal p1

and p2 values which guarantee the best theoretical performance numerically.

The mixed-FLOM detector requires the mean µHk
and covariance matrix CHk

,

k = 0, 1 which can be calculated using (4.40), (4.41), (4.45), and (4.46) with the

parameters of α-stable random variable. The mixed-FLOM detector has close per-

formance to the ML detector and is more robust to uncertainties in the knowledge of

parameters of α-stable random variables than the ML detector which will be shown

in the next Section 4.5.
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Figure 4.2: Performance comparison of ML and proposed simple detectors with α =

0.5. The dotted lines are the theoretical results using (4.44) and (4.54) with different

means and variances according to the proposed detectors.

4.5 Simulations

In this section, we will show the detection performances for proposed detectors.

Since signal and interference models are already verified mathematically in Section

4.3, we will generate totally positive skewed α-stable random variables and symmetric

α-stable random variables as the signal and noise instead of aggregate signal and

interference from Poisson networks.

In Fig. 4.2, we show the detection performance of proposed detectors with α = 0.5

which implies the path-loss exponent is δ = 4. We also show the performance of the

ML detector for comparison using numerical integration. The number of received

time samples for detection is L. For the FLOM detector, p = 0.001 is used since

the theoretical performance of the FLOM detector is an increasing function of p. In

56



−12 −10 −8 −6 −4 −2 0 2 4 6
10

−4

10
−3

10
−2

10
−1

10
0

SNR
m

 (dB)

P
e

α=0.9

 

 
ML (L=10)
Log (L=10)
FLOM (L=10)
signed FLOM (L=10)
mixed FLOM (L=10)
ML (L=100)
Log (L=100)
FLOM (L=100)
signed FLOM (L=100)
mixed FLOM (L=100)

L=100

L=10

Figure 4.3: Performance comparison of ML and proposed simple detectors with α =

0.9. The dotted lines are the theoretical results using (4.44) and (4.54) with different

means and variances according to the proposed detectors.

case of the signed-FLOM detector, we used the optimal p values which are obtained

numerically and guarantee the minimum theoretical performance. The log detector

does not depend on p. The simulated performances of proposed detectors become

close to their theoretical performances as L increases due to the central limit the-

orem. The mixed-FLOM detector shows the best performance over other proposed

detectors. When the number of samples for detection is small (L = 10), the gap

between the mixed-FLOM detector and the ML detector is about 2 dB at 10−3 error

rate. Meanwhile, the performance gaps between the ML and the other proposed de-

tectors are more than 3 dB. The gap between the ML and the mixed-FLOM detector

decreases to less than 0.5 dB when the number of samples for detection is relatively

large (L = 100).
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Figure 4.4: Performance comparison of mixed-FLOM detector with its simply modi-

fied detector with α = 0.5 The dotted lines are the theoretical results using (4.54).

In the following, we show the performances with α = 0.9 corresponding to the

path-loss exponent δ = 2.222 which is close to the path-loss exponent in free space.

In Fig. 4.3, the mixed-FLOM detector is seen to be within 0.7 dB of the ML detector

at 10−3 error rate when the number of samples for detection is sufficiently large

(L = 100).

Even though the complexity of mixed-FLOM detector is much less than the ML

detector, it still requires the inverse of a 2 × 2 covariance matrix (4.53). If it is

assumed that Z1 and Z2 are independent in (4.52), the mixed-FLOM detector does

not require the inverse matrix operation with negligible performance loss as shown

in Fig. 4.4. It is noted that the mixed-FLOM detector with this assumption has a

better performance than the mixed-FLOM detector without the assumption at high

SNR regime when the small number of L is used for detection (L = 10). The reason
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Figure 4.5: Performance comparison of ML and mixed-FLOM detector with param-

eter estimation error.

is that positive α-stable random variables will be generated more likely than negative

values under H1 since βH1 is close to 1 at high SNR σα
S ≫ σα

W . In this case, if L

is small, Z1 and Z2 have strong correlation even though p1 and p2 have different

values. The strong correlation can cause the covariance matrix to be ill-conditioned.

By independence assumption between Z1 and Z2, the ill-conditioning can be avoided.

However, except for the small number of samples for detection (L = 10), a small

loss of performances is seen due to disregarding the dependency between two random

variables, Z1 and Z2, in Fig. 4.4.

Fig. 4.5 shows the performances when the detectors use the estimated parameters

of α-stable random variables, α, σ, and β. In order to investigate the effect of parame-

ter estimation error, we assume the parameters are estimated periodically under both

hypotheses using existing estimation schemes [91] and then used for the signal detec-
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tion. When the number of samples for estimation is relatively large (Ne = 1000), the

ML detector is slightly better than the mixed-FLOM detector similar with the case

that the exact knowledge of the parameters is assumed. However, the ML detector is

worse than the mixed-FLOM detector when the number of samples for estimation is

relatively small (Ne = 100). The mixed-FLOM detector not only takes a advantage

of the low computational complexity, but also possesses robustness to the parameter

estimation error.
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Chapter 5

STOCHASTIC ORDERING OF INTERFERENCES IN LARGE-SCALE

WIRELESS NETWORKS

5.1 Literature Survey and Motivation

Since interference is the main performance-limiting factor in most wireless net-

works, it is crucial to characterize its statistics. The interference mainly depends on

the fading channel (interfering power distribution), the path-loss model (signal at-

tenuation with distance), and network geometry (spatial distribution of concurrently

transmitting nodes). The spatial location of the interferers can be modeled either de-

terministically or stochastically. Deterministic models include square, triangular, and

hexagonal lattices [1, 2], which are applicable when the location of the nodes in the

network is constrained to a regular structure. On the other hand, only a statistical

description of the location of the nodes is available in some scenarios. In both cases,

the locations of transmitting nodes in the network are seen as the realizations of some

point processes [3, 4, 5]. For certain classes of node distributions, most notably Pois-

son point processes, and certain attenuation laws, closed-form results are available for

the interference distribution which determine the network performance [54, 43] (and

the references therein). However the interference distribution is not tractable in most

other cases.

Successful transmission probability in the presence of interference can be calcu-

lated by determining the Laplace transform of interference [93, 94, 5]. However,

closed-form expressions for the Laplace transform of interference are not tractable

in many cases. We approach this problem from a stochastic ordering perspective,
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which is a partial order on random variables [7, 40]. Concepts of stochastic ordering

have been applied to scenarios of interest in wireless communications in [41]. We will

use these concepts to understand the interference in large scale wireless networks.

In [40, 95, 96], the application of this set of tools in communication networks can

be found. In [40, 95], the stochastic ordering has been used in studying a class of

queueing networks. Directionally convex ordering of different point processes and

its integral shot noise fields which are inherent from the point processes has been

studied in [96]. To the best of our knowledge, there is no study of conditions on

fading channels and path-loss models for stochastic ordering of network interference

in the literature. In this dissertation, we use stochastic ordering theory to compare

network performance under conditions of differing fading on the interference link, and

different path-loss models for the establishment of stochastic ordering of interference

from different point processes. Using the conditions, we compare performance with-

out having to obtain closed-form results for a wide range of performance metrics.

We also compare different point processes which are commonly used in the literature

using stochastic orders, and advocate Laplace functional ordering of point processes

over directional convex ordering when interferences due to these point processes are

compared.

5.2 Preliminaries

In what follows, we briefly introduce several basic point processes which are com-

monly used to model large-scale networks [5, 43, 44, 45, 8, 38, 46, 47]. In this disserta-

tion, we focus on stationary and isotropic point processes which are introduced in . A

point process Φ is stationary if its distribution is invariant under translation through

any vector v ∈ R
d and a point process Φ is isotropic if its distribution is invariant to

rotations. The details for these point processes can be found in [42, 3, 44].
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Figure 5.1: Illustration of a Poisson point process.

Homogeneous Poisson Point Processes: A homogeneous Poisson point process

is characterized by two fundamental properties. The first is that the number of points

of Φ in a bounded subset B of Rd has a Poisson distribution of mean λ|B|, where | · |

denote n-dimensional volume and the constant λ is called the intensity of the Poisson

point process. The second is that the numbers of points of Φ in k disjoint subsets

of Rd form k independent random variables, for arbitrary k as shown in Fig. 5.1. A

homogeneous Poisson point process is stationary and isotropic.

Doubly Stochastic Poisson Processes: A generalization of a Poisson process

is made by supposing that the intensity measure is itself random, with the point

process being Poisson conditional on the realization of the intensity measure. Such a

process is called a doubly stochastic Poisson process or Cox process. A Cox process

Φ can be thought of as arising from a two-step random mechanism, hence the term

“doubly stochastic”. The first step generates a measure Λ(·) on R
d according to the
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driving random measure distribution Q. Given Λ(·), Φ(B) is Poisson distribution with

parameter Λ(B) for any bounded subset B ⊂ R
d. For any finite collection of disjoint

subsets B1, ..., Bn and conditioned on Λ(B1), ...,Λ(Bn), we have Φ(B1), ...,Φ(Bn) are

independent.

Mixed Poisson Processes: The mixed Poisson process is a simple instance of a

Cox process. It can be thought of as a homogeneous Poisson point process with

randomized intensity parameter. The deriving random measure is Λ(B) = X|B|

where the randomized intensity X is a non-negative random variable. Every sample

of such a process looks like a sample of some homogeneous Poisson point process. In

this dissertation, E[X ] = λ is assumed.

Poisson Cluster Processes: A Poisson cluster process results from homogeneous

independent clustering applied to a stationary Poisson process. The parent points

form a stationary Poisson process Φp = {x1, x2, . . . } of intensity λp. The clus-

ters are of the form Nxi
= xi + Ni for each point xi ∈ Φp. The daughter points

Ni = {y1, y2, ..., yL} are random in number and are scattered independently and with

identical distribution f(y) which follows an arbitrary distribution (e.g., a uniform dis-

tribution for Martérn cluster process or a symmetric normal distribution for Thomas

cluster process). The complete point process Φ is given by

Φ =
⋃

x∈Φp

Nx. (5.1)

The intensity of the process is λ = λpc̄ where c̄ is the mean number of daughter points

per parent. In this dissertation, we assume the number of daughter points per cluster

has a Poisson distribution with parameter c̄. Fig. 5.2 shows a realization of Poisson

cluster process.
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Figure 5.2: Illustration of a Poisson cluster process.

Binomial Point Processes: A Binomial Point Process (BPP) is generally used

to model the location of a fixed number of wireless nodes in a bounded domain.

It is a simple point process obtained by placing n points Φ = {x1, ..., xn} ⊂ R
d

independently and uniformly in a closed and bounded set B ⊂ R
d. The probability

that there are k < n nodes in A ⊂ B of a BPP is

P (Φ(A) = k) =

(
n

k

)( |A|
|B|

)k (
1 − |A|

|B|

)n−k

. (5.2)

where |A| represents the volume of A.

Deterministic Lattice Processes: Let L ⊂ R
d be a d-dimensional lattice, i.e.,

L , {x = Gu : u ∈ Z
d} (5.3)

where G ∈ R
d×d is the generator matrix. It is assumed that detG 6= 0 to exclude

degenerate cases. Important cases include the square integer and the triangular lattice
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in two dimensions, both with nearest-neighbor distance 1:

Gsq =




1 0

0 1


 , Gtri =




1 1/2

0
√

3/2


 (5.4)

The lattice L has the property that each lattice point is centered in its Voronoi cell.

The volume of each Voronoi cell is V = | detG|, and the density of the lattice (points

per unit volume) is λ = V −1.

5.3 System Model

As shown in Fig. 1.2 of Section 1.1, we assume a transmit/receive pair communi-

cating over a wireless channel. The receiver is being interfered by interference sources

distributed as stationary and isotropic point process. As introduced in Section 1.1,

The accumulated interference to the receiver is given by

I =
∑

x∈Φ
h
(x)
I g(‖x‖) (5.5)

where Φ denotes the set of all interfering nodes which is modeled as a point process on

R
d and h

(x)
I is a random variable capturing the fading coefficient between the receiver

and the xth interfering node. Here, typically d = 2 or d = 3, though this assumption

is not necessary. Moreover, {h(x)I }x are i.i.d. random variables and independent of

the point process. The path-loss is captured by a function g(·) : R+ → R
+ which is

a continuous, positive, non-increasing function of ‖x‖ and assumed to depend only

on the Euclidean distance ‖x‖ from the node x to the receiver at the origin. In this

chapter, we consider the following general path-loss model [54, 5, 43, 4]:

g(‖x‖) = (a + b‖x‖δ)−1 (5.6)

for some b > 0, δ > d and a ∈ {0, 1}, where δ is called the path-loss exponent, a

determines whether the path-loss model belongs to a singular path-loss model (a = 0)
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or a non-singular path-loss model (a = 1), and b is a compensation parameter to keep

the total receive power normalized which will be discussed in detail in Section 5.6. It is

noted that from Campbell’s theorem in Section 2.3.2 and the aggregated interference

model in (5.5), any two stationary point processes with the same intensity have equal

mean power of interferences (when the expectation of (5.5) exists).

Assuming the effective channel power between the desired receiver and its trans-

mitter is hS which can be a non-negative constant or a RV, the signal to interference

ratio (SIR) is given by

SIR =
hS
I

(5.7)

where I is the interference power given by (5.5). If there is additive noise with power

W which can be a non-negative constant or RV as well, then the signal to interference

plus noise ratio (SINR) is given by [5, 57, 4]

SINR =
hS

W + I
. (5.8)

In this dissertation, the LT ordering of two interference distributions will be mainly

discussed. The Laplace transform of interference plus noise is E[exp (−s(W + I))] =

LW (s)LI(s). Clearly the LT ordering of two interference distributions is not affected by

a common noise power W . Therefore, we focus on interference distributions hereafter.

5.4 Ordering of Outage Probability and Ergodic Capacity Metric

In this section we introduce performance metrics involving the stochastic ordering

of interference. Firstly, we study the SIR-based outage probability. It has been shown

in [5] that when hS is exponentially distributed, the LT ordering of the interference

can be related to the outage defined in terms of SINR. We generalize this result to a

broader class of distributions for the effective channel RV hS.
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Theorem 5.4.1. Let I1 and I2 denote the interferences from point process Φ1 and Φ2

respectively. Also, let hS be the effective fading channel between the desired receiver

and its transmitter and has a CCDF F̄hS
(x) := 1 − FhS

(x), which is a c.m. function.

Under these assumptions, if I1 ≤Lt I2, then SIR2 ≤st SIR1.

Proof. Let F̄hS
(x) be the c.m. CCDF of hS. Then we have

P (SIR1 > x) = EI1 [P (hS > xI1)] = EI1

[
F̄hS

(xI1)
]

(5.9)

≥ EI2

[
F̄hS

(xI2)
]

= EI2 [P (hS > xI2)] = P (SIR2 > x), (5.10)

where the inequality is due to I1 ≤Lt I2 and equation (2.5). Recalling the definition

of ≤st in (2.3), Theorem 5.4.1 is proved.

Theorem 5.4.1 enables us to conclude the usual stochastic ordering of SIRs when-

ever LT ordering of interferences are established. In the sequel, we will show many

examples of how LT ordering between two interference distributions can be established

which can be used with Theorem 5.4.1 to establish the “usual stochastic” ordering

of outage as in (2.3) of Section 2.2.1. Illustrations of Theorem 5.4.1 are shown in

our numerical results in Section 5.8. Note that if two interferences have the usual

stochastic ordering I1 ≤st I2 (a stronger assumption than in Theorem 5.4.1), then we

can have SIR2 ≤st SIR1 with any arbitrary distribution for hS and not just those with

a c.m. CCDF.

Now consider the expression

C = E

[
log2

(
1 +

hS
W + I

)]
, (5.11)

which is the bandwidth-normalized capacity in the weak interference regime [5, 97, 57].

The expectation in (5.11) is with respect to the arbitrary positive random variable

hS, as well as the interference I given in (5.5). The noise power W ≥ 0 is fixed, and

hS, I are independent.
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We would like to compare two regimes (hS1 , I1) with capacity C1, and (hS2 , I2)

with capacity C2, where hS2 ≤Lt hS1 , and I1 ≤Lt I2. Since log(1 + hS) is c.m.d. with

respect to hS and log(1+1/(W+I)) is c.m. with respect to I, by using (2.5) and (2.6)

successively, we have C1 ≥ C2. Therefore the LT ordering of interferences and the LT

ordering of effective channels together lead to ordering of ergodic capacities. Unlike

in Theorem 5.4.1, in this case, we can compare the ergodic capacity regardless of the

distribution of fading channel, hS. Section 5.5.1 has examples of fading distributions

that are LT ordered.

Having emphasized the impact of LT ordering on outage and capacity metrics,

in what follows, we will investigate the conditions for the presence of LT ordering of

interference distributions. The three factors which affect the interference distribution

are the fading channel from the interfering nodes to the receiver h
(x)
I , the path-loss

model g(·), and the point process of interfering nodes Φ as shown in the interference

model in (5.5). We derive the conditions on fading channels and path-loss models and

the underlying point processes for the LT ordering of interferences. We also identify

the LT ordering of interference distributions in commonly used point processes.

5.5 Comparison of Fading Channels on the Interference Link

In the previous section we mentioned that the effective channels between the

transmitter and receiver, hS1 and hS2 , can be compared. In this section, we find the

conditions on the distribution of h
(x)
I on the interference link for the interference in

(5.5) to be LT ordered. Since h
(x)
I are assumed as i.i.d., we will drop the node index

x for convenience hereafter, when we refer to its distribution.

Theorem 5.5.1. Let I1 and I2 denote the interferences both with the same path-

loss model g(‖x‖), from a stationary point process Φ as in (5.5). Also, let hI1 and

hI2 be RVs whose distributions capture the fading channels between the receiver and
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interferers under the two scenarios that are compared. Under these assumptions, if

hI1 ≤Lt hI2, then I1 ≤Lt I2.

Proof. The Laplace transform of aggregated interference I :=
∑

x∈Φ h
(x)
I g(‖x‖) is a

Laplace functional (2.8) evaluated at u(x) = shIg(‖x‖), s ≥ 0, hI ≥ 0 and g(‖x‖) ≥ 0

where hI is the effective fading channel between the receiver and interferers and g(‖x‖)

is a path-loss model. LI(s) can be expressed as follows:

LI(s) = E
[
e−sI

]
= E

[
e−shI

∫
Rd

g(‖x‖)Φ(dx)
]

, (5.12)

where the expectation is to be taken over both Φ and hI. Let Z =
∫
Rd g(‖x‖)Φ(dx) in

(5.12). From [7, Theorem 5.A.7 (b)], if E [exp (−sI1)|Z = z] ≥ E [exp (−sI2)|Z = z] for all z in

the support of Z, then I1 ≤Lt I2. Therefore, it is sufficient to show the following

equation regardless of a point process Φ in order to satisfy the LT ordering between

interferences,

EhI1

[
e−szhI1 |Z = z

]
≥ EhI2

[
e−szhI2 |Z = z

]
. (5.13)

But (5.13) follows from the assumption hI1 ≤Lt hI2 . Thus, we conclude that if hI1 ≤Lt

hI2 , then I1 ≤Lt I2.

The interference in a stationary point process depends on the fading channel be-

tween the receiver and interferers. Intuitively a bigger LT ordering indicates a fading

channel that is more like AWGN (i.e., “less fading”). Therefore, the interference aris-

ing from it indicates interference adding up more coherently, giving rise to a “bigger”

interference in the LT ordering sense.

As mentioned in Section 5.3, we assumed the interferers are distributed on an

infinite region due to the stationarity of the point process. However, receivers in many

wireless networks may experience interference from finite-area regions [98]. Theorem

5.5.1 is also valid for the interference in finite area. Moreover, when guard zones
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around the receiver occur due to sophisticated MAC protocols [99, 100], Theorem

5.5.1 still holds.

5.5.1 Parametric Fading on the Interference Link

In this section, we show the interference distributions are monotonic in line of sight

(LoS) parameter of the fading channels with respect to the LT order for commonly

used parametric fading distributions such as Nakagami-m and Ricean fading. By

Theorem 5.5.1 this implies LT ordering of interferences, which, by Theorem 5.4.1

establishes stochastic ordering of SIRs.

Consider Nakagami fading model, where the envelope
√
hI is Nakagami and the

effective channel hI follows the distribution

fhI
(x) =

mm

Γ(m)
xm−1 exp(−mx), x ≥ 0. (5.14)

Since E[−shI] = (1 + s/m)−m is a decreasing function of m for each s, it follows that

if the m parameters of two channel distributions satisfy m1 ≤ m2 then, hI1 ≤Lt hI2

where hI1 and hI2 have normalized Gamma distributions with parameter m1 and m2

respectively. From Theorem 5.5.1, it follows that I1 ≤Lt I2, if m1 ≤ m2.

Similarly, the envelope
√
hI is Ricean and the distribution of effective channel hI

is given by

fhI
(x) = (K + 1) exp [−(K + 1)x−K] I0(2

√
K(K + 1)x), x ≥ 0, (5.15)

where K is the LoS parameter of Ricean fading channel and I0(t) :=
∑∞

m=0(t/2)2m/(m!

Γ(m+ 1)) is the modified Bessel function of the first kind of order zero. The Laplace

transform of (5.15) decreases with K for all s ≥ 0. Thus, similar to the Nakagami

case, if K1 ≤ K2 are the Ricean parameters of two channels, then hI1 ≤Lt hI2 which

by Theorem 5.5.1 imply that I1 ≤Lt I2.
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In addition to the Nakagami-m and Ricean fading cases, it can be shown through

a procedure similar to the discussion that the interference distribution corresponding

to Nakagami-q (Hoyt) fading [101] also satisfies LT ordering with respect to the shape

parameter.

5.5.2 Interference in Combined Multipath Fading and Shadowing

The effect of shadow fading on the interference power distribution can be modeled

as a product of a shadowing random variable with a multipath fading random variable.

Let hI1 ≤Lt hI2 be the two effective multipath fading distributions, and X1 ≤Lt X2 be

the two shadowing distributions. Then, from [7, Theorem 5.A.7 (d)], it follows that

the composite RV satisfies hI1X1 ≤Lt hI2X2, since l(x, y) = xy has a c.m. derivative

in each variable. We conclude that if hI1 ≤Lt hI2 and X1 ≤Lt X2, then I1 ≤Lt I2

from Theorem 5.5.1. Such conclusions are especially useful even when the composite

distribution of hI1X1 or hI2X2 cannot be written in closed-form.

5.6 Comparison of Path-loss Models

Here, we show the ordering of mean power of interferences in a stationary point

process with different path-loss models. Generally, the mean power of interference

is an important factor to determine a system performance. For example, by consid-

ering the mean power of interferences as noise power, the average error rate can be

approximated. Thus, we are interested in comparison the mean power of interfer-

ences. In what follows, we show the condition on the mean power of interferences

with non-singular path-loss models with different path-loss exponents under which

this ordering holds:

Theorem 5.6.1. Let I1 and I2 denote the interferences both with identical fading

distribution hI in a stationary point process Φ. Also, let g1(‖x‖) and g2(‖x‖) be
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the non-singular path-loss models with a = 1 and b = 1 in (5.6) and with different

path-loss exponents δ1 and δ2, respectively. If δ1 ≤ δ2, then E[I2] ≤ E[I1].

Proof. In order to prove E[I1] ≥ E[I2], using Campbell’s theorem in Section 2.3.2

with u(x) = hIg(‖x‖) where hI is the (power) fading coefficient and g(‖x‖) is the

non-singular path-loss model in (5.6), we need to show the following:

λ

∫

Rd

hIg1(‖x‖)dx ≥ λ

∫

Rd

hIg2(‖x‖)dx. (5.16)

Since hI is independent from the point process and g(‖x‖) can be expressed as

g(r), r = ‖x‖ under polar coordinates, after expectation with respect to hI and change

to polar coordinates, the following condition needs to be satisfied to prove Theorem

5.6.1:

E [hI]λcdd

∫ ∞

0

g1(r)r
d−1dr ≥ E [hI]λcdd

∫ ∞

0

g2(r)r
d−1dr. (5.17)

where cd is the volume of the d-dimensional unit ball and hI is the (power) fading

coefficient between the receiver and interferers. Using a change of variables, we get
∫ g1(0)

g1(∞)

u
(
g−1
1 (u)

)d−1 ∂

∂u

(
g−1
1 (u)

)
du ≥

∫ g2(0)

g2(∞)

u
(
g−1
2 (u)

)d−1 ∂

∂u

(
g−1
2 (u)

)
du. (5.18)

where d is the dimension of point process, g−1(·) is the inverse function of g(·) and

I[u ∈ S] = 1, if u ∈ S, and 0 otherwise, is the indicator function. Substituting the

non-singular path-loss models g1(r) and g2(r) with a = 1 and b = 1 in (5.6) into

(5.18), we get

∫ 1

0

u



(
1
u
− 1
) d

δ1
−1

δ1u2
−
(
1
u
− 1
) d

δ2
−1

δ2u2


 du =

Γ
(
1− d

δ1

)
Γ
(

d
δ1

)

δ1
−

Γ
(
1− d

δ2

)
Γ
(

d
δ2

)

δ2
≥ 0, (5.19)

since
Γ(1− d

δ )Γ( d
δ )

δ
is a decreasing function with δ for a fixed d and δ1 ≤ δ2. The proof

for Theorem 5.6.1 is complete.

Theorem 5.6.1 compares the mean power of interference for two different path-loss

models and identical fading. It is clear from the proof of Theorem 5.6.1 that if the

fading is different with E[hI1 ] ≥ E[hI2 ], the conclusion would still hold.
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Under a stationary Poisson point process, we can establish the stronger stochastic

ordering, LT ordering of interferences, because if I1 ≥Lt I2, then E[I1] ≥ E[I2]. In

what follows, we find the conditions on the interference distributions with non-singular

path-loss models with different path-loss exponents under which this stochastic or-

dering holds:

Theorem 5.6.2. Let I1 and I2 denote the interferences both with identical fading dis-

tribution hI in a stationary Poisson point process Φ
PPP

. Also let g1(‖x‖) and g2(‖x‖)

be the non-singular path-loss models with a = 1 and b = 1 in (5.6) and with different

path-loss exponents δ1 and δ2, respectively. If δ1 ≤ δ2, then I2 ≤Lt I1.

Proof. The Laplace transform of interference power in a stationary Poisson point

process with path-loss model gj(r), j = 1, 2 in (5.6) and intensity λ can be expressed

as follows:

LIj(s) = exp

{
−λcdd

∫ ∞

0

[1 − exp (−shIgj(r))] rd−1dr

}
(5.20)

where cd is the volume of the d-dimensional unit ball and hI is the (power) fading

coefficient between the receiver and interferers. From [7, Theorem 5.A.7 (b)], it is

sufficient to show LI1(s) ≥ LI2(s) in (5.20) regardless of a distribution of hI in order

to satisfy the LT ordering between interferences. To do so, the following condition

needs to be satisfied after change of variables:

∫ g1(0)

g1(∞)

[1 − exp (−shIu)]
(
g−1
1 (u)

)d−1 ∂

∂u

(
g−1
1 (u)

)
du

≥
∫ g2(0)

g2(∞)

[1 − exp (−shIu)]
(
g−1
2 (u)

)d−1 ∂

∂u

(
g−1
2 (u)

)
du. (5.21)

74



Substituting the same non-singular path-loss models into (5.21), it follows

∫ 1

0
(1− exp (−shIu))



(
1
u − 1

) d
δ1

−1

δ1u2
−
(
1
u − 1

) d
δ2

−1

δ2u2


 du (5.22)

≥ (1− exp (−shI))

∫ 1

0
u



(
1
u − 1

) d
δ1

−1

δ1u2
−
(
1
u − 1

) d
δ2

−1

δ2u2


 du (5.23)

= (1− exp (−shI))



Γ
(
1− d

δ1

)
Γ
(

d
δ1

)

δ1
−

Γ
(
1− d

δ2

)
Γ
(

d
δ2

)

δ2




︸ ︷︷ ︸
A

≥ 0. (5.24)

(5.23) follows from (1 − exp(−c))u ≤ 1 − exp(−cu) for c ≥ 0 and 0 ≤ u ≤ 1 and

(5.24) follows from 1 − exp(−shI) ≥ 0 for shI ≥ 0 and A ≥ 0 from (5.19). Theorem

5.6.2 is proved.

For the non-singular path-loss model g(‖x‖) with a = 1 and b = 1 is assumed,

however, the mean power of interference with g1(‖x‖) is greater than that with g2(‖x‖)

from Theorem 5.6.1. Thus, for more fair comparison of LT ordering of the interfer-

ences, we set the parameter b in (5.6) for g2(‖x‖) to have a equal mean power of

interference as that of g1(‖x‖), using Campbell’s Theorem as follows:

b =




δ2Γ

(
1 − d

δ1

)
Γ
(

d
δ1

)

δ1Γ
(

1 − d
δ2

)
Γ
(

d
δ2

)




− δ2

d

, (5.25)

where b ≤ 1. It is noted that the interferences, I1 and I2, with path-loss models,

g1(‖x‖) with a = 1 and b = 1 and g2(‖x‖) with a = 1 and b is set the value in (5.25)

and with different path-loss exponents δ1 and δ2 in (5.6) in a stationary point process

Φ have same mean power of interference, even if δ1 ≤ δ2. Then, with (5.25), we can

establish additional LT ordering of interferences as follows:

Corollary 5. Let I1 and I2 denote the interferences both with identical fading distribu-

tion hI in a stationary Poisson point process Φ
PPP

. Also let g1(‖x‖) be the non-singular
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Figure 5.3: Non-singular path-loss models with different path-loss exponents, δ1 and

δ2

path-loss model in (5.6) with δ1, a = 1 and b = 1 and g2(‖x‖) be the non-singular

path-loss models with δ2, a = 1 and b is set the value in (5.25). If δ1 ≤ δ2, then

I2 ≤Lt I1.

Proof. The proof is the same as the proof for Corollary 5.6.2 with setting the value

of b for g2(‖x‖) is (5.25) instead of b = 1.

From Corollary 5, it is seen that the interference distributions with non-singular

path-loss models in stationary Poisson point process are monotonic in the path-loss

exponent with respect to the LT order. Indeed, the parameter b in (5.25) was set

to ensure the mean interference powers are equal. Hence, the better performance in

SIR-based outage probability or ergodic capacity with increased path-loss exponent

δ is not due to an improvement of average interference power.

Theorem 5.6.1, 5.6.2 and Corollary 5 show that one path-loss model need not
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dominate the other pointwise to get an ordering in interference in the case of the non-

singular path-loss model. Indeed, if g1(r) ≥ g2(r), ∀r ∈ R
+ (for example, a comparison

of singular and non-singular path-loss model), it is obvious that E[I1] ≥ E[I2] since

the aggregated interference power with g1(r) is always greater than that with g2(r).

For a stationary Poisson point process, we can also easily observe when g1(r) ≥ g2(r),

I1 ≥Lt I2 from (5.20). However, from Theorem 5.6.1, 5.6.2 and Corollary 5, we can

establish the stochastic orderings of interferences even in the case that g1(r) < g2(r)

in some range of r and g1(r) > g2(r) in another range of r as shown in Fig. 5.3. The

simulation result to verify these theorems will be shown in Section 5.8.

For the singular path-loss model (a = 0 and b > 0) in (5.6), a finite mean of

interference power does not exist in a stationary point process since (5.16) does not

converge. Thus the means of interferences cannot be compared. In case of a stationary

Poisson point process, we have a closed-form expression for Laplace transform of

interference with the singular path-loss model in a stationary Poisson point process

as follows [57]:

LI(s) = exp(−λcdE[hαI ]Γ(1 − α)sα), (5.26)

where α = d/δ and cd is the volume of the d-dimensional unit ball. E[hαI ] is a fractional

moment of hI with 0 < α < 1. Unlike the non-singular path-loss model, however,

the LT ordering does not hold between two different interferences corresponding to

path-loss exponents δ1 ≤ δ2 in case of the singular path-loss model since (5.26) is not

a decreasing function of δ.

5.7 Comparison of Different Point Processes

In [96] directionally convex ordering (DCX) is used to order point processes. In

this section, we define a new stochastic ordering between point processes and state

some results involving the ordering of point processes. We first define a new stochastic
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ordering of point processes based on the well-known Laplace functional:

Definition 5.7.1. Let Φ1 and Φ2 be two stationary point processes such that

LΦ1(u) = E

[
e−

∑
x∈Φ1

u(x)
]
≥ E

[
e−

∑
x∈Φ2

u(x)
]

= LΦ2(u) (5.27)

where u(·) runs over the set U of all non-negative functions on R
d. Then Φ1 is said

to be smaller than Φ2 in the Laplace functional (LF) order (denoted by Φ1 ≤Lf Φ2).

It can be shown that LF ordering follows from dcx ordering, which makes LF

ordering easier to verify and easier to relate to interference metrics. Note that the LT

ordering in (2.4) is for RVs, whereas the LF ordering in (5.27) is for point processes.

They can be connected in the following way:

Φ1 ≤Lf Φ2 ⇐⇒
∑

x∈Φ1

u(x) ≤Lt

∑

x∈Φ2

u(x), ∀u ∈ U (5.28)

Hence, it is possible to think of LF ordering of point processes as the LT ordering of

their interferences in the absence of fading, for all non-negative path-loss functions.

But as we will see, LT ordering of their interferences in the presence of fading can be

proved when two point processes are LF ordered. We next prove a generalization of

Theorem 5.5.1 where the two point processes are different and LF ordered.

Theorem 5.7.1. Let Φ1 and Φ2 be two stationary point processes and hI1 and hI2

be RVs whose distributions capture the fading channels between the receiver and in-

terferers under the two scenarios that are compared. Also let I1 and I2 denote the

interferences with same path-loss model g(‖x‖) in Φ1 and Φ2 respectively. If Φ1 ≤Lf Φ2

and hI1 ≤Lt hI2, then I1 ≤Lt I2.

Proof. Theorem 5.7.1 follows from Theorem 5.5.1 and equation (5.28) with u(x) =

hIg(‖x‖).

Note that in Theorem 5.7.1, hI does not only capture a fading distribution, but

also can capture a random thinning property of point process.
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5.7.1 Laplace Functional Ordering between Specific Point Processes

Here, we compare the LF order between different point processes which are com-

monly used. These are Poisson point process and Neyman-Scott process with Poisson

distributed number of points in each cluster which is one of example of Poisson cluster

process. The Neyman-Scott process results from homogeneous independent clustering

applied to a stationary Poisson point process. The details for these point processes

can be found in [3, 44].

Theorem 5.7.2. If Φ
PPP

and Φ
PCP

denote Poisson point process and Neyman-Scott

process with Poisson distributed number of daughter points respectively and both point

processes have same intensity λ, then Φ
PCP

≤Lf Φ
PPP

.

Proof. Let u(·) ∈ U be all non-negative functions on R
d. The Laplace functional of

Neyman-Scott process with Poisson distributed number of daughter points and with

the distribution f(·) for locations of daughter points can be expressed as follows[3, 5]:

LΦPCP
(u) = exp

{
−λp

∫

Rd

[
1− exp

(
−c̄

(
1−

∫

Rd

exp(−u(x+ y))f(y)dy

))]
dx

}

≥ exp

{
−λpc̄

∫

Rd

[
1−

∫

Rd

exp(−u(x+ y))f(y)dy

]
dx

}
(5.29)

= exp

{
−λ

∫

Rd

[1− exp(−u(x))] dx

}
(5.30)

= LΦPPP
(u)

where the inequality in (5.29) follows from the fact that 1−exp(−ax) ≤ ax, a ≥ 0 and

(5.30) follows from change of variables, interchanging integrals and using
∫
f(y)dy = 1

[44].

We consider another point process, the mixed Poisson process which is a simple

instance of a Cox process. It can be thought of as a stationary Poisson point process

with randomized intensity parameter X which has the averaged intensity measure
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EX [X ] = λ. Every sample of such a process looks like a sample of some stationary

Poisson point process. We compare the LF ordering of this point process with that

of stationary Poisson point process as follows:

Theorem 5.7.3. If Φ
PPP

and Φ
MPP

denote Poisson point process and mixed Pois-

son process respectively and both point processes have same average intensity λ, then

Φ
MPP

≤Lf Φ
PPP

.

Proof. Let u(·) ∈ U be all non-negative functions on R
d. The Laplace functional of

the mixed Poisson process process with a random intensity measure X which has the

averaged intensity measure EX [X ] = λ can be expressed as follows [102]:

LΦMPP
(u) = EX

[
exp

{
−X

∫

Rd

[1 − exp(−u(x))] dx

}]
(5.31)

≥ exp

{
−EX [X ]

∫

Rd

[1 − exp(−u(x))] dx

}
(5.32)

= exp

{
−λ
∫

Rd

[1 − exp(−u(x))] dx

}
(5.33)

= LΦPPP
(u)

where the inequality in (5.32) follows from Jensen’s inequality since the term inside

the brackets in (5.31) is a convex function of X .

The aggregated interference from Poisson cluster process or mixed Poisson process

is always less than that from Poisson point process in LT order by Theorem 5.7.1.

This means that the orderings of SIR-based outage probabilities or ergodic capacities

are established depending on a point process by the performance metrics in Section

5.4. It is noted that from Campbell’s theorem in Section 2.3.2, any two stationary

point processes with same intensity have equal mean power of interferences (when

the expectation in (5.5) exists). Hence, the better performance in SIR-based outage

probability or ergodic capacity in specific point process is not due to an improvement

of average interference power.
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The above point processes are less than Poisson point process in LF order. In

what follows, we show the point process which has larger LF ordering than Poisson

point process even though it is non-stationary and non-isotropic. In binomial point

processes, there are a total of N transmitting nodes uniformly distributed in a d-

dimensional ball of radius r centered at the origin, denoted as Bo(r). The density

of the process is given by λ = N/(cdr
d) where cd is the volume of the d-dimensional

unit ball [103]. In this case, we can compare the LF ordering of point processes in

bounded area as follows:

Theorem 5.7.4. Let Φ
PPP

(r) be a Poisson point process over Bo(r). If Φ
PPP

(r) and

Φ
BPP

denote Poisson point process and binomial point process respectively in finite

area and both point processes have same intensity λ, then Φ
PPP

(r) ≤Lf Φ
BPP

.

Proof. Let u(·) ∈ U be all non-negative functions on R
d. The Laplace functional of

the binomial point process consisting N points with a density λ can be expressed as

follows [103]:

LΦBPP
(u) =

(
1 − λ

N

∫

Bo(r)

[1 − exp(−u(x))] dr

)N

(5.34)

≤ exp

{
−λ
∫

Bo(r)

[1 − exp(−u(x))] dx

}
(5.35)

= LΦPPP(r)(u)

where the inequality in (5.35) is due to (1 − c/n)n ≤ e−c for 0 ≤ c ≤ n. Thus,

Theorem 5.7.4 is followed since 0 ≤ λ
∫
Bo(r)

[1 − exp(−u(x))] dx ≤ N always holds

with λ = N/(cdr
d) and 0 ≤ [1 − exp(−u(x))] ≤ 1.

In a finite area Bo(r), the aggregated interference at the origin from a binomial

point process is always larger than that from Poisson point process in LT order from

Theorem 5.7.1.
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5.7.2 Laplace Transform Ordering of Interferences in Heterogeneous Networks

As unlicensed band utilization increases, the unlicensed wireless network may ex-

perience adverse interference from collocated wireless devices that are transmitting in

the same unlicensed band. Such a heterogeneous network scenario can be modeled as

a superposition of mutually independent point processes [104]. Let Φ1 =
⋃M

i=1 Φ1,i and

Φ2 =
⋃M

i=1 Φ2,i for i = 1, ...,M be the heterogeneous networks which are modeled as

superpositions of mutually independent point processes. Since the Laplace functional

of superposition of mutually independent point processes is LΦ(u) =
∏M

i=1 LΦi
(u)

[105], if Φ1,i ≤Lf Φ2,i for i = 1, ...,M , then Φ1 ≤Lf Φ2. Therefore, I1 ≤Lt I2 from

Theorem 5.7.1.

5.8 Numerical Results

In this section, we verify our theoretical results through Monte Carlo simulations.

Since the LT ordering between two interference scenarios cannot be verified directly

from its probability distributions such as PDF and CDF, we will verify the LT ordering

between interferences by the ordering of SIR-based outage probabilities or ergodic

capacities as mentioned in Section 5.4.

5.8.1 Comparison of Fading Channels on the Interference Link

In many practical scenarios, different links in wireless networks can experience

asymmetric fading conditions. If the interferer’s channel is Nakagami-m fading, while

the desired link is Rayleigh fading which has an effective channel CCDF which is

c.m., we can compare SIR-based outage probabilities using using Theorem 5.4.1.

In Fig. 5.4 the CDFs of interference power and SIR from Poisson cluster process

with different Nakagami-m fading parameters and with the non-singular path-loss
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Figure 5.4: CDFs of interference and SIR for Poisson cluster process with different

fading parameters and with λ = 0.01

model (a = 1, b = 1 and δ = 4) in (5.6) are shown. We consider two different LoS

parameters: m1 = 1 and m2 = 2. The choice of these parameters ensures I1 ≤Lt I2

from Theorem 5.5.1. Consequently, we observe SIR1 ≥st SIR2 in the bottom of Fig.

5.4 which agrees with Theorem 5.4.1 even though there is a crossover point between

interference power distributions in the top of Fig. 5.4.

The CDFs of SIR from Poisson point process with different Nakagami-m fading

parameters and with the singular path-loss model (a = 0, b = 1 and δ = 4) in (5.6)

are shown in Fig. 5.5. Similarly the LoS parameters m1 ≤ m2 lead to I1 ≤Lt I2 from

Theorem 5.5.1. Clearly, it is observed SIR1 ≥st SIR2 in Fig. 5.5 which agrees with

Theorem 5.4.1.

Table 5.1 shows the ergodic capacity performances when the desired link has

Ricean fading channel with KS = 5 and interfering channels follow Ricean distribu-
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Figure 5.5: CDFs of SIR for Poisson point process with different fading parameters

and with λ = 0.01

tions with KI1 = 0 and KI2 = 1 in the two scenarios compared on a Poisson cluster

process. The ergodic capacity with I1 is always better than that with I2 as expected

since the interference distributions are monotonic in LoS parameter of Ricean fading

channel with respect to the LT ordering in Section 5.5.

Table 5.1: Ergodic capacities (bits/s/Hz) over Ricean fading channel with KS = 5 in

Poisson cluster process

SINR (dB) -4 -2 0 2 4 6 8 10

I1 (KI1 = 0) 0.9433 1.2282 1.5709 1.9820 2.4538 3.0063 3.6482 4.5313

I2 (KI2 = 1) 0.9426 1.2277 1.5707 1.9803 2.4526 3.0020 3.6449 4.5278

The ergodic capacities in Poisson point process are shown in Table 5.2. In this

case, all conditions are same except for the type of point process. Therefore, the
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Table 5.2: Ergodic capacities (bits/s/Hz) over Ricean fading channel with KS = 5 in

Poisson point process

SINR (dB) -4 -2 0 2 4 6 8 10

I1 (KI1 = 0) 0.9346 1.2162 1.5485 1.9501 2.3847 2.9295 3.5491 4.3477

I2 (KI2 = 1) 0.9342 1.2152 1.5468 1.9460 2.3816 2.9231 3.5407 4.3349
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Figure 5.6: CDFs of interference and SIR for Poisson point process with non-singular

path-loss models with different path-loss exponents and with λ = 0.01

ergodic capacity with I1 is always better than that with I2 when I1 ≤Lt I2.

5.8.2 Comparison of Path-loss Models

We show in Fig. 5.6 the CDFs of the interference power and CDFs of SIR

from a Poisson point process with the non-singular path-loss models, g1(‖x‖) and

g2(‖x‖) which are given in Fig. 5.3 and discussed in Corollary 5. It is noted the
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non-singular path-loss models with two different path-loss exponents: δ1 = 4 and

δ2 = 8 ensures I1 ≥Lt I2 from Corollary 5. We consider additional non-singular

path-loss, g3(‖x‖) whose parameters are a = 1, b = 1, and δ = 8 in Fig. 5.3. Since

g3(‖x‖) ≤ g2(‖x‖) for ‖x‖ ≥ 0 as shown in Fig. 5.3, it is obvious I2 ≥Lt I3. Thus, we

observe SIR1 ≤st SIR2 ≤st SIR3 in the bottom of Fig 5.6. By Theorem 5.4.1, when

the fading channel between the desired receiver and its transmitter is Rayleigh dis-

tributed and the effective fading channel is exponentially distributed, we can observe

the usual stochastic ordering of SIR distributions if the interferences are LT ordered

as shown in Fig. 5.6.

5.8.3 Comparison of Different Point Processes

In the following, we compare the CDFs of interference power and CDFs of SIR

from Poisson point process and Poisson cluster process. Since the interferences from

Poisson point process and Poisson cluster process with the same intensity λ, the

same non-singular path-loss model g(‖x‖), and identical fading distribution hI yield

I
PCP

≤Lt IPPP
, which implies SIR

PCP
≥st SIRPPP

. This is observed in the bottom of

Fig. 5.7 as predicted from our theoretical result in Theorem 5.7.2.

In addition to SIR-based outage performance, it is observed that the ergodic

capacity in Poisson cluster processes is always greater than that in Poisson point

processes by comparing same rows in Table 5.1 and 5.2.

5.9 Applications

The results in this chapter are useful for the system design and evaluation. We

first remark on general qualitative insights that can be obtained from a stochastic

ordering approach in systems with spatially distributed nodes. Then we consider a

specific cognitive radio setting.
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Figure 5.7: CDFs of interference and SIR for Poisson point process and Poisson cluster

process with λ = 0.01

5.9.1 Insights for System Design

Using stochastic ordering, we can compare scenarios and gain qualitative insights

for system design. As an example, consider the effects of clustering. The clustering of

nodes “reduces” a point process in the LF order. From an interference point of view,

the clustering of interfering nodes causes less interference in the LT order between

interference distributions. This translates into an increased coverage probability and

improved capacity for the system. As another example, by comparing between bi-

nomial point process and Poisson point process in Section 5.7.1, it is noted that a

fixed number of interferers in a finite area cause more interference than Poisson ran-

dom number of interferers in the same finite area in the LT ordering sense. These

insights can help guide judicious deployment of nodes, which includes how to deploy

the additional nodes for less interference to other systems.
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The aggregate interference also depends on the fading distribution on the inter-

fering links. Fading distributions that are smaller in the LT ordering sense causes less

interference in the LT order, which implies better performance metrics such as cov-

erage probability and achievable rate regardless of actual interference distributions.

In the case of the non-singular path-loss model, less path-loss exponent guarantees

better performance measured in terms of coverage probability and ergodic capacity.

Thus, having the statistical knowledge of fading channels or estimating the path-loss

exponent, we can get qualitative insights for system design without actual system

evaluation.

5.9.2 Application to Cognitive Radios

We now discuss applications of stochastic ordering ideas to cognitive radio inter-

ference problems. We consider both overlay and underlay scenarios. We show that in

each scenario, a LF comparison of two underlying point processes can help us order

the interference in the LT sense.

In an underlay [106] cognitive network where a primary user and secondary users

can transmit simultaneously, as long as the interference to the primary receiver is

below a certain threshold. Suppose the secondary user’s transmitters are distributed

in an annular area encircling the primary user’s receiver, with an inner radius (guard

distance) of Rmin and an outer radius of Rmax as shown in Fig. 5.8 [36, 37]. The guard

distance Rmin ensures a minimum performance on the primary user. Such a guard

region can be ensured through multiple access protocols of secondary users [38]. The

interference from the secondary users beyond Rmax is assumed to be negligible due to

path loss. The interference at the primary receiver can be expressed as the aggregate
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Figure 5.8: Illustration of a cognitive network. Secondary users are distributed in the

shaded region around the primary user.

signal from the secondary users in the annual area surrounding the primary receiver.

IP =
∑

x∈ΦS

h
(x)
I g(x)1{x ∈ AI}, (5.36)

where |AI| = π(R2
min−R2

max) is the total area encompassing the secondary users, and

the point process for secondary users is denoted by ΦS. h
(x)
I is a positive random

variable capturing the (power) fading coefficient between a secondary user x and the

primary receiver. The path-loss model g(·) is same as (5.6). Therefore in the underlay

scenario the interference is from the point process of secondary users in the annular

region.

In an overlay [106] cognitive network where secondary users only can transmit

when a primary user does not transmit its signal, the secondary users should detect

the signal from the primary user to make a decision if it can transmit. However,

since a miss detection event in the detection of primary users exists in practice, the
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interference from the secondary users will affect the performance of the primary user.

When it is assumed that the miss detection occurs independently on the stationary

point process for secondary users, the yielding point process ΦS,thin is also stationary

with reduced intensity PmissλS [3] where Pmiss is the miss detection probability. In

this case, the interference at the primary user can be expressed as follows:

IP =
∑

x∈ΦS,thin

h
(x)
I g(x)1{x ∈ AI}. (5.37)

In the overlay scenario, Rmin will be zero since a close secondary transmitter to the

primary receiver can fail to detect the primary user’s signal. Therefore in the overlay

scenario the interference is due to the point process of secondary users in the entire

disk of the thinned point process.

In both (5.36) and (5.37), considering ũ(x) = u(x)1{x ∈ AI} as a non-negative

function with x, we can compare the interference in this restricted region using the LF

ordering of point processes for spatial distribution of secondary users. According to

the LF ordering of point processes, the interferences in the restricted region will be LT

ordered. In addition to spatial point process, fading channels affect the interference

in the restricted region. The LT ordered fading distributions will cause LT ordered

interferences. Consequently, the performance metrics such as coverage probability and

achievable rate of the primary user will be compared according to the LT ordering

of interferences. The comparisons will give some insights to design and evaluate

cognitive networks.
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Chapter 6

LAPLACE FUNCTIONAL ORDERING OF POINT PROCESSES IN

LARGE-SCALE WIRELESS NETWORKS

6.1 Literature Survey and Motivation

Point processes have been used to describe spatial distribution of nodes in wireless

networks, for example, randomly distributed nodes in wireless sensor networks or ad-

hoc networks [5, 44, 45] and the spatial distributions for base stations and mobile

users in cellular networks [11, 13, 107]. In the case of cognitive radio networks,

locations of primary and secondary users have been modeled as point processes [36,

37, 38]. The point process with random translations has been used for modeling of

mobile networks in [108]. Stationary Poisson processes provide a tractable framework,

but suffer from notorious modeling issues in matching real network distributions.

Stochastic ordering of point processes provide an ideal framework for comparing two

deployment/usage scenarios even in cases where the performance metrics cannot be

computed in closed form. These partial orders capture intuitive notions like one point

process being “greater”, or “more variable”. Existing works on point process modeling

for wireless networks have paid little attention to how two intractable scenarios can

be nevertheless compared to aid in system optimization.

Recently a stochastic ordering theory has been used for performance comparison

in wireless networks which are modeled as point processes [96, 109, 110, 111]. Direc-

tionally convex (DCX) ordering of point processes and its integral shot noise fields

have been studied in [96]. In [109] usual stochastic ordering of carrier-to-interference

ratio has been established in cellular systems. Ordering results for coverage prob-
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ability and per user rate have been shown in multi-antenna heterogeneous cellular

networks [110]. In Chapter 5, Laplace functional (LF) ordering of point processes has

been introduced and used to study interference distributions in wireless networks.

Several examples of the LF ordering of specific point processes have been also intro-

duced in Chapter 5, including stationary Poisson, mixed Poisson, Poisson cluster, and

Binomial point processes.

In this chapter, we apply the LF ordering concept to several general classes of

point processes such as Cox, homogeneous independent cluster, perturbed lattice

processes, and mixed binomial point processes which have been used to describe

distributed nodes of wireless systems in the literature. We also investigate the preser-

vation properties of the LF ordering of point processes with respect to independent

operations such as marking, thinning, random translation, and superposition. We

prove the LF ordering of original point processes still holds after applying these op-

erations on the point processes. To the best of our knowledge, there is no study of

the LF ordering of general classes of point processes and their preservation properties

in the literature. Using these properties, we consider several effects of real systems

such as propagation effects over wireless channels, multiple access schemes, hetero-

geneous network scenarios, and mobile networks and compare performances without

having to obtain closed-form results for a wide range of performance metrics such as

a coverage probability, an achievable rate, and a resource allocation under these real

system effects. In addition to the performance comparison, the stochastic ordering

of point processes provides guidelines for system design such as network deployments

and user selection schemes. Comparing to [96], we also provide several advantages of

the LF order over the DCX order.
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6.2 Preliminaries

In this section, we introduce Laplace functional stochastic order between random

measures. The new stochastic ordering of point processes based on the well-known

Laplace functional has been defined in Chapter 5. It can be generalized to the stochas-

tic ordering of random measures.

Definition 6.2.1. Let Ψ1 and Ψ2 be two random measures such that

LΨ1(u) = E

[
e−

∫
Rd

u(x)Ψ1(dx)
]
≥ E

[
e−

∫
Rd

u(x)Ψ2(dx)
]

= LΨ2(u) (6.1)

where u(·) runs over the set U of all non-negative functions on R
d. Then Ψ1 is said

to be smaller than Ψ2 in the Laplace functional (LF) order (denoted by Ψ1 ≤Lf Ψ2).

In this chapter, we focus on the LF order of point processes unless otherwise

specified. As mentioned in (5.28) of Chapter 5, it is possible to think of LF ordering

of point processes as the LT ordering of their aggregate processes.

6.3 Ordering of General Class of Point Processes

The examples for LF orderings of some specific point processes have been provided

in Chapter 5. In this section, we introduce the LF ordering of general classes of point

processes.

6.3.1 Cox Processes

A generalization of the Poisson process is to allow for the intensity measure itself

being random. The resulting process is then Poisson conditional on the intensity mea-

sure. Such processes are called doubly stochastic Poisson processes or Cox processes.

Consider a random measure Ψ on R
d. Assume that for each realization Ψ = Λ, an

independent Poisson point process Φ of intensity measure Λ is given. The random
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measure Ψ is called the driving measure for a Cox process. The LF ordering of Cox

processes depends on their driving random measures.

Theorem 6.3.1. Let Φ1 and Φ2 be two Cox processes with driving random measures

Ψ1 and Ψ2 respectively. If Ψ1 ≤Lf Ψ2, then Φ1 ≤Lf Φ2.

Proof. The Laplace functional of the Cox process Φ with driving random measure Ψ

can be expressed as follows [3]:

LΦ(u) =

∫

M

LΛ(u)Ψ(dΛ) (6.2)

=

∫

M

exp

(
−
∫

Rd

[1 − exp(−u(x))]

)
Ψ(dΛ) (6.3)

= LΨ(1 − exp(−u(x))), (6.4)

where LΛ is the Laplace functional of the Poisson process of intensity measure Λ

and M is the set of measures. Equation (6.3) follows from the definition of Laplace

functional of Poisson point process in (2.8) and equation (6.4) is followed by the

definition of Laplace functional of random measure in (6.1). Then, the proof follows

from Definition 6.2.1.

The mixed Poisson process is a simple instance of a Cox process. It can be thought

of as a stationary Poisson point process with a randomized intensity parameter X .

In mixed Poisson processes, the random measure Ψ is the constant random variable

X . Therefore, if X1 ≤Lt X2, then Φ1 ≤Lf Φ2 from Theorem 6.3.1.

6.3.2 Homogeneous Independent Cluster Processes

A general cluster process is generated by taking a parent point process and daugh-

ter point processes, one per parent, and translating the daughter processes to the

position of their parent. The cluster process is then the union of all the daughter

points. Denote the parent point process by Φp = {x1, x2, . . . }, and let n ∈ N ∪ {∞}
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be the number of parent points. Further let {Φi}, i ∈ N, be a family of finite points

sets, the untranslated clusters or daughter processes. The cluster process is then the

union of the translated clusters:

Φ :=
n⋃

i=1

Φi + xi. (6.5)

If the parent process is a lattice, the process is called a lattice cluster process. Anal-

ogously, if the parent process is a Poisson point process, the resulting process is a

Poisson cluster process.

If the parent process is stationary and the daughter processes are independent

({Φi}i are independent each other and Φi, ∀i is independent of Φp) finite point sets

and have the same distribution, the procedure is called homogeneous independent

clustering. In this case, only the statistics of one cluster need to be specified, which

is usually done by referring to the representative cluster, denoted by Φ0. In this

class of point processes, the LF ordering depends on the parent process Φp and the

representative process Φ0 as follows:

Theorem 6.3.2. Let Φ1 and Φ2 be two homogeneous independent cluster processes

having the representative clusters Φ01 and Φ02 respectively. Also, let Φp1 and Φp2 be

the parent point processes of two homogeneous independent cluster processes Φ1 and

Φ2 respectively. If Φp1 ≤Lf Φp2 and Φ01 ≤Lf Φ02 , then Φ1 ≤Lf Φ2.

Proof. Let L
(x)
0 denote the Laplace functional of Φ0 + x, i.e., the Laplace functional

of the representative cluster translated by x:

L
(x)
0 (u) := EΦ0

[
∏

y∈Φ0+x

exp(−u(y))

]
= EΦ0

[
∏

y∈Φ0

exp(−u(y + x))

]
. (6.6)

The Laplace functional of the homogeneous independent cluster process Φ with parent

process Φp is

LΦ(u) = EΦp



∏

x∈Φp

L
(x)
0 (u)


 for all u ∈ U. (6.7)
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From Definition 6.2.1, if Φp1 ≤Lf Φp2 and Φ01 ≤Lf Φ02 , then Φ1 ≤Lf Φ2.

6.3.3 Perturbed Lattice Processes with Replicating Points

General lattices are defined as

L := {u ∈ Z
d : Gu}, (6.8)

where G ∈ R
d×d is a matrix with detG 6= 0, the so-called generator matrix. The

volume of each Voronoi cell is V = |detG| and the intensity of the lattice is λ = 1/V

[112]. The perturbed lattice can be considered as the lattice cluster process. In each

cluster, the daughter points are random in number X , independent of each other, and

identically distributed. Moreover, these points are distributed by some given spatial

distribution. Each cluster process is translated by the points of the lattice process,

Φ
(x)
d := {x + y : y ∈ Φd}. The resulting point process can be seen as replicating and

dispersing points from the original lattice:

Φ :=
⋃

x∈L
Φ

(x)
d . (6.9)

If the number of replicas X are Poisson random variables, the the resulting process is a

Poisson point process. If moreover the points are uniformly distributed in the Voronoi

cell of the original lattice, then the resulting point process is stationary Poisson point

process. Now, we can define the following LF ordering of point processes according

to the random variable, X .

Theorem 6.3.3. Let Φ1 and Φ2 be two perturbed lattice processes with replicating

points with non-negative integer valued random distribution X1 and X2 respectively

and with same mean E[X1] = E[X2] = 1. The point displacement is uniform in the

Voronoi cell of the original lattice. If X1 ≤Lt X2, then Φ1 ≤Lf Φ2.
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Proof. The Laplace functional of a perturbed lattice point z with replication points

and uniform nodes displacements can be expressed as follows:

LΦz
(u) = EX

[(
1

λ|V |

∫

V

exp(−u(x))λdx

)X
]

, (6.10)

where X is the random variable for the replication points and V is the Voronoi

region of z. Since 1/(λ|V |)
∫
V

exp(−u(x))λdx ≤ 1 and X1 ≤Lt X2, by denoting

t = 1/(λ|V |)
∫
V

exp(−u(x))λdx and from the fact that X1 ≤Lt X2 ⇐⇒ X1 ≤pgf X2

we have the following relation:

EX1

[
tX1
]
≥ EX2

[
tX2
]

. (6.11)

From (6.11) the following LF-ordering is obtained,

EX1

[(
1

λ|V |

∫

V

exp(−u(x))λdx

)X1
]
≥ EX2

[(
1

λ|V |

∫

V

exp(−u(x))λdx

)X2
]

.

(6.12)

Since the entire point process can be considered as the superpositions of independent

perturbed lattice point z ∈ L, Theorem 6.3.3 is proved from Lemma 6.4.4.

Based on Theorem 5.A.21 in [7], the smallest and biggest LT ordered random

variables can be defined as follows: Let Y be a random variable such that P{Y =

0} = 1−P{Y = 2} = 1/2 and let Z be a random variable degenerate at 1. Let X be

a non-negative random variable with mean 1. Then

Y ≤Lt X ≤Lt Z. (6.13)

From Theorem 6.3.3 and (6.13), the perturbed lattice processes with replicating points

with non-negative integer valued random distribution Y and Z, and with uniform

point displacement in the Voronoi cell of the original lattice will be the smallest and

biggest LF ordered point processes respectively among uniformly perturbed lattice

processes with the same average number of points. The smallest LF ordered perturbed
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lattice process looks like cluster process since some of Voronoi cells have 2 points but

other cells do not have any point. This observation is in line with our previous result

that clustering diminishes point processes in the LF order in Chapter 5. In the biggest

LF ordered perturbed lattice process, every Voronoi cell has the fixed number of point

which is 1. Therefore, it looks like the superposition of Binomial point processes which

have a fixed number of uniformly distributed points in a finite area and are bigger

LF ordered point process than Poisson point process in Chapter 5.

6.3.4 Mixed Binomial Point Processes

In binomial point processes, there area total of fixed N points uniformly dis-

tributed in a bounded set B ∈ R
d. The density of the process is given by λ = N/|B|

where |B| is the volume of B. If the number of points N is random, the point process

is called as a mixed binomial point process. As an example, with Poisson distributed

N , the point process is called as a finite Poisson point process. The intensity measure

of these point processes is Λ(B) = λ|B|. In these point processes, we can compare

the LF ordering of point processes as follows:

Theorem 6.3.4. Let Φ1 and Φ2 be two mixed binomial point process with non-negative

integer valued random distribution N1 and N2 respectively. If N1 ≤Lt N2, then Φ1 ≤Lf

Φ2.

Proof. Similarly as the proof for Theorem 6.3.3, the Laplace functional of a mixed

binomial point process with random number of points N can be expressed as follows:

LΦ(u) = EN

[(
1

λ|B|

∫

B

exp(−u(x))λdx

)N
]

, (6.14)

where B is the bounded set of the point process. Since 1/(λ|B|)
∫
B

exp(−u(x))λdx ≤

1 and N1 ≤Lt N2, by denoting t = 1/(λ|B|)
∫
B

exp(−u(x))λdx and from the fact that

98



N1 ≤Lt N2 ⇐⇒ N1 ≤pgf N2 we have the following relation:

EN1

[
tN1
]
≥ EN2

[
tN2
]

. (6.15)

From (6.15) the following LF-ordering is obtained,

EN1

[(
1

λ|B|

∫

B

exp(−u(x))λdx

)N1
]
≥ EN2

[(
1

λ|B|

∫

B

exp(−u(x))λdx

)N2
]

.

(6.16)

6.4 Preservation of Stochastic Ordering of Point Processes

In what follows, we will show that the LF ordering between two point processes is

preserved after applying independent operations on point processes such as marking,

thinning, random translation, and superposition of point processes.

6.4.1 Marking

Consider a d dimensional Euclidean space R
d, d ≥ 1, as the state space of the

point process. Consider a second space R
ℓ, called the space of marks. A marked

point process Φ̃ on R
d × R

ℓ (with points in R
d and marks in R

ℓ) is a locally finite,

random set of points on R
d, with some random vector in R

ℓ attached to each point.

A marked point process is said to be independently marked if, given the locations of

the points in Φ, the marks are mutually independent random vectors in R
ℓ, and if the

conditional distribution of the mark m of a point x ∈ Φ depends only on the location

of this point x it is attached to.

Lemma 6.4.1. Let Φ1 and Φ2 be two point processes in R
d. Also let Φ̃1 and Φ̃2 be

independently marked point processes with marks m with identical distribution in R
ℓ.

If Φ1 ≤Lf Φ2, then Φ̃1 ≤Lf Φ̃2.
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Proof. The Laplace functional of marked point process Φ̃ with a non-negative function

u : Rd × R
ℓ 7→ R

+ can be expressed as follows [113]:

LΦ̃(u) = EΦ

[
∏

x∈Φ

∫

Rℓ

exp(−u(m, x))F (dm|x)

]
(6.17)

= EΦ

[
∏

x∈Φ
exp

(
−
(
− log

∫

Rℓ

exp (−u(m, x))F (dm|x)

))]
(6.18)

= EΦ

[
∏

x∈Φ
exp (−ũ(x))

]
= EΦ

[
exp

(
−
∑

x∈Φ
ũ(x)

)]
. (6.19)

where ũ(x) = − log
∫
Rℓ exp (−u(m, x))F (dm|x). ũ(x) is a non-negative function of x

since 0 ≤
∫
Rℓ exp (−u(m, x))F (dm|x) ≤ 1, Then, the Laplace functional of marked

point process Φ̃ is followed by

LΦ̃(u) = LΦ(ũ). (6.20)

Therefore, from (6.20) and the definition of LF ordering in (6.1), if Φ1 ≤Lf Φ2, then

Φ̃1 ≤Lf Φ̃2.

6.4.2 Thinning

A thinning operation uses a rule to delete points of a basic process Φ, thus yielding

the thinned point process Φth, which can be considered as a subset of Φ. The simplest

thinning is p-thinning : each point of Φ has probability 1−p of suffering deletion, and

its deletion is independent of locations and possible deletions of any other points of Φ.

A natural generalization allows the retention probability p to depend on the location

x of the point. A deterministic function p(x) is given on R
d, with 0 ≤ p(x) ≤ 1. A

point x in Φ is deleted with probability 1−p(x) and again its deletion is independent

of locations and possible deletions of any other points. The generalized operation

is called p(x)-thinning. In a further generalization the function p is itself random.

Formally, a random field π = {0 ≤ π(x) ≤ 1 : x ∈ R
d} is given which is independent
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of Φ. A realization ϕth of the thinned process Φth is constructed by taking a realization

ϕ of Φ and applying p(x)-thinning to ϕ, using for p(x) a sample {p(x) : x ∈ R
d} of

the random field π. Given π(x) = p(x) and given Φ = ϕ, the probability of x in Φ

also belonging to Φth is p(x).

Lemma 6.4.2. Let Φ1 and Φ2 be two point processes in R
d and Φth,1 and Φth,2

be independently thinning point processes both with identical independent thinning

operation regardless of p, p(x), and π(x)-thinning. If Φ1 ≤Lf Φ2, then Φth,1 ≤Lf Φth,2.

Proof. If LΦ is the Laplace functional of Φ then that of Φth is

LΦth
(u) = LΦ(up) for u ∈ U, (6.21)

where up = − log (exp(−u(x))p(x) + 1 − p(x)). From Definition 6.2.1, if Φ1 ≤Lf Φ2,

then Φth,1 ≤Lf Φth,2. The p-thinning is subset of p(x)-thinning. Analogous formula

for π(x)-thinning follows by averaging with respect to the distribution of the random

process π. Since the inequality holds under every realization π(x), their expectations

also hold the inequality.

Since the thinned point process Φth is a locally finite random set of points on

R
d, with some random variable in R

+ attached to each point, the independent thin-

ning can be considered as the independent marking operation on a point process as

discussed in the previous section.

6.4.3 Random Translation

In this section, the stochastic operation that we consider is random translations.

Each point x in the realization of some initial point process Φ is shifted independently

of its neighbors through a random vector t in R
d with independent elements. The

resulting process is Φrt := {x+ t : x ∈ Φ}. The random translation preserves the LF

ordering of point process as follows:
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Lemma 6.4.3. Let Φ1 and Φ2 be two point processes in R
d and Φrt,1 and Φrt,2 be

the translated point processes with the common distribution for the translation t. If

Φ1 ≤Lf Φ2, then Φrt,1 ≤Lf Φrt,2.

Proof. Let F (·) denote the common distribution for the translations tx. For u ∈ U,

the Laplace functional after random translation takes the form

LΦrt(u) = LΦ (ut) , (6.22)

where ut = − log
(∫

Rd exp(−u(· + t))F (dt)
)
. From Definition 6.2.1, if Φ1 ≤Lf Φ2, then

Φrt,1 ≤Lf Φrt,2.

Similarly as the independent thinning operation, since the random translated point

process Φrt is a locally finite random set of points on R
d, with some random vector

in R
d attached to each point, the random translation can be considered as the inde-

pendent marking operation on a point process.

6.4.4 Superposition

Let Φ1 and Φ2 be two point processes. Consider the union

Φ = Φ1 ∪ Φ2. (6.23)

Suppose that with probability one the point sets Φ1 and Φ2 do not overlap. The

set-theoretic union then coincides with the superposition operation of general point

process theory. The superposition preserves the LF ordering of point processes as

follows:

Lemma 6.4.4. Let Φ1,i and Φ2,i, i = 1, ...,M be mutually independent point processes

and Φ1 =
⋃M

i=1 Φ1,i and Φ2 =
⋃M

i=1 Φ2,i be the superposition of point processes. If

Φ1,i ≤Lf Φ2,i for i = 1, ...,M , then Φ1 ≤Lf Φ2.
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Proof. Let Φ1,i and Φ2,i, i = 1, ...,M be mutually independent point processes and

Φ1 =
⋃M

i=1 Φ1,i and Φ2 =
⋃M

i=1 Φ2,i be the superposition of point processes. The

Laplace function of superposition of mutually independent point processes can be

expressed as follows [105]:

LΦ(u) =
M∏

i=1

LΦi
(u). (6.24)

LΦ(u) converges if and only if the infinite sum of point processes is finite on bounded

area B ∈ R
d. Therefore, from (6.24) and the definition of LF ordering in (6.1), if

Φ1,i ≤Lf Φ2,i for i = 1, ...,M , then Φ1 ≤Lf Φ2.

6.5 Applications to Wireless Networks

In the following discussion, we will consider the applications of stochastic orders

to wireless network systems.

6.5.1 Cellular Networks

In this section, the comparisons of performance metrics will be derived from the

LF ordering of point processes for spatial deployments of base stations (BSs) and

mobile stations (MSs).

6.5.1.1 System Model

We consider the downlink cellular network model consists of BSs arranged accord-

ing to some point process Φ
B

in the Euclidean plane. For the deployment of BSs, a

deterministic network such as lattice points or stochastic network (e.g. Poisson point

process) may be considered. Consider an independent collection of MSs, located ac-

cording to some point process Φ
M

which is independent of Φ
B
. For a traditional

cellular network, assume that user associates with the closest BS, which would suffer

the least path loss during wireless transmission. It is also assumed that the associ-
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Figure 6.1: Illustration of a cellular network. The red triangles represent base stations

which form a stationary Poisson point process Φ
B

with intensity λB = 0.1 and the

blue dots represent users which also form a stationary Poisson point process Φ
M

with

intensity λM = 1.0.

ation between a BS and a MS is carried out in a large time scale compared to the

coherence time of the channel. Moreover, every cell is assumed to include only one

BS and a few users. Then the cell boundary, which can be obtained by connecting

the perpendicular bisector lines between each pair of BSs, splits the plane R
2 into

irregular polygons that correspond to different cell coverage areas. Such stochastic

and irregular topology forms a Voronoi tessellation as shown in Fig. 6.1. Under the

assumption of Voronoi tessellation cellular networks, our goal is to compare perfor-

mance metrics such as average resource allocation and total cell coverage probability

through the stochastic ordering tools. The spatial coverage of cellular networks is

also compared based on the LF order of point processes for BSs modeling.
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In order for the total cell coverage probability to be compared, the signal to

interference plus noise ratio (SINR) of a user at x ∈ Φ
M

is of interest to quantify.

The effective channel power between a user x and its associated typical BS B0 is h
(x)
S ,

which is a non-negative RV. The SINR with additive noise power σ2 is given by

SINR(x) =
h
(x)
S g(‖x‖)

σ2 + I(x)
, (6.25)

where g(·) : R+ → R
+ is the path-loss function which is a continuous, positive, non-

increasing function of ‖x‖ and assumed to depend only on the Euclidean distance

‖x‖ from the user x to the typical BS B0. The following is an example of a path-loss

model [54, 5, 43, 4]:

g(‖x‖) = (a + b‖x‖δ)−1 (6.26)

for some b > 0, δ > d and a ∈ {0, 1}, where δ is called the path-loss exponent, a

determines whether the path-loss model belongs to a singular path-loss model (a = 0)

or a non-singular path-loss model (a = 1), and b is a compensation parameter to keep

the total receive power normalized regardless the values of path-loss exponent. In

(6.25), I(x) is the accumulated interference power at a user x given by

I(x) =
∑

y∈Φ
B
\{B0}

h
(y)
I g(‖y − x‖) (6.27)

where Φ
B

denotes the set of all BSs which is modeled as a point process on R
2 and

h
(y)
I is a positive random variable capturing the (power) fading coefficient between

a user x and the yth interfering BS. Moreover, h
(y)
I are i.i.d. random variables and

independent of the point process.

6.5.1.2 Ordering of Performance Metrics in a Cellular Network

In the following discussion, we will introduce performance metrics involving the

stochastic ordering of aggregate process.
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Figure 6.2: Typical cell

Number of Served Users: Firstly, we study the number of served users in a cell.

Let Φ
M1

and Φ
M2

be the point processes for user distributions respectively and Φ
B

be the point process for BSs distribution. From the relationship between the LF

ordering of point processes and the LT ordering of random variables in (5.28) with

u(x) = 1{x ∈ C0} which is the indicator function, 1{x ∈ C0} = 1 if x ∈ C0 and 1{x ∈

C0} = 0 if x /∈ C0, we can define the number of served users N =
∑

x∈Φ
M
1{x ∈ C0} in

the typical Voronoi cell C0 as shown in Fig. 6.2, and establish the stochastic ordering

of number of served users as follows:

Φ
M1

≤Lf Φ
M2

=⇒ N1 ≤Lt N2. (6.28)

In the system model, it is assumed that the association between a BS and a MS

is carried out in a large time scale compared to the change of channel. Under this

assumption, the optimal resource allocation of the BS’s system bandwidth is equal
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allocation [107], i.e,.

Y =
1

N
, (6.29)

where Y is the equal fraction of the associated BS’s system bandwidth for all users

j = 1, 2, ..., N and N is the number of served users by the BS. This is the Round-Robin

type scheduling scheme with the most fairness. Since 1/z is a c.m. function with z,

N1 ≤Lt N2 in (6.28) imply that the optimal resource allocations satisfy E[Y1] ≥ E[Y2].

This means average of resource fraction in Φ
M1

is always greater than that in Φ
M2

. If

the point processes for spatial distribution of MSs are stationary, the average numbers

of served users are equal in both point processes, Φ
M1

and Φ
M2

from Campbell’s

theorem. However, it still remains E[Y1] ≥ E[Y2].

Total Cell Coverage Probability: Given the realization of the point processes

for BSs and MSs, Φ
B

and Φ
M

, the coverage probability of a mobile user x ∈ Φ
M

can

be defined as

P
C
(x) := P (SINR(x) ≥ T ) , (6.30)

and can be thought of equivalently as the probability that a mobile user x can achieve

a SINR better than T . Since it is assumed that users’ motions are relatively slow,

the coverage probability is averaged across the fading effects, hS and hI as follows:

P
C
(x) = EhS,hI

[
P

(
h
(x)
S g(‖x‖)

σ2 + I(x)
≥ T

)∣∣∣hS, hI

]
(6.31)

= EhS,hI

[
P

(
hS ≥ T (σ2 + I(x))

g(‖x‖)

) ∣∣∣hS, hI
]

(6.32)

= EhI

[
F̄hS

(
T (σ2 + I(x))

g(‖x‖)

)∣∣∣hI
]

(6.33)

In (6.32), we drop the index x since h
(x)
S is independent of x. In (6.33), F̄hS

(x) :=

1 − FhS
(x) is a CCDF of hS.

In multicast/broadcast scenario, multiple users receive the common signal from

their associated BS. Therefore, the probability that SINRs of all served users are
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greater than the minimum requirement T is an important measurement to ensure the

signal reception quality of every user. We call the probability as total cell coverage

probability and define as follows:

P
C

= P (SINR(x1) ≥ T, . . . , SINR(xN) ≥ T ) , (x1, . . . , xN ∈ C0 ∩ Φ
M

) ,(6.34)

=
∏

x∈C0∩ΦM

P
C
(x). (6.35)

Equation (6.35) is followed from the assumption that users’ activities are independent

each other. The number of served user N is random according to the realization of Φ
B

and Φ
M

. Therefore, the total cell coverage probability is averaged across the spatial

distribution for Φ
B

and Φ
M

. When h
(x)
S is exponential distributed, i.e., Rayleigh

fading, (6.35) can be expressed as

P
C

= EΦ
M
,Φ

B




∏

x∈C0∩ΦM

P
C
(x)
∣∣∣ΦM

,Φ
B


 (6.36)

= EΦ
M
,Φ

B




∏

x∈C0∩ΦM

EhI

[
F̄hS

(
T (σ2 + I(x))

g(‖x‖)

) ∣∣∣hI
] ∣∣∣ΦM

,Φ
B


 (6.37)

= EΦ
M
,Φ

B
,hI




∏

x∈C0∩ΦM

exp

(
−T (σ2 + I(x))

g(‖x‖)

) ∣∣∣ΦM
,Φ

B
, hI


 (6.38)

= EΦ
M
,Φ

B
,hI



exp



−
∑

x∈Φ
M

T (σ2 + I(x))

g(‖x‖)
1{x ∈ C0}




∣∣∣ΦM

,Φ
B
, hI



 , (6.39)

Equation (6.37) follows from substituting (6.33) into (6.36). Equation (6.38) follows

from the assumption that hI is independent of the point processes Φ
B

and Φ
M

. Con-

ditioned on Φ
B

and hI, u(x) = (T (σ2+I(x))/g(‖x‖))1{x ∈ C0} is a non-negative func-

tion with x. Therefore, if Φ
M1

≤Lf Φ
M2

, then EΦ
M1

[exp(−∑x∈Φ
M1

u(x))|Φ
M1
,Φ

B
, hI] ≥

EΦ
M2

[exp(−∑x∈Φ
M2

u(x))|Φ
M2
,Φ

B
, hI] by the property of LT ordering in (2.5) and

the relationship between point processes and their aggregate processes in (5.28) since

exp(−z) is a c.m. function with z. By averaging over identical distributions of Φ
B
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and hI in both cases, we have P
C1

≥ P
C2

. This implies the probability that the SINR

of all served users are greater than the minimum threshold T with Φ
M1

is always

greater than the probability with Φ
M2

.

Network Spatial Coverage: The network spatial coverage is an important per-

formance metric to design BSs deployment in cellular networks. We assume that BSs

are distributed by a point process Φ
B

and each BS has a fixed radius of coverage R.

Denote the random number of BSs covering any arbitrary location y in R
d by

S(y) =
∑

x∈Φ
B

1{y ∈ Bx(R)}, (6.40)

where Bx(R) is a d-dimensional ball of radius R centered at the point x. Denote the

probability generating function of the random number of BSs covering location y by

G(t) = E[tS(y)]. When 0 ≤ t ≤ 1, tz is a c.m. function with z. Note that 1 − G(0)

represents the probability whether the location y is covered by at least one BS from

the definition of the probability generation function. Thus, if Φ
B1

≤Lf Φ
B2

, then

G1(t) ≥ G2(t) and consequently 1 − G1(0) ≤ 1 − G2(0). This means the probability

that any arbitrary point y in R
d is covered by at least one BS with the cell deployment

by Φ
B1

is always less than the probability with Φ
B2

. Due to random effects of real

systems such as shadowing, different transmission power per each BS, and obstacles,

the range of coverage R can be a non-negative random variable. Since the random

range of coverage R can be considered as independent marking m = R in Section

6.4.1, the ordering of spatial coverage probabilities still holds from Lemma 6.4.1

6.5.2 Cognitive Networks

In the following discussion, we will consider the applications of stochastic orders

to cognitive network systems. In a cognitive network, there is an increasing interest
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in developing efficient methods for spectrum management and sharing. This moti-

vates to exploit spectrum opportunities in space, time, frequency while protecting

users of the primary network from excessive interference due to spectrum access from

secondary networks. Secondary users (SUs) can access the spectrum owned by the

primary users (PUs) using spectrum underlay or spectrum overlay. In an underlay

cognitive network where a PU and SUs can transmit simultaneously, as long as a

certain interference constraint is satisfied. In an overlay cognitive network where SUs

only can transmit when a PU does not transmit its signal, the SUs should detect the

signal from the PU to make a decision if it can transmit. Spectrum underlay and

overlay techniques are the basis for designing emerging cognitive radio networks.

The application of stochastic ordering to interference analysis from SUs has been

discussed in Chapter 5. We now discuss another application of stochastic ordering

ideas to a cognitive radio setup.

6.5.2.1 System Model

Let us consider a cognitive radio network which contains a PU and many SUs. The

PU is located at the origin. The L SUs are uniformly randomly located in a certain

area B ⊂ R
d [114, 115, 116]. The SUs can be modeled as a binomial point process

Φ
SU

which is introduced in Section 6.3.4. The geometry of the cognitive radio network

is illustrated in Fig. 6.3. It is also assumed that there is a BS for SUs to manage the

SUs’ transmission even though it is not shown in Fig. 6.3. The BS selects only N

random number of users among L total users called as active secondary users through

user selection schemes and only active SUs are allowed to transmit their signals to

the BS. The main idea of user selection schemes is to make the thinned point process

Φ
SU,th

for active SUs by applying independent random thinning operations to Φ
SU

.

The resulting thinned point process Φ
SU,th

which has uniformly distributed random
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Figure 6.3: Illustration of a cognitive network.

number of points N can be considered as the mixed binomial point processes in

Section 6.3.4. In the resulting point processes for the active SUs, the active SUs

always cause the same average interference power to the PU and provide the same

average sum rates of the active SUs. However, the instantaneous interferences from

the active SUs are LT ordered and cause the ordered performance metrics such as

a coverage probability and an achievable rate of the PU according to independent

thinning operations for selecting active SUs. These will be discussed in detail later.

Average Interference Power Constraint: We assume an underlay cognitive net-

work with a average interference power constraint ΓI. Therefore, the average of ag-

gregate interference should be less than the interference constraint E[I
SU

] ≤ ΓI. The

instantaneous aggregate interference from the active SUs to the PU, I
SU

is random

and can be expressed as:

I
SU

=
∑

x∈Φ
SU,th

h
(x)
I g(‖x‖), (6.41)
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where Φ
SU,th

is a point process for active SUs and h
(x)
I is a positive random variable

capturing the (power) fading coefficient between a active SU x and the PU. From

Campbell’s theorem, the average of aggregate interference from the active SUs, E[I
SU

]

is the same as long as the average number of the active SUs is equal to µ = E[N ]

regardless of random distribution for N . The proof is as follows:

Proof. From Campbell’s theorem in (2.7) and the intensity measure of the mixed

binomial point processes Λ(B) = λ|B|, the average of interference can be expresses

as follows:

E[I
SU

] = EΦ
SU,th

,hI



∑

x∈Φ
SU,th

h
(x)
I g(‖x‖)

∣∣∣ΦSU,th
, hI


 (6.42)

= EhI


λ
∫

B

h
(x)
I g(‖x‖)dx

︸ ︷︷ ︸
A

∣∣∣hI


 . (6.43)

Conditioned on hI, A is always equal. Therefore, the expectation of (6.43) with

respect to hI is still equal. The proof is completed.

Therefore, we need to select µ in order to satisfy the average interference power

constraint E[I
SU

] ≤ ΓI.

Average Sum Rate: On the other hand, if there is no interference between active

SUs by adopting code-division multiple access (CDMA) like access scheme, then the

sum of achievable rates of active SUs, C
SU

is also random and can be expressed as

C
SU

(z) =
∑

x∈Φ
SU,th

log

(
1 +

h
(x)
S g(‖x− z‖)

σ2 + I
P
(x)

)
, (6.44)

where Φ
SU,th

is a point process for active SUs, h
(x)
S is a effective fading channel between

a active SU x and the BS for SUs located at z, I
P
(x) = h

(x)
I g(‖x‖) is a interference

power from the PU to the SU x, and σ2 is a additive noise power. From Campbell’s
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theorem, the average of sum of achievable rates of active SUs, E[C
SU

(z)] is the same

regardless of the point processes for the active SUs as long as the average number of

the active SUs is equal to µ = E[N ]. The proof is the same as the previous proof for

equal average interference power with a different function.

6.5.2.2 User Selection Scheme for Secondary Users

Under previous observation on average interference constraint and average sum

rate in the previous sections, we can apply stochastic ordering tool to design user

selection schemes based on Theorem 6.3.4 in Section 6.3.4. Given µ = E[N ] which

satisfies the interference constraint E[I
SU

] ≤ ΓI, the smaller LT ordered random num-

ber of active SUs N provides the smaller LF ordered point process Φ
SU,th

, that is

N1 ≤Lt N2 ⇒ Φ
SU,th1

≤Lf Φ
SU,th2

from Theorem 6.3.4. Consequently, if N1 ≤Lt N2,

then the resulting point processes, Φ
SU,th1

≤Lf Φ
SU,th2

cause LT ordered aggregate in-

terferences to the PU, I
SU1

≤Lt ISU2
. The LT ordered aggregate interferences from the

active SUs to the PU yield ordered performance metrics for the PU such as a coverage

probability and an achievable rate as mentioned in Chapter 5. On the other hand,

the average sum of achievable rates of the active SUs and the average of interference

power remain the same, E[C
SU1

] = E[C
SU2

] and E[I
SU1

] = E[I
SU2

] as we discussed

above.

We give the examples of user selection scheme using stochastic ordering approach.

If the active SUs are chosen among L total SUs with a probability p independently, the

number of active SUs is a binomial random variable, N
B
. The number of active SUs

can follow discrete distributions other than binomial if different modes of operation

are adopted. For another example, if the SUs before a predetermined number r with

a probability p are selected, then the number of selected active SUs follows a negative

binomial distribution with parameter r and p denoted as N
NB

. Since N
NB

≤Lt NB
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[117], Φ
NB

≤Lf Φ
B

from Theorem 6.3.4. Therefore, the aggregate interferences from

the active SUs are LT ordered I
NB

≤Lt IB, while E[C
NB

] = E[C
B
] and E[I

NB
] = E[I

B
] ≤

ΓI. For these operations, the BS for SUs only needs to know the number of total SUs

L and the average number of active SUs µ.

6.5.3 Discussion and Trade-offs

Coverage vs. Interference: As shown in the previous sections, the stochastic

ordering of point processes can be applied to performance comparison and system

design. Since the performance metrics depend on the stochastic ordering of point

processes for spatial distribution of nodes, we can study spatial character of networks

and investigate the spatial distributions of transmitting nodes in order to evaluate

system performances using stochastic ordering approach. Then our investigations can

be applied to the comparison of performance metrics such as number of served users

and total cell coverage probability without having closed form expressions for the

metrics. With the performance metrics such as network spatial coverage and network

interference, our study can provide the design guideline for network deployment to

increase spatial coverage of networks or provide less interference from networks. As

an example, consider the effects of clustering. The clustering of nodes “reduces” a

point process in the LF order. From an interference point of view, the clustering

of interfering nodes causes less interference in the LT order between interference

distributions. This translates into an increased coverage probability and improved

capacity for the system as mentioned in Chapter 5. However, the clustering of nodes

also causes less spatial coverage. Therefore, the proper point process for network

deployment should be studied for balancing between interference and spatial coverage.

Burstiness vs. Fairness: The stochastic ordering approach can also be applied

to design user selection schemes for SUs in cognitive networks which satisfy the con-
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straints of the system. Under the certain system setup as described in 6.5.2, the

smaller LT ordered active SUs N causes less interference to the PU, while the av-

erage interference E[I
SU

] and average sum rate E[C
SU

] are the same. From Theorem

5.A.21 in [7] and the discussion in Section 6.3.3, the smallest and biggest LT ordered

N can be obtained as follows:

Nmin ≤Lt N ≤Lt Nmin, (6.45)

where N is any non-negative integer random variable, Nmin is P{N = 0} = 1−P{N =

2µ} = 1/2, and Nmax is the fixed N = µ. Even though the smallest LT ordered

random number N causes the smallest LT ordered interference to the PU, it causes

more bursty traffic from the active SUs and the more instantaneous interference when

N = 2µ. Otherwise, the biggest LT ordered N provides balanced traffic from the

active SUs since the fixed number of random set of users µ is always selected. However,

it causes the bigger LT ordered interference to the PU than any other distributions

for active random SUs N . Therefore, the proper distribution for active random SUs

should studied for balancing burstiness of interference and fairness of active SUs’

traffic.

Random Effects: The system performances do not only depend on spatial deploy-

ment of a network, but also random effects of real systems such as random moving

of mobile stations, coexisting of heterogeneous networks, shadowing, etc. From the

preservation properties of LF ordering of point processes, it is noted that the random

effects do not change the LF ordering of original point process when independent

identical random effects are considered in two different spatial network deployment

scenarios. As an example, consider two mobile networks where every node is inde-

pendently identically randomly moving. If the initial point processes of two mobile

networks are LF ordered, then interferences raised from the mobile networks are LT
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Figure 6.4: Average optimal resource allocation

ordered. Consequently the ordered interferences imply ordered performance metric

results such as a coverage probability and an achievable rates. The ordered perfor-

mance metric results are not changed regardless of the different mobility models such

as constrained i.i.d. mobility, random walk, and Brownian motion as long as each

node moves independently and identically. Since these random effects do not affect

the performance comparison results and design guidelines using stochastic ordering

approach, we need to focus the stochastic ordering of spatial deployments of nodes.

It will be the most important factor for the design of wireless network systems.

6.6 Numerical Results

In this section, we verify our theoretical results through Monte Carlo simulations.
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Figure 6.5: Total cell coverage probability

6.6.1 Cellular Networks

In Fig. 6.4 the average of resource fractions which are occupied by each user

are shown. The stationary Poisson point process, Φ
B

with λB is assumed for BSs

and the stationary Poisson point process Φ
PPP

, Poisson cluster process Φ
PCP

and

mixed Poisson process Φ
MPP

with same intensity λM are assumed for spatial user

distributions. Since it has been proved that Φ
PCP

,Φ
MPP

≤Lf Φ
PPP

from Chapter 5,

we can observe E[Y
PCP

],E[Y
MPP

] ≥ E[Y
PPP

] as predicted from our theoretical result

in Section 6.5.1. Even though the average number of served users are the same, the

average of resource fractions of Φ
PCP

and Φ
MPP

are larger than that of Φ
PPP

.

We show in Fig. 6.5 the total cell coverage probabilities. It is assumed that

stationary Poisson point process Φ
B

for BSs and Poisson point process Φ
PPP

and

mixed Poisson process Φ
MPP

with same intensity λM for user distributions. From

Φ
MPP

≤Lf Φ
PPP

, it is obvious P
CMPP

≥ P
CPPP

.

117



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDF of SINR (SNR=20dB)

 

 

Binomial
Poisson
Negative Binomial

Figure 6.6: Coverage probabilities of primary user

6.6.2 Cognitive Networks

In Fig. 6.6, the CDFs of SINR of the primary user are shown according to LF

ordered point processes for spatial distributions of SUs. The LT ordered number of

SUs N
NB

≤Lt NP
≤Lt NB

ensures Φ
NB

≤Lf Φ
P
≤Lf Φ

B
from Theorem 6.3.4. Since the

aggregate interferences from LF ordered point processes for spatial distributions of

active SUs are LT ordered [111, Theorem 6], we observe SIR
NB

≥st SIRP
≥st SIRB

consequently. However, the average of the sum of achievable rates of active SUs in

(6.44) are the same regardless of LF ordered point processes as shown in Fig. 6.7.

6.7 Comparison Between LF and DCX Ordering

In this dissertation, we advocate the LF ordering of point processes over the DCX

ordering in [96, 118]. In order to define the DCX order of point processes, it is needed

to define directionally convex functions and the DCX ordering of random vectors [7]:
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Let ‘≤’ in R
n denote the componentwise order, i.e. (x1, ..., xn) ≤ (y1, ...yn) if xi ≤ yi

for every i. For x, y, z ∈ R
d we use the notation [x, y] ≤ z as a shorthand for x ≤ z

and y ≤ z. Also, the notation z ≤ [x, y] stands for z ≤ x and z ≤ y. A function

l : Rd → R is said to be directionally convex if for any xi ∈ R
d, i = 1, 2, 3, 4, such that

x1 ≤ [x2, x3] ≤ x4 and x1 + x4 = x2 + x3, one has

l(x2) + l(x3) ≤ l(x1) + l(x4).

With the directionally convex functions, we can define the DCX ordering of random

vectors as follows: Let X and Y be two random vectors. Suppose that X and Y are

such that

E[l(X)] ≤ E[l(Y )],

for all functions l : Rd → R that are directionally convex, provided the expectations

exist. Then X is said to be smaller than Y in the directionally convex (DCX) order

(denoted by X ≤dcx Y ). From the definition of directionally convex functions and
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the DCX order of random vectors, the definition of DCX ordering of point processes

is as follows [96]:

Definition 6.7.1. Let Φ1 and Φ2 be two random measures in R
d such that

(Φ1(B1), ...,Φ1(Bn)) ≤dcx (Φ2(B1), ...,Φ2(Bn))

for any bounded subsets B1, ..., Bn in R
d. Then we say that Φ1 ≤dcx Φ2.

The LF order has several advantages compared to the DCX order as follows: (i)

The LF ordering of point processes is defined based on the well-known Laplace func-

tional. Thus, it is easier to compare point processes since the expressions for Laplace

functional of several point process are known. (ii) The condition for DCX order is

stricter than that of LF order. Therefore, the LF order can be applied to broader class

of point processes. For example, in case of the perturbed lattice processes which will

be discussed later in Section 6.3.3, the LT ordered random number of points implies

the LF ordered point processes with uniformly located points. On the other hand,

the convex (CX) ordered random number of points implies the DCX ordered point

processes with the same assumption. From Theorem 4.A.34 and Theorem 5.A.16 in

[7], X ≤cx Y =⇒ Y ≤Lt X . Therefore, the smaller set of random variables can be

applied to the DCX order of point processes than the LF order. (iii) The performance

metrics such as a coverage probability, an achievable rate, and a spatial coverage in

[96, 118] can also be compared through LF ordering of point processes. (iv) In limited

scenarios, the Laplace functional of point process can provide closed form expressions

for some of performance metrics such as a coverage probability and an achievable rate.

Otherwise, at least it provides simple expressions (not closed-form) for the metrics

which can be quantified through simple numerical evaluation [8, 11, 13, 107]. (v)

In the case that the Laplace functional of point process is required, but there is no
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expression for that, the Laplace functional of point process can be estimated called

as the empirical Laplace functional and the estimator is easy to formulate [42].

Unlike DCX order, however, in case of LF order high order properties of point pro-

cess such as k-th (k ≥ 2) order moment measures cannot be compared. These prop-

erties have been used to compare Ripley’s K and pair correlation functions of point

processes which are tools for measuring of clustering property of point processes [96, 6]

and prove that a certain class of point processes (called as sub-Poisson point processes,

Φ ≤dcx Φ
PPP

) has a finite critical radius rc := inf{r > 0 : P (C(Φ, r) percolates) > 0}

where C(Φ, r) = ∪x∈ΦBx(r) is the Boolean model generated by Φ, Bx(r) is a ball

centered at x ∈ R
d of radius r, and ‘C(Φ, r) percolates ’ means there exists an un-

bounded, connected subset of C(Φ, r) [118]. Even though the ‘clustering’ property

can be compared by the ordered Ripley’s K and pair correlation functions which are

inherent from the DCX ordered point processes, the property can be also captured

by the LF ordering between a Poisson point process and a Poisson cluster process as

mentioned in Chapter 5. For the percolation, the DCX ordering does not imply the

comparison of percolation properties between two different point processes. It is a

tool to prove the specific property (having a finite critical radius rc) of the class of

point processes.
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Chapter 7

CONCLUSIONS

In Chapter 3 of this dissertation, we considered a symmetric α-stable noise model

for MIMO fading channels, and discussed different receivers. In symmetric α-stable

noise environments, the diversity order depends on the noise parameter, α, and noise

correlation model. Under Model I, we derived the diversity order for the GAR and

MDR. The maximum possible diversity order of GAR is shown to be a benchmark for

any receiver, given by αNt/2. The MDR, though simple, is vulnerable to impulsive

noise: the diversity order is always α/2 regardless the number of antennas. Under

Model II we have seen that the diversity order for GAR will be larger than that of

Model I. In contrast, for MDR the diversity order is α/2 also for Model II. Since

the GAR is impractical to implement, we are motivated to use the ML receiver.

However, the ML receiver is computationally complex and requires knowledge of the

noise parameters. Thus, we also develop an asymptotically optimal receiver, which

performs near optimally at high SNRs and does not require the noise parameters.

Since the conventional MDR has poor performance, the usage of the MDR should be

avoided in symmetric α-stable noise environments.

In Chapter 4, we assumed two Poisson distributed networks coexist. In this en-

vironment, we showed the signal and interference converged to the class of α-stable

distributions. From these results we defined the α-stable random signal detection

problem in α-stable random noise. Since the ML detector is computationally com-

plex, we have also developed the mixed-FLOM detector, which performs within 0.5

dB to the ML detector when the number of sample for detection is not small. We

verified our results through Monte Carlo simulations.
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In Chapter 5 of this dissertation, we used stochastic orders to compare perfor-

mance in wireless networks. We showed that when interference is LT ordered, it is

possible to order the SIR in the usual stochastic ordering sense when the effective

channel has a c.m. CCDF. Similar results hold when the metric is the bandwidth-

normalized capacity. This lead to the study of the conditions for LT ordering of

interference. Three factors affecting interference are the fading channel from the

interfering nodes to the receiver, the path-loss model and the distribution of the in-

terfering node location. We derived conditions on these factors so that LT ordering

between interferences holds. In addition, we defined Laplace functional ordering of

point processes and derived its inherent stochastic ordering of interferences when the

fading channel and the path-loss model are assumed to be same for both point pro-

cesses. The power of this approach is that such comparisons can be made even in

cases where a closed form expression for the interference is not analytically tractable.

We verified our results through Monte Carlo simulations.

Finally, in Chapter 6, we studied stochastic order of point process. The stochastic

ordering of broad classes of point processes are investigated. We showed that the

preservation of stochastic ordering of point process with respect to the several op-

erations, such as independent marking, thinning, superposition, clustering, random

translation and so on. We introduced the applications of stochastic ordering of point

processes to wireless networks such as cellular networks and cognitive networks. It

provided the guideline for design of user selection schemes and transmission strat-

egy for wireless networks. The power of this approach is that network performance

comparisons can be made even in cases where a closed form expression for the per-

formances is not analytically tractable. We verified our results through Monte Carlo

simulations.
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