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ABSTRACT 

This thesis research focuses on developing a single-cell gene expression analysis 

method for marine diatom Thalassiosira pseudonana and constructing a chip level tool to 

realize the single cell RT-qPCR analysis. This chip will serve as a conceptual foundation 

for future deployable ocean monitoring systems. T. pseudonana, which is a common 

surface water microorganism, was detected in the deep ocean as confirmed by 

phylogenetic and microbial community functional studies. Six-fold copy number 

differences between 23S rRNA and 23S rDNA were observed by RT-qPCR, 

demonstrating the moderate functional activity of detected photosynthetic microbes in the 

deep ocean including T. pseudonana. Because of the ubiquity of T. pseudonana, it is a 

good candidate for an early warning system for ocean environmental perturbation 

monitoring. This early warning system will depend on identifying outlier gene expression 

at the single-cell level. An early warning system based on single-cell analysis is expected 

to detect environmental perturbations earlier than population level analysis which can 

only be observed after a whole community has reacted. Preliminary work using tube-

based, two-step RT-qPCR revealed for the first time, gene expression heterogeneity of T. 

pseudonana under different nutrient conditions. Heterogeneity was revealed by different 

gene expression activity for individual cells under the same conditions. This single cell 

analysis showed a skewed, lognormal distribution and helped to find outlier cells. The 

results indicate that the geometric average becomes more important and representative of 

the whole population than the arithmetic average. This is in contrast with population level 

analysis which is limited to arithmetic averages only and highlights the value of single 

cell analysis. In order to develop a deployable sensor in the ocean, a chip level device 
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was constructed. The chip contains surface-adhering droplets, defined by hydrophilic 

patterning, that serve as real-time PCR reaction chambers when they are immersed in oil. 

The chip had demonstrated sensitivities at the single cell level for both DNA and RNA. 

The successful rate of these chip-based reactions was around 85%. The sensitivity of the 

chip was equivalent to published microfluidic devices with complicated designs and 

protocols, but the production process of the chip was simple and the materials were all 

easily accessible in conventional environmental and/or biology laboratories. On-chip tests 

provided heterogeneity information about the whole population and were validated by 

comparing with conventional tube based methods and by p-values analysis. The power of 

chip-based single-cell analyses were mainly between 65-90% which were acceptable and 

can be further increased by higher throughput devices. With this chip and single-cell 

analysis approaches, a new paradigm for robust early warning systems of ocean 

environmental perturbation is possible. 
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1. OBJECTIVES AND CONTRIBUTION 

1.1 Objectives 

Ocean environments may be monitored by analyzing a well-suited native microorganism 

at the single-cell level. A biological tool for environmental monitoring will be 

constructed and gene expression at the single cell level will be adopted as the detection 

method. The objectives of the project include: i) Identifying a widely spread ocean 

microorganism to be monitored in both surface and deep ocean waters; thereby, the 

application will not be constrained to locations where the target microorganism exists. 

The target microorganism will be determined by clone library and phylogenetic analysis 

of deep ocean water samples since surface water samples have been intensively studied 

by other researchers and enough information about the species information has been 

collected; ii ) For the first time, tube based two-step RT-qPCR analysis for single cell 

gene expression will be performed for the target species without preamplification of the 

single-cell mRNA. This method will help to illuminate the heterogeneity of gene 

expression and at the same time provide information about stress responses for different 

nutrient-limited conditions; iii ) A chip level device will be developed to realize one-step 

RT-qPCR at the single-cell level for the target species. The chip should be robust with no 

off-chip operations. Further, the chip must be produced with a simple procedure and 

materials that are readily accessible in conventional laboratories. With the help of this 

biological tool, future deployable sensors could be built. Ideally, the chip needs to be 

compatible with commercially available real-time PCR stations with minor 

modification/optimization so that more laboratories can run single-cell analyses using this 

tool. 
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 The ultimate goal of this project can be described by Figure 1. Heterogeneous 

environmental samples will be collected and properly distributed on a single cell gene 

expression analysis chip. Single-cell RT-qPCR will be performed on chip and the results 

will be sent back to the laboratory and compared with baseline information to identify 

possible environmental perturbation. This thesis will focus on the later portion of the 

process which mainly focuses on biological tool development and concept validation. 

 

Figure 1. Schematic description of analysis process. 

1.2. Scientific contributions 

Based on the results of my project, all objectives have been successfully achieved. The 

scientific contributions of my work include: firstly, phylogenetic and gene expression 

analysis of photosynthetic cyanobacteria and diatoms in deep ocean samples. Marine 

surface water photosynthesis microorganisms were observed in the deep ocean samples 

with moderate activities which were confirmed by RT-qPCR results. The results 

suggested that our previous understanding of the species distribution in the ocean may 
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not be accurate. Secondly, tube based two-step RT-qPCR analysis at the single cell level 

has been applied to model eukaryotic phytoplankton, Thalassiosira pseudonana 

CCMP1335, for the first time. Lognormal distribution which indicated that the geometric 

average becomes more representative of the whole population than arithmetic average 

was observed for single cell gene expression. The results confirmed that population level 

analysis will provide biased information of a population (Lidstrom and Meldrum 2003; 

Strovas and Lidstrom 2009). At the same time, the results showed T. pseudonana stress 

response pattern to no iron, no nitrogen and no phosphate conditions. This information 

validates the concept and will be helpful for future sensor system construction. Thirdly, a 

simple chip level device that can perform robust single cell gene expression analysis by 

using one-step RT-qPCR has been constructed. The chip can provide new information 

about environmental stress responses of microbes but can also be used to monitor the 

effects of unknown environmental perturbations on native ocean species. The 

significances of this chip are: a) supplying a streamlined protocol which realizes direct 

cell-to-data processing without cell lysing and nucleic acid purification; b) no special 

requirement or expertise is required to construct/use this chip, so this device can be used 

as long as a compatible real time PCR machine is available. Compared with other 

methods/devices, this device is extremely simple to construct and all the required 

instruments and materials are easily accessible in conventional laboratories; c) the chip 

has the same statistical power as other single cell analysis devices, which have higher 

sensitivity than conventional (population-based) methods. The accuracy of the chip at the 

single cell level has been proven by single cell results from a tube-based method; d) the 



4 
 

device itself is versatile and can be compatible with different upstream or downstream 

operations such as cell loading via micromanipulator or dilution-to-extinction, and 

genetic and/or transcription analysis. This chip not only provides a solid background for 

future deployable sensors but also provides opportunities for conventional biological and 

environmental laboratories to perform single cell analysis. 

 With the results and technologies I learned in the past five years, I have published 

four peer-reviewed journal papers and one MicroTAS conference paper. One review 

manuscript is under review and two more manuscripts are under preparation. 

1. Gao, Weimin; Shi, Xu; Wu, Jieying; Jin, Yuguang; Zhang, Weiwen; Meldrum, 

Deirdre R., 2011. Phylogenetic and Gene Expression Analysis of Cyanobacteria 

and Diatoms in the Twilight Waters of the Temperate Northeast Pacific Ocean. 

Microb Ecol 62(4), 765-775. 

2. Shi, Xu; Lin, Liang-I; Chen, Szu-yu; Chao, Shih-hui; Zhang, Weiwen; Meldrum, 

Deirdre R., 2011. Real-time PCR of single bacterial cells on an array of adhering 

droplets. Lab Chip 11(13), 2276-2281. 

3. Shi, Xu; Lin, Liang-I; Gao, Weimin; Chao, Shih-hui; Zhang, Weiwen; Meldrum, 

Deirdre R., 2011. Single-cell Real-time PCR: direct process from cells to data. 

15th International Conference on Miniaturized Systems for Chemistry and Life 

Sciences, 362-354. 

4. Shi, Xu; Gao, Weimin; Chao, Shih-hui; Zhang, Weiwen; Meldrum, Deirdre R., 

2013. Monitoring the Single-Cell Stress Response of the Diatom Thalassiosira 

pseudonana by Quantitative Real-Time Reverse Transcription-PCR. Applied 

Environmental Microbiology, 79 (6), 1850-1858. 
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5. Shi, Xu; Gao, Weimin; Wang, Jiangxin; Chao, Shih-hui; Zhang, Weiwen, 

Meldrum, Deirdre R., 2013. Measuring gene expression in single bacterial cells: 

Recent Advances in methods and micro-devices. Critical review in biotechnology 

(under review). 

6. Wang, Jiangxin; Shi, Xu; Johnson, Roger H.; Kelbauskas Laimonas; Weiwen 

Zhang and Meldrum Deirdre R., Single-cell analysis reveals differential hypoxia 

response in two human Barrett’s esophageal cell lines, PloS one 8 (10), e75365. 

7. Shi, Xu; Gao, Weimin; Chao, Shih-hui; Zhang, Weiwen; Meldrum, Deirdre R., 

2013. Novel Single-Cell Droplet Chip to monitor gene expression under iron 

limitation condition, in preparation. 

8. Chun-Hong Chen; Shi, Xu; Gao, Weimin; Chao, Shih-hui; Meldrum, Deirdre R., 

2013. Parallel RNA extraction using magnetic beads and a droplet array, in 

preparation. 
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2. INTRODUCTION 

Ocean environments provide about 50% of the global primary production (Field et al. 

1998), but we know little about it even though we have already explored outer space 

(Edward F. DeLong et al. 2006). Over the past 2 decades, due to the application of more 

advanced technologies and tools, such as phylogenetic identification (Pace 1997) and 

metagenomics analysis (Tyson et al. 2004; Hallam et al. 2006; E. E. Allen et al. 2007; 

Edward F. DeLong et al. 2006), researchers attained more and more data which enlarged 

our understanding of the importance and functions of planktonic microorganisms. 

Meanwhile, due to fossil-fuel combustion (C. Le Quéré et al. 2009), human activities 

induced hydrodynamic currents (Q. Wang et al. 2004), fertilizer usage (Galloway et al. 

2004), industrial activity, (Doney 2010) and so on, the coastal and open-ocean 

environment have been negatively altered. All these perturbations may impact the normal 

function of ocean microbes. An efficient way to measure this perturbation at an early 

stage is urgently required. 

Using gene expression tools to measure the environment perturbation will propel 

the environmental monitoring field forward quickly. Environmental variations would first 

change the gene expression of organisms, then may cause alteration at the community 

level (Edward F. DeLong 2009). Normally in the field of microbiology, microbiologists 

believe that microbial cells growing under the same conditions are a uniform population 

(Brehm-Stecher and Johnson 2004). However, more recent evidence suggests that even 

isogenic cells exhibit notable diversity that is an order of magnitude greater than 

previously thought (Kelly and Rahn 1932; Maloney and Rotman 1973; Siegele and Hu 

1997; Lidstrom and Meldrum 2003; Kuang, Biran, and Walt 2004; Becskei, Kaufmann, 
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and van Oudenaarden 2005; Colman-Lerner et al. 2005; Golding et al. 2005; Le et al. 

2005; Pedraza and van Oudenaarden 2005; Rosenfeld et al. 2005; Strovas et al. 2007; 

Strovas and Lidstrom 2009). Therefore, a surge of researchers have focused on single cell 

analysis (Walling and Shepard 2011). An unprecedented increase of knowledge about 

single cells has already altered people’s point of view when facing microbiology related 

issues. 

Another important reason to pursue single cell analysis stems from the fact that 

the majority (>99%) of environmental microbial species cannot be cultured under 

laboratory conditions (Rajilić-Stojanović, Smidt, and De Vos 2007; S. Giovannoni and 

Stingl 2007). Therefore, they are not accessible to conventional cultured based gene 

expression analysis methods. 

Single cell level analysis requires higher sensitivity and much more careful 

sample preparation which is more difficult to perform than population level analysis. 

Nevertheless, it provides information that population level analysis cannot provide. For 

example, gene expression patterns among a population (Shi et al. 2013; Bengtsson et al. 

2005) can help to identify rare gene expression. In order to monitor the stress conditions 

that exist in the environment, one microbe that can be widely found and has large 

representation should be chosen as a target. Based on these considerations, diatom, which 

is a major group of unicellular phytoplankton (Falkowski et al. 2004; Thamatrakoln et al. 

2012) is selected as the target microbe. It has been reported that diatoms contribute up to 

40% of the primary productivity in the ocean (Maheswari et al. 2010; Nelson et al. 1995). 

Using single diatom cells, which are natural inhabitants of the ocean, for monitoring is in 
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contrast to other approaches which require introducing engineered foreign species to 

achieve a similar objective (Ripp et al. 2000). 

Although single cell level analysis can provide more information than population 

level analysis, there are still some technical hurdles, such as how to isolate single cells in 

an effective and efficient way. With the help of advances in microfluidics, single cell 

level analyses have become more accessible (D. Wang and Bodovitz 2010). 

Microfluidics technology is especially advantageous to the single cell level analyses for 

the following reasons: i) Individual cells can be precisely trapped, moved, and distributed 

individually in microscale channels, minimizing contamination (Dorfman et al. 2005) and 

at the same time decreasing the consumption of chemicals and enzymes (Zare and Kim 

2010); ii ) Isolated individual cells can be easily monitored in microchambers. When a 

cell is lysed in a sealed microchamber, dilution of the cellular contents is minimized thus 

increasing the sensitivity of a downstream nucleic acid or protein analysis (Sims and 

Allbritton 2007); iii ) Highly parallel, fully automated multi-step operations can be 

implemented for high-throughput analyses resulting in significant time and cost savings 

due to fast and highly efficient sample processing. Next is a summary of some single cell 

isolation technologies and downstream gene expression analysis methods. 

2.1. Single cell isolation 

Although manipulating single eukaryotic cells has become more and more common for 

single cell analysis, manipulating small cells like diatoms which are about 5 µm in 

diameter is significantly more challenging due to the facts that the total volume of one 

cell is 100−1000 times smaller than that of a typical eukaryotic cell (1-10 fL versus 1 pL) 
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and hence contains a fewer amounts of analytes. Several methods that can be used to 

manipulate small cells are summarized below. 

2.1.1. Dilution-to-extinction 

The conventional dilution-to-extinction method utilizes serial dilution to isolate single 

cells into test tubes or wells on microtiter plates (Button et al. 1993; Schut et al. 1993; 

Rappé et al. 2002). Microfluidic devices can apply the same principle to load single cells 

into microscale reaction chambers (Boedicker et al. 2008). Cell occupancy of the wells 

follows the Poisson distribution and can be manipulated by controlling cell concentration 

in the bulk media before loading. Because the microchamber volumes are several orders 

of magnitude smaller than those of conventional analysis vials, the required initial 

concentration is close to typical cell culture’s concentration thus sample dilution is 

accordingly minimized. For example, if one loads single cells in an array of 1-picoliter 

chambers, the resulting concentration in the microwells is on the order of 1 cell/pL or 109 

cell/mL, which is within the range of typical concentrations for bulk cell cultures 

(Sezonov, Joseleau-Petit, and D’Ari 2007). 

Two microfluidic applications have utilized the dilution-to-extinction approach to 

isolate single cells, either by seeding cells in microfabricated chambers or encapsulating 

cells in emulsion. An example for the former application was a device developed by 

Ottesen et al. (2006) who isolated bacterial cells randomly from a complex 

environmental sample and then performed digital PCR to identify new species. They 

randomly seeded cells from a diluted environmental sample on their device and obtained 

single-cell occupancy in ~28% of the reaction chambers, while the rest of the chambers 

contained either multiple cells (6%) or were empty. The other approach is based on the 



10 
 

encapsulation of individual cells in aqueous droplets (Shim et al. 2009; Eun et al. 2011; 

Guo et al. 2012). Eun et al. (2011) used a microfluidic flow-focusing nozzle to generate 

Escherichia coli-containing agarose microdroplets. After the agarose microdroplets 

solidified, E. coli cells were encapsulated in agarose microparticles for downstream 

incubation and analysis. Zeng et al. (2010) randomly seeded E. coli cells into droplets 

containing primer-adhered microspheres and real-time PCR reagents. Lin et al. (2009) 

introduced a new method by generating stationary droplets as reaction chambers. They 

loaded a diluted suspension of E. coli onto an array of oil-covered surface-adhering 

droplets that were spatially confined by oil through hydrophilic/hydrophobic patterns on 

the substrate. The number of randomly seeded E. coli cells in droplets followed the 

Poisson distribution. 

This dilution-to-extinction method does not require complicated single-cell 

manipulation technologies or devices. As long as the cell concentration in the bulk 

medium is properly diluted, fast and relatively easy seeding of single cells in 

microfabricated chambers or droplets can be achieved in a high throughput. Due to its 

simplicity, this technology has received increasing attention. The major drawbacks of this 

method are the random nature of the cell occupancy and the low efficiency of obtaining 

single cell occupancy while reducing the number of wells containing multiple and zero 

cells. Large numbers of empty compartments result in a waste of chemical reagents, 

reduced overall throughput, and the need to determine the number of cells in each well to 

discern reaction chambers containing single cell, multiple cells or empty. 
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2.1.2. Cell trapping 

In contrast to the dilution-to-extinction method, single cell trapping is a deterministic 

method to isolate single cells. Multiple traps can be implemented in a device, facilitating 

parallel measurements at a given time. Three types of single-cell trapping methods have 

been used to isolate small single cells from populations: mechanical, hydrodynamic, and 

dielectrophoretic. Following is a discussion of the details of these trapping methods. 

Mechanical trap: Mechanical cell trapping is achieved by physical obstacles, 

barriers or side channels/chambers to hold or catch individual cells flowing through 

microfluidic channels. Microscale U-shaped barriers (D. Di Carlo, Wu, and Lee 2006) 

have been applied to trap mammalian cells. However, these barriers are inefficient for 

trapping cells like diatoms due to their small dimensions. Huang et al. (2007) used a 

complicated microfluidic network to trap Synechococcus PCC 7942 cells between 

pneumatic valves and observed significant cell-to-cell heterogeneity in populations under 

nitrogen-depleted growth condition. Furutani et al. (2010) isolated single Salmonella 

enterica cells using an array of microchambers distributed along microchannels. Utilizing 

the amplification of the DNA of the invA gene obtained from single cells trapped in the 

microchambers, a detection level of <200 cells µL−1 of S. enterica were achieved with the 

device.  

Hydrodynamic trap: Hydrodynamic trapping is a non-contact cell trapping 

method. It relies on flow stagnation or microeddies (Lutz, Chen, and Schwartz 2006) to 

capture cells in flow fields. Compared to eukaryotic cells, applying hydrodynamic traps 

to small cells poses significant challenges since hydrodynamic forces are typically 

proportional to the surface areas of cells. However, Tanyeri et al. (2010) have 
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demonstrated hydrodynamic trapping of 100 nm particles which is even smaller than 

normal bacterial cells. They used hydrodynamic traps to achieve high accuracy of 

trapping and manipulation of single bacterial cells in a microfluidic device. To trap single 

cells, their device produced a flow stagnation point in the center of two perpendicularly 

crossed channels. Indispensable of precise control over the flow to create flow stagnation 

and eddies is the major constraint of this method. The feedback-based flow control may 

alleviate this problem albeit at the cost of increased complexity of the system. 

Dielectrophoretic trap: A dielectric particle experiences the dielectrophoretic 

(DEP) force when it is exposed to a non-uniform electric alternative-current (AC) field. 

Applying DEP forces on small cells can be traced back to the 1980s (Pohl, Kaler, and 

Pollock 1981). Peitz and Leeuwen first used the DEP force to trap single bacterial cells 

(Peitz and van Leeuwen 2010). They reported using DEP traps between parallel 10-µm 

electrodes to capture living E. coli K12 cells in a microfluidic channel. Arumugam et al. 

(2007) demonstrated the generation of DEP traps using vertically aligned carbon 

nanofibers as nanoelectrodes. These nanoscale electrodes generated large DEP forces in a 

small region, ideal for trapping small single cells. They successfully demonstrated a 

cheap and convenient way to produce DEP trap arrays with high-throughput. Although 

DEP can reliably and precisely trap single cells, it requires a tight integration of 

micro/nanoscale electrodes and driving circuits which increases the complexity of this 

method. 

2.1.3. Micromanipulation 

Micromanipulation is a precise method to isolate and manipulate single cells with a 

relatively low throughput, typically one cell at a time. There have been two types of 
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micromanipulation devices for cells: mechanical and optical micromanipulation (also 

known as optical tweezers). Micromanipulation has been applied to single cells since the 

1960s (Nossal et al. 1964; Wood 1967). In mechanical micromanipulation, single cells 

are individually captured from a population and transferred using a micropipette (Anis et 

al. 2011; Anis, Holl, and Meldrum 2010; Ashida et al. 2010; Gao, Zhang, and Meldrum 

2011; Roeder, Wagner, and Rossmanith 2010; Shi et al. 2011; Teramoto et al. 2010; 

Tsang et al. 2006). The isolated single cells can be subsequently used for different 

applications such as cultivation or gene expression analysis. In optical micromanipulation 

(Mirsaidov et al. 2008; H. Zhang and Liu 2008; Altindal, Chattopadhyay, and Wu 2011; 

Carmon and Feingold 2011), single cells are trapped and manipulated using highly 

focused laser beams. The foundation of optical traps, also known as optical tweezers, was 

developed by Ashkin et al. in the 1980s (Ashkin and Dziedzic 1987; Ashkin, Dziedzic, 

and Yamane 1987). They demonstrated optical tweezers for trapping and manipulating 

single E. coli cells in media (Ashkin and Dziedzic 1987; Ashkin, Dziedzic, and Yamane 

1987). Block et al. (Block, Blair, and Berg 1989, 1) used optical tweezers to measure the 

mechanical properties of single E. coli and Streptococcus cells. This method is amenable 

to the integration with transparent microfluidic devices as long as the device design is 

compatible with high numerical aperture optics to achieve steep intensity gradients 

around the target cells in the microchannels (Kühn et al. 2009; Min et al. 2009). Early 

reports on the integration of optical tweezers and microfluidic devices date back to 2004 

(Enger et al. 2004; Munce et al. 2004). In these studies, trapped individual cells were 

transported by the laser beam to a compartment for subsequent culturing and/or analyses. 
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Because the trapped cells are not exposed to the ambient environments during optical 

micromanipulation, sample contamination issues can be minimized. 

However, the application of micromanipulation is perhaps subjected to undesired 

stresses introduced either by mechanical forces or light/thermal damage to the cells 

(Rasmussen, Oddershede, and Siegumfeldt 2008). In addition, micromanipulation is 

usually labor-intensive and time consuming with the low throughput representing the 

major limitation to the method’s widespread usage in the research field. 

2.1.4. Cell sorting 

The purpose of cell sorting is to separate a heterogeneous mixture of biological cells into 

corresponding sub-populations, typically one cell at a time. In order to distinguish 

between the sub-populations of cells the use of specific markers or stains and a sensitive 

detection method are required. Laser Induced Fluorescence (LIF) is recognized as one of 

the most sensitive and reliable detection methods. Fluorescence-Activated Cell Sorting 

(FACS) is based upon the detection of laser-induced scattered light and/or fluorescence 

signals emanating from the cell or fluorescent markers, respectively, and sorting of 

individual cells according to their scatter/fluorescence signatures. It provides fast, 

accurate and quantitative recording of fluorescence signals of individual cells as well as 

physical separation of cell populations of particular interest.  

 FACS can be used as a very efficient way to separate individual cells. Its 

application to sort small cells like bacteria started in late 1990s (Fuchs et al. 1996; Yi et 

al. 1998; Baptista et al. 1999). This technology requires sophisticated devices and trained 

operators. Potentially inexpensive, chip-level FACS systems have been produced to 

circumvent these shortcomings. Fu et al. (Fu et al. 1999) developed a microfabricated 
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FACS device and demonstrated its effectiveness in sorting micrometer-sized latex beads 

and bacterial cells. Compared with the conventional FACS, chip-level FACS devices 

offer the advantages of: i) integration with other chip-level analytical technologies, such 

as PCR or microarrays, ii ) incorporation of multiple cell sorters on a single chip for 

parallel processing, allowing further increased throughput, and iii ) markedly lower 

reagent consumption and thus cost-effectiveness. One example is the microfluidic 

cytometer featuring 384 channels for parallel operation developed by Mckenna et al. 

(Mckenna et al. 2009) for rare-cell screening. Their device was able to perform a 

genome-wide cDNA screening assay with statistically significant results on positive 

counts of only several dozen cells in a background of several million negatives. Although 

this device was not designed for bacterial cells, the principle should be the same for 

bacterial cell sorting and can potentially be extended to bacterial cell sorting in the near 

future. 

Figure 2 depicts schematic representations of these methods. In general, the 

selection of these techniques depends on the purpose, available resource and technical 

requirements of a study. The dilution-to-extinction method is easy to use and is more 

suitable for cell isolation from a pure culture or of most abundant microbes. The 

microdevice for this method is simple to design and construct, and it does not require a 

precise control of liquid manipulation. In the literature, the common loading efficiency of 

the dilution-to-extinction is about 30% and the capacity depends on the number of 

chambers. Dilution-to-extinction cell loading can be completed within one minute.  

Devices that use flowing microdroplets can generate more than 103 droplets per second. 

Therefore, the number of chambers (e.g., microdroplets) is determined by the duration of 
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droplet generation. Mechanical trapping shares the low level of complexity with the 

dilution-to-extinction method, while hydrodynamic trapping and DEP trapping require a 

precise liquid control to achieve accurate and reliable isolation of single cells thus 

increasing the overall cost and complexity of both techniques. The most reliable 

techniques for single-cell isolation are micromanipulation and FACS. However, the 

throughput of the mechanical micromanipulation-based approaches is relatively low, 

typically about one cell per a few minutes. The major limitation for using a mechanical 

micromanipulator in combination with a microfluidic device is that microchannels are 

usually sealed from the ambient environment preventing the pipette tip of the 

micromanipulator from accessing the samples. A key feature of the micromanipulation 

method is that it provides researchers with a means to precisely control the cell selection 

procedure. FACS is typically capable of single-cell separation with throughputs of up to 

~104 cells/second. Although the principle of separating eukaryotic and prokaryotic cells 

in FACS is not much different, most of the commercial instruments available currently 

are not designed for separation of small cells, and therefore would need further 

optimization (Lomas, Bronk, and van den Engh 2011). 
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Figure 2. Principle of operation of different methods for small single cell 
manipulation.
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2.2. Single cell gene expression 

With the ability to isolate single cells, gene expression at the single cell level is a new 

avenue of research. Several approaches have been utilized to evaluate gene expression 

heterogeneity at the single cell level (Stewart and Franklin 2008). The first method is to 

utilize reporter genes (Chalfie et al. 1994). The simple and sensitive enzymatic assays of 

e.g. β-galactosidase and luciferase have allowed detailed investigations of gene 

transcription regulation mechanisms. These reporter systems can be obtained through the 

construction of the relevant fusions between promoters of interest and the respective 

reporter genes. However, the main challenge of this approach is that not all species, 

especially the ones found in natural environments, are amenable to genetic manipulation. 

The second method is fluorescence in situ hybridization (FISH). FISH has been used 

effectively for assessing the diversity of species in nature. FISH targeting rRNA is a 

highly useful method for the phylogenetic identification of bacteria (Amann, Ludwig, and 

Schleifer 1995). However, its accuracy as a quantitative method for determining the 

expression levels of lowly expressed genes is still questionable. The third method is in 

situ PCR combined with in situ reverse transcription (in situ RT-qPCR) (Aoi 2002). RT-

qPCR was developed to amplify and detect functional genes and their expression levels 

inside a single cell. This is a very useful approach to characterize the genetic and 

phylogenetic properties of natural communities at the single-cell level. In the field of 

environmental microbiology, Hodson et al. (1995) developed an in situ PCR method for 

prokaryotic cells (bacteria) and gave examples of its use for the detection of a specific 

gene (nahA) and its transcripts in a single Pseudomonas cell within a model microbial 

community. Since then, the in situ RT-qPCR approach has been successfully applied to 



19 
 

detect gene expression in many species, such as Zac mRNA in Salmonella typhimurium 

(Tolker-Nielsen, Holmstrøm, and Molin 1997), and dnaK in Methanosarcina mazei S-6 

cells (Lange et al. 2000).  

2.2.1. RT-qPCR based gene expression measurements in single cells 

Reverse-transcriptase quantitative PCR (RT-qPCR) is the most reliable approach for gene 

expression analysis in single cells (Kubista et al. 2006; Nolan, Hands, and Bustin 2006). 

The technology is the same as conventional RT-qPCR for bulk cells except slight 

modifications are necessary to optimize the performance at the single cell level. Several 

protocols have already been published for gene expression analysis by RT-qPCR for 

single mammalian cells (Lindqvist, Vidal-Sanz, and Hallböök 2002; Wacker, Tehel, and 

Gallagher 2008; K. Taniguchi, Kajiyama, and Kambara 2009). The most advanced 

protocol was published recently by Taniguchi et al. (2009) who used a quantitative PCR 

method featuring a reusable single-cell cDNA library immobilized on beads for 

measuring the expression of multiple cDNA targets (from several copies to several 

hundred thousand copies) in a single mammalian cell.  

Advances in gene expression profiling of a small number of cells was witnessed 

in recent years. For instance, combined with micro-dissection, Lenz et al. (2008) captured 

subsets of cells from the vertical strata within P. aeruginosa biofilms and quantified 

transcripts of mRNA and 16S rRNA using RT-qPCR. So far, few publications have been 

reported for gene expression measurements in small single cells using the RT-qPCR 

based method. This is probably due to the technical challenges specific to the analysis of 

small cells (2-5 µm) as compared with mammalian cells (10-20 µm) and, as a result, 

lower amounts of any given mRNA molecule. Attempts were made in my laboratory to 
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overcome these issues by developing two methods based on a combination of SYBR 

Green and RT-qPCR to directly determine the gene expression levels in small cells like 

bacterium (Gao, Zhang, and Meldrum 2011). The first method is a single-tube approach 

which allows the analysis of only one gene from each bacterial cell. The procedure 

includes single cell picking using a micromanipulator, followed by thermal cell lysing 

and one-step RT-qPCR. We have optimized the PCR primer design and thermal cycling 

conditions to avoid the interference from primer dimers during qPCR. Using this 

procedure, expression levels of the gadA gene, a lowly expressed gene that encodes for a 

glutamate decarboxylase isozyme in single E. coli cells, was determined. In addition, an 

increased expression of gadA was observed in all cells exposed to acidic conditions (pH 

5), which is consistent with the expected response of the gene reported in the bulk-cell 

study (Tucker, Tucker, and Conway 2002). The second method features a two-stage 

protocol that consists of RNA isolation from a single bacterial cell and cDNA synthesis 

in the first stage, and qPCR in the second stage. After evaluation of different commercial 

kits for RNA isolation, total RNA isolation and purification from single bacterial cells 

was achieved for the first time. With optimized conditions for both reverse transcription 

and qPCR, it is possible to simultaneously determine the expression levels of multiple 

genes in single bacterial cells. This procedure was applied to study the response to 

thermal shock in E. coli populations with single cell resolution. The reproducible results 

demonstrated that the method is sensitive enough not only for measuring cellular 

responses at the single-cell level, but also for revealing gene expression heterogeneity 

among bacterial cells. Furthermore, our results showed that the two-stage method can 

reproducibly measure multiple highly expressed genes from a single E. coli cell. This 
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finding provides a foundation for the future development of a high–throughput, lab-on-

chip methodology for whole-genome RT-qPCR of single bacterial cells.  

2.2.2. Whole-transcriptome based gene expression measurements in single cells 

Gene expression profiling for complicated biological traits on a genomic scale depends 

on recent advances in high-throughput gene expression analysis technologies, such as 

DNA microarrays, Serial Analysis of Gene Expression (SAGE) or Next Generation 

Sequencing (NGS). With these techniques we now can quantitatively investigate complex 

cellular processes systematically (Kitano 2002). Although these fast growing 

technologies help us to understand the cellular processes from a different point of view, 

understanding the complexity of cellular processes remain tethered to some technical 

hurdles, sure as requirement of relatively large quantities of the initial RNA in order to 

obtain reliable data. For instance, several hundred nanograms to micrograms of total 

RNA is needed for transcriptome profiling, which is equivalent to a sample size of more 

than 10,000 eukaryotic cells. To address this issue, several successful attempts have been 

made in recent years to develop a total transcript amplification (TTA) method for single 

eukaryotic cells and use either DNA microarray (Kurimoto et al. 2007) or mRNA 

sequencing (mRNA-Seq) (Tang et al. 2009) technologies to analyze the gene expression 

levels.  

TTA techniques can be divided into four classes based on amplification strategies: 

i) linear amplification methods using T7-mediated transcription (E. Wang et al. 2000; 

Schneider et al. 2004); ii ) exponential amplification methods using PCR techniques 

(Brady and Iscove 1993; Iscove et al. 2002); iii ) NuGen RiboSPIA amplification 

processes (Singh et al. 2005); iv) SMART-Seq (Ramsköld et al. 2012); and v) φ29 
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polymerase multiple displacement amplification (MDA) of circularized cDNA (Kang et 

al. 2011). Most of these technologies mentioned above focus on larger eukaryotic cells, 

but their possible extension to single bacterial cells is discussed below.  

DNA microarray researchers have intensively applied the T7-mediated methods 

and have generated highly reproducible results due to the fact that they are theoretically 

linear and independent of template sequences (E. Wang et al. 2000). However, the major 

drawbacks of this method include overlong sample preparation times (1.5-2 days for a 

single round of TTA), limited sensitivity, and less stable RNA-based products. This 

method becomes more unreliable when working with less than 10 ng of total RNA, 

probably because of increased bias and noise arising from multiple rounds of 

amplification (Wilson et al. 2004; Subkhankulova and Livesey 2006). As a result, T7-

mediated methods have not been widely applied for single cell TTA. Meanwhile, most 

T7-mediated methods require polyA structures for mRNAs then unsuitable for single 

bacterial global gene expression profiling.   

PCR-based TTA strategies were another solution to conduct whole-transcriptome 

analysis of single cell. Global gene expression profiling of eukaryotic cells has been 

achieved by using PCR-based approaches with very low total RNA amounts (several 

picogram range) (Brady and Iscove 1993). The PCR-based methods offer some 

advantages such as speed, detection sensitivity, and cost. DNA-based PCR products are 

much more stable than RNA products of T7-mediated methods. The relatively high 

amount of PCR products allows for multiple-time analysis and the remaining PCR 

products are stable at low temperature for long time for possible further verification or 

investigation (Iscove et al. 2002). PCR-based TTA approaches have not yet been widely 
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adopted, albeit these advantages, for global gene expression analysis. The major reasons 

are GC-content bias, double stranded products, and the non-linear amplification of the 

PCR methods (Glanzer and Eberwine 2004). Several research groups developed 

techniques combining both PCR and T7-mediated approaches to utilize the advantages of 

both technologies, however, it could not be widely used for bacterial TTA since primer 

poly(dT) was required for both PCR and T7-mediated methods (Kurimoto et al. 2007).  

NuGen Technologies developed an emergence TTA technique named RiboSPIA 

by applying a chimeric RNA/DNA primer and RNase H and DNA polymerase to produce 

amplification of several thousand-fold from single-stranded DNA-based amplifiers. This 

technique is relatively fast (typically 6 h per TTA round), can be cooperated with as low 

as a picogram starting total RNA, and is much more robust because it uses DNA 

synthesized from RNA (Singh et al. 2005). In principle, there are no technical hurdles to 

transfer this technique for whole transcriptome studies of single prokaryotic cells. 

In a recent editorial highlighted article in nature biotechnology, a new single cell 

transcriptome technology, SMART-Seq, was claimed as a robust and reproducible 

method for full length of mRNAs (Ramsköld et al. 2012). However, due to poly(dT) 

primer is required for this methods, SMART-Seq would not be helpful for single bacteria 

transcriptome analysis. 

The φ29 polymerase multiple displacement amplification (MDA) technique is a 

versatility technique which can be used for both eukaryotic and prokaryotic cells. The 

first available single bacterial transcriptome analysis was reported by Kang et al. (2011) 

who used Burkholderia thailandensis cells exposed to 0.01% (w/v) of glyphosate, an 

antibacterial agent, for single-bacterium TTA. The amplified whole transcriptome out of 
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a single B. thailandensis cell was analyzed by means of a DNA microarray. The results 

showed lower fold-change bias (less than two-fold difference and Pearson correlation 

coefficient R ~ 0.87–0.89) and drop-outs (4%–6% of 2842 detectable genes) as compared 

with the data obtained from non-amplified RNA samples. In addition, Sanger sequencing 

of 192 clones generated from the TTA product obtained from a single cell, with and 

without enrichment by eliminating rRNA and tRNA, detected only B. thailandensis 

sequences without contamination. Although the sensitivity and accuracy of the whole 

transcriptome analysis are in general lower than that of RT-qPCR, it can measure 

expression levels of several thousand genes simultaneously, a remarkable advantage that 

has not be replicated by other existing methods. However, the approach is time 

consuming (about 3 days for a round of TTA). Also, we noted that the estimated total 

RNA in a single B. thailandensis cell is about two picograms, which is several orders of 

magnitude higher than the estimated total RNA amount of a typical bacterial cell, such as 

E. coli (Gao, Zhang, and Meldrum 2011; Schmid et al. 2010). Therefore, a further 

evaluation of the method is needed to assess its feasibility for single cell studies. 

2.2.3. Imaging-based gene expression measurements in single cells  

Powerful methodologies based on reported probes and imaging allow for achieving the 

spatiotemporal information about expression of specific mRNAs in both intact eukaryotic 

and prokaryotic cells (Sanjay Tyagi 2009). Because no intrinsically fluorescent RNA 

motifs exist, in vivo imaging of mRNA transcripts is less common than proteins. Instead, 

fluorescent proteins binding to specific RNA motifs (Bertrand et al. 1998; Calapez et al. 

2002; Golding and Cox 2004; Rackham and Brown 2004; Kerppola 2006; Daigle and 

Ellenberg 2007; Valencia-Burton et al. 2007), sequence-specific oligonucleotide probes 
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(Cardullo et al. 1988; Morrison, Halder, and Stols 1989; Sixou et al. 1994; Q. Li et al. 

2002; Sando and Kool 2002), aptamer tagging (Babendure, Adams, and Tsien 2003; 

Sando, Narita, and Aoyama 2007), rapid detection of miRNA by a silver nanocluster 

DNA probe (Yang and Vosch 2011) and RNA mimics of green fluorescent protein (Paige, 

Wu, and Jaffrey 2011) have been adopted for mRNA imaging. Such efforts, although still 

in their infancy, have already shed light on the RNA distribution and dynamics in living 

cells. 

The most established method for imaging of the intracellular RNA in live cells is 

tagging mRNA with a fluorescent protein (i.e., GFP, YFP, and RFP) (Bertrand et al. 1998; 

Calapez et al. 2002; Golding and Cox 2004; Rackham and Brown 2004; Kerppola 2006; 

Daigle and Ellenberg 2007; Valencia-Burton et al. 2007). To tag a specific target mRNA, 

an RNA-binding protein must be fused to GFP and at the same time the 3’-untranslated 

region of the target mRNA must be tagged with an RNA motif recognized by the RNA-

binding protein. Bertrand et al. (1998) first introduced the MS2 coat protein-GFP 

approach for imaging mRNA dynamics in live cells. There were two components of this 

method. The first is the MS2 coat protein, a phage RNA-binding protein, expressed as a 

fusion with intact GFP. The second is the target ASH1 mRNA, which is tagged with 

multiple copies of MS2-binding motifs. When these two components are co-transformed 

and co-expressed in cells, MS2–GFP fusion proteins bind to their cognate motif on the 

mRNA and render it fluorescent.  

Since then, imaging using GFP as a reporter protein has been applied to different 

mRNAs in diverse organisms (Golding and Cox 2004). Recently, other RNA motifs, such 

as λN from bacteriophage λ (Daigle and Ellenberg 2007) and even poly(A)-binding 
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protein have also been employed to image the dynamics of mRNAs in eukaryotic cells 

(Calapez et al. 2002). The major challenge in tagging with intact GFP is the need to 

distinguish bound GFP from unbound GFP, since GFP constructs are always fluorescent. 

This was recently overcome by adopting the reconstruction of GFP, by splitting GFP into 

two nonfluorescent fragments. The two fragments are non-fluorescent until a pair of tags 

attached to each fragment recognize the target mRNA and assemble the two split GFP 

fragments into a correctly folded and functional protein (Kerppola 2006). MS2 coat 

protein and zip code-binding protein fused with split GFP fragments (Rackham and 

Brown 2004), split eIF1A domains fused with N- and C-terminal of GFP fragments 

(Valencia-Burton et al. 2007), and PUMILIO1 (a unique sequence-specific RNA binding 

protein) have successfully been demonstrated as applications of the split GFP approach. 

However, a drawback of the split GFP tagging method is the high affinity of the two 

protein fragments to each other, making the binding difficult to reverse. This prevents the 

method from being utilized for imaging of fast dynamic processes (Magliery et al. 2005).  

The second approach is based on imaging of endogenous mRNAs using 

fluorescence resonance energy transfer (FRET) and contact-mediated quenching 

(Cardullo et al. 1988; Morrison, Halder, and Stols 1989; Sixou et al. 1994; S Tyagi and 

Kramer 1996; Q. Li et al. 2002; Sando and Kool 2002; Santangelo et al. 2004). Several 

different probes whose fluorescent properties change upon sequence-specific 

hybridization have been explored, including competitive hybridization probes (Morrison, 

Halder, and Stols 1989; Sixou et al. 1994; Q. Li et al. 2002), side-by-side probes 

(Cardullo et al. 1988), quenched autoligation probes (Sando and Kool 2002), molecular 

beacon probes (S Tyagi and Kramer 1996), and dual molecular FRET probes (Santangelo 
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et al. 2004). Probe-based imaging features several distinct advantages: probes detect 

mRNA in cells directly without the need to engineer target genes and GFP constructs; in 

addition, the approach can be multiplexed by using spectrally distinguishable 

fluorophores, and the possibility to sort cells based on gene expression levels but not the 

only “positive” or “negative” signals (Sanjay Tyagi 2009). The limitation of this method 

includes lower sensitivity due to these probes have only one fluorophore in each 

molecule resulting in lower overall signals compared to GFP tags, the need of delivering 

probes into cells and degradation of probes (Sanjay Tyagi 2009).  

The third approach employs tagging of artificial RNA motifs (aptamers) with 

small nonfluorescent dyes to render fluorescence when combined with specified aptamers 

(Babendure, Adams, and Tsien 2003; Sando, Narita, and Aoyama 2007). The free dye 

molecules are nonfluorescent because of the strong dissipation of the excitation energy 

through vibrational (radiationless) relaxation. Once a selected aptamer binds to the dye 

molecule restricting its vibrational freedom, the dyes become fluorescent resulting in an 

increase of the fluorescence signal by more than 2,000 fold (Babendure, Adams, and 

Tsien 2003). Examples include Hoechst dye variants that are non-fluorescent in the 

unbound form but show strong fluorescence when bound to pre-selected effective RNA 

aptamers (Sando, Narita, and Aoyama 2007). The availability of many aptamer-dye 

combinations allows imaging of multiple mRNA simultaneously. However, the free 

radicals created by the irradiated dye can destroy the RNA motifs (Grate and Wilson 

1999). Taniguchi et al. (2010) used a DNA oligomer probe labeled with a single 

fluorophore to successfully hybridize it with the mRNA on a microfluidic device. No 

further applications using this method in combination with microfluidic devices have 
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been reported, and no high-throughput, automated systems are currently available for this 

methodology. 

Other recent methods, such as the silver nanocluster DNA probe for miRNA 

(Yang and Vosch 2011) and RNA-based variants of green fluorescent protein (Paige, Wu, 

and Jaffrey 2011), are also expected to contribute to quantitative imaging of multiple 

mRNAs and small RNAs simultaneously in single cells in the near future.  
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3. DEEP SEA COMMUNITY STRUCTURE IDENTIFICATION 

3.1. Introduction 

This section of work has been published in Microbial Ecology (Gao et al. 2011). I would 

like to thank the first author Dr. Gao and my co-worker Dr. Wu. Only with their help, this 

portion of work could be achieved.  

 Photosynthetic microbes (both prokaryotes and eukaryotes) are the most 

accessible samples in the ocean and intensive work has been done on these surface water 

species. These tiny microbes have significant effects on the global carbon cycle through 

photosynthetic fixation of CO2. Due to the flux of particulate organic carbon (POC), also 

known as marine ‘snow’ (Alldredge and Cohen 1987), into the deep sea (Eppley and 

Peterson 1979), the ocean becomes a natural sink of CO2 (Dore et al. 2003; C. L. Quéré 

et al. 2007). It has been reported that global oceanic CO2 sink may have increased to 118 

± 19 × 109 tons of carbon from 1800 to 1994 which is equivalent to about 48% of the 

total fossil-fuel and cement manufacturing emissions (Sabine et al. 2004). Photosynthetic 

microbes in the ocean may hold the key solution to address this problem.  

The average depth of the ocean is about 3,682 meters (Charette and Smith 2010) 

and can be divided into several zones based on depth, light abundance, and physical and 

biological conditions. The top 200 meters consists of the epipelagic zone where there is 

enough light for photosynthesis and thus plants and animals are concentrated in this zone 

(Gao et al. 2011). While at the bottom of the ocean (from 4000 meters down to the ocean 

floor), which is called abyssopelagic zone (Ikeda et al. 2007), it is almost entirely dark 

and no sunlight can reach this depth. Theoretically, no photosynthesis is expected at this 
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depth since photosynthesis needs enough light energy to initiate O2 production 

(Mcallister, Shah, and Strickland 1964). 

Recently, more evidence showed that some photosynthetic microbes can also 

exist in the deeper ocean. For instance, photoautotroph cyanobacteria Synechococcus was 

found in the 800 m deep Adriatic waters during the spring of 2006 using a flow cytometer 

by Vilibi ć and Šantić (2008). Zubkov and Burkill (2006) also detected the presence of 

both Synechococcus and Prochlorococcus cyanobacteria (10-20 cells per mL) in the 

aphotic zone down to 300 m depths. Similarly, it was found that diatoms, a major group 

of eukaryotic algae, possibly exist at about 3,000 meters depth (López-García et al. 2001). 

Nevertheless, no direct evidence shows those photoautotrophic microbes are actively 

functioning in that depth. In order to find one ubiquitous species that can be used as a 

sensor to sense the environmental perturbation, this species cannot be in a dormant status. 

Gene expression analysis needs to be performed to rule out the dormant status. 

The difficulty of deep sea research is those samples cannot be easily cultured in 

laboratory conditions since the deep sea conditions are hard to regenerate. Because of the 

vastly improved molecular biology technologies, cultivation independent phylogenetic 

analysis using ribosomal RNA (rRNA) sequencing has been applied to decipher the 

community structure of microbes in the ocean (S. J. Giovannoni et al. 1990; López-

García et al. 2001; Gao et al. 2011; Stahl et al. 1984). More recently, RT-qPCR (Reverse 

transcription - quantitative polymerase chain reaction) technology is also used to detect 

changes at transcription level that correspond to alterations in the environment and to 

collect information about stress induced response. The RT-qPCR technology has 

excellent sensitivity, dynamic range, and reproducibility and has become a routine and 
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robust approach for measuring the expression of genes of interest (Stephen A Bustin et al. 

2009; VanGuilder, Vrana, and Freeman 2008). 

In this study, community structure and gene expression analyses was performed 

on the sea water samples collected from sites of 765-790 meters in depth in the northeast 

Pacific Ocean. The initial 16S rRNA based clone libraries analyses showed that the 

majority of the archaeal OTUs (Operational Taxonomic Unit) belongs to the uncultured 

group I Crenarchaeota, whereas most of the bacterial OTUs belongs to alpha-, gamma- 

and delta-proteobacteria, consistent with previous analysis of deep sea microbes. In order 

to further explore the community structure of the deep sea samples, a 23S-rRNA plastid 

gene cloning library was constructed. The results showed that the majority of this cloning 

library was occupied by oxygenic photoautotrophic organisms, such as diatoms 

Thalassiosira spp. In addition, RT-qPCR was applied to determine the gene expression 

for the 23S rRNA plastid gene, which is involved in protein synthesis in both eukaryotic 

algae and cyanobacteria. The results showed that the microbes here were not in dormant 

status. The evidence provided by this work has implied that some highly adaptive 

photoautotrophic organisms could be metabolically functional in the deep ocean so as to 

be used as a sensor candidate to monitor the environment perturbation in that 

environment. 

3.2. Experiments 

3.2.1. Cell recovery and microscopy analysis 

Ocean microbes which were retained on a 0.22 µm filter (Millipore, Billerica, MA) were 

collected from the Pacific Ocean. Microbes were recovered from the filter in the 

laboratory. A 5 mL syringe mounted with an 18G 1 ½ needle (BD, Franklin Lakes, NJ) 
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was used to wash the filter. The cells were carefully washed off from the filter membrane 

using 3 x 5.0 mL of RNALater (Ambion, Austin, TX), which can protect RNA from 

degradation. The 2.0 mL concentrated cells were equally divided into two 

microcentrifuge tubes and stored at -20°C. For cell counting, 4 µL of 5 µg/µL 4, 6-

diamidino-2-phenylindole (DAPI) (Sigma) and 100 µL of 50% glutaraldehyde was added 

into the 5 ml cell suspension in phosphate buffer (5 mL), then the stained cells were 

filtered through an isopore membrane filter (0.22 µm). The isopore membrane was then 

put on a glass slide, immersion oil added and covered with a cover slip. The slide was 

observed under epifluorescence microscope (Nikon Eclipse Ti System) using 60× and 

40× objectives.   

3.2.2. Cloning library construction 

The total DNA was extracted and purified from 1.0 mL collected cells using a DNeasy 

Blood & Tissue Kit (Qiagen, Valencia, CA). Based on the isolated DNA, three DNA 

fragments were amplified for cloning library construction: 1,400 bp16S rRNA gene from 

bacteria (FD1, forward primer: AGAGTTTGATCCTGGCTCAG, 1540R, reverse primer: 

AAGGAGGTGATCCAGCC) (Hwang et al. 2009), 700 bp 16S rRNA gene from 

Archaea (Ar20F, forward primer: TTCCGGTTGATCCYGCCRG, Arch958R, reverse 

primer: TCCGGCGTTGAMTCCAATT) (E. F. DeLong 1992) and 500 bp 23S rRNA 

gene from cyanobacteria and eukaryotic algal chloroplasts (p23SrV-f1, forward primer: 

GGACAGAAAGACCCTATGAA, p23SrV-r1, reverse primer: TCAGCCTGTTA-

TCCCTAGAG) (Sherwood and Presting 2007). The conditions for PCR amplification 

was initially set up as: (a) bacteria (Hwang et al. 2009): 94°C for 2 min; 30 cycles of 30 s 

at 94°C, 1 min at 58°C, and 1 min at 72°C; and final cycle at 72°C for 7 min; (b) Archaea 



33 
 

(E. F. DeLong 1992): 94°C for 2 min; 30 cycles of 1.5 min at 95°C, 1.5 min at 55°C, and 

1.5 min at 72°C; and final cycle at 72°C for 7 min; and (c) algae and cyanobacteria: 94°C 

for 2 min; 30 cycles of 1.5 min at 95°C for, 1.5 min at 55°C , and 1.5 min at 72°C; and 

final cycle at 72°C for 7 min. The expected PCR products were recovered by using a 

QIAquick Gel DNA Extraction Kit (Qiagen, Valencia, CA). 

 The PCR products were cloned into a pGEM-T easy vector following the protocol 

provided by the manufacturer (Promega, Madison, WI). Randomly chosen white clones 

were cultivated in 96-well plates and used for plasmid isolation and sequenced with an 

ABI 373 Sequencer using PCR primers. The resultant DNA sequences were subjected to 

manual editing using Sequence Scanner Software 2.0 (Applied Biosystems, Foster, CA). 

Sequences were compared with those in GenBank through the NCBI internet service 

using BLAST 2.2.10 (Altschul et al. 1997). Alignment of sequences was done with 

online Clustal W (Thompson, Higgins, and Gibson 1994). OTUs were determined based 

on a 3% divergence cutoff for individual “species” OTU.  

3.2.3. Gene expression analysis 

Total RNA were extracted from 1.0 mL collected cells using the Trizol Max Bacterial 

RNA Isolation Kit (Invitrogen, Carlsbad, CA) and purified with RNeasy Mini Kit 

(Qiagen, Valencia, CA). To determine the gene expression involved in protein synthesis 

in photoautotrophic microbes, a set of 23S based primers specific to eukaryotic algae and 

cyanobacteria was adopted from the literature (Sherwood and Presting 2007) and 

synthesized by Invitrogen Corporation (Carlsbad, CA). Using genomic DNA of 

Synechocystis sp. PCC6803 as template, this 500 bp 23S rRNA gene was amplified for 

the purpose of generating a standard curve in RT-qPCR. With SYBR Green One-Step 
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reagents (BioRad, Hercules, CA), RT-qPCR was performed on a Rotor-Gene 6000 

(Corbett Life Science, now Qiagen, Valencia, CA). The 20 µL PCR reaction set up was 

as follows: 10 µL of 2x SYBR Green Rxn mix (BioRad, Hercules, CA), 1.5 µL of 

forward primer (4 µM), 1.5 µL of reverse primer (4 µM), 4.5 µL of nuclease free-water, 

0.5 µL of iScript RT enzyme for One-Step (BioRad, Hercules, CA), and 2 µL of RNA or 

DNA template. The cDNA synthesis was performed at 50°C for 15 min followed by 

95°C for 5 min for inactivation of reverse transcriptase. The PCR cycling program was: 

40 cycles of 10 s at 95°C, 56 s at 56°C, 30 s at 72°C.  Data analysis was carried out using 

the software provided by Corbett Life Science (now Qiagen, Valencia, CA). 

3.3. Results 

3.3.1. Microscopy analysis 

These ocean samples were collected at 2-3 m above the sea floor. The epifluorescence 

microscopic images of the cells after DAPI staining are shown in Figure 3. A large 

number of microbial cells with size around 1-2 µm was observed, suggesting prokaryotic 

or small eukaryotic microbes were the dominant species in this environment. To seek 

evidence for possible photosynthetic microbes in this community, the auto-fluorescence 

without any dye staining was also checked. Although microbes with auto-fluorescence 

are rare in the samples, several auto-fluoresced microbes were found out of several 

hundreds of microscopic image fields examined. The results in Figure 3C show one of 

the auto-fluorescence images from the possible phototrophic microbes. 
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Figure 3. Epifluorescence microscopic images. 

3.3.2. Phylogenetic analysis 

Total DNA was extracted from 1.0 mL collected cells and a total of around 2600 ng 

chromosomal DNA was obtained. DNA isolated from the deep-sea water was used to 

construct three clone libraries for microbial community structure analyses: i) 16S rRNA 

for bacteria, ii)  16S rRNA for archaea and iii)  algae and cyanobacteria specific 23S 

rRNA libraries. 

Archaea: Sequence analysis of 156 random clones revealed 21 different phylotypes 

based upon 97% sequence similarity. The majority of clones (150 in total) are 

phylogenetically similar to the uncultured marine group I Crenarchaeota (Figure 4), In 

addition, a small number of clones (6 in total) are phylogenetically affiliated to the 
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uncultured marine group II euryarchaeote, and they represented two previously identified 

OTUs, sequenced clone UEU78206 from the Santa Barbara Channel (Massana et al. 1997) 

and DQ300553 from the North Pacific Subtropical Gyre (Edward F. DeLong et al. 2006), 

respectively.  

Bacteria (Figure 5): A preliminary sequencing analysis of 250 random clones revealed 

significant bacterial diversity present in this site after comparison with the 16S rDNA 

database from the Ribosomal Database Project (Cole et al. 2005). In general, a majority 

of the clones (168 in total) from the clone library are phylogenetically associated with the 

phylum Proteobacteria. In addition, forty-two clones (13 OTUs) are phylogenetically 

affiliated with phylum Bacteroidetes. Nineteen clones (4 OTUs) belong to Actinobacteria.  

Eukaryotic algae and cyanobacteria (Figure 6): Sequencing of 94 random clones 

revealed that a majority of them are divided between diatoms (61 clones) and 

cyanobacteria solely belonging to Synechococcus sp. (16 clones). Among the diatom 

group, 45 clones (7 OTUs) are similar to Thalassiosira spp. Other closely related diatoms 

include: Nitzschia spp. (11 clones, 7 OTUs), Odontella spp. (2 clones, 2 OTUs), and 

Phaeodactylum spp. (3 clones, 2 OTUs). Also, a few clones phylogenetically affiliated to 

other algae commonly found in the oceans such as Chlorella sp. and Emiliania sp. 

(Cattolico et al. 2008) were also identified based on sequence similarity searching. 
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Figure 4. Phylogenetic analysis of archaea belonging to the uncultured marine 
group I Crenarchaeota. 
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Figure 5. Phylogenetic analysis of bacteria found in the deep ocean water. 
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Figure 6. Phylogenetic analysis of the deep ocean photosynthetic eukaryotic algae. 
and cyanobacteria 

The results were interesting since some photoautotrophic species were identified 

in the deep sea, but the deep sea photoautotrophic community was limited to two 

dominant species, Synechococcus sp. and Thalassiosira spp. Surface water contamination 

was not an issue in this work since no other surface water species was observed in any of 

the clone libraries. Since those photoautotrophic species also exist in surface water, they 

may be a good candidate to monitor the environmental perturbation. 
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3.3.3. Gene expression analysis 

In order to use these microbes as sensors, they should not be in a dormant status 

otherwise they will not response to the environmental change. An immediate question 

that was raised was whether these photoautotrophic microbes are in a state of active 

metabolism or not. To seek the answer to this question, gene expression analysis was 

performed using total RNA isolated from the deep sea samples. The 23S rRNA gene 

which is involved in protein synthesis was analyzed by RT-qPCR. Figure 7 shows the 

real-time PCR analysis of the copy number of 23S rRNA gene. The analysis was done 

separately using DNA or cDNA as a template. The calculated average copy number of 

the algae and cyanobacteria specific 23S rRNA gene is 5.63 x 104 and 2.04 x 105 per 

reaction for DNA and cDNA templates, respectively. Considering the dilution factors of 

each template, the normalized copy number for 23S rRNA from cDNA (or RNA) and 

DNA is 2.44 x 107 and 4.25 x 106, respectively. Thus, the copy number of 23S rRNA is 

about 6 times higher than that of 23S rDNA (Figure 7). Meanwhile, considering that the 

efficiency of reverse transcription cannot be 100%, definitely, the ratio between 23S 

rRNA and 23S rDNA was underestimated and could be greater than 6. The results 

demonstrated that the 23S rRNA gene has activity in the deep sea which may indicate 

that the cells were not in a dormant status. 
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Figure 7. Quantitative RT-PCR analysis of algae and cyanobacteria specific 23S 
rRNA gene. 

3.4. Discussion 

It still remains unclear why photoautotrophic microbes, Synechococcus sp. and 

Thalassiosira spp., exist in the deep mesopelagic zone. One plausible explanation is that 

they sank to this depth either by themselves or sank as a microbial assemblage with larger 

particles (Alldredge and Cohen 1987). The second possibility is because of the ocean 

current. However, in order to support those hypotheses, more evidence is still needed to 

demonstrate that RNA molecules (especially messenger RNA) can be stable through the 

time period of days or months during the sinking process. Normally the life time of RNA 

is hours (Gill et al. 2002) which is much shorter than the sinking process. Based on this 

fact, the RNA should all degrade at this depth; however, RNA was successfully detected 
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in our samples which may indicate there is another explanation about the existence of 

these photoautotrophic microbes at this depth. 

My assumption is that these photoautotrophic microbes are natural inhabitants at 

this depth. If these photoautotrophic microorganisms were brought down by force or 

microbial assemblages associated with large sinking particles as discussed above, other 

photoautotrophic microorganisms that exist in surface water should also be observed in 

our samples, but only two dominant species were found. In addition, RT-qPCR results 

also supported my assumption by showing the activity of RNA at this depth.  

Based on my assumption, I selected diatom Thalassiosira spp. as my future target, 

since it is a eukaryotic photosynthetic microorganism which may decrease the potential 

problems for this single-cell based work. The diameter of this microorganism is around 4-

6 µm and it also exists in surface water which makes it an excellent sensor candidate. 

Meanwhile, diatoms contribute up to 40% of the primary productivity of the ocean 

(Maheswari et al. 2010; Nelson et al. 1995), if we can understand them better, it will also 

be very useful for regulating the primary productivity of ocean. 
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4. CHIP DEVELOPMENT 

4.1. Introduction 

This section of work has been published in Lab on a Chip (Shi et al. 2011). I would like 

to thank my co-worker Dr. Gao and my advisors Dr. Chao, Dr. Zhang and Dr. Meldrum. 

With their suggestions and helpful discussions, this portion of work has been successfully 

achieved.  

 Rapid development of microfabrication and microfluidic technologies have 

enabled development of more and more miniaturized analytical chips capable of 

performing analysis down to single-cell levels (Zare and Kim 2010; Schmid et al. 2010). 

The advantages of microfluidic devices for single cell analysis have been addressed in 

Chapter 2. A lot of researchers have taken advantage of these technologies, for instance, 

Zhang et al. (2011) demonstrated parallel real-time PCR with a sensitivity of about 1000 

cDNA copies per 500-nL droplet produced using conventional photolithography. In one 

recent study, Marcy and colleagues (2007) developed a microfluidic device that 

performed isolation, amplification and sequencing of individual TM7 cells from a mixed 

microbial community that inhabits human mouths. The results showed low abundance 

species which would be easily neglected under traditional approaches. Parallel PCR at the 

single copy level is another good example of application of microfluidic devices 

(Musyanovych, Mailänder, and Landfester 2005; Beer et al. 2007; Diehl et al. 2006; 

Matsubara et al. 2004; Kojima et al. 2005; Nakano et al. 2003). These analyses are highly 

sensitive, but their analytes which typically are purified DNA are much simpler than 

analyzing the raw lysate of actual cell. In addition, the process does not involve cell 

lysing which usually results in more complicated chemical composition and/or fluidic 



44 
 

manipulation. These factors limit direct single-cell PCR at single copy resolution. This 

research strives to construct a chip that is capable of performing single cell analysis of 

small phytoplankton which is more challenging than that for mammalian cells due to the 

small size and their tough cell-wall structure. Recent progress on using microfluidic 

devices on single-cell PCR have focused on mammalian cells. Applications to other types 

of single cells are rare. Ottesen et al. (2006) used microfluidic digital PCR to amplify and 

analyze different genes obtained from single bacterial cells gathered from the 

environment. They used this device to identify bacteria in complex ecosystems and 

successfully reached the single molecular level resolution based on serial dilution and 

Poisson distribution. Zeng et al. (2010) designed an emulsion generating microfluidic 

device that used small droplets in oil as the reaction chambers. In this experiment, E. 

coli cells or isolated DNA were randomly seeded into the droplets with primer-adhered 

microspheres and real-time PCR reagents. By measuring the fluorescent emission of the 

PCR product in droplets using flow cytometry, they demonstrated that single-bacteria-

resolution analysis can be achieved. However, all of these devices need complicated 

microfabrication or/and designs which required specific instruments. Very often these 

instruments or expertise for fabrication are not readily available for most biological 

laboratories, which has limited the application of these devices for single cell studies. 

In order to finally develop a chip-level device to achieve single cell RT-qPCR, 

this research developed a chip-level device which involves only inexpensive and easily 

accessible equipment that is capable of performing single cell qPCR as the first step. This 

device contains an array of stationary, surface-adhering droplets immersed in oil as real-

time PCR chambers. Mineral oil is used to isolate the droplets and prevents the aqueous 
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solution from evaporating during thermal cycling. The dimensions and locations of the 

droplets are controlled by hydrophilic patterning on the glass substrate. The volume of 

each chamber is 5 µL on the current design, but can be smaller and the density of the 

droplets can be higher if using a customized thermal cycler that can scan dense PCR 

chamber arrays. In addition, the operation does not require off-chip DNA extraction or 

purification steps which will diminish the potential effectiveness of downstream real-time 

PCR analysis, such as inhibition from lysis buffer which is used for off-chip DNA 

extraction. Although single-cell loading can also be easily achieved by serial dilution 

(Lin, Chao, and Meldrum 2009), we used a micromanipulator to precisely load one 

bacterial cell per droplet to validate the sensitivity. Leveraged with a commercially 

available real-time PCR thermal cycler, it was demonstrated that the device is capable of 

genetic analysis at the single cell level. 

4.2. Experiments 

4.2.1. Experiment setup 

The current chip is designed to be compatible with an off-the-shelf real-

time PCR thermal cycler originally designed to work with conventional PCR tubes/plates. 

The chip contains an array of surface-adhering droplets on a microscope cover slip, and 

all droplets are submerged under an open pool of mineral oil confined by a PDMS frame 

(Figure 8a). Each droplet is isolated by mineral oil as a PCR reaction chamber and to 

prevent the droplets from evaporation and cross contamination. The chip is optically 

compatible with the thermal cycler since all components such as mineral oil and droplets 

are transparent. The locations of the droplets are aligned with the wells of the heating 

block designed to hold PCR tubes, and the area of a droplet is of the same order as the 
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top-view area of a PCR tube (Figure 8b). Therefore, the existing fluorescence detection 

configuration can be directly applied to the use of the chip. A 0.42-mm-thick brass plate 

was placed under the cover slip during thermal cycling as a mediator to enhance heat 

transfer for better temperature uniformity on the chip. The cross view of the chip in a 

typical real-time PCR thermal cycler is shown in Figure 8b. 

 

Figure 8. (a) The chip contains an array of surface-adhering droplets submerged in oil. (b) 
The cross section view of the chip placed on a thermal cycler, showing that the droplets 

are aligned with the wells of the heating block of the thermal cycler (not to scale). 

In order to implement single cell analysis, the reaction volume of each chamber 

was designed to be 5 µL, in contrast to the typical 10-20 µL reaction volume using 

conventional PCR tubes. Droplets which are smaller than 5 µL tended to be too small for 

the real-time PCR thermal cycler to detect. The smaller reaction volume increases the 

local concentration of the template so that the competition with contaminants or 

endogenously generated background such as primer dimers will be reduced thus 
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providing more DNA polymerase molecules per template (Musyanovych, Mailänder, and 

Landfester 2005; Marcy, Ishoey, et al. 2007; Schaerli and Hollfelder 2009). 

4.2.2. Chip fabrication 

The procedure of producing a droplet array is derived from previous work that isolates 

single bacteria in a droplet array (Lin, Chao, and Meldrum 2009). The key fabrication 

process is to make a hydrophilic pattern that confines the aqueous droplets. In this study, 

I generated such patterns using Microscale Plasma Activated Templating (µPLAT), a 

technique that employs a stencil to expose air plasma only to designed areas to increase 

the hydrophilicity of the surface (Chao, Carlson, and Meldrum 2007). The process of 

making this chip is illustrated in Figure 9. In order to minimize contamination, all 

components and material used in this study were autoclaved and exposure to UV light for 

15 minutes before the experiment. 

First, a µPLAT stencil made of a 2-mm-thick PDMS sheet was adhered on a 

cover slip (Figure 9a). A 3×4 array of 1/8-inch diameter holes was punched, with a 9-

mm pitch between centers to align with the real-time PCR thermal cycler.  Hence, twelve 

droplets can fit in a 35mm×50mm cover slip (Fisher Scientific, Pittsburgh, PA). The soft 

PDMS stencil was then adhered on the cover slip. The assembly was placed in plasma 

cleaner (Harrick Plasma, Ithaca, NY) for plasma exposure with 6.8 W RF-power for one 

minute (Figure 9b). The areas exposed to the plasma became more hydrophilic, while the 

unexposed areas remained unchanged.  Then the stencil was removed, leaving an array of 

hydrophilic circular areas on a more hydrophobic background (Figure 9c). A 2-mm-thick 

PDMS frame was placed to surround the hydrophilic array to confine a pool of oil 

(Figure 9d). 800 µL of mineral oil (Sigma M8410) was loaded inside the PDMS frame 
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(Figure 9e). Finally, twelve 5 µL droplets of PCR mixture were pipetted on each 

hydrophilic area (Figure 9f). Oil was loaded before the droplets to prevent contamination 

during the loading process.  

 

Figure 9. Chip fabrication process. 

4.2.3. Strain and Cell culture 

In order to prove the single cell sensitivity of the chip, initially the Synechocystis PCC 

6803 strain was used as a target. The Synechocystis PCC 6803 cells were grown at room 

temperature in BG-11 media (Richaud et al. 2001). The cell density of Synechocystis 

PCC 6803 was measured by a spectrophotometer (Beckman Coulter, Brea, CA), and 

counted under light microscopy (Nikon, Japan). In general, OD730 1.0 represents 

approximately 108 cells/mL. 
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4.2.4. Cell loading 

Two cell loading strategies were used in this study. The first was serial dilution to load, 

on average, 1000, 100, and 10 cells per droplet. The second strategy was single-cell 

loading using a micromanipulator developed in our center (Anis et al. 2011; Anis, Holl, 

and Meldrum 2010). This micromanipulator uses a piezoelectric actuated diaphragm to 

dispense/aspirate liquid through a 30-µm capillary at the picoliter level. This device can 

precisely manipulate cells with small flow rates and therefore gentle shear stresses. The 

entire loading process was monitored on a microscope, so the loading of single bacteria 

cell can be visually confirmed. 

4.2.5. Real-time PCR 

Primers were designed using Primer3 software (Untergasser et al. 2007) and 

manufactured by Invitrogen (Carlsbad, CA). One set of primers was designed to amplify 

a 152 bp of 16S rRNA gene of Synechocystis PCC 6803: forward primer 

(CCACGCCTAGTATCCATCGT) and reverse primer (TGTAGCGGTGAAATGC-

GTAG). The SYBR GreenER qPCR SuperMix Kit (Invitrogen, Carlsbad, CA) was used 

for real-time PCR. The PCR reaction mixture contained 2.5 µL qPCR SuperMix, 0.5 µL 

of each primer with the final concentration of 4 µM, 0.5 µL of 5×BSA, 0.45 µL of DEPC 

treated water (Ambion, Austin, TX), 0.05 µL of ROX and 0.5 µL of sample in a total 

volume of 5 µL for each droplet. For a single cell droplet, 0.5 µL of DEPC treated water 

was loaded and then one single cell was put into the droplet using the micromanipulator. 

Considering the low fluorescent signal due to the low amount of target, photo bleaching 

was prevented by blocking the ambient light. The experiments were performed on a 
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commercially available thermal cycler (StepOne real-time PCR system, Applied 

Biosystems, Foster, CA).   

4.2.6. PCR validation 

After real-time PCR, the PCR products were pipetted out one by one and loaded on 1.5% 

agarose gels (EMD Chemical, Gibbstown, NJ) for electrophoresis analysis. The gels were 

run under 130 volts for 35 min. The DNA fragments with the expected size were then 

isolated using QIAquick Gel Extraction Kit (Qiagen, Valencia, CA) and analyzed by 

sequencing on ABI 3700.  In order to confirm the right sequence, online nucleotide blast 

tools (http://blast.ncbi.nlm.nih.gov/) were used. Over 98% identity was recognized as 

right amplification. Validation is not necessary for regular utility of the device.  

4.3. Results  

4.3.1. PCR temperature profile  

The efficiency and specificity of PCR are affected by several factors, including cell 

lysing efficiency, chemical constitution of the PCR system (i.e. primer concentration, 

Mg2+ concentration, and SYBR Green concentration, etc.) and annealing temperature 

(Sipos et al. 2007; Markoulatos, Siafakas, and Moncany 2002). For real-time PCR, the 

temperature at which fluorescence detection is performed is also a crucial factor. 

Thermal lysing was selected over chemical lysing to avoid possible interference 

with PCR due to chemical lysing (Lu, Schmidt, and Jensen 2005; Lee et al. 2005; Waters 

et al. 1998). In this study, we found that heating at 94 °C for 10 minutes was enough to 

fully lyse the Synechocystis PCC 6803 cells in the droplets. Based on the sequence 

analysis and initial tests, 60 °C was found as the optimized annealing temperature, and 

was selected for rest of the study.  
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SYBR green dye only binds to double-stranded DNA in a specific temperature 

range, so the fluorescence emission that indicates the quantity of double-stranded DNA 

can be detected. The proper detection temperature can be determined through the melt 

curve analysis. After testing multiple temperatures ranging from 70 °C to 80 °C on chips, 

the optimized signal detection temperature was determined to be 72 °C, and was selected 

for the rest of the study. 

As shown in Figure 8, the heat from the heating block of the thermal cycler 

transferred to the droplet through the air in the heating block, the brass plate and the 

cover slip. Since the droplets did not directly contact the thermal cycler, the temperature 

of the droplets experienced hysteresis and delay to the setting temperature of the thermal 

cycler. To solve the issue, initially I put my efforts on minimizing the difference of 

temperature related to each steps (i.e. cell lysing, annealing and signal detection) between 

the ideal temperatures and the real temperatures in droplets. The ideal temperature 

protocol for this study was 15 s at 95 °C for denaturing, 15 s at 60 °C for annealing, 30 s 

at 72 °C for extension, and 10 s at 72 °C for signal detection. In order to compensate for 

the offset and hysteresis of the real temperature in the droplets, a calibration was 

performed by inserting a 0.076 mm-diameter K-type thermocouple (5SC-TT-K-40-36, 

OMEGA, Stamford, CT) into the center of a droplet to empirically adjust the setting 

temperatures and corresponding durations of the thermal cycler to fit the actual 

temperatures in the droplets. A thermocouple reader (50 Series II, Fluke, Everett, WA) 

was used to record the temperature every five seconds during thermal cycling. Figure 10 

shows the temperature profile set on the thermal cycler (black circles) and the 

compensated temperature profile in the droplets (line with rectangular dots). The 
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heating/cooling rates were longer than those for conventional in-tube PCR, so the 

droplets required a longer time to reach a steady-state temperature. To shorten the total 

duration, we selected not to wait for the temperature to reach steady state of each stage. 

Instead, the thermal cycling profile was selected such that the droplet temperature was 

maintained within a ±1 °C range from the desire temperature during each stage. 

 

Figure 10. Temperature profile for PCR. 

4.3.2. Single bacterial cell analysis  

In order to accomplish real-time PCR with single digit template copy in single cells, in 

addition to the temperature profile, primer design is also a crucial factor (X. Wang and 

Seed 2003; Pattyn et al. 2003). The criteria for the primer design used in this study is that 

the size of the amplicon should be around 200 bp, Tm value of the primers should be 
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around 60 °C and several sets of primer need to be tested before choosing the right 

primers. Based on these requirements, the primers used in this study were designed by 

Primer3 (http://frodo.wi.mit.edu/primer3/). BSA was added in the solution to prevent 

undesired binding of DNA and polymerase to glass surface (Höss and Pääbo 1993; Höss 

et al. 1992; Kreader 1996; Prakash, Amrein, and Kaler 2007). 

The real-time amplification curves of an on-chip PCR experiment with various 

cell numbers are shown in Figure 11. Four levels of cell numbers on the chip were tested. 

1000, 100 and 10 cells per droplet were achieved by serial dilution from bulk cells, while 

single cells were picked and loaded directly with the micromanipulator. The average Cq 

values were also shown in the insert of Figure 11. The curves are well clustered for each 

cell number levels. The differences of the average Cq values between the cell number 

clusters were 4.2, 2.7 and 2.3, respectively. All amplified DNA was confirmed by 

sequencing to be the expected products. Although the negative controls were frequently 

amplified in the experiments, they appeared significantly later than the reactions from 

single cells. In addition, the Tm values of negative controls are different from that of the 

template. We also sequenced the amplification products from the negative control, and 

the BLAST search showed that the products were different, which could be a result of 

random amplification (data not shown). The possible causes for the amplification of 

negative controls are: 1) the contamination carried in commercial kits, enzyme and buffer. 

This contamination has been reported in many studies (Zhou et al. 2007; Panicker, Myers, 

and Bej 2004); 2) random amplification when the cycle number is high. 



54 
 

 

Figure 11. Real-time PCR result at 1000, 100, 10, and single cell levels. 

4.3.3. Performance evaluation 

In order to evaluate the performance of the chip, we first determined the successful rate 

of the chip operation. The melt curves were analyzed to define whether the reactions 

were successful. Briefly, each amplicon should have a specific Tm value, then melt curves 

with dominant signal at the right Tm value were recognized as a successful amplification. 

In addition, PCR products were validated through gel analysis and sequencing analysis. 

Based on these criteria, the overall success rate for the experiments shown in Figure 11 

and Figure 12 was over 85% and the single cell level success rate is in the same range. 

The means and standard deviations of the Cq values of different 16S rRNA 

template concentrations are summarized in Figure 12. In these experiments, four different 
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chip PCR experiments. 

value difference is around 3.324 (i.e. 

10) cycles. Our experimental results showed that the difference between each dilution 

1.0 pg and 1.0 pg to 0.1 pg dilutions, 
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respectively, and 6.7 cycles between 10 pg to 0.1 pg dilutions. This result showed that 

although variations existed for individual experiments, the global trend of the relation 

between Cq value and template concentration was close to the estimation with the ideal 

efficiency. We also designed another set of primers to amplify a 198 bp fragment of rbcL 

gene of Synechocystis PCC 6803. The Cq difference between 10 pg and 1 pg was 3.2. The 

result confirmed that the PCR efficiency of our device was robust. 

In addition to successful rate and efficiency, sensitivity is another crucial factor 

for single cell studies since the analyte amount is extremely low (Zare and Kim 2010; 

Borland et al. 2008; Schmid et al. 2010). One Synechocystis PCC 6803 cell has only 2 

copies of 16S rRNA gene, according to the NCBI and CyanoBase database 

(http://www.ncbi.nlm.nih.gov/gene; http://genome.kazusa.or.jp/cyanobase). Therefore, 

the sensitivity of the presented work approached the single copy level, similar to the 

sensitivities achieved with 6.25-nL microchambers (Ottesen et al. 2006) and 70-pL 

droplets (Beer et al. 2007) in previous work. However, because the droplet volume in our 

device was in the µL-scale, our sensitivity in terms of initial template concentration is 

much higher. We assert that the one-step operation conserved the small number of 

templates in the confined droplet volume, and the reduction in liquid transportation also 

minimized possible contamination which allowed for high thermal circle numbers with 

acceptable negative control expression. The elimination of DNA extraction and 

purification did not prevent quantitative analyses at low template concentration. 

4.4. Conclusion 

In this study, a new design of an easily fabricated multi-chamber real-time PCR chip was 

demonstrated. The chip was robust and cost-efficient, and the one-step operation does not 
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require DNA purification. The current chip can analyze twelve single cells in one 

experiment, constrained only by the commercial thermal cycler. Using this new device, 

we successfully extended qPCR analysis of gene targets toward the single copy level. 

Through serial dilution at low template concentration, statistics of Cq values results in the 

ideal estimation. With a specifically designed thermal cycler for this chip, it will have the 

capability to further decrease the reaction volume to nL volumes, similar to the other 

PCR microdevices that use non-adhering droplets as reaction chambers. The application 

of this device in biological laboratories will provide the needed and convenient tools to 

perform genetic analysis for single cells and reveal heterogeneity in complex microbial 

communities. Meanwhile, these results also build a strong foundation for the single cell 

environmental monitoring device construction in this thesis. 
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5. TWO-STEP SINGLE-CELL RT-QPCR PROTOCOL DEVELOPMENT 

5.1. Introduction 

This portion of work has been published in Applied Environmental Microbiology (Shi et 

al. 2013). I would like to thank Dr. Gao, Dr. Chao, Dr. Zhang and Dr. Meldrum. With 

their patient supervision and suggestions, I could successfully design the experiment and 

achieved good results for this research.  

 For isogenic cell populations, gene expression heterogeneity could arise from the 

intrinsically stochastic processes of the expression of individual genes. The amplitude of 

such stochasticity, or noise, in gene expression is controlled by many factors, including 

transcription rate, regulatory dynamics, and other genetic factors of the cells (e.g. 

microRNA, transposon etc.) (Banerjee et al. 2004; Colman-Lerner et al. 2005; Pedraza 

and van Oudenaarden 2005; Rosenfeld et al. 2005; Newman et al. 2006; Strovas et al. 

2007). As a result, individual cells in genetically homogeneous populations can contain 

different copy numbers of messenger RNA (mRNA) molecules, which eventually leads 

to different numbers of functioning protein molecules. This transcriptional noise, once 

amplified, could offer the opportunity to generate and sustain heterogeneity at the cellular 

level in a clonal population. The gene expression heterogeneity suggests that by simply 

averaging mRNA or proteins from whole populations, crucial information about unique 

patterns of the gene expression related to specific regions or distinct functional 

subpopulations may be lost. To gain a deeper insight into the intricacies of cellular 

diversity and its functional relevance, single cell level analysis needs to be performed. 

For the purpose of deciphering interesting biology puzzles, conventional tube-based 

single cell level gene expression analysis was performed targeting T. pseudonana, a 
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typical centric diatom (Armbrust et al. 2004), using single cell RT-qPCR on the basis of  

previous efforts (J. Zeng et al. 2011; Gao, Zhang, and Meldrum 2011). 

It is well known that under adverse conditions such as nutrient-limited or other 

environmental stresses, microorganisms can trigger protective response mechanisms for 

survival. Concurrently, many regular physiological activities such as photosynthesis may 

be repressed under these stresses. Directly monitoring the stress response of 

microorganisms to their environments could be one way to inspect the health of 

microorganisms themselves, as well as the environments in which they live. Under such 

situations, pursuing analysis methods targeting a few or single microbial cells, which are 

directly recovered from environments without further cultivation, is necessary. Diatoms 

are a group of unicellular phytoplankton (Falkowski et al. 2004; Thamatrakoln et al. 

2012) that are present in wide spread niches, from inland lakes to open oceans (Bennett et 

al. 2010; Mann and Droop 1996). Because of this, there is no need for introducing foreign 

species (Ripp et al. 2000) to monitor the environment. Other than using T. pseudonana as 

a sensor, they play significant roles in the global carbon cycle (Maheswari et al. 2010; 

Nelson et al. 1995) that makes it essential to understand what environmental stresses they 

are susceptible to and how they respond, in order to maintain the primary productivity in 

oceans. 

Nitrogen is an essential element for living organisms and is required for the 

biosynthesis of macromolecules such as amino acids. It has been reported that the 

availability of nitrogen in oceans varies drastically on spatial and temporal scales due to 

physical and biological processes, and nitrogen has been considered as a major limiting 

nutrient for primary production in the oceans (Falkowski et al. 2004; Hockin et al. 2012). 
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Phosphate is another important element involved in many aspects of cellular metabolism, 

like ATP synthesis. It was reported that photosynthesis was disrupted by low level 

phosphorus (Bucciarelli and Sunda 2003; Rao, Arulanantham, and Terry 1989). Iron is a 

key component of Ferredoxin, an iron-sulfur proteins that control electron transfer 

(Abdel-Ghany et al. 2005), and its limitation and restriction of primary productivity have 

been reported for some ocean regions (Boyd et al. 2007; Lewandowska and Kosakowska 

2004). Because of the short residence time of bioavailable iron (Martin et al. 1994) and 

the extremely low concentration of iron in the surface water which is only 0.07 nM/kg 

(Johnson, Gordon, and Coale 1997), phytoplankton growth and primary productivity are 

restricted in vast high-nutrient, low-chlorophyll (HNLC) regions of the Southern Ocean, 

the equatorial Pacific and the North Pacific (Boyd et al. 2007; Marchetti et al. 2012).  

In this study, in contrast to previously published single-cell analyses on 

mammalian cells, working with diatoms has its own particular challenges due to their 

small size (~5 µm diameter) and protective frustules. In this research, the expression of 

six genes in single T. pseudonana cells was quantitatively measured, each with three 

technical replicates. The single-cell results revealed significant heterogeneity in terms of 

stress responses within T. pseudonana population. This work demonstrated the possibility 

of applying native habitants as sensors to monitor the environmental stress conditions. 

Meantime, this study provided the first quantitative gene expression evidence for the 

response heterogeneity of diatom T. pseudonana to environmental stresses. 



61 
 

5.2. Experiments 

5.2.1. Cell culture 

T. pseudonana (CCMP1335) cells were obtained from the National Center for Marine 

Algae and Microbiota (NCAM), and were grown in f/2 medium at 24 ± 1°C (Guillard 

1975; Guillard 1962) under a constant light condition (30 µmol photons m-2 s-1 irradiance 

measured using LiCor (Lincoln, NE)). Cells at middle exponential phase were harvested 

by centrifugation at 1,500 × g, for 5 min at 4°C, and used to inoculate f/2 medium with or 

without nitrogen (NaNO3, 8.82 × 10-4 M), phosphate (NaH2PO4, 3.62 x 10-5 M) and iron 

(FeCl3·6H2O, 1.17 × 10-5 M) depending on the condition of starvation. Artificial seawater 

was prepared using chemicals of analytical purity and used instead of filtered nature sea 

water for f/2 medium and prepared based on the formula of Kester et al. (1967). 

5.2.2. Sampling and RNA extraction 

For bulk-cell based analysis, 1 mL cell culture was collected by centrifugation at 1,500 × 

g for 5 min at 4°C. Hemocytometer 3900 (Hausser Scientific, Horsham, PA) was used to 

count the cell number directly. RNeasy Mini kit (Qiagen, Valencia, CA) was used to 

extract RNA from the bulk cells. For single-cell based analysis, a micromanipulator 

developed in our center (Anis, Holl, and Meldrum 2010; Anis et al. 2011) was used to 

pick cells from a diluted cell population and load them into individual Eppendorf 

microtubes. This micromanipulator uses a piezoelectric actuated diaphragm to 

dispense/aspirate picoliter level liquid through a 30-µm capillary. Owing to its small flow 

rates, single cells suffer very little shear stress, which minimizes the effects on their gene 

expression profile. Thirty individual cells from each growth condition were picked. ZR 

Fungal/Bacterial RNA MicroPrep kit (Zymo Research, Irvine, CA) was used to extract 
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RNA from single cells and the total RNA was eluted into a final volume of 6 µL in 

Eppendorf microtubes. 

5.2.3. cDNA synthesis 

SuperScript VILO cDNA Synthesis kit (Invitrogen, Carlsbad, CA) was used to synthesize 

cDNA. For cDNA synthesis from bulk-cell RNA, total reaction volume was 20 µL 

containing 2 µL 10 X SuperScript Enzyme Mix, 4 µL 5 × VILO Reaction Mix and 14 µL 

of eluted RNA. To increase the relative concentration of single-cell mRNA for cDNA 

synthesis preparation, total reaction volume was decreased to 10 µL which contains 1 µL 

of specific primer mixture, 1 µL 10 × SuperScript Enzyme Mix, 2 µL 5 × VILO Reaction 

Mix and 6 µL of eluted RNA. After cDNA synthesis, 10 µL DEPC treated water 

(Ambion, Austin, TX) was added to make the final volume of 20 µL before they were 

used as template for quantitative PCR analysis. 

5.2.4. Quantitative PCR 

Primers for RT-qPCR were designed using Primer-BLAST (http://www.ncbi.nlm.nih.gov 

/tools/primer-blast/index.cgi?LINK_LOC=BlastHome). To differentiate PCR products 

from primer dimers, we selected primers which will generate amplicons with sizes 

around 170-220 bp (Gao, Zhang, and Meldrum 2011). qPCR was performed using 

Express SYBR GreenER qPCR SuperMixes Kits (Invitrogen, Carlsbad, CA) on a ABI 

StepOne Real-Time PCR System for bulk-cell analysis and ABI 7900HT Real-Time PCR 

System for single cell analysis (Applied Biosystems, Foster, CA), respectively. The 

temperature of qPCR was 10 min at 95°C for initial hot start, and 40 cycles with 

conditions as: 15 sec at 95°C for denature, 50 sec at 60°C for annealing and extension 

and 10 sec at 75°C for signal detection. There was also another melting curve analysis 
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step which was set to be the default condition based on the real time PCR system. For 

PCR reactions, 1 µL each primer with the concentration of 4 µM, 5 µL of master mixture, 

0.1 µL ROX, 0.9 µL DEPC treated water and 2 µL cDNA were combined. Technical 

triplicates of PCR analysis were performed for each gene. Reactions without cDNA 

templates served as negative controls. Expression levels of target genes were normalized 

against internal control actin gene. 

5.2.5. Data analysis 

To describe the distribution variation of single-cell gene expression levels among cells, 

nonparametric statistic tests which do not require normal distribution of datasets were 

applied (Siegel 1957). Kolmogorov-Smirnov and Kruskal-Wallis analysis of variance 

(ANOVA) tests were used to analyze the relationship between four different groups of 

RT-qPCR measurements using the OriginPro 8.1 software (OriginLab Corporation, 

Northampton, MA). Principle component analysis (PCA) was conducted using the SPSS 

Statistics 20 package (IBM, Armonk, NY) to determine the possible control variances. 

5.3. Results 

5.3.1. Growth of T. pseudonana under stress conditions  

T. pseudonana growth was determined by counting the cell number with a 

hemocytometer directly. Figure 13 showed the growth-time curves of T. pseudonana 

under control and three stress conditions. The results showed that the initial increase in 

cell numbers over days 1 to 4 were roughly exponential for all conditions although the 

growth under the no nitrogen and no phosphate conditions were at a relatively low rate. 

After day 4, the cultures under control and no iron conditions still maintained exponential 

growth for another 24 h. After day 5, both cultures of the control and no iron conditions 



64 
 

reached their stationary phase, while the cell numbers under the no nitrogen and no 

phosphate conditions declined. The results showed that all three nutrient-limited 

conditions caused significant decrease in cell growth, with phosphate and nitrogen 

affected the most. In these cases, cell number only reached 10-28% of that of the peak 

cell numbers. The slow growth of T. pseudonana under these stress conditions was 

consistent with previous reports (Bucciarelli and Sunda 2003; Lewandowska and 

Kosakowska 2004). Cells at the middle exponential phase were collected for RT-qPCR 

analysis (Figure 13). 

 

Figure 13. Growth of T. pseudonana cells under various conditions. Arrow indicates 
the sampling time for gene expression analysis. 
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5.3.2. Primer evaluation 

A total of 82 pairs of PCR primers were designed and evaluated for 39 different target 

genes. Since the major goals of this study were to i) evaluate the possibility to use single 

cells as biosensors, ii ) to determine the response heterogeneity of T. pseudonana to 

various important environmental factors (i.e. nitrogen, phosphate and iron limitation), and 

iii ) also to compare the results with those previously obtained at bulk-cell level, the 

targets genes included some of the genes with demonstrated functions in photosynthesis, 

iron transportation and stress responses. Although most of the primers (78 out of 82) 

functioned well with bulk-cell RNA, only one pair of primers each was obtained for nine 

genes after the evaluation process (Figure 14). A relatively low success rate of primer 

selection reflected the different performance between bulk-cell based and single-cell 

based RT-qPCR analyses, and also the difficulty of measuring gene expression at the 

single-cell level. The successful primer sets and their corresponding gene targets were 

psaA, photosystem I P700 chlorophyll a apoprotein A1 (forward primer: 

CGGTTCTGCATCTTCAGCATACGGC , reverse primer: GTGCTAAACCAACGGC-

ACGACCT); psaF, photosystem I reaction center subunit (forward primer: 

TGTGGCGCAGATGGCTTACCTC, reverse primer: TGCACTCGTACTTACTGCGC-

GTA); psbA, photosystem II protein D1 (forward primer: CCACATGGCTGGTGTT-

GCTGGT, reverse primer: CGACCAAAGTAACCGTGTGCAGCT); psbC (forward 

primer: TCATCTGCACAAGGTCCAACTGGT, reverse primer: AGCAGCACGACG-

TTCTTGCCA); psbC, photosystem II reaction center protein (forward primer: 

TCATCTGCACAAGGTCCAACTGGT, reverse primer: AGCAGCACGACGTTCTTG-

CCA); hsp90, heat shock protein (forward primer: AGGCTCTTACGGCCGGGGCGGA, 
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reverse primer: AAGACCCGCCAGCCTCGGA-AGCC); rbcL, ribulose-bisphosphate 

carboxylase (forward primer: AGGCTCTTACGGCCGGGGCGGA, reverse primer: 

TGTAGATAACTTGACGACCTGCGCC); Actin (forward primer: CCGTAGTGAA-

CGCCTATCGTGGC, reverse primer: CCATCGTCTCGCTGCGGCTG); Tubulin 

(forward primer:  GGACGCTACGTTCCTCGTGCC, reverse primer: GCTCTCGGCC-

TCCTTCCTCACA); 18S (forward primer: TGCCAGTAGTCATACGCTCGTCTCA, 

reverse primer: CCTTCCGCGAACAGTCGGGTAT). The primers that functioned well 

at the bulk-cell level but not at the single-cell level are also provided in the Table 1. 

 

Figure 14. Two rounds of primer selection. 
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Table 1. Sequences of primers evaluated 

Name Sequence (5’ to 3’) 

futA_forward ACCTCTATGAGCGCTTCACC 

futA_reverse GTCGACCGTCTGGAACAGAT 

ftrC_forward TGACCTCTGTGGTGCTGAAG 

ftrC_reverse GGTTGTCTTCGGTGAGGAAA 

phd-forward CACGACCACACCTCATTCTG 

phd-reverse AAGGTCCGGTGTCAAAAGTG 

zep-forward AGGACGACCCAGAGGAGAAT 

zep-reverse ACCAATGAGGACGACGTTTC 

twcaTP2-forward ACGGTGACGGTCCCCACGGTAACATC 

twcaTP2-reverse ACCCACAGCAGAGGCGATATCCTGA 

hsp20A_forward GCCTGGCGGTAGATGTGCCCGGA 

hsp20A_reverse ACCCCATCAGCGAGATGGGCTGTG 

p23_forward CGGTGCAGATGCATGTGATGAAGGCGA 

p23_reverse CCATTCCGCCCATTCCTCCCATTCCCA 
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hsp70A_forward GGCCACCAAGGATGCCGGAGCCA 

hsp70A_reverse TGGGTGTCTCCAGCGGTGGCCT 

dnaJ1_forward AGCGTGGGTGGCTGCGTCCGA 

dnaJ1_reverse TGCACACACCAATGGTCCCCCTAGTCC 

dnaJ2_forward ACCCGCCGCCCCAAAGACGGC 

dnaJ2_reverse TCGCCACGCCCGTCGCCAGC 

pdz_forward AGCCTTCGTCTGCGTCTCACCAGCCT 

pdz_reverse AGCGTCGGGAGATCGTCTGATGGGCG 

pre_forward AGGTCTCGTTGCCGCGGTTGCCG 

pre_reverse CGAATCCAGTTCCAACCGCACCCTTCG 

smp1_forward TGCCTCAGGGCGGTCTCGCCA 

smp1_reverse AGCCCTCCACCAGCCTTCAACTCCCT 

cat_forward TGGGGGTGACTGCAGGGGCGA 

cat_reverse AGCCGCCATCGATACCCCACCAGC 

Actin 235F ACCAACTGGGACGACATGGAGAAA 
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Actin 490R TGTGGGTAACACCATCTCCCGAAT 

Tubulin For TTCGACCGGATAACTTTG 

Tubulin Rev CGACTAGTCAAAGGAGC 

18S rRNA 1F CTGCCCTATCAGCTTTGG 

18S rRNA 1R CGGCCATGCACCACC 

18S rRNA 2F TTGACTCAACACGGGAAAAC 

18S rRNA 2R ATCCAAAGCTGATAGGGCAG 

FRE4F AAAGTAGGCGACCGCACGGC 

FRE4R GGTGCGAGGGTGAGAGAAGCG 

zupT For TCCTCCTCGTGGTAGCCGCC 

zupT Rev CCTCCCCCAACTCAGCAGCCT 

HMA1F TGGCTTGAGGCACGAGCGAC 

HMA1R CTACCAACCCGTCTGCGGGC 

CDF1F TTCAGGTGGCGAGGTTGCCC 

CDF1R CAGCCGCTGCAATCCCCTGA 
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CDF2F TGCAGCCAGCTGGTTTGGGG 

CDF2R TGCTGAAACGGCACAGTGGGT 

HemeF AGTGGGGGCAAGGTGCTGTCT 

HemeR GCCTCGGCTACCAAACGACCA 

IscA1F CGGTGGATGCTCCGGTCTTTCC 

IscA1R ACCCACAGCTCTCCTCGGCA 

2Fe-2SF AGGCATCGGTGAATCAGCCACA 

2Fe-2SR CGGTCGGTACAACGTCTACGCA 

CytoF AACGCAGCCTCCACACTGGC 

CytoR TCGTTCGTTCGCTGCCGTGG 

RieF TTCGCCACTCTTGCCTGCGG 

RieR AGGGCGGTGGTGGATCGCTA 

Ctyob5F ACACTGCAGACTCAGCGTGGA 

Ctyob5R ACGACGACCGTGAACATCGCC 

HaemF TCACGGTGCCAATGCCGGTC 
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HaemR ACTGCTCGGGGGAAGTGGCA 

SOD1F AGTGAGCAAGTCGGCAGCGG 

SOD1R TAGCGTGCGGTGCGAGGTTG 

SOD2F GCCACCACCATCGCTACACCC 

SOD2R GCCCGGCCTCCAAAGCATTCA 

ChrAF CGGCGTGTACTGGCACCTCG 

ChrAR GGCGATGCTGCCTCCCAACA 

FlavLF CCGAAGCAGCCGCCGAAGAA 

FlavLR TCGTGCACCTAGAGGAGCTTGTCC 

FlavF GCGGTGGCGACGAGCTACAT 

FlavR CGTGTCGTCCCTGGCTGCAT 

psbW_forward ATCCCACTCCTCCGGACTCTGCATA 

psbW_reverse GGATCCTCCGGCATTGCCACATT 

psbC_forward GCCCAAAGGCCACCAATTTGACAC 

psbC_reverse GCTGCAGGTGGGTGGTTTACTGG 
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LhcA-forward GACCTCCCTTGACGCCATGCC 

LhcA-reverse GACCGTTGGTCTCCTCCCACGAT 

psaF-forward GGATGGACGATGGAGTCATGCAGC 

psaF-reverse TCTTGCCACGCTGAAATTGGCCAA 

rbcL-forward ACGGTAGCGCTCACAAGCTGT 

rbcL-reverse TGGGTTACTGGGATGCTGCATACAC 

rbL-forward CGTGCATCTGCTGCAACTGGTG 

rbL-reverse TCGTTTTCACGAGCCCAGTAAGCAA 

PPC1_forward CCGTACCGCCCTTTCCGTGG 

PPC1_reverse CCGGCATACGTCGGAAGCTTGG 

ACT1_forward AAGCGGCTGAGGCTACGTCGAT 

ACT1_reverse GAGGCCATTCCGTCCAATCCACCA 

rbcL2_forward TCATGCGCTGCTGGTTACATCCG 

rbcL2_reverse GTAGATAACTTGACGACCTGCGCCT 

ACT1_forward GATTGTGGCTCCCCCGGAGAGG 
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ACT1_reverse TCGAGTCTCCTCAAACCACGAGCC 

ACT2_forward AAGATTGTGGCTCCCCCGGAGAG 

ACT2_reverse TCGAGTCTCCTCAAACCACGAGC 

psaF1_forward GTGGCGCAGATGGCTTACCTCA 

psaF1_reverse TTGCACTCGTACTTACTGCGCGT 

psbC2_forward ATTCGTTCGTGGATGGCTGCACA 

psbC2_reverse CGAGCGTTTCCACTCCACCAAGC 

tubulin11_forward CTGCCGTGCAGGAGACCTGG 

tubulin11_reverse CCTTCCTCGTCGGCAGTTGCAT 

tubulin21_forward CGCCAAGCGTGCCTTTGTGC 

tubulin21_reverse CGCCAACAGCGCGACAGAGT 

tubulin22_forward TGGGCCAGGCCGGTATCCAA 

tubulin22_reverse CGCACACGGTGGGCTCCAAA 

actin12_forward TGGGCCGATCGATCATCCACTGTT 

actin12_reverse CAGGGCAGTTTGCCTCCCGT 
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actin21_forward GGCGTCCAACGAGGAAGGCA 

actin21_reverse CGCTGTCGTAATGGCGGGGG 

actin22_forward GGTCTAGCTCCGCCAACCGGA 

actin22_reverse GCATGCTGCCACTGCATCCCT 

5.3.3. Enhanced cDNA synthesis by adding target-specific primers  

cDNA synthesis typically employs random primers which generate the least bias in the 

resulting cDNA (Stephen A Bustin and Nolan 2004). However, since we were using total 

RNA rather than purified mRNA as the starting template, most of the cDNA synthesized 

through the random primers will be ribosomal RNA-derived cDNA, which could further 

complicate the single-cell gene expression (Stephen A Bustin and Nolan 2004). To 

address this issue and to enhance the yield of cDNA derived from target mRNA, primers 

specific to the target genes were added into the reverse transcription reaction mixture so 

that more mRNA of the target genes would be converted to cDNA (Ståhlberg et al. 2004). 

To ensure detection sensitivity and reproducibility of single-cell qPCR, cDNA from each 

T. pseudonana cell was used to detect a maximum of three different genes, each with 

three technical replicates. In the cDNA synthesis step, 1 µL of primer mixture containing 

three target gene-specific primers (reverse primers which are complimentary to the 

mRNA sequence) was added. The final concentration of each target-specific reverse 

primer in the qPCR reaction is 4 nM. To demonstrate the effects of adding target gene-

specific primers on single-cell analysis, we evaluated the single-cell RT-qPCR analysis of 
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three genes, psbC, actin and 18S rRNA genes. In this experiment, we diluted the RNA 

isolated from bulk cells (~106 cell/mL) to the level of a single cell which is 

approximately 50 fg/µL (Schmid et al. 2010). During cDNA synthesis, a primer mixture 

containing target gene-specific primers was added into 6 replicates, while another 6 

replicates contain only random cDNA synthesis primers. The results showed that except 

for the 18S rRNA gene, addition of the target-specific primers can significantly decrease 

the Cq values by 2-4 cycles, which is 4-16 times higher yield of target cDNA when 

compared with control samples for psbC and actin genes, suggesting the target-specific 

primers in the cDNA synthesis reaction were able to improve the yield of target cDNA 

significantly (Figure 15). No effect was observed for the 18S rRNA gene, probably 

because that it is one of the most abundant genes in the total RNA (Valente et al. 2009). 

However, even for the 18S rRNA gene, our results showed that addition of target-specific 

primers can improve the qPCR reproducibility by decreasing the standard deviation of Cq 

values from 0.2 to 0.1 cycles (Figure 15). The results demonstrated that adding target-

specific primers into the cDNA synthesis reaction mixture was a useful approach which 

can improve the performance of qPCR, especially for the genes with larger Cq values. 
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Figure 15. Effects of adding target-specific primers. Cq is quantification cycle, the 
fractional cycle number where fluorescence increases above the threshold. 

5.3.4. Selection of internal reference gene 

In order to ensure the gene expression across different conditions or analytical platforms 

quantitatively comparable, expression measurements need to be normalized against an 

internal reference gene (Heid et al. 1996). While several internal reference genes have 

been demonstrated in bulk-cell based RT-qPCR analysis, so far limited information is 

available regarding the constant expression of these internal reference genes across 

individual cells (Stephen A Bustin 2002; Stephen A Bustin et al. 2009; Huggett et al. 

2005). For single-cell based analysis, relative activities of each target gene against 

reference gene were acquired by the ∆∆Cq method (Livak and Schmittgen 2001; Pfaffl 
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2001). Based on previous studies, we selected three genes, tubulin gene, 18S rRNA gene 

and actin gene (Goidin et al. 2001; Kim et al. 2003; Nailis et al. 2006) as candidate 

reference genes for further evaluation. To simplify the selection process, only control and 

no iron growth conditions were used. A total of 12 cells of control and no iron conditions 

were picked and subjected to expression determination of the tubulin gene, 18S rRNA 

gene and actin gene. The Cq measurements of a total of 24 cells (i.e. 12 control and 12 no 

iron conditions) are presented in Figure 16. The results showed that the standard 

deviation (StDev) of the Cq values for tubulin gene, 18S rRNA gene and actin gene 

among all 24 cells were 0.89, 2.9 and 0.39 cycles, respectively. The actin gene had the 

smallest variance among cells, and was thus selected as an internal control for our further 

analysis. The result was also consistent with that of Kustka et al. (2007) that the 

expression of the actin gene was constitutive under all iron concentrations (Kustka, 

Allen, and Morel 2007). The results also showed that even for 18S rRNA and tubulin 

genes which were widely used as internal controls in various bulk-cell based RT-qPCR 

analysis, significant cell-to-cell heterogeneity existed. 
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Figure 16. Evaluation of three internal control candidates under control and no iron 
conditions. 
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5.3.5. Gene expression under stress conditions 

 

Figure 17. Relative gene expression activity normalized by control growth condition 
at bulk cell level. (The activity of each gene under control growth condition is equal to 

one.) 

To establish a baseline for single-cell based analysis, we first performed a bulk-

cell based RT-qPCR for the selected target genes under three stress conditions. The 

relative activity of each gene was derived from Cq value which normalized by cell 

number first and then by the activity of control growth condition. The results showed that 

except for the hsp90 gene under no iron condition, all other genes were down-regulated 

by the stresses (Figure 17). Up-regulation of the hsp90 gene under no iron condition was 

also reported by Thamatrakoln et al. (2012) who applied a combined genome-wide and 

targeted comparative transcriptomic analysis with diagnostic biochemistry and in vivo 

cell staining as a platform to identify the suite of genes involved in acclimation to iron 
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and associated oxidative stress in T. pseudonana (Thamatrakoln et al. 2012). In another 

study, Allen et al. (2008) also found that hsp90 gene was up-regulated under an iron 

starvation stress condition in a pennate diatom Phaeodactylum tricornutum. Both the 

psaA gene encoding photosystem I P700 chlorophyll II apoprotein A1 and the psaF gene 

encoding photosystem I reaction center subunit were down-regulated under three 

nutrient-limited conditions. Similar results of PS I decrease under iron limitation were 

also reported by Allen et al. (2008). When compared with the psaA gene and the psaF 

gene of PS I, the psbA gene and the psbC gene of PS II were down-regulated more under 

all nutrient-limited conditions suggesting that photosystem II may be more vulnerable to 

nutrient-limited conditions than photosystem I, consistent with the results of Mock et al. 

(2008) who analyzed whole-genome expression profiling under several different growth 

conditions such as no Fe, no N, no Si and high temperature. The rbcL gene was down-

regulated significantly under nitrogen starvation and no phosphate conditions, but only 

down-regulated slightly under no iron condition. In a recent study, Allen et al. (2008) 

reported that down-regulation of several proteins, such as phosphoribulokinase (PRK) 

and two enzymes supplying substrate for RuBisCO will lead to decrease of carbon fluxes 

toward RuBisCO under Fe stress in P. tricornutum (A. E. Allen et al. 2008). In addition, 

comparison of gene expression patterns showed that although T. pseudonana and P. 

tricornutum was divergent ~ 90 million years ago and had vast differences in genome 

structure (Bowler et al. 2008), but they may still share a similar fundamental response 

mechanism to iron starvation. Other than these results, Pearson correlation coefficients 

under different conditions (Tables 2-5) indicated that the psaA and psaF genes were 

always negative correlated under different nutrient-limited conditions, suggesting that the 
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two genes were regulated by a similar mechanism but opposite direction under different 

nutrient-limited conditions which was rational since both of them belong to photosystem 

I. However, for the genes psbA and psbC, no such correlation was found, which possibly 

suggests that the regulation mechanisms were different between photosystem II and 

photosystem I. 

Table 2. Pearson correlation coefficients of no Fe condition 

 
psaA psaF psbA psbC rbcL hsp90 

psaA 1 

     
psaF -0.15283 1 

    
psbA 0.6348* -0.1411 1 

   
psbC -0.01904 0.24029 -0.11868 1 

  
rbcL 0.23488 -0.32449 0.38733 0.47839 1 

 
hsp90 0.38389 -0.52269 0.6432 -0.18774 0.32095 1 

* Red number indicated significant correlation 

Table 3. Pearson correlation coefficients of no N condition 

 
psaA psaF psbA psbC rbcL hsp90 

psaA 1 

     
psaF -0.59133* 1 

    
psbA 0.24673 -0.32845 1 

   
psbC 0.06086 -0.08748 0.06207 1 

  
rbcL 0.51667 -0.36102 0.10702 0.05714 1 

 
hsp90 0.69475 -0.63123 0.42323 0.20161 0.48914 1 

* Red number indicated significant correlation 
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Table 4. Pearson correlation coefficients of no P condition 
psaA psaF psbA psbC rbcL hsp90 

psaA 1 

     
psaF -0.46653 1 

    
psbA 0.3934 0.04633 1 

   
psbC -0.18947 0.21417 0.13337 1 

  
rbcL 0.09046 -0.3235 0.05951 -0.05743 1 

 
hsp90 0.21243 0.36844 0.18594 -0.29835 0.47688 1 

* Red number indicated significant correlation 

Table 5. Pearson correlation coefficients of control condition 

 psaA psaF psbA psbC rbcL hsp90 

psaA 1 

     
psaF 0.31514 1 

    
psbA 0.8602 0.38443 1 

   
psbC -0.35067 -0.05957 -0.28209 1 

  
rbcL 0.30129 0.28349 0.47 -0.36159 1 

 
hsp90 -0.23108 -0.11722 -0.22576 -0.09846 0.35078 1 
* Red number indicated significant correlation 

 For single-cell level analysis, ∆∆Cq method was adopted to calculate the relative 

expression of each gene against the reference actin gene. Figure 18 and Figure 19 showed 

the result of qPCR analysis of 6 genes under control and three stress conditions. For each 

condition, 30 individual cells were picked and analyzed. Reactions with large variation 

between technical replicates and/or with multiple peaks observed in the melting curves 

were considered as failed reactions and were excluded from further analysis. Overall the 
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success rate of qPCR reactions was approximately 93%. The reproducibility of the qPCR 

was derived from the StDev of the technical replicates of each cell. Based on our results, 

hsp90, psbA, psbC and actin genes were all with small average StDev values among all 

samples which were 0.2041 cycles (0.75% of average Cq values), 0.2109 (0.75%), 0.2116 

(0.72%) and 0.2148 (0.74%), respectively. For the genes with larger Cq values, although 

the average StDev values were almost doubled to 0.3847 (1.2%), 0.4048 (1.2%) and 

0.422 (1.3%) for psaF, psaA and rbcL genes, respectively, they were still in the relatively 

low variation rangers. In general, our single-cell level qPCR protocol was robust and able 

to generate reproducible data.  

 

Figure 18. Box chart of expression level of selective genes under different growth 
conditions. 
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Figure 19. Gene expression distributions of selective genes under four different 
growth conditions. (p-values achieved by using nonparametric two sample Kolmogorov-

Smirnov Test between each nutrient-limited and control conditions, α = 0.05. X-axis is 
the relative activity.) 

The RT-qPCR results showed that gene expression varied significantly between 

individual cells, suggesting significant cell-cell heterogeneity existing in the T. 

pseudonana population (Figure 19), consistent with the previous conclusions that 

stochasticity of transcription contributed significantly to the level of heterogeneity within 

a clonal population and this heterogeneity cannot be revealed by snap-shot measurements 

of bulk cells (Bengtsson et al. 2008; Bengtsson et al. 2005; Blake et al. 2003). 

Comparison of the distribution patterns between conditions can be achieved by Kruskal-

Wallis ANOVA test (Schmelz et al. 2003). The results showed that except for the psaF 
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gene, four other genes exhibited independent expression distribution patterns under four 

growth conditions (Table 6.). The p-value of the psaF gene was 0.06841 which was close 

to the cutoff (i.e. < 0.05), indicating that there were still some differences for the psaF 

gene under four conditions. 

Table 6. p-values of Kruskal-Wallis tests at 95% confidence level 

Gene p-value 

psaA 8.23229E-15 

psaF 0.06841 

psbA 0.00255 

psbC 9.47652E-5 

hsp90 7.70247E-4 

rbcL 4.40972E-8 

Bulk-cell based analysis showed that the psaA gene had a higher expression level 

in the no phosphate condition than that in the no nitrogen condition (Figure 17). 

However, a reverse pattern was observed from the single-cell based analysis. A similar 

pattern between bulk- and single-cell analyses was also observed for the psaF gene. For 

psbA genes, the nitrogen depleted condition had the lowest activity among four growth 

conditions which was only 10% of the control condition. This may be due to the  

insufficient supply of inorganic nitrogen as found by Kolber et al. (1988) that nitrogen 

limitation could lead to substantial decreases in photosynthetic energy conversion 
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efficiency and loss of PS II protein D1 which encoded by psbA gene. For psbC genes, the 

results from the single cell level were consistent with the results from bulk-cell analysis. 

Although the bulk cell results indicated that no phosphate had about two times higher 

activity than the no nitrogen condition for the hsp90 gene, the single cell level results 

indicated that the activities were similar to each other. While the up-regulation of the 

hsp90 gene under the no iron condition at bulk cell level was confirmed by single cell 

level results which indicated that low Fe availability indeed triggered stress on T. 

pseudonana. For the rbcL gene, the results showed that no iron issued no effect on the 

rbcL expression while no nitrogen affected rbcL expression based on both single-cell and 

bulk-cell based analyses, consistent with previous work in marine diatom P. tricornutum 

(Greene, Geider, and Falkowski 1991). 

5.3.6. Principal Components Analysis (PCA) of single cell RT-qPCR data 

With the aid of powerful statistical tools, more intrinsic information can be extracted 

from single-cell based datasets. For instance, besides the independence test based on 

results of response distributions, principle component analysis (PCA) also can be applied 

to analyze the relationship between different growth conditions (Figure 20). PCA can 

provide a simple plot that shows the most important two factors that affect the samples of 

each growth condition. PCA analysis of psaF showed that no nitrogen condition had no 

significant affect on gene expression in single cells when compared with the control 

condition since it was close to the control condition in the figure. For psbA and rbcL, 

PCA results showed they were separated from each other which meant four growth 

conditions were distinguished from each other. These results agreed well with the 

distribution analysis. While for psaA and hsp90 genes, the p-value generated from 



87 
 

Kolmogorov-Smirnov Test suggested that there were no significant differences between 

no iron and control conditions (Figure 19). However, based on the PCA analysis, they 

had a similar score of component 1 but slightly different score of component 2 of 

different nutrient-limited conditions, which indicated that expressions of these two genes 

under nutrient-limited conditions were similar to each other but distinct to the control 

condition. In addition, for psbC, the distribution analysis showed that no iron and control 

conditions were similar to each other but the PCA results showed that expression of psbC 

gene under no iron and control conditions were not controlled in the same way. Although 

PCA analysis cannot determine which factors were the most important two factors, it was 

a good method to visualize the data for larger sample size and to extract the most 

important properties of the whole sample. 
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Figure 20. Principle Component Analysis (PCA) of single-cell based analysis of 

selective genes. 

5.4. Discussion 

The responses of diatoms to various nutrient-limited conditions have been evaluated at 

the population level (Mock et al. 2008; Thamatrakoln et al. 2012). However, as 

planktonic microorganisms, the cell-cell heterogeneity of diatoms in terms of responses 
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to environmental factors could be significant, and have never been documented.  In this 

study, we made the first attempt to measure the expression of selected genes out of model 

diatom T. pseudonana when they were subject to no nitrogen, no phosphate and no iron 

conditions. The results showed that significant heterogeneity was found which shed light 

on potential environmental problems. Opposite expression patterns were found for psaA, 

psaF, psbA and hsp90 genes between single-cell based and bulk-cell based analyses. The 

abnormal cells identified in single cell analysis may be an indicator of potential 

environmental problems and suggest further investigations would be possibly buried 

under the average value of bulk cell population analyses. 

In order to apply T. pseudonana as a sensor by using single cell RT-qPCR, several 

issues need to be addressed. The first is the sensitivity of the sensor which is equivalent 

to single cell RT-qPCR sensitivity. Since the sensitivity of our technology can go down 

to a single cell level, it has the capability to analyze some precious and/or uncultured 

environmental samples.  

The results show that as the copy number of transcripts of a gene decreased, the 

StDev of RT-qPCR technical replicates increased accordingly. To overcome the issue, 

small reaction volumes which increase the local template concentration are preferred. In 

the study, we used 10 µL reaction volumes instead of conventional 20 µL reaction 

volumes for qPCR. Currently, 10 µL was the smallest volume that we could get 

consistent and reliable results in the tube/microtiter plate-based qPCR reaction. In order 

to further decrease the reaction volume, chip-level devices which can decrease the 

volume to several µL (Shi et al. 2011) even pL level (Beer et al. 2007; Kiss et al. 2008; 

Lindström and Andersson-Svahn 2010) will be more attractive. In addition, we also 
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addressed the low starting material issue by increasing the cDNA yield of specific targets 

through adding target-specific primers. Ståhlberg et al. (2004) evaluated 4 different 

primer strategies which were random hexamers, oligo (dT), gene specific primers and 

gene-specific primers mixture on five different genes, and the results showed that gene 

specific primer mixtures had an overall advantage based on the yield and StDev of qPCR 

results of several different genes (Ståhlberg et al. 2004). In order to simplify the whole 

process, considering the reverse primer of qPCR is complementary to the mRNA 

sequence, it may bind to specific mRNA during the cDNA synthesis step which will 

increase the cDNA yield of specific targets, we added the reverse primer directly rather 

than using the specially designed specific primers that are complementary to the mRNA 

sequence as described by Ståhlberg et al. (2004). The results showed that adding target-

specific primers in the cDNA synthesis step could increase the quality and yield of target 

cDNA by about 10 fold on average. 

The second issue is how to interpret RT-qPCR results in a quantitative way so that 

the result can be used as an indicator of environmental stress conditions. The use of 

reference genes is important in order to normalize qPCR results, and much research has 

been done on the selection of reference genes for various bulk-cell based analyses 

(Czechowski et al. 2005; Huggett et al. 2005). However, considering gene expression 

stochasticity in single cells, the reliability of employing these genes for single-cell gene 

expression is still unclear. In this study, we selected and validated the actin gene as an 

internal reference based on its better performance than other candidate genes, and the 

expression heterogeneity of the actin gene was still observed between individual T. 

pseudonana cells.  To fully address the heterogeneity issue, an alternative internal control 
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strategy, such as using a molecule that is artificially incorporated into the sample as an 

RNA spike (Bower et al. 2007; Stephen A Bustin and Nolan 2004; Huggett et al. 2005), 

may be necessary and worth further development. 

 There are still technical challenges for using microbial gene expression at the 

small-number-of-cells level as environmental sensors. For example, the targeted microbe 

is in the mixture with other microbes, yet further manipulation such as cell sorting or 

cultivation will alter gene expression levels.  How to successfully find out the atypical 

gene expression patterns from a few cells among a larger number of background normal 

cells is another big challenge. To overcome this, a feasible approach is to perform high-

throughput single-cell level analysis to the microbiota, then extract the targeted 

information using post processing on the acquired data.  

 Finally, our results demonstrated that with proper selection of gene targets and 

optimization of RT-qPCR conditions, gene expression measurements at single cell 

resolution will allow monitoring of the ocean environmental health, possibly at an early 

stage of potential environmental problems to minimize the cost of environmental 

remediation. However, currently the technology works well only with highly expressed 

genes, which limits the selection of gene targets. In the future, further development and 

optimization of the molecular biology protocol, and integration with a chip-level real-

time PCR device (Shi et al. 2011) will generate a chip level sensor instrument for 

monitoring marine environmental health in a fast and effective way to overcome the 

remaining technical challenges. At the same time, fundamental microbiology questions 

about heterogeneity within an isogenic population will be answered as well.  
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6. ONE-STEP ON-CHIP SINGLE-CELL RT-QPCR 

6.1. Introduction 

Satellite in situ blended ocean chlorophyll records indicate ocean annual primary 

production declined about 6% from 1980’s to 2000’s (Gregg et al. 2003). Without further 

sacrificing the primary production of the ocean, an efficient way to monitor this negative 

perturbation in the ocean at an early stage which takes advantage of the recent 

improvement of technologies is urgently required. 

Currently, there are several different kinds of sensors that can be used to monitor 

the ocean environment. For instance, satellite remote monitoring can provide large-scale 

or even global information (Field et al. 1998; Behrenfeld et al. 2001; Gregg et al. 2003). 

However, the accessibility of this source is limited and the large-scale imaging typically 

has an inherent lack of sensitivity. Electrochemical based sensing is another widely used 

tool (J. Wang 2002). For example, a BOD (biochemical oxygen demand) sensor (Karube 

et al. 1977; Y. R. Li and Chu 1991; Strand and Carlson 1984; Liu and Mattiasson 2002) 

has an immobilized biofilm inside the electrode which detects the BOD in a short time 

which is typically 15-20 mins (BODST) instead of conventional BOD5 which takes five 

days.  The potential problem is the BOD5 can only be derived from BODST under high 

concentration of fast and easily assimilable compounds which is not the case for ocean 

environment. There are also other electrochemical based sensors, such as copper sensors 

(J. Wang et al. 1995), phenolic sensors (J. Wang and Chen 1995) and okadaic acid 

sensors (Campàs and Marty 2007). All of these sensors are target specific, very sensitive 

and able to be minimized (J. Wang 2002). Due to these properties, they are good 

candidates for deployment in ocean. However, there are still challenges that need to be 
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faced such as long-term stability, related baseline drift and hazardous materials required 

for the electrodes (J. Wang 2002). Other than that, the electrochemical based sensors 

normally only target one type/group of substance which decreases the cost-effect of this 

type of sensors. There is also other type of sensor to monitor the environment in situ, 

such as engineered microorganisms (Ripp et al. 2000). Although the process of 

constructing an engineered microorganism requires special expertise and is time 

consuming which limits the application of this method, this method is able to provide the 

information about the biological impacts which are missing in the aforementioned 

sensing methods.  

Here I introduce a new technology on which a novel environmental sensor 

network can be built. This real time in situ monitoring technology will minimize errors 

and costs associated with sample transportation and laboratory analyses (J. Wang 2002), 

will use native inhabitants of the ocean, and will be able to be deployed in the ocean to 

monitor biological impacts in the environment.  

This technology will take advantage of the well known facts that gene expression 

will be altered when the environmental condition changes (Gasch et al. 2000) and 

environmental variations will first change the gene expression before altering the whole 

community (Edward F. DeLong 2009). In order to develop an early warning system, I 

hypothesize that individual cell gene expression analysis provides a richer reference than 

the average of a bulk cell population. Our previously developed inexpensive chip level 

device (Shi et al. 2011) will be combined with tube-based single cell analysis (Shi et al. 

2013). In order to monitor the environment of the ocean, one microbe that can be widely 

found and has broad representation should be chosen as a target. Based on these 
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considerations, diatom T. pseudonana, which belongs to a major group of unicellular 

phytoplankton, is selected as the target microbe (Falkowski et al. 2004; Thamatrakoln et 

al. 2012; Shi et al. 2013).  

6.2. Experiments 

6.2.1. Cell culture 

Thalassiosira pseudonana (CCMP1335) cells which belong to diatoms were obtained 

from the National Center for Marine Algae and Microbiota (NCMA), and were grown in 

f/2 medium at 24 ± 1°C (Guillard 1975; Guillard 1962) under a constant lighting 

condition (30 µmol photons m-2 s-1 irradiance measured using LiCor (Lincoln, NE)). 

Cells were cultured in normal conditions with no iron. Artificial seawater was prepared 

using chemicals of analytical purity and prepared based on the formula of Kester et al. 

(1967). 

6.2.2. Chip fabrication 

The droplet format is based on the thermal cycler used. In this research, the thermal 

cycler used is ABI StepOne Real-Time PCR System (Applied Biosystems, Foster, CA). 

Based on the thermal cycler structure of StepOne Real-Time PCR system, a 48 droplet 

format was applied. The chip fabrication process was the same as described in Section 

4.2.2. 

6.2.3. One Step reverse transcriptase quantitative PCR (RT-qPCR) 

Primers for RT-qPCR were designed using Primer-BLAST. The primer design standard 

can be found in our previous single cell technologies development paper (Gao, Zhang, 

and Meldrum 2011; Shi et al. 2013). RT-qPCR was performed using Express One-Step 

SYBR GreenER Universal Kit (Invitrogen, Carlsbad, CA) on an ABI StepOne Real-Time 
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PCR System (Applied Biosystems, Foster, CA). PCR reactions contained 0.4 µL of each 

primer with a concentration of 4 µM, 2 µL of master mixture, 0.04 µL ROX, 0.04 µL 

SUPERase In, 0.4 µL 5X BSA and 0.08 µL SuperScript III Reverse Transcriptase and 

0.64 µL of DEPC treated water (Ambion, Austin, TX). Reactions without cells served as 

negative controls.  

6.2.4. Single cell isolation 

Single cells were isolated using the micromanipulator as described in Sections 4.2.4. and 

5.2.2. 

6.2.5. Data analysis 

To describe the distribution variation of single-cell gene expression levels among cells, 

nonparametric statistic tests which do not require normal distribution of datasets were 

applied (Siegel 1957). Kolmogorov-Smirnov test was used to analyze the relationship 

between two different growth conditions of RT-qPCR measurements using the OriginPro 

8.1 software (OriginLab Corporation, Northampton, MA).  

6.3. Results 

6.3.1. On chip one step RT-qPCR optimization 

In order to achieve the best performance of the chip, first, three different commercially 

available one-step RT-qPCR kits were compared: Express One-Step SYBR GreenER 

Universal Kit (Invitrogen, Carlsbad, CA), SuperScript III Platinum® One-Step qRT-PCR 

Kit w/ROX (Invitrogen, Carlsbad, CA) and One Step PrimeScrip RT-PCR Kit (Perfect 

Real Time) (Clontech, Mountain View, CA). Series dilutions of purified RNA were used 

to test the performance of each kit. Based on the results of Figure 21, SuperScript III 

Platinum® One-Step qRT-PCR Kit cannot differentiate the difference between negative 
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control and the lowest concentration of RNA. The PrimeScrip RT-PCR Kit had even 

worse performance and cannot differentiate between concentrations smaller than 16 

pg/µL of RNA.   

 

Figure 21. Commercial kits performance comparison. 
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Secondly, cDNA synthesis time was tested. For the tube-based method, the cDNA 

synthesis time is about two hours for single cell reactions. Two hours is too long for 

applying the one-step RT-qPCR technique; hence, the cDNA synthesis time was 

decreased from 2 hours to 40 mins. Two genes were tested at different concentrations of 

purified RNA and both of them showed linear response of different concentrations of 

purified RNA with 40 mins cDNA synthesis time. The results indicated that 40 mins 

cDNA synthesis time was robust for the one-step RT-qPCR reaction (Figure 22). Further 

decreasing the cDNA synthesis time decreased the quality of the qPCR results. 

 

Figure 22. 40 mins cDNA synthesis time test. 
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Thirdly, in order to directly run reactions in droplets without RNA 

extraction/purification, the cell lysing method in the droplet needs to be selected carefully. 

Some methods are compatible with the droplet based format, such as heat lysing (Clark et 

al. 1993; Hirakata et al. 1998) and Triton X-100 surfactant lysing (Werf, Hartmans, and 

Tweel 1995; Ren and Schwartz 2000). I tested different temperatures of cell lysing by 

using heat and found that 49 °C was strong enough to lyse the cell. Two different lysing 

methods are compared in Figure 23. The results show that heat lysing has significant 

advantage over Triton X-100 methods of both genes. The possible reason of bad 

performance of Triton X-100 may be due to the PCR compatibility of this chemical.  

 

Figure 23. Cell lysing methods comparison. (NRTC stands for no reverse transcriptase 
control) 
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6.3.2. Temperature calibration 

To perform RT-qPCR in the designed chip level device, a thermal cycler was needed. A 

customized miniature thermal cycler is the best choice for future sensors which are 

deployed in the ocean, but at this moment, broadening the potential application scope of 

this chip is also important. For general use of this single cell sensitivity chip, any thermal 

cycler can be used. For different thermal cyclers, temperature calibration steps will be 

needed. The process for temperature calibration was inserting a 0.076 mm-diameter K-

type thermocouple (5SC-TT-K-40-36, OMEGA, CT) into the center of a droplet to adjust 

the setting temperatures and corresponding durations of the StepOne machine to achieve 

the required temperatures of the droplets. A thermocouple reader (50 Series II, Fluke, 

WA) was used to read the temperature during thermal cycling. Figure 24 shows the 

temperature profile set on the thermal cycler (black rectangular dots) and the 

compensated temperature profile in the droplets (dots). The heating/cooling rates were 

longer than those for conventional in-tube PCR, but this issue can be solved by using a 

customized thermal cycler. However, with this temperature calibration step, more 

biological laboratories can take advantage of this single cell analysis chip as long as a 

real-time PCR machine with a flat top thermal cycler is available. To further demonstrate 

that this chip can be widely used in conventional biological laboratories, no customized 

signal detection part is applied. The signal detection part is solely from the StepOne real 

time PCR machine. 
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Figure 24. Temperature setting of the thermal cycler. 

6.3.3. Chip performance evaluation 

Before executing the experiments, the performance of the chip needs to be evaluated. 

First, different amounts of purified RNA were loaded on the same chip. The results in 

Figure 25 show clearly that different concentrations of RNA clustered well and only 6 out 

of 12 negative controls showed amplification signals.  Additionally, the signal from the 

amplified negative controls can be differentiated with the 2 pg reactions. The R2 is 0.99 

which further demonstrated good performance of the chip.  
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Figure 25. Standard curve analysis. 
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Other than the standard curve experiment, a good design should have minimized 

variance over the same chip. This was tested by loading different amounts of purified 

RNA on the chip. The results in Figure 26 show that the standard deviation over the chip 

was well controlled. The standard deviation at a 10 pg level was only about 0.3 cycles. 

 

Figure 26. Chip variance test. 

Based on the results from Figure 25 and Figure 26, the chips run robustly. Since 

single-cell resolution is needed, the next question is if single cell analysis can be 

performed on the chip. First, an estimation of total RNA in a single T. pseudonana cell 

needed to be made. Table 7 provides some general information about T. pseudonana. The 

total RNA in a single S. cerevisiae is about 1 pg and in a single mammalian cell is about 

20 pg (Schmid et al. 2010). Based on this information, the estimation of total RNA in T. 

pseudonana should be at the several pg level. Considering the results of the performance 

tests, they were solid demonstrations that single cell resolution can be achieved. 
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Table 7. General size and genome information 

 
S. cerevisiae 

(Schmid et al. 2010) 
Thalassiosira pseudonana 

size 5 µm 5 µm 

Genome size 12 Mb 34 Mb 

Gene number 5,770 11,242 

6.3.4. Single cell gene expression 

Single cell gene expression results are shown in Figure 27. For single cell analysis the Cq 

value is used directly as a representation of the activity of individual cells. No reference 

gene was used since in each droplet there was only one cell which was visually 

confirmed. The results showed that variance between two growth conditions cannot be 

negligible for the genes tested. Single cell reactions with no detected Cq value, Cq value 

larger than the negative control, or wrong melting curve were removed from the data 

analysis to ensure the reliability of analysis. Those reactions with no detected Cq value 

were not necessarily failed and it is highly possible that the transcription number in those 

reactions were between the detection limit of the chip and zero (Ståhlberg, Kubista, and 

Åman 2011). Since it was difficult and time consuming to determine the detection limit 

of an individual gene (Ståhlberg, Kubista, and Åman 2011), those results were removed 

for convenience. All the negative control reactions either were undetected or can be 

differentiated by melting curve analysis. After removing all the unreliable reactions, the 

overall successful reaction rate was over 82%. 
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Figure 27. Box chart of single cell gene expression analysis. 

The genes selected for this research were based on our previous tube-based single 

cell analysis results. One more gene PETC2 was selected to replace the rbcL gene since 

PETC2 gene codes a b6-f complex iron-sulfur subunit (Maiwald et al. 2003) and is more 
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closely related to iron transportation. All of the six genes showed lower expression under 

no Fe conditions except hsp90. Up-regulation of hsp90 indicated that the no iron 

condition caused a stress on the population which results in higher expression. As 

aforementioned, PETC2 codes an iron-sulfur subunit which belongs to a Rieske protein 

(Yan and Cramer 2003). Down regulation of the Rieske-type protein subunit under iron 

limitation condition was reported by Allen et al. (2008) using microarray data which was 

a powerful support of our chip. All single cell results showed larger variance among 

populations and those results were frequently overlooked by population level analysis.  

Further investigation of the single cell results reveal that a bimodal distribution 

can be observed under no iron conditions for psbA (Figure 28). This may suggest that the 

existence of two subpopulations: one with enhanced transcription level and one opposite, 

resulting in a bimodal distribution (Choi et al. 2008; Longo and Hasty 2006; Adam K 

White et al. 2011; Bengtsson et al. 2005). The bimodal gene expression has been well 

documented before. Bengtsson et al. (2005) found a bimodal model (Ko 1992) in mouse 

insulinoma MIN6-cells where one subpopulation has increased activity characterized by a 

high mean value and another subpopulation has a relatively lower mean value. White et 

al. (2011) also observed such distributions when they analyzed the coregulation of miR-

145 and OCT4 in single cells. This expression pattern was not noticed in other genes 

which indicated that the cell may involve different strategies to regulate gene expression.  
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Figure 28. Violin plot of single cell gene expression analysis. 

 Since single cell level analysis revealed distributions among populations, 

statistical tools can be involved to analyze the distribution of each sample. Skewness 
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(Ståhlberg, Kubista, and Åman 2011) is an index that indicates the asymmetry of 

distribution. A distribution with a longer left tail has negative skewness, and the opposite 

has positive skewness. If a sample is highly skewed, more cells with expression level far 

away from the mean value exist which may mean that those so called “outlier” cells are 

functionally important (Hebenstreit 2012). Those outlier cells cannot be detected by 

traditional population level analysis. Kurtosis is another index which represents the 

“peakedness” of a distribution. Sharper and higher peaks will have larger kurtosis and 

vice versa. Larger kurtosis means the samples are more concentrated. Table 8 shows the 

skewness and kurtosis of different samples. 

Table 8. Skewness and Kurtosis 

  psaA psaF psbA psbC hsp90 PETC2 

skewness 

No iron 0.34891 -0.59842 0.00673 0.03252 -0.5463 0.435 

control 0.00618 -0.44573 0.50014 0.16243 -1.5329 -0.531 

kurtosis 

No iron -1.2102 -0.41157 -1.78328 -0.7040 -0.8943 0.75557 

control -0.76336 -1.04537 0.5353 -0.5078 4.03544 0.63393 

The results indicate that psaF and hsp90 under no iron condition and psbA, 

PETC2 under control condition were moderately skewed (skewness within -1 to -0.5 or 

0.5 to 1) (Bulmer 1979), and hsp90 under control condition were highly skewed 

(skewness less than -1 or larger than 1) (Bulmer 1979). These skewed results demonstrate 

the importance of single cell analysis since more outlier cells may be found for those 
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samples and the mean value is less representative of the whole population. For genes 

psaA, psbA, psbC and hsp90, 4 out of 6 kurtoses under control condition had larger 

values indicating relatively concentrated distributions under these conditions. That means 

under no iron conditions those genes had broader distribution and the whole population 

may take advantage of those properties to adapt to the stress condition. No unifying 

model exists to represent all 6 genes expressions at the single cell level, confirming that 

gene expression was regulated by multiple elements. 

A fit test was also performed at the single cell level for all 6 genes under two 

growth conditions (Figure 29). The results showed that a lognormal distribution had a 

good fit for all conditions. This skewed lognormal distribution was consistent with 

previous reported results (Ståhlberg, Kubista, and Aman 2011; Bengtsson et al. 2005; 

Shalek et al. 2013; Ståhlberg, Rusnakova, and Kubista 2013). A significant impact of 

lognormal distribution is that the geometric average becomes more important and more 

representative of the whole population than arithmetic average (Ståhlberg, Rusnakova, 

and Kubista 2013). While the population level analysis can only achieve arithmetic 

average, it again raises the necessity of single cell analysis. 

The advantages of our methods are streamlined processing which minimized 

anthropogenic error and eliminated the possible bias introduced by pre-amplification. The 

chip design is pretty flexible and can be determined based on the thermal cycler and 

signal detection module of an existing qPCR system which allows the chip to be widely 

used by conventional microbiology laboratories. Based on the existing StepOne Real-

Time PCR system, the current throughput was limited to 48 reactions per chip, although 

there is no technical hurdle to increase the throughput significantly with a customized 
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thermal cycler and signal detection module. However, one limitation of the chip is whole 

transcriptome analysis cannot be achieved on the chip. Multiplex qPCR can be used to 

alleviate this problem but still only a limited number of genes can be detected at a time 

due to spectral overlap of classical fluorophores.  
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Figure 29. Lognormal distribution fitting. 
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6.3.5. Power evaluation and sample size estimation 

The power of single cell results can be achieved by using OriginPro 8.1 and the formula 

is: 

Power = Prob(t > t(1-α,ν), ν, λ)  

The results n is sample size, degree of freedom ν = 2(n-1).  

λ � �

�� �⁄
 and δ � |µ��µ
|

�
 

µ� and µ� = mean value of control condition and no iron condition. s = standard 

deviation of the combined samples. The results can be determined based on probability 

table. 

The calculated power for individual genes is: psaA: 69%; psaF: 89%; psbA: 87%; 

psbC: 12%; hsp90: 66%; PETC2: 71%. The power was calculated by a 1-side test due to 

the skewed distribution and at a 0.10 level. The power analysis showed good results 

which demonstrated that the chip performance was strong enough to represent the 

information of the population. The lower power for psbC was because of the small 

variance between two populations. In order to distinguish the variance between two 

populations with small variance, larger sample size is required. Currently, due to some 

technique issues and biological hurdles, only around 20 cells of each condition can be 

achieved.  A detailed discussion is provided in Appendix A. In order to achieve better 

power, larger sample sizes need to be accomplished. The required sample size can be 

evaluated based on the preliminary test of each experiment and it depends on the mean 

value of each population and standard deviation of the combined population. For my 

analysis, in order to achieve 90% power, the sample size for each gene will be: psaA: 42; 
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psaF: 21; psbA: 25; psbC: 6183; hsp90: 44; PETC2: 23. The results were calculated by 

OriginPro 8.1 and the formulas are same as power calculation. The exceptional larger 

sample size for psbC was due to the close mean value of two populations under no iron 

and control conditions. If higher power was needed, larger sample size was needed which 

can be solved by increasing the throughput. Running of multiple chips for each condition 

was not a feasible solution because of RNA preservation and chip to chip variance (see 

Appendix A).  

6.3.6. Comparison with conventional in-tube single-cell qPCR results 

Tube-based single-cell qPCR has been achieved by us before (Shi et al. 2013) and the 

results will be used to compare with the chip-based results. Table 9 lists the results of the 

p-value of two growth conditions from two different methods. The p-value results have 

100% correspondence to each other which indicated the power and reliability of the chip-

based experiment. 

Table 9. p-value of two different methods at 95% confidence level 

 

tube-based method chip based method 

psaA 0.07 0.37 

psaF 0.03 0.03 

psbA 0.02 0.02 

psbC 0.29 0.98 

hsp90 0.37 0.08 
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 Other than the p-value, Pearson correlation analysis (Lee Rodgers and 

Nicewander 1988) which calculates the linear correlation between two samples was also 

applied to the chip-based results. The results are shown in Tables 10a and b. 

Table 10a. Pearson correlation analysis of no iron condition at the 0.10 level 

 psaA psaF psbA psbC hsp90 PETC2 

psaA 1      

psaF -0.29735 1     

psbA 0.01336 -0.0553 1    

psbC 0.17019 0.3241 0.30327 1   

hsp90 0.46153* -0.21957 -0.03133 -0.20126 1  

PETC2 -0.12301 0.30403 -0.10091 -0.19848 0.18193 1 
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Table 10b. Pearson correlation analysis of control condition at the 0.10 level 

 psaA psaF psbA psbC hsp90 PETC2 

psaA 1      

psaF 0.24948 1     

psbA 0.21327 0.12527 1    

psbC 0.01059 0.4479 0.0488 1   

hsp90 0.6084* 0.08453 0.06102 -0.12517 1  

PETC2 -0.03567 0.34246 -0.48679* 0.32337 -0.19856 1 

* significant correlation 

The correlation analysis showed that the significant negative correlation under 

control condition between psbA and PETC2 became less significant under no iron 

condition while the positive correlation between psaA and hsp90 was maintained under 

both conditions. Compared with previous tube-based results (Tables 2 and 5), there was 

no correlation between those two methods. Considering that Pearson correlation analysis 

is a statistical analysis tool, the results may influenced by a lot of factors, such as sample 

size, data normalization method used and so on. The inconsistency of those two results 

may be reasonable. Although the single cell analysis is becoming more prevalent, how to 

interpret the results in a reliable and accurate way is far away from mature, so more effort 
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needs to be put on this topic. This work also provides some possible tools that can be 

used to analyze single cell results. 
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7. CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

The major findings and contributions of my thesis are: 

1. The deep sea microbial community structure was analyzed by using culture-free 

biological tools including clone library construction and phylogenetic analysis. A 

surface water microorganism, T. pseudonana, was found in the deep ocean with 

moderate activity which was confirmed by RT-qPCR analysis of the ratio of 23S 

rRNA to 23S rDNA abundance. My assertion is that these photoautotrophic 

microbes are natural habitants at this depth. If these photoautotrophic 

microorganisms were brought down by convective forces or microbial 

assemblages associated with large sinking particles, other photoautotrophic 

microorganisms extant in surface water should also be observed in the samples. 

However, only two such species were found. These results provide evidence to 

indicate that previous information about microorganism distribution in the ocean 

may not be correct. Because of the natural presence of T. pseudonana in diverse 

marine environments, it is proposed as a candidate organism to serve as a 

bioreporter in monitoring environmental perturbations in the ocean.  

2. For the first time, single cell gene expression for T. pseudonana was achieved by 

tube-based two-step RT-qPCR and a lognormal distribution of single-cell gene 

expression was observed. The lognormal distribution indicates that the geometric 

average becomes more important and more representative of the whole population 

than the arithmetic average. This highly skewed distribution again emphasizes the 

necessity of single cell gene expression analysis. The single cell analysis also 
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helped to elucidate the stress response of T. pseudonana to different nutrient-

limited conditions. Those different responses suggest a solid biological foundation 

for using single cell gene expression as a detection tool for environmental 

perturbation.  

3. In order to achieve in situ monitoring, a chip level device was built. This chip 

consisted of surface-adhesive droplets covered by oil to prevent evaporation and 

cross contamination during thermal cycling. The chip was built with materials 

which are commonly available to conventional laboratories. In particular, the chip 

production process does not require any specialty in microfabrication. More 

importantly, no off-chip work, such as cell lysing or RNA/DNA purification, was 

needed for the chip and it could achieve cell-to-data analysis which minimizes 

user error. With this chip, single cell one-step RT-qPCR analysis was achieved for 

T. pseudonana. The overall success rate of the on-chip reactions at the single cell 

level was about 85%. The results of the chip-level single cell analysis were 

confirmed by previous tube-based two-step single cell analysis results. This chip 

not only makes it possible to develop a future deployable sensor system in the 

ocean but it also extends single cell analysis methods to conventional biological 

and environmental laboratories which commonly lack facilities for or expertise in 

microfabrication.  

4. Although single cell gene expression analysis has been achieved, how to interpret 

single cell RT-qPCR results in a quantitative and effective way is far from mature. 

My work tried to use some non-parametric statistical tools to analyze expression 

data. Such tools may provide more accurate results compared with parametric 
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statistical tools which are based on normal distribution. The only drawback of 

non-parametric statistical tools is sample size. Non-parametric statistical tools 

require larger sample sizes than parametric statistical tools to achieve the same 

power.    

7.2. Future work 

Although my research built a solid foundation for developing a deployable environmental 

sensing device, there are still other problems that need to be solved before application in 

the field. For instance, sampling is a challenging step for a future deployable device. 

Since environmental samples contain a large number of other species, a sample sorting 

step will be needed to reject non-target species. After sorting, the concentration of the 

targeted species will increase and the specificity of the single cell analyses will depend on 

the specific primer for RT-qPCR. In addition to this, the current version of chip cannot 

work well in the ocean environment, since oil may spill out due to ocean waves. Sealing 

of the whole chip in a chamber may be necessary to prevent the oil spill.  

As previously mentioned, non-parametric tools require larger sample sizes in 

order to analyze the results in a reliable way. A larger sample size requires a larger 

throughput. Currently, due to some technical hurdles and biological issues, including 

RNA preservation difficulty and chip-to-chip variance, throughput at the single cell level 

was limited to 48 reactions per chip in this work. Detailed information can be found in 

Appendix A. Because of the throughput limitation, currently the power of single cell 

analysis did not reach more than 90%. But, with those results, I could make better 

estimation about the sample size for future applications. Based on the sample size test 

results, most of the genes only required a few more samples to reach 90% power. The 
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results demonstrated that despite the sample size limitations, the chip still performed with 

acceptable power. To achieve more reliable results, for example over 95% power, around 

2-3 times higher sample size which equivalent to 30-60 cells are needed. In order to 

overcome those technical hurdles to reach larger sample size, a customized thermal 

cycler and signal detection module needs to be developed. The thermal cycler should be a 

miniature system and energy-efficient so it can be directly adopted by the deployable 

sensor system. For the signal detection module, the sensitivity is the most important 

factor. In order to achieve single cell resolution, high sensitivity is required. All the 

customized parts are expected to enable higher throughput which will significantly 

improve the power of the chip. However, increasing the throughput is not necessarily 

equivalent to increasing the chip size. The throughput of the chip can be increased by 

decreasing the reaction volume and maintaining the size of the chip. Decreasing the 

reaction volume may cause potential issues such as PCR inhibition since no purification 

step was used in this work. Tests will need to be performed to evaluate the most suitable 

reaction volume. However, with higher throughput, more reliable single cell level gene 

expression data can be generated and provide better support for environmental 

monitoring. 

   



120 
 

REFERENCES 

Abdel-Ghany, Salah E, Hong Ye, Gulnara F Garifullina, Lihong Zhang, Elizabeth A H 
Pilon-Smits, and Marinus Pilon. 2005. “Iron-sulfur cluster biogenesis in chloroplasts. 
involvement of the scaffold protein CpIscA.” Plant Physiology 138 (1): 161–172.  

Alldredge, Alice L., and Yehuda Cohen. 1987. “Can microscale chemical patches persist 
in the sea? Microelectrode study of marine snow, fecal pellets.” Science 235 (4789): 
689–691.  

Allen, Andrew E., Julie LaRoche, Uma Maheswari, Markus Lommer, Nicolas Schauer, 
Pascal J. Lopez, Giovanni Finazzi, Alisdair R. Fernie, and Chris Bowler. 2008. 
“Whole-cell response of the pennate diatom Phaeodactylum Tricornutum to iron 
starvation.” Proceedings of the National Academy of Sciences 105 (30): 10438 –
10443.  

Allen, Eric E., Gene W. Tyson, Rachel J. Whitaker, John C. Detter, Paul M. Richardson, 
and Jillian F. Banfield. 2007. “Genome dynamics in a natural archaeal population.” 
Proceedings of the National Academy of Sciences 104 (6): 1883–1888.  

Altindal, Tuba, Suddhashil Chattopadhyay, and Xiao-Lun Wu. 2011. “Bacterial 
chemotaxis in an optical trap.” PloS One 6 (4): e18231.  

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng 
Zhang, Webb Miller, and David J. Lipman. 1997. “Gapped BLAST and PSI-BLAST: 
a new generation of protein database search programs.” Nucleic Acids Research 25 
(17): 3389–3402.  

Amann, R I, W Ludwig, and K H Schleifer. 1995. “Phylogenetic identification and in situ 
detection of individual microbial cells without cultivation.” Microbiological Reviews 
59 (1): 143–169. 

Anis, Yasser, Mark Holl, and Deirdre Meldrum. 2010. “Automated selection and 
placement of single cells using vision-based feedback control.” IEEE Transactions on 
Automation Science and Engineering 7 (3): 598–606.  

Anis, Yasser, Jeffrey Houkal, Mark Holl, Roger Johnson, and Deirdre Meldrum. 2011. 
“Diaphragm pico-liter pump for single-cell manipulation.” Biomedical Microdevices 
13 (4): 651–659.  

Aoi, Yoshiteru. 2002. “In situ identification of microorganisms in biofilm communities.” 
Journal of Bioscience and Bioengineering 94 (6): 552–556. 

Armbrust, E. Virginia, John A. Berges, Chris Bowler, Beverley R. Green, Diego 
Martinez, Nicholas H. Putnam, Shiguo Zhou, et al. 2004. “The genome of the diatom 



121 
 

Thalassiosira Pseudonana: Ecology, evolution, and metabolism.” Science 306 (5693): 
79–86.  

Arumugam, Prabhu U, Hua Chen, Alan M Cassell, and Jun Li. 2007. “Dielectrophoretic 
trapping of single bacteria at carbon nanofiber nanoelectrode arrays.” The Journal of 
Physical Chemistry. A 111 (49): 12772–12777.  

Ashida, Naoaki, Satoshi Ishii, Sadakazu Hayano, Kanako Tago, Takashi Tsuji, Yoshitaka 
Yoshimura, Shigeto Otsuka, and Keishi Senoo. 2010. “Isolation of functional single 
cells from environments using a micromanipulator: Application to study denitrifying 
bacteria.” Applied Microbiology and Biotechnology 85 (4): 1211–1217.  

Ashkin, A, and J M Dziedzic. 1987. “Optical trapping and manipulation of viruses and 
bacteria.” Science 235 (4795): 1517–1520. 

Ashkin, A, J M Dziedzic, and T Yamane. 1987. “Optical trapping and manipulation of 
single cells using infrared laser beams.” Nature 330 (6150): 769–771.  

Babendure, Jeremy R, Stephen R Adams, and Roger Y Tsien. 2003. “Aptamers switch on 
fluorescence of triphenylmethane dyes.” Journal of the American Chemical Society 
125 (48): 14716–14717.  

Banerjee, B, S Balasubramanian, G Ananthakrishna, T V Ramakrishnan, and G V 
Shivashankar. 2004. “Tracking operator state fluctuations in gene expression in single 
cells.” Biophysical Journal 86 (5): 3052–3059.  

Baptista, M, P Rodrigues, F Depardieu, P Courvalin, and M Arthur. 1999. “Single-cell 
analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of 
a VanB-type Enterococcus Faecalis.” Molecular Microbiology 32 (1): 17–28. 

Becskei, Attila, Benjamin B Kaufmann, and Alexander van Oudenaarden. 2005. 
“Contributions of low molecule number and chromosomal positioning to stochastic 
gene expression.” Nature Genetics 37 (9): 937–944.  

Beer, N Reginald, Benjamin J Hindson, Elizabeth K Wheeler, Sara B Hall, Klint A Rose, 
Ian M Kennedy, and Bill W Colston. 2007. “On-chip, real-time, single-copy 
polymerase chain reaction in picoliter droplets.” Analytical Chemistry 79 (22): 8471–
8475.  

Behrenfeld, Michael J., James T. Randerson, Charles R. McClain, Gene C. Feldman, 
Sietse O. Los, Compton J. Tucker, Paul G. Falkowski, et al. 2001. “Biospheric 
primary production during an ENSO transition.” Science 291 (5513): 2594–2597.  

Bengtsson, Martin, Martin Hemberg, Patrik Rorsman, and Anders Ståhlberg. 2008. 
“Quantification of mRNA in single cells and modeling of RT-qPCR induced noise.” 
Bmc Molecular Biology 9.  



122 
 

Bengtsson, Martin, Anders Ståhlberg, Patrik Rorsman, and Mikael Kubista. 2005. “Gene 
expression profiling in single cells from the pancreatic islets of langerhans reveals 
lognormal distribution of mRNA Levels.” Genome Research 15 (10): 1388–1392.  

Bennett, Joseph R., Brian F. Cumming, Brian K. Ginn, and John P. Smol. 2010. 
“Broad‐scale environmental response and niche conservatism in lacustrine diatom 
communities.” Global Ecology and Biogeography 19 (5): 724–732.  

Bertrand, E, P Chartrand, M Schaefer, S M Shenoy, R H Singer, and R M Long. 1998. 
“Localization of ASH1 mRNA particles in living yeast.” Molecular Cell 2 (4): 437–
445. 

Blake, W. J., M. Kaern, C. R. Cantor, and J. J. Collins. 2003. “Noise in eukaryotic gene 
expression.” Nature 422 (6932): 633–637.  

Block, S M, D F Blair, and H C Berg. 1989. “Compliance of bacterial flagella measured 
with optical tweezers.” Nature 338 (6215): 514–518. 

Boedicker, JQ, L Li, TR Kline, and RF Ismagilov. 2008. “Detecting bacteria and 
determining their susceptibility to antibiotics by stochastic confinement in nanoliter 
droplets using plug-based microfluidics.” Lab Chip 8 (8): 1265–1272. 

Borland, Laura M, Sumith Kottegoda, K Scott Phillips, and Nancy L Allbritton. 2008. 
“Chemical analysis of single cells.” Annual Review of Analytical Chemistry (Palo 
Alto, Calif.) 1: 191–227.  

Bower, Neil Ivan, Ralf Joachim Moser, Jonathan Robert Hill, and Sigrid Arabella 
Lehnert. 2007. “Universal reference method for real-time PCR gene expression 
analysis of preimplantation embryos.” BioTechniques 42 (2): 199–206. 

Bowler, Chris, Andrew E. Allen, Jonathan H. Badger, Jane Grimwood, Kamel Jabbari, 
Alan Kuo, Uma Maheswari, et al. 2008. “The Phaeodactylum genome reveals the 
evolutionary history of diatom genomes.” Nature 456 (7219): 239–244.  

Boyd, P W, T Jickells, C S Law, S Blain, E A Boyle, K O Buesseler, K H Coale, et al. 
2007. “Mesoscale iron enrichment experiments 1993-2005: Synthesis and future 
directions.” Science 315 (5812): 612–617.  

Brady, G, and N N Iscove. 1993. “Construction of cDNA libraries from single cells.” 
Methods in Enzymology 225: 611–623. 

Brehm-Stecher, Byron F, and Eric A Johnson. 2004. “Single-cell microbiology: Tools, 
technologies, and applications.” Microbiology and Molecular Biology Reviews: 
MMBR 68 (3): 538–559.  



123 
 

Brouzes, Eric, Martina Medkova, Neal Savenelli, Dave Marran, Mariusz Twardowski, J. 
Brian Hutchison, Jonathan M. Rothberg, Darren R. Link, Norbert Perrimon, and 
Michael L. Samuels. 2009. “Droplet microfluidic technology for single-cell high-
throughput screening.” Proceedings of the National Academy of Sciences 106 (34): 
14195–14200.  

Bucciarelli, Eva, and William G. Sunda. 2003. “Influence of CO2, nitrate, phosphate, and 
silicate limitation on intracellular dimethylsulfoniopropionate in batch cultures of the 
coastal diatom Thalassiosira Pseudonana.” Limnology and Oceanography 48 (6): 
2256–2265. 

Bulmer, M. G. 1979. Principles of Statistics. Courier Dover Publications. 

Bustin, S A. 2002. “Quantification of mRNA using real-time reverse transcription PCR 
(RT-PCR): Trends and problems.” Journal of Molecular Endocrinology 29 (1): 23–
39. 

Bustin, Stephen A, Vladimir Benes, Jeremy A Garson, Jan Hellemans, Jim Huggett, 
Mikael Kubista, Reinhold Mueller, et al. 2009. “The MIQE guidelines: Minimum 
information for publication of quantitative real-time PCR experiments.” Clinical 
Chemistry 55 (4): 611–622.  

Bustin, Stephen A, and Tania Nolan. 2004. “Pitfalls of quantitative real-time reverse-
transcription polymerase chain reaction.” Journal of Biomolecular Techniques: JBT 
15 (3): 155–166. 

Button, D K, F Schut, P Quang, R Martin, and B R Robertson. 1993. “Viability and 
isolation of marine bacteria by dilution culture: Theory, procedures, and initial 
results.” Applied and Environmental Microbiology 59 (3): 881–891. 

Calapez, Alexandre, Henrique M Pereira, Angelo Calado, José Braga, José Rino, Célia 
Carvalho, João Paulo Tavanez, Elmar Wahle, Agostinho C Rosa, and Maria Carmo-
Fonseca. 2002. “The intranuclear mobility of messenger RNA binding proteins is 
ATP dependent and temperature sensitive.” The Journal of Cell Biology 159 (5): 
795–805.  

Campàs, Mònica, and Jean-Louis Marty. 2007. “Enzyme sensor for the electrochemical 
detection of the marine toxin okadaic acid.” Analytica Chimica Acta 605 (1): 87–93.  

Cardullo, R A, S Agrawal, C Flores, P C Zamecnik, and D E Wolf. 1988. “Detection of 
nucleic acid hybridization by nonradiative fluorescence resonance energy transfer.” 
Proceedings of the National Academy of Sciences of the United States of America 85 
(23): 8790–8794. 

Carlo, Dino Di, and Luke P. Lee. 2006. “Dynamic single-cell analysis for quantitative 
biology.” Analytical Chemistry 78 (23): 7918–7925.  



124 
 

Carmon, G, and M Feingold. 2011. “Rotation of single bacterial cells relative to the 
optical axis using optical tweezers.” Optics Letters 36 (1): 40–42. 

Cattolico, Rose A., Michael A. Jacobs, Yang Zhou, Jean Chang, Melinda Duplessis, 
Terry Lybrand, John McKay, Han C. Ong, Elizabeth Sims, and Gabrielle Rocap. 
2008. “Chloroplast genome sequencing analysis of Heterosigma Akashiwo CCMP452 
(West Atlantic) and NIES293 (West Pacific) strains.” BMC Genomics 9 (1): 211.  

Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. “Green 
fluorescent protein as a marker for gene expression.” Science 263 (5148): 802–805.  

Chao, Shih-hui, Robert Carlson, and Deirdre R Meldrum. 2007. “Rapid fabrication of 
microchannels using microscale plasma activated templating (microPLAT) generated 
water molds.” Lab on a Chip 7 (5): 641–643.  

Charette, Matthew A., and Walter H. F. Smith. 2010. “The volume of earth’s ocean.” 
Oceanography 23 (2): 112–114. 

Charlson, Robert J., James E. Lovelock, Meinrat O. Andreae, and Stephen G. Warren. 
1987. “Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.” 
Nature 326 (6114): 655–661.  

Choi, Paul J., Long Cai, Kirsten Frieda, and X. Sunney Xie. 2008. “A stochastic single-
molecule event triggers phenotype switching of a bacterial cell.” Science 322 (5900): 
442–446.  

Clark, N. C., R. C. Cooksey, B. C. Hill, J. M. Swenson, and F. C. Tenover. 1993. 
“Characterization of glycopeptide-resistant enterococci from U.S. hospitals.” 
Antimicrobial Agents and Chemotherapy 37 (11): 2311–2317.  

Cole, J R, B Chai, R J Farris, Q Wang, S A Kulam, D M McGarrell, G M Garrity, and J 
M Tiedje. 2005. “The ribosomal database project (RDP-II): Sequences and tools for 
high-throughput rRNA analysis.” Nucleic Acids Research 33 (Database issue): D294–
296.  

Colman-Lerner, Alejandro, Andrew Gordon, Eduard Serra, Tina Chin, Orna Resnekov, 
Drew Endy, C Gustavo Pesce, and Roger Brent. 2005. “Regulated cell-to-cell 
variation in a cell-fate decision system.” Nature 437 (7059): 699–706.  

Czechowski, Tomasz, Mark Stitt, Thomas Altmann, Michael K Udvardi, and Wolf-
Rüdiger Scheible. 2005. “Genome-wide identification and testing of superior 
reference genes for transcript normalization in Arabidopsis.” Plant Physiology 139 
(1): 5–17.  

Daigle, Nathalie, and Jan Ellenberg. 2007. “LambdaN-GFP: An RNA reporter system for 
live-cell imaging.” Nature Methods 4 (8): 633–636.  



125 
 

DeLong, E. F. 1992. “Archaea in coastal marine environments.” Proceedings of the 
National Academy of Sciences 89 (12): 5685–5689.  

DeLong, Edward F. 2009. “The microbial ocean from genomes to biomes.” Nature 459 
(7244): 200–206.  

DeLong, Edward F., Christina M. Preston, Tracy Mincer, Virginia Rich, Steven J. Hallam, 
Niels-Ulrik Frigaard, Asuncion Martinez, et al. 2006. “Community genomics among 
stratified microbial assemblages in the ocean’s interior.” Science 311 (5760): 496–
503.  

Di Carlo, Dino, Liz Y Wu, and Luke P Lee. 2006. “Dynamic single cell culture array.” 
Lab on a Chip 6 (11): 1445–1449. 

Diehl, Frank, Meng Li, Yiping He, Kenneth W Kinzler, Bert Vogelstein, and Devin 
Dressman. 2006. “BEAMing: single-molecule PCR on microparticles in water-in-oil 
emulsions.” Nature Methods 3 (7): 551–559.  

Dixon, A K, P J Richardson, R D Pinnock, and K Lee. 2000. “Gene-expression analysis 
at the single-cell level.” Trends in Pharmacological Sciences 21 (2): 65–70. 

Doney, Scott C. 2010. “The growing human footprint on coastal and open-ocean 
biogeochemistry.” Science 328 (5985): 1512–1516.  

Dore, John E., Roger Lukas, Daniel W. Sadler, and David M. Karl. 2003. “Climate-
driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.” 
Nature 424 (6950): 754–757.  

Dorfman, Kevin D, Max Chabert, Jean-Hugues Codarbox, Gilles Rousseau, Patricia de 
Cremoux, and Jean-Louis Viovy. 2005. “Contamination-free continuous flow 
microfluidic polymerase chain reaction for quantitative and clinical applications.” 
Analytical Chemistry 77 (11): 3700–3704.  

Elowitz, M. B., A. J. Levine, E. D. Siggia, and P. S. Swain. 2002. “Stochastic gene 
expression in a single cell.” Science 297 (5584): 1183–1186.  

Enger, Jonas, Mattias Goksör, Kerstin Ramser, Petter Hagberg, and Dag Hanstorp. 2004. 
“Optical tweezers applied to a microfluidic system.” Lab on a Chip 4 (3): 196.  

Eppley, Richard W., and Bruce J. Peterson. 1979. “Particulate organic matter flux and 
planktonic new production in the deep ocean.” Nature 282 (5740): 677–680. 

Eun, Ye-Jin, Andrew S Utada, Matthew F Copeland, Shoji Takeuchi, and Douglas B 
Weibel. 2011. “Encapsulating bacteria in agarose microparticles using microfluidics 
for high-throughput cell analysis and isolation.” ACS Chemical Biology 6 (3): 260–
266.  



126 
 

Falkowski, Paul G, Miriam E Katz, Andrew H Knoll, Antonietta Quigg, John A Raven, 
Oscar Schofield, and F J R Taylor. 2004. “The evolution of modern eukaryotic 
phytoplankton.” Science 305 (5682): 354–360.  

Field, Christopher B., Michael J. Behrenfeld, James T. Randerson, and Paul Falkowski. 
1998. “Primary production of the biosphere: Integrating terrestrial and oceanic 
components.” Science 281 (5374): 237–240.  

Fu, A Y, C Spence, A Scherer, F H Arnold, and S R Quake. 1999. “A microfabricated 
fluorescence-activated cell sorter.” Nature Biotechnology 17 (11): 1109–1111.  

Fuchs, P, W Weichel, S Dübel, F Breitling, and M Little. 1996. “Separation of E. Coli 
expressing functional cell-wall bound antibody fragments by FACS.” 
Immunotechnology: An International Journal of Immunological Engineering 2 (2): 
97–102. 

Furutani, Shunsuke, Hidenori Nagai, Yuzuru Takamura, and Izumi Kubo. 2010. 
“Compact Disk (CD)-shaped device for single cell isolation and PCR of a specific 
gene in the isolated cell.” Analytical and Bioanalytical Chemistry 398 (7-8): 2997–
3004.  

Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. 
Seitzinger, G. P. Asner, et al. 2004. “Nitrogen cycles: Past, present, and future.” 
Biogeochemistry 70 (2): 153–226.  

Gao, Weimin, Xu Shi, Jieying Wu, Yuguang Jin, Weiwen Zhang, and Deirdre R 
Meldrum. 2011. “Phylogenetic and gene expression analysis of cyanobacteria and 
diatoms in the twilight waters of the temperate Northeast Pacific Ocean.” Microbial 
Ecology 62 (4):765-775.  

Gao, Weimin, Weiwen Zhang, and Deirdre R Meldrum. 2011. “RT-qPCR based 
quantitative analysis of gene expression in single bacterial cells.” Journal of 
Microbiological Methods 85 (3) (June): 221–227.  

Gasch, Audrey P., Paul T. Spellman, Camilla M. Kao, Orna Carmel-Harel, Michael B. 
Eisen, Gisela Storz, David Botstein, and Patrick O. Brown. 2000. “Genomic 
expression programs in the response of yeast cells to environmental changes.” 
Molecular Biology of the Cell 11 (12): 4241–4257.  

Gill, Ryan T., Eva Katsoulakis, William Schmitt, Gaspar Taroncher-Oldenburg, Jatin 
Misra, and Gregory Stephanopoulos. 2002. “Genome-wide dynamic transcriptional 
profiling of the light-to-dark transition in Synechocystis Sp. Strain PCC 6803.” 
Journal of Bacteriology 184 (13): 3671–3681.  



127 
 

Giovannoni, Stephen J., Theresa B. Britschgi, Craig L. Moyer, and Katharine G. Field. 
1990. “Genetic diversity in Sargasso sea bacterioplankton.” Nature 345 (6270): 60–
63.  

Giovannoni, Stephen, and Ulrich Stingl. 2007. “The importance of culturing 
bacterioplankton in the ‘Omics’ age.” Nature Reviews Microbiology 5 (10): 820–826.  

Glanzer, J G, and J H Eberwine. 2004. “Expression profiling of small cellular samples in 
cancer: Less is more.” British Journal of Cancer 90 (6): 1111–1114.  

Goidin, D, A Mamessier, M J Staquet, D Schmitt, and O Berthier-Vergnes. 2001. 
“Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and 
beta-actin genes as internal standard for quantitative comparison of mRNA levels in 
invasive and noninvasive human melanoma cell subpopulations.” Analytical 
Biochemistry 295 (1): 17–21.  

Golding, Ido, and Edward C Cox. 2004. “RNA dynamics in live Escherichia Coli cells.” 
Proceedings of the National Academy of Sciences of the United States of America 101 
(31): 11310–11315.  

Golding, Ido, Johan Paulsson, Scott M Zawilski, and Edward C Cox. 2005. “Real-time 
kinetics of gene activity in individual bacteria.” Cell 123 (6): 1025–1036.  

Grate, D, and C Wilson. 1999. “Laser-mediated, site-specific inactivation of RNA 
transcripts.” Proceedings of the National Academy of Sciences of the United States of 
America 96 (11): 6131–6136. 

Greene, Richard M., Richard J. Geider, and Paul G. Falkowski. 1991. “Effect of iron 
limitation on photosynthesis in a marine diatom.” Limnology and Oceanography 36 
(8): 1772–1782. 

Gregg, Watson W., Margarita E. Conkright, Paul Ginoux, John E. O’Reilly, and Nancy 
W. Casey. 2003. “Ocean primary production and climate: Global decadal changes.” 
Geophysical Research Letters 30 (15): 1809–1812.  

Guillard, R. R. L. 1962. “Studies of marine planktonic diatoms.I.Cyclotella Nana Hustedt 
and Detonula Confervacea Cleve.” Can.J.Microbiol. 8: 229–239. 

Guillard, R. R. L. 1975. “Culture of phytoplankton for feeding marine invertebrates.” 
Culture of Marine Invertebrates: 29–60. 

Guo, Mira T, Assaf Rotem, John A Heyman, and David A Weitz. 2012. “Droplet 
microfluidics for high-throughput biological assays.” Lab on a Chip 12 (12): 2146–
2155.  



128 
 

Hahn, S, X Y Zhong, C Troeger, R Burgemeister, K Gloning, and W Holzgreve. 2000. 
“Current applications of single-cell PCR.” Cellular and Molecular Life Sciences: 
CMLS 57 (1): 96–105. 

Hallam, Steven J., Konstantinos T. Konstantinidis, Nik Putnam, Christa Schleper, Yoh-
ichi Watanabe, Junichi Sugahara, Christina Preston, José de la Torre, Paul M. 
Richardson, and Edward F. DeLong. 2006. “Genomic analysis of the uncultivated 
marine crenarchaeote Cenarchaeum Symbiosum.” Proceedings of the National 
Academy of Sciences 103 (48): 18296–18301.  

Hebenstreit, Daniel. 2012. “Methods, challenges and potentials of single cell RNA-seq.” 
Biology 1 (3): 658–667.  

Heid, C A, J Stevens, K J Livak, and P M Williams. 1996. “Real time quantitative PCR.” 
Genome Research 6 (10): 986–994. 

Hein, Mette, and Kaj Sand-Jensen. 1997. “CO2 increases oceanic primary production.” 
Nature 388 (6642): 526–527.  

Hirakata, Yoichi, Koichi Izumikawa, Toshiyuki Yamaguchi, Hiromu Takemura, Hironori 
Tanaka, Ryoji Yoshida, Junichi Matsuda, et al. 1998. “Rapid detection and evaluation 
of clinical characteristics of emerging multiple-drug-resistant Gram-negative rods 
Carrying the Metallo-β-Lactamase Genebla IMP.” Antimicrobial Agents and 
Chemotherapy 42 (8): 2006–2011. 

Hockin, Nicola Louise, Thomas Mock, Francis Mulholland, Stanislav Kopriva, and Gill 
Malin. 2012. “The response of diatom central carbon metabolism to nitrogen 
starvation is different from that of green algae and higher Plants.” Plant Physiology 
158 (1): 299–312.  

Hodson, R E, W A Dustman, R P Garg, and M A Moran. 1995. “In situ PCR for 
visualization of microscale distribution of specific genes and gene products in 
prokaryotic communities.” Applied and Environmental Microbiology 61 (11): 4074–
4082. 

Höss, M, M Kohn, S Pääbo, F Knauer, and W Schröder. 1992. “Excrement analysis by 
PCR.” Nature 359 (6392): 199–199. 

Höss, M, and S Pääbo. 1993. “DNA extraction from pleistocene bones by a silica-based 
purification method.” Nucleic Acids Research 21 (16): 3913–3914. 

Huang, Bo, Hongkai Wu, Devaki Bhaya, Arthur Grossman, Sebastien Granier, Brian K 
Kobilka, and Richard N Zare. 2007. “Counting low-copy number proteins in a 
singlecell.” Science 315 (5808): 81–84.  



129 
 

Huggett, J, K Dheda, S Bustin, and A Zumla. 2005. “Real-time RT-PCR normalisation; 
Strategies and considerations.” Genes and Immunity 6 (4): 279–284.  

Hwang, Chiachi, Weimin Wu, Terry J. Gentry, Jack Carley, Gail A. Corbin, Sue L. 
Carroll, David B. Watson, et al. 2009. “Bacterial community succession during in situ 
uranium bioremediation: Spatial similarities along controlled flow paths.” The ISME 
Journal 3 (1): 47–64.  

Ikeda, Tsutomu, Fumikazu Sano, Atsushi Yamaguchi, and Takashi Matsuishi. 2007. 
“RNA : DNA ratios of calanoid copepods from the epipelagic through abyssopelagic 
zones of the North Pacific Ocean.” Aquatic Biology 1 (2): 99–108.  

Iscove, Norman N, Mary Barbara, Marie Gu, Meredith Gibson, Carolyn Modi, and Neil 
Winegarden. 2002. “Representation is faithfully preserved in global cDNA amplified 
exponentially from sub-picogram quantities of mRNA.” Nature Biotechnology 20 (9): 
940–943.  

Johnson, Kenneth S., R.Michael Gordon, and Kenneth H. Coale. 1997. “What controls 
dissolved iron concentrations in the world ocean?” Marine Chemistry 57 (3–4): 137–
161.  

Kang, Yun, Michael H Norris, Jan Zarzycki-Siek, William C Nierman, Stuart P Donachie, 
and Tung T Hoang. 2011. “Transcript amplification from single bacterium for 
transcriptome analysis.” Genome Research 21 (6): 925–935. 

Karube, Isao, Tadashi Matsunaga, Satoshi Mitsuda, and Shuichi Suzuki. 1977. 
“Microbial electrode BOD Sensors.” Biotechnology and Bioengineering 19 (10): 
1535–1547.  

Kelly, C D, and O Rahn. 1932. “The growth rate of individual bacterial cells.” Journal of 
Bacteriology 23 (2): 147–153. 

Kerppola, Tom K. 2006. “Visualization of molecular interactions by fluorescence 
complementation.” Nature Reviews. Molecular Cell Biology 7 (6): 449–456.  

Kester, Dana R., Iver W. Duedall, Donald N. Connors, and Ricardo M. Pytkowicz. 1967. 
“Preparation of artificial seawater.” Limnology and Oceanography 12 (1): 176–179. 

Kim, Bo-Ra, Hee-Young Nam, Soo-Un Kim, Su-Il Kim, and Yung-Jin Chang. 2003. 
“Normalization of reverse transcription quantitative-PCR with housekeeping genes in 
rice.” Biotechnology Letters 25 (21): 1869–1872. 

Kiss, Margaret Macris, Lori Ortoleva-Donnelly, N Reginald Beer, Jason Warner, 
Christopher G Bailey, Bill W Colston, Jonathon M Rothberg, Darren R Link, and 
John H Leamon. 2008. “High-throughput quantitative polymerase chain reaction in 
picoliter droplets.” Analytical Chemistry 80 (23): 8975–8981. 



130 
 

Kitano, Hiroaki. 2002. “Computational systems biology.” Nature 420 (6912): 206–210.  

Ko, Minoru S. H. 1992. “Problems and paradigms: Induction mechanism of a single gene 
molecule: Stochastic or deterministic?” BioEssays 14 (5): 341–346.  

Kojima, Takaaki, Yoshiaki Takei, Miharu Ohtsuka, Yasuaki Kawarasaki, Tsuneo 
Yamane, and Hideo Nakano. 2005. “PCR amplification from single DNA molecules 
on magnetic beads in emulsion: Application for High-throughput screening of 
transcription factor targets.” Nucleic Acids Research 33 (17): e150. 

Kolber, Zbigniew, Jonathan Zehr, and Paul Falkowski. 1988. “Effects of growth 
irradiance and nitrogen limitation on photosynthetic energy conversion in 
photosystem II 1.” Plant Physiology 88 (3): 923–929. 

Kreader, CA. 1996. “Relief of amplification inhibition in PCR with bovine serum 
Albumin or T4 Gene 32 Protein.” Appl. Environ. Microbiol. 62 (3): 1102–1106. 

Kuang, Yina, Israel Biran, and David R Walt. 2004. “Simultaneously monitoring gene 
expression kinetics and genetic noise in single cells by optical well arrays.” 
Analytical Chemistry 76 (21): 6282–6286. 

Kubista, Mikael, José Manuel Andrade, Martin Bengtsson, Amin Forootan, Jiri Jonák, 
Kristina Lind, Radek Sindelka, et al. 2006. “The real-time polymerase chain reaction.” 
Molecular Aspects of Medicine 27 (2-3): 95–125.  

Kühn, S, P Measor, E J Lunt, B S Phillips, D W Deamer, A R Hawkins, and H Schmidt. 
2009. “Loss-based optical trap for on-chip particle analysis.” Lab on a Chip 9 (15): 
2212–2216.  

Kurimoto, Kazuki, Yukihiro Yabuta, Yasuhide Ohinata, and Mitinori Saitou. 2007. 
“Global single-cell cDNA amplification to provide a template for representative high-
density oligonucleotide microarray analysis.” Nature Protocols 2 (3): 739–752.  

Kustka, Adam B., Andrew E. Allen, and François M. M. Morel. 2007. “Sequence 
analysis and transcriptional regulation of rion acquisition genes in two marine 
diatoms.” Journal of Phycology 43 (4): 715–729.  

Lange, M, T Tolker-Nielsen, S Molin, and B K Ahring. 2000. “In situ reverse 
transcription-PCR for monitoring gene expression in individual Methanosarcina 
Mazei S-6 cells.” Applied and Environmental Microbiology 66 (5): 1796–1800. 

Le Quéré, Corinne, Michael R. Raupach, Josep G. Canadell, Gregg Marland et Al, 
Corinne Le Quéré et Al, Corinne Le Quéré et Al, Michael R. Raupach, et al. 2009. 
“Trends in the sources and sinks of carbon dioxide.” Nature Geoscience 2 (12): 831–
836.  



131 
 

Le, Thuc T, Sébastien Harlepp, Calin C Guet, Kimberly Dittmar, Thierry Emonet, Tao 
Pan, and Philippe Cluzel. 2005. “Real-time RNA profiling within a single bacterium.” 
Proceedings of the National Academy of Sciences of the United States of America 102 
(26): 9160–9164.  

Lee, CY, GB Lee, JL Lin, FC Huang, and CS Liao. 2005. “Integrated microfluidic 
systems for cell lysis, mixing/pumping and DNA amplification.” Journal of 
Micromechanics and Microengineering 15 (6): 1215–1223. 

Lenz, Ailyn P, Kerry S Williamson, Betsey Pitts, Philip S Stewart, and Michael J 
Franklin. 2008. “Localized gene expression in Pseudomonas Aeruginosa biofilms.” 
Applied and Environmental Microbiology 74 (14): 4463–4471.  

Levsky, Jeffrey M., Shailesh M. Shenoy, Rossanna C. Pezo, and Robert H. Singer. 2002. 
“Single-cell gene expression profiling.” Science 297 (5582): 836–840.  

Lewandowska, Jolanta, and Alicja Kosakowska. 2004. “Effect of iron limitation on cells 
of the diatom Cyclotella Meneghiniana Kützing.” Global Biogeochemical Cycles 46 
(2): 269–287.  

Li, Qingge, Guoyan Luan, Qiuping Guo, and Jixuan Liang. 2002. “A new class of 
homogeneous nucleic acid probes based on specific displacement hybridization.” 
Nucleic Acids Research 30 (2): E5. 

Li, You-Rong, and Ju Chu. 1991. “Study of BOD Microbial Sensors for Waste Water 
Treatment Control.” Applied Biochemistry and Biotechnology 28-29 (1): 855–863.  

Lidstrom, Mary E, and Deirdre R Meldrum. 2003. “Life-on-a-chip.” Nature Reviews. 
Microbiology 1 (2): 158–164.  

Lin, Liang-I, Shih-Hui Chao, and Deirdre R Meldrum. 2009. “Practical, microfabrication-
free device for single-cell isolation.” PloS One 4 (8): e6710.  

Lindqvist, Niclas, Manuel Vidal-Sanz, and Finn Hallböök. 2002. “Single cell RT-PCR 
analysis of tyrosine kinase receptor expression in adult rat retinal ganglion cells 
isolated by retinal sandwiching.” Brain Research. Brain Research Protocols 10 (2): 
75–83. 

Lindström, Sara, and Helene Andersson-Svahn. 2010. “Overview of single-cell analyses: 
microdevices and applications.” Lab Chip 10(24): 3363–3372.  

Liu, Jing, and Bo Mattiasson. 2002. “Microbial BOD sensors for wastewater analysis.” 
Water Research 36 (15): 3786–3802. 



132 
 

Livak, K J, and T D Schmittgen. 2001. “Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) method.” Methods25 (4): 
402–408.  

Lomas, Michael W, Deborah A Bronk, and Ger van den Engh. 2011. “Use of flow 
cytometry to measure biogeochemical rates and processes in the ocean.” Annual 
Review of Marine Science 3: 537–566. 

Longhurst, Alan, Shubha Sathyendranath, Trevor Platt, and Carla Caverhill. 1995. “An 
estimate of global primary production in the ocean from satellite radiometer data.” 
Journal of Plankton Research 17 (6): 1245–1271. 

Longo, Diane, and Jeff Hasty. 2006. “Dynamics of single-cell gene expression.” 
Molecular Systems Biology 2: 64.  

López-García, Purificación, Francisco Rodríguez-Valera, Carlos Pedrós-Alió, and David 
Moreira. 2001. “Unexpected diversity of small eukaryotes in deep-sea Antarctic 
plankton.” Nature 409 (6820): 603–607. 

Lu, Hang, Martin A Schmidt, and Klavs F Jensen. 2005. “A microfluidic electroporation 
device for cell lysis.” Lab Chip 5 (1): 23–29.  

Lutz, Barry R, Jian Chen, and Daniel T Schwartz. 2006. “Hydrodynamic tweezers: 1. 
noncontact trapping of single cells using steady streaming microeddies.” Analytical 
Chemistry 78 (15): 5429–5435. 

Magliery, Thomas J, Christopher G M Wilson, Weilan Pan, Dennis Mishler, Indraneel 
Ghosh, Andrew D Hamilton, and Lynne Regan. 2005. “Detecting protein-protein 
interactions with a green fluorescent protein fragment reassembly trap: Scope and 
mechanism.” Journal of the American Chemical Society 127 (1): 146–157.  

Maheswari, Uma, Kamel Jabbari, Jean-Louis Petit, Betina M Porcel, Andrew E Allen, 
Jean-Paul Cadoret, Alessandra De Martino, et al. 2010. “Digital expression profiling 
of novel diatom transcripts provides insight into their biological functions.” Genome 
Biology 11 (8): R85.  

Maiwald, Daniela, Angela Dietzmann, Peter Jahns, Paolo Pesaresi, Pierre Joliot, Anne 
Joliot, Joshua Z. Levin, Francesco Salamini, and Dario Leister. 2003. “Knock-out of 
the genes coding for the rieske protein and the ATP-synthase δ-subunit of 
Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear 
chloroplast gene expression.” Plant Physiology 133 (1): 191–202.  

Maloney, P C, and B Rotman. 1973. “Distribution of suboptimally induces  -D-
galactosidase in Escherichia Coli. The enzyme content of individual Cells.” Journal 
of Molecular Biology 73 (1): 77–91. 



133 
 

Mann, D., and S. Droop. 1996. “3. Biodiversity, biogeography and conservation of 
diatoms.” Hydrobiologia 336 (1): 19–32. 

Marchetti, Adrian, David M Schruth, Colleen A Durkin, Micaela S Parker, Robin B 
Kodner, Chris T Berthiaume, Rhonda Morales, Andrew E Allen, and E Virginia 
Armbrust. 2012. “Comparative metatranscriptomics identifies molecular bases for the 
physiological responses of phytoplankton to varying iron availability.” Proceedings 
of the National Academy of Sciences of the United States of America 109 (6): E317–
325. 

Marcus, Joshua S., W. French Anderson, and Stephen R. Quake. 2006. “Microfluidic 
single-cell mRNA isolation and analysis.” Analytical Chemistry 78 (9): 3084–3089.  

Marcy, Yann, Thomas Ishoey, Roger S Lasken, Timothy B Stockwell, Brian P Walenz, 
Aaron L Halpern, Karen Y Beeson, Susanne M D Goldberg, and Stephen R Quake. 
2007. “Nanoliter reactors improve multiple displacement amplification of genomes 
from single cells.” PLoS Genetics 3 (9): 1702–1708. 

Marcy, Yann, Cleber Ouverney, Elisabeth M Bik, Tina Lösekann, Natalia Ivanova, 
Hector Garcia Martin, Ernest Szeto, et al. 2007. “Dissecting biological ‘dark matter’ 
with single-cell genetic analysis of rare and uncultivated TM7 microbes from the 
human mouth.” Proceedings of the National Academy of Sciences of the United States 
of America 104 (29): 11889–11894.  

Markoulatos, P, N Siafakas, and M Moncany. 2002. “Multiplex polymerase chain 
reaction: A practical approach.” Journal of Clinical Laboratory Analysis 16 (1): 47–
51. 

Martin, Jh, Kh Coale, Ks Johnson, Se Fitzwater, Rm Gordon, Sj Tanner, Cn Hunter, et al. 
1994. “Testing the iron hypothesis in ecosystems of the equatorial Pacific-Ocean.” 
Nature 371 (6493): 123–129. 

Massana, R, A E Murray, C M Preston, and E F DeLong. 1997. “Vertical distribution and 
phylogenetic characterization of marine planktonic archaea in the Santa Barbara 
Channel.” Applied and Environmental Microbiology 63 (1): 50–56. 

Matsubara, Yasutaka, Kagan Kerman, Masaaki Kobayashi, Shouhei Yamamura, 
Yasutaka Morita, Yuzuru Takamura, and Eiichi Tamiya. 2004. “On-chip nanoliter-
volume multiplex TaqMan polymerase chain reaction from a single copy based on 
counting fluorescence released microchambers.” Analytical Chemistry 76 (21): 6434–
6439.  

Mcallister, Cd, N. Shah, and Jdh Strickland. 1964. “Marine phytoplankton photosynthesis 
as a function of light intensity - a comparison of methods.” Journal of the Fisheries 
Research Board of Canada 21 (1): 159–181. 



134 
 

Mckenna, Brian K, A A Selim, F Richard Bringhurst, and Daniel J Ehrlich. 2009. “384-
channel parallel microfluidic cytometer for rare-cell screening.” Lab Chip 9 (2): 305–
310.  

Min, Taejin L, Patrick J Mears, Lon M Chubiz, Christopher V Rao, Ido Golding, and 
Yann R Chemla. 2009. “High-resolution, long-term characterization of bacterial 
motility using optical tweezers.” Nature Methods 6 (11): 831–835. 

Mirsaidov, Utkur, Winston Timp, Kaethe Timp, Mustafa Mir, Paul Matsudaira, and 
Gregory Timp. 2008. “Optimal optical trap for bacterial viability.” Physical Review. 
E, Statistical, Nonlinear, and Soft Matter Physics 78 (2): 021910. 

Mock, Thomas, Manoj Pratim Samanta, Vaughn Iverson, Chris Berthiaume, Matthew 
Robison, Karie Holtermann, Colleen Durkin, et al. 2008. “Whole-genome expression 
profiling of the marine diatom Thalassiosira Pseudonana identifies genes involved in 
silicon bioprocesses.” Proceedings of the National Academy of Sciences of the United 
States of America 105 (5): 1579–1584.  

Morrison, L E, T C Halder, and L M Stols. 1989. “Solution-phase detection of 
polynucleotides using interacting fluorescent labels and competitive hybridization.” 
Analytical Biochemistry 183 (2): 231–244. 

Munce, Nigel R, Jianzhao Li, Peter R Herman, and Lothar Lilge. 2004. “Microfabricated 
system for parallel single-cell capillary electrophoresis.” Analytical Chemistry 76 (17): 
4983–4989. 

Musat, Niculina, Hannah Halm, Bärbel Winterholler, Peter Hoppe, Sandro Peduzzi, 
Francois Hillion, Francois Horreard, Rudolf Amann, Bo B Jørgensen, and Marcel M 
M Kuypers. 2008. “A single-cell view on the ecophysiology of anaerobic 
phototrophic bacteria.” Proceedings of the National Academy of Sciences of the 
United States of America 105 (46): 17861–17866.  

Musyanovych, Anna, Volker Mailänder, and Katharina Landfester. 2005. “Miniemulsion 
droplets as single molecule nanoreactors for polymerase chain reaction.” 
Biomacromolecules 6 (4): 1824–1828. 

Nailis, Heleen, Tom Coenye, Filip Van Nieuwerburgh, Dieter Deforce, and Hans J Nelis. 
2006. “Development and evaluation of different normalization strategies for gene 
expression studies in Candida Albicans biofilms by Real-time PCR.” BMC Molecular 
Biology 7: 25.  

Nakano, Michihiko, Jun Komatsu, Shun-ichi Matsuura, Kazunori Takashima, Shinji 
Katsura, and Akira Mizuno. 2003. “Single-molecule PCR using water-in-oil 
emulsion.” Journal of Biotechnology 102 (2): 117–124. 



135 
 

Nelson, Dm, P. Treguer, Ma Brzezinski, A. Leynaert, and B. Queguiner. 1995. 
“Production and dissolution of biogenic silica in the ocean - Revised global estimates, 
comparison with regional data and relationship to biogenic sedimentation.” Global 
Biogeochemical Cycles 9 (3): 359–372.  

Newman, John R S, Sina Ghaemmaghami, Jan Ihmels, David K Breslow, Matthew Noble, 
Joseph L DeRisi, and Jonathan S Weissman. 2006. “Single-cell proteomic analysis of 
S. Cerevisiae reveals the architecture of biological noise.” Nature 441 (7095): 840–
846.  

Nolan, Tania, Rebecca E Hands, and Stephen A Bustin. 2006. “Quantification of mRNA 
using real-time RT-PCR.” Nature Protocols 1 (3): 1559–1582. 

Nossal, G J, A Szenberg, G L Ada, and C M Austin. 1964. “Single cell studies on 19S 
antibody production.” The Journal of Experimental Medicine 119: 485–502. 

Ottesen, Elizabeth A, Jong Wook Hong, Stephen R Quake, and Jared R Leadbetter. 2006. 
“Microfluidic digital PCR enables multigene analysis of individual environmental 
bacteria.” Science 314 (5804): 1464–1467.  

Pace, Norman R. 1997. “A molecular view of microbial diversity and the biosphere.” 
Science 276 (5313): 734–740.  

Paige, Jeremy S, Karen Y Wu, and Samie R Jaffrey. 2011. “RNA mimics of green 
fluorescent protein.” Science 333 (6042): 642–646.  

Panicker, Gitika, Michael L Myers, and Asim K Bej. 2004. “Rapid detection of Vibrio 
Vulnificus in shellfish and gulf of Mexico water by real-time PCR.” Applied and 
Environmental Microbiology 70 (1): 498–507. 

Pattyn, Filip, Frank Speleman, Anne De Paepe, and Jo Vandesompele. 2003. 
“RTPrimerDB: The real-Time PCR primer and probe database.” Nucleic Acids 
Research 31 (1): 122 –123. 

Pedraza, Juan M, and Alexander van Oudenaarden. 2005. “Noise propagation in gene 
networks.” Science 307 (5717): 1965–1969.  

Peitz, Ingmar, and Rien van Leeuwen. 2010. “Single-cell bacteria growth monitoring by 
automated DEP-facilitated image analysis.” Lab Chip 10 (21): 2944–2951.  

Pfaffl, M W. 2001. “A new mathematical model for relative quantification in real-time 
RT-PCR.” Nucleic Acids Research 29 (9): e45. 

Pohl, H. A., Karan Kaler, and Kent Pollock. 1981. “The continuous positive and negative 
dielectrophoresis of microorganisms.” Journal of Biological Physics 9 (2): 67–86.  



136 
 

Prakash, A. Ranjit, Matthias Amrein, and Karan V. I. S. Kaler. 2007. “Characteristics and 
impact of Taq enzyme adsorption on surfaces in microfluidic devices.” Microfluidics 
and Nanofluidics 4 (4): 295–305. 

Quéré, Corinne Le, Christian Rödenbeck, Erik T. Buitenhuis, Thomas J. Conway, Ray 
Langenfelds, Antony Gomez, Casper Labuschagne, et al. 2007. “Saturation of the 
Southern Ocean CO2 sink due to recent climate change.” Science 316 (5832): 1735–
1738.  

Rackham, Oliver, and Chris M Brown. 2004. “Visualization of RNA-protein interactions 
in living cells: FMRP and IMP1 interact on mRNAs.” The EMBO Journal 23 (16): 
3346–3355.  

Rajilić-Stojanović, Mirjana, Hauke Smidt, and Willem M De Vos. 2007. “Diversity of 
the human gastrointestinal tract microbiota revisited.” Environmental Microbiology 9 
(9): 2125–2136.  

Ramsköld, Daniel, Shujun Luo, Yu-Chieh Wang, Robin Li, Qiaolin Deng, Omid R. 
Faridani, Gregory A. Daniels, et al. 2012. “Full-length mRNA-Seq from single-cell 
levels of RNA and individual circulating tumor cells.” Nature Biotechnology 30 (8): 
777–782.  

Rao, I M, A R Arulanantham, and N Terry. 1989. “Leaf phosphate status, photosynthesis 
and carbon partitioning in sugar beet: II. Diurnal changes in sugar phosphates, 
adenylates, and nicotinamide nucleotides.” Plant Physiology 90 (3): 820–826. 

Rappé, Michael S, Stephanie A Connon, Kevin L Vergin, and Stephen J Giovannoni. 
2002. “Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.” Nature 
418 (6898): 630–633. 

Rappé, Michael S, and Stephen J Giovannoni. 2003. “The uncultured microbial majority.” 
Annual Review of Microbiology 57: 369–394.  

Rasmussen, M. B., L. B. Oddershede, and H. Siegumfeldt. 2008. “Optical tweezers cause 
physiological damage to Escherichia Coli and Listeria bacteria.” Applied and 
Environmental Microbiology 74 (8): 2441–2446.  

Ren, Xiang-Dong, and Martin Alexander Schwartz. 2000. “Determination of GTP 
loading on rho.” Methods in Enzymology, 325:264–272. 

Richaud, Catherine, Gerald Zabulon, Annette Joder, and Jean-Claude Thomas. 2001. 
“Nitrogen or sulfur starvation differentially affects phycobilisome degradation and 
expression of the nblA gene in Synechocystis strain PCC 6803.” J. Bacteriol. 183 (10): 
2989–2994.  



137 
 

Ripp, Steven, David E. Nivens, Yeonghee Ahn, Claudia Werner, John Jarrell, James P. 
Easter, Chris D. Cox, Robert S. Burlage, and Gary S. Sayler. 2000. “Controlled field 
release of a bioluminescent genetically engineered microorganism for bioremediation 
process monitoring and control.” Environmental Science & Technology 34 (5): 846–
853.  

Roeder, Barbara, Martin Wagner, and Peter Rossmanith. 2010. “Autonomous growth of 
isolated single Listeria Monocytogenes and Salmonella Enterica Serovar 
Typhimurium cells in the absence of growth factors and intercellular contact.” Applied 
and Environmental Microbiology 76 (8): 2600–2606. 

Rosenfeld, Nitzan, Jonathan W. Young, Uri Alon, Peter S. Swain, and Michael B. 
Elowitz. 2005. “Gene regulation at the single-cell level.” Science 307 (5717): 1962–
1965.  

Sabine, Christopher L., Richard A. Feely, Nicolas Gruber, Robert M. Key, Kitack Lee, 
John L. Bullister, Rik Wanninkhof, et al. 2004. “The oceanic sink for anthropogenic 
CO2.” Science 305 (5682): 367–371.  

Sando, Shinsuke, and Eric T Kool. 2002. “Imaging of RNA in bacteria with self-ligating 
quenched probes.” Journal of the American Chemical Society 124 (33): 9686–9687. 

Sando, Shinsuke, Atsushi Narita, and Yasuhiro Aoyama. 2007. “Light-up Hoechst-DNA 
aptamer pair: Generation of an aptamer-selective fluorophore from a conventional 
DNA-staining dye.” Chembiochem: A European Journal of Chemical Biology 8 (15): 
1795–1803.  

Santangelo, Philip J, Brent Nix, Andrew Tsourkas, and Gang Bao. 2004. “Dual FRET 
molecular beacons for mRNA detection in living cells.” Nucleic Acids Research 32 
(6): e57.  

Schaerli, Yolanda, and Florian Hollfelder. 2009. “The potential of microfluidic water-in-
oil droplets in experimental biology.” Molecular bioSystems 5 (12): 1392–1404.  

Schmelz, M, R Schmidt, C Weidner, Marita Hilliges, H E Torebjork, and H O 
Handwerker. 2003. “Chemical response pattern of different classes of C-nociceptors 
to pruritogens and algogens.” Journal of Neurophysiology 89 (5): 2441–2448.  

Schmid, Andreas, Hendrik Kortmann, Petra S Dittrich, and Lars M Blank. 2010. 
“Chemical and biological single cell analysis.” Current Opinion in Biotechnology 21 
(1): 12–20.  

Schneider, Jörg, Andreas Buness, Wolfgang Huber, Joachim Volz, Petra Kioschis, 
Mathias Hafner, Annemarie Poustka, and Holger Sültmann. 2004. “Systematic 
analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in 
microarray experiments.” BMC Genomics 5 (1): 29. 



138 
 

Schut, F, E J de Vries, J C Gottschal, B R Robertson, W Harder, R A Prins, and D K 
Button. 1993. “Isolation of typical marine bacteria by dilution culture: Growth, 
maintenance, and characteristics of isolates under laboratory conditions.” Applied and 
Environmental Microbiology 59 (7): 2150–2160. 

Sezonov, Guennadi, Danièle Joseleau-Petit, and Richard D’Ari. 2007. “Escherichia Coli 
physiology in Luria-Bertani broth.” Journal of Bacteriology 189 (23): 8746–8749.  

Shalek, Alex K., Rahul Satija, Xian Adiconis, Rona S. Gertner, Jellert T. Gaublomme, 
Raktima Raychowdhury, Schragi Schwartz, et al. 2013. “Single-cell transcriptomics 
reveals bimodality in expression and splicing in immune cells.” Nature advance 
online publication.  

Sherwood, Alison R., and Gernot G. Presting. 2007. “Universal primers amplify a 23S 
rDNA plastid marker in eukaryotic algae and cyanobacteria.” Journal of Phycology 
43 (3): 605–608. 

Shi, Xu, Weimin Gao, Shih-hui Chao, Weiwen Zhang, and Deirdre R. Meldrum. 2013. 
“Monitoring the single-cell stress response of the diatom Thalassiosira Pseudonana 
by quantitative real-time reverse transcription-PCR.” Applied and Environmental 
Microbiology 79 (6): 1850–1858. 

Shi, Xu, Liang-I Lin, Szu-Yu Chen, Shih-Hui Chao, Weiwen Zhang, and Deirdre R 
Meldrum. 2011. “Real-time PCR of single bacterial cells on an array of adhering 
droplets.” Lab Chip 11 (13): 2276–2281.  

Shim, Jung-uk, Luis F Olguin, Graeme Whyte, Duncan Scott, Ann Babtie, Chris Abell, 
Wilhelm T S Huck, and Florian Hollfelder. 2009. “Simultaneous determination of 
gene expression and enzymatic activity in individual bacterial cells in microdroplet 
compartments.” Journal of the American Chemical Society 131 (42): 15251–15256.  

Siegel, Sidney. 1957. “Nonparametric statistics.” The American Statistician 11 (3): 13–19.  

Siegele, D A, and J C Hu. 1997. “Gene expression from plasmids containing the araBAD 
promoter at subsaturating inducer concentrations represents mixed populations.” 
Proceedings of the National Academy of Sciences of the United States of America 94 
(15): 8168–8172. 

Sims, Christopher E, and Nancy L Allbritton. 2007. “Analysis of single mammalian cells 
on-chip.” Lab Chip 7 (4): 423–440.  

Singh, Ruchira, Rajanikanth J Maganti, Sairam V Jabba, Martin Wang, Glenn Deng, Joe 
Don Heath, Nurith Kurn, and Philine Wangemann. 2005. “Microarray-based 
comparison of three amplification methods for nanogram amounts of total RNA.” 
American Journal of Physiology. Cell Physiology 288 (5): C1179–1189.  



139 
 

Sipos, R, AJ Szekely, M Palatinszky, S Revesz, K Marialigeti, and M Nikolausz. 2007. 
“Effect of primer mismatch, annealing temperature and PCR cycle number on 16S 
rRNA gene-targetting bacterial community analysis.” FEMS Microbiology Ecology 
60 (2): 341–350.  

Sixou, S, F C Szoka Jr, G A Green, B Giusti, G Zon, and D J Chin. 1994. “Intracellular 
oligonucleotide hybridization detected by fluorescence resonance Eenergy transfer 
(FRET).” Nucleic Acids Research 22 (4): 662–668. 

Stahl, David A., David J. Lane, Gary J. Olsen, and Norman R. Pace. 1984. “Analysis of 
hydrothermal vent-associated symbionts by ribosomal RNA sequences.” Science 224 
(4647): 409–411. 

Ståhlberg, Anders, Joakim Håkansson, Xiaojie Xian, Henrik Semb, and Mikael Kubista. 
2004. “Properties of the reverse transcription reaction in mRNA quantification.” 
Clinical Chemistry 50 (3): 509–515. 

Ståhlberg, Anders, Mikael Kubista, and Pierre Åman. 2011. “Single-cell gene-expression 
profiling and its potential diagnostic applications.” Expert Review of Molecular 
Diagnostics 11 (7): 735–740.  

Ståhlberg, Anders, Vendula Rusnakova, and Mikael Kubista. 2013. “The added value of 
single-cell gene expression profiling.” Briefings in Functional Genomics 12 (2): 81–
89.  

Stewart, Philip S, and Michael J Franklin. 2008. “Physiological heterogeneity in biofilms.” 
Nature Reviews. Microbiology 6 (3): 199–210. 

Strand, Stuart E., and Dale A. Carlson. 1984. “Rapid BOD measurement for municipal 
wastewater samples using a biofilm electrode.” Journal (Water Pollution Control 
Federation) 56 (5): 464–467.  

Strovas, Tim J, and Mary E Lidstrom. 2009. “Population heterogeneity in 
Methylobacterium Extorquens AM1.” Microbiology 155 (6): 2040–2048.  

Strovas, Tim J, Linda M Sauter, Xiaofeng Guo, and Mary E Lidstrom. 2007. “Cell-to-cell 
heterogeneity in growth rate and gene expression in Methylobacterium Extorquens 
AM1.” Journal of Bacteriology 189 (19): 7127–7133. 

Subkhankulova, Tatiana, and Frederick J Livesey. 2006. “Comparative evaluation of 
linear and exponential amplification techniques for expression profiling at the single-
cell level.” Genome Biology 7 (3): R18. 

Tang, Fuchou, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee, 
Nanlan Xu, Xiaohui Wang, et al. 2009. “mRNA-Seq whole-transcriptome analysis of 
a single cell.” Nature Methods 6 (5): 377–382. 



140 
 

Taniguchi, Kiyomi, Tomoharu Kajiyama, and Hideki Kambara. 2009. “Quantitative 
analysis of gene expression in a single cell by qPCR.” Nature Methods 6 (7): 503–
506.  

Taniguchi, Yuichi, Paul J Choi, Gene-Wei Li, Huiyi Chen, Mohan Babu, Jeremy Hearn, 
Andrew Emili, and X Sunney Xie. 2010. “Quantifying E. Coli proteome and 
transcriptome with single-molecule sensitivity in single cells.” Science 329 (5991): 
533–538.  

Tanyeri, Melikhan, Eric M Johnson-Chavarria, and Charles M Schroeder. 2010. 
“Hydrodynamic trap for single particles and cells.” Applied Physics Letters 96 (22): 
224101. 

Teramoto, Jun, Yoko Yamanishi, El-Shimy H Magdy, Akiko Hasegawa, Ayako Kori, 
Masahiro Nakajima, Fumihito Arai, Toshio Fukuda, and Akira Ishihama. 2010. 
“Single live-bacterial cell assay of promoter activity and regulation.” Genes to Cells: 
Devoted to Molecular & Cellular Mechanisms 15 (11): 1111–1122.  

Thamatrakoln, Kimberlee, Olga Korenovska, A Kalani Niheu, and Kay D Bidle. 2012. 
“Whole-genome expression analysis reveals a role for death-related genes in stress 
acclimation of the diatom Thalassiosira Pseudonana.” Environmental Microbiology 
14 (1): 67–81.  

Thompson, J D, D G Higgins, and T J Gibson. 1994. “CLUSTAL W: Improving the 
sensitivity of progressive multiple sequence alignment through sequence weighting, 
position-specific gap penalties and weight matrix choice.” Nucleic Acids Research 22 
(22): 4673–4680. 

Tolker-Nielsen, T, K Holmstrøm, and S Molin. 1997. “Visualization of specific gene 
expression in individual Salmonella Typhimurium cells by in situ PCR.” Applied and 
Environmental Microbiology 63 (11): 4196–4203. 

Tsang, Peter H, Guanglai Li, Yves V Brun, L Ben Freund, and Jay X Tang. 2006. 
“Adhesion of single bacterial cells in the micronewton range.” Proceedings of the 
National Academy of Sciences of the United States of America 103 (15): 5764–5768.  

Tucker, Don L., Nancy Tucker, and Tyrrell Conway. 2002. “Gene expression profiling of 
the pH response in Escherichia Coli.” Journal of Bacteriology 184 (23): 6551–6558.  

Tyagi, S, and F R Kramer. 1996. “Molecular beacons: Probes that fluoresce upon 
hybridization.” Nature Biotechnology 14 (3): 303–308.  

Tyagi, Sanjay. 2009. “Imaging intracellular RNA distribution and dynamics in living 
cells.” Nature Methods 6 (5): 331–338. 



141 
 

Tyson, Gene W., Jarrod Chapman, Philip Hugenholtz, Eric E. Allen, Rachna J. Ram, Paul 
M. Richardson, Victor V. Solovyev, Edward M. Rubin, Daniel S. Rokhsar, and Jillian 
F. Banfield. 2004. “Community structure and metabolism through reconstruction of 
microbial genomes from the environment.” Nature 428 (6978): 37–43.  

Untergasser, Andreas, Harm Nijveen, Xiangyu Rao, Ton Bisseling, René Geurts, and 
Jack A M Leunissen. 2007. “Primer3Plus, an enhanced web interface to Primer3.” 
Nucleic Acids Research 35 (Web Server issue): W71–74. 

Valencia-Burton, Maria, Ron M McCullough, Charles R Cantor, and Natalia E Broude. 
2007. “RNA visualization in live bacterial cells using fluorescent protein 
complementation.” Nature Methods 4 (5): 421–427.  

Valente, Valeria, Silvia A Teixeira, Luciano Neder, Oswaldo K Okamoto, Sueli M Oba-
Shinjo, Suely K N Marie, Carlos A Scrideli, Maria L Paçó-Larson, and Carlos G 
Carlotti Jr. 2009. “Selection of suitable housekeeping genes for expression analysis in 
glioblastoma using quantitative RT-PCR.” BMC Molecular Biology 10: 17. 

VanGuilder, Heather D, Kent E Vrana, and Willard M Freeman. 2008. “Twenty-five 
years of quantitative PCR for gene expression analysis.” BioTechniques 44 (5): 619–
626.  

Vilibi ć, Ivica, and Danijela Šantić. 2008. “Deep water ventilation traced by 
Synechococcus Cyanobacteria.” Ocean Dynamics 58 (2): 119–125.  

Wacker, Michael J, Michelle M Tehel, and Philip M Gallagher. 2008. “Technique for 
quantitative RT-PCR analysis directly from single muscle fibers.” Journal of Applied 
Physiology 105 (1): 308–315.  

Walling, Maureen A, and Jason R E Shepard. 2011. “Cellular heterogeneity and live cell 
arrays.” Chemical Society Reviews 40 (7): 4049–4076.  

Wang, Daojing, and Steven Bodovitz. 2010. “Single cell analysis: The new frontier in 
‘Omics’.” Trends in Biotechnology 28 (6): 281–290.  

Wang, E, L D Miller, G A Ohnmacht, E T Liu, and F M Marincola. 2000. “High-fidelity 
mRNA amplification for gene profiling.” Nature Biotechnology 18 (4): 457–459.  

Wang, Joseph. 2002. “Real-Time electrochemical monitoring:  Toward green analytical 
chemistry.” Accounts of Chemical Research 35 (9): 811–816.  

Wang, Joseph, and Qiang Chen. 1995. “Remote electrochemical biosensor for field 
monitoring of phenolic compounds.” Analytica Chimica Acta 312 (1): 39–44. 



142 
 

Wang, Joseph, Nancy Foster, Saulius Armalis, David Larson, Alberto Zirino, and Khris 
Olsen. 1995. “Remote stripping electrode for in situ monitoring of labile copper in the 
marine environment.” Analytica Chimica Acta 310 (2): 223–231.  

Wang, Qianrui, Daekeun Kim, Dionysios D. Dionysiou, George A. Sorial, and Dennis 
Timberlake. 2004. “Sources and remediation for mercury contamination in aquatic 
systems—a literature review.” Environmental Pollution 131 (2): 323–336.  

Wang, Xiaowei, and Brian Seed. 2003. “A PCR primer bank for quantitative gene 
expression analysis.” Nucleic Acids Research 31 (24): e154. 

Waters, L C, S C Jacobson, N Kroutchinina, J Khandurina, R S Foote, and J M Ramsey. 
1998. “Microchip device for cell lysis, multiplex PCR amplification, and 
electrophoretic sizing.” Analytical Chemistry 70 (1): 158–162. 

Werf, M. J. van der, S. Hartmans, and W. J. J. van den Tweel. 1995. “Permeabilization 
and lysis of Pseudomonas Pseudoalcaligenes cells by Triton X-100 for efficient 
production of dmalate.” Applied Microbiology and Biotechnology 43 (4): 590–594.  

Wheeler, Aaron R., William R. Throndset, Rebecca J. Whelan, Andrew M. Leach, 
Richard N. Zare, Yish Hann Liao, Kevin Farrell, Ian D. Manger, and Antoine 
Daridon. 2003. “Microfluidic device for single-cell analysis.” Analytical Chemistry 
75 (14): 3581–3586.  

White, A. K., K. A. Heyries, C. Doolin, M. VanInsberghe, and C. L. Hansen. 2013. 
“High-throughput microfluidic single-cell digital polymerase chain reaction.” 
Analytical Chemistry 85 (15): 7182–7190.  

White, Adam K, Michael VanInsberghe, Oleh I Petriv, Mani Hamidi, Darek Sikorski, 
Marco A Marra, James Piret, Samuel Aparicio, and Carl L Hansen. 2011. “High-
throughput microfluidic single-cell RT-qPCR.” Proceedings of the National Academy 
of Sciences of the United States of America 108 (34): 13999–14004. 

Wilson, Claire L, Stuart D Pepper, Yvonne Hey, and Crispin J Miller. 2004. 
“Amplification protocols introduce systematic but reproducible errors into gene 
expression studies.” BioTechniques 36 (3): 498–506. 

Wood, T H. 1967. “Genetic recombination in Escherichia Coli: Clone heterogeneity and 
the kinetics of segregation.” Science 157 (786): 319–321. 

Yan, Jiusheng, and William A. Cramer. 2003. “Functional insensitivity of the cytochrome 
B6 f complex to structure changes in the hinge region of the rieske iron-sulfur 
protein.” Journal of Biological Chemistry 278 (23): 20925–20933. 

Yang, Seong Wook, and Tom Vosch. 2011. “Rapid detection of microRNA by a silver 
nanocluster DNA probe.” Analytical Chemistry 83 (18): 6935–6939.  



143 
 

Yi, W C, S Hsiao, J H Liu, P C Soo, Y T Horng, W C Tsai, H C Lai, et al. 1998. “Use of 
fluorescein labelled antibody and fluorescence activated cell sorter for rapid 
identification of Mycobacterium species.” Biochemical and Biophysical Research 
Communications 250 (2): 403–408.  

Zare, Richard N., and Samuel Kim. 2010. “Microfluidic platforms for single-cell 
analysis.” Annual Review of Biomedical Engineering 12 (1): 187–201.  

Zeng, Jia, Jiangxin Wang, Weimin Gao, Aida Mohammadreza, Laimonas Kelbauskas, 
Weiwen Zhang, Roger H Johnson, and Deirdre R Meldrum. 2011. “Quantitative 
single-cell gene expression measurements of multiple genes in response to hypoxia 
treatment.” Analytical and Bioanalytical Chemistry 401 (1): 3–13.  

Zeng, Yong, Richard Novak, Joe Shuga, Martyn T Smith, and Richard A Mathies. 2010. 
“High-performance single cell genetic analysis using microfluidic emulsion generator 
arrays.” Analytical Chemistry 82 (8): 3183–3190.  

Zhang, Hu, and Kuo-Kang Liu. 2008. “Optical tweezers for single cells.” Journal of the 
Royal Society, Interface / the Royal Society 5 (24): 671–690. 

Zhang, Yunxia, Ying Zhu, Bo Yao, and Qun Fang. 2011. “Nanolitre droplet array for real 
time reverse transcription polymerase chain reaction.” Lab Chip 11 (8): 1545–1549.  

Zhou, S, Z Hou, N Li, and Q Qin. 2007. “Development of a SYBR Green I real-time 
PCR for quantitative detection of Vibrio Alginolyticus in seawater and seafood.” 
Journal of Applied Microbiology 103 (5): 1897–1906.  

Zubkov, Mikhail V., and Peter H. Burkill. 2006. “Syringe pumped high speed flow 
cytometry of oceanic phytoplankton.” Cytometry Part A 69A (9): 1010–1019.  

  



144 
 

APPENDIX A 

SAMPLE SIZE ISSUE  
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Multiple approaches had been explored to increase the sample size of each nutrition 

condition. Because the chip created in this research has only 48 reactions per chip, 

increasing sample sizes requires the use of multiple chips. The relatively small reaction 

number cannot provide higher than 90% power of single cell level analyses. Running 

multiple chips for each condition can alleviate the low throughput issue. However, 

running multiple chips for each condition was not feasible under current experimental 

conditions. The reasons are summarized below. 

 The first reason was that there was not a method for preserving the state of the 

RNA of each cell while waiting for the chip to be available for another run. Due to the 

difficulty of single cell loading, the whole processing time for each chip is between 2 to 3 

hours. The experiment run time is about 4 hours. The whole process adds up to 6 to 7 

hours per chip during which time the RNA of cells waiting to be analyzed has changed. 

The RNA preservation effectiveness was evaluated for RNAprotect (Table 11). 

Table 11. RNAprotect RNA preservation effectiveness 

18S Actin 

Control 14.06 30.42719 

RNAprotect 17.38 31.46477 

 The results showed that the RNA profile changed after a couple hours’ storage in 

RNAprotect solution. RNALater had similar performance and RNALater is a high salt 

solution without purification which may cause inhibition of downstream qPCR. 

 The second reason is the chip-to-chip variance. Although much effort has been 

spent on optimization of the performance, chip-to-chip variance was still observed 
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(Figure 30). A lot of factors can affect the results of RT-qPCR reactions, for example, 

temperature and reverse transcription efficiency. Most of these factors cannot be easily 

controlled. As shown in Figure 30, a variance exists for the same concentration run on a 

different chip. The largest difference was about 2.2 cycles for the mean value. 

 

Figure 30. Chip-to-chip variance at pg level 

 If a known droplet volume is used to normalize the results, the chip-to-chip 

variance can be minimized (Figure 31). The variance is smaller but cannot be totally 

removed. In this case, the minimum variance is about one cycle. A one cycle difference is 

equivalent to about two times difference of the activity which is not good enough for 

single cell analysis. Combining different chips in an experiment may produce biased 

results. 
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Figure 31. Normalized results at pg level. 

 In general, there was no reliable method to overcome the RNA preservation issue 

and chip-to-chip variance. Based on these limitations, only reactions run on the same chip 

can be used to achieve consistent results at the single cell level. The most reliable 

solution to increase the power of the chip is to increase the throughput of the chip and to 

build customized parts for the thermal cycling and signal detection. 


