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ABSTRACT

We are expecting hundreds of cores per chip in the near future [19]. However, scaling the

memory architecture in manycore architectures becomes a major challenge. Cache coherence provides

a single image of memory at any time in execution to all the cores, yet coherent cache architectures are

believed will not scale to hundreds and thousands of cores [20, 22, 28, 68]. In addition, caches and

coherence logic already take 20-50% of the total power consumption of the processor and 30-60% of die

area [20]. Therefore, a more scalable architecture is needed for manycore architectures.

Software Managed Manycore (SMM) architectures emerge as a solution. They have scalable

memory design in which each core has direct access to only its local scratchpad memory, and any data

transfers to/from other memories must be done explicitly in the application using Direct Memory Access

(DMA) commands. Lack of automatic memory management in the hardware makes such architectures

extremely power-efficient, but they also become difficult to program. If the code/data of the task mapped

onto a core cannot fit in the local scratchpad memory, then DMA calls must be added to bring in the

code/data before it is required, and it may need to be evicted after its use. However, doing this adds a

lot of complexity to the programmer’s job. Now programmers must worry about data management, on

top of worrying about the functional correctness of the program - which is already quite complex.

This dissertation presents a comprehensive compiler and runtime integration to automatically

manage the code and data of each task in the limited local memory of the core [10, 11, 12, 13, 14, 15,

40, 49]. In Chapter 4, we firstly developed a Complete Circular Stack Management [12] to manage stack

frames between local memories and the main memory. Then we optimize it by proposing Smart Stack

Data Management (SSDM) [49]. In this work, we formulate the stack data management problem and

propose a greedy algorithm for the same. Heap data is dynamic in nature and therefore it is hard to

manage it. We provide a fully automatic scheme in Chapter 5 to manage unlimited amount of heap data

in constant sized region in the local memory [10, 12, 14]. Later on, we propose CMSM heuristic for code

mapping problem [11] (Chapter 6). Finally, in addition to those separate schemes for different kinds of

data, we also provide a memory partition methodology in Chapter 9.
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Chapter 1

INTRODUCTION

1.1 Number of Cores is Increasing

The continuing need for higher performance is undeniable. All computing devices, from sensor nodes,

watches, eyeglasses, cell-phones, tablets, laptops, desktops, servers, data centers need higher perfor-

mance. However, higher performance can no longer be simply obtained by scaling up the operating

frequency. This is because power increases cubically with frequency of operation, and most computing

systems are limited by power, energy and thermal constraints. Embedded computing systems are often

designed around battery capacity, high performance and data centers are designed around the total

power draw, and the rest in the middle are designed around thermal constraints.

To improve performance without much increase in the power consumption is the goal of com-

puting system design, and parallelism is the most promising way forward. Figure 1.1 from Intel gives

an insight into the reason. The pair of blue and gray bars in the middle show the performance and

power respectively of a single core system. The two bars on the left show the performance and the

power of the system, if we increase the operating frequency of the cores by 20%. The bars indicate that

the performance increases by about 13%, but power increases by 73%. This is again because power

depends cubically on frequency, while performance is only linearly proportional – at best. The two bars

on the right show the performance and power of a dual core system, when the operating frequency of

the cores is reduced by 20%, and the application divided into two perfectly parallel parts, that run on the

two cores. The performance of this dual core system is then 73% higher than the single core system,

but the power is almost the same. In conclusion, parallelism provides a way to improve performance

without much increase in power consumption. Therefore, the irrevocable trend of computer design in

the near future is to increase the number of cores, while reducing the operating voltage and frequency.

The new interpretation of Moore’s law states that the number of cores will double every two years. We

already have 2-4 cores in our phones, 6-8 cores in tablets and laptops, up to 32 cores in servers and

data centers. Soon, we will have processors that have hundreds of cores! Experts from industry project

over a thousand cores per chip in about a decade [19].
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Figure 1.1: Multicore energy efficient performance.

1.2 Hundred Core Processor: Is It Just a Matter of Putting Together More Cores?

The question is – how do we build a processor with hundreds and thousands of cores? Can we design

them just like our few-core processors of today, and that it is just a matter of putting more number of

cores on the die, or do we have to think anew? This dissertation argues that current processor designs

will not scale to hundreds and thousands of cores for two main reasons.

First is that existing cores consume too much power. For example, the 4-core Intel Core i7-

3770 (Ivybridge, 22nm) consumes 77W at 3.4GHz [3]. If we use these cores to design a 100-core

processor, then the power consumption of the processor would be 77 ∗ 100/4 = 1925W, which is clearly

unsustainable 1. Even with technology scaling, the power would not sustainable. We have to sacrifice

performance of single core, if we want to put hundreds and thousands of cores on a chip. The design

metric cannot be performance, it has to be power-efficiency, namely, performance/power.

The second reason is that the current designs of coherent-cache architectures will not scale for

hundreds and thousands of cores [20, 22, 28, 68]. Coherence is implemented in hardware by mainly

two mechanisms: i) snooping and ii) directory based. Snooping schemes [29] simplify the coherency

problem by enforcing a unique global ordering of memory events in the processor through the use of

global bus. The global bus broadcasts messages to all the cores. However, when we try to scale the

design to hundreds of cores, this broadcast bus becomes the bottleneck. Directory based protocols

[21, 33, 46, 58] scale better with the number of cores. The basic idea here is to keep a directory entry

1The current thermal cap of packaging technologies is about 250W.
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for every cache block to identify the cache that contains the most up to date copy of the block. For a

1024-core processor, this directory entry will be 1024/8 = 128 bytes (in full map implementation), which

is also the typical cache block size. At 100%, this is overwhelming overhead. An important point to

note here is that this extra transistor requirement (for the directory) not only causes area overhead, but

also significant power and performance overheads. Although there are some schemes that attempt to

mitigate the space overhead of the directory, but they do so by making the directory structure distributed

and hierarchical. This increases latency, but more importantly, it makes the the coherence protocol

distributed. Distributed cache coherence schemes are notoriously hard to design and verify [6, 61].

In conclusion, designing processors with hundreds and thousands of cores is not an obvious

extension of the processor design today. The cores need to be made more power-efficient, and the

coherency problem needs to be solved in higher layers of system design.

1.3 Software Managed Manycore (SMM) Architecture

Architects and system developers are in search of designs that will scale to processors with hundreds

and thousands of cores. Many experiments are being performed, both in the research space and indus-

trial spheres.

First, in order to bypass the coherence wall, architects are experimenting with non-coherent

cache architectures. The 48-core Intel Single Chip Cloud computer (Intel SCC) is a prime example [34].

Since coherence is not supported in Intel SCC, applications written in the multithreading paradigm do

not work. Message passing paradigm, or scatter gather (where there is no communication between

tasks) are a natural fit for such an architecture. However since multithreading is a very popular way of

writing parallel programs, correct execution of multithreaded programs must be enabled; and to do that,

communication management must be handled by software layers [35, 56].

Even if we use non-coherent cache architecture, the power challenge still stops us from scaling

to hundreds of cores. The Intel SCC consumes 125W at 1.14V, out of which 87.7W is spent on cores [63].

If we scale the number of cores to 1000, the power consumption of the processor will be 87.7/48 ∗ 1000

= 1827W, which is clearly prohibitive. To enable scaling to thousands of cores, we need to reduce the

power consumption of the cores by 10X.
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Figure 1.2: SMM architecture

Therefore, Software Managed Manycore (SMM) architecture emerges as one of the most promis-

ing scalable manycore design. Inspired by the IBM Cell processor [27], we present SMM architecture

as shown in Figure 1.2. SMM architecture has only scratchpad memory (SPM) [18] in the cores and all

cores on the processor share a main memory. Scratchpad memory (SPM) is fast, low power, raw mem-

ory closed to the core. As shown in Figure 1.3, SPM is quite similar to cache. The cache is primarily an

SRAM array. The tag array and comparator logic in hardware is used to perform the checks to locate a

recently used data. As the check is active for every memory access made by the program, the cache

consumes a lot of power. On the other hand, the SPM does not use any extra logic, and only has a

data array supplemented by the required address decoding logic as shown in Figure 1.3. Therefore, it

consumes 30% less area and power than a direct mapped cache of the same effective capacity [18].

Each core has direct access to only its local SPM. Since SPM has no automatic hardware management

as cache, all data transfers to and from other SPMs have to be explicitly specified in the software through

Direct Memory Access (DMA) commands. As all the management and intelligence is relegated to soft-

ware, SMM architectures prove to be extremely power-efficient, if the software does the management

properly. The IBM Cell processor is a very good example of such architecture [27]. Thanks to the SPM

based memory architecture, the Cell processor can compute at a power-efficiency of about 5 GFlops per
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Figure 1.3: Comparison between cache and SPM

watt. In contrast, Intel i7 4-core Bloomfield 965 XE can only achieve a power-efficiency of 0.5 GFlops

per watt [4, 32].

1.4 Need Advanced Compiler Technology to Enable SMM Architecture

SMM architectures are scalable memory designs, and are potentially extremely power-efficient. How-

ever, one main challenge in using SPM-based memories is that the data of the program must be man-

aged explicitly in the software. Figure 1.4 shows that the program on the left will execute on a cache

based architecture, even if the variable global is not in the cache at the beginning of the program. This

is because cache management will bring the variable global from the “main memory" to the cache to

execute the instruction. This automatic data movement is not provided in an SMM architecture. For such

architectures, the program must be modified to as shown in the right hand side box. The global variable

must be brought into the local SPM on each core before it is needed, and can be sent back after it is

used.

The data management is explicit in the program [26, 53]. Data management can be done

extremely efficiently in an SMM architecture by a programmer. This is because a programmer can have

a very good understanding of when a data is needed, and when not. However, doing this adds a lot

of complexity to the programmer’s job. Now programmers must worry about data management, on top
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Figure 1.4: Data management on caches is automatic, but in SPM-based manycore processors, data
has to be managed explicitly in the program. To make a program run on an SMM architecture, the
program must be changed as shown. Here global is a global variable.

of worrying about the functional correctness of the program - which is already quite complex. To better

understand this complexity, it is important to understand how the scratchpad memory is allocated and

managed. As shown in Figure 1.5, the application’s code and data share the whole local scratchpad

memory. The area below _end is the programs code and data sections, and the top of the local memory

is dynamic storage. This dynamic storage is usually used for two purposes, the stack and the malloc

heap. The stack grows downward (from high addressed memory to low addressed memory), and the

malloc heap grows upward. They both change during the execution time. Since the local memory

is a limited resource and lacks hardware-enabled protection, it is possible to overflow the space and

therefore corrupt the program’s code or data or both. This often results in hard to debug problems

because the effects of the overflow are not likely to be observed immediately. Now, the programmer

must not only be aware of the local memory available in the architecture, but also be cognizant of the

memory requirement of the task at every point in the execution of the program. Estimating the memory

requirement is difficult for C/C++ programs, since stack and heap sizes may be variable and input data

dependent. This difficulty of programming these SMM architectures has been the biggest roadblock in

the success of extremely power-efficient SMM architectures.

In summary, we expect a compiler that will automatically perform efficient data management of

the application, through automatic analysis, and then also provide an interface to the programmer to
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Figure 1.5: Local scratchpad memory and the anatomy of the compiled program.

improve it even further, if they need, or have time. This is the objective of our compiler and runtime

system, and this dissertation.
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Chapter 2

CONTRIBUTIONS OF THIS DISSERTATION

The compiler and runtime infrastructure in this dissertation automates the task of explicit memory man-

agement in the software on Software Managed Manycore (SMM) architectures. It relieves the pain of

memory management by the programmer. The compiler analyzes the memory requirements of the ap-

plication and inserts memory management instructions at appropriate points in the program, so that the

execution is both correct and efficient.

Specifically, the contributions of this dissertation are summarized below:

• We design and implement a Complete Circular Stack Management (CCSM) framework [15] for

SMM architectures (Chapter 4, Section 4.3). Although it enables the execution of programs on

SMM architectures, we further optimize it by proposing another approach called Smart Stack Data

Management (SSDM) [49] (Chapter 4, Section 4.5). It manages stack frames at the whole stack

space granularity. It encapsulates all management functionality in five library functions. In addition,

the compiler in SSDM needs to efficiently place these library functions for users. We formulate this

problem, and propose a greedy algorithm for the same. Stack pointer solution in CCSM works but

is further optimized with a systematic scheme (Chapter 4, Section 4.5.4).

• We implement a framework to manage heap data for SMM architectures (Chapter 5). It consists of

a modified compiler and a runtime library [14]. The library contains three management functions

and they are automatically inserted by our compiler. They are implemented in a low associative

heap cache data structure. In addition, multi-level heap pointers are supported. Experimental

results show that heap cache with low associativity performs better than heap cache with full

associativity [12].

• A correct cost estimation method for code mapping is first proposed, and then a better mapping

scheme called CMSM is provided [11, 40] (Chapter 6). The estimation algorithm updates the cost

when determining the code mapping with any mapping algorithms. Our mapping heuristic man-

ages code at the granularity of function object, enabling the efficient execution of applications with

large code size.
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• A main memory management scheme is proposed to address the problem of memory overflow

on the main core (Chapter 7). It not only allocates and deallocates space efficiently, but also

eliminates the explicit effort of programmers.

• An estimation scheme is proposed to partition memory space among stack data, heap data and

code (Chapter 8). We can get the best partitioning among them by conducting extensive simula-

tions, however, this takes unrealistic long time. Experimental results show that our scheme reduces

this time, and generates a partitioning with which the application has comparable performance.
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Chapter 3

OVERVIEW OF COMPILER AND RUNTIME INFRASTRUCTURE

Our infrastructure consists of a optimized compiler, a runtime library, and a code overlay script generating

tool. Figure 3.1 shows the flow of our infrastructure. The rectangles containing italic words are our

modules which could and must be embedded in the compilation of C programs. Arrows connecting

components represent the flow of the component dependencies.

Figure 3.1: Overview of compiler and runtime framework for memory management on SMM architec-
tures.

Our scheme has several benefits. Firstly, it increases the programmability of Software Managed

Manycore (SMM) architectures. The programmers can be unaware of the memory constraints and keep

programming as it is for unlimited memory space. Secondly, it extends the capability of precious works

that map codes to small SPM. With our compilation framework, the codes containing dynamic memory

uses on the local memory can execute safely and efficiently. Finally, the whole process is transparent to

users. The memory management operations are automatically and efficiently inserted by our modified

compiler.

Table 3.1 shows the interfaces that we provide to users and our infrastructure. The first two

functions correspond to memory allocations and deallocations. _sstore and _sload functions manage

function stack frames. __ovly_load is responsible for loading “to-be-execute" instructions from main

memory to the local scratchpad memory. The last three functions process stack pointers and heap

pointers in applications. One thing deserves to be mentioned is that all these functions will be automati-

10



Table 3.1: Runtime library on data and code management
Library Functionality

_malloc
allocates space in local memory and main memory, and eventually
returns a global address

_free frees space in main memory

_sstore
uses DMA instruction to evict some or all stack frames from local
memory to main memory

_sload
uses DMA instruction to fetch needed stack frame(s) in the previous
stack state back to local memory

__ovly_load load function instructions from main memory to the local memory

_g2l
translates a global address to a local address; gets the value from
main memory if object misses

_l2g translates a local address to a global address
_wb updates data to main memory

cally inserted by our compiler at the right places. The function implementation details and their locations

to be placed in the managed applications are explained in Chapter 4, Chapter 5, and Chapter 6.
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Chapter 4

INTELLIGENT STACK DATA MANAGEMENT

In this chapter, we focus on stack data management. An efficient stack data management is crucial

for program’s performance, since about 64% of memory accesses in multimedia applications are to

stack variables [30]. The rest of the chapter is organized as follows. Motivation is firstly discussed

in Section 4.1 and then we study related work about stack data management on scratchpad memory

based processors in Section 4.2. Section 4.3 present the complete stack data management scheme.

Thereafter, we present challenges of efficient stack data management in Section 4.4. In Section 4.5, we

present our smart stack data management. Finally, our techniques are demonstrated in Section 4.6.

4.1 Motivation

Only the local memory is accessible to the execution core and this small memory is shared by text code,

stack data, global data and heap data of the thread executing on the execution core. All data should be

present in the local memory when used. As a result, only a fraction of the local memory is available for

managing stack data. Managing stack data is challenging as its size is non-determinable at compilation

time. Stack data is dynamic in nature, namely, function frames get allocated and de-allocated at runtime,

as functions are called and returned. Furthermore, the total stack size requirement of a thread may not

even be known statically, for example, when recursive functions exist in the program.

The need of stack data management in a fixed sized space in the local memory is illustrated by

an example in Figure 4.1. The example in Figure 4.1 (a) has three functions, whose stack frame sizes

are shown in Figure 4.1 (b). Figure 4.1 (c) shows that if we have 100 bytes to manage stack data, we do

not need to do anything. The application will work correctly and use up the entire space. However, if we

only have 70 bytes to manage stack data, Figure 4.1 (d) shows the state of the stack just before calling

function F3. There is no more space in the local memory, and a space of 30 bytes must be created in the

local memory for allocating the stack frame of function F3. Without management, stack data can grow

and overwrite heap data or code, and cause application crash in the best case, or simply an incorrect

output in the worst.
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Figure 4.1: Suppose we want to execute the thread shown in (a) on the execution core with local scratch-
pad memory. The function frame sizes are shown in (b). (c) shows that we can easily manage the stack
data of this thread in 100 bytes, however, trying to manage it in only 70 bytes (d) requires some manage-
ment.

4.2 Related Work

Local memories in Software Managed Manycore (SSM) processors are raw memories that are com-

pletely under software control. They are very similar to the Scratch Pad Memories (SPMs) in embedded

systems. Banakar et al. [18] noted that the majority of power in the processor was consumed by the

cache hierarchy (more than 40% in StrongARM 1110). He demonstrated that this compiler controlled

memory could result in performance improvement of 18% with a 34% reduction in die area. As a result,

SPMs are extensively used in embedded processors, for example, the ARM architecture [1]. In SPM-

based embedded processors, code and data can all be managed to use SPM, so that the application

can be optimized in terms of performance and power efficiency. Schemes have been developed to man-

age code [7, 24, 38, 52, 54, 64], global variables [9, 41, 47, 52, 54, 64], stack data [23, 64] and heap

data [55] on SPMs.

While all these works are related, they are not directly applicable for local memories in SMM

architectures. This is because of the differences of the memory architecture of SPMs in embedded sys-

tems and that in SMM architectures. Figure 4.2 illustrates the major difference. It shows that embedded

processors have SPMs in addition to the regular cache hierarchy. This implies that applications can exe-

cute on embedded processors without using the SPM. However, frequently needed data can be mapped

to the SPM to improve performance and power, since it is faster and consumes less power [18]. On the

13



Figure 4.2: In the ARM architecture, SPM is in addition to the regular memory hierarchy, while in SMM
architecture (for example, the IBM Cell processor [27]), the local memory is an essential part of the
memory hierarchy on the execution core.

other hand, local memory is the only memory hierarchy of the core on an SMM processor. Consequently,

using SPM is not an optimization problem, but is mandatory. The execution core can only access the

local memory, and the data it needs must be brought into the local memory before it is accessed, or the

application will not work correctly.

The stack data management techniques proposed for embedded systems in works [23, 64] only

map some of the frequently accessed function frames to the SPM, and leave the rest to go through the

cache hierarchy. Only the Circular Stack Management (CSM) scheme in [44] maps all stack data to

the SPM, and will therefore work for SMM architectures. In this dissertation, we identify and fix several

limitations of the CSM technique, to improve its applicability and generality. Section 4.3 presents the

details of the complete stack management scheme for SMM architectures. We then discuss challenges

of efficient stack data management in Section 4.4. Beyond that, a more efficient stack data management

approach is proposed in Section 4.5. Finally we show the results in Section 4.6.
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4.3 Complete Circular Stack Management

The Complete Circular Stack Management (CCSM) scheme operates at the level of function frames [15,

44]. The basic technique is to export function frames to the main memory if there is no more space

on the local scratchpad memory. Figure 4.3 illustrates the functioning of CCSM. Consider the same

application and function frame sizes as in Figure 4.1, and the problem is to manage stack data of the

application in 70 bytes of space on local memory. Figure 4.3 (b) shows that the local memory is full after

F1 calls F2, and therefore there is no more space for stack frame of F3. To make space for F3, CCSM

evicts the stack frame of F1 to the main memory. This is shown in Figure 4.3 (c). After there is enough

space for function frame of F3, it can execute. When F3 returns, the function frame of its ancestor F2

is in the local memory, and therefore it can execute fine. However, after F2 returns, execution returns to

F1, whose function frame must be brought back into the local memory. This is shown in Figure 4.3 (d).

The eviction and fetch of function frames are achieved by using stack management Application

Programming Interface (API) functions _sstore and _sload, that need to be inserted just before and after

every function call. Figure 4.3 (a) shows these functions inserted in the original program in Figure 4.1

(a). The stack data management API function _sstore(fss) makes sure that there is enough space to

accommodate the stack frame with the size fss. If not, it evicts as many oldest functions as required to

Figure 4.3: Complete circular stack management: The function frames can be managed in a constant
amount of space in local memory using a circular management scheme. If we have only 70 bytes of
space on the local memory to manage stack data, frame F1 must be evicted to the main memory to
make space for F3. Before the execution returns to F1, it must be brought back to the local memory.
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Figure 4.4: An example application contains pointers to other function frame.

make enough space. Similarly, the API function _sload() makes sure the stack frame of the caller is in

the local memory. If not, it is brought back from the main memory.

4.4 Challenges of Circular Stack Management

4.4.1 Pointer Threat

CCSM works efficiently for applications that do not have pointer references to any previous frames.

However, if a function frame has a pointer reference to a variable in the evicted function frame, there is

a problem. We will succinctly explain this challenge by constructing a simple program which is recursive

in nature.

As shown in Figure 4.4, a is a local variable in function F1. F1 also declares a single-level

pointer, ptr, which points to a. Now this ptr is passed as the second parameter to F2. The pointer to a

in the third argument is passed as a two-level pointer reference. The function F2 is a recursive function.
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Figure 4.5: Pointer threat of the example application in Figure 4.4: When the frame of F1 is evicted to
the main memory and F2 comes in, the pointer ptr in F2 which refers the local variable a in the frame of
F1 cannot be referenced, as the variable does not exist in local memory. This can cause the program to
crash or give wrong results.

At the tail of the recursion, the local variable a is accessed through pointers inside F2. This example

uses the common programming practice of using pointers to local variables and reading/writing to them

in other functions. Essentially, the function stack for the active function accesses data in other stack

frames in its call path. The stack frame sizes of the functions in the example application are shown

above the figure. Let us assume the SPM size be 80 bytes. Now consider executing this application

with b = 3. The total stack space required for this application will be 50 + 30 × 3 = 140 bytes, which is

larger than the available stack space. Therefore, we need stack data management. When F1 is called,

its function frame is created in the stack, with a location for a. Figure 4.5 illustrates the pointer threat of

the example application in Figure 4.4. Suppose the frame of function F1 starts at address 0x3180, and

space is allocated for a at 0x3150. Then after the assignment, ptr contains the value 0x3150, which is

the address of a in the local memory. Now all goes fine until the first call to F2. At this point, the function

frames of both functions F1 and F2 are in the stack. Now when F2 (with b = 3) calls another instance

of F2 (with b = 2), the CCSM function sstore will remove F1 out of the local memory, and relocate it to

the global memory. When the execution calls the third instance of F2 (b = 1), it falls into the base case,

where a is accessed. They all access the contents of local memory address 0x3150. This is clearly
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wrong, since the variable a of function F1 is actually in main memory, and not in the local memory. If the

program returns to F1, then the original value of a will be loaded – however, this is the lesser problem.

This assignment will corrupt the stack frames of previous invocations of F2, and can lead to all kinds of

failures and crashes.

The challenge here is that, the kind of code illustrated in Figure 4.4 is all too common, and is not

even considered as bad programming, and this pointer problem will show up in any data management

solution, and is not specific to CCSM. One way out of this is to give up, and let programmers “use pointers

at their own risk”. However, if we do not want to curb programmer’s productivity and creativity, we need to

resolve the pointer addresses, and this is not trivial. The problem is that threads are written (and should

be written), assuming infinite local memory. Therefore, pointer to a variable will contain local address of

the variable. If that variable is relocated to the main memory, then two things are needed to resolve the

pointer correctly. First is to know that the variable has been moved out, and this is relatively easy, and can

be implemented using a management table. The second problem is to find its global address. This is not

easy, since we are trying to find a global address from a local address, but the relation from local address

to global address is “one-to-many". The same local address may map to several global addresses. Since

local memory is limited, over time several variables will be mapped to the same local memory address,

but as they are relocated to the main memory, they will have different addresses there. Shrivastava et

al. [57] only partially solve the second problem at several assumptions. First, functions will access data

from other stack frames only through the use of direct pointers passed as parameters to it, for example,

the second parameter ptr in the function F2 is the one works under this assumption. However, for multi-

level pointers like the third parameter p_ptr, their extension needs to update the address at each level

of dereference. Second, pointers to stack data must not be passed within other structures. In summary,

although [57] solved the pointer issue to some extent, a more comprehensive solution is required. Note

that one way to solve the pointer problem is to just increase the size of local memory used to manage

stack data, but then the challenge is to find how much stack space is needed. In extremely embedded

contexts, the pointer safe local memory size for a given program inputs may be empirically determined by

repeated simulations with several stack space allocations, and observing when execution fails or starts

giving wrong results. In not-so-embedded setting, it is difficult to statically determine the maximum stack

space needed because the call graph of an application may not be statically determinable, for instance,

in the presence of function pointers and recursion.
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4.4.2 Library Complexity

In CCSM, when there is no space for the incoming function in the local memory, the oldest function

frames from the top are evicted to make space which is barely enough for the incoming function. As a

result, the new function frame is instantiated as soon as enough space is available. Figure 4.3 shows that

although this results in a judicious usage of local memory space for stack management, this may cause

the stack space to be fragmented after some time. Consequently, to track the status of the stack, this

scheme requires the book-keeping of complicated information, such as the stack size of each function,

the start and end address of the free slots, etc. All those information need to be checked and updated

each time the management library functions are called, which therefore slows down the application.

4.4.3 Management Granularity

Not only in SMM architectures, but also in all multicore architectures, as the number of cores increases,

the memory latency of a task will be very strongly dependent on the number of memory requests. This

is because memory pipelines are becoming longer, and a large part of latency is the waiting time to get

the chance to access memory. Therefore, it is better to make small number of large requests, than large

number of small memory requests. We expect a coarser management granularity than CCSM does,

which therefore results in better performance.

4.4.4 Management Function Reduction

In CCSM, the function _sstore() and _sload() are inserted before and after each function call. Many

times, these functions will not result in any data movement. For example, if there is space for the stack

frame of the to-be-called function, then no DMA is required, only some book-keeping happens. Much of

the overhead is due to calling these functions, even though they are not needed. An algorithm to analyze

the application for judiciously placing _sstore() and _sload() functions is needed.
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4.5 Smart Stack Data Management

4.5.1 Overview

Section 4.3 provides a complete solution for stack data management on SMM architectures, called

Complete Circular Stack Management (CCSM). In this section, we propose another approach called

Smart Stack Data Management (SSDM) built upon it [49]. In this new scheme, we further optimize

CCSM by optimizing the insertion of management functions (both stack frame management functions

and stack pointer management functions).

Although we have a high-level description of our whole infrastructure in Chapter 3, we delve into

more details about the SSDM framework here. Figure 4.6 shows the flow of our infrastructure. Firstly,

it takes the application and generates its weighted call graph (WCG). Then the SSDM greedy algorithm

takes the weighted call graph and the given size of local stack space S as inputs and determines the

right locations to insert _sstore and _sload in the managed program. Meanwhile, the results generated

by SSDM are passed on to our stack pointer analyzer, which makes use of this information to figure out

where to insert pointer management functions. Finally, our modified compiler GCC 4.1.1 produces the

executable with our runtime library and library placement information.

Figure 4.6: An overview of SSDM infrastructure
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To optimize the stack data management, we redesigned a stack data management library with

less management overhead. Different from CCSM which manages stack data at function-level granu-

larity, SSDM performs stack data management at the whole stack space granularity. In other words,

instead of evicting individual functions out of local scratchpad memory each time, our management li-

brary empties the local stack space by evicting all the contents in the scratchpad memory to the main

memory. Similarly, when returning from the last frame in the local memory, the whole previous stack

state is copied from the main memory to the local scratchpad memory. Performing stack data man-

agement at the whole stack level has several advantages. First is that the management complexity is

largely reduced. Namely, the management library (_sstore and _sload) becomes simpler, since now the

scratchpad is managed as a linear queue, rather than a circular queue. The second is that the granu-

larity of stack data management is much coarser (than function level), and therefore there will be fewer

DMA calls.

Even with so many advantages of newly implemented management library, high overhead may

still happen in this scheme, if we do not judiciously place the management functions. One extreme

example of such situations is that of thrashing. This happens when the stack space is full just before

entering a loop with high execution count in which another function is called. Then every time the function

is called, the stack state will be written back to the main memory, and reloaded on return. However, this

can be avoided by carefully placing the functions _sstore and _sload in the program. In Section 4.5.2 we

formulate the problem of optimal placement of these stack data management functions. We show that

the management function placement problem can be described as that of finding an optimal cutting of a

weighted call graph (WCG). As this problem is tractable, we then propose a heuristic (SSDM) to solve

this problem efficiently.

In the following sections, our management function placement scheme is presented, and then

the superiority of SSDM is demonstrated through experiments in Section 4.6.

4.5.2 Problem Formulation

We formulate our library function placement problem by using an input called weighted call graph (WCG).

The WCG integrates flow information, control information, function stack frame sizes, and the number of

times a function gets called in one place. The formal definition of WCG can be found in Definition 1.
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Figure 4.7: WCG with cuts of benchmark SHA: The edge with dashed yellow color represents an artificial
edge for root node or leaf node.

Definition 1 (Weighted Call Graph). A weighted call graph (V,E,W, T ) contains a function node set

V and a directed edge set E. Each node represents a function, and each directed edge pointing from

the caller to the callee represents the calling relationship between two functions. Weight set W =

{wf1 , wf2 , ...} represents stack sizes of function nodes. Value on each edge eij (eij ∈ E) from the value

set T = {t1, t2, ...} corresponds to the number of times function node vi calls vj .

Figure 4.7 shows an example of weighted call graph. Besides, we clarify several related con-

cepts as follows.

• root node: A root node in WCG is the node with no in-coming edges. There is only one root node

in the weighted call graph, which is usually the “main" function in a C program.

• leaf node: A leaf node is the node that has no out-going edges. Those are functions that do not

call any other functions. Without loss of generality, however, an artificial in-coming edge to the root

node with value 0 and an artificial out-going edge from each leaf node with value 0 are added.

• root-leaf path: A root-leaf path is a sequence of nodes and edges from the root to any leaf node.

For example, main-stream-init is a root-leaf path in Figure 4.7.
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• cutting of WCG: A cutting of the graph is defined as a set of cuts on graph edges. A cut on an

edge eij (eij ∈ E) corresponds to a pair of function _sstore and _sload inserted right before and

after function vi calls function vj , respectively. As shown in Figure 4.7, a set of cuts have been

added on artificial edges in advance.

• segment: A segment is a list of nodes which represents the collection of nodes on a root-leaf path

between two cuts. In Figure 4.7, the segment between cut 1 and cut 2 is <main, print>. A node

can belong to multiple segments, e.g., node stream can be in both segment <main, stream, init>

and <main, stream, update, transform>.

As the total function frame sizes in the local scratchpad memory cannot exceed the size limit

of stack space, a positive weight constraint W (the size of stack space) is imposed on each segment

so that the total weight (stack sizes) of functions in a segment will not exceed W. Therefore, given a

segment s = {f1, f2, ...} with function weights {wf1 , wf2 , ...}, the total weight must satisfy the weight

constraint: ∑
fi∈s

wfi ≤W (4.1)

The cost of smart stack data management (SSDM) for each segment s comprises of two com-

ponents: The first one is the running time spent on extra instructions caused by _sstore and _sload

function calls, and the second one is the time spent on data movement between the main memory

and the local scratchpad memory. Let us assume a segment s = {f1, f2, ...} is formed with two cuts on

edges estart and eend, the functions in this segment have weights {wf1 , wf2 , ...}, and the two edges have

values tstart and tend (the number of function calls). Then the first part of the cost can be represented

as

cost1 = tend × τ0 (4.2)

where τ0 is a constant which represents the average execution time for extra instructions in the runtime

library (in both _sstore and _sload function). The time spent on data movement can be estimated

as linearly correlated to the size of DMA, which equals to the total function stack sizes in a segment.

Therefore, the second cost can be represented as

cost2 = tend × 2× (τbase + τslope ×
∑
fi∈s

wfi) (4.3)

where τbase is the base latency for any DMA transfer, τslope is the additional latency increasing rate with

data size, and 2 shows the consideration for DMA data transfer in and out.
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As a result, the total cost for each segment s can be calculated as

costs = cost1 + cost2 (4.4)

For a set of cuts on a Weighted Call Graph (WCG) that forms a set of segments S = {s1, s2, ...},

the total cost can be represented as

costWCG =
∑
si∈S

costsi (4.5)

It should be noted that we treat each recursive function as a single segment and always assign

a cut to it to ensure a pair of _sstore and _sload is placed right before and after recursive function calls.

Definition 2 (Optimal Cutting of a Weighted Call Graph) An optimal cutting of a weighted call graph G

contains a set of cuts that forms a set of segments, where each segment satisfies the weight constraint

and the total cost of the segments is minimal.

4.5.3 Our Heuristic: SSDM

In this section, we present our heuristic SSDM, which solves the cutting problem. The basic idea behind

the algorithm is quite straightforward. At the beginning, every edge is placed with a cut. Then the

algorithm gradually removes as many edges as possible one by another, until no more edge can be

removed without increasing the management overhead or violating the space constraint.

In particular, when we are considering of removing a cut, we first need to check if removing this

cut will violate the memory constraint of stack space. To do this, we search upward to get its nearest

neighboring upstream cuts, and downward to get its nearest neighboring downstream cuts, through

each root-leaf path. The functions between this cut and any of its neighboring cut forms a segment. If

we remove this cut, the functions between any pair of upstream cut and downstream cut will form a new

segment. If any of the new segment violates the memory constraint of stack space, the cut should not

be removed. If the memory constraint is not violated, we will calculate how much benefit we can gain by

removing this cut.

We first calculate the total management cost of all the segments associate with the cut with

Equation 4.2-4.5. Then we assume this cut is removed, and construct new segments by combining up-

ward segment and downward segment in the same root-leaf path, and calculate their total management
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Algorithm 1 SSDM(WCG(V ,E))
1: Place cuts on recursive edges, if there are recursive functions.
2: Define vector C, in which xij indicates if a cut should be placed on edge eij (eij ∈ E \ Erecursive). set all

xij = 1.
3: while true do
4: Define vector B to store removing benefit of each cut.
5: for xij == 1 do
6: Set boolean violate to false, it shows if removing this cut would violate the weight.
7: constraint.
8: Define total cost costbefore = 0.
9: for segment s_oldi that are associated with xij do

10: Calculate cost cost_oldi with Equation 4.2-4.5.
11: costbefore+ = cost_oldi
12: end for
13: Assume the cut of xij is removed, and get a new set of associated segments.
14: Define total cost costafter = 0.
15: for new associated segment s_newi do
16: Check weight constraint with Equation 4.1.
17: if weight constraint is violated then
18: violate = true
19: break
20: end if
21: Calculate cost cost_newi with Equation 4.2-4.5.
22: costafter+ = cost_newi

23: end for
24: if violate then
25: continue
26: end if
27: Calculate the benefit of removing the cut as Bij = costbefore − costafter.
28: if Bij > 0 then
29: Store Bij into vector B.
30: end if
31: end for
32: if B contains no element then
33: break
34: end if
35: Find out the largest benefit Bmax from B, and set the corresponding cut xmax = 0.
36: end while

cost in the same way. By subtracting the newer one from the older one, we can get the removing benefit

of this cut. We calculate the removing benefit of all other cuts through the same fashion. When all cal-

culations are done, SSDM picks the largest one and indeed removes the cut associated with it. It keeps

removing the cuts on WCG until no more cuts can be eliminated.

Algorithm 1 describes the complete algorithm for placing _sstore and _sload library functions.

In Line 1, all recursive edges are placed with a cut. Since _sstore and _sload are statically placed at

compile time and recursive function calls itself, this pre-processing eliminates the nondeterminacy of

recursive functions. In line 9-12, we find out the segments that are associated with each cut xij on edge

eij (eij ∈ E). To do this, we need to find out all root-leaf path Pi, where eij ∈ Pi. Then we search upward
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Figure 4.8: Illustration of SSDM heuristic: the values on edges are the numbers of function calls.

through each Pi, until we meet a cut xup. Similarly, we search downward through each root-leaf path Pi,

until we meet a cut xdown. The segment between xij and xup or xdown is defined as associated with xij .

For example, in Figure 4.7, the segments that are associated with cut 5 is the segment <main, stream>

and the segment <final, transform>. Then we calculate the cost of each segment with Equation 4.2-4.5,

and the total cost by summing up the cost of all the associated segments. In Line 13-23, we assume

the cut is removed, and we can get a new set of associated segments. Those segments are formed

by merging the segment between xij and xup with the segment between xij and xdown on each root-
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leaf path Pi. As an edge might belong to several root-leaf paths, there might be many xup and xdown

accordingly. In Figure 4.7, after removing the cut 5, the two associated segments are merged into one

segment, which is <main, stream, final, transform>. Similarly, we can calculate the cost of each new

segment with Equation 4.2-4.5, and the total cost of all associated segments after removing the cut.

Line 16-20 check if weight constraint is satisfied by removing this cut. If the constraint is violated, this cut

will not be considered to be removed (line 24-26). Line 35 removes the cut with largest positive benefit

among all the cuts whose removal will not violate the weight constraint. Line 32-34 is the exit condition of

the WHILE loop. The procedure stops until no more cut can be removed from the graph. At this point of

time, the rest cuts either have negative removing benefit, or cannot be removed due to weight constraint

(Equation 4.1).

Let us look into the illustration of SSDM algorithm shown in Figure 4.8. In this example, we are

trying to manage the stack frames of the example WCG (A) in a 192 bytes stack space. When calculating

the stack management cost with Equation 4.2 and Equation 4.3, we use 50 ns for τ0, 91 ns for τbase,

and 0.075 for τslope. As stated before, artificial edges were added for this WCG and an artificial cut was

attached for each artificial edge as well. At the initialization stage of SSDM heuristic (line 2 in Algorithm

1), we put cuts on all edges (cut 1-cut 4). Next we check the removing benefit of all existing cuts, except

artificial cuts (line 5-29). Let us take cut 1 as an example to show how to calculate the removing benefit.

Before removing cut 1, its associated segments are <F0>, <F1> (between cut 1 and cut 2) and <F1>

(between cut 1 and cut 4). The cost for <F0> is 2368 = 10× 50+ 10× 2× (91+ 0.075× 32) (Equation

4.2-4.4), the cost for<F1> (between cut 1 and cut 2) is 12560 = 50×50+50×2×(91+0.075×128), and

the cost for <F1> (between cut 1 and cut 4) is 1256 = 5×50+5×2×(91+0.075×128). Therefore, the

costbefore is 16184 = 2368+ 12560+ 1256 (line 9-12). If we assume cut 1 were removed, its associated

segments become <F0,F1> (between cut 0 and cut 2) and <F0,F1> (between cut 0 and cut 4). We

could again calculate costafter (line 13-23) as 14080. Thereafter, we get the removing benefit of cut 1 as

2104 = 16184− 14080. Similarly, we could get all removing benefit of all cuts, and form the benefit table

below WCG (A). As highlighted with underline, we know that the largest benefit comes from removing

cut 2. Then we can remove it and get WCG (B). Similarly, we can remove cuts one by one through WCG

(B) to WCG (D). When we reach WCG (D), we found that we can no longer remove cut 1, as the removal

of cut 1 violates our weight constraint (line 16-20), i.e., the total stack size of segment <F0,F1,F2,F3>

is larger than predefined 192 bytes of stack space. Till now, our SSDM stops, and therefore WCG (D) is
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Figure 4.9: An example shows static edge weight assignment.

the final result. It indicates that the stack management function _sstore must be placed before F1 gets

called, and _sload must be placed right after F1 returns.

4.5.3.1 Static Edge Weight Assignment of WCG

We have finished the main algorithm in the previous section. In this section, we will discuss the way to

assign the value on weighted call graph (WCG). Basically, there are two ways to achieve this, static or

profiling. Profiling means the numbers are obtained by running applications with inputs. Those numbers

are accurate, yet this simulation based method is time consuming. Besides, we need to run the applica-

tion each time a new input is given. As our goal in this dissertation is to design automatic compilation

techniques, in this section, we choose to construct WCG statically.

Our construction methodology works as follows. Firstly, the basic blocks of the managed appli-

cation are scanned for the presence of loops (back edges in a dominator tree), conditional statements

(fork and join points) and function calls (branch and link instructions). If a function is called within a

nested loop, we save the number of loops (nl) nested for that function. After capturing these informa-

tion, we assign the weights on the edges by traversing WCG in a top-down fashion. Initially, they are

assigned to unity. When a function node is encountered, the weight on the edges between the node and

its descendants are multiplied by a fixed constant, loop factor Qnl. This ensures that a function which

is called inside a deeply nested loop will receive a greater weight than other functions. If the edge is
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Figure 4.10: Solution to pointers to stack frame: (a) Pointers are resolved by library functions. First the
offset of the variable is computed using the stack start address in the local memory. The offset is used
to move relatively in the main memory to reach the pointer location. (b) Our function insertions are done
at the GIMPLE IR level, where multi-level pointers are dereferenced to single-level pointers, e.g., p_ptr
is dereferenced with the help of another single-level pointer D.3512.

either a true path or a false path of a condition, the weight will be multiplied by another quantum, taken

probability P . In this dissertation we assume that both paths for a condition will be executed (P = 0.5),

which is very similar to branch predication [59]. In addition, we choose Q = 10. Figure 4.9 shows the re-

sulted WCG of an example code with our static assignment scheme. In this example, the edge between

function F2 and function F4 is assigned to 103, since F4 is in a 3-level folded loop.

4.5.4 Stack Pointer Resolution and Optimization

In this section, we first provide our solution to stack pointer threat problem, and then further optimize

it when possible. The most important point in pointer resolution is that, it is not possible to resolve a
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pointer using local address. Thus, whenever a pointer is set, it must be set to a global address, rather

than a local address. Figure 4.10, illustrates the mechanism of our pointer resolution approach. We

need to change the addressing mechanism whenever a pointer to a stack variable is used. Figure 4.10

(a) shows two kinds of modifications in the application program that was shown in Figure 4.4.

The first kind of change is that the initialization of the pointer ptr is changed to _l2g(&a) and

p_ptr is changed to _l2g(&ptr). The function _l2g converts the local address of a variable into a global

address by first finding which function stack frame the pointer belongs to (in this example, F1). Then

it computes the offset of the pointer variable (in this example, only &a is picked to show our pointer

management) as the relative displacement from the start address of the frame (F1) in the local memory

to the local pointer address. Finally, it returns a global address, which can be calculated by first getting

the global start address of this function frame (F1) that is stored by _sstore function before F1 is called

and then subtracting the displacement. Figure 4.10 shows that the stack top is at the local address

0x3180, which is stored in the Stack Management Table, or SMT. When ptr is initialized, it will get the

global address of the variable by the help of _l2g function. This is done by firstly computing the local

address 0x3150 for a. Then the offset is computed as 0x3180−0x3150 = 0x30. The start global address

of the function frame of F1 is looked up from the SMT, and is 0x181350. Using these, we can compute

the global address of the variable a as 0x181320.

The second kind of change is that _g2l, _l2g and _wb are inserted automatically right before

and after each reference. _g2l works directly with a global address and returns with a local address. In

contrast, _l2g translates a local address back to a global address belonging to this pointer. If the stack

data pointed by the pointer is not in the local memory, access to main memory through DMA calls is

needed. If the statement contains a write operation, _wb updates the content in that global address. If it

is a read operation, _g2l needs to firstly fetch the value by explicit DMA call to a buffer, and then returns

its local address. When some other pointers are read/write, this buffer will be overwritten. For example,

the content pointed by p_ptr is modified to the value 1. _wb function updates it directly in the main

memory. Only by performing this direct main memory transaction, we do not create any data coherency

problems.

One thing deserves to be mentioned is that, our compiler can process multi-level pointers in

the application, utilizing the existing functionalities provided by gcc [2]: i) The operations containing

multi-level pointers in C are broke down to operations containing only single-level pointers in GIMPLE
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Algorithm 2 StkPtrLibPlacing(global CFG, call graph)
1: find all definitions of stack pointers and put them to S.
2: do AliasAnalysis(S) and get must-alias St(p) and may-alias Sy(p), ∀ stack pointer p ∈ S.
3: for stack pointer p ∈ S do
4: boolean flag = false
5: for pi ∈ Sy(p) ∪ St(p) do
6: d = distance(L(p), L(pi)), where L(p) and L(pi) are the functions where pointers
7: locate.
8: if d >W or existCut(p, pi), where W is the size of stack region then
9: flag = true

10: break
11: end if
12: end for
13: if flag == true then
14: use _l2g at L(p) and _g2l & _wb accordingly for L(pi) (∀pi ∈ Sy(p) ∪ St(p)) as
15: shown in Figure 4.10.
16: end if
17: end for

Intermediate Representation (IR), with artificial pointers generated by the compiler. An example of trans-

formation from C to GIMPLE IR is shown in Figure 4.10 (a), where p_ptr is a pointer-to-pointer in C. In

the example, a pointer write statement is transformed to two statements in GIMPLE IR, with an artificial

pointer D.3512 generated by compiler. ii) The symbol table contains abundant information about every

operand in any statement. We can differentiate the type of each operand, and insert stack pointer man-

agement library only around memory references. For example, no management functions are placed

around the statement “D.3512=*p_ptr;". It’s because they both are recognized by compiler as var_decl

type in this statement.

Although the basic solution guarantees the correctness of the program, to avoid performance

degradation caused by redundant library functions, we need to only insert stack pointer management

functions when necessary. Once the writeback (and reload) function placement is known, pointer man-

agement can be optimized. This is because it will become possible to know whether the function – which

accesses a stack variable of an ancestor function – and its ancestor function will be in the scratchpad

memory at the same time or not. We propose a systematic solution for pointer library insertions. It firstly

recognizes all pointers to stack data and then utilizes classic alias analysis algorithm to collect must-

alias set and may-alias set for each stack pointer [5]. Later, it calculates the total stack sizes between

the pointer define place (or function) and use place in a root-leaf path. If the size is smaller than the

predefined memory limit and no cut is found on the edge between two functions, no management is

required. Otherwise, pointer management is needed.
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Algorithm 2 describes the details about our systematic approach to address this problem. We

use the traditional alias analysis approach to collect must-alias set and may-alias set for each stack

pointer p on line 2 [5]. The must-alias means that two pointers are guaranteed to always point to the

same memory object. The may-alias is used whenever two pointers might refer to the same object. Then,

we utilize function distance1 to calculate stack sizes of functions between p and all its alias (line 6). If one

of them is larger than the size of stack space W, then stack pointers must be managed in a fashion as

shown in Figure 4.10 (line 8-16). Another situation that requires management is handled by the function

existCut. This function takes in the stack pointer and its alias, and then checks whether there exists a cut

between the functions where pointer and its alias locate on root-leaf path. When there is one, namely,

the memory object pointed by these pointers are moved to the global memory, existCut returns true;

otherwise, false is returned.

4.6 Experimental Results

4.6.1 Experimental Setup

We demonstrate the need and effectiveness of our approach by experiments on the Sony PlayStation

3 with Linux Fedora 9. It gives access to 6 of the 8 Synergistic Processing Elements (SPEs), whose

local scratchpad memory size is 256KB [27]. We implemented our approach as a library with the GCC

4.1.1. We compile and run benchmarks from the MiBench suite [30]. Their details are listed in Table 4.1.

These benchmarks are not multi-threaded; we have made them multi-threaded by keeping all the input

1If the function that contains the use of stack pointer p is a recursive function (self-recursion or nonself-recursion), distance
returns ∞.

Table 4.1: Benchmarks, the number of nodes and edges in their WCG, their stack sizes, and the scratch-
pad space we manage them on.

Benchmark Nodes Edges Stack Size (B) SPM Size (B)

BasicMath 7 6 400 512
Dijkstra 11 12 1712 1024
FFT 22 21 656 512
FFT_inverse 22 21 656 512
SHA 13 12 2512 2048
String_Search 11 10 992 768
Susan_Edges 8 7 832 768
Susan_Smoothing 7 6 448 256
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Table 4.2: Result of stack pointer management: (a) BasicMath and SHA cannot run with the minimum
stack size without our pointer management, but can run with a larger stack size after many fails of
simulations. (b) Our technique resolves the pointer problem of CSM.

Benchmark
No Pointer Management Pointer Management

SPM Sz Runtime SPM Sz Runtime SPM Sz Runtime
(B) (us) (B) (us) (B) (us)

BasicMath 168 CRASHES 218 1575747 168 1582033
SHA 1944 CRASHES 2024 1084 1944 1104

and output functionality of the benchmark in the main thread on Power Processing Element (PPE). The

core functionality of the benchmark is executed on the SPE. Thus, each benchmark has two threads:

one running on the PPE and the other on SPE. In our last experiment on scaling, we run multiple threads

of the same functionality on the SPEs. The runtime for PPE was counted by _mftb() and the runtime for

SPE was counted by spu_decrementer(), which are provided as the library with IBM Cell SDK 3.1.

4.6.2 Increase in Applicability

Our technique promises to run any application in the least amount of stack on SMM architectures. Given

a benchmark, we find out the size of the largest stack frame, and also find out the maximum stack depth

by profiling. We then run these benchmarks using space on local memory equal to the size of the largest

function frame plus the maximum size of stack management table. This minimum stack size is shown

in the second column of Table 4.2. We also show the runtime of the application, if it fails, CRASHES is

printed. We can observe that benchmarks BasicMath and SHA crash without stack pointer management

scheme. The sixth column lists the minimum space on the local memory required by our schemes,

and the seventh column shows the time required to execute the application with this size. The main

observation is that our technique successfully resolves the pointer problem, and therefore works for a

wide range of benchmarks. In addition, our stack data management can work with less space on the

local memory. To run an application with less stack space is important, since it provides greater flexibility

for managing other data and might therefore generate a better overall performance.

4.6.3 Impact of Stack Space

In this section, we conducted another set of experiments that evaluates SSDM technique under tight size

constraints. The benchmark Dijkstra contains many nested function calls within loop structures, making

it a good candidate for showing the impact of different stack region sizes. We expanded the region size
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Figure 4.11: Performance - different stack region sizes.

from 160 bytes to 416 bytes with the step size of 32 bytes. The resulted performances are demonstrated

in Figure 4.11, where the execution time with different stack region sizes were normalized to the smallest

one. The execution time decreases when we increase stack region size. When the size reaches 384

bytes, the performance hardly improves. The primary reason is that we conservatively manage the

recursive function by always placing a pair of library function around all its call sites. Therefore, although

the region size is large enough, no more benefit can be obtained as only the insertion for recursive

function print_path is left.

4.6.4 Scalability of SSDM

Figure 4.12 shows the scalability of SSDM heuristic. In the experiment, we executed the same applica-

tion on different number of cores, and normalized the execution time of each benchmark to its execution

time with only one SPE, and show them on y-axis. This is very aggressive, since DMA transfers occur

almost at the same time when stack frames need to be moved between the global memory and the local

memory. This will lead to the competition of DMA requests. As shown in Figure 4.12, the execution time

increases gradually as we scale the number of cores, but no more than 1%. Benchmark SHA increases

most steeply, as there are many pointers accessing stack data in this program. Managing pointers to

stack data incurs more data transfers than general data management, because objects pointed by those

stack pointers need to be transferred between the main memory and the local memory.
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Figure 4.12: Performance - different number of cores.

4.6.5 Thorough Comparison between CCSM and SSDM

4.6.5.1 Overall Comparison

The experiment for each application in this section is conducted under the scratchpad size specified in

Table 4.1. The efficiency of SSDM technique is evaluated by comparing it against CCSM presented in

Section 4.3 [15]. We first utilize PPE and 1 SPE available in the IBM Cell processor and compare our

SSDM performance against the CCSM result [15]. The y-axis in Figure 4.13 stands for the execution

time of each benchmark normalized to its SSDM_P result. The number of function calls used in Weighted

Call Graph (WCG) is estimated from profiling information for SSDM_P. In SSDM_S, we used a compile-

time scheme to assign weights on edges. As observed from Figure 4.13, both the non-profiling-based

scheme and the profiling-based scheme achieve almost the same performance. Compared with the

CCSM scheme, SSDM demonstrates up to 19% and an average 11% performance improvement.

The overhead of the management comprises of i) time for data transfer, ii) execution of the

instructions in the management library functions. Figure 4.14 compares the execution time overhead of

CCSM and SSDM. Results show that when using CCSM, an average 11.3% of the execution time was

spent on stack data management, while the overhead of approach SSDM is reduced to a mere 0.8% –

a reduction of 13X. The gain of performance comes from several aspects. In the following subsections,

we break down the overhead and explain the effect of our techniques on its different components.
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Figure 4.13: Performance comparison between SSDM and CCSM.

Figure 4.14: Overhead comparison between SSDM and CCSM.

4.6.5.2 Management Library Size

CCSM needs to handle memory fragmentation, while SSDM doesn’t have this circumstance. Conse-

quently, SSDM library is simpler than that of CCSM. In particular, the library functions of SSDM contain

fewer instructions than that of CCSM. Table 4.3 compares the function footprint between SSDM and

CCSM, from which we can find SSDM library has much smaller code size than CCSM does. Small

footprint is of importance for improving the performance in two ways. First, because the management
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Table 4.3: Library code size of stack manager (in bytes)

_sstore _sload _l2g _g2l _wb

CCSM 2404 1900 96 1024 1112
SSDM 184 176 24 120 80

Table 4.4: Comparison of number of DMAs

Benchmark CCSM SSDM

BasicMath 0 0
Dijkstra 108 364
FFT 26 14
FFT_inverse 26 14
SHA 10 4
String_Search 380 342
Susan_Edges 8 2
Susan_Smoothing 12 4

algorithm is simpler, the execution time spent on a single management function will be less, and thus the

total management overhead is reduced. Second, stack frames will obtain more space in the local mem-

ory if the library occupies less space. More space for stack data will therefore improve the management

performance, which can be seen from the result in Section 4.6.3.

4.6.5.3 Management Granularity

SSDM scheme manages stack data at the stack space level granularity, which is different from the

management scheme of CCSM which manages data at the function level granularity. Therefore, the

number of DMA calls in SSDM is reduced. Table 4.4 shows the number of DMAs in both stack data

management schemes. Note that because the whole stack of Basicmath fits into the local stack space,

no DMA is required for this benchmark. SSDM performs well for all benchmarks, except for Disjkstra.

This is because it contains a recursive function print_path. CCSM will perform a DMA only when the

stack space is full of recursive function instantiations, while SSDM has to evict recursive functions every

time with unused stack space. This also implies that SSDM does not perform very well on recursive

applications. However, since many embedded programs are non-recursive, we leave the problem of

optimizing for recursive functions as a future work.
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Table 4.5: Number of _sstore and _sload calls

Benchmark
_sstore _sload

CCSM SSDM CCSM SSDM

BasicMath 40012 0 40012 0
Dijkstra 60365 202 60365 202
FFT 7190 8 7190 8
FFT_inverse 7190 8 7190 8
SHA 57 2 57 2
String_Search 503 143 503 143
Susan_Edges 776 1 776 1
Susan_Smoothing 112 2 112 2

4.6.5.4 Redundant Management Elimination

Thanks to our compile-time analysis, SSDM scheme can greatly reduce the number of library function

calls. In Table 4.5, we compare the number of _sstore and _sload function calls in SSDM and CCSM. We

can observe that SSDM has much less number of library function calls. The main reason is that SSDM

considers the thrashing effect discussed in Section 4.5.1. Consequently, it tries to avoid (if possible)

placing _sstore and _sload around a function call that executes many times, for example, within a loop.

On the contrary, CCSM always inserts management functions at all function call sites.

The management overhead can be measured by extra instructions cause by stack management

functions. Table 4.6 compares the average additional instructions incurred by each library call across all

the benchmarks. As demonstrated in Table 4.6, SSDM performs much better than CCSM. hit for _g2l

and _wb means the accessing stack data is residing in the local memory when the function is called,

while miss denotes the case when stack data is not in the local memory. In CCSM approach, more

instructions are needed for the hit case than the miss case in the function _wb. It is because the library

directly writes back the data to the main memory when miss, but looking up the management table is

required to translate the address. More importantly, as the table itself occupies space and therefore

needs to be managed, CCSM may need additional instructions to transfer table entries.

4.6.5.5 Stack Pointer Management Optimization

Stack pointer management is properly managed in SSDM, while CCSM might manage all pointers ex-

cessively. Table 4.7 shows the results of four benchmarks with and without stack pointer optimization

38



Table 4.6: Dynamic instructions per function

_sstore _sload
_l2g

_g2l _wb
F NF F NF hit miss hit miss

CCSM 180 100 148 95 24 45 76 60 34
SSDM 46 0 44 0 6 11 30 4 20

* F: stack region is full when function is called; NF: stack region is enough for the incoming function
frame.

Table 4.7: Number of pointer management function calls

_l2g _g2l _wb
CCSM SSDM CCSM SSDM CCSM SSDM

BasicMath 37010 0 123046 0 89026 0
SHA 2 2 163 158 68 68
Susan_Edges 1 0 515 0 514 0
Susan_Smoothing 1 0 515 0 514 0

technique. They are the only four applications among our eight applications that contain pointers to

stack data. We can observe that our scheme can slightly improve the performance of SHA, and totally

eliminate the pointer management functions for other three benchmarks.

4.7 Summary

In this chapter, we proposed a technique for stack data management on Software Managed Manycore

(SMM) architectures, with function libraries _sstore, _sload, _g2l, _l2g, and _wb. Smart Stack Data

Management (SSDM), is built upon Complete Circular Stack Management (CCSM). It manages stack

frames at the whole stack space granularity. In addition to having reduced the complexity of runtime

library, we formulated the problem of efficiently placing library functions at the function call sites. Finally,

we proposed a heuristic algorithm to generate the efficient function placement. As for pointers to stack

data, a proper scheme was presented to further reduce the management cost. Our experimental results

show that SSDM generates function placement which leads to significant performance improvement

compared to CCSM.
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Chapter 5

AUTOMATIC HEAP DATA MANAGEMENT

In this chapter, we will discuss how to manage heap data on SMM architectures. Unlike other data and

code, heap data has no access pattern and therefore managing heap data is not trivial. We will firstly see

an example about what is heap data and why it is needed to be managed in Section 5.1. Then we study

the state of the art about heap data management on scratchpad memory based processors in Section

5.2. Thereafter, we propose heap data management scheme in Section 5.3. Finally, our technique are

demonstrated in Section 5.4.

5.1 Motivation

In general, the local scratchpad memory on each execution core is conceptually divided into four seg-

ments by the compiler: stack data region, heap data region, global data region, and text region. Function

frames reside in the stack region, starting from the top of the memory and growing downwards, while

heap variables (defined through malloc in C language) are allocated in the heap region, starting from

the top of code region and growing upwards. The text region is where the compiled code of the program

itself resides. The four segments share the limited memory resource of local memory. Because the local

memory lacks any hardware protection, heap data can easily overflow into the stack region and corrupt

the program state.

Figure 5.1 shows an example, where heap data are defined and used. When the upper bound

N in the loop is small, the program will execute correctly, but large values of N can cause catastrophic

Figure 5.1: Outline of a program on SMM architectures: on each core, some ITEM structures are allo-
cated and accessed.
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failures. For example, the application crashes, or the execution core goes into an infinite loop. However,

the worst situation is that the output is just slightly incorrect. This error is hard to be observed. One way

to avoid these problems is to avoid using heap variables, however, we believe that this is very limiting

on both the creativity and the productivity of programmers. What is needed is a scheme that SMM

architecture programmers can use to efficiently and automatically manage heap data of the application.

5.2 Related Work

As we mentioned in Section 1.3, local memory in each core of SMM architectures is a raw memory under

software control. They are very similar to scratchpad memory (SPM) popular in embedded systems.

Techniques have been proposed to manage stack data [9, 48, 52, 55, 64], global data [9, 42, 43, 48, 60,

64, 65, 67], and code [7, 17, 24, 25, 38, 52, 60, 64, 65, 67, 66] on the SPM, but little work has been done

towards managing heap data [23, 50, 55], not even to techniques for SMM architectures.

This work only focuses on managing heap data on local memories of SMM processors, and

fundamentally differs from the existing work on SPMs. The difference originates from the use of SPMs in

embedded systems and local memories in SMM processors. Namely, while the problem of using SPMs in

embedded systems is that of optimization, the problem of using local memory/SPM in distributed memory

multicore processors is to enable the execution of applications. Therefore, previous SPM researches

[23, 50, 55] have focused on the question of “what to map” on the SPM. The “what to map" is not

even an option for SMM processors. Important questions in using local memories in SMM processors

are: i) What API is needed to automatically manage all kinds of data in a constant amount of space

in local memory? ii) How to optimize the library functions to reduce the runtime overhead? iii) How to

automatically apply the API to the application?

The rest of this chapter is organized as follows. In Section 5.3, we present a fully-automatic

heap data management framework in Section 5.3. Then, we compare our technique with the state of the

art in Section 5.4.
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Figure 5.2: Using our approach to manage heap data: (a) We redefine _malloc and _free. (b) Our
modified GCC compiler automatically inserts a call to _g2l function before accessing each heap variable.
(c) A temporary variale T is used, therefore local address does not need to be translated back to global
address for identification.

5.3 Fully-automatic Heap Data Management

5.3.1 Overview

The objective of our approach, fully-automatic heap data management (FHDM), is to hide the additional

complexity in managing heap data in a constant space in the local scratchpad memory. It is composed of

a modified GCC compiler (GCC 4.1.1), and an optimized heap data management runtime library. Figure

5.2 shows the pseudo-code of how our heap management works on the example shown in Figure 5.1.

By the code transformation by the compiler, we could manage heap data correctly without translating

local address to global addresses. The compiler creates a temporary pointer T and replaces the original

heap pointer with T in the corresponding statement. After using our framework, users do not need to

consider the redistribution of heap data; they can continue to program as if each execution core has

enough memory to manage (almost) unlimited heap data. They even do not need to insert the function

_g2l before and the function _l2g after any access to heap variables with our modified GCC compiler.

The fundamental challenge in Software Managed Manycore (SMM) architectures is that every

variable can have two addresses, a global address and a local address, depending on where the variable

is located. Our heap data management approach exposes both addresses of variables to applications.

With the local address, the program can directly access the variable. If a required variable is not in

the local memory, the library function _g2l(ga) brings it from the global address ga to the local memory

and returns the local address la of the variable. Besides introducing this newly implemented function,

we also re-implement two existing functions, _malloc and free. If there is enough memory space in
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the heap region of the local memory, the _malloc function can directly return a pointer. Otherwise, the

function will first evict the oldest heap variable(s) to the main memory to make enough space for the

coming heap variable, and then return a pointer. One important point to note here is that even if the

_malloc function may allocate space from the local memory, it still returns the global address of the

allocated heap variable each time. This is because different heap variables can have the same local

memory address, but definitely have unique global addresses. As a result, we should always access

heap variables through global addresses. The _free(global_addr) function also uses the global address

of the variable and frees up space in the main memory.

Our automation is complete, and also works for multi-level pointers. To reduce the runtime over-

head of the heap data management, we explore several software cache design parameters (block size,

and associativity), and software cache design options (victim cache), and find efficient implementation.

5.3.2 Compiler Implementation

Our extension of compiler is based on GCC 4.1.1. The compiler support is implemented as a pass at

the GIMPLE level [2]. The reason that GIMPLE rather than AST (Abstract Syntax Tree) is chosen is that

we need a common IR (Intermediate Representation) to make our pass work for all languages. In GCC,

there is no single AST shared by all front-ends. There is another common IR in GCC called RTL (Register

Transfer Language), but RTL is not appropriate as well. RTL is a low-level IR, and therefore high level

information is lost to some extent. For example, pointer information is needed in our implementation,

but the information is lost in RTL. GIMPLE is a three-address IR with tuples of no more than 3 operands

(with some exceptions like function calls) [2]. It is a language independent IR and obtained by removing

language specific construct from ASTs.

5.3.2.1 Insertion of Function _g2l

Applications can have three kinds of pointers – heap pointers, stack pointers, and function pointers.

Stack pointers are pointers that point to its residing function frame or its ancestor function stack frames.

For example, p in the statement “p = &a;" is a stack pointer. Differentiating a data pointer (stack pointer

or heap pointer) and a function pointer is trivial for any compiler. Therefore, we will not delve into this

part in this section. Here, we only discuss the insertion of _g2l for data pointers.
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Algorithm 3 Insertion of Function _g2l
1: for each basic block bb ∈ B do
2: for each statement s ∈ Si, such that block statement list Si is for bb, and Si ⊂ S,

⋃
Si = S do

3: if s contains multi-level pointers then
4: break down to single level pointers with artificial variables,
5: transform s to statements with only single level pointers.
6: end if
7: end for
8: end for
9: for each basic block bb ∈ B do

10: for each statement s ∈ Si, such that block statement list Si is for bb, and Si ⊂ S,
⋃

Si = S do
11: if s is a modification expression then
12: analyzeStmt (s)
13: end if
14: end for
15: end for
16:

17: procedure analyzeStmt(stmt)
18: l← getLeftOperand(stmt); r← getRightOperand(stmt)
19: /* T is a single level pointer with the same type as the pointer in the stmt, and it is created by our

compiler */
20: if TREE_CODE(r) is a reference then
21: create statement “T = _g2l(r)"; substitute r with T in stmt
22: end if
23: if TREE_CODE(l) is a reference then
24: create statement “T = _g2l(l)"; substitute l with T in stmt
25: end if
26: insert new statement into statement list right before stmt
27: end procedure

As shown in Algorithm 3, the pass traverses each statement in every basic block of the ap-

plication. When a memory reference is detected in line 11, _g2l insertion will be achieved in function

analyzeStmt in line 12, whose body is from line 17 to line 27. When the right operand of the statement

stmt is a reference, it will be checked in line 20. Otherwise, our pass will check whether the left reference

is a reference in line 23. In both cases, our pass creates a statement “T = _g2l(ptr)"(ptr may be l or r)

and inserts the statement into the statement list right before stmt.

Insertion of _g2l is conducted in a conservative way. Namely, all data pointers in the program

will be added a _g2l function. However, our pass will not change the correctness of the application,

due to the insertion for stack pointers. Our runtime library can be deployed to distinguish heap pointers

and stack pointers. Because stack pointers and heap pointers are initialized with global addresses in

separate regions, _g2l takes in the parameter and checks which region it falls into. When it is a stack

pointer, the function does all work for stack pointers. In addition, as the management granularity is at
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Figure 5.3: One example of the transformation from C code to GIMPLE IR by using our modified compiler

least one heap object, our framework will not be affected if a heap object contains a function pointer as

its element. Take the statement “H→func = testFunc;" as an example. We use “H" as the parameter of

function _g2l instead of “H→func", where func is a function pointer element in heap object H .

5.3.2.2 Multi-level Pointer Support

As stated before, our pass in GCC can process multi-level pointers in the application. This is achieved

by breaking down the statement with multi-level pointers in C to operations containing only single-level

pointers in GIMPLE IR. An example of transformation from C to GIMPLE IR is shown in Figure 5.3, where

ptr is a pointer-to-pointer in C. In this example, a pointer read statement is transformed to two statements

in GIMPLE IR, with an artificial pointer D.2348 generated by compiler. By this transformation, every

statement in the GIMPLE IR only has one single-level reference. One thing needs to be mentioned is

that, although D.2348 and ptr are both pointers, macros TREE_CODE of them return var_decl for D.2348

but indirect_ref for the latter one [2]. Because of this functionality in GCC, library calls will only be added

for ptr.

5.3.3 Improved Management Data Structure

In this section, we propose a new low associativity heap management data structure. Compared to the

fully associative data structure in the previous work [12], the new one has lower runtime overhead. It is

because of that fully associative data structure adopted a complex replacement policy (LRU) for heap

object replacement. In order to find the least recently used heap object for each eviction, it requires

a sequential table walking to find the valid match. This operation is expensive and may happen many

times, which therefore degrades the performance.

5.3.3.1 Heap Cache Data Structure

Figure 5.4 shows the design of our new heap cache data structure. It has S sets, N heap blocks and a

hash function. The data structure consists of an array of S entries in heap management table (HMT) and
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Figure 5.4: Processes of looking up heap objects in a 2-way associative heap cache: (a) step 4, 5,
6 might happen. (b) When an old heap block needs to be evicted, replacement runs in a round robin
fashion.

an array of N heap blocks. As a set can contain several blocks, N is therefore equal to the number of

sets (S) multiplies the number of associativity (A) (this figure shows a 2-way associative heap cache and

we support A-way associative heap cache, where A = 1, 2, 4, 8). granularity_size and Num_of_sets in

hash function are configured by users before compilation. Each entry in HMT contains a tag bit, a valid

bit, and a modified bit and high bits of global addresses. There is a “one-to-one" static mapping between

the entries in HMT and the heap blocks. Therefore, it has the property that the number of entries in HMT

is equal to the number of heap blocks (N ). We do not manage HMT between the main memory and the

local memory, which can decrease the number of DMAs caused by moving HMT entries.

Besides the customization of heap blocks (N ), heap associativity (A) and heap sets (S), we

also provide a victim buffer for heap cache in the local memory. It can be used to relieve the thrashing

of heap objects. When a heap object needs to be swapped out of the heap cache, our library will not

directly transfer it to the main memory, but locate it to the victim buffer. By doing this, when there is

a heap miss in the heap cache, we may find the data is in the victim buffer and eliminate the no slow

fetch from the main memory. The victim buffer may locate one block of heap objects or other number of

blocks. The optimal number is application dependent and this effect will be discussed in Section 5.4.
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5.3.3.2 Implementation of _g2l Function

When _g2l is used for each heap access, several corresponding steps will be taken. We use Figure 5.4

to illustrate these steps as follows.

1. When _g2l function takes in global_addr, the hash function returns the set index corresponding to

the requested global address.

2. After finding the set number i, the function directly goes to entry i in HMT, where tag status for set

i is stored. Then the valid tags in the selected set are compared to the tag in the global address.

As the figure shows a 2-way associative heap cache, the comparison in HMT will be conducted

twice for set i.

3. After comparison, the function can know which block the accessing heap object should be lo-

cated1. Then, it can further know the object offset of the accessing heap object in the cache block

from global_addr. In this example, we suppose the offset is 1.

4. Finally, _g2l checks the entry i in HMT to determine whether it is in the location b.

• If there is a valid matching entries in HMT, the request is a hit and the local address is

determined by adding the object offset to the local address of the heap block that corresponds

to the matching entry.

• Otherwise, it is a miss, and the miss handler is invoked. The miss handler goes through the

fully associative victim buffer to find whether the heap object is there.

– If it is a hit, the local address of the object in the block within the victim buffer will be

returned.

– Otherwise, an old heap block following the predefined replacement policy will be selected

and evicted out to victim buffer to make space for the coming one. Before overwriting

heap block in the victim buffer, the modified bit of the block will be checked. If this block

is dirty, it will be written back to the main memory. Otherwise, we can directly overwrite

this location. Then, it fetches the heap block that corresponds to the requested global

address from the main memory and places it in the evicted location.

1The size of block is the granularity of heap management, which means the smallest unit of data transfers.
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Round Robin Replacement Policy

When an old heap block should be chosen to be evicted for N -way (N = 2, 4, 8) associative

heap cache, _g2l chooses the evicted block in a round-robin fashion. Specifically, an array of counters

is maintained. One counter is for one set in the heap cache. Whenever a heap block in one set is

evicted, the corresponding counter will be incremented by 1 and modulo the number of blocks in one set

(for example, 4 for 4-way associative heap cache). Then, when one heap block in the set needs to be

selected in the future, the counter will return this candidate.

SIMD Comparison for Associative Heap Cache

Our runtime library provides N -way (N = 1, 2, 4, 8) associative heap cache. The tag compar-

isons for the implementation of 4-way associative heap cache and 8-way associative heap cache can

be optimized by using SIMD (Single Instruction Multiple Data) comparison instruction supported by the

accelerator core [27]. This SIMD programming operates on vector data types that are 128-bits (16-bytes)

long. As one entry in HMT is a word long, and therefore 4 comparisons for a set in 4-way associative

heap cache can be finished in one SIMD instruction. Accordingly, 8-way associative heap cache requires

2 SIMD instructions for its 8 comparisons of a set.

5.4 Experimental Results

5.4.1 Experimental Setup

We run several benchmarks on the IBM Cell processor [27] with operating system Fedora 9 and 6

accesses of the 8 SPEs. The benchmarks include applications from Mibench suite [31] and some other

possible applications. The benchmarks from Mibench are modified to be multi-threaded, where just

input and output happen on the main core, and the rest happens in the execution core. Table 5.1 shows

the details of the heap size requirement of each benchmark. MIN is the minimum size needed by our

methods, while MAX is the total amount of heap space required by the application with the standard

input set (without management). yes of Exceed means the application needs to be managed, as it is

larger than available space for heap data in the local scratchpad memory. Available space means the

subtraction of the size of local memory (i.e., 256KB) and sizes of stack data, code and global data

required by the program.
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Figure 5.5: Impact of block size (in Bytes)

5.4.2 Impact of Heap Cache Parameters in FHDM

Heap design space is immense. We can choose different block sizes, set associativities, victim buffer

sizes and number of sets. In this section, we performed many simulations with different configurations

to evaluate the performance of benchmarks.

5.4.2.1 Block Size

The first result we show in Figure 5.5 is the impact of the block size for heap cache. In this experiment,

we configure heap cache to use all available space in the local memory. In addition, there is no victim

Table 5.1: Heap requirement of all benchmarks

Benchmarks
Heap Size (bytes)

Exceed
MIN MAX

basicmath 0 0 no
DFS 16 16000 yes
dijkstra 16 24064 yes
fft 16 262208 yes
invfft 16 262208 yes
MST 16 24576 yes
rbTree 32 49152 yes
sha 0 0 no
stringsearch 16 4096 no
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buffer in the data structure and heap objects are managed in 4-way associative fashion. We varied

the block size from 16 bytes to 4096 bytes2 A larger block size provides the functionality of prefetching

as it brings in a few nearby elements together to the local memory. In Figure 5.5, we normalized the

execution time of application with other block sizes to that with block size 16 bytes. We can observe

that, the performance of dijkstra and stringsearch can be improved by simply increasing the block size.

Because they access data sequentially in nature, a large block size takes advantage of data prefetching

and higher data transfer bandwidth. In contrast, other benchmarks can get the best performance with

block size between 256 bytes and 512 bytes, since there is a trade-off between the transfer granularity

and the data locality. When the block size is small, increasing the block size can increase the reuse of

the data. After the block size reaches a certain extent, increasing the block size will not change the data

locality of the application, while the overhead of transferring larger data increases and finally beats the

benefit of better data locality.

5.4.2.2 Set Associativity

The second factor we have tried to explore is the set associativity of our heap cache. In this experiment,

we changed the set associativity of heap cache from direct mapped to 8-way associative, without a victim

buffer. Besides, the heap cache size is varied from the minimum size to all the available space in the

local memory, and the block size is tested from 16 bytes to 4096 bytes. We show the average execu-

tion time for each associativity in the y-axis of Figure 5.6. The average runtime with N -way(N=2,4,8)

associative management is normalized to the average runtime with direct mapped management. We

can observe that the 4-way associative heap cache can improve performance of benchmarks DFS, fft,

invfft and MST. However, the performance are even worse with the higher associativity for benchmarks

dijkstra and stringsearch. A higher associativity for heap cache can decrease heap data miss rates and

therefore reduce the number of DMA transfers, while it in turn requires more computations in software

implementation, i.e., the computation spent on looking up the management data structure. If the benefit

brought by high hit ratio beats the computation overhead, higher associativity is better. Otherwise, higher

associativity will just degrade the performance.

2The block size is also the minimum data transfer unit between the main memory and the local scratchpad memory (can be
termed as granularity).
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Figure 5.6: Impact of set associativity

Figure 5.7: Impact of victim buffer (number of blocks)

5.4.2.3 Victim Buffer

Heap data are moved between the main memory and the local scratchpad memory. One problem of

this is the effect of trashing, for example, a heap object is just swapped out of the local memory, but is

needed in the new future. In order to relieve thrashing of heap objects, a victim buffer is implemented

in the heap management buffer. The victim buffer holds the just-evicted heap objects temporarily, and

provides the data if accessed.
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Figure 5.8: Performance - different number of cores.

In this experiment, we assigned all available space in the local memory to heap cache, changed

the block size from 16 bytes to 4096 bytes, and set heap cache as 4-way associative. We then varied

the number of blocks in the victim buffer from 0 to 4, and show the results in Figure 5.7. All results

with N (N = 1, 2, 3, 4) number of blocks in the victim buffer are normalized to the result with 0 block

in the victim buffer. Each bar shows a different number of blocks in the victim buffer, for example, 0

means FHDM has no victim buffer and 1 means the victim buffer can hold only one cache block. As

shown in Figure 5.7, most of the benchmarks performed with the best performance without a victim

buffer, except that benchmark MST has the best performance when the victim buffer can accommodate

three heap cache blocks. Victim buffer is designed for reliving the thrashing of heap objects, which is

heap access pattern dependent. When an application rarely has such thrashing access pattern, the

implementation complexity will add more overhead to heap data management. The programs without

a victim buffer performs best means that, the performance degradation by extra instructions for victim

buffer implementation is larger than the benefit obtaining from less number DMAs. One the other hand,

when an application has lots of thrashing access pattern, the victim buffer can reduce the number of

conflict misses and improve the performance.

5.4.3 Scalability of FHDM

In this section, we conducted another set of experiments to examine the scalability of FHDM. In the

experiment, we use the identical program on different number of cores. Besides, we configured the
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Figure 5.9: Runtime comparison between SHDM and FHDM

heap cache to i) use all available space in the local memory, ii) has no victim buffer, iii) utilize 4-way

associate heap cache in library functions. The performance of the application with other number of

cores is normalized to it with only one core. The results are presented in Figure 5.8. We can observe

that the runtime increases gradually as the number of core increases. It is mostly due to the competition

request of shared resource, e.g., DMA engine and mailbox. The increase for benchmark fft and invfft

is more steep, since heap accesses in these two benchmarks are scattered and intensive, which cause

frequent accesses to the main memory and therefore increase the memory latencies as the number of

cores increases.

5.4.4 Thorough Comparison between SHDM and FHDM

5.4.4.1 Overall Comparison

In this experiment, heap cache is configured to use all the available space in the local memory. Besides,

we used 4-way associative heap cache without a victim buffer for FHDM, as this configuration is found

to be the best choice for most benchmarks in previous section. The results with both techniques are

demonstrated in Figure 5.9. The x-axis in the figure indicates the nine benchmarks and the y-axis

provides the execution time of the benchmark with FHDM that normalized to its runtime with SHDM

[12, 13]. SHDM is a semi-automatic heap data management scheme with full associativity. We can

observe that most of benchmarks have better performance with FHDM, with an average improvement
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Table 5.2: Library code size of heap manager (in bytes)

_malloc _free _g2l _l2g

SHDM 3792 200 3360 968
FHDM 240 80 624 0

by 43%. There are two benchmarks, basicmath and sha, that have no improvement. The reason is that

these two benchmarks have no heap data and therefore there is no heap data management with either

scheme. For the other seven benchmarks, we can get improvement to different extent. There are two

main reasons. First, SHDM implemented LRU (Least Recently Used) replacement for its heap cache.

Performance of fully-associative heap cache is degraded by the sequential table walking to find the valid

matching address for the heap data request. On the contrary, FHDM finds the corresponding set by

hashing the global address of accessing heap object. In addition, FHDM uses low associativity for heap

data management. Therefore, expensive table walking is avoided. Second, in order to maintain high

associativity in SHDM, the Heap Management Table (HMT) needs to reserve one entry for each object.

The entry stores the local address and global address of each heap object, the time stamp of the heap

object, valid bit and modified bit. HMT increases as the number of heap objects increases. In order to

support unlimited heap data, HMT must be managed between the main memory and the local memory,

since the table itself can occupy all space in the local memory [12]. Due to the transfers of table entries,

the performance can be even worse. The library function needs to fetch table entries from the main

memory, walk through entries, put back entries, and fetch other entries again until getting the right entry

for the least recently used heap object in the local memory. On the contrary, the HMT size in FHDM

does not change with the increase of heap objects, as the mapping scheme is between HMT entries and

heap blocks, rather than between HMT entries and heap objects in SHDM. In other words, the HMT in

FHDM occupies constant space and can be fit into the local memory. Therefore, the overhead incurred

by HMT data transfers is avoided.

5.4.4.2 Management Library Size

Since extra statement must be inserted before each heap data access no matter manually or automati-

cally, the code size will be increased. We found that both techniques only increase less than 1% of code

size because of this. In addition, as both schemes will link heap data management library with the orig-

inal code of the application, the additional code overhead should be kept as small as possible. This is

54



Table 5.3: Dynamic instructions per function

_malloc _free
_g2l

_l2g
hit miss

SHDM 948 50 280 373 243
FHDM 60 20 51 117 0

because library code locates in the local memory. If the library occupies more space, then the heap data

will have less space in the local memory, because of which the performance will be further degraded.

We removed _l2g function in FHDM by code transformation and therefore its size is 0 byte. In addition,

as shown in Table 5.2, we also decreased the code size for the other three library functions. Overall, the

library code size in SHDM is around 8KB, but FHDM has only 1KB static code size overhead.

5.4.4.3 Dynamic Extra Instructions and DMAs

In addition to static code overhead, both schemes incur dynamic runtime overhead. It must be noted that

the application even cannot be executed in the local memory without two schemes. The total overhead

consists of two components, the number of extra instructions and the number of data transfers (in terms

of the number of DMAs) between the main memory and the local memory. To delve into the overhead

of both heap data managements, we ran experiments and show results in Table 5.3. In the experiment,

we ran all benchmarks with both schemes, and approximately calculated the average extra instructions

incurred by each library function call. There are two columns for the function _g2l, hit and miss. hit

means the accessing heap object is residing in the local memory when the function _g2l is called, while

miss means the accessing heap object is not in the local memory when the function _g2l is called.

In this circumstance, the function first writes back old data and then fetches the required data to the

local memory by initiating a DMA command. Consequently, more instructions are needed. As shown in

Table 5.3, FHDM has much less extra instructions per call than SHDM has.

5.5 Summary

In this chapter, we proposed an advanced scheme, fully-automatic heap data management (FHDM),

for managing heap data on Software Managed Manycore (SMM) architectures. It scales well with the

number of cores. It provides a compilation and runtime system (_malloc, _free, and _g2l) to manage

unlimited size of heap data for SMM architectures. Its heap cache has low associativity. Compared to
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the state of the art SHDM, FHDM is fully transparent to programmers, supports multi-level heap pointers,

and has better performance.

Our work foresees further possibilities of research in efficient data management. First, we can

reduce the calls to _g2l function before each heap access if we can guarantee that the heap data is

present in the local memory. Second, heap data can be prefetched if a heap access in the later stage

can be predicted. Both directions requires a more advanced program analysis.
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Chapter 6

EFFICIENT AND EFFECTIVE CODE MANAGEMENT

6.1 Introduction

On desktops or clusters with general purpose processing units, the system loads the complete program

running on it into the main memory and then execute it. Even if the whole program is not loaded,

most of instructions can be put into the memory, and instruction cache could automatically fetch the

required ones when needed. This is the most efficient way to perform the operation. However, in

case of Software Managed Manycore (SMM) architecture, the memory of the processing unit is limited,

for example, each Synergistic Processing Element (SPE) on the IBM Cell processor has its own local

memory of size 256KB. In this case, loading the complete program onto the local scratchpad memory

before its execution usually does not work due to its memory constraints, unless the program is a small

computation task which requires relatively low memory for both code and data. Even worse, SMM

architectures lack of virtual memory facilities. To enable the execution of large applications on SMM

architecture, it is necessary to use code overlay [36].

Code overlay is a programming technique that allows programs to be larger than the available

memory. Besides, overlays may also be used for achieving performance improvement. As the local

memory is shared by code and data of the mapped process, the size of data areas can be increased

by constraining code into overlay area. Although there is performance loss by performing code overlay,

data management may gain more because of larger memory resource. Usually, the overlay organization

is generated manually by programmers or automatically by a specialized linker. A good code overlay

requires deep understanding of the program structure, with the consideration of maximum memory sav-

ings and minimum performance degradation. The overlaid program objects are not loaded onto local

scratchpad memory before the main program begins its execution. They actually reside in main memory

until that object is required to be executed. Figure 6.1 shows one example of code overlay for SMM

architectures. Functions mapped to the same region are located in the same physical address, and must

replace each other during run time [36]. The size of a region is the size of the largest function mapped

to the region. The total code space required is equal to the sum of the sizes of regions.
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Figure 6.1: Code overlay on scratchpad memory - when task assigned to the execution core has larger
footprint than the available space, code needs to be mapped between external shared main memory
and the local scratchpad memory of the core.

6.2 Working of Code Overlay

Code overlay is composed of two fundamental parts, overlay manager and the linker or one’s own overlay

scheme. The linker plays an important role of generating call stubs for all the regions and the associ-

ated management table, which has all the tags stored for the reference of the overlay manager. These

stubs (one __ovly_load() for each function call) and tables (more details about the management table

are present in the next paragraph), both are always reside in the local scratchpad memory. Instructions

to call functions in the overlay regions are replaced by branches to these call stubs, which load the

function code to be invoked, if necessary, and then branch to the function. When a particular function

f is called by the currently executing function, overlay manager goes through the management table to

check whether the instructions of f are already in the local memory. If they are already present, the

program sequence jumps to the starting address of the target function and begins execution from there.

On the other hand, if they are not present in the local memory, the instructions of f are loaded into the

appropriate memory region, to its specific memory address during run-time, by performing special DMA

operation. The DMA command is issued, controlled and executed by the overlay manager. In addition,

the granularity of transfer unit is determined by specific code management schemes. They vary from

one function object, one instruction word, to several function objects. The code management approach

in this dissertation works at the granularity of one function object. The instruction fetching operation

overwrites the existing instructions present in that region. Before jumping to the target address once the
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Table 6.1: Elements in one entry of _ovly_table
Element Information Stored

vma local memory address that the section is loaded to
size size of the overlay in bytes
offset offset in executable where the section can be found
buffer One-origin index into the _ovly_buf_table

Table 6.2: The element in the entry of _ovly_buf_table
Element Information Stored

mapped one-origin index into _ovly_table for the currently loaded overlay. 0 if none

Figure 6.2: One example shows the status of two tables (_ovly_buf_table and _ovly_table) for code
overlay.

code segment has been loaded, the overlay manager also checks to ensure successful completion of

the DMA process to avoid any unwanted behavior in the program execution.

Two tables are present in the local memory, _ovly_buf_table and _ovly_table. The information

for each entry of _ovly_table is shown in Table 6.1, and the same of _ovly_buf_table is present in Table

6.2. _ovly_table has only one entry per overlay segment. The overlay manager has only read permission

for this table. This table should never change during execution of the program. _ovly_buf_table has only

one entry per overlay region. The overlay manager has read-write permissions for this table. It changes
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to reflect the current overlay mapping state. Whenever the overlay manager loads a segment into a re-

gion, it updates the _ovly_buf_table with the corresponding segment number. Figure 6.2 shows contents

of _ovly_table and _ovly_buf_table for a example linker script.1 Column vma in _ovly_table indicates the

local address where corresponding segment is loaded. Column buf shows to which region correspond-

ing segment is mapped. Column mapped in _ovly_buf_table shows which segment is currently located

in the region.

6.3 Objective of Code Overlay

For code overlay to work best, there are two fundamentals need to be determined: first is to choose the

number of regions, and the second is to map all functions to regions. From the performance perspective,

it is best to place each function into a separate region, so that it will not interfere with any other objects,

but that may increase the code space too much. In contrast, mapping all functions into one region uses

the minimum amount of code space, while incurs too many instruction transfers and therefore runtime

overhead. The task of optimizing code overlay is, to organize the application functions into regions that

will obtain a balance between the code space used and the data transfers required.

6.4 Related Work

Scratchpad memory has been well known for a decade in the embedded area. Since it sheds hardware

required for cache management to enable performance and silicon area advantages over the system

cache, all code and data management must rely on compiler or programmer’s hand inserted code [18].

There are a number of approaches for selecting what to place into the scratchpad memory and when

to place them there. Steinke et al. [17] view the instruction placement problem in terms of minimiz-

ing memory accesses, and evaluate the structure of the program in the granularity of basic blocks and

functions to formulate an ILP problem. Udayakumaran et al. [64] present an algorithm which looks at

timestamps in code sections to determine temporal locality, The work [7, 38] present algorithms which

require trace data. Egger et al. [25] implements a paged SPM management and prefetching scheme.

These schemes require profiling information which is impractical as program execution varies widely on

different input data when there are branches. Besides, these techniques cannot be directly applied to

1The linker script is used to control the generation of overlays as this allows maximum flexibility in specifying overlay regions
and in mapping functions to overlay regions.
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Software Managed Multicore (SMM) architecture. This is because of the difference in the way scratch-

pad memory has been traditionally used, and the way it is used in SMM architectures. In embedded

systems, e.g., ARM processors, the scratchpad memory is present in addition to the regular cache hi-

erarchy of the processor. Programs can be executed correctly without using scratchpad memory, but

scratchpad memory can be used to optimize performance and power efficiency. On the contrary, the

scratchpad memory is the only memory hierarchy in SMM architecture and is therefore essential, rather

than optional. All code and data must go through it. As a result, while the problem of using scratchpad

memory in embedded systems is that of optimization, the problem of using scratchpad memory in SMM

architectures is to enable the execution of applications.

To the best of our knowledge, work [16, 39, 40, 54] are similar to our effort for code and [40] is the

most similar one. Two mapping algorithms were proposed in [40]. One is function mapping by updating

and merging (FMUM) and the other one is function mapping by updating and partitioning (FMUP). FMUM

begins with a mapping in which each function is placed in a separate region. It repeatedly selects and

merges a pair of regions with the minimal merge cost among all pairs of regions until all functions can

fit in the given scratchpad memory size. In contrast, FMUP starts with a mapping where all functions

are placed in only one memory region. It repeatedly selects the function which maximally decreases the

cost and places it to another region until the size of the total amount of instruction space is less than the

given memory size.

6.5 Cost Calculation

As mentioned in Section 6.1 and Section 6.2, when two functions are mapped into one region, they

would swap each other during the execution time, which therefore lead to performance degradation. To

develop any code overlay mapping, there is a need to estimate this swap cost. Cost is an estimation for

mapping algorithm to determine the funtions-to-regions relationship. In this dissertation, the number of

bytes that will be transferred between main memory and the local scratchpad memory is used as a metric

to measure this cost. Proposing a correct and comprehensive cost calculation is of utmost importance,

as it is the foundation upon which any mapping algorithm can be developed.
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6.5.1 Motivation

The work [16, 39, 54] provide several different heuristics for code overlay mapping on SMM architec-

tures. However, they are all not efficient enough, which is mainly because of inaccurate or incorrect cost

calculation. They statically calculate the mapping cost and generate a mapping. They never dynamically

update the cost during the course of mapping algorithm. This is unsatisfactory and can lead to inferior

mapping. Figure 6.3 (a) shows an example where function main calls F1, F1 calls F2, and F2 calls F3,

and then they all return. The function nodes also indicate the sizes of functions. Let us consider a case

which requires us to map all functions into a scratchpad memory of 5 KB. It is slightly tricky to calculate

the cost between indirect function calls. For example, when computing the cost between main and F2, if

main and F2 are mapped to the same region, the interference2 between them depends on where F1 is

mapped. If F1 is mapped to another different region, then the interference between main and F2 is just

sum of their sizes, namely, 3 KB + 1 KB = 4 KB. The calculation is as follows. When F2 is called, 1 KB of

function F2 will need to be brought into the memory. When the calling state returns to main, 3 KB of the

code of main needs to be brought into the scratchpad. However, if all main, F1 and F2 are mapped to the

same region, then the interference cost between main and F2 is 0. This is because, when F2 is called,

main is already replaced with F1, and when the program returns to main, F2 is already replaced. In a

sense, there is interference between main and F1, and between F1 and F2, but there is no interference

between main and F2.

Previous approaches [16, 39, 54] computed the worst case interference cost, i.e., 4 KB for main

- F2, and never updated it, and therefore obtained inferior mapping. To explain this, Figure 6.3 (b) shows

a state in mapping when main, F1 and F2 have already been mapped. main is alone in region 0, F1

and F2 are together in the region 1. Now is the time to map function F3. Size of F3 is 0.5 KB, therefore

it can be mapped to either region, without violating the size constraint. The interference cost between

region 0 and F3, i.e., between main and F3 is 3.5 KB. The interference cost between region 1 and F3 is

traditionally computed as the sum of interferences between the functions in region 1 and F3, i.e., 2.5 KB

between F1 and F3, and 1.5 between F2 and F3, totalling to 4 KB. Consequently traditional techniques

will map F3 to region 0 with main (shown in Figure 6.3 (c)). Clearly there is a discrepancy in computing

the interference cost between region 1 and function F3. If F2 is also mapped to the same region, the

2The interference here means the two functions mapped to the same region will replace each other during execution time. We use the amount
of data transfer to estimate this interference cost.

62



Figure 6.3: Cost between functions depends on where other functions are mapped, and updating the
costs as we map the functions can lead to a better mapping.

interference cost between F1 and F3 should be estimated as 0. Otherwise, the interference cost between

region 1 and function F3 are incorrectly (over)estimated. With this fixed, the interference between region

1 and F3 is just the interference between F2 and F3, which is just 1.5 KB. As per this correct interference

calculation, F3 should be mapped to region 1 (shown in Figure 6.3 (d)). The required total data transfer

between main memory and the local memory, in this case 9.5 = 3+(2+1+0.5+1+2) KB, as compared

to 11.5 = (3 + 0.5 + 3) + (2 + 1 + 2) KB with the previous mapping, resulting in a 18% savings in data

transfers.

In next sections, the limitation aforementioned is addressed by deploying a graphical code rep-

resentation (Section 6.5.2), and proposing a cost calculation algorithm (6.5.3).

6.5.2 Graphical Code Representation

Calculating the management cost correctly and mapping code efficiently requires 1) the deep under-

standing the structure of the input application, and 2) representing the flow information and control

information in an effective format. This information can be built into an enhanced Control Flow Graph

(CFG) known as Global Call Control Flow Graph (GCCFG) presented by Pabalkar et al. [54].
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Figure 6.4: The GCCFG for the code in Figure 6.1.

6.5.2.1 Definition of GCCFG

Definition 3 (Global Call Control Flow Graph). A global call control flow graph (V , E) is an ordered

acyclic directed graph, where V = VF
⋃
VL

⋃
VC . Each node vf ∈ VF with a weight wf on it represents

a function or F-node, vl ∈ VL denotes a loop or L-node, vc ∈ VC represents a conditional or C-node.

wf is the number of times function f is invoked in the program. An edge eij (eij ∈ E) shows a directed

edge between F-nodes, L-nodes and C-nodes.

If vi and vj are functions, then the edge represents a function call. If vj is an L-node or a C-node then it

represents control flow. If vi is a C-node, then the edge represents one possible path of execution. If vi

is a loop, then the edge represents what is being executed in the body of the loop. If vj is a loop and its

ancestor is a loop then the edge represents a nested loop execution. The edges are ordered, edges to

the left execute before edges to the right, except in the case of condition nodes. Edges leaving condition

nodes can execute their true or false children, where all true children are ordered and all false children

are ordered.

As an example, Figure 6.4 (b) shows the GCCFG of the program present in Figure 6.4 (a).

We ignore direct recursive function calls F5 in the graph. Since we are concerned with cost between

different functions, the effect of a direct recursive call is that the code necessary to run the called function

is already in memory, resulting in no instruction transfers.
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6.5.2.2 Construction of GCCFG

In this section, the complete algorithm to construct the GCCFG of an application is presented. The input

of the algorithm is all CFGs in the program. Then all the CFGs are integrated into a GCCFG in two steps.

Step one – basic blocks are scanned for the presence of loops (back edges in a dominator tree),

conditional statements (fork and join points) and function calls (branch and link instructions). The basic

blocks containing a loop header are labeled as loop nodes, those containing a fork point are labeled as

conditional nodes and the ones containing a function call are labeled as function nodes. If a function

is called inside a loop, the corresponding function node is joined to the loop header loop node with

an edge. If any loop node representing nested loops exist, they are also joined. Function nodes not

inside any loop are joined to the first node of the CFG. The first node, function nodes, loop nodes and

corresponding edges are retained, while all other nodes and edges are removed. Essentially this step

trims the CFG, while retaining the control flow and call flow information.

Step two – all CFGs are merged by combining each function node with the first node of the

corresponding CFG. The merge ensures that strict ordering is maintained between the CFGs, i.e., if two

functions are called one after another, the first function is a left child and the other function is a right child

of the caller function. One thing needs to be mentioned herein is that we conservatively expand indirect

function calls invoked through function pointers in much the same way as they were called with equal

probability outside of any conditional node.

The weight assignments for function nodes usually have two ways, profiling or static estima-

tion. Profiling method is straightforward, as the exact number of times the loop to be executed can be

determined by executing the program with its input. For example, we could get the number of iterations

of a while loop with an input dependent condition. The static compile-time weight assignment scheme

is tricky but important, as it removes the expensive and prohibitive task of profiling. Our results show

the estimation of weight will not degrade too much performance. Here, we present our methodology for

estimating the number of function calls on each function node. The basic blocks of the managed applica-

tion are first scanned for the presence of loops (back edges in a dominator tree), conditional statements

(fork and join points) and function calls (branch and link instructions). After capturing these information,

we assign the weights on the functions by traversing GCCFG in a top-down fashion. Initially, they are

assigned to 1. When a loop node is encountered, the weight on all its descendant function nodes equals
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the weight of loop node’s nearest ascendant function node in the path multiplying a fixed constant, loop

factor Q. This ensures that a function which is called inside a deeply nested loop will receive a greater

weight than other functions. When a conditional node is encountered, the weight on each descendant

function node equals to the weight of conditional node’s nearest parent function node multiplying the

branch probability of each edge diverging from the conditional node. We adopted a traditional scheme

described by Smith [59] to predict the branch probability. We found the impact of Q is negligible as

long as it is larger than 1 (details is shown in Section 6.7.3). As a result, Q is chosen to be 10 in this

dissertation. The previous Figure 6.4 is the resulted GCCFG of the example code with our static weight

assignment scheme.

6.5.3 Cost Calculation Algorithm

Since the cost calculation is very frequently required by CMSM, making interference cost calculation as

fast as possible is important. Given a GCCFG, and a mapping M , a naive way to compute interference

cost can be done by traversing the GCCFG, (much like simulation) and adding the function sizes, as

we visit function nodes. However, the complexity of this will be very high. Therefore, we develop an

algorithm to compute the interference cost using just two Depth First Search (DFS) traversals of the

GCCFG. If two functions are mapped into the same region, and one function is called after another

during the execution, two functions have to swap each other on the SPM, and it is said that two functions

are interfered by each other [54, 40]. However, the interference between such functions depends upon

mappings of other functions in-between during the execution. Therefore, it is essential to capture the

interferences changes between such functions and compare the cost of interference to create a better

code placement which reduces interferences between functions in regions.

Algorithm 4 shows the procedure to capture the interference cost between two functions. As

outlined in Algorithm 4, we calculate the interference cost between functions as we traverse the GCCFG

in Depth-First Search order including function return. First, it starts from the initial node of GCCFG (line

1) and search for v1 as the GCCFG is traversed. After finding v1, we assign the first edge weight (line

13) between v1 and the next node. If the next node is a loop node, it keeps traversing the GCCFG until it

meets a function node, and then it assigns the first edge weight (lines 15-17). However, if there exists a

function which is mapped into the same region as v1 and v2 after v1 is found and before v2 is found, the

edge weight becomes 0 since there is no interference between v1 and v2 (lines 4-5). When there is LCA

(or least-common-ancestor) of v1 and v2 after v1 is found, the first edge weight is re-assigned (lines 7-8).
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Algorithm 4 Algorithm cost (GCCFG, v1,v2)
1: vcurrent = vinitial
2: while vcurrent 6= vfinal do
3: if v1 is found and v2 is not found then
4: if M(vcurrent)==v1 or M(vcurrent)==v2 then
5: reset all weights
6: else
7: if vcurrent is LCA(v1, v2) then
8: assign weight1
9: end if

10: end if
11: end if
12: if vcurrent == v1 then
13: assign weight1
14: end if
15: if vcurrent.nextNode == loopNode then
16: find next function node, then assign weight
17: end if
18: if v1 found && v2 found then
19: assign weight2
20: totalWeight+=min(weight1, weight2)
21: end if
22: vcurrent = vcurrent.nextNode()
23: end while
24: return totalWeight

When v2 is found after v1 is found while it is traversing the GCCFG, we assign the second edge weight

and add the minimum of edge weight1 and weight2 to consider the case where there exists a function

mapped in the same region or an LCA between v1 and v2 in the execution sequence. As the final

interference counts between those two functions, we calculate interference count again with switched

order of two functions and take maximum value of two calculations. This is because it is unknown which

function comes first during the execution. For the final interference cost, the cost calculation function

is given by the sum of two functions multiplied by the final interference count. This procedure visits

each node in the GCCFG only once, therefore, the runtime complexity of interference cost calculation is

O(Vf ).

6.6 Heuristic Approach for Code Overlay

Finding the number of regions and mapping the functions to regions that will minimize the total amount

of instruction transfer, both have been proven to be intractable [54, 65]. Consequently, we propose a

greedy algorithm for code overlay. Algorithm 5 outlines our CMSM heuristic. It starts with a mapping, in
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Algorithm 5 Algorithm CMSM (GCCFG, S)
1: SPMregions {set of N regions in the scratchpad memory} . N is the number of functions in the

program
2: Rdest ← 0, Rsrc ← 0;
3: while SPMSize() > S do
4: FindMinBalancedMerge(Rdest, Rsrc, GCCFG);
5: MergeRegions(Rdest, Rsrc);
6: SPMregions.erase(Rsrc);
7: end while
8:

9: procedure FindMinBalancedMerge (&Rdest, &Rsrc, GCCFG)
10: begin procedure
11: minMergeCost← DBL_MAX, tmpCost← 0;
12: for all combination of regions R1, R2 ∈ SPMregions do
13: size1← RegionSize(R1), size2← RegionSize(R2);
14: max← max(size1, size2), min← min(size1, size2);
15: tmpCost = cost(R1, R2, GCCFG) * max−min

(max+min)2 ;
16: if tmpCost < minMergeCost then
17: minMergeCost = tmpCost;
18: Rdest = R1;
19: Rsrc = R2;
20: end if
21: end for
22: end procedure

which each function is mapped to a separate region (line 1). Now all combinations of two regions are

tried to be merged until the total space meets memory constraints (while loop, lines 3-7). To do this, we

firstly find two “balanced" regions with minimal merge cost through function FindMinBalancedMerge() in

line 4. We then merge two regions and update the region information in the set SPMregions (line 5-6).

Function FindMinBalancedMerge() is described in Algorithm 5. To do this, we choose a region pair (R1,

R2) (Algorithm 5, line 12-21), and calculate its merge cost in line 15. Here, we utilize the cost function

from Algorithm 4. Besides, there is a balance factor max−min
(max+min)2 . It is inclined to place the functions

having close object sizes into the same region. It is important, since we can compress the total code

space in the local scratchpad memory and use less memory. This remaining space could result in more

number of regions as long as there are functions that could be accommodated to it. Even if no more

regions would be generated, it is still beneficial to use less space to achieve competitive performance.

As stated before, the local scratchpad memory is shared among global data, stack data, heap data and

instructions of the managed program, less space consumed by instructions indicates more space for

other data that could eventually results in better performance.
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Table 6.3: Benchmarks, their minimum sizes of code space, and maximum sizes of code space.

Benchmark functions min code (B) max code (B)

Adpcm_decoding 13 1552 6864
Adpcm_encoding 13 1568 6880
BasicMath 20 4272 12128
Dijkstra 26 2496 9216
FFT 27 2496 12776
FFT_inverse 27 2496 12776
String_Search 17 632 4708
Susan_Edges 24 19356 37428
Susan_Smoothing 24 19356 37428

Complexity. The while loop in line 3 in Algorithm 5 merges two regions at a time. Since in the

worst case, all regions might have to be merged into one, this loop can execute |Vf | times. Inside this,

the for loop (lines 12-21 in Algorithm 5) runs for each pair of regions. This adds O(|Vf |2) complexity to

the time. Inside the loop, there is a cost calculation which has complexity O(|V |). Thus the worst case

timing complexity of CMSM is O(|Vf |4).

6.7 Experimental Results

6.7.1 Experimental Setup

We use IBM Cell processor [27] as our hardware platform. It is a multicore processor, and gives us

accesses to 6 of the 8 Synergistic Processing Elements (SPEs). In addition, this architecture has a

shared main memory on main core, and only a local scratchpad memory on each execution core or

SPE. Scratchpad memory is limited, and therefore the program needs to be managed in software when

its footprint is larger than memory available.

The benchmarks used for experimentation are from Mibench suite [31] and presented in Table

6.3. All those information is profiled by compiling programs for SPE. functions is the total number of

functions in the program, including library functions tailored for SPE. min code is the smallest possible

mapping size of code space, defined by the size of the largest function in the application. max code is

the total size of the program. We utilize main core and only 1 SPE available in the IBM Cell BE in most of

our experiments, except the one designed for demonstrating scalability of our heuristics in Section 6.7.4.
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Figure 6.5: Performance comparison against FMUM and FMUP

6.7.2 Overall Performance Comparison

While the conclusion scale for all benchmarks, Figure 6.5 shows the execution time of the binary com-

piled using each heuristic for only two representative applications. The X-axis shows a wide range from

min code to max code of each program, with the step size 256 bytes. As observed from the figure, when

the code space is very tight, all heuristics achieve the same mapping, i.e., mapping all the functions

in one region. However, as we start relaxing the code size constraint, CMSM typically performs better

than FMUM and FMUP. Our CMSM is inclined to place two functions with small merge cost and similar

code size in one region at each step of merging. It is achieved by using a “balance" factor described
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in our algorithm. The benefit of doing so is to increase the number of regions in the code space. We

expect mapping solutions with more regions to give lower overhead costs, as only functions mapped to

the same region will swap each other during run time. The reverse effect is also visible. When the code

size constraint is extremely relaxed, for example, larger than 70% of max code present in Table 6.3, all

three algorithms again achieve very similar code mapping. This is because there are quite few functions

mapped to one region when the code space is sufficient enough. The small differences in code mapping

generate negligible effect on performance.

Note that code mappings created by the CMSM do not always outperform the other two heuris-

tics. For example, when memory available for instructions of benchmark “dijkstra" is 3520 bytes in Figure

6.5, CMSM is worse than FMUP. This is because FMUP has to do very few steps, while CMSM needs

to do a lot of merges. The more steps a heuristic has to take, the errors in each step accumulate, and

eventually a worse mapping might be generated. Although our heuristic does not consistently gives

good results, it gives better results most of the times. We tested the three heuristics for all code size

constraints from minimum to maximum. On average over all benchmarks, CMSM gives a better result

than other two algorithms 89% of time. Another important observation from Figure 6.5 is that, applica-

tions are tend to have less execution time when their code space become larger. A large code space

usually leads to more number of regions in it, and therefore less functions overlap each other in regions.

This explains the trade-off between the performance and the memory available for instructions.

6.7.3 Accuracy of Weight Assignment

We examined the goodness of our static weight assignment on function nodes of GCCFGs of nine

applications. We compared the execution time of each benchmark using static assignment with its

execution time using profile-based assignment. Averagely, we found both schemes achieve similar

performance for the set of benchmarks. This implies that we can eliminate the compile time overhead to

obtain profiling information through the loop based function weight assignment. It also makes the code

management technique more comprehensive, since profiling large applications is time-consuming and

intimidating.

6.7.4 Scalability

Figure 6.6 shows the results we examined the scalability of our CMSM heuristic. We normalized the

execution time of each benchmark with number of SPEs to its execution time with only one SPE, and

71



Figure 6.6: Scalability of CMSM on multicore processors

show them on y-axis. In this experiment, we executed the identical application on different number of

cores. According to the graph, the runtime difference with the increased number of SPEs is negligible

even in such aggressive configuration. In this configuration, DMA transfer occur almost at the same time

when instructions need to be moved between the global memory and the local memory. This will make

the Elemental Interconnect Bus (EIB) saturated. Benchmark BasicMath increases most steeply, as there

are many instruction transfers in the program, which makes each SPE have more execution time.

6.8 Summary

Software Managed Multicore (SMM) architectures are one of promising solutions to the problem of scal-

ing the memory hierarchy. However, since scratchpad memory cannot always accommodate the whole

task mapped to it, certain schemes are required to mange code, global data, stack data and heap data

of the program to enable its execution. This chapter present a framework to manage code between main

memory and the local memory, at the granularity of function object. We addressed the cost estimation

problems in previous work by devising a correct cost calculation algorithm for code mapping. Since code

mapping problem has been proved to be NP-complete, a heuristic approach named CMSM is proposed

for the same problem. Our experimental results show that CMSM generates code mapping which leads

to significant performance improvement compared to previous work.
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Chapter 7

MAIN MEMORY MANAGEMENT

There is a potential of memory overflow in the main memory of data managements. The data manage-

ment, namely SSDM and FHDM, allocate a large space at the start of the program in the main memory

to accommodate all stack/heap data of the execution cores. If enough space is allocated, then this man-

agement can be performed very efficiently, by just maintaining a pointer to the start of free space in the

main memory. The execution core can then just perform a DMA of function frames or heap data to the

main memory. Further, since the execution core knows the size of function frames and heap data, it

can update the pointer to free space by itself. Again, this scheme will work in extremely embedded con-

texts, where the maximum stack/heap space required by applications can be known, but is impossible

in general due to recursive functions and dynamic characteristic of heap data. For recursive functions,

the stack space required may be unbounded. Heap data is also the same. In other words, no amount

of initial memory allocation in the main memory may be enough. Consequently, when the pre-allocated

main memory is filled up, any further DMAs can write into the address space of other execution cores,

causing an access fault in the best case and wrong results in the worst case. In such a circumstance,

we need to develop a scheme to support unbounded stack data and heap data.

In general case, stack data and heap data in the main memory must be managed dynamically.

This implies that at some time, the execution core must request the main core to allocate more memory.

Since this cannot be done by a DMA call, and therefore some other communication mechanism between

the execution core and the main core must be used. For example, in the IBM Cell processor, we can

use the mailbox facility for this purpose. Additionally, we implement a new thread on the main core that

will continuously listen to requests from the execution core, and allocate memory when requested. Then

it sends the start addresses of the allocated space to the execution core. This is done so that in most

cases, the address translation can be done in the execution core, and only a direct DMA will be needed.

On the execution core, this functionality is implemented in _sstore function for stack manage-

ment, and _malloc function for heap management. _sstore and _malloc first check if there is space for

the incoming function stack or heap data on the local memory. If not, the oldest function frames/heap

objects should be evicted to the main memory. Figure 7.1 shows the whole process that are needed to

manage a memory request. Before eviction, _sstore or _malloc check whether more memory is needed

73



Figure 7.1: Typically the execution core can write in the main memory using only a DMA call. However,
when there is no more space in the main memory, a request is made to the main core to allocate
more memory. After allocation, the main memory management thread sends the memory start and end
addresses Ms, Me to the execution core.

in the main memory. We track the remaining space in the main memory by variables Ms and Me in the

execution core. If not, it sends a request via the mailbox to the main core. The memory management

thread on the main core accepts this request, allocates more memory (e.g., two times) than the request,

and finally sends the start and end address of the newly allocated memory to the execution core, which

can then be used for future data management. The reason we allocate more memory is that we can re-

duce the number of communication calls by not allocating memory each time function stack frame/heap

data is evicted. The functionality of _sload and _free are very similar, except that if all function frames or

heap data from a memory region have been brought back to the local memory, the memory is free-ed.

Instead of adding the main memory management functionality in the existing thread of the main

core, keeping this as a separate thread has several advantages. First is that the code of the main thread

does not need to be modified, and the extra threads can be supplied as a part of the library, and the

user just needs to compile their applications with it. Second, this separate thread solution scales with

the number of cores, as just one thread will be able to manage memory requirements of all execution

threads on the processor. Since memory allocation is managed by the operating system on the main

core, the dynamically allocated buffers never infringe each other’s space.
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Chapter 8

MEMORY PARTITION

Till now, we have developed techniques to manage and optimize the management of each kind of data

(and code) in a constant amount of space in the local scratchpad memory, thereby enabling execution

of even those tasks whose memory footprint is much larger than the local memory available [10, 11,

12, 13, 14, 15, 40, 49].. Even though execution is possible, but the overhead of the management is

strongly correlated to the space provided to the data (shown in Figure 8.1). For example, more space

for stack data will result in lesser stack frames being evicted to the global memory, and therefore the

stack management overhead will be less. Therefore an important question is, how to partition the local

scratchpad memory among the different data-kinds so as to maximize performance. While in general

this is a difficult question, the data requirements of some embedded systems are predictable, and the

compilation time is not as important, since the application is compiled once, and it is executed forever.

In such systems, the memory partitioning problem can be tackled.

Memory partitioning is very important, as it has a very significant impact on performance, but

even in embedded systems, in order to find the optimal memory partition, we must execute the applica-

tion for all partitions. This simulation process is time-consuming. Let cmin and cmax be the minimum

and maximum size of code region, where cmin is the largest function object size. smin and smax be the

minimum and maximum size of stack region, where smin is the largest function stack size. In addition,

hmin and hmax can be used to denote the minimum and maximum size of heap region. If the scale unit

for code, stack and heap data are lc, ls and lh respectively, the total number of simulations required is:

cmax − cmin

lc
× smax − smin

ls
× hmax − hmin

lh

The question is how to obtain a good memory partition without running so many simulations.

To do this, we assume that the overhead of managing a data-kind is not correlated to the other space

Figure 8.1: There is a space and performance trade-off. The more space we allow for a data, the lower
is the management overhead. We intend to estimate the slopes of these curves to decide the partitioning
of the local memory space for different data.
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allocation of the other data-kinds, and is only dependent on the space allocated to that data-kind. By

doing this, we only need to find out how performance depends on the space allocated for that data.

We keep the size of the allocation for the other two data-kinds at minimum, and vary the allocation of

the data-kind in question, and observe the performance. Exploration results (in Figure 8.1) show that

the space-performance dependency can be relatively accurately approximated as 2-degree polynomials.

Let C, H and S be code size, heap size and stack size respectively. Three 2-degree polynomials can

be represented as:

R(C) = m1C
2 +m2C +m3

R(H) = n1H
2 + n2H + n3

R(S) = q1S
2 + q2S + q3

where mi, ni and qi (i = 1, 2, 3) are coefficients and R means the runtime.

Using these three quadratic dependencies, we formulate the memory partitioning problem as

follows:

min m1C
2 +m2C +m3 + n1H

2 + n2H + n3 + q1S
2 + q2S + q3

s.t. cmin ≤ C ≤ cmax

hmin ≤ H ≤ hmax

smin ≤ S ≤ smax

C +H + S = TS

where TS is the available memory resource that can be used by three data.

Now, we only need to change the size for each data from its minimum to its maximum to get

coefficients in each polynomial curve. Consequently, the number of simulation time is reduced to:

cmax − cmin

lc
+
smax − smin

ls
+
hmax − hmin

lh

To demonstrate our proposed approach, we run all benchmarks from previous chapters on

the IBM Cell processor [27]. Each application uses the whole space in the local scratchpad memory.

Besides, stack data is managed with smart stack data management (SSDM) scheme; Code is handled

with CMSM heuristic; Heap data is managed through fully-automatic heap data management (FHDM).

The size for each data varies from its minimum to its maximum, in steps of 128 bytes.

The best performance of the managed program can be achieved with exhaustive simulations,

yet this may take intolerant time. On the other hand, our scheme reduces the simulation time with a slight
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Figure 8.2: Using our heuristic, the simulation time is reduced to 19% of the exhaustive scheme, but the
runtime is only increased by an average of 3%.

performance degradation. As shown in Figure 8.2, the simulation time is reduced to 19% of the time on

exhaustive simulations. With the memory partition generated from our scheme, the application performs

only 3% worse than the best performing partition obtained from exhaustive simulations. This result

demonstrates that our scheme greatly reduces the simulation time, yet not losing too much performance.
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Chapter 9

PUTTING IT ALL TOGETHER

9.1 Supporting Limitless Stack Data, Heap Data, and Code

In this section, we demonstrate the applicability of our stack data, heap data and code management

[10, 11, 12, 13, 14, 15, 40, 49]. Though the result scales for all applications in previous sections, we

only show the application rbTree. rbTree dynamically allocates space for each node and creates a red

black tree. Finally, it prints out all nodes in the tree. To demonstrate our management techniques, we

change the number of nodes in the tree from 1 to 131072. Since the size of each node is 32 bytes, the

total space requirement of 131072 nodes is 12 times larger than 256KB space of the local memory.

We can observe from Figure 9.1 that, only 6800 number of nodes can be created in the tree

without any management, larger than which the program will crash. The reason is that stack data and

heap data eventually consume up the total available space when more number of nodes are created in

the tree. When managed, the application is assigned with all available space in the local memory. By

doing this, we can fairly compare the performance of application with and without data management.

We can see that, our schemes enable the execution of the application with very large number of nodes.

Figure 9.1: Supporting limitless stack data, heap data, and code
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Table 9.1: Comparison against cache

cache Our approach
number of misses miss penalty (us) miss overhead (us)

BasicMath 93561677 8514112 19
Dijkstra 6060791 551531 723
FFT 9318774 848008 74
FFT_inverse 7996980 727725 86
SHA 27402 2493 23
String_Search 134834 12269 174
Susan_Edges 57983 5276 11
Susan_Smoothing 314874 28653 19

Another observation is that there is a leap after the number of nodes is larger than 6800. This is because

that data transfer between the main memory and the local scratchpad memory will happen after the

space is full.

9.2 Comparison against Cache-based Architecture

We discussed that data and code management overhead comprises of DMA time for data transfer and

the execution of additional instructions in the management library functions. However, the DMA time

should not be fully counted as overhead. It is because, when there is a data miss in the hardware cache,

there is also penalty for applications.

In Table 9.1, we show the differences between cache miss penalty and the overhead of our

management. In this experiment, we use SimpleScalar [8] to collect cache misses of data and instruc-

tions. In SimpleScalar, the total cache size is configured to be equal to the size of local scratchpad

memory. This size is set to be 4/5 of the total memory requirement (namely, the space required for stack

data, heap data, and code) of each application. The cache line size is 32 bytes and the cache is 4-way

associative. When managed with our approach, the application uses the memory partition generated

from Chapter 8. The penalty per miss used for calculating miss penalty is 91 nano seconds, which is the

time of DMA latency on the IBM Cell processor [45]. As shown in Table 9.1, our memory management

scheme has less miss overhead than cache miss penalty of cache-based processors. There are two

reasons for less overhead: i) Data and instructions are initiated in the local memory and DMA occurs

only when each region in scratchpad memory is full. ii) The management granularity is coarser in our

data management, but the cache line size in cache based architecture cannot be too large.
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Chapter 10

SUMMARY AND FUTURE WORK

As the number of cores on chip increases, the design complexity and power consumption of hardware

cache coherence logic increases exponentially. Thus a more scalable memory architecture is expected

in manycore processors. Software Managed Manycore (SMM) architectures emerge as one of promising

solutions to the problem of scaling the memory hierarchy. Such architectures lack hardware cache and

only contain a scratchpad memory on each core. As scratchpad memory cannot always accommodate

the whole task mapped to it, certain schemes are required to mange code, global data, stack data and

heap data of the program to enable its execution.

In this dissertation, we propose an infrastructure to manage unlimited size of stack data, heap

data and code for SMM architectures: 1) Stack data: we propose SSDM to manage stack data for SMM

architectures. It manages stack data within a constant space in the local scratchpad memory. It also ad-

dresses the stack pointer problem for any stack management approaches. Compared to CCSM, SSDM

judiciously places management stubs in the program. In addition, SSDM also presents a systematic

scheme to further optimize the stack pointer management. 2) Heap data: we propose a compilation and

runtime system to manage unlimited size of heap data for SMM architectures. Moreover, our system

supports multi-level heap pointers in the program. 3) Code: we formally define the problem of mapping

code for SMM architectures at the granularity of function objects. Besides, we propose a correct cost

calculation for code mapping, as well as a heuristic approach named CMSM for the same problem. 4)

Memory partition: we propose an estimation scheme to partition memory space among stack data, heap

data and code. It greatly reduces the time to get the best partitioning, at the expense of a slight loss of

runtime performance. Experimental results on several benchmarks demonstrate that our scheme scales

with different number of cores.

The work can be extended from five major directions: 1) integrating with general purpose par-

allel programming languages (for example, Open Computing Language (OpenCL) [51]); 2) support of

cache/SPM mixed multicore architectures such as TI TMS320C6678 [62]; 3) support of Dynamically

Linked Libraries (DLL); 4) support of object oriented languages; 5) automatic mapping of tasks to exe-

cution cores. In the rest of this chapter, we will discuss them in details.
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10.1 Future Work on Programming Model

We adopt Open Computing Language (OpenCL) as the representative to discuss the work that can be

done in this section. OpenCL is a framework for writing programs that execute across heterogeneous

platforms. Typically, such platforms are composed of central processing units (CPUs), graphics process-

ing units (GPUs), and several other processors. An OpenCL program requires programmers to define

kernels executing on OpenCL devices, plus employing the provided application programming interfaces

(APIs) to define and control the platforms. Academic researchers have investigated automatically compil-

ing OpenCL programs into application-specific processors running on FPGAs [37], yet OpenCL doesn’t

have good support for memory management. It requires users to estimate the space requirement of

kernels on platforms. Our work is orthogonal to these high-level work, and thus can be integrated into

those OpenCL APIs.

10.2 Future Work on Mixed Cache/SPM Processors

In this section, we adopt TMS320C6678 as the representative to discuss the work that can be done. TI

TMS320C6678 evaluation board has a single C6678 processor and a 2GB DDR3 memory. It is based

on TI’s KeyStone multicore architecture, and has eight cores on chip, each of which can run at up to 1.25

GHz. Each core has its own local memory, and all the cores share the off-chip DDR3 memory as the

main memory. The local memory for each core can be either configured as scratchpad memory (SPM)

or cache. Our work assumes each core only has a SPM without a hardware cache. In an architecture

mixed with cache/SPM, we can evict old data to cache instead of the main memory to further optimize

our management. In addition, applications can be analyzed to determine the partition of local memory

to cache and SPM.

10.3 Supporting Dynamically Linked Libraries (DLL)

Dynamic Link Library (DLL) is an implementation of the shared library concept in operating systems

(commonly seen in MS Windows operating systems). DLLs can contain code, program data, and OS-

based resources, in any combination. Owing to the dynamic nature of its interaction with the underlying

software, the amount and nature of data required for the program execution, is not known at compile

time. In the case of SPM based local memory architectures, a runtime solution has to be provided that
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monitors for data accesses to DLLs, and triggers data re-allocation on the local memory, such that the

data loaded does not disrupt the data needs of other program components. Since the DLL contains

code, program data, and OS-based resources, some of which are shared among different threads of

applications, we need to decide whether we should make a copy of shared data or code. In addition, we

need to change our management scheme to dynamically manage the dynamic library.

10.4 Support for Object Oriented Languages

Our compiler supports C language on software managed manycores. When solutions for stack data,

heap data and code are proposed, many features in object oriented language are not taken into consid-

eration, e.g., virtual function, polymorphism, each of which require specific data management schemes

to be implemented. As part of our approach, the compiler cannot fix which exact method a virtual func-

tion will call at compilation time. It then creates a virtual table for functions that from now on will always

be consulted on each function call. In this case, we need to change all the methods whose addresses

are stored in the virtual table. A table will be formed to store stack sizes and code sizes for all methods

in the virtual table. During execution, our management function can look up the information and use it

for efficient management.

10.5 Automatic Mapping of Tasks to Execution Cores

Our current solution assumes that programmers are responsible for manually distributing data and tasks

to execution cores. Our compiler solution gives the mapped application low-level support, which au-

tomatically transfers stack/heap data and code between the main memory and the local scratchpad

memory on each execution core. Since the mapping of tasks is not intuitive and is a cumbersome

process (affecting productivity and time-to-market), we could globally analyze the existing applications

that will be transformed to manycore applications, and provide a tool set to transparently perform this

task. This task requires us to 1) decide which part of code should be mapped to the execution core; 2)

estimate the communication overhead across different execution cores. 3) provide an efficient runtime

environment and incorporate it to the managed applications.
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