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ABSTRACT

Many longitudinal studies, especially in clinical trials, suffer from missing data issues.

Most estimation procedures assume that the missing values are ignorable or missing

at random (MAR). However, this assumption leads to unrealistic simplification and

is implausible for many cases. For example, an investigator is examining the effect

of treatment on depression. Subjects are scheduled with doctors on a regular basis

and asked questions about recent emotional situations. Patients who are experiencing

severe depression are more likely to miss an appointment and leave the data missing

for that particular visit. Data that are not missing at random may produce bias

in results if the missing mechanism is not taken into account. In other words, the

missing mechanism is related to the unobserved responses.

Data are said to be non-ignorable missing if the probabilities of missingness depend

on quantities that might not be included in the model. Classical pattern-mixture

models for non-ignorable missing values are widely used for longitudinal data analysis

because they do not require explicit specification of the missing mechanism, with the

data stratified according to a variety of missing patterns and a model specified for

each stratum. However, this usually results in under-identifiability, because of the

need to estimate many stratum-specific parameters even though the eventual interest

is usually on the marginal parameters. Pattern mixture models have the drawback

that a large sample is usually required.

In this thesis, two studies are presented. The first study is motivated by an open

problem from pattern mixture models. Simulation studies from this part show that

information in the missing data indicators can be well summarized by a simple con-

tinuous latent structure, indicating that a large number of missing data patterns

may be accounted by a simple latent factor. Simulation findings that are obtained

in the first study lead to a novel model, a continuous latent factor model (CLFM).
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The second study develops CLFM which is utilized for modeling the joint distri-

bution of missing values and longitudinal outcomes. The proposed CLFM model

is feasible even for small sample size applications. The detailed estimation theory,

including estimating techniques from both frequentist and Bayesian perspectives is

presented. Model performance and evaluation are studied through designed sim-

ulations and three applications. Simulation and application settings change from

correctly-specified missing data mechanism to mis-specified mechanism and include

different sample sizes from longitudinal studies. Among three applications, an AIDS

study includes non-ignorable missing values; the Peabody Picture Vocabulary Test

data have no indication on missing data mechanism and it will be applied to a sensi-

tivity analysis; the Growth of Language and Early Literacy Skills in Preschoolers with

Developmental Speech and Language Impairment study, however, has full complete

data and will be used to conduct a robust analysis. The CLFM model is shown to

provide more precise estimators, specifically on intercept and slope related parame-

ters, compared with Roy’s latent class model and the classic linear mixed model. This

advantage will be more obvious when a small sample size is the case, where Roy’s

model experiences challenges on estimation convergence. The proposed CLFM model

is also robust when missing data are ignorable as demonstrated through a study on

Growth of Language and Early Literacy Skills in Preschoolers.
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Chapter 1

INTRODUCTION

Missing values in multivariate studies pose many challenges. The primary research of

interest focuses on accurate and efficient estimation of means and covariance struc-

ture in the population. The assumption and estimation of the covariance structure

provide the foundation of many statistical models, for instance, structural equation

modeling, principle component analysis, and so on. Literature on multivariate miss-

ing data methods was reviewed by Little and Rubin (2002) and Schafer (1997). For

some frequentist statistical procedures, we may generally ignore the distribution of

missingness only when the missing data are missing completely at random (MCAR),

such as in the generalized estimation equations (GEE) estimation procedure. For

likelihood or Bayes procedures, however, we may ignore the missing values when

the missing data are missing at random (MAR), as in for example, the estimation

procedure for linear mixed models. The Expectation Maximization (EM) algorithm

for missing data (Dempster et al., 1977) produces maximum likelihood (ML) estima-

tion under an assumption of normality. A useful alternative to the ML approach is

multiple imputation (MI) (Rubin, 1987; Schafer, 1997). In MI, each missing value

is substituted with a set of plausible simulated values, which represent uncertainty

about the missing data. The multiple imputed dataset can be analyzed by stan-

dard complete data methods, and model estimation and inference can be investigated

from combined results. Apparently, the EM algorithm generates estimates of model-

specific parameters. The EM algorithm and MI methods have also been extended to

non-normal models, including log-linear models for multivariate categorical data, the

general location model for mixed datasets containing both continuous and categorical

1



data, and a multivariate linear mixed-effects model for multivariate panel data or

clustered data (Schafer, 1997).

The above mentioned approaches to ML estimation are invariably applied under

the assumption that the missing values in the dataset are MAR. The underlying

meaning of MAR is that the probability of missing values may be related to observed

data or covariates, but are conditionally independent of all missingness given the

observed responses. However, this assumption is always challenged and can not be

reasonable in some applications. The reason is that missing values are sometimes

thought to depend on the values themselves. For instance, individuals may refuse to

answer sensitive items (e.g. income or health history) on a questionnaire, and the

missing value would be related to the underlying true values for those items; or in

clinical trial, the dropout from a patient may be strongly related to outcome.

If missing at random in the data is questioned, and one suspects that the missing

mechanism is NMAR, i.e. missingness may depend on missing values, then the joint

modeling of the complete data and the missing indicators is required. The reason to

follow this modeling method is that the resulting estimates of population parameters

may be biased (Pirie and Leupker, 1988) unless these NMAR aspects of the data are

taken into account in the analysis. Furthermore, the results of the study may not be

feasible to generalize, because the observed respondents may not represent the target

population.

From a practical aspect, investigators could not point out whether violations of the

MAR assumption are severe enough to result in a conclusions that are not valid. It is

also worthwhile to investigate how the results may change under different assumptions

even if the primary analysis proceeds under an assumption of MAR. A standard

ignorable analysis can be strengthened by a sensitivity analysis that includes non-

ignorable alternatives. Results will be more convincing if estimates from different

2



alternative models agree. If they do not agree, the differences afford a better sense of

the true levels of uncertainty.

Models for NMAR data have been proposed for a few decades, including selection

models (Diggle and Kenward, 1994a), pattern-mixture models (Diggle and Kenward,

1994b), as well as shared-parameter models (Diggle and Kenward, 1994b). The de-

tailed review of these models will be given in Chapter 2. All of these forms lead to a

rich class of models: latent class models are one of the prevalent members in longi-

tudinal studies. However, the selection of number of latent classes, which is the key

assumption for latent class modeling for missingness, is unstable due to many factors

as shown by simulation studies presented in Chapter 3. This sensitivity hinders the

direct application of the latent class modeling technique, and intensive simulation

studies should be performed before applying it to application studies. The primary

goal of this research is to develop a general method for non-ignorable modeling of

incomplete multivariate data based on the idea of a continuous latent variable (Lord,

1952, 1953; Bock and Aitkin, 1981). We will summarize the distribution of the miss-

ingness indicators through a continuous latent factor model, and then relate to the

model of interests by including an association of latent traits with subject-specific

parameters from the population. A specific description of this new model will be

given in Chapter 4.
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Chapter 2

STATISTICAL THEORIES AND MODELS FOR NON-IGNORABLE MISSING

DATA

When discussing missing data, it is useful to distinguish the missing-data pattern from

the missing mechanism. Missing data pattern describes which values are observed in

the data matrix and which values are missing; the missing mechanism concerns the

relationship between missingness and the variable values in the data frame. Let

Y = (yij) be an (n× p) data frame, with ith row Yi = (yi1, . . . , yip) where yij is the

value (response) of variable (item) j for subject i. Considering missing data, define

the missingness indicator matrix R = (rij), such that rij = 1 if yij is missing and

rij = 0 if yij is observed. The matrix R then defines the pattern of missing data.

Little and Rubin (2002) reviewed the theory of missing mechanism. If we keep the

same notation for the complete data Y and missing-data indicator matrix R and

borrow the notation for the unknown parameters θ from complete data model (in

longitudinal studies the complete data model is commonly assumed to be a linear

mixed model or generalized linear mixed model), as well as ψ from the indicator

matrix model R from Little and Rubin, the missing mechanism is characterized by

the conditional distribution of R given Y, i.e. f(R|Y; θ, ψ). If missingness does not

depend on the values of the data frame Y, (either missing or observed), i.e. if

f(R|Y; θ, ψ) = f(R|ψ) for all Y, θ, ψ (2.1)

the data are called missing completely at random (MCAR). Further, we can decom-

pose the data frame Y into the observed part Yobs and the missing part Ymis, a less

restrictive assumption than MCAR is that missingness depends only on the observed
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values of Y, which is Yobs, and not on the components that are missing. That is,

f(R|Y; θ, ψ) = f(R|Yobs; ψ) for all Ymis, θ, ψ (2.2)

This assumption will lead to missing at random (MAR). The missing mechanism is

called not missing at random (NMAR) if the distribution of R depends on the missing

values in the data matrix Y.

Further, we assume for each individual i, (i = 1, . . . , n), there is a (q×1) vector of

covariates Xi = (xi1, . . . , xiq). To estimate unknown parameters θ and ψ, given fully

observed covariate matrix X = (xij), the general likelihood inferences are based on

the observed-data likelihood, which is obtained by integrating the missing data Ymis
i

out of the density of (Yi, Ri):

L(θ, ψ|R, Yobs, X) ∝
N∏
i=1

∫
f(Yi, Ri|Xi; θ, ψ)dYmis

i (2.3)

However, likelihood-based inferences are complicated due to missing data: in the

above expression, a model for the joint distribution of Y and R is needed, rather than

a model for the responses Y. Hence, the data mathbfY and missingness indicator R

are related, and the parameter estimation tends to be sensitive to the assumptions

for missing data.

Ignorable likelihood inference is favored by many researchers and many publica-

tions have flourished in recent decades (Horton and Fitzmaurice, 2002; Lee and Song,

2003). If we revisit parameters θ and ψ: θ describes model settings (e.g. parameters

in a growth curve model) and ψ represents parameters for missingness, the missing-

data mechanism is said to be ignorable if (a) the missing data are missing at random

(MAR), and (b) the model parameters θ are distinct from missing mechanism param-

eters ψ, i.e. the joint parameter space of (θ, ψ) is the product of the parameter space

of θ and the parameter space of ψ. The ignorable likelihood function can be written
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as

Lign(θ|Yobs, X) ∝
N∏
i=1

∫
f(Yi|Xi; θ)dY

mis
i ∝

N∏
i=1

f(Yobs
i |Xi; θ) (2.4)

By avoiding computing the integral in the full likelihood (2.3), the ignorable likeli-

hood inference is generally easier to deal with. Furthermore, the ignorable likelihood

does not need a model for missingness, which can be difficult to access. For these

reasons, most likelihood approaches for incomplete longitudinal data with dropouts

or intermittent missingness are based on (2.4) rather than the full likelihood (2.3).

When the ignorable assumptions are not met, one needs to consider the joint

distribution of Yi and Ri. Depending on the factorization of the joint distribution,

two models are widely investigated: selection model and pattern-mixture model. To

demonstrate these two scenarios, we start from a fixed-effect model that does not

include random effects for subjects.

Selection models factorize the joint distribution of Yi and Ri as models for the

marginal distribution of Yi and the conditional distribution of Ri given Yi:

f(Yi, Ri | Xi; θ, ψ) = fY (Yi | Xi; θ) fR|Y (Ri | Xi, Yi; ψ) (2.5)

where θ and ψ span the complete parameter space.

Pattern-mixture models specify the marginal distribution of Ri and the condi-

tional distribution of Yi given Ri:

f(Yi, Ri | Xi; θ, ψ) = fR(Ri | Xi; ψ) fY |R(Yi | Xi, Ri; θ). (2.6)

where (θ, ψ) is the whole parameter space.

However, longitudinal studies require within-subject random effects bi in most

cases. Little (1995) points out that with NMAR data, the selection and pattern-

mixture formulations can be expanded to allow the possibility that the missing-data

mechanism depends on latent random effects. The mixed-effect selection models can
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be expressed as:

f(Yi, Ri, bi | Xi; θ, ψ, δ) = f(bi | Xi; δ) f(Yi | Xi, bi; θ) f(Ri | Xi, Yi, bi; ψ).

(2.7)

and mixed-effect pattern-mixture models have the form

f(Yi, Ri, bi | Xi; θ, ψ, δ) = f(Ri | Xi; ψ) f(bi | Xi, Ri; δ) f(Yi | Xi, bi, Ri; θ).

(2.8)

The independence assumption of Yi and Ri given latent variables bi yields the shared-

parameter models: (Roy, 2003, 2007)

f(Yi, Ri, bi | Xi; θ, ψ, δ) = f(bi | Xi; δ) f(Yi | Xi, bi; θ) f(Ri | Xi, bi; ψ).

(2.9)

As the above factorizations leading to a rich class of models, latent class models

(Goodman, 1978; Clogg, 1995), however, are one of the prevalent members and are

discussed with missing-data patterns in longitudinal studies (Roy, 2007). A review

of work for latent class models is given in the next chapter when a simulation study

for these models is presented.

2.1 Latent Class Models and their Application to Missing-data Patterns in

Longitudinal Studies

Roy (2003, 2007) considers using latent class models to describe intermittent

missing-data patterns in longitudinal studies. Define latent class variable S as a

categorical variable that can take values {1, . . . ,M}. As an alternative, Roy et al.

factorize the joint distribution of Yi and Ri for subject i in expression 2.8 as:

f(Yi, Ri | Xi; δ, ν) =
∑
S

f(Ri | Xi; δ) f(S | Ri; ν1) f(Yi | Xi, S; ν2).

A series of surrogate measures (the time of the last observed value; the number of

observed values; the number of transitions; etc.) for missing patterns are specified
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and used for modeling latent variable S in a logistic regression model, when assuming

latent class variable S is distributed as multinomial and the observation process R is

given. An ordinal logistic regression is applied to model observation process Ri given

covariates Xi. With the assumption that conditional on latent class variable S the

missing outcomes can be ignored, (i.e. given a set of subjects with similar observation

patterns (given S) and similar covariates (given Xi), the observation process might

no longer be informative about the missing outcomes.) The observed outcomes Yi

are modeled conditional on S and Xi. The following linear mixed-effects model is

proposed in Roy’s paper:

Yij = {
M∑
s=1

XT
ijβsI(Si = s)} + ZT

ijbi + εij (2.10)

In this model, βs, s = 1, . . . ,M , is a class-specific regression coefficient vector, Zij

is a vector of covariates, bi are subject-specific random effects and εij is the error

term. The following assumptions were made: bi ∼ N{0, D(θ)}, and independent of

εij ∼ N(0, σ2). The random effects covariance matrix D is parameterized by a vector

of variance components θ.

As pointed out by Roy, while the regression coefficients for the sth class may be of

substantive interest, generally marginal covariate effects will be of primary interest.

The estimation of marginal covariate effects is carried out by averaging over the latent

class distribution. Let ω be the vector of all model parameters, i.e. ω = (θ, ψ), the

likelihood function in Roy’s model can be factored as

L(ω; Y, S,R,X) =
n∏
i=1

[ f(Ri|Xi;ω)
M∑
s=1

f(Yi|Si = s,Xi;ω)f(Si = s|Ri;ω)] (2.11)

Estimation and inference can be based on this likelihood function.

In general, several areas in latent class modeling need to be carefully researched.

The models rely on several assumptions that might be difficult to check. For example,
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one challenge is selecting the number of latent class, S. Some authors have suggested

criterion such as Akaike Information Criterion (AIC), Bayesian Information Criterion

(BIC) as a way of comparing models with different number of classes. Systematic

Monte Carlo simulation studies on this model selection have been done through our

work, and will be presented in next chapter. Roy suggests in his paper that one would

like, ideally, to choose the smallest number of classes that allows the conditional

independence assumption to hold. Having a model with too many classes can be

a problem, as one or more of the class might be very small and hard to interpret.

However, researchers have found that information in a set of missingness indicators

is sometimes well summarized by a simple latent factor structure, indicating that

a large number of missing patterns may be reduced to a few prototypes. Latent

class modeling technique has been applied for non-ignorable modeling of incomplete

multivariate data where factorization of a selection model is considered (Jung and

Seo, 2011).

2.2 Latent Class Selection Model for Non-ignorable Missing Data

The selection model for non-ignorable missing data is often overlooked due to its

instability and extreme sensitivity. Jung and Seo (2011) improved selection models

by adopting a latent-class approach to modeling patterns of missingness. Rather

than using an incomplete response vector to predict the probability of missingness

for that item directly, they use this response vector to predict class membership, so

that items and missingness are related only through latent classes. Here we keep the

same notation and define a single column vector zi which contains the yij’s, the xij’s

and a constant term. The missing-data mechanism in Jung’s model is

f(Ri = ri | Zi = zi; β, ρ) =
∑C

l=1 f(Ri = ri | Li = l)P (Li | Zi = zi)

=
∑C

l=1 πl(zi)
∏p

j=1 ρ
1−rij
j|l (1− ρj|l)rij

(2.12)
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where

πl(zi) =
exp(zTi βl)

1 +
∑C−1

j=1 exp(z
T
i βj)

,

and ρj|l is the conditional probability that an individual responds to item yij given

that Li = l.

The β and ρ parameters in the above model are nuisance since the questions of

research interest usually pertain to the population of Yi. Let µ be parameters of the

population distribution of Yi, and collect the missing data indicators for all subjects

into a matrix R, and the Yi’s and Xi’s into another matrix Z, the likelihood function

for this model becomes

L(ψ | Z, R) ∝
n∏
i=1

[
f(zi | µ)

C∑
l=1

πl(zi)

p∏
j=1

ρ
1−rij
j|l (1− ρj|l)rij

]
(2.13)

where ψ = (µ, β, ρ) represents all parameters of the population model and the

missingness mechanism. However, the above likelihood function cannot be used for

inference because it depends on the missing items in Yi. By integrating out the

missing items Ymis in responses Y, the following likelihood can be used in practice

for observed responses Yobs:

L(ψ | Yobs, X, R) ∝
n∏
i=1

[ ∫
f(zi | µ)

C∑
l=1

πl(zi)

p∏
j=1

ρ
1−rij
j|l (1− ρj|l)rijdYmis

]
(2.14)

Similar to conventional latent class models, such as Roy’s model, one of the im-

portant practical modeling issues in using the latent class selection models (LCSM) is

to determine a proper number of latent classes. In the LCSM, too many classes may

destabilize the posterior predictive distribution of Ymis, producing unstable inferences

about the complete data population. Too few classes will produce a model that fails to

adequately capture the relationships between the complete data and the missingness

indicators. Latent class models and LCSM often result in under-identifiability due to

many latent class-specific parameters even though the eventual interest is usually on
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the population-averaged parameters. Guo et al. (2004) extend the pattern mixture

models to a random pattern mixture model, where the pattern-specific parameters

are treated as nuisance parameters and modeled as random instead of fixed.

2.3 A Random Pattern-Mixture Model

Pattern mixture models (model (2.6), or (2.8)) are one of most popular models for

longitudinal studies with non-ignorable missingness. This modeling technique strati-

fies the data according to missing patterns (e.g. dropout patterns), and forms a model

for each stratum. The final estimate is a weighted average of the stratum-specific es-

timates. In pattern-mixture models, missing patterns could be well summarized by

some surrogate measures, and conditional on the pattern, the missing mechanism is

ignorable within a stratum. Hence information from the complete cases can be bor-

rowed to predict the incomplete cases. However, a full pattern-mixture model usually

has an over-parameterization issue. Guo et al. (2004) proposed a random pattern-

mixture model by generalizing the definition of pattern and applied this model in a

longitudinal study with dropouts. The pattern is defined based on a good surrogate

for the dropout process which can be a baseline or time-varying covariate, or time to

dropout. In this model, it is assumed that conditional on the latent pattern effects,

the longitudinal outcome and the dropout process are independent.

The random pattern mixture model combines the features of the selection models

(2.7) and fixed pattern-mixture models (2.8). Assuming that data can be stratified

into m strata based on a surrogate for the dropout process, pattern effects are modeled

as random effects and used to link responses Y and missing indicators R. The random
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pattern mixture model implies the following factorization

f(Y, R, b|X)

=
∫
f(Y|X,b,u,R)f(b|X,u,R)f(R|X,u)f(u|X)du

=
∫
f(Y|X,b,u)f(b|X,u)f(R|X,u)f(u|X)du

(2.15)

where u is the random pattern effects and f(R|X,u) gives the distribution of R. The

simplification in the above formula implies that Y and b depend on R through the

random pattern effects u. Further this model borrows the basic idea of stratification

from the fixed pattern mixture model, i.e., conditional on the latent pattern effects,

u, the missing mechanism is ignorable within a stratum, and parameters of interest

are the marginal estimates averaging over the latent pattern effects. This model has

similar computational difficulty as the shared-parameter models because of the need

to integrate over u and b. To avoid the computational difficulty, the joint normal

distribution is considered in Guo’s paper (2004). They model the random effects as

normally distributed and the outcome and dropout times as multivariate normal, as

defined below.

Assume that data is stratified into m strata based on a selected surrogate, and

consider the cases where subject j is nested within the ith stratum. Let yij be an nij

vector of observed outcomes for the jth subject within the ith pattern, i = 1, . . . ,m,

j = 1, . . . , ni. Let rij be the corresponding dropout time for this subject (surrogate for

the dropout process). Guo et al. (2004) modeled both the responses and the dropout

times using mixed-effects models, with linking the two models by the random pattern

effects. Then Guo’s model could be expressed as follows

yij = X1ijα1 + Zijbij + Wijui + eij (2.16)

and

rij = xT2ijα2 + βTui + εij (2.17)
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where X1ij, Zij and Wij are the known design matrices for the fixed effects, subject

level random effects, and pattern level random effects for yij; α1 is the vector of

unknown fixed effects; bij ∼ N(0,Σb) is the unknown subject level random effects;

eij ∼ N(0, σ2
eIij) is the residual term; x2ij is the known design matrix linking the

unknown parameter α2 to rij; β is an unknown parameter vector linking ui to rij;

and εij ∼ N(0, s2) is the residual for rij. The vector of parameters to be estimated

in the model is θ = (α1, α2, β,Σb,Σu, σ
2
e, s

2). By treating the pattern level random

effects ui and subject level random effects bij as missing data, an EM algorithm can

be applied to calculate the maximum likelihood estimates of the above parameters.

The complete data log-likelihood for the EM part of the algorithm is

lc =
m∑
i=1

ni∑
j=1

log φ(yij|Xij, ui, θ̂)φ(ui|θ̂)φ(rij|xij, ui, θ̂)

where φ(·) is the normal density function.

Instead of considering the joint inference of responses and missing patterns, Guo

et al. (2004) redefined missing patterns (dropout) by surrogate variables, such as

baseline or time varying covariates or time to dropout. Based on a good surrogate,

pattern effects are defined and treated as a random variable. Data can be then

divided into different strata according to the pattern effects. With the assumptions

that the missing mechanism is ignorable within a stratum conditional on the latent

pattern effects, and the responses Y are independent of missing process R given

the random pattern effects, the joint distribution of responses and measures for the

missing process (e.g. time to dropout) are modeled through a random pattern mixture

model. For computational complexity reasons, In this paper, they only researched on

the case that multivariate normal distribution is assumed for responses and missing

process measures. In most real studies, however, it maybe impossible to find good

measures for the missing mechanism. For instance, in a longitudinal study with
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many intermittent missing values, time to dropout is not necessarily a good measure,

and it probably would not capture most features of missingness. Further, models

other than the normal distribution will be required to describe the missing process.

The violation of joint multivariate normality will lead to an increase of computation

difficulties. We will extend the random pattern mixture models in Chapter 4 with

general distributions.
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Chapter 3

MONTE CARLO STUDY FOR LATENT CLASS MODEL

Latent class modeling now is wildly used and frequently appearing in medical and sta-

tistical journals. A potential application of latent class models (LCM) is for exploring

missing data pattern (dropouts or intermittent missing) in longitudinal studies. In

the intermittent missing cases, missing-data patterns could have many forms and the

effects from missing patterns might be difficult to assess. For instance, in a series of

depression studies described in Roy (2007), patients were randomly assigned to receive

either drug plus psychotherapy or psychotherapy alone. Data were collected weekly

during that period of 17 weeks including baseline. As mentioned in Roy’s work, data

at baseline were completely collected, but there was a large quantity of missing data

afterwards. There were 379 unique missing-data patterns that were observed.

Latent class models with 3 latent classes were used by Roy to assess whether

subjects from different missing-data patterns had different responses on the changes

in depression over time. However, one of difficulties, also a key condition for using

latent class models, is deciding the correct number of latent classes. Garrett and Zeger

(2000) suggested using graphical methods for selecting the number of classes. Some

researchers also proposed a Bayesian approach to select the number of latent classes

by specifying a prior for the number of classes. One could select the model with the

highest posterior probability for that number of classes. As the first contribution of

this dissertation, we perform Monte Carlo simulation studies and investigate selection

of the appropriate number of latent classes via conventional information criteria.

Besides, in this particular study latent class models are used for modeling missing

patterns and these patterns will highly related with a specific model structure. That
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is, different model structures will influence on the selection for latent class models.

Hence, risk factors that related with model structures as well as missing values will

be worthy to study, which includes mixture missing mechanisms in the study, number

of covariates involved in the model, degree of correlation among repeated measure,

as well as different magnitudes of missing probabilities. In Section 3.1, we make a

short review of latent class models. In Section 3.2, we first give a brief description of

simulation studies, then elaborate methods and models that are used in longitudinal

simulation studies. We present and analyze simulation outputs in Section 3.3, with

conclusion and discussion in Section 3.4.

3.1 Review of Latent Class Models

Lazarsfeld and P.F. (1950b,a) first proposed latent class models as a tool for build-

ing typologies based on observed dichotomous variables. The basic idea underlying

LCM is some parameters of a postulated statistical model differ across unobserved

subgroups. These subgroups form the categories of a categorical latent variable.

Let πks be the probability of a positive response on variable k for a person in

category s (k = 1, 2, . . . , p; s = 0, 1, . . . ,M) and let ηs be the prior probability that

a randomly chosen individual is in class s which satisfies
∑M

s=0 ηj = 1. For the case

of M latent classes, the distribution of an individual responses becomes

f(x) =
M∑
s=0

ηs

p∏
k=1

π
I(xk=1)
ks (1− πks)1−I(xk=1) (3.1)

where x = (x1, x2, . . . , xp) is the response vector of an individual, I(·) is an indicator

function and xk = 1 represents a positive response on variable k. The posterior

probability that an individual with response vector x belongs to category s is thus

h(s|x) = ηs

p∏
k=1

π
I(xk=1)
ks (1− πks)1−I(xk=1)/f(x) (s = 1, 2, . . . ,M) (3.2)
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We can use (3.2) to construct an allocation rule according to which an individual is

placed in the class for which the posterior probability is greatest. The principle sta-

tistical task is to estimate parameters and testing goodness of fit. On the substantive

side the main problem is to identify the latent classes, i.e. to interpret them in terms

which make practical sense.

The parameter estimation could be found by maximum likelihood approaches.

The log-likelihood function derived from (3.1) is complicated, but it can be maximized

using standard optimization routines. McHugh (1956) showed the standard Newton-

Raphson technique to solve this optimization problem. However, an easier method

which enables larger problems to be tackled is offered by the EM algorithm. The

fundamental reference for EM is Dempster et al. (1977) supplemented by Wu (1983),

but the EM algorithm for latent class model was given by Goodman (1978). From

(3.1) the log-likelihood with sample of size n is

l =
n∑
i=1

log{
M∑
s=1

ηs

p∏
k=1

π
I(xik=1)
ks (1− πks)1−I(xik=1)} (3.3)

This log-likelihood function has to be maximized subject to
∑
ηs = 1. Bartholomew

(1987) found the parameter estimation in latent class model by taking partial deriva-

tives:

η̂s =
n∑
i=1

h(s|xi)/n (3.4)

π̂ks =
n∑
i=1

xikh(s|xi)/nη̂s (3.5)

where k = 1, 2, . . . , p; s = 1, 2, . . . ,M .

By realizing that h(s|xi) is a complicated function of {ηs} and {πks}, which is

given by

h(s|xi) = ηs

p∏
k=1

π
I(xik=1)
ks (1−πks)1−I(xik=1)/

M∑
s=1

ηs

p∏
k=1

π
I(xik=1)
ks (1− πks)1−I(xik=1) (3.6)
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However, if h(s|xi) were known it would be easy to solve (3.4) and (3.5) for {ηs} and

{πks}. The EM algorithm could be applied on this fact by the following steps:

Step 1: choose an initial set of posterior probabilities {h(s|xi)};

Step 2: update (3.4) and (3.5) to obtain a first approximation to {ηs} and {πks};

Step 3: substitute η̂s and π̂ks estimates into (3.6) to obtain improved estimates of

{h(s|xi)};

Step 4: return to step 2 to obtain second approximations to the parameters and

continue the iteration until convergence is attained.

With the feasible and efficient estimating techniques, latent class models have

been proposed in areas such as contingency table (S.E. Fienberg, 2007), longitudinal

studies with dropout (Roy, 2003) and intermittent missing data (Lin et al., 2004).

Also, a number of recent papers have established fundamental connections between

the statistical properties of latent class models and their algebraic and geometric

features (Smith and Croft, 2003; Settimi and Smith, 2005; Rusakov and Geigerm,

2005). Though there are potentially benefits to implement latent class analysis in

different discipline and fields, it is at the cost of making some strong assumptions.

One of these assumptions is choosing the number of latent classes. As mentioned

above, different methods are proposed to assess latent class models with different

number of latent classes. However, no assessment has been investigated on latent class

models for missing values. In the next section, we present the underlying methods

and models of our simulation studies.

3.2 Methods and Models of Simulation Studies

Rubin (1976) proposed three different missing mechanisms: missing completely at

random (MCAR), missing at random (MAR) and not missing at random (NMAR).

Data are said to be missing completely at random when the probability that responses
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are missing is unrelated to either the specific values that should have been obtained

or the set of observed responses. For instance, in longitudinal studies, let T be the

total discrete time points, Yij be an observation for subject i at time j, and Ri be an

T × 1 vector of response indicators for subject i: Ri = (ri1, ri2, . . . , riT )′ with rij = 0

if the corresponding response Yij is observed and rij = 1 if Yij is missing. In addition,

associated with Yi is an T ×p matrix of covariates, Xi. Given Ri, the complete set of

responses Yi can be partitioned into two components Yi
obs and Yi

mis, corresponding

to those responses that are observed and missing, respectively. Longitudinal data are

MCAR when Ri is independent of both Yi
obs and Yi

mis,

Pr(Ri|Yi
obs,Yi

mis, Xi) = Pr(Ri)

Data are said to be missing at random when the probability that responses are missing

depends on the set of observed responses, but is unrelated to the specific missing values

that should have been obtained. For instance, longitudinal data are MAR when Ui is

conditionally independent of Yi
mis, given Yi

obs, i.e.

Pr(Ri|Yi
obs,Yi

mis, Xi) = Pr(Ri|Yi
obs, Xi)

The third type of missingness of data is referred to not missing at random. Miss-

ing data are said to be NMAR when the probability that responses are missing is

related to the specific values that should have been obtained. That is, the conditional

distribution of Ri is related to Yi
mis given Yi

obs, and Pr(Ri|Yi
obs,Yi

mis, Xi) depends

on at least some elements of Yi
mis. Our interests focus on two of three types of miss-

ingness (MCAR and NMAR) and corresponding mixture models. In the simulation

studies that we have performed, datasets with different missing mechanisms are sim-

ulated and investigated by fitting latent class models. Three underlying assumptions

of missingness in the datasets have been investigated : MCAR missing mechanism,
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NMAR missing mechanism and a mixture of both missing mechanisms, MCAR and

NMAR. We considered a longitudinal study for 6 time points with mixed effects (or

growth curve model):

yij = g0i + g1itj + β2x1ij + β3x2ij + εij (3.7)

where

g0i = β0 + b0i

g1i = β1 + b1i

In this model, yij is the observation for subject i and time j, x1ij, x2ij are two co-

variates, b0i is the random intercept for subject i with mean µb0 and variance σ2
b0

, b1i

is the random slope for subject i with mean µb1 and variance σ2
b1

. (In the simulated

growth curve model, we assume the following parameters: random intercept b0i and

random slope b1i are normally distributed with mean vector [1, 2], and variance co-

variance structure

 1 0.1

0.1 0.2

.) In this model, two time-invariant covariates x1 and

x2 were also include for the analysis purpose. To represent missing values, we used

the following Diggle-Kenward selection model to indicate missingness of a value at

time j:

log[
P (rij = 1|yij, yi,j−1)

P (rij = 0|yij, yi,j−1)
] = αj + ξ1yij + ξ2yi,j−1 (3.8)

where αj is a const intercept in the above logit expression, ξ1 and ξ2 are the coefficients

of the observations yij and yi,j−1, respectively.

3.2.1 Simulation Model of MCAR Missing Mechanism

To illustrate the simulation methods, we started from a simple case: fitting latent

class models in simulated data that contains one missing mechanism. To simulate

datasets followed by the assumed model in equation (3.7), Monte Carlo technique is
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(a) Diagram of simulated models (b) Models for simulating missing

data

Figure 3.1: Models studied in the simulations: latent class model and growth curve

model (left); Diggle-Kenward selection model (right)

applied. In the simulation with MCAR missing mechanism, we set the coefficients of

covariates in equation (3.8) to be zeros, that is: ξ1 = ξ2 = 0 and set the intercept

in the logit expression αj = 1, which corresponds to a probability of 0.27 of having

missing data on the dependent variables (observations), i.e.

P (rij = 1|yij, yi,j−1) =
1

1 + exp(−1)
(3.9)

In this case, the missing probability is not related to either current or previous obser-

vations. This would reflect missing completely at random. A total of 1000 samples

of MCAR were created using Monte Carlo method and each sample has 1000 obser-

vations. There are 64 different missing patterns in the simulated data, including the

complete case. Latent class models with different number of classes have been applied

for this data, in order to evaluate how the responses change through 6 time points

from a grouping perspective. Covariates, as potential factors for explaining responses,

were also investigated for whether they have effects on determing the number of latent

21



classes.

3.2.2 Simulation Model of NMAR Missing Mechanism

Another type of simulation of interest was comparing latent class models for miss-

ing values under NMAR. In some cases, even accounting for all the available observed

information, the reason for observations being missing still depends on the unseen ob-

servations themselves. This motivates us to fit latent class models for this type of

missingness, and the conditional probability is defined as follows: considering the

current observation of yij for subject i at time j, missingness of yij could partially

or fully depends on the unobserved values of yij, the conditional probability has the

same expression with equation (3.8), i.e.

P (rij = 1|yij, yi,j−1) =
1

1 + exp{−(αj + ξ1yij + ξ2yi,j−1)}

where coefficients αj, ξ2 ∈ R could take arbitrary values. In the above expression

of conditional probability, changing the value of ξ1 or ξ2 will change the association

between responses and missing values. For instance, we assume equation (3.8) only

involves parameters αj and ξ1, which also means that the missingness for current

observation is only related with current observation. Figure 2(a) shows that the

parameter ξ1 determines the steepness of the curve over the middle of the range.

This means that a given change in the value of yij will produce a larger change in the

missing probability of a positive response when this parameter is large than when it is

small. Figure 2(b) demonstrates the missing probability curves by changing the values

of αj. With the increase of αj, there is a larger chance for an observation to be missing,

compared with a lower αj. Therefore, changing parameter values in equation (3.8)

should alter the association among the missing value indicators and might have an

influence on deciding the number of latent classes. The related simulation studies and
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(a) Missing probability curves for different values

of ξ1 and αj = 1, ξ2 = 0

(b) Missing probability curves for different values

of αj and ξ1 = 0.5, ξ2 = 0

Figure 3.2: Missing probability curves

corresponding results will be given in the next section. For simulations in this part,

each simulation generated 1000 replicates and each replicate had 1000 observations,

followed by NMAR.

3.2.3 Simulation Mixture Model of MCAR and NMAR

In a longitudinal study, data are collected from baseline to the end of the study.

The presence of a big amount of missing values is common, accompanying with com-

plicate missing mechanisms. Though it’s often difficult to distinguish what missing

mechanisms are involved in the dataframe, ideally a combination with MCAR and

NMAR is a possible case. This motivates us to investigate a mixture model of com-

bining these two different types of missing mechanisms. For simulations in this part,

we have generated 1000 samples and each sample is consisted of different proportions

of MCAR and NMAR, either 500 observations for each of missing mechanism or 800

observations for MCAR and 200 observations of NMAR, depending on the research

goals. We will announce this proportion in the simulation results. The conditional
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probabilities for MCAR and NMAR are defined in previous two formulas.

Besides exploring the method to choose the optimal number of latent classes,

covarites in the growth curve model, different settings of missing probabilities, and

the associations among the y’s may be of interest and investigated on selection number

of latent classes. To generate different associations among the observations, one could

change the parameters of random slope in growth curve model (3.7). For instance,

with a higher value of µb1 , samples with highly associated observations would be

generated. All these factors of interests should be explored by fitting latent class

models on samples with different settings.

3.3 Analysis of Simulation Results

To compare performance of latent class models with different number of latent

classes, Clogg (1995) and Aitkin (1981, 1985) indicated that chi-squared likelihood

ratio statistics were not theoretically correct for LCM selections. A M −1 class LCM

is obtained by putting one parameter value at the boundary of a M -classes model.

The likelihood ratio between the two LCMs may not follow a single χ2 distribution if

the constrained model (M − 1 classes) is obtained from the full model (M classes) by

placing parameters at their boundary values. Several alternative methods, including

information criteria, parametric resampling, etc. were suggested to solve the problem.

Information criteria are probably one of the most convenient methods than other

methods such as parametric resampling. We apply as the efficient approaches and

compare the performances of convectional information criteria to evaluate latent class

models, including AIC, BIC, CAIC, DBIC, and other four information criteria.
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3.3.1 Information Criteria

Yang. (2006) discussed many information criteria that can be used to compare

LCMs. Akaike information criterion (AIC) was one of the earliest propositions of

information criteria. AIC has the following form

AICg = −2logL(θg) + 2pg

where log L(θg) is log-likelihood from MLE, pg is the total number of free parameters

in model g. However, Woodruffe (1982) showed that AIC is not theoretically con-

sistent; consequently, AIC will not select the correct model when sample size (N) is

near infinity.

Schwarz (1978) proposed Bayesian information criterion (BIC) which has the fol-

lowing form

BICg = −2logL(θg) + pg log N

Haughton (1988) showed BIC is consistent when sample size goes large and hence

can lead to a correct choice of model when N goes infinity.

Bozdogan (1987) derived a consistent version of AIC, called CAIC from the

Kullback-Leibler information measure with the form

CAICg = −2logL(θg) + pg (log N + 1)

Since CAIC puts more severe penalty on over-parameterization than BIC or AIC, it

tends to favor a model with fewer parameters.

Draper (1995) modified the penalty part of BIC, and DBIC is defined as follows

DBICg = −2logL(θg) + pg(log N − log 2π)

When sample size N goes infinity, the added term is asymptotically insignificant, but

it has a notable effect on the log-likelihood for small to moderate sample sizes.
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We also included HQ information criterion which was invented by Hannan (1979),

HT-AIC information criterion discovered by Hurvich (1989), sample size adjusted BIC

(BICa) and CAIC (CAICa) to compare the performance among latent class models

with different latent classes. For each simulation that we investigated, 1000 samples

were simulated on different missing probabilities and then fitted with latent class

models with latent classes either from 1 to 5 or from 2 to 5, depending one which

simulation is processed. When we performed simulations of MCAR or NMAR alone,

LCMs with latent classes from 1 to 5 were compared. For simulations of mixture

of MCAR or NMAR, we compared LCMs with latent classes from 2 to 5. One can

check in the latter case, LCMs with one latent class won’t be suggested by any of the

information criteria among 1000 samples. For each information criterion, a smaller

value indicates a better model fit on the simulated data. After fitting latent class

models on 1000 samples, tallies were made for the numbers latent classes indicated

by each criterion, with number of latent classes, ranging either from 1 to 5 latent

classes, or from 2 to 5 latent classes. To illustrate directly, we summarize the tallies

and corresponding proportions for each information criterion in tables and marked

the favored LCM in red.

All simulations and implementation of latent class models with missing data are

completed by Mplus version 5 (Muthen and Muthen, 2011), which is a statistical

modeling program with specializing in fitting structural equation models, and provides

extensive capabilities for Monte Carlo simulation studies. For each simulation study,

we generate 1000 replicates that consist of 1000 individuals (observations) for each

replicate. The repeated measures with covaraites in each replicate are generated via

model (3.7), and missing data are obtained from model (3.8). Latent class model

for fitting corresponding missing indicators are evaluated by Mplus program, the

simulation results in different parameter settings are analyzed in next section.
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3.3.2 Model Selection for LCMs

We first consider simulation results of the selection of LCMs with parameters

given in equation (3.7) and (3.8), which are used to simulate the samples. Three

different underlying missing types are investigated: MCAR, NMAR and a mixture

of MCAR and NMAR. To simulate a growth curve model with MCAR missingness,

we assume the random intercept is normally distributed with mean 1 and variance

1; the random slope is also normally distributed with mean 2 and variance 0.2; for

the MCAR missingness, we choose the default intercept term αj = 1 in the logit

expression (3.9). To simulate a growth curve model with NMAR type of missing, we

use the same model parameters in (3.7) as former one and assume the missing status

for current observation is only related with current observation, not previous one, i.e.

αj = 1, ξ1 = 0.2 and ξ2 = 0. To simulate a growth curve model with a mixture of

two types of missing mechanisms, 500 observations are generated from each missing

mechanism using the same model parameters. The simulation results are shown in

Tables 1-3.

Table 1 describes the simulation results of LCMs for MCAR missing mechanism.

There are 10 replicates that failed to converge when fitting the models. All the

information criteria support the LCM with one latent class, with spreading trends in

both AIC and HT. Table 2 summarizes the results for NMAR missing mechanism,

most information criteria suggest the model with one latent class, except AIC and

HT. Both AIC and HT present significant spreading trends in the simulation results,

and reverse the results to LCM with two latent classes. As discussed before, AIC

tends to give an inaccurate suggestion due to its inconsistency when sample size gets

large. HT information criteria is derived from AIC, and it inherits the inconsistency

property as well. Simulation results demonstrate that a LCM with a homogeneous
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Table 3.1: Number of latent class tallies on MCAR simulation

Information Latent class model

Criteria LC1 LC2 LC3 LC4 LC5

AIC 810 (0.82) 155 (0.16) 20 (0.02) 2 (0.002) 3 (0.003)

BIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

CAIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

DBIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

HQ 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

HT 823 (0.83) 149 (0.15) 14 (0.01) 1 (0.001) 3 (0.003)

BICa 988 (0.998) 2 (0.002) 0 (0.00) 0 (0.00) 0 (0.00)

CAICa 989 (0.999) 1 (0.001) 0 (0.00) 0 (0.00) 0 (0.00)

*Latent class models are fitted without incorporating covariates, αj = 1,

ξ1 = 0, ξ2 = 0, µb0 = 1, µb1 = 2, σ2
b0

= 1, σ2
b1

= 0.2, cov(b0, b1) = 0.1.

group is favored for single missing mechanism and fairly low probability of missing.

The simulation results for selection of LCMs for a mixture of two missing mech-

anisms are summarized in Table 3. All information criteria support LCM with two

latent classes, while there are large dispersion of tallies over AIC and HT. By review-

ing the way we simulate data for a mixture of two missing mechanism, two datasets

with the single missing mechanism are merged. Simulation results indicate this mix-

ing and suggest that LCM with two heterogeneous groups has a better model fit.

Without loss of generality, we choose the results in Table 3 and the corresponding

models as the reference results and models, to investigate the following factors of

interests.
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Table 3.2: Number of latent class tallies on NMAR simulatio

Information Latent class model

Criteria LC1 LC2 LC3 LC4 LC5

AIC 229 (0.23) 306 (0.31) 197 (0.20) 141 (0.14) 117 (0.12)

BIC 987 (0.997) 3 (0.003) 0 (0.00) 0 (0.00) 0 (0.00)

CAIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

DBIC 978 (0.99) 12 (0.01) 0 (0.00) 0 (0.00) 0 (0.00)

HQ 916 (0.925) 72 (0.073) 2 (0.002) 0 (0.00) 0 (0.00)

HT 253 (0.25) 343 (0.35) 197 (0.20) 120 (0.12) 77 (0.08)

BICa 899 (0.908) 88 (0.089) 3 (0.003) 0 (0.00) 0 (0.00)

CAICa 902 (0.911) 85 (0.086) 3 (0.003) 0 (0.00) 0 (0.00)

*Latent class models are fitted without incorporating covariates, αj = 1, γ1 =

0.2, ξ2 = 0, µb0 = 1, µb1 = 2, σ2
b0

= 1, σ2
b1

= 0.2, cov(b0, b1) = 0.1.

3.3.3 Covariate Effects

In general, covariates potentially affects the relationship between the dependent

variable and other independent variables of primary interest. Two covariates are

included in our simulation studies, namely, X1 and X2, and both covariates are gen-

erated from standard normal distribution in Monte Carlo simulations. In equation

(3.7), covariates provide extra information on observations yij and those observations

potentially influence the missing indicators Rij, as expressed in equation (3.8). The

covariates effect on selection of LCMs may be of interest. To investigate this effect,

we evaluate LCMs for the mixture of the two missing mechanisms, with or without

incorporating covariates in LCMs. One could do the same study on LCMs for sin-
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Table 3.3: Number of latent class tallies on mixture of MCAR and NMAR

Information Latent class model

Criteria LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 387 (0.39) 282 (0.28) 201 (0.20) 125 (0.13)

BIC 0 (0.00) 992 (0.997) 3 (0.003) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 992 (0.997) 3 (0.003) 0 (0.00) 0 (0.00)

DBIC 0 (0.00) 987 (0.992) 8 (0.008) 0 (0.00) 0 (0.00)

HQ 0 (0.00) 964 (0.969) 29 (0.029) 2 (0.002) 0 (0.00)

HT 0 (0.00) 438 (0.44) 286 (0.29) 177 (0.18) 94 (0.09)

BICa 0 (0.00) 952 (0.957) 41 (0.041) 2 (0.002) 0 (0.00)

CAICa 0 (0.00) 954 (0.959) 39 (0.039) 2 (0.002) 0 (0.00)

*Latent class models are fitted without incorporating covariates, αj = 1,

ξ1 = 0(MCAR),= 0.2(NMAR), ξ2 = 0, µb0 = 1, µb1 = 2, σ2
b0

= 1, σ2
b1

= 0.2,

cov(b0, b1) = 0.1.

gle missing mechanism. While fitting LCMs without covariates for 1000 replicates,

995 successfully converged; fitted converged 992 among 1000 samples for LCMs with

covariates.

Table 3 describes the results of LCMs without incorporating covariates. All in-

formation criteria support a LCM with two latent classes, i.e. a LCM with two

heterogeneous groups has a better model of fit. Table 4 lists the tallies of LCMs with

covariates and most information criteria suggests the same number of latent classes as

the case of without covariates, except AIC and HT. Due to the inconsistency of AIC

and HT, they don’t correctly identify a model, in particular, they select the model
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Table 3.4: Number of latent class tallies on mixture of MCAR and NMAR with

covariates

Information Latent class model

Criteria LC1 LC2 LC3 LC4 LC5

AIC 144 (0.14) 214 (0.22) 259 (0.26) 375 (0.38) 0 (0.00)

BIC 0 (0.00) 983 (0.991) 1 (0.001) 1 (0.001) 7 (0.007)

CAIC 0 (0.00) 792 (0.80) 157 (0.16) 30 (0.03) 13 (0.01)

DBIC 0 (0.00) 974 (0.982) 10 (0.010) 1 (0.001) 7 (0.007)

HQ 0 (0.00) 928 (0.936) 52 (0.052) 5 (0.005) 7 (0.007)

HT 0 (0.00) 286 (0.288) 290 (0.292) 222 (0.224) 194 (0.196)

BICa 0 (0.00) 775 (0.78) 168 (0.17) 35 (0.04) 14 (0.01)

*With covariates,low missing probabilities, high association among responses.

with more latent classes than it actually had. Simulations have shown the covariates

do not alter the choice of number of latent classes of LCMs when the models are

applied for data with two missing mechanisms, MCAR and NMAR. However, the

auxiliary information provided by covariates ”un-stabilizes” the selection of LCMs by

information criteria. For instance, one of the best performing information craiteria,

BIC supports a two latent class model in most cases (with probability p ≈ 0.997)

when there is no covariate considered; it loses this performance when covariates are

incorporated (with probability p ≈ 0.991). Other information criteria have more sig-

nificant loss on this performance when incorporating covariates into models. AIC and

HT are severely sensitive to the covariates effects. AIC drops this probability from

0.39 to 0.14 for supporting a LCM with two latent classes.
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Table 3.5: Number of latent class tallies on mixture of MCAR and NMAR

with low associations among responses(without covariates)

Information Latent class model

Criteria LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 701 (0.706) 232 (0.234) 41 (0.041) 19 (0.019)

BIC 0 (0.00) 993 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 993 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)

DBIC 0 (0.00) 993 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)

HQ 0 (0.00) 986 (0.993) 7 (0.007) 0 (0.00) 0 (0.00)

HT 0 (0.00) 737 (0.742) 215 (0.217) 29 (0.029) 12 (0.012)

BICa 0 (0.00) 984 (0.991) 9 (0.009) 0 (0.00) 0 (0.00)

CAICa 0 (0.00) 985 (0.992) 8 (0.008) 0 (0.00) 0 (0.00)

*αj = 1, ξ1 = 0(MCAR),= 0.2(NMAR), ξ2 = 0, µb0 = 1, µb1 = 1, σ2
b0

= 1,

σ2
b1

= 0.2, cov(b0, b1) = 0.1.

3.3.4 Association Effect among Responses

As we discussed before, model parameters in (3.7) and (3.8) are initialized at the

beginning of data simulations. In this part we consider the changes on parameters in

equation (3.7), more specifically, we simulate growth curve models with missingness

by altering the parameters in the random slope term to different values, i.e. the mean

and variance of b1i. To avoid the redundant tables, we provide one of the simulations

with two different initialized mean values of b1i: while µb1i = 1 represents a lower

association among observations, µb1i = 2 indicates a higher association.

Table 5 displays the results for the lower association. All information criteria
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agree a LCM with two heterogeneous groups will fit the missing values better. By

comparison, the results for the higher association case are shown in Table 3. It

is indicated that with increasing the degree of associations among responses, the

choice of number of latent classes won’t change. However, the problem of changes

in the ”selection certainty” draws our attention again. One of the worst behaviored

information criteria AIC losses its choice certainty from 0.706 to 0.39.

3.3.5 Missing Probability Effect

To investigate the selection of LCMs for missing values, Diggle-Kenward selection

model are intensively used in our simulation studies, as described in equation (3.8). In

this expression, the missing probability for the current observation yij is determined

by the value of previous observation yi,j−1, current observation yij and initialized

parameter values αj, ξ1, and ξ2. Changing any one of these values will lead to a

change in missing probabilities and potentially affect the structure of LCMs. For

instance, increasing the coefficient ξ1 will lead to a higher missing probability for the

current observation yij, while holding other parameters fixed. Table 3 and 6 present

the model selection results for a paired values of ξ1 (0.2, 0.4) which are set to simulate

the missingness. ξ1 = 0.2 corresponds to a lower missing probability, when ξ1 = 0.4

corresponds to a higher missing probability. αj = 1 and ξ2 = 0 are fixed in this

comparison.

Table 3 illustrates the simulation results for the lower missing probability: a LCM

with two latent classes is suggested by all information criteria. Clearly it is suggested

that LCM is changed in the higher missing probability case, based on the cell values

in Table 6. While both BIC and CAIC support a LCM with three heterogeneous

groups, all the other information criteria tend to indicate for four latent classes. This

change shows evidence of the influence of missing probability on the LCM selection,
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Table 3.6: Number of latent class tallies on mixture of MCAR and NMAR

with high missing probability(without covariates)

Information Latent class model

Criteria LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 0 (0.00) 5 (0.005) 546 (0.553) 437 (0.442)

BIC 0 (0.00) 15 (0.015) 849 (0.859) 124 (0.126) 0 (0.00)

CAIC 0 (0.00) 15 (0.015) 849 (0.859) 124 (0.126) 0 (0.00)

DBIC 0 (0.00) 0 (0.00) 470 (0.476) 511 (0.517) 7 (0.007)

HQ 0 (0.00) 0 (0.00) 186 (0.19) 766 (0.77) 36 (0.04)

HT 0 (0.00) 0 (0.00) 8 (0.008) 609 (0.616) 371 (0.376)

BICa 0 (0.00) 0 (0.00) 167 (0.169) 777 (0.786) 44 (0.045)

CAICa 0 (0.00) 0 (0.00) 169 (0.169) 776 (0.786) 43 (0.045)

*αj = 1, ξ1 = 0(MCAR),= 0.6(NMAR), ξ2 = 0, µb0 = 1, µb1 = 2, σ2
b0

= 1,

σ2
b1

= 0.2, cov(b0, b1) = 0.1.

i.e. with a higher missing probability, LCMs with more heterogeneous groups are

preferred.

To investigate the selection of LCMs, we have checked the missing mechanisms

and related factors that derived from changing parameters in either model equation

(3.7) or missing values generating mechanism (3.8), and through simulation studies we

conclude their influences on deciding the number of latent classes. To fit the datasets

which consist of two assumed missing mechanisms groups, the cases where a LCM

with three heterogeneous groups is suggested are worthy to be researched further.

However, the assumed missing mechanisms usually cannot be identified in practice.
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In particular, there is no statistical method or test on NMAR and the mixture of

MCAR and NMAR. By contrast, missing patterns could be directly observed and it

may provide another perspective to understand LCMs. In the last part of this section,

we focus on exploring the behavior of missing patterns on LCMs with three latent

classes.

3.3.6 Missing Patterns in LCMs

In the above simulations, longitudinal studies with 6 time points are considered.

We define Rij as the missing indicator for subject i at time j. The possible missing

patterns are 26 = 64. For a large sample size, many of the missing patterns will be

repeated. In our simulations, each sample has 1000 observations and a list of the

observed missing patterns together with their associated frequencies is given in the

Appendix. The posterior probability h(s|x) of an individual with missing pattern

x belonging to sth group could be obtained when the corresponding LCM is fitted,

based on the definition in equation (3.6). In our case, three posterior probabilities for

each latent class would be calculated for each missing pattern and these results are

given in the Appendix as well. A missing pattern x is allocated in the class for which

the posterior probability is greatest.

Let Cs|x be the posterior count for sth latent class given missing pattern x, which

can be calculated as the product of observed frequency f and posterior probabil-

ity h(s|x). Based on the posterior counts we could explore the missing patterns in

deciding allocation of latent classes. For instance, LCMs with three heterogeneous

groups in our simulation studies are of interest to investigate further. For instance,

Table 7 lists the posterior probabilities and counts for the first 10 missing patterns

in one of our simulation studies. ’0’ in missing pattern represents observed response,

and ’1’ means missing response. Two numbers in the parenthesis for frequency item
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are frequencies counted from MCAR and NMAR, respectively. The total frequency

for the 8th missing pattern x8 is 223, where responses are only observed at the first

time point. 220 out of 223 come from NMAR mechanism, only 3 come from MCAR

mechanism. Among on the posterior counts Cs|x8 (s = 1, 2, 3) for this pattern, the

second latent class has C2|x = 208.282. Therefore, this pattern is associated with

the second latent class. In fact, the second latent class essentially consists of three

missing patterns: x6, x7 and x8. x8 are the majority in this group, i.e. observations

with this type of missing pattern will be allocated in the second latent class.

From the inspection on all missing patterns in each simulation, one could find that

the first two latent classes mainly consist of missing patterns from NMAR mechanism,

and missing patterns from MCAR forms the third class. Compared with cases where

LCMs with two classes are preferred, we find that there is a seperation in the NMAR

mechanism, which lead to an additional class. Further, we could observe that in

LCMs, latent classes are represented by homogeneous responses, i.e. homogeneous

missing patterns fall into a single class.

3.4 Discussion

This chapter described simulation studies on selecting the number of latent classes

for missing values and the comparison of results based on eight information criteria.

The Bayesian information criteria, consistency version of AIC (CAIC) and sample ad-

justed BICa are noteworthy information criteria to choose correct latent classes. AIC

presents its inconsistency property in the simulation studies. HT has less consistent

performance as well. These inconsistent information criteria are not recommended

for real case studies.

Covariates and degree of association among responses do not influence deciding

how many latent classes are best for fitting the data with different missing mech-
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Table 3.7: Posterior probability for LCMs with three classes (first 10 frequent missing

patterns)

Missing Pattern Frequency f h(1|x) h(2|x) h(3|x) C1|x C2|x C3|x

011111 223 (3,220) 0.056 0.934 0.009 12.488 208.282 2.007

001111 96 (2,94) 0.948 0 0.052 91.008 0 4.992

101111 54 (1,53) 0.955 0 0.045 51.57 0 2.43

000011 50 (35,15) 0.115 0 0.885 5.75 0 44.25

000111 44 (16,28) 0.707 0 0.293 31.108 0 12.892

000001 39 (36,3) 0 0 1 0 0 39

000000 33 (32,1) 0 0 1 0 0 33

001011 33 (21,12) 0.494 0 0.506 16.302 0 16.698

000010 30 (29,1) 0 0 1 0 0 30

010111 27 (5,22) 0.167 0.625 0.207 4.509 16.875 5.589

*Missing data are simulated using Diggle-Kenward model (αj = 1, ξ1 = 0.4, ξ2 = 0.4). 0

is observed response, 1 is missing response.

anisms. However, changing these parameters will influence ”selection certainty” of

all inforamtion criteria. Increasing the degree of associations among responses or

incorporating covariates in the simulation model will lead to the loss of ”selection

certainty”. We also find that the selection by AIC and HT are more sensitive to these

changes. Compared with those less-influential factors, missing probabilities directly

have effects on deciding number of latent classes. A higher missing probability tends

to make the number of latent classes larger. Bayesian Information Criterion (BIC)

and consistent version of AIC (CAIC) suggest conservative LCMs with three classes,

while other information criteria indicate that four classes are preferred. One would
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like to choose the smallest number of classes that allows the assumption of condi-

tional independence to hold. A latent class model with too many classes can produce

problems. One of these problems is difficulty to interpret these classes due to the

small size of classes.

Missing patterns are also investigated for the chosen latent classes. Posterior

counts for each pattern are calculated and compared. The allocation for each pattern

is based on the largest posterior probability, i.e. assgin a pattern to the class where

the posterior probaility is the greatest. Studies indicate that latent classes in LCMs

are represented by homogeneous missing patterns. And the underlying missing mech-

anism could account for the classes. For the two class LCMs, one class mainly comes

from missing patterns generated by MCAR, when the other is consisted of missing

patterns from NMAR. LCMs with three classes in the simulations could be illustrated

as a separation of missing patterns in NMAR.

If one wants to apply LCMs to capture the group characteristics for missing values,

a simulation on deciding the number of latent classes is recommended before fitting

the model. Further research on latent variables for missing indicators may be of

interests. As shown in Figure 1, the assumed latent class C is related with latent

variables i, s which are used as random intercept and slope in the growth curve

model. If the observations Y are continuous, both random terms could be continuous

and the linked latent variables for missing indicator could be continuous as well.
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Chapter 4

A CONTINUOUS LATENT FACTOR MODEL FOR NON-IGNORABLE

MISSING DATA IN LONGITUDINAL STUDIES

In this chapter we will review linear mixed models that incorporate unobserved re-

sponses and present a novel parametric approach to modeling longitudinal data when

non-ignorable missing values are involved. Mixed effects modeling is one of the preva-

lent method for the analysis of correlated data where correlation can arise from re-

peated measurements, longitudinal data or clustering. Since the foundation paper

of Laird and Ware (1982), a vast amount of literature has developed that extends a

range of model fitting techniques and applications. (Diggle and Zeger, 1994; McCul-

loch and Searle, 2001; Fitzmaurice and Ware, 2004) These together provide a com-

prehensive description of methods for estimation and prediction of linear, generalized

linear and nonlinear mixed-effects modeling. Many longitudinal studies suffer from

missing data due to subjects dropping into or out of a study or not being available

at some measurement times, which can cause bias in the analysis if the missingness

are informative. For likelihood procedures of estimating linear mixed models, we

may generally ignore the distribution of missing indicators when the missing data

are MAR (or ignorable likelihood estimation), that is missingness depends only on

observed information. However, when the missing data mechanism is related to the

unobservable missing values, the missing data are non-ignorable and the distribu-

tion of missingness has to be considered. To account for informative missingness, a

number of model based approaches have been proposed to jointly model the longi-

tudinal outcome and the non-ignorable missing mechanism. Little and Rubin (2002)

described three major formulations of joint modeling approaches: selection model,
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pattern-mixture model and shared-parameter model (the detailed formulations were

given in Chapter 2), while Verbeke and Molenberghs (2000) provided applications for

these models in their book. Other researchers have extended this field in the last

decade. Some authors have incorporated latent class structure into pattern-mixture

models to jointly describe the pattern of missingness and the outcome of interest (Lin

et al., 2004; Muthn et al., 2003; Roy, 2003). Lin et al. (2004) proposed a latent

pattern-mixture model where the mixture patterns are formed from latent classes

that link a longitudinal response with a missingness process. Roy (2003) investigated

latent classes to model dropouts in longitudinal studies to effectively reduce the num-

ber of missing-data patterns. Muthen et al. (2003) also discussed how latent classes

could be applied to non-ignorable missingness. Jung et al. (2011) extended tradi-

tional latent class models, where the classes are defined by the missingness indicators

alone.

All the above extensions are from the family of pattern-mixture models, and these

models stratify the data according to time to dropout or missing indicators alone and

formulate a model for each stratum. This usually results in under-identifiability, since

we need to estimate many pattern-specific parameters even though the eventual inter-

est is usually on the marginal parameters. Further, there is a controversial and also

important practical modeling issue in using latent class models which is determining

a suitable number of latent classes. Some authors suggested criterion approach as a

way of comparing models with different number of classes. In the simulation studies

in Chapter 3, we investigated eight different information criteria systematically on

their performances when different missing data settings were handled. In our work,

we found that the selection of latent classes is sensitive to many factors that relate

to missing data, and a simulation study on selection latent classes is strongly rec-

ommended if one wants to apply latent class modeling for missing data. Moreover,
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the uncertainty of model selection makes latent class models inefficient in estimating

population parameters. Instead of modeling missing indicators with latent categori-

cal classes, one possible alternative approach is to model missingness as continuous

latent variables.

As the alternative, Guo et al. (2004) extended pattern-mixture to a random

pattern-mixture model for longitudinal data with dropouts. The review work for

Guo’s paper is given in Chapter 2. The extended model works effectively on the

case where a good surrogate for the dropout can be representative for the dropout

process. In most real studies, however, it maybe impossible to find good measures

for the missing mechanism. For instance, in a longitudinal study with many inter-

mittent missing values, time to dropout is not necessarily a good measure, and it

probably wouldn’t capture most features of missingness. That is, this measurement

can not represent for subjects who have drop-in responses. Instead, modeling for

missing indicators is necessary in this case. Further, models other than the normal

distribution will be required to describe the missingness process. The violation of

joint multivariate normality will lead to an increase of computation difficulties. In

the proposed new model, missing indicators are directly modeled with a continuous

latent variable, and this latent factor is treated as a predictor for latent subject-level

random effects in the primary model of interests. Some informative variables related

with missingness (e.g. time to first missing, number of switches between observed and

missing responses) will be served as covariates in the modeling of missing indicators.

The detailed description of the new model will be given in next section.

4.1 Background of Continuous Latent Factor Model for Binary Outcome

For analyzing multivariate categorical data, continuous latent factor modeling

which is often referred to as categorical variable factor analysis (Muthen, 1978) and
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item response modeling (Lord, 1980; Embretson and Reise, 2000) probably is the

most widely used method. In the terminology of educational testing, the involved

binary variables are called items and the observed values are referred to as binary or

dichotomous responses. In this paper, we will extend this model to describe missing

data procedure.

Let ri1, . . . , riJ be the J binary responses (missing indicators) on J given time

points for a given individual i out of a sample of n individuals, i = 1, . . . , n and

j = 1, . . . , J . In concrete cases 1 and 0 may correspond to a observed or unobserved

outcome in a longitudinal study. In the continuous latent factor model there are two

sets of parameters. The probability of rij being 1 or 0 can depend on an individual

parameter ui, specific and characteristic for the individual in study. This parameter

is also referred to as a latent parameter. In addition, the probability may depend on

a parameter for different time points (items) τj, characteristic for the particular time

point.

We use the following notation to define the probability of a missing outcome as a

function of the latent individual factor:

πij(τj) = Pr(rij = 1|ui).

It is usually assumed that πij(τj) is monotonously increasing from 0 to 1 as ui

runs from −∞ to∞, and that ξj is the 50%-point, i.e. πij(ξj) = 0.5. A typical latent

trait plot is shown in Figure 4.1.

In the literature two main models for a latent trait have been suggested. The

normal ogive model or probit model is given by

πij(ui) = Φ(ui − τj)

where Φ(x) is the cumulative normal distribution function. Alternatively we may use
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Figure 4.1: A typical latent trait plot

the logistic model or logit model,

πij(ui) = Ψ(ui − τj)

where Ψ(x) = ex/(1 + ex) (−∞ < x <∞) is the cumulative distribution function of

standard logistic random variable.

There is a series of continuous latent variable models for different kinds of cate-

gorical data. Here, we present the 2-parameter (2PL) item response model for binary

data, which could be reduced to the model discussed above. The 2PL model is used

to estimate the probability (πij) of a missing response for subject i and time point

j while considering the item (time)-varying parameters, τ2j for item (time) location

parameters and τ1j for item (time) slope parameters, which allow for different weights
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for different times, and the person-varying latent trait variables ui. The 2PL model

is expressed as

logit(πij) = τ1j(ui − τ2j).

As τ1j increases, the item (time) has a stronger association with the underlying miss-

ingness. When τ1j is fixed to be 1, the 2PL model is reduced to be a Rasch model

(Rasch, 1960) or a 1PL model. As τ2j increases, the response is more likely to be

observed. This 2PL model has been shown to be mathematically equivalent to be

confirmatory factor analysis model for binary data (Takane, 1987). The IRT models

can be expressed as generalized mixed or multilevel models (Adams, 1997; Rijmen,

2003). Considering a mixed logistic regression model for binary data:

p(rij = 1|xij, zij, β,ui) =
exp(xTijβ + zTijui)

1 + exp(xTijβ + zTijui)

where rij is the binary response variable for subject i at time j, i = 1, . . . , n;

j = 1, . . . , J ; xij is a known P -dimensional covariate vector for the P fixed effects;

zij is a known Q dimensional design vector for the Q random effects; β is the P -

dimensional parameter vector of fixed effects; and ui is the Q-dimensional parameter

vector of random effects for subject i. In this model, the binary responses are assumed

to be independent Bernoulli conditional on the covariates, the fixed effects, as well

as the random effects. This conditional independence assumption is often referred

to in the latent variable model literature as the assumption of local independence.

The described model comes from the family of the generalized linear mixed model

in which the observations are relations from a Bernoulli distribution (belonging to

the exponential family), mean µij = p(rij = 1|xij), and the canonical link function

is the logit function. The IRT model is formally equivalent to a nonlinear mixed

model, where the latent variable ui is the random effect; time covariate τ2j and slope

parameter τ1j are treated as fixed effects. Raudenbush (2003) also reexpressed the
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Rasch model and the 2PL model as a two-level logistic model by including dummy

variables indicating item numbers (time locations).

4.2 Proposed Model

In this section we present a continuous latent factor model (CLFM) in the longi-

tudinal data with non-ignorable missingness. For a J-time period study which may

have as many as 2J possible missing patterns; modeling the relationship among the

missing indicators and their relationships to the observed data is a challenge. The

underlying logic of our new model comes from the assumption that a continuous

latent variable exists and allows flexibly for modeling missing indicators. Suppose

we have a data set with n independent individuals. For individual i (i = 1, · · · , n),

let Yi = (Yi1, · · · , YiJ)′ be a J-dimensional observed vector with continuous elements

used to measure a q-dimensional continuous latent variable bi. Let Ri = (ri1, · · · , riJ)′

be a J-dimensional observed missing vector with binary elements and ui be a con-

tinuous latent variable, which is used to measure Ri. The primary model of interest

will be the joint distribution of Yi and Ri, given ui and possibly additional observed

covariates Xi, where Xi represents p-dimensional fully observed covariates. Figure 4.2

(model D) provides a diagram representing the proposed model for all the observed

and latent variables. As indicated in Figure 4.2, X1i, containing both time-variant

and time-invariant attributes for subject i, is the p1 dimensional covariates and used

in model B; X2i is the p2 dimensional covariates used in model A; a p3 dimensional

time-invariant covariate vector X3i is used in modeling link function between bi and

ui. These three covariate-vector form the covariate for model D, i.e. p = p1 + p2 + p3.

One of the fundamental assumptions of this new model is that Yi is conditionally

independent of Ri given the latent variables ui and bi. This is a natural assumption

when modeling relationships between variables measured with error, i.e., we want
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Figure 4.2: Proposed model diagram: observed quantities are described in squared

boxes, latent quantities are in circled boxes

to model the relationship between the underlying variables, not the ones with error.

Finally, we assume that Yi is conditionally independent of ui given bi, and likewise,

Ri is conditionally independent of bi given ui. Hence, we introduce the following

model for the joint distribution of the responses Yi and missing indicators Ri,

f(Yi, Ri|Xi) =

∫∫
f(Yi|bi, X1i)f(Ri|ui, X2i)f(bi|ui,X3i)f(ui)duidbi (4.1)

with specific parametric models specified as follows: (Np(a, B) denotes the p-variate

normal distribution with mean a and covariance matrix B)

(Yi|bi, X1i) ∼ind NJ(X1iβ + Z1ibi, Σε) (4.2)

(bi|ui,X3i) ∼ind Nq(X
′

3iγ, ζi) (4.3)

ui ∼ind N1(0, σ2
u) (4.4)
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f(Ri|ui, X2i) =
J∏
j=1

π
rij
ij (1− πij)1−rij (4.5)

A linear mixed model (growth curve) is used for the relationship between Yi and bi

(model B in Figure 4.2), where X1i is a known (J × p1) design matrix containing

fixed within-subject and between-subject covariates (including both time-invariate

and time-varying covariates), with associated unknown (p1 × 1) parameter vector β,

Z1i is a known (J × q) matrix for modeling random effects, and bi is an unknown

(q × 1) random coefficient vector. We specify Yi = X1iβ + Zibi + εi, where the

random error term εi is a J-dimensional vector with E(εi) = 0, V ar(εi) = Σε, and εi

is assumed independent of bi. Furthermore, the J×J covariance matrix Σε is assumed

to be diagonal, that any correlations found in the observation vector Yi are due to

their relationship with common bi and not due to some spurious correlation between

εi. A continuous latent variable model is assumed for the relationship between Ri

and ui (model A in Figure 4) with πij = Pr(rij = 1) representing the probability

that the response for subject i at time point j is missing. We apply the logit link for

the probability of the missingness, i.e., log(
πij(ui, X2i)

1−πij(ui, X2i)
) = ui − τj ≡ X2iα + Z2iui,

where τj are unknown parameters for determining an observation at time point j

is missing. As discussed earlier, this relationship is equivalent to a random logistic

regression, with appropriate design matrices X2i and Z2i. A latent variable regression,

bi = X
′
3iγ+ ζi, is used to establish the relationship between latent variable bi and ui,

where X
′
3i = [X3i ui] is a p3 + 1 dimensional vector combining X3i and ui, γ is the

(p3 +1)×q unknown regression coefficients for X
′
3i and the q×q matrix Ψ determines

variance-covariance structure for error term ζi. Finally the latent continuous variable

ui is assumed to be normally distributed with mean 0 and variance σ2
u.

Note that the maximum likelihood (ML) estimation of the model (4.2) - (4.4)

requires the maximization of the observed likelihood, after integrating out missing
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data Ymis and latent variables b and u from complete-data likelihood function. Detail

of the ML estimation technique will be given in next section.

4.3 Maximum Likelihood Estimation

The main objective of this section is to obtain the ML estimate of parameters in

the model and standard errors on the basis of the observed data Yobs and R. The

ML approach is an important statistical procedure which has many optimal prop-

erties such as consistency, efficiency, etc. Furthermore, it is also the foundation of

many important statistical methods, for instance, the likelihood ratio test, statisti-

cal diagnostics such as Cook’s distance and local influence analysis, among others.

To perform ML estimation, the computational difficulty arises because of the need

to integrate over continuous latent factor u, random subject-level effects b, as well

as missing responses Ymis. The classic Expectation-Maximization (EM) algorithm

provides a tool for obtaining maximum likelihood estimates under models that yield

intractable likelihood equations. The EM algorithm is an iterative routine requiring

two steps in each iteration: computation of a particular conditional expectation of

the log-likelihood (E-step) and maximization of this expectation over the parameters

of interest (M-step). In our situations, in addition to the real missing data Ymis,

we will treat the latent variables b and u as missing data. However, due to the

complexities associated with the missing data structure and the nonlinearity part of

the model (model A in Figure 4.2), the E-step of the algorithm, which involves the

computations of high-dimensional complicated integrals induced by the conditional

expectations, is intractable. To solve this difficulty, we propose to approximate the

conditional expectations by sample means of the observations simulated from the

appropriate conditional distributions, which is known as Monte Carlo Expectation

Maximization algorithm. We will develop a hybrid algorithm that combines two
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advanced computational tools in statistics, namely the Gibbs sampler (Geman and

Geman, 1984) and the Metropolis Hastings (MH) algorithm (Hastings, 1970) for sim-

ulating the observations. The M-step does not require intensive computations due

to the distinctness of parameters in the proposed model. Hense, the proposed algo-

rithm is a Monte Carlo EM (MCEM) type algorithm (Wei and Tanner, 1990). The

description of the observed likelihood function is given in the following.

Given the parametric model (4.2) - (4.4) and the i.i.d. J×1 variables Yi and Ri, for

i = 1, . . . , n, estimation of the model parameters can proceed via the maximum like-

lihood method. Let Wi = (Yobs
i ,Ri) be the observed quantities, di = (Ymis

i ,bi, ui)

be the missing quantities, and θ = (α, β, τj, γ,Ψ, σ
2
u,Σε) be the vector of parameters

relating Wi with di and covariates Xi. With Birch’s regularity conditions for param-

eter vector θ (see Appendix C), the observed likelihood function for the model (4.2)

- (4.4) can be written as

Lo(θ|Yobs,R) =
n∏
i=1

f(Wi|X; θ) =
n∏
i=1

∫
f(Wi,di|Xi; θ)ddi (4.6)

where the notation for the integral over di is taken generally to include the multiple

continuous integral for ui and bi, as well as missing observations Ymis
i . In detail, the

above function can be rewritten as following:

Lo(θ|Yobs,R) =
n∏
i=1∫∫∫

1√
2π
|Σε|−1/2exp

{
−1

2
(Ycom

i −X1iβ − Z1ibi)
TΣ−1

ε (Ycom
i −X1iβ − Z1ibi)

}
1√
2π
|Σb|−1/2exp

{
−1

2
(bi −X

′

3iγ)TΣ−1
b (bi −X

′

3iγ)

}
1√

2πσ2
u

exp

{
− u2

i

2σ2
u

}
{

J∏
j=1

(
exp(X2iα + Z2iui)

1 + exp(X2iα + Z2iui)

)rij (
1− exp(X2iα + Z2iui)

1 + exp(X2iα + Z2iui)

)1−rij
}
duidbidY

mis
i

(4.7)

where Ycom
i = (Yobs

i ,Ymis
i ), Σb = σ2

uγγ
T +Ψ. As discussed above, the E-step involves

complicated, intractable and high dimension integrations. Hence, the Monte Carlo
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EM algorithm is applied to obtain ML estimates. Detail of the technique for MCEM

will be given in the following section.

4.3.1 Monte Carlo EM

Inspired by the key idea of the EM algorithm, we will treat di as missing data and

implement the expectation and maximization (EM) algorithm for maximizing (4.7).

Since it is difficult to maximize the observed data likelihood Lo directly, we construct

the complete-data likelihood and apply the EM algorithm on the augmented log-

likelihood ln Lc(W,d|θ) to obtain the MLE of θ over the observed likelihood function

Lo(Y
obs,R|θ) where it is assumed that Lo(Y

obs,R|θ) =
∫
Lc(W,d|θ)dd. (W and

d are ensemble matrices for vectors Wi and di defined in (4.6)). In detail, the EM

algorithm iterates between a computation of the expected complete-data likelihood

Q(θ|θ̂(r)) = Eθ̂(r){ln Lc(W,d|θ)|Yobs,R} (4.8)

and the maximization of Q(θ|θ̂(r)) over θ, where the maximum value of θ at the

(r + 1)th iteration is denoted by θ̂(r+1) and θ̂(r) denotes the maximum value of θ

evaluated at the rth iteration. Specifically, r represents the EM iteration. Under

regularity conditions the sequence of values {θ̂(r)} converges to the MLE θ̂. (See Wu

(1983))

As discussed above, the E-step in our case is analytically intractable, so we may

estimate the quantity (4.8) from Monte Carlo simulations. One could notice that the

expectation in (4.8) is over the latent variables d. In particular,

Eθ̂(r){ln Lc(W,d|θ)|Yobs,R} =

∫
ln Lc(W,d|θ)g(d|Yobs,R; θ̂(r))dd

where g(d|Yobs,R; θ̂(r)) is the joint conditional distribution of the latent variables

given the observed data and θ. A hybrid algorithm that combines the Gibbs sam-

pler and the MH algorithm is developed to obtain Monte Carlo samples from above

50



conditional distribution. Once we draw a sample d
(r)
1 , . . . ,d

(r)
T from the distribution

g(d|Yobs,R; θ̂(r)), this expectation can be estimated by the Monte Carlo average

QT (θ|θ̂(r)) =
1

T

T∑
t=1

ln Lc(W,d
(r)
t |θ) (4.9)

where T is the MC sample size and also denotes the dependence of current estimator

on the MC sample size. By the law of large numbers, the estimator given in (4.9)

converges to the theoretical expectation in (4.8). Thus the classic EM algorithm can

be modified into an MCEM where the E-step is replaced by the estimated quantity

from (4.9). The M-step maximizes (4.9) over θ.

4.3.2 Execution of the E-step via the Hybrid Algorithm

Let h(Ymis,b,u) be a general function of Ymis, b and u that involved in Q(θ|θ̂(r)),

the corresponding conditional expectation given Ymis, b and u is approximated by

Ê{h(Ymis,b,u)|Yobs,R; θ} =
1

T

T∑
t=1

h(Ymis(t),b(t),u(t)) (4.10)

where {(Ymis(t),b(t),u(t))}; t = 1, . . . , T is a sufficiently large sample simulated from

the joint conditional distribution g(Ymis,b,u|Yobs,R; θ). We apply the following

three-stage Gibbs sampler to sample these observations. At the tth iteration with

current values Ymis(t),b(t) and u(t), (t represents Gibbs sampling iteration)

Step I: Generate Ymis(t+1) from f(Ymis|Yobs,R,b(t),u(t); θ),

Step II: Generate b(t+1) from f(b|Yobs,R,Ymis(t+1),u(t); θ),

Step III: Generate u(t+1) from f(u|Yobs,R,Ymis(t+1),b(t+1); θ).

where function f(·|·) specifies full conditionals that are applied for each step of

Gibbs sampler. The full conditional for Ymis is easily specified due to the conditional

independence assumptions between Y and R, u, given b as showed in Figure 4.

Hence, the full conditional for Ymis can be simplified as f(Ymis|Yobs,b; θ) which
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is again another normal distribution from the property of conditional distribution

of multivariate normal. This conditional can be further simplified in our case due

to the assumption of variance-covariance matrix Σε in model (4.2) is diagonal. In

detail, for subject i = 1, . . . , n, since Yi are mutually independent given bi, Ymis
i

are also mutually independent given bi. Since Σε is diagonal, Ymis
i is conditionally

independent with Yobs
i given bi. Hence, it follows from model (4.2) that:

f(Ymis|Yobs,b; θ) =
n∏
i=1

f(Ymis
i |bi; θ)

and

(Ymis
i |bi; θ) ∼MVN(Xmis

1i β + Zmis1i bi, Σmis
ε,i )

where Xmis
1i and Zmisi are submatrices of X1i and Zi with rows corresponding to

observed components deleted, and Σmis
ε is a submatrix of Σε with the appropriate

rows and columns deleted. In fact, the structure of Ymis may be very complicated

with a large number of missing patterns, however, the corresponding conditional

distribution only involves a product of relatively simple normal distributions. Hence,

the computational cost for simulating Ymis is low. Due to the hierarchical structure

for the model (4.2) - (4.4), the joint distribution that is required in full conditionals

for b and u can be obtained by multiplying the corresponding densities together, and

on the basis of the definition of the model and its assumptions, the following set of

full conditionals for b and u can be derived: (see Chapter 7, Robert and Casella
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(2010))

bi|Ycom
i ,Ri, ui; θ ∝ exp

{
−1

2
(Ycom

i −X1iβ − Z1ibi)
TΣ−1

ε (Ycom
i −X1iβ − Z1ibi)

−1

2
(bi −X

′

3iγ)TΨ−1(bi −X
′

3iγ)

}
ui|Ycom

i ,Ri,bi; θ ∝ exp

{
− u2

i

2σ2
u

− 1

2
(bi −X

′

3iγ)TΨ−1(bi −X
′

3iγ)

}
J∏
j=1

(
exp(X2iα + Z2iui)

1 + exp(X2iα + Z2iui)

)rij (
1− exp(X2iα + Z2iui)

1 + exp(X2iα + Z2iui)

)1−rij

(4.11)

Based on expressions (4.11), it is shown that the associated full conditional distri-

butions for b and u are not standard and are relatively complex. Hence we choose

to apply the M-H algorithm for simulating observations efficiently. The M-H algo-

rithm is one of the classic MCMC methods that has been widely used for obtaining

random samples from a target density via the help of a proposed distribution when

direct sampling is difficult. Here p1(bi|Ycom
i ,Ri, ui; θ) and p2(ui|Ycom

i ,Ri,bi; θ) are

treated as the target densities. Based on the discussion given in Robert and Casella

(2010), it is convenient and natural to choose N(·, σ2Ω) as the proposed distributions,

where σ2 is a chosen value to control the acceptance rate of the M-H algorithm, and

Ω−1
1 = Σ−1

b + ZTi Σ−1
ε Zi for bi and Ω−1

2 = (σ2
u)
−1 + Σ−1

b for ui. The implementation of

M-H algorithm is as follows: at the tth iteration with current value b
(t)
i and u

(t)
i , new

candidates b∗i and u∗i are generated from N(b
(t)
i , σ

2Ω1) and N(u
(t)
i , σ

2Ω2), respectively.

The acceptance of new candidates is decided by the following probabilities:

min

{
1,
p1(b∗i |Ycom

i ,Ri, ui; θ)

p1(b
(t)
i |Ycom

i ,Ri, ui; θ)

}
, min

{
1,
p2(u∗i |Ycom

i ,Ri,bi; θ)

p2(u
(t)
i |Ycom

i ,Ri,bi; θ)

}
where p1(·) and p2(·) are calculated from equation (4.11). The quantity σ2 can be

chosen such that the average acceptance rate is approximately 1/4, as suggested by

Robert and Casella (2010).

Instead of allowing the candidate distributions for b and u to depend on the
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present state of the chain, an attractive alternative is choosing proposed distributions

to be independent of this present state, then we get a special case which is named

Independent Metropolis-Hastings. To implement this method, we generate candidate

for bi at step t, b∗i , from a multivariate normal distribution with mean vector 0 and

variance covariance Σb (denote as the function h1(·)); generate candidate for ui at

step t, u∗i , from a univariate normal distribution with mean 0 and variance σ2
u (denote

as the function h2(·)). The acceptance probability for proposed distributions of b
(t+1)
i

and u
(t+1)
i (i = 1, 2, . . . , n) can be obtained by

min

{
1,
p1(b∗i |Ycom

i ,Ri, ui; θ) h1(b
(t)
i )

p1(b
(t)
i |Ycom

i ,Ri, ui; θ) h1(b∗i )

}
, min

{
1,
p2(u∗i |Ycom

i ,Ri,bi; θ) h2(u
(t)
i )

p2(u
(t)
i |Ycom

i ,Ri,bi; θ) h2(u∗i )

}

Let (Y
mis(t)
i ,b

(t)
i , u

(t)
i ); t = 1, . . . , T ; i = 1, . . . , n be the random samples generated

by the proposed hybrid algorithm from the joint conditionals (Ymis,b,u|Yobs,R; θ).

Conditional expectations of the complete data sufficient statistics required to eval-

uate the E-step can be approximated via these random samples as follows: let

Yi = (Yobs
i ,Ymis

i ), and define Y
(t)
i = (Y

obs(t)
i , Y

mis(t)
i ), where Y

obs(t)
i is sampled with

replacement from Y obs
i ,

E[Yi − Z1ibi|Yobs
i ,Ri; θ] = T−1

T∑
t=1

(Y
(t)
i − Z1ib

(t)
i )

E[εiε
′
i|Yobs

i ,Ri; θ] = T−1

T∑
t=1

(Y
(t)
i −X1iβ − Z1ib

(t)
i )(Y

(t)
i −X1iβ − Z1ib

(t)
i )′

E[bi|Yobs
i ,Ri; θ] = T−1

T∑
t=1

b
(t)
i

E[ψiψ
′
i|Yobs

i ,Ri; θ] = T−1

T∑
t=1

(b
(t)
i −X

′(t)
3i γ)(b

(t)
i −X

′(t)
3i γ)′

E[ui|Yobs
i ,Ri; θ] = T−1

T∑
t=1

u
(t)
i , E[uiu

′
i|Yobs

i ,Ri; θ] = T−1

T∑
t=1

u
(t)
i u
′(t)
i

(4.12)

where X
′(t)
3i = [X3i u

(t)
i ].
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4.3.3 Maximization Step

At the M-step we need to maximize Q(θ|θ(r)) with respect to θ. In other words,

the following systems are needed to be solved:

∂Q(θ|θ(r))

∂θ
= E{ ∂

∂θ
lnLc(W,d|θ)|Yobs,R; θ(r)} = 0 (4.13)

It can be shown that

∂lnLc(W,d|θ)
∂β

=
n∑
i=1

XT
i Σ−1

ε (Yi − Z1ibi −X1iβ)

∂lnLc(W,d|θ)
∂Σε

=
1

2
Σ−1
ε

n∑
i=1

[
(Yi −X1iβ − Z1ibi)(Yi −X1iβ − Z1ibi)

T − Σε

]
Σ−1
ε

∂lnLc(W,d|θ)
∂γ

=
n∑
i=1

uiΨ
−1(bi −X

′

3iγ)

∂lnLc(W,d|θ)
∂Ψ

=
1

2
Ψ−1

n∑
i=1

[
(bi −X

′

3iγ)(bi −X
′

3iγ)T −Ψ
]

Ψ−1

∂lnLc(W,d|θ)
∂α

=
n∑
i=1

J∑
j=1

{
rijX2ij −

exp(X2ijα + Z2ijui)

1 + exp(X2ijα + Z2ijui)
·X2ij

}
(4.14)

Due to distinctness of parameters in the model, the ML estimates can be obtained

separately: for β and Σε in the linear mixed model, as well as γ and Ψ in latent

variable regression model, the corresponding ML estimates can be obtained from

sufficient statistics in the E-step, which is given in (4.12); to estimate α, we will

implement a quasi-Newton method because of no closed expression; the estimates of

Σb and σu can be obtained from simulated random samples by applying law of total

variance.

With the assumption that the missing mechanism is ignorable given latent factors

u, and b, the computation of proposed MCEM algorithm can be further reduced.

That is, the ML estimates can be obtained from observed components in Y, given

information of u, and b. Specifically, the dimension of integration in E-step will

reduced to two, instead of three.
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4.3.4 Monitor Convergence of MCEM via Bridge Sampling

In order to obtain valid ML estimates, one needs to investigate the convergence of

the EM algorithm. However, in our case, determining the convergence of the MCEM

algorithm is not straightforward. Meng and Schilling (1996) pointed out that the

log-likelihood function can ’zigzag’ along the iterates even without implementation

or numerical errors, due to the variability introduced by simulation at the E-step.

Further to evaluate the observed-data log-likelihood function, some numerical method

has to be used because of a closed forms is lacking. In the absence of accurate

evaluation of the observed-data log-likelihood function, we could not judge whether

any large fluctuation is due to the implementation errors, to the numerical errors in

computing the log-likelihood values, or to non-convergence of the MCEM algorithm.

We will implement bridge sampling to solve this problem, as suggested by Meng and

Schilling (1996).

In the determination of the convergence of a likelihood function, only the evalua-

tion changes in likelihood are of interest, and these changes can be expressed by the

logarithm of the ratio of two consecutive likelihood values. In our case, the ratio is

given by

K(θ(r+1), θ(r)) = log
Lo(Y

obs,R|θ(r+1))

Lo(Yobs,R|θ(r))

Due to the complexity of the observed likelihood function, the accurate value of

K(θ(r+1), θ(r)) is difficult to obtain. However, as pointed out by Meng and Schilling

(1996), it can be approximated by

K̂(θ(r+1), θ(r)) = log

{
T∑
t=1

[
Lc(W,dr,(t)|θ(r+1))

Lc(W,dr,(t)|θ(r))

] 1
2

}

−log

{
T∑
t=1

[
Lc(W,dr+1,(t)|θ(r))

Lc(W,dr+1,(t)|θ(r+1))

] 1
2

} (4.15)

where dr,(t), t = 1, . . . , T are random samples generated from g(d|W, θ(r)) by the
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hybrid algorithm. In determining the convergence of the MCEM algorithm, we plot

K̂(θ(r+1), θ(r)) against iteration index r. Approximate convergence is claimed to be

achieved if the plot shows a curve converging to zero.

4.3.5 Standard Error Estimates

Standard error estimates of the ML estimates can be obtained by inverting the

Hessian matrix or the information matrix of the log-likelihood function based on

observed data Yobs and missing pattern matrix R. Unfortunately, these matrices

don’t have closed forms. Thus, we apply the formula by Louis (1982) formula and

random samples generated from g(Ymis,b,u|Yobs,R, θ) via the hybrid algorithm to

obtain standard error estimates. From Louis (1982) we have

−∂
2Lo(Y

obs,R|θ)
∂θ∂θT

= E

{
−∂

2Lc(Y
obs,R,Ymis,b,u|θ)
∂θ∂θT

}
− V ar

{
∂Lc(Y

obs,R,Ymis,b,u|θ)
∂θ

} (4.16)

The above expectation involved calculations of expectation and variance with respect

to the conditional distribution of (Ymis,b,u) given Yobs, R and θ, and the whole

expression is evaluated at θ̂. Again, it is difficult to evaluate the above expression in

closed forms; however, they can be approximately by the sample mean and sample

variance-covariance matrix of the distinct random sample {(Ymis(t),b(t),u(t)); t =

1, . . . , T1} generated separately from g(Ymis,b,u|Yobs,R, θ̂) using the hybrid algo-

rithm. Let W = (Yobs,R) and d = (Ymis,b,u), we have

− ∂2Lo(Y
obs,R|θ)

∂θ∂θT
= T−2

1

(
T1∑
t=1

∂Lc(W,d(t)|θ)
∂θ

) (
T1∑
t=1

∂Lc(W,d(t)|θ)
∂θ

)T
∣∣∣∣∣∣
θ=θ̂

+ T−1
1

T1∑
t=1

{
−∂

2Lc(W,d(t)|θ)
∂θ∂θT

−
(
∂Lc(W,d(t)|θ)

∂θ

)(
∂Lc(W,d(t)|θ)

∂θ

)T}∣∣∣∣∣
θ=θ̂

(4.17)
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Finally, the standard errors are obtained from the diagonal elements of inverse Hessian

matrix −∂2Lo(Y
obs,R|θ)/∂θ∂θT , evaluated at θ̂.

4.4 An Empirical Simulation Study for Obtaining MLEs

To study the performance of the proposed model and sensitivity of the model

assumptions, we simulated data using different assumptions and fit different models to

investigate how much the results from these models change accordingly. We conducted

a simulation study to evaluate the performance of the proposed model (4.2) - (4.4).

In this simulation we generated missing indicators for 500 individuals from model

(4.5), with the known fixed effects and random effects, so that approximately 52% of

the subjects had missing values, and 48 different missing patterns in a 6 time points

study. We removed 8 individuals that didn’t have any observed values, and kept

the remaining 492 individuals in the study. Given the fixed effects, random effects,

error variance-covariance as well as link parameters, we generated the growth-curve

data and removed observations for each subject to be missing based on the observed

missing indicators. Once the simulation data was generated using the true known

parameters associated with the underlying model, we fitted the proposed model (4.2)

- (4.4) to the data.

In this simulation, the true underlying model was

Yij = 1.00 + 2.00tij + 1.00X1 + 0.5X2 + bi + εij

bi = 0.6ui + ζi

logit(πij) = ui − (3.5, 3, 2.5, 2, 1.5, 1) Iij

where πij is the missing probability for subject i at time point j, i.e. πij = P (rij =

1); tij is the jth visiting time for subject i; τ = (3.5, 3, 2.5, 2, 1.5, 1)T is true

values for time location parameters, that is we assume an individual has a higher

missing probability at the later stage of the study, Iij is a 1 × 6 vector with the jth
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element 1, 0 elsewhere. In this simulation, we also allow the missing mechanism to

depend on a subject-level latent random effect ui, with normal distribution of mean

0 and variance 2. This unobserved random effect further influences the growth-curve

model via the specified link model, which in this simulation we consider influences

on subject-level random intercept in the growth-curve model. Parameters in the link

model and growth-curve model are given as follows: εij ∼ N(0, 0.5), ui ∼ N(0, 2),

ζi ∼ N(0, 0.28). It can be shown that the subject-level random effects bi has variance

1, based on the link model (4.3).

The total number of unknown parameters in this simulation study was 19. ML

estimates were obtained by fitting proposed model (4.2) - (4.4). The proposed MCEM

algorithm was used to produce the ML estimates and standard errors estimates in

100 replications. In the MH algorithm of the E-step, we set proposed distribution

to be independent of chain state. The number of observations generated from the

conditional distribution g(Ymis,b,u|Yobs,R; θ) via the hybrid algorithm for com-

pleting the E-step at the rth iteration of the MCEM algorithm was 50 + 10r. This

number was increased with the EM iteration and was larger near convergence where

parameters values in the conditional distribution were closer to the ML estimates.

Starting values for variance elements were all set to 1.0 and starting values for the

remaining unknown parameters were 0.0. The convergence of model fitting proce-

dure was assessed by plotting log-likelihood ratio versus EM iteration, see Figure 4.3

for a summary of convergence in a randomly selected replication. We observed that

the log-likelihood ratio K of the bridge sampling is sufficiently small after 100 iter-

ations for all replications. To be conservative, we took the parameters values at the

150th iteration as the ML estimates in all the replications of the simulation study.

Finally the standard error estimates were calculated from Equation 4.17 on 3, 000 ob-

servations simulated from g(Ymis,b,u|Yobs,R; θ̂) by the hybrid algorithm with 100

59



Figure 4.3: Log-likelihood ratio versus EM iteration from the third iteration

burn-in iterations. Based on 100 replications, the mean of the estimates and the mean

of the standard errors were computed and given in Table 4.1. We observed that the

mean estimates are quite close to the true values, although the true parameters in the

missing model are slightly different from default values that used to generate missing

indicators, due to 8 individuals excluded from the simulation study. The convergence

trace plot for fixed effects in growth-curve model was given in Figure (4.4).

4.5 Bayesian Approach for Model Estimation

In the previous section, we presented a maximum likelihood approach to obtain

estimates for model (4.2) - (4.4). However, for small sample sizes, likelihood-based

inference can be unreliable with variance components being particularly difficult to

estimate. Meanwhile, the properties of ML estimators can be only guaranteed on

a large sample size. Even worse, the computation of MCEM could be tedious, be-
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Table 4.1: ML estimates of the parameters in the simulation study

Parameters True Value Proposed Model Standard Error

Growth-curve Model

I 1.00 0.992 0.012

S 2.00 2.001 0.010

X1 1.00 1.005 0.015

X2 0.50 0.512 0.020

σ2
b0

1.00 0.989 0.070

σ2
ε1

0.50 0.506 0.042

σ2
ε2

0.50 0.549 0.044

σ2
ε3

0.50 0.44 0.037

σ2
ε4

0.50 0.561 0.045

σ2
ε5

0.50 0.412 0.039

σ2
ε6

0.50 0.474 0.047

Linked Model
γ 0.60 0.625 0.304

ψ 0.28 0.264 0.091

Missing Model

τ1 3.32 3.295 0.221

τ2 3.15 3.148 0.214

τ3 2.65 2.582 0.195

τ4 2.24 2.198 0.182

τ5 1.71 1.699 0.168

τ6 1.18 1.158 0.157

σ2
u 1.88 1.856 0.732
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Figure 4.4: Convergence plot for fixed effects in growth-curve model. True values

were plotted as dot line.

cause in each iteration, new variation will be introduced by the Monte Carlo scheme.

The convergence of MCEM typically cannot achieve the expected difference between

two consecutive iterations. Instead, one needs to monitor the convergence trace of

MCEM and terminate the implementation if a stable fluctuation along a fixed value

is present. For example, one wants to determine the convergence of MCEM via mon-

itoring value changes of the log-likelihood function. The MCEM could be terminated

if a convergence plot shows a stable fluctuation around 0, but this waiting time will

be long, depending on model complexity. In the previous empirical simulation study,

the average computation time for one replication is more than 2 hours. (The pro-

gram was implemented on a Macintosh machine with Processor 2.8GHz, Intel Core

i7.) One approach to improve the computation efficiency is to choose appropriate
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starting values. The estimates which are obtained from ignorable likelihood approach

will be an ideal option for initial values for MCEM algorithm. As an alternative, a

Bayesian approach is appealing and worth to be further explored. In this section, we

will present the basic idea of Bayesian methods and a Bayesian approach based on

Markov Chain Monte Carlo (MCMC) method for model (4.2) - (4.4).

4.5.1 Basic Ideas of Bayesian Inference

Bayes Theorem

Bayesian analysis is based on assumptions that the concept of probability can be

applied to the degree to which a person believes a hypothesis or proposition. The

degree of belief in proposition H can be represent as Pr(H). Here we adopt the

same notation from a published work by Zhang and Hamagami (2007). Pr(H) is also

known as the prior degree of belief in H. A conventional Bayes theorem states,

Pr(H|E) =
Pr(E ∩H)

Pr(E)
=
Pr(E|H)Pr(H)

Pr(E)
,

which indicates that the degree of belief in H given the observed evidence E is equal

to the ratio between joint probability of H and E and the probability of E. Pr(H|E)

is known as posterior degree of belief in H, in the sense of being the updated belief

after observing the evidence.

In most cases, one will have more than one hypothesis in research. For instance, if

we have N different hypotheses, H1, H2, . . . , HN to account for a phenomenon, then

Bayes theorem is given as

Pr(Hi|E) =
Pr(E|Hi)Pr(Hi)∑N
i=1 Pr(E|Hi)Pr(Hi)

The above expression explains that the posterior belief on Hi not only depends on the

observed evidence E but also depends on our prior beliefs regarding each hypothesis.
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Bayes theorem is useful because it provides a tool to calculate the probability of a hy-

pothesis based on the evidence or data. After obtaining the evidence, the calculation

of Pr(E|Hi) is straightforward. However, when we observe some evidence or collect

some data, we are interested in the probability of the hypotheses conditional on the

evidence, Pr(Hi|E). Bayes theorem provides a way to calculate this probability by

noticing that this calculation also depends on the prior probabilities Pr(Hi). Hence,

Bayes theorem provides a natural way to update prior belief Pr(Hi) concerning the

hypothesis to posterior belief Pr(Hi|E) based on the evidence E that we collected.

In parallel, the hypotheses can be represented by one or more continuous param-

eters from a model denoted by θ for a continuous probability setting. Assume the

evidence, also known as data, is denoted by Y. Bayes theorem can be rewritten as,

p(θ|Y) =
p(θ)p(Y|θ)
p(Y)

=
p(θ)p(Y|θ)∫

θ
p(θ)p(Y|θ)dθ

in which p(θ) is a prior probability distribution of θ, p(θ|Y) is the posterior probability

distribution of θ, and p(Y|θ) is the probability of the data which is also known as the

likelihood L(θ;Y) in maximum likelihood estimations (MLE). In Bayesian framework,∫
θ
p(θ)p(Y|θ)dθ is a normalized constant, hence in most situations, we will express

the relationship between the posterior and prior distributions as follows:

p(θ|Y) ∝ p(θ)p(Y|θ) = p(θ)L(θ;Y),

which states that a posterior is proportional to the prior times the likelihood.

Choice of Priors

Bayes theorem shows that the prior belief is required for Bayesian analysis. A prior is

the available information or knowledge about the hypothesis and unknown parameters

before the data are collected and should be specified in advance. The prior is classified

as either an informative prior or a non-informative prior.
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When no reliable prior information or knowledge concerning the hypotheses or

parameters exists, or an inference based only on the data at hand is desired, non-

informative priors can be used. A non-informative prior does not favor any hypothesis

or value of a parameter. For example, for a discrete distribution, the prior Pr(Hi) =

1/N, i = 1, . . . , N is a non-informative prior because it assigns equal probability

to each hypothesis Hi. Similarly, for the continuous case, one could assign a non-

informative prior as π(θ) = c, any c > 0. This prior is usually called an improper prior

because its integration is infinity. Further, priors with little information about the

unknown parameters are also called non-informative priors. For example, researchers

sometimes give a wide variance range for a normal prior. In this case, a large variance

will provide vague information. In the Bayesian framework, the use of non-informative

priors typically yields similar results to MLE.

In another perspective, informative priors make Bayesian analysis more subjective

because different priors can result in different conclusions, which is a situation that

has been criticized by frequentists for a long time. An informative prior may be

constructed from previous studies. For example, if one want to predict tomorrow’s

temperature, it is reasonable to use a normal distribution prior with the mean and

variance equal to the mean and variance of the temperature on the same day over the

past 20 years (An example from Zhang and Hamagami (2007)). Intuitively, the use of

priors provides a method to utilize current knowledge to a future study. For instance,

before any experiment is carried out, we may know nothing about a parameter and

thus specify a non-informative prior p(θ). After an experiment in which we obtain

the data Y1, we update our knowledge about the parameter to p(θ|Y1). With an

additional experiment, we obtain the data Y2, and can use the posterior p(θ|Y1)

from the first experiment as the prior to update the knowledge about that parameter

again.
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Regardless of whether informative priors are adopted, many investigators prefer

to using conjugate priors when they are appropriate to simplify computation. A

conjugate prior is a prior from the family of probability density functions from which

the derived posterior density functions have similar function forms to the priors. For

instance, a normal prior will to lead a normal posterior based on the Bayes theorem,

then this prior is a conjugate prior. The use of conjugate priors can reduce the

computation complexity of the posterior distribution largely. The exponential family,

which includes the normal distribution, gamma distribution, beta distribution, and

so on, is the most often used family of distributions and has conjugate priors.

Statistical Inference on Posteriors

Once the posterior distribution of the parameters is obtained, statistical inference

can be performed. Since the posterior distribution of the unknown parameters are

steadily revealed by Bayesian analysis, we can demonstrate their densities in plots.

However, such plots carry so much information that they become difficult to compre-

hend. Several statistics can be used to summarize the information of the posterior and

are analogous to parameter estimates and standard errors from MLE. In particular,

we consider point estimation and credible intervals.

Of the many point estimations, the mean is the most widely used statistic. Given

the posterior, the mean is calculated by

θ̄ =

∫
θp(θ|Y)dθ (4.18)

which is the classical definition of the mean. Similarly, the associated variance can

be obtained with

V ar(θ) =

∫
(θ − θ̄)(θ − θ̄)′p(θ|Y)dθ (4.19)
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These two terms are also referred to as posterior mean and posterior variance, respec-

tively.

In Bayesian statistics, credible intervals are used for purposes similar tho those

of confidence intervals in frequentist statistics. Formally, a 100× (1− α)% credible

interval for θ is obtained by

1− α ≤
∫ U

L

p(θ|Y)dθ (4.20)

where L and U are lower and upper bounds, respectively.

One has to pay attention to the interpretation of credible intervals. Because the

parameter θ is considered a random variable, we can interpret the credible interval

as “The probability that θ lies in the interval (L,U) given the observed data is at

least 100 × (1 − α)%.” In frequentist statistics, the confidence interval means that

“If the experiment is repeated many times and the confidence interval is calculated

each time, then overall 100× (1−α)% of them contain the true parameter θ.” Thus,

the credible interval has a more intuitively appealing interpretation.

Markov Chain Monte Carlo methods

Statistical inference presented above can be done when the integration in equations

(4.18)− (4.20) can be solved analytically. However, this is usually impossible in prac-

tice especially when multiple unknown parameters are present. In practice, Markov

Chain Monte Carlo (MCMC) methods are generally used to circumvent the diffi-

culty of multiple dimension integration. Different versions of MCMC methods have

been proposed, such as Metropolis-Hastings (M-H) sampling, Gibbs sampling, and

slice sampling. For model estimation within Bayesian framework, we focus on Gibbs

sampling scheme.

Gibbs sampling is an numerical implementation to generate a data point from the
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conditional distribution of each parameter, conditional on the current values of the

other parameters. Here is a procedure in detail: let θ = (θ1, θ2, . . . , θK) be K unknown

parameters in the model of interest. The full conditional distribution (or referred as

conditional density function) π(θk|θ1, . . . , θk−1, θk+1, . . . , θK ;Y) for θk can be obtained

directly from standard manipulations on probability density/mass functions. Then we

can use following scheme to sample the data points from the conditional distributions:

at the (t+ 1)th iteration with current value θ(t) = (θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
K ), update θ(t+1) =

(θ
(t+1)
1 , θ

(t+1)
2 , . . . , θ

(t+1)
K ) by means of sequentially generating

θ
(t+1)
1 from π(θ1|θ(t)

2 , θ
(t)
3 , . . . , θ

(t)
K ;Y)

θ
(t+1)
2 from π(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
K ;Y)

...

θ
(t+1)
K from π(θK |θ(t+1)

1 , θ
(t+1)
2 , . . . , θ

(t+1)
K−1 ;Y)

From this updating scheme, the first parameter is updated on values of parame-

ters from the previous iteration. The second parameter is updated based on the just-

updated first parameter estimate and the not-yet-updated third to Kth parameters.

This process of updating parameters is performed up to the Kth parameter to finish

one complete iteration. The iteration process above can be repeated T times. Geman

and Geman (1984) showed that for sufficiently large T , θ(T ) can be viewed as a simu-

lated observation from the posterior distribution π(θ|Y). The simulated observations

after T iterations are recorded, and for convenience, we denote as θt, t = 1, . . . , T .

Sometimes, there are highly positive autocorrelation between consecutive iterations.

To reduce autocorrelation and computing memory space, one could pick points with

a fixed interval (or thinning process) a indexed 1, 1 + a, 1 + 2a, 1 + 3a, . . . to perform

further analysis. The point estimation is calculated by

θ̄ =
1

T

T∑
t=0

θ1+ta,
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with variance expression

V ar(θ̄) =
1

T − 1

T−1∑
t=0

(θ1+ta − θ̄)(θ1+ta − θ̄)T

To construct the credible interval, one could use the percentiles of the generated

sequences. For instance, the lower bound of the 100 × (1 − α)% credible interval

is equal to the α/2 percentile of the sequence and the upper bound is equal to the

1− α/2 percentile. To determine the convergence of the generated Markov chain, or

equivalently determine T , the typical approach that we use is “eyeball” method, i.e.,

monitoring the convergence by visually inspecting the history plots of the generated

sequences.

4.5.2 Specification of Priors

With a brief overview of Bayesian analysis, we will in the following demonstrate

a full Bayesian scheme to achieve parameter estimations for models (4.2) - (4.4). In

section 4.3 we derived the observed likelihood function and completed tasks to find

conditional distribution for parameters of interests. Formulas (4.7), (4.11), as well as

Gibbs sampling scheme, had been utilized to find MLEs in a previous section, and

further can be adopted here to find corresponding Bayesian estimates. In addition,

one needs to specify a prior for each parameter in models (4.2) - (4.4), in order to

invoke a full Bayesian approach. In the following, we will focus on specifying priors.

As we discussed earlier, conjugate priors are substantially able to reduce compu-

tation burdens since they provide the same distribution family with posteriors. The

conditional independence assumptions of models (4.2) - (4.4) further break down the

complexity of those models and make posterior calculation feasible and more easier.

Hence, we will adopt conjugate priors for each parameter in each simulation study. In

particular, for all regression coefficients, we assign them normal priors with means 0

69



and large variances 103. For variance components, we assign inverse-gamma priors for

single variance components, and inverse-Wishart priors for variance-covariance struc-

tures. In the simulation studies, all priors are given in the sense of providing vague

knowledge on parameters of interests, which guarantees the comparability among

models from MLE approaches and proposed models (4.2) - (4.4) from full Bayesian

approaches. In real case applications, we will adopt different priors, including diffuse

priors and informative priors, in order to demonstrate whether the influence from

prior knowledge dominate the conclusions. All Bayesian approaches and investiga-

tions are performed with a combination of a widely-used free software WinBUGS

(Lunn and Spiegelhalter, 2000), and a R cran package ’R2WinBUGS’ (Sturtz and

Gelman, 2005).
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Chapter 5

APPLICATIONS

In this chapter, we will present results of simulation studies and illustrate several

applications.

5.1 Simulation Studies

To study the effectiveness of the continuous latent factor model (CLFM), we sim-

ulated data that includes non-ignorable missingness from Diggle-Kenward selection

model and fitted different models to investigate how much the results changed ac-

cordingly. Firstly, three simulation studies were generated with 500 replicates in each

simulation, as follows. Given the known fixed effects, random effects, and link param-

eter values, plus the random error covariances, we generated missing values for each

subject in the study. For sample size, we included two different sizes, a moderate

sample size 300, as well as a small sample size 80 in the first three simulations. That

is, we simulated data from baseline and at follow-up times that were observed. The

total length of time in the study was six time points. Once each replicate was gen-

erated using the true known parameter values associated with the underlying model,

three models were fitted and compared, including classic model where missing data

are excluded from estimation, Roy’s model, and CLFM model. Since Roy’s model

usually requires a larger sample size to obtain estimation convergence, the fourth sim-

ulation study was conducted with 1000 subjects in each replicate, and total number

of replicates was 200. The simulation model was the same as the first two simulation

studies.

For the first two simulation studies, the true underlying parameters for repeated
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measures were as follows,

Yij = 3.00+1.00(V isit time)+2.00(Age)+1.00(Treatment)+b0ij+b1ij(V isit time)+εij

where age is a standardized continuous variable with mean 0 and variance 1 at base-

line, subjects are randomly assigned into two treatment groups with a 1 : 1 ratio.

b0ij ∼ N(0, 1), b1ij ∼ N(0, 0.2), cov(b0ij, b1ij) = −0.3 and εij ∼ N(0, 0.5). For each

simulation study, we fit three different models, including a classic linear mixed model

by ignoring missingness, Roy’s model and continuous latent factor model (CLFM)

via full Bayesian approach. One needs to know that we only include an empirical

study for CLFM via MCEM approach in the last chapter due to its long computation

time. In the first simulation study, repeated measures are missing with lower missing

probabilities. Figure 5.1 describes the missing proportion and missing patterns from

two scenarios, which corresponds to two sample sizes. In this plot, there are two

colors: blue represents for observed measures or responses, and red means a response

is missing. The observation time is listed from bottom to top, and each column in

the figure is the record of a subject. The one on the left is the missing pattern plot

of the first replicate from a simulation with 80 subjects in the study; by comparison,

the plot on the right is the first one with 300 subjects. As shown in this plot, lots

of subjects do not have any missing values. In both simulation studies, around half

individuals follow the study at all times. For the case with 80 subjects, there are 40

complete cases; and for the 300 individual study, a total 146 do not have any missing

values. On average, the proportions of missing values for both studies are around 13

percent.

Figures 5.2 and 5.3 summarize the results for the fixed effects on 80 subjects’

study and 300 subjects’ study, respectively. Since there is only a small proportion of

missingness on repeated-measures, and few subjects drop out from the study, all three
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Figure 5.1: Missing proportion and missing patterns of simulation studies on repeated-

measure model with lower missing probability. Blue color represents observed mea-

sures and red color means missing measures. Missing observations are non-ignorable

which are generated from Diggle-Kenward selection model. Two different sample sizes

were simulated: 80 individuals (left) and 300 individuals (right)

models provide reasonable point estimates for fixed effects, as well as corresponding

standard errors for both scenarios. However, one can determine, with a closer inves-

tigation, CLFM produces more accurate estimates when comparing with other two

models, in terms of mean square error (MSE) or root mean of square error (RMSE).

For instance, if we consider the effect of time in this study, that is, estimating the

regression coefficient of time in the model, the RMSE from CLFM is 0.089, which is

much smaller than the RMSE from the ignorable model, 1.981. (These two numbers

are from the study with 80 subjects. For 300 subjects, we have two similar RMSEs:

the one from CLFM is 0.069, and the other one from MAR is 1.982.) Further, Roy’s

model underestimates the size of the age effect, as well as average change rate on

response (Time). In estimating procedures, Roy’s model does not converge on many

replications with a smaller sample size, which contributes to smaller standard errors

in the study of 80 subjects. These shortened confidence intervals also exist in es-
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Figure 5.2: Point estimates and confidence interval (credible interval for Bayesian

estimates) for fixed effects from simulated repeated-measure model with lower missing

probability. The study sample size is 80. The true values are indicated by the dashed

lines. 1, ignorable model; 2, Roy’s model; 3, CLFM model from Bayesian approach.

timating random effects, which include random intercept, random slope, as well as

covariance between random intercept and slope.

Figure 5.4 describes estimates and corresponding 95 percent confidence interval

(credible interval for Bayesian estimates from CLFM) for random effects in the sim-

ulated model, when a repeated-measure model with 80 subjects is of interest. In this

result, the missing proportion is close to 17 percent. For this case, one can see in-

tervals from Roy’s model cannot cover true variances of random intercept and slope,

while ignorable likelihood approach and CLFM could generate more accurate point

estimates and corresponding variabilities. Specifically, the point estimate on variance

for the random intercept from the ignorable likelihood approach is 0.940; from Roy’s
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Figure 5.3: Point estimates and confidence interval (credible interval for Bayesian

estimates) for fixed effects from simulated repeated-measure model with lower missing

probability. The study sample size is 300. The true values are indicated by the dashed

lines. 1, ignorable model; 2, Roy’s model; 3, CLFM model from Bayesian approach.

model with two latent classes is 0.632, and from CLFM is 1.008, given true variance

of random intercept term is 1. Similarly, for estimating the variance of the random

slope term, (underlying true value in the simulation is 0.2) point estimates from three

models are 0.191, 0.124, 0.196, respectively. In estimation of covariance, CLFM also

gives the best performance. Similar results can be obtained for estimating random

effects with a larger sample size. However, comparing performance among the pre-

sented models via point estimates alone is not valid. In all simulation studies, we

apply the mean square error (MSE) to evaluate model performance as we described

above. It is well known that MSE of an estimator measures both variability of this

estimator and its bias from the true value. That is, the MSE is equal to the sum of the
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Figure 5.4: Point estimates and confidence interval (credible interval for Bayesian

estimates) for random effects from simulated repeated-measure model with lower

missing probability. The study sample size is 80. The true values are indicated by

the dashed lines. 1, ignorable model; 2, Roy’s model; 3, CLFM model from Bayesian

approach.

variance and squared bias of the estimator. Hence, the MSE assesses the quality of an

estimator. This measurement is calculated and compared for each parameter across

all the models of interest, and one can conclude from the comparison that estimators

from CLFM have the best qualities for estimating on both fixed and random effects.

In the second simulation study we compare CLFM with two other models when

data contains a large proportion of missingness. Missing values in this study are gen-

erated by the Diggle-Kenward selection model, and the mechanism of missingness is

non-ignorable. Two sample sizes are considered in this case, 80 and 300. For each sce-

nario, we simulated 500 replicates, as we specified at the beginning of the simulation
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Figure 5.5: Point estimates and confidence interval (credible interval for Bayesian es-

timates) for fixed effects from simulated repeated-measure model with higher missing

probability. The study sample size is 80. The true values are indicated by the dashed

lines. 1, ignorable model; 2, Roy’s model; 3, CLFM model from Bayesian approach.

study. On average, the missing proportion exceeds 50 percent in the data. For most

replicates, this proportion achieves 70 percent. Figures 5.5 and 5.6 summarize point

estimates and standard errors for both fixed and random effects. As expected, CLFM

produced the best results for both cases, in terms of MSE. More specifically, one can

observe that the ignorable likelihood approach tends to underestimate fixed intercept

and slope in the model; furthermore 95 percent confidence intervals obtained from

this approach do not cover the true values.

In Figure 5.6, true values of variance components in random effects, including

σ2
b0

, σ2
b1

and σb0b1 , are labeled as blue dotted lines, and red lines represent the non-

significant level. Based on these plots, the variance components are indicated to be
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Figure 5.6: Point estimates and confidence interval (credible interval for Bayesian

estimates) for random effects from simulated repeated-measure model with higher

missing probability. The study sample size is 80. The true values are indicated by

the blue dashed lines, the non-significant level is indicated by the red dashed lines.

1, ignorable model; 2, Roy’s model; 3, CLFM model from Bayesian approach.

non-significant from the ignorable likelihood approach and Roy’s model, but CLFM

shows the correct result. In summary, CLFM can correct bias and generate efficient

estimators when missing values are not ignorable in a study that contains lots of

missingness.

The third simulation is motivated from the clinical studies where patients in dif-

ferent treatment groups tend to have different missing trends. For example, patients

who are randomized to control group tend to miss their evaluations with a higher

probability, compared with those who are in treatment group. This is due to the

fact that patients can not receive treatment benefit in this group. Furthermore, pa-
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tients are more likely to have non-ignorable missing data in the control group since

due to lack of efficacy. In this simulation study, we focus on different missing prob-

abilities across treatment groups and assume missingness in both groups are due to

non-ignorable missing data mechanism. The simulation model is given as follows:

Yij = 3.00−1.00(Time)+2.00(Age)−0.50(Treatment×Time)+b0ij+b1ij(Time)+εij

where age is a standardized continuous variable with mean 0 and variance 1 at base-

line, subjects are randomly assigned into two treatment groups with a 1 : 1 ratio.

b0ij ∼ N(0, 1), b1ij ∼ N(0, 0.2), cov(b0ij, b1ij) = −0.3 and εij ∼ N(0, 0.5). Because

patients are randomized to treatment and control, the mean response at baseline is

assumed to be the same in the two groups. That is, we don’t include a single treat-

ment term in the model. On average, the missing proportion from the control group

is 40 percent, and 20 percent for treatment group.

The regression parameters (fixed effects) and variances of subject random effects

are given in Figures 5.7 and 5.8. The corresponding asymptotic 95 percent confidence

intervals are also presented in the table. From Figures 5.7, we can observe that the

ignorable model that excludes missing data from analysis tends to underestimate the

average change rate in response. Roy’s model performs even worse than the conven-

tional approach on estimating parameters in the model. Specifically, Roy’s model

underestimates intercept and slope parameters, and overestimates other parameters

in the fixed effects, including patients’ age, as well as interaction between treatment

group and time. Roy’s model also generates large standard errors on point estimates,

compared with the ignorable model and proposed CLFM. This is due to singularity

of the Hessian matrix. Figures 5.8 corresponds to estimation of variance components

for random effects. Based on these figures, we find that Roy’s model has a tendency

to underestimate variances for both random intercept and random slope terms, and
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Figure 5.7: Point estimates and confidence interval (credible interval for Bayesian es-

timates) for fixed effects from simulated repeated-measure model with various missing

probabilities in different groups. The study sample size is 300. The true values are

indicated by the dashed lines. 1, ignorable model; 2, Roy’s model; 3, CLFM model

from Bayesian approach.

overestimate the covariance. In addition, Roy’s model presents larger standard errors

for each point estimate as well.

In the above three simulation studies, the estimation difficulties for Roy’s model

were observed. This was due to small sample size in the simulations. Typically,

a large sample size is required to estimate parameters in Roy’s model. The last

simulation study was designed by generating large enough sample size such that

Roy’s model can be fitted for all replicates. In this study, Roy’s model was able to

be fitted with sample size 1000. Each replicate was simulated from the linear mixed

model which was the same as in the first two studies. In this simulation, only 20

percent or less of subjects had complete observations across all 6 time points, and

the average missing proportion was more than 70 percent. Model evaluations and
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Figure 5.8: Point estimates and confidence interval (credible interval for Bayesian

estimates) for random effects from simulated repeated-measure model with various

missing probabilities in different groups. The study sample size is 300. The true

values are indicated by the blue dashed lines. 1, ignorable model; 2, Roy’s model; 3,

CLFM model from Bayesian approach.

comparisons followed the same procedures as before. Figure 5.9 and 5.10 describe

point estimates for regression parameters, variance components in the linear mixed

model, with corresponding 95 percent confidence intervals.

Based on the information from Figure 5.9 and 5.10, the proposed CLFM model

produced the most accurate estimates on regression parameters, variance components,

especially in estimating intercept and slope effects. Roy’s model in this simulation can

be fitted on all replicates and had a better performance, compared with the conven-

tional analysis (ignorable model) that excludes missing values. Results from ignorable

model suggested that ignoring missing data from analysis led to biased estimates on

regression parameters. In specific, ignorable model overestimated intercept term in

the linear mixed model, the change slope term, and covariates terms were tented to
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Figure 5.9: Point estimates and confidence interval (credible interval for Bayesian es-

timates) for fixed effects from simulated repeated-measure model with various missing

probabilities in different groups. The study sample size is 1000. The true values are

indicated by the dashed lines. 1, ignorable model; 2, Roy’s model; 3, CLFM model

from Bayesian approach.

be underestimated. Subject variability in terms of repeated measures changes across

study period was overestimated.

5.2 An Application on Peabody Picture Vocabulary Test Data

5.2.1 Description of Data

In this section, we present an application on an observational study that is from

the National Longitudinal Survey of Youth (NLSY79 Child Survey). The NLSY79

Child and Young Adult cohort is a longitudinal project that follows the biological

children of the women in the NLSY79. As of 2010, more than 10,000 children have

been interviewed in at least one survey round. In 1986, a separate survey of all

children born to NLSY79 female respondents began, greatly expanding the breadth
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Figure 5.10: Point estimates and confidence interval (credible interval for Bayesian

estimates) for random effects from simulated repeated-measure model with various

missing probabilities in different groups. The study sample size is 1000. The true

values are indicated by the blue dashed lines. 1, ignorable model; 2, Roy’s model; 3,

CLFM model from Bayesian approach.

of child-specific information collected. The children of NLSY79 female respondents

are assessed and interviewed every two years. These assessments measure cognitive

ability, temperament, motor and social development, behavior problems, and self-

competence of the children, as well as the quality of their home environment. One

of important assessing tools is referred to as the Peabody Picture Vocabulary Test

(PPVT) and its revised version PPVT-R (Weber, 2007). PPTV measures an individ-

ual’s receptive vocabulary for Standard American English, as well as verbal ability or

scholastic aptitude. In this example, we focus on children with age ranging from 72

months to 83 months. In this test, a child listens to a word uttered by interviewer

and then selects one of four pictures that best describes the word’s meaning. The

PPVT-R consists of 175 stimulus words and 175 corresponding image plates. Each
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image plate contains 4 black-and-white drawings, one of which best represents the

meaning of the corresponding stimulus word. There are also 5 training words and

image plates. For those five training items, they are administrated at the beginning

of the PPVT assessment in order to familiarize children with the task. The first

item, or starting point, is determined based on the child’s PPVT age. Starting at an

age-specific level of difficulty is intended to reduce the number of items that are too

easy or too difficult, in order to minimize boredom or frustration for children.

PPVT begins with the starting point and proceeds forward until the child makes

an incorrect response. If the child has made 8 or more correct responses before the

first error, a ”basal” is established. The basal is defined as the last item in the

highest series of 8 consecutive correct answers. Once the basal is established, testing

proceeds forwards, until the child makes six errors in eight consecutive items. If,

however, the child gives an incorrect response before 8 consecutive correct answers

have been made, testing proceeds backwards, beginning at the item just before the

starting point, until 8 consecutive correct responses have been made. If a child does

not make eight consecutive responses even after administering all of the items, he

or she is given a basal of one. If a child has more than one series of 8 consecutive

correct answers, the highest basal is used to compute the raw score. A ”ceiling” is

also established when a child incorrectly identifies six of eight consecutive items. The

ceiling is defined as the last item in the lowest series of eight consecutive items with

six incorrect responses. If more than one ceiling is identified, the lowest ceiling is

used to compute the raw score. The assessment is complete once both a basal and a

ceiling have been established.

A child’s raw score is the number of correct answers below the ceiling. One needs

to note that all answers below the highest basal are counted as correct, even if the

child answered some of these items incorrectly. The raw score can be calculated by
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(a) Growth Curve Plot for Complete Cases (b) Missing Pattern Plots

Figure 5.11: PIAT studies on children: trajectory plot for complete cases (left; scores

are in original scale); missing pattern plots (right; red presents a missing value, blue

correspondes to an observed value)

subtracting the number of errors between the highest basal and lowest ceiling from

the item number of the lowest ceiling. The total score for this test ranged in value

from 0 to 84, but in our study, this score will be rescaled by dividing by 10. (A

complete description about this test can be found on the NLSY webpage.) In total,

this example includes 323 children. At the first measurement in 1992, the children

were about 6-7 years of age. The same children were then repeatedly measured at

2-year intervals for three additional measurement occasions (1994, 1996 and 1998).

One empirical research question of interest was stated as ”Is there systematic change

in verbal ability and scholastic aptitude, and individual difference in this change over

time (8 years)?” The equivalent question to be answered in statistical words, ”Is there

evidence to suggest that the slope term across time and random effects at subject level

are statistically significant?”.

Figure 5.11 provides some basics of this study; Figure 5.11a presents trajectory

changes of children’s PPVT score who have completed all four assessments. In this
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plot, we set the first assessment as a baseline value, i.e. treat the year of 1992 as the

first visit time point. The following three assessments are taken at visit 2, 3 and 4,

respectively. Note that testing scores here are in the original scale. From this plot,

one can observe that testing scores showed a gradual increase. Furthermore, missing

data in this study draws intensive attention from researchers and investigators. The

data set is missing many observations from different subjects, and Figure 5.11b plots

missing patterns in this study. In this plot, we use a red color to denote missing values

and blue to represent observed. Only 84 children had PPVT scores recorded for all

4 assessment points; there were 13 children who missed all the four assessments, and

they were excluded from the analysis; the missing proportion in this study approaches

30 percent. It is possible that the visiting process itself was not ignorable. For

instance, children might skip a test when they feel this test is too difficult or too

easy for them. Our approach is to implement models (4.2-4.4) to account for the

missing visit process, and to compare estimation results with several other models

which make different assumptions of the missing mechanism.

5.2.2 Model Results for Ignorable Model, Roy’s model, and CLFM

Denote by Yi the observed PPVT score vector for subject i. Let Ri be the 4

vector of observed-data indicators for subject i (including the baseline week). In

general, the jth element of Ri is equal to 1 if PPVT score is missing for subject i

in the jth visit, and equal to 0 if it is observed. The primary covariate of interest

is visit time points, as we presented earlier. From Figure 5.11a one can see that

a linear trend is enough to capture the changes of PPTV scores. Hence the first

order term of time will be of interest and included in the model. Moreover, from

this plot one can also observe that children at the baseline assessment had variate

starting PPTV scores, and as tests went on, they presented different change rates
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on test scores. This evidence suggested a linear mixed-effect model will be a good

fit. We first fitted a linear mixed-effects model ignoring the missing process. We

assumed Yi = Xiβ + Zibi + ε, where the design matrix Xi included an intercept,

and assessment time. The random effects design matrix included an intercept and

time (i.e. random intercept and slope model). The variance-covariance matrix of the

random effects included three parameters: σ2
b0

(variance of random intercept), σb0b1

(covariance) and σ2
b1

(variance of random slope). The error term was assumed be

normally distributed with mean 0 and variance σ2.

The above analysis was based on the assumption of an ignorable visit process. We

then assumed the missing process cannot be ignored and fitted both Roy’s model and

CLFM described in an earlier section. In Roy’s model, we tried two latent classes

and three latent classes. Based on the information criteria and discussion on model

selection for latent class models in the previous chapter, a two latent-class model

is preferred. As we discussed earlier, Roy’s model attempts to categorizing missing

patterns into two clusters, and a linear mixed model was fitted for each cluster.

The marginal inference was primarily of interest, by averaging estimates across both

clusters. There were 20 parameters in total to be estimated. The most significant

issue from Roy’s model is identifiability, as we reviewed in Chapter 3. In order to

avoid this issue and also singularity of the information matrix caused by this issue,

one multinomial logit parameter was fixed.

In the following, we applied a CLFM to the PPVT study. We modeled missing

probabilities using model 4.5. Two factors were included in this model to describe

key features of the missing process: the time location of each observation process, i.e.

there are a set of ’location’ parameters τj, (j = 1, 2, 3, 4) to describe the probability

of missing at each time location (or we referred as assessment points); and a random

variation term ui for child i, (i = 1, 2, . . .) to represent individual tendency in this
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missing process. For example, a child i with a higher value in ui may have a higher

probability of missing an assessment. This random variation, in another perspective,

might contribute to model 4.2 through another random effect term bi. For instance,

it was possible that a child who was more likely to miss the second test tended to have

a lower baseline testing score. Or a child may be likely to miss a test in the middle

due to his/her slow improvement or fast improvement on the performance at previous

tests. By these examples, one can see this random variation term ui tended to have

influences on subject-level random effects in the primary model of interest (i.e. model

4.2). Hence, we adopted a link model 4.3 to describe this relationship. Finally, the

observed response data were modeled, conditional on the continuous latent factor u

and subject-level random effects b, using model 4.2. The design matrices Xi and Zi

were the same as used in the mixed-effects model described above that ignored the

observation process.

Parameters from models (4.2-4.4) were obtained via both approaches: maxi-

mum likelihood estimates from Monte-Carlo Expectation and Maximization (MCEM)

method and full Bayesian approach. The MCEM approach was implemented in R,

and full Bayesian estimates were solved in WinBUGS. MCEM tended to take longer

time to achieve good stable estimates due to extra variation that is introduced in

each iteration. The computation time was more than two hours to get a reasonable

convergence on likelihood values. This method was implemented on a Macintosh

machine with Processor 2.8GHz, Intel core i7 and RAM 4G.

By comparison, we also implemented the full Bayesian approach. In this approach,

we started with 2 initialized chains for MCMC method, specifying a prior for each

parameter. With a multivariate normal distribution for the complete PPVT data,

it is customary to apply improper non-informative or mild informative priors to the

mean µ and variance-covariance structure Σ. In this example, we employed a mild
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informative ridge prior distribution. We suppose that, given covariance structure Σ,

mean µ is conditionally multivariate normal, and the variance Σ is inverted-Wishart,

µ|Σ ∼ N(µ0, λ
−1Σ),

and

Σ ∼ W−1(m,Λ),

where λ > 0, Λ > 0 and m are user-specified hyperparameters. That is, we specified

normal priors with large variances for all regression coefficients in models 4.2-4.4;

for a high dimensional variance-covariance structure, an inverted-Wishart prior was

employed; an inverted-gamma prior was adopted for a one dimensional precision pa-

rameter. To obtain estimates, we let the program have 10, 000 burn-in iterations and

used another 20, 000 iterations to conclude the posterior mean for each parameter.

The thinning size was set to be 10, in order to reduce correlation between two consec-

utive sampling points. Figure 5.12 describes trace plots for the fixed effects estimates

in linear mixed model 4.2 over 20,000 iterations. One can observe that under the

specified priors, two chains were mixed well and both estimates approach stationarity

within the allowed iterations.

5.2.3 Results

Under different settings that we described above, we fit three different models

that include four scenarios. We employed two different approaches to fit a CLFM.

The results from the assumption of ignorable observation process are given in Table

5.2 under ’MAR’ column. PPVT score tends to be larger, on average, for children

with higher baseline testing score. There is a significant linear time effect, i.e. this

suggested that PPVT score will increase as children grew up. Results also indicated

that children showed baseline variability in testing scores that is significant.
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Figure 5.12: Trace plots of children’s baseline average test score and average increase

on the PPVT score

The point estimates and corresponding standard errors from Roy’s model, which

incorporates non-ignorable missing values, are given in Table 5.2 under the ’Roy’

column. Roy’s model gave similar results as the ignorable model (MAR case), except

in estimation for variance σ2
b1

of random slope and covariance σb0b1 between random

intercept and random slope. We will discuss those together with estimation from

CLFM.

The estimated regression coefficients, variance components and their standard

errors from two approaches to fitting a CLFM are displayed in the ’MCEM’ and

’Bayesian’ columns of Table 5.2. The estimated coefficients (intercept and time ef-

fects) and standard errors are very similar to those from the models either ignoring

the observation process or Roy’s approach. The estimated variance components for

random error terms are also close. This suggest that, if one were specifically inter-

ested in inference about the marginal covariate effects, then incorporating for the
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missing process might not have been necessary. Further, all approaches indicated

that children had baseline differences in testing scores, and this variability cannot

be ignored. The improvement in testing score was also supported by all methods.

MAR suggested the variance of random slope term should be significant with a p-

value 0.002 of a student-t test. However, there was a disagreement between MAR and

the approaches accounting for non-ignorable missing process and this disagreement

provided additional information. All approaches that account for non-ignorable miss-

ing process suggested that children had substantial differences improvement rates in

PPVT evaluation system, depending on their baseline abilities in testing. By compar-

ison, the MAR approach gave a p-value 0.104 of student-t test on testing statistical

significance of covariance between random intercept and random slope terms. That

means, when the missing process was included in the analysis, we found that change

of a child’s performance on testing scores depended on his/her baseline status on the

test. Specifically, if a child has lower initial test score in the study, he/she had a

larger improvement, and his/her improvement on test scores was significantly larger,

comparing with a child who had a high score in the first assessment. This finding

can be seen in Figure 5.11a. In this plot, many overlaps among growth curves can be

observed across the study; for a child with a lower initial test score, his/her growth

curve tended to end with a higher score. For a child with a higher baseline score,

he/she showed a stable improvement across the study.

Table 5.1 displays the parameter estimates from the continuous latent factor model

(τ1-τ4, σ2
u) which describes the missing process (equivalent to observation process),

and from the link model (γ1, γ2) that gives the relationship between random variation

in missing process and children’s variability in the growth curve model. The first two

rows are the estimated coefficients from the link model. Both approaches (MECM

and Bayesian) suggested that children’s variability in the missing process was related
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to their baseline score. That means a child who was far from average performance

at baseline tended to have a large chance to be missing in the study, either because

they felt tests were too easy or too difficult for them. However, there is no evidence

to support that a child’s variability in missing process was related with his/her im-

provements on tests. The left rows, from 3-7 of Table 5.1 display parameter estimates

from CLFM. τ1-τ4 are location parameters which describe the missing probability at

each assessment. A smaller value of τj means a larger chance to be missing. In Ta-

ble 5.1 one can see τ4 has the smallest value, which means children were more likely

to be missing at the last assessment. Further the first assessment also has a higher

probability to be skipped.

In this example, data provide no empirical information to favor one model over the

other. The fact that the non-ignorable assumption implies that a child’s improvement

rate on PPVT depends on his/her baseline test score from the average level, however,

is very telling. This result, in our opinion, reflects a real fact that children who are

below the average, in terms of test score, have a large improvement and tend to show

a faster improvement rate on the tests.
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Table 5.1: Parameter estimates and estimated standard errors for the missing process

model and link model

Variables MCEM Bayesian

Estimate SE Estimate SE

γ1 0.147 0.030 0.149 0.031

γ2 -0.009 0.008 -0.010 0.014

σ2
u 1.414 0.150 1.413 0.152

τ1 1.276 0.172 1.275 0.174

τ2 2.433 0.218 2.424 0.219

τ3 2.421 0.215 2.420 0.217

τ4 -0.667 0.155 -0.668 0.158
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5.3 Randomized Study of Dual or Triple Combinations of HIV-1 Reverse

Transcriptase Inhibitors

In this section, we will illustrate another application of CLFM by using data

from a randomized, double-blind, study of AIDS patients with advanced immune

suppression, which is measured as CD4 counts ≤ 50 cells/ mm3. (Henry and Erice,

1998)

5.3.1 Description of Study

Patients in an AIDS Clinical Trial Group (ACTG) Study 193 A were randomized

to dual or triple combinations of HIV-1 reverse transcriptase inhibitors. Specifically,

HIV patients were randomized to one of four daily regimens containing 600 mg of

zidovudine: zidovudine plus 2.25 mg of zalcitabine; zidovudine plus 400 mg of di-

danosine; zidovudine alternating monthly with 400 mg didanosine; or zidovudine

plus 400 mg of didanosine plus 400 mg of nevirapine (triple therapy). In this study,

we focus on the comparison of the first three treatment regimens (dual therapy) with

the forth (triple therapy)as described in Fitzmaurice’s work. (Fitzmaurice and Laird,

2004)

Measurements of CD4 counts were scheduled to be collected at baseline and at

8-week intervals during follow-up. However, the CD4 count data are unbalanced due

to unequal measurements and also CD4 counts have missing data that were caused

by skipped visits and dropout. Table 5.3 presents four randomly selected subjects.

The number of measurements of CD4 counts during the first 40 weeks of follow-up

varied from 1 to 9, with a median of 4, based on the available data. The goal in

this study is to compare the dual and triple therapy groups in terms of short-term

changes in CD4 counts from baseline to week 40. The responses of interest are based
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Figure 5.13: Lowess smoothed curves of log(CD4 + 1) against time (in weeks), for

subject in the dual and triple therapy groups in ACTG study 193A

on log transformation CD4 counts, log(CD4 counts + 1), available on 1309 patients.

Figure 5.13 describes the trend in the mean response in the dual and triple therapy

groups via lowess smoothed curves on observed data. The curves reveal a modest

decline in the mean response during the first 16 weeks for the dual therapy group,

followed by a steeper decline from week 16 to week 40. By comparison, the mean

response increases during the first 16 weeks and declines after for the triple therapy

group. The rate of decline from week 16 to week 40 appears to be similar for the

two groups. However, one has to notice that there is a substantial amount of missing

data in the study, therefore the plot of the mean response over time can be potentially

misleading, unless the data are missing completely at random (MCAR). Moreover,

based on a small random sample of individuals, we observed that those with drop-out

tend to have large CD4 counts. In other words, there is a trend that a patient in the

study tended to skip a visit due to a large magnitude of current CD4 count. That is,

a patient tends to skip a visit because of no treatment benefits or side effects. When
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data are missing due to this reason, a plot of the mean response over time can be

deceptive. Figure 5.14 describes observed responses at different visit points in each

group. Almost all patients from both groups are treated at baseline and their CD4

count data are collected. There are two sharp decrease in response rate, one is from

week 0 to week 8 and the other is from week 32 to week 40. Approaching to the

end of the study, most patients are dropping out from study, and response rates at

week 40 are close to 20 percent for both treatments. The missing information can

substantially influence the analysis and even bias our findings. In the example, we

will implement CLFM which assumes missing data are not ignorable, and compare

with the conventional model that ignores missingness.

In the following we describe a model for the mean response that enables the rates

of change before and after week 16 to differ within and between groups, and this model

was also been adopted by Fitzmaurice and Laird (2004) in their work. Specifically,

one could assume that each patient has a piecewise linear spline with a knot at week

16. That is, the response trajectory of each patient can be described with an intercept

and two slopes–one slope for the changes in response before week 16, another slope

for the changes in response after week 16. Further, we assume the average slopes for

changes in response before and after week 16 are allowed to vary by group. Because

this is a randomized study, the mean response at baseline is assumed to be the same

in the two groups, as supported by Figure 5.13. Hence instead of the conventional

growth curve model, we applied a special growth curve model to capture changing

trends of responses on CD4 counts.
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Figure 5.14: Proportions of observed responses in the dual and triple therapy groups

in ACTG study 193A

5.3.2 Model Specification

Let tij denote the time since baseline for the jth measurement on the i-th subject

with tij = 0 at baseline, we consider the following linear mixed effects model:

E(Yij|bi) =β1 + β2tij + β3(tij − 16)+ + β4Groupi × tij + β5Groupi × (tij − 16)+

+ b1i + b2itij + b3i(tij − 16)+

where Groupi = 1 if the ith subject is randomized to triple therapy, and Groupi = 0

otherwise; (tij−16)+ = tij−16 if tij > 16 and (tij−16)+ = 0 if tij ≤ 16; b1i, b2i and b3i

are random effects in this splined growth curve model. In this model, (β1 + b1i) is the

intercept for the ith subject and has an interpretation as the true log CD4 count as

baseline, i.e. when tij = 0. Similarly, β2+b2i is the ith subject’s slope, or rate of change

in log CD4 counts from baseline to week 16, if this patient is randomized to dual

therapy; (β2+β4+b2i) is the ith subject’s slope if randomized to triple therapy. Finally,

the ith subject’s slope from week 16 to week 40 is given by {(β2 + β3) + (b2i + b3i)} if

randomized to dual therapy and {(β2+β3+β4+β5)+(b2i+b3i)} if randomized to triple
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therapy. The model described above will be fitted without incorporating missing data.

In order to fit CLFM, one has to specify the model for the missing part. Assume that

R is a missing indicator matrix where its (i, j)th element rij = 1 if Yij is missing and

rij = 0 if it is observed. Within a framework of CLFM, we incorporate information on

missing values through modeling the missing information matrix R with time location

parameters, and a continuous latent factor u. Further, there are strong indications

which support a application of this model. Based on Figure 5.14 one can see that

the response variable tends to be missing over time. In other words, time locations

are good indicators for explaining missing data. From Figure 5.14 one might also

notice that the two therapies have identical missing proportions which suggests a

group effect for therapies is not necessary in modeling R. The continuous latent

factor u is used to describe individuals’ variability in missingness, and two regression

parameters γ1 and γ2 are specified to provide information on random intercept b0

and slope b1, in order to correct estimation bias. A third regression parameter was

also explored which links u with b3, but analysis results showed that this parameter

is not significant. Hence we exclude this parameter in the final results. To estimate

CLFM, we adopt both approaches: MECM to obtain ML estimates and full Bayesian

estimates with specified conjugate priors. Point estimates and corresponding standard

errors from a Bayesian perspective are summarized by posterior mean and standard

deviation. Roy’s model is also implemented by summarized missing patterns from R

into three latent classes. (The number of latent classes for Roy’s model is determined

by information criteria)
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5.3.3 Summary of Analyses under MAR and MNAR

In this study, one research question of interest is treatment effects in the changes

in log CD4 counts. The null hypothesis of no treatment group differences can be

expressed as H0 : β4 = β5 = 0. The ML estimates on fixed effects from three models

are given in Table 5.4, including the conventional model with a MAR assumption,

Roy’s model that handles non-ignorable missing data from pattern-mixture modeling

and CLFM. The Bayesian estimates for CLFM are also displayed in Table 5.4. For

the likelihood approach with MAR assumptions, a test of H0 : β4 = β5 = 0 yields a

Wald statistic, W 2 = 59.12, with 2 degrees of freedom, and corresponding p-value is

less than 0.0001. For the full Bayesian approach, we compute Deviance information

criterion (DIC) to compare two models: one assumes no treatment effects by exclud-

ing interaction terms between treatment groups and study time; the other assumes

treatment effects are significant. DIC for a model with embracing treatment effects

is 15792.7, which is less than the one from the model with no groups effects, 18076.5.

Based on the criteria, ’the smaller the better’, there is evidence to support the fact

that treatment group differences in changes in log CD4 counts are significant. The

tests from Roy’s model and MCEM approach on CLFM also support this group vari-

ety, with p-values for both less than 0.0001. Based on the magnitude of the estimate

of β4, and its standard error from all approaches, there is a significant group difference

in the rates of change from baseline to week 16. The estimated response curve for two

groups are displayed in Figure 5.4. In this figure, dashed lines represent the response

curve from CLFM, dotted lines correspond to results from Roy’s model, while solid

lines are results from the MAR approach; blue color describes dual therapy group,

and red one corresponds to triple therapy. In the dual therapy group, there is a sig-

nificant decrease in the mean of the log CD4 counts from baseline to week 16, based
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on the ignorable likelihood approach. The estimated change during the first 16 weeks

is −0.12, which can be obtained from 16×−0.0073. On the untransformed scale, this

corresponds to an approximate 10% decrease in CD4 counts. However, CLFM which

assumes missing data are not ignorable suggests that this decrease is not significant,

since the 95 percent credible interval for β2 covers zero ([−0.01638, 0.006517]). Fur-

ther, Roy’s model also confirms this finding with the 95 percent confidence interval

[−0.016076, 0.005876]. By observing missingness from baseline to week 16, subjects

with higher log CD4 counts tend to be missing. CLFM involves non-ignorable miss-

ing data in the analysis, and the average of log CD4 counts tend to recover to a

higher value. Hence, the decrease in the mean of the log CD4 counts from baseline

to week 16 is not significant, when non-ignorable missing data are considered. By

comparison, in the triple therapy group, there is a significant increase in the mean

response. Based on the ignorable approach, the estimated change during the first 16

weeks in the triple therapy group is 0.31, (16 × (−0.0073 + 0.0269)); the estimated

slope for the triple therapy group is 0.0196 with a standard error 0.0033. In terms

of the untransformed scale, it corresponds to an approximate 35 percent increase in

CD4 counts. In CLFM, a similar estimate is obtained: the corresponding estimated

change is 0.36. (16× (−0.0047 + 0.0273)); the estimated slope for the triple therapy

group is 0.0226, and it corresponds to an approximate 40 percent increase in CD4

counts.

The loess curves in Figure 5.13 suggest that the rate of decline from week 16 to

week 40 is similar for the two groups. The null hypothesis of no treatment group

difference in the rates of change in log CD4 counts from week 16 to week 40 can be

expressed as H0 : β4 +β5 = 0. The estimates of β4 and β5 from all approaches appear

to support the null hypothesis since they are of similar magnitude but with opposite

signs. In the work of Fitzmaurice and Laird (2004), a test of the null hypothesis,
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H0 : β4 + β5 = 0, is given and a Wald statistic is yielded with W 2 = 0.07, with

1 degree of freedom. The corresponding p value is greater than 0.75 based on the

ignorable likelihood approach. DIC comparison for the Bayesian version of CLFM

also suggests that two groups have similar rate of decline from week 16 to week 40.

The Wald tests for Roy’s model and MCEM version of CLFM further indicate this

parallel change profiles after week 16, with both p-values are greater than 0.6.

The estimated variances of the random effects in Table 5.4 indicate that there is

substantial individual variability in baseline CD4 counts and the rates of change in

CD4 counts. For instance, in the triple therapy group, many patients show increases

in CD4 counts during the first 16 weeks, but some patients have declining CD4 counts.

Specifically, approximately 95 percent of patients are expected to have changes in log

CD4 counts from baseline to week 16 between −0.64 and 1.27. Hence, there are ap-

proximately 26 percent of patients who are expected to have decreases in CD4 counts

during the first 16 weeks of triple therapy, based on the ignorable likelihood approach;

by comparison, a larger variability from patient to patient is indicated by CLFM. 95

percent of patients are expected to have changes in log CD4 counts from baseline to

week 16 between −1.15 and 1.87, and correspondingly approximately 30 percent of

patients are expected to decrease CD4 counts from CLFM. Substantial components

of variability due to measurement error are also suggested from all models.

5.3.4 Distributions on Latent Factor

In this study, we have explored under the assumption of a normal distribution on

the proposed latent factor u. The normal distribution is a natural starting point for

this CLFM, but it also has limitations. The normal distribution implies non-skewed

spread on proposed latent factor which may be too simplistic. In this section, we will

extend the distribution of latent factor u to more general distribution. Specifically, we
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Figure 5.15: Fitted response curve in the dual and triple therapy groups in ACTG

study 193A

will give an example of logistic distribution on b and compare the estimating results,

to demonstrate the flexibility of proposed model, as well as the estimating scheme

from Bayesian perspective.

As we described in Chapter 4, a latent factor u is proposed to summarize missing

patterns and will be used to compensate for the missing information in a repeated-

measure model. At the beginning of the investigation, it is natural to choose a normal

distribution for u, which assumes more information is needed to be filled in the mid-

dle of the study. However, some longitudinal studies may experience missing values,

which will lead to a heavy tail on the distribution of u. In order to fit this senario, a

complicate distribution is needed, other than classical normal distribution. Further,

the proposed Bayesian estimating scheme allows this extension more straightforward.

To present this flexibility on specifying various distribution of the latent factor u,

we adopted two distribution forms: normal distribution and logistic distribution. In

the specification of parameters in logistic distribution, we choose so that the logistic

distribution has similar shape with the normal distribution, in order to achieve com-
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parability. Estimation procedure was performed within the Bayesian framework, and

the estimation results of parameters including point estimates and standard errors

in the linear mixed model are given in Table 5.5. The routine experienced longer

time to obtain stable mixed Markov chains when a logistic distribution was used.

In detail, we extended the burn-in iterations to 20, 000 and started another 30, 000

iterations to obtain posterior estimates, with thinning size 10. From Table 5.5 one

can observe that two distributions produced identical results, due to specified sim-

ilar distribution shapes. Furthermore, one advantage should be mentioned is that

the proposed Bayesian estimating scheme is more flexible in extending distribution

of repeated-measures, other than stating different distribution shapes on the latent

factor u. In this study, missing data are potentially not ignorable with analyzing a

random selected subsample, especially for the first 16 weeks. To evaluate effective-

ness of treatment therapies, we compared three approaches, including the ignorable

model which assumes missing data are MAR, Roy’s model that handles non-ignorable

missing data from pattern-mixture perspective, and CLFM with NMAR assumption.

Controversial results on change rates of log CD4 counts at dual therapy group dur-

ing first 16 weeks were obtained, that is, ignorable suggested there is a significant

decrease in log CD4 counts, whereas both Roy’s model and CLFM indicated this

decrease is not substantial. This disagreement is due to those potential non-ignorable

missing values. However, all approaches supported that triple therapy has similar

change rate on log CD4 counts from week 16 to week 40, compare with dual therapy

group. Further, with incorporating missing values, efficacy for both therapy groups

is shown to be more substantial from CLFM, which can be seen from the log CD4

counts at week 40. Compared with Roy’s model, the proposed CLFM is more flexible

in extending the model with a more general distribution.
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Table 5.3: Data example on log CD4 counts for four randomly selected subjects from

ACTG study 193A

Subject ID Group Time log(CD4 + 1)

56 0 0.0 1.7047

56 0 8.1 1.7981

56 0 16.1 0.6932

56 0 25.4 1.0986

56 0 33.4 0.6932

56 0 39.1 0.6932

529 1 0.0 4.0073

529 1 7.4 3.7136

529 1 16.4 3.5264

529 1 25.4 3.1781

529 1 33.6 3.6636

763 0 0.0 2.8622

763 0 8.0 1.9459

763 0 14.9 1.6094

763 0 21.9 1.7917

777 1 0.0 2.3979

777 1 8.4 1.7918

777 1 10.4 3.0445

777 1 25.3 3.0445
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Table 5.5: Estimated regression coefficients (fixed effects) and variance components

(random effects) for the log CD4 counts from CLFM with normal distribution and

logistic distribution

Variables Normal Distribution Logistic Distribution

Estimate SE Estimate SE

Intercept 2.9320 0.0262 2.9310 0.0258

tij -0.0047 0.0058 -0.0048 0.0058

(tij − 16)+ -0.0223 0.0092 -0.0221 0.0090

Groupi × tij 0.0273 0.0109 0.0273 0.0111

Groupi × (tij − 16)+ -0.0243 0.0177 -0.0241 0.0173

V ar(b1i) = g11 640.600 34.7300 641.300 35.720

V ar(b2i) = g22 2.3230 1.0050 2.3210 1.0120

V ar(b3i) = g33 38.8600 2.0840 38.7900 2.0580

Cov(b1i, b2i) = g12 -8.5240 4.0760 -8.5760 4.0790

Cov(b1i, b3i) = g13 -2.5220 6.5000 -2.5850 6.4420

Cov(b2i, b3i) = g23 -7.1530 1.0070 -7.0980 1.0090

V ar(ei) = σ2 515.3000 9.3570 515.2000 9.3880
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5.4 Growth of Language and Early Literacy Skills in Preschoolers with

Developmental Speech and Language Impairment

In this section, we will apply the proposed model CLFM on the study of growth

of language and early literacy skills in preschoolers who have developmental speech

and language impairment. A robustness analysis, including comparison of CLFM

with the conventional model that ignores missing data will also be conducted, under

two different assumptions of missing data mechanism: missing at random (ignorable

missing data) and not missing at random (non-ignorable missing data).

5.4.1 Description of Study

U.S. Department of Education data for the Individuals with Disabilities Education

Act (IDEA) demonstrate that 13% of four-year olds and five-year olds are receiving

special education services in preschool and that 82% of these children indicate de-

velopmental speech and language impairment (DSLI) as a primary diagnosis. Young

children with DSLI often fail to develop crucial pre-literacy skills, which will place

those children at high risk for later literacy difficulties and reading failure. Further

researchers also find that preschoolers with DSLI demonstrate persistently depressed

academic achievement, greater grade retention, and lower rates of post-secondary

school attendance than their normally-developing peers. Due to these potential risks,

it is urgent and necessary to address children’s oral language and early literacy skills

during the preschool years to increase their ability to benefit from reading and writing

instruction in elementary school. Small intervention studies have been conducted on

children with DSLI, including targeting code-related early literacy skills, inferential

language skills and oral language or curriculum supplements based on shared reading.

Researchers also perform studies on evaluating the effectiveness of an early childhood
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curriculum with regard to improving early literacy and oral language skills for young

children with DSLI.

In a recent study, researchers are interested in examining the efficacy of ”Teaching

Early Literacy and Language” (TELL) curriculum in promoting the early literacy

and oral language growth trajectories of preschoolers with DSLI. The TELL cur-

riculum (Wilcox and Gray, 2011) includes a series of instructions, scripted teaching

activities, materials for implementation of oral language and early literacy activities,

and professional development for teachers. It was designed to target both code-

focused (phonological awareness, alphabet knowledge, print concepts, and writing)

and oral language skills fields (vocabulary and complex language) because these skill

sets have been documented as predictors of children’s literacy success. In an earlier

small randomized controlled trial, the TELL curriculum has shown positive results

for promoting gains in early literacy and oral language skills in preschool children

with DSLI; with comparison, recent research expands existing interests by examining

growth trajectories of early literacy and oral language skills for children with DSLI

and comparing those trajectories of children who received the TELL curriculum with

those who were randomly assigned to control classes.

In this study, we are interested in one specific item from TELL curriculum, Cur-

riculum Based Measurement (CBM) Themed Vocabulary Total Correct Expressive

(VOCE). Data in the study were obtained from 130 preschool children with the aver-

age age 53.9 months, including preschool children’s demographic variables, as well as

parental education level, family income. These children were randomly assigned to

offer the TELL curriculum or accept those with business as usual (BAU). All children

met inclusion criteria which include a test on hearing within normal limits (WNL), a

diagnosis of DSLI as the only disability, a K-ABC score WNL, and ability to produce

simple sentences (S+V+O). The efficacy variable, VOCE test score was scheduled to
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be collected at baseline, as well as six follow-up time points (week 1, 2, 3.3, 6, 7.3,

8.8). As a risk factor, mother’s education level score, was also collected and treated

as a continuous baseline covariate. The average VOCE standard scores in both TELL

Curriculum and control groups, including corresponding standard deviation at each

follow-up time visit are given in Table 5.6. On average, children who received TELL

curriculum have higher VOCE scores since the first follow-up visit, compared with

those accepted BAU (control group). In the next section, a linear mixed model is

describe and used to capture the change profile for both groups in terms of VOCE

changes from the first follow-up time to the end of study, and robust analysis on

the assumptions of different missing data mechanism will be introduced, through two

missing data generating models. Meanwhile, the sample size is too small to apply

Roy’s model.

Table 5.6: VOCE score by group (TELL curriculum vs. control): mean, standard

deviations at each scheduled visit

Variables TELL (n = 87) Control (n = 43)

Mean (SD) Mean (SD)

VOCE (T1) Standard Scores 2.057 (1.748) 0.326 (0.566)

VOCE (T2) Standard Scores 2.057 (1.450) 0.651 (0.783)

VOCE (T3) Standard Scores 2.448 (1.796) 0.326 (0.606)

VOCE (T4) Standard Scores 3.851 (1.632) 1.698 (1.081)

VOCE (T5) Standard Scores 3.828 (1.819) 1.465 (1.162)

VOCE (T6) Standard Scores 4.333 (1.809) 1.372 (1.310)
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5.4.2 Model Specification for Complete Data and Missing Data Generation

In previous studies we conducted, including simulation studies, PPVT study, and

ACTG study, the non-ignorable missingness is assumed or strongly suggested by

application data. The performance of CLFM have been researched by comparing

with two other models, (conventional analysis that does not include missing values

and Roy’s model that handles non-ignorable missing data) under this assumption.

In this section, we want to conduct a robust analysis on CLFM by using this real

application data. With the complete information in the TELL study, we will adopt

two alternative models to generate missing data with different assumptions: ignorable

missing data and non-ignorable missingness. CLFM’s performance will be evaluated

under both scenarios: correctly specified missing data assumption (non-ignorable)

and mis-specified missing data assumptions (ignorable). Figure 5.16 plots loess curves

fittings of VOCE changes from first visit to the end of study on both groups. Based

on this plot one can obtain the information that Preschool children who were in

TELL curriculum group had a higher VOCE scores, compared with those children

in the control group. Further, children in TELL group showed a significant benefit

from proposed TELL and demonstrated a steady increase in the efficacy variable

from baseline to the end of the study; on the contrary, children in control group

presented a flat change profile at the beginning of the study period, however, this

ability increased from week 3.5 to 6, and tended to be flat or decreasing after week

6. To capture VOCE score changes that differ from within and between groups, we

use a linear mixed model to model the efficacy variable. In order to fit changes in

VOCE score over time, higher order terms in time will be included in the model; a

treatment group term and an interaction term between treatment group and time

will be introduced to present both baseline and changing rate differences in VOCE
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Figure 5.16: Lowess smoothed curves of VOCE standard scores against time (in

weeks), for subject in the TELL curriculum and control groups

score. A risk factor, mother education level, will also be investigated.

Let tij be the time since the first visit for the jth visit time on the ith subject, with

tij = 1 at first follow-up visit. The following linear mixed effects model is considered:

Yij = β1 + β2 tij + β3 t
2
ij + β4 t

3
ij + β5 Groupi + β6 Groupi × tij+

+β7 Matedu+ b0i + b1i tij + εij

where Yij is the VOCE standard score at jth visit for subject i (i = 1, 2, . . . , 130;

j = 1, 2, . . . , 6); ti = (1.0, 2.0, 3.5, 6.0, 7.3, 8.8) is a visiting time vector on ith

subject. Random effects terms b0i and b1i are used to describe individual variabilities.

With the complete data information, the above model can be fitted by conventional

likelihood and resulting parameter estimates and corresponding standard errors can

be treated as underlying truth in a robust analysis. The following two models are

applied to generate missing values with different assumptions:

Pr(rij = 1) =
exp(α + ξ1jYi(j−1))

1 + exp(α + ξ1jYi(j−1))
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where rij represents a binary missing indicator for response Yij. Here missing values

are only allowed to be appear after second visit, i.e. j = 2, 3, . . . , 6; in the above

expression, we set α = −1, and assume ξ1 is a 1 × 5 vector with elements ξ1 =

(0.2, 0.2, 0.3, 0.4, 0.5). With these settings, the above model will produce ignorable

missing values and missing probabilities keep change from time to time. Specifically,

a response tends to be missing with a higher chance at a later phase of the study.

Similarly, the following model is used to generate non-ignorable missing values:

Pr(rij = 1) =
exp(α + ξ1jYij + ξ2Yi(j−1))

1 + exp(α + ξ1jYij + ξ2Yi(j−1))

where α = −1, ξ1 = (0.2, 0.2, 0.3, 0.4, 0.5), and ξ2 = 0.1. Figure 5.17 describes the

observed proportions for both simulated missing data.

As mentioned above, complete data will be fitted by using the linear mixed model,

and estimated parameters will be used to evaluate the models’ performance on fitting

TELL data with ignorable or non-ignorable missing values. For TELL data with

missing values, two models will be compared: the conventional model that excludes

missing data, and CLFM that handles non-ignorable missingness. In CLFM, we

incorporate information on missing values through modeling missing indicator matrix

R with time location parameters d = (d2, d3, . . . , d6) starting from second visit, (the

reason for excluding the first time is due to no missingness at that point) as well as

a continuous latent factor u. The continuous latent factor u is linked with intercept

and slope related parameters (b0 and b1) in the mixed model. To estimate CLFM, we

implement the MCEM algorithm to obtain likelihood estimates and the full Bayesian

approach with conjugate priors. The posterior means and corresponding standard

deviations are summarized as point estimates and standard errors.
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Figure 5.17: Proportions of observed responses in both ignorable and non-ignorable

missing data generation in TELL study

5.4.3 Results

In this section we compare and summarize parameter estimation in the linear

mixed model which is of primary interest in modeling longitudinal changes on VOCE

standard scores. Complete data were analyzed using the linear mixed model which

examined growth curve trends for children in the TELL and control conditions at six

time points. The model included random effects for intercept, linear slope and fixed

effects for covariates and experimental condition (TELL, control). Mother education

was also included as a covariate. Since we conducted the analysis from the first follow-

up visit, that is, we exclude baseline information, a main effect of the TELL treatment

on the intercept was anticipated. The estimation results are given in both Tables 5.7

and 5.8, under the ’Complete’ column. The corresponding standard errors were given

in the parentheses. In Table 5.7 the parameter estimates on ignorable missing data

were also given: conventional likelihood estimates which ignores missing values and

standard errors were given under the column ’MAR’; both likelihood estimates and
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bayesian estimates from CLFM were given in the columns ’MCEM’ and ’Bayesian’,

respectively. By comparison, Table 5.8 listed parameter estimates when missing data

cannot be ignored. When all complete data were considered in the model, there was a

strong evidence to show that a significant linear time by condition interaction. Time

by condition interaction results suggest that while the control condition reached a

plateau in terms of VOCE score growth, the TELL condition showed evidence of

continued growth by the end of the school year, which is indicating positive effects

of TELL curriculum for DSLI preschool children. Results suggested that the TELL

treatment produced a shift in the growth curve for VOCE scores where the peak

for the control condition was achieved around week 7, and the VOCE score kept

increasing until the end of the study.

Missing data which are ignorable were designed to conduct a robust analysis for

CLFM. That is, CLFM is evaluated when the missing data assumption was misspec-

ified for this model. From Table 5.7 we can observe that identical estimates were ob-

tained from both estimation techniques: MCEM approach and Bayesian framework.

These results were expected since Bayesian theories tell us when non-informative pri-

ors were provided, the resulting estimates are identical to those obtained from classic

frequentist perspectives. In estimating CLFM from the Bayesian approach, we applied

conjugate priors for all parameters that were contained in the model, by providing

large variances in the prior distribution. Compared with estimates from complete

data, the conventional model with assumption of ignorable missing data produced

closer estimates and had a better overall performance. However, the proposed CLFM

can still generate plausible results, especially in evaluating those terms which are of

primary interest, including overall treatment efficacy, as well as treatment effects’

changes in terms of VOCE scores across the whole study period. However, a notice-

able departure on estimating linear time trend was also observed for all approaches.
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Table 5.7: Ignorable missing data: point estimates (standard error) on regression

coefficients (fixed effects) and variance components (random effects) for the VOCE

standard scores from a MAR model and CLFM in both approaches

Variables Complete Ignorable Missing

MAR MCEM Bayesian

Intercept 2.218 (0.238) 2.498 (0.251) 2.578 (0.317) 2.578 (0.318)

tij -0.386 (0.184) -0.678 (0.202) -0.652 (0.209) -0.6526 (0.211)

t2ij 0.178 (0.042) 0.261 (0.049) 0.302 (0.047) 0.303 (0.048)

t3ij -0.012 (0.003) -0.019 (0.003) -0.021 (0.003) -0.020 (0.003)

Treatment -1.441 (0.234) -1.582 (0.246) -1.563 (0.294) -1.563 (0.295)

Treatment x tij -0.157 (0.033) -0.116 (0.039) -0.115 (0.058) -0.116 (0.058)

Matedu 0.192 (0.065) 0.211 (0.067) 0.208 (0.072) 0.209 (0.073)

σ2
b0

0.924 (0.160) 0.992 (0.178) 0.900 (0.175) 0.901 (0.176)

σ2
b1

0.010 (0.003) 0.008 (0.005) 0.235 (0.030) 0.235 (0.032)

σ2
ε 0.990 (0.061) 1.010 (0.074) 0.940 (0.063) 0.941 (0.064)

With the assumed missing data, both models tended to produce biased estimates.

That is, the decreasing rate on VOCE score with linear time trend seemed to be

exaggerated in both the conventional model and CLFM. Table 5.8 included the case

where missing values cannot be ignored and should be considered in the analysis.

With the correct missing data assumption, CLFM provided more accurate estimates

compared with the model that excluded missing values in the analysis. Two warnings

may be noticed in this case: conventional model cannot estimate variance compo-

nent for the random slope term, due to singularity of Hessian matrix; the other is

we observed that the model excludes missing values cannot estimate correctly the
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interaction term between condition group and time. The complete data analysis told

that this interaction term should have a negative value, which was also supported by

CLFM; however, the conventional model that does not include these non-ignorable

missing data produced an estimate with the opposite sign.

Table 5.8: Non-ignorable missing data: point estimates (standard error) on regression

coefficients (fixed effects) and variance components (random effects) for the VOCE

standard scores from a MAR model and CLFM in both approaches

Variables Complete Non-ignorable Missing

MAR MCEM Bayesian

Intercept 2.218 (0.238) 2.517 (0.228) 2.349 (0.315) 2.350 (0.316)

tij -0.386 (0.184) -0.640 (0.197) -0.353 (0.218) -0.353 (0.219)

t2ij 0.178 (0.042) 0.189 (0.049) 0.180 (0.049) 0.181 (0.050)

t3ij -0.012 (0.003) -0.015 (0.004) -0.012 (0.003) -0.013 (0.004)

Treatment -1.441 (0.234) -1.830 (0.206) -1.422 (0.232) -1.422 (0.233)

Treatment x tij -0.157 (0.033) 0.129 (0.038) -0.160 (0.035) -0.161 (0.036)

Matedu 0.192 (0.065) 0.174 (0.052) 0.181 (0.071) 0.180 (0.071)

σ2
b0

0.924 (0.160) 0.547 (0.128) 0.907 (0.192) 0.908 (0.192)

σ2
b1

0.010 (0.003) 0.008 (0.004) 0.008 (0.004)

σ2
ε 0.990 (0.061) 0.827 (0.066) 0.942 (0.059) 0.942 (0.065)

With the complete information from VOCE study, the linear mixed model sug-

gested several terms were significant in accounting for VOCE changes for DSLI chil-

dren, including mother education, as well as linear, quadratic and cubical time tre-

ands. A significant interaction between linear time with condition was also concluded,

which was further confirmed the efficacy of TELL curriculum for DSLI preschool chil-

117



dren. Based on these findings, a robust analysis on CLFM was explored, with two

specified missing data assumptions: ignorable missing data and non-ignorable miss-

ingness. Each dataset was simulated from Diggle-Kenward model, with different

model settings. The proposed CLFM and classical approach were adopted to fit each

simulated senario. As we expected, CLFM performed better in the case of which non-

ignorable missing data are a feature of the study; furthermore, CLFM also provided

robust estimates, even with a misspecified missing data mechanism, that is, ignorable

missing data.

In this chapter, CLFM was investigated in detail and the corresponding effec-

tiveness was further confirmed through series of simulation studies and three appli-

cations. In estimating parameters of CLFM from the MCEM approach, a heavy

computational burden was involved. This computation burden sometimes can be

alleviated by specifying different initial values for MCEM algorithm. When using

estimates from ignorable likelihood as initial values in AIDS Clinical Trial study, the

computation time was reduced by 1/3 from the arbitrary specified initial values. As

proposed in Chapter 4, missing patterns were estimated by a latent factor model, by

incorporating with a continuous latent factor u, and time location parameters. The

constant variability across each time is assumed among all applications we presented

in this chapter. However, there maybe cases that heterogeneous variability will pro-

duce a better fit. A likelihood ratio test can be used to determine which model is

better. Table 5.9 gives the log-likelihood values on fitting latent factor models with

constant or heterogeneous variability, as well as p-values on likelihood ratio test on

each application.

From Table 5.9 we observed that continuous latent factor models with heteroge-

neous slope parameters were preferred for the first two studies: Peabody Vocabulary

Test and ACTG studies. A separated study was conducted for ACTG case, and for
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Table 5.9: Log-likelihood values and likelihood ratio tests on latent factor models

with constant variability (Constraint) or heterogeneous variability (Full)

Study Constraint Full df p-value

PIAT -639.7661 -622.9483 3 < 0.0001

ACTG -3649.173 -3629.591 5 < 0.0001

Growth NMAR -259.2228 -257.1922 4 0.3978

Growth MAR -218.1306 -215.8879 4 0.3443

the primary parameters of interest were similar to those obtained from the continuous

latent factor model with homogeneous slope.
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Chapter 6

DISCUSSION

6.1 Conclusions

In a longitudinal study, an incomplete dataset does not contain information that

enables us to identify underlying a missing mechanism, unless extra unverifiable as-

sumptions can be made. In the last two decades, researchers have investigated the

implications of NMAR missing data by fitting selection models and pattern-mixture

models. However, these models include difficulties to implement in a real case. Selec-

tion models make unverifiable assumptions for the missing mechanism, while pattern-

mixture models tend to have over-parameterization issues, as well as conditional inde-

pendence assumptions. In this thesis, we developed a non-ignorable model based on

the idea of continuous latent factor of response behavior (missing behavior), and ar-

gue that this model excludes most implementing difficulties and is a useful alternative

to a standard analysis with MAR assumption.

We believe that this new approach will avoid untestable missing mechanism as-

sumptions from selection models, and also believe that the new model will be more

appealing to social behavioral and clinical researchers than pattern-mixture mod-

els,because the new model eliminates over-parameterizations issues. Further, the

continuous latent factor provides an intuitive description of the response patterns in

the study, and offers a feasible way to test conditional independence assumptions. For

researchers who are interested in implementing CLFM model, we encourage them to

compare latent factor models on missing indicator matrix with either constant slope

or heterogeneous slopes and choose the one with better fitting in CLFM, based on
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information criteria or the likelihood ratio test. Lastly, CLFM is more feasible for

small samples.

With the truth that the underlying missing mechanism for missing data is un-

known, (that is whether missingness is due to MAR or NMAR), we take this new

method primarily as a tool for sensitivity analysis. In the case that a researcher

cannot determine the distribution of missing data, the most responsible and objec-

tive approach to proceed is to explore and present alternative results from different

plausible models.

6.2 Future Work

In this thesis, we have explored the proposed CLFM under the assumption of

a multivariate normal distribution for the complete data. The normal model is an

intuitive and natural starting point for this method, but it also has limitations. Many

longitudinal studies will have discrete responses, such as measuring the total number

of bleeding counts in a Hemophilia study; or even binary responses. In the future,

we will be extending our method to more flexible models for multivariate discrete

responses. One promising approach is the Bayesian estimation approach which allows

these extensions more straightforward.

To achieve an in-depth understanding of our method’s properties, it is desirable

to perform more simulation studies to compare this method to existing MAR and

NMAR alternatives under a variety of missing data mechanisms. Only one robust

analysis has been done in this thesis, and we are expected to conduct more simulation

studies on this topic. Some might regard them as artificial, because in each realistic

example the true mechanism is unknown. Nevertheless, it would be interesting to

explore whether the proposed model performs better or worse than other methods

when its assumptions are violated.
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In proposing CLFM, we have a fundamental assumption which is conditional in-

dependence. Unlike models that belong to pattern mixture family, this assumption

is feasible to be tested in CLFM. As another future work, we will explore the as-

sessment on this assumed conditional independence in the CLFM from the fitted

residuals. One approach is to calculate the residual from both the longitudinal and

missing pattern models. When these residuals can be treated as approximately iid

normal, a correlation coefficient close to 0 will indicate the conditional independence.

For a more complicated distribution, some graphical approaches may be useful and

could be applied as auxiliary tools.
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Table A.1: Number of latent class tallies on MCAR simulation

Information Criterion LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 1 (0.001) 112 (0.112) 0 (0.00) 883 (0.887)
BIC 0 (0.00) 978 (0.982) 18 (0.018) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 989 (0.993) 7 (0.007) 0 (0.00) 0 (0.00)
DBIC 0 (0.00) 894 (0.898) 102 (0.102) 0 (0.00) 0 (0.00)
HQ 0 (0.00) 593 (0.595) 368 (0.369) 0 (0.00) 35 (0.035)
HT 0 (0.00) 2 (0.002) 160 (0.161) 0 (0.00) 834 (0.837)

BICa 0 (0.00) 536 (0.538) 403 (0.405) 0 (0.00) 57 (0.057)
CAICa 0 (0.00) 549 (0.551) 396 (0.398) 0 (0.00) 51 (0.051)

*Latent class models are fitted with incorporating covariates. αj = 1, γ1 = 0, γ2 = 0,
µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.

Table A.2: Number of latent class tallies on NMAR simulation (low missing proba-
bility)

Information Criterion LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 1 (0.001) 112 (0.112) 0 (0.00) 883 (0.887)
BIC 0 (0.00) 978 (0.982) 18 (0.018) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 989 (0.993) 7 (0.007) 0 (0.00) 0 (0.00)
DBIC 0 (0.00) 894 (0.898) 102 (0.102) 0 (0.00) 0 (0.00)
HQ 0 (0.00) 593 (0.595) 368 (0.369) 0 (0.00) 35 (0.035)
HT 0 (0.00) 2 (0.002) 160 (0.161) 0 (0.00) 834 (0.837)

BICa 0 (0.00) 536 (0.538) 403 (0.405) 0 (0.00) 57 (0.057)
CAICa 0 (0.00) 549 (0.551) 396 (0.398) 0 (0.00) 51 (0.051)

*Latent class models are fitted with incorporating covariates. αj = 1, γ1 = 0.2, γ2 = 0,
µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.
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Table A.3: Number of latent class tallies on NMAR simulation (different missing probability
at different time points)

Information Criterion LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 7 (0.007) 360 (0.364) 430 (0.435) 192 (0.194)
BIC 746 (0.754) 224 (0.226) 19 (0.019) 0 (0.00) 0 (0.00)

CAIC 856 (0.866) 132 (0.133) 1 (0.001) 0 (0.00) 0 (0.00)
DBIC 458 (0.463) 400 (0.404) 127 (0.128) 4 (0.004) 0 (0.00)
HQ 104 (0.105) 355 (0.359) 439 (0.444) 90 (0.091) 1 (0.001)
HT 0 (0.00) 12 (0.012) 397 (0.401) 424 (0.429) 156 (0.158)

BICa 82 (0.083) 318 (0.322) 471 (0.476) 116 (0.117) 2 (0.002)
CAICa 89 (0.090) 330 (0.334) 460 (0.465) 109 (0.110) 1 (0.001)

*Latent class models are fitted without incorporating covariates. αj = 1, γ1 =
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], γ2 = 0, µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.

Table A.4: Number of latent class tallies on NMAR simulation (different missing
probability at different time points)

Information Criterion LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 1 (0.001) 112 (0.112) 0 (0.00) 883 (0.887)
BIC 0 (0.00) 978 (0.982) 18 (0.018) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 989 (0.993) 7 (0.007) 0 (0.00) 0 (0.00)
DBIC 0 (0.00) 894 (0.898) 102 (0.102) 0 (0.00) 0 (0.00)
HQ 0 (0.00) 593 (0.595) 368 (0.369) 0 (0.00) 35 (0.035)
HT 0 (0.00) 2 (0.002) 160 (0.161) 0 (0.00) 834 (0.837)

BICa 0 (0.00) 536 (0.538) 403 (0.405) 0 (0.00) 57 (0.057)
CAICa 0 (0.00) 549 (0.551) 396 (0.398) 0 (0.00) 51 (0.051)

*Latent class models are fitted with incorporating covariates. αj = 1, γ1 =
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], γ2 = 0, µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2,

cov(b0, b1) = 0.1.

Table A.5: Number of latent class tallies for low missing probability on previous responses

Information Criterion LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 20 (0.020) 80 (0.080) 249 (0.251) 654 (0.649)
BIC 0 (0.00) 991 (0.997) 3 (0.003) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 991 (0.997) 3 (0.003) 0 (0.00) 0 (0.00)
DBIC 0 (0.00) 960 (0.966) 34 (0.034) 0 (0.00) 0 (0.00)
HQ 0 (0.00) 762 (0.767) 198 (0.199) 30 (0.030) 4 (0.004)
HT 0 (0.00) 29 (0.029) 122 (0.123) 285 (0.288) 558 (0.561)

BICa 0 (0.00) 711 (0.715) 220 (0.221) 53 (0.053) 10 (0.01)
CAICa 0 (0.00) 721 (0.725) 218 (0.219) 45 (0.045) 10 (0.01)

*Latent class models are fitted with incorporating covariates. αj = 1, γ1 = 0.2, γ2 = 0.1,
µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.
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Table A.6: Number of latent class tallies for high missing probability on previous re-
sponses

Information Criterion LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 0 (0.00) 3 (0.003) 286 (0.286) 710 (0.711)
BIC 0 (0.00) 293 (0.293) 508 (0.509) 198 (0.198) 0 (0.00)

CAIC 0 (0.00) 293 (0.293) 508 (0.509) 198 (0.198) 0 (0.00)
DBIC 0 (0.00) 31 (0.031) 537 (0.534) 388 (0.388) 43 (0.043)
HQ 0 (0.00) 1 (0.001) 249 (0.249) 516 (0.517) 233 (0.233)
HT 0 (0.00) 0 (0.00) 4 (0.004) 313 (0.313) 682 (0.682)

BICa 0 (0.00) 1 (0.001) 212 (0.212) 517 (0.518) 269 (0.269)
CAICa 0 (0.00) 1 (0.001) 216 (0.216) 520 (0.521) 262 (0.262)

*Latent class models are fitted with incorporating covariates. αj = 1, γ1 = 0.2, γ2 = 0.4,
µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.

Table A.7: Number of latent class tallies for high missing probability on previous and
current responses

Information Criterion LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 0 (0.00) 2 (0.002) 164 (0.165) 827 (0.833)
BIC 0 (0.00) 1 (0.001) 953 (0.960) 39 (0.039) 0 (0.00)

CAIC 0 (0.00) 1 (0.001) 953 (0.960) 39 (0.039) 0 (0.00)
DBIC 0 (0.00) 0 (0.00) 724 (0.729) 257 (0.259) 12 (0.012)
HQ 0 (0.00) 0 (0.00) 307 (0.309) 524 (0.528) 162 (0.163)
HT 0 (0.00) 0 (0.00) 4 (0.004) 211 (0.212) 778 (0.783)

BICa 0 (0.00) 0 (0.00) 261 (0.263) 535 (0.539) 197 (0.198)
CAICa 0 (0.00) 0 (0.00) 271 (0.273) 530 (0.534) 192 (0.193)

*Latent class models are fitted with incorporating covariates. αj = 1, γ1 = 0.4, γ2 = 0.4,
µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.
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APPENDIX C

REGULARITY CONDITIONS
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Given complete data Y and R, and parameter vector θ ∈ Θ for the proposed
parametric model (4.2) - (4.4), the regularity conditions for discussing asymptotic
properties of maximum likelihood estimators (MLE) can be stated as follows:

1. Both variables (Yi, Ri, i = 1, 2, · · · are independent and identically distributed
with density function f(Y,R; θ).

2. The parameter space Θ is compact, and there exists a θ0 ∈ Int(Θ) (i.e. θ0 is an
interior point of Θ) such that θ0 = argmax

θ∈Θ
Eθ0 log f(Yi,Ri; θ).

3. The probability distribution is identifiable, i.e. for different values of θ, the
probability distributions are distinct.

4. The log-likelihood function

l(Y,R; θ) =
n∑
i=1

log f(Yi,Ri; θ)

is continuous at θ.

5. Eθ0 log f(Yi,Ri; θ) exists.

6. The log-likelihood function satisfies that 1
n
l(Y,R; θ) converges almost surely to

Eθ0 log f(Yi,Ri; θ) uniformly in θ ∈ Θ, i.e.,

sup
θ∈Θ

∣∣ 1
n
l(Y,R; θ)− Eθ0 log f(Yi,Ri; θ)

∣∣ < δ almost surely for some δ > 0.

7. The log-likelihood function l(Y,R; θ) is twice continuously differentiable in a
neighborhood of θ0.

8. Integration and differential operators are interchangeable.

9. The information matrix

I(θ0) = Eθ0

(
∂2log f(Y,R; θ0)

∂θ∂θT

)
exists and non-singular.
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