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ABSTRACT

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United

States. It is of primary concern for public-health agencies to control spatial spread of

rabies in wildlife and its potential spillover infection of domestic animals and humans.

Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period.

Understanding how this latency affects spatial spread of rabies in wildlife is the concern of

chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies

and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected

(SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to de-

scribe the same epidemic process – rabies spread in foxes. For the delayed diffusive model

a non-local infection term with delay is resulted from modeling the dispersal during incu-

bation stage. Comparison is made regarding minimum traveling wave speeds of the two

models, which are verified using numerical experiments. In chapter 3, starting with two

Kermack and McKendrick’s models where infectivity, death rate and diffusion rate of in-

fected individuals can depend on the age of infection, the asymptotic speed of spread c∗ for

the cumulated force of infection can be analyzed. For the special case of fixed incubation

period, the asymptotic speed of spread is governed by the same integral equation for both

models. Although explicit solutions for c∗ are difficult to obtain, assuming that diffusion

coefficient of incubating animals is small, c∗ can be estimated in terms of model parame-

ter values. Chapter 4 considers the implementation of realistic landscape in simulation of

rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is

adopted because the irregular shapes of realistic landscape naturally lead to unstructured

grids in the spatial domain. This implementation leads to a more accurate description of

skunk rabies cases distributions.
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Chapter 1

MOTIVATION

1.1 Introduction

Rabies virus, a member of the Lyssavirus genus and Rhabdoviridae family, is a neu-

rotropic, single-stranded and negative-sense RNA virus (Kaplan, 1985). The first case of

rabies is found by a Roman physician called Celsus (Jackson and Wunner, 2002a). The

rabies virus afflicts humans, domestic and wildlife animals, causing central nervous system

infections that lead to quick death (Kaplan, 1985). Rabies is usually transmitted via bite by

infected animals, when virus carried in the saliva of infected animals enters the body (Jack-

son and Wunner, 2002b). Due to advancement of medical technologies, human mortality

from rabies is rare nowadays, but rabies still causes thousands of human deaths in a few

countries, such as Africa and India (Sterner and Smith, 2006). Usually rabies infection is

fatal once the virus already lodges in the central nervous system, so precautionary measure

before and immediately after bite by infected animals is vital.

Rabies is also maintained in some wildlife reservoir species, such as raccoons, foxes,

skunks and bats (CDC, 2011). Although rabies virus is well understood and effective vac-

cines exists, it still causes great concerns among epidemiologists, because rabies still per-

sists in wildlife animals, and the economic cost of distributing vaccines to wildlife animals

and the potential infections in endangered animals make studies of rabies, in particular spa-

tial dynamics, essential. Attempts to control rabies spread in wildlife animals have been

made in various ways. The methods include population reduction and vaccination. Pop-

ulation reduction measures include gassing, trapping, baits and hunting. So far in North

America, trapping and distribution of vaccines are most widely used methods (Lyles and
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Rupprecht, 2007; Pybus, 1988).

There are three major well-studied rabies epidemic geographic expansions: one in Eu-

rope associated with rabies in red fox (Vulpes vulpes), one in the US related to rabies spread

in raccoon and the last one in Canada associated with rabies in arctic fox, red fox and rac-

coon (Rupprecht et al., 1995). Currently in the US rabies in terrestrial wildlife is endemic

in raccoon in the Eastern US, skunks in the Midwestern US and California, while endemic

rabies in red and gray foxes is now uncommon in the US (Jackson, 2011).

1.2 Background of mathematical rabies models

With various control methods at hand and rabies still spreading in wildlife animals, it

is important to understand the progression of rabies epizootic wavefront into uninfected

geographic areas. There have been various mathematical models developed for studies of

rabies, and the development of these models has been mostly guided by the development of

mathematical methods for infectious disease problems in general. Early rabies models bore

resemblance with early models for other diseases. For epidemiologists the original primary

concern was the spread of rabies throughout a population. Hence compartmental systems

of ordinary differential equations (ODE) have been proposed (Capasso, 1991; Keeling and

Rohani, 2008), where populations of animals are subdivided into susceptible, infectious

and recovered/removed classes, and sometimes an exposed class is added that accounts

for the incubation period between contraction of rabies and onset of clinical symptoms.

These compartmental systems hence followed the basic “SEIR” framework (Anderson and

May, 1979, 1981). The dynamics of these rabies models are summarized in the construc-

tion of systems of ODEs for either a single population or a network of many populations

(metapopulations). Analysis of these models could then translate into prediction or evalu-

ation of temporal or spatial rabies patterns within or between populations.
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1.2.1 Early mathematical approach to rabies dynamics

Following World War II, an epizootic expansion of rabies virus in red fox (V. vulpes)

populations originating from Eastern Europe caught epidemiologists’ attention. The epi-

zootic rabies wave traveled at an approximately constant speed towards Western Europe. In

order to understand the rabies disease emergence and spread, some earliest mathematical

models (Anderson et al., 1981) that used the basic “SEIR” compartmental framework were

constructed to derive some important characteristics of the rabies epizootic in red fox, in-

cluding the basic reproductive number (R0) for the disease. The basic reproductive number

(R0) stands for the number of secondary infections caused by a single infection placed in a

completely susceptible population (Mollison, 1995). Based on this R0 a critical threshold

density for susceptible foxes Sc can be calculated below which a rabies epizootic cannot

be established. With the critical threshold Sc, even if the early models were not spatially

explicit, it is possible to recommend what level of population control, for example culling,

would be required for a given location.

The following system of ODEs was adapted from these earliest compartmental mod-

els (Anderson et al., 1981):
dS

dt
= rS − γSN − βSI

dE

dt
= βSI − γEN − (σ + b)E

dI

dt
= σE − γIN − (α + b)I

(1.1)

where S,E, I are population densities for susceptible, exposed and infected foxes, N =

S +E + I is the total population density. r = a− b is the intrinsic population growth rate,

with a, b the per capita birth and death rates. Infectious, or rabid, foxes are under greater

risk of mortality, which is represented by the additional death rate α. 1/σ is the average

length of time a fox stays in the exposed class before onset of clinical symptoms. γ is the

additional competition-induced mortality.

3



Also note that in (1.1) the recovered class is absent. This is consistent with convention

of early rabies models where there was no evidence suggesting development of natural

immunity against rabies in the absence of vaccination among infected foxes.

It was also assumed (Anderson et al., 1981) that a few fox rabies infections were intro-

duced in a totally susceptible population at its stable equilibrium r/γ, which is obtained by

setting the right hand side of S equation equal to 0 while assuming E = I = 0. Solving

the system defined in (1.1), it was calculated that the minimum density of foxes for rabies

infection to spread was

Sc =
(σ + a)(α + a)

βσ

and the reproductive number R0 was given as

R0 =
r/γ

Sc
=

rβσ

γ(σ + a)(α + a)
.

Based on available ecological data for foxes (MacDonald, 1980), it was determined in (An-

derson et al., 1981) that the critical threshold Sc ≈ 0.99 foxes/km2.

Since at the time of these early models oral vaccines for rabies had not been invented or

produced, these findings suggested population culling for areas with a fox density exceed-

ing Sc ≈ 0.99 foxes/km2, which would be a surpassingly difficult and expensive project to

manage given the large dimensions of affected areas.

1.2.2 Approaches based on reaction diffusion methods

The system (1.1) of ODEs from (Anderson et al., 1981) was constructed at almost the

same time as when fox rabies infection wave front was advancing southwesterly into France

and Switzerland. To understand this spatial propagation of rabies virus, MacDonald et al

began descriptive studies (MacDonald, 1980; MacDonald et al., 1981) into responsible eco-

logical factors, such as fox densities or habitat properties. Following these studies, Murray

et al (Kallen et al., 1985; Murray et al., 1986; Murray, 1989; Murray and Seward, 1992)

4



performed a series of famous studies into spatial rabies spread. He proposed and analyzed

in consecutive papers several reaction diffusion models to describe this persistent propagat-

ing wave of rabies infection in red fox. The importance of these studies lies not only in the

introduction of an even more sophisticated mathematical tool to the modeling process, but

also in allowing the predictive modeling that suggested how transmission barriers could be

implemented before the arrival of epizootic wave fronts.

The model used by Murray et al. (1986) was formulated using the following system of

partial differential equations (PDEs)

∂S(x, t)

∂t
= rS

(
1− N

K

)
− βSI

∂E(x, t)

∂t
= βSI − rNE

K
− (σ + b)E

∂I(x, t)

∂t
= σE − rNI

K
− (α + b)I +D

∂2I

∂x2

(1.2)

where most parameters are identical to those in (1.1) except the replacement of γ by r/K

and the addition of a diffusion term D ∂2I
∂x2

at the end of the I equation. The diffusion term

reflects the random movement of infectious rabid foxes due to rabid clinical symptoms,

most notably disorientation. Applying similar parameter values as in (Anderson et al.,

1981; MacDonald, 1980), it was estimated in (Andral et al., 1982; Murray et al., 1986) that

the rate of movement for rabid red foxes was approximately 50 km2/year.

Although, different from (1.1) system (1.2) is composed of coupled PDEs and can de-

scribe properties of spatial spread, it makes similar assumptions to those from ODEs in

(1.1), the most important of which is the assumption that the population is well mixed,

homogeneous and all parameters are constant in both time and space. An important conse-

quence of this assumption in the context of reaction diffusion equations defined in (1.2) is

that an epidemic wave will maintain its shape and traveling speed v as it propagates through

the space. In mathematical terms this translates into a solution of the form f(z) = f(x+vt)

with z = x + vt. In addition to the diffusion rate D, the traveling wave speed v is another
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important quantity to characterize the rabies epizootic wave propagation. But usually solv-

ing the resulting system of ODEs for v after substitution of z = x + vt is nontrivial. Also

one needs to rule out impractical solutions that generate negative population densities. In

the case of (1.2) some solutions of v, however, correspond to oscillations when sufficient

time has passed after the initial wave of infection. These secondary oscillations require

careful analysis and derivation, but in the analysis of complicated reaction diffusion equa-

tions in (1.2), it is possible to ignore secondary oscillations and focus only on the speed of

initial wave by reducing (1.2) to a more simplified form.

To simplify (1.2) we note that initial infection wave is primarily caused by infectious

foxes, and during a reasonably small time frame ∆t fox populations at the infection wave

front stays unchanged. So we let a = b = 0 and ∂E
∂t

= 0, and now in the simplified model

∂S

∂t
= −βIS

∂I

∂t
= βIS − αI +D

∂2I

∂x2

(1.3)

The simple system (1.3) ignores the reproduction from fox populations, and assumes that

only infectious foxes disperse due to rabies-induced disorientation and the fact that healthy

foxes tend to stay within their home ranges (MacDonald, 1980). These are reasonable

over a small time interval ∆t during the initial infection wave. Now the equation for I in

(1.3) has the same form as the Fisher-Kolmogoroff equation. (1.3) still has two important

conclusions: rabies epidemic will die out if densities of susceptible foxes drop below a

critical value St = α/β, and where densities of susceptible foxes are above this threshold,

the rabies epizootic wave front travels at a speed of

c = 2 [D(βS0 − α)]1/2

where S0 is the density of susceptible foxes before the arrival of initial infection wave.

From the standpoint of management of rabies epizootic, the formulas for St and c pro-

vide ample explanations as to how the first infection wave can be controlled. St suggests
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the level of fox population culling to prevent the further advancement of infection wave,

and estimation of D from c can indicate the width of vaccination buffer zones to be imple-

mented, provided vaccines for rabies are available.

More detailed and complicated analysis of the wave speed v can be found in Murray’s

works (Murray et al., 1986; Murray and Seward, 1992; Murray, 1989). Some nice sum-

maries of ODE and PDE models used for early studies of rabies in red fox can also be

found in (Shigesada and Kawasaki, 1997).

1.2.3 Methods using nonlocal delayed reaction diffusion equations

The reaction time lag is common among many ecological models, for example, the mat-

uration time from juvenile class to adult class. In the transmission of infectious diseases,

such as rabies, the latency in transmission caused by disease incubation time, can also be

viewed as a reaction time lag. Spatial movement is also an important feature in ecologi-

cal and epidemiological models. It is then of interest to consider both spatial movement

and reaction time lag in ecological and epidemiological models concerning spatiotempo-

ral dynamics for a single species. It turns out, however, that modeling the interplay of

these two factors is highly nontrivial, and from recent literature we can see that nonlocal

delayed reaction diffusion equations naturally arise. These systems were studied first in

early works of Yamada (1984), Pozio (1980, 1983) and Redlinger (1984, 1985). Later,

works from Britton (1990), Gourley and Britton (1996), Smith and Thieme (1991) started

systematic investigation of this new class of nonlinear differential equations motivated by

biological realities. For general work in this area we refer to a series of reviews by Gour-

ley (Gourley et al., 2004; Gourley and Wu, 2006; Gourley et al., 2008).

It was observed that juvenile foxes tend to leave their home territory in the fall in search

of new territory, with typical traveling distance up to 10 times the usual territory size. It

was also noted in (Murray et al., 1986) that it is likely for juvenile foxes to contract rabies
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during this time, resulting in additional spatial propagation of rabies infection. To address

this phenomenon, Ou and Wu (2006) started with the general framework that assumes in-

dividuals’ spatial movement characteristics depend on their maturation level. They showed

that nonlocal delayed reaction diffusion equations arise naturally.

Let S(x, t, a), I(x, t, a) be the population densities at location x ∈ R, time t and

age a ≥ 0 for the susceptible and infectious foxes. Let τ > 0 be the fixed matura-

tion time for juvenile foxes. It was shown that the density of adult susceptible foxes

M(x, t) =
∫∞
τ

S(x, t, a) da and the population density of the infectious foxes J(x, t) =∫∞
0

I(x, t, a) da satisfy

∂J

∂t
= DI

∂2J

∂x2
+ βMJ − dIJ + βJ

∫ τ

0

S(x, t, a) da

∂M

∂t
= −βMJ − dSM + S(x, t, τ),

(1.4)

where DI , dI , β, dS are diffusion coefficient, death rate for infectious foxes, and transmis-

sion rate, death rate for susceptible foxes respectively. S(x, t, a) is governed by

∂S

∂t
+
∂S

∂a
= DY

∂2S

∂x2
− βSJ − dY S

S(x, t, 0) = b(M(t, x)),

(1.5)

where DY , dY are the diffusion coefficient and death rate for the juvenile susceptible foxes

and b is the birth function that is dependent on matured susceptible foxes. It was shown

in (Ou and Wu, 2006), from analysis of this system of partial differential equations with

nonlocal and delayed terms which are implicitly defined by a hyperbolic-parabolic equa-

tion, that the minimal traveling wave speed is a decreasing function of the maturation pe-

riod.

1.2.4 Methods for modeling landscape heterogeneities

The ODE and PDE approaches, however complicated they are, all assume that popula-

tion and disease dynamics occur over a homogeneous landscape and all parameter values
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remain constant throughout time and space. This might not be a problem if problems are

restricted within a local area, but since rabies transmission usually occurs over a large

geographical region, spatial or landscape heterogeneities can be of great importance. Fur-

thermore, due to seasonal migration of animals, spatial movement of animals can have

major effects on the transmission of disease. Modeling landscape heterogeneities might

not be possible in the past when early works were limited by scarce data at fine resolu-

tion or local scale, but as refined data become more and more available, it becomes more

and more important to model landscape heterogeneities. For example, modeling and data

showed in (Russel et al., 2004; Smith et al., 2002) that rivers are effective barriers for rabies

epizootic wave, reducing by sevenfold rabies transmission across rivers.

Early attempts at incorporating landscape heterogeneity were based on the ODE and

PDE models by considering additionally some parameter variation, stochasticity, or envi-

ronmental heterogeneity. For example, a stochastic dispersal process was used in (Mollison

and Kuulasmaa, 1985) that showed good agreement with estimated fox rabies propagation

speed. Shigesada and Kawasaki (1997) allowed some variations in diffusion coefficients

between classes of individuals and between different habitats.

Agent-based modeling was also used in early models incorporating landscape hetero-

geneities. For example, Voigt et al. (1985) and MacInnes et al. (1988) used agent-based

models that are parametrized for the Ontario region in Canada and obtained insights into

rabies epidemic processes.

Many recent works that describe movement of individuals across a region follow the

procedure of discretizing the population and the geography into geopolitical units, such as

townships, and then considering the movement of individuals between units (Keeling and

Rohani, 2008; Smith et al., 2002). This approach has two inherent issues. First, geopolitical

units might help collect and categorize case data, but the spatial movement of animals

does not either follow geopolitical units, or fit the scale of geopolitical units. Therefore
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in these models using geopolitical units we see introduction of so-called long distance

translocations (Smith et al., 2005). Moreover, when models require implementation of

heterogeneities of landscapes, geopolitical units are not of much help.

It is commonplace in realistic landscapes for irregular shapes of regions or boundaries to

occur. In these circumstances, simple finite difference schemes, like those used in (Neilan

and Lenhart, 2011), are not sufficient to incorporate these realistic geographic features.

Sometimes modelers need refer to unstructured grids to discretize space, which naturally

leads to the use of finite element methods to simulate models. There are population mod-

els (Milner, 1990; Ayati and Dupont, 2002; Gerardo-Giorda, 2008; Cusulin and Gerardo-

Giorda, 2010) that use finite element methods to model diffusion but perform numerical

experiments only on simple geometries, such as rectangles. Finite element methods are

considered in an epidemiological context in (Kim and Park, 1998) only in terms of stability

and convergence of the scheme. Numerical simulation is carried out and finite element

schemes are applied in (Keller et al., 2012) to model the diffusion of raccoon rabies in the

state of New York. Note that only a single species is considered in this work.

1.2.5 Optimal control and stochastic models

Recently the framework of the Gillespie method (Gillespie, 1977) and interacting net-

work (Kampen, 2001) are used in constructing stochastic ODEs of rabies models. Similar

to (Smith et al., 2002; Russel et al., 2006), subpopulations distributed over a network are

each represented by set of ODEs and coupled with each other by parameters for local spread

or long distance translocation. The rates of events happening in each subpopulation, for

example birth, death, infection and movement, are chosen according to some distribution.

Therefore, different from traditional deterministic equations where events and population

densities are continuous, events in these stochastic models happen in discrete times and

densities change in integer increments, which gives these models a sense of realism.
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Duke-Sylvester et al. (2010) constructed a stochastic rabies model to study the role of

seasonality in dynamics of the rabies virus in raccoon along the East coast in the United

States. In this paper a north-south latitudinal gradient in the seasonal demography of rac-

coon birth rates is implemented, which allows for simulation of variance in the timing of

birth pulses for raccoons from Southern and Northern United States. It is found that nar-

row birth pulses associated with raccoons from Northern United States contribute to irreg-

ular rabies epidemics that are not spatially synchronized; however, in southern populations

greater variance in birth pulses of raccoons leads to spatial synchronization of epidemics.

This has potential implications for smart allocation of resources for surveillance of south-

ern and northern raccoon populations. Due to synchronization in epidemics in southern

raccoon populations, it might be reasonable to free up some resources for other purposes,

for example vaccination programs.

Similar to Smith and Harris (1991), Duke-Sylvester et al. (2010) constructed stochas-

tic simulation models that include spatial dynamics but no age structure. However, as

a disease spreads through a host population over a large geographical range it may en-

counter significant variation in demographical structure. There are also some stochastic

models that incorporate both age structure and spatial dynamics. For example, Allen et al.

(2002) developed a spatially explicit, age-structured, stochastic and discrete-time Markov

chain model for rabies spread. The population is subdivided according to juveniles and

adults, susceptible, infected and vaccinated individuals, and individuals move between ad-

jacent patches. And an estimation for the probability of disease elimination is given for the

stochastic model.

Another more realistic aspect concerns the management of rabies spread in wildlife

using vaccination, which is used extensively to avoid spillover to humans, domestic ani-

mals, or prevent existing rabies epizootics from further spreading into other wildlife pop-

ulations (Jackson and Wunner, 2002a). Because usually public health resources for pro-
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duction, distribution and maintenance of rabies vaccines are limited, it is helpful for strate-

gies for vaccination in wildlife populations to incorporate the effects of landscapes, such

as mountains, rivers, on the movement of wildlife populations. Indeed, there are stud-

ies (Smith et al., 2002) that show rivers, in particular, slow down the advance of rabies due

to decrease in local short distance dispersal rate across rivers. Therefore, it has become

a popular trend to incorporate factors of landscape features in optimal control models for

rabies (Russel et al., 2006). So, in addition to limited public health resources, the spa-

tial distribution of rabies vaccines is directed by landscape features (Stark et al., 2006).

Landscape effects on rabies spatial spread, the limited public health resources, and various

kinds of rabies management objectives, combine to place a premium on obtaining the best

outcome.

It is a newly formed trend in infectious disease modeling that spatial dynamics of in-

fectious disease are considered in optimal control models. There are a few recent works

that focus on combine spatial rabies spread and formulation of optimal rabies vaccination

strategies. For example, Russel et al. (2006) compared optimal spatial vaccination policies

with and without spatial barriers. Ding et al. (2007) discussed a model that incorporates the

natural attrition of vaccine baits. It is likely that vaccines distributed are consumed by other

non-target animals, degrade in natural environment. In this paper, optimal control model

was constructed that showed how optimal control strategies are shaped by possibilities of

natural attrition. Asano et al. (2008) considered a compartmental model with suscepti-

ble, infectious, exposed classes that incorporates spatial heterogeneities in the disease-free

population, which in turn were shown to influence optimal spatial vaccination strategies.

1.2.6 Objectives

Traveling wavefront solutions arise naturally from reaction diffusion equations like

(1.3). In these models the existence of traveling wavefront solutions and their minimum
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speed are of primary concern. The existence of traveling wave fronts in various epidemic

models described by reaction-diffusion systems has been extensively studied. We refer to

the monographs of Murray (2002), Rass and Radcliffe (2003) and a survey by Ruan (2007).

Recent development also abounds in exploring traveling wave solutions to delay reaction

diffusion equations and their minimum wave speeds (Gourley and Kuang, 2005; Wu and

Zou, 2001). To incorporate incubation period for rabies we can either choose to explic-

itly assign an exposed class of animals, or implicitly include it in a delay. The explicit

model results in a susceptible-exposed-infective system of reaction diffusion equations,

and the implicit method gives rise to a susceptible-infective system of delay reaction dif-

fusion equations. We intend to compare the modeling processes behind these two models

and their respective minimum traveling wave speeds.

It is important that mathematical models capture dynamics of realistic processes. For

example, the simple system (1.3) proposed by Murray et al. (1986) has implications that

are qualitatively in accordance with realistic observations. However, sometimes to this end,

the simplicity of mathematical models need to be sacrificed. Nowadays with the help of

improving computing capabilities and numerical schemes the difficulties of treating com-

plicated mathematical models are partially relieved by computer simulations. Then the

simulation outputs can be examined and compared with actual data. Useful insights can

subsequently be drawn about realistic concerns, for instance, how rabies in wildlife would

spread over a realistic landscape. Hence there are two layers of realities in modeling here,

one coming from the model itself, for example, incorporation of spatial dispersal or delay,

and the other from data, where outputs of realistic models can be checked with the actual

observations or facts.
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1.3 Outline

In chapter 2, we take into account the incubation period from initial rabies infection to

onset of clinical symptoms. To do that we can add an exposed class in model (1.3). We can

also include a delay to model the incubation period. This leads to a delay reaction diffusion

model that only accounts for susceptible and infective classes. Murray also considered the

first option without considering dispersals of exposed animals. For our models we assume

the exposed animals disperse too. This assumption serves as an important connection be-

tween the SEI system of reaction diffusion equations and the SI system of delay reaction

diffusion equations. Then we compare the SEI reaction diffusion model with the SI delay

reaction diffusion model using the same set of parameters values. In particular we look at

their minimum traveling wavefront speeds.

In chapter 3, we use an alternative modeling approach by incorporating the infection

age. We consider the idealized situation where a single infection is placed in a naive uni-

form susceptible population. This can produce an initial wave of infection. Since this is

the first wave front, we make the simplifying assumption that population turnover is ig-

nored. When considering wave fronts in ensuing infections after the first wave, population

turnover is important, otherwise the susceptible animals would simply decline monotoni-

cally without regenerating and there would be no second wave of infections. We consider

two approaches of applying infection age dependent modeling, both of which result in an

integral equation that can be analyzed for the asymptotic speed of spread. Then we show

that under the appropriate initial condition the asymptotic speed of spread c∗ exists and give

its estimate.

In chapter 4, we consider rabies spatial spread over a realistic landscape. In most theo-

retical and mathematically tractable models, individual movement is governed by diffusion

equations in homogeneous domains, meaning no spatial dependence in parameters and dif-
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fusion is isotropic, but most realistic landscapes cause heterogeneities in the model. Rivers,

for example, may significantly hinders transmission process of rabies epidemic by altering

the direction of diffusion from rabid animals. In this chapter, we consider an irregular two-

dimensional domain of interest that incorporates geographic features such as rivers and city

limits. To simulate our model over this domain requires the use of finite element method.

The model of interest is a rabies model for skunk and bat interactions. Model is defined

over a (300 km)2 region in northeastern Texas. Model parameter values are estimated from

literatures.
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Chapter 2

SPATIAL SPREAD OF RABIES – TRAVELING WAVES

2.1 Spatial Spread of Rabies in Foxes: Comparison Between Two Models

The simple models in the previous chapter involve only susceptible and infectious

classes of animals. While they are able to capture certain aspects of an epizootic rabies

wavefront, they are still elementary in terms of neglecting the key incubation period be-

tween initial infection and subsequent onset of clinical rabid symptoms. For foxes, for

example, the incubation period generally lasts from 12 to 150 days. The movement and

dispersal of animals during this time span could influence the dynamics of epidemic wave-

fronts significantly. Therefore it is of practical and realistic importance to implicate the

factor of incubation period in our models.

In the following sections we consider and compare two models both of which de-

scribe the same underlying rabies infection process over an infinite one-dimensional do-

main −∞ < x < ∞. One is a simple susceptible-exposed-infected model featuring re-

action diffusion equations, and the other is a simple susceptible-infected model of delayed

reaction diffusion equations. From both models we seek traveling wave solutions, and by

comparing them analytically and numerically we hope to obtain insights into dependence

of system dynamics on parameters.

The underlying disease transmission process is rabies epizootic among a single type of

terrestrial animals, raccoons or foxes for example. For this work we consider foxes. So

far we don’t restrict ourselves within certain closed spatial domain and we only consider

an infinite one-dimensional spatial domain −∞ < x < ∞. In addition, the spatial range

is considered homogeneous and there is no dependence of system parameter values on
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spatial element, which means that all parameters are necessarily constants. We assume the

following for our modeling work

(1) reproduction occurs only in susceptible class, and growth dynamics of susceptibles is

modeled by logistic terms;

(2) from inoculation to onset of clinical rabid symptoms, there is an incubation period of

an average length 1/σ; animals in this phase are grouped in the exposed class, E;

(3) infectious animals, I , invariably die after a short time of an average length 1/µ; since

rabies is fatal, we don’t consider background mortality in infectious class;

(4) rabies virus is able to cause either furious rabid symptoms, where virus enters central

nervous system leading to abnormalities in animal behaviors such as disorientation

and randomly attacking and biting other animals, or paralysis, which is caused by virus

lodging in spinal cords; as a result, we assume that both exposed and infectious animals

disperse because of rabies infection;

(5) susceptible class, S, tend to stick to their home ranges, for example foxes, so we assume

that susceptibles don’t disperse.

(6) although young animals sometimes disperse out of their home range while they search

for new territory, we opt to ignore the possibility of them being bitten by infectious

animals during their search, since there have been some observations given by Artois

and Aubert (1982) and MacDonald (1980) where rabies is much less common in the

young than adults. The influence of age structures and maturation is considered in the

form of a system of delayed reaction diffusion equations with nonlocal interactions

by Ou and Wu (2006).
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2.2 Models

The SEI reaction diffusion model is readily obtained by adding diffusion terms for both

exposed and infectious classes

∂S

∂t
= rS

(
1− S

K

)
− βIS

∂E

∂t
= βIS − bE − σE +D2

∂2E

∂x2

∂I

∂t
= σE − µI +D1

∂2I

∂x2

(2.1)

with initial conditions

S(x, 0) = S0(x), E(x, 0) = E0(x), I(x, 0) = I0(x)

where S0, E0, I0 are smooth functions, r,K, β, b, σ are intrinsic growth rate, carrying ca-

pacity, infection rate, death rate for exposed animals and progression rate from exposed

to infectious class respectively, D1, D2 > 0 are diffusion coefficients for infectious and

exposed classes while we assume that D1 > D2.

While the derivation of SEI reaction diffusion model (2.1) seems straightforward, the

deduction of delayed reaction diffusion model is complicated by the fact that because of

diffusion when an exposed animal becomes infectious it might emerge at a location differ-

ent from where it initially was infected. Therefore a more careful and deliberate design is

needed.

Let T = 1/σ be the fixed incubation time. For the following we intend to use delayed

reaction diffusion equations to model the same rabies infection process described by (2.1),

and reduce the SEI structure to an SI system

∂S

∂t
= rS

(
1− S

K

)
− βIS

∂I

∂t
= −µI +D1

∂2I

∂x2
+ {rate of recruitment from exposed class}

(2.2)
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In order to fill out those in curly braces, we will use an age structure way similar to those

in (Gourley and Kuang, 2005; So et al., 2001; Thieme and Zhao, 2001, 2003).

Let p(x, t, a) denote the density of exposed animals at time t, location x and infection

age a ∈ [0, T ].

Following the convention of age structure modeling (Metz and Diekmann, 1986; So

et al., 2001), assume that p satisfies equation

∂p

∂t
+
∂p

∂a
= D2

∂2p

∂x2
− bp. (2.3)

where D2 is diffusion coefficient and b is death rate for E.

Note that the initial condition, when a = 0, is

p(x, t, 0) = βS(x, t)I(x, t). (2.4)

Total density of exposed animals at time t and location x is thus

E(x, t) =

∫ T

0

p(x, t, a) da.

Let pr(x, a) = p(x, a+ r, a). Then

∂pr

∂a
=

[
∂p

∂t
+
∂p

∂a

]
t=a+r

=

[
D2

∂2p

∂x2
− bp

]
t=a+r

= D2
∂2pr

∂x2
− bpr.

pr(x, a) can be solved using the Gaussian kernel, the fundamental solution associated with

partial differential operator ∂t −∆x

Γ(t, x) =
1√
4πt

e−
x2

4t

so that

pr(x, a) =

∫ ∞
−∞

βS(y, r)I(y, r)e−baΓ (D2a, x− y) dy.

Let t = a+ r, then r = t− a and

p(x, t, a) =

∫ ∞
−∞

βS(y, t− a)I(y, t− a) e−baΓ (D2a, x− y) dy.

19



Hence the total density of exposed animals is

E(x, t) =

∫ T

0

∫ ∞
−∞

βS(y, t− a)I(y, t− a) e−baΓ (D2a, x− y) dy da

=

∫ t

t−T

∫ ∞
−∞

βS(y, τ)I(y, τ) e−b(t−τ)Γ (D2(t− τ), x− y) dy dτ

the last equation is by a change of variable τ = t− a.

Now for convenience let

G(x, t, τ) = e−b(t−τ)Γ (D2(t− τ), x) .

Then

E(x, t) =

∫ t

t−T

∫ ∞
−∞

βS(y, τ)I(y, τ)G(x− y, t, τ) dy dτ.

Note that

∂E

∂t
=

∫ ∞
−∞

βS(y, t)I(y, t)G(x− y, t, t) dy

−
∫ ∞
−∞

βS(y, t− T )I(y, t− T )G(x− y, t, t− T ) dy

+

∫ t

t−T

∫ ∞
−∞

βS(y, τ)I(y, τ)
∂G

∂t
(x− y, t, τ) dy dτ. (2.5)

To simplify (2.5) we find that

G(x− y, t, t) = lim
τ→t

e−b(t−τ)Γ (D2(t− τ), x− y) = δ(x− y)

where δ is the Dirac delta distribution concentrated at 0. Also

G(x− y, t, t− T ) = e−bT Γ (D2T, x− y)

∂G

∂t
(x− y, t, τ) =

∂

∂t

(
e−b(t−τ)Γ (D2(t− τ), x− y)

)
= −bG (x− y, t, τ) +D2

∂2

∂x2
G(x− y, t, τ) by property of Γ(t, x).
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Therefore

∂E

∂t
=

∫ ∞
−∞

βS(y, t)I(y, t) δ(x− y) dy

−
∫ ∞
−∞

βS(y, t− T )I(y, t− T ) e−bT Γ (D2T, x− y) dy

+

∫ t

t−T

∫ ∞
−∞

βS(τ, y)I(τ, y)

[
−bG+D2

∂2G

∂x2

]
dy dτ

= βS(x, t)I(x, t)− bE +D2
∂2E

∂x2

− βe−bT
∫ ∞
−∞

S(y, t− T )I(y, t− T )Γ (D2T, x− y) dy.

It is then clear from the definition and formulation of exposed class that the last term in

previous equation is the rate of recruitment for the infectious class. Now the simple SI

delayed reaction diffusion equations are as follows

∂S

∂t
= rS

(
1− S

K

)
− βSI

∂I

∂t
= D1

∂2I

∂x2
− µI + βe−bT

∫ ∞
−∞

S(y, t− T )I(y, t− T )
e−(x−y)2/(4D2T )

2
√
πD2T

dy

(2.6)

where T = 1/σ is the incubation period, b is death rate for exposed animals and D2 the

diffusion rate for exposed class.

The simple SI delayed reaction diffusion system (2.6) is complete with proper initial

conditions

S(x, t) = S0(x, t), I(x, t) = I0(x, t)

with t ∈ [−T, 0], x ∈ (−∞,∞) and S0, I0 smooth functions.

While mathematical analysis is important, realistic perspectives, for instance typical

parameter values of fox ecology, could also provide key observations in guiding mathe-

matical analysis as well as numerical experiments. For considerations of our models (2.1)

and (2.6), typical parameter values for foxes, except for the important D1, D2, are given in

Table 2.1.
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Table 2.1: Parameter values for rabies in foxes (see Anderson et al. (1981)).

Meaning Parameter Value

Growth rate r 0.5 fox year−1

Average death rate b 0.5 fox year−1

Average duration of infectious/rabid phase 1/µ 5 days

Average incubation time 1/σ 28 days

Transmission coefficient β 80 km2year−1

Carrying capacity K 0.25–4 foxes km−2

In the following sections we intend to seek traveling wave solutions for both models

(2.1) and (2.6) and compare their minimum traveling wave speeds. Throughout the discus-

sions we mainly focus on traveling wave fronts connecting the disease-free steady state and

endemic steady state. As a result the existence of endemic or positive steady state must be

ensured.

2.3 Traveling wavefronts for SEI reaction diffusion model

Two steady states for system (2.1) are trivial, extinction steady state (0, 0, 0) and disease-

free steady state (K, 0, 0). The endemic or positive steady state is given by setting the right

hand side of (2.1) to zero and solving for positive solutions (S∗, E∗, I∗). They are

S∗ =
µ

β

b+ σ

σ

E∗ =
µr

σβ

(
1− µ

βK

b+ σ

σ

)
I∗ =

r

β

(
1− µ

βK

b+ σ

σ

) (2.7)

Positive steady state given in (2.7) exists if and only if

1− µ

βK

b+ σ

σ
> 0⇔ K >

µ

β

b+ σ

σ
=: Kc (2.8)
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where Kc > 0 is defined as the critical carrying capacity. If K < Kc the rabies endemic

steady state does not exist.

To reduce the amount of parameters considered, we introduce the following nondimen-

sional quantities

S̃ =
S

K
, Ẽ =

E

K
, Ĩ =

I

K
,

r̃ =
r

βK
, b̃ =

b

βK
, σ̃ =

σ

βK
, µ̃ =

µ

βK

x̃ =

√
βK

D1

x, t̃ = βKt, ε =
D2

D1

.

(2.9)

With the scalings defined in (2.9), (2.1) becomes, on removing tildes for simplicity

∂S

∂t
= rS (1− S)− IS

∂E

∂t
= IS − bE − σE + ε

∂2E

∂x2

∂I

∂t
= σE − µI +

∂2I

∂x2

(2.10)

To revert to dimensionalized variables, we only need to refer to scalings defined in (2.9).

Then steady states in dimensionless model (2.10) are extinction steady state (0, 0, 0),

disease-free steady state (1, 0, 0) and positive steady state (S∗, E∗, I∗) defined by

S∗ =
b+ σ

σ
µ

E∗ =
µr

σ

(
1− b+ σ

σ
µ

)
I∗ = r

(
1− b+ σ

σ
µ

) (2.11)

with the positive steady state defined above possible if and only if

b+ σ

σ
µ < 1. (2.12)

For considerations of realistic values for dimensionless variables we refer to Table 2.1

for values of dimensionalized variables for foxes in Europe. If we set K = 2 then for
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dimensionless parameters

r = 0.003 = b, σ = 0.08, µ = 0.453. (2.13)

where we can observe that dimensionless r � 1 and b � 1 are small compared with

dimensionless σ, µ, which reflects the fact that death rate for rabies is much greater than

natural growth and death rates.

From here on in this section, for convenience we refer to the dimensionless parameter

and variables with their names. Dimensionless parameters and variables are distinguished

from dimensionalized ones only when necessary.

2.3.1 Minimum wave speed for SEI reaction diffusion model

We look for epizootic wave solutions to (2.10), which travels at a constant velocity

v > 0 into a rabies free region corresponding to disease-free steady state (1, 0, 0). Thus, let

z = x+ vt

we look for (S(z), E(z), I(z)) that satisfy

vS ′ = rS(1− S)− IS

vE ′ = IS − bE − σE + εE ′′

vI ′ = σE − µI + I ′′

(2.14)

We assume that (S(−∞), E(−∞), I(−∞)) = (1, 0, 0) and (S ′(−∞), E ′(−∞), I ′(−∞)) =

(0, 0, 0). Also assume that threshold condition (2.12) holds, so that traveling wave solutions

are likely to go to either extinction steady state (0, 0, 0) or endemic steady state (S∗, E∗, I∗).

Write (2.14) as a 5-dimensional first order ODE system in (S,E, P, I,Q) where we let
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P = E ′ and Q = I ′, where ′ denotes differentiation with respect to z

S ′ =
r

v
S(1− S)− 1

v
IS

E ′ = P

P ′ =
v

ε
P − 1

ε
IS +

b+ σ

ε
E

I ′ = Q

Q′ = vQ− σE + µI

(2.15)

In the neighborhood of disease-free equilibrium (1, 0, 0) the system behavior is deter-

mined by linearized system, and solutions of the linearized system is determined by linear

combinations of eigensolutions in the form of weλz, where w and λ are eigenvector and

corresponding eigenvalue of Jacobian matrix (2.16) evaluated at disease-free equilibrium

(1, 0, 0).

The Jacobian matrix for (2.15) is

J =



r
v
− 2 r

v
S − 1

v
I 0 0 − 1

v
S 0

0 0 1 0 0

−1
ε
I b+σ

ε
v
ε
−1
ε
S 0

0 0 0 0 1

0 −σ 0 µ v


(2.16)

After calculating the characteristic equation it is revealed that eigenvalues of Jacobian

matrix (2.16) at (1, 0, 0) is λ1 = −r/v and roots of the following degree 4 polynomial

f(λ) = g(λ)− σ

ε
(2.17)

where

g(λ) =
(
λ2 − vλ− µ

)(
λ2 − v

ε
λ− b+ σ

ε

)
. (2.18)
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Now we observe that

f(0) = g(0)− σ

ε

= µ
b+ σ

ε
− σ

ε

=
σ

ε

(
b+ σ

σ
µ− 1

)
< 0 by (2.12)

f ′(0) = g′(0)

= −v
(
−b+ σ

ε

)
+
(
−v
ε

)
(−µ)

=
v

ε
(b+ σ + µ) > 0 since v > 0.

The graph of f(λ) is obtained by shifting downward the graph of g(λ) by σ
ε
. From the

equation for g(λ) we know that g(λ) has two distinct positive real roots and two distinct

negative real roots. Additionally, we obtain above that f(0) < 0 and f ′(0) > 0, so the graph

of f(λ) can only look like one of three cases described in Figure 2.1. In other words, the

middle part where the hump is located can cross the λ axis, just touch λ axis, or stay below

it, which correspond to respectively two distinct positive real roots, a double positive root

at λc, and two complex roots with positive real parts. Furthermore, it is readily seen that as

v increases, the middle hump rises gradually from below λ axis and eventually touches and

crosses it.

When the velocity v is such that f(λ) has two complex roots, with Imλ 6= 0, these rep-

resent oscillatory solutions in the neighborhood of disease-free steady state (1, 0, 0, 0, 0),

which imply negative populations, and hence physical waves cannot travel with such ve-

locities. Thus we seek the exact λc and vc such that middle part of f(λ) just touches the
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Figure 2.1: The profiles for a hypothetical degree 4 polynomial f(λ) = (λ2 − vλ −
1)(λ2− v

2
λ− 1)− 2 with different values for v. In general the polynomial is obtained from

characteristic polynomial for Jacobian (2.16) about (1, 0, 0). Then f(λ) definitely has one
positive real and negative real roots, but additionally could have (a) double root at λc, (b)
two distinct positive real roots or (c) two complex roots with positive real parts.

horizontal axis, which corresponds to a double root. And this vc corresponds to the mini-

mum wave speed of an epidemic wavefront.

In order to find such a vc, we need to set f(λ) = 0 and f ′(λ) = 0, from which we have

the following system of nonliner equations for v, λ

λ4 −
(
v
ε

+ v
)
λ3 +

(
v2

ε
− b+σ

ε
− µ

)
λ2 + v

ε
(b+ σ + µ)λ+ σ

ε

(
b+σ
σ
µ− 1

)
= 0

4λ3 − 3
(
v
ε

+ v
)

+ 2
(
v2

ε
− b+σ

ε
− µ

)
λ+ v

ε
(b+ σ + µ) = 0.

(2.19)

We can solve for the positive pair (v0, λ0) that corresponds to the middle hump of f(λ)

where the graph just touches the λ-axis. The solution can be obtained numerically using

Newton method. Note that with this pair of solution (v0, λ0), corresponding to the middle
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hump, we have f ′′(λ0) < 0.

Proposition 2.1 If traveling wave solutions of (2.10) exist with

lim
z→−∞

(S(z), E(z), I(z)) = (1, 0, 0) and lim
z→−∞

(S ′(z), E ′(z), I ′(z)) = (0, 0, 0)

then the minimum wave front speed v0 of the dimensionless system (2.10) is given by solving

the positive solution (v0, λ0) in (2.19) such that f ′′(λ0) < 0.

Proof See previous discussions in this section.

Now that we have the minimum wave front speed, it follows from the next proposition that

trajectories corresponding to this wave front cannot connect the disease-free steady state

(1, 0, 0, 0, 0) and the extinction equilibrium (0, 0, 0, 0, 0).

Proposition 2.2 If the threshold condition (2.12) holds, and traveling wave solutions of

(2.10) exist with

lim
z→−∞

(S(z), E(z), I(z)) = (1, 0, 0) and lim
z→−∞

(S ′(z), E ′(z), I ′(z)) = (0, 0, 0)

then the traveling wave solutions cannot have extinction equilibrium as asymptotic state.

Proof First we consider the system (2.15) linearized about the origin in the 5-dimensional

space (S,E, P, I,Q). The Jacobian matrix evaluated at the origin is thus

J(0) =



r
v

0 0 0 0

0 0 1 0 0

0 b+σ
ε

v
ε

0 0

0 0 0 0 1

0 −σ 0 µ v


The eigenvalues of J(0) is r

v
and roots of

p(λ) =

(
λ2 − v

ε
λ− b+ σ

ε

)(
λ2 − vλ− µ

)
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with

λ2,3 =
v ±

√
v2 + 4ε(b+ σ)

2ε
, λ4,5 =

v ±
√
v2 + 4µ

2
.

In the neighborhood of the origin, trajectories that approach it correspond to linear combi-

nations of eigensolutions with negative eigenvalues

λ3 =
v −

√
v2 + 4ε(b+ σ)

2ε
, λ5 =

v −
√
v2 + 4µ

2
.

It is also readily obtained from plugging λ3, λ5 back to solve for their corresponding eigen-

vectors

φ3 =



0

1

λ3

0

0


, φ5 =



0

0

0

1

λ5


i.e. trajectories that approach the origin (0, 0, 0, 0, 0) are linear combinations in the form of

c3e
λ3zφ3 + c5e

λ5zφ5

where c3, c5 are constants and z = x+ vt.

Since both φ3, φ5 have zero in the first entry, all trajectories that approach the ori-

gin are in the S = 0 plane, meaning that every trajectory approaching the origin in the

(S,E, P, I,Q) space in forward time would stay in the S = 0 plane throughout both back-

ward and forward time. This is a contradiction.

Going back to the three-dimensional space of (S,E, I), it is therefore not possible for

traveling wave solutions of (2.10) to have (0, 0, 0) as asymptotic state, if they start from

(1, 0, 0).
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2.3.2 Behavior of traveling wave solutions near positive steady state

Proposition 2.2 implies that if (2.12) holds, i.e. endemic steady state exists, a traveling

wave can only occur if there is a trajectory from the disease-free steady state (1, 0, 0) to the

critical point (S∗, E∗, I∗).

Next we consider the behavior of the wave as it approaches the critical point (S∗, E∗, I∗).

First note that b, r � 1. This suggests an asymptotic analytical procedure. With the

endemic steady state defined in (2.11), if (2.12) holds, these values are given, up to the first

order in b and r, by

S∗ = µ+
µ

σ
b

E∗ =
µ(1− µ)

σ
r

I∗ = (1− µ)r

(2.20)

Sufficiently close to the endemic steady state, solutions of (2.15) follow those of the lin-

earized form. So we can determine the solution behavior near the endemic steady state

by considering all possible linear combinations of the eigensolutions. If Reλi < 0, then

wi exp(λiz) → 0 as z → ∞, where wi and λi are the five eigenvectors and eigenvalues

of the corresponding coefficient matrix evaluated at the endemic steady state, whereas if

Reλi > 0 the trajectory comes out of the endemic steady state. Trajectories leaving the

critical point thus correspond to linear combinations of those eigensolutions wi exp(λiz)

with Reλi > 0. And similarly trajectories entering the critical point correspond to linear

combinations of those eigensolutions with Reλi < 0.
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We now substitute (2.20) in the Jacobian (2.16)

J =



−µr
v

(1 + 2
σ
b) 0 0 −µ

v
(1 + b

σ
) 0

0 0 1 0 0

−1−µ
ε
r σ

ε
+ b

ε
v
ε
−µ

ε
− µ

εσ
b 0

0 0 0 0 1

0 −σ 0 µ v


. (2.21)

After some algebra, we arrive at the characteristic equation

λ5 −
(
v +

v

ε
− µ

v
r − 2µ

σv
br

)
λ4

−
(
µ+

σ

ε
− v2

ε
+

1

ε
b+

(
1 +

1

ε

)
µr +

2µ

σ

(
1 +

1

ε

)
br

)
λ3

+

(
µv

ε
+
σv

ε
+
v

ε
b− µ

v

(
σ

ε
− v2

ε
+ µ

)
r − 2µ

σv

(
3σ

2ε
− v2

ε
+ µ

)
br − 2µ

εσv
b2r

)
λ2

+

(
µ

ε
(µ+ σ) r +

µ

ε

(
3 +

2µ

σ

)
br +

2µ

εσ
b2r

)
λ

+
σµ(1− µ)

εv
r +

µ(1− µ)

εv
br = 0.

(2.22)

Let

λ = c0 + c1b
α + c2r

β

where c0, c1, c2 are constants, 0 < α, β ≤ 1.

Substitute this in (2.22), up to order O(1)

c5
0 −

(
v +

v

ε

)
c4

0 −
(
µ+

σ

ε
− v2

ε

)
c3

0 +
(µv
ε

+
σv

ε

)
c2

0 = 0. (2.23)

It is easy to see that two roots of (2.23) are 0, so two eigenvalues are small in amplitude

compared with the others. There are two positive roots, one in (v, v
ε
) and the other in

(v
ε
,∞). There is also a negative root, which we denote as λ1.

Now in order to get the two small eigenvalues, which we denote as λ2, λ3, we assume

that

λ2,3 = c1b
α + c2r

β.
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Substitute it again in (2.22). After some algebra, first we note that terms in lowest order of

r need to be balanced. So(µv
ε

+
σv

ε

)
c2

2r
2β +

σµ(1− µ)

εv
r = 0.

Solving this equation

β =
1

2
, c2 = ± i

v

(
σµ(1− µ)

σ + µ

)1/2

. (2.24)

Notice that c1 = 0, since with a nonzero c1 there is always a term(µv
ε

+
σv

ε

)
b2α

that cannot be balanced.

Now let the two small eigenvalues be instead

λ2,3 = c2r
β + c3r

γ

where c2, r are given by (2.24) and c3 constant, 1/2 < γ ≤ 1.

The next lowest term in r is r3/2, so γ = 1, and setting coefficient of r3/2 to 0

−
(
µ+

σ

ε
− v2

ε

)
c2

2 +
(µv
ε

+
σv

ε

)
2c3 +

µ

ε
(µ+ σ) = 0.

Solving this equation gives

c3 = − µ

2v3(µ+ σ)2

[
v2
(
(µ+ σ)2 − σ(1− µ)

)
+ σ(εµ+ σ)(1− µ)

]
. (2.25)

Notice that in (2.25) the polynomial in σ, (µ+ σ)2 − σ(1− µ) has a discriminant

(1− µ)(1− 5µ) < 0

for the parameter value µ of our choice in (2.13).

So c3 < 0 and

λ2,3 = ± i
v

(
r
σµ(1− µ)

σ + µ

)1/2

− r µ

2v3(µ+ σ)2

[
v2
(
(µ+ σ)2 − σ(1− µ)

)
+ σ(εµ+ σ)(1− µ)

]
.

(2.26)
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up to first order in r.

So near the endemic steady state (S∗, E∗, I∗), any solution that approaches it as z →

∞ is a linear combination of the eigensolutions corresponding to λ1,2,3, since they have

negative real parts. Since |λ1| � |Reλ2,3|, the amplitude of eigensolution corresponding

to λ1 decays much faster than that of the eigensolutions corresponding to complex λ2,3.

Therefore, sufficiently far back at the tail of the wave, i.e. for sufficiently large z, the

eigensolutions corresponding to λ2,3 govern the behaviors of the traveling wave.

2.3.3 Existence of traveling wave solutions

We have excluded the traveling wave solutions from disease-free steady state to the

origin by proposition 2.2, however for the first order system (2.15) the existence of traveling

wave solutions that satisfy

lim
z→−∞

(S,E, I) = (1, 0, 0), lim
z→−∞

(S ′, E ′, I ′) = (0, 0, 0)

and

lim
z→∞

(S,E, I) = (S∗, E∗, I∗), lim
z→∞

(S ′, E ′, I ′) = (0, 0, 0)

have not been discussed. Let us briefly discuss the intuitive reason that traveling wave

solutions satisfying the above conditions exist.

The traveling wave solutions correspond to orbits in phase space connecting one crit-

ical point to another. For our first order system in (2.15) the task is to find a trajectory

connecting (1, 0, 0, 0, 0) to (S∗, 0, E∗, 0, I∗) in R5, with S,E, I > 0.

Many studies exist that concern the existence of traveling wave solutions to reaction

diffusion equations (see for instance the monograph by Volpert et al. (1994) and references

citepd therein). However the traveling waves found are shown using quasi-monotone dy-

namical system theories and constructing upper and lower solutions to set up proofs using

fixed point theorems. In our case, the system (2.15) is not necessarily quasi-monotone.
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From our linearized analysis near the disease-free steady state, we find that unstable

manifold at (1, 0, 0, 0, 0) is three dimensional, since there are three eigenvalues with pos-

itive real parts for Jacobian matrix at (1, 0, 0, 0, 0). In previous section, we show that the

stable manifold of (S∗, 0, E∗, 0, I∗) is three dimensional, since there are three eigenval-

ues with negative real parts for the corresponding Jacobian matrix. Roughly speaking, the

traveling wave solutions are identified as the intersection of the three dimensional unstable

manifold at (1, 0, 0, 0, 0) and the three dimensional stable manifold at (S∗, 0, E∗, 0, I∗) in

R5 with S,E, I > 0. This induces topological arguments that are similar to those employed

in Dunbar (1984).

2.4 Traveling wavefronts for delayed SI reaction diffusion model

For system (2.6) we do not look for nondimensionalization. The possible equilibriums

are extinction equilibrium (0, 0), disease-free equilibrium (K, 0) and endemic equilibrium

(Ŝ, Î) where

Ŝ =
µ

β
ebT

Î =
r

β

(
1− µ

βK
ebT
) (2.27)

And (2.27) are positive if and only if

1− µ

βK
ebT > 0⇔ K >

µ

β
ebT =: K̂c (2.28)

where K̂c is defined as the critical carrying capacity for (2.6), similar to Kc. Note that we

let T = 1/σ.

2.4.1 Minimum wave speed for delayed SI reaction diffusion model

Here we only look for traveling wave solutions of (2.6) connecting the disease-free

steady state (K, 0) with the endemic equilibrium (Ŝ, Î) given by (2.27). We also assume

that (2.28) holds so that the endemic equilibrium exists.
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The traveling wave solution describes the invasion process by the rabies virus into a

group of susceptible animals. To study the minimum traveling wave speed, we let z =

x+ vt, where v ≥ 0 without loss of generality. Then system (2.6) becomes

vS ′ = rS

(
1− S

K

)
− βSI

vI ′ = D1I
′′ − µI + βe−bT

∫ ∞
−∞

S(z − vT − y)I(z − vT − y)
e−y

2/(4D2T )

2
√
πD2T

dy

(2.29)

where differentiation is with respect to z, and the second equation is the result of a change

of variable ỹ = x− y in the integral and getting rid of the tilde.

We need to solve (2.29) for (S(z), I(z)) subjected to

lim
z→−∞

(S, I) = (K, 0) and lim
z→∞

(S, I) = (Ŝ, Î).

Assume that the solution exist and we will focus on the speed v ≥ 0 at which endemic wave

front can spread. Primarily we seek the minimum wave front speed that gives biologically

reasonable solutions, i.e. S(z), P (z) ≥ 0. As a result, we require that as z → −∞, the

convergence of I(z) to 0 is non-oscillatory.

As we linearize the second equation of (2.29) about (K, 0), we obtain

vI ′ = D1I
′′ − µI + βKe−bT

∫ ∞
−∞

I(z − vT − y)
e−y

2/(4D2T )

2
√
πD2T

dy

which has solutions I(z) = eλz if λ satisfies the following

vλ = D1λ
2 − µ+ βKe−bT e−vTλ

∫ ∞
−∞

e−λy
e−y

2/(4D2T )

2
√
πD2T

dy.

Note that in the integral we have the Gaussian kernel or the fundamental solution associated

with partial differential operator ∂t −∆x

Γ(t, x) =
1√
4πt

e−
x2

4t

where t is replaced by D2T .

The following proposition will be used
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Proposition 2.3 (Proposition 4.2 in (Thieme and Zhao, 2003)) Let Γ(t, x) be the funda-

mental solution associated with the partial differential operator ∂t −∆x. Then∫
Rn

e−λy1 Γ(s, y) dy = eλ
2s

with y1 the first coordinate of y.

Therefore by proposition 2.3∫ ∞
−∞

e−λy
e−y

2/(4D2T )

2
√
πD2T

dy =

∫
R
e−λy Γ (D2T, y) dy = eD2Tλ2 .

It then follows that λ needs to satisfy

−D1λ
2 + vλ+ µ = βKeT(D2λ2−vλ−b) (2.30)

Let

f(λ) = −D1λ
2 + vλ+ µ and g(λ) = βKeT(D2λ2−vλ−b)

Define

p(λ) = f(λ)− g(λ).

Rewriting both left and right-hand sides of (2.30), we have

−D1

(
λ− v

2D1

)2

+
v2

4D1

+ µ = βKe−bT e
D2

(
λ− v

2D2

)2
− v2

4D2 (2.31)

To find the minimum traveling wave speed, it is necessary to make sure that there is at least

one positive real root of p(λ) and no complex roots exist with positive real parts so that

I(z) will converge to 0 in a non-oscillatory way. As we can see from Figure 2.2 plots of

both left and right-hand sides of (2.31), if v is small there are no real positive roots, and as

v increases, there is a critical value v̂c at which the left and right-hand sides of (2.31) just

touch and are tangent to each other, which corresponds to a positive double root for p(λ).

Further increase in v > v̂c will lead to two distinct positive real roots for p(λ).
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Figure 2.2: The profiles for typical left and right hand-side functions in (2.31) with various
values of v. Here f(λ) = −(λ − v/2)2 + v2/4 + 1 and g(λ) = 2e(λ−v)2/2−v2/2. p(λ) =
f(λ)− g(λ) is obtained from linearization of second equation in (2.29) about (K, 0). Then
f(λ) and g(λ) could have (a) a double root at λc, (b) two distinct positive real roots or (c)
two complex roots with positive real parts.

To find the critical wave speed v̂c we only need to solve for λ > 0 from

p(λ) = 0 and p′(λ) = 0

which gives us

−D1λ
2 + vλ+ µ = βKe−bT eD2Tλ2−vTλ

−2D1λ+ v = βKe−bT eD2Tλ2−vTλ (2D2Tλ− vT )
(2.32)

Combining two equations in (2.32) gives us

q(λ) = T (2D2λ− v)(D1λ
2 − vλ− µ)− (2D1λ− v) = 0. (2.33)
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We note that

q

(
v

2D1

)
= T

(
D2

D1

− 1

)
λ

(
− v2

4D1

− µ
)
> 0 since D2 < D1

q

(
v +

√
v2 + 4D1µ

2D1

)
= −

√
v2 + 4D1µ < 0

q

(
v

2D2

)
= −

(
D1

D2

− 1

)
v < 0 since D2 < D1.

Hence there exists a unique positive real root λc for q(λ) in(
v

2D1

,min

{
v

2D2

,
v +

√
v2 + 4D1µ

2D1

})

Note that there is also another positive root λ̄ > λc in (2.33), but since

λ̄ >
v +

√
v2 + 4D1µ

2D1

the left hand side of the first equation at λ = λ̄ in (2.32) is negative while the right hand

side is always positive. This is a contradiction, so it follows that λc, the smaller of two

positive roots in (2.33), is the unique positive real root of (2.32).

Proposition 2.4 If the condition (2.28) holds and traveling wave solutions (S(z), I(z))

exist for system (2.6) such that

lim
z→−∞

(S, I) = (K, 0) and lim
z→∞

(S, I) = (Ŝ, Î)

where Ŝ, Î are given by (2.27), then the minimum traveling wavefront speed v̂c can be

calculated first by solving for unique positive root λc of (2.33) in the interval(
v

2D1

,min

{
v

2D2

,
v +

√
v2 + 4D1µ

2D1

})
then substituting λc back into either equation of (2.32) to solve for the minimum traveling

wave speed v̂c.

Proof See previous discussions in this section.
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2.4.2 Estimation of v̂c for delayed SI system

From proposition 2.4 we know how to solve for the minimum traveling wave speed v̂c,

but unfortunately it cannot be computed explicitly. However, when T = 0 (2.32) becomes

−D1λ
2 + vλ+ µ = βK

−2D1λ+ v = 0
(2.34)

from which we obtain its solutions

v0 = 2 (D1 (βK − µ))1/2 , λ0 =

(
βK − µ
D1

)1/2

. (2.35)

Hence when T = 0 the minimum speed is given by v0 in (2.35).

Observe that from Table 2.1

T =
1

σ
≈ 0.08.

So T is small, and it is possible to estimate v̂c from (2.32) using perturbation analysis.

Also it is of interest to inquire whether the minimum wave speed will decrease or increase

when delay is introduced. With a small T we can gain useful information on this using

perturbation analysis.

Notice that λc depends on T too. Therefore

v̂c = v0 + Tv1 + T 2v2 + · · ·

λc = λ0 + Tλ1 + T 2λ2 + · · ·

where v0, λ0 are given in (2.35).

Equating coefficients of order O(T ) in both equations for (2.32)

(−2D1λ0 + v0)λ1 + λ0v1 = βK (−b+D2λ
2
0 − v0λ0)

−2D1λ1 + v1 = βK (2D2λ0 − v0) .
(2.36)

After some algebra, we find that

v1 = βK

(
βK − µ
D1

)1/2(
D2 −D1

(
2 +

b

βK − µ

))
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so that for small delays, the minimum wave speed is given by

v̂c = 2 (D1 (βK − µ))1/2 + TβK

(
βK − µ
D1

)1/2(
D2 −D1

(
2 +

b

βK − µ

))
+ · · · .

(2.37)

Thus, whether the minimum wave speed is increased or reduced by a small delay T depends

on the sign of D2 − D1

(
2 + b

βK−µ

)
. As we mentioned before, we consider the case

D2 � D1 to be relevant, i.e. the dispersal of incubating animals is small. With the set of

parameter values in Table 2.1, we find that v1 < 0, so that the wave is slowed down by the

delay. More generally, it is slowed down when

D2 < D1

(
2 +

b

βK − µ

)
.

2.5 Numerical experiments of two models

In this section, using the parameter values for European foxes given in Table 2.1, first

we can calculate the minimum traveling wave speed vc and v̂c by theorem 2.1 and 2.4.

After that, we look at numerical verification of minimum traveling wave speeds given in

propositions 2.1 and 2.4. Then we consider numerical simulation of both models (2.1) and

(2.6) to observe traveling wave fronts.

2.5.1 Comparison between two models

Assume that D1 = 40 and D2 = 10, and K = 2.

To compute vc, based on Table 2.1 we have the following dimensionless parameters

r = b =
1

320
, σ =

365

4480
, µ =

365

800
, ε =

1

4

By proposition 2.1, we need to solve the system defined in (2.19) for the positive pair

(v0, λ0) such that f ′′(λ0) < 0. Then we have

v0 = 0.3531
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which has no unit and is the critical wave speed for dimensionless variables X,T . For the

normal x, t the minimum wave speed is calculated as

vc =
√

40 · 80 · 2 · 0.3531 = 28.25 km per year.

On the other hand, by proposition 2.4, the minimum wave speed for the delayed SI system

(2.6) is

v̂c = 21.97km per year.

The minimum wave speed computed for delayed SI system is slower than that for SEI

reaction diffusion model.
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Figure 2.3: Numerical experiments on sensitivity of minimum traveling wave speeds. All
parameters values are consistent with Table 2.1. (a)D1 = 40 withD2 varying. (b)D2 = 10
with D1 varying. (c) Varying K. Note that equations (2.8) and (2.28) have to be satisfied.
(d) Varying incubation length from 14 to 126 days. Also note that minimum wave speeds
computed in the illustrative example with D1 = 40, D2 = 10 are marked as a circle and
square in the plot.
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To understand how the minimum wave speeds given by propositions 2.1 and 2.4 are

affected by parameter values, we perform numerical experiments. Results are presented

in Figure 2.3. It is clear that both minimum speeds are increasing functions of D1, D2

and K but decreasing functions of incubation length. The relationship between minimum

traveling wave speeds and incubation period in both SEI and delayed SI models appears

to be an inverse relationship. And it appears that consistently the minimum wave speed

computed for the delayed nonlocal SI reaction diffusion equations is lower than that for the

SEI reaction diffusion equations. Note that asD2 approaches 0, the SEI model converges to

the model presented and studied in Murray and Seward (1992) and proved to have traveling

wave solutions.

2.5.2 SEI reaction diffusion equations

First we consider the numerical verification of the existence of traveling wave solutions

and minimum traveling wave speed for the SEI reaction diffusion system (2.1). Specifically,

with the traveling wave solution assumption z = x + vt, the original SEI system (2.1)

becomes a system of first order ODEs

vS ′ = rS(1− S
K

)− βSI

vE ′ = βSI − bE − σE +D2E
′′

vI ′ = σE − µI +D1I
′′

(2.38)

where differentiation is with respect to z.

The traveling wave solutions are assumed to connect the disease free equilibrium and

positive steady state. Hence

lim
z→−∞

(S(z), E(z), I(z)) = (K, 0, 0), lim
z→+∞

(S(z), E(z), I(z)) = (S∗, E∗, I∗)

where S∗, E∗, I∗ are given in (2.7).

To find the minimum traveling wave speed for (2.1), we can find the traveling wave
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speed for the dimensionless system (2.10) and convert it back to the original units using

scalings defined in (2.9).

For the simulation results, we use parameters

D1 = 10, D2 = 1, K = 2

and all other relevant parameter values given in Table 2.1. Hence the dimensionless param-

eter values are

ε =
D2

D1

= 0.1, r = b =
1

320
, σ =

365

4480
, µ =

365

800
.

By proposition 2.4, it is readily obtained that the minimum wave speed is

v̂ = 0.2903

which, converted to original units, becomes vc = 11.6124 kilometers per year.

Figure 2.4 shows simulation results for system (2.38) when v = 13, higher than our

numerically computed minimum traveling wave speed vc = 11.6124. The results indicate

the positivity of solution profiles for system (2.38) in both cases. Note that the traveling

wave front is not monotone. As v decreases so that v = 9 < vc = 11.6124 in Figure

2.5, proposition 2.1 and its proof suggest that traveling wave solutions are unlikely, since

oscillations aroundE = 0 and I = 0, as observed in Figure 2.5, lead to negative population

densities.

Figure 2.6 shows the simulation of system (2.1) with D1 = 10, D2 = 1, K = 2 and

other parameter values consistent with those given in Table 2.1. A rough estimation in the

overhead view of traveling profiles in Figure 2.7 gives a minimum traveling wave speed

around 12 kilometers per year. This is consistent with our observations in the numerical

verification of minimum traveling wave speed for system (2.1) and (2.38).

See Appendix for detailed implementation for numerical experiments.
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Figure 2.4: Traveling wave profiles generated from (2.38) for susceptible, incubating and
infectious animals from left to right. Assuming that v = 13 > vc = 11.6124, there is a
traveling wave front with speed v = 13.

2.5.3 Delayed SI equations

Now we numerically investigate the existence of traveling wave solutions of the simple

delayed SI reaction diffusion model (2.6). The traveling wave solution is assumed to con-

nect the disease free equilibrium and endemic equilibrium. In other words, with z = x+vt,

we assume that

lim
z→−∞

S(z) = K, lim
z→−∞

I(z) = 0

and

lim
z→∞

S(z) = Ŝ, lim
z→∞

I(z) = Î

with Ŝ, Î defined in (2.27).

Notice that the simple delayed SI model contains a time delay of incubation period, and

a non-local infection term resulted from dispersal of incubating animals. The numerical

verification of existence of traveling wave solutions and the minimum traveling wave speed
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Figure 2.5: Solution profiles generated from (2.38) for susceptible, incubating and infec-
tious animals from left to right. Assuming that v = 9 < v̂ = 11.6124, traveling wave
front does not exist because oscillations near I = 0 and E = 0 lead to negative population
densities.

are non-trivial, and the details of numerical methods used are given in the Appendix. In

this section we only look at the results from numerical simulations.

In particular, we plug in z = x+ vt to (2.6) and obtain

vS ′ = rS

(
1− S

K

)
− βSI

vI ′ = D1 I
′′ − µI + βe−bT

∫
R
S(y + v(t− T ))I(y + v(t− T ))

e
− (x−y)2

4D2T

2
√
πD2T

dy

(2.39)

where differentiation is with respect to z.

To find an appropriate v > 0 such that the above delayed differential equations have

solutions S, I that satisfy the asymptotic boundary conditions above is essentially an eigen-

value problem, which is very complicated because of the non-local term indicated by the

integral and the latency of incubation period.

We can use numerical simulations to verify appropriate v > 0 such that traveling wave

solution to (2.6) exist. Specifically we can perform numerical verification of proposition

45



Figure 2.6: Traveling wave profiles observed for system (2.1) with D1 = 10, D2 =
1, K = 2 and all other parameter values consistent with Table 2.1. Observe the oscillations
after the fist wave of infection. From a rough estimation in the overhead view in Figure 2.7,
the minimum traveling wave speed is about 12 kilometers per year.

2.4 by simulating the system (2.39) with varying v.

For the following simulation results, we use parameters

D1 = 10, D2 = 1, K = 2 (2.40)

in addition to parameters for foxes given in Table 2.1, i.e.

r = 0.5, b = 0.5, T = 28/365, µ = 365/5, β = 80.

The units for space and time are kilometers and years. With these parameter values, propo-

sition 2.4 gives the minimum traveling wave speed

v̂c = 9.003 km per year.

Figure 2.9 shows simulation results generated for system (2.39) when v = 13, which is

greater than v̂c = 9.003. It clearly indicates the existence of positive solutions to (2.39), and
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Figure 2.7: Overhead view of traveling wave profiles observed for system (2.1) with D1 =
10, D2 = 1, K = 2 and all other parameter values consistent with Table 2.1. The minimum
traveling wave speed is about 12 kilometers per year.

thus existence of traveling wave solutions. Comparing the traveling wave solution profiles

in Figure 2.9 with that presented for the SEI case (2.38) from Figure 2.4, we find that timing

and magnitude for first two infection waves are similar for both the SEI model (2.38) and

the delayed SI model (2.39). Also we observe that as v decreases past v̂c = 9.003, when

v = 5, our discussions from the proposition 2.4 suggest that positive solutions to (2.39)

are impossible. This is reflected in the negative infectious population densities observed in

Figure 2.8.

Next we present the simulation results for simple delayed SI system (2.6). The details

of numerical methods used for this part can be seen in the Appendix. For comparison

purposes, we choose parameter values to be the same as those used in the numerical verifi-

cation of existence of traveling wave solutions for (2.39). In particular

D1 = 10, D2 = 1, K = 2, T =
28

365
.
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Figure 2.8: Solution profiles generated from (2.39) for susceptible and infectious animals
from left to right. Assuming that v = 5 < v̂ = 9.003, traveling wave solution does not
exist, since solution for infectious animals, I , oscillates around I = 0 before increasing up
to Î .

Note that for convenience, the time step size ∆t is chosen so that

T

∆t
= B

where B is an integer. In the numerical experiment, we chose B = 40.

Figure 2.10 is the simulation result of system (2.6) with D1 = 10, D2 = 1, K = 2 and

all other parameter values consistent with Table 2.1. Observe that the simulation results

clearly show existence of traveling wave solutions. With overhead view of the traveling

waves in Figure 2.11, we can estimate the traveling wave speed to be approximately 9

kilometers per year.

In Figure 2.12 we show the simulation results when D2 = 10, i.e the diffusion rate of

incubating animals is increased to be the same as that of infectious animals D1 = 10. The

persistent oscillations after the first wave of infection still exist, but from Figure 2.13 it is

clear that increase in D2 results in increase in the traveling wave speed.
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Figure 2.9: Solution profiles generated from (2.39) for susceptible and infectious animals
from left to right. Assuming that v = 13 > v̂ = 9.003, traveling wave solution exists, since
solutions stay positive.

2.6 Conclusion and Discussion

In this chapter we have focused on the modeling of incubation period in wildlife ra-

bies models with an application to foxes. We start with an explicit approach where the

incubating animals are described by an exposed class in a reaction-diffusion susceptible-

exposed-infected (SEI) model. Alternatively we can model the incubating period by a fixed

delay between infection and onset of clinical rabid symptoms. Tracking the dispersal of la-

tent individuals and making use of the classical age structure modeling, we have obtained a

delayed reaction-diffusion susceptible-infected (SI) system which contains, in addition to

the diffusion term, a non-local infection term. The non-local term reflects the mobility of

individuals during incubation period.

For both models, we do not focus on theoretically proving the existence or non-existence

of traveling wave solutions, instead we seek to numerically verify and compare their travel-

ing wave solutions and the minimum wave speeds. From the numerical experimentation we
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Figure 2.10: The traveling wave observed for the system (2.6) with D1 = 10, D2 =
1, K = 2 and all other parameter values consistent with Table 2.1. Note the persistent
oscillations after the initial wave.

find that both models generate traveling wave solutions and their corresponding minimum

wave speeds agree with our calculations, although consistently the minimum wave speed

calculated from the delayed diffusive SI model is lower than that of reaction-diffusion SEI

model.

The main difference between the SEI and delayed SI models is the assumption about

the distribution of incubation period. In the reaction-diffusion SEI model, it is implicitly

assumed that the latency period is exponentially distributed, whereas in the delayed SI

model, the incubation period is a fixed constant. More precisely, for the SEI model, the

exponential function

pE(s) = e−σs

has been used to describe the probability of remaining in the incubation stage and the mean

duration of latent state is

TE =

∫ ∞
0

pE(s) ds =
1

σ
.
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Figure 2.11: The overhead view of traveling wave observed for the system (2.6) with
D1 = 10, D2 = 1, K = 2 and all other parameter values consistent with Table 2.1. From a
rough estimation of the traveling wave speed, it is about 9.

A fundamental property of the exponential distribution is the memory-less property, mean-

ing the remaining expected sojourn time in the exposed (E) class is independent of the

time spent in this class. This property of exponential distribution might be in disagree-

ment with the nature of rabies infection. In reality, if an infected fox, for example, already

spends some time in the exposed class, the virus must have spread within its central ner-

vous system, resulting in a smaller expected sojourn time in the exposed class. Therefore

this implicit exponential distribution assumption might conflict biological realities.

On the other hand, assuming a fixed incubation period in the delayed SI model is ques-

tionable by similar arguments. It is documented (Anderson et al., 1981) that the incubation

period for foxes, for example, varies with individuals, ranging from 12 to 150 days. Uni-

formly setting the incubation period for every individual in the population to be the same

might be an over-generalized approach.

Therefore both models have weakness in terms of their assumptions about incubation
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Figure 2.12: The traveling wave observed for the system (2.6) with D1 = 10, D2 =
10, K = 2 and all other parameter values consistent with Table 2.1. Note the persistent
oscillations after the initial wave.

period distribution. Although both of the two models generate numerically similar results,

both can be improved so that more realistic incubation stage distribution can be considered.

Epidemiological models with non-exponential distributions such as gamma distribution

have been previously discussed (see, for example, Lloyd (2001a,b)). However, for rabies,

there has been little evidence so far regarding a general incubation period distribution for

any wildlife species.

It is interesting to observe the similarity between numerical results from both models.

We have observed traveling wave solutions generated from both, with wave speeds both

decreasing in the incubation period, increasing in diffusion rates for incubating D2 and in-

fectious individuals D1, and increasing in carrying capacity K. Both wave profiles have

actual spread speed coinciding with the minimum traveling wave speed. Theoretical ques-

tions may be raised as to why these two types of modeling lead to similar system behaviors.
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Figure 2.13: The overhead view of traveling wave observed for the system (2.6) with
D1 = 10, D2 = 10, K = 2 and all other parameter values consistent with Table 2.1. It is
clear that increase in D2 leads to increase of traveling wave speed.
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Chapter 3

AN ALTERNATIVE RABIES MODEL INCORPORATING INFECTION AGE

This chapter continues the investigation of diffusive rabies epidemic models incorpo-

rating incubation period. In previous two models in chapter 2, the incubation phenomenon

was considered by either adding an exposed class or introducing a delay into the partial

differential equations, the latter of which leads to complicated delayed nonlocal reaction

diffusion equations. In this chapter we will treat the incubation period by introducing

instead an age variable “a”, which represents the time elapsed since contracting rabies.

Basically there are the following advantages in using this approach

(1) simpler expressions for the relationship between subclasses of the model (no exposed

class);

(2) less information needed for initial conditions;

(3) allowing the modeling of infection-age structure of the population.

The apparent disadvantage to this age-dependent approach, however, is the first partial

derivatives with respect to “a”, adding analytical complexities to the model.

Kermack and McKendrick (1927, 1932, 1933, 1937, 1939) provided a general frame-

work for the analysis of infectious diseases which allows the infectivity of individuals to

depend on age of infection. But the general form of Kermack and McKendrick model was

largely neglected until around 1970s (Hoppensteadt, 1974; Reddingius, 1971). The age of

infection approach has been applied extensively in epidemic models for HIV/AIDS (Thieme

and Castillo-Chavez, 1993; Feng and Thieme, 2000). Diffusive models with infection-

age-dependent structures can been seen in early works by Gurtin and MacCamy (1974,

54



1979), Webb (1980). Recently the diffusive models with infection-age-dependent struc-

tures have been studied for infection of bacteria by phage (Smith, 2008; Jones et al., 2013).

We refer to Webb (2008) for a general review on diffusive age-dependent epidemiological

models.

In sections 1 and 2, we introduce infection-age-dependent diffusion rate, infectivity and

death rate in the model. In section 1 both infectious and incubating individuals are lumped

in an infective class, whose infectivity is a function of infection age, while in section 2,

infectious individuals are differentiated from incubating ones by letting only the incubating

class be dependent on infection age. Two modeling approaches result in different model

structures but both lead to the same integral equation in the special case of fixed incubation

length which can be analyzed using theories developed in Thieme (1979), Thieme and Zhao

(2003). In section 3 a sufficient admissibility condition is given for the initial condition and

the asymptotic speed of spread c∗ is estimated.

3.1 A rabies model with infection age dependent diffusion and infectivity

We make the following simplifying assumptions first. We assume that susceptible ani-

mals do not move around while infected animals do. We also ignore the natural population

turnover of animals. Also we assume that the diffusion rate and infectivity of an infected

animal depends on its infection age a, where a is the time that has passed since the moment

of infection.

We consider one-dimensional domain of R. Let S(x, t) be the density of susceptible

animals at location x ∈ R and time t ≥ 0, and I(x, t) be the density of infected animals at

location x and time t. We stratify the infected animals along infection age a,

I(x, t) =

∫ ∞
0

I(x, t, a) da, (3.1)

where I(x, t, a) is the density of infected animals at location x and time t with infection
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age a. The use of infection age (or age at infection) goes as far back as the classical work

of Kermack and McKendrick (1927, 1932, 1933, 1937, 1939).

With the above simplifying assumptions, the susceptibles obey the following differen-

tial equations

∂tS(x, t) = −S(x, t)J(x, t) =: −B(x, t)

J(x, t) =

∫ ∞
0

η(a)I(x, t, a) da

S(x, 0) = S0(x)

(3.2)

where x ∈ R and t ≥ 0. Here we denote

B(x, t) = S(x, t)J(x, t)

as the incidence at location x and time t, i.e. the number of new infections per unit of time.

η(a) is the infectivity of an infected animal with infection age a, and J(x, t) is the infection

force at location x and time t.

To model the infected population, we first let D(a) be the infection age dependent

diffusion rate of an infected animal, and µ(a) be infection age dependent per capita death

rate of an infected animal.

In age dependent models, similar to Thieme and Zhao (2003), the density of infected

animals at location x and time t with infection age a can be modeled by

∂t I(x, t, a) + ∂a I(x, t, a) = D(a) ∂2
x I(x, t, a)− µ(a) I(x, t, a). (3.3)

For initial conditions, we have

I(x, t, 0) = B(x, t) and I(x, 0, a) = I0(x, a).

Let

v(x, r, a) = I(x, r + a, a) (3.4)

be the density at location x and time r+a of infected animals with infection age a ≥ 0 that

have been infected at time r ≥ 0.
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Now we can integrate along characteristics in (3.3). We consider r ≥ 0 as a parameter

and x, a as independent variables in the following partial differential equation

∂av(x, r, a) = D(a) ∂2
xv(x, r, a)− µ(a)v(x, r, a),

v(x, r, 0) = I(x, r, 0) = B(x, r).
(3.5)

From the properties of the Gaussian kernel we derive a solution to (3.5) that is given by

v(x, r, a) =

∫
R

Γ(θ(a), x− y)B(y, r)F(a) dy,

θ(a) =

∫ a

0

D(s) ds,

F(a) = exp

(
−
∫ a

0

µ(s) ds

) (3.6)

where the Gaussian kernel is given by

Γ(t, x) =
1√
4πt

e−
x2

4t

and F(a) is the probability of an infected individual not having died from rabies infection

at infection age a.

In fact, since by the chain rule

∂a Γ(θ(a), x) = θ′(a) ∂t Γ(θ(a), x) = D(a) ∂2
x Γ(θ(a), x)

we can derive that (3.6) is indeed a solution of (3.5). With a > 0

∂a v(x, r, a) = ∂a

(∫
R

Γ(θ(a), x− y)B(y, r)F(a) dy

)
=

∫
R
∂a Γ(θ(a), x− y)B(y, r)F(a) dy +

∫
R

Γ(θ(a), x− y)B(y, r)F ′(a) dy

=

∫
R
D(a)∂2

x Γ(θ(a), x− y)B(y, r)F(a) dy

+

∫
R

Γ(θ(a), x− y)B(y, r)F(a) (−µ(a)) dy

= D(a) ∂2
x v(x, r, a)− µ(a)v(x, r, a)
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and

v(x, r, 0) = B(x, r)

by property of the Gaussian kernel.

Also we consider

w(x, t, r) = I(x, t, t+ r) (3.7)

be the density of animals at location x and time t that already had infection age r at time 0.

Hence at time t these animals have infection age t+ r. Once again, we consider r ≥ 0 as a

parameter and x, t as independent variables of the following partial differential equation,

∂tw(x, t, r) = D(t+ r) ∂2
x w(x, t, r)− µ(t+ r)w(x, t, r)

w(x, 0, r) = I0(x, r)
(3.8)

where D,µ is evaluated at infection age t+ r.

One readily checks that a solution of (3.8) is given by

w(x, t, r) =
F(t+ r)

F(r)

∫
R

Γ (θ(t+ r)− θ(r), x− y) I0(y, r) dy. (3.9)

In fact for t > 0

∂tw(x, t, r) =∂t

(
F(t+ r)

F(r)

∫
R

Γ (θ(t+ r)− θ(r), x− y) I0(y, r) dy

)
=
∂tF(t+ r)

F(r)

∫
R

Γ (θ(t+ r)− θ(r), x− y) I0(y, r) dy

+
F(t+ r)

F(r)

∫
R
∂t Γ (θ(t+ r)− θ(r), x− y) I0(y, r) dy

=
−µ(t+ r)F(t+ r)

F(r)

∫
R

Γ (θ(t+ r)− θ(r), x− y) I0(y, r) dy

+D(t+ r)
F(t+ r)

F(r)

∫
R
∂2
x Γ (θ(t+ r)− θ(r), x− y) I0(y, r) dy

=− µ(t+ r)w(x, t, r) +D(t+ r)∂2
x w(x, t, r)

while by property of the Gaussian kernel

w(x, 0, r) = I0(x, r).

58



Therefore with the formula for I(x, t, a) defined in (3.6) and (3.9), we can express the

infection force J(x, t) in terms of v(x, r, a) and w(x, t, r),

J(x, t) =

∫ t

0

η(a)v(x, t− a, a) da︸ ︷︷ ︸
J1(x,t)

+

∫ ∞
t

η(a)w(x, t, a− t) da︸ ︷︷ ︸
J0(x,t)

. (3.10)

Substituting (3.6) and (3.9) we find that

J1(x, t) =

∫ t

0

η(a)F(a)

∫
R

Γ(θ(a), x− y)B(y, t− a) dy da

J0(x, t) =

∫ ∞
t

η(a)
F(a)

F(a− t)

∫
R

Γ (θ(a)− θ(a− t), x− y) I0(y, a− t) dy da.

(3.11)

Solving the system of ordinary differential equations for S(x, t) in (3.2), we arrive at

S(x, t) = S0(x)e−u(x,t)

u(x, t) =

∫ t

0

J(x, s) ds.
(3.12)

This gives us the idea to derive a single equation for u(x, t) (see also Diekmann (1977,

1978); Thieme (1977)),

u(x, t) = u1(x, t) + u0(x, t) (3.13)

where using results from (3.11)

u1(x, t) =

∫ t

0

J1(x, s) ds

=

∫ t

0

(∫ s

0

η(a)F(a)

∫
R

Γ(θ(a), x− y)B(y, s− a) dy da

)
ds.

(3.14)

Interchanging the order of integration in (3.14) we find

u1(x, t) =

∫ t

0

η(a)F(a)

∫
R

Γ(θ(a), x− y)

(∫ t

a

B(y, s− a) ds

)
dy da. (3.15)

By our assumptions we ignore natural turnover of the animal population, so from (3.2) we

have B(x, t) = −∂t S(x, t). Therefore in (3.15), by fundamental theorem of calculus we

have ∫ t

0

B(y, s− a) ds = −
∫ t

0

∂s S(y, s− a) ds

= S0(y)− S(y, t− a).

(3.16)
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By (3.12) and (3.16), the equation in (3.15) becomes

u1(x, t) =

∫ t

0

∫
R
η(a)F(a)Γ (θ(a), x− y)S0(y)

(
1− e−u(y,t−a)

)
dy da. (3.17)

If we let

k(a, x, y) = η(a)F(a)Γ (θ(a), y)S0(x− y) (3.18)

and

f(u) = 1− e−u (3.19)

then with a change of variable (3.17) can be written as

u1(x, t) =

∫ t

0

∫
R
k(a, x, y)f(u(x− y, t− a)) dy da. (3.20)

The formula for u0(x, t) can be determined by initial condition I0(x, a). But to write down

the formula for u0(x, t), we make a substitution in (3.11),

J0(x, t) =

∫ ∞
0

η(a+ t)
F(a+ t)

F(a)

∫
R

Γ (θ(a+ t)− θ(a), x− y) I0(y, a) dy da.

Hence

u0(x, t) =

∫ t

0

J0(x, s) ds

=

∫ ∞
0

∫
R

(∫ t

0

η(a+ s)
F(a+ s)

F(a)
Γ (θ(a+ s)− θ(a), x− y) ds

)
I0(y, a) dy da.

(3.21)

Therefore we obtain that

u(x, t) = u0(x, t) +

∫ t

0

∫
R
k(a, x, y)f(u(x− y, t− a)) dy da, (3.22)

where u0(x, t) is defined in (3.21) and k(a, x, y), f(u) are defined in (3.18) and (3.19).

If we assume that S0 is constant, then since Γ is the Gaussian kernel

k(a, x, y) = k(a, |y|) = η(a)F(a)Γ(θ(a), y)S0.
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Hence we can write (3.22) as

u(x, t) = u0(x, t) +

∫ t

0

∫
R
k(a, |y|)f(u(x− y, t− a)) dy da. (3.23)

The equation in (3.23) is in a form that can be analyzed for spreading speeds and traveling

wave solutions by the theory developed in (Thieme, 1979; Thieme and Zhao, 2003). This

theory has recently been applied in Jones et al. (2012, 2013).

We consider the special case that there is a fixed incubation period of length τ > 0.

Then η(a) = 0 for a ∈ (0, τ) and η(a) = η for a > τ . Further µ(a) = ν for a > τ and

D(a) = D̃ for a > τ . Assuming S0 is constant, we have

k(a, |y|) =

 0 0 ≤ a < τ

ηF(τ)e−ν(a−τ) Γ
(
θ(τ) + D̃(a− τ), y

)
S0, a ≥ τ

(3.24)

3.2 A rabies model with distributed infection period

In the last section, we interpret I(x, t, a) as the density of infected animals of infection

age a at location x and time t, and assign infection age dependent infectivity function η(a),

diffusion rate function D(a) and death rate function µ(a) to infected animals. While this

is a general enough approach, it is still difficult to use this model to incorporate distributed

incubation period τ . To consider distributed incubation period, we make changes in the

model (3.2), (3.5) and (3.8).

We now consider I(x, t, a) as the density of infected animals at location x and time t

with infection age a that are not yet infective. Further J(x, t) are the infective animals at

location x and time t. In this model we make similar assumptions as last model. We assume

only incubating and infective animals disperse. We ignore the natural population turnover
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of both susceptible and infected yet not infective animals. Now the model becomes

∂t S(x, t) = −S(x, t)ηJ(x, t) =: −B(x, t),

S(x, 0) = S0(x),

∂t J(x, t) = D̃ ∂2
x J(x, t) +

∫ ∞
0

I(x, t, a)P ( da)− ν J(x, t),

J(x, 0) = J◦(x).

(3.25)

Here D̃, ν describe fixed diffusion rate and per capita death rate of infective animals. Also

the probability measure P represents the distribution of the length of the incubation period.

Now let

h(x, t) =

∫ ∞
0

I(x, t, a)P ( da). (3.26)

Then

h(x, t) = h1(x, t) + h0(x, t) (3.27)

with

h1(x, t) =

∫ t

0

I(x, t, a)P ( da) =

∫ t

0

v(x, t− a, a)P ( da) (3.28)

and

h0(x, t) =

∫ ∞
t

I(x, t, a)P ( da) =

∫ ∞
t

w(x, t, a− t)P ( da). (3.29)

Similar to (3.4) and (3.7), v(x, t, r) represents the density of incubating animals at location

x that have infection age r and have been infected at time t, and w(x, t, r) is defined as the

density of incubating animals at location x and time t that already had infection age r at

time 0. But since we interpret I(x, t, a) as infected animals that are not yet infective, now

the partial differential equations for v(x, t, r) and w(x, t, r), as defined in (3.5) and (3.8),

should in general be followed with a loss term, because incubating individuals will be-

come eventually infective after an incubation period, which is described by the probability

measure P .

62



We want to ensure that it is reasonable to use equations defined for I(x, t, a) in (3.6)

and (3.9) to replace the I in (3.25), even if I(x, t, a) defined in (3.6) and (3.9) mean infected

animals while I(x, t, a) in (3.25) represents incubating animals.

Let Ĩ(x, t, a) and J̃(x, t) for now be density for incubating animals and density for

fully infective animals. Consider the infection age dependent transition rate β(a) from

incubating class to fully infective class. We impose a few assumptions on β(a).

(M ) β : R+ → [0, 1] is a continuously differentiable function such that

(M1) β(0) = 0, i.e. it is impossible for a newly infected animal to turn infective,

(M2) β′(a) ≥ 0, and lima→∞ β(a) = 1, i.e. longer incubation translates into higher

rate of becoming infective,

(M3)
∫ ∞

0

β(a) da =∞.

Similar to (3.3) we use the following system to model the transition from incubating

class to infective class

∂t Ĩ(x, t, a) + ∂a Ĩ(x, t, a) = D(a) ∂2
x Ĩ(x, t, a)− µ(a) Ĩ(x, t, a)− β(a) Ĩ(x, t, a)

∂t J̃(x, t) = D̃ ∂2
x J̃(x, t) +

∫ ∞
0

β(a) Ĩ(x, t, a) da− ν J̃(x, t).

(3.30)

Let G(a) = exp

(∫ a

0

β(s) ds

)
. Multiply the Ĩ(x, t, a) equation in (3.30) by G(a),

∂t

(
G(a)∂t Ĩ

)
+ ∂a

(
G(a)∂a Ĩ

)
= D(a) ∂2

x

(
G(a)Ĩ

)
− µ(a)

(
G(a)Ĩ

)
.

Set

U(x, t, a) = G(a)Ĩ(x, t, a).

It follows that

∂t U(x, t, a) + ∂a U(x, t, a) = D(a) ∂2
x U(x, t, a)− µ(a)U(x, t, a). (3.31)
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Similar to v(x, r, a) in (3.4) and w(x, t, r) in (3.7), we can stratify U(x, t, a) so that

v̄(x, r, a) = U(x, a+ r, a) = G(a)Ĩ(x, a+ r, a)

w̄(x, t, r) = U(x, t, t+ r) = G(t+ r)Ĩ(x, t, t+ r)
(3.32)

Notice that initial conditions for v̄ and w̄ here are

v̄(x, r, 0) = G(0)Ĩ(x, r, 0) = B(x, r)

w̄(x, 0, r) = G(r)Ĩ(x, 0, r) = G(r)I0(x, r)
(3.33)

where I0 is now the initial profile of incubating animals.

Similar to (3.6) and (3.9), we integrate along characteristics.

v̄(x, r, a) =

∫
R

Γ (θ(a), x− y)B(y, r)F(a) dy

w̄(x, t, r) =
F(t+ r)

F(r)
G(r)

∫
R

Γ (θ(t+ r)− θ(r), x− y) I0(y, r) dy
(3.34)

where F(a) and θ(a) are as defined in (3.6).

Therefore, in the equation for J̃ in (3.30),∫ ∞
0

β(a)Ĩ(x, t, a) da

=

∫ ∞
0

β(a)

G(a)
U(x, t, a) da

=

∫ t

0

β(a)

G(a)
v̄(x, t− a, a) da+

∫ ∞
t

β(a)

G(a)
w̄(x, t, a− t) da

=

∫ t

0

β(a)

G(a)

(∫
R

Γ (θ(a), x− y)B(y, t− a)F(a) dy

)
da

+

∫ ∞
t

β(a)

G(a)

(
F(a)

F(a− t)
G(a− t)

∫
R

Γ (θ(a)− θ(a− t), x− y) I0(y, a− t) dy

)
da

(3.35)

Compare (3.35) with equations for I(x, t, a) in (3.6) and (3.9). We see that we can still use

solutions to I(x, t, a) in (3.3) without resorting to the model (3.30). All we need is for the

set of initial conditions for (3.3) to be replaced by (3.33).
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So ∫ ∞
0

β(a)Ĩ(x, t, a) da =

∫ ∞
0

P (a) I(x, t, a) da (3.36)

where P (a) ≥ 0 such that

P (a) =
β(a)

G(a)
= β(a) exp

(
−
∫ a

0

β(a) ds

)
(3.37)

and I(x, t, a) is density of incubating animals calculated from (3.3) with modified initial

conditions defined in (3.33).

Note that in (3.37)∫ ∞
0

P (a) da =

∫ ∞
0

β(a) exp

(
−
∫ a

0

β(s) ds

)
da

= −
(

exp

(
−
∫ a

0

β(s) ds

))∣∣∣∣∞
0

= 1

where we use property (M3) of β(a).

Hence P (a) is a probability density function. Because β(a) is generally unknown, we

can assume that in (3.25), P ( da) is an arbitrary probability measure.

Also for the calculation of I(x, t, a) in (3.25) we use (3.33) as our initial conditions.

Realizing this we still use (3.6) and (3.9) to replace v(x, t, r) and w(x, t, r). And

throughout our discussion we keep the general form of P .

Now (3.28) becomes

h1(x, t) =

∫ t

0

P ( da)F(a)

∫
R

Γ(θ(a), x− y)B(y, t− a) dy (3.38)

and (3.29) is determined by initial data

h0(x, t) =

∫ ∞
t

P ( da)
F(a)

F(a− t)

∫
R

Γ (θ(a)− θ(a− t), x− y) I0(y, a− t) dy. (3.39)

By the variation of constants formula,

J(x, t) =

∫ t

0

∫
R

Γ
(
D̃(t− s), x− z

)
e−ν(t−s)h(z, s) dz ds

+

∫
R

Γ
(
D̃t, x− y

)
e−νtJ◦(y) dy.

(3.40)
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To see this, from (3.25)

∂t J(x, t) + ν J(x, t) = D̃∂2
x J(x, t) + h(x, t).

Multiplying both sides by eνt it becomes

∂t (eνtJ(x, t)) = D̃∂2
x

(
eνtJ(x, t)

)
+ h(x, t)eνt.

Let A(x, t) = eνtJ(x, t). Then A(x, 0) = J◦ and

A(x, t) =

∫ t

0

∫
R

Γ
(
D̃(t− s), x− y

)
h(y, s)eνs dy ds

+

∫
R

Γ
(
D̃t, x− y

)
J◦(y) dy.

Then multiplying both sides by e−νt we obtain (3.40).

So by (3.27), (3.38) and (3.39)

J(x, t) = J0(x, t) +

∫ t

0

∫
R

Γ
(
D̃(t− s), x− z

)
e−ν(t−s)h1(z, s) dz ds (3.41)

where
J0(x, t) =

∫
R

Γ
(
D̃t, x− y

)
e−νtJ◦(y) dy

+

∫ t

0

∫
R

Γ
(
D̃(t− s), x− z

)
e−ν(t−s)h0(z, s) dz ds

(3.42)

which is determined by initial data J◦(x) and I0(x, a), initial density of infective animals

and initial profile of incubating animals respectively. We fit (3.38) into (3.41),

J(x, t)− J0(x, t)

=

∫ t

0

∫
R

Γ
(
D̃(t− s), x− z

)
e−ν(t−s)(∫ s

0

P ( da)F(a)

∫
R

Γ (θ(a), z − y)B(y, s− a) dy

)
dz ds.

(3.43)

We change the order of integration

J(x, t)− J0(x, t)

=

∫ t

0

e−ν(t−s) ds

∫ s

0

P ( da)F(a)

∫
R
B(y, s− a) dy(∫

R
Γ
(
D̃(t− s), x− z

)
Γ (θ(a), z − y) dz

)
.

(3.44)
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By a change of variable z → z + y and the Chapman-Kolmogorov equation for Γ,∫
R

Γ
(
D̃(t− s), x− z

)
Γ (θ(a), z − y) dz

=

∫
R

Γ
(
D̃(t− s), x− y − z

)
Γ (θ(a), z) dz

= Γ
(
D̃(t− s) + θ(a), x− y

)
.

(3.45)

So

J(x, t)− J0(x, t)

=

∫ t

0

P ( da)F(a)

∫ t

a

e−ν(t−s)
∫
R

Γ
(
D̃(t− s) + θ(a), x− y

)
B(y, s− a) dy ds.

(3.46)

We make a change of variables, t− s = r − a,

J(x, t)− J0(x, t)

=

∫ t

0

P ( da)F(a)

∫ t

a

e−ν(r−a)

∫
R

Γ
(
D̃(r − a) + θ(a), x− y

)
B(y, t− r) dy dr.

(3.47)

Now we set

u(x, t) = η

∫ t

0

J(x, s) ds, u0(x, t) = η

∫ t

0

J0(x, s) ds. (3.48)

Then from (3.47)

u(x, t)− u0(x, t)

= η

∫ t

0

ds

∫ s

0

P ( da)F(a)

∫ s

a

e−ν(r−a)(∫
R

Γ
(
D̃(r − a) + θ(a), x− y

)
B(y, s− r) dy

)
dr.

We change the order of integration a few times,

u(x, t)− u0(x, t)

= η

∫ t

0

P ( da)

∫ t

a

ds

∫ s

a

F(r)

(∫
R

Γ (θ(r), x− y)B(y, s− r) dy

)
dr

= η

∫ t

0

P ( da)

∫ t

a

F(r) dr

∫
R

Γ (θ(r), x− y)

(∫ t

r

B(y, s− r) ds

)
dy.
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Now by (3.25) and fundamental theorem of calculus∫ t

r

B(y, s− r) ds = −
∫ t

r

∂sS(y, s− r) ds = S0(y)− S(y, t− r) = S0(y)f(u(y, t− r))

where

f(u) = 1− e−u.

Then

u(x, t)− u0(x, t)

= η

∫ t

0

P ( da)

∫ t

a

F(r) dr

∫
R

Γ (θ(r), x− y)S0(y)f(u(y, t− r)) dy.
(3.49)

So with a change of variable

u(x, t) = u0(x, t) +

∫ t

0

∫
R
k(r, x, y)f(u(x− y, t− r)) dy dr (3.50)

with

k(r, x, y) = η

∫ r

0

P ( da)F(a)e−ν(r−a) Γ
(
D̃(r − a) + θ(a), y

)
S0(x− y). (3.51)

If we consider fixed incubation period τ , then P is the Dirac measure concentrated at τ ,

k(r, x, y) =

 0, 0 ≤ r < τ

ηF(τ)e−ν(r−τ) Γ
(
θ(τ) + D̃(r − τ), y

)
S0(x− y). r ≥ τ

(3.52)

If we further let S0(x) be constant, (3.52) becomes the same integration kernel as in (3.24).

Then, similar to (3.23), equation (3.50) is in a form that can be analyzed for asymptotic

spreading speeds and traveling wave solutions by theories developed in (Thieme, 1979;

Thieme and Zhao, 2003).

3.3 Asymptotic spread speeds

We have assumed constant S0(x) and fixed incubation period τ in both models (3.2)

and (3.25). We arrive at identical integral equations in (3.23) and (3.50), i.e.

u(x, t) = u0(x, t) +

∫ t

0

∫
R
k(s, |y|)f(u(x− y, t− s)) ds dy (3.53)

68



with k(s, |y|) and f(u) defined in (3.24) and (3.19) respectively. This equation can be

readily analyzed for asymptotic spread speed and traveling wave solutions using theories

developed in (Thieme, 1979; Thieme and Zhao, 2003).

We first state a few definitions and results from Thieme (1979) and Thieme and Zhao

(2003).

We consider nonlinear integral equation

u(x, t) = u0(x, t) +

∫ t

0

∫
Rn

F (u(x− y, t− s), s, y) dy ds, (3.54)

where F : R2
+ × Rn → R is continuous in u and Borel measurable in (s, y), and u0 :

Rn×R+ → R+ is Borel measurable and bounded. n is the dimension. In (3.23) and (3.50)

we consider n = 1. The following assumptions are imposed on F :

(A) There exists a function k : R+ × Rn → R+ such that

(A1) k∗ :=

∫ ∞
0

∫
Rn

k(s, x) dx ds <∞.

(A2) 0 ≤ F (u, s, x) ≤ uk(s, x), ∀u, s ≥ 0, x ∈ Rn.

(A3) For every compact interval I in (0,∞), there exists some ε > 0 such that

F (u, s, x) ≥ εk(s, x), ∀u ∈ I, s ≥ 0, x ∈ Rn.

(A4) For every ε > 0, there exists some δ > 0 such that

F (u, s, x) ≥ (1− ε)uk(s, x), ∀u ∈ [0, δ], s ≥ 0, x ∈ Rn.

(A5) For every w > 0, there exists some Λ > 0 such that

|F (u, s, x)− F (v, s, x)| ≤ Λ |u− v| k(s, x), ∀u, v ∈ [0, w], s ≥ 0, x ∈ Rn.

Proposition 3.1 (Proposition 2.1 in Thieme and Zhao (2003)) Let (A) hold. Then for

every Borel measurable, nonnegative and bounded function u0(x, t), there exists a unique
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Borel measurable solution u : Rn × R+ → R+ of (3.54), and u is bounded on [0, r] × Rn

for every r > 0.

Let c > 0 and u : Rn × [0,∞)→ R. We define

lim inf
t→∞,|x|≤ct

u(x, t) = sup
t≥0

inf{u(x, s) : s ≥ t, |x| ≤ cs}

and

lim sup
t→∞,|x|≤ct

u(x, t) = inf
t≥0

sup{u(x, s) : s ≥ t, |x| ≤ cs}.

We say that

lim
t→∞,|x|≤ct

u(x, t) = u∗

if and only if

u∗ = lim sup
t→∞,|x|≤ct

u(x, t) = lim inf
t→∞,|x|≤ct

u(x, t)

Definition (Definition 2.1 in Thieme and Zhao (2003)) A number c∗ > 0 is called the

asymptotic speed of spread for a function u : Rn × R+ → R+ if limt→∞,|x|≤ct u(x, t) = 0

for every c > c∗, and if there exists some ε > 0 such that lim inft→∞,|x|≤ct u(x, t) ≥ ε for

every c ∈ (0, c∗).

Recall that a function Φ : Rn → R is said to be isotropic if Φ(x) = Φ(y) whenever

|x| = |y|. A function k : [0,∞) × Rn → R is said to be isotropic if k(s, ·) is isotropic for

almost all s > 0. We make the following assumptions on k : R+ × Rn → R+

(B) k is a Borel measurable function such that

(B1) k∗ > 1 where k∗ is defined in (A1).

(B2) There exists some λ0 > 0 such that∫ ∞
0

∫
Rn

eλ0y1k(s, y) dy ds <∞

where y1 is the first component of y.
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(B3) There exist numbers σ2 > σ1 > 0, ρ > 0 such that

k(s, x) > 0, ∀s ∈ (σ1, σ2), |x| ∈ [0, ρ).

(B4) k is isotropic.

Let

K (c, λ) =

∫ ∞
0

∫
Rn

e−λ(cs+y1) k(s, y) dy ds (3.55)

with y1 the first coordinate of y.

Lemma 3.2 (Lemma 2.1 in Thieme and Zhao (2003)) Let (B) hold. Then for every c >

0 there exists λ̄(c) ∈ (0,∞] such that K (c, λ) <∞ for λ ∈ [0, λ̄(c) ) and K (c, λ) =∞

for λ ∈ (λ̄(c), ∞). Note that the last interval is possibly empty.

We define

c∗ := inf{c ≥ 0 : K (c, λ) < 1 for some λ > 0}. (3.56)

Lemma 3.3 c∗ is monotone increasing with respect to K .

Proof Let K̃ (c, λ) ≤ K (c, λ) for all c, λ ≥ 0. Also suppose

c̃∗ = inf{c ≥ 0 : K̃ (c, λ) < 1 for some λ > 0}

Now let c0, λ0 > 0 be arbitrary such that K (c0, λ0) < 1. Then c∗ ≤ c0. Note that since

K̃ (c, λ) ≤ K (c, λ) for all c, λ > 0, it also implies

K̃ (c0, λ0) ≤ K (c0, λ0) < 1.

Hence we find

{c ≥ 0 : K (c, λ) < 1 for some λ > 0} ⊆ {c ≥ 0 : K̃ (c, λ) < 1 for some λ > 0}.

It follows from the definition of infimum that c̃∗ ≤ c∗.
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Proposition 3.4 (Proposition 2.3 in Thieme and Zhao (2003)) Let (B) hold and assume

that

lim inf
λ↗λ̄(c)

K (c, λ) ≥ k∗

for every c > 0. Then there exists a unique λ∗ ∈ (0, λ̄(c∗) ) such that K (c∗, λ∗) = 1 and

K (c∗, λ) > 1 for λ 6= λ∗. Moreover, c∗ and λ∗ are uniquely determined as the solutions of

the system

K (c, λ) = 1, and
d

dλ
K (c, λ) = 0.

Note that

lim inf
λ↗λ̄(c)

K (c, λ) = lim
λ→λ̄(c)−

inf{K (c, y) : y ∈ (λ, λ̄(c))}.

We define the admissibility of u0(x, t)

Definition (Admissible u0(x, t)) We say u0(x, t) is admissible if for every c, λ > 0 with

K (c, λ) < 1, there exists some γ > 0 such that

u0(x, t) ≤ γ eλ(ct−|x|), ∀t ≥ 0, x ∈ Rn. (3.57)

Theorem 3.5 (Theorem 2.1 in Thieme and Zhao (2003)) Let (A) and (B) hold. Then for

every admissible u0(x, t), the unique solution u(x, t) of (3.54) satisfies lim
t→∞,|x|≥ct

u(x, t) =

0 for each c > c∗.

Theorem 3.5 does not guarantee that c∗ is the asymptotic speed of spread for u(x, t).

However, if the integrand is a special case, i.e. F (u, s, x) = k(s, x)f(u), and f(u) satisfies

the following assumptions, we can ensure that c∗ is the asymptotic speed of spread.

(C) f : R+ → R+ is a Lipschitz continuous function such that

(C1) f(0) = 0 and f(u) > 0, ∀u > 0;
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(C2) f is differentiable at u = 0, f ′(0) = 1 and f(u) ≤ u, ∀u > 0;

(C3) lim
u→∞

f(u)

u
= 0;

(C4) there exists a positive solution u∗ of

u = k∗f(u) (3.58)

such that k∗f(u) > u, ∀u ∈ (0, u∗), and k∗f(u) < u, ∀u > u∗.

Theorem 3.6 (Theorem 2.2 in Thieme and Zhao (2003)) Let F (u, s, x) = f(u)k(s, x).

Assume that (B) and (C) hold, and f is monotone increasing. Then for any Borel mea-

surable function u0 : Rn × R+ → R+ with the property that u0(x, t) ≥ η > 0, ∀t ∈

(t1, t2), |x| ≤ η, for appropriate t2 > t1 ≥ 0, η > 0, there holds

lim inf
t→∞,|x|≤ct

u(x, t) ≥ u∗, ∀c ∈ (0, c∗)

where u∗ is defined in (3.58).

For special case of F (u, s, x) = f(u)k(s, x), theorems 3.5 and 3.6 together imply that

c∗ is the asymptotic spread speed for the unique solution u(x, t) in (3.54).

Moreover for the limiting equation of (3.54)

u(x, t) =

∫ t

0

∫
R
F (u(x− y, t− s), s, y) dy ds (3.59)

Thieme and Zhao (2003) established the existence of traveling wave solutions u(x, t) =

v(x+ ct) for c ≥ c∗ and the non-existence of traveling wave solutions when c < c∗.

Theorem 3.7 (Theorems 3.3, 3.4 in Thieme and Zhao (2003)) Let (A2) and (B) with n =

1 hold. Assume F (·, s, x) is increasing on [0, u∗] for each (s, x) ∈ R+×R, and F (u, s, x) ≥

(u − buσ)k(s, x), ∀u ∈ [0, δ], (s, x) ∈ R+ × R for appropriate δ ∈ (0, u∗], σ > 1 and

b > 0. Also k(s, ·) is continuous on R for all s ≥ 0. Then for each c ≥ c∗, there exists a

monotone traveling wave solution of (3.59) with speed c and connecting 0 and u∗.
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Theorem 3.8 (Theorem 3.5 in Thieme and Zhao (2003)) Let (A), (B) hold. Then for each

c ∈ (0, c∗), there exists no traveling wave solution u(x, t) = v(x+ ct) of (3.59) with wave

speed c such that v(·) is positive and bounded on R and limξ→−∞ v(ξ) = 0.

Note that in the following sections, because of the special form ofF (u, s, x) = f(u)k(s, x)

where f(u) = 1 − e−u, the satisfaction of conditions (A), (B), (c) implies that conditions

for Theorems 3.7 and 3.8 hold. Theorefore, it is important to note here that by Theorems-

the 3.7 and 3.8 asymptotic speeds of spread c∗ calculated in the following sections are also

minimum traveling wave speeds for their corresponding limiting integral equations.

3.3.1 Asymptotic spread speed for a fixed delay

Now we are ready to find the asymptotic speed of spread for both (3.23) and (3.50).

We observe that the integrands in both equations satisfy F (u, s, y) = k(s, y)f(u), with

k(s, y), f(u) defined respectively in (3.24) and (3.19). In other words

u(x, t) = u0(x, t) +

∫ t

0

∫
R
k(s, |y|)f(u(x− y, t− s)) dy ds

with

k(s, |y|) =

 0 0 ≤ s < τ

ηF(τ)e−ν(s−τ) Γ
(
θ(τ) + D̃(s− τ), y

)
S0, s ≥ τ

and

f(u) = 1− e−u.

Note that Γ(t, x) is the Gaussian kernel, or the fundamental solution associated with the

partial differential operator ∂t −∆x.

First we verify assumptions (A) for k(s, |y|)
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(A1)

k∗ =

∫ ∞
0

∫
R
k(s, |y|) dy ds

= ηF(τ)S0

∫ ∞
τ

∫
R
e−ν(s−τ) 1√

4π[θ(τ) + D̃(s− τ)]
e
− y2

4[θ(τ)+D̃(s−τ)] dy ds

We make a change of variables and let

A = θ(τ) + D̃(s− τ).

Then

k∗ =
η

D̃
F(τ)S0

∫ ∞
θ(τ)

∫
R
e−ν

A−θ(τ)
D̃

e−
y2

4A

√
4πA

dy dA

=
η

D̃
F(τ)S0

∫ ∞
θ(τ)

e−ν
A−θ(τ)
D̃

(∫
R

e−
y2

4A

√
4πA

dy

)
dA

=
η

D̃
F(τ)S0

∫ ∞
θ(τ)

e−ν
A−θ(τ)
D̃ dA

=
η

ν
F(τ)S0

So

k∗ =
η

ν
F(τ)S0 <∞ (3.60)

because η, ν,F(τ), S0 are all constant.

(A2) Since f(0) = 0, f is differentiable and f ′(u) = e−u, f(u) = f(u)−f(0) = f ′(v)u ≤

u by mean value theorem and the fact that f ′(v) = e−v ≤ 1. Accordingly 0 ≤

k(s, x)f(u) ≤ k(s, x)u, ∀u, s ≥ 0, x ∈ R.

(A3) Since f(u) = 1− e−u ≥ 0 is continuous for u ≥ 0, and only at u = 0 f(u) = 0, for

every compact interval I in (0,∞) f(u) has a minimum, i.e. there exists some ε > 0

such that f(u) ≥ ε. Hence k(s, x)f(u) ≥ εk(s, x), ∀u ∈ I, s ≥ 0, x ∈ R.
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(A4) The case for ε ≥ 1 is trivial. So next we assume 0 < ε < 1.

For an arbitrary ε > 0, we can choose δ > 0 such that δ < − ln (1− ε). Then for

every u ∈ [0, δ], f ′(u) = e−u ≥ e−δ > eln(1−ε) = 1− ε.

So for all ε > 0 there exists δ > 0 we have k(s, x)f(u) ≥ (1−ε)uk(s, x), ∀u ∈ [0, δ],

s ≥ 0, x ∈ R.

(A5) Since 0 < f ′(u) = e−u ≤ 1, for every w > 0 and ∀u, v ∈ [0, w], by mean value

theorem |f(u)− f(v)| = |f ′(p)(u− v)| ≤ |u− v|. So there exists Λ = 1 such that

|k(s, x)f(u)− k(s, x)f(v)| ≤ Λ |u− v|k(s, x), ∀u, v ∈ [0, w], s ≥ 0, x ∈ R.

Now we check assumptions (B) for k(s, x).

(B1) We compute in (3.60) that k∗ <∞. Here to satisfy (B1) we assume that

k∗ =
η

ν
F(τ)S0 > 1. (3.61)

(B2) We verify for k(a, |y|) that there is some λ0 > 0 such that

k̄(λ0) =

∫ ∞
0

∫
R
eλ0yk(s, |y|) dy ds <∞ (3.62)

with k(s, |y|) defined in (3.24).

With a change of variables

A = θ(τ) + D̃(s− τ)

we find that

k̄(λ0) =

∫ ∞
τ

∫
R
eλ0y ηF(τ)e−ν(a−τ) Γ

(
θ(τ) + D̃(a− τ), y

)
S0 dy da

=
η

D̃
F(τ)S0

∫ ∞
θ(τ)

e−ν
A−θ(τ)
D̃

(∫
R
eλ0y Γ (A, y) dy

)
dA
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By proposition 2.3 and the fact that Γ is isotropic

k̄(λ0) =
η

D̃
F(τ)S0

∫ ∞
θ(τ)

e−ν
A−θ(τ)
D̃ eλ

2
0A dA

=
η

D̃
F(τ)S0 e

ν
D̃
θ(τ)

∫ ∞
θ(τ)

e(λ
2
0−

ν
D̃

)A dA

The above integral converges if

λ0 <

√
ν

D̃
. (3.63)

Now if we choose a λ0 > 0 such that (3.63) holds, we have

k̄(λ0) =
η

ν − D̃λ2
0

F(τ)S0 e
ν
D̃
θ(τ) <∞. (3.64)

(B3) If we choose σ2 > σ1 > τ > 0 and any ρ > 0, by (3.24) k(s, x) > 0 for s ∈ (σ1, σ2)

and |x| ∈ [0, ρ).

(B4) k is isotropic, by definition of the Gaussian kernel.

We then verify assumptions (C) for f .

(C1) f(0) = 1− e0 = 0, and f(u) = 1− e−u > 0, ∀u > 0 since e−u < 1 ∀u > 0.

(C2) f(u) = 1− e−u so f is differentiable at u = 0, with f ′(u) = e−u, so f ′(0) = 1; then

by mean value theorem f(u)−f(0) = f ′(v)uwith v ∈ [0, u], we have f(u)−f(0) =

f(u) ≤ u since f ′(v) = e−v ≤ 1 for v ∈ [0, u].

(C3) Since f(u) = 1− e−u → 0 as u→∞, we find lim
u→∞

f(u)

u
= 0.

(C4) From (B1) we have k∗ > 1. Define function

g(u) = k∗f(u)− u.
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Observe that g′(u) = k∗e−u − 1. Since k∗ > 1 and e−u ≤ 1 is decreasing for u ≥ 0,

g(u) is increasing for u ∈ (0, ln(k∗)) but decreasing for u > ln(k∗). Also notice that

g(0) = 0 and g(u)→ −∞ as u→∞, so we can find a unique u∗ such that

g(u) = k∗f(u)−u > 0, ∀u ∈ (0, u∗) and g(u) = k∗f(u)−u < 0, ∀u > u∗.

In summary we have verified assumptions (A), (B) and (C) for k, f , provided (3.61)

holds. Now by lemma 3.2 for every c > 0 there exists some λ̄(c) ∈ (0,∞] such that

K (c, λ) <∞, ∀λ ∈ [0, λ̄(c) ) and K (c, λ) =∞, ∀λ ∈ (λ̄(c),∞)

where K (c, λ) is defined in (3.55).

Now we compute K (c, λ)

K (c, λ) =

∫ ∞
0

∫
R
e−λ(cs+y) k(s, |y|) dy ds

= ηF(τ)S0

∫ ∞
τ

∫
R
e−λcs e−λy e−ν(s−τ) Γ

(
θ(τ) + D̃(s− τ), y

)
dy ds

We make a change of variable and let A = θ(τ) + D̃(s− τ),

K (c, λ) =
η

D̃
F(τ)S0 e

ντ

∫ ∞
θ(τ)

e−(λc+ν)(τ+(
A−θ(τ)
D̃

))
(∫

R
e−λy Γ (A, y) dy

)
dA

By proposition 2.3,

K (c, λ) =
η

D̃
F(τ)S0 e

(λc+ν)( θ(τ)
D̃
−τ) eντ

∫ ∞
θ(τ)

e(λ
2− c

D̃
λ− ν

D̃
)A dA

=
η

D̃
S0 e

(λc+ν)( θ(τ)
D̃
−τ) eντ−

∫ τ
0 µ(s) ds

∫ ∞
θ(τ)

e(λ
2− c

D̃
λ− ν

D̃
)A dA. (3.65)

We make the general assumptions that

µ(τ) ≥ ν and D(τ) ≤ D̃. (3.66)

Then from (3.65) it is readily seen that K is monotone decreasing in τ because

d

dτ

(
θ(τ)

D̃
− τ
)

=
D(τ)

D̃
− 1 ≤ 0,

d

dτ

(
ντ −

∫ τ

0

µ(s) ds

)
= ν − µ(τ) ≤ 0
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and the lower bound of the integral in (3.65) is increasing in τ .

In (3.65) let

g(λ) = λ2 − c

D̃
λ− ν

D̃
.

Since c > 0 and ν, D̃ > 0 are constant, g(λ) is a quadratic function that has a negative root

and positive root λ̄(c). If λ ∈ [0, λ̄(c) ), g(λ) < 0 and the integral in (3.65) converges; if

λ ≥ λ̄(c) the integral diverges and K (c, λ) =∞.

We find that

λ̄(c) =
c+

√
c2 + 4νD̃

2D̃
. (3.67)

If λ ∈ [0, λ̄(c) ),

K (c, λ) = ηF(τ)S0
eθ(τ)λ2−τcλ

ν + cλ− D̃λ2
. (3.68)

It is readily seen from (3.68) that K is monotone increasing in η, S0, D̃ and monotone

decreasing in ν. However, if we impose the assumption that the diffusion of exposed indi-

viduals is negligible, i.e.

θ(τ) =

∫ τ

0

D(s) ds� 1 (3.69)

then with a change of variable c =
√
D̃ c̄ and λ = λ̄√

D̃
,

K (c, λ) = K (c̄, λ̄) ≈ ηF(τ)S0
e−τ c̄λ̄

ν + c̄λ̄− λ̄2
.

The above formula is independent of D̃. It follows from the definition of c∗ and lemma 3.3

that if (3.69) is satisfied then c∗ is increasing in and proportional to
√
D̃. For the case of

fixed delay, the results of dependencies of c∗ on parameter values are summarized in the

following proposition.

Proposition 3.9 Suppose the delay τ > 0 is a fixed constant. The asymptotic spread speed

c∗ is an increasing function of η, S0, D̃ and a decreasing function of ν. Additionally, if

(3.66) holds, c∗ is monotone decreasing in τ . If (3.69) holds, then c∗ is proportional to√
D̃.
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Since in (3.68)

eθ(τ)λ2−τcλ ≥ e−
τ2c2

4θ(τ)

and

ν + cλ− D̃λ2 → 0+ as λ→ λ̄(c)−

it follows that K (c, λ)→∞ as λ→ λ̄(c)−, and

lim inf
λ↗λ̄(c)

K (c, λ) ≥ k∗

for every c > 0.

It then follows from proposition 3.4 that c∗, as defined in (3.56), together with a unique

λ∗ ∈ (0, λ̄(c∗) ), are uniquely determined as solutions of the system

K (c, λ) = 1,
d

dλ
K (c, λ) = 0.

More precisely c∗ and λ∗ are unique positive solutions of

ηF(τ)S0 e
θ(τ)λ2−τcλ = ν + cλ− D̃λ2

c− 2D̃λ = (ν + cλ− D̃λ2)(2θ(τ)λ− τc).
(3.70)

If additionally u0(x, t) satisfies the admissibility conditions in (3.57), by theorems 3.5

and 3.6 we can conclude that c∗ > 0 obtained above is the asymptotic speed of spread for

the solution u(x, t) from (3.53).

Before starting any asymptotic analysis, we can perform numerical experiments on so-

lutions of system (3.70). In order to compare the solutions to (3.70) with those we obtained

in Chapter 2 in the delayed SI model, we use the set of parameter values in Table 2.1 for

foxes. Additionally, for convenience we make simpifying assumptions about F(τ) and

θ(τ). We suppose that during the incubation period with fixed length τ , animals die at a

constant rate µ > 0 and diffuse at a constant rate Di > 0. Thus we have

F(τ) = e−µτ and θ(τ) = Diτ.
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Using Newton method and appropriate initial conditions, we obtain in Figure 3.1 the rela-

tionships between asymptotic spread speed c∗ with respect to parameters S0, τ,Di, D̃. In

particular, compared with Figure 2.3, c∗ shows similar monotone relationship with respect

to both diffusion rates, and is nonlinear decreasing in τ . Also c∗ depends on S0 in the same

way minimum wave speed vc depends on carrying capacity K in Figure 2.3.

In fact, for this special case of F(τ) and θ(τ), the equations in (3.70) are identi-

cal to those in (2.32) for the simple time-delayed SI model in chapter 2, if we consider

η = β, S0 = K, ν = µ. Therefore we expect the same results and the simple delayed SI

model in (2.6) is a special case with a fixed delay for both the alternative model with gen-

eral infection-age-dependent parameters in (3.2) and the alternative model with distributed

delay in (3.25).
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Figure 3.1: We use simplifying assumptions for F(τ) and θ(τ). Parameter values are from
Table 2.1. In particular, circles in the graph are obtained by setting Di = 10, D̃ = 40, S0 =
2, τ = 28/365 (yr).
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3.3.2 Asymptotic spread speed for model (3.25)

When we discuss the integral equation (3.23) for the model (3.25) with a general de-

pendence of parameters on incubation period, we can still apply the theory established

by Thieme (1979) and Thieme and Zhao (2003) as in section 3.3.1.

First note that the kernel now is

k(a, y) = η(a)F(a)Γ(θ(a), y)S0

and the integral equation

u(x, t) = u0(x, t) +

∫ t

0

∫
R
k(a, y)f(u(x− y, t− a)) dy da

where we get rid of the absolute value sign around y due to the fact that k and the Gaussian

kernel Γ are isotropic.

We impose the following assumptions on η(a), D(a) and µ(a)

(Q) η,D, µ : [0,∞)→ [0,∞) are continuous functions such that

(Q1) θ(a) ≤ D̄a for all a ≥ 0, and there exist µ̂ > 0 such that µ ≥ µ̂ for all a ≥ 0.

(Q2) There exist σ2 > σ1 > 0 such that η(a) > 0 for a ∈ (σ1, σ2).

(Q3) η(a)F(a)eξa is bounded on a ∈ [0,∞) for any ξ > 0,
∫∞

0
η(a) da <∞.

We verify the assumptions (A) for k(a, y).

(A1)

k∗ =

∫ ∞
0

∫
R
η(a)F(a)Γ (θ(a), y)S0 dy da

= S0

∫ ∞
0

η(a)F(a)

(∫
R

Γ (θ(a), y) dy

)
da

= S0

∫ ∞
0

η(a)F(a) da by property of Gaussian kernel

≤ S0

∫ ∞
0

η(a) da <∞ by (Q3).
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(A2) through (A5) are verified similarly as in section 3.3.1.

Now we check assumptions (B) for k(a, y).

(B1) In addition to k∗ <∞, we also assume that

k∗ =

∫ ∞
0

η(a)F(a)S0 da > 1. (3.71)

(B2) We find that

k̄(λ) =

∫ ∞
0

∫
R
eλyη(a)F(a)Γ (θ(a), y)S0 dy da

= S0

∫ ∞
0

η(a)F(a)

(∫
R
eλyΓ (θ(a), y) dy

)
da

= S0

∫ ∞
0

η(a)F(a)eλ
2θ(a) da by proposition 2.3

≤ S0

∫ ∞
0

η(a)eλ
2D̄a−µ̂a da by (Q1)

Then if λ <
√
µ̂/D̄ the above integral converges and we find

k̄(λ) ≤ S0

∫ ∞
0

η(a) da <∞ by (Q3).

(B3) This is an direct result of assumption (Q2).

(B4) k(a, y) is isotropic by properties of the Gaussian kernel Γ(t, x).

(C1) through (C4) conditions can be checked in the same manner as in section 3.3.1.

Now we can compute the K (c, λ) defined in (3.55).

K (c, λ) =

∫ ∞
0

∫
R
e−λ(ca+y)η(a)F(a)Γ (θ(a), y)S0 dy da

= S0

∫ ∞
0

e−λcaη(a)F(a)

(∫
R
e−λyΓ (θ(a), y) dy

)
da

= S0

∫ ∞
0

η(a)F(a)eλ
2θ(a)−λca da by proposition 2.3 (3.72)

≤ S0

∫ ∞
0

η(a)F(a)eλ
2D̄ae−λca da by (Q1) (3.73)
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We have verified that (B) hold for kernel k(a, y). Then by lemma 3.2, for every c > 0

there exists λ̄(c) ∈ (0,∞] such that K (c, λ) < ∞ for λ ∈ [0, λ̄(c) ) and K (c, λ) = ∞

for λ ∈ (λ̄(c), ∞). Note that the last interval is possibly empty.

Note that in (3.73) there is a constant γ > 0 such that η(a)F(a)eλ
2D̄a ≤ γ for all a ≥ 0

by (Q3). Then

K (c, λ) ≤ S0γ

∫ ∞
0

e−λca da =
S0γ

λc
<∞

for any λ, c > 0. However, by (Q2) and (3.72) we have

K (c, λ) ≥ S0e
λ2θ(σ1)−λcσ2

∫ σ2

σ1

η(a)F(a) da→∞

as λ→∞.

Therefore λ̄(c) = ∞ and K (c, λ) < ∞ for all c > 0 and λ ∈ [0,∞), but K (c, λ) →

∞ as λ→∞. As a result, as λapproaches λ̄(c) =∞ from below, we have lim inf
λ↗λ̄(c)

K (c, λ) ≥

k∗.

By proposition 3.4, the asymptotic spread speed for the general model (3.25) can be

calculated from the integral equation (3.23) by setting

K (c, λ) = 1 and
∂

∂λ
K (c, λ) = 0

and solve the unique positive pair (c∗, λ∗).

Therefore, for the asymptotic spread speed for the general model (3.2), we have

S0

∫ ∞
0

η(a)F(a)eλ
2θ(a)−λca da = 1

S0

∫ ∞
0

η(a)F(a)eλ
2θ(a)−λca(2λθ(a)− ca) da = 0

(3.74)

If additionally u0(x, t) satisfies the admissibility conditions in (3.57), by theorems 3.5

and 3.6 we can conclude that c∗ > 0 obtained above is the asymptotic speed of spread for

the solution u(x, t) from (3.23).
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3.3.3 Asymptotic spread speed for (3.50) with exponential

probability measure P ( da)

We have discussed the case where P ( da) is Dirac probability measure in (3.50), which

leads to asymptotic spread speed in the case of a fixed delay in section 3.3.1. In this section

we consider the case where P ( da) is an exponentially distributed probability measure. The

probability density function becomes

P (a) = σe−σa

where, consistent with discussions in chapter 2, we use σ as the rate of conversion from

exposed to infectious class. Note that the mean of this exponential probability distribution

is 1/σ, which is the average incubation period.

Now suppose that the initial susceptible density is constant S0. The kernel k(r, y) de-

fined in (3.51) can be further written as

k(r, y) = η

∫ r

0

σe−σaF(a)e−ν(r−a)Γ
(
D̃(r − a) + θ(a), y

)
S0 da.

The value η > 0 in model (3.25) is defined as the infectivity of infectious individuals.

Similar to last section we assume that

(R) D,µ : [0,∞)→ [0,∞) are continuous functions such that

(R1) θ(a) ≤ D̄a for all a ≥ 0, and there exists µ̂ > 0 such that µ ≥ µ̂ for all a ≥ 0;

(R2) F(a)eξa remains bounded for all a ≥ 0, ξ > 0.

To apply theories developed by Thieme (1979) and Thieme and Zhao (2003), we check

a list of conditions. First we check assumptions (A).
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(A1)

k∗ =

∫ ∞
0

∫
R
k(r, y) dy dr

= ησS0

∫ ∞
0

(∫ r

0

e−σaF(a)e−ν(r−a)

(∫
R

Γ
(
D̃(r − a) + θ(a), y

)
dy

)
da

)
dr

= ησS0

∫ ∞
0

(∫ r

0

e−σaF(a)e−ν(r−a) da

)
dr by properties of Γ(t, x)

= ησS0

∫ ∞
0

e−σaF(a)eνa
(∫ ∞

a

e−νr dr

)
da

=
ησS0

ν

∫ ∞
0

e−σaF(a) da

≤ ησS0

ν

∫ ∞
0

e−σa da =
ηS0

ν
<∞ note F(a) ≤ 1.

Items (A2) through (A5) are checked by similar arguments as in section 3.3.1.

For assumptions (B), we find

(B1) In addition to k∗ <∞, we require that

k∗ = ησS0

∫ ∞
0

e−σaF(a) da > 1. (3.75)

(B2) Note that

k̄(λ) =

∫ ∞
0

∫
R
eλyk(r, y) dy dr.

Hence

k̄(λ) =

ησS0

∫ ∞
0

(∫ r

0

e−σaF(a)e−ν(r−a)

(∫
R
eλyΓ

(
D̃(r − a) + θ(a), y

)
dy

)
da

)
dr

= ησS0

∫ ∞
0

(∫ r

0

e−σaF(a)e−ν(r−a)eλ
2(D̃(r−a)+θ(a)) da

)
dr

= ησS0

∫ ∞
0

e−σaF(a)eνaeλ
2(−D̃a+θ(a))

(∫ ∞
a

e(λ2D̃−ν)r dr

)
da.

86



Then it is clear that if

λ <

√
ν

D̃

we have

k̄(λ) =
ησS0

ν − λ2D̃

∫ ∞
0

e−σaF(a)eλ
2θ(a) da

≤ ησS0

ν − λ2D̃

∫ ∞
0

e−σaF(a)eλ
2D̄a da by (R1)

≤ ησS0

(ν − λ2D̃)(σ − λ2D̄)
<∞ if λ <

√
σ

D̄
and note F(a) ≤ 1.

Therefore if we have λ < min{
√
ν/D̃,

√
σ/D̄} then k̄(λ) <∞.

Conditions (B3) and (B4) are verified similarly as in section 3.3.1.

Assumptions (C1) through (C4) are all true by arguments in section 3.3.1 since the func-

tion f(u) = 1− e−u is the same.

Now by definition in (3.55)

K (c, λ) =

ησS0

∫ ∞
0

e−λcr
(∫ r

0

e−σaF(a)e−ν(r−a)

(∫
R
e−λyΓ

(
D̃(r − a) + θ(a), y

)
dy

)
da

)
dr

= ησS0

∫ ∞
0

e−λcr
(∫ r

0

e−σaF(a)e−ν(r−a)eλ
2(D̃(r−a)+θ(a)) da

)
dr

= ησS0

∫ ∞
0

e−σaF(a)eνaeλ
2(−D̃a+θ(a))

(∫ ∞
a

e(λ2D̃−λc−ν)r dr

)
da. (3.76)

Then if λ2D̃ − λc− ν < 0, the inner integral converges. Let

λ0 =
c+

√
c2 + 4D̃ν

2D̃
.
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If λ ∈ [0, λ0) we have

K (c, λ) =
ησS0

ν + λc− λ2D̃

∫ ∞
0

F(a)eλ
2θ(a)−λca−σa da

≤ ησS0

ν + λc− λ2D̃

∫ ∞
0

F(a)eλ
2D̄ae−(λc+σ)a da by (R1).

By (R2) we have F(a)eξa is bounded for all a ≥ 0, ξ > 0. Then for any λ ∈ [0, λ0)

K (c, λ) ≤ ησS0γ

ν + λc− λ2D̃

∫ ∞
0

e−(λc+σ)a da

=
ησS0γ

(ν + λc− λ2D̃)(λc+ σ)
<∞.

So λ̄(c) = λ0 and for λ ∈ [0, λ0) we have K (c, λ) < ∞, but since when λ ≥ λ0 the

inner integral in (3.76) diverges we have K (c, λ) = ∞, from which it follows naturally

that lim inf
λ↗λ̄(c)

K (c, λ) ≥ k∗.

By proposition 3.4 the asymptotic spread speed c∗ can be obtained by solving for the

unique positive pair (c∗, λ∗) in

K (c, λ) = 1 and
∂

∂λ
K (c, λ) = 0.

Observe that conditions in (A), (B), (C) are verified at most using assumption (R1).

Next we consider a special case where

D(a) = D̄ and µ(a) = µ̂

with D̄, µ̂ > 0 constant. In this case (R1) holds and conditions (A), (B), (C) are all

verified as true or assumed to be true already. To verify conditions on K (c, λ), note that

for λ ∈ [0, λ0),

K (c, λ) =
ησS0

ν + λc− λ2D̃

∫ ∞
0

F(a)eλ
2θ(a)−λca−σa da

=
ησS0

ν + λc− λ2D̃

∫ ∞
0

e(λ2D̄−λc−σ−µ̂)a da

=
ησS0

(ν + λc− λ2D̃)(σ + µ̂+ λc− D̄λ2)
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where the last equality holds only if λ ∈ [0, λ1) with

λ1 =
c+

√
c2 + 4D̄(σ + µ̂)

2D̄
.

Now let λ̄(c) = min{λ0, λ1}. It is readily seen that K (c, λ) < ∞ for λ ∈ [0, λ̄(c)) while

K (c, λ) =∞ with λ ≥ λ̄(c), which implies lim inf
λ↗λ̄(c)

K (c, λ) ≥ k∗.

By proposition 3.4 the asymptotic speed of spread c∗ is obtained by solving for the

unique pair of positive c, λ such that

(D̃λ2 − cλ− ν)(D̄λ2 − cλ− σ − µ̂) = ησS0

(2D̃λ− c)(D̄λ2 − cλ− µ̂− σ) + (2D̄λ− c)(D̃λ2 − cλ− ν) = 0.
(3.77)

In fact, if we introduce rescalings similar to chapter 2 for the SEI diffusive model

ν ′ =
ν

ηS0

, σ′ =
σ

ηS0

, µ̂′ =
µ̂

ηS0

λ′ =

√
D̃

ηS0

λ, c′ =
c√
D̃ηS0

, ε =
D̄

D̃
,

we can obtain that the first equation in (3.77), on removing the primes, is the same as

(λ2 − cλ− ν)(λ2 − c

ε
λ− σ + µ̂

ε
) =

σ

ε
. (3.78)

Compare with the function f(λ), g(λ) in (2.17) and (2.18), if we consider c = v, ν =

µ, µ̂ = b, η = β, S0 = K where in each equation we have notations from (3.77) on the left

hand side and those from (2.17), (2.18) on the right hand side, we can notice that they are

identical. Therefore, it is worth noticing that the minimum wave speed and traveling wave

solutions of the SEI diffusion model (2.1) is a special case of the alternative model with

distributed delay in (3.25) with the incubation period is exponentially distributed.

3.3.4 Admissible u0

First for the model with a general dependency of parameters on the incubation period

(3.2) we show a sufficient condition for admissible u0. Then we prove a sufficient condition

in the special case of fixed constant incubation period for both models (3.2) and (3.25).
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In model (3.2) with parameters generally dependent on the incubation period, we arrive

at the formula of K (c, λ) in (3.72)

K (c, λ) = S0

∫ ∞
0

η(a)F(a)eλ
2θ(a)−λca da.

In the formula for u0 from (3.21) we make a change of variable z = x− y. Then

u0(x, t) =

∫ t

0

ds

∫ ∞
0

η(a+ s)
F(a+ s)

F(a)
da

∫
R

Γ (θ(a+ s)− θ(a), z) I0(x− z, a) dz.

Let c, λ > 0 be arbitrary so that K (c, λ) < 1. We assume that there exists some γ > 0

such that

I0(x, a) ≤ γe−λcae−λ|x|F(a), for all x ∈ R, a ≥ 0. (3.79)

The sufficient condition in (3.79) assumes that there is sufficiently fast decrease in both

x, a for I0 and I0 is bounded by γF(a) where γ > 0 is a constant and F(a) can be seen as

survivability function.

Then we claim that the u0 defined in (3.21) with the initial condition I0 given in (3.79)

is admissible.

Proposition 3.10 In the general model (3.2) I0 satisfies (3.79). Then the u0 defined in

(3.21) is admissible.

Proof By assumption (3.79) and note that |x| − |x− z| ≤ |z|,

u0(x, t)

≤ γ

∫ t

0

ds

∫ ∞
0

η(a+ s)
F(a+ s)

F(a)
da

∫
R

Γ (θ(a+ s)− θ(a), z) e−λcae−λ|x−z|F(a) dz

≤ γe−λ|x|
∫ t

0

ds

∫ ∞
0

e−λcaη(a+ s)F(a+ s) da

∫
R

Γ (θ(a+ s)− θ(a), z) eλ|z| dz

= 2γe−λ|x|
∫ t

0

ds

∫ ∞
0

e−λcaη(a+ s)F(a+ s) da

∫ 0

−∞
Γ (θ(a+ s)− θ(a), z) e−λz dz

≤ 2γe−λ|x|
∫ t

0

ds

∫ ∞
0

e−λcaη(a+ s)F(a+ s) da

∫
R

Γ (θ(a+ s)− θ(a), z) e−λz dz.
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Then by proposition 2.3

u0(x, t) ≤ 2γe−λ|x|
∫ t

0

ds

∫ ∞
0

e−λcaη(a+ s)F(a+ s)eλ
2(θ(a+s)−θ(a)) da.

Now we let r = a+ s,

u0(x, t) ≤ 2γe−λ|x|
∫ t

0

ds

∫ ∞
s

e−λc(r−s)η(r)F(r)eλ
2(θ(r)−θ(r−s)) dr

≤ 2γe−λ|x|
∫ t

0

eλcs ds

∫ ∞
s

e−λcrη(r)F(r)eλ
2θ(r) dr

≤ 2γe−λ|x|
∫ t

0

eλcs ds

∫ ∞
0

e−λcrη(r)F(r)eλ
2θ(r) dr

=
2γe−λ|x|

S0

K (c, λ)

∫ t

0

eλcs ds by (3.72)

<
2γe−λ|x|

S0

∫ t

0

eλcs ds by assumption K (c, λ) < 1

=
2γe−λ|x|

cλS0

(
eλct − 1

)
<

2γ

cλS0

eλ(ct−|x|).

By definition this implies that u0 is admissible.

In both models (3.2) and (3.25) we arrive at equations (3.23) and (3.50) respectively.

In what follows we give idealized initial conditions that produce admissible u0 defined

in (3.57) for both cases. For the first model we assign the idealized initial condition for

I0(x, a), the initial profile of infected animals, by setting

I0(x, a) = I◦ δ(x)δ(a) (3.80)

where I◦ > 0 and δ here represents the Dirac delta distribution concentrated at 0.

Proposition 3.11 In (3.23), if I0(x, a) satisfies (3.80), then u0(x, t) defined in (3.21) is

admissible.

Proof Let I0(x, a) be as defined in (3.80). Then

u0(x, t) = I◦
∫ t

0

η(s)e−
∫ s
0 µ(r) dr 1√

4πθ(s)
e−

x2

4θ(s) ds. (3.81)
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Note first that if t < τ , u0(x, t) = 0 since we consider fixed incubation length τ .

Now let t ≥ τ . Then from (3.81), for every λ, c > 0 with K (λ, c) < 1, since η(s) = 0

for all 0 ≤ s < τ ,

u0 e
λ|x|−λct = I◦

∫ t

τ

η(s)e−
∫ s
0 µ(r) dr 1√

4πθ(s)
e−

x2

4θ(s) eλ|x|−λct ds

= I◦
∫ t

τ

η(s)e−
∫ s
0 µ(r) dr 1√

4πθ(s)
e−

(|x|−2λθ(s))2

4θ(s) eλ
2θ(s)−λct ds completing squares

= I◦
∫ t

τ

η(s)e−
∫ s
0 µ(r) dr 1√

4πθ(s)
e−

(|x|−2λθ(s))2

4θ(s) eλ
2θ(τ)−λcτeλ

2D̃(s−τ)e−λc(t−τ) ds

where the last equality is by θ(s) = θ(τ) + D̃(t− τ) and t = (t− τ) + τ .

Now by K (c, λ) < 1 and (3.68)

u0 e
λ|x|−λct <

ν + cλ− D̃λ2

ηF(τ)S0

I◦
∫ t

τ

η(s)e−
∫ s
0 µ(r) dr 1√

4πθ(s)
e−

(|x|−2λθ(s))2

4θ(s)

e(λ2D̃−λc)(s−τ)e−λc(t−s) ds

where we use t− τ = (t− s) + (s− τ).

From the formula for K (c, λ) > 0 in (3.68), we have λ2D̃ − λc < ν. So

u0 e
λ|x|−λct <

ν + cλ− D̃λ2

ηF(τ)S0

I◦
∫ t

τ

ηF(τ)e−ν(s−τ) 1√
4πθ(s)

e−
(|x|−2λθ(s))2

4θ(s) eν(s−τ)e−λc(t−s) ds

where we use the fact that for s ∈ [τ, t] η(s) = η and

F(s) = e−
∫ s
0 µ(r) dr = e−

∫ τ
0 µ(r) dr−ν(s−τ) = F(τ)e−ν(s−τ).

Hence

u0 e
λ|x|−λct <

ν + cλ− D̃λ2

S0

I◦
∫ t

τ

1√
4πθ(s)

e−
(|x|−2λθ(s))2

4θ(s) e−λc(t−s) ds

≤ ν + cλ− D̃λ2

S0

√
4πθ(τ)

I◦
∫ t

τ

e−λc(t−s) ds since θ(s) ≥ θ(τ)

≤ ν + cλ− D̃λ2

cλS0

√
4πθ(τ)

I◦ =: γ.
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Hence for every λ, c > 0 with K (λ, c) < 1, there exists γ as defined above such that

u0 < γ eλ(ct−|x|).

Therefore u0 is admissible.

Note that the idealized sufficient condition in (3.80) is a special case that satisfies the

general sufficient condition in (3.79), but the initial condition (3.80) can be related to the

particular situation of dropping infected individuals into a susceptible population.

For the second model (3.25), I0(x, a) refers to initial profile of incubating animals and

J◦(x) represents the initial density of infective animals. Hence u0(x, t) is defined differ-

ently in (3.39), (3.42) and (3.48).

We provide an admissible u0(x, t) by considering similarly the idealized situation where

there are initially no infective animals

J◦(x) = 0. (3.82)

We use the same initial condition for incubating animals I0(x, a) as for infected animals

in (3.80). But in light of (3.33), to treat incubating animals I(x, t, a) as if there were no

loss terms, we use the following initial condition

G(a)I0(x, a) = G(a)I◦δ(x)δ(a)

with

G(a) = exp

(∫ a

0

β(r) dr

)
for the computation of h0(x, t) in (3.39).

For t > τ , it is obvious that h0(x, t) = 0.
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Let t ≤ τ . Then

h0(x, t) =

∫ ∞
t

P ( da)
F(a)

F(a− t)

∫
R

Γ (θ(a)− θ(a− t), x− y) I0(y, a− t) dy

=
F(τ)

F(τ − t)

∫
R

Γ (θ(τ)− θ(τ − t), x− y) I0(y, τ − t) dy

=
F(τ)

F(τ − t)
Γ (θ(τ)− θ(τ − t), x)G(τ − t)I◦δ(τ − t)

Substitute h0(x, t) in (3.42), (3.48)

J0(x, t) =

∫ t

0

∫
R

Γ
(
D̃(t− s), x− z

)
e−ν(t−s)h0(z, s) dz ds

=

∫ t

0

∫
R
e−ν(t−s) F(τ)

F(τ − s)
G(τ − s)I◦δ(τ − s)

Γ
(
D̃(t− s), x− z

)
Γ (θ(τ)− θ(τ − s), z) dz ds.

By Chapman-Komolgorov equation for Γ∫
R

Γ
(
D̃(t− s), x− z

)
Γ (θ(τ)− θ(τ − s), z) dz = Γ

(
D̃(t− s) + θ(τ)− θ(τ − s), x

)
.

Hence if t < τ J0(x, t) = 0. If t ≥ τ

J0(x, t) =

∫ t

0

e−ν(t−s) F(τ)

F(τ − s)
G(τ − s)I◦δ(τ − s)Γ

(
D̃(t− s) + θ(τ)− θ(τ − s), x

)
ds

= I◦ e−ν(t−τ)F(τ)Γ
(
D̃(t− τ) + θ(τ), x

)
. (3.83)

Now according to (3.48) u(x, t) = 0 for t < τ . For t ≥ τ

u0(x, t) = η I◦F(τ)

∫ t

τ

e−ν(s−τ) Γ
(
D̃(s− τ) + θ(τ), x

)
ds

Proposition 3.12 In (3.50) if I0(x, t) satisfies (3.80) and J0(x, t) satisfies (3.82), then

u0(x, t) defined in (3.48) is admissible.

Proof Proof is similar to proposition 3.11.
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Next we show that in the first model, initial condition for I0(x, a) in (3.80) not only

ensures admissibility of u0(x, t), it also implies that c∗ computed from (3.70) is the asymp-

totic speed of spread for (3.23).

Theorem 3.13 In (3.23), let (A), (B) and (C) hold. If I0(x, t) satisfies (3.80), then the

unique real positive c∗ computed from (3.70) is the asymptotic speed of spread for u(x, t).

Proof Notice that with I0(x, t) defined in (3.80) u0(x, t) is given by (3.81).

Since η(a) is only defined for a ≥ τ , so u0(x, t) = 0 for t < τ .

u0(x, t) ≥ I◦ηF(τ)
e−ν(t−τ)√

4πθ(t)

∫ t

τ

e
− x2

4(θ(τ)+D̃(s−τ)) ds

≥ I◦ηF(τ)
e−ν(t−τ)√

4πθ(t)

∫ t

τ

e−
x2

4θ(τ) ds

= I◦ηF(τ) e−
x2

4θ(τ) g(t− τ)

where

g(z) =
ze−νz√

4πθ(τ) + 4πD̃z
.

Note that derivative of g is

g′(z) = 4πe−νz
−D̃νz2 +

(
D̃
2
− θ(τ)ν

)
z + θ(τ)(

4πθ(τ) + 4πD̃z
)3/2

.

Hence

g′(0) =
1√

4πθ(τ)
> 0

and there exists z0 > 0 such that g′(z) = 0 and g′(z) < 0 and is decreasing for z > z0.

Setting g′(z) = 0 and solve for positive root we obtain

z∗ =

D̃
2
− θ(τ)ν +

√(
θ(τ)ν − D̃

2

)2

+ 4νD̃θ(τ)

2νD̃
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Let φ > 0 be arbitrary such that |x| ≥ φ. Note that

u0(x, t) ≥ I◦ηF(τ) e−
φ2

4θ(τ) g(t− τ).

We can choose z∗+ τ > t2 > t1 > τ . Then ∀t ∈ (t1, t2) g(t− τ) is increasing with respect

to t. We can pick sufficiently small φ > 0 such that

u0(x, t) ≥ I◦ηF(τ) e−
φ2

4θ(τ) g(t− τ) ≥ I◦ηF(τ) e−
φ2

4θ(τ) g(t1 − τ) ≥ φ

since e−
φ2

4θ(τ) is a decreasing function of φ but φ is an increasing function.

Note that by proposition 3.11 u0(x, t) is admissible. We showed that for appropriate

t2 > t1 ≥ τ , φ > 0 we have u0(t, x) ≥ φ for every t ∈ (t1, t2), |x| ≤ φ. Note that also (A),

(B) and (C) hold, so by Theorem 3.5 and 3.6, by definition the unique positive c∗ computed

from (3.70) is the asymptotic speed of spread for (3.23).

For the second model in (3.50) we have

Theorem 3.14 In (3.50), let (A), (B) and (C) hold. If I0(x, t) satisfies (3.80) and J0(x, t)

satisfies (3.82), then the unique real positive c∗ computed from (3.70) is the asymptotic

speed of spread for u(x, t).

Proof Proof is similar to Theorem 3.13

3.3.5 Estimation of c∗

Let σ = ηF(τ)S0. Then by (3.61) we have σ > ν. In this subsection we estimate c∗

when the dispersal of incubating animals is negligible. So we consider

θ(τ) =

∫ τ

0

D(s) ds� 1. (3.84)

which is the same as the assumption (3.69).
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Now we set ε = θ(τ) and

λ∗ = λ0 + ελ1 + ε2λ2 + · · · (3.85)

c∗ = c0 + εc1 + ε2c2 + · · · . (3.86)

Consider g(ε) = eε(λ
∗)2−τc∗λ∗ .

Plugging in expansions of λ∗ and c∗, to first order in ε we see that

g(ε) = g(0) + εg′(0) (3.87)

where

g(0) = e−τc0λ0

and

g′(0) = e−τc0λ0
(
λ2

0 − τc1λ0 − τc0λ1

)
.

Hence (3.70) becomes

σ
(
e−τc0λ0 + ε e−τc0λ0 (λ2

0 − τc1λ0 − τc0λ1)
)

= ν + (c0 + εc1 + · · · )(λ0 + ελ1 + · · · )

−D̃ (λ2
0 + 2λ0λ1ε+ · · · )

(c0 + εc1 + · · · )− 2D̃ (λ0 + ελ1 + · · · ) =
[
ν + (c0 + εc1 + · · · ) (λ0 + ελ1 + · · · )

−D̃ (λ2
0 + 2λ0λ1ε+ · · · )

] [
2ε
(
λ0 + ελ1 + · · ·

)
− τ (c0 + εc1 + · · · )

]
.

(3.88)

In (3.88) first we consider the order O(1)

σ e−τc0λ0 = ν + c0λ0 − D̃λ2
0

c0 − 2D̃λ0 =
(
ν + λ0c0 − D̃λ2

0

)
(−τc0) .

(3.89)

Hence,

(−τc0λ0)σ e−τc0λ0 = c0λ0 − 2D̃λ2
0

= c0λ0 − 2
(
ν + c0λ0 − σ e−τc0λ0

)
= −c0λ0 − 2ν + 2σ e−τc0λ0 .
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Therefore if we set y = c0λ0

y + 2ν − στe−τy
(
y +

2

τ

)
= 0. (3.90)

The roots of equation (3.90) can be analyzed using the following proposition.

Consider

F (z) = zn + azn−1 + · · · −Keiθe−τz
(
zm + bzm−1 + · · ·

)
= 0

where τ > 0, K ≥ 0 and θ ≥ 0 are real constants and a, b are complex constants.

Proposition 3.15 (Theorem I from Krall (1964)) If n = m: when K 6= 0 F (z) has an

infinite number of zeros given by

(1/τ) (lnK + i (θ + 2kπ)) + o(1)

as k = 0,±1,±2, · · · , and only a finite number of other zeros. If K < 1, F (z) has only a

finite number of zeros with positive real part. If K > 1, F (z) has only a finite number of

zeros with negative real part.

In the case of (3.90) we consider F (y) for n = m = 1, θ = 0, a = 2ν, b = 2
τ

and

K = στ . Therefore, by proposition 3.15 the only real solution is

c0λ0 =
1

τ
ln (στ) + δ (3.91)

where δ ∼ o(1) or equivalently δ � 1.

Hence

D̃λ2
0 = ν + c0λ0 − σe−τc0λ0 = ν +

1

τ
ln (στ) + δ − 1

τ
e−δτ .

Since c0 = c0λ0/
√
λ2

0, expand c0 up to the first order of δ

c0 =
1
τ

ln (στ)[
1
D̃

(
ν − 1

τ
+ 1

τ
ln (στ)

)]1/2
+

1
D̃

(
ν − 1

τ

)[
1
D̃

(
ν − 1

τ
+ 1

τ
ln (στ)

)]3/2
δ. (3.92)
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Observe that τ is the length of incubation period and 1
ν

is the average time from onset

of rabid symptoms to death. Usually we have τ > 1
ν
. Once the rabid symptoms appear,

usually it is about one week before the infected animal dies, but it can take up to 150 days

for incubation of rabies. So we have

τ >
1

ν
or ν >

1

τ
or ντ > 1.

Note that by (3.61)

σ > ν.

Hence

ln(στ) > ln(ντ) > 0.

From here we can expand λ0 up to the first order in δ

λ0 =

[
1

D̃

(
ν − 1

τ
+

1

τ
ln (στ)

)]1/2

+

[
1

D̃

(
ν − 1

τ
+

1

τ
ln (στ)

)]−1/2

δ. (3.93)

We can go on to compute c1, λ1 using c0, λ0 from (3.92), (3.93). However, since ε � 1,

obtaining c1, λ1 does not serve any purposes other than adding another term of order o(1)

to (3.92), (3.93). Therefore we stop at order O(1) to conclude from (3.92)

c∗ =
1
τ

ln (ηF(τ)S0τ)[
1
D̃

(
ν − 1

τ
+ 1

τ
ln (ηF(τ)S0τ)

)]1/2
+ o(1). (3.94)

Consequently, when the dispersal from incubating animals is negligible, we obtain an es-

imate of c∗ in (3.94). The asymptotic speed of spread is an increasing function in and

proportional to
√
D̃ and decreasing function of ν. This result is already summarized and

predicted in proposition 3.9.

Taking the derivative of c∗ with respect to τ , and noting the fact that µ(τ) = ν, i.e. the
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death rate at the end of incubation is the same as death rate for infective animals, we have

∂c∗

∂τ
=

[
− 1

2D̃τ 2
ln (ηF(τ)S0τ)

(
2

(
ν − 1

τ

)
+ ν +

ln (ηF(τ)S0τ)

τ

)
− (1− ντ)2

D̃τ 3

]
·

[
1

D̃

(
ν − 1

τ
+

1

τ
ln (ηF(τ)S0τ)

)]3/2

+ o(1) < 0

since ν > 1
τ
. So, when the dispersal from incubating animals is negligible, c∗ is a decreas-

ing function with respect to incubation period τ .

The estimation of c∗ in (3.94) is difficult to analyze when we consider τ → 0. Hence

we want to find better estimation for c∗ than (3.94). The following arguments are similar to

those used in Jones et al. (2013).

Equation (3.90) can be rewritten as

y + 2ν − σe−τy(τy + 2) := F (τ, y) = 0 (3.95)

Also from the second equation of (3.89) it is readily obtained that

λ2
0 = y

τ(ν + y) + 1

D̃(2 + τy)
. (3.96)

Once y is found from (3.95) we have

c2
0 =

y2

λ2
0

=
D̃y(2 + τy)

τ(ν + y) + 1
. (3.97)

At least two special cases of τ lead to easy solution of y from (3.95).

τ = 0⇒ y = 2(σ − ν), c2
0 = 4D̃(σ − ν)

τ =
1

ν
⇒ y = ν ln

(σ
ν

)
, c2

0 = D̃ν ln
(σ
ν

)
Consider the function F (τ, y) defined in (3.95). F is a strictly increasing function of both
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τ and y, given that c0, λ0 > 0 and τ ≥ 0. In fact

∂F

∂τ
= µ(τ)σe−τy(τy + 2)− σe−τy(−y)(τy + 2)− σe−τyy

= σe−τy(τy2 + τνy + y + 2ν) > 0

∂F

∂y
= 1 + τσe−τy(τy + 1) > 0

since σ is a function of τ and we assume that µ(τ) = ν.

It follows that there exists a unique y > 0 such that y is strictly decreasing function of

τ . As a result

y ≤ 2(σ − ν). (3.98)

It follows from implicit function theorem that y is differentiable with respect to τ .

Let z = τy. Then from (3.95) we have

y + 2ν − σe−z(z + 2) := G(z, y) = 0. (3.99)

It is easily verified that G is strictly increasing with respect to both z and y. Therefore z

must be strictly decreasing function of y, hence strictly increasing with respect to τ .

Since y > 0 is bounded and decreasing function of τ , it must have a limit as τ → ∞.

Suppose y → y∞ ∈ (0, 2(σ − ν)). Then from (3.95)

y∞ + 2ν = 0

which is a contradiction. So we must have y → 0 as τ → ∞, and z → z∞ as τ → ∞

where z∞ is given by

σe−z∞(z∞ + 2) = 2ν.

Therefore from (3.97)

(c0τ)2 =
D̃z(z + 2)

(y + ν) + 1/τ
→ D̃z∞(z∞ + 2)

ν
as τ →∞. (3.100)
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So when the incubation period τ is big and incubating animals rarely disperse, the first

order of asymptotic spread speed is proportional to 1
τ
.

Next we consider the function

θ(z) = e−z(z + 2)

from the function G(z, y) in (3.99). Since

θ(0) = 2, θ′(z) = −e−z(z + 1), θ′′(z) = e−zz

we find the Taylor expansion of θ

θ(z) = 2− z +
1

2
z2e−z̃ z̃

where z̃ ∈ (0, z). From this Taylor expansion

2− z ≤ θ(z) ≤ 2− z +
1

2
z3.

Using equation of G in (3.99)

σ(2− τy) ≤ y + 2ν ≤ σ(2− τy +
1

2
τ 3y3)

⇔2(σ − ν) ≤ (1 + στ)y ≤ 2(σ − ν) +
1

2
στ 3y3

⇔2(σ − ν)

1 + στ
≤ y ≤ 2(σ − ν)

1 + στ
+

1
2
στ 3y3

1 + στ
.

Since y ≤ 2(σ − ν) from (3.98), plugging this in above equation

2(σ − ν)

1 + στ
≤ y ≤ 2(σ − ν)[1 + 2στ 3(σ − ν)3]

1 + στ
(3.101)

which remains a good approximation of y when τ or σ − ν is small.

We can use (3.101) to find a good approximation for c0 when τ is small. Since c2
0 is

increasing in y from (3.97)

c2
0 =

D̃y(2 + τy)

τ(ν + y) + 1
≥ 4D̃(σ − ν)

1 + στ
· (1 + στ) + τ(σ − ν)

(1 + στ)(1 + τν) + 2τ(σ − ν)
.
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Let ε = σ − ν. We find

c2
0 ≥

4D̃(σ − ν)

1 + στ
· (1 + στ) + τε

(1 + στ)(1 + (σ − ε)τ) + 2τε

=
4D̃(σ − ν)

1 + στ
· (1 + στ) + τε

(1 + στ)2 − εστ 2 + ετ

≥ 4D̃(σ − ν)

1 + στ
· (1 + στ) + τε

(1 + στ)2 + ετ(1 + στ)

=
4D̃(σ − ν)

(1 + στ)2
.

Therefore when τ or σ − ν is small,

c0 ≈
2
√
D̃(σ − ν)

1 + στ
(3.102)

is a good approximation. Next we consider how approximation of c0 depends on large

σ. By assumption σ = ηF(τ)S0 > ν, large σ can be obtained from large infection rate

η, large initial susceptible individuals S0 and small death rate µ during incubation stage.

These situations can occur naturally when a large group of susceptible animals are first

introduced with rabies infection.

In (3.95) we let F (τ, y) = 0 then

eτy =
σ(τy + 2)

y + 2ν
=
σ

ν

1 + τ(y/2)

1 + (1/ν)(y/2)
.

Taking natural logarithms

τy = ln
(σ
ν

)
+ ln (1 + τ(y/2))− ln (1 + (1/ν)(y/2)) . (3.103)

It is easily seen from Taylor expansion of ex that

ln (1 + τ(y/2)) ≤ τ(y/2).

Hence substituting this in (3.103) we have

τy ≤ 2 ln
(σ
ν

)
.
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Hence the τy satisfies

τy ≤ ln
(σ
ν

)
+ ln

(
1 + ln

(σ
ν

))
. (3.104)

Although the incubation period τ is usually greater than the mean life span of infectious

individuals 1/ν, for example in the case of foxes, we still need to consider situations where

this is not true.

(i) τ > ν. Incubation period is large. Then from (3.103) τy ≥ ln
(
σ
ν

)
. Then further we

find
τy

ln
(
σ
ν

) → 1 as
σ

ν
→∞

since
ln
(
1 + ln

(
σ
ν

))
ln
(
σ
ν

) → 0 as
σ

ν
→∞.

(ii) τ ≤ 1/ν. Incubation period is small. Then τy ≤ ln
(
σ
ν

)
. and

ln
(σ
ν

)
− ln

(
1 +

1

2τν
ln
(σ
ν

))
≤ τy ≤ ln

(σ
ν

)
.

Hence we still have
τy

ln
(
σ
ν

) → 1 as
σ

ν
→∞.

Note from (3.97) that c2
0/y → 1 as y →∞. So

c2
0

ln
(
σ
ν

) → 1

τ
as
σ

ν
→∞. (3.105)

Therefore when σ is large from (3.105) c0 is approximately proportional to 1/
√
τ .

In Figure 3.2 we compare the various approximation formulas for c∗ above with the

exact value of c∗ from (3.70) with small diffusion from exposed individuals and varying

incubation period τ . Like all previous calculations, we use parameter values consistent

with Table 2.1. In the numerical experiment, we set the diffusion constant for exposed

individuals as 1, which is negligible compared with the diffusion constant of infectious
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animals 40. We find that when τ is very large or very small, 1/τ is a good approximation

of exact c∗. Additionally (3.102) remains consistently smaller than and almost proportional

to the exact c∗ throughout all values of τ . If we ignore θ(τ), the system of equations (3.89)

is resulted and produces an approximate c∗ that is a very good approximation to the exact

c∗ when τ is small. The approximate O(1) term obtained using perturbation analysis in

(3.94) remains an uppber bound for the exact c∗, but when τ is small, (3.94) is also a good

approximation to the exact c∗. In this figure, 1/
√
τ is a poor approximation to the exact c∗

since our σ is not set very large.
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Figure 3.2: Based on Table 2.1. We let η = 80, S0 = 2, ν = 365/5, D̃ = 40. And in
particular the diffusion constant for exposed individuals is set as 1.

3.4 Conclusion and Discussion

This chapter is devoted to the construction and asymptotic speed of spread for a Ker-

mack and McKendrick’s model where infectivity, death rate and diffusion rate can depend

on the age of infection. We consider a population of animals divided into susceptible and

infected classes. Here we assume that the total population is closed and homogeneous over
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a one-dimensional space, which means we do not take into account natural birth or death.

Here the main feature for this chapter is the introduction of the age of infection. The age of

infection was used in epidemic models to model the period of latency necessary for infected

individuals to become clinically infectious (see Thieme and Castillo-Chavez (1989, 1993)

and references therein). In particular it allows us to track the history of infected individuals

during incubation period.

The modeling is non-trivial and from two approaches we arrive at the same integral

equations for a special case of fixed incubation period that can be analyzed for the asymp-

totic speed of spread using theories developed in Thieme (1979) and Thieme and Zhao

(2003). Then we are able to obtain an estimation for the asymptotic speed of spread c∗

when the dispersal of incubating individuals is negligible, where we also show that to the

first order in the integral θ(τ) from (3.84) c∗ can asymptotically be approximated by 1/τ

when τ is large and small or σ − ν is small, and by 1/
√
τ when σ is large.

The asymptotic speed of spread here is used on the cumulated force of infection u(x, t)

given by (3.12). And the sufficient condition given by (3.61)

k∗ =
η

ν
F(τ)S0 > 1

also depends on the initial susceptible population size S0. However it still can be under-

stood in the normal sense of reproduction number R0. Since 1/ν is the mean life span of

infectious individuals, η is the infectivity of infectious animals, and F(τ) can be under-

stood as the probability of surviving the incubation period, k∗ can be seen as the expected

number of infections resulted from introduction of a single infectious individual in a com-

pletely susceptible population S0.

Both the alternative model with infection-age-dependent parameters and the alterna-

tive model with distributed delay result in integral equations (3.23) and (3.50) that can

be analyzed for asymptotic speed of spread using theories developed in Thieme (1979)
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and Thieme and Zhao (2003). It is important to note that in the limiting equation for both

integral equations, as seen in Theorems 3.7 and 3.8, Thieme and Zhao (2003) showed that

traveling wave solutions exist and the asymptotic speed of spread is in fact the minimum

traveling wave speed. Therefore it is no coincidence that if we use a fixed delay in both

alternative models, then asymptotic spread speed c∗ can be calculated by the same equa-

tions (3.70) as that used for the minimum traveling wave speed (2.32) in the delayed SI

model (2.6), and if we use an exponentially distributed incubation period in the alternative

model with distributed delay, with some rescalings and simplifying assumptions on death

and diffusion rates for exposed individuals, the asymptotic speed of spread c∗ is obtained by

the same equations (3.78) as equations (2.17) and (2.19) for the minimum traveling wave

speed for the SEI diffusive model (2.1). Therefore it is reasonable to conclude that both

the SEI and delayed SI diffusive models from chapter 2 are special cases of the alternative

models in this chapter. Although both SEI diffusive (2.1) and delayed SI models (2.6) in

chapter 2 incorporate population turnover, which both alternative models (3.2) and (3.25)

do not, it is noteworthy that the role of K, the carrying capacity, in both models with popu-

lation turnover, is played by S0, the initial population density of susceptible animals, in the

alternative models without population turnover. Also the estimation of c∗ when dispersal

of incubating animals is not negligible can be studied in the future.
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Chapter 4

SPATIAL SPREAD OF RABIES – INCORPORATE A REALISTIC LANDSCAPE

We proposed in Borchering et al. (2012) a rabies model for skunk and bat interaction

in northeastern Texas, and used homogeneous diffusion on structured grids to model spa-

tial movement of animals. Though the model and simulations suggested the possibility of

interspecies interactions between rabid bats and susceptible skunks, they only considered

homogeneous environment and landscape, reflected by constant diffusion coefficients. In

this chapter, we aim to describe the spread of rabies infection over a real two-dimensional

square (300km)2 region Ω with some realistic geographic features. To do that, instead of

finite difference schemes in space, we resort to unstructured discretizations based on finite

element methods in space. This approach is not novel, and there are studies on numerical

simulations of age-structured models over one-dimensional domains (Ayati and Dupont,

2002; Cusulin and Gerardo-Giorda, 2010) and works that provide theoretic convergence

and stability results for the scheme (Kim and Park, 1998); however, studies that focus on

numerical simulations over a two-dimensional realistic domain in the context of epidemio-

logical models are rare.

4.1 Functional spaces

Let Ω ⊂ R2 be an open two-dimensional domain of interest with coordinates x, y. Let

the boundary of Ω be Γ = ∂ Ω. Each function here is a function of location (x, y) and/or

time t ∈ [0, T ] with T > 0. We first define properly the underlying functional spaces.

Let L2(Ω) be the space of all functions f that satisfy

‖f‖2
L2 =

∫
Ω

f 2(x, y) dx dy <∞.
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Of course, f is in Sobolev space H1(Ω), if in addition to f ∈ L2(Ω) we have

‖f‖2
H1 =

∫
Ω

(
f 2 + (∂xf)2 + (∂yf)2

)
dx dy <∞.

In the meantime the seminorm in H1(Ω) is defined as

|f |H1 =

(∫
Ω

(∂xf)2 + (∂yf)2

)
dx dy)1/2.

In our case, ‖f‖H1 can also be a function of time. If, in addition,∫ T

0

‖f‖2
H1(t) dt <∞

we denote that f ∈ L2 (0, T ;H1(Ω)).

For implementations of the finite element method, in our case since we employ Neu-

mann boundary conditions we mainly focus on the weak formulation of our problem

find u in L2(0, T ;H1(Ω)) such that a(u, v) = lu(v) ∀v ∈ H1(Ω),

where

a(u, v) =
d

dt

∫
Ω

uv dx dy +

∫
Ω

(Φ∇u) · ∇v dx dy

and

lu(v) =

∫
Ω

f(u)v dx dy.

with Φ a diffusion tensor that varies spatially.

In order to find a finite element approximation to the above problem, we also need to

define a finite-dimensional subspace of H1(Ω). Here we mainly consider the subspace

P1 of continuous piecewise linear polynomial functions over a triangulation T of the

computational domain Ω.

By a triangulation T of the computational domain Ω, we refer to a finite collection of

two-dimensional triangles {Ki} such that

(a) Ki ∩Kj = ∅ if i 6= j, and
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(b)
⋃
i K̄i = Ω̄.

We denote P1 to have dimensionN if the triangulation T involvesN vertices {(xi, yi)}Ni=1,

and therefore P1 over T is N -dimensional with a set of basis functions {φi}Ni=1 such that

φi(xj, yj) =

 1 i = j

0 i 6= j

In particular, every function in P1 is a piecewise continuous linear polynomial in two

variables x, y. So over each Ki ∈ T

f ∈P1 ⇔ f = a1x+ a2y + a3

where a1, a2, a3 are constant.

4.2 Rabies model for skunk and rabies interactions

Unlike previous studies on rabies infection that also used SEIR models on a single

species (Dimitrov et al., 2007; George et al., 2011), the interspecies rabies infection be-

tween bat and skunk populations here can be modeled by a coupled system of nonlinear

ordinary (ODE) and partial (PDE) differential equations. The infected bats come into con-

tact with both susceptible bats and susceptible skunks. In Fig. 4.1, the dotted line represents

infection between compartments. The small arrows represent departure from one compart-

ment into another compartment. We assume logistic growth of the populations. The bat

system includes a recovered compartment. Unlike skunks, some bats survive rabies infec-

tion.

The skunk population is modeled by the following coupled set of nonlinear ODEs/PDEs:

∂Ss
∂t

= rsSs

(
1− Ns

Ks

)
− βsSsIs − γSsIb + dss∇2Ss

∂Es
∂t

= βsSsIs − (σs +ms)Es + γSsIb + des∇2Es

∂Is
∂t

= σsEs −mrsIs + dis∇2Is

(4.1)
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Figure 4.1: Coupled SEIR system.

while the bat population is modeled by a similar set of coupled nonlinear ODEs/PDEs:

∂Sb
∂t

= rbSb

(
1− Nb

Kb

)
− βbSbIb

∂Eb
∂t

= βbSbIb − (σb +mb)Eb

∂Ib
∂t

= σbEb −mrbIb − ρbIb + db∇2Ib

∂Rb

∂t
= ρbIb −mwbRb

(4.2)

where Ss = susceptible skunks, Es = exposed skunks, Is = infected skunks, and the total

number of skunks is Ns = Ss +Es + Is; and Sb = susceptible bats, Eb = exposed bats, Ib =

infected bats, Rb = recovered bats, and the total number of bats is Nb = Sb +Eb + Ib +Rb.

Logistic growth is represented in each susceptible compartment with the appropriate birth

rates (rs and rb) and carrying capacities (Ks and Kb).

Infection and Incubation. Skunks are susceptible to infection from skunks and bats.

The term βsSsIs represents infected skunks produced per year resulting from contact be-

tween infected and susceptible skunks at a transmission rate βs. Susceptible skunks progress

into the exposed class after being inoculated with rabies virus due to contact with infected

skunks. The transmission function γSsIb represents skunk infection resulting from contact

with infected bats. The term βbSbIb represents the infection of susceptible bats by infected

bats at a bat transmission rate βb. After an average incubation period of 1/σb, exposed
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individuals move into the infected compartment. The incubation period for skunks is σ−1
s .

Fertility. We assume that only susceptible animals are capable of reproduction and the

total population production follows logistic growth equation.

Mortality. In the exposed compartments, individuals die from background mortality

(terms msEs and mbEb). In the infected compartments, individuals die at a much higher

rate that accounts for disease related mortality (terms mrsIs and mrbIb). Recovered bat

mortality is expressed by mwbRb.

Diffusion and Recovery. Diffusion terms (dis∇2Is and db∇2Ib) have been added to

the infected compartments. Although symptoms of (furious) rabies include disregard for

territorial boundaries and a general increase in movement, diffusion rates dss and des for

susceptible and exposed skunks were assumed to be the same as dis, as results of field study

suggest practically no difference between characteristics of dispersal and home ranges be-

tween members of healthy and rabid skunk populations (Greenwood, 1997). Some bats

survive rabies infection. These bats are accounted for by the advancement of ρIb from the

infected bat compartment into the recovered bat compartment.

The skunk and bat parameters are described in Tables 4.1 and 4.2.

4.3 Simulation results with homogeneous and isotropic diffusion

The systems (4.1) and (4.2) are equipped with simple homogeneous and isotropic dif-

fusion. Generally in 2D, the diffusion is accounted for by the term

∇ · (Φ∇u)

where Φ in our case is a 2× 2 symmetric and positive definite diffusion tensor matrix, and

u is a twice continuously differentiable function over a two-dimensional domain. From this

term and by Fick’s law the flux vector is defined as

j = −Φ∇u.
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Table 4.1: Skunk parameter set.

Name Value Information Reference

Ks 20 0.7–18.5 individuals per km2 Wade-Smith and Verts (1982)

βs 2.5 unknown ad hoc

rs 4 litter size 3–9 Schmidly (1994)

m−1
s 2.5 lifespan 2–3 years Pybus (1988)

m−1
rs 0.0274 yrs (10 days) Chalton et al. (1987)

σ−1 0.164 yrs (60 days), 21–117 days Chalton et al. (1987)

dss 10 km2 per year Greenwood (1997)

des 10 km2 per year Greenwood (1997)

dis 10 km2 per year Greenwood (1997)

For the diffusion to be isotropic, the direction of j and concentration gradient ∇u have to

be parallel. Also, for the diffusion to be homogeneous, the matrix Φ needs to be constant

throughout the whole domain Ω. As a result, for our systems (4.1) and (4.2), the diffusion

is homogeneous and isotropic.

Simulations of this coupled ODE/PDE models were carried out over a two-dimensional

(300 km)2 geographic area in northeast Texas (see Figure 4.2). This area is principally

located in the Texan biotic province (Blair, 1950), a geographic area with forests to the east

and semiarid grasslands to the west. Rabid skunks, in most cases striped skunks (Mephitis

mephitis), in Texas have been observed to be prevalent chiefly in the Texan biotic province

(Pool and Hacker, 1982), due to frequent occurrences in this area of agricultural lands used

for pasturage, row crops, wooded acreage. On the other hand, most cases of bat rabies in the

(300 km)2 area have been distributed with a focus in Dallas, and the dominant bat species

is eastern red bat (Lasiurus borealis). This area has been observed (Pool and Hacker, 1982)
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Table 4.2: Bat parameter set.

Name Value Information Reference

Kb 250 per km2, 1 red bat per acre Schwartz and Schwartz (2002)

βb 0.12 estimated by Dimitrov et. al. Dimitrov and King (2008)

rb 0.4 per year, litter size 1–4 Schwartz and Schwartz (2002)

m−1
b 10 years, up to 12 years Saunders (1988)

m−1
rb 0.0384 years (14 days) Constantine and Woodball (1966)

m−1
wb 10 years, same as m−1

b ad hoc

σ−1
b 0.0384 years (14 days) Constantine and Woodball (1966)

ρ−1
b 0.5 years Turmelle et al. (2010)

γ 0.05 much smaller than βs ad hoc

db 300 km2 per year Mager and Nelson (2000)

to be free of rabies cases in other major mammalian reservoir species, in particular foxes.

We applied Gaussian distributions to initial values for each compartment. The result is

infected individuals spreading out from the center, with following smaller periodic waves

of infections. We used MATLAB to solve the partial differential equation system with an

adaptive Runge-Kutta 4/5 order solver. Homogeneous Neumann boundary conditions were

considered on the boundaries. Biologically, homogeneous Neumann boundary conditions

imply no-flux across boundaries, or no flow of individuals in or out of the boundaries, so

the system is a closed one.

We used confirmed case data from the region of interest in Texas to initialize the in-

fected individuals in the model. Distributions of exposed and recovered skunks(bats) were

initialized as proportional to that of infected skunks(bats). And susceptible skunks(bats)

were initialized as the difference between carrying capacity for skunks(bats) and the sum
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Figure 4.2: Region of study and biotic provinces in Texas.

of other classes of skunks(bats). We then perform simulations with and without infection

of skunks from rabid bats in order to see the resulting changes in distribution of infected

animals. And we compare the simulation results to the confirmed case data map (see Fig-

ure 4.3). Our simulation results qualitatively describes the changes over time of infected

skunks and bats.

There are two glaring limitations from the simulation results. As we can see from Fig-

ure 4.3, the actual distribution of infected skunks is confined outside a blank region, which

is geographically located at and around the major city Dallas. The simulations with ho-

mogeneous and isotropic diffusions did not generate such a pattern. Moreover individuals

from the simulations spread out evenly in every direction, which might be true in a strictly

homogeneous and local environment but is quite unrealistic when considering a larger re-

gion, as seen in Figure 4.2. So, to produce a closer fit to the confirmed case data map, we

are modifying the system (4.1) and (4.2) by incorporating heterogeneous and anisotropic
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Figure 4.3: Simulations and confirmed case data.

diffusions, which in turn reflect changes in landscape features.

4.4 Variational formulation

The application of finite element method is dependent on the variational formulation of

the problem. First we can reorganize each diffusion term as

∇· (Φu∇u)

where Φu are 2×2 diffusion tensor matrices, and u = Ss, Es, Is, Sb, Eb, Ib, Rb. The tensors

are designed to model the spatial heterogeneities of the landscape. As a result, each tensor
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is a function of location (x, y) ∈ Ω. Similarly, original diffusion tensors can be written as

Φu =

du 0

0 du


where u = Ss, Es, Is, Sb, Eb, Ib, Rb and for our simulations we considered du = 0 for

u = Sb, Eb, Rb.

With these new notations we can write our rabies model for skunk and bat interactions

as

∂tSs −∇· (ΦSs∇Ss) = rsSs

(
1− Ns

Ks

)
− βsSsIs − γSsIb

∂tEs −∇· (ΦEs∇Es) = βsSsIs − (σs +ms)Es + γSsIb

∂tIs −∇· (ΦIs∇Is) = σsEs −mrsIs

∂tSb −∇· (ΦSb∇Sb) = rbSb

(
1− Nb

Kb

)
− βbSbIb

∂tEb −∇· (ΦEb∇Eb) = βbSbIb − (σb +mb)Eb

∂tIb −∇· (ΦIb∇Ib) = σbEb −mrbIb − ρbIb

∂tRb −∇· (ΦRb∇Rb) = ρbIb −mwbRb

(4.3)

where now we assume that Φu’s vary with spatial variables, and we inherit our previous

assumptions that Φu are all zero 2× 2 matrices, with u = Sb, Eb, Rb.

Let the vector

u = [SsEs Is SbEb IbRb]
T

denote the vector of solutions to (4.3). Then a compact representation of (4.3) is

∂tu−∇· (Φ∇u) = f(u) (4.4)
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where f(u) = (A−B(u))u and

A =



r

−(σs +ms)

σs −mrs

rb

−(σb +mb)

σb −mrb − ρb

ρb −mwb


where unfilled entries are all zero, and

B(u) =



− r
Ks
Ns 0 −βSs 0 0 −γSs 0

βIs 0 0 0 0 γSs 0

0 0 0 0 0 0 0

− rb
Kb
Nb 0 0 0 0 −βbSb 0

0 0 0 0 0 βbSb 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


and

Φ =



ΦSs

ΦEs

ΦIs

ΦSb

ΦEb

ΦIb

ΦRb


The compact representation (4.4) indicates that the system of concern is a vector general-
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ization of the one-dimensional Fisher’s equation

∂tu− ∂xxu = (1− u)u.

Analysis of this equation and traveling wave solutions taking the form

u(x, t) = g(x− ct)

for some constant c and appropriate function g are well studied.

The problem (4.4) is well-defined and complete with appropriate initial conditions

u(0, x, y) = u0 ≥ 0 ∈ H1(Ω) (4.5)

and homogeneous Neumann boundary conditions

n · ∇u = 0 (4.6)

with (t, x, y) ∈ [0, T ]× Γ and n the normal vector pointing outward at Γ.

Now we are ready to give the variational formulation of (4.4), (4.5) and (4.6). Let v be

an arbitrary function in H1(Ω). Let u ∈ L2(0, T ;H1(Ω)) be Ss, Es, Is, Sb, Eb, Ib, Rb, and

fu(u) be the component of f(u) corresponding to u. Then from (4.4) we have

∂tu−∇· (Φu∇u) = fu(u). (4.7)

Multiply equation (4.7) by v and integrate over Ω we obtain that∫
Ω

(∂tu v −∇· (Φu∇u)v) dx dy =

∫
Ω

fu(u)v dx dy.

Now applying divergence theorem and homogeneous Neumann boundary conditions (4.6),

we arrive at

d

dt

∫
Ω

uv dx dy +

∫
Ω

(Φu∇u) · ∇v dx dy =

∫
Ω

fu(u)v dx dy (4.8)

for every v ∈ H1(Ω) with u = Ss, Es, Is, Sb, Eb, Ib, Rb.

Consequently our problem is reformulated as:
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find a seven-component vector u(t, x, y) with each component in L2(0, T ;H1(Ω)), such

that Equation (4.8) is satisfied for each v ∈ H1(Ω) for the initial condition (4.5) and

boundary condition (4.6).

Note that to ensure every integral in (4.8) is well-defined, we need to have Lipschitz

continuous boundary for Ω, then by Sobolev embedding theorem, last term of (4.8) is well-

defined since the integrand is the product of two H1(Ω) functions hence it’s in L2(Ω).

4.5 Incorporating landscape features

In our previous simulations from Borchering et al. (2012), the diffusion coefficients

were constant for the whole study area. In other words, we did not consider heterogeneities

in diffusion coefficients caused by different landscape features. This leads to an evenly

spreading, ring-like diffusion pattern that doesn’t agree well qualitatively with real rabies

cases data. As a result, in this chapter, we incorporate specific landscape features that

can provide sufficient heterogeneities so that numerical simulation results could resemble

patterns observed from real case data maps.

Two types of landscape features are incorporated here

(1) localized heterogeneities: here we choose major waterways to model and examine their

effects;

(2) large-scale heterogeneities: lakes for example, but here we use human-populated cities,

and assume that dispersals for terrestrial animals, in particular skunks, are restricted to

be outside city limits.

4.5.1 Localized heterogeneities

By localized heterogeneities, we refer to certain landscape features that can cause lo-

cal changes in diffusivity of terrestrial animals, in our case skunks. For example, in areas
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covered with thick plants or other obstacles, we expect the movement of animals to be sig-

nificantly reduced, i.e. diffusion constant is reduced. We can model these localized effects

by incorporating the dependence of diffusion tensor matrices Ωu on the spatial coordinates

x, y.

We only consider rivers here that generate localized changes in diffusivity. Although

rivers have width, it is relatively small compared with the dimensions of area of study. So

we choose to model rivers as one-dimensional lines or curves, which also reduces computa-

tional burdens. For each point (x, y) on a river, we associate with it a pair of perpendicular

unit directions, e⊥ that is normal to the river and the other e|| tangent to it. Diffusivity along

the direction e⊥ between the river and any point (x̄, ȳ) that is within certain distance ε of

the river is reduced according to the following function

h(D) = dlow + (dhigh − dlow) exp

(
D − ε
D

)
where D ∈ [0, ε] is the distance along the local normal direction e⊥ from (x̄, ȳ) to the river,

and dhigh, dlow are regular non-river diffusivity and low diffusivity value at the river.

Consequently, in coordinates spanned by unit directions (e||, e⊥) we obtain that, diffu-

sivity tensor of any point within ε distance of the rivers is given by

Φ̃u =

dhigh 0

0 h(D)


The above tensor is then converted back into Cartesian coordinates by rotation matrix R, ie

Φu = R Φ̃uR
T

where u = Ss, Es, Is, Ib and

R =

cos(θ) − sin(θ)

sin(θ) cos(θ)


with θ ∈ [−π

2
, π

2
] the angle between x direction and e||.
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4.5.2 Large-scale heterogeneities

City areas are human populated and usually very hostile to dispersing terrestrial ani-

mals. Densities of animals within city limits are extremely low and survivability is usually

close to zero. As a result, after setting a two-dimensional city block within Ω, we can

(1) set birth rate of terrestrial animals (in this case skunks) to be low and death rate to be

high;

(2) set diffusivity within city boundaries to be low.

Bats, on the other hand, usually don’t have this restriction because of their airborne features.

4.6 Numerical scheme

We use finite element method to discretize spatial elements in numerical simulation

to implement real landscape features, in particular waterways and city blocks. So far we

have derived the variational formulation (4.8). To perform finite element approximation of

solutions to (4.4) in the sense of (4.8), we still need to reformulate (4.8) in a finite element

space, in our case, in a finite-dimensional piecewise continuous linear polynomial space

P1 over a triangulation TN that involves N vertices.

Consider a triangulation TN of domain Ω. Assume also the mesh hasN nodes. Suppose

that the N -dimensional piecewise continuous linear polynomial space P1 has N basis

functions {φi}Ni=1. Now each component u of solution u can be written as

u(t, x, y) =
N∑
j=1

uj(t)φj(x, y) (4.9)

where u = Ss, Es, Is, Sb, Eb, Ib, Rb is the name of corresponding class, and φj(x, y) are

piecewise continuous linear polynomials that are equal to 1 on the jth mesh node and 0 on

the remaining nodes.

Now we can reformulate our problem as:
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find a seven-component vector u(t, x, y) with each component in L2(0, T ; P1), such that

Equation (4.8) is satisfied for each v ∈P1 for the initial condition (4.5) and boundary

condition (4.6).

where it is understood that if u ∈ L2(0, T ; P1) then

u(t) ∈P1 ⊂ H1(Ω)

for each t ∈ [0, T ] and ∫ T

0

‖u‖H1(t) dt <∞.

Now in (4.8), if we replace u by (4.9) and v by any basis function φk ∈ P1, with

k = 1, · · · , N , we obtain that

d

dt

∫
Ω

uφk dx dy =
d

dt

∫
Ω

(
N∑
j=1

uj(t)φj

)
φk dx dy

=
N∑
j=1

(∫
Ω

φjφk dx dy

)
duj(t)

dt
.

∫
Ω

(Φu∇u) · ∇φk dx dy =

∫
Ω

(
Φu

N∑
j=1

uj(t)∇φj

)
· ∇φk dx dy

=

∫
Ω

N∑
j=1

uj(t) (Φu∇φj) · ∇φk dx dy

=
N∑
j=1

(∫
Ω

(Φu∇φj) · ∇φk dx dy

)
uj(t).

Let M be an N ×N mass matrix where

Mjk =

∫
Ω

φjφk dx dy

and H(u) be an N ×N matrix where

Hjk(u) =

∫
Ω

(Φu∇φj) · ∇φk dx dy
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and G(u) be an N × 1 matrix where

(G)k(u) =

∫
Ω

fu(u)φk dx dy.

with j, k = 1, · · · , N and u = Ss, Es, Is, Sb, Eb, Ib, Rb.

The matrices M and H(u) are respectively mass matrix and stiffness matrix. Now, for

each u we have an ODE

M
dvu
dt

+H(u)vu = G(u) (4.10)

with vu = [u1(t) · · · uN(t)]T . The initial condition for (4.10) depends on the continuous

piecewise linear polynomial representation of u0.

The computation of G(u) in (4.10) usually involves complicated quadrature rules, but

for simplicity we are adopting the linear interpolation for fu(u)

fu(u) ≈
N∑
j=1

fuj (u)φj

where fuj (u) = fu(u(t, xj, yj)) with φj(xj, yj) = 1 and t ∈ [0, T ]. Hence we have

G(u) ≈
∫

Ω

(
N∑
j=1

fuj (u)φj

)
φk dx dy

=
N∑
j=1

(∫
Ω

φjφk dx dy

)
fuj (u)

If we denote fu = [fu1 (u) fu2 (u) · · · fuN(u)]T , we can write the approximation of G(u) as

G(u) ≈M fu

with u = Ss, Es, Is, Sb, Eb, Ib, Rb. As a result, the equation (4.10) now has a more com-

putable version

M
dvu
dt

+H(u)vu = M fu (4.11)

We refer to the Appendix for details of time advancement scheme as well as assembling

mass and stiffness matrices.
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4.7 Mesh generation

To generate a triangulation mesh we use the third-party mesh generation software Net-

gen that is available for free online. There are also many two or three-dimensional mesh

generation softwares or tools out there, including MATLAB’s built-in function delaunay,

but we choose Netgen mainly for the convenience of its GUI from which it is relatively

easy to manipulate mesh generation processes. To generate a two-dimensional triangula-

tion mesh using Netgen, we need to define a geometry file with a suffix “in2d” that describes

the basic geometry, such as regions and curves, of region of concern.

Before creating the geometry file we still need to identify the region of interest, geo-

graphic features we want to model, and the xy-coordinates of those points that describe

these features. The region of interest is described in Figure 4.2. Then over the Texas

river and county map, we use the software ImageJ to handpick those pixels that reflect

geographic features of concern (see Figure 4.4).

Figure 4.4: We selected major waterways and the city limits of Dallas (see the rectangular
region in the center) as geographic features of concern. Selected pixels are highlighted in
yellow.

We then specify in the geometry files the xy-coordinates of selected pixels and segments

that mark important boundaries, i.e. waterways and city boundaries. With the help of
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Netgen, we are able to draw the underlying geometry of the region to mesh, as seen from

Figure 4.5.

Two subdomains, the city block in the center and the remaining region, are assigned

in order to specify different parameter values for inside and outside the city. Netgen then

generates a coarse triangulation that can be further refined, as seen in Figure 4.5.

Figure 4.5: The bottom panels are snapshots of the coarse and refined triangulation
meshes. The coarse mesh has 1616 vertices and 3072 triangular elements. The refined
triangulation has 6303 vertices and 12288 triangular elements. Both meshes are overlapped
with the underlying geometry in red lines.

4.8 Simulation results

We use the actual case data map to initialize the distribution of infectious skunks and

bats. Gaussian distribution is used to initialize spatial distribution of infectious animals

when regions with high population densities of infectious animals are highlighted. Density

of exposed skunks is set as half as infectious skunk density. Susceptible, exposed and

infectious skunk densities sum up to the carrying capacity of skunks. However since along

rivers there are supposed to be no skunks, we initialize densities of every skunk classes as

zero along rivers. Densities of exposed and recovered bats are set respectively as 1.5 and
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0.5 of that of infectious bats. Susceptible bat density is initialized in ways similar to that of

susceptible skunks, but there are no restrictions for bat densities with respect to rivers.

Initialization of infected skunks and infected bats can be viewed in Figures 4.6 and 4.7.

Note that only great and moderate infection densities are indicated in the initialization.

We use a sufficiently refined triangulation mesh that has 24893 nodes and 49152 trian-

gular elements. This mesh is generated from the refined mesh in Figure 4.5 using uniform

refinement in Netgen.

Also to implement the effects of landscape features, we set the growth rate for suscep-

tible skunks within city block as half the regular growth rate outside the city, and the death

rate of exposed skunks to be twice the normal death rate outside the city. While modeling

the effects of rivers on skunk diffusion, we set the threshold of distance from the river as

10 (km). In other words, if skunks are at locations within 10 (km) of any river we model

here, their diffusion rate along the direction perpendicular to the river is reduced, the extent

to which depends on the distance.
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Figure 4.6: The left graph is the actual case map for infected skunks in 2007. Small yellow
circles indicate one actual case of infected skunk. The right one is the initial condition for
the finite element simulation and is the approximation of the left hand side graph. Notice
the black curves in the right graph that correspond to rivers where there are no skunks.

We first run the simulation with the interaction between susceptible skunks and infected
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Figure 4.7: The left graph is the actual case map for infected bats in 2007. Small blue
square means one actual case of infected bat. The right one is the initial condition for
infected bats in the finite element simulation and is the approximation of the left hand side
graph.

bats, which is represented by the infection term γSsIb with γ 6= 0. To see what effects this

coupling term has on the spatial distribution of infectious skunks, we also run the simulation

without interaction between susceptible skunks and infectious bats by setting γ = 0.

First we observe that both simulations with and without coupling term γSsIb generate

distributions of infected skunks that roughly agree with the actual case maps, for both

years 2008 and 2009. Compared with old simulation results in Figure 4.3, finite element

approximation based on a triangulation mesh produces diffusion patterns that reflect natural

effects of realistic landscape features, i.e. rivers and city blocks, unlike the evenly spreading

diffusion pattern observed in previous simulation (Figure 4.3). Moreover, infectious skunk

density within the city limit has been reduced thanks to increase in within-city skunk death

rate and decrease in within-city skunk birth rate, while infectious skunks disperse mainly

along rivers due to an implementation of diffusion .

Comparing the current simulation with and the one without interaction term, we can

see that the simulation result for 2008 without interaction term produces a gap to the left of

city block, which simulation with interaction term does a better job at covering. Compare

128



0 50 100 150 200 250 300
0

50

100

150

200

250

300  

 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300
0

50

100

150

200

250

300  

 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4.8: The graphs in the left panel are actual case maps for infected skunks in 2008
(small green circles) and 2009 (small yellow circles with center dots) from top to bottom.
The graphs of the right panel reflect simulation results for densities of infected skunks in
2008 and 2009 (from top to bottom) with initial conditions specified as in Figure 4.6 and
4.7.

simulation results with the actual case map, qualitatively simulation with coupling term

γSsIb is better than the one without the term.

4.9 Conclusion and Discussion

In this chapter, we use a simple spatial model that couples two rabies reservoir species

with different manifestations of rabies infection, based on experimental evidence that bats,

unlike skunks, are sometimes able to survive rabies infection (Turmelle et al., 2010). Dif-

ferent from homogeneous spatial diffusion and constant parameters used in the system
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Figure 4.9: The graphs in the left panel are actual case maps for infected bats in 2008
(small green triangles) and 2009 (small yellow diamonds) from top to bottom. The graphs
of the right panel reflect simulation results for density of infected bats in 2008 and 2009
(from top to bottom) with initial conditions specified as in Figure 4.6 and 4.7.

in Borchering et al. (2012), we implement in this chapter spatial heterogeneities by in-

cluding rivers and city limits in finite element settings that enables the use of unstructured

grids, which are more suited for representing complex geographical domain of interest. We

demonstrate the effectiveness of such modeling method by illustrating a numerical simula-

tion. This modeling approach proves to be more viable in reproducing, at least qualitatively,

the skunk rabies case spatial spread in northeast Texas. This modeling tool has potential in

terms of improvement in accuracy of prediction and description of landscape, so that public

health resources such as rabies vaccines can be more accurately distributed.

Similar to Borchering et al. (2012), with finite element settings here, the coupled rabies
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model for skunk here also produces better fit with the actual spatial distribution map for

skunk rabies occurrences compared with the non-coupled version of the model. Hence the

simulation results here also provide insights and support the possibility of spillover trans-

mission of bat rabies virus to skunks. Although evidence exists that south central skunk

rabies virus variant prevalent in Texas is strongly tied to bat rabies virus variant (Rupprecht

et al., 2011), admittedly little evidence corroborates the assumption of continuous depen-

dence of skunk rabies enzootic cycles on those of bats (Pool and Hacker, 1982). Therefore,

while we observe desired effects of the assumed weak continuous dependency, in effect it

might still be weakened and instead be modeled by, for example, stochastic processes.

The surveillance, control and studies of zoonotic diseases are subject to the influence

of sampling and reporting bias. In fact, the abundance of rabies case occurrences varies

strongly with public awareness, human density and the availability of qualified reporting

and processing infrastructures. In addition to our rabies model for skunk and bat inter-

action, other models cannot be ruled out that can produce qualitatively similar fit with

the actual rabies case map for skunks. Also seasonality (Duke-Sylvester et al., 2010) or

other characteristics of bat and skunk ecology can potentially be important factors in spa-

tial spread of rabies. In summary, although the finite element simulation of our model

generates qualitatively good results, any suggestion or observations obtained should be

considered preliminary.
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Figure 4.10: Panels on the left are for 2008 and those on the right side are for 2009.
The first row corresponds to simulations without interaction between susceptible skunks
and infected bats. The second row corresponds to simulations with interaction terms. All
simulations have initial conditions specified as in Figure 4.6 and 4.7.
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APPENDIX A

NUMERICAL METHODS
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A.1 Numerical methods for (2.38)

First we truncate R to [−M,M ] with M > 0 sufficiently large. Discretize this bounded
domain with L = 2N + 1 points to get an equally spaced grid

−M = z1 < z2 < · · · < zN+1 = 0 < zN+2 < · · · < z2N < z2N+1 = M

with the uniform step size

h =
2M

2N
=
M

N
.

Now we denote
Sj = S(zj), Ej = E(zj), Ij = I(zj)

with j = 1, · · · , L.
In our simulations we let M = 100 and N = 1000.
Using backward Euler in time and central difference in space, in other words this

scheme being second order accurate both in time and space, the equations in (2.38) now
becomes

S1 − 1 = 0, SL − S∗ = 0, E1 = 0, EL − E∗ = 0, I1 = 0, IL − I∗ = 0

and for j = 2, · · · , L− 1

(−v + rh) Sj + vSj−1 −
rh

K
S2
j − βhSjIj = 0,

D2Ej+1 −
(
2D2 + vh+ (b+ σ)h2

)
Ej + (D2 + vh)Ej−1 + βh2SjIj = 0

D1Ij+1 − (2D1 + vh+ µh2)Ij + (D1 + vh)Ij−1 + σh2Ej = 0.

The above algebraic equations can be readily solved by MATLAB implementation of New-
ton method.

A.2 Numerical methods for (2.39)

We make a change of variable

ỹ = y − x+ z − vT.

Dropping tildes (2.39) becomes

vS ′ = rS

(
1− S

K

)
− βSI

vI ′ = D1 I
′′ − µI + βe−bT

∫
R
S(y)I(y)

e
− (y−z+vT )2

4D2T

2
√
πD2T

dy

(A.1)

equipped by asymptotic boundary conditions

S(−∞) = K, I(−∞) = 0, S(+∞) = Ŝ, I(+∞) = Î
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where Ŝ, Î are defined in (2.27).
Now we can truncate the one-dimensional domain (−∞,∞) to [−M,M ] with M > 0

sufficiently large. Notice that the integral contains the probability density function of a
normal distribution. For simplicity we define

p(x, a1, a2) =
1√

2πa2

e
− (x−a1)

2

2a22 (A.2)

to be the normal distribution probability density function with mean a1 > 0 and standard
deviation a2 > 0 evaluated at x. This function is defined as a built-in routine normpdf in
MATLAB.

The asymptotic boundary condition can be applied to the truncation so that

∫
R
S(y)I(y)

e
− (y−z+vT )2

4D2T

2
√
πD2T

dy

=

∫
R
S(y)I(y)p(y − z + vT, 0,

√
2D2T ) dy

≈
∫ M

−M
S(y)I(y)p(y − z + vT, 0,

√
2D2T ) dy +

∫ ∞
M

S(y)I(y)p(y − z + vT, 0,
√

2D2T ) dy

≈
∫ M

−M
S(y)I(y)p(y − z + vT, 0,

√
2D2T ) dy︸ ︷︷ ︸

H1

+S(M)I(M)

∫ ∞
M

p(y − z + vT, 0,
√

2D2T ) dy︸ ︷︷ ︸
H2

because when M is sufficiently large I = 0.
Note that H2 can be found using normcdf built-in function in MATLAB.
Discretize [−M,M ] with L = 2N + 1 equally spaced points so that

−M = z1 < z2 < · · · < zN+1 = 0 < zN+2 < · · · < z2N < z2N+1 = M.

The uniform step size

h =
2M

2N
=
M

N
.

We also denote S(zj), I(zj) as Sj, Ij with j = 1, · · · , L. In our simulations we letM = 200
and N = 2000.

With the above discretization, we can obtain an approximation of H2 using the com-
posite Simpson’s rule. Hence

H1 ≈
h

3

[
S1I1p(z1 − z + vT, 0,

√
2D2T ) + 4

N∑
k=1

S2kI2kp(z2k − z + vT, 0,
√

2D2T )

+2
N−1∑
k=1

S2k+1I2k+1p(z2k+1 − z + vT, 0,
√

2D2T ) + S2N+1I2N+1p(z2N+1 − z + vT, 0,
√

2D2T )

]
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For convenience we denote

Pij = p(zi − zj + vT, 0,
√

2D2T ) gj =

∫ ∞
M

p(y − zj + vT, 0,
√

2D2T ) dy.

If we use backward Euler in time and central difference in space, i.e. second order accurate
in both time and space, at each zj , with j = 2, · · · , L− 1, then

v
Sj − Sj−1

h
= rSj

(
1− Sj

K

)
− βSjIj

v
Ij − Ij−1

h
= D1

Ij+1 − 2Ij + Ij−1

h2

+
βe−bTh

3

[
S1I1P1j + 4

N∑
k=1

S2kI2kP2k,j + 2
N−1∑
k=1

S2k+1I2k+1P2k+1,j + S2N+1I2N+1gj

]
Combined with the asymptotic boundary condition, we have the following equations

S1 −K = 0, SL − Ŝ = 0

(rh− v)Sj + vSj−1 −
rh

K
S2
j − βhSjIj = 0

I1 = 0, IL − Î = 0

D1Ij+1 − (2D1 + vh+ µh2)Ij + (D1 + vh)Ij−1

+
βe−bTh3

3

[
S1I1P1j + 4

N∑
k=1

S2kI2kP2k,j + 2
N−1∑
k=1

S2k+1I2k+1P2k+1,j + S2N+1I2N+1gj

]
with j = 2, · · · , L− 1.

Solving these algebraic equations give a numerical solution of (2.39) if v > 0 is pro-
vided.

Let
u = [S1 S2 · · ·SL I1 I2 · · · IL]T

where uj = Sj if j = 1, · · · , L and uj = Ij−L if j = L+ 1, · · · , 2L.
Denote the above algebraic system as

F (u) = 0.

To solve this system of nonlinear algebraic system of equations, we use Newton method.
The exact expression of the 2L× 2L Jacobian matrix J is readily obtained. We attempt to
solve the system with its solution close to the initial condition

Sj = K, Ij = 0 j = 1, 2, · · · , L

Sj = Ŝ, Ij = Î j = L+ 1, · · · , 2L.
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Classical Newton method results in

uk+1 = uk − J−1
k F (uk)

for the kth iteration, where Jk is the Jacobian matrix evaluated at uk.
Simple implementation of classical Newton method quickly gives singular Jacobian

matrices and increasing oscillations that both lead to blowup in numerical solutions. This
is because the system

Jk∆k = F (uk)

where ∆k is the Newton step, cannot produce accurate solutions when Jk is badly condi-
tioned. However, we may modify this method using

(JTk Jk + λkI)∆̃k = JTk F (uk).

Although JTk Jk is singular, the above system is non-singular provided λk > 0. Hence the
Newton step ∆̃k is always well defined if λk > 0 is appropriately chosen.

In our case, λk is chosen to be 1× 10−6 uniformly for all k by trial and error.

A.3 Numerical methods for (2.1)

We truncate the one-dimensional spatial domain (−∞,∞) to [−M,M ] with M suffi-
ciently large. We discretize [−M,M ] into L = 2N + 1 equally spaced grid points. Let

−M = x1 < x2 < · · · < xN+1 = 0 < xN+2 < · · · < xL = M.

For our simulations, we chose M = 100, N = 1000.
Let Sj(t), Ej(t), Ij(t) be numerical approximations respectively for susceptible, in-

cubating and infectious animal population densities at location xj and time t > 0 with
j = 1, · · · , L.

With central difference for spatial derivatives, i.e. second order accurate in space, we
arrive at discretized version of (2.1)

S ′j = rSj

(
1− Sj

K

)
− βSjIj

E ′j = βSjIj − (b+ σ)Ej +D2
Ej+1−2Ej+Ej−1

h2

I ′j = σEj − µIj +D1
Ij+1−2Ij+Ij−1

h2

with j = 1, · · ·L and initial conditions

Sj(0) = S◦(xj), Ej(0) = E◦(xj), I◦(0) = I0(xj)

and, for convenience, homogeneous Neumann boundary conditions, which results in

S0 = S2, SL+1 = SL−1, E0 = E2, EL+1 = EL−1, I0 = I2, IL+1 = IL−1

where variables with subscripts 0, L + 1 are set up as “ghost points” to implement homo-
geneous boundary conditions.
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To advance the discretized system in time, we use embedded pair of continuous Runge-
Kutta method of order 4 and discrete Runge-Kutta method of order 3 which is used to
estimate errors. See Jackiewicz et al. (2012) for an implementation example of this method
in an epidemiological model.

For our model, we use the following initial conditions

S◦(xj) = K, E◦(xj) = 0, I◦(xj) = 0 j = 1, · · · , N

S◦(xj) = S∗, E◦(xj) = E∗, I◦(xj) = I∗, j = N + 1, · · · , L

where S∗, E∗, I∗ are defined in (2.7).

A.4 Numerical methods for (2.6)

Notice that the derivation of (2.6) clearly indicates that we can rewrite it as the following
system without non-local terms

∂S

∂t
= rS

(
1− S

K

)
− βSI

∂I

∂t
= −µI +D1

∂2I

∂x2
+ p(x, t, T )

∂p

∂t
+
∂p

∂a
= D2

∂2p

∂x2
− bp

S(x, t) = S◦(x, t), t ∈ [−τ, 0]

I(x, t) = I◦(x, t), t ∈ [−τ, 0]

p(x, t, 0) = βS(x, t)I(x, t)

(A.3)

where the original non-local integral term in (2.6) has been replaced by the solution of
p(x, t, s) with s = T .

Now if we let u(x, t, s) = p(x, t− T + s, s). Then for a fixed time t > 0

∂u

∂s
=

(
∂p

∂t
+
∂p

∂a

)∣∣∣∣
a=s,t=t−T+s

= D2
∂2p

∂x2
− bp

= D2
∂2u

∂x2
− bu

with
u(x, t, 0) = p(x, t− T, 0) = βS(x, t− T )I(x, t− T ).
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Now we can rewrite again the system (A.3) as

∂S

∂t
= rS

(
1− S

K

)
− βSI

∂I

∂t
= −µI +D1

∂2I

∂x2
+ u(x, t, s)|s=T

∂u

∂s
= D2

∂2u

∂x2
− bu

S(x, t) = S◦(x, t), t ∈ [−τ, 0]

I(x, t) = I◦(x, t), t ∈ [−τ, 0]

u(x, t, 0) = βS(x, t− T )I(x, t− T ).

(A.4)

System (A.4) is easier to solve than (A.3) because u equation is a reaction diffusion one
that is relatively easy to implement, given that we consider a fixed time t.

Then we truncate the one-dimensional domain (−∞,∞) to [−M,M ] with M suffi-
ciently large. Let

−M = x1 < x2 < · · · < xN+1 = 0 < xN+2 < · · · < x2N < x2N+1 = M.

There are L = 2N + 1 grid points and 2N intervals. Let h = 2M
2N

= M
N

be the spatial step
size.

In our simulation, we choose M = 100, N = 1000.
Now let Sj(t), Ij(t), uj(t, s) be approximation of S, I, u at xj at time t > 0, s ∈ [0, T ].

Let the termination time be tf . We discretize the simulation time interval so that the time
step size ∆t satisfies

T

∆t
= B

where B is an integer. Here we choose tf = 20, B = 40.
Let the simulation time interval be discretized as

0 = t1 < t2 < · · · tP+1 = tf

where tj = (j − 1)∆t with j = 1, · · · , P + 1.
Now central difference for spatial derivatives in (A.4) yields

S ′j = rSj

(
1− Sj

K

)
− βSjIj

I ′j = −µIj +D1
Ij+1 − 2Ij + Ij−1

h2
+ uj(t, T )

u′j(t, s) = D2
uj+1(t, s)− 2uj(t, s) + uj−1(t, s)

h2
− buj(t, s), s ∈ [0, T ]

uj(t, 0) = βSj(t− T )Ij(t− T )

Sj(s) = S◦(xj, s), Ij(s) = I◦(xj, s), s ∈ [−T, 0]

(A.5)

for j = 1, 2, · · · , L.
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For ease of simulation we equip the system (A.4) with the homogeneous Neumann
boundary conditions. This implies that

S0 = S2, SL+1 = SL−1, I0 = I2, IL+1 = IL−1, I0 = S2, IL+1 = IL−1.

To advance in time, we use the embedded pair of continuous Runge-Kutta method of
order 4 and discrete Runge-Kutta method of order 3 which is used for local error estimation.
See Jackiewicz et al. (2012) for a recent implementation example of this method.

Now we are ready to iteratively solve system (A.4). For j = 1, · · · , L and k =
1, · · · , P . First we initialize uj(tk, 0) using Sj(tk − T ) and Ij(tk − T ). Then numeri-
cally solving u equation in (A.5) yields uj(tk, T ). Subsequently we can use uj(tk, T ) to
solve for Sj(tk+1) and Ij(tk+1).

Since T is an integer multiple of ∆t, for any tk with k = 1, · · · , P , we can always find
numerical approximation of Sj(tk − T ) and Ij(tk − T ) for j = 1, · · · , L. In the case of
tk − T ≤ 0, they are determined by the initial conditions for S, I .

For simplicity in simulations we let the initial conditions be

Sj = K, j = 1, · · · , N Sj = Ŝ, j = N + 1, · · · , L

Ij = 0, j = 1, · · · , N Ij = Î , j = N + 1, · · · , L

where Ŝ, Î are defined in (2.27).

A.5 Implementation details for (4.11)

A.5.1 Time advancement

To solve the ODE for vu we still need to apply some numerical scheme to advance it
in time. To do that we first discretize the time interval [0, T ] into L subintervals of equal
length ∆t = T

L
. So now we want to advance (4.11) from tn to tn+1 with

tn = n∆t = n
T

L

where n = 0, 1, · · · , L− 1. Also let

vnu = [un1 u
n
2 · · · unN ]T

where unj = uj(tn) and j = 1, · · · , N .
Now we can discretize the time derivative in (4.11) at t = tn by

dvu
dt

(tn) ≈ vnu − vn−1
u

∆t

Since the right hand side of (4.11) involves nonlinearity when computing fu at t = tn, it
will cause great computational complexity if we use complete implicit schemes to advance
(4.11) in time. So as an alternative, we opt to use a implicit-explicit scheme that uses
backward Euler approximation of time derivative, as indicated above, and is implicit at the
term correpsonding to the diffusion operator but explicit on the right hand side.
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Now equation (4.11) becomes

M
vnu − vn−1

u

∆t
+H(u)vnu = M fu,n−1 (A.6)

where
fu,n = [fu(un(x1, y1)) fu(un(x2, y2)) · · · fu(un(xN , yN))]T

where un(xj, yj) is an approximation of u(tn, xj, yj) with n = 1, · · · , L, and j = 1, · · · , N .
It follows from (A.6) that to compute vnu for all u = Ss, Es, Is, Sb, Eb, Ib, Rb we should

take these steps

(1) let i = 0. For t0 = 0 use (4.5) to initialize v0
u and fu,0 for all u = Ss, Es, Is, Sb, Eb, Ib, Rb

(2) if i = L go to step 5 otherwise go to step (3)

(3) solve for vi+1
u in the equation

(M +H(u)∆t) vi+1
u = M

(
∆t fu,i + viu

)
(A.7)

for all u = Ss, Es, Is, Sb, Eb, Ib, Rb

(4) add i by 1 and go to step (2)

(5) visualize vLu for all u

Now that we have derived a numerical scheme in the finite element method framework,
what is left is to establish an appropriate triangulation mesh TN , find the set of basis func-
tions {φi}Ni=1 for the piecewise continuous linear polynomial space P1 over TN , compute
matricesM andH(u) for all u = Ss, Es, Is, Sb, Eb, Ib, Rb, perform simulations and display
simulation results.

A.5.2 Assembling mass and stiffness matrices

Now we have generated a triangulation TN that consists ofN nodes {(xi, yi)}Ni=1 and L
triangular elements {Ki}Li=1. The piecewise continuous linear polynomial space P1 over
TN has N basis functions {φi}Ni=1 such that

φi(xj, yj) =

{
1 i = j
0 i 6= j

Let’s see first what exactly these basis functions are. Consider a node (xi, yi) and its corre-
sponding basis function φi(x, y) ∈ P1. Since P1 is piecewise continuous linear polyno-
mial space, every function f in this space can be defined as

f = a1x+ a2y + a3

over any triangular element with a1, a2, a3 constant.
Consider again a triangular element K that has a vertex at (xi, yi). Let the other two

vertices be (xi−1, yi−1) and (xi+1, yi+1). We want to find the expression of φi defined over
K. Suppose that

φi = a1x+ a2y + a3.
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Then it follows from the definition of basis functions that

φi(xi, yi) = 1⇒ a1xi + a2yi + a3 = 1

φi(xi−1, yi−1) = 0⇒ a1xi−1 + a2yi−1 + a3 = 0

φi(xi+1, yi+1) = 0⇒ a1xi+1 + a2yi+1 + a3 = 0

In matrix form this is equivalent to solving for [a1 a2 a3]T in(
xi yi 1
xi−1 yi−1 1
xi+1 yi+1 1

)(
a1

a2

a3

)
=

(
1
0
0

)
(A.8)

Note that the matrix (
xi yi 1
xi−1 yi−1 1
xi+1 yi+1 1

)
has a determinant equal to 2|K| > 0 where |K| is the area of triangle K, since

|K| = 1

2
det

(
xi−1 − xi yi−1 − yi
xi+1 − xi yi+1 − yi

)
So (A.8) has a unique nonzero solution [a1 a2 a3]T . And every basis function φi is uniquely
defined in each triangular element containing vertex (xi, yi), while it equals zero over tri-
anglular element K that does not contain vertex (xi, yi).

However we are not going to compute the coefficients in (A.8) explicitly to assemble
mass and stiffness matrices, because it leads to cumbersome and messy expressions. In-
stead we first seek to transform any triangular elementK under consideration to a reference
triangle K0, where K0 is spanned by its three vertices (x̂1, ŷ1) = (1, 0), (x̂2, ŷ2) = (0, 1)
and (x̂3, ŷ3) = (0, 0). And we use x̂ = (x̂, ŷ)T as a vector in the reference triangle’s
coordinate.

For any such triangular element K in xy-coordinates, we can treat it as the image of K0

in x̂ŷ-coordinates under an affine map F : K0 → K

F (1, 0) = (xi−1, yi−1)T

F (0, 1) = (xi+1, yi+1)T

F (0, 0) = (xi, yi)
T

where
F (x̂) = QT x̂ + c

with

Q =

(
xi−1 − xi yi−1 − yi
xi+1 − xi yi+1 − yi

)
, and c = (xi, yi)

T

Let u be arbitrary function of x, y. If we define û(x̂) = u(F (x̂)), then

∇̂û =


∂û

∂x̂
∂û

∂x̂

 =


∂û

∂x

∂x

∂x̂
+
∂û

∂y

∂y

∂x̂
∂û

∂x

∂x

∂ŷ
+
∂û

∂y

∂y

∂ŷ

 =


∂x

∂x̂

∂y

∂x̂
∂x

∂ŷ

∂y

∂ŷ



∂û

∂x
∂û

∂y

 = Q∇u
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and dx dy = | det(Q)| dx̂ dŷ.
First consider assembling mass and stiffness matrices over an arbitrary triangular ele-

ment K consisting of (xi−1, yi−1), (xi, yi) and (xi+1, yi+1). We convert xy-coordinates to
x̂ŷ-coordinates to get

MK
jk =

∫
K

φjφk dx dy =

∫
K0

φ̂jφ̂k| detQ| dx̂ dŷ

and

HK
jk(u) =

∫
K

(Φ̂u∇φj) · ∇φk dx dy =

∫
K0

(Φ̂uQ
−1∇̂φ̂j) · (Q−1∇̂φ̂k)| detQ| dx̂ dŷ

where these terms are nonzero only if j, k = i − 1, i, i + 1 and φ̂j’s are basis functions in
x̂ŷ-coordinates defined over the reference triangle K0. Since under the affine map F

(xi−1, yi−1)→ (1, 0), (xi, yi)→ (0, 0) and (xi+1, yi+1)→ (0, 1)

ˆφi−1 in x̂ŷ-coordinates will be

ˆφi−1 = a1x̂+ a2ŷ + a3

where a1, a2, a3 are constant and satisfy(
1 0 1
0 1 1
0 0 1

)(
a1

a2

a3

)
=

(
1
0
0

)

which yields a1 = 1, a2 = a3 = 0. Hence ˆφi−1 = x̂.
Also φ̂i in x̂ŷ-coordinates will be

φ̂i = b1x̂+ b2ŷ + b3

where b1, b2, b3 are constant and satisfy(
1 0 1
0 1 1
0 0 1

)(
b1

b2

b3

)
=

(
0
0
1

)

which yields b1 = −1, b2 = −1, b3 = 1. Hence φ̂i = 1− x̂− ŷ.
Similarly we have that ˆφi+1 = ŷ.
It is readily shown that∫

K0

x̂ dx̂ dŷ =

∫
K0

ŷ dx̂ dŷ =
1

6∫
K0

x̂2 dx̂ dŷ =

∫
K0

ŷ2 dx̂ dŷ =
1

12∫
K0

x̂ŷ dx̂ dŷ =
1

24
,

∫
K0

dx̂ dŷ =
1

2
.
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Now we can define a 3× 3 local mass matrix MK such that

(MK)jk = MK
i−2+j,i−2+k

with j, k = 1, 2, 3. Then

MK =

MK
i−1,i−1 MK

i−1,i MK
i−1,i+1

MK
i,i−1 MK

i,i MK
i,i+1

MK
i+1,i−1 MK

i+1,i MK
i+1,i+1

 =
| detQ|

24

(
2 1 1
1 2 1
1 1 2

)

From the above discussions it is also readily seen that all the gradients in x̂ŷ-coordinates
are

∇̂ ˆφi−1 =

(
1
0

)
, ∇̂φ̂i =

(
−1
−1

)
and ∇̂φ̂i+1 =

(
0
1

)
Also we can define a local stiffness matrix HK(u) such that

(HK(u))jk = HK
i−2+j,i−2+k(u)

=

∫
K0

(Φ̂uQ
−1∇̂φ̂i−2+j) · (Q−1∇̂φ̂i−2+k)| detQ| dx̂ dŷ (A.9)

with j, k = 1, 2, 3 and Q, ∇̂φ̂i−1, ∇̂φ̂i, ∇̂φ̂i+1 are constant and defined as above.
Note that Φu is a function of x, y and Φ̂u is a function of x̂, ŷ. To compute exactly what

the integral in (A.9) is, we let the integrand be p(x̂, ŷ) and use the following quadrature rule∫
K0

p dx̂ dŷ ≈ 1

3

(
p(

1

2
,
1

2
) + p(

1

2
, 0) + p(0,

1

2
)

)
where in x̂ŷ-coordinates (1

2
, 1

2
), (1

2
, 0), (0, 1

2
) correspond to the midpoints of three sides of

triangle K0. This scheme is third order accurate, i.e. the error is O(h3) where h is the
longest distance within triangle.

With each triangular element K of the triangulation TN , we can find out its corre-
sponding local mass matrix MK and local stiffness matrix HK(u). These, in turn, help in
assembling the mass matrix M and H(u). We follow the steps below to compute M and
Hu.

Suppose initially i = 1 and M,H(u) are zero matrices.

(1) If i > L quit, else consider triangleKi. Let its three vertices be respectively (xj1 , yj1), (xj2 , yj2)
and (xj3 , yj3), and let them be mapped by F to (x̂1, ŷ1) = (1, 0), (x̂2, ŷ2) = (0, 1) and
(x̂3, ŷ3) = (0, 0) in the reference triangle K0.

(2) Compute MKi and HKi(u).

(3) LetMjl,jk = Mjl,jk+(MKi)lk andHjl,jk(u) = Hjl,jk(u)+(HKi)lk(u) with l, k = 1, 2, 3.

(4) Add i by 1 and go to step (1).
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