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ABSTRACT  

   

In engineering, buckling is mechanical instability of walls or columns under 

compression and usually is a problem that engineers try to prevent. In everyday life 

buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten 

apple they are a commonly observed phenomenon. It seems that buckles with 

macroscopic wavelengths are not technologically useful; over the past decade or so, 

however, thanks to the widespread availability of soft polymers and silicone materials 

micro-buckles with wavelengths in submicron to micron scale have received increasing 

attention because it is useful for generating well-ordered periodic microstructures 

spontaneously without conventional lithographic techniques. 

This thesis investigates the buckling behavior of thin stiff films on soft polymeric 

substrates and explores a variety of applications, ranging from optical gratings, optical 

masks, energy harvest to energy storage.  

A laser scanning technique is proposed to detect micro-strain induced by 

thermomechanical loads and a periodic buckling microstructure is employed as a 

diffraction grating with broad wavelength tunability, which is spontaneously generated 

from a metallic thin film on polymer substrates. 

A mechanical strategy is also presented for quantitatively buckling nanoribbons of 

piezoelectric material on polymer substrates involving the combined use of 

lithographically patterning surface adhesion sites and transfer printing technique. The 

precisely engineered buckling configurations provide a route to energy harvesters with 

extremely high levels of stretchability. 
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This stiff-thin-film/polymer hybrid structure is further employed into 

electrochemical field to circumvent the electrochemically-driven stress issue in silicon-

anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode 

on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to 

avoid the pulverization of silicon anode.   

Spontaneously generated submicron buckles of film/polymer are also used as an 

optical mask to produce submicron periodic patterns with large filling ratio in contrast to 

generating only ~100 nm edge submicron patterns in conventional near-field soft contact 

photolithography. 

This thesis aims to deepen understanding of buckling behavior of thin films on 

compliant substrates and, in turn, to harness the fundamental properties of such instability 

for diverse applications. 



  iii 

  

   

To my Mom  

and  

Grandma. 



  iv 

ACKNOWLEDGMENTS  

   

I would like to express my deepest gratitude to my supervisor, Prof. Hanqing 

Jiang, for his mentorship, guidance and support during the four and a half years. His 

contagious enthusiasm and perseverance for research have been the constant driving 

force for my progress. He was always available in the office for discussion and promptly 

answered your emails despite his busy schedule. I feel very fortunate to have been his 

student, and therefore to have had such an enjoyable and fulfilling graduate school 

experience. 

I would also like to deeply thank my co-supervisor, Prof. Hongyu Yu, who was 

abundantly helpful and offered invaluable assistance and guidance to my experimental 

projects. Without his encouragement and support, I would never step into the 

experimental fields where I have explored completely different potentials of myself.  

I would also like to thank Prof. Hongbin Yu and Dr. Benny Poon for their 

guidance and support for Intel SRS project during the two and a half years. I have also 

vastly benefitted from discussions with them in our monthly meetings. 

I would like to thank Prof. Jagannathan Rajagopalan for making time to serve on 

my committee and for enhancing my knowledge by his questions and comments. 

I would also like to thank my colleagues in Prof. Jiang’s group: Dr. Cunjiang Yu, 

Dr. Yonghao An, Dr. Jiaping Zhang, Dr. Huiyang Fei, Dr. Qiang Liu, Dr. Zheng Duan, 

Yuping Pan, Dr. Yong Wang, Dr. Rongjun Zhang, Prithwish Chatterjee, Joseph Shaffer, 

Amit Abraham, Swathisri Kondagari, Zeming Song, Cheng Lv, Xu Wang, Yiling Fan, 

Tianwei Sun, Deepakshyam Krishnaraju. 



  v 

I would also like to thank my other collaborators: Hanshuang Liang, Rui Tang, 

Hai Huang, Dr. Xiaotun Qiu, Dr. Oiler Jonathon, Bryce Carande, Mengbing Liang, 

George Chen, Ruirui Han. 

I would also like to convey thanks to China Scholarship Council for providing 

financial support. 

Most importantly, I would like to thank my parents and my sister. Their 

encouragement and never-ending support throughout my entire life made everything 

easier to achieve. 



  vi 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ................................................................................................................... ix  

LIST OF FIGURES .................................................................................................................. x  

CHAPTER 

    1     INTRODUCTION ..................  ...............................................................................  1  

1.1 Introduction  ...................................................................................................... 2  

1.2 Mechanism of surface buckling ....................................................................... 2 

1.3 The goal and outline of this thesis ................................................................... 7 

2     Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable 

optical gratings..................  .....................................................................  8 

2.1 Introduction ....................................................................................................... 9  

2.2 Fabrication of PDMS/Au grating ................................................................... 11  

2.3 Operation principle ......................................................................................... 14  

2.4 Micro-strain testing for a single homogenous material ................................. 16  

     2.4.1 The effecto of grating dimension ........................................................... 17  

     2.4.2 Measurement results ............................................................................... 19  

2.5 Micro strain testing for two-dissimilar-material composite .......................... 21  

     2.5.1 The effect of grating thickness ............................................................... 22  

     2.5.2 Zero-thickness grating ............................................................................ 23  

     2.5.3 Fabrication of a planarized junction of SU-8/Si  ................................... 24  

     2.5.4 Finite element analysis of SU-8/Si ........................................................ 26  

  



  vii 

Page     

2.5.5 Measurement results .................................................................................... 28 

2.6 Summary ......................................................................................................... 31 

  3     Buckle ZnO nanoribbons onto soft substrates for stretchable energy       

harvester .................  .............................................................................  33  

3.1 Introduction ..................................................................................................... 34  

3.2 Experimental ................................................................................................... 35  

     3.2.1 Fabrication of ZnO ribbons free-stood on host substrate. ..................... 35  

     3.2.2 Fabrication of buckling of ZnO ribbons on PDMS ............................... 36  

     3.2.3 Fabrication of controlled buckling of ZnO ribbons on PDMS ............. 38  

     3.2.4 Fabrication of hanging-over ZnO serpentine on PDMS ....................... 41  

3.3 Experimental resuts ........................................................................................ 41  

3.4 Discussions ..................................................................................................... 44  

3.5 Summary ......................................................................................................... 48  

    4     Silicon thin-film on soft substrate as anodes for lithium ion batteries..................  50  

4.1 Introduction ..................................................................................................... 51  

4.2 Experimental ................................................................................................... 53  

4.3 Results and discussion .................................................................................... 56  

4.4 Summary ......................................................................................................... 62  

 

   5     Pattern Transfer in Submicron Soft Contact Lithography using PDMS Wrinkling 

Masks..................  ..................................................................................  63  

 



  viii 

Page 

5.1 Introduction ..................................................................................................... 64  

5.2 Experimental ................................................................................................... 65  

5.3 Finite element analysis of near field intensity ............................................... 68  

5.4 Simulation for far field ................................................................................... 70  

5.5 Summary ......................................................................................................... 71  

   6     conclusions .................  ..........................................................................................  72  

6.1 Summary and concluding remarks ................................................................ 73   

6.2 Outlook of future work ................................................................................... 74  

 

REFERENCES.......  ..............................................................................................................  76 

APPENDIX 

A    Copyright ....................................................................................................... 88  

B    Co-author approval ........................................................................................ 90  

 

 

 

 



  ix 

LIST OF TABLES 

Table Page 

TABLE 2.1 ....  .......................................................................................................................  31



  x 

LIST OF FIGURES 

Figure Page 

Figure 1.1. Schematics for the buckling of a thin hard film on a compliant 

substrate. The hard film is supported by a soft elastic substrate. Buckles 

form on this structure under lateral compressive strain/stress fields. ........  3 

Figure 1.2. Several methods for preparing micro-buckles. .......................................  5 

Figure 2.1. (a) Schematic of the fabrication process for PDMS/Au grating. (b) 

Optical microscopy image and (c) AFM image of wrinkling profile of 

PDMS/Au grating surface. (d) SEM image of wrinkles. (e) Wrinkling 

wavelength (period) distribution at ten different spots over a surface 

area of 100 × 100 μm
2
. The wrinkling period remains largely constant 

over this surface area, in good agreement with the calculated period 

value by Eq. (1). The error bars are one standard deviation of the data, 

which is taken as the experimental uncertainty of the measurement. .....  11 

Figure 2.2 A temperature sweep test on PDMS. Storage Modulus and Loss 

Modulus against temperature are plotted. (a) from room temperature to 

290˚C. (b) from 200˚C to 290˚C. ..............................................................  13 

Figure 2.3. Schematic of the setup for strain sensing using buckled thin film 

grating ........................................................................................................  14 

Figure 2.4. Schematic of optical setup for micro-strain sensing  ............................ 15  

Figure 2.5. Schematic of micro-strain sensing for a single homogenous material  16 

Figure 2.6. Schematic of a PDMS grating attached on a silicon specimen ............  17 

 



  xi 

Figure Page 

Figure 2.7.  Strain coutour in the horizontal direction for different ratios of 

PDMS lengths (L) and a constant thickness (h=100 μm) ......................... 18  

Figure 2.8. (a) εpdms/ εsilicon and εpdms as a function of L/h. (b) Phase diagram of 

εpdms/εsilicon .................................................................................................  19 

Figure 2.9. Measured CTEs for (a) freestanding PDMS, (b) copper and (c) silicon. 

Insets are the schematics of the setup for thermal micro-strain 

measurement. ............................................................................................  20 

Figure 2.10. Schematic of micro-strain sensing for two dissimilar materials 

composite ................................................................................................... 21  

Figure 2.11. (a) Schematic of a grating attached on a SU-8/Cu composite 

specimen. (b) Schematic of a 5-μ m-thick grating and a ‘zero-thickness’ 

grating. (c) Strain as a function of the horizontal distance on the top of 

the grating. Here the temperature change ΔT is 50 ˚C.............................  22 

Figure 2.12. Fabrication flow of SU-8/Si junction .................................................  24 

Figure 2.13. SEM image of (a) SU-8/Si junction and (b) optical image of a zero 

thickness grating on a SU-8/Si junction using EBL. ................................ 25  

Figure 2.14. (a) Schematic of the SU-8/Si junction structure. (b) Strain contours 

in the horizontal direction on the surface for the ideal bonding case and 

(c) for the weak bonding case. (d) Strain as a function of the horizontal 

distance on the top surface of structure. Here the temperature change 

ΔT is 45˚C.  ...........................................................................................  27 

 



  xii 

Figure Page 

Figure 2.15. (a) Optical image of a zero thickness grating on a SU-8/Si specimen 

with the laser scanning area and direction marked. (b) Experimental 

results of strain sensing. The upper plot shows grating wavelength 

versus sample position. The laser scans at 23 ˚C (black) and 68 ˚C (red), 

respectively. The two lower plots show thermal strains deduced from 

ΔT=45 ˚C for SU-8 strip (L) and silicon strip (R). ..................................  29 

Figure 3.1. Fabrication procedure of ZnO ribbons on SOI wafer. .......................... 35  

Figure 3.2. Fabrication procedure of buckling ZnO ribbons on PDMS .................  37 

Figure 3.3. Process steps of a UVO mask and controlled buckling of ZnO ribbons 

[44, 93] ......................................................................................................  39 

Figure 3.4. Fabrication process of ZnO serpentine hanging over PDMS (a) 

Serpentine ZnO nanoribbons rest on SOI wafer after the top silicon 

layer is etched away. (b) Serpentine ZnO nanoribbons are transferred to 

a PDMS substrate with one side hanging over. This configuration is 

referred as hanging-over serpentine. ......................................................... 41  

 

Figure 3.5. SEM images of buckled ZnO ribbons on PDMS. The pre-strain is 5% 

and the buckling wavelength is 60.2 μm.  ................................................  41 

Figure 3.6. SEM images of controlled buckling of ZnO ribbons with Wact = 20 

μm, Win = 480 μm and εpre = 60%. The buckling wavelength is 292 μm. 42 

 

 



  xiii 

Figure Page 

Figure 3.7. (a) SEM image of a hanging-over serpentine ZnO nanoribbon. (d) 

Optical image showing a hanging-over serpentine subject to 30% 

applied strain, where the twisting at the overhanging segment is 

observed. The width of serpentine ribbon is 100 μm. ............................... 43  

Figure. 3.8. Theoretical analysis of the dynamic behavior of big waves.. .............  46 

Figure. 3.9. Theoretical analysis of the dynamic behavior of hanging-over 

serpentine ZnO nanoribbons. Finite element simulation results are 

shown as the plot of fundamental natural frequency Ω as a function of 

applied strain. It is found that the fundamental natural frequency 

remains in the audio frequency domain and does not strongly depend on 

applied strain. ............................................................................................  48 

Figure 4.1. Different approaches to achieve longer cyclic life time for Si based 

anodes of lithium ion batteries.  (a) Various nanostructured Si as anodes 

in Li ion batteries. (i) Si nanocomposites using elastic matrix to act as 

buffers for the strain release; (ii) Si nanowires and (iii) Si nanotubes 

utilizing the lateral free surface to accommodate volume expansion. The 

approach (b) using soft substrates to release the lithiation-induced stress 

in Si thin film during cyclic charge/discharge.  The compressive stress is 

released by generating out-of-plane deformation, i.e., buckling.  ............ 52  

 

 

 



  xiv 

Figure Page 

Figure 4. 2. Half-cell lithium ion battery based on Si anodes by microfabrication.  

(a) schematic steps to fabricate the Si anodes on PDMS substrates. (b) 

An SEM image of Si anode on PDMS, and (c) optical images of 

fabricated anode before assembling.  (d) An illustration of the battery 

cell assembly. ............................................................................................. 55 

Figure 4.3. Electrochemical testing of Si anodes based lithium ion batteries.  (a) 

SEM images show the buckled Si after lithiation after six cycles 

charge/discharge under the charge rate of 1C. The insert is an enlarged 

image clearly shows the buckling morphology.  Si ribbons buckle on 

soft substrates due to electrochemical reactions.  (b) Long cycle stability 

of the battery cell up to the 500
th

 cycle with nearly 85% capacity 

retention.  The inset is a typical charge/discharge profile from the 13th 

cycle to the 18th cycle).  (c) Columbic efficiency from the 1st cycle to 

the 500
th

 cycle shows high value of 99% to nearly 100% efficiency.  

The inset includes I-V profiles of the 10
th

, 100
th

, 200
th

, 300
th

, 400
th

, and 

500
th

 cycles, respectively. .........................................................................  57 

Figure 4.4. Finite element simulations show that the maximum stresses in Si are 

released on soft substrates, compared with the high stress developed in 

Si on rigid substrates. ................................................................................. 60  

Figure. 5.1. Schematic illustrations of (a) the fabrication process for PDMS mask 

and (b) the lithography process with a PDMS mask................................  65 

 



  xv 

Figure Page 

Figure 5.2. SEM image of a PDMS mask with a wrinkling periodicity of ~900 

nm (a) and the patterned structures using soft-contact optical 

lithography with the PDMS mask: (b) Patterned photoresist; (c) 50 nm 

gold coated on the patterned photoresist; (d) Gold strips after a lift-off 

step. (The scale bar is 1μm). .....................................................................  67 

Figure 5.3. FEA simulation of near-field intensity passing through PDMS masks 

and the photo lithographic experiment results. Contour of energy 

distribution in space for a PDMS mask with a period of 900 nm (a) and 

1200 nm (d), respectively. Normalized energy profile along the 

horizontal cut line 10 nm below the air/photoresist interface (b) from (a) 

and (e) from (d), respectively. SEM images of gold strips with 900 nm 

pitch and 1200 nm pitch fabricated using soft contact lithography with 

the 900 nm mask (c) and the 1200 nm mask (f), respectively. For these 

calculations, the wavelength of light used for exposure is 365 nm. The 

magnitude of the sinusoidal wrinkling pattern of the Au/Pd layer is 100 

nm. The wrinkling periodicity is 900 nm. The index of refraction of the 

PDMS mask is 1.467.   .............................................................................. 68  

 

 

 

 

 



  xvi 

Figure Page 

Figure 5.4. Simulation plots of far-field diffraction of light reflected by a line-

space grating. (a) Relationship between the square of the normalized 

electric field and the refraction angle. (b) shows the relationship 

between the normalized grating efficiency and the filling ratio. For these 

calculations, The wave length of the incident light is 632.8 nm, which is 

the typical value for the red light. The grating with 100 periods is 

modeled. With the magnitude of incident electrical field equals to 1 and 

the filling ratio of the grating equals to 0.667. .........................................  70 



  1 

CHAPTER 1 

Introduction 

 

The first chapter of this thesis will introduce the background and motivation for 

the current study. 
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1.1 Introduction 

Mechanical instability is usually a problem that engineers try to prevent. Such 

instabilities can often lead to structural failures and collapses. For example, buckling is a 

type of elastic instability which can disappear/reappear by the application of an external 

force. In engineering, buckling is instability of walls or columns under compression. And 

when a wall buckles, the collapse is usually sudden and catastrophic.  

Over the past decade or so, however, researchers have begun to embrace 

instability, in a more flexible way, thanks to the widespread availability of soft polymers 

and silicone materials. The large deformation of soft materials is harnessed to explore 

various elastic instabilities [1], including buckling [2, 3], creasing [4-6], and 

crumpling[7].  And soft materials do not provide functions alone but integrate with hard 

materials working in a hybrid form. Especially buckling instability has been extensively 

discussed and manipulated in a way that offers deterministic control over the geometries 

including pattern order, wavelength and amplitude.  

For example, one can generate buckling instability by buckling a bilayer structure, 

where a thin hard film coated on top of an expanded thick compliant film undergoes a 

compressive force. The compressive strain in the hard film can be provided either by a 

mechanical strain or by cooling its present state down to its equilibrium stress-free state 

[2, 8]. 

 

1.2 Mechanism of surface buckling 

Buckling (or wrinkling) is a commonly observed mechanical instability 

phenomenon typically treated as a nuisance. In recent years, researchers have proposed 
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the use of ordered buckling structures of stiff thin films on soft substrates with 

wavelengths in the nanometer to micrometer order, in a broad spectrum of applications, 

such as, microfluidic devices [9], templates for cell guidance [10, 11] and colloidal 

particles assembly [12, 13], stretchable electronic interconnects [14-19], stretchable 

electronic devices [20-26], modern metrology methods [27], tunable diffraction and 

phase gratings [9, 10, 28, 29], and methods for micro/nano-fabrication [2, 8, 30, 31].  

A stiff thin film is prepared on a thick, less stiff substrate (Figure 1.1). When the 

substrate is compressed, the thin film buckles into a sinusoidal shape to relieve the 

applied stress. In general, to achieve lower energy cost a stiff film tends to buckle in a 

longer wavelength but a soft substrate favors a shorter wavelength when buckled. When 

combined into a bilayer, the system will yield a buckling wavelength somewhere between 

these large and small wavelengths [32]. 

 

Figure 1.1. Schematics for the buckling of a thin hard film on a compliant substrate. The 

hard film is supported by a soft elastic substrate. Buckles form on this structure under 

lateral compressive strain/stress fields. 

 

Energy method is often used for non-linear buckling analysis [33, 34]. The 

buckling wavelength and amplitude are determined by the intrinsic properties of the films, 

film thickness and external trigger as a result of the minimization of the total energy of 

the system (membrane and bending energies of film material, and deformation energy of 
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substrate).  If the prestrain is smaller than ~5%, using small-strain model the wavelength 

of purely sinusoidal buckling pattern can be expressed as [33, 34]                               

                                          

1/3

2
3

f

s

E
h

E
 

 
   

 
                                                      (1.1) 

Where 2/ (1 )E E    is the plane-strain modulus, E is Young’s modulus and ν is 

Poisson’s ratio. The subscripts “f” and “s” refer to the hard thin film and the soft substrate, 

respectively. Equation (1.1) suggests that buckling wavelength depends only on the film 

thickness and film/substrate modulus ratio, but not on the prestrain (εpre) if the prestrain is 

small enough, up to ~5%. The amplitude of buckling is given by 

                                                     

1/2

1
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                                                      (1.2) 

Where  
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0.25 s
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h

E

E


 
  

 
                                                     (1.3) 

is defined as the critical buckling strain, or the minimum strain needed to induce buckling. 

Note that both the wavelength and amplitude are linearly proportional to the film 

thickness and only the amplitude increases with prestrain quadratically. That means, the 

prestrain is absorbed by the increase of the buckling amplitude, while the wavelength 

remains constant, which is due to the ignorance of the large deformation of substrate in 

small-strain model. 

For the large-strain (>5%) case, the soft substrate becomes non-linear and the 

large deformations and geometrical nonlinearity are taken into account, the buckling 

wavelength and amplitudes can be written [24, 35] 
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Here, λ0 and A0 are the wavelength and amplitude, respectively, for the small-strain case, 

as given by Eq. (1.1) and (1.2). And 1/3(1 ) arises from the geometrical non-linearity 

(large deformation) and non-linear constitutive model for the substrate. 

In this bilayer system two criteria must be met so as to buckle the top layer. The 

in-plane compressive stress in the thin film cannot be too small to buckle the film and the 

substrate must be compliant enough to allow out-of-plane deformation to accommodate 

the deformation of the top layer. A wide variety of hard films on soft elastomeric 

substrates have been studied as shown in Figure 1.2. 

 

Soft substrate Hard layer formation Compressive strain field 

PDMS [2, 8] 

 

GEL [36, 37] 

 

PS [38, 39] 

 

PMMA [40] 

Surface oxidation  

 UV/Ozone [19] 

 oxygen plasma [8] 

Thin film deposition[2, 41] 

 

Thin film transfer[42-44] 

Mechanical stress [42, 43] 

 

Thermal stress  

 cooling [2, 8] 

 heating [45, 46] 

Osmotic stress [47, 48] 

 

Electrochemical stress [49] 

Figure 1.2. Several methods for preparing micro-buckles. 
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The typical soft substrates include poly(dimethylsiloxane) (PDMS), hydrogel and 

glassy polymer such as polystyrene (PS) and poly(methyl methacrylate) (PMMA) (Figure 

1.2). In the experiments presented in this thesis, PDMS elastomer is used as the soft 

substrate in that it is optically transparent, flexible, low-cost and doesn’t break. Also 

PDMS is unique in that, when freshly plasma-oxidized, it can be bonded to itself and 

other materials, such as silicon, without an adhesive, and almost every other polymer 

requires an adhesive [50]. 

There are three main methods for hard film fabrication. (1) An oxide skin layer 

that act as the thin film can be generated directly on PDMS surface either by oxygen 

plasma treatment or UV/ozone (UVO) exposure. These treatments are known to convert 

the PDMS surface into a thin layer of glassy silicate (SiOx), which can be directly bond 

chemically with the thin Si film. (2) Direct deposition of a hard thin layer, such as Au and 

Si, onto a soft expanded substrate. (3)  A thin film is separately prepared on donor 

substrate and then heterogeneously “borrowed” onto a compliant PDMS substrate via 

transfer printing.  By applying the same treatments from (1) PDMS can directly bond 

with thin film, which might be the most unique aspect of PDMS polymer that makes 

academic community embraces it.  All these methods enable the thickness of thin film in 

the range of submicron and therefore control the wavelength of the micro-buckles easily 

ranging from hundred nanometers to tens of micrometers [51]. The buckles are triggered 

by the exertion of lateral compressive strain or stress including mechanical, thermal, 

osmotic and electrochemical stresses (Figure 1.2) [52]. 
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1.3 The goal and outline of this thesis 

The goal of this thesis is to deepen understanding of buckling behavior of thin 

films on PDMS elastic substrates and, in turn, to harness the fundamental properties of 

such instability for diverse applications. This thesis consists of four main chapters. 

Chapter 2 describes a strain sensing technique that utilizes wrinkling patterns on PDMS 

as an optical grating to measure the thermally-induced strain of different materials. 

Chapter 3 describes a method to utilize pre-patterned ZnO nanoribbons on soft substrates 

to achieve buckled forms for stretchable energy harvesting applications within audio 

frequency range. Chapter 4 describes the use of silicon thin films on soft substrates as 

anodes to circumvent the electrochemical-reaction-induced stress problem by buckling in 

lithium ion batteries. Chapter 5 describes a near-field photolithographic approach that 

uses wrinkled PDMS as submicron masks to generate simple submicron structures. 
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Chapter 2  

Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable 

optical gratings
†
 

 

We propose a strain sensing approach that utilizes wrinkled patterns on PDMS as 

an optical grating to measure thermally-induced strain of different materials. The 

mechanism for the strain sensing and the effect of PDMS grating on strain sensing are 

discussed. By bonding the PDMS grating onto a specimen, the coefficient of thermal 

expansion (CTE) of the specimen can be deduced by measuring the diffraction angle 

change due to the change in PDMS grating periodicity when thermal strain is introduced. 

The measured CTEs agree well with the known reference values.  

                                                 
†
 Based on Teng Ma

*
, Hanshuang Liang

*
, George Chen, Benny Poon, Hanqing Jiang, and Hongbin Yu. 

"Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating." Optics 

Express 21.10 (2013): 11994-12001. (
*
: Equal contribution) and Hanshuang Liang

*
, Teng Ma

*
, Hoa 

Nguyen, George Chen, Hao Wu, Hanqing Jiang, and Hongbin Yu. "High Sensitivity In-Plane Strain 

Measurement Using a Laser Scanning Technique." Electronic Components and Technology Conference 

(ECTC), 2014 IEEE 64rd. IEEE, 2014. (
*
: Equal contribution) 
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2.1 Introduction 

Nowadays electronic packaging involves multiple scales ranging over several 

orders of magnitude. For example, the silicon chips in flip-chip applications typically 

have dimensions of several mm on a side and the corresponding printed circuit board has 

dimensions of many cm on a side and the solder joints have typical heights of 50-100μm 

[53]. As a result, when subjected to temperature changes, the large CTE mismatch leads 

to uneven expansions between different components that can cause severe deformation 

and strains, for example, in the solder joints. So there is a great need for characterizing 

components deformations and strains at micron range due to thermo-mechanical loadings 

caused by CTE mismatches.  

The full-field optical methods of micro Moiré and digital image correlation (DIC) 

are well suited for measuring two-dimensional (in-plane) thermomechanical deformations 

of electronic packaging, and have been widely applied to charactering strains in solder 

joints [53]. Micro Moiré [54-58] is a highly sensitive, full-field in-plane sensing 

technique but the illuminated area for generating a Moiré pattern needs to be large 

enough to detect small strain, consequently lacking the ability to resolve strain within 

small spatial variation. DIC techniques [59-63] can achieve high spatial resolution with 

high in-plane displacement resolution but the field of view is compromised since a large 

optical magnification is required and becomes a limiting factor when detailed strain 

mapping in a large area is needed. We propose an in-plane micro-strain characterization 

technique by scanning a laser on diffraction gratings so as to fill the technology gap 

between traditional DIC and Moiré technique with a high strain sensitivity, high spatial 

resolution and large field-of-view. 
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Currently, diffraction gratings are conventionally manufactured using two 

methods. The first method is the use of ruling engines in a diamond turning technique, 

where a high precision stage equipped with diamond tips is used in the manufacturing 

process. This method however, is a serial process, and is typically slow and expensive. 

The second method utilizes laser technology. Diffraction gratings made this way are 

called holographic gratings and have sinusoidal grooves. They are rigid and not tunable.  

We also propose a novel grating manufacturing technique by using a buckled thin 

stiff film on soft substrates as a grating, which has distinct advantages over the two 

methods mentioned above. The proposed technique employs the use of a much simpler 

manufacturing process which only involves a mechanical straining process on soft 

substrates (e.g., PDMS) and a routine nano thin metal (e.g., Au) deposition step. PDMS is 

elastic and compliant enough so that its presence does not significantly alter the 

deformation of the specimen. The simplicity of the fabrication steps allows the proposed 

technique to have significant cost advantage over conventional methods. 

Here PDMS/Au gratings are utilized as tunable strain sensors. A PDMS/Au 

grating is first attached to the specimen of interest. Any change to the strain of the 

specimen (thermally or mechanically induced) is imparted to the grating and changes its 

periodicity. The strain sensing mechanism relies on the detection of the variation in the 

diffraction angle of the laser beam shinning on the surface of the tunable grating. The 

variation in diffraction angle can then be related to the strain induced by the specimen of 

interest. The proposed tunable strain sensor and its detection mechanism are expected to 

have high strain sensitivity in capturing the strain variations within specimen. 
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2.2 Fabrication of PDMS/Au grating 

 

 

Figure 2.1. (a) Schematic of the fabrication process for PDMS/Au grating. (b) Optical 

microscopy image and (c) AFM image of wrinkling profile of PDMS/Au grating surface. 

(d) SEM image of wrinkles. (e) Wrinkling wavelength (period) distribution at ten 

different spots over a surface area of 100 × 100 μm
2
. The wrinkling period remains 

largely constant over this surface area, in good agreement with the calculated period 

value by Eq. (1). The error bars are one standard deviation of the data, which is taken as 

the experimental uncertainty of the measurement. 

 

Figure 1(a) illustrates the fabrication flow of the PDMS/Au grating. A PDMS 

elastomer (Sylgard 184, Dow Corning) was made by mixing the base component and the 

curing agent in a 10:1 ratio by weight, followed by de-gassing and curing at 80˚C for 3 

hours. A slab of PDMS elastomer (0.1-1 mm thick) was mounted and elastically stretched 

by a home-made stage with designed uniaxial pre-strain. After being exposed to oxygen 

plasma (50 W) for 1 minute to enhance the adhesion, the pre-strained PDMS slab was 

sputter-coated with a gold (90%)/palladium (10%) (Au/Pd) alloy film of nanoscale 

thickness. The addition of palladium to gold increases its bonding strength, known as 

white gold. Due to the small proportion of palladium we will refer to the alloy as gold. 

Finally, the relaxation of the pre-strain in the PDMS substrates compresses the Au thin 
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film, leading to the deformation and wrinkling in both the Au film and PDMS substrate 

surface in a sinusoidal pattern. This is a result of the minimization of the system’s 

potential energy by the out-of-plane deformation. The wrinkling period, d, is determined 

by the mechanical properties of Au film and PDMS substrate, the pre-strain εpre, and the 

thickness of the gold film, as described previously [29] 
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where hf is the thickness of the Au film, E is Young’s modulus and ν is Poisson’s ratio. 

The subscripts “s” and “f” refer to the PDMS substrate and Au film, respectively. By 

varying the pre-strain εpre and the Au film thickness hf, the buckling period d can be tuned 

with a broad range. In this work, the buckling period is in the order of micron or 

submicron range for the optimal grating efficiency for the visible light, which is 

employed for strain sensing application as discussed below.   

Figure 2.1(b) shows an optical microscope image of a PDMS/Au grating 

fabricated by the above mentioned method, with hf = 10 nm, εpre = 15%, and the 

measured buckling period d = 1.22 μm, which agrees well with the calculated value of 

1.20 μm obtained from Eq. (2.1) when the following material parameters are used, Ef = 

80 GPa, Es = 2 MPa, hf = 10 nm, νf = 0.3, and νs = 0.4921. Fig. 1(c) shows the atomic 

force microscope (AFM) image of the grating topography and a line-scan profile, which 

illustrates the uniformity of the buckling in a small area. Figure 2.1(d) illustrates scanning 

electron microscope (SEM) image of the continuous gold film along wave direction on 

PDMS. To examine the uniformity over a large area, the buckling periods were measured 
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at ten different locations on an area of 100×100 μm
2
 and the results are shown in Figure 

2.1(e). It was found that the buckling period is uniform over a large area. 

  

                                (a)                                                               (b) 

Figure 2.2 A temperature sweep test on PDMS. Storage Modulus and Loss Modulus 

against temperature are plotted. (a) from room temperature to 290˚C. (b) from 200˚C to 

290˚C. 

 

Dynamic mechanical analysis (DMA) is applied for mechanical property testing 

at high temperature. Over a large temperature range from room temperature to 290 ˚C the 

storage modulus of PDMS is always larger than the loss modulus which indicates that 

PDMS is still solid at high temperature (Figure 2.2(a)). From 250 ˚C to 270 ˚C, the 

storage modulus only dropped a little bit (Figure 2.2(a)). We also heat the PDMS winkles 

up at 260˚C for half hour and found that the wrinkles did not disappear. Therefore PDMS 

grating is stable for high temperature.  
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2.3 Operation principle 

 

Figure 2.3. Schematic of the setup for strain sensing using buckled thin film grating 

A highly sensitive optical diffraction approach was developed to measure strain 

on the specimen of interest. By using a PDMS/Au grating attached to different specimens 

(for example, a silicon substrate), a minuscule change in strain within the specimen can 

be detected with a large change in displacement measured by the photo detector. This 

mechanism starts from the simple diffraction equation, d0sinθ = mλ, which relates the 

diffraction angle θ, initial grating period d0, and laser source wavelength λ, m is the order 

of diffraction, when laser beam is normal to the grating surface. As shown in Figure 2.3, 

the optical setup for strain measurement, a geometric relation, tanθ = y/L, relates the 

horizontal position L of the specimen and vertical position y of the photo detector. 

When a strain is induced on the specimen through either mechanical or thermal 

means, the grating period changes from d0 to d (= d0 + d) and leads to the change in 

diffraction angle  by . Meanwhile, the change of  results in the change of y by y, 

which linearly depends on d, as shown below, 
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Where the strain (ε = Δd / d0) of the specimen is related to y by the pre-factor A. 

When L is in the order of 10 cm, and the buckling period d0 and light wavelength 

 both in the order of submicron (m < d0), the magnification factor A is approximately 

1×10
7
 m. To put this in perspective, one micro-strain (10

-6
) leads to a 10 m change in 

the vertical position y of the photo detector, which is significantly much easier to be 

measured. In addition, this magnification factor, A, can be further amplified by properly 

choosing a d0 that approaches  (Eq. (2.2)). This simple mechanism of magnification 

forms the basis of this highly sensitive strain measurement technique. 

 

Figure 2.4. Schematic of optical setup for micro-strain sensing 

Figure 2.4 illustrates the optical setup used in the micro-strain sensing. The light 

source was a 633 nm He-Ne laser with output power of 21 mW. The laser spot size had 

been reduced from 700 μm (Ф1) to 200 μm (Ф2) in diameter at the grating surface 

through the use of two optical lenses. In order to improve the signal to noise ratio, an 

optical chopper was placed before the series of optical lenses to synchronize with the 
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optical detector. A 50/50 beam splitter generated a reference light signal which was fed 

into an auto balanced photo detector. The photo detector compared the first order 

diffracted beam from the grating with the reference light to improve the signal-to-noise 

ratio for high sensitivity. 

Two types of specimen have been tested to demonstrate the capability of this 

strain sensing technique. One is a single homogenous material for testing strain 

sensitivity and the other is a composite of two dissimilar materials for obtaining spatial 

resolution of this technique. 

 

2.4 Micro-strain testing for a single homogenous material 

The strain sensitivity is tested using a single homogenous material as a specimen 

(Figure 2.5). When subjected to a temperature change, the grating expands and the 

grating period changes accordingly so the CTE of the specimen material can be deduced 

from its thermal strain. 

 

Figure 2.5. Schematic of micro-strain sensing for a single homogenous material 
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2.4.1 The effect of grating dimension 

CTE of PDMS is around 300 ppm/˚C which is much higher than most of 

electronic packaging materials such as silicon (2.6 ppm/˚C) and copper (17 ppm/˚C). By 

attaching PDMS gratings on, for example, silicon, we want to deduce the strain of silicon 

from the strain of PDMS grating. Can εPDMS reflect εsilicon accurately? Or, in other words, 

what’s the effect of PDMS dimension on strain measurement?  

 

Figure 2.6. Schematic of a PDMS grating attached on a silicon specimen 

The commerical finite element package ABAQUS [64] was used to study the 

effect of the dimension of a PDMS grating on the strain measurment. Figure 2.6 shows 

the model, including a PDMS grating with a thickness of 100 μm and length L on top of a 

0.5 mm thick, 10 mm long silicon specimen. Thermal stress analysis is conducted by 

introducing a uniform temperature change ΔT. The PDMS and the silicon specimen are 

modeled by 4-node plane strain temperature-displacement coupled elements (CPE4T). 

The PDMS-Si interface is treated as shared nodes. The bottom of the silicon substrate is 

confined. The top Au layer is not considered in the finite element analysis because its 

thickness is negligible (10 nm). The following material parameters are used in the 

analysis [65]: EPDMS = 2 MPa, νPDMS = 0.5, αPDMS = 310×10
-6

 /˚C, ESi = 130 GPa, νSi = 0.3 , 

αSi = 2.6×10
-6

 /˚C, ΔT = 50˚C, where α is the coefficient of thermal expansion (CTE).  
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Figure 2.7.  Strain coutour in the horizontal direction for different ratios of PDMS lengths 

(L) and a constant thickness (h=100 μm) 

 

Strain contours in the horizontal direction for different ratios of PDMS length and 

thickness are shown in Figure 2.7. For L/h = 1, the strain at the top surface of the center 

of the PDMS (εPDMS) is about two order of magnitude higher than the strain at the top of 

the silicon specimen (εSi). The explanation for this is that for a small L/h ratio, the 

constraint from the underlying silicon specimen is too weak. Therefore, the strain at the 

top of the PDMS grating, in this case, only reflects the PDMS itself and not the 

underlying silicon. As the L/h ratio increases, the constraint from the silicon substrate is 

increased and the strain at the top of the PDMS grating begins to resemble more and 

more like the strain of underlying silicon specimen of interest, as can be seen in Figure 

2.7. For an L/h ratio of 30, the strain of the PDMS grating is equal to the strain of the 

underlying silicon specimen of interest over 80% of the entire surface area of the PDMS 

grating. In this scenario, the detected strain εPDMS reflects the actual strain εSi. 
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Figure 2.8. (a) εpdms/εsilicon and εpdms as a function of L/h. (b) Phase diagram of εpdms/εsilicon 

 

Figure 2.8(a) shows the ratio of PDMS and Si as a function of L/h ratio for PDMS 

grating on Si specimen. It can be seen that when the L/h ratio exceeds a critical value of 

20, the PDMS reflects Si with only a 5% error. Figure 2.8(b) shows that this relation (i.e., 

L/h > 20) holds for all temperature change due to the linearity of this relation. In fact, this 

analysis is likely to provide an upper bound of the L/h ratio because the CTE mismatch 

between silicon and PDMS is likely to be more severe than most conventional metals and 

polymers. However, note that for materials with a smaller CTE than silicon, such as, 

glass and other low CTE ceramics, the critical value for L/h ratio can be smaller than 20. 

 

2.4.2 Measurement results 

Thermal strains of three different homogenous materials (PDMS, copper and 

silicon) with differing CTE spanning three orders of magnitude are measured to verify 

the micro-strain sensing technique with tunable PDMS/Au gratings. PDMS/Au gratings 

are bonded on specimens that are heated up by a copper block, as shown in Figure 2.9(a). 

A thermal couple is attached to the copper block to form a feedback system for the 

temperature control. In this system, the temperature reading on the specimen is calibrated 
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to be within one degree of accuracy, and the temperature range for the strain 

measurement is between room temperature and 65 ˚C. The laser spot size is 200 m. 

 

Figure 2.9. Measured CTEs for (a) freestanding PDMS, (b) copper and (c) silicon. 

Insets are the schematics of the setup for thermal micro-strain measurement. 

 

The first specimen is a freestanding PDMS grating, which is hanging over at the 

edge of the copper block, as shown in the inset schematic in Figure 2.9(a). The focused 

laser spot is located just off the copper block to measure the thermal strain of the PDMS 

grating without constraints from the copper block. Figure 2.9(a) shows the measured 

strain as a function of temperature for this freestanding PDMS grating, where a good 

linearity is observed. The CTE of PDMS, i.e., the slope of strain/temperature relation, is 

274 ppm/˚C (part per million per degree Celsius), which agrees with the reference value 

of the CTE of PDMS, 265 ppm/˚C, measured using commercial thermal-mechanical 

analysis tool Q400 from TA instruments, under expansion mode at 10 mN force.  

The second specimen is a piece of copper sheet, on which the PDMS/Au grating 

is attached by a thin double-sided adhesive tape. The size of PDMS/Au grating has been 

chosen based on Figure 2.9(a) to ensure the measured strain on top of the grating 

accurately reflects the strain of copper substrate. Figure 2.9(b) shows the strain-

temperature relation. The CTE of copper given by the slope is obtained as 18.2 ppm/˚C, 

which is consistent with the CTE of copper (17.5
 
ppm/˚C) [66]. Some of the data points 
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in Figure 2.9(b) are scattered compared to Figure 2.8(a), which can be attributed to the 

bonding quality of the adhesive tape between copper and PDMS. 

The last specimen is a silicon substrate. The PDMS/Au grating can be firmly 

bonded to the Si substrate by treating the Si surface with oxygen plasma to form a SiO2 

bond between the PDMS and Si [67]. Si has a much lower CTE (2.6 ppm/˚C), compared 

to previous two specimen materials. The experimental data is plotted in Figure 2.9(c), 

which gives an extracted CTE value of 2.73 ppm/˚C, very close to the reference value of 

the CTE of silicon. The measured data here show much less fluctuation than the data 

from the PDMS bonded to copper as the result of much better bonding quality between Si 

and PDMS. The temperature step here is 5C thus the smallest deformation we can 

measure is around 10 μm, thus demonstrating the sensitivity at the level of 10
-5

. 

 

2.5 Micro-strain testing for two-dissimilar-material composite 

 

Figure 2.10. Schematic of micro-strain sensing for two dissimilar materials composite 

Spatial resolution of this sensing technique is obtained through testing a 

composite of two dissimilar materials. Upon thermal loading, a strain change occurs 

when laser is scanning cross the junction due to the CTE mismatch between two 

materials.  
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2.5.1 The effect of grating thickness 

 

Figure 2.11. (a) Schematic of a grating attached on a SU-8/Cu composite specimen. (b) 

Schematic of a finite thickness grating and a ‘zero-thickness’ grating. (c) Strain as a 

function of the horizontal distance on the top of the grating. Here the temperature change 

ΔT is 50 ˚C. 

 

Although we want to measure the strain of the surface of the specimen, we 

actually measure the strain of the surface of the specimen grating. The difference can be 

very significant when it comes to micro-mechanics analyses for a composite specimen. 

Finite element analysis is used to simulate the thermal deformation scenario. A grating is 

attached on top of a SU-8/copper composite, which is mounted on a silicon substrate, as 

shown in Figure 2.11(a). When subjected to a temperature change, we expect that the 

junction experiences a sudden strain change due to the CTE mismatch between SU-8 and 

copper. By varying the thickness of the grating from 0 to 5 μm, the strain distribution on 

the grating surface is calculated as plotted in Figure 2.11(c). It is observed that when the 

grating thickness is zero there is a sharp jump of strain over a range of 7 μm long (blue 

curve). When the grating thickness increases to 5 μm, the strain only jumped a little bit 

over a much wider range 20-μm-long (black curve). Obviously, finite thickness grating 
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will smear out the strain information from the specimen as strains are attenuated and 

redistributed when transmitting through the grating thickness, which is known as shear 

lag effect [68]. Therefore, there is a need for zero thickness gratings fabricated on 

specimen to reflect the real strain on specimen as shown in Figure 2.11(b).  

 

2.5.2 Zero-thickness gratings 

Zero-thickness gratings are amplitude gratings comprised of reflective metal bars 

and relatively non-reflective spaces [68, 69]. They are in fact zero thickness since the 

metal bars are extremely thin (tens of nm) and the spaces are actually zero thickness. This 

zero thickness grating consisting of ultra-thin reflective metal bars circumvent the shear 

lag problem of finite thickness gratings and can be used for 1-D strain sensing. 

Many different methods exist for fabrication of zero thickness gratings. Most of 

these techniques can be grouped into two main categories: lithographic techniques and 

direct machining. Lithographic techniques use light-sensitive polymers in conjunction 

with controlled etching or deposition methods such as electron beam lithography (EBL), 

deep ultraviolet (UV) and interference lithography to generate submicron feature sizes for 

gratings. In direct machining, the surface relief structure is produced through direct 

removal of the specimen material or addition of other material in a controlled manner 

without any intermediate processes. For example, focused ion beams (FIB) is capable of 

scribing a grating directly into the specimen material.  

All of these methods for generating zero thickness gratings are directly fabrication 

processes with no need for an adhesive layer in conventional gratings. These processes 

offer a strong bonding strength between zero thickness gratings and specimen so that the 
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thin metal bars can move freely to follow the specimen distortions, which makes them 

attractive candidates for micromechanics studies involving severe strain gradients or 

material discontinuities, as in fracture studies [68]. 

In addition to 1D parallel metal bars, cross-line gratings can be generated as zero-

thickness spaces in both x and y directions, separating tiny metal dots in a regular 

orthogonal array for 2D strain sensing application. 

 

2.5.3 Fabrication of a planarized junction of SU-8/Si 

 

Figure 2.12. Fabrication flow of SU-8/Si junction 

In order to obtain the strain information at the junction of two dissimilar materials 

with different CTEs upon thermal loading, we fabricated a globally planarized junction 

composed of SU-8/Si as illustrated in Figure 2.12. The fabrication of the SU-8/Si starts 

from a silicon on insulator (SOI) wafer. The top silicon layer is 10-20 µm thick and is 

patterned into silicon strips using a standard lithography process. The width of the silicon 

strips and the spacing are in the range of tens of microns to several hundreds of microns. 

Then an SU-8 layer is spin-coated on top to fill in the trenches completely. After hard-
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baking the SU-8 layer, deep reactive ion etching (DRIE) is used to etch the silicon 

substrate from the backside until the SiO2 etch stop layer, which is then removed at the 

subsequent step using hydrofluoric acid (HF). Figure 2.13 shows the scanning electron 

microscopy (SEM) image (a) of a SU-8/Si junction and the optical image (b) of a zero 

thickness grating composed of ultra-thin gold bars on the junction fabricated using EBL 

and metal lift-off. The optical image doesn’t focus well for the up-right-hand corner area 

since the junction surface is not perfectly flat and exhibits slight amounts of warping 

induced by the fabrication process. 

 
                                     (a)                              (b)  

Figure 2.13. SEM image of (a) SU-8/Si junction and (b) optical image of a zero thickness 

grating on a SU-8/Si junction using EBL. 

 

We should point out that this silicon surface is coming from the unpolished side 

of the device layer and is relatively rough compared to the polished silicon surface. As a 

result the rough surface can abate the reflection of the laser light. Also, the sidewalls of 

the silicon strips are relatively deep (>10 μm) and therefore are neither vertical nor 

perfectly smooth due to isotropic dry etching. After filling with the SU-8 and baking it is 

possible that cracks or delamination at the interface of the sidewalls are present due to the 

large CTE mismatch between SU-8 and Si.  
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2.5.4 Finite element analysis of SU-8/Si 

The commercial finite element package ABAQUS is used to simulate the thermal 

deformation of the junction structure of SU-8/Si when subjected to temperature changes. 

Figure 2.14(a) shows the model, including three 300-μm-wide by 20-μm-thick silicon 

strips embedded in a 200-μm-thick by 2000-μm-long SU-8 substrate with 300 µm 

spacing between the strips. The thermal strain analysis is conducted by introducing a 

uniform temperature change ΔT in the whole domain. The silicon and SU-8 are modeled 

by a 4-node bilinear plane strain element (CPE4) for two different cases. In case one, the 

ideal bonding, the SU-8/Si interface is treated as shared nodes which indicates the perfect 

bonding between the silicon strips and the SU-8 substrate on both the bottom and the two 

sides. In the latter case, the weak bonding case, the silicon strips are connected to the SU-

8 substrate only through the bottom using TIE constraint and there is no bonding with the 

SU-8 on the two sides of each silicon strip. The weak bonding case is used to simulate a 

scenario when the bonding is less than ideal and there is delamination on the two sides. 

The following material parameters are used in the analysis: ESU-8 = 2 GPa, νSU-8 = 0.3, 

αSU-8 = 52 × 10
-6 
/˚C, ESi = 130 GPa, νSi = 0.3, αSi = 2.6 × 10

-6 
/˚C, ΔT = 45˚C, where E, ν 

and α are Young’s modulus, Poisson’s ratio and the CTE, respectively. We assume that 

the surface is ideally flat and there is no warpage existing. 
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                                                                                        (d) 

 

Figure 2.14. (a) Schematic of the SU-8/Si junction structure. (b) Strain contours in the 

horizontal direction for the ideal bonding case and (c) for the weak bonding case. (d) 

Strain as a function of the horizontal distance on the top surface of structure. Here the 

temperature change T is 45˚C. 

 

Strain contours in the horizontal direction are shown in Figure 2.14(b) for the 

ideal bonding case and (c) for the weak bonding case. Figure 2.14(d) shows the strain as a 

function of horizontal distance on the top surface of the junction structure for the two 

cases. The strain on the SU-8 area is much higher than that of the silicon strips and when 

subject to a temperature change of 45 ˚C, the junction experiences a sudden strain change 

due to the CTE mismatch. The strain on the silicon surface fluctuates slightly and the two 

ranges are at the same level for both cases: 1.3 × 10
-4

~2.9 × 10
-4

 for the ideal bonding 
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case and 8 × 10
-6

~2.3 × 10
-4

 for the weak bonding case. But the strain ranges differ 

greatly on the surface of SU-8, ranging from 3.7 × 10
-3

 to 6.4 × 10
-3

 while exhibiting very 

sharp peaks for the ideal bonding case. However, in the weak bonding case, the strain 

ranges from 3.8 × 10
-3

 to 4.1 × 10
-3

 while exhibiting blunt peaks This is reasonable since 

the surface of the SU-8 pattern has more constraints on the two sides from the silicon 

strips while under thermo-mechanical loading, and therefore has a steeper strain gradient 

cross the SU-8 surface along with a sharp strain jump on the edges for the ideal bonding 

case. 

 

2.5.5 Measurement results 

By spatially scanning the surface of grating with a small spot-size laser, the 

variation of grating wavelength is captured by the camera as a shift in the diffraction peak 

position, which can be translated back into strain information through data processing. In 

this way, one can map the strain distribution on the specimen through measuring the 

variation of grating wavelength. If a specimen is a single homogenous material, the 

grating wavelength would be uniform and constant across the sample and increases 

uniformly with an elevated temperature change. However, for a composite specimen of 

dissimilar materials the CTE mismatch leads to uneven expansions between different 

components and thus generates varying grating wavelengths across the surface.  
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(a) 

 

                                                                      (b) 

Figure 2.15. (a) Optical image of a zero thickness grating on a SU-8/Si specimen with 

the laser scanning area and direction marked. (b) Experimental results of strain sensing. 

The upper plot shows grating wavelength versus sample position. The laser scans at 23 

˚C (black) and 68˚C (red), respectively. The two lower plots show thermal strains 

deduced from ΔT=45 ˚C for SU-8 strip (L) and silicon strip (R). 
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Figure 2.15(a) shows a zero-thickness grating with 800-nm-wavelength fabricated 

on a SU-8/Si composite specimen using EBL and metal lift-off process. The grating is 

composed of 50 nm thick parallel gold bars and covers four different SU-8 and silicon 

zones at an area of 1 mm by 0.5 mm. A laser beam is applied to scan across the surface of 

the grating in a direction perpendicular to the gold bars at 23 ˚C and 68 ˚C respectively as 

shown in Figure 2.15(a). The upper plot in Figure 2.15(b) shows the measured grating 

wavelength versus the scanning horizontal distance on the surface of the grating. It can be 

seen that at 23 ˚C (room temperature) the grating wavelengths appear four-staged black 

curve instead of a constant 800-nm-flat-line across the four SU-8 and Si zones. This 

suggests that the wavelengths of grating at the four zones are not equal and this might be 

due partially to the metal lift-off step in Acetone that distorts and warps the 300-μm-thick 

sample. Within each of the four zones the black curve is fluctuate slightly except for one 

sharp jump in the middle of the left silicon zone probably as a result of the presence of 

cracks or warpage in Si ribbon. The red curve in the upper plot in Figure 2.15 (b) shows 

the measured wavelengths as a function of sample position at 68 ˚C. It is noticed that the 

red curve has upward shifts from the black curve cross over four zones indicating the 

thermal expansion induced by a temperature change of 45˚C but the two SU-8 regions 

expands more, which is consistent with the FEA simulation. The strain distributions in 

the left SU-8 and right Si zones are plotted as shown in the two lower plots in Figure 

2.15(b). From left to right on the SU-8 strip, the strain varies between 3 × 10
-3

 ~ 6 × 10
-3

. 

On the Si strip, the strain variation is between 6 × 10
-4

 and 1 × 10
-3

. The spatial resolution 

is around 20 μm, which is defined as the smallest feature size one can detect. 
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Table 2.1 Strain ranges at SU-8 and Si regions from simulation and measurement. 

 SU-8 Si 

FEA (ideal bonding) 3.7×10
-3
     6.4×10

-3
 1.3×10

-4
     2.9×10

-4
 

FEA (weak bonding) 3.8×10
-3
     4.1×10

-3
 8×10

-6
     2.3×10

-4
 

Measurement 3×10
-3
     6×10

-3
 6×10

-4
     1×10

-3
 

 

The experimental results from SU-8 region are slightly smaller than the FEA 

predictions while the experimental results from Si region are larger than the simulation as 

shown in Table 2.1. Strain distribution analysis isn’t performed on the middle region. 

This is because the strain information in these regions is dominant by other effects, such 

as warping and imperfections on the grating patterns. Although these factors may impact 

the regions where analysis is done, they are minor effect compared to the effects 

discussed in the FEA work. 

 

2.6 Summary 

PDMS tunable gratings fabricated through buckled film were used for micro-

strain measurement of various materials. A highly sensitive optical setup optimized to 

amplify a small strain signal to a change in diffraction angle, orders of magnitude larger, 

was proposed. The applicability of the PDMS/Au grating to infer the strain of the 

underlying specimen of interest, require the L/h aspect ratio of the grating to greater than 

20 for most practical purposes. The thermal strain measurement on the free-standing 

PDMS grating as well as the PDMS grating bonded to copper and silicon substrates agree 

well with their reference CTE values. This technique is relatively simple for very high 
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strain sensitivity measurement, and its potential spatial scanning capability is also 

expected to complement the application boundaries of other in-plane strain measurement 

metrologies such as Moiré interferometry or DIC methods in terms of maximum strain 

gradient, and field-of-view of measurement. In addition, unlike conventional in-plane 

strain sensing metrologies, the proposed technique is expected to work for non-planar 

surface geometry, as well. 

The laser scanning technique is demonstrated to have both high strain sensitivity 

and high spatial resolution on pre-defined samples. Note that this technique is capable of 

detecting localized strain, unlike Moiré techniques (which relies on a sufficient field of 

view to form Moiré pattern). The CTE measurement for silicon proves the detectable 

strain to be as small as 10
-5

. Even though the entire elevated temperature range is only 

30˚C, it indicates the capability for monitoring small CTE materials such as Si. This has 

many applications in different packaging processes, such as reflow, which typically 

occurs at over 200˚C. Scanning the EBL defined pattern validates the resolvable feature 

size to be as small as 20 μm. In addition, this technique in principle is able to scan an 

unlimited field of view, which is determined by the traveling distance of the translation 

stage. The investigation of strain distribution on the composite sample under thermal 

loading validates the feasibility of applying this technique towards electronic packages. 

Future work includes plans for optimizing the system for advancing the strain mapping 

capability as well as to test this technique on electronic packages.  
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CHAPTER 3 

 

Buckle ZnO nanoribbons onto soft substrates for stretchable energy harvester
†
 

 

Three pre-patterned ZnO nanoribbons in different configurations were studied in 

this chapter, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates 

that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft 

substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft 

substrates via anchors. The nonlinear dynamics and random analysis were conducted to 

obtain the fundamental frequencies and to evaluate their performance in energy 

harvesting applications. We found that pop-up buckles and overhanging serpentine 

structures are suitable for audio frequency energy harvesting applications. Remarkably, 

almost unchanged fundamental natural frequency upon strain is achieved by properly 

patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable 

energy harvesting using nano-scale materials in audio frequency range. 

 

  

                                                 
†
 Based on Teng Ma, Yong Wang, Rui Tang, Hongyu Yu, and Hanqing Jiang. "Pre-patterned ZnO 

nanoribbons on soft substrates for stretchable energy harvesting applications." Journal of Applied Physics 

113.20 (2013): 204503. 
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3.1 Introduction 

Piezoelectric materials, such as lead zirconate titanate (PZT) [70-73], barium 

titanate (BaTiO3) [74, 75], aluminum nitride (AlN) [76], zinc oxide (ZnO) [77-80], have 

been utilized to convert mechanical vibration energy into electrical energy for portable or 

self-powered electronics, among many other application, such as solar cells [81, 82]. 

Specifically, "piezoelectric nanogenerator" [77], first introduced in 2006, has boomed the 

applications of nano-scale piezoelectric materials for energy harvesting. One 

representative configuration of these piezoelectric nanogenerators is a nano-scale 

piezoelectric cantilever and the energy of mechanical vibration to be harvested is in the 

vicinity of the system fundamental frequency, which is usually in the high frequency 

domain for nano-scale materials [83]. In order to accommodate the development of 

consumer electronics, piezoelectric nanogenerators are expected to be able to integrate 

with wearable or stretchable devices and different approaches with success to some 

extent, such as limited stretchability, have been attempted [71, 72, 74, 76, 77]. The 

deformability, i.e., bendability and stretchability, is realized by bonding buckled 

piezoelectric materials on top of soft materials. There are two limitations among existing 

work, namely, energy harvesting only at the high frequency domain, and limited 

stretchability. To address the limitation of energy harvesting near the fundamental 

frequency, nonlinear energy harvesting has been explored to achieve large response 

bandwidth by various approaches [84-89]. 

Here, we report an approach to utilize pre-patterned ZnO nanoribbons on soft 

substrates to achieve buckled forms for stretchable energy harvesting applications within 

audio frequency range. Three pre-patterned ZnO nanoribbons in different configurations 
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were studied in this chapter, including (a) straight ZnO nanoribbons uniformly bonded on 

soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively 

bonded on soft substrates that forms pop-up buckles [90], and (c) serpentine ZnO 

nanoribbons bonded on soft substrates via anchors. These pre-patterned ZnO nanoribbons 

were first fabricated on silicon-on-insulator (SOI) wafers using dry etching and then 

brought and bonded with soft materials through transfer printing. The nonlinear dynamics 

and random analysis were conducted to obtain the fundamental natural frequencies and to 

evaluate their performance in energy harvesting applications. Remarkably, almost 

unchanged fundamental natural frequency upon strain is achieved by properly patterning 

ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy 

harvesting using nano-scale materials in audio frequency range. 

 

3.2 Experimental 

 

3.2.1 Fabrication of ZnO ribbons free-stood on host substrate 

 

Figure 3.1. Fabrication procedure of ZnO ribbons on SOI wafer. 
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Figure 3.1 illustrates the fabrication of ZnO ribbons on host substrate, which 

consists of the following key steps: (1) Preparation of ZnO ribbons on SOI wafers and 

post-annealing to good crystalline structure. A 370 nm thick ZnO film was deposited on a 

SOI wafer by RF sputtering with argon-oxygen (50/50) flow at power of 400 W and was 

annealed at 900˚C to enhance the piezoelectric property (Figure 3.1(a)). (2) Patterning 

ZnO film into ribbons. Lithography process was performed and ZnO film was wet-etched 

in ammonium chloride (NH4Cl) solution (20% by wt) for 10min into ribbons pattern 

(Figure 3.1(b) (c)). (3) Etching of the silicon sacrificial layer to free the ZnO ribbons 

from their host. A xenon difluoride (XeF2) vapor etching (Model: Xetch E1, Xactic Inc.) 

is performed to remove underlayer silicon without attacking ZnO (etching pressure: 

3000mTorr, etching duration time per cycle: 60 s). The exposed silicon between the ZnO 

ribbons provides an avenue for the XeF2 gas to undercut and loosen the ribbons without 

completely dislocating them (Figure 3.1(d)). Photoresist was stripped in acetone after 

silicon undercutting etching. ZnO ribbons were freed from their host substrate and resting 

on SiO2 layer without chemical bonding between them and were ready for the subsequent 

transfer. 

 

3.2.2 Fabrication of buckling of ZnO ribbons on PDMS 

PDMS was prepared by mixing silicone elastomer base and curing agent (Sylgard 

184, Dow Corning) at the ratio of 10:1 by weight, pouring into a petri dish, and baking at 

80 ˚C for 3 hrs. Rectangular slabs of 1.5 cm by 6 cm were cut from the polymerized piece. 

Rinse the slab with isopropyl alcohol (IPA) to remove contaminations and dry it using a 

N2 gun. A custom made stage was utilized to stretch the PDMS to specific strain levels. 
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The pre-strained PDMS substrate was subjected to a flood exposure by a UV light (low 

pressure mercury lamp, BHK), which produces 185 nm and 254 nm radiations, for 150 

seconds. The 185 nm radiations produce ozone, while the 254 nm radiations dissociate 

the ozone to O2 and atomic oxygen (O) to form a chemically activated surface. 

To enhance the interfacial bonding between ZnO and the receiver PDMS, the 

surface of receiver PDMS was treated by ultraviolet (UV) to form hydrophilic surface 

(terminated with –OnSi(OH)4-n functionalities), which is able to form strong chemical 

bonding through condensation reactions with various inorganic surfaces that have -OH 

groups (such as the surface of ZnO in the ambient environment) [91, 92]. 

 

 

Figure 3.2. Fabrication procedure of buckling ZnO ribbons on PDMS 
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Figure 3.2 illustrates the transfer printing approach of buckling ZnO on PDMS. 

ZnO ribbons (tens of micron wide and 370 nm thick) were patterned on a SOI host 

substrate as described previously and subsequently released from the mother substrate 

using XeF2 silicon etching. A piece of PDMS (thickness 8-12 mm) as a stamp was 

bringing into conformal contact with the wafer and quickly peeling it back to retrieve the 

ordered ZnO ribbon arrays. ZnO ribbons were retrieved from the host substrate by the 

PDMS stamp via adhesive van der Waals forces in the surface-dominated ribbons. Next, 

a second slab of PDMS (~2mm thick) as receiver substrate was elastically stretched by 5% 

prestrain and exposed to UV light for 2min for surface modification. After that the PDMS 

substrate then was brought into conformal contact with the PDMS stamp. Peeling off the 

PDMS stamp allowed for complete transfer of the ZnO ribbons to the PDMS substrate 

via covalent interfacial force. Finally, releasing the prestrain in the PDMS substrate led to 

a compressive force in the ZnO ribbons as the PDMS relaxed to zero strain, leading to 

surface deformations and buckling in both ZnO ribbons and the PDMS surface and 

resulting in a flexible ZnO rubber. The resulting wavy geometry is a result of the transfer 

of mechanical compressive energy into bending energy.  

 

3.2.3. Fabrication of controlled buckling of ZnO ribbons on PDMS 

Previously described buckling of ZnO ribbons is highly stretchable but also has its 

limitations. The entire PDMS surface is treated by UV/ozone exposure or by oxygen 

plasma and the buckling occurs in both ZnO ribbons and the upper surface of PDMS as 

well due to the strong bonding between them. The spontaneously formed wavy structure 

has fixed period and amplitudes depending on the ribbon thickness, prestrain and the 
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mechanical properties of both ZnO and PDMS. This wavy structure is typically called 

small wave with typical period in the range of only tens of micron which can 

accommodate maximum strains no more than 30%. Here we use a UVO mask technique 

[43, 93] to selectively treat PDMS surface to achieve buckling configurations with much 

wider buckling period which enables extreme stretchability of the buckled ZnO ribbons.   

 

Figure 3.3. Process steps of a UVO mask and controlled buckling of ZnO ribbons [43, 93]  

Figure 3.3 illustrates the fabrication of a UVO mask, its use in selectively treating 

PDMS and generating controlled ZnO ribbon buckling. Quartz slides coated with 

titanium (Ti), gold (Au), and photoresist were used as UVO masks. Before metal 

deposition, quartz slides were dipped in to freshly prepared piranha solution (3:1 

H2SO4/30%H2O2) for 1 h to remove organic impurities. After rinsing in deionized water 
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and drying with a N2 gun, cleaned slides were coated with 5 nm Ti and then 100 nm Au 

by E-beam evaporator at ultra-high vacuum (UHV). Ti was used as adhesion layer for Au 

and Au was employed as the mask layer for UV light. Negative photoresist SU-8 2015 

(MicroChem) was spin-coated on the slides for 30 s at 4000 rpm to obtain a 13 μm-thick 

thin film. Standard lithography process was then performed to pattern SU-8 2015 and 

residue photoresist was then removed in an oxygen plasma asher leaving the desired 

photoresist pattern as hard mask for final Ti/Au etching. The exposed Au and Ti area 

were etched in gold etchant (TFA) for 1 min and titanium etchant (1:1:20 HF/H2O2/H2O) 

for 30 s, sequentially. 

A pre-stretched PDMS substrate was exposed to UV light through the UVO mask 

to pattern the surface chemistry, namely activated area in width Wact for strong bonding 

and inactivated area in width Win for weak bonding. Using the previous transfer printing 

approach, ZnO ribbons were transferred to the pre-stretched and chemically patterned 

PDMS. The relaxation of the pre-strain on the PDMS led the ZnO ribbons on inactivated 

areas to delaminate from PDMS and form the periodic pop-up buckles anchored on 

activated areas (Figure 3.1(f)). The patterns of pop-up buckles (referred as big waves 

thereafter) can be precisely controlled by the UVO mask with considerable wavelengths. 
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3.2.4 Fabrication of hanging-over ZnO serpentine on PDMS 

 

  (a)                                                          (b) 

Figure 3.4. Fabrication process of ZnO serpentine hanging over PDMS (a) Serpentine 

ZnO nanoribbons rest on SOI wafer after the top silicon layer is etched away. (b) 

Serpentine ZnO nanoribbons are transferred to a PDMS substrate with one side hanging 

over. This configuration is referred as hanging-over serpentine. 

 

We can also fabricate ZnO serpentine structure hanging over the edge of PDMS 

using the previous process approach. The serpentine ZnO nanoribbons resting on the SOI 

wafer (Figure 3.4(a)) were finally transferred to a receiver PDMS substrate anchored at 

one side to form a hanging-over serpentine structure (Figure 3.4(b)).  

 

3.3 Experimental results 

 

Figure 3.5. SEM images of buckled ZnO ribbons on PDMS. The pre-strain is 5% and the 

buckling wavelength is 60.2 μm. 

 

Figure 3.5 shows titled-view SEM images of the small waves ZnO ribbons on 

PDMS with 5% pre-strain. The wavelength was measured as 60.2 m  , which can be 
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captured by the theoretical analysis [42] that gives buckling wavelength as 

   
1/3

2 22 1 / 3 1ZnO ZnO PDMSPDMS ZnOh E E        , where h is the thickness, E is the 

Young’s modulus;  is the Poisson’s ratio, and the subscripts refer to ZnO nanoribbons 

and PDMS substrate. When the following literature values for the mechanical properties 

(EZnO = 129GPa, vZnO = 0.349, EPDMS = 2MPa, vPDMS = 0.48) are used [94, 95], the 

theoretical solution gives 61.8 m  , which agrees very well with experiments without 

any parameter fitting.  

 

Figure 3.6. SEM images of controlled buckling of ZnO ribbons with Wact = 20 μm, Win = 

480 μm and pre = 60%. The buckling wavelength is 292 μm. 
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Figure 3.5 shows SEM images of big waves with Wact = 20m, Win = 480m, and 

pre = 60 %. The buckling wavelength was measured as 292µm, which also agrees well 

with the theoretical analysis [96] λ = Win/(1+εpre) = 300μm.  

 

                                    (a)                                                            (b) 

Figure 3.7. (a) SEM image of a hanging-over serpentine ZnO nanoribbon. (d) Optical 

image showing a hanging-over serpentine subject to 30% applied strain, where the 

twisting at the overhanging segment is observed. The width of serpentine ribbon is 100 

μm. 

 

Figure 3.6(a) shows the hanging-over serpentine ZnO nanoribbons on the edge of 

PDMS substrate. The width of serpentine ribbon is 100 μm. Figure 3.6(b) shows an 

optical image of a hanging-over serpentine ZnO ribbon subject to 30% stretching, where 

the twisting is observed. 

These three configurations of patterned ZnO nanoribbons all present excellent 

stretchability. The small waves and big waves are stretchable through the change of 

buckling profiles. For example, upon tension the buckling wavelength increases and 

amplitude decreases in a similar way as an accordion bellow. The big wave can be 

stretched up to the level of the pre-strain, such as 60% in Figure 3.5. The stretchability of 

the hanging-over serpentine ZnO nanoribbons is through the twisting of the hanging-over 

segment, which is similar to stretching the coiled telephone cord.  
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3.4 Discussions 

The dynamic properties of these three configurations of pre-patterned ZnO 

nanoribbons are theoretically examined for energy harvesting applications. As the small 

waves are firmly bonded on PDMS, any mechanical vibrations on ZnO nanoribbons are 

damped by PDMS, which dissipates the vibration energy stored in ZnO nanoribbons 

rapidly. Thus, the small wave structure is not suitable for energy harvesting application 

though there are some efforts to utilize this structure as a platform to develop stretchable 

energy harvesting devices but no meaningful experimental measurements exist for 

harvested energy yet. 

For big waves, the dynamic analysis [97] has found that the fundamental natural 

frequency   2/ / 12 /ZnO ZnO ZnO inE h W  does not depend on the level of strain and 

remains a constant (7.06) as long as    / 1 3.4pre applied pre cr      
  , where  is the 

fundamental natural frequency,  = 5,610kg/m
3
 is the density of ZnO, applied is the 

applied strain on the buckled structure,  
2

/ / 3cr Zno inh W   is the critical strain for pop-

up buckling [90]. For nanoribbons (i.e., /ZnO inh W  is on the order of 10
-4

), pre is much 

greater than cr  so that the criterion    / 1 3.4pre applied pre cr      
  for strain-

independent fundamental natural frequency holds as long as applied does not reach pre. 

Though the analysis is for small deformation but the strain-independence of natural 

frequency to strain has been validated through finite element simulations. This relation is 

critical to develop stretchable energy harvesting devices, as upon deformation, the 

frequency range harvested by the structure does not prominently vary. The fundamental 
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natural frequency is very important to energy harvesting and always designed to match 

the environmental frequency through the selection of geometric dimension of the 

structure. Due to the invariance of the fundamental natural frequency to pre-strain, the 

length and thickness of the ZnO nanoribbons can be designed through the equation 

 2/ / (12 ) / 7.06ZnO ZnO inE ZnO h W   for given fundamental natural frequency  , 

elastic modulus E and density of ZnO. Figure 3.7(a) provides a phase diagram of the 

natural frequency   as a function of ZnOh  and inW . We are particularly interested in 

letting the natural frequency fall into the range of audio frequency (20 to 20,000 Hz), 

since the audio frequency exists everywhere in the ambient environment and provides a 

wide range to harness the vibration energy from the environment. The natural frequency 

of the big wave with 370ZnOh nm  and 480inW m  shown in Figure 3.5 falls into 

range of audio frequency. 

Another important factor in energy harvesting is that the external vibration 

sources have a wide spectrum of frequencies [89], such as 20 to 20,000 Hz for audio 

frequency. The random analysis was conducted for big waves to determine the dynamic 

response under random excitation. The external random vibration sources alter the 

buckling profiles and the associated bending energy, which can be converted to electrical 

energy. Thus, the expectation of the change of bending curvature under random 

excitation provides a means to find out the location of maximum harvestable bending 

energy, which is practically important for the energy harvesting devices. Figure 3.7(b) 

shows the distribution of normalized mean-square value of bending curvature change 

2E v    upon random excitation for different damping , along the ribbon direction. 
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Figure. 3.8. Theoretical analysis of the dynamic behavior of big waves. (a) Phase diagram 

of the fundamental natural frequency of big waves by choosing the thickness of the 

nanoribbons (hZnO) and the patterning of the PDMS substrates (Win). Three distinct 

frequency domains are shown, namely ultra-low frequency, audio frequency, and ultra-

high frequency. The big waves in FIG. 2b fall into the audio frequency domain. A is the 

cross-sectional area and I is the moment of inertia. (b) The mean-square value of bending 

curvature change  2E v  upon random excitations, normalized by the strength of the 

power spectrum density S0 of the random excitation, as a function of normalized location 

x/Win for different damping factor .  Here the power density spectrum  S   of the 

random excitation is taken as constant S0 at [ 200,200]   and 0 otherwise; the strain is 

taken as   4( ) / [ 1 ] 2 10pre applied pre cr       , where applied  is the applied strain on the 

big waves and  
2

/ / 3cr Zno inh W   is the critical strain for big waves. 
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It is found that the maximal mean-square value of bending curvature change 

appears at / inx W  0 and 1, which corresponds to the anchor points between the activated 

and inactivated areas. Other extreme values appear at / inx W  1/4, 1/2 and 3/4 and the 

expectation at / inx W  1/4 and 3/4 is larger than that at / inx W  1/2. In energy harvest 

application, to reach large energy output, the electrodes should be placed at the locations 

with maximal mean-square value of bending curvature change, or equivalently, the 

maximal harvestable bending energy. Figure 3.7(b) actually suggests the optimal 

locations of the electrode at / inx W  0 and 1 and then / inx W  1/4 and 3/4. 

For serpentine structures without displacement loading, the fundamental natural 

frequency was estimated by using the beam theory and given by 

20.56 /12 /ZnO ZnO ZnO effh E l  , where 
 
l
eff

 is the equivalent length of the serpentine 

structure and is selected as the length of the cantilever part. For structure shown in Figure 

3.6, the length of the cantilever part, or the equivalent length 345 meffl  , the natural 

frequency is approximately 2,407.7 Hz, which is in the audio frequency range. This 

indicates that the serpentine structure is capable to harvest the vibration energy in the 

ambient environment, which is in audio frequency range. The finite element simulations 

were also conducted to study the relationship between frequency and applied strain. 

Figure 3.8 shows the fundamental frequency as a function of applied strain. It is found 

that at vanishing applied strain, the fundamental natural frequency is 1,472.8 Hz, on the 

same order of that obtained from the approximated beam theory. As strain increases, the 

natural frequency varies steadily but remains at the audio frequency range even at the 15% 

applied strain. With increase of the length of the cantilever part, the frequency has less 
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dependence on the applied strain. Again interestingly, the over-hanging serpentine 

structure provides another design of reaching audio and strain insensitive frequency for 

harvesting ambient energy in audio frequency range.  

 

Figure. 3.9. Theoretical analysis of the dynamic behavior of hanging-over serpentine ZnO 

nanoribbons. Finite element simulation results are shown as the plot of fundamental 

natural frequency  as a function of applied strain. It is found that the fundamental 

natural frequency remains in the audio frequency domain and does not strongly depend 

on applied strain. 

 

3.5 Summary 

Three forms of ZnO nanoribbonson PDMS substrates were fabricated through 

lithography patterning, namely small waves, big waves and overhanging serpentine 

structure, and their applications on stretchable energy harvesting applications were 

discussed through theoretical analysis. It was found that big wave and overhanging 

serpentine structures show strain-insensitive fundamental natural frequencies in the audio 

frequency range upon applied strain, which provides a means to develop stretchable 

energy harvesting devices for various applications. Though the demonstration in this 

chapter is for ZnO, the methodology can be applied to other piezoelectric materials, such 

as PZT with much stronger electrical-mechanical coupling. We expect that this work is 
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able to enlighten a broad field of stretchable energy harvesting devices within audio 

frequency range. We also notice that the analysis in this chapter does not consider 

multilayer structures that are employed in the real devices, though the similar analysis 

can be conducted by using the effective material properties of the multilayer structures. 
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CHAPTER 4 

Silicon thin-film on soft substrate as anodes for lithium ion batteries
†
 

 

High energy capacity Li-ion batteries using Si film anodes are found to have a 

long cyclic life by successful relaxation of the stress induced during lithiation and 

delithiation. A soft elastomer substrate in the Si-film-anode plays a beneficial role for 

improved performance of the battery, which suggests a general way to solve the 

bottleneck problem for Si anodes. 

  

                                                 
†
 Based on Cunjiang Yu, Xin Li, Teng Ma, Jiepeng Rong, Rongjun Zhang, Joseph Shaffer, Yonghao An, 

Qiang Liu, Bingqing Wei, and Hanqing Jiang. "Silicon Thin Films as Anodes for High‐Performance 

Lithium‐Ion Batteries with Effective Stress Relaxation." Advanced Energy Materials 2.1 (2012): 68-73. 
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4.1 Introduction 

There is a great deal of interest in developing next generation lithium ion (Li-

ion) batteries with higher energy capacity and longer cycle life for a diverse range of 

applications such as portable electronic devices, satellites, and the next-generation 

electric vehicles. Silicon (Si) is an attractive anode material that is being closely 

scrutinized for use in Li-ion batteries because of its highest-known theoretical charge 

capacity of 4,200 mAh/g [98]. The development of Si-anode Li-ion batteries has 

lagged behind, however, mostly because of the large volumetric changes (up to 400%) 

that occurs upon insertion and extraction of Li ions, and in turn the large 

electrochemical related stress, which results in electrode pulverization, loss of 

electrical contact and early capacity fading of battery cells [99-102].  Despite this 

challenge, the extraordinarily high energy capacity of Si in its own right has 

motivated researchers to develop new techniques that curb the limitation of Si as a 

practical anode material.  Ultra-thin Si film down to 50 nm has been reported for 

successful anti-pulverization and capacity non-degradation over two thousand 

charging/discharging cycles on roughened current collectors [103]. This, together 

with  a surge of work besides that on improving the capacity retention of Si anodes 

such as: nanoparticles [104, 105] and/or composites [106-109], nanowires [110-112], 

nanotubes [113, 114], which can offer expansion spaces during lithium 

insertion/extraction (Figure 4.1(a))  have shown improved performances.   However, 

some extent of capacity fading still exists due to limited space for accommodating the 

facile strain expansion as well as decreased accessibility of the electrolyte to the solid 

electrolyte interphase (SEI) between the silicon nanostructures and electrolyte.  Here, 
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we present a new strategy of stress relaxation for Si films using elastomeric substrate 

that will establish an alternative route for new electrode design. Besides, the design of 

the anodes offers more efficient ion and electron transportation than those reported 

work using nanoparticles, nanowires, and nanotubes.  

 

Figure 4.1. Different approaches to achieve longer cyclic life time for Si based anodes of 

lithium ion batteries.  (a) Various nanostructured Si as anodes in Li ion batteries. (i) Si 

nanocomposites using elastic matrix to act as buffers for the strain release; (ii) Si 

nanowires and (iii) Si nanotubes utilizing the lateral free surface to accommodate volume 

expansion. The approach (b) using soft substrates to release the lithiation-induced stress 

in Si thin film during cyclic charge/discharge. The compressive stress is released by 

generating out-of-plane deformation, i.e., buckling. 

 

The general concept of stress relaxation can be understood using an eigen 

strain analogy.  It is well-known that the eigen deformation of a free-standing 

material does not lead to mechanical stress, but only self-compatible deformations, 

and eigen strain induced stresses are generated when the eigen strain is constrained.  

Consequently, the stress can be released by removing these constraints (e.g., stainless 

steel in [110] and rough substrates in [103]).  In the following, we report an approach 
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in which the rigid substrates (e.g., current collectors) that constrain the “free” 

expansion/contraction of the Si anodes during charge/discharge are replaced by soft 

substrates. The mechanism for stress relaxation lies in that the volumetric strain in Si 

induced by charge/discharge cycling can buckle the flat Si thin films on soft 

substrates (Figure 4.1(b)), in turn releasing the stress in Si films by balancing the 

electrochemical induced axial component and buckling induced bending component 

of stress.  The similar mechanism has been extensively studied for compressing stiff 

thin films on elastomeric substrates [15, 42] and successfully utilized to develop 

stretchable electronics [115, 116], though the mechanism to be presented here is 

different from that in existing studies.  This article presents experimental studies that 

demonstrate the proof-of-concept and exhibit superb performances of  Si film anodes 

based Li ion batteries resulting from successful stress relaxation. Theoretical 

examinations including continuum analysis and first-principle calculations provide 

qualitative understanding of such electrochemical-mechanical coupled system.  

 

4.2 Experimental 

The realization of Si anodes involves the fabrication of Si thin films from bulk 

Si wafer, then separation of these two by undercutting the inter-media layer, and 

finally transfer printing Si thin films as anodes onto soft substrates. Figure 4.2(a) 

illustrates the procedure for fabricating the Si anodes. The Si anodes are derived from 

the device layer of silicon-on-insulator (SOI) wafers (Soitec Inc.), whereas low-cost 

Si materials from chemical vapor deposition (CVD) are adoptable without adding any 

complexity following the procedures below with large scale capabilities.    PDMS 
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polymer was used as the soft substrate and its stability in the electrolyte (1 M LiPF6 + 

EC + DEC (1:1 in volume)) was carefully examined under room temperature within 

argon ambient, where no mechanical or chemical degradation has been found. The 

fabrication started from patterning the top Si (100 nm to 400 nm) of SOI wafers into 

ribbons (75 μm-width) and removing the buried SiO2 layer (400 nm). Thin layers of 

chromium (5 nm), gold (100 nm) and chromium (5 nm) were then deposited in 

sequence on top of the Si ribbons, followed by oxidizing the top Cr layer. A flat 

PDMS substrate (1-2 mm thick) was brought into contact with the multi-layer 

structure (Cr2O3/Au/Cr/Si). Prior to the contact, the PDMS surface was treated by 

ultraviolet/ozone (UVO) light, which changed the surface properties of PDMS [91, 

92] and helps to form strong chemical bonds via condensation reactions with various 

other surfaces that have -OH groups, such as the covalent bonds (-Si-O-Cr) between 

PDMS and Cr2O3.  Peeling the PDMS away resulted transferred multi-layers onto the 

PDMS as the formation of the Si anodes on the soft PDMS substrate with the 

underneath Au current collector, in order to take advantage of the short diffusion 

distance along the Si thickness direction, which offers more efficient ion and electron 

transportation than those reported work using nanoparticles, nanowires, and 

nanotubes, and therefore benefits high-power density. Finally, thin layers of Cr (10 

nm) and Au (100 nm) were deposited on top of the two ends of the Si ribbons through 

a shadow mask as a means of wiring out.   
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Figure 4. 2. Half-cell lithium ion battery based on Si anodes by microfabrication.  (a) 

schematic steps to fabricate the Si anodes on PDMS substrates. (b) An SEM image of Si 

anode on PDMS, and (c) optical images of fabricated anode before assembling.  (d) An 

illustration of the battery cell assembly. 

 

Figure 4.2(b, c) show the SEM and optical images of a fabricated Si anode on 

a PDMS substrate, respectively.  Figure 4.2(d) illustrates a schematic assembled 

testing cell with fabricated Si anode and lithium metal as reference as well as counter 

electrode.  The mass of Si anodes can be precisely determined by the well-defined 

geometries of the Si ribbons by photolithography and the well-accepted density of Si 

[117].  The typical mass of Si anodes used in this study varies from 5.8 g to 16.3 g 

for different Si patterns and Si thicknesses. 
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4.3 Results and discussion 

The electrochemical characterizations have been conducted on the assembled 

HS-test cells (Hohsen Corp.).  Here the surface of the Si anodes has not been 

particularly modified so that the SEI is similar to other reported work.  Figure 3A is a 

striking example of the long cyclic stability of a half-cell battery up to 500 cycles 

with nearly 85% capacity retention.  The cell was galvanostatically charged and 

discharged within a voltage window of 0.005-3.000 V (vs. Li/Li+) at C/4 rate (the 

charge/discharge rate was calculated based on the theoretical capacity of 4,200 mAh/g 

for Si and the C/4 rate corresponds to a current density allowing a full discharge in 4 

h).  It is noted that the first cycle was not counted because of a varying C rate (0.1 C) 

and formation of the SEI layer.  Compared to specific capacities reported for silicon-

based lithium ion batteries [102], the battery from the Si thin film on PDMS substrate 

features an extremely low fading rate (15.4% over 500 cycles, equivalent to 0.033% 

degradation per cycle at C/4 rate) and a high specific capacity (up to 4,137 mAh/g at 

the beginning and at 3,498 mAh/g at the 500th cycle), indicating much improved 

cycling stability compared to conventional Si electrodes, which usually fade quickly 

after tens of cycles due to the well-known volumetric change during Li ion insertion 

and extraction (for instance, a pure Si anode degraded from ~3,200 mAh/g to ~300 

mAh/g after 20 cycles, equivalent to 4.5% degradation per cycle [118]).  To be noted 

that the strategy of stress relaxation provides significant tolerance to Si thickness (up 

to 400 nm for the present study though by no means of optimazation) compared to the 

previous study, where the thickness of the Si anode was limited to 50 nm and the 

surface of the current collector needs to be roughened [103].  Although theoretical 
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studies [119-122] predict that ultra-thin films or tiny particles, together with plastic 

deformation and slow charging rate would somehow avoid fracture, alternatively, 

stress relaxation would have profound significance to meet the requirements of 

current batteries with thicker anodes and/or cathodes. 

 

 

Figure 4.3. Electrochemical testing of Si anodes based lithium ion batteries.  (a) SEM 

images show the buckled Si after lithiation after six cycles charge/discharge under the 

charge rate of 1C. The insert is an enlarged image clearly shows the buckling 

morphology.  Si ribbons buckle on soft substrates due to electrochemical reactions.  (b) 

Long cycle stability of the battery cell up to the 500
th

 cycle with nearly 85% capacity 

retention.  The inset is a typical charge/discharge profile from the 13
th

 cycle to the 18
th

 

cycle).  (c) Columbic efficiency from the 1
st
 cycle to the 500

th
 cycle shows high value of 

99% to nearly 100% efficiency.  The inset includes I-V profiles of the 10
th

, 100
th

, 200
th

, 

300
th

, 400
th

, and 500
th

 cycles, respectively. 
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The superb cycle stability is primarily attributed to the unique combination of 

the Si ribbons and the soft PDMS substrate, which helps to release the lithiation stress 

in Si via buckling of Si ribbons.  The evolution of the morphology change of the Si 

anodes has been evidenced in situ (see Movie S1 in ref [49]).  Figure 4.3(a) shows the 

SEM images of buckled Si ribbons (400 nm thick and 75 μm wide) after six cycles 

charge/discharge under the charge rate of 1C, which verifies the hypothesis that the 

lithiation strain buckles the Si thin films on soft substrates.  The buckled structures, 

similar to springs, accommodate the accumulated stress so as to avoid cracking and 

crumbling of the Si electrode, thus maintaining the structural integrity and in turn, 

contributes to the superior cycling performance. We noticed that some cracking or 

extreme localized wrinkles exist, which may be caused by cell assembling. 

Figure 4.3(c) demonstrates a significantly stable and high Colombic efficiency 

up to 500 cycles.  The Colombic efficiency, defined here as the ratio of the capacity 

of the charge immediately following the previous discharge, is from 92% to 95% 

throughout the duration of the entire 500 cycles.  This data, higher than most of the 

reported values for Si-based lithium batteries which have lower than 90% of the 

Colombic efficiency [113, 123, 124], complements the low capacity fading shown in 

Figure 4.3(b) and indicates that the PDMS substrate plays a tremendously beneficial 

role in holding the electrode while allowing it to expand and contract reversibly 

during the repeated lithiation and delithiation processes.  The consistent charge-

discharge profile (Voltage vs. Specific capacity) demonstrated as the inset of Fig. 3C 

shows an excellent stability of the dynamic processes during the Li-ion inserting into 

and extraction out of the Si lattice.  Interestingly, the insertion and extraction 
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processes appear across the entire potential window (0-3.0 V), and this Si anode 

system has an asymmetric reaction window, mostly below 1.0 V for the insertion 

process and above 1.0 V for the extraction process, distinguishing it from other Si 

anodes which have a relatively symmetric reaction window all below 0.5 V [125].  

This unique phenomenon cannot be simply interpreted as a pure Li/Si redox reaction 

and/or nanostructural effect [125].  It is plausible that the stress relaxation from the 

soft substrate may have different effects on the Li ion insertion and extraction.  Since 

the huge mechanical deformation in Si during electrochemical reactions (e.g., 400% 

volumetric change), the strain energy (proportional to the square of the deformation) 

is untypically comparable to the electrochemical energy (hundreds of kJ/mole as a 

typical scale).  Thus, it is very likely that the mechanical deformation (e.g., the stress 

relaxation in the present work) affects the battery performance and raises new 

scientific phenomena, such as charge-discharge profile in Figure 4.3(c) and many 

others [126].  The fundamental understanding of this unique phenomenon is 

underway. 

Figure 4.3(b) contains two pieces exciting information: long-cyclic stability 

and high specific charge capacity, both are related to stress relaxation.  The 

mechanism of relaxation of the stress associated with the electrochemical reaction can 

be qualitatively understood using continuum analysis.  To simplify the problem, we 

create a two-dimensional model by considering a Si thin film (100 nm thick) bonded 

to a relatively thick PDMS substrate (500 m) and ignoring other components, using 

the finite element analysis package ABAQUS.  The Si thin film is modeled as an 

elastic-plastic material because plastic flow in Si anodes has been experimentally 
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identified [127-129]; and the PDMS is modeled as an elastic material.  The modeling 

details can be found in SI section.  Because of the buckling, the stress in the Si is non-

uniform, i.e., tension and compression on the two sides of a neutral plane.  Figure 4 

shows the evolution of the maximum Si stress (both tension and compression) with 

the state of charge (Supplementary Information).  It is noticed that the maximum 

stress at 50% state of charge is only about 500 MPa, much smaller than that of the 

same Si thin films on a rigid substrate, which shows the relaxation of the stress by 

using soft materials.  

 

Figure 4.4. Finite element simulations show that the maximum stresses in Si are released 

on soft substrates, compared with the high stress developed in Si on rigid substrates.  

 

The current system with soft substrates to release stress has very high specific 

charge capacity (close to the theoretical value 4,200 mAh/g as shown in Figure 

5.3(b)).  First-principle calculations have been conducted to explain the mechanism of 

high energy capacity when the stress relaxation is introduced from the energy point of 
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view.  In the calculations, the stress relaxation is simulated by applying a tensile 

stress on a Li/Si system that originally has compressive stress (caused by constraints 

from rigid substrates). The potential energy E is given by 

E = Epre +Li- ELi/Si, 

where Epre is the energy for a reference (or previously existing) Si system (with or 

without inserted Li), Li is the energy for one Li atom, ELi/Si is the energy for the 

integrated Li/Si system after Li insertion, and  is the number of inserted Li atoms.  

The larger potential energy indicates that the Li insertion into the Si (or Si/Li) is more 

energetically favorable and thus the Li-inserted Si system is more energetically stable.  

We calculated the potential energy for inserting 160 Li atoms into a 4×4 repeated Si 

(111) supercell slab with 192 Si atoms.  Without stress relaxation, the potential 

energy is calculated to be 80.94 eV and the compressive stress due to Li insertion is 

10.36 GPa.  To be conservative, partial stress relaxation, i.e, a 2.4 GPa tensile stress 

is applied to the same Li/Si system, which slightly increases Epre from -1,149.27 eV 

(no stress relaxation) to -1,148.03 eV (with stress relaxation).  However, ELi/Si 

apparently decreases from -1,352.89 eV (no stress relaxation) to -1,360.18 eV (with 

stress relaxation), which increases the potential energy to 89.47 eV.  This calculation 

indicates that the Li/Si system with stress relaxation is more energetically favorable to 

accommodate more Li ions, which qualitatively explains the high specific charge 

capacity.   
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4.4 Summary 

In summary, the advances reported here using soft elastomeric substrates to 

release electrochemical reaction induced stress in Si anodes offer dramatically 

improved performances for Li ion batteries.  Although the reported multilayered Si 

anodes serve to demonstrate the advantages of a half-cell battery, the same approach 

is fully compatible for cathode designs, which would provide unusual yet huge 

opportunities in high performance Li ion batteries, especially using those high energy 

capacity electrode materials. The fabrication process here is also compatible with 

standard and mature microfabrication technique, which makes this method practical 

for the development of high-energy thin film batteries and bulk batteries by scaling up 

from multilayer stacking of active materials.  In addition to the electrochemical 

performances from the unique mechanics aspects, this technology also has the 

immediate potential for flexible/stretchable and portable high performance Li-ion thin 

film batteries based on the presented electrodes design with or without stacked layer-

by-layer configurations.  Besides stress relaxation, the elastomeric PDMS can also 

serve as solid, ion conductive, and mechanical conformable electrolyte by doping 

with lithium salt [130], where dual functions of PDMS make the development of high 

performance and solid-state thin film Li ion batteries using Si as anodes promising. 

We are also aware of the shortcoming of the present design, i.e., PDMS/Si electrode 

structure. PDMS releases the stress but also significantly increases the inactive 

materials, which prevents the practical application of the present method. To remove 

the PDMS and meanwhile be able release the stress based on the similar concept (i.e., 

buckling) is an on-going work that we are currently working on. 
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Chapter 5   

 

Pattern transfer in submicron soft contact lithography using PDMS wrinkling 

Masks 

 

We propose a near-field photolithographic approach that uses wrinkled PDMS as 

submicron masks to generate periodic submicron structures. The wrinkled PDMS can be 

easily fabricated with submicron feature sizes. When used in phase-shifting lithography, 

these masks produce submicron line-space pattern in photoresist transferred with large 

filling ratio, in contrast to generating only ~100 nm edge submicron patterns in 

conventional near-field soft-contact photolithography. The near-field and far-field 

patterns of intensity are analyzed to demonstrate the ability of pattern transferring and the 

advantages of large-filling-ratio line-space patterns for grating application, respectively. 
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5.1 Introduction 

There exist many ways to fabricate submicron patterns and broadly we divide 

them into two technical categories: writing and replication. Most techniques used for 

writing submicron patterns are either too slow or too expensive to be used for mass 

production, such as electron beam lithography and focused ion beam. Replication of a 

master provides an inexpensive and convenient route in terms of mass production but still 

requires a submicron pattern fabricated on the master for sequential transferring 

inevitably involving high cost or time-consuming techniques such as high-precision 

writing, X-ray or EUV lithography and self-assembly.  

Rogers and his colleagues used soft-contact optical lithography applying an 

elastomeric phase mask with feature sizes of microns to produce submicron patterns 

[131-135]. But this phase-shift edge lithography is limited to obtaining only shadow edge 

line patterns with sizes of ~100 nm and several micron loose space patterns.  

We have experimentally reported a convenient near-field soft-contact 

photolithographic method using spontaneously formed wrinkled PDMS as optical masks 

for forming features with submicron sizes on photoresist [136]. In this work, we show 

that these patterns in photoresist can be transferred to thin metal line-space patterns using 

a standard liftoff procedure and also demonstrate its capability of generating submicron 

line-space patterning with large filling ratio. Finally we employ these periodic patterns to 

an application of optical diffraction grating.  
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5.2 Experimental 

 

Figure. 5.1. Schematic illustrations of (a) the fabrication process for PDMS mask and (b) 

the lithography process with a PDMS mask. 

 

Figure 5.1(a) outlines the procedure used to fabricate PDMS mask. The 

fabrication of PDMS masks is very easy and starts from a PDMS slab (1-2 mm thick). 

First stretch the PDMS slab and then sputter-coat a gold (90%)/palladium (10%) alloy 

film of nanoscale thickness atop the pre-strained PDMS. After that, release the pre-strain 

from PDMS gently. The relaxation of pre-strain compresses the thin alloy film leading to 

sinusoidal wrinkling pattern. This is a result of the minimization of the system’s potential 

energy by integrating hard materials with soft substrate and this strategy has been 

proposed for various applications including stretchable electronics, tunable gratings and 

lithium ion batteries.   Given the alloy thickness 10 nm and 50% pre-strain, the wrinkling 

periodicity is around 900 nm depending also on the mechanical properties of both PDMS 

and alloy. By varying the pre-strain and the thickness of alloy film, the wrinkling 

periodicity can be tuned with a broad range of hundreds nanometers to tens of microns. In 

this work, the wrinkling periodicity is in the order of 500-1500 nm range making it an 
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attractive approach for producing submicron grating (both line-width and space-width are 

submicron).  

Figure 5.1(b) shows the use of wrinkled PDMS as a photomask in 

photolithography for generating submicron patterns in a thin film of positive-tone 

photoresist and fabricating submicron gold strips with a more lift-off step. A pre-cleaned 

silicon wafer is primed with hexamethyldisilazane (HMDS), spin-coated with photoresist 

(AZ 3312) at 6000 rpm (~800nm thick), and soft-baked at 100˚C for 1min. The PDMS 

mask, which is translucent to visible and UV light for the thin Au/Pd layer (10 nm), is 

brought into conformal contact with photoresist and an OAI 808 aligner is applied to 

expose the photoresist layer using ~40mJ/cm
2
 of UV light (365nm) regulated by the 

exposure time. The exposure dose of the contact region (with the photoresist through the 

PDMS) is higher than that of the non-contact region due to the existence of air gap 

between mask and photoresist. The exposed photoresist is then removed using developer 

(AZ MIF 300) for 50-60 sec producing periodic structures with submicron pitch. To 

fabricate submicron grating the wafer is then placed in a plasma Asher for 30 sec at 

200W to remove residual photoresist and a titanium/gold (5 nm/50 nm) film is 

subsequently deposited by e-beam evaporation. The remaining photoresist and overlying 

film is stripped off by a lift-off process in acetone and a submicron grating of gold stripes 

is obtained. 
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Figure 5.2. SEM image of a PDMS mask with a wrinkling periodicity of ~900 nm (a) and 

the patterned structures using soft-contact optical lithography with the PDMS mask: (b) 

Patterned photoresist; (c) 50 nm gold coated on the patterned photoresist; (d) Gold strips 

after a lift-off step. (The scale bar is 1μm). 

 

Figure. 5.2(a) shows a PDMS mask with a wrinkling periodicity of ~900 nm. 

Photoresist strips with similar periodicity are fabricated using the soft-contact optical 

lithography with this mask as shown in Figure 5.2(b) and the photoresist thickness is 

~800 nm. A 50-nm-thick gold layer is coated on the photoresist strips using e-beam 

evaporation as shown in Figure 5.2(c) and gold strips with the same pitch are generated 

on the substrate (Figure 5.2(d)). 
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5.3 Finite element analysis of near field intensity 

 

Figure 5.3. FEA simulation of near-field intensity passing through PDMS masks and the 

photo lithographic experiment results. Contour of energy distribution in space for a 

PDMS mask with a period of 900 nm (a) and 1200 nm (d), respectively. Normalized 

energy profile along the horizontal cut line 10 nm below the air/photoresist interface (b) 

from (a) and (e) from (d), respectively. SEM images of gold strips with 900 nm pitch and 

1200 nm pitch fabricated using soft contact lithography with the 900 nm mask (c) and the 

1200 nm mask (f), respectively. For these calculations, the wavelength of light used for 

exposure is 365 nm. The magnitude of the sinusoidal wrinkling pattern of the Au/Pd layer 

is 100 nm. The wrinkling periodicity is 900 nm. The index of refraction of the PDMS 

mask is 1.467.   

 

Figure 5.3(a) and (d) illustrate the simulation results from finite element analysis 

(FEA) of the light intensity passing through two PDMS masks with 900 nm and 1200 nm 

periodicity respectively in contact with photoresist substrate. Commercial software 

COMSOL 4.2a is applied and the build-in 2D Electromagnetic Wave (EMW) module is 

used. A PDMS mask with two wrinkling periods is modeled with periodicity condition 



  69 

applied at both left and right side of the model. A plane-wave light goes through the 

model from top to bottom. The Perfect Matching Layer (PML) is applied at the bottom of 

the model to avoid any unphysical refraction from the outer boundaries. 

In the model, the light passes through the PDMS mask, the thin sine-shape Au/Pd 

layer, the air and the photoresist and generates a quasi-sinusoidal near-field pattern in the 

photoresist, whose periodicity matches the periodicity of the sine-wave mask, as shown 

in Figure 5.3(b, e). This effect only applies to the mask with submicron half-periodicity 

regardless of the shape of mask. As the periodicity decreases, the structure of the pattern 

of intensity in the near field reduces correspondingly. When the periodicity reaches a 

critical value of half micron (not show here) the near-field pattern simplifies to a single 

sinusoid. For example, a square-wave mask with submicron periodicity can generate a 

single sinusoid in near field as well but experimentally it is difficult to fabricate square-

wave submicron pattern easily at a low cost. It is also noticed that the energy intensity 

reaches its highest at the region where the phase mask is in direct contact with photoresist 

and it drops to the lowest where there exists the highest air gap between the mask and the 

photoresist. This is because the air gap between the PDMS and photoresist can shift the 

phase of the light and therefore reduce its intensity.  

This patterning capability is quite broad compared to previous edge-line-

patterning in that it can transfer the shape of PDMS mask to photoresist with good 

fidelity and also the line-space is scalable depending on the exposure dose. But 

experimentally the line-width is close to the space-width in all results of photo 

lithography process, as shown in Figure 5.3 (c, f), which makes the structure quite suited 

for diffraction gratings.  
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5.4 Simulation for far field 

We did study on the influence of the filling ratio, defined as the ratio of line-width 

to the pitch, of a reflective diffraction line-space grating on the grating efficiency. When 

a laser beam shines on the surface of a diffraction grating, the beam gets reflected and 

diffracted in the far field. Here the grating efficiency is defined as the ratio between the 

power of the first order refraction and the one of the incident light. Commercial software 

FDTD (finite-difference time-domain) Solution 8.7 is applied to do 2D simulation of the 

grating efficiency. The shape of high index bar is rectangle. The grating periodicity, the 

height of the high index bar, the material of each part and the incident angle of light 

source are all fixed during the whole calculation. 

 

                       (a)                                                                   (b) 

Figure 5.4. Simulation plots of far-field diffraction of light reflected by a line-space 

grating. (a) Relationship between the square of the normalized electric field and the 

refraction angle. (b) shows the relationship between the normalized grating efficiency and 

the filling ratio. For these calculations, The wave length of the incident light is 632.8 nm, 

which is the typical value for the red light. The grating with 100 periods is modeled. With 

the magnitude of incident electrical field equals to 1 and the filling ratio of the grating 

equals to 0.667. 

 

Figure 5.4 shows the simulation results for the efficiency of a reflective 

diffraction line-space grating. Only the first order of diffraction energy is taken account 
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for the grating efficiency as shown in Figure 3.4(a). In Figure 3.3(b), black dot is the raw 

data and red curve is the Gauss fit curve. The maximum grating efficiency can be 

obtained when the filling ratio is equal to about 0.5 or in other words, the line-width 

equals to space-width. It can be seen Gauss fit gives a good fitting of the obtained data. 

Therefore this soft contact lithography technique is an easy way to fabricate equal line-

space patterning for the application like high efficiency diffraction grating.  

 

5.5 Summary 

In summary, we have demonstrated a convenient strategy based on soft-contact 

optical lithography with wrinkled PDMS mask for fabricating submicron equal line-space 

structures. This method has several advantages over the conventional phase-shift edge 

submicron lithography: the fabrication of the PDMS submicron mask is easy, low cost 

and no need of photo lithography; it can produce submicron features separated by 

submicron and the line-space width is tunable. This method also has one major limitation: 

it is difficult to achieve accurate control over either the feature size for masks by 

changing pre-strain and film thickness or the line-space ratios by varying exposure doses.  

Therefore, this method is a complementary approach to other photolithography and is 

especially suitable for generating submicron periodic patterns, where the line-width is 

close to the space-width but the accuracy is not critical. 
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CHAPTER 6 

Conclusions and outlook 

 

The last chapter summarizes this thesis work and proposed several interesting 

topic for future investigation. 
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6.1 Summary and concluding remarks  

PDMS polymer is soft and elastic; Silicon, gold and ZnO are not. A strategy that 

overcomes this fundamental mismatch in mechanics and form has enabled exploration of 

a variety of applications ranging from optical grating/mask, stretchable electronics, to 

energy storage. Configuring such hybrid structures into “wavy” shapes yields a 

film/PDMS system with large stretchability and the underlying mechanism is that the 

wavy shapes change to accommodate applied strain resulting in considerable strains in 

the PDMS only, but not in the film. Here are some important accomplishments 

summarized from previous chapters. 

The buckling instability of film/PDMS comes from the extreme mismatches in 

properties between PDMS and its counterpart. For example, the modulus of silicon is 

~100,000 times as high as PDMS, the thickness is ~10000 times as thin, and the CTE is 

~100 times as small. As a result, the buckles change their shapes to accommodate applied 

strains while the underlying PDMS provides an elastic restoring force. The resulting 

mechanical advantage, in which the peak Si strains is substantially smaller than the 

ribbon strains, is critical for achieving stretchability for applications including stretchable 

ZnO energy harvester and silicon-anode-based high performance LIB. The controlled 

buckling of ZnO can reach extremely high levels of stretchability (up to 60%) through 

selectively treating PDMS surface using a UVO mask. Although the initial state of silicon 

film anode in LIB is flat before charging, the silicon film upon compressing due to the 

electrochemical lithiation can accommodate large volume expansion and thus achieve 

high energy capacity. Spontaneously generated submicron PDMS/Au buckles can be 

firmly bonded on silicon specimen by oxygen plasma treatment for strain sensing 
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application and also can be utilized as photo masks to fabricate submicron periodic 

patterns thanks to the transparency of PDMS in a convenient and low-cost way. 

 

6.2 Outlook of future work 

Beyond the work in this thesis, the following questions remain interesting to 

explore in future work. 

 1D PDMS/Au wrinkling can be further extended to 2D wrinkling by applying and 

release 2D prestrain in both x and y direction sequentially for 2D strain sensing 

application. 

 In addition to 1D parallel metal bars, cross-line gratings can be generated as zero-

thickness spaces in both x and y directions by using PDMS/Au wrinkling as photo 

masks, separating tiny metal dots in a regular orthogonal array for 2D gratings. 

The directly fabrication processes offer a strong bonding strength between zero 

thickness cross-line gratings and specimen so that the thin tiny dots can deform 

together with the underlying specimen freely, which makes them attractive 

candidates for micromechanics studies involving large strain gradients or material 

discontinuities. 

 For stretchable piezoelectric device, the fabrication of electrodes on optimized 

sites on PDMS is critically important but it is challenging to transfer ZnO ribbons 

onto electrode surface such as gold due to the weak bonding between ZnO and 

gold. And the piezoelectric testing of stretchable ZnO device remains poorly 

understood and is worth studying.  
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 PDMS is compliant and also transparent. It would be interesting to explore a 

transparent lithium ion battery, a key component for fully integrated transparent 

devices, which is also highly flexible by fabricating and aligning an electrode 

grate tens-of-micron-wide on clear PDMS.  
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