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ABSTRACT

This study focuses on state estimation of nonlinear discrete time systems with

constraints. Physical processes have inherent in them, constraints on inputs, outputs,

states and disturbances. These constraints can provide additional information to

the estimator in estimating states from the measured output. Recursive filters

such as Kalman Filters or Extended Kalman Filters are commonly used in state

estimation; however, they do not allow inclusion of constraints in their formulation.

On the other hand, computational complexity of full information estimation (using

all measurements) grows with iteration and becomes intractable.

One way of formulating the recursive state estimation problem with constraints

is the Moving Horizon Estimation (MHE) approximation. Estimates of states are

calculated from the solution of a constrained optimization problem of fixed size.

Detailed formulation of this strategy is studied and properties of this estimation

algorithm are discussed in this work. The problem with the MHE formulation is

solving an optimization problem in each iteration which is computationally intensive.

State estimation with constraints can be formulated as Extended Kalman Filter

(EKF) with a projection applied to estimates. The states are estimated from the

measurements using standard Extended Kalman Filter (EKF) algorithm and the

estimated states are projected on to a constrained set. Detailed formulation of this

estimation strategy is studied and the properties associated with this algorithm are

discussed.

Both these state estimation strategies (MHE and EKF with projection) are tested

with examples from the literature. The average estimation time and the sum of square

estimation error are used to compare performance of these estimators. Results of the

case studies are analyzed and trade-offs are discussed.
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Chapter 1

INTRODUCTION

Many process control problems like pH neutralization, polymerization,

temperature control and flow control exhibit nonlinear behavior. Linear state space

modeling of these systems is not sufficient in controlling and forecasting them.

However, these processes can be modeled accurately using nonlinear state space

equations.

The states of the system summarize its past behavior and can be used to predict its

future behavior. State estimation is crucial for control strategies like Model Predictive

Control (MPC) and for monitoring process performance. In most cases, the states

are not completely measurable and measurements of process variables can be used to

estimate the states.

Constraints on the system states (for example concentrations cannot be negative),

inputs (e.g., flows cannot be negative) and outputs (pH can take between value

between 0 and 14) are inherent in process control models. Inclusion of constraints

in the state estimation formulation helps in correcting modeling errors and other

uncertainties associated with system operation.

Kalman Filter (KF) is a commonly used method in estimating states of a linear

system. For linear dynamical systems, the Kalman Filter provides the optimal

estimates of states from the measured input and output in the presence of state

and output noise. Many people have investigated the state estimation problem for

nonlinear linear systems. Some of the early works in nonlinear state estimation include

formulation of state estimation as nonlinear state observer system (like Luenberger

observer (Van Der Schaft, 1985; Tatiraju et al., 1999) ) and Extended Kalman filter
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(EKF) (Maybeck, 1982; Ribeiro, 2004). The state observer formulation allows direct

tuning of filter gain, which helps in obtaining sufficient conditions for asymptotic

stability of the observer system. This method, however, does not allow the inclusion

of information about measurement and state noise in its formulation. On the other

hand, filter gain of EKF is obtained using Kalman update formula for the linearized

system around previous estimates and covariance matrices of state and output noise.

It is hard to obtain the required conditions for asymptotic stability of the estimator

for EKF formulation. Because of its simplicity and low computational burden, EKF is

widely used in the state estimation of nonlinear systems. Some of the applications of

EKF are: State estimation and control of polymerization process (Kim and Choi,

1990; Crowley and Choi, 1996) and state estimation of systems described using

deferential-algebraic equation (DAE) (Becerra et al., 2001). Some of the shortcomings

of EKF are addressed in a slightly different extension of the Kalman filter known as

the Unscented Kalman Filter (UKF) (Julier and Uhlmann, 1997). None of these

methods do not allow inclusion of constraints in their formulations.

State estimation can also be formulated as a solution of the optimization problem

(minimization of weighted estimation error). A description of state estimation

of linear systems without constraints as receding horizon estimator is provided

by Thomas (Thomas, 1975), that involves solving fixed size optimization problem

in each step to the estimate states of the system. Jang et al. formulated

state estimation of nonlinear system without constraints as solution of fixed size

optimization problem (Jang et al., 1986). A constrained state estimator can be

obtained by including constraints with in the optimization problem. Ideally, a state

estimator has to minimize the weighted mean square estimation error by satisfying

constraints for states and disturbances using all available outputs. The growth of size

of the optimization problem with time makes this strategy impractical. Fixed size
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approximation of the full information optimization called Moving Horizon Estimation

(MHE) is considered to make state estimation tractable. Derivation of MHE from full

information estimator and asymptotic stability of the estimator for linear systems is

described by Rao et al.(Rao et al., 2001) and for nonlinear systems (Rao et al., 2003;

Rao and Rawlings, 2002). Robust MHE for linear systems is described by Alessandri

et al. (Alessandri et al., 2005). Inclusion of constraints makes MHE more robust,

advantages of MHE over EKF is discussed by Haseltine and Rawlings (Haseltine and

Rawlings, 2005).

MHE formulation is a practical strategy and can be used in online estimation of the

states. Estimated states can be used for process monitoring and state feedback. Russo

and Young utilized MHE in estimating states of industrial polymerization process

(Russo and Young, 1999). MHE in state feedback is used for Model Predictive Control

(MPC) with constraints (Rawlings, 2000; Sui et al., 2008). Rao and Rawlings showed

usage of MHE in process monitoring (Rao and Rawlings, 2002). Zavala and Biegler

used MHE in state estimation in the operation of multi-zone low-density (LDPE)

polyethylene tubular reactors (Zavala and Biegler, 2009). Application of MHE to an

industrial gas phase polymerization reactor to improve estimates of current states

and parameters was shown by Hedengren et al. (Hedengren et al., 2007). Russo and

Young discussed the usage of MHE to estimate states of industrial polymerization

processes and issues encountered in implementation and choice of tuning parameters

for MHE (Russo and Young, 1999). Application of alternate formulation of MHE(with

integrators) in nonlinear model predictive control with non-zero mean disturbances

have also been reported in the literature(Tenny and Rawlings, 2002; Tenny et al.,

2004).

Trying to formulate MHE for nonlinear systems can lead to non-convex

optimizations. It is well known that solving non-convex optimization problem to

3



find a global optimum is extremely time consuming and most of the existing solvers

can end up trapped in a local optimum (Rao and Rawlings, 2002; Becerra et al., 2001;

Tenny et al., 2004).

Many people have considered modified versions of Kalman Filter, EKF and UKF

to include constraints. Different versions of Kalman Filter with constraints on states

of the system for linear systems were proposed (Rengaswamy et al., 2013; Simon and

Chia, 2002; Yang and Blasch, 2006). However, these modifications fail to include

constraints on disturbances. Modification of EKF algorithm to include constraints

called Recursive Nonlinear Dynamic Data Reconciliation(RNDDR) was proposed by

Vachhani et al. (Vachhani et al., 2004, 2005). RNDDR is similar to MHE and has

a huge computational burden. UKF with constraints called Unscented Recursive

Nonlinear Dynamic Data Reconciliation (URNDDR) is discussed by Vachhani et al.

(Vachhani et al., 2006). URNDDR require more computational time than RNDDR.

Less computationally intensive versions of EKF with constraints on the states were

proposed by Rengaswamy et al. and Simon (Rengaswamy et al., 2013; Simon, 2010).

Still, constraints on disturbances were ignored by all the studies mentioned above. All

these modifications of KF, EKF and UKF have similar or less computational burden

as MHE. The methods with less computational burden do not include constraints on

disturbances.

Inclusion of constraints in parameter estimation using projection is shown by

Tsakalis (Tsakalis, 1998). Modification of EKF to include constraints using projection

called EKF with projection is proposed in this study. This involves estimation of

states of the system using EKF algorithm and estimated states are projected on to

the constrained set to obtain constrained estimates.

This study focuses on constrained state estimation as MHE and EKF with

projection. Summary of MHE derivation and properties are discussed in chapter 2.

4



Summary of EKF with projection algorithm and its properties are discussed in chapter

3. Examples from the papers (Rao et al., 2003; Rao and Rawlings, 2002; Tenny et al.,

2004) are considered as case studies to evaluate performance of these algorithms.

To maintain consistency both the algorithms are tuned with same parameters and

same realizations of input/output are used as inputs for estimators. Computational

advantage of EKF with projection over MHE is discussed.
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Chapter 2

MOVING HORIZON ESTIMATION (MHE)

This chapter discusses the formulation of a constrained state estimation problem

for the discrete time nonlinear system as a Moving Horizon Estimation(MHE). The

theory discussed in this chapter is a summary of Rao et al. (2001) and Rao et al.

(2003).

Consider following the discrete time nonlinear system

xk+1 = fk(xk, uk) + wk

yk = hk(xk, uk) + vk (2.1)

where states, inputs and disturbances satisfy the following constraints

xk ∈ Xk wk ∈ Wk vk ∈ Vk uk ∈ Uk.

For all k ≥ 0, it is assumed that functions fk and hk and sets Xk ⊆ Rn, Uk ⊆ Rm,

Wk ⊆ Rn and Vk ⊆ Rp are closed with 0 ∈ Wk and 0 ∈ Vk.

Let, x(k; z, l, {wj}, {uj}) is the solution of the system (2.1) at time instance k,

when z is the state of the system at time l, {wj}kj=l and {uj}kj=l are input disturbances

and input sequences respectively.

Let, y(k; z, l, {wj}, {uj}) = hk(x(k; z, l, {wj}, {uj}), uk) denote the estimated

output of the system (2.1) for the given state solution x(k; z, l, {wj}, {uj}). Let yk

denote the actual output of the system.

The full information state estimation problem for the system (2.1) can be

formulated as the solution of the following optimization problem.

6



Φ∗T = min
x0,{wj}T−1

k=0

{ΦT (x0, {wk}) : (x0, {wk}) ∈ Ωτ} (2.2)

Ωτ =


x(k, x0, 0, {wj}, {uj}) ∈ Xk, k = 0, ...T

(x0, {wk}) wk ∈ Wk, k = 0, ...(T − 1)

vk = yk − y(x(k, x0, 0, {wj}, {uj})) ∈ Vk, k = 0, ...(T − 1)


.

The expression for ΦT (x0, {wk}) is given by the following equation

ΦT (x0, {wk}) =
(
T−1∑
k=0

(wTkQk
−1wk + vTkRk

−1vk)
)

+ (x0 − x̂0)TΠ−1
0 (x0 − x̂0) (2.3)

where, x̂0 is a-priori value of initial state and Qk, Rk and Π0 are positive definite

matrices. The matrices Qk and Rk are assumed to be covariance matrices of input

and output noise respectively.

The solution of the above optimization problem yields to the optimal pair

{x̂0|T−1, {ŵk|T−1}T−1
k=0 }. The estimate of state using this optimal pair is given by

x̂k|T−1 = x(k; x̂0|T−1, 0, {ŵj|T−1}, {uj}). (2.4)

This formulation of the state estimation problem is called full information state

estimation as all available outputs yk is used in estimating states. Obtaining the

online solution of this optimization problem is impractical because of the increase

in computational burden with time T . Forward dynamical programing can be

used to make full information estimation tractable using approximation. But,

the approximation should preserve stability and performance of full information

estimation.

Using Markov property of the system (2.1), the objective function for full

information estimation can be rearranged as follows

ΦT (x0, {wk}) =
(

T−1∑
k=T−N

(wTkQk
−1wk+vTkRk

−1vk)
)

+
(
T−N−1∑
k=0

(wTkQk
−1wk+vTkRk

−1vk)
)

7



+(x0 − x̂0)TΠ−1
0 (x0 − x̂0)

=
(

T−1∑
k=T−N

(wTkQk
−1wk + vTkRk

−1vk)
)

+ ΦT−N(x0, {wk}) (2.5)

The reachable set Rτ of states at given time τ , for feasible x0 and {wk, uk}τk=0 is

defined as follows

Rτ = {x(τ ;x0, 0, {wj}, {uj}) : {x0, {wj}} ∈ Ωτ}. (2.6)

And, the arrival cost at time τ , for z ∈ Rτ is defined as follows

Zτ (z) = min
z,{wk}τ−1

k=0

{Φτ (x0, {wk}) : (x0, {wk}) ∈ Ωτ , x(τ ;x0, 0, {wj}, {uj}) = z} (2.7)

The arrival cost summarizes the effect of past input {uk}T−N−1
k=0 and measurements

{yk}T−N−1
k=0 on state xT−N .

Because, this term
(∑T−1

k=T−N w
T
kQk

−1wk +vTkRk
−1vk

)
only depends on xT−N and

{wk, vk, uk}T−1
k=T−N , equivalence between fixed size estimation and full information

problem can be established by reformulating full information estimation (2.5) as

follows

ΦT (x0, {wk}) =
(

T−1∑
k=T−N

wTkQk
−1wk + vTkRk

−1vk

)
+ ZT−N(z) (2.8)

If the analytical expression for arrival cost exists, solution for the full information

estimation problem can be obtained by solving the above fixed size optimization

problem. Unfortunately, the majority of systems do not posses algebraic expression

for the arrival cost. One of the exceptions is if the system is linear and unconstrained.

The state estimate x̂k is the same as the state estimate given by the Kalman Filter

and the arrival cost is given by

Zj(z) = (z − x̂j)TΠ−1
j (z − x̂j) + Φ∗j

where x̂j is the estimate of state at time instance j. Πj can be calculated as the

solution of the Kalman filtering Riccati equation

Πj+1 = Qj + AjΠjA
T
j − AjΠjC

T
j (Rj + CjΠjC

T
j )−1CjΠjA

T
j (2.9)
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Figure 2.1: Visualization of Moving Horizon

The algebraic expression for arrival cost rarely exists if the system is nonlinear. In

such cases, the state estimation (2.8) can be formulated as an MHE by considering

approximation of arrival cost. The arrival cost approximation is used to account

for the previous data outside the MHE window and it also provides a penalty for

the deviation from past estimate. For chosen arrival cost approximation Ẑi(.) the

formulation of MHE is given below

Φ̂∗T = min
z,{wj}T−1

k=T−N

{Φ̂T (z, {wk}) : (z, {wk}) ∈ ΩN
τ } (2.10)

where Φ̂T (z, {wk}) is given by

Φ̂T (z, {wk}) =
(

T−1∑
k=T−N

wTkQk
−1wk + vTkRk

−1vk

)
+ ẐT−N(z)

9



ΩN
τ =



x(k, z, T −N, {wj}, {uj}) ∈ Xk, k = (T −N),

...T

(z, {wk}) wk ∈ Wk, k = (T −N),

...(T − 1)

vk = yk − y(x(k, z, T −N, {wj}, {uj})) ∈ Vk, k = (T −N),

...(T − 1).


For the optimal pair {z∗, {ŵmhk|T−1}

T−1
k=T−N}, moving horizon estimate of the state

of the system {x̂mhk|T−1}Tk=T−N is given by

x̂mhk|T−1 = x(k; z∗, T −N, ŵmhj|T−1, uj). (2.11)

One strategy to approximate the arrival cost is by using the first order

approximation of the Taylor series. Details of this approximation are given below

Ẑj(z) = (z − x̂mhj )TΠ−1
j (z − x̂mhj ) + Φ∗T

As in Extended Kalman filter, Πj is computed using Kalman filter covariance formula

(2.9) with the linearized system matrices given below.

Ak := ∂fk(x, 0, uk)
∂x

|x=x̂mh
k

Gk := ∂fk(xmhk , w, uk)
∂w

|w=0

Ck := ∂hk(x, uk)
∂x

|x=x̂mh
k
.

MHE approximation gives fixed size approximation of the full information

estimation problem. The sufficient conditions for stability of full information

estimation for linear systems and necessary assumptions to guarantee stability of

MHE approximation are discussed in are discussed in Tenny and Rawlings (2002).

The sufficient conditions for asymptotic and bounded stability of full state estimator
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and MHE for nonlinear systems are discussed in Rao et al. (2003).

Some of the problems associated with MHE are stated below

• Non-convex nature of optimization problem may give local optima as solution.

• Solving optimization problems in each iteration has huge computational burden

and this acts as a barrier for the online implementation.

• High computation time acts as a limitation on the closed-loop bandwidth, if

MHE is used in state feedback control.

• Computational burden, also makes MHE undesirable for implementation on

embedded real time boards.

• If the constraints are not chosen carefully, the estimator can provide spurious

estimates.
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Chapter 3

EXTENDED KALMAN FILTER(EKF) WITH PROJECTION

This chapter discusses the formulation of the standard Extended Kalman Filter

(EKF) algorithm (Ribeiro (2004)) and formulation of a constrained state estimator

as EKF with projection( Tsakalis (1998)).

Consider following discrete time nonlinear system

xk+1 = fk(xk, uk) + wk (3.1)

yk = hk(xk, uk) + vk (3.2)

where,

uk ∈ Rp

xk ∈ Rn, fk(xk, uk) : Rn ×Rp → Rn

yk ∈ Rr, hk(xk, uk) : Rn ×Rp → Rr

vk ∈ Rr

wk ∈ Rn

and {vk}, {wk} are independent and identically distributed Gaussian random

processes with zero mean and following covariance matrices

E[vkvTk ] = Rk

E[wkwTk ] = Qk

.
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The initial condition of the system x0 is considered as a following Gaussian random

vector given by,

x0 ∼ N(x0,Π0).

Let {yi}k = {y1, y2, ..., yk} be a set of system measurements. The goal of the

estimator is to estimate states from the measurements {yi}k.

The estimator that minimizes the mean-square error evaluates the conditional

mean of the PDF of xk for given measurements {yi}k. Excluding special cases,

it is necessary to have knowledge of the entire conditional PDF of xk for given

measurements {yi}k to compute the conditional mean. One such exception is in

the case of a linear system with Gaussian initial conditions, having state and process

noise that are mutually independent, zero mean, white Gaussian processes. The

conditional PDFs, p(xk|{yi}k), p(xk+1|{yi}k) and p(xk+1|{yi}k+1), for this case are

Gaussian and the Kalman Filter gives an iterative solution for state estimation.

If the system is nonlinear, the conditional PDFs, p(xk|{yi}k), p(xk+1|{yi}k) and

p(xk+1|{yi}k+1), are not Gaussian. The optimal estimator for nonlinear system has

to propagate entire PDF in order to evaluate mean and variance of conditional PDFs,

which results in heavy computational burden.

In order to make estimation less computational, approximation of estimation is

considered. The Extended Kalman Filter (EKF) gives an approximation for the

optimal estimate that minimizes estimation error for the linearized system. The

nonlinear system is linearized around the last estimate and Kalman filter formulation

is used to compute of the mean and covariance of the estimate.

The following consecutive steps are executed in each iteration of state estimation

1. Linearize non linear system dynamics xk+1 = fk(xk, uk) + wk around last state

estimate x̂k|k and input uk.
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2. Prediction step of the Kalman Filter for the linearized system dynamics is used

to compute x̂k+1|k and Πk+1|k.

3. Output equation of nonlinear system is linearized around x̂k+1|k and uk+1.

4. Filtering step of the Kalman Filter for linearized system dynamics is used to

compute x̂k+1|k+1 and Πk+1|k+1.

Following Matrices represent linearizaton

Ak := ∂fk(x, uk)
∂x

|x=x̂k|k

Ck+1 := ∂hk+1(x, uk+1)
∂x

|x=x̂k+1|k

Prediction and Filtering step of EKF are stated below

Prediction Step

x̂k+1|k = fk(x̂k|k, uk)

Πk+1|k = AkΠk|kA
T
k +Qk

Filtering Step

x̂k+1|k+1 = x̂k+1|k + Lk+1[yk+1 − hk+1(x̂k+1|k, uk+1)]

Lk+1 = Πk+1|kC
T
k+1[Ck+1Πk+1|kC

T
k+1 +Rk+1]−1

Πk+1|k+1 = [I − Lk+1Ck+1]Πk+1|k.

The Extended Kalman Filter (EKF) is not an optimal estimator and the matrices,

Πk+1|k,Πk|k and Πk+1|k+1, do not represent covariances of the state estimate. Also, it is

not possible to calculate the gain of this filter offline for steady-state implementation,
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since the linearized system matrices Ak and Ck are dependent on previous state

estimates.

The stability of estimator is not guaranteed and is dependent on quality of

approximation. That means if the approximations are not good, estimates of EKF

may diverge from actual states.

Constraints on states and disturbance variables helps modeling uncertainties and

process behaviors. The EKF algorithm can be made more robust by the inclusion of

constraints. Formulation of a constrained state estimation as the Extended Kalman

Filter with projection is given in the following section.

Extended Kalman Filter with projection

For the given vector x̀, its projection of it on to set M with weight Π−1
T can be

formulated as the following minimization problem.

Θ∗T = min
x̂
{(x̀− x̂)TΠ−1

T (x̀− x̂) : x̂ ∈M}. (3.3)

The vector x̂∗ that minimizes above te objective function is called the weighted

projection of x̀ on to set M .

The Extended Kalman Filter algorithm is modified to include constraints by

projecting the estimated state obtained from the standard Extended Kalman Filter

on to the constrained set. The modified algorithm is called EKF with projection.

Details of the consecutive steps that need to be evaluated at every iteration are

given below.

1. Linearize non linear system dynamics xk+1 = fk(xk, uk) + wk around last state

estimate x̂∗k|k and input uk.

2. Prediction step of the Kalman Filter for the linearized system dynamics is used

to compute x̂k+1|k and Πk+1|k.
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3. Output equation of nonlinear system is linearized around x̂k+1|k and uk+1.

4. Filtering step of the Kalman Filter for linearized system dynamics is used to

compute x̂k+1|k+1 and Πk+1|k+1.

5. Project x̂k+1|k+1 on to the constrained set M with Π−1
k+1|k+1 as a weight to get

the state estimate x̂∗k+1|k+1

Figure 3.1: Visualization of the projection process.

The projection of states on to constrained set can be visualized as in the above

figure. For any true state of the system in the constrained set, the constrained state

estimate x̂∗k+1|k+1 is closer to the true state as compared to the unconstrained state

estimate x̂k+1|k+1.

For linear systems the stability of the estimator is preserved and for the nonlinear

systems the stability of the estimator is preserved locally and is dependent on

the quality of approximation. In the case of large disturbances or unreasonable

constraints, the true state can be outside constrained set. This may result in the

state estimates getting stuck on the boundary of the constrained set.
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Chapter 4

CASE STUDIES

Having studied formulation of MHE and EKF with projection, examples from the

literature Rao and Rawlings (2002), Rao et al. (2003)and Tenny et al. (2004) are

considered as case studies to test and compare the performance of these algorithms.

For these case studies the constrained state estimation problem is setup as EKF

with projection, and MHE with horizon sizeN = 1, 5 and 10. To maintain consistency,

values of matrices Qk, Rk and Π0 are chosen to be the same for MHE and EKF with

projection and the same realizations of system input and system output are used as

inputs for all estimators. The following figure 4.1 is a snap shot of the SIMULINK

model setup used in the case studies.

All the case studies are simulated using MATLAB R©2013a on a computer with

3rd Gen Intel R©CoreTMi7-3770 processor (Quad Core, 3.40GHz, 8MB w/HD4000

Graphics) processor and 6GB, NON-ECC, 1600MHZ DDR3,2DIMM RAM.
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Figure 4.1: Snap shot of SIMULINK model file used in Case studies

the following metrics are used to compare the performances of the constrained

state estimators, MHE and EKF with projection

• Sum of Square Estimation Error(SSEE)

T∑
k=0

(xjk − x̂
j
k)2

where xjk is jth actual state value x̂jk is jth state estimate.

• Average estimation time.
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4.1 Case Study 1

4.1.1 Problem Description

Following linear discrete time system from Rao et al. (2003) is considered for this

case study.

xk+1 =

0.99 0.2

−0.1 0.3

xk +

0

1

wk
yk =

[
1 −3

]
xk + vk (4.1)

It is assumed {vk} is a sequence of independent normally distributed random variables

with zero mean and covariance of 0.01. And following scenarios are used to generate

the sequence, wk

1. wk = |zk|.

2. wk = min{|zk| , 2}.

where zk is a sequence of normally distributed independent random variables with

zero mean and covariance of identity. It is assumed that the initial state is normally

distributed random variable with zero mean and covariance equal to the identity.

The constrained state estimation is formulated as MHE and Kalman filter with

projection for this plant with Q = 1,R = 0.01, Π0 = 1 and x̂0 = 0. The matrix Πk in

MHE arrival cost is obtained from solving the discrete time matrix Riccati. wk ≥ 0 is

chosen as a constraint for MHE and EKF with projection to capture the knowledge

of the random variable wk.

25 realizations of this state estimation problem are generated for the time length

of 80 samples. The sum of square estimation error(SSEE) is computed for the average

of 25 realizations. Results of the state estimation for this case study are shown in the

following section.
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4.1.2 Results

Scenario 1 (wk = |zk|)

Figure 4.2: Comparison of estimators for x1 for scenario 1 of case study 1

Figure 4.3: Comparison of estimators for x2 for scenario 1 of case study 1
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Figure 4.4: Comparison of estimators for y for scenario 1 of case study 1

SSEE for x1 SSEE for x2 Average estimation

time in sec

Kalman Filter with

Projection

114.69 40.55 0.011

MHE N = 1 190.74 53.84 0.0195

MHE N = 5 62.97 48.35 0.1244

MHE N = 10 46.04 50.16 0.5428

Table 4.1: Performance metrics of the state estimators for scenario 1 of case study
1
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Scenario 2 (wk = min{|zk| , 2})

Figure 4.5: Comparison of estimators for x1 for scenario 2 of case study 1

Figure 4.6: Comparison of estimators for x2 for scenario 2 of case study 1
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Figure 4.7: Comparison of estimators for y for scenario 2 of case study 1

SSEE for x1 SSEE for x2 Average estimation

time in sec

Kalman Filter with

Projection

111.55 37.54 0.0116

MHE N = 1 187.58 49.01 0.0203

MHE N = 5 59.071 42.48 0.1293

MHE N = 10 38.73 43.8 0.5674

Table 4.2: Performance metrics of the state estimators for scenario 2 of case study
1

It can be seen from above tables 4.1 and 4.2 that for the state x1, SSEE of Kalman

Filter with projection is lower than SSEE of MHE with N = 1 and is higher than

SSEE of MHE with N = 5 and N = 10. For the state x2, SSEE of Kalman Filter

with projection is lower than SSEE of MHE with N = 1, N = 5 and N = 10. The

average estimation time of the Kalman Filter with projection is approximately half of

the average estimation time for MHE with N = 1. The average estimation time for

the MHE with N = 10 is approximately 50 times greater the average estimation time
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for Kalman Filter with Projection. Compared to the unconstrained Kalman filter in

Rao et al. (2003) estimates of Kalman filter with projection follow the actual states

and SSEE value is very low. Note: The mean of sequence wk is not zero and wk is not

a Gaussian distribution. Inclusion of constraints allows nonzero mean non Gaussian

disturbances.

4.2 Case Study 2

4.2.1 Problem Description

The following linear discrete time system from Rao and Rawlings (2002) is

considered for this case study.

xk+1 =

 0.9962 0.1949

−0.1949 0.3815

xk +

0.03393

0.1949

wk
yk =

[
1 −3

]
xk + vk (4.2)

It is assumed {vk} is a sequence of independent normally distributed random variables

with zero mean and covariance of 0.01. And, wk = |zk|, where zk is a sequence of

normally distributed independent random variables with zero mean and covariance of

Identity. It is assumed that the initial state is normally distributed random variable

with zero mean and covariance equal to the identity.

The constrained state estimation is formulated as MHE and Kalman filter with

projection for this plant with Q = 1,R = 0.01, Π0 = 1 and x̂0 = 0. The matrix Πk

for MHE arrival cost is obtained from solving discrete time matrix Riccati. wk ≥ 0

is chosen as constraint for MHE and EKF with projection to capture knowledge of

random variable wk.

25 realizations of this state estimation problem are generated for the time length of

100 samples. The sum of square estimation error(SSEE) is computed for the average
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of 25 realizations. Results of the state estimation for this case study are shown in the

following section.

4.2.2 Results

Figure 4.8: Comparison of estimators for x1 for case study 2

Figure 4.9: Comparison of estimators for x2 for case study 2
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Figure 4.10: Comparison of estimators for y for case study 2

SSEE for x1 SSEE for x2 Average estimation

time in sec

Kalman Filter with

Projection

10.09 2.05 0.0105

MHE N = 1 13.40 2.80 0.0190

MHE N = 5 11.27 3.23 0.1156

MHE N = 10 25.09 4.84 0.4895

Table 4.3: Performance metrics of the state estimators for case study 2

It can be seen from the table 4.2.2, the SSEE of Kalman Filter with projection is

close to the SSEE of MHE with N = 1, 5. Because of high estimation error in initial

window (from T= 1 to 10), the value of SSEE for MHE with N = 10 is high. It can

be seen from the plots, the estimates of MHE with N = 10 are closer to actual states

as compare to other estimators. The average estimation time of the Kalman Filter

with projection is approximately half of the average estimation time for MHE with

N = 1. The average estimation time for the MHE with N = 10 is approximately 45
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times average estimation time for Kalman Filter with projection. Compared to the

unconstrained Kalman filter in Rao and Rawlings (2002), SSEE for the Kalman filter

with projection is very low.

4.3 Case Study 3

4.3.1 Problem Description

The following nonlinear discrete time system from Rao et al. (2003) is considered

for this case study.

x1
k+1 = 0.99x1

k + 0.2x2
k

x2
k+1 = −0.1x1

k + 0.5x2
k

1 + (x2
k)2 + wk

yk = x1
k − 3x2

k + vk (4.3)

It is assumed {vk} is sequence of independent normally distributed random variables

with zero mean and covariance of 0.01. And, following scenarios are used to generate

wk sequence

1. wk = |zk|.

2. wk = min{|zk| , 2}

where, zk is a sequence of normally distributed independent random variables with

zero mean and covariance of identity. It is assumed that the initial state is normally

distributed random variable with zero mean and covariance equal to the identity.

The constrained state estimation problem is formulated as MHE and EKF with

projection for this plant with Q = 1,R = 0.01, Π0 = 1 and x̂0 = 0. The matrix Πk for

the MHE arrival cost is obtained from solving discrete time matrix Riccati. wk ≥ 0

is chosen as the constraint for MHE and EKF with projection to capture knowledge

of the random variable wk.
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25 realizations of this state estimation problem are generated for the time length

of 80 samples. The sum of square estimation error(SSEE) is computed for the average

of 25 realizations. Results of the state estimation for this case study are shown in the

following section.

4.3.2 Results

Scenario 1 (wk = |zk|)

Figure 4.11: Comparison of estimators for x1 for scenario 1 of case study 3
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Figure 4.12: Comparison of estimators for x2 for scenario 1 of case study 3

Figure 4.13: Comparison of estimators for y for scenario 1 of case study 3
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SSEE for x1 SSEE for x2 Average estimation

time in sec

EKF with

Projection

106.20 45.47 0.0126

MHE N = 1 196.34 54.27 0.0258

MHE N = 5 56.41 46.88 0.64

MHE N = 10 33.85 47.68 0.6700

Table 4.4: Performance metrics of state estimators for scenario 1 of case study 3

Case 2 (wk = min{|zk| , 2})

Figure 4.14: Comparison of estimators for x1 for scenario 2 of case study 3
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Figure 4.15: Comparison of estimators for x2 for scenario 2 of case study 3

Figure 4.16: Comparison of estimators for y for scenario 2 of case study 3
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SSEE for x1 SSEE for x2 Average estimation

time in sec

EKF with

Projection

103.16 41.47 0.0102

MHE N = 1 190.31 49.42 0.0214

MHE N = 5 61.82 41.74 0.2352

MHE N = 10 52.97 44.25 0.5370

Table 4.5: Performance metrics of state estimators for scenario 2 of case study 3

It can be seen from above tables 4.4 and 4.5 that for the state x1, SSEE of EKF with

projection is lower than SSEE of MHE with N = 1 and is higher than SSEE of MHE

with N = 5 and N = 10. For the state x2, SSEE of the EKF with projection is lower

than SSEE for MHE with N = 1, N = 5 and N = 10. The average estimation time

of the Kalman Filter with projection is approximately half of the average estimation

time for MHE with N = 1. The average estimation time for the MHE with N = 10 is

approximately 50 times greater the average estimation time for Kalman Filter with

Projection.

Compared to the unconstrained Extended Kalman filter in Rao et al. (2003), SSEE

for the EKF with projection is very low and estimates converge with actual states.

4.4 Case Study 4

4.4.1 Problem Description

The process of Waste water treatment as discussed in Rao and Rawlings (2002)

is considered in this case study. Constrained state estimation algorithms are used to

detect location and quantity of leak in each tank. Block diagram of this process is

shown below.
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Figure 4.17: Waste water treatment process

This process is described by the following linear model.

xk+1 =



0.89168 0 0 0 1.0

0.10832 0.90518 0 0.04306 0

0 0.9482 0.89524 0 0

0 0 0.10476 0.89235 0

0 0 0 0 0


xk +



−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1


wk

yk =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 m


xk + vk (4.4)

Meaning of the state variables is described in the table 4.6.
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State Description

x1 Mass in equalizing tank

x2 Mass in Tank 1

x3 Mass in Tank 2

x4 Mass in Tank 3

x5 Mass of waste entering equalizing tank

Table 4.6: State Description for waste water treatment process

In this process, leak in the process is limited to Tank 2. The process is simulated

with wk = |zk| where zk is a normally distributed random variable with the covariance

given by following matrix.

Qz = diag
[
0 0 5 0 15

]
.

The value of m in the equation for yk is chosen as 1 if the mass entering the

equalizing tank is measured and chosen as 0 otherwise. It is assumed that the mass in

the tank and mass flow rate entering the equalizing tank are measured and covariance

of measurement error is

R = diag
[
8 8 8 8 4

]
.

It is assumed that location of leak is unknown to the estimator and following

matrix is chosen as covariance matrix of wk for estimation

Q = diag
[
5 5 5 5 15

]
.

Constrained state estimation is formulated as MHE and Kalman filter with

projection for this plant with Q, R, Π0 = 1 and x̂0 = 0. N = 1, 5. To test

the effectiveness of the state estimator in detection of leak, following scenarios are

considered

1. Mass entering equalizing tank is measured and leak in tank 2.
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2. Mass entering equalizing tank is measured and no leak in tank 2.

3. Mass entering equalizing tank is not measured and leak in tank 2.

4. Mass entering equalizing tank is not measured and no leak in tank 2.

Results of the state estimation and leak detection for this case study are shown

in the following section.

4.4.2 Results

Scenario 1: Mass entering equalizing tank is measured and leak in tank 2

Figure 4.18: Comparison of estimators for x1 for scenario 1 of case study 4
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Figure 4.19: Comparison of estimators for x2 for scenario 1 of case study 4

Figure 4.20: Comparison of estimators for x3 for scenario 1 of case study 4

36



Figure 4.21: Comparison of estimators for x4 for scenario 1 of case study 4

Figure 4.22: Comparison of estimators for x5 for scenario 1 of case study 4
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SSEE

for

x1(×103)

SSEE

for

x2(×103)

SSEE

for

x3(×103)

SSEE

for

x4(×103)

SSEE

for

x5(×103)

Average

estimation

time in

sec

Kalman Filter

with

Projection

1.05 0.35 0.39 0.17 0.92 0.0232

MHE N = 1 1.56 0.47 0.59 0.25 0.80 0.0507

MHE N = 5 1.53 0.47 0.55 0.16 0.80 0.36

MHE N = 10 1.53 0.49 0.54 0.15 0.80 1.1406

Table 4.7: Performance metrics of state estimators for scenario 1 of case study 4

Total

losses

Mean

losses in

equalizing

tank

Mean

losses in

tank 1

Mean

losses in

tank 2

Mean

losses in

tank 3

Actual 172.52 0 0 1.71 0

Kalman Filter with

projection

300.95 0.6023 0.4552 1.428 0.4942

MHE N=1 136.0607 0.1986 0.2393 0.6717 0.2376

MHE N=5 172.3298 0.1974 0.2048 1.1114 0.1926

MHE N=10 168.5798 0.1675 0.1611 1.1926 0.1480

Table 4.8: Results of leak detection for scenario mass entering equalizing tank is
measured and leak in tank 2

It can be seen from the table 4.7, the SSEE of Kalman filter with projection is

smaller than the SSEE of MHE for states x1, x2, x3, x4 and is slightly higher than

MHE for state x5. The average estimation time of Kalman filter with projection is

approximately 0.02 times the average estimation time of MHE with N = 10 and is

approximately one half of the average estimation time of MHE with N = 1.
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It can be seen from table 4.8 that the estimate of total leak in the system by

Kalman filter with projection is higher than the actual value. But, Kalman filter with

projection detects the location of the leak better than the MHE with N = 1. There

is a bias in the estimates of leak for Kalman filter with projection and the value of

bias is approximately equal to the mean of random variable |zk|.

Compared to leak detection using unconstrained Kalman filter in Rao and

Rawlings (2002), Kalman filter with projection estimates total leak and location of

leak better.

Scenario 2: Mass entering equalizing tank is measured and no leak in tank

2

Figure 4.23: Comparison of estimators for x1 for scenario 2 of case study 4
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Figure 4.24: Comparison of estimators for x2 for scenario 2 of case study 4

Figure 4.25: Comparison of estimators for x3 for scenario 2 of case study 4
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Figure 4.26: Comparison of estimators for x4 for scenario 2 of case study 4

Figure 4.27: Comparison of estimators for x5 for scenario 2 of case study 4
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SSEE

for

x1(×103)

SSEE

for

x2(×103)

SSEE

for

x3(×103)

SSEE

for

x4(×103)

SSEE

for

x5(×103)

Average

estimation

time in

sec

Kalman Filter

with

Projection

1.05 0.36 0.30 0.27 0.92 0.0240

MHE N = 1 1.56 0.49 0.40 0.36 0.80 0.0506

MHE N = 5 1.53 0.50 0.38 0.35 0.80 0.3167

MHE N = 10 1.53 0.53 0.41 0.38 0.80 1.0218

Table 4.9: Performance metrics of state estimators for scenario 2 of case study 4

Total

losses

Mean

losses in

equalizing

tank

Mean

losses in

tank 1

Mean

losses in

tank 2

Mean

losses in

tank 3

Actual 0 0 0 0 0

Kalman Filter with

projection

194.3080 0.6022 0.4527 0.4457 0.4232

MHE N=1 98.5818 0.1974 0.2640 0.2576 0.2571

MHE N=5 82.6727 0.1972 0.2178 0.2049 0.1986

MHE N=10 61.8128 0.1675 0.1583 0.1445 0.1417

Table 4.10: Results of leak detection for scenario mass entering equalizing tank is
measured and no leak in tank 2

It can be seen from table 4.9, SSEE of Kalman filter with projection is smaller than

SSEE of MHE for the states x1, x2, x3, x4 and is slightly higher than MHE for the state

x5. The average estimation time of Kalman filter with projection is approximately

0.02 times the average estimation time of MHE with N = 10 and is approximately

one half of average estimation time of MHE with N = 1.
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It can be seen from table 4.10 that the estimate of total leak in the system

by Kalman filter with projection is higher than actual value. There is a bias in

the estimates of leak for Kalman filter with projection and the value of bias is

approximately equal to the mean of random variable |zk|.

Compare to leak detection using unconstrained Kalman filter in Rao and Rawlings

(2002), Kalman filter with projection estimates total leak and location of leak better.

Scenario 3: Mass entering equalizing tank is not measured and leak in

tank 2

Figure 4.28: Comparison of estimators for x1 for scenario 3 of case study 4
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Figure 4.29: Comparison of estimators for x2 for scenario 3 of case study 4

Figure 4.30: Comparison of estimators for x3 for scenario 3 of case study 4
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Figure 4.31: Comparison of estimators for x4 for scenario 3 of case study 4

Figure 4.32: Comparison of estimators for x5 for scenario 3 of case study 4
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SSEE

for

x1(×103)

SSEE

for

x2(×103)

SSEE

for

x3(×103)

SSEE

for

x4(×103)

SSEE

for

x5(×103)

Average

estimation

time in

sec

Kalman Filter

with

Projection

1.34 0.37 0.39 0.17 1.36 0.0301

MHE N = 1 1.66 0.46 0.59 0.25 1.36 0.0828

MHE N = 5 1.57 0.47 0.55 0.16 1.36 0.6067

MHE N = 10 1.58 0.49 0.54 0.15 1.36 1.8276

Table 4.11: Performance metrics of state estimators for scenario 3 of case study 4

Total

losses

Mean

losses in

equalizing

tank

Mean

losses in

tank 1

Mean

losses in

tank 2

Mean

losses in

tank 3

Actual 172.5176 0 0 1.7081 0

Kalman Filter with

projection

251.2802 0.1518 0.4180 1.4238 0.4944

MHE N=1 122.9867 0.0466 0.2631 0.6720 0.2360

MHE N=5 156.6337 0.0352 0.2115 1.1122 0.1919

MHE N=10 154.3659 0.0254 0.1621 1.1933 0.1476

Table 4.12: Results of leak detection for scenario mass entering equalizing tank is
not measured and leak in tank 2

It can be seen from the table 4.11, SSEE of Kalman filter with projection is smaller

than SSEE of MHE. The average estimation time of Kalman filter with projection is

approximately 0.02 times the average estimation time of MHE with N = 10 and is

approximately one half of the average estimation time of MHE with N = 1.

It can be seen from the table 4.12 the estimate of total leak in the system by
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Kalman filter with projection is higher than the actual value. But, Kalman filter with

projection detects the location of the leak better than the MHE with N = 1. There

is a bias in the estimates of leak for Kalman filter with projection and the value of

bias is approximately equal to the mean of random variable |zk|.

Compare to leak detection using unconstrained Kalman filter in Rao and Rawlings

(2002), Kalman filter with projection estimates total leak and location of leak better.

Scenario 4: Mass entering equalizing tank is not measured and no leak in

tank 2

Figure 4.33: Comparison of estimators for x1 for scenario 4 of case study 4
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Figure 4.34: Comparison of estimators for x2 for scenario 4 of case study 4

Figure 4.35: Comparison of estimators for x3 for scenario 4 of case study 4
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Figure 4.36: Comparison of estimators for x4 for scenario 4 of case study 4

Figure 4.37: Comparison of estimators for x5 for scenario 4 of case study 4
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SSEE

for

x1(×103)

SSEE

for

x2(×103)

SSEE

for

x3(×103)

SSEE

for

x4(×103)

SSEE

for

x5(×103)

Average

estimation

time in

sec

Kalman filter

with

Projection

1.34 0.38 0.29 0.27 1.36 0.0275

MHE N = 1 1.66 0.48 0.40 0.36 1.36 0.0817

MHE N = 5 1.57 0.50 0.38 0.35 1.36 0.5774

MHE N = 10 1.58 0.52 0.41 0.38 1.36 1.7871

Table 4.13: Performance metrics of state estimators for scenario 4 of case study 4

Total

losses

Mean

losses in

equalizing

tank

Mean

losses in

tank 1

Mean

losses in

tank 2

Mean

losses in

tank 3

Actual 0 0 0 0 0

Kalman Filter with

projection

144.7151 0.1518 0.4155 0.4423 0.4232

MHE N=1 85.8336 0.0457 0.2900 0.2583 0.2558

MHE N=5 67.1434 0.0354 0.2250 0.2062 0.1982

MHE N=10 47.6841 0.0255 0.1596 0.1455 0.1414

Table 4.14: Results of leak detection for scenario mass entering equalizing tank is
not measured and no leak in tank 2

It can be seen from the table 4.13 SSEE of Kalman filter with projection is smaller

than SSEE of MHE. The average estimation time of Kalman filter with projection is

approximately 0.02 times the average estimation time of MHE with N = 10 and is

approximately one third of the average estimation time of MHE with N = 1.

It can be seen from table 4.14 that the estimate of total leak in the system
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by Kalman filter with projection is higher than actual value. There is a bias in

the estimates of leak for Kalman filter with projection and the value of bias is

approximately equal to the mean of random variable |zk|.

Compare to leak detection using unconstrained Kalman filter in Rao and Rawlings

(2002), Kalman filter with projection estimates the total leak and the location of leak

better.

4.5 Case Study 5

4.5.1 Problem Description

The model in example 3.2 of Tenny et al. (2004) is considered for this case

study. Consider a continuously stirred tank reactor (CSTR) in which the isothermal

irreversible reactionsA −→ B −→ C are taking place. Tank is fed with the stream

that contains only chemical A . Maximum conversion of A to product B is desired.

The concentration of the product B is measured and the process is regulated by

adjusting the temperature of the reactor directly by a cascaded control system. The

mass balance of these reactions are governed by the following equations

ĊA = F

V
(CAf − CA)− k1CA exp

(
−E1

RT

)
(4.5)

ĊB = k1CA exp
(
−E1

RT

)
− k2CB exp

(
−E2

RT

)
− F

V
CB (4.6)

where CA is concentration of chemical A in the tank, CB is concentration of chemical

B in the tank, CAf is concentration of chemical A in feed and T is temperature

of reactor. CA and CB are considered as state variables and T is considered as

manipulative variable. Nominal conditions of reactor are given in following table
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Figure 4.38: Block diagram of the CSTR

Variable Value Variable Value

F 100 L/min CAf 1 mol/L

V 100 L E1
R 8750 K

k1 7.2× 1010min−1 E2
R 9750 K

k2 5.2× 1010min−1

Table 4.15: Nominal operating conditions for CSTR

This system is discretized with sampling time of 0.01 min. It is assumed that the

measurements of concentration of B have variance of 0.01. The following scenarios

for concentration of chemical A in feed are considered.

1. CAf = |zk|, where zk is a Gaussian random variable with mean 1 and variance

1.

2. CAf = |zk|, where zk is a Gaussian random variable with mean 1 and variance

0.1.
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Constrained state estimation is formulated as MHE and EKF with projection for

this plant with Q = 1,R = 0.01, Π0 = 10 and ĈA, ĈB = 0. The matrix Πk for

MHE arrival cost is obtained from solving discrete time matrix Riccati. CA ≥ 0 and

CB ≥ 0 are chosen as constraint for MHE and EKF with projection. Results of the

state estimation for this case study are shown in the following section

4.5.2 Results

Scenario 1

Figure 4.39: Comparison of estimators for CA for scenario 1 of case study 5
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Figure 4.40: Comparison of estimators for CB for scenario 1 of case study 5

SSEE for CA SSEE for CB Average estimation

time in sec

EKF with

Projection

72.66 10.28 0.0086

MHE N = 1 75.94 10.38 0.2672

MHE N = 5 72.43 10.30 0.3325

MHE N = 10 69.47 10.47 1.2829

Table 4.16: Performance metrics of state estimators for scenario 1 of case study 5
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Scenario 2

Figure 4.41: Comparison of estimators for CA for scenario 2 of case study 5

Figure 4.42: Comparison of estimators for CB for scenario 2 of case study 5
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SSEE for CA SSEE for CB Average estimation

time in sec

EKF with

Projection

56.44 10.27 0.0092

MHE N = 1 58.13 10.40 0.29

MHE N = 5 54.65 10.320 0.36

MHE N = 10 52.25 10.50 1.3626

Table 4.17: Performance metrics of state estimators for scenario 2 of case study 5

It can be seen from above tables 4.1 and 4.2 that for the state CA, SSEE of the

Kalman Filter with projection is lower than SSEE of MHE with N = 1 and is higher

than SSEE of MHE with N = 5 and N = 10. For the state CB , SSEE of the

Kalman Filter with projection is lower than SSEE of MHE with N = 1, N = 5

and N = 10. The average estimation time of the Kalman Filter with projection is

approximately one third of the average estimation time for MHE with N = 1. The

average estimation time for the MHE with N = 10 is approximately 50 times greater

the average estimation time for Kalman Filter with Projection.
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Chapter 5

CONCLUSION

State estimation for nonlinear discrete time systems in the presence of constraints

on states, inputs and disturbances is investigated in this study. Inclusion of

constraints in the state estimation formulation helps in correcting modeling errors

and other uncertainties associated with system operation.

A brief derivation of constrained state estimation as Moving Horizon Estimation

(MHE) from full information estimation was studied and practical problems

associated with this algorithm was discussed in chapter 2. An alternative formulation

of EKF known as Extended Kalman Filter (EKF) with projection algorithm was

studied chapter 3.

The performance of these two estimators was tested with examples from literature.

For these examples, constraints are active for huge amount of time and unconstrained

Kalman filter/EKF produces poor results. Sum of square estimation error (SSEE)

and average estimation time were used as metrics to compare their performances.

From the case studies 1, 2 and 3 it can be concluded that: compared to the

unconstrained Kalman filter (or EKF), estimates of EKF with projection are close to

the actual states. The SSEE of EKF with projection is less than SSEE of MHE with

N = 1 and is greater than that with N = 5 and N = 10. The average estimation time

for EKF with projection is approximately half as MHE with N = 1 and is significantly

smaller than MHE with N = 5 and N = 10.

From case study 4 it can be concluded that: EKF with projection does not produce

spurious results like unconstrained Kalman filter. The SSEE for EKF with projection

are lower than MHE. Estimates of leaks for EKF with projection have a bias.
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From case study 5 it can be concluded that: EKF with projection gives similar

SSEE as MHE and it requires less computational time compared to MHE.

The following conclusions can be drawn from the results of case studies

• MHE

– Pros

∗ Low estimation error

∗ Provision to increase horizon size for better estimation

– Cons

∗ High computational time

∗ Increase in the average estimation time with increase in horizon size

∗ Not suitable in state feedback control with high bandwidth

∗ Computational burden makes it difficult to use in embedded systems.

• EKF with projection

– Pros

∗ Low computational time

∗ Suitable in state feedback control with high bandwidth.

– Cons

∗ High estimation error compared to MHE with higher horizon size.

Therefore through this study it has been shown that EKF with projection offers

viable alternative to MHE for the constrained state estimation problem.
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